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Vision, Objectives and Research )
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Charles Hirsch and Dirk Wunsch

Vision, Concepts and Main Challenges

The ultimate objective of aircraft design methodologies, within a fully computer-
ized design environment based on the concept of virtual prototyping (VP), is to rely
essentially on analysis: computer-aided design (CAD) definitions for the geometry,
computational fluid dynamics (CFD) for the aerodynamic loads and noise sources;
computational structural mechanics (CSM) for stresses and lifetime evaluations,
including combined fluid—structure interactions (FSI); conjugate heat transfer
(CHT) for heat fluxes and heat transfer; combustion modelling for emissions;
computational aeroacoustics (CAA) for noise estimations. This objective should
lead to a shorter design cycle, with fewer costly tests and as importantly, fewer
redesigns due to unanticipated test results.

An important limitation of the extensive application of analytical tools, at the
basis of virtual prototyping, is connected to the level of uncertainty they introduce
in the analysis and design process.

For example, when performing 3-D viscous flow analysis of engine components,
there is uncertainty in the definition of the boundary conditions representing the
operational environment; in the discrepancy between the CAD geometry and the
real geometry resulting from the manufacturing tolerances and assembly process; in
the true deformed geometry of the parts being analysed at engine operating con-
ditions. In addition, modelling uncertainties are present, resulting from imperfect
models for turbulence, multi-species reaction rates or combustion, as well as
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numerical errors from the set-up of the simulations (such as grid dependencies or
convergence levels).

This leads to a global uncertainty on the results of the analysis, on which
design decisions have to be taken. The ability to quantify the impact of these
uncertainties on the predicted behaviour of aeronautical components and to
account for these uncertainties in the design process is crucial for a reliable risk
management and better estimates of safety margins. Managing the design process
in the light of these uncertainties is therefore the key to robust design.

Introducing the probabilistic nature of uncertainties in simulation software
systems is a highly challenging undertaking, as the whole process transforms the
resolution of deterministic physical conservation laws, to non-deterministic
methods, governed by stochastic partial differential equations (SPDE). As a con-
sequence, predicted quantities, such as loads, lift, drag, efficiencies, emissions,
noise, ..., are not represented anymore by single numbers, but by a Probability
Density Function (PDF), providing a domain of confidence, associated to the
considered uncertainties, introducing hereby a fundamental shift in paradigm for
the whole of the VP methodology.

The main concept is summarized in Fig. 1. The current deterministic approach is
to set single-valued computational conditions, leading to a single value for the
output quantity n (in red). When the uncertainty is introduced by a PDF, the output
quantity is also transformed into a probabilistic quantity. Figure 1 illustrates this
fundamental change, which can be strongly dependent on how the input uncertainty
parameter is defined. From the output PDF, one can derive the Cumulative
Distribution Function (CDF), leading to the definition of a domain of variation for a
given level of confidence, say 95%. This is shown on the right side of Fig. 1, which
shows the predicted PDF and CDF for the drag on an airfoil with geometrical
uncertainties. The vertical bar represents the deterministic prediction.

A very important property, shown intentionally on this Fig. 1, is that the
deterministic output, corresponding to the mean value of the input uncertain
variables, is not equal to the mean value of the output PDF.

The importance of assessing and quantifying the various uncertainties affecting
the virtual prototyping process, in particular in aeronautics, has been growing
significantly in the last few years in Europe and in the USA, and in particular as an

3000
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Fig. 1 Main concept of non-deterministic simulations
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outcome of the FP6 project NODESIM-CFD (Non-Deterministic Simulations for
CFD-based Design Methodologies), precursor of this UMRIDA project.

The incorporation, up to an advanced industrial level of uncertainties in the VP
methodology, has become a major necessity, in order to reduce the risks associated
to the design decisions based on numerical simulations and virtual prototyping.

Traditional Approach to Risk Management: Safety Factors

A traditional approach to risk management is the introduction of safety factors, or
safety margins, comparing the resistance of a system (which we can term as its
capacity), compared to the estimated loads (termed in general as requirement). In
the traditional and still current practice, left part of Fig. 2, a deterministic value is
estimated for the load xg and a value is provided, as best as possible, for the
maximum capacity Xc, on basis of which a safety margin k = xc/Xg is imposed on
the system.

Taking the safety margin at a sufficiently high value minimizes risk, but this will
generally have detrimental consequences on cost and performance. On the other
hand, taking into account uncertainties and their PDFs (right figures) provides
ranges (under the form of PDFs) for requirements (loads) and capacity (resistance)
in a rational way, allowing to define a failure region where the two PDFs over-
lap. Full safety, taking into account the known uncertainties, is obtained for k > 1,
upper right figure; while when k = 1, a certain risk factor will exist, due to the small

Requirement Capacit
_é. pacity
=
Safety Factor 2 Safety Margin
E k=x./xp
Xy ¢ c T
apabili
2 pability
® } Requirement
Ke) > 7
R
o — e ‘_f Capacity
o e
3
a_? k=1
Requirement Capacity 2 X Capability
2 | Requirement Failure  Capacity
= Region
D
8
©
“
. k<1
e X Capability

Fig. 2 Rational approach to safety factors, based on UQ methodology (taken from Green [2])
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overlapping failure region. In case k < 1, a large failure region exists, which would
lead to a catastrophic design, of course to be rejected.

An important element in risk of failure assessment is the so-called inverse design
problem, namely trying to determine a level of acceptable uncertainty of the input
quantities, in order to keep the output uncertainties below an accepted level of risk
of failure.

Uncertainty Categorization

It is important to separate different types of uncertainties, based on their nature and
origin. It has now become standard practice in the Uncertainty Quantification
(UQ) literature (see, for instance, the recent overview book of Oberkampf and Roy
[4], to distinguish between epistemic, also called reducible, and aleatory, also
called irreducible, uncertainties).

The former are globally generated by numerical errors due to discretization
approximations and grid dependences, as well as lack of knowledge associated to
the imperfect physical models, such as turbulence, combustion or multiphase
models. They are considered as reducible uncertainties, since they could be reduced
through increased understanding and research, or more relevant physical data, and
are globally related to the lack of knowledge about the appropriate value to use for
the considered quantity.

The important consequence is that epistemic uncertainties have a fixed, but
poorly known, value in the analysis. For instance, the elastic modulus for a
composite material in a specific component is fixed but its value can be unknown or
poorly known; the turbulent viscosity in a CFD simulation is known to be subject to
the many approximations attached to turbulence models.

On the other hand, aleatory uncertainties are related to the inherent randomness
of the system being analysed, such as variability of operational conditions, geo-
metrical randomness from the manufacturing process, which cannot be reduced by
further data.

Hence, epistemic uncertainties are a property of the models applied in the
analysis, including the choices made by the modeller, while the aleatory
uncertainties are a strict property of the system being analysed.

The main reason for this distinction is the different ways of treatment and
quantification. The epistemic uncertainties will essentially be handled through
probabilistic techniques, while aleatory uncertainties, which form the main objec-
tive of the UMRIDA project, require more sophisticated and innovative techniques
in the framework of non-deterministic methods, such as Monte Carlo methods or
sensitivity-based methodologies, or Polynomial Chaos methods.

The methods for handling epistemic uncertainties, see, e.g. Helton and Oberkampf
[3] or Eldred et al. [1], place some type of bounds on the resulting output uncertainty,
largely based on subjective estimates of error and model uncertainty levels. It is indeed
difficult to provide objective estimates of the numerical errors, or of the error asso-
ciated with the weaknesses of a given turbulence model.

As both types of uncertainties are always present, their highly unknown and
nonlinear interactions are of importance.
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Scientific and Technical Objectives

The UMRIDA project focuses on uncertainty management at all levels of the
analysis and design process, and it is believed to offer a significant potential for
innovative and safer designs. The technical objectives of UMRIDA can be sum-
marized as follows:

Objective 1: Develop innovative methods for UQ and Robust Design (RD) to
respond to the main challenges mentioned above.

Objective 2: Develop new methods for the large-scale introduction of the UQ
methodologies in robust design methods, in order to produce designs incorporating
the major uncertainties.

Objective 3: Apply the developed UQ and RD methods to complex systems of
particular interest for the aeronautical industry. To achieve this objective, industry
has pre-defined Industrial application Challenges (IC’s) with prescribed uncer-
tainties, including multi-physics applications, demonstrating the industries strong
needs for UQ and RD methods in their day-to-day work. This leads to a new
generation of database, including whenever possible, new experimental data with
controlled uncertainties, on which the methods will be tested and validated, as well
as best practices in the application of UQ and RD methods to industrial cases.
Objective 4: Advance UQ and RDM to the Technology Readiness Level 5-6 from
a presently estimated TRL of 2-3. Figure 3 illustrates this in relation to the pre-
cursor project NODESIM-CFD. A quantifiable objective is set by the industrial
partners as: handling at least ten simultaneous uncertainties, in a turn-over time
of no more than 10 h on a 100 core parallel processor.

9 |Actual system “flight proven”
through successful mission
operations

APPLIED 8 |Actual system completed and “flight
qualified” through test and
demonstration

7 |System prototype demonstration in . UMRIDA
a operational environment E i e
6 |System/subsystem model or =
prototype demonstration in a IE e
relevant environment s ; 9
ADVANCED| 5 |Component and/or breadboard o E =)
validation in relevant envirc t = § [
4 |Component and/or breadboard -E E %
validation in laboratory G IE c
environment 9 o
3 |Analytical and experimental critical ol "~ ~7°
function and/or characteristic =
BASIC 2 |Technology concept and/or 6 NODESIM
application formulated E
1 |Basic principals observed and
reported

Fig. 3 Progress in Technology Readiness Level (TRL) during the UMRIDA project
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Objective 5: Facilitate cooperation and dissemination of UQ and RDM awareness
towards European industries, research establishments and universities and foster
cooperation between different industries as airframe, turbo-engines, helicopters, and
sea and ground transportation, including the European CleanSky project.

Reaching these objectives will enable industry and all partners involved:

e To strengthen the competitiveness of the European Aeronautical Industry, since
UQ and RDM are not yet systematically used in industry (apart from some very
few attempts on research level). It is expected that, at the outcome of the project,
the innovative UQ and RD methodologies, to be developed in UMRIDA, will be
ready to being applied at a wider scale in the aeronautical industry.

e To secure global leadership by promoting the novel UQ and RD methods in
day-to-day industrial practice, beyond aeronautics, towards other transport
areas, such as land and sea. The downstream objective of the UMRIDA project
is to contribute to the integration of generalized risk analysis into all design
practices whereby safety margins, and the associated risks are identified at each
level of the product development.

Progress Beyond the State of the Art

In order to reach these objectives, a significant progress beyond the state of the art is
needed. The activities of UMRIDA project partners can be grouped into three main
fields:

I. Advance methods for uncertainty quantification

Three different approaches for uncertainty propagation are investigated. First,
method of moments (perturbation method) and adjoint-based methods; the
principle of these methods is the use of a Taylor series to expand an output quantity
around its mean. The key element here is the evaluation of first- and second-order
sensitivity derivatives in this Taylor series. Second, Monte Carlo methods
(multi-level Monte Carlo) are studied by several partners. The basic idea is to
perform a high number of deterministic simulations with sampled parameters and
evaluate output quantities on different levels in order to reduce significantly the
computation time in comparison with standard Monte Carlo methods. Third,
non-intrusive polynomial chaos or collocation methods are investigated. In these
methods, the principle resides in the expansion of the solution into a polynomial
chaos or an interpolating polynomial, which forms an approximation of the solution
around the uncertainties.
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II. Characterization of most influential uncertainties and dimension reduction

A second approach to tackle many simultaneous uncertainties is to determine the
most influential uncertainties in the problem and solve only for these, in order to
reduce the dimensionality of the problem. This implies that the input uncertainties
are well known, which represents a challenge in itself for many industrial problems.

Thus, a first line of action is the accurate quantification of input uncertainties.
Output PDFs are dependent on the shape of input PDFs, and it is necessary to
develop a methodology that allows to derive correct information for input PDFs
from generally scarce experimental data or knowledge. A second line of action is
the identification of the most important uncertainties in the problem description.
A third line of action focuses on surrogate models or reduced order models for
the description of aerodynamic or turbomachinery test cases.

III. Advances in robust design and optimization methodologies

The last year of the UMRIDA project will focus on Robust Design Optimization
techniques. The objective of robust design is to produce designs which are less
sensitive to variations of conditions/parameters due to uncertainties. In general,
it must be noted that design under uncertainties is a new field of research and it
is unclear so far how to enforce robustness, robust objective/constraint formulations
and dependence on used optimizers within an industrial design environment. These
issues are addressed within UMRIDA.

Research Consortium

The research consortium formed to address the above challenges consists of the
following 21 partners, NUMECA International (Coordinator), DASSAULT Avia-
tion, EASN-ITS, LEONARDO Aircraft, MAN Diesel & Turbo Schweiz, TUR-
BOMECA, NPO-SATURN, ESTECO, ONERA, DLR, INRIA-Sophia, CIRA,
CIMNE, CERFACS, TU Delft, Vrije Universiteit Brussel, Warsaw University of
Technology, EPFL, Linkoping University, AIRBUS Group Innovation, TU Dres-
den. The logos are shown in Fig. 4.

Research Activities: UMRIDA Work Plan

One of the main objectives, namely the creation of a new generation of database,
focused on UQ and RDM, is further detailed, as it is at the heart of the research
work in UMRIDA. This database is in first priority constructed around the indus-
trial challenges (IC), submitted by the industrial partners of the UMRIDA project.
This is part of the top-down approach taken in this project, guided by the industrial
requirements of the aeronautical industry towards safer and more optimal designs,
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Fig. 4 UMRIDA consortium
taken into account large numbers of uncertainties. This new database, with pre-

scribed uncertainties, will be the backbone of the two workshops, which are
expected to become landmarks in the validation and evaluation of UQ and RD
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methods. It is intended to open up the workshops to worldwide participation with
the aim of gathering the best worldwide experts and to confront the UMRIDA
results and progress with related activities worldwide. This translates into the fol-
lowing work package structure.

WP1: General management and coordination

WP2: Improvement of methods for Uncertainty Quantification towards
industrial readiness

Objectives: Extension of UQ methods able to handle the UQ challenges identified
in Chapter “UMRIDA Test Case Database with Prescribed Uncertainties”, paving
the road towards a TRL 5-6, with a quantified objective to handle at least 10
simultaneous uncertainties within a turn-around time of the order of 10 h on 100
cores.

e Task 2.1: UQ methods for efficient handling of large number of uncertainties

e Task 2.2: Development of efficient UQ methods for general geometrical
uncertainties

e Task 2.3: Impact of numerical properties of CFD codes, numerical errors,
including issues of shock discontinuities on assessment and validation of UQ
methods

e Task 2.4: Methods for identification and quantification of input experimental
uncertainties, including methods to define tolerances in input parameters to
satisfy tolerance in output (inverse robust design).

WP3: Validation and evaluation of UQ methods for industrial test cases (in-
dustrial challenges)

Objectives: Develop the methodology of UQ towards industrial readiness, by
applying and assessing the methods developed in WP2, in view of the quantitative
objectives relevant to a TRL 5-6 objective.

e Task 3.1: Detailed specification of test cases, from basic to industrial challenge
level, including multi-physics, with preset uncertainties, including the creation
of new experimental data, with ‘controlled’ uncertainties, to establish an inno-
vative database for UQ validations

e Task 3.2: Application of methods of WP2 to the selected test cases

e Task 3.3: Efficient UQ methods for multidisciplinary applications.
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WP4: Robust design methodologies and applications

Objectives: Bring robust design methods to industrial readiness levels, covering
large number of uncertainties, including geometrical uncertainties, with applications
to Multidisciplinary Design Optimization (MDO).

e Task 4.1: Analysis of different methodologies for uncertainty incorporation in
objective/constraint formulations of the optimization process
e Task 4.2: Innovative methods for robust design under uncertainties

e Task 4.3: Application of robust design methods to selected industrial relevant
test cases, including general geometrical uncertainties.
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eficient g mathods for I
general geometrical
‘uncertsinties
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workshop, BP Guide for
end users
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Fig. 5 UMRIDA work plan



Vision, Objectives and Research Activities 13

WP5: Workshop, BP guideline for end-users, exploitation: dissemination,

Objectives: Set up two workshops for validation and evaluation of UQ and RD
methods at the level of the IC test cases. Dissemination and exploitation of the
UMRIDA methodologies.

e Task 5.1: Workshops on UQ and robust design at mid-term and at end of project
e Task 5.2: Best Practice Guide (BPG) for UQ and robust design methodologies
e Task 5.3: Dissemination and exploitation.

Figure 5 shows a diagram of the interactions between the different work pack-
ages and tasks.
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with Prescribed Uncertainties Check for

Sonke Klostermann

The UMRIDA Database for Uncertainty Quantification and Robust Design Meth-
ods comprises different test cases with prescribed uncertainties which have been
compiled using a common way of describing the different test cases. Generally, the
database describes the test case regarding the geometry, the mesh (if prescribed),
and the flow conditions. Furthermore details for the considered uncertainties are
given separating between geometrical uncertainties, operational uncertainties, and
modeling uncertainties which may be caused by epistemic uncertainties, for
example. It is differentiated between »Basic Challenges« (Table 1) and »Industrial
Challenges« (Table 2) of increased complexity regarding the model complexity
itself and the considered uncertainties. The industrial test cases have been submitted
by the UMRIDA project partners.

The purpose of the generic methodology description is to be (partly) independent
from the specific use case, allowing for a common view by all partners on the
different cases. A common language of all partner’s use case descriptions enables
for easier collaboration and better means of comparability of different UQ and
RDM methods.

In the section at hand we will briefly describe the basic and industrial challenges
given in Tables 1 and 2. More detailed test case descriptions of specific properties
will be given in the respective sections when necessary.
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Table 1 Overview of basic challenges

Reference Test case name Provider

BC-01 NASA Rotor 37 NUMECA

BC-02 RAE 2822 airfoil NUMECA

BC-03 DLR-F6 DLR

BC-05 Shock-boundary layer interactions Stanford University (CIRA)

Table 2 Overview of industrial challenges

Reference Test case name Provider

IC-01 Helicopter engine combustor Turbomeca

1C-02 3D DLLM wing Airbus Group Innovations
1C-03 Falcon jet Dassault Aviation

1C-04 NPO Saturn industrial fan blade NPO Saturn

IC-05 NPO Saturn gas turbine HPT blade NPO Saturn

1C-06 Acoustic liner Alenia Aermacchi

1C-07 Industrial compressor stage MAN

IC-08 Supersonic laminar flow business jet CIRA/Dassault Aviation
1C-09 High-pressure compressor blade design Rolls-Royce Deutschland

BC-01: NASA Rotor 37

The Rotor 37 test case was designed and initially tested as part of a research
program involving four related axial-flow compressor stages. Then, the rotor was
retested as an isolated component, which is the geometry described here and
referred to as Rotor 37. Detailed description of the geometry, the experimental
setup, and a series of simulations cross-plotting the predictions can be found in [1].

The geometry of the Rotor 37 is given schematically in Fig. 1. The mesh is of
HOH-type and has shown a satisfying insensitivity to refinement with a final of 4.7
million mesh points. Further, a mesh with approximately 700,000 mesh points is
available. Data available for the Rotor 37 were obtained at the design point value of
an equivalent rotational speed of 17188.7 rpm (1800 rad/s). All data are available
in [1].

The following geometrical uncertainties are of importance and are result of
manufacturing and assembling tolerances:

e Tip clearance: Uncertainty in the tip clearance results from different sources,
such as tolerances in the casing or temperature differences between casing and
flow field (symmetric beta PDF, a = 0.5 * Mg, b = 1.02 * Mg, My, =
0.356 mm)



UMRIDA Test Case Database with Prescribed Uncertainties 17
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Fig. 1 Blade and flow path coordinates of BC-01 (from [1])

e Camber angles: (symmetric beta PDF, f; = 5°, B, = —70°, Min. value (a): 95%
B1, 95% Bo, Max. value (b): 105% B, 105% P>)

e Leading and trailing edge radii: Deviations in leading and trailing edge radii
result from manufacturing tolerances. The nominal values vary along spanwise
direction (symmetric beta PDF, a = 0.90 of Nominal, b = 1.10 of Nominal)

e Non-uniformity of blade spacing: Non-uniformity in the circumferential blade
spacing can be accounted for if more than one blade is simulated. Each
inter-blade spacing should be independent from the others, such that the cir-
cumferential displacement of the next blade is not linked to the displacement of
its neighbor (symmetric beta PDF, a = —1% of blade spacing, b = +1% of blade
spacing)

e Blade surface roughness: The RMS blade surface roughness is given in [1] to lie
between 0.5 and 1.25 pm (symmetric beta PDF).

The following operational uncertainties are of importance (values given in [1]):

Inlet total pressure (symmetric beta PDF, a = 0.98, b = 1.02 of Nominal values)
Static outlet pressure (symmetric beta PDF, a = 0.98, b = 1.02 of Nominal
values)

e Radial distribution of the inlet flow angle (cubic polynomial law with normal
distribution of random coefficients, Min. value —5%, Max. value +5%).

No epistemic uncertainties are considered.
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BC-02: RAE 2822 Airfoil

The test case corresponds to cases 6 and 9 in 2. Figure 2 shows the airfoil geometry.
The experimental data cover a range of conditions from fully subcritical flow to
conditions where a comparatively strong shock wave exists in the flow above the
upper surface of the airfoil. In total, 14 configurations have been measured, for
which the free-stream Mach number, angle of attack, and Reynolds Number are
given in [2].

The experimental flow conditions of these test cases must be corrected to
eliminate wall interference, since the experiments are performed with wind tunnel
walls. Several corrections are used for this test case, but no final convergence on the
correction to apply can be identified in available studies on this test case.

The following geometrical uncertainties are of importance and are result of
manufacturing and assembling tolerances:

e Thickness-to-chord ration: An uncertainty on the thickness-to-chord ratio is
imposed. The proposed uncertainty PDF is of symmetric beta PDF shape. It can
be varied for different control points (a = 0.97 Nominal, b = 1.03 Nominal)

e Camber line: The camber line is modified following a symmetric beta PDF at
several control points (a = Nominal —0.01%, b = Nominal +0.01%).

The following operational uncertainties are of importance:

Free-stream Mach number (symmetric beta PDF, a = 0.95, b = 1.05)
Angle of attack (symmetric beta PDF, a = 0.98, b = 1.02)

No epistemic uncertainties are considered.

RAE 2822

2,00000E-01

1,00000E-01
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1,00000E-01
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Fig. 2 RAE 2822 airfoil
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BC-03: DLR Fé6

DLR-F6 wing-body configuration (DLR-F6 WB) is the geometry used for
ATIAA CFD Drag Prediction Workshop (DPW) 2 and 3 in 2003 and 2006,
respectively, focusing on drag, lift, and pitching-moment predictions (Fig. 3). The
design condition is that M, = 0.75,C;, =0.5,Re =5 * 108, which was used for the
single-point grid-sensitivity study on three grids (coarse, medium, and fine) for two
kinds of configurations, DLR-F6 WB without and with fairing (FX2B).

In DPW-3, a test case by changing angle of attack (AoA), which is one of the
operational uncertainties, in the range [—3.0°, —2.0°, —1.0°, —0.5°, 0.0°, 0.5°, 1.0°,
1.5°] was also discussed. In the fixed Cp design condition, AoA is in the range
(—1.2°, 0.3°) for without fairing and (—0.9°, 0.4°) for with fairing, and CD is (261,
332 counts) for without fairing and (253, 293 counts), respectively, by twenty of
data by the participants [3]. Here, 1 count means 0.0001. Note that the AoA in the
design condition is in the range (—0.2°, 0.0°) by the DLR data [4].

The FX2B (DLR-F6 WB with fairing) has a fairing at the trailing edge (TE) of
the wing—fuselage junction to suppress the flow separation. This point is one of the
most sensitive points in grid densities for Cp in the configuration without fairing
[3]. All necessary data for CFD calculations, which was used in DPW-3, are
available in the DPW-3 official Web site [5].

In UMRIDA, the wing thickness and leading edge shape for both DLR-F6 WB
with and without fairing are considered as the geometrical uncertainties.
In UMRIDA, the Mach number, angle of attack (AoA), and Reynolds number are
considered as the operational uncertainties. In DPW-3, some data were provided by
the participants by changing AoA in the range [-3.0°, —2.0°, —1.0°, —0.5°, 0.0°,
0.5°, 1.0°, 1.5°] for both DLR-F6 WB with and without fairing. In DPW-2, constant
Cy (Cp = 0.5) that drags rise in the range of M, [0.50, 0.60, 0.70, 0.72, 0.74, 0.75,
0.76, 0.77] was studied for DLR-F6 WB without fairing [6, 7].

Fig. 3 View of wing-body
configuration DLR-F6
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BC-05: Shock-Boundary Layer Interactions

The objective of this test case is to study the shock—boundary layer interactions
under free-stream and geometrical uncertainties of a 24° compression wedge in a
Mach 2 flow. An experimental data set is provided that is well suited to be used for
the validation of CFD codes which are intended to be used in design and analysis of
systems with stochastic inputs.

The experimental and computational setups are aimed to validate and quantify of
aleatory and epistemic uncertainties, determining the dominant contributions to
changes in the streamwise location of the shock-crossing point. Aleatory uncer-
tainties considered include geometric perturbations and variation of the inflow
conditions. The test section configuration and geometry is described in full detail in
[8-11], and it is sketched in Fig. 4.

A continuously operated Mach 2.05 wind tunnel is used in the experiment which
is fed from a 2D converging/diverging nozzle followed by a constant-area devel-
opment section of 45 X 47.5 mm. A contraction is produced by a 3-mm-long,
20°-angle compression wedge that spans the top wall of the duct and is responsible
for generating the oblique shock that impinges and reflects at the bottom wall.
Another constant-area section follows. The turbulent incoming boundary layers had
an average thickness of 5.4 mm at a streamwise location 21 mm upstream of the
foot of the wedge.

Small geometric perturbations in the form of a bump of height %, (<0.26)
spanning the bottom wall are introduced at several streamwise locations, upstream
of the foot of the wedge. The quantity of interest is chosen as the streamwise
location of the shock-crossing point of the first bottom-wall STBLI measured at the
z = 21 mm (near-center) plane.

Continuously operated Mach 2.05 wind tunnel. Compression
s _, 325 mm wedge
[ —] l" 45.2 mm T ’l {_
3 - ; : .
e ctin DNentle LY Straight duct PIV Straight duct
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L " ? U
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>
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Fig. 4 Shock-boundary layer interaction experimental setup
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Besides geometric perturbations, we also consider aleatory uncertainties in the
inflow conditions in terms of the Mach number and the thickness of the turbulent
boundary layers. The experimental uncertainty in the measurement of streamwise
velocity was estimated as 5 m/s, which translates into Mach number variations of
+1%. For the boundary layer thickness, we consider variations of +5%.

A possible approach to turbulent model uncertainties is described in [11] where
the epistemic uncertainty is associated with the Boussinesq eddy viscosity
hypothesis.

IC-01: Helicopter Engine Combustor

The test case concerns a database of pressure signal records taken in the combustor
casing of a helicopter engine. Such a database comprises operating conditions for
which thermo-acoustic instabilities appear. These instabilities are revealed by the
high amplitude of pressure fluctuations. Their occurrence is promoted at given
thermodynamics conditions such as pressure and temperature at the compressor
exit, but is very dependent on the combustor design. The combustion chamber
comprises a casing, breathed by the compressor, the combustor itself, which is
perforated by primary holes, dilution holes and cooling films, and injectors.

The combustor mesh covers the whole combustion chamber domain to account
for the effect of all components on combustion instabilities. This is particularly
important since the occurrence of these phenomena is highly sensitive to fine
geometrical features of the combustor. Several discretizations can be considered
depending on the simulation tool to be used. For instance, a Helmholtz solver needs
less than 1 million elements to give access to eigen-frequencies of the whole
combustor, while a large Eddy simulation code requires several tens of millions of
elements to resolve acoustics/flame interactions (Fig. 5). The considered operating

Fig. 5 LES mesh of the
Turbomeca combustor
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conditions are compressor outlet pressure ~8 bars and compressor outlet temper-
ature ~500 K.

Uncertainties concern the primary and dilution holes’ diameters and shapes.
Such uncertainties are of the order of a few percent but can modify the flow
distribution in the combustor. Other uncertainties are linked to the precise injection
point position in the swirlier both azimuthally and longitudinally which scatter less
than 1% of the reference value. Some of the combustor walls are also multiperfo-
rated where the diameter of the holes can scatter about 10% of the reference value.
In this study, large uncertainties on thermodynamic conditions should be consid-
ered around the nominal point for which experimental data are available.

For the LES and the Helmholtz solvers, modeling uncertainties are mainly
related to boundary conditions. Notably the impedance of upstream (compressor
stages) and downstream (turbines stages) components are poorly characterized. The
same problem arises concerning the multiperforated walls’ impedance. Other
modeling uncertainties also concern combustion processes inside the combustor.

IC-02: 3D DLLM Wing

For the robust optimization of a 3D wing, based on a differentiated lifting line
method (DLLM), the objective is to achieve an optimal robust design of the wing
regarding the wing’s lift over drag ratio. For preliminary drafts of the aircraft
configuration that is needed in early design phases, a full 3D simulation is too costly
and—even more importantly—the detailed design of the aircraft needed for this
approach normally does not yet exist.

The DLLM (based on Prandtl lifting line theory) is a one-dimensional simulation
process that relies on information from two-dimensional information on airfoil
level. This model proposes an improvement with regard to a typical nonlinear
lifting line model. In particular, it proposes not to start the resolution from a priori
known lift and circulation distribution, but to deduce it from the series of airfoils
composing the wing. Thus, the DLLM relies on a spanwise geometric description
of the wing where the plan form geometry is specified by several parameters
(Fig. 6).

The 3D wing is defined by the shape of six airfoils and a smooth interpolation
procedure between the different airfoils. The shape of each of the airfoils is defined
by 11 PARSEC parameters as proposed in [12]. The optimization of the lift over
drag ratio is constrained by a minimum value of the lift (accounting for aircraft
mass) and a minimum volume of the wing (accounting for required mission fuel
mass).

We consider that the design variables may exhibit some kind of uncertainty
which represents manufacturing tolerances or assembly effects, for example. Taking
into account uncertainties of design variables—we restrict the design space to the
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Fig. 6 Illustration of wing parameters for definition of simplified wing geometry

three chord lengths and the break value along the wing’s longitudinal axis—the
uncertainties are modeled as noise vector & = (§;, &, &3, &) given by a joint
probability density of normally distributed &, &, &3, &4 for a set of standard
deviations ¢ = [0.1, ..., 0.5] to illustrate the effect of uncertainty on the location of
the optimal design point. We can assume that in addition to the uncertainties of the
design variables the operating conditions exhibit some form of uncertainty as well.
For example, the environmental conditions underlie a natural form of physical
scatter (temperature, pressure, humidity) or the operating conditions are controlled
by some kind of control loop that relies on measured data. For this reason, we
impose some normally distributed noise on the operating conditions.

IC-03: Falcon Jet

Industrial challenge IC-03 represents an industrial relevant external flow test case of
a Falcon business jet (Fig. 7) exhibiting several forms of uncertainty for the
geometry, the operating conditions, and the modeling. Table 3 summarizes the test
case parameters.

Geometric uncertainties are given by the spanwise twist angle distribution of the
wing (x/c = 0.25; rotation/ control section plane) on eight control sections modeled
by bounded, asymmetric beta PDF distributions (Holland approach) with a delta
twist angle minimum of —0.5° and a delta twist angle maximum of 0.2° with the
most likely value for the delta twist angle of 0.01°. The free-stream Mach number
and the angle of attack are modeled by the same type of distribution with AoA Min
of 1.97°, AoA Max of 2.1° and a free-stream Mach number minimum of 0.795 and
0.807 for the maximum value. Turbulence is modeled by Spalart—Allmaras, k-¢
SST two layers, k-o SST Menter.
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Fig. 7 Falcon business-jet geometry

Table 3 General test case description of the Falcon jet test case

Mach number 0.8
Angle of attack 2°
Altitude 40,000 ft

Reynolds number

14.512 Million

Flow regime

Fully turbulent

Wall treatment

Adiabatic no-slip wall

Ref. density

0.30132 kg/m*

Ref. pressure 18820.15 Pa
Ref. temperature 216.65 K
Ref. velocity 236.57 m/s
Ref. length (mean aerodynamic chord) 2.888 m
Ref. area 49 m?

Moment reference point

x=90355my=0mz=0m

I1C-04: NPO Saturn Industrial Fan Blade

A modern civil aircraft fan blade is considered as an investigation object. This blade
must provide a high level of the aerodynamic efficiency (adiabatic coefficient of
efficiency) and necessary strength properties. Another important characteristic is the

fan blade flutter phenomenon sensitivity.

A fan blade is a complicated object, and obviously, it is subjected to geometrical
uncertainties from manufacturing tolerances and other production deviations. In
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spite of all uncertainties, the fan blade should provide stable aerodynamic efficiency
and strength properties. That is why it is considered to solve multidimensional and
multidisciplinary optimization task (aerodynamic and strength) in robust statement
under uncertainties.

In aerodynamic calculations only the blade profile is modeled. In the strength
calculations, full blade (with foot) is considered. The blade foot has no geometrical
uncertainties (nominal geometry). Total pressure and total temperature in stationary
frame were used as inlet boundary conditions. The flow direction is set by
dimensionless angle components. In the proposed test case, geometrical uncer-
tainties from fan blade manufacture tolerances and deviations are considered
(Fig. 8). Probability density function was obtained as a result of statistical operation
upon the results of blades’ coordinate measurements.

The main uncertainties considered as it is shown in Fig. 8 are blade thicknesses
in different profile locations and maximal blade thickness. Profile angle of incidence
is also taken into consideration. In such a case, the total number of the considered
uncertainties is 54. Most of experimental stochastic parameters can be described by
means of Gaussian PDF distribution law with acceptable accuracy level. Some
parameters will have to be described by means of lognormal distribution and beta
distribution.

Fig. 8 Main geometrical uncertainties considered in blade section
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In this test case, operational uncertainties are not considered. Aerodynamic
calculation will have to be carried out in one point on operating line. Epistemic
uncertainties are not considered. Standard approach for fan blades aerodynamic
computations must be used (RANS modeling with using k-¢ turbulence model).

IC-05: NPO Saturn Gas Turbine HPT Blade

A high-pressure turbine blade from an industrial gas turbine engine used for electric
power generation is considered as test case. The considered blade must provide
necessary level of aerodynamic efficiency and necessary temperature distribution of
the blade. The HPT blade at the real gas turbine engines shows strong influence of
the operational uncertainties on blade temperature distribution and aerodynamic
efficiency. Deviations in operational parameters result in oscillations in temperature
and pressure distributions at the inlet of the blade hot gas channel and in cooling air
pressure under the blade. At the same time, deviations of the tip gap values have a
strong influence on the aerodynamic efficiency and cooling effectiveness of the
blade tip. The turbine blade should provide stable cooling effectiveness of the
leading edge and high aerodynamic effectiveness; therefore, it is considered to solve
multidimensional optimization task (aerodynamic and heat transfer) (Fig. 9).

Total pressure and total temperature radial distribution in stationary frame were
used as hot gas path inlet boundary conditions. The blade tip gap is the only
considered geometrical uncertainty. Based on several experimental investigations
on prototype engines, it is considered to use theoretical Gaussian distribution for tip
gap PDF with a mean value of 0.5 mm and a standard deviation of 0.1 mm.

Axial gap inlet

Cooling air inlet|

Fig. 9 Industrial HPT blade computational model
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Tableé.t Qperational Uncertainty | Mean Standard Distribution

uncertainties of IC-05 NPO deviation

Saturn gas turbine HPT blade -
AT (K) 8.244 21.43 Normal
AP” (bar) —0.1165 0.236 Normal
AP",, (bar) | —0.1165 0.236 Normal

Hot gas total pressure and total temperature mean values T", P” in the channel
inlet and cooling air total pressure under the blade in relative coordinate frame P;kel
are operational uncertainties. Hot gas temperature and pressure inlet values in the
channel were obtained from 90 industrial gas turbine engines experimental inves-
tigations and modeled by normal distributions (Table 4). Epistemic uncertainties
are not considered. Standard and verified NPO Saturn approach for turbine blades
CHT computations was used (RANS modeling with SST turbulence model).

IC-06: Acoustic Liner

Test case IC-06 deals with the optimal design of acoustic panels installed in typical
business-jet aero engine intakes. A dedicated acoustic panel construction will be
selected for multiobjective optimization. The objective functions are represented by
noise attenuations computed at two certification flight conditions in the far field
surrounding the nacelle. Acoustic requirements are prescribed by customers and
aviation agencies for the three typical flight conditions approach, side-line (or
takeoff) and flyover (or cutback).

As these requirements can be in contrast to each other and an acoustic liner
providing the best attenuation in one flight condition not necessarily performs well
in the other conditions, hence liners shall be designed through a multiobjective
optimization procedure. Specifically, a number of samples will be manufactured
and tested to detect the steady (or DC) flow resistance for a set of given impinging
air velocities by means of the AAEM DC-Flow rig (Fig. 10).

Geometrical parameters tolerances considered are influenced by the following
main factors: Honeycomb height (), Facing sheet thickness (#;), Facing sheet
effective open area (POAeff) and Holes diameter (d). Flight conditions uncertainties
are not being considered. Proprietary impedance model is not being investigated as
a source of (epistemic) uncertainties.

IC-07: Industrial Compressor Stage

The test case comprises the static components of industrial, radial compressor
stages as the main focus in radial compressor development has been put on the
impellers over the last years. Static parts have been less addressed. Therefore it is of
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Fig. 10 Illustration of IC-06
acoustic liner
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Fig. 11 IC-07: Industrial
compressor stage

interest to analyze these parts in more detail, especially since less data are available
and uncertainties have been less addressed (Fig. 11).

For the flow conditions gases with real gas properties will be used for operating
conditions with high Reynolds numbers due to the elevated operating pressures of
industrial compressor stages. The test case exhibits a high operating range that
means a high incidence variation may occur. The design flow for this application is
in the subsonic range.

For the consideration of uncertainties a special emphasis is laid on the entire
product life cycle of the industrial compressor due to the typically harsh operating
environment. The uncertainties take into account design adaptations, manufacturing
tolerances, assembly tolerances, operating conditions and service requirements.
Experimental reference data are available for validation.
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IC-08: Supersonic Laminar Flow Business Jet

IC-08 deals with the design of a swept wing with a large extension of laminar flow
in working conditions for a supersonic laminar flow design of a business-jet class
aircraft (Fig. 12). The reference configuration is the optimized wing-body shape
produced by CIRA within the SUPERTRAC EU project. This shape, optimized for
natural laminar flow, used as baseline a configuration produced by Dassault Avi-
ation within the framework of the Supersonic Business Jet project, and made
available within SUPERTRAC project. Wing section airfoils and twist angle were
optimized in order to maximize the laminar flow region while monitoring and
controlling the pressure (vortex and wave) drag. A redesign of the wing using
robust or reliability based optimization tools is proposed for the UMRIDA project.

The flow conditions are those defined by the main cruise design point with a
Mach number of 1.6, a Reynolds number of 51.8 * 106, reference length of 6.27 m,
Angle of Attack of 3.65° and a lift coefficient of 0.182. The detailed description of
the original optimization problem is reported in Reference [13].

Natural laminar flow is mostly sensitive to the shape of the leading edge region
defined by the radius of the leading edge and the airfoil section thickness at ten
percent of the chord. The nominal range of variation for these parameters is 15% of
the radius of the leading edge of the initial configuration and 10% of the thickness in
the assigned position. A uniform probability distribution should be considered for
both parameters. However, an inverse approach may be considered where these
uncertain parameters are regarded as unknowns to be determined within the design
process.

Operational uncertainties are the classical ones related to Mach number and lift
coefficient. Mach and Cp are modeled as four parameter beta distributions
(Table 5). A significant uncertainty in the determination of transition location is

Fig. 12 Supersonic laminar flow design of a business-jet class aircraft
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Table 5 Operational Parameter o B a b
uncertainties of 1C-04

supersonic laminar flow Mach 4 4 1.55 1.65
business jet CL 2.5 2.5 0.180 0.184

inherent to the methods for numerical transition prediction and in particular to the
¢" method. A robust design approach should take into account this epistemic
uncertainty source. It will be modeled by a uniform distribution in the interval [16,

20].

IC-09: High-Pressure Compressor Blade Design

IC-09 is the aerodynamic axial high-pressure compressor rotor blade design in the
presence of measured and identified manufacturing uncertainties. One important
step for aleatory uncertainty quantification is to analyze and quantify the variability
of input data for a physical system such as an aero engine. This test case covers a
one and a half stage axial high-pressure compressor with one rotor blade and two
adjacent stator rows as physical system (Fig. 13) and a probabilistic model which
reflects real manufacturing uncertainties for the transonic rotor blade.

For one operating point the aerodynamic boundary conditions are part of the test
case. Upstream the first stator the inlet boundary conditions for the total pressure,
the total temperature and the absolute flow angle in radial direction are defined as
well as the radial static pressure distribution downstream the second stator at the
outlet of the computational domain.

The test case concentrates on realistic manufacturing tolerances, i.e. geometrical
uncertainties, thus no operational, modeling or other uncertainties are defined. For a
parametric model according to [14] probability density functions for each uncertain
variable and a positive definite correlation matrix are defined (Fig. 14). The

Fig. 13 One and a half stage
axial high-pressure
compressor
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Fig. 14 Qualitative illustration of ten uncertainties with correlation structure [16]

probabilistic model has been derived from a sufficient number of optical surface
measurements of manufactured rotor blades. The resulting sets of data have been
reduced, discussed and statistically quantified [15].

In total the uncertain design space consists of 14 parameters. For the rotor
reference geometry the associated values for each uncertain parameter are known.
Based on the probabilistic model random deviations can be added to the mean/
reference values. These deviations as a consequence lead to a disturbed rotor
geometry and hence a varying aerodynamic performance.
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Introduction

The tremendous increase in computational power over the last decades allows for
complex numerical simulations of internal and external flows ranging from single
components such as compressor blades up to entire airplanes and aircraft engines
[1]. Furthermore, it allows increased modelling complexity: early 2D Euler solvers
have been replaced by Reynolds-averaged Navier—Stokes (3D RANS) simulations.
Nowadays dynamic simulations such as unsteady RANS and detached eddy sim-
ulation (DES) become more and more feasible. Besides the higher modelling
complexity, the computational power in combination with automated execution of
simulations (e.g. by scripting and queuing systems) allows for variation analysis as
well as automated design optimization.

Nevertheless, simulations will not be able to capture real-life machine behaviour
precisely as insufficient information is typically available. There is a lack of
information about the actual geometrical scattering of the manufactured and
assembled parts. Furthermore, limited knowledge exists about operation, for
example about operating conditions and machine degradation by fouling, wear and
corrosion. Finally, assumptions and simplifications are required for the computa-
tional modelling of non-resolvable effects such as unsteady flow or small turbulent
length scales.
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Most often simulations are deterministic using the nominal values for all inputs,
and by doing so, they ignore uncertainties. In contrast, the real performance of a
machine is non-deterministic and could be best described by probability distribu-
tions reflecting the scattering in geometry, operation and modelling uncertainties.

Several actions have been started to reduce this gap of uncertainty by capturing
information about production scattering as well as operational data and to extend
the simulation software to non-deterministic frameworks. For example, Garzon [2]
showed that the mean loss coefficient of an airfoil in a non-deterministic simulation
can be several percent higher compared to the deterministic simulation with the
nominal geometry.

This chapter focuses on how geometrical and operational uncertainties can be
captured and modelled. These models serve as input for the uncertainty quantifi-
cation and robust design optimization in the following chapters of this book. Due to
the different manufacturing techniques, geometrical uncertainties in massive tur-
bomachinery parts of industrial compressors differ to aircraft’s sheet metal struc-
tures. Uncertainties in the turbulence modelling and grid generation are handled in
chapters “Estimation of Model Error Using Bayesian Model-Scenario Averaging
with Maximum a Posteriori-Estimates and Numerical Uncertainties Estimation and
Mitigation by Mesh Adaption”.

Geometrical Uncertainties in Compressors

The focus is put on geometrical uncertainties that are relevant for the aerodynamic
performance of a turbomachine. The main interest lies in the main flow path which
comprises elements such as compressor blades, radial impellers, stator vanes, bends
and hub/shroud contours.

Geometrical uncertainties exist for the entire design and manufacturing chain
beginning with geometrical parameterization reaching over to the individual
machining steps and to final assembly activities of the turbomachine. Preparations
for the production of the compressor blades or impellers typically require conver-
sion of a parametrized geometrical model into a CAD system and further to CAM
data. This inevitably leads to some deviations due to different surface representation
models such as splines, Bézier curves, NURBS, multiple circular arcs or STL, just
to name a few. For axial compressors and turbines, the parameterization may
consist of several profiles along a stacking line. The stacked profiles are converted
into 3D surfaces within the CAD environment. Smoothing is often applied in order
to minimize geometric oscillations. The conversion of the CAD data into the CAM
environment may require further changes in the geometric representation. In the
following, we exclude the effects of these conversions and assume that there are
adequate tools to analyse and precisely control deviations originating from the
second versions.

The manufacturing as such typically requires a sequence of different steps, e.g.
casting, forging, welding, heat treatments, bending and machining. All steps in a
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manufacturing sequence are relevant for the final geometrical uncertainties; e.g.,
residual stresses may be present after forging, heat treatments or welding. These
may lead to geometric deformations upon machining.

Often, a variety of alternative manufacturing techniques can be applied, which
differ in cost and geometrical precision. The goal is to find an optimal trade-off
between cost and scattering. Only sensitive surface areas should be manufactured
with high precision, as the additional effort obviously has consequences for the
overall machining time and cost. Finding the required precision can be formulated
as optimization task as described in [3].

Classification by Size

DIN 4760 [4] defines six different orders of surface deviations. The first four orders
are relevant for aerodynamic performance, while the fifth and sixth order relate to
the microstructure of the material surface and are aerodynamically irrelevant. These
orders differ in the magnitude of the geometric deviations:

The first-order deviations affect the characteristic dimensions of the part. For
example, the total length, the leading edge thickness or an angle may deviate from
the nominal value as illustrated in Fig. 1. The deviations may be caused by the
inherent imprecision of the milling machine, an unprecise clamping or by wear of
the milling tool.

For the second-order deviations, only a small fraction of the surface is analysed.
There, the surface may be wavy; i.e., it may contain periodical surface structures
with very high aspect ratios. The aspect ratio between wavelength in surface
direction and perpendicular deviations is about 100:1-1000:1. The causes typically
are attributed to vibrations, to part deflection under machining forces or to shape
deviations of the milling tool itself.

= — - i

- —_— nominal

— ~_——— increased length
increased thickness

e position off-set

Fig. 1 First-order geometrical uncertainties in shape and position
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The third-order deviations affect even smaller portions of the part surface. They
may be periodic or non-periodic deviations and are typically machining scores. The
milling scores depend on the tool-feeding motion. The ratio between wavelength
and deviation depths lies in the range of about 100:1-5:1.

The surface roughness is an example of the fourth-order deviation and is in the
range of a single micrometre.

On manufacturing drawings, tolerance intervals are often specified as illustrated
in Fig. 2. These intervals limit the maximum deviation. Geometrical deviations can
be classified by their actual shape. Offsets shift the entire shape and are typically
first-order deviations. Waviness is a typically second- or third-order deviation.
Another example is a kink or step. Kinks may be present at the interface of two
mating parts that differ with regard to their surface slopes or when surfaces are
machined from both ends. Steps may result from mating of parts at their interfaces.
Deviations of this kind may also be attributed to interrupted milling or turning
processes, e.g. after an exchange of the cutting tool or when parts are machined
from two directions.

Quantifying Geometrical Uncertainties

In the following sections, examples are given for how to quantify the first four
orders of shape deviations defined in the previous chapter. Different measurement
devices may be required.

Defined
contour

Fig. 2 Possible shapes of geometrical deviations
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First-Order Shape Deviations

Maximum values for the first-order shape deviations are defined as geometrical
tolerances on the manufacturing drawings. These tolerances are either explicitly
given for a certain measure or can be given as general tolerances that are applicable
for all measures that are not specifically tolerated. A well-established general tol-
erance is the standard ISO 2768 [5]. Part I of this standard defines tolerances for
linear and angular dimensions. Part 2 adds shape and position tolerances.

ISO 2768 specifies the four different tolerance classes: very coarse, coarse,
medium and fine. These classes reflect typical workshop capabilities. For class
medium, Fig. 3 shows the tolerances for linear dimensions as a function of the
actual measured length. As expected, the absolute tolerance increases in steps as the
part grows in size. The relative tolerance however decreases substantially, as larger
dimensions can be manufactured with higher relative precision compared to small
ones.

Assuming that an aerodynamic profile has a length of 100 mm and trailing edge
thickness of 1 mm, the absolute tolerance is 0.3 mm and 0.1 mm, respectively. This
means that the relative tolerance for the length is 0.3%, whereas the tolerance for the
trailing edge thickness is 10%. This is an important fact to be carefully considered
when performing scale-ups or scale-downs of machines, especially when
small-sized prototypes are manufactured and tested and scaling to the final product
size is performed afterwards.

Figure 4 shows an example for a surface measurement of a compressor blade.
The deviation of the measured profile from the nominal contour is almost constant
along the measured surface, illustrating that this deviation represents the first-order
deviation. Neither waviness nor bumps are present in this example. The deviation
could result from a limited positioning of the part before milling. Clamping forces
that cause part deflection or deflections caused by milling forces could also be

Rel. Tolerance [%)]

Absolute Tolerance [+ mm]

1 10 100 1'000
Length [mm]

Fig. 3 Relative and absolute tolerances for linear measures from DIN ISO 2768 part 1
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Fig. 4 Measured first-order
deviation (black) between a
stator part (blue) and given
tolerance interval (green). The
deviation and tolerance
interval are highly
exaggerated

measured
dewviation (highly
exaggerated)

considered as being causal to this deviation. The deviation is highly exaggerated in
the graphic representation as the actual one could hardly be seen by eye.

As a general rule of thumb, first-order shape deviations are typically in the order
of 0.1-1 mm.

Systematic measurements of actual compressor blades were reported by Garzon
[2] and Schmidt et al. [6] for 150 and 400 blades, respectively. Today, capturing 3D
geometric measurement data becomes more cost and time efficient as it can be done
in an automated manner using tools such as optical scanners which generate
complete surface information in one measurement.

Extracting statistical information from such measurements, e.g. probability
distributions, is only appropriate if a sound statistical basis exists; i.e., a sufficiently
high number of parts need to be manufactured with the same or similar manufac-
turing tools before being measured and analysed. If only a low number of parts are
manufactured and even different suppliers are assigned, then very limited statistical
information can be reasonably extracted.

Second- and Third-Order Shape Deviations

Since the first-order shape deviations are typically larger than 0.1 mm, compara-
tively simple tools such as sliding callipers can be used. The second- and
third-order shape deviations are smaller, typically in the order of 0.001-0.1 mm.
They require special measurement devices to be assessable.

Figure 5 shows the result of a 3D measuring device that measured points along a
line every 0.01 mm. The waviness of the surface is difficult to see with the naked
eye as the wavelength is about 0.6 mm and the amplitude of the deviation is only in
the order 0.005 mm. Therefore, the surface normal component is magnified in the
figure by a factor of 16. The waves result from the feed rate of the milling tool. Due
to the ratio of amplitude to wavelength, the measured property is located some-
where between the second- and third-order shape deviations.
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0.60 mm

0.01 mm
|-

Fig. 5 Exaggerated actual surface measurement with high resolution for the second- and
third-order shape deviations. Only by exaggerating the deviation in the normal direction of the
surface, these deviations from machining turn visible

Fig. 6 Histogram generated
from surface roughness
measurements on a large set
of radial compressor
impellers. Taken from Biiche
et al. [7]

relative frequency
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Fourth-Order Shape Deviations The fourth-order deviation is surface roughness
and is typically expressed in Ra or Rz. Definitions are given in DIN EN ISO 4287.
The surface roughness is in the range of 0.1-10 um, again one order of magnitude
smaller than the third-order deviations.

Biiche et al. [7] describe the measurement of the surface roughness for a large set
of radial compressor impellers. The measured roughness values are shown in Fig. 6
with the aid of a histogram. The difficulty is to transfer these measured technical
roughness values into equivalent sand roughness values, which is typically used for
fluid mechanical calculations.

Geometrical Uncertainties from Compressor Operation

By experience, machine operation causes surface degradation due to corrosion,
erosion, particle impact and fouling. This increases surface roughness as well as
leakage flows in labyrinth seals. The extent can be quantified during service
inspections. These deviations are often larger than the acceptable manufacturing
tolerances.

Reducing the effect of this kind of uncertainties during operation is possible, but
it comes at an additional cost: parts can be made of higher-grade materials which
are more resistant against wear. Furthermore, in some applications better filter
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devices can be implemented with the effect that fouling and erosion are reduced.
Finally, shorter inspection and replacement intervals as well as frequent cleaning
can reduce the degradation level further.

Integration of Geometrical Uncertainties into Uncertainty
Quantification

The number of possible geometrical shape deviations is unlimited. For example, the
impact of a large particle can alter a blade surface very locally. Surface measure-
ments, in general, generate large amounts of data, which must be condensed in
some way before this data can be analysed further. This reduction can be done by
extracting only first-order deviations. Information about second- and third-order
deviation is typically suppressed.

One possible approach by means of random fields is described in chapter
“Estimation of Model Error Using Bayesian Model-Scenario Averaging with
Maximum a Posteriori-Estimates”. Another method is presented by Garzon [2],
who measured the surfaces of a large set of blades and computed the mean and
standard deviation for the geometrical deviations at each blade position. From this
local deviation information, covariance matrices were deducted. The main infor-
mation was then extracted with the use of an eigenvalue decomposition that
revealed the largest eigenvectors. These eigenvectors were used for the subsequent
robustness analysis.

A third approach is given by Schmidt et al. [6] who also measured a large set of
compressor blades. A standard profile parameterization was fitted through each
measured blade surface. The resulting parameter values allow for more intuitive
interpretation of the geometrical variation. Again, statistical information was
extracted from the parameterization.

In all approaches, the statistical information about the blade is condensed to a set
of eigenvectors as for Garzon [2] or to the blade parameters as for Schmidt et al. [6].

Operational Uncertainties for Compressors

Exact operating conditions are often unknown a priori and reasonable assumptions
become necessary in order to layout compressors. When, for example, an industrial
compressor is designed for an oil and gas production facility, the gas composition
of the future production can only be roughly forecasted as it changes with the
depletion of the field. Hence, the layout of industrial compressors must typically
fulfil a wide range of operating points with different pressure ratios and volumetric
flows. Uncertainty with regard to the suction flow such as gas composition, pressure
and temperature as well as operating point characterized by speed and pressure ratio
is typically represented by three non-dimensional parameters which are Mach
number, Reynolds number and flow coefficient.
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Geometrical Uncertainties in the Aircraft Outer Geometry

In order to treat geometrical uncertainties in aircraft design, we propose a
methodology to simulate random geometries based on measurements (e.g. by
photogrammetry [8]) by means of random fields. This allows us to take into account
uncertainties of the geometry for the computation of the aerodynamic performance
of an aircraft.

The proposed methodology is based on a probabilistic modelling of the manu-
factured geometry as a random perturbation of a nominal geometry G, the random
perturbation being modelled as a random field using an extension of the Box and
Jenkins method [9]. The methodology involves the following steps that we will
further detail in the following section:

1. Data preparation step for obtaining a meaningful statistical representation of the
measured geometrical uncertainties.

2. Data standardization step to make the data more suitable for the random field
modelling (Box-Cox transformation).

3. Identification of a deterministic trend in the data: the random geometry will be a
combination of this deterministic transformation and an additional random
perturbation of the nominal geometry.

4. Modelling of the random perturbation by a random field using its Karhunen—
Loeve expansion.

5. The composition of all the previous steps in order to get the final random field
model.

6. The simulation of a random field in order to produce virtual prototypes of our
probabilistic model that can be used as input geometry for a subsequent CFD
performance calculation.

The information available to build a random geometry generator is made of two
distinct sequential steps: the representation of a nominal geometry (usually a dis-
cretized mesh) and a perturbation of the geometry based on a set of actual mea-
surements (usually coordinates of points). To begin with, we cannot directly use
these empirical data sets for statistical inference as there is no meaningful link
between the nominal geometry and the data sets. The data preparation step consists
of a data alignment step and a data pairing step.

For the data alignment step, we conduct a rigid body transformation of the raw
measurements in order to match the measurements as closely as possible to the
mesh vertices of the nominal geometry. This can be done by mapping the centres of
gravity for the mesh and the measurement cloud and by aligning the principle axes
of these two by means of a principal component analysis [10]. One measurement
cloud represents one measured component such as an aircraft wing.

Once the measurements and the vertices have been aligned, the most challenging
task is the pairing between the measurements and the vertices of the nominal
geometry. If we suppose that the measurements are a perturbation of the mesh
characterized by a small amplitude, it can be done in an efficient way by means of
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nearest neighbour search: each vertex x; is associated with the measurement gf‘
(being the geometrical coordinates of the ith point of the measurement cloud k) such
that

¢ = argmin‘
k

xf—g,’-‘H- (1)

J

With the displacement a'f =g§‘* —x; associated with x;, the set of measurements
is converted into a corresponding displacement field (xi, df‘) as shown in Fig. 7.
The collection of these fields forms a process sample that allows for building a
probabilistic model by means of a random field.

A random field is a generalization of a stochastic process that describes the
stochastic function of a point in an n-dimensional topological space [11]. The
random field is said to be Gaussian if all finite-dimensional distributions are mul-
tivariate normal distributions and fully defined by its mean and covariance function
[12].

Since we cannot expect this normally distributed property to hold for all geo-
metrical uncertainties that we want to take into account, we apply a Box-Cox
transformation in order to transform the raw data into a more suitable shape (i.e.
normally distributed shape) [13]. The transformation is defined by:

(d+8*-1 .
Vd > 6, Tyod)={ 1 14>0 (2)
log(d+6) ifA=0

Fig. 7 Displacement field (amplitude)
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where 4 > 0 is a shape parameter and 6 € R is a shift parameter. In the case of a
multidimensional random process, the transformation is applied component by
component. Given the value of §* (a typical choice is 6 =0 for symmetric distri-
butions), the optimal value of A* is obtained by maximizing the following
log-likelihood function:

k. ok (yk _%IOg(]%Va;(TAkﬁ"(Xk)))
LY E A A Y

where N is the total number of measurement points for each geometrical uncer-
tainty. Given a discretized nominal geometry G represented by a mesh with vertices
(x,-)i= T the restriction to a random field X: Q X G — R3 is the collection of
random vectors (X,.)

iJi=1,...,

.- If we stack these random vectors into a large random

vector X,;: Q — R, it has a Gaussian distribution with mean vector

p(x1)
By = : (4)
p(xn)
and covariance matrix
C(xi,x;) - Clx1,xp)
X, = : : . (5)
Cxy,x1) - Clxy,xy)

This representation is called the trend/covariance representation of the random
field.

For a discretized geometry represented by a mesh, the numerical representation
of the Gaussian random field by its mean and covariance vector is restricted to
small- and medium-sized problems due to its computational costs. For large-sized
problem, some kind of compression technique is required.

The Karhunen—-Loe¢ve expansion allows representing the random field X by a set
of random variables (Z;), ., (that are uncorrelated for Gaussian random fields)

V(w,x) € QX G, X(w, x) = ZEN Zi(@)y,(x) (6)

and deterministic basic functions (), Where, for each [€N, w;: G— R’ such
that

VieN?, é vi(6)C(x,6)dg = Ay (x) (7)
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Fig. 8 Illustration of the first basic function (blue) compared to the nominal geometry (red)

where 212 is a decreasing summable sequence of positive real numbers (Fig. 8). The
coefficients’ distribution is given by Z; ~ N(0, 47). The basis is orthonormal with
respect to the covariance function [14]. In many cases, the decrease in the sequence
/112 allows for a truncation of the sum in (2) leading to an effective compression. The
resulting covariance function reads

V(x,¢)€G.Clx.0)= X Ayi(x)w(s). (8)

leN

The randomness of the probabilistic model is concentrated in the random vari-
ables (Z;),cn- The Karhunen—Loéve expansion possesses some favourable prop-
erties if all the random variables are normally distributed, which is why we applied
the Box-Cox transformation on the raw data.

The simulation of a random field in order to produce virtual prototypes of our
probabilistic model is straightforward.

1. Simulate a realization of the random vector (Z;), ., according to its joint dis-
tribution function. In the case of the Karhunen-Loéve representation of a
Gaussian random field, the random variables (Z;),., are Gaussian and
independent.

2. Evaluate the (/+ 1) deterministic functions y, ..., y; at the vertices of the
reference mesh (xj, ..., x,). These computations are common to all the real-
izations of the random field and can then be stored and reused.
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3. Compute the deterministic trend function at the vertices of the reference mesh
(x1, ..., Xxu). These computations are common to all the realizations of the
random field and can then be stored and reused.

4. Apply the inverse Box-Cox transformation to each value of the random field
realization.

5. Convert the displacement realization into a random mesh realization by moving
each vertex x; by its associated displacement df. Each displacement realization
represents one non-nominal geometry that can be used as input geometry for a
subsequent CFD performance calculation.

Geometrical Uncertainties from Aircraft Operation

The change of geometry during the lifetime of the aircraft may occur for several
reasons. As for compressor operation, surface degradation due to corrosion, ero-
sion, impact and fouling have to be considered for aircraft operation as well as
aeroelastic deformation as illustrated in Fig. 9. These deviations are also often
larger than the acceptable manufacturing tolerances.

Concerning geometry uncertainties, we have to take into account the details such
as discontinuities, bleed flows and protuberances like antennas as shown in Fig. 10
that are not included in an ideal CAD.

Last but not least, icing can change dramatically the shape, especially in the
locations highlighted in Fig. 11.

Fig. 9 Aeroelasticity effects on the aircraft



48 D. Biiche et al.

Fig. 10 Typical elements that are missing in CAD models: antenna and bleed

Fig. 11 Typical locations for
icing

Operational Uncertainties for Aircraft

As for compressor operation, aircraft operating conditions are often assumed and
not precisely known. For example, we can compare temperature, pressure versus
altitude for both standard and real atmospheres (database DLR ERA40/ECMWF,
www.ecmwf.int) as shown in Fig. 12 and Fig. 13, respectively.

In the same DLR database (a vertical profile measured somewhere between
Ireland and England, on 08 July 1992), we can observe the evolution of the module
and the direction of the wind velocity with the altitude (Fig. 14).

Despite non-homogeneous behaviour of the atmosphere with respect to location
and time, engineers use standard atmospheres for CFD computation. Moreover,
uniform pressure, temperature and velocity are imposed along the artificial
boundary of the computational domain (so-called infinity boundary).


http://www.ecmwf.int
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Of course, unsteady flows, like gust or aircraft manoeuvre effects, are not con-
sidered for basic CFD calculations.

The same considerations can be made for engine nozzle boundary conditions.
For example, engineers consider basically uniform total temperature, total pressure
and Mach number. Sometimes, data are provided on engine exit plane, but not for
all the considered flight points.
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Fuel consumption yields weight decrease during the flight (equilibrium of forces
imply modification of the lift coefficient). Despite fuel management during flight,
centre of gravity changes and trim modifications are needed.

Conclusions

Geometrical uncertainties exist in all physical parts due to manufacturing and
assembly tolerances as well as thermo-mechanical deformation and degradation
during operation. Reducing the level of uncertainty is in most cases possible but
typically increases cost. Tightening manufacturing tolerances should only be
accepted where the influence level justifies this.

Geometrical uncertainties are difficult to quantify and model as they can vary
over several orders of magnitude in size, beginning from surface roughness up to
length variations of the entire machine. Furthermore, geometrical deviations can be
arbitrary in shape, possibly manifested as kinks, bumps, local defects or surface
waviness, just to name a few. Geometrical uncertainties are also highly dependent
on the underlying manufacturing process(es) such as forging, casting or machining,
with or without finishing for massive compressor parts or assemblies of sheet
metals for aircraft wings. Geometrical uncertainties from aircraft operation and
operational uncertainties are often larger than the acceptable manufacturing
tolerances.

Methodologic approaches, nevertheless, exist that are able to reduce the com-
plexity by extracting the main features of a geometrical uncertainty. This allows for
integration of the variation in numerical simulations for uncertainty quantification
and robust design optimization. These simulations help in understanding uncer-
tainties and developing designs that are insensitive to uncertainties.
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Estimation of Model Error Using )
Bayesian Model-Scenario Averaging e
with Maximum a Posterori-Estimates

Martin Schmelzer, Richard P. Dwight, Wouter Edeling and Paola Cinnella

Introduction

The understanding of turbulence is one of the key challenges in classical mechanics.
A turbulent flow has a three-dimensional, time-dependent and random velocity field
[1], which is composed of a wide range of scales varying from the level close to
molecular dissipation of heat to the scales determined by the boundary conditions
of the flow domain. Despite great developments in the field of high-fidelity turbu-
lence modelling, such as improvements of the large eddy simulation (LES) approach
and hybrid methods combining Reynolds-averaged Navier—Stokes (RANS) and LES,
RANS ‘continues to be the standard approach used to predict a wide range of flows
for very complex configurations across virtually all aerospace product categories’
[2]. However, using the less-computationally demanding RANS approach comes at
the price of uncertainty due to approximate physical modelling such as turbulence
modelling.
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In recent years, research has focussed on two types of epistemic uncertainties
in relation to turbulence modelling, namely parameter uncertainty and model-form
uncertainty. Parameter uncertainty arises due to the fact that the closure coefficients
of the models are determined via calibration against simple flow configurations using
experimental data or scale-resolving simulations. A Bayesian calibration incorpo-
rating both the error of the experimental data and model inadequacy revealed how
strongly the posterior distributions of the closure coefficients vary even for a sim-
ple flow scenario of flow over a flat plate, with different pressure gradients ranging
from favourable to strongly adverse [3]. This observation makes the generalisation of
the coefficient unjustifiable. Similarly, a Bayesian analysis dealing with the predic-
tive performance of commonly used turbulence models, i.e. Launder-Sharma k — e,
Wilcox k — w, Spalart-Allmaras, Baldwin-Lomax and Stress-@ showed that no supe-
rior model could be identified either for the given flow configurations [3].

Bayesian Model-Scenario Averaging (BMSA) uses a set of different closure mod-
els to compute both an ensemble prediction as well as a-posteriori measures of uncer-
tainty due to the choice of closure model. In addition, the variability of the clo-
sure coefficients over different calibration scenarios is included to inject uncertainty
caused by applying a set of coefficients to a predictive case for which they were not
specifically calibrated [4]. The full BMSA approach requires the propagation of var-
ious posterior distributions through a CFD code, an expensive endeavour when the
underlying flow case is computationally expensive. The costs could be mitigated by
using surrogate models per turbulence model in order to propagate the distributions
more efficiently [5]. However, also the construction of the surrogate can become
expensive for models with many closure coefficients.

In this work, we use a major simplification of the full BMSA approach in order
to make the technique accessible for industrial flow cases. The reduction of the costs
is based on using maximum a posteriori (MAP) estimates of the posterior distri-
butions of the closure coefficients, which means that only a single set of closure
coefficients per scenario and per model needs to be propagated through the code [6].
Furthermore, the BMSA method was developed using data of flat plate boundary-
layer flows, for which the Bayesian inference of the posterior closure coefficient was
conducted with a cheap boundary-layer code. The method has recently been applied
to airfoil and wing cases as examples in order to assess the predictive capabilities of
the BMSA framework for wall-bounded flows in external aerodynamics [6], which
represents a natural next step in terms of flow complexity. In this work, we apply the
method to other flow cases such as flow in a turbulent pipe at Re = 44,000 and flow
over periodic hills at Re;; = 5600 in order to assess the robustness of the method also
for flow configurations outside of this natural domain. Finally, we also show results
for one of the industrial challenges of the UMRIDA project: a generic Falcon Jet
1c-03).
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Bayesian Predictive Methodology

Calibration

The BMSA framework is based on the Bayesian calibration of the coefficients of clo-
sure models. Treating calibration as a stochastic problem, we obtain posterior prob-
ability distributions for the coefficients, which serve as our uncertain estimates of
the coefficients under the measurement error of the reference data and the modelling
error. The data used for the calibration consists of boundary-layer data sets from
the 1968 AFOSR-IFP-Stanford conference proceedings [7], which are both highly
resolved and subject to low measurement noise. The set contains a collection of wide
range of favourable and adverse pressure gradients.

A scenario, denoted S, is a particular flow set-up, including boundary conditions,
material parameters, and all other physical properties needed to define the flow, with
corresponding experimental data z. The CFD code mqpp(S; M, 0) takes as arguments
the scenario S € .¥ = {S,,...,S¢}, a turbulence model M € .# = {M,, ..., M,}
and its closure coefficients 8. Given an operator H,(-) that maps the state to the mea-
sured quantities z we can define a statistical model to relate z and 6:

z=235[H, omep(S; M, 0)] +e, (1)

where €, 6 are random variables (RVs) representing measurement noise and mul-
tiplicative model error respectively. The error of the measurements is modelled as
zero-mean additive Gaussian noise and the RV § is a representation of the model
error, which following the approach of Cheung et al. [8] specifies 6 as a corre-
lated Gaussian process, see also [3]. The Gaussian choice for both € and 6 yields
a Gaussian likelihood function, i.e. the pdf describing the probability of observing
the data given a realisation of 6. Finally, an application of Bayes theorem [9] yields
the expression for the posterior distribution of 6

p(z|0.M,S)p (BIM, S)

0|z,M,S) =
P 2 (ZIM.S)

xp(z|0,M,S)p(O|M,S). 2)

Here, p(6|M, S) is the prior distribution which represents our knowledge of 6 prior
to training M on z. Since the denominator in (2) does not depend on @ it is omitted
from consideration.

To obtain samples from the posterior distribution p(0|z, M, S), we employ the
Markov-Chain Monte Carlo method [10]. To reach convergence of the Markov-
chain, we observed that roughly 40,000 code samples were required [3]. Ordinar-
ily, this would constitute an excessive strain on available computational resources
in a CFD context. However, as our experimental data consisted of boundary-layer
quantities, we were in a position to use a fast boundary-layer code. As such, no real
computational bottleneck exists during the calibration phase.



56 M. Schmelzer et al.

Prediction

Let A be a quantity of interest (Qol) in a particular scenario, which may be a scalar,
vector, or functional quantity derived from the flow state, which can be expressed as

A lJfIAo’nCFD(:S’V;M7 0)’ (3)

in which S represents a flow scenario outside of the set of scenarios used within the
calibration phase.

We wish to obtain a stochastic estimate of A conditional on a set of models .#
and a set of training scenarios .# for the predictive scenario S & .#. The BMSA
methodology offers the evaluation of the posterior predictive distribution (ppd) for
Ain case S conditional on all training data:

1 K
pa13,=3 / P4 13, M;,0)p(B | S, M;,2) P(M; | S, 2) P(S) 6. (4)
i=1 k=176;

The first term on the right-hand side inside the integral represents the probabilistic
equivalent of the simulation results for the Qol given the flow scenario §, a tur-
bulence model M; and closure coefficients 8. The second and third terms are the
posterior probability density distribution of the closure coefficients and the posterior
model probabilities respectively, which are the output of the previously conducted
calibration procedure summarised in section “Calibration” and detailed in Edeling
et al. [3, 4]. The last term represents the scenario probabilities. The solution of the
multi-dimensional integral over the closure coefficients is the expensive part of the
method, because it requires as many code calls as the entries in the Markov-chain,
in this case 40, 000.

Therefore to obtain a practical estimate of p(4 | §,z), we propose to approximate
the marginal posterior probability distributions p(@ | S;,M;, z;) with Dirac-6 func-
tions at their maximum a posteriori (MAP) values!

Oa’ll(AP :=argmax p(0 | S;,M,,z;) &)
0c0;
so that
PO S, M, z) =~ § (9 - eﬁ.\j{AP> . 6)

The effect of this approxmation is to neglect the effect of within-model within-
scenario variance on the ppd. Thus the ppd variance will be reduced, but still include
the effect of multiple models and scenarios. Note that if perfectly plentiful data were
available in the training scenarios (and the models were able to fit the data exactly for

IThe MAP estimates are available online at [11].
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some values of the closure coefficients), then p(0 | S, M,, z;) would be §-functions.
So one way to think of this approximation is as neglecting the effect of imperfect
training.

Substituting (6) into (4) leads to an approximation of the posterior predictive dis-
tribution p(4 | z) ~ p(4 | z)

p(4]8,2) =

™M-

P(M, | Sy 2) [P’(Sk)/ P(A|3,M,,0)5 (e - gykAp> 40
o, ’

I
—

P(M; | S 2) P(S)p(4 | 5, M, 05)

Il
—_

= 1]
M- M-
M~ I > T

PV, | 5, 2) PS) 8(4=mer (SM.OF)). ()
1

~
Il
—_

15

Equality (a) follows from the fact that the prediction of mgp, is deterministic for
deterministic 8. The approximate ppd is therefore a weighted-sum of / X K 6-
functions, one at each prediction of mqpp(S) for each model, and each scenario’s
MAP-estimate of 8. The cost of evaluating the ppd is I X K runs of ncgp(S).

The first moment of p(4 | §,z) can be derived directly from (7). The expectation
is

[E[A|S,z]=/A-ﬁ(A|S,z)dA

K
i Z Z P(M; | Si. 2) P(S) /A -6 [A — Mcpp <S';Mi,0?§<AP>] dA

i=1 k=1

I K
@ 2 z PM; | Si, zi) P(S) mepp (S;Mi’ eﬁAP> ’ ®)
i=1 k=1

where (a) follows from (7) and (b) is the integral-identity encoding the statement that
the mean of a deterministic quantity is the quantity itself.

Unlike the posterior model probabilities P(M; | S, z;), which are informed using
the reference data during the training phase [4], the scenario probabilities P(S) are
of a predictive nature. If reference data for the scenario S would be available, (S, ©)
could be optimised accordingly. However, in a predictive setting this data isn’t always
available. Therefore, P(S,) is defined based on model agreement per scenario S;: If
the models show a high level of agreement regarding the value of 4 under a specific
scenario S}, this scenario receives a higher weight compared to other scenarios, in
which the models rather disagree. For that we exploit the principle, that if S is similar
to S, the models are expected to give accordingly similar predictions, because OMAP
has been calibrated under the same data z,. As introduced in [4], this pr1nc1ple is
modelled by
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&7
Z:/'K=1 5]‘_[)

1
P(s,) := s &= Y e (5:M, 007 ) ~E41 Bl )
i=1

in which p serves as a tuning parameter scaling the weighting procedure, i.e. forp = 0
all scenarios are equally weighted but for p — oo a single scenario is preferred.

Given all terms in (7), we now want to deduce uncertainty estimates from the
ppd. If the full range of P(M; | S, z,) P(S,) is used, the uncertainty bound is largest
and determined by the extreme predictions of the entire ensemble. However, a more
reasonable approach is to draw samples from the ppd and use percentiles as min/max
levels to obtain a confidence interval of the ppd leading potentially to tight uncer-
tainty bounds. This is done in the following.

Incompressible Pipe Flow at Re = 44,000

We apply the BMSA method to turbulent flow in a straight pipe at Re = 44,000 with
validation data from a DNS simulation [12]. This flow case is, together with turbulent
flow over a flat plate and channel flow, one of the three canonical wall-bounded
flow types [1]. The main difference between flow in a pipe or channel and over a
flat plate lies in the development of the boundary layer. Assuming a uniform inflow
into a circular straight pipe a boundary layer at the wall develops and its thickness
increases downstream similarly to the flat plate case. Forced by the geometry of the
pipe the boundary layers from all sides will eventually merge in the middle of the
pipe. The distance from the entrance of the pipe to the point, where the boundary
layer fills the entire diameter, is known as the entry length. Beyond the entry length,
the flow is homogeneous in stream-wise direction. In contrast, the boundary-layer
thickness of a flat plate flow with zero pressure gradient is not bounded. However,
for all these wall-bounded flow types the physics close to the wall can be assumed to
be similar. Therefore, with the application of BMSA based on flat plate flow to pipe
flow is a proof-of-concept in order to assess the predictive capabilities of BMSA for
wall-bounded flows in general.

Simulation Set-up

The validation of the BMSA method is based on a comparison with averaged velocity
profiles from a DNS simulation [12]. Therefore, the steady-state RANS simulation
mimics the time-averaged DNS simulation by using appropriate boundary condi-
tions given in Table 1. In the DNS simulation, the mass flow rate is kept constant
via a time-varying adjustment of the pressure gradient in the stream-wise direc-
tion [12]. For the RANS simulation, the mass flow rate is kept constant via a fixed
inlet velocity and the pressure gradient is set to zero at the inlet. At the outlet, both
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Table 1 The Inlet conditions of velocity U, pressure P/p and turbulent quantities [13]

U (m/s) P/p (m?/s?) | k € ® v
Inlet (1,0,0)7 n-VP=0 0.00375 0.00835 25.0516 0.00027
Outlet | n- VU =0 0,0,0)" n-Vk=0|n-Ve=0| n-Vo=0 n-Vi=0
Wall | (0,0,0)" (0,0,0)7 0,0,007 | (0,0,0)" | 8367238.00803 | (0,0,0)"

the velocity gradients are set to zero and pressure is set to zero. In this way, the pres-
sure drop is computed according to the fixed mass flow. For the forward simulations

Mepp <Mi, G%CAP ) the results of simulations with nominal values of the coefficients

Mepp(M;, 62 ) are used as an initial condition in order to reduce iteration counts.”

The geometry of a straight pipe is determined by its diameter and length. While
the diameter D is set in order to achieve the target Reynolds number, the length of the
pipe needs to be chosen sufficiently longer than the entry length in order to overcome
all effects at the inlet, such as the usage of different closure coefficients or the uniform
inflow velocity profile. The entry length is estimated by an empirical relation based
on the Reynolds number [13]

Ly =1359-D-Rel/* = L, ~ 20D. (10)

For all simulations, a conservative value L = 200D was chosen. Due to the symmetry
of the case a wedge-shaped mesh with symmetric boundary conditions orthogonal to
the stream-wise direction was chosen [14]. Different meshes were initially studied,
with a total number of 2900, 5900 and 9900 cells, respectively. The differences for the
velocity profiles between the meshes were negligible, but in order to keep the error
small the finest mesh was chosen for all forward simulations. In order to study the
effect of the turbulence modelling and not additional modelling due to wall functions,
the thickness of the smallest cells close to the wall was defined according to y* < 1.0
and Low-Re turbulence models were used.

BMSA Prediction for Radial Velocity Profile

Applying the BMSA framework to the set of simulations leads to the expectation of
the radial velocity E(U/U,,;|z) as shown in Fig. 1a—c for different tuning parameters
of the smart-weighting method p = [0, 1, 2]. For the confidence interval, 10,000 sam-
ples were drawn from the posterior predictive mass function given in Eq. 7 for each
x/R position. The 5th and 95th percentile of the population was used as the lower
and upper limit, respectively, containing 90% of the samples. For p = 0, i.e. uniform

2The template-cases for each turbulence model are available on GitHub: https://github.com/shmlzr/
UQOpenFOAM.
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weighting of the scenarios, the impact of outliers on the confidence interval is large
leading to an over-prediction of the modelling error. Outliers are caused by sensi-
tivities of the models with respect to certain coefficients leading to predictions very
different compared to the ensemble mean. The effect is already reduced for p = 1,
for which the confidence interval is covering a tight bound around the expectation.
The shape matches with the shape of the majority of the ensemble of forward sim-
ulations. For increasing p, the confidence interval becomes tighter, since the smart
weighting consecutively increases the weight of S, = 1300 as shown in Fig. 2b and
decreases the influence of the others, reducing the overall variance. Interestingly,
the MAP estimates for scenario S, = 1300 are acquired based on a flow over a flat
plate with a moderately favourable pressure gradient and a boundary layer close to
an equilibrium state [4], which is very similar to the conditions for the flow in a pipe.
A comparison of the DNS data and the expectation for different p via the L>-norm

NELU/Upue!S, 21 = U, I, (11

given in Fig. 2a, where the high-resolution DNS data is interpolated by a cubic spline
to enable a point-by-point comparison, shows a minimal error for 0 < p < 2, but
also an increase of the error for higher values of p. Note that due to the use of MAP
estimates, the variance is missing the within-model within—scenario contribution.
Therefore, a reduction of the variance with smart weighting should be done with
care in order to not reduce the already underestimated variance even further. Thus,
the purpose of the smart weighting for the BMSA-with-MAP-approach should be
to exclude outliers, which can be achieved with relatively low p values. In such a
way an optimum of the width of the confidence interval and the correctness of the
expectation can be achieved.

BMSA Prediction for Pressure Drop

Another relevant quantity of interest for the turbulent pipe flow is the pressure drop
AP over the pipe length. Table 2 gives the values for the pressure drop AP/p nor-
malised by the fluid density p and the corresponding Darcy friction coefficient fp,,..,

2 AP D
=== 12
fDarc) /)L UZ ( )

per model. The empirical reference value for the pressure drop is calculated from
the Colebrook—White equation, which is an approximation of the empirical Moody-
diagram,
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Fig. 1 BMSA prediction using different smart-weighting tuning parameter p
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Table 2 Pressure drop over pipe length for Launder-Sharma k — e, Wilcox (2006) k — @ and
Spalart-Allmaras using nominal closure coefficient [4]. The corresponding Darcy friction coeffi-
cient fp,,., is calculated using the Darcy—Weisbach equation. The empirical value for fp,,,., is based
on the Colebrook equation for Re = 44,000 and the corresponding AP/p is calculated using the
Darcy—Weisbach equation

Model AP/p (/:1—22) Sparey

Wilcox (2006) k — @ 2.1427 0.02144

Launder-Sharma k — ¢ 2.0478 0.02049

Spalart-Allmaras 2.2074 0.02208

Empirical value 2.1499 0.021499
L —2logyo 23] (13)
i Re\

with zero roughness at Re = 44,000. For several tuning parameters of the smart-
weighting methods, i.e. p € [0, 8], the BMSA expectation of the pressure drop
E[AP | §,z] is shown in Fig.3 as well as the empirical reference data calculated
based on the Colebrook—White equation. Up to p = 4 the confidence interval still
covers a range including also the empirical reference value, which suggests that the
method successfully gives a reasonable uncertainty range. For larger tuning param-
eters, the confidence interval reduces drastically and puts all weight on one single
scenario, so that the confidence interval is not visible anymore. In line with the results
for the velocity profile (see section “BMSA Prediction for Radial Velocity Profile”),
also for the pressure drop p = 2 is a reasonable choice. The expectation consistently
underestimates the true value and is therefore worse than the baseline predictions,
see Table 2. However, since the BMSA method was not trained on pressure drop data
this is not unexpected and the main gain of BMSA is the confidence bounds instead
of replacing the baseline prediction with the point-estimate of the expectation.

Incompressible Flow over Periodic Hills at Re,, = 5600

The periodic hill test case is based on the channel flow case, but with a lower surface
modified by a series of periodically arranged hills, and deals with flow separation
on the curved surface of the hills and reattachment on the flat plate region between
the hills [15]. Being computationally relatively cheap but still challenging in terms
of flow physics it has been used in several workshops as a benchmark test case [16].
We use DNS data of the mean flow field from Breuer et al. [15] for Rey; = 5600,
defined using the stream-wise bulk velocity U, between the hills crest and the upper
surface and the hill height H. The test case is known to be especially challenging
for linear eddy-viscosity models, which are not able to predict the mean effect of the
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unsteady fluctuation of the separation and reattachment points correctly [17]. Thus,
the application of BMSA to this challenging flow configuration is a test of the limits
of the framework utilising linear eddy-viscosity models being calibrated for flat plate
boundary-layer flows.

Simulation Set-up

In order to mimic the periodicity of the hill-geometry, periodic boundary conditions
were applied at the inlet and outlet and no-slip conditions at the walls. A volume
forcing is applied to each cell, which maintains a bulk velocity of U, = 1.0 between
the hill’s crest and the upper surface. The functional form of the lower surface is
defined according to the ERCOFTAC test case description.® In order to study the
effect of the turbulence modelling and not additional modelling due to wall functions,
the thickness of the smallest cells close to the wall were defined according to y* < 1.0
and Low-Re turbulence models were used: Spalart-Allmaras, Launder-Sharma k — €
and Wilcox (2006) k — w (for details of these models see [4]). Furthermore, a mesh
convergence study was conducted for each model using baseline coefficients and the
meshes in Table 3 were used for the application of the BMSA method.

Similar to the pipe flow case in section “Incompressible Pipe Flow at

Re = 44,0007, the results of the forward simulations m <Mi, O%AP ) with nom-
inal values of the coefficients mz(M;, 67,) are used as an initial condition in order
to reduce iteration counts. For §,4, the simulation using Wilcox (2006) k — c didn’t
converge so that this scenario was excluded from the set leading to 13 used scenarios
in total.

3Underlying flow regime 3-30, 2D Periodic Hill Flow: http://qnet-ercoftac.cfms.org.uk.
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Table 3 Mesh size per closure model for flow of periodic hills at Re,; = 5600

Mesh (n, X ny)
Spalart-Allmaras 100 x 110
Launder-Sharma k — € 150 x 140
Wilcox (2006) k — w 100 x 110

BMSA Prediction for Velocity Field

The baseline simulations for the three models show the expected behaviour as
reported in the literature for a larger Re-number [17]: while both Spalart-Allmaras
and the Wilcox (2006) k — w over-predict the size of the recirculation zone, charac-
terised by a zero velocity component close to the wall, the Launder-Sharma k — ¢
under-predicts this flow feature.

The BMSA approach using MAP estimates of the posterior probability distribu-
tions outputs both an expectation of the velocity E[4]S, z], for which 4 = U, and a
confidence interval. For the latter two types were chosen: one obtained by sampling
from the posterior predictive distribution and using the range from 1.0 to 99.0 per-
centile, i.e. 98% confidence interval, and another one by using the min/max range
of the ppd. We have chosen both a larger confidence interval and the entire range
of the distribution in order to take the expected low performance of the linear eddy-
viscosity models for this test case into account. Especially, the latter can be seen as
an approach trying to envelop the true process by all models and for all scenarios.
The smart-weighting technique to obtain the scenario probabilities as described in
section “Prediction” was applied along the y/H-direction for each stream-wise loca-
tion for the 98% confidence interval. In that manner, the predictive similarity for each
scenario per model is evaluated locally for the stream-wise direction x.

The BMSA expectation [E[AIS, z], as shown in Fig. 4, over-predicts the recircu-
lation zone, gives similar velocity profiles for x = 3.0 and 4.0 close to the lower
surface, but is completely off for other locations. Especially, for x = 0.0 the expec-
tation does not capture the local maximum of the velocity close to y/H = 1.0, i.e.
at the hills crest, and over-predicts the velocity within the channel for every other
location. Throughout the different locations the expectation shows large differences
compared to the DNS for the upper part of the velocity profile.

The entire range of the posterior predictive distribution (ppd) and the 98% confi-
dence interval show large differences over the entire domain as shown in Fig. 4. The
ppd captures the DNS data for x > 3, but does not capture the local velocity maxima
in the area of the free shear layer in the leeward region of x = 0-2.0. Interestingly,
for x < 3.0 when the range of the ppd shrinks locally in y/H-direction also the DNS
is still inside. However, this pattern is not the same for every y/H-position, e.g. at
x = 2.0 the expectation and the DNS match for 0.5 < y/H < 1, but the error is high.
For the relatively large confidence value 98%, the intervals shrink drastically, so that
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2Ur /Ub +x

Fig. 4 BMSA for stream-wise velocity component U, at several x-locations, E[4]S, 2] (red), full
posterior predictive distribution (ppd) range (shaded grey) and confidence interval of 98% (shaded
blue) using p = 2. DNS data of Breuer et al. [15] (black)

the DNS data is only captured in a small lower band y/H < 1.0 for 3 < x < 7 and
for the part of the velocity profile in the middle of the channel.

Interestingly, in the reattachment region between the two hills, where the case is
similar to a flat plate, the BMSA approach in the present form with a confidence of
98% is able to capture the DNS data. However, the interval for the upper surface is
always negligible but the DNS data does not match with the expectation.

The large effect of the min/max profiles, which determine the min/max range of
the ppd, to capture the DNS data proves the aforementioned fact that the used linear
eddy-viscosity models suffer from restrictions which inhibit the reproduction of the
true flow state for this test case. However, posterior probability distributions of the
closure coefficients of the models inferred on other flow scenarios more equal to the
one here might lead to a different picture.

Industrial Test Case: Generic Dassault Falcon

The final test case we consider is the generic Falcon jet—a business jet including
tail, engine nacelles and winglets—at transonic conditions (Industrial challenge IC-
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03 of UMRIDA). The geometry is far more complex than any considered so far,
with a resulting spectrum of primary and secondary flows. We provide this case as
a demonstration of the applicability of our approach to problems of relevance in the
aerospace industry—unfortunately without a reference solution. LES is impractically
expensive here, and experimental data is not available. We attempt to justify the
results of BMSA based on the expected response of the simulation to the closure
modelling.

The CFD code used is Petrov—Galerkin finite-element RANS solver AETHER
used within Dassault Aviation. As a preliminary step, it was verified that the closure
models implemented in AETHER were identical to the models for which closure
coefficients were calibrated. The implementations of Spalart-Allmaras and Wilcox
k — o were found to be sufficiently similar to the calibrated models, and in addi-
tion are regarded by Dassault Aviation as suitable for this test case. Of the 14 sets
of closure coefficients computed with each model, only five cases were able to be
successfully converged with k — @, whereas all S-A cases converged without issue.
BMSA requires a minimum of two models per scenario, and as such only five sce-
narios could be considered. Thus the spectrum of model results is substantially more
limited than for both previous test cases.

The resulting uncertainty in the pressure distribution at a cut on the wing (with
p = 0) can be seen in Fig. 5a, b. The uncertainty is concentrated around the shock
on the suction side, and even there is barely visible. Increasing p reduces the uncer-
tainty further. The very low variance can be attributed to two effects: (a) the real
lack of sensitivity of the pressure distribution to the turbulent boundary layer in an
essentially attached flow, for which an inviscid solution is already satisfactory, and
(b) the limited range of models and coefficients used in the study. Indeed by elimi-
nating exactly those coefficients that cause convergence problems (for k — w), we are
introducing additional bias into the sampling, likely biasing against extreme results.
The only alternative—of including unconverged solutions—is even less attractive
however.

More insight can be gained by looking at force coefficients: Fig. 6 shows total,
pressure and viscous drag coefficients, all evaluated by surface integration, with
mean and 95% confidence intervals, as a function of p. While pressure and viscous
drag have approximately the same magnitude, the viscous part completely dominates
the uncertainty—with Cj, , varying at most 3 counts, and C},,, varying between 15
and 25 counts, depending on p. Thus the uncertainty in total drag is driven entirely by
Cp,,- Given the observed lack of uncertainty in C,-profiles, and the high sensitivity
of friction coefficients to closure modelling, this is not surprising—though it does
indicate that varying the closure model does not appear to have a significant effect on
separation behaviour in this case. Examining the relationship of uncertainty against
p reveals which quantities are dominated by model-differences (where uncertainty
is approximately constant with p), and for which quantities scenario differences are
significant. Here C, , belongs to the former class, and Cp, , to the latter.

In summary, the llmlted number of turbulence models and range of coefficients
lead to limited uncertainty in this case, for quantities of interest related to the pres-
sure, which is essentially governed by the inviscid flow behaviour. Significant uncer-
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Fig. 5 Pressure distribution at 30% span of the Falcon wing, y = 3848 mm

305

300

295

Cp

290

285

280

275

169.0 - l
+ + + 168.5 | Il
168.0 - —
N ! H m F[ASz]
) O 1675 I T 95% conf.
167.0 | | | »
B E FAS 166.5
[ T 95% conf. 166.0 |
0 1 2 3 4 0 1 2 3 4
P P
(a) total (b) pressure
205 {
200 {
[ |
195
= | |
&
~ 190 4
185 | _
B £A[S)
180 | [ T 95% conf.
0 1 2 3 4
P

(c) viscous

Fig. 6 Total, pressure and viscous drag coefficients for the full Falcon




68 M. Schmelzer et al.

tainty is observed for viscous quantities such as friction drag. Resolving this in prac-
tical applications is the subject of ongoing work.

Conclusion

The BMSA approach based on MAP estimates of the posterior probability distribu-
tions of the closure coefficient has been applied to three different test cases.

For the flow in a straight pipe at Re = 44,000, the results for the velocity profile
and the pressure drop are in line with the validation data for this case, which shows
in general that the approach can successfully be applied to other test cases outside
of the set used for calibration.

The application of BMSA to the periodic hill test case at Re; = 5600 proves that
this test case is challenging for the linear eddy-viscosity assumption and also shows
the limits of the BMSA framework in the present form, provided that all models in
the chosen set employ the Boussinesq hypothesis. However, the resulting ppd is able
to capture most of the validation data successfully. A more suitable test case will
be evaluated for BMSA in the future, such as the flow over a backward-facing step,
for which the separation is forced by the geometry and not result of the simulation
itself. Furthermore, the question of how to incorporate model-form error within a
stochastic framework for UQ purposes is the topic of ongoing research.

Finally, the Falcon Jet test case (IC-03) revealed the open problem of how to
deal with many non-converged solutions within the BMSA methodology and the
successive artificial reduction of uncertainty by excluding these simulations from
the set of simulations, which is also a topic for further research.

Acknowledgements We thank Dassault Aviation and especially Gilbert Roge for the collaboration
on the test case of the generic falcon jet.
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Uncertainties for Thermoacoustics: )
A First Analysis L

A. Ndiaye and F. Nicoud

Introduction to the Thermoacoustic Framework

Despite decades of intense research, combustion instabilities remain a challenging
topic in arange of engineering applications [ 1-6]. In particular, thermoacoustic insta-
bilities arise from the coupling between the combustor acoustics (with related waves
propagation and reflection) and flame dynamics (and associated heat release fluctua-
tions). These heat release fluctuations are generally delayed with respect to incident
disturbances (noise, modulation of mixture fluctuations, convection of hydrodynamic
processes, etc.) and give rise to an unstable growth of pressure oscillations if they
happen to be in phase with the acoustic pressure fluctuations [7]. In extreme cases,
these oscillations lead to irreversible damages which can destroy the combustor or at
least decrease its lifetime. Therefore, the prediction and control of all acoustic modes
of the configuration at the design stage are required to avoid these instabilities and
their negative impact on the combustion system of interest.

Several approaches are available to model and compute combustion instabilities.
For example, large eddy simulation techniques appeared to be tremendously powerful
to capture both the combustion dynamics and even unstable and various types of
acoustic modes in complex gas turbines’ combustors [8—11]. Nevertheless, LES
approaches are known to be CPU expensive because they require solving the full
3D Navier—Stokes equations at high Reynolds number by taking into account many
complex physical processes in addition to incidental effects related to acoustics and
combustion phenomena. Moreover, if LES offers a nice picture of the flow structure
in a combustor, they do not explain the mechanisms by which unstable modes appear.
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These difficulties have encouraged the widespread development and use of low-order
modelling techniques such as analytical tools or Helmholtz solvers. The advantage of
low-order modelling tools [12—14] lies in their ability to determine at reasonable CPU
cost both the eigenfrequencies and the growth or the decay rate of thermoacoustic
modes. In this study, a 3D parallel in-house Helmholtz solver is used to represent
thermoacoustic instabilities [15]. Such Helmholtz solver is based on an approximate
linear wave equation for small pressure disturbances, p; (x, t), which is derived from
the Navier—Stokes equations for reactive flows [6]:

azpl (Xa t)
or?

~ V- q®Vpix, t)=(y—l)w M
where ¢ (X, t) is the heat release fluctuation. In the framework of linear acoustics,
the pressure fluctuations as well as the heat release fluctuations have the form of
an harmonic waves: p; = R[p(x)e '] and g; = R[§ (x)e~**']. Therefore, using
the harmonic assumption for the fluctuating variables, the wave equation in the time
domain, Eq. (1), becomes the following Helmholtz equation in the frequency domain:

V- X VH(X) + o’ p(x) = io(y — 1)G(x) 2)

where ¢ is the speed of sound of the baseline flow, w is the complex-valued pulsation
(w =27 f), po corresponds to the mean density, and §(x) represents the unsteady
heat released from the flame: ¢ (x, 1) = §(x)e™'“".

The right-hand side term of Eq. (2) represents the flame response to acoustic
perturbations. In this study, it is modelled thanks to the n — t formalism initially
introduced by [16] and [17] for confined flames. This formalism is also related to the
Flame Transfer Function (FTF) formulation:

'S)l(Q)

F(w) = = = n(w)e'™® (3)
where n is the gain of the flame response and t the time delay between the overall
unsteady heat release produced by the flame Q = |, v, qdV and the velocity fluctu-

ation 7 measured at the burner mouth, in the cold gas region. The latter parameters
can be determined either experimentally [18], analytically [19] or numerically [20].

Once the flame response is modelled, Eq. (2) corresponds to an inhomogeneous
Helmholtz equation which is then solved as a nonlinear eigenvalue problem in the
frequency domain. The resolution of the eigenvalue problem gives access to the
pressure field p and the complex angular frequency w of the mode. The real part of
w, wy, is related to the frequency of oscillation of the mode while its imaginary part,
w;, 1s the growth rate of the acoustic disturbances. Therefore, from the sign of w;,
it is possible to build a stability map which gathers all the thermoacoustic modes as
shown in Fig. 1.

The stability of a combustion chamber may be drastically impacted by many
effects ranging from combustion chemistry, impedance boundary conditions,
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geometry, swirler and combustor design, wall heat transfer, inlet temperatures to
spray characteristics. Aside from impedance boundary conditions and chamber
design away from the flame, all the above-mentioned factors are embodied in
the Flame Transfer Formulation that accounts for the Flame/Acoustic modelling
response. As of today, a key challenge remains in the development of accurate and
predictive combustion response models to detect potential combustor instability.
Effective modelling of the flame dynamics would certainly improve the understand-
ing of processes such as nonlinear phenomena responsible for limit-cycle oscillations,
the flame—acoustic coupling in industrial geometries, flame—vortices interactions and
the interaction of flames with distributed reaction zones or well-stirred reactors. Due
to the limited knowledge on all the aforesaid phenomena and the well-known sensi-
tivity of the flame response to any details (surface condition of the injection system,
manufacturing tolerances, fuel chemical composition, inlet conditions, thermal con-
ditions of the mainframe, etc), introducing Uncertainty Quantification in the context
of deterministic mathematical modelling to analyse the probabilistic aspects of the
simulation of thermoacoustic instabilities is an appealing perspective.

One of the overriding concern of the present work is to perform Uncertainty
Quantification to address the sensitivity of thermoacoustic results with respect to the
flame modelling response parameters. Until very recently, Uncertainty Quantification
had virtually never been applied to thermoacoustics. This task will shed more light
towards reliable predictions of unstable modes beyond allowing to get insight on
the likely risk of a mode to be amplified or damped in gas turbine combustors.
Figure 2 represents a stability map from a thermoacoustic analysis under Uncertainty

Fig. 2 Location of the first 4 RE=Risk Foctor
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Quantification analysis. When no uncertainty is present, each mode corresponds to
a single point (black symbols) in the frequency plane. Here, modes 1, 4 and 6 are
unstable and should be controlled since their growth rate w; is positive. If uncertainties
are present, each mode belongs to an admissible region of the frequency plane. Mode
2 and 5 are now potentially dangerous and should be controlled too. Therefore,
Uncertainty Quantification analysis will contribute to study how the uncertainties
on the input parameters n and T propagate into uncertainties on the growth rate
;. Introducing Uncertainty Quantification naturally gives rise to a new concept in
thermoacoustics, namely the risk factor of the acoustic mode, i.e. the probability for
a mode to be unstable (w; > 0):

o0
Risk Factor (%) = 100 / PDF (w;) dw; 4)
0

where P DF (w;) stands for the probability density function of the growth rate of
the acoustic disturbances. This quantity allows a continuous classification of the
thermoacoustic modes while the classical analysis is only binary (stable vs. unstable).
Note that to fairly assess the risk factor, it is necessary to have a realistic statistical
distribution of the input parameters n and 7, given by experimental data or early
numerical results.

The remaining of this section is devoted to a first UQ analysis of a swirled stabi-
lized combustion chamber, developed and built at EM2C laboratory in Paris (France)
[18, 21]. Two input parameters are considered: the amplitude (n) and time delay (t) of
the Flame Transfer Function formulation. At first, taking advantage of the affordable
numerical resources associated to the Helmholtz solver, a brute force Monte Carlo
approach is used to propagate random perturbations on the FTF input parameters
and compute probabilistically the growth rate of the acoustic mode. As the litera-
ture does not confer a clear accurate analysis on the uncertainty range of the FTF
input parameters, an uncertainty range based on experimental measurements of the
flame response (from experimentalists at EM2C (Paris) and IMFT (Toulouse)) was
used. Besides, in the absence of more information regarding the probability den-
sity functions, two different distributions were considered: a uniform distribution
and a B-distribution with the same mean and variance. The ranges of the uniform
distributions are directly deduced from the experimental data of the FTF amplitude
and time delay. Then, the UQ analysis is extended by using a reduced two-step UQ
strategy to deal efficiently with thermoacoustic phenomena in such a system. First,
three surrogate models are tuned from a moderate number of Helmholtz solutions (a
few tens). Then, these algebraic models are used to perform a Monte Carlo analysis
even less costly and to determine the risk factor of the acoustic mode.
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Experimental Set-up Description

The laboratory-scale experiment used in this study corresponds to a single swirled
stabilized combustor designed and built by Palies et al. [18, 21, 22] at the EM2C
laboratory. Initially, this academic system was used to investigate the nonlinear mech-
anisms involved in the flame dynamics of complex systems. As illustrated in Fig. 3,
the system features a confined swirled flame, an upstream manifold, an injection unit
equipped with a swirler and a cylindrical flame tube. The fuel/oxidizer is injected
through the sidewalls located at the bottom of the upstream manifold. Once formed,
the mixture flows through the honeycomb grid to wreck large-scale turbulent struc-
tures. Then, the gas stream is accelerating into the convergent tube to decrease the
boundary layer thickness. The motion stabilizes the turbulent flame within the com-
bustion chamber, despite the absence of bluff-body.

This experiment is handy and practical because it was thought and conceived
in such a way that both the upstream manifold and the combustion chamber may
take, respectively, three and four different lengths. Hence, this simple system leads
to twelve possible geometries as summarized in Table 1.

To measure the flame response, a loudspeaker is placed at the back end of the
system. Moreover, two experimental conditions corresponding to two different air
flow rates were experimentally tested corresponding to flames A and B, with larger
power in the latter than in the former. Thus, from twelve possible geometries, the
system offers the advantage to investigate finally 24 different operating conditions.
Also, acoustic losses of the system were measured during the experimental phase.
This has been realized by sending an acoustic wave through the combustion chamber

Flame tube

Hotwire - Swirler

-Cooling

-

Honey-

omb —fIITL vestream
CH4 § * manifold 1
+ — -
Ai

Loudspeaker Loudspeaker

Fig. 3 Numerical/experimental configuration. From Ref. [21]
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Table 1 Twelve different configurations explored: /| indicates the upstream manifold length and
I3 corresponds to the combustion chamber length. Dimensions are given in millimetres. From Ref.
[23]

Cases studied [3=100 13=150 13=200 13=400
Expe./Simu. |11=96.0 C01 C02 Co3 Co04
Expe./Simu. |3 =160.0 C05 C06 Co7 C08
Expe./Simu. |[1=224.0 C09 C10 Cl1 CI12

to measure the response of the flame for a range of frequencies around resonance.
These losses are expressed for both types of flames: a4y = 82 s~! for flame A and
ap = 125 s7! for flame B with an uncertainty of Aa = £10s7'.

The numerical acoustic modelling of the swirled combustor and its associated
linear stability analysis has been realized [23] via a Helmholtz solver developed at
CERFACS (the AVSP solver [15]). Since no damping is contained in the Helmholtz
equation, the system is considered to be stable when the growth rate w; is smaller
than the damping rate « and similarly, when the computed growth rate is larger than
the damping rate, the system is considered to be unstable. Moreover, accounting for
the error A« leads to the subsequent classification:

e Stable S: w; < @ — Ax
e Unstable U: w; > o + A«
e Marginal S/U: o — Ax < w; < o + A«

Experimentally, a mode is denoted S/U when a low amplitude frequency of oscillation
is detected, S if no fluctuation appears and U if a large amplitude limit cycle is
observed. The global comparative study between the experimental and numerical
stability results [23] is displayed in Fig.4 and sum up in Table 2.

|Smllle rl-gimel I Unstable regime | | Stable regime ] l Unstable regime
160 160 7 -
O Agreement 01 g2, © Agreement
150 o1 - @ Partial agreement 150 oo cji‘ @ Partial agreement
) 00603 ) o
T 140 & T 140 oy
= = 05 & 08
£ 130 £ 130! G2 120
@ @ 11 (o]
2. S 2 | e
120 o 1200 09
09 10 11 o
110 o olle 12 i 10
100 100
0 50 100 150 200 250 300 0 100 200 300 400
Growth rate (s™) Growth rate (s™)
(1) FLAME A (2) FLAME B

Fig.4 Linearized stability prediction. The grey bounds indicate the marginally stable region defined
by Ao = £10s~'. Empty symbols indicate agreement with experimental results while filled sym-
bols represent partial agreement. Adapted from [23]
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Table 2 Linear stability analysis of flame A and flame B. Comparison between experimental
and numerical results. (S) Stable, (S/U) marginally stable/unstable, (U) unstable. The geometrical
configurations CO1-C12 are defined in Table 1

Case Flame A Flame B

Co1 C02 Cco3 Co4 Ccol Co2 Co3 C04
Experiment |S S S U S S S-U U
Simulation | S S S U S S S-U U

C05 C06 co7 C08 C05 Co6 co7 Cc08
Experiment |S S S-U U S S S uu
Simulation | S S S-U U S S S-U U

C09 Cil0 Cll Ci2 Cc09 Ci0 Cll Ci2
Experiment |S S S-U U S S S-U U
Simulation | S S U U S S S U

An overall agreement in most of the cases is observed for the numerical and exper-
imental stability analysis. Only three partial disagreements are observed because the
experiment predicts marginal stability (S/U) while the computation gives an insta-
bility or conversely. Uncertainty Quantification is thus used to further analyse one
of these operating points with partial disagreement and investigate if the difference
between the computational and experimental results could be explained by the lack
of knowledge of the input parameters: configuration 07 for the flame B was selected
for this purpose.

Uncertainty Quantification Analysis

Force Monte Carlo Method

The Monte Carlo method is a conventional Uncertainty Quantification algorithm
frequently used due to its conceptual simplicity and straightforward implementation.
It is used here to propagate the flame response uncertainties through the system with
the aim to forecast the PDF of the growth rate and subsequently the probability of
the first acoustic mode of the system to be unstable ( fo = ;"—7‘; = 133 Hz), i.e. the risk
factor of the first acoustic mode.

Having only limited information regarding the actual range of uncertainty relevant
to the Flame Transfer Function parameters, quantitative data from two independent
experimentalists groups at (i) EM2C (Paris) and (ii) IMFT (Toulouse) was collected.
They provide statistically valid and reliable estimation of the uncertainties on n and
T parameters which is fixed to % = % = 10%. This range of uncertainty is therefore
adopted and applied to the following nominal experimental value: 7 = 1080 J/m and
T = 4.73 ms. Also, the type of distribution followed by the FTF parameters is not
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Fig. 5 Uniform and B-PDF of an arbitrary random variable X with similar mean (x) and standard
deviation (o), but with different range (R)

known and one needs to make sure that the shape of the PDF has only a limited
impact on the risk factor value. This is done by considering two typical distributions,
namely (i) a uniform distribution and (ii) a S-distribution (Fig. 5).

e The uniform distribution: The ranges of the uniform distributions are directly
deduced from the experimental values of the amplitude and time delay, i.e 10% of
the mean values (Fig.5). The uniform PDF reads:

1
U
fX = m for Xmin S X S Xmax (5)
max — Amin

Therefore, the mean u% and the variance vg are:

Xmin + Xmax

U
My = )

1

and vy = —(Rypy)’ (6)
12

where Ry represents the normalized range ’% of the uniform distribution:

here Ry = 10%. )
e The g-distribution: The B-distribution is characterized by its density function:

fy = B, )y M1 —y)f! for 0<y<1 (7)

where B(«, )= F;‘g‘;—ig) denotes the beta function, I"(.) is the gamma function,

and « and ¢ are two free parameters. Note that f; is only defined for a reduced
random variable Y on [0, 1]. The parameters « and ¢ which characterize the 8-PDF
are deduced from the desired mean 1%, and variance v;, of this reduced variable Y:

(1_ ¢
o= i (—“Y( — _1> (®)

Uy
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and

Cl_ ¢
Cz(l_ﬂgz (MY( - NY_1> 9)

Vy

To close the problem, the reduced variable Y in [0, 1] is related to the desired
random variable X in [X,,i,, Xmax |:

X = p5(1+ R 2Y — 1)) (10)

Taking the mean and variance of the previous equation leads to the following
relations between characteristics of X and Y:

¢

pG =172 and v§ = X (1u4)? (11)

4R;
Consequently, the mean value of Y is fixed and its variance can be deduced by
imposing that the beta and uniform PDFs have the same characteristics, i.e. ,ug( =
nY and vi, = vY. Note, however, that the range of the 8-PDF appears in (115,) (Eq.
11). If this range is chosen equal to the range of the previous uniform PDF (i.e.
R; = Ry = 10%), then the ¢-distribution degenerates to the previous uniform
PDEF. Consequently, the range R, is an additional free parameter. For this study,
this range is fixed to R, = 30% leading to the characteristic values o« = ¢ = 2.87.

The Monte Carlo sampling realized for the configuration 07 of the Flame B (see
Table 2) using the uniform distribution is presented in Fig. 6.

In Fig.6a, each point corresponds to a Helmholtz simulation in the complex
domain. The horizontal solid lines denote the acoustic losses «: 115 s™! < ap <

135 s~!. The stable or unstable regions are evaluated using the difference w; — :

1. w; — 115 s7! < 0 corresponds to a stable system (S).

2. w; — 135 57! > 0 corresponds to a unstable system (U).

3. 115s7! < w; < 13557 ! corresponds to a situation where the system is marginal
(neither stable nor unstable) (S/U).

The 4000 samples are then classified into three types: stable regime (S), unstable
regime (U) and marginal regime (S/U). In Fig. 6b, the PDF of the growth rate (w;) is
presented and shows that most of the thermoacoustic modes found by the Helmholtz
solver are in the stable regime. This leads to a risk factor close to 24%.

Following a similar methodology as for the uniform distribution, 4000 runs have
been performed using the Helmholtz solver by considering a S-distribution for the
input parameters n and 7. It has been found that the risk factor obtained from the
B-distribution is close to the one obtained by the uniform distribution: 24% for the
uniform distribution against 22% for the S-distribution. This shows that UQ results
are weakly affected by the distributions chosen for the input parameters n and t for the
study of such academic cases which suggests that assessing the risk factor of a mode
without a clear knowledge of the uncertainties on the input data is relevant. In the rest
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Fig. 6 a Uncertainty region for the first acoustic mode for a uniform PDF with 10% uncertainty on
both the amplitude and time delay of the flame response. b Histogram of the growth rate of acoustic
disturbance for 4000 samples using the uniform distribution for the parameters n and ©

of the study, only the uniform distribution is kept. Moreover, the risk factor being 22—
24%, this simple UQ analysis shows that the computation is actually consistent with
the experimental data. Indeed, accounted for a realistic 10% uncertainty in the flame
response, this risk factor value means that the mode of interest is computationally
found stable in approximately 76-78% of the cases (recall that the mode of Case
07—Flame B was observed stable in the experiment; see Table 1).
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Multiple Linear Regression

Because Eq. (2) is an eigenvalue problem which is nonlinear in w;, the response
surface w; = w;(n, t) is implicit and nonlinear. To speed up the UQ analysis, it is
worth investigating if this response surface can be approximated by explicit surrogate
models. Linear and quadratic models based on the uncertainties on the Flame Transfer
Function parameters n and t are investigated in this section:

1. LM,,_;: a linear model based on the parameters n and 7 of the Flame Transfer
function:
W' = g+ in + ot (12)

2. LMpgrr: based on the Flame Transfer Function evaluated at w = wg, where
wp corresponds to the mode without flame coupling (corresponding to n=0).
The Flame Transfer Functions incorporate here physical nonlinearities into the
model:

o 1" = gy + (RN ™) + 3 (el ™) (13)

3. QMgrp: is a quadratic model based on the Flame Transfer Function also evalu-
ated at w = wy. Here, the physical nonlinearities are taken into account into the
model.

o' = g + RN + HINe ) + R(ne/ ) (14)
+0a3(ne! )2 + 5 (R(ne/™7) x J(ne! ™)) (15)

The models LM,,_;, LM g7 r and QM g7 can be written in linear algebra notation
as follows:
w; :X{—i—&‘:w?mdel—i-é' (16)

where X ¢ is the matrix-vector product, and ¢ =[¢o, ¢1, &2, &3, L4, &)t corresponds
to the regression coefficients of the model. These coefficients represent the mean
change in the response variable for one unit of change in the predictor variable.
w; is considered to be a N x 1-dimensional vector containing the growth rate w;
determined from N Helmholtz computations, and X is the matrix containing 1, n
and T when using LM,,_; or 1, R(ne/™7), J(ne/*%) with LM g7 or 1,R(ne/®%),
J(nel ™7, R(ne’®)?, J(ne/*)? and (R(ne/ ) x I(ne/7)) with QMg p. This
for each samples and ¢ the N x 1 vector of residuals:

o
o 1n o o &1
Wi, 1 ny Ty &
wi=| .|, X=]|.. .= 2 and ¢ =
Wiy 1 ny Ty §4 EN
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A least squares methodology is used to determine the coefficients ¢ of the three
models which minimize the error &:

= (x'X) " X'y (17

where £ corresponds to the estimated parameters from the least squares, (X' X)~! is
called the “information matrix”, and X’ corresponds to the transpose of the X matrix.
The predicted values @; for the mean of w; are then determined as follows:

@ =Xl =X (X'X)" X'o (18)

The objective is to use LM,,_,, LMgrr and QMg p to estimate accurately and at
low cost the risk factor of the first acoustic mode of the system. To achieve this, a
reduced two-step UQ strategy is proposed:

1. Step 1: Find, at reasonable cost, the regression coefficients associated to sur-
rogate models, LM,,_,;, LMgrr and QMg p, using only a few samples of
Helmbholtz simulations instead of 4000 Helmholtz simulations as performed in
the section “Conclusions” using a brute force Monte Carlo method.

2. Step 2: Apply a Monte Carlo on these surrogate models to assess the risk factor
of the mode.

At first, to find the regression coefficients of the surrogate models, the
4000 Helmholtz simulations of the Monte Carlo database obtained in the section
“Conclusions” are used. These coefficients are computed using Eq. (17), and the
correlation between the surrogate models and the reference Monte Carlo database is
evaluated.

R— El(wi — E(@)) (@] — E(w]"*"*"))]

0y, 0, wl(nrzdel

19)

In Eq. (19), E is the expectation, w; corresponds to the reference growth rate, w}”"d“’

is the growth rate issued from linear least squares fitting, and o corresponds to the
standard deviation from the reference growth rate and the estimated growth rate from
linear least squares fitting. Results of the model fitting are shown in Fig. 7 and their
corresponding correlations to the full Monte Carlo database are merged in Table 3.

Results of the model fitting showed that LM g7 (Eq. 13) and the quadratic model
QMf7r (Eq. 15) are able to reproduce, respectively, 98% and almost 100% of the
growth rate variation, whereas the model LM,,_; reproduced 95% correlation of the
growth rate variations. For the rest of this study, the linear model LM y7f and the
quadratic model QM g7 are kept to approximate the risk factor of the mode at low
cost, i.e. relying on much less than 4000 Helmholtz computations.

Initially, to assess the number of Helmholtz computations required to fit these
surrogate models, several tuning of the ¢ coefficients were performed. Typically, a
set of 3, 5, 6, 10, 20, 40 and 100 Helmholtz computations randomly selected from
the full Monte Carlo database are used. Once the surrogate models tuned, they are
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Fig. 7 Multiple linear regression computation: a using the surrogate model LM,,_., b using the
surrogate model LM 7 r and ¢ using the surrogate model QM pr r

Table 3 Correlations coefficients of the surrogate models and the full Monte Carlo database com-
puted from AVSP.

Models Correlations
LM, _, 0.9481
LMpgrrp 0.9761
QMprr 0.9990

used to perform an affordable Monte Carlo to estimate the corresponding risk factor
of the mode. Besides, to evaluate the variability of the risk factor, the Monte Carlo
analysis based on the surrogate models LM prr and QM g7 repeated 100 times for
each chosen set of Helmholtz simulations (from 3 to 100 Helmholtz simulations).
The results are displayed in Fig. 8 when using the linear model LM g7 and in Fig. 9
when using the quadratic model QM g7 .

In Figs. 8 and 9, the dashed lines represent the reference risk factor (24 %), obtained
by the force Monte Carlo analysis over 4000 Helmholtz computations. The full
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Fig. 8 Risk factor estimated from a Monte Carlo analysis using the linear model LM g7 f: a with
3 arbitrary samples from the full Monte Carlo database, b with 5 arbitrary samples from the full
Monte Carlo database, ¢ with 10 arbitrary samples from the full Monte Carlo database, d with 40
arbitrary samples from the full Monte Carlo database, e with 70 arbitrary samples from the full
Monte Carlo database and f using 100 arbitrary samples from the full Monte Carlo database
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Fig. 9 Risk factor estimated from a Monte Carlo analysis using the linear model QM gz F: a with
6 arbitrary samples from the full Monte Carlo database, b with 10 arbitrary samples from the full
Monte Carlo database, (i) with 20 arbitrary samples from the full Monte Carlo database, ¢ with 40
arbitrary samples from the full Monte Carlo database, d with 70 arbitrary samples from the full
Monte Carlo database and e using 100 arbitrary samples from the full Monte Carlo database
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Table 4 Risk factors and their associated standard deviations computed by the Monte Carlo and
surrogate models LM g7 r and QM g7 using a different number of Helmholtz simulations from
the full MC database

Mean risk factors (in %) Standard deviations

Number of samples for the MC

study using LM g7 p

3 21.45 8.92
5 22.88 493
10 23.13 3.18
20 23.54 1.80
40 23.59 1.20
100 23.32 0.83
Number of samples for the MC

study using QMprF

6 23.69 6.95
10 24.19 1.95
20 24.24 0.81
40 24.31 0.73
100 24.40 0.69

lines correspond to the risk factor assessed by the surrogate models. Results show
that the discrepancies between the reference risk factor (224%) and the risk factor
estimated from the surrogate models decrease when the size of the samples increases,
as expected. A reliable estimation of the risk factor is reached on the basis of 10-100
Helmbholtz simulation.

To ensure these observations, the mean risk factors and associated standard devi-
ations for each set of samples (from 3 to 100 Helmholtz simulations) were inves-
tigated to approximate the number of Helmholtz simulations required to tune the
¢ -coefficients and to accurately estimate the risk factor of the mode. The results are
shown in Table 4, and they show that a few tens of Helmholtz simulations are enough
to get an accurate risk factor estimation with surrogate models. These results suggest
that a purely algebraic model is able to fairly assess at reduced cost the risk factor
of thermoacoustic modes and using about 20 Helmholtz simulations is sufficient to
accurately estimate the risk factor of the mode.

Conclusions

An Uncertainty Quantification analysis has been applied in the context of thermoa-
coustic instabilities in a single swirled combustor experiment. All eigenmodes of the
combustor have been assessed by means of a parallel Helmholtz solver. The Flame
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Transfer Function measured experimentally has been used as a flame model to feed
the Helmholtz solver. The frequency of oscillation as well as the growth rate of the
first thermoacoustic mode was computed in 24 different operating points, and the
stability analysis of the system has been realized by [23]. Numerical predictions are
coherent with the experimental observations of the combustor, except in 3 cases (out
of 24) where the agreement is only partial. Introducing Uncertainty Quantification
allows a more accurate mode classification than the usual binary one (stable or unsta-
ble), and thus a more reliable comparison between experimental observations and
numerical predictions. This leads to a continuous classification of the thermoacoustic
modes based on their probability to be unstable given the uncertainties on the flame
response, also called their risk factor. The risk factor associated to the first acous-
tic mode of the combustor was first assessed using a Monte Carlo approach based
on 4000 Helmholtz simulations of a single experimental operating point but with
random perturbations on the Flame Transfer Function parameters. Then, a two-step
UQ strategy was used to deal with thermoacoustics in such a system: (i) First, three
surrogate models were tuned from a moderate number of Helmholtz solutions. (ii)
Then, these algebraic models were used to perform a Monte Carlo analysis afford-
ably and to approximate the risk factor of the mode. The study proves that analytical
surrogate models can be used to predict the risk factors at reduced cost.
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Numerical Uncertainties Estimation )
and Mitigation by Mesh Adaptation

updates

Frédéric Alauzet, Alain Dervieux, Loic Frazza and Adrien Loseille

Introduction

The numerical approximation involved in simulation Navier—Stokes software car-
ries certainly a systemic error, since this error can be reduced by applying some
supplementary effort. But the deviation between exact solution and approximated
one remains in practice an uncertain factor. The common strategy for the engineer is
to get convinced that numerical error is small. Of course if it is not enough small, the
simulation output cannot be efficiently used. A rational standpoint is to combine (i)
a strategy for obtaining a small error with (ii) an estimation of it. In this chapter, we
propose to address (i) with a sophisticated mesh adaptation method and to address
(ii) with the computation of a corrector, approximating the actual error.

The approximation or the estimate of the actual numerical error is a difficult task
addressed by many ways. Let us refer to the works [1] which also introduce the error
in the adaptive process. Our approach is close to the method of functional correction
of Giles, see for example [2].

Adaptive methods in aeronautics have been used for many different purposes. The
first one is generally to improve the prediction of complex phenomena (sonic-boom
prediction, drag prediction, high-lift configuration, blast, vortices, ...) while mini-
mizing the CPU cost. Then, it may be used to guarantee the optimal (second) order
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of convergence of the numerical scheme, especially when discontinuities (such as
shocks waves) are present in the flow field [3]. In addition, adaptivity is also con-
cerned with the assessment of the numerical solution. We distinguish the following
class of adaptive methods according to these purposes.

A first set of methods is based on the minimization of the interpolation error
of one or several sensors depending on the CFD solution [4-8]. Given a numerical
solution W), a solution of higher regularity R,,(W,,) is recovered, so that the following
interpolation error estimate [9, 10] holds:

2p+3
3p

_2 _r_
||Rh(Wh) - Hth(Wh)”U <N </Qdet (lHRh(W,l)l) 2,,+3>

where Hp (y, is the Hessian of the recovered solution and N an estimate of the
desired number of vertices. If an anisotropic mesh prescription is naturally deduced
in this context, interpolation-based methods do not take into account the features of
the PDE. Note that from a practical point of view, R,(W,) is never recovered, only
its first and second derivatives are estimated. Standard recovery techniques include
least-square, L?-projection, green formula, or the Zienkiewicz—Zhu recovery opera-
tor.

A second set of methods tends to couple adaptivity with the assessment of the
numerical prediction of one important scalar output computed from the flow. Goal-
oriented methods [2, 11-14] aim at minimizing the error

oj = [i(W) = j,(W))I

committed on the evaluation of a scalar functional j depending on the approximate
field. An usual functional is the observation of the pressure field on an observation

surface y:
2
. P~ P
JW) = / < > ;
v P

where W and W, are the solution and the numerical solution of the compress-
ible Euler equation, respectively. Goal-oriented methods do take into account the
features of the PDE, through the use of an adjoint state that gives the sensitivity
of W to the observed functional j. In order to solve the goal-oriented anisotropic
mesh optimization problem, an a priori analysis has been introduced [12, 15] which
restricts to the main asymptotic term of the local error. While a super-convergence
of |j(W) —j,(W,)| is observed in some cases [16, 17], goal-oriented optimal meth-
ods are specialized for a given output, and in particular do not systematically pro-
vide a convergent solution field. In other words, the convergence of |W — W, || (in
any norm) is not ensured. In addition, if the observation of multiple functionals is
possible (by means of multiple adjoint states), the optimality of the mesh and the
convergence properties of the approximation error may be lost.
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In each case, the aforementioned adaptive strategies address specifically one goal.
Consequently, it is still a challenge to find an adaptive framework that encompass all
the desired requirements: anisotropic mesh prescription, asymptotic optimal order of
convergence, assessment of the convergence of the numerical solution to the contin-
uous one, control of multiple functionals of interest, ... This paper is a contribution
with a first attempt to formally predict all the different requirements. Our approach
is based on the design of a norm-oriented optimal method, which takes into account
the PDE features, and produces an approximate solution field which does converge
to the exact one in the norm chosen by the user. To do so, we derive a corrector that
estimates the approximation error. Contrary to the goal-oriented mesh adaptation,
the functional may be now any function of the approximation error. A particular
case involves multiple functionals of interest to be minimized simultaneously. For
instance, instead of the above §j, we can minimize the semi-norm-like functional:

J(W}) = (drag(W) — drag(W),))* + (Iift(W) — life(W,,))*

while the goal-oriented should use two functionals, one for drag and one for lift or
specify a combination of them.

The paper is organized as follows. Section “Flow Solver Models” briefly recalls
the considered PDE and the numerical discretization. In section ‘“Formal Error
Analysis Within the Continuous Mesh Framework,” the Hessian-based multiscale
and the goal-oriented error estimates are recalled, then a new norm-oriented error
analysis is derived formally. The norm-oriented mesh adaptation uses correctors
to estimate the approximation error, and section “Correctors for the Compressible
Navier—Stokes Equations” proposes two approaches for the case of the compressible
Euler equations within a linear and non linear setting. Finally, section “Numerical
Experiments: A Turbulent Transonic Falcon” compares different adaptation methods
and evaluates the corrector for 3D CFD problems.

Flow Solver Models

The methods which we propose rely on estimates applicable to P!'-exact approx-
imations, i.e., approximations which are exact for affine analytical solutions. In
particular they apply directly to CFD solvers which are inspired by P'-continuous
finite-element approximation or, equivalently, based on a vertex-centered approxi-
mation like, N3S [18], SU2 [19], AERO [20, 21], or FUN3D [11]. In the present
paper, we have used the vertex-centered research software Wolf [4, 22].
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Flow Equations

The Navier—Stokes equations for mass, momentum, and energy conservation read:

ap
—~+V. =0
o (pu)

AW Y. (pu@u)+Vp=V-F,
o(pE)

T+V-((pE+p)U)=V’FE,

where p denotes the density, u the velocity, E the total energy per unit mass, and p

the pressure. Symbols F,, Fy, F* are used for viscous fluxes which we shall not detail
for simplicity, see [22]. This system can be rewritten under vectorial form:

W, + FT(W))C + F;(W)y + Fg(W)Z =V-F,
where W is the non-dimensioned conservative variables vector:
W = (p, pu, pv, pw, pE)"

and F¢(W) = (I f(W), F S(W), F g(W)) are the convective (Euler) flux functions:

FS(W) = (pu, pu* +p, puv, puw, u(pE + p))"
F;(W) = (pv, puv, pv2 +p, pvw, v(pE +p))T
Fg(W) = (pw, puw, pvw, ,ow2 +p, w(pE +p))T.

A weak formulation of this system writes for W € V = [H ! (.Q)]5 as follows:

VeV, FW), ¢)=/V¢-§4’(W) dg+/¢gz‘(W)-ndr =0, (1)
Q r

with
F W) = (F{(W), F5(W), Fs(W) + (F{ (W), Fy(W), F3(W)"

and where I’ is the boundary of the computational domain €2, n the outward normal
to I, and the boundary flux .% contains the boundary conditions.

In the case of a turbulent flow simulation, which we address with the Spalart—
Allmaras model, an equation for the turbulent viscosity v, is added to a slight modi-
fication of the previous system.
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Spatial Discretization

Equation (1) is discretized by a vertex-centered upwind finite-volume formulation
applied to unstructured tetrahedra meshes. The interested reader is invited to find a
detailed presentation in [4, 22]. To carry out the variational analysis, it is interesting
to present the finite-volume formulation as a stabilization of the Galerkin approxi-
mation.

Let 7 be amesh of 2 composed of tetrahedra. We denote by €2, and I, the linear
approximate of £ and I" defined by .7Z. Let us introduce the following approxima-
tion space:

Vi, = {¢, € VNG| ¢y is affine VK element of .72} .
The interpolation operator of the previous section is chosen as the usual P! operator:
I, : Vvne® - Vv, wehave IT,0(x;) = ¢(X;).
The weak discrete formulation writes:

Vo, € Vi (F,(W), by,) =0,

(sv,,(wh),dyh):/ Vo, F, (W) d2, + [ ¢,%,(W,) -ndl,= 0

27 p

Fy=,7 ; = I,7. )

Taking as in Relation (2) the P'-interpolation of the fluxes ., as a discretiza-
tion principle produces a finite-element scheme which is identical to the central-
differenced finite-volume scheme built on the so-called median dual cells. In prac-
tice, this family of Mixed-Element-Volume schemes cannot be used in a
non-dissipative purely centered version. In [23, 24], MUSCL versions are described
and analyzed. For our analysis, we consider that the scheme under study is a Galerkin
formulation enriched with artificial stabilization terms under the form of numerical
diffusion. We write this as follows:

Vo, € Vy, / vd’h'yh(wh)d'gh"'/ & Fn(Wy) -ndl, = —/!2 &, D, (W),) d€2, 3
7 Iy h

h

According to [24], the numerical diffusion term is of higher order as soon as it is
applied to the interpolation of a smooth enough field W on a sufficiently regular
mesh:

| / ¢, D, (WA, < PKW)|y o -
Qh

As a result, the numerical diffusion term is neglected in the remaining analysis.
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It is now useful to introduce the linearized operators </ (resp. <7,) expressed in
terms of Jacobians of .% and .# computed at W (resp. .%,, and .%#,, computed at W),):

YWeV, YWWeV, Z(W)SsWe () and VpeV,

(w(W)5W,¢)=/v¢.ﬁ(W)(5W) dQ+/¢69(W)
0 oW .

(6W)-ndlI'=0(4)

VW, €V, VW, €V, o,(W,)sW,e(V,) and V¢, €V,

0.7
(A (W)W, ) = / Ve, - —”(Wh)(awh) de,
Qh

¢ha‘/h(Wh)(5Wh) ndl, = 0. 5)

nl

o/ and <), are assumed to be invertible. We use in the sequel the notations ./ ~! RHS
and bcfh‘lRHSh for the results of solving the corresponding systems with RHS and
RHS;, as right-hand sides.

Formal Error Analysis Within the Continuous Mesh
Framework

The norm-oriented approach is an extension of the previous developments on
anisotropic (Hessian-based) and goal-oriented mesh adaptation. In these latter meth-
ods, the anisotropic mesh prescription (orientations and sizes) is given in a close
form. Each of them are tightly related to interpolation error measured on the solu-
tion field for Hessian-based methods, and the various fluxes for the goal-oriented
approach. We first recall formally the derivation of these estimates in the continuous
mesh framework. It leads to the definition of two kernels (interpolation and goal-
oriented) providing the optimal mesh. The norm-oriented approach is a combination
of these kernels with the derivation of a solution corrector. In this section, we focus
on controlling the implicit error IT,u — u;,. Controlling the approximation error will
consist in controlling the implicit error (corrector) and the interpolation error terms
simultaneously as:
u—u, =u—Iu+ Iu—u,.

Note that the implicit error can be seen as a vertex-wise error between the exact solu-
tion and the numerical one, whereas the interpolation error can be seen as geometric
deviation between the continuous solution and its P! representation on the mesh.
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Continuous Mesh Framework Formalism

In [25], we prove that any mesh can be represented by a continuous Riemannian
metric field .#. The link between continuous mesh and discrete mesh is based on
the unit mesh concept [26]: given a Riemannian metric field .#, a unit mesh is a
mesh having:

1
for all edgese = AB, ¢ ,(e)= / \/’AB///((I —NA+tB)ABdt € l
0

V2

for all elements K, |K| , = o

\L@,\fz],

(6)
From a practical point of view, generating an anisotropic unit mesh .7#’ with respect
to .# requires to use any anisotropic mesh generators, see [8, 11, 27-34]in 3D. Con-
versely, given a mesh .77, the following metric field is a continuous representative

of J:
2ksp Kl In(2) )
Zksr K] ’

where P is a vertex of ¢ and .# is the unique metric representing element K, and
|K]| is the volume of K. Consequently, if u, denotes a discrete quantity computed on
a given mesh, we use equivalently the notation u_, that represents the same quanti-
ties represented on any unit mesh with respect to .. In the case of the interpolation
error, there is a strict equivalence between continuous u — x4, u and discrete inter-
polation error u — IT,u, see [10]. The parametrization of a mesh by .# instead of
h is advantageous for a priori analysis with anisotropic mesh. Indeed, it exists also
quantities of interest as the density, anisotropic ratios, differentiation that are well
defined on ./ .

Mp =exp<

Hessian-Based Multiscale Adaptation

Let us consider a mesh . which is unit for a metric .#, in other words, .Z is
a continuous model of 7#. A Hessian-based adaptation relies on the choice of a
sensor u depending on the state variable W. According to the continuous mesh theory
[10, 25], the P! interpolation error u — IT,u can be approximated in terms of second
derivatives of u, i.e., the Hessian H,, of u, and of metric ./

A 1 1
lu—Mu| = |lu—x ,u|l = trace(#™2|H,|.4"7), (7

where |H, | is derived from H,, by taking the absolute value of the eigenvalues. The
above expression is the continuous approximation of the P! interpolation error. Min-
imizing |lu — I ,ul| 2, for a given number N of vertices can be recast in the con-
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tinuous setting as minimizing ||u — 7z, ul| ;1 g, for a complexity €'(.#) = N where

calculus of variation is available. The complexity ¢ of .# is the continuous counter
part of the number of vertices.

C(MH) = / det(Z (x)) dx. ®)
Q

Solving this optimization problem provides an optimal interpolation-based metric
(continuous mesh):

///Lof”(u) = arg min trace(//_%Hu///_%) .
G (M )=N

The expression of the optimal continuous mesh in 3D is:

N (det|H,])7F IH,. ©)

(/(det |Hu|)§>3
Q

The first factor of the RHS is a global normalization term set to obtain a continu-

MY () =

ous mesh with complexity N, and (det |H, |)_é is a local normalization taking into
account the sensitivity of the L! norm. Note that expressing the continuous interpo-
lation error for the optimal metric, Relation (9) shows that second-order convergence
is obtained for a smooth sensor [10]. The approach can be extended to non-smooth
sensor and still recovers the second-order convergence [3, 35].

In practice, computing the optimal metric is done approximatively, i.e., in a
discrete context with a couple (mesh, solution) denoted (.77, W,)), and iteratively
through the following fixed point algorithm. The Hessian of sensor u is replaced by
a numerical sensor of higher regularity R, (u;) computed from the numerical sensor
u;, using any recovery techniques.

Algorithm 1 Hessian-based multiscale adaptation

1. Compute state W, on mesh .7¢

Compute sensor u;, = u(W,,) and R;,(u;,)

Compute optimal metric .///L”]p "(R,, ()

Generate a new adapted mesh .#” which is unit for metric .# L"I" ! (R (uy))
If not converge, goto 1.

nA WD

For the remaining analysis, it is useful to introduce the kernel function .7, that
gives the optimal metric for the P! interpolation error in L' norm as a function of
the Hessian of u instead of u directly:

M) = A (H . (10)
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Indeed, for goal-oriented and norm-oriented analysis, the kernel will be applied to
more complex Hessian-like functions.

Goal-Oriented Adaptation

The Hessian-based multiscale adaptation is geometric thus generic and does not take
into account the PDE from which W is obtained. On the contrary, the goal-oriented
analysis relies on the considered PDE. According to Relations (1) and (3), we assume
that solution W and numerical solution W, verify:

/¢V-£Z(W) +BI=0 and / ¢,V - F(W,) + Bl,=0, (11)
Q 2,

where BI and BI, are boundary integrals, and the discrete fluxes are simply:
Fp () = I, 7 (I,(-).
The goal-oriented analysis relies on the minimization of the error committed on

a scalar output functional j. We assume j to be smooth enough such that j can be
observed through its Taylor expansion:

Jj
(W) =~ j(W, — (W), W -W,
JW) = j( ;1)+(0W( ) i)
which leads to:

N
JOV) = (W) 2 (W)W = W) = (g0 W = W), (12)

We recall in short the main result of the analysis given in Loseille et al. [12]. Intro-
ducing the adjoint state W;o defined by W;O = (&~ 8o = "84, We have:

(ggg’ Wh - W) S
/ IVWE [|F (W) — 1,7 (W)| dS2, + / \WE L |(F (W) = 1,7 (W) - n| dT},
Q, I,
If the boundary terms are neglected, it simplifies to

VW) = j(Wl = (IVW,, |, |7 (W) — IT,.7 (W))). 13)

Similarly to the previous section, from the continuous mesh theory, we get:
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(VWL I FW) — I, FW))) = (VW |. | FW) — 7, F(W)])
= trace(.2/~'/? |VW§0| NH g | AP,

where .# is a metric field representing the current mesh. Then, minimizing the
approximation error on functional j in L! norm is equivalent to solve the optimization
problem:

MY = argmin trace(.Z 12 VW |- 1H 2 )| My,
8 gmr=N

and |VW;0| * |H 2 )| is a positive combination of symmetric matrices. Similarly to
the Hessian-based error analysis where the optimal metric is given by Relation (9)
and the kernel definition (10), we get:

ML W) = A (VW] H i) = A (VT g ) - HagpD). (14
Note that if we want to observe many output functionals, as many adjoints must
be evaluated. In addition, if we want to minimize the norm of the approximation
error, the above analysis cannot be applied directly.
Relation (14) gives a continuous expression of the optimal continuous mesh. In a
discrete context, all the continuous quantities are evaluated on the current mesh. We
use iterative Algorithm 2 to converge to the optimal solution.

Algorithm 2 Goal-oriented adaptation
1. Compute state W, on mesh 77

Py
Compute adjoint state Wy , using g, , = —](W;l) and R,(Z,(W,))
Compute optimal metric .Zgy (W) = i ( |VW vl He 2 v

Generate a new adapted mesh .# which is unit for metric ///;f ’(Wh)
If not converge, goto 1.

nhs WD

Norm-Oriented Adaptation

‘We are now interested in the minimization of a semi-norm such as:

”L(W) L(Wh)”LZ(_Q )

where L is a given vector- or scalar-valued operator. Linearizing L using a Taylor
expansion, we have:

(LOV) = L0V LOV) = L0V ) ~ (S (W)W = W), S W)W = W)
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Introducing the adjoint operator (%) , We can rewrite:
(Law) = LW, LOW) - LWy ) = <(%(W)) (SEm) W - wy.w - W;.))

then choosing:
_ (oL * (oL B
8= (52W) (S0) W =Wy (15)

we get:
ILOW) = LOWIIZ, o & (4o (W = W))) .

@)~

Now, we apply the goal-oriented analysis to minimize (g,w, W — Wh)) that leads to
the optimal norm-oriented metric:

AT W) = A (VS 80| - [Hz ) = AL (VW |- [ Hz D). (16)

where W* = o/~*g, . The main difficulty is thus to evaluate g,,. Indeed, contrary
to the goal-oriented case, g,, depends on the approximation error W — W, and not
only on the solution W. Consequently, it is necessary to derive an estimate of W —
W, this is done by the computation of a corrector, see section “Correctors for the
Compressible Navier—Stokes Equations”.
Now, let us give two examples. The simplest one is to consider the L? norm of the
approximation error:
W = w12

L2(Q)
. . oL . S .
In this particular case, W(W) is the identity and g, reduces to the corrector itself

(W —W,). A second example is controlling the approximation on the pressure p in
L? norm:

2
”p _ph”Lz(Qh) ’

0 2
and we have ﬁ;}(W) =@ -1) (u?, —u,—v, —w, 1) and

u4 u2 u2 u2 u2

4, Uy vy Wy %

) <y —u“z W —uv —uw —u

/4 P 2 o
—(W)> <—(W)> =@ -D =v& —wv vV —ww —v
(aW oW 2, ;

—WT —uw —ww owe —w

w -u v -w 1
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In practice, all the continuous quantities are evaluated on the current mesh, so
does the corrector. Iterative Algorithm 3 is considered to converge to the optimal
solution.

Algorithm 3 Norm-oriented adaptation

1. Compute state W, on mesh 7’
Compute an approximation g, , of W — W,
Compute adjoint state W*  and R, (%,(W,))

no,h

Compute optimal metric . (W,) = %}, (VW2 |- 1Hg, oz, qn)D

Generate a new adapted mesh .7 which is unit for metric .. (W)
If not converge, goto 1.

I

Correctors for the Compressible Navier-Stokes Equations

The norm-oriented error estimate presented in the previous section requires an esti-
mate of the approximation error W — W,,. The approximation error can be decom-
posed into the interpolation error and the implicit error:

W—W,=W—ILW + IL,W-W,.

Then, the Hessian-based mesh adaptation theory (section ‘“Hessian-Based
Multiscale Adaptation”) provides an estimate of the interpolation error, and the
implicit error is estimated by computing a corrector.

Given a numerical solution on a mesh .77, of size i, we intend to control the
implicit error. To this end, we geometrically divide the mesh size by two and split all
the elements with patterns leading to a new embedded mesh 77, of size h/2. Then,
if we compute a solution of this new refined mesh, then it will have two different

effects:

o Add new degrees of freedom, so that every function (solution, fluxes, source terms,
...) is better represented. This will reduce the interpolation error.

« Change the nodal value of the solution even for vertices issued from the initial
mesh of size h. For example, this process may increase the solution at every ver-
tices, so that II,, (Wh /2) — W, > 0. This is implicit error that we try to control
here.

To do so, we first need to relate the implicit error on the solution to the mesh as it
has already been done for the interpolation error [10, 25]. In other words, we need
to figure out how adding/removing/moving a node and leaving the other unchanged
will globally affect the solution. As we do not know a priori W, we reconstruct a
corrected solution W, closer to the exact one.
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As we do not have access to II,W, we choose to approach it with IT, W, ,. How-
ever, W, , is expensive to compute and once we have it, it is worthless to work with
W,,. Therefore, we are seeking for a way to mimic I1,W,, , without computing W, ».
Note that we want a solution on 7, and not 74, ,. If W), , or V - 7, (I1,w, /2) are
known, we can compute a corrector W, by solving

&,V - ﬁh (Wc) = A yh (HhWh/z) >
Qh ‘Qh

where the right-hand side is a fixed source term. In that case, we have W, = IT, W,
and the implicit error is given by W, — W,,. As we do not know W, ,, we have to
clarify how to compute an approximation of the right-hand side term. In fact, we
are interested in the global modification of the solution at vertices induced by the
mesh refinement via the flux operator and not only in local modifications obtained
by a better representation through solution interpolation. Indeed, the residual of the
interpolated solution on the refined mesh is different from the residual of the solution
on the current mesh:

b V- Fup (L2 Wy) = / Lystn V- Fupy (I W)
Q, 4

# by V- F (W) =0.

'Qh

where I, , is an interpolation operator from mesh ., to mesh 7%}, ;. The corrector
is thus given by the solution of the following system:

&V - T, (W)= | V- T (LoWh)
2, 2,

This consists in computing the residual of W, with a higher precision, similarly to
what can be done with a higher order scheme. Another advantage is that the same
numerical scheme is considered to compute the corrector, only a source term is
added. Using multigrid tools, we can also compute .7, (1, /th) on the finer grid
and assemble the source term by accumulating this defect on the coarse grid.

Generally speaking, we can see that, if .7, (Ih 2 Wh) has locally a mean value
close to 0, it means that W, , will have small local adjustments related to the new
degrees of freedom. On the contrary, if .7}, (Ih /th) is always positive, it means
that W), ,, will have a global change which will be reflected by the corrector.

From a practical point of view, the finer grids are never generated to avoid mem-
ory and CPU time overhead. Indeed, we can solve local problem in vertices neigh-
borhood by virtually refining the elements to compute the source terms. The flow
solver is then used to inverse the error equation directly, and provides the corrected
solution W...
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In the numerical experiments section, we have only considered the implicit error
W, — W, to represent the approximation error in the computation of g,, given by
Relation (15). The interpolation error term has been neglected.

Numerical Experiments: A Turbulent Transonic Falcon

Test Case Description

The method is applied to the UMRIDA test case IC-03, Falcon jet, described in this
book. The flow is transonic with a Mach number of 0.8, an angle of attack a = 2°,
and a Reynolds of 14.512 million. The viscosity is computed using the Sutherland
law with a reference static temperature of 216.65 K. The Spalart—Allmaras RANS
turbulence model with no trip is used.

RANS Mesh Adaptation Simulation

For the RANS mesh adaptation, the structured boundary layer mesh is kept frozen
up to y* = 500 and the mesh is adapted in the upper boundary layer region and the
outer field. We choose to control the interpolation error on the local Mach number
in L? norm. Fifteen mesh adaptation iterations are performed. We split the adapta-
tion loop into three steps with an increasing theoretical complexity (outside of the
boundary layer region) specification at each step ranging from 100 000 to 400 000.
Within each step, the adapted mesh at a fixed theoretical complexity is converged in
five iterations. The final adapted meshes for each step contain:

» 2298958 vertices and 13 407 595 tetrahedra for a theoretical complexity of 100 000
» 6168815 vertices and 36 614 955 tetrahedra for a theoretical complexity of 200 000
e 10337483 vertices and 61 629 069 tetrahedra for a theoretical complexity of 400 000.

The final adapted mesh for the largest theoretical complexity is illustrated in
Fig. 1.

Such adapted meshes considerably enhance the efficiency of the flow solver and
the solution accuracy. We first notice that the wake is highly resolved and the wing tip
vortices are well captured. Second, mesh refinements along the shock on the upper
surface of the wing lead to an accurate computation of the shock-boundary layer
interaction. We also observe a nice transition between the boundary layer-structured
mesh and the adapted anisotropic mesh.
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Fig.1 Transonic Falcon business jet. Top, Mach solution field. Bottom, final adapted meshes for
several cut planes in the volume

Discretization Uncertainties Quantification and Reduction

In this section, we are presenting how the corrector described in section “Correctors
for the Compressible Navier—Stokes Equations” can be used to quantify uncertainties
due to the mesh discretization and how mesh adaptation reduces these uncertainties.
They are analyzed on the pressure contours on the wing section at chord y = 3.84861.

The reference solution is the solution on the finest adapted mesh at iteration 15
containing more than 10 million vertices and 60 million tetrahedra. For the first
and the second adaptation steps, we compare the reference solution to the solutions
obtained at the first and the last adaptation of the step at a fixed complexity, see
Figs. 2 and 3. The pressure solutions are presented with error bars which are given
by plus or minus the solution correction. First, we observe the convergence of the
couple mesh-solution within the adaptive process at a fixed complexity, and also
the convergence of the corrector with a reduction of the error bars. This points out
that our formulation takes into account the algorithmic errors, i.e., the lack of itera-
tive convergence of the mesh adaptation process. Second, we observe the reduction
of the discretization uncertainties through the adaptive process when the complex-
ity is increased. Indeed, for the lowest complexity we notice large uncertainties for
the shock region due to its wrong position while these uncertainties are drastically
reduced for the medium complexity because its position is now well captured. Note
that the corrector is always computed on the current mesh and not on the finer grid,
and thus is able to accurately detect the regions of higher discretization error and
numerical error.
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Fig.2 Transonic Falcon business jet. Pressure extraction on the wing section for the first (iteration
1) and the last (iteration 5) adapted meshes at theoretical complexity 100 000. In blue, the reference
pressure contour on the finest adapted mesh. In green, the current adapted mesh pressure contour
with the error bars provided by the corrector
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Fig.3 Transonic Falcon business jet. Pressure extraction on the wing section for the first (iteration
6) and the last (iteration 10) adapted meshes at theoretical complexity 200 000. In blue, the reference
pressure contour on the finest adapted mesh. In green, the current adapted mesh pressure contour
with the error bars provided by the corrector

Conclusions and Perspectives

We have described a method combining into a single formalism mesh adaptation and
solution correction strategies. Not only it helps obtaining more surely mesh conver-
gence, but also the corrector provides an estimate of the final error. The method is
based on a priori or a posteriori analysis of the different component of the error
arising when discretizing a PDE: interpolation error and implicit error, the approxi-
mation error being the sum of these two errors. The interpolation error is controlled
by the second derivatives of the solution, and its estimation is given by the feature-
based mesh adaptation theory. The implicit error is estimated by computing a cor-
rector. This corrector is computed by solving the state equation with an added source
term. This source term relies on the residual defect of the current numerical solu-
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tion by locally computing the solution residual on a subdivided grid. We show in
the numerical results that our formulation also takes into account the algorithmic
errors (lack of iterative convergence). Contrary to standard goal-oriented approaches
[2, 11-14], a corrector W, of the whole flow field is computed. Consequently, this
approach allows us to correct any set of functional of interests simultaneously. The
corrected functionals are simply evaluated with respect to W...

For mesh adaptation, the corrector is used to compute the right-hand side term
of the adjoint state linear system. Then, the standard goal-oriented mesh adaptation
theory is used to derive the optimal adapted mesh [12].

If this method gives a track for better controlling numerical error, controlling the
second component of simulation error, namely model error, is not solved. While in
some future, we can hope to control the model error with very-high-fidelity DNS-like
calculations, the next decades will address it only with very large database comparing
accurate simulations and measurements. We refer, for instance, to [36—40].
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General Introduction to Polynomial m
Chaos and Collocation Methods e

Chris Lacor and Eric Savin

Polynomial Chaos Methodology

The polynomial chaos methodology (PCM) is a rather recent approach, which offers
a large potential for computational fluid dynamics (CFD) related non-deterministic
simulations, as it allows the treatment of a large variety of stochastic variables and
properties that can be described by probability density functions (PDFs). The method
is based on a spectral representation of the uncertainty where the basis polynomials
contain the randomness, described by random variables & with values in a set I,
and the unknown expansion coefficients are deterministic, resulting in deterministic
equations. More specifically, if u is a random variable indexed by a spatial variable
x € 2 C R? (typically, d = 3 in physical space) and time ¢ > 0, the so-called poly-
nomial chaos expansion (PCE) reads:

P

u(x,1,€) = PPlu)(x,1,€) = Z u'(x, DY (€) . D

i=0

In the above, u' are the deterministic unknown expansion coefficients and represent
the random mode i of the random variable u. y; are N-variate polynomials which
are functions of & = (&,¢,, ..., §y) where ¢ is a random variable with values in a
set I. N is the number of input uncertainties which is also the number of random

C. Lacor (=)

Mechanical Engineering Department, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

e-mail: clacor@vub.ac.be

E. Savin

Computational Fluid Dynamics Department, Onera—-The French Aerospace Lab,
29 avenue de la Division Leclerc, 92322 Chatillon, France

e-mail: eric.savin@onera.fr

© Springer International Publishing AG, part of Springer Nature 2019 109
C. Hirsch et al. (eds.), Uncertainty Management for Robust Industrial Design

in Aeronautics, Notes on Numerical Fluid Mechanics and Multidisciplinary

Design 140, https://doi.org/10.1007/978-3-319-77767-2_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_7&domain=pdf

110 C. Lacor and Savin

dimensions. It is assumed that these variables are independent and are real valued,
and hence I' = I'; X I, X --- X Iy C R". Input uncertainties could, e.g., be associ-
ated with uncertain operational conditions or uncertainty in the geometry. For an
external flow around an airplane, the inlet Mach number, angle of attack, inlet pres-
sure, etc., are examples of operational conditions. Geometrical uncertainties are then
uncertainties on the shape of the shape of the plane due to manufacturing tolerances.
It is clear that because of the uncertain input, any flow variable, say # becomes also
uncertain, and can therefore be described as in Eq. (1). The total number of terms
P + 1usedin (1) depends on the highest order of the polynomial that is used (denoted
by p) and on the number of random dimensions. One has, see [1]:

(N +p)!

Pal=

2

The methodology was originally formulated by Wiener [2] and was much later redis-
covered and used for CFD applications by several groups, e.g., Xiu and Karniadakis
[3], Lucor et al. [4], Le Maitre et al. [S], Mathelin et al. [6], and Walters and Huyse
[7] among others.

In the original method of Wiener [2], the projection basis y; is constituted by
Hermite polynomials. These are optimal for random variables with Gaussian dis-
tribution. Optimal means that, for increasing polynomial order, the expansion will
quickly converge in the mean-square sense. The condition for optimality is that the
polynomials are orthogonal with a weighting function & — W, (&) which is exactly
the PDF of the set of random variables, i.e.:

/r VO OWNEE = vy = 155, @)

where 5,-j is the Kronecker symbol, and Y; is a normalization constant. With a
proper scaling though, one can always normalize the polynomial basis such that
Y= <l//j, l//j> = 1 Vj. In the case of a multivariate Gaussian distribution, the Her-
mite polynomials satisfy the condition above with W), given by:

1

V@M

where & - & = Z]Ai] (sz is the standard Euclidian scalar product in R". Note that
because of the independence of the uncertainties, the PDF is the product of the PDF
of each of the uncertainties, i.e., Wy (&) = HIN=1 W, (§)) as defined above for Gaussian
uncertainties.

For uncertainties with other distributions, the orthogonality condition (3) gives
adapted polynomials, see e.g. [3], leading to the so-called Askey scheme; for exam-
ple, as already mentioned Hermite polynomials for Gaussian distributions, and
further Charlier polynomials for Poisson distributions, Laguerre polynomials for
Gamma distributions, Jacobi polynomials for Beta distributions, etc. In case of less

Wy =

exp(—%& 8, @)
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common distributions, an optimal PCM can always be found by constructing the
polynomials via a Gram-Schmidt procedure; see Witteveen and Bijl [8], in order to
satisfy (3). It should be noted that, if the optimal polynomials are not used, the PCM
will also converge (with increasing order) in the mean-square sense but much slower
than the exponential convergence with optimal polynomials; see [1].

In cases where the response of the system shows a localized sharp variation or
a discontinuous change, local expansions may be more efficient than expansions
with global polynomials, whose convergence will deteriorate due to the Gibbs phe-
nomenon. This has led to developments using wavelet expansions [9] and to multi-
element polynomial chaos [10, 11]. In the latter case, the random space is subdi-
vided in smaller elements in which new random variables are defined with associated
orthogonal polynomials that are constructed numerically.

As already mentioned, the dimension of the problem N is determined by the num-
ber of independent random input variables. In case of a random process (as opposed
to a random variable), a Karhunen-Loe¢ve expansion (also known as Principal Com-
ponent Analysis or Proper Orthogonal Decomposition) [12, 13] can be applied to the
correlation function R(x, y) of the random process u(x) indexed by x € Z, to decom-
pose the random input process in a set of uncorrelated random variables. Assuming
/  R(X,x)dx < +oo (which is untrue for a stationary process with 7 = R?) and solv-
ing the eigenvalue problem:

/j RO ),y = Aibi(¥) 5)

with ¢;(x) the eigenfunctions and 4, the eigenvalues, the Karhunen-Lo¢ve expansion
of the random field u(x) becomes:

u(x) = u(x) = Y \AEd,x), ©6)

i

where the &;s are uncorrelated random variables, and m is the mean value at the
indexation point X. Note that if the process u is Gaussian, the random variables ¢&; are
Gaussian as well, and hence, they are mutually independent.

A geometrical uncertainty is typically a random process where the coordinates of
a geometry are uncertain with some specific correlation length. Depending on the
correlation length of the process, the eigenvalues A; become quickly very small, so
that only few terms in the summation above have to be kept. This is not the case
however for a very short correlation length (e.g., white noise) resulting in a high-
dimensional chaos expansion for such processes. Non-Gaussian random processes
are much more difficult to treat than Gaussian [14]. In the former case, mean and
covariance are far from sufficient to completely specify the process. This remains an
active area of research.

The PCM can be implemented either in an intrusive or in a non-intrusive way
as follows.
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Intrusive Polynomial Chaos

In an intrusive PCM, the polynomial expansion of the unknown variables, Eq. (1),
is introduced in the model, e.g., for CFD applications, the Navier—Stokes equations.
Each unknown u is therefore replaced with its expansion coefficients . The num-
ber of unknowns is therefore basically multiplied with a factor P + 1, which can be
quite high for high stochastic dimensions and/or high polynomial order. In addition,
the model, e.g., CFD code, has to be adapted. The required effort for extending a
deterministic CFD code with the intrusive PCM depends on the characteristics of
the code: computer language, structured/unstructured, handling of data storage, etc.
In the framework of the NODESIM-CFD EU project, an intrusive PCM was imple-
mented in the commercial code Fine/Turbo of NUMECA. This has led to one of
the first applications of intrusive PCM to three-dimensional turbulent Navier—Stokes
flows [15]. The number of additional lines of code is very limited, compared to the
length of the original, deterministic code. However, changes are not restricted to a
local part of the code. This increases the risk of introducing bugs and requires some-
one who is very familiar with all aspects of the code. This is a big disadvantage
compared to non-intrusive PC and the main reason why the application of intrusive
PCM in commercial codes is very limited.

Nonetheless intrusive methods are more flexible and in general more precise than
non-intrusive methods; see Aleksev et al. [16]. This is also confirmed by Xiu [14],
who mentions that the intrusive method offers the most accurate solutions involving
the least number of equations in multi-dimensional random spaces, even though the
resulting equations are coupled.

It is to be noted that the treatment of geometrical uncertainties needs a different
approach compared to operational uncertainties. A possibility is to use a transforma-
tion such that the deterministic problem in a stochastic domain becomes a stochas-
tic problem in a deterministic domain, e.g., Xiu and Tartakovsky [17]. An alterna-
tive is the use of a so-called fictitious domain method [18, 19], or by introducing
the uncertainty directly in the surface normals within a control volume approach
[20, 21].

Non-intrusive Polynomial Chaos

In the UMRIDA EU project, all PCM contributions relate to non-intrusive
approaches. Basically, two different classes of approaches have been formulated:
(i) the so-called projection method, which is based on a numerical evaluation of
the Galerkin integrals; see Le Maitre et al. [5, 22, 23] and Nobile et al. [24]; (ii)
regression methods based on a selected set of sample points; see Berveiller et al.
[25], and Hosder et al. [26-28].
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In the projection methods, starting from Eq. (1), the projection on y; yields:

P
/ u(x, 1O OWy ) = Y ul(x,) / VOV Wy E)E
r i=0 r (N

=y (x, 1)

The last equation results from the orthogonality condition (3) and can be considered
as an equation for the unknown expansion coefficient /. It requires the evaluation
of the integral in the left-hand side. A numerical quadrature formula is used. For a
single variable parameter, it reads:

q
/ Uk, 1, W EOW, e = Y whu(x, 1, (&) ®)
rl

=1

The evaluation of the sum in the right-hand side requires an evaluation of the
unknown u in g sample points {51}1515q in I} associated to g weights {wl}lggq.
Depending on the weighting function (PDF) W, adapted Gaussian quadrature for-
mulations exist for an accurate evaluation: With ¢ sample points, a polynomial
of order 2¢g — 1 is integrated exactly in one dimension. Examples are the Gauss-
Legendre quadrature (W, = 1/2 corresponding to a uniform distribution), the Gauss-
Hermite quadrature (W, given by Eq. (4) in one dimension), etc. For a PCM of order
p,one takes ¢ = p + 1. This guarantees exact quadrature if u(X, , &) can be described
by a polynomial of maximum order p + 1.

This extends to multiple stochastic dimensions by using a full-tensor product
quadrature with Q = ¢" sample points. This approach quickly becomes very expen-
sive for high-order and high stochastic dimensions. This has led to the use of sparse
grid sampling techniques, avoiding the full-tensorial sampling, e.g., the Smolyak
scheme [29]. Sparse grid schemes can be combined with the non-nested Gaus-
sian quadratures invoked above, as well as with nested quadratures, e.g., Clenshaw-
Curtis, Gauss-Patterson [30-33]. More recently, adaptive algorithms have been
developed that further reduce the cost [34-36]. The choice of quadrature sets is
discussed further on in section “Choices of Interpolation Set” in relation with the
stochastic collocation method. Alternatively, the numerical quadrature can also be
achieved using Monte Carlo simulation [37, 38], or Latin Hypercube sampling [39].
All in all, the evaluation of the left-hand side of Eq. (7) using Q sampling points
{fl}lgSQ in I" associated to Q weights {Wl}lgzgg yields:

P

Q
u(x,1,8) = Pplul(x,1,6) = ) <yl D whuix. , :’m»(:l)) vi®. O
=1

i=0

In linear regression methods, the stochastic problem is solved in S samples in
stochastic space. For each sample s, Eq. (1) can be written as:
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P

ux,1,8) = Y wx 0y(&). (10)

i=0

This leads to S equations for the P + 1 unknowns u'. Note that this forms a linear
system. In order to make the solution less dependent on the choice of the samples,
oversampling is used and the system is solved with regression (i.e., the least squares
method); see Berveiller et al. [25] and Hosder et al. [26-28]. As a rule of thumb,
S =2(P+ 1) is a good choice; see [27]. Different sampling techniques can be used
such as Random, Latin Hypercube, Hammersley [27], roots of Hermite polynomials
of order p + 1 (for PCM of order p with Gaussian uncertainties) [25], Sobol’ quasi-
random sampling [40], etc.

In case of geometrical uncertainties, each of the different samples—both in the pro-
jection and the regression method—will correspond to a different geometry. Geomet-
rical uncertainties therefore require no special treatment in contrast with the intrusive
method.

The Collocation Method

The stochastic collocation (SC) method based on Lagrange interpolation has been
introduced in [41] and developed further on in e.g. [24, 42—45]. Examples of appli-
cations can be found in [46-51] among others. Along the same lines as Eq. (1),
the SC expansion is formed as a sum of multi-dimensional Lagrange interpolation
polynomials with respect to the N—dimensional random input variable €. Lagrange
polynomials interpolate a set of points in one dimension {éi }1<i<q, 10 @ bounded
interval I'; by the following functional form:

i £-4
L&) = - )
l k:1§i_§lf

k#1

such that L[(fll‘) =6y, 1 <k,I < q,;inaddition, all L;’s have order g, — 1. For inter-
polation in multiple dimensions, the tensor product of one-dimensional Lagrange
polynomials can be formed. Eventually at this stage, it is assumed that the interpola-
tion set is formed by tensorization of one-dimensional sets. In other words, structured
interpolation sets are considered, for multivariate Lagrange interpolation on unstruc-
tured, arbitrary sets of nodes still raises numerous theoretical and practical difficul-
ties. Letting 1 = (I}, 1, ... ly) be a multi-index in NV \ {0}, the multi-dimensional
Lagrange polynomial L, reads:

L@ =L,E)OLE)® ~ ®L (&), (12)

where different interpolation sets {.f; }1<1<q, in different intervals I'; may possibly be
. . N A= .
used for each different dimension j. If Q is now the total number of such multi-
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dimensional interpolation points counted by a single index [, {51}15159 the SC
expansion of the random field u reads:

Q
u(x,1,€) = 12[ul(x,£,6) = ) u(x,1,ENL,(E), (13)

=1

where the expansion coefficients are the random field evaluated at &'.

Choices of Interpolation Set

The key issue of the SC method is the choice of appropriate interpolation sets. A
natural, straightforward choice is quadrature nodes and weights as in Eq. (8). Multi-
dimensional quadrature sets O(N, Q) = {&', WI}ISISQ’ where & is the [-th node in
I = Hjl\i , I; and w! is the corresponding weight, may be constructed from one-
dimensional (univariate) quadrature sets by full tensorization or sparse tensorization,
using Smolyak’s algorithm [29] as already invoked above.

Univariate Gauss quadratures ©(1, g,) based on ¢, integration points are tailored
to integrate on I'; = [a, b] a smooth function & = f(&):

q,—r r
FOW(dE = Y WFE + Y whrempgn=ram), (14)
I I=1 m=1

such that this rule turns to be exact for univariate polynomials up to the order
2g, — 1 — r. Here, r is the number of fixed nodes of the rule, typically the bounds
a, b. Depending on the choice of r, different terminologies are used:

e r = (is the classical Gauss rule;
e r = 11is the Gauss-Radau (GR) rule, choosing 7' = a or {7 = b for instance;
o r = 2is the Gauss-Lobatto (GL) rule, choosing £%1~! = @ and &9 = b for instance.

Multivariate quadratures may subsequently be obtained by full or sparse tensoriza-
tion of these one-dimensional rules. Firstly, a fully tensorized grid is obtained by the
straightforward product rule:

N
oW, 0) = Qo q), (15)

=1

which contains Q = Hj\;l g; grid points in I'. Secondly, a sparse quadrature rule
can be derived thank to the Smolyak algorithm [29]. The so-called k—th level, N-

dimensional Smolyak sparse grid @(N , k) is obtained by the following linear combi-
nation of product formulas [52]:
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Fig. 1 Two-dimensional (N = 2) nodes based on a non-nested, one-dimensional Gauss-Lobatto
quadrature rule with ¢ = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized
grid from Smolyak’s algorithm with k = 9 (Q = 193)

k—1
oW, =Y Y  00,g)®®6(,q). (16)

I=k—N g+ +qy=N+I

Clearly, the above sparse grid is a subset of the full-tensor product grids. It typically
contains Q ~ (2N)*"! /k — 1! nodes in I whenever N > 1 and k is fixed. By a direct
extension of the arguments divised in [31, 33], it can be shown that provided the
univariate quadrature rules ©(1, g) are exact for all univariate polynomials of order
up to 2g — 1 (Gauss rules) or 2g — 3 (GL rules), the foregoing rule is exact for all
N-variate polynomials of total order up to 2k — 1 or 2k — 3, respectively. Figure 1
displays for example the two-dimensional full and sparse rules for an underlying
univariate GL quadrature (14) with ¢ = 9 nodes and W, (&) = (1 — &2)3, I, = [-1,1].
For this example:

02,9 =0(1,2) @ 0(1,7) + 0(1,3) ® O(1,6) + O(1,4) ® O(1,5)
+06(1,2)®6(1,8) +06(1,3) @ 0(1,7) + 6(1,4) ® 6(1,6)
+6(1,5) ® O(1,5) + perm.

Here, O = 193, compared to Q = 81 with the fully tensorized rule (15). In [53], it has
been observed that sparse quadratures outperform fully tensorized quadratures with
non-nested underlying one-dimensional rules whenever N > 4, though. If O(1, g;) is
now Clenshaw-Curtis (CC) univariate quadrature of i-th level for i > 1, such that:

(- Drx

T 1<1<g=2""+1,
q; —

& = —cos

then the associated third-level bivariate sparse rule as constructed in, e.g., [32] for,
say, g =9 is:
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Fig. 2 Two-dimensional (N = 2) nodes based on a nested, one-dimensional Clenshaw-Curtis
quadrature rule with ¢ = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized
grid from Smolyak’s algorithm with k = 3 (Q = 29)

6(2,3)=0(1,1)® 6(1,5 + 6(1,3) ® 6(1,3) an
+0(1,1) ® 6(1,9) + 6(1,3) @ O(1, 5) + perm.

The underlying univariate CC rules @(1, g;) are nested, that is, 9(1 q;) C o1, q;1),
and consequently, the multivariate rules are nested as well, O(N k) C O(N k+1).
They are in addition exact at least for all multivariate polynomials of total order
k [32]. Figure 2 displays the two-dimensional full rule (15) and third-level sparse
rule (17) corresponding to the univariate CC quadrature with ¢ = 9 nodes. The total
number of nodes is significantly reduced with such a nested rule.

Link with Polynomial Chaos

The multi-dimensional Lagrange polynomials may be expanded on the
multi-dimensional polynomial chaos basis {y;},;<p as in Eq. (1):

P
L& = YL wwi®, 1<1<0,
i=0

where P is given by Eq. (2) with polynomial total order p = E _19;—N. The
expansion coefficients £ := (L, ;) can be evaluated with the quadrature rule
(€, W'} 1<i<o also used as the interpolation set:

0
£y = iQ X WL e = L@,

i

where the second equality stems from the very definition of Lagrange polynomials.
Here, y.Q = Q_ w (q/i(fl ))? is the normalization constant for the polynomial chaos,
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which is simply yl.Q =y, if the quadrature rule integrates exactly polynomials of total
order 2p. Consequently, the SC expansion (13) of the random field u reads:

,
u(x,1.6) Y Sy €@

i=0 yi

0
(LQ D ., é’m(c’)) vi).
Vi =1

19[u)(x, 1.8) = 12[ul(x, 1,€) =
(18)

M= IMe

Il
=}

L

The bracketed sum above is the evaluation of the PC expansion coefficients u' by
the quadrature rule at hand. Hence, both PC and SC expansions are mathematically
equivalent, I]I(J2 = [P’g, though they are numerically slightly different [54].

Application to Uncertainty Quantification (UQ)

Once the polynomial expansion (1) or (13) has been derived, the first moments and/or
cumulants of the random field # can be computed using a quadrature rule @(N, Q)
and associated evaluations u(x, z, 61), 1 <1< Q. Indeed, for a regular function u —
f(u), one can estimate a mean output functional by:

4
E{f(w)}(x,0) = / Fux, t, ENWy(E)dE = Y wif(u(x,1,8)).
r =1

The mean y is obtained for f(u) = u, the variance ¢? is obtained for f(u) = (u — u)?,
the skewness f, for f(u) = (“=£)3, the kurtosis p, for f(u) = (=£)4, etc. More gen-
erally, the j-th moment m; is obtained for f(u) = 1 and may be lsed to compute the
characteristic function @;:

+o0 .
@,(V) = /eiU'VWU(dU) = Z ,;.i‘j(iU)i,
=0/

where by the causality principle (or transport of PDFs) for the random variable U ~
u(-, &) one has:

Wy(dU) =

du! _
;—U‘ Wy @U)).

Sobol’ sensitivity indices or global sensitivity indices may be computed alike; see
[14, 53, 55-57] and references therein. Denoting by JJ the set of indices corre-
sponding to the polynomials y;, depending only on the j-th variable parameter &;, the
main-effect PCE-based Sobol’ indices are given by (see e.g. Sudret [57]):
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1
S%0 =~ > nx0)?,
ke.s;

owing to the normalization condition (3). More generally, if . ;  is the set of
indices corresponding to the polynomials y;, depending only on the parameters

éj] s §j2, éj.,-’ the s-fold joint PCE-based Sobol’ indices are:

1
Sjp 0= =3 PRGN

kej/j]jz s

Conclusions

In this chapter, we have outlined the main ingredients of polynomial expansion meth-
ods for the pseudo-spectral analysis of random variables and fields, using either pro-
jections on orthonormal polynomials—the generalized polynomial chaos method, or
interpolations on Lagrange polynomials—the stochastic collocation method. We have
also shown how both approaches are actually intimately connected by a proper choice
of the integration/interpolation nodal sets used to compute the polynomial expansion
coefficients. However, alternative strategies have been recently considered in order to
evaluate them, which are detailed in the following chapters
“Generalized Polynomial Chaos for Non-intrusive Uncertainty Quantification in
Computational Fluid Dynamics” through “Screening Analysis and Adaptive Aparse
Collocation Methods”. Applications to uncertainty quantification and robust design
optimization for industrial challenges are given in parts III and I'V.
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Generalized Polynomial Chaos ®
for Non-intrusive Uncertainty Sneet o
Quantification in Computational Fluid
Dynamics

Vincent Couaillier and Eric Savin

Introduction

Complex aerodynamic analysis and design of aircraft use high-fidelity computa-
tional fluid dynamics (CFD) tools for shape optimization, for example, whereby
some robustness is achieved by considering uncertain operational, environmental,
or manufacturing parameters. Cruise flight conditions are generally transonic, as the
flow may become locally supersonic depending on the wing profiles. Hence, high-
fidelity simulations must be carried out in order to obtain a detailed description of
the flow structure for optimization purposes. When it comes to consider variable
parameters for sensitivity and robustness analyses, non-intrusive methods for uncer-
tainty quantification (UQ) are typically considered in CFD. Indeed, the complex flow
solvers are preferably treated as black boxes in order to compute the output quanti-
ties of interest that are required to evaluate the objective function of an optimiza-
tion process. The latter is often expressed in terms of moments of the quantities of
interest, such as the mean, standard deviation, or even higher-order moments (skew-
ness, kurtosis. .. ). Together with the Monte Carlo method or the method of moments,
the stochastic collocation and non-intrusive polynomial chaos expansion methods
introduced in the previous chapter “General Introduction to Polynomial Chaos and
Collocation Methods” are widely used for evaluating stochastic objective functions.
‘We more particularly focus on the latter approach in this chapter.

The polynomial chaos (PC) or homogeneous chaos expansion defined as the span
of Hermite polynomial functionals of a Gaussian random variable has been intro-
duced by Wiener [1] for stochastic processes. Mean-square convergence is guar-
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anteed by the Cameron-Martin theorem [2] and is optimal (i.e., exponential) for
Gaussian processes. For arbitrary random processes, the numerical study in [3] has
shown that the convergence rates are not optimal. This observation has prompted
the development of generalized chaos expansions (gPC) involving other families of
polynomials [3, 4]. They consist in expanding any function of random variables
into a linear combination of orthogonal polynomials with respect to the probability
density functions (PDFs) of these underlying random variables. PC and gPC expan-
sions have recently received a broad attention in engineering sciences, where they
are extensively used as a constructive tool for representing random vectors, matri-
ces, tensors, or fields for the purpose of quantifying uncertainty in complex systems.
Several implementation issues and applications are described in, e.g., [S—13] and
references therein.

The intrusive PC expansion originally introduced in [7, 14, 15] is based on a
Galerkin-type projection formulation of the model equations, typically the incom-
pressible or compressible Navier—Stokes equations in CFD, to derive the governing
equations for the spectral expansion coefficients of the output quantities of interest.
More precisely, the PC expansions of the model parameters and variables are substi-
tuted in the model equations, which in turn yield the evolution equations for the out-
puts from Galerkin projections using the orthogonal polynomials of the PC expan-
sions [6, 7, 10]. The projection coefficients are thus obtained by solving ordinary dif-
ferential equations in time. Regarding non-intrusive PC expansions, two approaches
for computing the PC coefficients of the output quantities of interest have usually
been considered: (i) the projection approach, in which they are computed by struc-
tured quadratures, i.e., Gauss quadratures, or unstructured quadratures, i.e., Monte
Carlo or quasi Monte Carlo sampling; and (ii) the regression approach, minimiz-
ing some error measure or truncation tolerance of the PC expansion for some par-
ticular values of the inputs (which can be the quadrature sets invoked just above,
for example). Both techniques suffer from some well-identified shortcomings when
the dimension of the parameter space, and the number of model evaluations alike,
increases. Indeed, a PC expansion of total degree p in N variable parameters contains

P= (” N ) coefficients. A direct way to computc;,v them is to use a tensor product grid

in the parameter space requiring about g ~ (’5’ ) evaluations of the process. These g

runs are very often unaffordable for large parameter spaces and complex configura-
tions, as in CFD for example. Fortunately, the Smolyak algorithm [16] defines sparse
log N

grid quadratures involving g ~ g ¢ points while preserving a satisfactory level
of accuracy. In [17], it has been observed that such sparse rules typically become
competitive with respect to tensor grids for dimensions N > 4. Consequently, col-
location techniques with sparse quadratures or adaptive regression strategies have
been developed in order to circumvent the dimensionality concern [18-25].

In the application presented in this chapter, we adopt the regression approach.
We also aim at benefiting from the sparsity of the process outputs themselves to
reconstruct their PC representations in a non-adaptive way [26]. Indeed, we rely on
the common observation that many cross-interactions between the input parame-
ters are actually smoothened, or even negligible, once that have been propagated to



Generalized Polynomial Chaos for Non-intrusive Uncertainty ... 125

some global quantities of interest processed from complex aerodynamic computa-
tions. The corresponding PC expansions should thus involve only low-order poly-
nomials, such that the contribution of the higher-order polynomials is negligible.
We can therefore expect to achieve a successful output recovery by the techniques
known under the terminology of compressed sensing [27, 28]. In this theory, the
reconstruction of a sparse signal on a given, known basis requires only a limited
number of evaluations at randomly selected points—at least significantly less than
the a priori dimension P of the basis. We thus resort to unstructured sampling sets to
recover sparse outputs. Compressed sensing is formulated as a constrained, underde-
termined system which may be solved by convex optimization algorithms. The rest
of this chapter is organized as follows. The formal framework of non-intrusive UQ is
briefly presented in the next section. The gPC expansion method itself is addressed
in section “Generalized Polynomial Chaos Expansion,” which is more particularly
focused on the non-intrusive computation of the PC coefficients by either projection
or regression approaches. This framework is illustrated in section “Application to
Transonic Turbulent Flow Around a Two-Dimensional RAE 2822 Airfoil” where the
application of the foregoing techniques to a two-dimensional transonic turbulent flow
around a RAE 2822 airfoil modelized by steady-state Reynolds-averaged Navier—
Stokes (RANS) equations is considered. The efficiency of a sparsity-based recon-
struction approach is emphasized. Some conclusions are finally drawn in section
“Conclusions”.

Uncertainty Quantification and Propagation: Model
Problem

In CFD applications, numerical models are built to simulate complex fluid flows
around rigid or flexible profiles. They are implemented in computer programs which
tend to become more and more sophisticated and extensive. These models often
exhibit certain features that may be considered as uncertain, or they depend on
parameters that may be considered as such. Propagation and quantification of uncer-
tainty aim at establishing a quantitative assessment of and some insight into the
impact that these uncertainties have on the predictions given by the models. State-
ments about the influence of uncertainties may serve to guide the allocation of
resources in order to reduce them, but are also essential in the process of validating
the models in the presence of uncertain parameters or in the process of optimizing a
design, among other objectives [29].

In this chapter, we think of a computational model as a linear or nonlinear map-
ping F of a set of input parameters € in I" C R" into a quantity of interest y; that
is,

y=F¢), F:R'V-SR, ()

assuming without loss of generality that the quantity of interest is a scalar. Vector-
valued quantities of interest may be considered alike, following the same lines as
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exposed below. Here, it is also implicitly assumed that the uncertainties affecting
the model are embedded in the input variables &, or a subset of these variables; that
is, modeling uncertainties are not accounted for. In other words, modeling errors aris-
ing from modeling simplifications and assumptions are not considered here. Output-
predictor uncertainties pertaining to the quantity of interest, which may be subject
to an additive random noise, are also disregarded in this setting. Therefore, in the so-
called parametric approach promoted in this chapter, the uncertain input variables
& are representative of variable geometrical characteristics, boundary conditions,
loadings, physical or mechanical properties, or combinations of them. These input
parameters are represented by a R"-valued random variable = = (5 1o Dy eees 2N,
the characterization of which requires the knowledge of its probability distribution
Z=. E can be a continuous or a discrete, or even a combination of both, random vari-
able. In the former case, it is understood that the probability distribution thus admits
a probability density function (PDF) § — Wz (&) with values in R, = [0, +o0] such
that Z=(%) = [, W=(£)dE for any subset 2 of RV,

The mapping of = through the computational model F then provides the char-
acterization of the quantity of interest as a real-valued random variable Y such that
Y = F(E). By the causality principle, the probability distribution &) of Y is the
probability distribution of = transported by the model F, i.e.:

Py(B) = P=(& RV, F¢) € B). 2

The subsequent computation of statistical descriptors of the quantity of interest is

straightforward. Considering for example the mean yuy and variance o-f,, one has:

Hy = / yPy(dy) = / F(&)P=(dE),
R RN (3)

oy = / 0 — 1y’ Py(dy) = / (F(€) — py)* P=(dE),
R RN

assuming these integrals remain bounded; i.e., Y has finite variance; otherwise, the
statistical descriptors do not exist.

The evaluation of the multi-dimensional integrals above requires a thorough
knowledge of the computational model F, which of course has no analytical expres-
sion for complex configurations of industrial relevance. This can be achieved intru-
sively, by expliciting all dependences of the underlying physical and computational
models with respect to the parameters; see, e.g., [7, 11, 14, 15, 30, 31] and refer-
ences therein. This approach is seldom considered in CFD because the nonlinearity
of the physical model and complexity of the codes makes the implementation tricky.
Alternatively, the non-intrusive approach consists in expressing all dependences of
the quantity of interest Y with respect to the parameters by carefully chosen sampling
procedures or surrogates (also called response surfaces); see, e.g., [17-20, 32-39].
This is the approach retained in the following. More particularly, we address the con-
struction of polynomial surrogates using a family of multivariate orthogonal polyno-
mials with respect to the probability distribution &5 of the random input parameters.
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Generalized Polynomial Chaos Expansion

Polynomial Surrogates

Letj = (j;»jp, ---jn) € N be a so-called multi-index, we denote by & the multivari-
ate monomial associated to that multi-index as a function from RY into R such that
&= .f“ é"z - X !:”V The modulus of j, namely |j| =j, +j, + - +jy, is also the
total order of the monomlal &l Then a polynomial surrogate model G” of order p is
defined as an N-variate polynomial approximating the computational model F as
precisely as possible in the &?--weighted least-squares sense, i.e.:

2

F&) - Zd&

liI=0

FeG = PedE), &)
|

14 . ]
chﬁl, c—argmm—/
| RN

il=0

where P is the number of monomials & such that 0 < |j| < p. Conditions guarantee-
ing the existence (and possible uniqueness) of a solution to the above problem and
convergence of the surrogate G” as its order p is increased are summarized in [29].
In particular, it should be emphasized that provided the surrogate G” converges to
the computational model in the &?-mean-square sense, that is,

Hm/U%%@®W%%h
RN

p—too

the probability distribution &y, of the random variable Y? = G”(E) converges to
the probability distribution &y of Y, Eq. (2), as p — +o0.

Polynomial Chaos Surrogates

Consider now ” = {w;; 0 < |j| < p} a set of N-variate polynomials y; spanning
the set of all polynomials of total order at most p and orthonormal with respect to
P, that is,

/RN v Oy (&) P=(dE) 1= (v yp) = o, 0 < [jl, k[ <p, S

where 6y is the N-dimensional Kronecker symbol such that 6y = 1ifj = kand 6y, =
0 otherwise. The existence of this basis is guaranteed provided that all monomials
E.0<|j| <p,are P z-square integrable and the &7z-mean-square norm of all non
null polynomials of total order p is nonvanishing. Then, a polynomial surrogate G”
may be constructed equivalently to the &?;-weighted least-squares problem (4) by:
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2

p
F& - Y gu®)| P=df). (6)

i1=0

)4
.1

i1=0

where G = {G;; 0 < |j| < p} and P is again the number of polynomials in the basis
ZP. Owing to the orthonormality of the polynomials of that basis, the solution of
this problem reads:

The random variable Y7 = Z’r i1=0 G;y;(£) is known as a polynomial chaos expan-
sion of the quantity of interest i/ The basis %” is referred to as the polynomial chaos
(PC), or homogeneous chaos in the original terminology of Wiener [1]. Here, the
random parameters .= were Gaussian variables; the extension to non-Gaussian vari-
ables in, e.g., [3, 4] has been referred to as generalized polynomial chaos (gPC).
Lastly, the vector G is formed with the so-called polynomial chaos coefficients
which completely characterize the surrogate model G” since the polynomial chaos
is known from the probability measure &z of the random inputs. Several methods
have been developed to compute them, which are usually classified into intrusive
or non-intrusive approaches; see the introductory chapter “General Introduction to
Polynomial Chaos and Collocation Methods”.

Computation of Polynomial Chaos Coefficients

The original intrusive approach introduced in [7, 14, 15] is based on a Galerkin-type
projection formulation of the model equations (typically partial differential equa-
tions, PDEs) onto a prescribed basis of orthonormal polynomials. The procedure
results in a so-called spectral problem formulated in terms of the polynomial chaos
coefficients of the solution of the model PDEs, which often requires important mod-
ifications of the associated computational model. For this reason, intrusive methods
are seldom considered in CFD applications as already noticed above. On the other
hand, non-intrusive approaches do not require any modification of the computational
model. The non-intrusive projection method numerically determines the polynomial
surrogate by approximating the integrals in (7) using dedicated structured (typi-
cally Gauss integration rules) or unstructured (e.g., Monte Carlo or quasi Monte
Carlo methods) sets of samples of the random input parameters .=. The interpolatory
collocation method determines the polynomial surrogate by interpolating between a
set of evaluations of the computational model. It is strongly related to the projec-
tion method as outlined in chapter “General Introduction to Polynomial Chaos and
Collocation Methods”; see also the discussion in, e.g., [40]. In fact, it is also called
the pseudospectral collocation method in [13, 41]. Introducing a quadrature rule of
integration O(N, Q) = (€. w'; 1 <1< Q) formed by O nodes & in RN and associ-
ated weights w! in R, the integral of any smooth, integrable function f : R¥ — R
with respect to = can be approximated by the weighted sum:
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[
/ O P=(dl) = Y WE.
RY I=1

Applying this rule to the computation of the polynomial chaos coefficients of Eq. (7),
one arrives at the following surrogate model G”*<:

P Y
F~Gr0=3% Gy, G2 =Y wFEwE), o<lilsp.  ®
lil=0 =1

The families of orthonormal polynomials forming Z” and associated Gauss quadra-
ture rules are explicitly known and tabulated for some labeled probability distribu-
tions &z, such as Gamma distributions (corresponding to Laguerre polynomials),
Beta distributions (corresponding to Jacobi polynomials, including Legendre poly-
nomials for uniform distributions), Gaussian distributions (corresponding to Hermite
polynomials), Poisson distributions (corresponding to Charlier polynomials), bino-
mial distributions (corresponding to Krawtchouk polynomials); see [4, 11, 13, 30].
Alternatively, they can be generated numerically using the Gramm-Schmidt, Stielt-
jes or Chebyshev algorithm [42] and the Golub-Welsh algorithm [43] to compute
their associated Gauss nodes and weights. This procedure has been applied in, e.g.,
[44—46]. Another possibility is to consider unstructured quadrature sets, whereby the
nodes are sampled randomly or quasi-randomly in the domain of integration I" € RV
according to their distribution Zz, and the associated weights are typically w' = é:
This is the Monte Carlo method and its by-products.

Another approach to determine the polynomial chaos coefficients is linear regres-
sion. In this setting, the set ©O(N, Q) is used to form a linear system in the unknowns
G by simply evaluating the surrogate model G at the nodes {&'; 1 <1< Q}:

DG =y, ©))

where y = {y/ = F (fl); 1 <1< Q} is the vector of observations of the computa-
tional model F at the sampling nodes, and [®@];; = y; (€") is the so-called Q X P mea-
surement matrix. Numerous methods are available to solve this problem whenever
Q > P, for example least-squares minimization [37, 47]. Likewise different strate-
gies exist for the choice of the sampling nodes {.’:l; 1 <1< Q} which are reviewed
in, e.g., [29, 48-50]. We do not follow this approach in the subsequent developments
though. We are rather interested in the situation whereby Q < P and more particu-
larly Q < P, that is, underdetermined systems. This can be achieved thanks to some
recent mathematical results pertaining to the resolution of under-sampled linear sys-
tems promoting sparsity of the sought solution, known as compressed sensing or
compressive sampling [27, 28]. A recent review of the application of this approach
to polynomial surrogates reconstruction is proposed in [51]; see also [17, 26, 52-61].
The compressed sensing approach consists in reformulating Eq. (9) considered as an
underdetermined system as a minimization problem with some sparsity constraint,
namely:
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G* =arg min{|lgl,; y = Pg}, P,0)
geR”?

with the #,,-norm |igll,, = (X7 g ). m > 0, and liglly = #{j: g; # 0} other-
wise. Sparsity means that only a small fraction of the sought coefficients G* are
nonzero. Such a constraint is added to ensure well-posedness of (9) when Q < P
by seeking a solution with the minimum number of nonzero terms. The case m = 0
however yields a non-unique solution in general, which is in addition NP hard to
compute as the cost of global search is exponential in P. Further researches in com-
pressed sensing have shown that the convex relaxation of (P ,) by considering the
¢-norm instead yields a unique solution provided that the latter is sufficiently sparse
and that the measurement matrix @ has some prescribed properties. The problem
(P ) is referred to as basis pursuit [62] in the dedicated literature.

Now, the equality (9) is often too restrictive because the truncated p-th order poly-
nomial chaos basis Z” is not complete for the exact representation of the observa-
tions y. Thus, a truncation error has also to be accounted for in the solution process.
This is accommodated by reformulating (P ) as:

G* =argmin{|igll;; lly - @gll, <€}, (P1e)
geR?

for some tolerance 0 < € < 1 on the polynomial chaos truncation. The latter prob-
lem is known as basis pursuit denoising (BPDN) [62]. The successful recovery of
G of Eq. (9) by solving(P; ) is guaranteed by the restricted isometry property
(RIP) which the measurement matrix @ has to satisfy. For each integer S € N*, the
isometry constant 6; of @ is defined as the smallest number such that:

(1=389)llgsll5 < llPgsll5 < (1 +89)lIgsll5

for all S—sparse vectors g¢ € {g € R”; ||g|l, < S}. Then, @ is said to satisfy the
RIP of order S if, say, 65 is not too close to 1. This property amounts to saying
that all S—column submatrices of @ are numerically well-conditioned, or S (or less)
columns selected arbitrarily in @ are nearly orthogonal. Consequently, they form a
near isometry so that @ approximately preserves the Euclidean norm of S—sparse
vectors. The following theorem by Candes et al. [27, Theorem 1.2], [63, Theorem 3]
then states that (P, .) can be solved efficiently:

Theorem 1 ([27, 63]) Assume 6,5 < \/E — 1. Then, the solution G* to (P ,) satis-
fies:

IGs =Gl

||(}>k - G”2 S CO + C]g

for some Cy, C; > 0 depending only on 6,.

This result calls for several comments. First, the coefficients G are actually nearly
sparse, rather than strictly sparse, in the sense that only a small fraction of them
contribute significantly to the output statistics while the others are not strictly null.
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Opportunely, the foregoing theorem deals with all signals and not only the S—sparse
ones. Second, it also deals with noiseless recovery if € = 0. Third, it is determin-
istic and does not involve any probability for a successful recovery. Lastly, the ¢-
minimization strategy is non-adapted because it identifies the sparsity pattern, that
is the order (location) of the negligible coefficients in the polynomial chaos basis,
and the leading coefficients at the same time. The algorithm can therefore efficiently
capture the relevant information of a sparse vector without trying to comprehend that
vector [63]. This is clearly a much desirable feature for practical industrial applica-
tions.

Application to Transonic Turbulent Flow Around
a Two-Dimensional RAE 2822 Airfoil

The foregoing strategy of using a gPC expansion for uncertainty propagation and
quantification is applied to an aerodynamic problem taken from [17]. Here, we
consider a two-dimensional transonic turbulent flow around a RAE 2822 airfoil
modelized by the steady-state Reynolds-averaged Navier Stokes (RANS) equations
together with a Spalart-Allmaras turbulence model closure [64]. The nominal flow
conditions are the ones described in Cook et al. [65] for the test case #6 together
with the wall interference correction formulas derived in [66, pp. 386—387] and their
slight modifications suggested in [67, p. 130] (see also the CFD verification and val-
idation Web site of the NPARC Alliance [68]). The nominal free-stream Mach num-
ber M = 0.729, angle of attack & = 2.31°, and Reynolds number Re = 6.50 - 109
(based on the airfoil chord length ¢, fluid velocity, temperature, and molecular
viscosity at infinity) arise from the corrections 4M_ = 0.004 and da = —0.61°
given in [67, p. 130] for the test case #6 outlined in Cook et al. [65], for which
M _=0.725 a_ =2.92° and Re = 6.50 - 10°. At last, the far-field temperature is
fixed at T = 300 K and the ratio of specific heats of the air at y = 1.4.

Definition of the Uncertainties

Our aim is to characterize the influence of variabilities of the free-stream Mach
number M, and angle of attack a_, (operational parameters), and of the thickness-
to-chord ratio r = h/c (geometrical parameter) on some aerodynamic quantities of
interest, such as the drag, lift, or pitching moment coefficients C,,, C;, or C,,, respec-
tively. These variable parameters are assumed to be independent and to follow Beta
laws of the first kind f;. Therefore, their marginal PDFs read:

I(a+b) €=X,) "' Xy - 9"

(& a,b) = ]l[Xm,XM](é) (@) (b) Xy — Xm)a+b—1
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Table 1 Symmetric f; laws for the variable geometrical and operational parameters

a=b X, Xy
ch 4 097 xr 1.03xr
=, 4 0.95xM_ 1L.OSXM
= 4 0.98xa_ 1.02xa_

In the above, I'(z) = fO+°° #~le~!dt is the usual Gamma function, and [X,,. X)/]1s the
compact support of the random parameter = ~ ;. The parameters a = b as well as
the bounds X,,, X,, for the three variable parameters &, =r, & =M, & = a, are
gathered in the Table 1. This definition of uncertainties is part of the FP7 UMRIDA
Project (http://www.umrida.eu), which gathers a novel data base of industrial chal-
lenges with prescribed uncertainties for the validation of UQ techniques against
this series of relevant industrial test cases. We note in passing that the f; model
is the one arising from Jaynes’ maximum entropy principle [69] when constraints
on (i) the boundedness of the support [X,,, X,,], and (ii) the values of the averages
E{log(= - X,,)} and E{log(X,, — =)}, are imposed.

Polynomial Basis and Sampling Nodes

From the analysis of section “Generalized Polynomial Chaos Expansion,” it is seen
that the main ingredients requested for the construction of polynomial surrogates
of the quantity of interest y = Cp,, C;, or C,, are the truncated polynomial basis
2P and the quadrature rule O(N, Q), for Q integration nodes and a total num-
ber of polynomials P = (**”). In addition, we have here N = 3 for the parameter
space dimension. Owing to the choices made for the variable parameters consid-
ered for this case (see Table 1), we have & = (§,,6,,&) € I = H X,,(’l),X(’)] and
P=(E) = ® | Bi(§;; 4, 4). Therefore, the integration nodes should be chosen from a
Gauss-J acob1 quadrature rule, and the polynomial basis %” should be constituted by
the multivariate Jacobi polynomials which are orthogonal with respect to the weight
function§ = W;(§) = H W, (&) on| , 113 (after a proper renormalization of I),
where & —» W, (z;‘ )y=>1 - 512)3 They are computed by:

3
vi® =[Jw. . lil<p,
k=1

where {y; ; ji > 0} is the family of one-dimensional orthonormal Jacobi polyno-
mials with respect to the weight function W,. In the present study, the polynomial
surrogates G” constructed for the evaluation of the drag, lift, and pitching moment
coefficients are truncated up to the total order p = 8. Therefore, P = (” J;) = 165
multivariate Jacobi polynomials are ultimately retained in those gPC expansions.
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As for the sampling nodes {£'; 1 < < Q}, one may choose them as (i) the nodes
of a quadrature rule ©(N, Q) so that Eq. (8) can be used; or (ii) select them randomly
according to their PDF &z so that (P|,) can be used. Indeed, selecting the sam-
pling nodes randomly eases the fulfillment of the RIP and consequently increases
the efficiency of #|-minimization. The use of a structured sampling set (quadrature
rule) in the latter procedure is examined further on in [58], though. Quadrature rules
for the approximation of multivariate integrals have been introduced in the chapter
“General Introduction to Polynomial Chaos and Collocation Methods” of this book.
Univariate Gauss-Jacobi-Lobatto (GJL) quadratures (1, g) are aimed at integrating
a smooth function & — f(&) defined on [—1, 1] by:

1 q-2
/ FOU = A+ de = Y WHE) + w1 +wif (D), (10)
-1 =1

where a, b > —1, such that this rule turns to be exact for polynomials up to the order
2g — 3. Here, the bounds +1 are explicitly included in the quadrature nodes. The
reason why we include them in the rule stems from the fact that the basic engi-
neering practice would typically consider the evaluation of the physical model F at
the bounds of the support of the variable parameters. The main advantage of using
Gauss-Jacobi quadratures is that they do not add integration nodes for the increased
order a + b — 2 induced by the weight function (1 — £)*~!(1 4+ £)*~!. Since in our
case, we have chosen a total order p = 8, ¢ = 10 GJL modes are needed to recover
exactly the orthonormality property (5) for the corresponding univariate Jacobi poly-
nomials. Indeed Q should be defined such that 2¢g — 3 > 16 in this situation.

A multivariate quadrature rule may subsequently be obtained by full or sparse
tensorization of the above univariate rule. Firstly, a fully tensorized grid is obtained
by the straightforward product rule:

N
e, 0) = Qo q). (an

J=1

which contains Q = ¢" nodes in I". Secondly, sparse quadrature rules can be derived
thank to the Smolyak algorithm [16]. A brief overview is again given in the chapter
“General Introduction to Polynomial Chaos and Collocation Methods” of this book.
Such sparse rules have been considered in [17, 19, 22-25] among others but will
not be used here, though. Note also that a different number of nodes may be used
along each dimension for either product or sparse rules, as proposed in some adaptive
strategies [18-21, 23-25]. The fully tensorized rule in N = 3 dimensions based on a
10 nodes univariate GJL rule is displayed on Fig. 1(left). It contains Q = 10° nodes,
to be compared with the O = 80 nodes sampled randomly for the application of the
¢1-minimization algorithm (P, ,) (right).
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GJL 10-th level tensorized 3D—quadrature DoE for sparse recovery
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Fig.1 Left: three-dimensional nodes based on a tensorized univariate GJL rule with ¢ = 10 nodes
along each dimension and a = b = 4 (Q = 10%). Right: randomly sampled nodes following a three-
dimensional symmetric f; law with a = b = 4 (Q = 80)

Computational Model

Once the node sets have been defined, either from a fully tensorized quadrature rule
or random sampling, it remains to run the computational model for each sampling
node &' in those sets to obtain the vector y of observations of the quantity of inter-
est. The numerical approximation of the aerodynamic problem considered here is
computed using the elsA software [70]. At first, the RANS equations are discretized
in space by a cell-centered finite-volume method. The convective fluxes are com-
puted using the upwind Roe flux and a second-order MUSCL scheme [71] with a van
Albada limiter [72]. The diffusive fluxes are computed as the half sum of the normal
flux densities in the two adjacent cells sharing the current interface (with due care of
the boundary conditions on external interfaces), considering corrected cell-centered
gradients of the fluid velocity in these cells. The diffusive fluxes of the transport equa-
tion for the turbulent variable in the Spalart-Allmaras model are discretized using a
similar approach, whereas first-order Roe fluxes are used for the convective terms.
Finally, the source term of the transport equation is computed using the temperature
gradients at the center of the cells. Secondly, these semi-discretized RANS equa-
tions are solved in time using a backward Euler scheme up to convergence toward
a steady-state solution. The linearization of the resulting nonlinear implicit system
is performed using the Lower-Upper Symmetric Successive Overrelaxation (LU-
SSOR) scheme [73] with four relaxation cycles. The convergence is accelerated by
the use of multigrid techniques for steady flows. Uniform flow is considered as the
initial conditions for the iterations with respect to the time parameter.

The nominal problem is discretized using a 769¢ X 193¢ mesh shown in Fig. 2,
where the boundary at infinity was left intensionally far (at about 500c from the
airfoil). These values proved to be sufficient to avoid spurious reflection with the far-
field boundary. Given the large number of simulations to run, the numerical parame-
ters of the steady-state algorithm proved to be essential to insure a fast convergence.
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Fig. 2 Computational domain for the baseline configuration: overview of the mesh (left), close
view at the airfoil (right)
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Fig. 3 Magnitude of velocity (left) and static pressure coefficient C, at the wall (right, solid line)
for the baseline configuration M, = 0.729, & = 2.31°, Re = 6.50 - 10°. The latter is compared with
the experiment results gathered on the CFD verification and validation Web site of the NPARC
Alliance [68] (crosses)

Once all the foregoing numerical parameters have been fixed, the number of iter-
ations is determined from the evolution of the resulting global forces (not shown
here). A number of 2000 iterations appeared to be acceptable, the discrete residu-
als of all equations and their decrease being checked at every iteration. Hence, this
number of iterations has been retained for all subsequent calculations so far. The
flow is attached with a weak shockwave on the suction side. The contour plot of the
magnitude of the velocity and the static pressure profile at the wall are displayed on
Fig. 3 for the baseline configuration M_= 0.729, a, = 2.31°,and Re = 6.50 - 100.
We see from this latter figure that our numerical results are in good agreement with
the experimental results reported in [68].



136 V. Couaillier and E. Savin

Results

The mean y and standard deviation o of the drag, lift, and pitching moment coef-
ficients Cj,, C;, and C,,, respectively, are gathered in Table 2 for (i) either Q = 103
calls to the elsA computational model F' with the 10-th level tensorized GJL rule
(see Fig. lleft) to evaluate the polynomial coefficients by projection, Eq. (8); (ii) or
QO = 80 calls with randomly selected nodes (see Fig. 1right) to evaluate the poly-
nomial coefficients by BPDN (P, ). The primary reason why we have chosen this
sampling size is for its ease of use with the multithreading setup of our CFD soft-
ware. However, the sparsity of the polynomial surrogates is observed to be S ~ 10
from our numerical results. A common practical observation is that Q > 4S ~ 40
or so is usually enough for a successful recovery. Therefore, a new sampling set of
QO = 40 randomly selected nodes (not displayed here) has been generated and used to
construct other surrogate models by (P ). The corresponding means and standard
deviations are also gathered in Table 2. As for solving this #;-minimization problem
(P ), the Spectral Projected Gradient Algorithm (SPGL1) developed by van den
Berg and Friedlander [74] and implemented in the MATLAB package SPGL1 [75],
is used. The tolerance was fixed at e = 10~> and we were able to find a solution for all
surrogates with this a priori choice without resorting to cross-validation, for example
[26]. Further investigations should be carried on on this topic, though. It should also
be noted that no particular sampling strategy, such as stratification, low-discrepancy
series, or preconditioning, has been applied at this stage to construct the sampling
sets. Moreover, some weighting could be applied to the £,-norm as notice in [51]
and references therein. We have not considered that possibility either and left it to
future works.

The PDFs of the three aerodynamic coefficients considered in this study are dis-
played on Fig. 4 (in log scale) using the 10-th level tensorized quadrature rule and the
80 samples set. Figure 5 displays the same plots for the 40 samples set. These PDFs
were estimated from N, = 100,000 evaluations of the gPC surrogates G” constructed
by either approaches and smoothing out the resulting histograms by a normal ker-
nel density function [76]. The horizontal axes are scaled by the mean value of each
coefficient computed with the tensorized quadrature rule. A very good agreement is

Table2 Mean and variance of the aerodynamic coefficients computed by the 10-th level tensorized
GIJL rule with Q = 10° and by # -minimization with Q = 80 and Q = 40

GIL product rule (Q = 10%) ¢;-minimization (Q = 80) ¢,-minimization (Q = 40)

" c U c 7 c
Cp 133.37e-04 | 34.13e-04 133.34e-04 | 34.05e-04 133.21e-04 | 33.78e-04
C 72.27e-02 1.67e-02 72.27e-02 1.67e-02 72.29e-02 1.66e—02
C,, | —453.99e-04 | 32.24e-04 —453.95e-04 | 32.18e-04 —453.73e-04 | 31.98e-04
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Fig. 4 Comparison of the PDFs of the drag (left), lift (middle) and pitching moment (right) coef-
ficients computed by the 10-th level tensorized GJL rule (Q = 103, full lines) and #,-minimization
(Q = 80, dashed lines)
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Fig.5 Comparison of the PDFs of the drag (left), lift (middle) and pitching moment (right) coef-
ficients computed by the 10-th level tensorized GJL rule (Q = 103, full lines) and #,-minimization
(Q = 40, dashed lines)

achieved by both methods. The reduction of the number of samples to the heuris-
tic lower limit of four times the sparsity S for use in the ¢;-minimization approach
essentially affects the tails of the PDFs.

Conclusions

In this chapter we have addressed various methodologies with relevance to the con-
struction of generalized polynomial chaos expansions (gPC) for parameterized com-
plex processes as encountered in computational fluid dynamics. The presentation has
been more particularly focused on the use of adapted sampling sets in the parame-
ter space using either structured or unstructured grids to construct the gPC expan-
sions. These techniques were illustrated with the example of a two-dimensional tran-
sonic turbulent flow around a RAE 2822 airfoil considering variable geometrical (the
thickness-to-chord ratio) and operational (the free-stream Mach number and angle
of attack) parameters. The quantities of interest are the usual drag, lift, and pitch-
ing moment coefficients for which polynomial surrogates are sought for using the
aforementioned sampling sets as learning sets.
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Firstly, multivariate quadrature rules based on univariate Gauss-Jacobi-Lobatto
rules have been used for the construction of these polynomials surrogates by pro-
jection. Secondly, observing a posteriori that the aerodynamic quantities of interest
are sparse in the multivariate polynomial chaos basis associated to the parameters
probability density functions, an £;-minimization approach has been applied in the
framework of the theory of compressed sensing. The latter allows to recover the gPC
expansion coefficients at a much lower computational cost than the quadrature rules
addressed in the first approach. Unstructured sampling nodes are preferred in this
process, selecting them randomly in the parameter space. Their number is typically
less than the dimension of the polynomial space where the surrogates are sought for,
and thus typically much less than the number of nodes of the multivariate quadra-
ture rules that have to be used for a given polynomial order. The £;-minimization
procedure is non-adaptive in the sense that it identifies both the amplitude of the lead-
ing expansion coefficients and their ranks. It thus constitutes a promising direction
for future developments in practical applications for more complex geometries and
flows, where adaptive strategies within the parametric space, weighted minimization,
or preconditioned sampling sets may be advantageous.

References

. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897-936 (1938)
. Cameron, R., Martin, W.: The orthogonal development of nonlinear functionals in series of
Fourier-Hermite functionals. Ann. Math. 48(2), 385-392 (1947)

3. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equa-
tions. STAM J. Sci. Comput. 24(2), 619-644 (2002)

4. Soize, C., Ghanem, R.G.: Physical systems with random uncertainties: chaos representations
with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395-410 (2004)

5. Clouteau, D., Savin, E Aubry, D.: Stochastic simulations in dynamic soil-structure interaction.
Meccanica 36(4), 379-399 (2001)

6. Debusschere, B.J., Najm, H.N., Pébay, P.P., Knio, O.M., Ghanem, R.G., Le Maitre, O.P.:
Numerical challenges in the use of polynomial chaos representations for stochastic processes.
SIAM J. Sci. Comput. 26(2), 698-719 (2005)

7. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York
(1991)

8. Ghanem, R.G.: Ingredients for a general purpose stochastic finite elements implementation.
Comput. Methods Appl. Mech. Eng. 168(1-4), 19-34 (1999)

9. Ghanem, R., Higdon, D., Owhadi, H. (eds.): Handbook of Uncertainty Quantification. Springer
International Publishing, Cham (2016)

10. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational
fluid dynamics. Ann. Rev. Fluid Mech. 41, 35-52 (2009)

11. Le Maitre, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications
to Computational Fluid Dynamics. Springer, Dordrecht (2010)

12. Pettersson, M.P., Iaccarino, G., Nordstrom, J.: Polynomial Chaos Methods for Hyperbolic Par-
tial Differential Equations. Springer International Publishing, Cham (2015)

13. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, Princeton NJ (2010)

14. Jahedi, A., Ahmadi, G.: Application of Wiener-Hermite expansion to non stationary random

vibration of a Duffing oscillator. ASME J. Appl. Mech. 50(2), 436-442 (1983)

DO



Generalized Polynomial Chaos for Non-intrusive Uncertainty ... 139

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sun, T.C.: A finite element method for random differential equations with random coefficients.
SIAM J. Numer. Anal. 16(6), 1019-1035 (1979)

Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of
functions. Sov. Math. Dokl. 4, 240-243 (1963)

Savin, E., Resmini, A., Peter, J.: Sparse polynomial surrogates for aerodynamic computa-
tions with random inputs. In: AIAA Paper 2016-0433 (2016) 18th AIAA Non-Deterministic
Approaches Conference, 4-8 Jan 2016, San Diego, CA

Ghiocel, D., Ghanem, R.: Stochastic finite-element analysis of seismic soil-structure interac-
tion. ASCE J. Eng. Mech. 128(1), 66-77 (2002)

Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with ran-
dom inputs. SIAM J. Sci. Comput. 27(3), 1118-1139 (2005)

Eldred, M.S., Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic col-
location methods for uncertainty quantification. In: ATAA Paper 2009-0976 (2009) 47th AIAA
Aerospace Sciences Meeting, 5-8 Jan 2009, Orlando, FL

Blatman, G., Sudret, B.: An adaptive algorithm to build sparse polynomial chaos expansions
for stochastic finite element analysis. Probab. Eng. Mech. 25(2), 183-197 (2010)

Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309-2345 (2008)
Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data. STAM J. Numer. Anal. 46(5),
2411-2442 (2008)

Resmini, A., Peter, J., Lucor, D.: Sparse grids-based stochastic approximations with applica-
tions to aerodynamics sensitivity analysis. Int. J. Numer. Methods Eng. 106(1), 32-57 (2016)
Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations. J. Comput. Phys. 228(8), 3084-3113 (2009)

Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs.
J. Comput. Phys. 230(8), 3015-3034 (2011)

Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math. 59(8), 1207-1223 (2006)

Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289-1306 (2006)
Arnst, M., Ponthot, J.P.: An overview of nonintrusive characterization, propagation, and sen-
sitivity analysis of uncertainties in computational mechanics. Int. J. Uncertain. Quantif. 4(5),
387-421 (2014)

Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial
chaos. J. Comput. Phys. 187(1), 137-167 (2003)

Poétte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws.
J. Comput. Phys. 228(7), 2443-2467 (2009)

Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-
flow simulations through non-intrusive spectral projection. Combust. Flame 132(3), 545-555
(2003)

Babuska, 1., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial dif-
ferential equations with random input data. STAM J. Numer. Anal. 45(3), 1005-1034 (2007)
Loeven, G.J.A., Witteveen, J.A.S., Bijl, H.: Probabilistic collocation: an efficient non-intrusive
approach for arbitrarily distributed parametric uncertainties. In: AIAA Paper 2007-317 (2007)
45th ATAA Aerospace Sciences Meeting and Exhibit, 8—11 Jan 2007, Reno, NV

Chassaing, J.C., Lucor, D.: Stochastic investigation of flows about airfoils at transonic speeds.
AIAA J. 48(5), 938-950 (2010)

Hadigol, M., Maute, K., Doostan, A.: On uncertainty quantification of lithium-ion batteries:
application to an LiCy/LiCoO, cell. J. Power Sources 300, 507-524 (2015)

Hosder, S., Walters, R.W., Balch, M.: Point-collocation nonintrusive polynomial chaos method
for stochastic computational fluid dynamics. AIAA J. 48(12), 2721-2730 (2010)

Jones, B.A., Parrish, N., Doostan, A.: Postmaneuver collision probability estimation using
sparse polynomial chaos expansions. AIAA J. Guid. Control Dyn. 38(8), 1425-1437 (2015)



140 V. Couaillier and E. Savin

39. Simon, F., Guillen, P., Sagaut, P., Lucor, D.: A gPC-based approach to uncertain transonic
aerodynamics. Comput. Methods Appl. Mech. Eng. 199(17-20), 1091-1099 (2010)

40. Eldred, M.S.: Design under uncertainty employing stochastic expansion methods. Int. J. Uncer-
tain. Quantif. 1(2), 119-146 (2011)

41. Xiu, D.: Efficient collocational approach for parametric uncertainty analysis. Commun. Com-
put. Phys. 2(2), 293-309 (2007)

42. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University
Press, Oxford (2004)

43. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106),
221-230 (1969)

44. Margheri, L., Meldi, M., Salvetti, M. V., Sagaut, P.: Epistemic uncertainties in RANS model
free coefficients. Comput. Fluids 102, 315-335 (2014)

45. Witteveen, J.A.S., Bijl, H.: Modeling arbitrary uncertainties using Gram-Schmidt polynomial
chaos. In: AIAA Paper 2006-896 (2006) 44th AIAA Aerospace Sciences Meeting and Exhibit,
9-12 Jan 2016, Reno, NV

46. Zhang, Z., El-Moselhy, T.A., Elfadel, .M., Daniel, L.: Calculation of generalized polynomial-
chaos basis functions and Gauss quadrature rules in hierarchical uncertainty quantification.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(5), 728-740 (2014)

47. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element: a non-intrusive approach by
regression. Rev. Eur. Mécanique Numér. 15(1-3), 81-92 (2006)

48. Gao, Z., Zhou, T.: On the choice of design points for least-square polynomial approximations
with application to uncertainty quantification. Commun. Comput. Phys. 16(2), 365-381 (2014)

49. Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos
applications with multiple uncertain input variables. In: AIAA Paper 2007-1939 (2007) 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
23-26 April 2007, Honolulu, HI

50. Raisee, M., Kumar, D., Lacor, C.: A non-intrusive model reduction approach for polynomial
chaos expansion using proper orthogonal decomposition. Int. J. Numer. Methods Eng. 103(4),
293-312 (2015)

51. Hampton, J., Doostan, A.: Compressive sampling methods for sparse polynomial chaos expan-
sions. In: Ghanem, R.G., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantifica-
tion, 29 pp. Springer, Cham (2016)

52. Jakeman, J.D., Eldred, M.S., Sargsyan, K.: Enhancing ¢,-minimization estimates of polyno-
mial chaos expansion using basis selection. J. Comput. Phys. 289, 18-34 (2015)

53. Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations
with random input data. Commun. Comput. Phys. 12(4), 919-954 (2012)

54. Peng, J., Hampton, J., Doostan, A.: A weighted ¢,-minimization approach for sparse polyno-
mial chaos expansions. J. Comput. Phys. 267, 92-111 (2014)

55. Peng, J., Hampton, J., Doostan, A.: On polynomial chaos expansion via gradient-enhanced
¢;-minimization. J. Comput. Phys. 310, 440-458 (2016)

56. Rauhut, H., Ward, R.: Sparse Legendre expansions via ¢;-minimization. J. Approx. Theory
164(5), 517-533 (2012)

57. Schiavazzi, D., Doostan, A., Iaccarino, G.: Sparse multiresolution regression for uncertainty
propagation. Int. J. Uncertain. Quantif. 4(4), 303-331 (2014)

58. Tang, G., Iaccarino, G.: Subsampled Gauss quadrature nodes for estimating polynomial chaos
expansions. SIAM/ASA J. Uncertain. Quantif. 2(1), 423-443 (2014)

59. West1V, T.K., Brune, A.J., Hosder, S., Johnston, C.O.: Uncertainty analysis of radiative heating
predictions for Titan entry. AIAA J. Thermophys. Heat Transf. 30(2), 438-451 (2016)

60. Yan, L., Guo, L., Xiu, D.: Stochastic collocation algorithms using #,-minimization. Int. J.
Uncertain. Quantif. 2(3), 279-293 (2012)

61. Yuang, X., Karniadakis, G.E.: Reweighted ¢, -minimization method for stochastic elliptic dif-
ferential equations. J. Comput. Phys. 248, 87-108 (2013)

62. Chen, S.C., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. STAM J.
Sci. Comput. 20(1), 33-61 (1998)



Generalized Polynomial Chaos for Non-intrusive Uncertainty ... 141

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process.
Mag. 25(2), 21-30 (2008)

Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In:
AIAA Paper 1992-0439 (1992) 30th AIAA Aerospace Sciences Meeting and Exhibit, 6-9 Jan
1992, Reno, NV

Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822—pressure distributions, and
boundary layer and wake measurements. In: Experimental Data Base for Computer Program
Assessment. AGARD Advisory Report No. 138. NATO (1979) Appendix A6

Garner, H.C., Rogers, EW.E., Acum, W.E.A., Maskell, E.C.: Subsonic wind tunnel wall cor-
rections. In: AGARDograph No. 109. NATO (1966) Chapter 6

Haase, W., Bradsma, F., Elsholz, E., Leschziner, M., Schwamborn, D. (eds.): EUROVAL-An
European Initiative on Validation of CFD Codes. Notes on Numerical Fluid Mechanics, Vol.
42. Vieweg Verlag, Wiesbaden (1993) Section 5.1
http://www.cfd-online.com/Wiki/RAE2822_airfoil

Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620-630 (1957)
Cambier, L., Heib, S., Plot, S.: The Onera elsA CFD software: input from research and feedback
from industry. Mech. Ind. 14(3), 159-174 (2013)

van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel
to Godunov’s method. J. Comput. Phys. 32(1), 101-136 (1979)

van Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods
in cosmic gas dynamics. Astron. Astrophys. 108(1), 76-84 (1982)

Yoon, S.K., Jameson, A.: An LU-SSOR scheme for the Euler and Navier-Stokes equations.
In: ATAA Paper 1987-600 (1987) 25th ATAA Aerospace Sciences Meeting, 12—15 Jan 1987,
Reno, NV

van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions.
SIAM J. Sci. Comput. 31(2), 890-912 (2008)

van den Berg, E., Friedlander, M.P.: SPGL1: A solver for large-scale sparse reconstruction
(June 2007)

Wand, M.P., Jones, M.D.: Kernel Smoothing. Chapman and Hall/CRC, Boca Raton, FL (1995)


http://www.cfd-online.com/Wiki/RAE2822_airfoil

Non-intrusive Probabilistic Collocation m)
Method for Operational, Geometrical, iz
and Manufacturing Uncertainties

in Engineering Practice

Dirk Wunsch, Rémy Nigro, Grégory Coussement and Charles Hirsch

Introduction

CFD simulations are run today with a unique set of input data such as boundary
conditions, physical model, or geometry parameters. In these deterministic simu-
lations, the system response is a single value. The actual operating conditions of
industrial products are, however, subject to operational and geometrical uncer-
tainties. In order to include these uncertainties into the CFD-based design process, a
new type of simulation is needed: non-deterministic simulations. This type of
approach allows to incorporate and propagate uncertainties. The outcome of a
non-deterministic simulation is not a single value, but a variation of the system
response.

The uncertainty propagation method used in this work is the Non-Intrusive
Probabilistic Collocation Method (NIPColM), where the collocation points are
selected by means of the Golub—Welsch algorithm [2] for quadrature of general
probability density function (PDF) shapes. This approach is combined with a sparse
grid technique which allows for a significant reduction in number of deterministic
simulations to be run.
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A particular challenge lies in the combination of operational and geometrical
uncertainties in an integrated design and simulation environment. While operational
uncertainties are considered by running the CFD solver with the same geometry and
the same mesh, but varying boundary conditions, geometrical uncertainties demand
in addition a changing geometry and changing mesh. Geometrical uncertainties can
be either expressed in parameterized form, also accounting for correlations, or as
uncertain fields. Random field and correlated engineering parameter models are
suitable for the handling of uncertainties resulting from manufacturing or assembly
variability.

This NIPColM is applied to the NASA rotor 37, first, accounting for simulta-
neous operational and geometrical uncertainties on the inlet total pressure profile,
static outlet pressure, the tip clearance, the leading edge angle and leading edge
radius [13], and second, as a random field of the blade surface [7].

The importance of accounting for combined operational and geometrical
uncertainties during the rotor design process is demonstrated in comparison with
the deterministic case. Scaled sensitivity derivatives calculated from the uncertainty
propagation method allow to assess objectively the influence of individual uncer-
tainties on the output quantity of interest. Finally, the non-deterministic simulation
results are evaluated in form of reconstructed PDFs of scalar output quantities.

Non-intrusive Probabilistic Collocation Method

The uncertainty propagation method used within this work is the Non-Intrusive
Probabilistic Collocation Method [4], which can be seen as a generalization of the
stochastic collocation method described in [5]. If a generic stochastic partial dif-
ferential equation is considered such as:

L(&)u(x, 1, &) =S(%, 1) (1)

where L being a differential operator containing space and time derivatives;
S being the source terms;

£ being a random input parameter;

u being the non-deterministic solution.

In the non-intrusive probabilistic collocation method, Lagrange interpolating
polynomials are used to construct the following expansion:

Ny

u(® . §)= 3 wix 0)hi(8) 2)

i=1
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e u;(X, t) is the deterministic solution at the collocation point &;
e h;(¢;) is the Lagrange interpolation polynomial corresponding to the collocation

point &;.

The Lagrange interpolating polynomial is given by:

Noog—g
hi(&)=1I
k=1 %~k

k#i

3)

with: h;(&;)=6; and N, is the number of collocation points required by the
non-intrusive probabilistic collocation method.

The collocation points are selected as the Gauss quadrature points by means of
the Golub—Welsch algorithm for general probability density function (PDF) shapes
[2]. This has the advantage that any arbitrary PDF type can be used to describe the
uncertainties. In order to propagate the input uncertainty modeled by the random
variable &;, Eq. (2) is introduced into Eq. (1). This provides a system of N,
uncoupled deterministic simulations:

L(Eu(x, 1) =S(X, 1) 4)

Once all N,, computations are performed, the first four moments of any output
quantity ¢ are calculated based on the weights wy from the Gauss quadrature. The
mean follows from:

N,
= kZ] wigy (X, 1) (5)

and the second (variance), third (skewness), and fourth moments (kurtosis) are
calculated as:

=2 wilo(50) — )" (6)

Sparse Grids for Multiple Simultaneous Uncertainties

In order to combine several simultaneous uncertainties, the quadrature must be
brought to the multi-dimensional case. This multi-dimensional quadrature is
achieved by means of tensor products. In the 1D case, the quadrature is given by:
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QVf= % f(&)w; (7)

i=1

Multi-dimensional quadrature is then obtained by tensor products:

QNdimf= (Q(l) R...0 Q(Ndim>)f (8)

Each point along one direction is multiplied with each point along all other
directions, where the weights are calculated as the products of the 1D-weights.

This approach leads to an exponential increase in the number of points with the
number of dimensions. This is the so-called curse of dimensionality. Table 1
illustrates how the number of CFD runs scales with the number of dimensions
assuming 1D quadrature rules with 3 points. For two simultaneous uncertainties, 9
CFD runs need to be performed, while 10 simultaneous uncertainties would require
59,049 CFD runs, which is not feasible in practice.

Sparse grid quadrature can overcome this curse of dimensionality to a certain
extent and make non-intrusive collocation methods accessible for higher stochastic
dimensions. The implementation is based on Smolyak’s quadrature method [11].
For a review of sparse grid algorithms, the reader may refer to [5] and [13] for more
information on the construction of the sparse grid. Sparse grid quadrature works by
combining quadrature rules of different orders. To distinguish different orders, a
level index is introduced and the number of 1D quadrature points per level grows in
function of the chosen quadrature rule. In this work, Gauss quadrature is applied
where the number of points on subsequent levels grows with “2 * [evel + 1,” with
the level O quadrature rule being defined as the mid-point rule. To build the sparse
grid, difference formulas between two subsequent levels are defined and then
summed over all levels; the quadrature rule of level L is thus re-written as a sum of
differences over all levels from O to L. This allows to change the order of sum-
mation and tensor product and truncate the sum to a total level (or total order of the
underlying Lagrange polynomials).

Table 2 summarizes the number of quadrature points Np, contained in linear
growth sparse grid for levels of 1, 2, and 3 in comparison with a full tensor grid
with the same number of 1D quadrature points.

Table 1 Number of CFD

No. of stochastic dimensions No. of CFD runs
runs needed for 1 3
multi-dimensional uncertainty
problems applying tensor 2 9
product rule, assuming 3 3 27
collocation points in 1D

10 59049

n (m=3) m"
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Table 2 Number of quadrature points N, contained in full tensor grid and sparse grid

Level 1 2 3

Dimension Tensor Sparse Tensor Sparse Tensor Sparse
1 3 3 5 5 7 7

2 9 5 25 17 49 45

3 27 7 125 31 343 105

4 81 9 625 49 2401 201

5 243 11 3125 71 16807 341

10 59049 21 ~9.7e6 241 ~2.8e8 1981

The significant reduction in number of runs makes the simultaneous treatment of
many uncertainties in complex 3D CFD problems accessible. This is the basis for
the work performed here.

Statistical Output Analysis

The analysis of non-deterministic simulations using the NIPColM relies to a large
extent on the computed moments of output quantities, i.e., mean, variance, skew-
ness, and kurtosis. Besides the moments itself, which can be used to plot mean
values with bars indicating the variability of the response, PDFs can be recon-
structed based on these statistical output moments. Finally, the local surrogate that
the Lagrange interpolating polynomial represents, as given in Eq. (2), allows
computing scaled sensitivity derivatives.

Statistical Output Moments

Once all simulations are performed, statistical moments of output quantities are
automatically calculated, by taking the weights of the individual collocation points
into account. The mean, variance, skewness, and kurtosis are calculated following
Egs. (5) and (6). This information is calculated for a selected number of scalar
output quantities but can be obtained for any CFD output quantity or output field of
interest. It is thus possible to compute mean and variance for a cut through the
computational domain, where the values are calculated point-by-point.



148 D. Wunsch et al.

Output PDF Reconstruction

Simulations performed with the non-intrusive probabilistic collocation method
characterize the output not directly by its PDF, but by the moments of this output
PDF, as stated above. The PDF can be reconstructed from its moments, which is
important, since the display of non-deterministic results by a mean value with an
uncertainty bar corresponding to +¢ implies a symmetric distribution around the
mean value, whereas the real system response might be characterized by a skew
distribution. To overcome this, the Pearson method [9] is used to reconstruct an
approximation of the PDF of a given output quantity from its first four moments.
Figure 1 shows a schematic of the standard PDF shapes to be selected in function of
the third and fourth statistical output moment by the Pearson method.

Scaled Sensitivity Derivatives

Another important element in the evaluation of non-deterministic solutions is the
relative influence of a given input uncertainty on the solution. This influence is
predicted by calculation of scaled sensitivity derivatives as done by [12] and
applied to the probabilistic collocation method. This increases, on the one hand, the
understanding of the system under investigation, and a variation of an uncertain
input can be directly linked to a variation in the output quantity of interest. On the
other hand, it provides an objective measure of the influence of uncertainties on the
output and allows therefore for an efficient reduction in number of uncertainties by
identifying uncertainties with little influence on the solution. This is particularly
important in systems where many uncertainties are present, and even with an
efficient sparse grid quadrature, the benefit of reducing the number of uncertainties
can be significant. On the example of a level 2 sparse grid with 10 uncertainties, if
the sensitivity analysis would show that 5 of these uncertainties have little
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Fig. 1 Schematic of Pearson method
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influence, the number of simulations that needs to be performed can be reduced
from 241 to 71 as shown in Table 2.

The scaled sensitivity derivative is defined as the partial derivative of the
solution u(X, t, £) with respect to the uncertain input parameter &, multiplied by the
standard deviation of the uncertain input parameter as:

ou(x, t, &)

b0g ®)

O¢
Assuming one single uncertain parameter and by introducing Egs. (2) and (3)

into Eq. (9), the sensitivity derivative 2 5¢ can be written as:

ou

&

Sk <w>
Iy

Here &; stands for the value at collocation point i. The evaluation is done around
the nominal value. The scaled sensitivity derivative as in Eq. (9) is then obtained by
multiplying the partial derivative by the standard deviation of the input uncertainty.
This can be calculated for an arbitrary number of input uncertainties, and the
individual scaled derivatives can be compared and used to reduce the uncertainty
dimension by eliminating the uncertain variable with the lowest absolute values.

It is worth to mention that the here calculated scaled sensitivity derivatives are
equivalent to first-order approximations of the standard deviation obtained by
perturbation methods [10].

Simultaneous Operational and Geometrical Uncertainties

Another major difficulty on the way to the use of uncertainty quantification (UQ) in
a day-to-day engineering practice, after tempering the “curse of dimensionality,” is
to provide a user-friendly tool for combined operational and geometrical uncer-
tainties in a professional virtual prototyping environment. The principle is by far not
limited to CFD but could also be applied, for example, to structural mechanics or
aero-acoustics.

The use of operational uncertainties only implies modifying the boundary
conditions of a given number of CFD simulations. If a level 2 sparse grid with 10
simultaneous uncertainties is considered, then 241 individual simulations must be
initialized with correct modified boundary conditions and weights, respectively.
This process alone must be automatized and integrated to be usable in a day-to-day
engineering practice. If these 10 uncertainties include geometrical uncertainties,
based on the above example of 241 simulations to be set up, not only the boundary
conditions must be changed, but also the geometry and the mesh! This is
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completely unfeasible without an efficient integration into an engineering software
suite. An automatic generation of parameterized geometries for turbo-machinery
cases, automatic meshing, and initialization of computations in combination with
the probabilistic UQ method described above is used in this work.

Operational or geometrical uncertainties are selected in the workflow and
attributed with a PDF shape for each uncertainty. The Golub—Welsch algorithm [2]
used for the quadrature finds automatically suitable nodes and weights with respect
to the input measure.

Based on the sparse grid (or full tensor grid) detailed above, the N, individual
non-deterministic sub-computations are then set up automatically accounting for
varying boundary conditions due to operational uncertainties or varying geometry
and mesh, which are the result of geometrical uncertainties. The system of equa-
tions given by (4) is then solved without any further interference.

Manufacturing and Assembly Uncertainties

Uncertainties resulting from the manufacturing process of components cannot be
represented by considering the parameters of a parametric model as independent
random variables. The manufacturing variability, which lies within the imposed
tolerances, introduces correlations between different points on the surface, i.e.,
surface points are thus mutually dependent.

One way to account for these correlations is the use of a random field to describe
a surface. The NIPColM, however, such as many other UQ propagation methods,
cannot use dependent random variables as input in a direct way. To overcome this
and to represent the random field with a set of independent variables, principal
component analysis (PCA) is applied. In general, a truncation of the transformation
is applied to reduce the number of independent variables. The NIPColM is then
applied to the reduced orthogonal set of uncorrelated variables.

A second possibility to describe manufacturing uncertainties is by means of
correlations between engineering parameters. In analogy to the random fields, the
PCA is applied to the set of correlated variables; however, the uncorrelated set
obtained by the PCA is not truncated in this case.

Random Fields

A random field is a collection of random variables which includes their mutual
dependence, and they are thus suited to represent uncertainties resulting from
manufacturing variability. The number of random variables contained in the ran-
dom field can be either infinite, in the case of a continuous random field, or finite, in
the case of a discrete random field. A discretized geometrical surface can be defined
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o ” . 5 realisations of a random field
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Fig. 2 Realizations of an airfoil discretized with 200 points considering each of these points as
independent (left) or as a random field described with a covariance between each of its points
(right) (black: nominal value; colors: realizations)

as a discrete random field by considering the collection of the random variables to
be defined by the ensemble of the geometry points defining the discrete surface.

The relative influence between two random variables is expressed by the
so-called covariance.

Figure 2 shows realization of an airfoil surface considering each surface point as
an independent variable, i.e., without correlations (Fig. 2 left) and considering
correlations between the surface points (Fig. 2 right) by means of a covariance
function. It is clearly seen that correlations introduce preferential deformation
shapes on the geometry.

As mentioned above, correlated random variables such as in random fields
cannot be used directly in the NIPColM. A transformation of the correlated random
variables into a set of uncorrelated orthogonal variables is required. This is achieved
by means of a principal component analysis.

Principal Component Analysis

The principal component analysis is a method widely used to represent discrete
random fields by a reduced set of uncorrelated random variables; it is also known as
proper orthogonal decomposition (POD). The continuous version of a PCA is
known as Karhunen-Loeve Expansion (KLE) [3].

The expansion of a random field is expressed in Eq. (11)

M
X=X+ Z éfCA*¢k (11)
k=1

Without any loss of generality, Eq. (11) can be modified in order to consider
only cases of zero-mean random fields (X, =0) in Eq. (12).



152 D. Wunsch et al.

M
X= 3 g (12)

The eigenvectors are found by solving the eigenproblem on the covariance
matrix. The covariance matrix determines the covariance between each couple of
random variables contained in the random field. Its dimension is thus M X M. As a
result, M eigenvectors of dimension 1XxM and M eigenvalues are found. The
random variables f 4 defined by the PCA are uncorrelated. This property allows,
under the assumption of a Gaussian random field, to ensure that the random vari-
ables ffCA are independent. Moreover, the assumption of a Gaussian random field
leads to the conclusion that each individual random variable & is Gaussian.

The first two moments of the probability distribution (i.e., mean and variance) of
these random variables &P are directly defined. As the random field is centered,
the random variables & €A are also centered (u=0) and the variance of a Gaussian
random variable éfCA is equal to its corresponding eigenvalue (6> =4;).

In case the imposed random field is non-Gaussian, the use of the “Nataf trans-
formation” [6] allows to transform it into a Gaussian random field. The PCA can
then be applied on the transformed Gaussian random field.

The PCA output set can be used to approximate a discrete random field with a
number of random variables, which is much smaller than M. This can be achieved
by sorting the eigenvectors (i.e., the random variables) in decreasing order of their
eigenvalue. After sorting of the eigenvalues, the expansion can be truncated. The
number of remaining random variables N is chosen in order to ensure that the error
on the random field variation is kept inferior to an imposed value e¢ following
Eq. (13).

1— Eiv=lj'k

€>
Ekleik

With Ay > Jy > > Ay (13)

Correlated Parametric Uncertainties

In analogy to the random fields, the PCA is applied to the set of correlated vari-
ables, and the correlation is described by a probability distribution and a correlation
matrix. The probability distribution of each parameter and their correlation matrix
are usually determined by measurements on a set of manufactured geometries.
After application of the PCA, each eigenmode is defined as an uncertainty with a
truncated Gaussian probability distribution with a zero mean and a variance equal to
the eigenvalue. A zero mean can be assumed without any loss of generality by
considering each uncertainty as a perturbation of the geometry. Then the collocation
points are determined by the NIPColM on the orthogonal uncorrelated set of
variables that result from the PCA. For each of these collocation points, the



Non-intrusive Probabilistic Collocation Method for Operational ... 153

deformation of each engineering parameter is computed based on the contribution
of each of the eigenmodes and the resulting deformation corresponds to a Gaussian
random field. Again if the PDF is non-Gaussian, the Nataf transformation is
applied. The deformation is then added to the mean value of the parameter to
determine the geometry of each collocation point.

Application to Rotor 37

The uncertainty quantification tool chain is applied to the NASA Rotor 37. Detailed
description of geometry, experimental setup, and a series of simulations
cross-plotting the predictions can be found in [1]. Figure 3 shows the measurement
sections and geometry of rotor 37.

Several operation points are run in order to build a performance curve. The static
outlet pressure values used to this purpose are given in Table 3.
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Daw T Data
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Axdal Direction, cm
Fig. 3 Rotor 37 measurement sections [1]
Table3273 Or[;erating points for Running point Static outlet pressure (Pa)
t
rotor 37 performance map ] 99215
2 110,000
3 114,074
4 119,035
5 121,033
6 123,008
7 124,027
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Fig. 4 Convergence for the deterministic computation: (left) root mean square of the global
residuals; (right) evolution of the mass flow

Simulations are performed with the flow solver FINE™/Turbo [8], and the
uncertainty quantification methodology described above is integrated into FINE™Y/
Design3D. RANS equations and Spalart—Allmaras turbulence model are solved at a
constant rotating hub speed of 17,188 rpm. The convergence of each computation
is assessed by the global residuals (sum of all the residuals) and the evolution of the
mass flow through the computation domain (cf. Fig. 4). As the residuals decrease of
4 orders of magnitude and the error on the mass flow is below 0.025%, the CFD
computation is converged. All the CFD computations used for non-deterministic
simulations have the same level of convergence.

The developed tool chain is used to create non-deterministic sub-computations
accounting for simultaneous operational and geometrical uncertainties. These
simulations are set up in an automatic process accounting for the correct combi-
nation of boundary condition modifications due to operational uncertainties and
modified geometries due to geometrical uncertainties. For each of these simulations,
the correct geometry is built and meshed with Autogrid™, by keeping the number
of cells and the global mesh topology constant. Figures 5 and 6 illustrate, on the

NUMECA

Fig. 5 Global geometry view for tip gap. Circle identifying location of tip gap mesh shown in this
figure
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Fig. 6 (left) Geometry and automatically generated mesh with smallest tip gap. (Right) Geometry
and automatically generated mesh with largest tip gap

example of a varying tip gap, the automatic mesh generation process. Figure 5
shows a global view of the geometry with the tip gap, while Fig. 6 (left) shows the
mesh generated with the smallest tip gap and Fig. 6 (right) the mesh generated with
the largest tip gap.

Application of Simultaneous Operational and Geometrical
Uncertainties

Industrial configurations are characterized by a multitude of operational and geo-
metrical uncertainties, which can exceed the number of feasible uncertainties even
with sparse grid quadrature. The above-developed methodology and especially the
use of scaled sensitivities gives a valuable insight into the importance of individual
uncertainties on the non-deterministic results. Based on the work in [13], where the
trailing edge angle and a span-wise discretization of the blade angles were found to
have little influence, the uncertainty model given in Tables 4 and 5 is applied to the
rotor 37. Uncertainties on the total inlet pressure, static outlet pressure, tip gap,
leading edge angle, and leading edge radius are defined.

This definition of uncertainties on the rotor 37 is also part of the novel database
of industrial challenges with prescribed uncertainties, described in chapter
“UMRIDA Test Case Database with Prescribed Uncertainties” of the present book.

Table 4 Operational uncertainties imposed on the rotor 37

Uncertainty Most likely Minimum value Maximum value PDF type
value (m) (%) (m) (%) (m)

Inlet total Table at station 98 102 Symmetric

pressure 11[9] beta-PDF

Static outlet Table 3 in this 98 102 Symmetric

pressure document beta-PDF
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Table 5 Geometrical uncertainties imposed on the rotor 37

Uncertainty Most likely value (m) Minimum Maximum PDF type
value value

Leading edge LE,ngle Nominal value 95% m 105% m Symmetric

angle from geometry beta-PDF

Leading edge LE,,4ius Nominal value 90% m 110% m Symmetric

radius from geometry beta-PDF

Tip clearance M;;p = 0.356 mm 50% Mp 150% Mp Symmetric
beta-PDF

Table 6 Computation time needed for non-deterministic runs in function of sparse grid level, for
5 simultaneous uncertainties

Sparse grid | No. of simulations for 1 CPU h-core 1 CPU h-core

level operating point operating point performance curve
1 11 29.3 205

2 71 189.3 1325

3 341 909.3 6365

Simulations are performed on a structured full hexahedral mesh, which consists
of 2.8 million mesh points, and the CPU-Booster in FINE™/Turbo is used to
accelerate the convergence.

The non-deterministic analysis was performed accounting for the uncertainties as
described in Tables 4 and 5, with a level 2 sparse grid (5 collocation points per
uncertainty direction), which results in 71 collocation points per UQ run. For
comparison and to show the convergence in function of the sparse grid level,
additional simulations are performed with level 1 (3 collocation points per uncer-
tainty direction) and level 3 (7 collocation points per uncertainty direction) sparse
grids, resulting in 11 and 341 collocation points per run, for levels 1 and 3,
respectively.

In order to build a performance curve, the 7 operating points from Table 3 were
run. One single simulation was performed in approximately 10 min clock time on
16 parallel cores, which corresponds to 0.95CPUh-core/Million points per simu-
lation. Table 6 compares the computation times needed for one operating point and
for the performance curve with 7 operating points in function of the sparse grid
level, accounting for 5 simultaneous uncertainties.

Total pressure ratio and efficiency over mass flow rate.

Accounting for simultaneous operational and geometrical uncertainties as described
in Tables 4 and 5, the total pressure ratio and efficiency are plotted over the mass
flow rate for the 7 operating points listed in Table 3 and displayed in Figs. 7 and 8,
respectively.
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As seen in Figs. 7 and 8, the non-deterministic mean is not equal to the result of
the deterministic simulation. The deterministic simulation corresponds to a standard
CFD simulation where all parameters are set to their nominal values. Figure 8
shows the usual underestimation of the efficiency for this test case in the order of
2%, and the non-deterministic simulation shows slightly lower efficiencies, while
the maximum value is shifted to a lower mass flow rate. Displaying these results
with mean and standard deviation implies a symmetric distribution of the system
response around this mean. Thus assuming a Gaussian distribution, +c corresponds
the range into which roughly 68% of the results fall. This is the standard approach
for displaying these kinds of results, which however is misleading in case the output
distribution is not symmetric around the mean.

Indeed, if the first four statistical output moments are calculated and the Pearson
approach for PDF reconstruction is applied, it becomes apparent that the results
plotted in Figs. 7 and 8 are not symmetrically distributed around the mean. Table 7
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Table 7 Higher output moments for mass flow, total pressure ratio, and isentropic efficiency for
the operating point at 98% of the choke mass flow

Mean Variance Skewness Kurtosis
Mass flow (kg/s) 20.444 0.0597 5.6648e—3 9.352e-3
Total pressure ratio () 2.087 1.0087e—4 —7.0768e-7 3.1617e-8
Efficiency (-) 0.850 3.1463e-5 —4.3184e-7 1.0205e—8
Inverse-gamma Gamma

2 10 A

g Beta-Prime

£ 8 Skewed Student

Z

- 6
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g 4

E 2 Impossible region

s

0
= 1 2 3 a 5 6

Normalized square skewness

Fig. 9 Pearson diagram, showing the normalized third (squared skewness) and fourth (kurtosis)
moment for the operating point at 98% of the choke mass flow. Blue cross: mass flow, black star:
total pressure ratio, red triangle: isentropic efficiency

lists the higher output moments for mass flow, total pressure ratio, and isentropic
efficiency for the operating point at 98% of the choke mass flow. Figure 9 displays
these values in terms of the normalized third (squared skewness) and fourth (kur-
tosis) moment in a sketch of a Pearson diagram for PDF reconstruction. It must be
noted that the higher moments (skewness and kurtosis) are not zero and the dis-
tributions are consequently not symmetric, due to nonzero skewness.

Figures 10 and 11 display on the example of the operating point at 98% of the
choke mass flow the reconstructed PDFs for total pressure ratio and isentropic
efficiency, respectively. The reconstructed PDFs are compared with the mean value
and their centered standard deviation to underline the misleading assumption of
symmetric distribution of the system response.

Scaled sensitivities in function of operating point.

The evaluation of scaled sensitivities is extremely useful in the analysis of the
non-deterministic simulation analysis as it provides an objective criterion for the
influence of a given uncertainty on the non-deterministic output. Figures 12 and 13
show the scaled sensitivities on the total pressure ratio and efficiency for the 5
uncertainties included in this study at 3 different operating points: 95.48, 98, and
99.96% of the choke mass flow. It can be seen that for all two quantities the scaled
sensitivity in dependence of the leading edge angle changes its sign for the oper-
ating point at 95.48% of the choke mass flow. While it is negative for the other two
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operating points, it is positive for this lowest mass flow operating point. This means
that increasing the leading edge angle leads to an increase in mass flow, total
pressure ratio or efficiency, while increasing the leading edge angle for the other
two operating points leads to a decrease in mass flow, total pressure ratio or
efficiency.

Pitch-wise averaged quantities at 98% choke mass flow.

In Figs. 14 and 15, the pitch-wise averaged total pressure ratio and efficiency are
evaluated at station 4 of the experimental setup of the rotor 37 and compared with
the deterministic prediction and experimental data given in [1]. It is seen that the
deterministic value differs from the non-deterministic mean. It should be noted that
in these plots the mean and standard deviation only are plotted, where the standard
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Table 8 Higher output moments for mass flow at the operating point at 98% of the choke mass
flow comparing dependence on sparse grid level

Level Mean Variance Skewness Kurtosis

1 20.437 0.055 0.0113 0.0061

2 20.444 0.060 —0.00567 0.0094

3 20.440 0.062 —0.0055 0.0127

Ratio Mean Variance Skewness Kurtosis

L2/L1 (%) 100.03 108.91 -50.62 153.96

L3/L2 (%) 99.98 103.30 96.29 135.82
Table 9 Parameters for the covariance models used

Name Cov. length Variance Accuracy Nb modes Nbcolloc points

(m) (=) (=67) (=1-¢) = SG Ivl | SGlvl
1 2

Model A | 0.05 1E-8 0.99 5 11 71
Model B | 0.05 1E-6 0.99 5 11 71
Model C |0.025 1E-8 0.99 12 25 337

distribution is centered on the mean value. As seen from the previous section, the
bars should be drawn such that they account for asymmetry of the distributions.

Influence of sparse grid level.

Table 8 shows on the example of the operating point at 98% of the choke mass flow
that the mean and variances of the mass flow converge with a level 1 sparse grid for
this test case. For higher levels, the question of output moment convergences arises.
For this operating point, Table 9 lists the higher output moments of the mass flow
in function of the sparse grid level and Fig. 16 shows the projection on the Pearson
diagram, while Fig. 17 shows the reconstructed PDFs in function of the sparse grid
level.

A level 1 sparse grid is sufficient if only mean and variance are of interest.
However, it is seen in Fig. 14 that a level 1 sparse grid is not sufficient to recon-
struct correctly the output PDFs and higher levels are needed. With a level 3, the
higher output moments still vary but the shape of the PDF is already reasonably
well represented. A level 2 sparse grid leads to an error in the variance which is
three times smaller than the initial approximation error by the parametric model for
the variance. Comparing the reconstructed PDFs, a level 2 sparse grid could thus be
considered as sufficient for most UQ studies, except when the exact shape of the
output PDF must be determined with high precision, such at the tail of the
distribution.
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Fig. 17 Reconstructed PDF for mass flow for operating point at 98% of choke mass flow.
Reconstructed PDF in function of sparse grid level: level 1 (green dashed-point line), level 2 (solid
blue line), level 3 (purple dashed line)

Manufacturing Uncertainties as Random Fields
of the Blade Surface

In the following, the compressor blade surface points are considered as a random
field. The covariance matrix between these points, which is needed to compute the
PCA and therefore propagate the uncertainties with the NIPColM, is determined
based on a square exponential covariance function (Eq. (14)).

Cov(d)=6"* exp( -~ ;—;) (14)

e where d is the distance between two points;
e Cov(d) is the covariance function depending on a distance d;
e o2 is the variance of the covariance function;
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e [ is the covariance length.

The two parameters used in this function (6% and ) can be linked to physical
properties of the random field: The variance ¢ is directly proportional to the
maximal amplitude of deformation induced by the random field. A high value of
this parameter corresponds to a high deformation, and its variation has no influence
on the shape of the deformation. The covariance length / represents the distance
in-between two geometrical points for which a non-negligible correlation exists.
Changing the covariance length changes the shape of the covariance function. If the
covariance length is zero, the uncertainties are considered as independent and thus
very wavy shapes are possible and if the covariance length is infinite, the resulting
uncertainty is represented with 1 mode corresponding to a translation applied on all
the geometrical points.

Three different models are used for the comparison and the model parameters are
given in Table 9. The influence of the variance and covariance length is shortly
shown in the following. The accuracy of the reconstruction, which is used to
truncate the expansion of the PCA, is kept at 99%, which was proven to be suffi-
cient [7]. The reader may refer to [7] for more details.

Influence of Variance.

Comparison of models A and B, where model B varies the variance by a factor 100,
shows on the example of the first 30 eigenvalues that their cumulative contribution
is identical, as seen in Fig. 18. This means that the order of the modes is not
influenced by the variance magnitude, but it scales by a factor 100.

Influence of the Covariance Length.

Comparison of models A and C, where model C varies the covariance length by a
factor 2 shows at the example of the first 20 eigenvalues that the cumulative value
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Fig. 18 Order, magnitude, and cumulative value of eigenvalues comparing model A and B
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Fig. 19 Order, magnitude, and cumulative value of eigenvalues comparing model A and C

varies with the number of modes, when comparing model A and C as seen in
Fig. 19. This is inherently different from the influence of the variance. With an
increasing covariance length more eigenvalues are needed to reach the same
reconstruction accuracy as in the reference case of model A.

Table 10 shows the first four moments for the pressure ratio and the isentropic
efficiency. The mean value for the pressure ratio and the isentropic efficiency does
not change by more than 0.03%. The response surface is quasi-linear, given the
maximal deformation imposed. For both models, the reduced skewness is close to
zero and the reduced kurtosis is close to 3. This indicates that the resulting PDFs are
close to Gaussian distributions.

The shape of the PDF can also be deduced from the linearity of the response
surface. Indeed, as the input PDF is a Gaussian distribution and that the response
surface is linear, it can be concluded that the output PDF is close to a Gaussian
distribution. This information is important as it can allow to limit the UQ study to a
sparse grid level 1 instead of a sparse grid level 2, which as seen above results in a
decrease in the computational cost.

Figure 20 shows the reconstructed PDF for the pressure ratio and the isentropic
efficiency for models A and C. The PDF reconstruction shows that the model with a
smaller covariance length leads to a wider PDF. This is due to the fact that the
cumulative value of the eigenvalues grows slower for model C, i.e., the most
influential eigenmodes for model C have higher eigenvalues compared with model
A (except for mode 1), and thus larger deformations than the most influential modes
for the model A.
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Table 10 First four moments for pressure ratio for models A and C

Cov. length (m) Mean Variance Reduced skewness Reduced kurtosis
0.05 2.0860 1.0180E—-05 0.0854 2.8336

0.025 2.0857 1.7566E—05 0.0420 2.9447

Ratios 0.05/0.025 (%) 1.0002 57.953 203.441 96.227
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Fig. 20 PDF reconstruction for pressure ratio (left) and isentropic efficiency (right) for models A

and C

Influence of the Mode Selection for the UQ Study.

As shown in Fig. 21, the most influential modes on the geometry are not necessarily
the most influential modes on different output quantities. This gives particular
importance to the percentage of surface reconstruction used, and reconstruction
accuracies 95, 99, and 99.9% are compared.
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Fig. 22 Reconstructed PDFs 95, 99, and 99.9% of the geometry variation kept for the total
pressure ratio (left) and isentropic efficiency (right)

Figure 22 shows the reconstruction of the PDFs accounting for 95, 99, and
99.9% of surface reconstruction accuracy for total pressure ratio and isentropic
efficiency, and it is clearly seen that 95% of surface accuracy is not sufficient and
99% must be recommended based on this work.

Conclusions

An industry-ready uncertainty quantification tool chain is developed and success-
fully applied to both simultaneous operational and geometrical uncertainties and to
uncertainties resulting from manufacturing variability, where manufacturing
uncertainties are characterized by correlations of the manufactured surfaces. The
non-intrusive probabilistic collocation method is combined with a sparse grid
approach to drastically reduce the computational cost. If the mean and variance of
output quantities are sought, 10 simultaneous uncertainties can be propagated by
running 21 runs of a 3D CFD code making use of the sparse grid technique,
whereas without sparse grid technique 59049 CFD runs would be needed. The
sparse grid technique is thus one of the key features that make UQ in industrial
applications feasible. A second required element is the automatization of the entire
simulation chain, from uncertainty definition, simulation setup, post-processing and
in case of geometrical uncertainties, geometry modification and re-meshing. This
process is fully automated including the post-processing of the UQ simulations,
which consists of output PDF reconstruction and the calculation of scaled sensi-
tivity derivatives, very useful for the understanding and analysis of the simulations
or dimension reduction of the problem.

This tool chain is applied to the rotor 37, demonstrating its capability of handling
many simultaneous operational and geometrical uncertainties in turnaround times
significantly below the UMRIDA quantitative objective of less than 10 h for 10
simultaneous uncertainties on 100 cores. It is shown that a level 1 sparse grid is
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sufficient if the mean and variance of output quantities are needed and a level 2
sparse grid is sufficient for the reconstructed PDF shape for most engineering
applications. Manufacturing uncertainties are treated in two ways, first, where the
manufactured surface is considered as a random field and the covariance matrix of
the random field introduces the correlation of the individual surface points and
second, as correlated engineering parameters. In both cases, a principal component
analysis is used to transform the uncertainties into an uncorrelated set of random
variables. Both studies show that the variation of manufacturing uncertainties is
rather small due to the imposed manufacturing tolerances and output PDFs are
generally close to Gaussian. A level 1 sparse grid can be used for the propagation of
manufacturing uncertainties. It is shown that the eigenmodes which have the big-
gest influence on the surface reconstruction are not necessarily the modes with the
biggest influence on the prediction of output quantities and that the most influential
modes vary between quantities as shown at the example of isentropic efficiency and
total pressure ratio. As a conclusion, a surface reconstruction accuracy of 99%
seems necessary for the purpose of UQ studies on manufacturing variability.
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Non-intrusive Uncertainty Quantification ®
by Combination of Reduced Basis Sneet o
Method and Regression-based

Polynomial Chaos Expansion

Mehrdad Raisee, Dinesh Kumar and Chris Lacor

Introduction

Uncertainty in the design and operation of engineering problems may arise from
various sources. The uncertainties in physical properties of materials and inevitable
randomness in boundary conditions and geometries, as well as physical models
uncertainties, are a few examples of such uncertainties that can significantly restrict
the reliability of deterministic designs. Gas, steam, wind, and hydraulic turbines are
examples of engineering devices that their operational condition and geometry might
be uncertain. Design of these turbomachines using deterministic computations may
fail in the presence of uncertainties. For a reliable design based on computational
fluid dynamics (CFD) predictions, it is necessary to include all sources of uncer-
tainty in the analysis and design process. However, CFD simulation of flows in real-
world engineering problems requires a fine 3D computational mesh, small time-step,
and high-dimensional stochastic space in the case of a large number of random vari-
ables. These dramatically increase the computational cost which is not desirable for
design proposes, highlighting the need for employing robust numerical schemes for
stochastic analysis of complex industrial flows. While efficient numerical methods
for the spatial and temporal discretization of the Navier—Stokes equations are well
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developed, effective numerical schemes for stochastic discretization are still rare
(see, e.g., [1, 2]).

In the literature, various techniques have been proposed for uncertainty quantifi-
cation (UQ). The Monte Carlo (MC) approach [3] is widely used for UQ because of
its simplicity and its superior property that the convergence rate does not depend on
the number of stochastic dimensions. Unfortunately, the conventional MC methods
converge slowly and often require a large number of realizations to achieve reason-
able accuracy and thus are impractical for problems with a large number of uncer-
tainties. Over the recent years, a number of other UQ approaches have been devel-
oped to represent and propagate uncertainties in engineering problems with a large
number of uncertainties. Some examples of commonly developed UQ methods are:
the multi-level Monte Carlo [4], the method of moments or the perturbation method
[5], and polynomial chaos expansion (PCE) [6, 7]. All these techniques have pos-
itive and negative features, and no single technique is optimal for all applications.
Following our previous work on UQ [8, 9], we focused on the PCE approach to
model uncertainty propagation. PCE methods have been successfully applied to var-
ious structural and solid mechanics problems by several researchers [6, 10]. Poly-
nomial chaos (PC) schemes have also been employed to fluid flow and heat transfer
problems [7, 8, 11-13]. The polynomial chaos representation can be implemented
through either intrusive or non-intrusive methods. The intrusive approach involves
the substitution of all uncertain variables in the governing equations with the polyno-
mial expansions consisting of P+ 1 = (p + n,)!/p!n,! unknown coefficients, where
ng is the number of stochastic dimensions and p is the polynomial order. Taking the
inner product of the equations yields P + 1 times the number of original equations
that can be solved by the same numerical schemes applied to the original deter-
ministic system. This requires the modification of the CFD codes, and it may be
difficult, expensive, and time-consuming for many CFD problems. Moreover, the
sources of most commercial codes are not accessible, and thus, it is not feasible
to implement the intrusive PC approach in such deterministic codes. For these rea-
sons, here, we focused on non-intrusive polynomial chaos (NIPC) methodology for
UQ. The NIPC method performs repeated simulations using deterministic solver
on limited number of samples which are chosen properly. Then, the polynomial
chaos expansion of output is constructed using deterministic solver evaluations. The
two main NIPC approaches used for UQ in CFD are spectral projection (sampling-
based and quadrature-based) and regression-based methods. The application of these
NIPC schemes to model stochastic problems can be found in [14, 15]. In the present
study, the regression-based NIPC scheme, introduced in section “Regression-Based
Polynomial Chaos Expansion,” is used for the evaluation of PCE coefficients. The
main weakness of all NIPC methods is the curse of dimensionality. In recent years,
some alternative methodologies such as sparse polynomial chaos [16], sparse grid
techniques [17], compressive sampling [18], and reduced models [1, 2] have been
developed to break the curse of dimensionality. In the framework of the EU FP7
project UMRIDA, this study focuses on the development of an efficient reduced basis
model for UQ. In recent years, several model reduction techniques have been pro-
posed for uncertainty quantification. Two examples of such works are [1, 2]. In [2],
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a generalized spectral decomposition (GSD) was proposed that gives the reduced
basis independent of the stochastic discretization scheme. In this method, the solu-
tion of the stochastic problem is first approximated as the summation over the product
of deterministic functions and random variables. The reduced basis functions then
appear as the solutions of a pseudo-eigenvalue problem whose dominant eigenspace
is associated with the desired optimal basis. In the final form of GSD, the solution
of only a few uncoupled deterministic problems and a few stochastic algebraic equa-
tions is required for the computation of deterministic functions and random variables.
As shown in [2], the implementation of GSD to a class of stochastic partial differen-
tial equations (SPDE) leads to drastic computational saving, although it does not cir-
cumvent the curse of dimensionality. In [1], an intrusive model reduction technique
was proposed for chaos representation of a SPDE to tackle the curse of dimensional-
ity. They applied it successfully to a 2D solid mechanics problem with randomness
in the elastic modulus where for a third-order PC (p = 3), they could reduce the num-
ber of basis functions to 5 as compared to P = 165 in the “standard PCE” using a
basis of the classical polynomials of the Askey scheme.

In this study, a regression-based non-intrusive reduced basis technique is devel-
oped. The model can be interpreted as a multi-level/multi-fidelity approach, where
many low-fidelity model evaluations are combined with few high-fidelity evalua-
tions to ensure accurate results at a lower CPU cost. In the framework of polynomial
chaos, such ideas are also explored by Palar et al. [19] and Ng and Eldred [20].

The remaining part of this paper is organized as follows: In section
“Regression-Based Polynomial Chaos Expansion,” the regression-based polynomial
chaos expansion is described. The model reduction methodology is presented in
section “Reduced Basis Methodology.” In section “Results and Discussion,” the
numerical results are presented and discussed. Finally, the main findings of the
present paper are summarized in section “Conclusions.”

Regression-Based Polynomial Chaos Expansion

Let assume u(x; &) is the response of a stochastic system with n, random variables
&= {¢ }:1;1' In PCE, the uncertain output u(x; €) is decomposed into separable deter-
ministic and stochastic components as:

P

ux:) = ) @, &), )

i=0

where the total number of output modes, P+ 1 = (p + ny)!/p!n !, is a function of
the order of polynomial chaos (p) and the number of random dimensions ().

The y;(&)’s are orthogonal polynomials with respect to the probability density
function (PDF) of input random variables &:
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(W) = (w})s;. )

The quadrature-based NIPC scheme may be used for the evaluation of polynomial
chaos expansion. However, the application of tensor—product quadrature approach
for multi-dimensional problems suffers the curse of dimensionality since the required
number of model evaluations grows exponentially with the number of random
dimensions n; (i.e., (p + 1)"). Although sparse quadrature rules are more efficient,
still they are impractical for the stochastic problems with high dimensions. A more
affordable NIPC scheme to find the response surface of the output is the regression
method. The regression-based NIPC method starts with Eq. (1). To establish a closed
system, P + 1 sample points (&°,s = 1,2, ..., P + 1) are generated in the stochastic
space for a given PCE with P + 1 unknown coefficients and the stochastic function,
u(x; £), is evaluated at these sampling points. This yields the following linear system
of equations:

wol) o wiE) o € () u(x; €'

V@) w@) o we@) ||ww | =] wae | 3)
wo(ép+') - w,-(-’,"P Hy L WP(éP D) |ue e
\ ~ JRK-J N, e’
PE) v b
or
YU =b. €]

The least squares solution of the linear system (3) is U = (WT%)~'¥7h.

Consistent with the literature (e.g., Hosder et al. [21]), we found that oversampling
with 2(P + 1) model evaluations is necessary to obtain satisfactory results for the
PCE. In principle, the sample points can be chosen freely. However, while random
sampling is the simplest, its major disadvantage is that the sample points may not
be space filling. This will have a repercussion on the accuracy of the results. An
alternative to the random sampling technique is the Latin hypercube sampling (LHS)
which offers better space filling characteristics. The basic idea is to divide the range
of each random variable into n bins of equal probability and then to generate N
samples such that, for each random variable, no two values should lie in the same bin.
However, LHS suffers from a major difficulty. Indeed, the accuracy of the LHS-based
estimates cannot be increased incrementally, i.e., by adding new sample points to
the already existing LHS sample set, since the new set will not be a Latin hypercube
anymore. An efficient method to build adaptive space filling design is the quasi-
random sampling (e.g., Hammersley, Halton, Sobol). In quasi-random sequences, a
deterministic sequence of points is generated. The main idea of using a quasi-random
sequence is to reduce the discrepancy of the sets of points. In the present work, the
coefficients of the PCEs are estimated by the regression-based NIPC, using the Sobol
sampling scheme [22].
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Due to the orthogonality of the basis, it is straightforward to show that the mean
is (u(x; €)) = u,, and the variance of the response reads as:

P P
6% = Var <Z Mi(x)l//i(f)> = Z u?(WiWi>' ®)

i=0 i=1

Reduced Basis Methodology

The above classical PCE (i.e., Eq. (1)) does not represent an optimal PC representa-
tion of u(x; &). The optimal chaos expansion is the Karhunen-Loeve (KL) expansion
(also known as proper orthogonal decomposition (POD)). However, this requires
the knowledge of the covariance of the solution, which is unknown. Assuming that
the behavior in spatial and random space can be decoupled, the covariance can be
obtained via inexpensive calculations on a coarse grid. The size of coarse grid, nec-
essary for the estimation of the optimal basis, can be identified through mesh adap-
tation in the spatial domain of the problem. Next, the problem can be solved on a fine
mesh using the previously defined optimal basis {z,(§)}!", where m is the number
of dominant eigenvalues. This indicates that the dimensionality of the KL expansion
can be reduced.

The first step in the model reduction scheme is to find an optimal basis using
POD, a well-known procedure for extracting basis functions using an ensemble of
realizations. To this end, suppose, on a fine grid, expression (6) represents an optimal
chaos expansion of the stochastic field u(x; &):

m

ux; £) — (u(x; §)) = Y i,0z(8), (6)

i=1
where the mean function is the coefficient of the zeroth-order basis (i.e., {(u(x;&)) =
ity) and {z;(§)} ) are the m + 1 dominant modes, forming the optimal basis.

On the coarse grid, the covariance matrix C(xi,xj) of the stochastic field can be
obtained from:

P

Clxox) = ) u(x)u () (w), ()

k=1

where u,’s are the classical PCE coefficients obtained using Eq. (3) on the coarse
grid.

The corresponding eigenvalues v; and eigenfunctions ¢;(x) are the solution of the
following eigenvalue problem:

Co, =v,p,. ®)
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For a coarse mesh with n grid nodes the n X n covariance matrix has the following
form:

IRTC 201070 S SR TN 2 TR M)
C= Zle ’fik(x,')”k(x1)<ll/k2> Z£=1 uk(xi)uk(xn)<w,f> . &)
D RRTIIC T TR0 S YT B (779

For a large value of n > P, the solution of the above eigenvalue problem is time-
consuming and requires a large amount of memory for the data storage. To overcome
this problem, one can notice that the covariance matrix C is symmetric and thus can
be decomposed as:

uy (xy) <W12> o up(Xy) (W;%)

C=|uk) <W12> =+ Up(x;) (W,%)

()W) - upCe,)\/(wp)

- 7/
"

Y(nxP)

uy(x;) <ll/12> o Uy (x;) <ll/12> e ug(x,) <W12>
® : : : : : ) (10)
up(x,) <‘I/;27> “o up(X;) <Wg> o up(X,) <II/1%>

~-
YT (Pxn)

where the P X n matrix Y7 is the transpose of the n X P matrix Y.
Substitution of the above decomposition in Eq. (8) and multiplication by Y7 yields:

Y'Yy(Y'¢,) = v(Y' ¢,), (11

This indicates that Y7Y has eigenfunctions Y7 ¢, and the same eigenvalues as C.
However, YTY is only a P X P matrix, and thus, it is less expensive to find the eigen-
values and corresponding eigenfunctions than from the original covariance matrix
C. This makes the size of the eigenvalue problem independent of the coarse grid
size. By computing the eigenvalues from Eq. (11), the upper limit m in Eq. (6) can
be found by the size of the dominant eigenspace (11) such that Z:’;l v;/ 2. v; is suf-
ficiently close to unity. In this work, the upper limit m is chosen to be the minimum
integer such that ). v,/ v; > € for a given ¢ (for instance € = 0.99).

Having obtained u;(x) from the regression-based NIPC (Eq. 3) on the coarse grid
and eigenfunctions ¢;(x) from the solution of the eigenvalue problem (11), the set
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of optimal basis functions {zi(é)}l'f; o, can now be recasted as a linear combination of
the set of classical polynomial chaos functions; {y;(&) }f: , using the following scalar
product:

.
2(8) = [0 &) — (u@). 6,01 = Y. azyi(€). (12)

J=1

where the coefficients a; are obtained via the scalar product:

a; = / u;(x);(x)dx. (13)
R

The m + 1 unknowns i,’s in the optimal expansion can be obtained by substitu-
tion of m + 1 random vectors (&°,s = 1, ...,m + 1) and the corresponding stochastic
outputs u(x; &%) in Eq. (6). This yields the following linear system of equations:

20@&") o (€ ez, (ED ity () u(x; &
w&) @) 2@ || aw|=] wme |. (14)

@) 2@ 2, @Y Na@)  |ue e

/

Using Egs. (12), (14) can be re-expressed as:
1 P 1 P 1
Zo(g ) e Zj:l a;jwj(g ) e Zj:]amjwj(g ) ﬁo(x) u(x;gl)
20@) - XL @) - X () B | =| ueeny | as)
Z0(6'm+1) ZJP;I aijl.llj(gm+1) ZJZ] amj'q/j(gm+1) i, (x) u(x;§m+1)

. J/

()

The matrix Z, containing the optimal basis, is already known from Eqgs. (3) and (13),
and the right-hand side of Eq. (15) can be found from 7 + 1 runs of the deterministic
solverat &', ... &%, ...,£™ " on the fine mesh. Thus, the expansion coefficients i;(x)
are obtained by the solution of the above linear system. Here, again oversampling is
required. Following the approach used in the regression-based NIPC analysis, 2(m +
1) sample points were found adequate to give acceptable results. As pointed out, the
coefficient of the zeroth-order basis (z,(&)) is the mean output (i.e., (u(x;&)) = i),
while the variance is expressed as:
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m

62 = Zﬁ?(zi,zi), (16)

i=1

where (z;,7;) = v;.

Results and Discussion

In the following subsections, numerical results for three benchmark stochastic prob-
lems, namely (I) Ackley function, (I) 2D RAE2822 transonic airfoil, and (IIT) 3D
NASA rotor 37, are presented and discussed.

Highly Irregular Ackley Function

The 2D Ackley function is a challenging test function for the validation of the devel-
oped reduced basis methodology due to its complex structural distribution. The
stochastic Ackley function is defined as:

uE) = —20(1 +0.1&5) (exp [—0.2(1 +0.16)V0.502 + yZ)] ) 17)
—exp (0.5 [cos2z(1 + 0.1&))x) + cos(2z(1 + 0.1&)y)] ) + 20 + e,

where function coefficients (shown in red in Eq. (17)) are uncertain and the asso-
ciated random variables & = {:fi}?:l are uniformly distributed over [—1, 1]> with a
CoV of 0.0577.

Figure 1 shows the deterministic Ackley function (i.e., & = 0) on different grids.
As expected, the Ackley function is highly irregular in 2D spatial space and is char-
acterized by a nearly flat outer region and a large hole at the center. The mesh refine-
ment from 5 X 5 to 160 X 160 reveals more details of the function. It was found that a
finer mesh with 400 x 400 nodes is necessary to reproduce the fine-scale structures
of the Ackley function, and thus, such a fine mesh is employed for the fine-scale
analysis. Figure 2 shows the distribution of the normalized eigenvalues in the linear
and semi-log scales when different grids are used for the coarse-scale analysis. A
high polynomial order (p = 13) is used for the coarse grid analysis. This is because
aregression-based NIPC analysis indicated that such a high polynomial order is nec-
essary to reproduce the details of the mean, variance, and skewness fields. As shown
in Fig. 2, the eigenvalues decay rapidly. Thus, only a limited number of modes (or
eigenvalues) are needed in the KL expansion. The number of chosen eigenvalues
depends on the accuracy of the statistics. For higher accuracy, a larger number of
modes should be taken into account. In Fig. 2b, as expected, the normalized eigen-
values distributions decrease slower with the finer grids. Results show that for this
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Fig. 1 Representation of Ackley function in different grids
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Fig. 2 Normalized eigenvalues using different coarse mesh sizes for the stochastic Ackley func-
tion: a linear scale; b semi-log scale

nonlinear test case, an accurate solution is obtained when a 40 X 40 mesh is used
for the coarse grid analysis. In Fig. 3, the distributions of mean, variance, and skew-
ness fields returned using the reduced basis method are compared with the distribu-
tions obtained using regression-based NIPC. It is observed that with a reduced basis
of dimension m + 1 = 15 (correspond to € = 0.99999999), the fine-scale results
are very close to those of the full NIPC. With reduced basis size m + 1 = 15, the
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Fig. 3 Comparison of mean, variance, and skewness fields for the Ackley function. First row:
mean field; second row: variance field; third row: skewness field

average relative error (€,) in mean, variance, and skewness is of the order of 1073,
1073, and 1072, respectively. Note, however, that for this case, the full PC analy-
sis needs 2(P + 1) = 1120 expensive function evaluations. Further analysis (not pre-
sented here for the sake of brevity) shows the reduced basis methodology is more effi-
cient than the classical PCE by more than one order of magnitude. Further efficiency
improvement can be achieved by using a smaller € (e.g., € = 0.99) and increasing the
allowable relative error in the statistical quantities. More details can be found in [23].

2D Transonic RAE2822 Airfoil

The 2D transonic flow around the RAE2822 airfoil represents a challenging config-
uration to investigate the performance of the developed reduced-order model due
to the shock formation. The nominal flow conditions; free stream Mach number
M = 0.734, angle of attack @ =2.79°, and Reynolds number Re = 6.5 x 10° are
considered for this test case. For the deterministic solution of the RAE2822 using
Ansys/Fluent, the second-order upwind scheme is employed for the approximation
of nonlinear convective terms in all transport equations. The Spalart—Allmaras tur-
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Fig. 4 The coarse and fine C-type meshes with: 3.0 x 103 and 4.4 x 10* grid nodes

bulence model is used for the predictions. To assess the accuracy of the results, a grid
study was performed with four different C-type meshes with, respectively, 7.5 x 102,
3.0x 10, 1.1 x 10*, and 4.4 x 10* grid nodes. A coarse mesh with 3.0 x 103 and the
finest mesh with 4.4 x 10* grids are shown in Fig. 4. It was found that the predictions
on the finest mesh are grid independent and thus are used for the fine-scale analysis.
The geometry of the airfoil is assumed to be subject to random deformations, and
variations of the airfoil boundary are modeled using the following Gaussian shaped
covariance:

(Sl- ) j)z

Cov(s;,s;) = o(s;)o(s;) exp e (18)
where s; and s; are positions along the airfoil, b is the correlation length, and o is
the variance. For the RAE2822 airfoil, 0 < s < 2.032. Position s = 0 corresponds
to the leading edge and increases along the upper surface. A constrained standard
deviation, o(s) = 6'S(s), is considered to freeze the leading and trailing edges of
the airfoil. The constraint functions on the upper and lower walls of the airfoil are,
respectively, expressed as:

sin<ﬂ> 0<s<s,

S(s) = 19)

sin [@] 5, X8s<s,+5
1

wheres, = [ dsands, = [, ds.
: upper . lower ™" . . .
Using KL expansion, a stochastic process of a given covariance function can
always be approximated by a finite sum of products of deterministic spatial func-
tions and uncorrelated random variables. The geometrical uncertainty at the airfoil

surface can then be expressed as:

X(5,8) # X(5) + ) A ($)Eh (20)
k=1
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where X(s, ) is the airfoil coordinate at sample sample &, X(s) is the airfoil mean
coordinate, 71 is a normal vector, and ¢, (s) and 4, are eigenvalues and eigenfunctions
of the covariance kernel, respectively.

A case with the correlation length » = 0.05 and the standard deviation ¢’ = 0.001
is considered for the present analysis. The random variables are set to be uniformly
distributed over the stochastic space [—1, 1] where n; is the number of indepen-
dent random variables. The first ten highest modes of KL expansion are consid-
ered as uncertain for the UQ of the RAE2822 test case. The coarse-scale analysis
is performed on a mesh with 3.0 x 10° nodes (shown in Fig.4), a grid size four-
teenth times smaller than the finest grid size. A classical PC analysis of third order
using regression-based NIPC is performed on the coarse grid to get the covariance in
stochastic space of the solution. In this analysis, the covariance matrix is built using
all primitive variables (p; pU; pV; pE). The criteria of the selection of the coarse grid
are based on the analysis presented for the Ackley function. Starting from the POD
analysis on a very coarse mesh, the mesh size is gradually increased until sufficient
convergence of the POD eigenvalues. This is illustrated in Fig. 5 where the normal-
ized eigenvalues are shown for four different mesh sizes with 7.5 x 10, 3.0 x 103,
1.1 x 10*, and 4.4 x 10* grid nodes. It is observed that already on the 3.0 x 10° grid,
the eigenvalues have converged. A classical PC analysis of third order using regres-
sion is performed on the coarse grid to get the covariance in stochastic space of the
solution. In the regression approach, a total of 572 samples are needed as the classical
PCE contains 286 polynomials. The Sobol quasi-random sequence is used to gener-
ate these sample points. For € = 0.99, the size of the reduced basis is 22, requiring
44 deterministic CFD calculations on the fine grid. In Fig. 6, the results (pressure
coefficient) obtained with the reduced-order model and with the full PC are com-
pared. It is observed that the results of the reduced-order model are in acceptable
agreement with the results of the full model. On average, the errors in the mean C,
and its variance are less than 0.2% and 5.0%, respectively. As shown in [24], for

(a) Eigenvalues (Linear scale) 0 (b) Eigenvalues (Semi-log scale)
3
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Fig.5 Normalized eigenvalues from the solution of four different grid sizes analysis
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Fig. 6 Comparison of pressure coefficient (¢ = 0.99): mean and std deviation using classical PC
and model reduction method

the present test case, the reduced basis method (using € = 0.99) is almost 67 times
more efficient than the classical PC method. A detailed discussion on the effect of
criterion (€) on the accuracy of the reduced basis method is presented in [24]. A case
where the covariance matrix in the reduced basis approach is build using only one
primitive variable (e.g., pU) is also analyzed, and similar results were obtained.

3D Transonic Rotor 37

For the validation of the developed reduced basis approach, uncertainty quantifica-
tion of the rotor 37, shown in Fig. 7, is further considered. The rotational speed of
the rotor is 17188 rpm, and the outlet static pressure is fixed at 110000 Pa. Combina-
tion of geometrical and operational uncertainties is considered for this test case. The
geometry of the rotor blade is parameterized into sections of 2D airfoils using Auto-
Blade of NUMECA. The rotor 37 blade is parameterized into three sections of 2D
airfoils (at 25, 50 and 75% of the blade height). For each airfoil section, leading and

Fig.7 Meridional view of : Tip gap = 0.356
the rotor 37 blade with tip f
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Fig. 8 Mean and std deviation of the pressure distribution around the rotor blade using reduced
model for PC order 2

trailing edge angles are considered as uncertain. To model geometrical uncertainty
around the blade, the uncertainty is also imposed on four half-thickness parame-
ters (coefficients of half-thickness Bezier curve) of each airfoil section. In addition
to these geometrical uncertainties, the tip clearance, the inlet total pressure profile,
and the static outlet pressure are also considered uncertain. As a result, a total of 21
uncertain parameters are used for the uncertainty quantification of the NASA rotor
37. Symmetric beta distributions (¢ = f = 4) are chosen for all uncertain variables.
The details of this test case are given in [24]. Based on experience with previous test
cases, a coarse grid with 1.04 x 10° cells is chosen. With a fine grid of 7.66 x 10°
cells, the fine-to-coarse grid ratio is almost 7.5. Using a PC order of 2,506 samples on
the coarse grid allows to get the covariance matrix. Based on the results from the pre-
vious test case, only the static pressure was used to construct the covariance matrix.
Similar to the previous test case, a very fast decay was observed in eigenvalues.
The € is set to 0.9999 to capture most of the stochastic information from the coarse
grid. The size of the reduced basis is then 21, requiring only 42 deterministic CFD
simulations on the fine grid. Figure 8 compares the pressure distribution around the
blade at mid-span height with the classical polynomial chaos method for the second-
order PC. The mean (left) and the standard deviation (right) of the static pressure are
shown. It can be observed that both methods produce similar results. Further analy-
sis of the present test case in [24] indicates that the reduced basis method almost is
5 times more efficient than the regression-based NIPC.
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Conclusions

In this paper, an efficient non-intrusive model reduction technique for PCE is pre-
sented and discussed. The proposed algorithm relies on the fact that the ideal basis
for a stochastic field follows from its POD decomposition. This, however, requires
the covariance structure, which in the present approach is obtained from the PCE
on a coarse grid, assuming hereby that the stochastic behavior is largely independent
from the spatial scales. The size of the ideal basis that results depends on the number
of POD modes that are accounted for but is always significantly smaller than the full
PCE basis, especially for high stochastic dimensions. The reduced basis approach
was successfully applied to: (1) a highly irregular analytical function, (2) the 2D tran-
sonic RAE2822 airfoil with ten geometrical uncertainties, and (3) the 3D transonic
NASA rotor 37 with 21 geometrical and operational uncertainties. The numerical
results show that the reduced basis method is able to produce acceptable results for
the statistical quantities. The computation time of the reduced-order model is found
to be much lower than that of the classical PCE.
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Alberto Clarich and Rosario Russo

Introduction

In many Uncertainty Quantification (UQ) problems, the number of uncertain
variables may cause the practical impossibility of building a numerical model which
takes into account all the uncertainties of the problem at hand, for a Robust Design
Optimization (RDO). The reduction of the number of variables and the reduction of
the number of samples to be calculated are the two key issues to apply robust
methodologies in real-world design problems.

Screening analysis techniques can help to identify the most important variables
and discard the less important, reducing the number of design points to evaluate.
Here we will discuss three different methodologies: the smoothing spline ANOVA
(SS-ANOVA) algorithm, the principal component analysis (PCA) methodology,
and the Morris screening technique.

Different sampling techniques can be used in Robust Design Optimization. The
classical are Monte Carlo sampling and Latin hypercube sampling (LHS). Recently,
a new technique based on the Polynomial Chaos Expansion (PCE) has proven to be
very efficient reaching the same accuracy with less number of samples. Here a
variant, the Adaptive Sparse Collocation PCE, is presented, which enables to
reduce the number of samples to the only ones needed to have a good estimation of
the robust design characteristics.
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Screening Analysis Implementing SS-ANOVA

Several tools dedicated to variable screening analysis can be used to determine
which uncertainty parameters are really important in a problem and which not.

Correlation coefficient (Pearson or Spearman [1]) or standard ANOVA is useful
to understand the degrees of correlation between two series of data, one containing
the uncertain parameters and the other containing the output response of a given
dataset. The limitation is that these statistical methodologies are fully reliable only
when the samples are representative enough, and this occurs, typically, when the
database is produced by a kind of Full Factorial Design of Experiments (DOE),
whose size increases exponentially with the number of variables.

Generally, databases coming from experimental tests may contain scarce data
and could not be produced by a given scheme; therefore, a methodology which is
more flexible and applicable also to scarce data is often necessary. An efficient
methodology, tested extensively during the UMRIDA project, is called smoothing
spline ANOVA (SS-ANOVA) [2]. SS-ANOVA models are a family of smoothing
methods suitable for both univariate and multivariate modeling and regression
problems characterized by noisy data, given the assumption of Gaussian-type
responses.

In particular, SS-ANOVA is a statistical modeling algorithm based on a function
decomposition similar to the classical analysis of variance (ANOVA) decomposi-
tion and the associated notions of main and interaction. Each term—main effects
and interactions—can be used to reveal the percentage of its contribution to the
global variance, since in a statistical model the global variance can be explained
(decomposed) into single model terms.

The main advantage respect to other statistical methodologies (like standard
ANOVA) relies on the fact that the relative significances of each term (therefore
main effects and interactions of the variables) are not just computed directly on the
available database, with the limitations underlined above, but are contained in the
regression model itself defined by the methodology, so they can be computed
analytically even from a limited and partially correlated database. In this paragraph,
we report the basic formulation of the methodology.

If for the moment we consider a generic univariate regression problem for the
function f{x): [0, 1] € R — R, we can write the following expression:

fi=f(x)+e, i=1, ...,n (1)

where n is the number of designs (sample set size) and &; ~ N (0, o) represent
independent random errors normally distributed. A suitable solution to the
regression problem could be stated as a constrained minimization problem that can
be expressed in Lagrangian terms as:
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minL(f)+ (/) @)
where L(f) is defined as minus log likelihood of the model f(x) given the data, to be
minimized to maximize the data fit, and J(f) is defined as a quadratic roughness
functional, to be subjected by a constraint—J(f) < p—that can be used to control
the overfitting (a large roughness guarantees a smoother model, while smaller
values imply rougher functions but with better agreement to the data).

The procedure of finding a proper function estimation by minimizing Eq. 2 is
called penalized likelihood method: In fact, the J term represents a penalty on the
roughness. This methodology is also referred to as penalty smoothing (or smoothing
method with roughness penalty), and 4 takes the name of smoothing parameter.

In particular, with Gaussian-type responses, Eq. 2 can be rewritten as:

1

min | 3 (i=f )+ I (0] s 3)

0

This means that the likelihood expression of the model takes the usual form of a
least square function, while the penalty term (roughness) contains the second
derivative of the function f(x)—f"(x) = d*f/dx>—and takes therefore the aspect of a
measure of the curvature of the function over the domain. It can be proved [2] that
Eq. (3) corresponds to the definition of a natural cubic spline (i.e., a piecewise
cubic polynomial, with the knots at all of the distinct values of the sampling set
{x;}); therefore, the methodology takes the complete name of Cubic Smoothing
Spline ANOVA.

By extension to a multivariate problem of the type fix): [0, 1]V ¢ RY = R,
Eq. 3 will take the general form of:

[Jﬁ (xj)} dn (“)

o~~~

1 n N
min- 3 (f-f(:)’+ 3 4
i=1 j=1

If we assume for simplicity that the regression model fix) can be expressed as a
sum of N independent components f;(x;), each one function of a single variable x;,
the regression model would take into account only main effects (the effect of each
single variable) and not interaction effects.

A more complete regression model, which has to consider also interaction
effects, will include in f(x) also the interaction terms f;;(x; x;) keeping unchanged the
general formulation of the least square functional (first term of Eq. (4)), while the
roughness functional J(f), accordingly to the “reproducing kernel Hilbert space”
theory, can be expressed as:

A1) =4 L 0701 5
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with <f, f> inner product and A, 6; smoothing parameters, to be determined by a
proper data-driven procedure, such as the generalized cross-validation (GCV), as
described in [3]. The number of decomposition terms p is equal, considering all the
interaction terms, to N(N — 1)/2 with N number of variables, while it would be
equal just to N if only main effect terms were considered. Since any term is an
additional degree of freedom for the regression model f{x), the number p indicates
also the minimum number of sampling points needed to solve Eq. (4).

As a conclusion, independently whether only main terms f;(x;) or also interaction
terms f;(x; x;) are considered, the regression model f{x) will always take the linear
combination form of spline basis functions f; as:

f)= 2 (6)

k=1

We can therefore apply the definition of internal product projecting the f(x) to
any function f; obtaining the value of its contribution (or probability), by the
(normalized) expression:

_ f)
I£1?

(7)

Tk

Expression (7) is called contribution index =, and expresses the relative sig-
nificance of the different terms composing the model, therefore the contribution of
each variable main effect or interaction effect. The normalization guarantees the
identity >7_, m=1.

There is still one condition important to be verified in order to guarantee the
reliability of the results, which is that the single f; must not be too much correlated,
situation that may occur for instance when the sample size is too low or bad
distributed or input variables are actually correlated. The measure of correlation or
collinearity can be given by the collinearity indices K, defined as:

(firSr)
K, = 8
TV IRIP ®)

These indices have the aspect of the diagonal terms of a normalized correlation
matrix; therefore, if the components are almost orthogonal to each other, the
collinearity indices have to be close to 1. Conversely, if the collinearity indices are
much greater than 1 (K; > 1), the values of the relevant z; indices may become
unreliable.
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Screening Analysis Using Principal Component Analysis

In many cases, a noisy database may reveal a hidden simplified structure that
underlies it, for instance, some variables may be redundant or the uncertainties may
be correlated for many reasons. It may be not always possible performing a
screening analysis to understand if some uncertainties may be directly excluded by
the analysis, those variables being not significant for the problem, but more often
(and in particular when experimental data only are available) it might be possible to
express the same complexity of the problem by using a different basis of coordi-
nates, characterized by a smaller dimension than the original basis. As an illus-
tration example, we can consider the database of Fig. 1.

The points of the chart represent different samples of the database, which is
defined by three variables X, y, z reported in the axis. The three variables may
represent three uncertainties of the system, and we assume that the database is
obtained by an experimental campaign.

It is possible to note how actually the points lie on a plane, which can be
represented by two coordinates only, that we call PC1 and PC2. The definition of
the database through the new coordinates system is technically a change of basis,
and the advantage of this new formulation is that we can build a numerical model
characterized by two uncertainties only instead of three, with a significant reduction
of the required sampling size for an accurate Robust Design analysis.

Of course the situation above is very peculiar, because it is rare to find cases for
which the uncertainties may be so highly correlated, but what is important is to find
a general methodology able to compute the most meaningful basis to re-express a
noisy and/or correlated dataset.

The primary need is to find a new basis of coordinates for which the system is
equivalent to the original one in terms of variance, since we want to express the
same uncertainty distribution of the original problem with the uncertainty distri-
bution of the new system.

Fig. 1. Example of change
of basis in a database




190 A. Clarich and R. Russo

In addition, we want to find a basis whose coordinates are linearly independent
(orthogonal basis) so that it would not be possible to express any of them by a linear
combination of the others.

This means that we need to express the covariance matrix of the system in
function of the original coordinates and diagonalize the matrix in order to find its
eigenvalues and eigenvectors: A basis of coordinates coincident with the eigen-
vectors (principal components) will in fact be characterized by the largest values of
variance (eigenvalues) arranged in decreasing order up to the lowest and by null
covariance (orthogonal basis).

The eigenvectors characterized by small eigenvalues will therefore express a
coordinate of the system for which the variance of the database is negligible.
Therefore, by ranking the eigenvectors in order of decreasing eigenvalues, from the
highest (corresponding to the first principal component) to the smallest eigenvalue,
it is possible to keep only the main principal components neglecting the last ones:
The main principal components will in fact retain the highest fraction of the system
global variance, and, expressing the system in a new basis made by them only, will
also allow to express almost the same variance of the original system database with
a reduced number of coordinates. The methodology which aims to follow this
purpose is called principal component analysis (PCA).

The first step considered by PCA is the definition of the covariance matrix of a
database [4].

Let us consider by hypothesis a database made by m variables (the original basis
of coordinates) and n samples. If we call two of the coordinates as A and B, we will
have two vectors of measurements defined as:

a = [al,az, ...,a,,], bz[bl,bz, ...,bn] (9)

The variance of each vector can be expressed by the internal product notations
as:

o; =(aja;) (10)

while the covariance between two variables, and therefore the degree of correlation,
can be expressed using the same notations as follows:

oap = (aibi) (11)

Considering that Eq. (11) is a particular case obtained when A = B, we may
build a matrix whose elements are expressed as:
= ap? (12)
ab n—1
In this way, Eq. (12) is equivalent to Eq. (10), besides the introduction of a
constant for normalization. If we generalize the definition of the original basis of
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coordinates calling the single components as x; (where for instance x;= a and x, =
b), the complete database can be defined in the original basis as a matrix X made by
m X n elements, and Eq. (12) becomes:

1 oxxr (13)

C. =
TTn-1

Matrix of Eq. (13) is defined as Covariance Matrix.

Note that covariance matrix is defined by a x suffix, because its elements are
expressed in the original basis X, so on the diagonal we will find the variance of the
system database for each original variable x; while on the off-diagonal, we will find
the covariance between the variables x; and x;.

At this point, the next step of the PCA is to diagonalize the covariance matrix.
This procedure in linear algebra corresponds to the search of the eigenvalues of the
matrix, i.e., into expressing the matrix by a new basis of (orthogonal) coordinates
(the eigenvectors), for which it becomes diagonal: The fact that the off-diagonal
terms are equal to 0 means that the covariance of the new coordinates is null
(orthogonal or not correlated components), and in addition it can be proved that the
first eigenvectors retain the highest values of variance.

In other words, we have to find a basis of m vectors P; for which the original
variables X become expressed as Y and the covariance matrix Cx becomes C,, with:

o} =151
{ oy (14)

Expressing the problem with the new base P, the original database X will
become defined as (considering that the change of basis is a linear operation):

Y=PX (15)

At this point, we can express the covariance matrix Cx in the new base,
obtaining:

_ 1 r_ | r_ 1 T
Cy—n_lYY _n—l(PX)(PX) _n—IPXXP (16)
A symmetric matrix like XX”= A can in general (if not degenerate) be diago-
nalized by an orthogonal matrix of its eigenvectors, E, obtaining A = EDE” where
D is the diagonal matrix (it follows in fact that A = EDE~ — AE = ED which
means Ae; = A;e; for every i, which is the definition of the eigenvalue equation).
At this point, if we assume as we want to prove that the needed basis P is
coincident with the basis of the eigenvectors P = E*, we can get from Eq. 16:
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_ 1 r\pr_ | T r |
Cy_n_lP(EDE )P _n_lP(P DP)P —D (17)

The last passage is obtained considering that eigenvectors are linearly inde-
pendent, so P* = P~'. Finding the eigenvectors of the covariance matrix or the
XX" matrix can therefore satisfy Eq. (6).

There are several methodologies to compute the eigenvalues of the matrix C, but
we have preferred to use the method based on the transformation to a tridiagonal
matrix by Householder orthogonal transformations, then extracting its eigenvalues
and eigenvectors by the tridiagonal QL algorithm. Further details of the method-
ology can be found in [5].

Screening Analysis Using the MORRIS Methodology

The last UQ methodology we propose can be used as a general method to identify
the most significant variables in any process.

Several different screening methods have been proposed in the literature (see,
e.g., [6]); most of them are really efficient, but they work well only in specific cases:
For example, the Sequential Bifurcation method, proposed by Bettonvil and
Kleijnen in [7], requires that main and interaction effects must be nonnegative;
others, as the Full Factorial or the Fractional Factorial methods, are computa-
tionally expensive.

The method presented by Morris in [8], with some improvements introduced by
Campolongo et al. in [9], has two important characteristics: It can be applied to all
problems, and it is computationally cheaper than other methods. For this reason, we
propose this methodology as the last UQ methodology; for simplicity, from here we
call the methodology [9] as Morris screening analysis.

Conversely from the first two methods presented here, this approach requires the
definition of a series of analysis under a pre-defined scheme; therefore, we cannot
apply it directly on an available experimental database, but rather we can apply it on
a numerical simulation model (for instance, a CFD model) where the uncertainties
have already been quantified with their distributions, in order to understand if it is
possible to represent the same response uncertainties of the problem by a reduced
number of parameters, and therefore by a reduced sampling size for any design
proposed in a Robust Design Optimization.

Consider the function f{(xy, ..., x,,) of n variables (the uncertain parameters) and let
{X1, ...,%Xn} be a set of N points in the variable space (the database). For each of
these points, we define n new points which define a trajectory, in such a way that:

X, =X;

1
Rix =Xj—1+ Dgex (18)
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Fig. 2. Example of A
i-trajectory made by n + 1
points accordingly to Eq. (20)

\)

withi=1,...,Nandk =1, ...,n. {ey, ..., ey} is the canonical base of R" and A, is
a proper percentage of the variable range (see Fig. 2 for an example of a trajectory
in a 3-D variable space). The purpose of defining the trajectories is the one to
measure how the function f changes when only one of the parameters is perturbed,
and in this way it is possible to compute the elementary effects di. as:

f(Ri) —f (Fi—1)

d= B VE— (19)

Since the elementary effect of any variable k is given by N different factors (one
for each i), the definitive measures of sensitivity can be obtained by mean and

standard deviation of di, obtaining in Eq. (20) respectively the mean deviation
and the standard deviation ;. as:

LS i
llk=ﬁ§1d/l<

1

LS (i 2
ok =177 2 (d— )

1

(20)

The first measure of Eq. (20) represents the importance of the kth input factor
over the output (i.e., its main effect), while the second measure by the variance of
the elementary effects estimates the interactions of the kth input factor with the other
ones. Thanks to these two measures, we can sort the input variables by order of
importance. The procedure is generic for any problem, but we can apply it
specifically for UQ: The input variables xy, ..., x,, are the uncertain parameters of
the process, and the database {X, ..., Xy} is given by a sampling of their
uncertain distributions. By the evaluation of the elementary effects and the con-
sequent mean and standard deviation factors, the relative effect of each parameter
can be estimated, and the parameters with marginal effects can be excluded by the
process.

The method proposed until this point is the original Morris algorithm [8], which
basically has two problems:
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(i) If the output sign changes, some information could be lost;
(i) If n is too large, the procedure could become too expensive, indeed it requires
N-(n + 1) evaluations.

Campolongo et al. in [9] proposed the following sensitivity measure in order to
overcome the first problem:

= Ls 1)
pk=ﬁ‘=1 e

Moreover, as a possible solution for the second problem, they proposed to

consider the factors of the problem xy, ..., x,,, and to divide the input variables into
M sets: Gy, ..., Gy with M < n. Let I; ..., Iy be the sets of indices of the
variables within every group.
For each point X;, i =1, ..., N we build a trajectory with m = 1, ..., M new
points:
Xip=X;
. - 22
Xim = Xim -1 +Am dm ( )
where d,, = (d,1, .., dn) 1S @ vector associated with the mth group, such that:
dni=1 i€l, (23)

d,;=0 otherwise

In this ways, it is possible to compute the mean and the standard deviation for
every group, selecting the groups of variables which have the highest values of the
effects, eventually iterating the process P times by grouping the variables in dif-
ferent ways, selecting then the factors which occur more times in the most
important groups.

In any way, the grouping methodology is convenient when M P < n, because
the overall number of evaluations will be equivalent to N-P- (M + 1).

Sampling Methodologies for Robust Design Optimization

The first aspect to be taken in account when defining a robust design optimization is
the definition of an accurate sampling methodology.

The samples are defined in the variable space neighborhood of the nominal
design, following the statistical distribution of each uncertain parameter, and from
the evaluation of its performance, the response distribution can be evaluated.

This is a crucial point of analysis under uncertainties and consequently for a
RDO problem, since the procedure is to be repeated for any design proposed by the
optimization procedure.
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The sample points must be defined in such a way that the method for the
uncertainty quantification (UQ) of the performances could be accurate enough, but
at the same time, for the RDO purpose, the number of sample points should be low
enough to allow the application to cases of industrial relevance. The choice of the
sampling points is therefore strongly correlated to the method used for the uncer-
tainty quantification.

Monte Carlo and Latin Hypercube Sampling (LHS) are classical sampling
methodologies which can be used to compute directly statistical momentums in
function of sampling points database: As alternative, they can be also used to
populate the training database for methodologies like [10] based on DACE or RSM
(Response Surface) meta-models, by which momentum functions can be computed
on a large number of extrapolated samples.

As reported above, the simplest approaches for the UQ quantification are based
on the discretization of the momentum equations, in the sense that mean and
standard deviations may be computed directly following the expressions below:

Cp) = Zi=1 CoiY) (24)

> (Cpi(x) = Cp(x))?
ocp(x) = \/ =1 (25)

In these expressions the statistical momentums (here related to a drag coefficient
performance, Cp ) are computed directly in function of the N samples of the
database. As already noted, this statistical approximation may be improved fol-
lowing methods DACE or other meta-models, to let the analysis be more significant
from the statistical point of view, just simply raising the number of sampling points
using a meta-model.

In any case, the approach followed by these types of UQ methods requires the
definition of a sampling set to be as much representative as possible of the uncertain
parameters distributions. For this purpose, two methodologies of Design of
Experiments (DOE) are available: Monte Carlo and Latin hypercube.

Monte Carlo is the simplest sampling methodology and is just based on a
random definition of sample points. More in particular, from Fig. 3, it is illustrated
how the Monte Carlo algorithm defines a sampling set of points: From a random
sequence of points defined by a uniform probability (ordinate), the sample points
are obtained by the projection of the former points onto a Gaussian Cumulative
Distribution (defined as Uncertainty Distribution of the input variable). The process
is then extended to a case with a generic number of variables. It is possible to prove
that the statistical moments, and as a result the mean and the standard deviation, of a
random sample converges to the exact moments of the full distribution as the
inverse of squared root of N, where N is the sample size.
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Fig. 3. Example of Monte
Carlo sampling
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Fig. 4. Example of Latin
hypercube sampling

A more efficient sampling methodology, in the sense that the convergence of the
random sample to the exact full distribution is more rapid, and in particular pro-
portional to the inverse of N, is Latin hypercube sampling (LHS).

In this case (Fig. 4), if a LHS is composed of N points, and every variable is
divided in N strata with equal probability (the same portion of area under the
Gaussian distribution), every single stratum will be occupied by exactly one point.

Latin hypercube sampling has been designed specifically to produce better
accuracy than Monte Carlo in uncertainty quantification.

Non-intrusive Polynomial Chaos Expansion

In order to improve the efficiency for UQ of the sampling methodologies introduced
in previous paragraph, an important methodology that has been proposed is the
Polynomial Chaos Expansion [11].

This methodology consists essentially in expanding the uncertain variable
response in a suitable series and then determining analytically (and thus exactly) the
statistical moments of the truncated expansion. The expansion itself is referred to as
the “Chaos,” while the maximum degree of the expansion is called the “Chaos order.”

As a result, it can be proved that the estimate of the statistical moments con-
verges to true values at exponential rate, i.e., the error in the estimates scales as

exp™, where N is the sample size.
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Fig. 5. Example of UQ
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Figure 5 above reports a comparison of the statistical moment relative errors,
relative to a mathematical test function [12], obtained using Monte Carlo or Latin
hypercube sampling and Polynomial Chaos Expansion. It emerges clearly the large
advantage of this methodology with respect to the former ones, since for a RDO
problem it is extremely important to obtain a good accuracy of UQ for each design
with the lowest possible number of samples.

There exist basically two types of Polynomial Chaos methodologies, the intru-
sive and the non-intrusive one. In the following part of this chapter, we describe
only the second methodology, because it is more versatile for every industrial
application and any simulation software, not requiring the modification of the solver
equations, but working directly on the results computed by the samples.

The basic idea of Polynomial Chaos methodology for UQ is that, under specific
conditions [11], a stochastic process can be expressed as a spectral expansion based
on suitable orthogonal polynomials, with weights associated with a particular
probability density function.

The idea is to project the variables of the problem onto a stochastic space
spanned by a set of complete orthogonal polynomials y that are functions of
random variables £(@), where 0 is a random event [13]. For example, the variable ¢
has the following spectral infinite dimensional representation:

O(x.1.0)= T dilx. )¥.((0) (26)

1

Equation (26) divides the random variable ¢(x, ¢, 0) into a deterministic part,
i.e., the coefficient ¢;(x,t), and a stochastic part, i.e., the Polynomial Chaos
w;(£(0)). The set of polynomials {y;} forms a complete orthogonal basis in the
Hilbert space determined by their support. The orthogonality relation takes the form
of:

<'I/i'//j> = <W12>611 (27)

where §;; is the Kronecker delta and <.,.> denotes the ensemble average, i.e., the
inner product in the Hilbert space of the variables &, which reads:
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Fig. 6. Example of Polynomial Chaos Expansion (Hermite polynomials)

(F(&). 8(&)) = [F(&)g(&)w(&)d(&) (28)

with w(€) a weighting function. According to the Askey-chaos theory [14], a
specific weighting functions w(€) is to be selected for each probability density
function. For example, the weight for Gaussian distribution corresponds to Hermite
polynomials (Fig. 6), Exponential and Gamma distributions to Laguerre and gen-
eralized Laguerre polynomials respectively, Beta distribution to Jacobi polynomi-
als, and Uniform distribution to Legendre ones (Wiener—Askey scheme).

Thus, in the case of random inputs with Gaussian distribution, we represent the
variable ¢(x, ¢, 0) in terms of an Hermite spectral representation (or Wiener chaos)
for which the weighting function reads

w(g)=e ¥¢ (29)

apart from normalization factors.

In numerical applications, the series in Eq. (26) has to be truncated to a finite
number of terms (here denoted with N) or, equivalently, to a finite order. Hence, for
a Wiener chaos, Eq. (26) becomes::

Px 1. 0)= ¥ dilx. 0i(E)
=0 (30)

Py

-y Y. zocp (50 Flp (£ (&) - Hpy (&)

p1=0p2=0  p,=

where H,, (&) is the Hermite polynomial of order pj in terms of the kth random
variable &, with Gaussian distribution N(0, 1). The number of total terms of the
series in Eq. (31), where a tensorial-expanded representation has been adopted, is
determined by:
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(n+p)!

N+1=
nlp!

(31)

with n the dimension of the uncertain variables & and p the highest order of
polynomials {¥;}.

By applying the orthogonality condition to the truncated spectral expansion, the
expectation value and variance of ¢(x, 7, ) are straightforwardly found to be,
respectively, given by

Erc(®) =pa =00(x. ) )
Varp (®) = = ¥ (0350 3

with (w?) the polynomial normalization.

Thus, the problem of uncertainty quantification is shifted to the determination of
the polynomial expansion coefficients ¢;(x, #). Various techniques have been
developed for the solution of this problem (see Ref. [15]), and normally the sam-
pling points are evaluated at the roots of the polynomials. We follow the regression
or collocation method based on the least square minimization of the discrepancy
between ¢ (X, ¢, 6) and its truncated expansion:

Ns N 2
min Y, |®(X,t,0)— z (X, 1) wi(§) (34)
=1

with Ng the number of sampling points used to evaluate the discrepancy.

This approach has in fact the advantage that the samples can be arbitrarily
chosen, except for their number which has to be equal to or greater than the number
of points reported in Eq. (31). For the UQ tool implemented in modeFRONTIER
[11] optimization platform software from ESTECO, the sample can be generated by
means of a Latin hypercube sampling, and the solver of the least square problem of
Eq. 34 is the standard Levenberg—Marquardt method [16].

Adaptive Sparse Collocation

An efficient method to apply UQ with large number of variables is based on the
application of a regression analysis directly on the Polynomial Chaos Expansion
(PCE) expression, in other words the PCE will keep only those terms which
actually affect the output, discarding the others.

The methodology consists first in ranking the terms using a least angle regres-
sion (LAR) technique [17] and then in assessing how many PCE terms should be
kept.
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The order of selection of the PCE terms will reflect a ranking based on how
much each term affects the output. Once the ranking is done, it is necessary to
establish a way to choose how many PCE terms should be kept. The criterion for
this is based on the mean leave-one-out error (Erripp).

1
— ¥ A? 35
N & (35)

M=

Errioo =

where N is the number of samples and A; =output(x;) —M(x;) is the difference
between the output corresponding to the ith sample and the output computed from
the PCE obtained excluding from the training samples the ith. The criterion to select
the number of terms consists in monitoring the quantity:

Err, LOO
var(output) (#samples — #terms)

RLOO =1- (36)

R 00 is function of the number of PCE terms: It tends initially to increase as the
number of terms increases, but from a certain number of terms on, it starts showing
a decreasing trend. This index is in fact sensitive to overfitting problems, so that
optimal number of terms is generally much lower than the maximum possible
number equal to the original degree of freedom of the complete polynomial.

The described approach gives the important benefit of reducing the global
number of unknown coefficients for the PCE, and therefore giving the possibility as
well of reducing the number of sampling points, needed for the PCE training.
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General Introduction to Surrogate M)
Model-Based Approaches to UQ s

Daigo Maruyama, Stefan Gortz and Dishi Liu

Introduction

The quantification of aerodynamic uncertainties with CFD is computationally
challenging due to two reasons: a large number of variables and high cost of CFD
models, which calls for efficient numerical methods. Table 1 shows a categorization
of some typical uncertainty quantification (UQ) methods to obtain some target
statistics of aerodynamic performance. They are basically of two types: direct
integration and surrogate-based integration. The former obtains the statistics by
directly integrating the CFD samples, while the latter does so by integrating on a
much cheaper surrogate built on the basis of the samples. These methods adopt
either scattered or regular grid sampling scheme; the former admits samples any-
where in the variable domain, while the latter only samples on a prescribed grid
(either tensorial or sparse).

In UQ problems with a large number of variables, like those with geometrical
uncertainties, the methods based on regular grid are less favored due to two reasons.
The first is their vulnerability to “curse of dimensionality”, even with sparse grid.
The second is their lack of tolerance to sample failures (which are not rare in CFD
computations). With methods based on scattered sampling schemes, one has much
more freedom in choosing sample number N and robustness against sample failures;
this group includes mainly Monte Carlo (MC) quadrature and quasi-Monte Carlo
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Table 1 Some typical uncertainty quantification methods

Direct integration Surrogate-based integration
Scattered sampling Monte Carlo Non-intrusive polynomial chaos
Quasi-Monte Carlo Kriging

Radial basis functions

Regular grid sampling Sparse grid quadrature Stochastic collocation

(QMC) quadrature. The MC quadrature have dimension-independent error con-
vergence rate O(N~ '), while QMC, which does not belong to the MC-type
quadrature methods, has an upper-bound rate of O(log?(N)N~") with d the number
of variables. Due to higher degree of sample uniformity, the latter can be more
accurate even with a large d.

In the other dimension in Table 1, surrogate-based methods are gaining more use
recently, e.g., radial basis functions, Kriging, and polynomial chaos expansion.
Surrogate-based methods have an advantage when the gradients can be sampled at a
relatively lower cost (e.g., by using an adjoint solver), because the direct integra-
tions cannot effectively utilize the gradient information (augmenting samples
generated by Taylor’s expansion are not statistically independent of the original
samples and hence bring no benefit to the accuracy of the statistics). Due to the
cheaper cost of gradients (in case that number of response quantities is smaller than
number of variables), surrogate-based methods utilize more information with the
same computational cost, and this advantage is expected to increase with number of
variables.

Surrogate models are frequently being used in the context of efficient quantifi-
cation of uncertainties. A surrogate model of the quantity of interest is much
cheaper to evaluate than the full-order model and can be used to obtain the target
statistics through sampling on the surrogate models. There are several types of
surrogate modeling methods that are being used, including response surface
methods using polynomial models, Kriging, radial basis functions (RBF), support
vector regression, and stochastic collocation. In this chapter, a general introduction
to Kriging and RBF models is presented for UQ applications. Both models are
constructed based on scattered data obtained by sampling the full-order model.
Different sampling methods are in use, such as Latin hypercube sampling, Monte
Carlo, and quasi-Monte Carlo sampling, and are typically referred to as design of
experiment methods (DoE). A discussion of the different DoE methods is, however,
beyond the scope of this chapter.

Kriging

Kriging is a statistical interpolation method suggested by Krige [1]. Kriging has
received growing popularity due to its good capability of predicting multidimen-
sional and highly nonlinear responses based on sampled data while providing a
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useful error estimation (indicating the uncertainty of the prediction). Here, an
approximation of a function of interest f(x) with d variables (uncertain parameters
in UQ applications) x = [x1, x2, ..., xd]T is sought after. The approximation of f(x)
at an arbitrary x by the Kriging model is generally represented as follows when
n samples of the function f(x) are given as f(xm),f(x(z)), e ,f(x<”>):

f(x)=p+e(x) ()

where f (x) is the predicted function value at an arbitrary point x, § is a global
constant, and &(x) is a stationary random process. Different types of Kriging exist.
The most commonly used types of Kriging are ordinary Kriging and universal
Kriging. When g is expressed by the mean of all of the given samples as
B=E[f(x)], the model is called ordinary Kriging. On the other hand, when f§ is
expressed by regression such as expressed by a general linear or polynomial trend
model, the model is called universal Kriging. Some more detailed classification of
the different types of Kriging model can be found in [2].

The stationary random process &(x) indicates deviation from the constant value
B, having a Gaussian type PDF as N(0, ¢), where o is the process variance. The
stationary random process £(x) is a covariance of arbitrary two points and satisfies
the following correlation matrix:

Corr [S(X@), 8<XU>>} =62R(X(i), XU)) (2)

where R is a spatial correlation function depending on x( and x¥). There are several
forms of this correlation function such as Gaussian or cubic spline. Here Gaussian is
given as an example. In this case, the correlation function is expressed as:

) o)

where 0=1[60,, 0,, ..., Gd}T are the distance weights with respect to the variables

. . d . .
R(XO)’ xm) = I exp ( - Gk‘x,((l) —x0
k=1

X=[x, X2, ..., xd]T. Here in this stochastic model (Kriging model), one can define
the likelihood function L, which is a function denoted by f, o, and 0 as:

1 (f—pF) R~ (f - BF)
L(B, 6, 0) = —————exp| — 4
bo 8= R p( 20 “)
where f= [f(x), f(x?), ..., f(x™)] ' and Fis a regression matrix in the case

of universal Kriging. When ordinary Kriging is adopted, F=1, which is the
n-dimensional unit vector. The likelihood function L(f, o, 0) is to be maximized to
realize stochastically the best fitting to the data, which is called maximum
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likelihood estimation (MLE). The optimum f and o can explicitly be determined
when L(f, o, 0) is maximized:

A(0)=(F'R™'F) 'F'R™'f

#(0)= (£~ pF)"R™ (£~ pF) ¥

The optimum values of the hyperparameters 0 are usually found by maximizing
the logarithm of likelihood function:

In[L(6)] = = In(*(6)) — In[R(0) (6)

Finally after the MLE, the predicted function value f(x) at an arbitrary
unsampled location x* can be represented as follows:

f(x*)=p+r"R™!(f ~ pF) ()

where r = [r(l), r@, r<”>} r is the correlation expressed by Eq. (2) between an
arbitrary unsampled location x* and the sample points; e.g., at the ith sample point,
it is expressed as:

r'=Corr [s(x*), S(X(i>)] (8)

This leads us to estimate stochastic values such as mean, standard deviation,
maximum or minimum value, and probability density function (pdf) when the
prediction points x are considered as uncertain input parameters and the function
f(x) is the quantity of interest (Qol).

Co-Kriging and Gradient-Enhanced Kriging

The correlation described in Eq. (2) is defined on the function values f(x) at the
sample points x. Usually, the more the number of samples is increased, the better
the quality of the Kriging model becomes. Instead of increasing the number of
samples, secondary or auxiliary information available at the existing sample points
or at other locations, where no primary information is available, could be incor-
porated into the Kriging model. This idea is the so-called co-Kriging.
Gradient-enhanced Kriging is obtained if the partial gradients of Qol with respect to
the variables are available at the primary sample points in addition to the function
values and used as secondary information [3—-6]. For instance, if the gradient
information is calculated efficiently by an adjoint CFD solver, the accuracy of the
Kriging model could be significantly improved. Gradient-enhanced Kriging
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(GEK) is introduced in brief in the following because of its importance in the
context of efficient quantification of aerodynamic uncertainties.
The correlation of Eq. (2) is modified as follows in GEK:

Corr _e(x(”), e(x@)} =02R(x(i), XU))

r . @ <0
Corr |e(u;), M} =02M

L Ou ())C,ED

[0e(u;) L, oR(x?, x0) )
Corr o s e(uj)} =0 Tl(:)

Corr

[0e(w;)  Oe(w)) ., PR(x, x)

0w Tow |7 ooy

Then, the size of the correlation matrix becomes n(1+d), f and F in Egs. (4), (5),
and (7) are:

T

of (xV) of (xV) of (x™)
_ o)) (n)
f_[f(xl),,,.,f(x ) T e |

F=[l, ...,1,0,0, ...,0]",

respectively. Further enhancement by using the Hessian information has also pro-
posed, and some applications to uncertainty quantification (UQ) and aerodynamic
shape optimization were shown in [7]. This is a powerful surrogate modeling
method when the Hessian is evaluated efficiently with the help of automatic dif-
ferentiation (AD) tools [8].

Statistical Indicators in Kriging

Since the Kriging model is based on Bayesian statistics, it contains not only the
predicted values but also information of uncertainty or, in other words, the
approximation error at unsampled locations. For example, the mean square error
(MSE) s(x) at arbitrary points x is given by

s(x)=6?|1 'R~ 'r+ (r'R™'F) (F'R"'F) ’l(rTR‘lF)T} (10)

The MSE is considered as one of the major indicators frequently used for error
estimation and adaptive sampling techniques [5, 9]. One other popular indicator
where the MSE in Eq. (10) is made use of is in the so-called expected improvement
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(EI) function [10]. This function indicates the probability that the predicted function
f(x) is improved in terms of the current maximum or minimum sampled value of
f(x) if a new sample is added at some location, or, in other words, this metric helps
to select the point which is statistically most advantageous to sample next. The EI is
represented as follows:

{(fmm o (fgh) +sg (). iFsw>0 )
if s(x)=0

where fii, is the current best sampled point (minimum function value). @ and ¢
denote the cumulative density function (CDF) and the probability density function
(PDF), respectively. EI for the maximum can be calculated by replacing fuin — f
with f — fmax> Where fi.x is the current maximum sample value. A new sample is
filled in at the location where the EI function is maximal. EI is often used in
surrogate-based optimization to infill additional samples in order to enhance the
accuracy of the Kriging model around the maximum/minimum values. This opti-
mization strategy is called efficient global optimization (EGO).

An extension to multiobjective optimization problems, the so-called expected
hypervolume improvement (EHVI), has also been proposed [11, 12]. The relative
expected improvement (REI) function has been also studied for the purpose of
evaluating the mean value more efficiently in the context of UQ [13]. These dif-
ferent measures help to infill additional samples efficiently to refine and improve the
surrogate model. This possibility is being made use of in the following chapters
estimating stochastic quantities more accurately.

Radial Basis Functions (RBF)

The radial basis function (RBF) method is an approximation of an unknown
function by linear combination of radial basis functions expressed as follows:

fr) =pTe(x*, x)= 3 fig
=1 (12)

where g;= qb(r,-Hx* —x( H)

where B’ is a vector of weighted parameters which is uniquely determined by a set
of the given samples and corresponding function values by solving the concurrent
linear system in Eq. (12). n is the number of sample points, and ¢ is a radial basis
function, determined by the Euclidean distance r between an arbitrary unsampled
point x* and the sample point x. Then, the predicted function f (x*) at an arbitrary
unsampled locations x* is calculated by Eq. (12).
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Table 2 Radial basis

N ; Name o(r)

functions with global support : :
Thin plate spline * log(r)
Gaussian e~ "
Cubic (a+r)}
Multiquadric biharmonics VaZ ¥ 12
Inverse multiquadric biharmonics 1

a>+r?

Quadric biharmonics 1477

Inverse quadric biharmonics L

There are several classes of radial basis functions. A general classification is to
distinguish between compact support and global support. The radial basis functions
with compact support can be applied in mesh deformation [14]. In applications to
surrogate models, those with global support are often used. Table 2 shows seven
radial basis functions which are frequently used. The parameter a in Table 2 is
usually tuned for fitting to the samples.

This method can also utilize gradient information of the Qol, e.g., the
gradient-assisted RBF method proposed in [15]. Also, the gradients of the predicted

function f (x*) can be obtained analytically by the following equation:

T g1 % = § g (e —x0]) 2

k
ox i=1

oo (e=x0)
IR o T e x|

(13)

where ¢,(r,-) =d¢/0or;. A more detailed discussion on gradients and Hessians of
surrogated models based on RBF can be found in [16].

Summary

Radial basis function models and different types of Kriging models are often used to
approximate unknown functions based on scattered data. One of the major differ-
ences between these two methods is that Kriging provides the mean squared error of
the prediction. This statistical information can be used to improve the surrogate
model by adaptively sampling with respect to the targeted statistics of the quantity
of interest (Qol). This is of particular interest in UQ and robust design in aero-
dynamics, where CFD computations are very costly.

It is reported by one of the authors [17] that GEK and Kriging are more efficient
methods to propagate uncertainties through a CFD model than many others,



210 D. Maruyama et al.

especially when the sample number is not large, e.g., N < 200 in a 9D nonlinear
model. The RBF method is suitable for scattered samples and high-dimensional
models. However, a large sample number could result in a large condition number
in the linear system which reduces the accuracy of RBF approximations [18], and
the gradient-assisted RBF method is not as widely used as gradient-enhanced
Kriging method.
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Comparing Surrogates for Estimating M)
Aerodynamic Uncertainties of Airfoils Lk

Daigo Maruyama, Dishi Liu and Stefan Gortz

Introduction

In aerodynamic analysis and design of airfoils, the quantities of interest (Qol) are
typically the drag coefficient (Cy), the lift coefficient (C)) (or the lift-to-drag ratio
L/D), the pitching moment coefficient (Cm), and the pressure distributions (C,). In
the context of uncertainty quantification and robust design, the Qol are statistics of
the aerodynamic coefficients. Uncertain input parameters may be operational
parameters, such as the angle of attack (AoA), the Mach number (M), or the
Reynolds number (Re), and an inherently large number of geometric parameters.

There are two issues in terms of the computational cost and the accuracy when
constructing a surrogate model in applications to uncertainty quantification
(UQ) and robust design of airfoils. One is that the computational cost associated
with the construction of the surrogate model may not be negligible any more when
the space of input parameters is high-dimensional which is often of the case when
geometrical uncertainties are considered. In this chapter, we consider a test case
where every surface grid point of the CFD grid is considered uncertain, but we
assume a correlation between the points and make use of a truncated Karhunen—
Loeve expansion (KLE) to reduce the number of parameters [1, 2].

The other issue is how the accuracy depends on the number of samples used to
build the different surrogate models. Therefore, we first present a general study in
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terms of accuracy of statistics of aerodynamic performance of an airfoil using
different surrogate models that are conducted. A larger number of sample points are
expected to enhance the quality of all of the surrogate models, but this will
inevitably lead to larger computational cost.

Suitable sampling techniques are required for different target statistics of the
aerodynamic performance statistics, such as mean of C4, maximum value of Cq4, or
minimum value of C;. This is the second topic here and is of interest in the context
robust design as an application of UQ to aerodynamic design of airfoils. Therefore,
in this chapter, the following two topics are discussed:

(@) UQ using various surrogate models and different number of samples and
comparison to reference statistics;

(b) Sampling techniques for specific stochastic quantities of interest, including
adaptive sampling.

For the surrogate modeling part, we made DLR’s surrogate and reduced-order
modeling toolbox called SMARTy [3-5].

Comparison of Different Surrogate Models

As for the first topic, to investigate the efficiency of various surrogate models in the
context of UQ, we made two comparisons in which the methods are compared in
their efficiency of quantifying aerodynamic performance uncertainties of airfoils
caused by operational and/or geometric uncertainties. First, we compare Kriging
and gradient-enhanced Kriging (GEK) with direct integration for a viscous test
case. Second, we compare direct integration and four UQ methods based on
surrogate-based integration; i.e., we compare quasi-Monte Carlo (QMC) quadrature
with GEK, polynomial chaos (PC) combined with a sparse Gauss—Hermite
(SGH) quadrature, gradient-enhanced radial basis functions (GERBF), and a
gradient-enhanced polynomial chaos (GEPC) method for an inviscid test case (an
introduction to these methods can be found in [1]).

Unless otherwise stated, the computational cost is measured in terms of “com-
pensated evaluation number” N.. For the gradient-employing methods, N. = mN
with N denoting the number of sample Points and m denoting that of response
quantity, since the cost of computing the partial gradients of one response quantity
with respect to all uncertain parameters using an adjoint CFD solver equals
approximately to the cost of one nonlinear CFD evaluation and m denotes the
number of response quantities. For Kriging, QMC, and PC-SGH methods, N. = N.

The reference statistics (against which the error of estimated statistics is judged)
in the first comparison is obtained by a direct integration of ten thousand QMC
samples, while that for the second comparison is acquired by an integration of four
million QMC samples. The accuracy of the latter reference statistics is estimated by
using the multipartition method [6].
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Viscous Test Case: Comparison of Kriging and GEK

This comparison is based on a CFD model of the viscous flow around the RAE2822
airfoil. We opt for DLR’s unstructured RANS solver TAU [7-9], the
Spalart-Allmaras turbulence model, a central flux discretization scheme, matrix
dissipation, and a “3v” multigrid cycle. The domain is discretized by a hybrid
unstructured grid in which the airfoil has 380 surface nodes, as shown in Fig. 1.
The uncertainties come from a random Mach number and angle of attack, together
with a random perturbation to the original airfoil geometry at every surface grid
point. The two operational variables are assumed to be beta-distributed around M =
0.729 and o = 2.31°, respectively. The perturbations in Mach number and angle of
attack are with a support within +2% of the nominal values. The geometry per-
turbation is modeled by a random field parameterized into 24 independent Gaussian
variables through a truncated KLE. We kept all eigenvalues larger than 10~ in the
truncated KLE approximation [1, 2]. The upper and lower surfaces of the airfoil
were treated as two separate random fields as their correlation in geometric varia-
tions is assumed weak in this test case.

Quasi-Monte Carlo quadrature and two surrogate-based UQ methods,
gradient-enhanced Kriging and plain Kriging, are applied to the test case, and their
efficiency is compared in estimating two statistics (mean and standard deviation) of
the coefficient of lift (C;). The accuracy of the estimates is judged by comparison
with reference statistics which are based on 10,000 QMC samples. The computa-
tional cost is measured in terms of “compensated evaluation number” N.. Note that
for the gradient-employing method (GEK) N. is set to 2N in this particular com-
parison since here we only handle one system response quantity (SRQ), i.e., C;.

Figure 2 shows the results of the comparison in terms of two different statistics
of C) as a function of N.. GEK is seen to converge faster than Kriging in estimating

Fig. 1 Grid of RAE2822
airfoil in viscous test case 1:
zoom around the airfoil
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Fig. 2 Convergence of estimate C; statistics to the reference statistics by various UQ methods
(note that N. = 2N in case of GEK because only the gradient of C; was considered, while N. = N
for Kriging and QMC) [2]

all two statistics. This can obviously be attributed to the more information utilized
by the former with the help of the adjoint TAU solver. It can also be observed that if
the sample number is small, Kriging may perform worse than QMC. Figure 3
shows a comparison of the probability density functions (pdf) obtained by GEK and
QMC for the same computational cost (N, = 40). It can be confirmed that the pdf by
GEK has much better agreement with that of the reference.

Inviscid Test Case: Comparison of Four Surrogate-Based Integration UQ
Methods and Direct Integration

This comparison is based on a CFD model of the inviscid flow around the
RAE2822 airfoil at a Mach number of 0.73 and an angle of attack 2.0°. We use the
TAU flow solver, opting for a central flux discretization, scalar dissipation, a
backward Euler solver, and a “4w” multigrid cycle. The domain is discretized by a
193-by-33 structured grid in which the airfoil has 128 surface nodes, as shown in
Fig. 4.

The source of uncertainty is a random perturbation to the original airfoil
geometry, which is modeled by a random field parameterized into nine independent
Gaussian variables through a KLE. Figure 5 shows three examples of the perturbed
geometry of the airfoil. With this parameterization of the uncertain geometry, the
five UQ methods mentioned above are applied to the test case and compared in
terms of their efficiency in estimating statistics of C; and Cgy, as well as the prob-
ability distribution functions (pdf), although here we only show results in terms of
Cg. The full set of the results can be referred to in [2].

The following statistics of C4 are estimated as:

1. Mean of Cgy, p, and pg,
2. Standard deviation of Cy, o4,
3. Exceedance probabilities Pp = Pr{Cp > pp—k-op} with k=2, 3.

The reference values of these statistics are obtained from a relatively large
number (N = 4 x 10°) of quasi-Monte Carlo (QMC) samples of the CFD model.
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Fig. 3 Comparison of probability density functions (pdf) of lift coefficient obtained by GEK and
QMC for the same computational cost (N, = 40) (note that N, = 2N in case of GEK because only
the gradient of C; was considered, while N, = N for Kriging and QMC)

Fig. 4 Grid of RAE2822 airfoil in inviscid test case 2: the total grid (left) and zoom around the
airfoil (right)

Since the theoretical error bound of QMC integration is not a practical accuracy
indicator, the standard deviations (¢) of these reference values are estimated by
using Snyder’s multipartition method [6] and tabulated in Table 1.

In the efficiency comparison of the UQ methods below the smallest measured
errors (measured against these reference values) in mean and standard deviation
(stdv) are at least 10 times larger than 3¢, which means, by taking the assumption
that these reference values are Gaussian distributed around the true values of the
statistics, the measured errors have a 99.73% confidence interval of at widest +10%.
For exceedance probabilities, this confidence interval is also valid except for a few
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Table 1 Estimated standard deviation of reference statistics for C4 [2]

S(Mp) s(op) ¢(Pp) ¢(Pp3)
3.0e—-9 1.4e—8 1.2e-5 6.8e—6

measured errors, as shown in Figs. 6 and 7, where the values of the corresponding
3¢ are depicted by dashed lines without symbols.

The results of this comparison are shown in Figs. 6 and 7. The figures show the
errors of the five methods in estimating the target statistics of Cq4. It is observed
there that generally the gradient-employing surrogate methods perform better than
direct integration methods. This can be ascribed to the fact that the former utilize
more information at the same computational cost. This advantage comes from the
cheaper cost of the gradients computed by an adjoint solver in the case that the
number of response quantities of interest is smaller than the number of variables (in
our case, 2 vs. 9), and the advantage would increase for a larger number of variables
or fewer response quantities. The PC-SGH method has only two data points due to
the very limited choice of sample numbers. It is hard to evaluate its error conver-
gence property based on only two data points.

This shows a fundamental shortcoming of sparse grid quadratures for a relative
high number of variables (9 in this test case). The GEPC method shows constant
convergence in error, but is not as efficient as the other two gradient-employing
methods. The reason could be that the increase of admissible order of polynomial
along increasing N, is slow in this 9-variate problem and that the polynomial
surrogate tends to “overshoot” in the outskirts of the domain. But the PC methods
have a merit that they do not need a parameter optimization procedure. GEK and
GERBF are the most efficient methods as far as seen from these results. Beside the
cheaper gradients, this could be attributed to properties of the kernel functions they
use and the effort of tuning model parameters. Convergence rate of inverse
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Fig. 6 Error in estimating mean, standard deviation (upper row), and exceedance probabilities
(lower row) of Cd (note that N. = 3N in case of gradient-employing methods because the gradients
of C; and C4 were considered, while N, = N for PC-SGH and QMC) [2]

multiquadric RBF was estimated O(e~ /") with h the “fill distance” and ¢ a con-

stant, which translates to a rate in N at O(e =<V l/d) [10]. We assume the error in the
statistics is proportional to that in point-wise approximations, and find in this
9-variate test case the observed convergence rate is much better than O(e =V l/9)—
this hints that the effective fill distance h reduces faster than O(N ~!/?) due to that
some variables are less important than the others (typical for a KLE parameteri-
zation). GEK seems slightly better than GERBF in these results, especially at
smaller N values. But this cannot be generalized to other applications. In this
particular case, the advantage of GEK could come from the possible advantage of
the cubic spline kernel used over inverse multiquadric.

Different ways of utilizing gradient information by GEK (involving first- and
second-order derivatives and generating a symmetric kernel matrix) and GERBF
(involving only first-order derivatives and generating non-symmetric matrix) could
also contribute to the difference in their performance. At larger N, values, a
“rebound” of error can be observed in GERBF and GEK results, more obvious in
the former. This is caused by the stabilizing treatment of these methods. Though an
uncertain relation (or trade-off principle) exists stating that accuracy and stability
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Fig. 7 Estimated pdf (in dash line) of C4 by QMC, GEK, GEPC, and GERBF at N, = 33 [2]

cannot be both good, more advanced stabilizing techniques, e.g., pivoted Cholesky
decomposition [11], could improve the convergence as sample number is large.
Figure 7 shows the pdf of Cy estimated by QMC and the three gradient-employing
surrogate methods with N, = 33 (the smallest possible N, value for GEPC method),
in comparison with the reference pdf (computed by four million QMC samples).
There one observes that for the same computational cost, the surrogate methods
yield much more accurate pdfs. This is consistent with their relative performance in
estimating the statistics. One question naturally arising here is whether the
advantage of gradient-employing surrogate methods observed in this test case can
be generalized to other cases. Our answer is “yes” for at least high-dimensional and
almost-everywhere-differentiable problems. This is based on the following argu-
ments. The particular configuration of the test case, e.g., discretization size and
excluding/including viscous effect, influences the precision at which the CFD
model approximates the true physics, while our study is on the precision at which
numerical integral approximates CFD statistics. These two precisions can be
studied separately. Yet this particular configuration could affect the CFD behavior
upon the geometric uncertainty, but it would not change our conclusion because
with cheaper gradients the former methods utilize more information than do the
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latter at the same cost. This advantage is independent of the configuration. And we
have been careful to make only a characteristic conclusion rather than a quantitative
one which could depend on the test case and its configuration.

One should notice that the advantage of the gradient-employing surrogate
methods should not be taken as universal. For example, on problems with few
variables or problems that are mostly non-differentiable the advantage might not
exist. If the problem has a very oscillatory topography, the advantage could only be
manifested with relatively more samples.

Sampling Techniques for Specific Stochastic Quantities
of Interest

Based on the results in the previous section, efficient sampling techniques suitable
for stochastic quantities of interest are discussed. In this section, we only consider
GEK and a fixed number of 30 samples. GEK with a Gaussian kernel (correlation
function) was adopted, and the hyperparameters were optimized by a global opti-
mizer (a differential evolution algorithm was used) by maximum likelihood esti-
mation (MLE). Note that setting up the entire GEK model took around 15 s. On one
core on our HPC cluster.

Here, we focus on different sampling techniques to evaluate the statistics of
quantities of interest (Qol) accurately for a fixed number of samples. The statistics
of Qol are, for instance, mean and standard deviation of the drag coefficient, which
are of interest in robust design applications with different measures of robustness,
for example, the “expectation measure” and the “mean-risk approach.” The maxi-
mum or minimum value of the Qol is necessary when the so-called “worst-case risk
measure” is used. It would be expensive in terms of the number of samples to
construct a versatile yet accurate surrogate model suitable to quantify any kind of
statistical value. Here, we focus on how to efficiently and accurately quantify the
statistical values which are directly necessary to evaluate a given objective function.
The statistical values to be considered in this section are mean, standard deviation,
maximum or minimum values of the drag coefficient (Cy), which is Qol.

The test case used in this section is the UMRIDA test case BC-02, which is
based on the RAE2822 airfoil. The flow solver and the grid used (see Fig. 1) are the
same as those described in the previous section for the viscous test case except that
the negative Spalart-Allmaras turbulence model [12] was used. The considered
operational and geometrical uncertainties are basically identical as well except that
the mean values of angle of attack (a) and Mach number (M) are 2.79° and 0.734,
respectively, to match the UMRIDA test case description. All of the 380 surface
grid nodes of the airfoil are considered uncertain and are parameterized by 10
independent variables & furnished by a truncated KLE [1, 2] to keep the relative
information content (the ratio between the principal eigenvalues and the total sum
of all eigenvalues) larger than 99% [13]. The uncertain input parameters are



222 D. Maruyama et al.

assumed to have normal distributions as a~ N(2.79°, 0.1°), M ~ N(0.734, 0.005),
and E~N(0, 1).

When UQ methods are applied to robust design, one approach is to evaluate the
aerodynamic performance statistics for each nominal design, i.e., for different
combinations of design parameters. This means that a surrogate model needs to be
constructed at every iteration of the optimization process. Realizing high repro-
ducibility and accuracy with a limited number of samples and suitable surrogate
model construction for focusing on statistics of interest are required. Therefore, the
issues here in terms of surrogate model accuracy are dependent on the statistics of
interest on the following two issues:

(1) Initial set of points;
(2) Sample distributions and adaptive sampling.

Ideally, the statistics that are computed based on the surrogate model are inde-
pendent of the set of samples used to construct the surrogate model. Different sets of
points for a given number of samples can be obtained by extracting arbitrary
continuous rows from a Sobol sequence [14—16] used as QMC sampling, which can
maintain “uniformity” (also called “low discrepancy”) of the samples. This is
related to the first issue. Details of this strategy can be found in [17] and [18].
Discrepancy, which is a mathematical definition to measure the uniformity of
samples, of these different sets of 30 samples is constant.

These original sample sets form uniform distributions. Here, it is assumed that
the probability density functions (pdf) of the uncertain input parameters are given
by normal distributions. The uniformly distributed samples can be transformed into
normal distributions by using their cumulative density functions (cdf). Additional
samples can be infilled based on statistical information in Kriging, which is a
so-called adaptive sampling technique. Details are described later. These topics are
related to the second issue mentioned in the above.

The input parameters are the uncertain operational and geometrical parameters:
u=(a, &), where a=(a, M), and their normal distributions are truncated to
#y +30y. The statistics of interest are the following two kinds of statistical values f
as the output uncertainties:

f = Hc, + oc¢y (l)

f = max(Cy(w) )

These statistical values are named as “robust” and “reliability,” respectively.
They are used in the context of “expectation measure” and “mean-risk approach” as
robust design by Eq. (1) and “worst-case risk measure” as reliability-based design
by Eq. (2), respectively, to formulate objective functions. The evaluation of “reli-
ability” as expressed by Eq. (2) can also be regarded as a surrogate-based opti-

mization problem considering u as ‘“design variables”. Maximizing C4 on a
surrogate model leads us to the idea of applying adaptive sampling techniques to
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Fig. 8 Schematic diagram of two different procedures used to compute different statistics of
interest based on sampling techniques and surrogate modeling

construct more accurate surrogate models for the statistics of interest. If Kriging is
used, then the expected improvement (EI) function is a suitable indicator to yield
more accurate surrogate models. The procedure of evaluating the stochastic value
f1is as follows (see also Fig. 8):

Step 1.

Initial set of points are generated in the uncertain input parameter space

u=(a, &) in truncated ranges of u, + 30, by using QMC sampling.

Step 2.

The CFD and adjoint calculations are performed for the sample points to

obtain Cy and its partial gradients with respect to the uncertain parameters

u=(a, &).
Step 3.
Step 4.

A GEK surrogate model of Cy is constructed based on the initial samples.
If necessary, adaptive sampling is applied to refine the surrogate model

with additional samples, and go back to Step 2. Otherwise, the construction
of a surrogate model finishes and any statistics is calculated on the sur-

rogate model.

The time-consuming part of this procedure is Step 2, unless many samples are
added in Step 4. At Step 1, we used a Sobol sequence for QMC sampling as
mentioned above. The distributions of the generated samples are either transformed
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into the input pdf or a uniform is kept. At Step 4, stochastic values can be almost
uniquely obtained by using Monte Carlo (MC) or QMC on the surrogate model
with a sufficiently large number of samples (>10°). During the steps from 1 to 4, the
surrogate model is reconstructed when additional samples are filled in. Note that in
any case, we chose to restrict the total number of samples to 30 to maintain the
same computational costs throughout, even in the case of adaptive sampling.

In the case of evaluation of “robust” as expressed by Eq. (1), “uniformity” of the
samples fitted to the input pdf could be an important factor to evaluate y, and oc,.
On the contrary, in the case of evaluating ‘reliability,” i.e., evaluating
maxy (Cy(u)), any statistical information in the domains where the accuracy is
needed cannot be driven by the input pdf. In this case, statistical indicators such as
the mean-square error (MSE) of the prediction and the EI extracted from the
Kriging model can be useful. The statistical indicators are first uniformly generated
on the input uncertainties domain. More details about the adaptive sampling
strategy are explained here by following the procedure described above. To start
with, 24 initial samples with a uniform distribution are generated in Step 1. At Step
4, the expected improvement (EI) function is evaluated on the sufficiently large
number of samples with the uniform distributions by using QMC on the surrogate
model. EI is an indicator to find the sample that will most probably result in the
largest improvement of the surrogate if computed with CFD. Here, we aim to
maximize the Cy (see Eq. (2)). The formulation of EI in mono-objective maxi-
mization is represented by the following equation:

EI(W) = (Ca = Camr)® (%) +s(w)p <%> G)

where s(u) is the MSE of the surrogate model, u is the uncertain parameters, Cyis
the value of the drag coefficient on the surrogate, Cymax is the current maximum
value of all the initial samples evaluated with CFD, and ® and ¢ denote the
cumulative density function (cdf) and the probability density function (pdf),
respectively. The EI value itself gives the probability that a sample point would
become the global optimum (maximum in this case). Here, the six highest EI values
are selected to determine six additional sample locations. Then, going back to Step
2, the CFD including adjoint calculations are executed on the six new sample
points. The surrogate model is reconstructed at Step 3 by using the all 30 samples.
Finally, max,(C,(u)) is obtained on the reconstructed surrogate model at Step 4. In
practice, it is estimated based on the surrogate model by using a random sampling
method using MC or QMC with a sufficiently large number of samples (>10°)
instead of using an optimization algorithm. It is evaluated by the quantity at 99%o of
the cdf of C4 expressed as maxy(Cy(u)) = Cd,, . rather than taking max,(C,(u)).

Now, we discuss how accurately the stochastic values f as represented by
Egs. (1) and (2) are evaluated in terms of the issues (1) and (2). Figures 9 and 10
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show how the accuracy of f depends on the sample distribution used for con-
structing a surrogate model for each stochastic value. Both a uniform distribution
and a normal distribution of the samples used to construct the surrogate model were
considered. In addition, adaptive sampling was combined with a uniform initial
sample distribution, but only for the case of evaluating the “reliability” (Cdoggmax)-
The horizontal axis is the index of the different set of points. Each index corre-
sponds to a different set of 30 samples which were continuously extracted from the
Sobol sequence as explained in the above. The reference values to evaluate the
accuracy were obtained by using 10° direct CFD calculations on the Sobol
sequence-based QMC sampling.

The results indicate that different sampling strategies are required for different
stochastic values. This means that we should focus on the accuracy of the surrogate
model in specific domains of the (uncertain input) parameter space. In the case of
evaluating the “robustness” shown in Fig. 9, the samples are distributed according
to the input pdf (normal distributions in this case, red square symbols), leading to
higher accuracy in terms of the evaluated f than a uniform distribution (blue dia-
mond symbols). As for “reliability,” it can be observed in Fig. 10 that the com-
bination of a uniform sample distribution and adaptive sampling (green square
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Fig. 11 An example of the initial and adaptive sampling distributions in the input uncertainty
parameter space u= (a, &) for evaluation of the 99%o of cdf of Cy

symbols) effectively reduces the noise in the cost function f and can improve the
accuracy in terms of the absolute value of f compared to a uniform sample distri-
bution without adaptive sampling (diamond symbols). In this case, the accuracy of
the surrogate model in terms of Cdogymax Was improved by adaptive sampling,
which plays an important role to determine the statistics of interest.

Figure 11 shows one example of the initial and adaptive sample distributions for
the worst-case risk measure, Cdogymax. The adaptively added sample points (red
square symbols) are mostly located close to the borders of the parameter space
where samples used in the case of the “mean risk” are usually sparse due to their
normal distribution. This shows that there is a trade-off in when trying to evaluate
different stochastic values with a single surrogate model. To obtain Cdyggmax
accurately, a uniform initial sample distribution is preferable to avoid strong
extrapolation toward the borders of the parameter space where the maximum Cq4
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may be located. If adaptive sampling is applied, a uniform initial sample distri-
bution is preferable to avoid a lack of accuracy of the EI function over the
parameter space which is required to determine the samples to be added. On the
contrary, to obtain y., and o¢,, applying the input pdf of the uncertain parameters
to the sample distribution is recommended. Further adaptive sampling techniques,
e.g., a combination of MSE with the input pdf and EI, are of interest that account
for this problem.

Summary

In the first section, we evaluated statistics of aerodynamic performance (lift and
drag coefficients) such as mean, standard deviation, skewness, kurtosis, and prob-
ability density function, on a variety of surrogate models with gradient-assisted or
not, direct integration, and polynomial chaos with gradient assist or supported by
sparse Gauss—Hermite. The test case used here was the RAE2822 transonic airfoil.
The results show that globally to say the gradient-enhanced Kriging (GEK) is the
most accurate in calculating any kinds of statistics, especially for the probability
density function (pdf), which stands out compared with other methods.

Based on the results in the first section, the second section showed accuracy
results using adaptive sampling techniques to obtain specific stochastic quantities
which are mean and standard deviation (mean risk), and maximum (the worst-case
risk) of drag coefficient. The surrogate model, the number of the input uncertainties,
and the number of samples were fixed at GEK, 12 and 30, respectively. No specific
sampling strategy is necessary for evaluating mean and standard deviation as far as
“uniformity” of the samples, which is achieved by the Sobol sequence, is main-
tained and the samples distributions are fitted to the input probability density
function (pdf). On the contrary, adaptive sampling techniques using the expected
improvement (EI) in the uniformly distributed sample can efficiently assist to
evaluate the maximum value.
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Jacques Peter, Itham Salah el Din and Eric Savin

Introduction

Surrogate models become increasingly popular in performing various optimization
or uncertainty quantification (UQ) analyses. The principle of a surrogate model
relies on an efficient approximation method which estimates a scalar or vector-
valued input/output functional using a data set constituted by observations of this
functional, often computationally expensive [1]. For example, the computational
resources necessary to evaluate stochastic integrals are known to grow exponen-
tially with the number of dimensions due to the so-called curse of dimensionality.
This increase becomes even more critical when the integrands need to be evaluated
by intensive computations. Surrogate models are a non-intrusive alternative for such
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computations which can outcome the limitation emphasized before by providing
cheap representations of the integrands in the parameters space. These representa-
tions are typically computed using an interpolation or a regression procedure. How-
ever, when considering a moderate to large parameters space, efficient algorithms
are mandatory to derive accurate representations of parameterized integrands.

The Kriging procedure [2, 3] is a good candidate because of its robustness, accu-
racy, and ability to provide a description of the error done by replacing a complex
function by a Kriging surrogate. This approach is interpolating and assumes that the
function to approximate is the realization of a second-order Gaussian process. The
construction of this interpolation using a sampled data set is based on a covariance
function, often chosen as Gaussian, of which inner parameters have to be tuned up
in order to provide a reliable surrogate. Here, we apply this procedure to the sim-
ulation of airflow around a wing profile with the consideration of variable shape
parameters of the profile. The present study is more particularly dedicated to a two-
dimensional RAE 2822 airfoil simulated at transonic speed [4, 5]. It is a popular,
well-documented test case in the literature and has received much attention over the
past decades; see [6, 7] and references therein for an application to the develop-
ment of algorithms for shape optimization. Our objective is to obtain an accurate
surrogate for evaluating the aerodynamic performance of the airfoil when its shape
is altered, considering a dense data set with a moderately high dimension of the
parameters space (four in the present investigation). This accuracy is required for
a subsequent robust optimization of the airfoil. We note at this stage that the Krig-
ing procedure becomes computationally intractable for high-dimensional parameters
space and large data sets, and alternative techniques need be advocated in these situa-
tions as emphasized in [8]. They include, for example, sparse grid-based polynomial
projection or regression techniques using either structured or unstructured nodes,
as detailed in the previous chapters “General Introduction to Polynomial Chaos
and Collocation Methods” and “Generalized Polynomial Chaos for Non-intrusive
Uncertainty Quantification in Computational Fluid Dynamics” and references
therein.

The rest of this chapter is organized as follow. The next section “Test Problem”
introduces the parameterized test problem considered in this work and the numerical
tools used to construct the data set. Details about the Kriging method are presented
in section “Kriging Surrogate Model.” The inputs and results of a robust UQ study
based on a Kriging surrogate are described in section “Robust Optimization Based on
the Surrogate Model.” Finally, some conclusions are drawn in section “Conclusions.”

Test Problem

Actual cruise flight conditions are mostly transonic, meaning that the flow can
become locally supersonic due to the geometry of the wing profiles. Its accelera-
tion on the upper surface of the profiles induces a depression which is responsible
for the lift force. If this depression is too sharp, a discontinuity, or shock wave, is
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created to balance the pressure gradient at the trailing edge between the upper and
lower surfaces. The position and strength of the shock wave are responsible for a part
of the drag force, and hence, these features are of major importance in optimization,
for instance to minimize the drag force at constant lift force. Modifications of the
shape of the profiles can alleviate such issues by smoothing out the discontinuity,
hence increasing the lift force while decreasing the drag force. We thus consider a
test problem where the objective is to develop a numerical strategy to quantify the
influence of variable geometrical parameters of an airfoil on its aerodynamic perfor-
mances such as the lift and/or drag force.

More particularly, the present test case is a transonic turbulent flow around a RAE
2822 airfoil. The flow is modeled by the steady-state Reynolds-averaged Navier—
Stokes (RANS) equations together with a Spalart—Allmaras turbulence model clo-
sure [9], which are now routinely used for the quantification of design issues involv-
ing compressible aerodynamics. The baseline conditions of the flow are described
in [4] for the test case #6 together with the wall interference correction formu-
las derived in [10, pp. 386-387] and their slight modifications suggested in [11,
p. 130]. The operational parameters considered here are thus M = 0.729 for the
free-stream Mach number, a, = 2.31° for the angle of attack, and Re = 6.50 - 10°
for the Reynolds number based on the chord length c, fluid velocity, temperature,
and molecular viscosity at infinity. They arise from the corrections AM_ = 0.004
and da, = —0.61° givenin [11, p. 130] for the test case #6 outlined in [4], for which
M, =0.725, a, = 2.92°, and Re = 6.50 - 10°.

Discretization and Numerical Parameters

In this section, we describe how the numerical simulations of the foregoing exam-
ple are performed. The flow is computed using the cell-centered finite volume CFD
software elsA [12]. The RANS equations are discretized using a 641¢ X 129¢ mesh,
shown in Fig. 1, where the boundary at infinity was left intentionally far at 450c from
the airfoil. These values proved to be sufficient to avoid spurious reflections with the
far-field boundary. The discretized numerical solution is obtained based on:

o A Roe flux using a second-order MUSCL scheme [13] (based on van Albada lim-
iter [14]) for the convective term of the RANS system;

o First-order Roe fluxes for the advection term of the turbulent variable;

e Corrected second-order diffusive terms based on the corrected mean of the cell-
centered gradients of the two adjacent cells;

 Source terms for the turbulent transport computed using the temperature gradients
at the center of the cells.

The flow is attached with a weak shock wave on the suction side. The static pres-
sure at the wall as well as the iso-Mach number levels are presented in Fig. 2. Given
the large number of simulations to run, the parameters of the steady-state algorithm
proved to be essential to insure a fast convergence. This was achieved using the fol-
lowing set of parameters:
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Fig. 1 Computational domain (left) and close view (right) of the mesh for the baseline RAE 2822
configuration
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Fig.2 Static pressure coefficient —C, at the wall (left) and iso-Mach number levels (right) for the
baseline RAE 2822 configuration at M, = 0.729, a , = 2.31°, Re = 6.50 - 10® compared with the
experimental data reported in [5]

e An implicit Lower-Upper Symmetric Successive Overrelaxation (LU-SSOR)
scheme [15] using four relaxation cycles, increasing the CFL conditions after 100
iterations to CFL = 50;

o A multi-grid approach for the Navier—Stokes system over two grid levels with two
iterations on the coarse grid;

» A single fine level iteration for the turbulent equation alternating with a multi-grid
iteration for the RANS system.

The corresponding decrease of the explicit residual for the mass flow is shown in
Fig. 3 (left). Once the numerical parameters have been fixed, the number of iterations
is determined from the evolution of the global forces, through a 30,000 iterations
calculation (decreasing discrete residuals of all equations being checked at every
iteration, the final reduction of the mass conservation residual, shown in Fig. 3, is
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number of iterations

2.5 - 10%). After 6000 multi-grid cycles, the force values appeared to remain within
the range [—2/10,000, +2/10,000] which is acceptable, given the convergence error;
see Fig. 4. Hence, this number of iterations has been retained for all subsequent cal-
culations.

Shape Parameters

The shape of the baseline RAE 2822 profile is subsequently altered using four
B-spline functions, located on the suction side of the airfoil. These alterations are
responsible for triggering the pressure gradient induced by the geometry of the pro-
file. The pressure gradient is significantly altered even for small variations of the
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airfoil shape, which leads to nonlinear variations of the lift and drag forces. The
shape parameters used to alter the baseline configuration are:

« Four control points located at 5, 20,40, and 60% of the chord c;
» The deformation is described by B-spline functions denoted by S, (s) such that:

m—n—1

S =) ab?s), 1)
=0

where the @;’s are the values of the deformed shape at the control p01nts and s is
the curvilinear abscissa of the airfoil. The m — n basis functions b of degree n

are defined by the recurrence relation:

; 1 ifs, <s<s;
bU) c= =" j+1
0 (s) { 0 otherwise,

and:
/+n+1

. S—3S;
bO(s) 1= ——bY (s) + b(’“)(s)
S

in =8 " i+l Sjkl

Here, m = 4 and n = 2 have been chosen;

o The amplitude &, k = 1,2, 3, or 4, of each B-spline varies in the range +0.0025¢
in the direction of the outward normal vector to the nominal (unaltered) profile;

o The leading edge and the trailing edge are considered as fixed.

The shape of the airfoil thus evolves continuously as a function of the shape parame-
ter vector & :=(&,&,6,&,) which varies in the design domain
D = [-0.0025¢, 0.0025¢]*. The support of each spline independently of the others is
depicted in Figs. 5 and 6. The effect of the maximum and minimum displacements
is shown in Fig. 3 (right).

0.02 |- sie o .02}

-0.01 - b -0.01F

-0.02 - -0.02

1 1 " | 1
o 0.05 0.1 015 02 025 03 0 0.05 01 015 0.2 0.25 03

Fig. 5 Baseline configuration and deformation of each spline with an amplitude in the range
[—0.0025¢, 0.0025¢] at 0.05¢ (left) and 0.2¢ (right)
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Fig. 6 Baseline configuration and deformation of each spline with an amplitude in the range
[—0.0025¢, 0.0025¢] at 0.4¢ (left) and 0.6¢ (right)

Quantity of Interest

The quantity of interest is the lift-to-drag ratio Y where the lift coefficient is denoted
by C, and the drag coefficient by C},, such that:

C
YE) = (&)

= . 2
@ @

Note that in the present work the computation of the drag coefficient has been per-
formed using the far-field approach detailed in [16]. Our aim is thus to provide an
optimal approximation (in a sense clarified in the subsequent section) for the func-
tion & — Y(&). This is achieved on the basis of Q > 0 repeated runs of the CFD soft-
ware for the altered configurations at selected parameter values & = (&/, L éé, &),
1 <1< 0, in the normalized parameter domain D= [0, 1]*. The data set contain-
ing all the simulations is denoted by S, = { Y’ (€); 1 <1< Q}inthe following, with
0 = #S,.

Kriging Surrogate Model

This section outlines the numerical procedure used to compute an optimal inter-
polant, or surrogate model, of the quantity of interest ¥ by the Kriging method [1-3,
17, 18]. It also describes the strategy retained to obtain optimized inner parameters
for the Kriging interpolant. For that purpose, we basically follow the presentation
in [8]. As already stated above, our aim is to use this surrogate to characterize the
influence of alterations of the baseline profile of the RAE 2822 airfoil described in
section “Shape Parameters” on its aerodynamic performance, as expressed here by
the ratio between the lift and drag coefficients (2).
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The Kriging Method

The Kriging method is based on the assumption that the quantity of interest Y () is
a random variable which can be decomposed into [1]:

Y(&) = u@) + @), 3)

where (&) and e(&€) are sought as a deterministic contribution and a random fluc-
tuation, respectively. The mean u is typically sought as a constant or a low-order
polynomial—hence the following terminology [3] of: (i) simple Kriging if u is con-
stant and known a priori; (ii) ordinary Kriging if u is constant but unknown; or
(iii) universal Kriging if y is an unknown polynomial of known order (a polyno-
mial chaos expansion, for example, as in [19]). The random process € indexed by
the parameters £ is assumed to be a second-order, centered, mean-square stationary
process, or stationary covariance process in the terminology of [18], such that its
mean y, = E{e(§)} and variance o-? = E{&(&)?} are, respectively, null and constant.
In these definitions, E{X} stands for the average of the random variable X. Thus, its
covariance function depends only on the difference & — &', and what is more the
lag distance [|& —&'[|, that is to say Cov{e(£),e(&)} = E{e(©)e(€))} = p(&.&) =
@(J|E = &'|). Here, the covariance of two random variables X and Y is defined by
Cov{X,Y} :=E{(X — E{X})(Y — E{Y})} and the variance of a random variable X
by Var{X} := Cov{X, X}. In this framework, the approximation (or linear predictor)
of Y(£*) at the unobserved coordinates £*, denoted by FoY (&), is a linear combi-
nation of the samples Y (51) S such that:

(Y]
TYE) =Y AEHYE, €5
=1

where A/(&*) are weights. The aim of the Kriging method is then to derive the
best linear unbiased predictor in the sense of a mean-square error. It can be sought
as the solution of a constrained minimization problem where the objective func-
tion is the variance o(£*) = Var{.#,Y(£") — Y(£*)} with the unbiased constraint
E{.7,Y(E")} = E{Y(£")}, that is:

Y
(€M)} 1gzo = arg min {62@*); 2 AE(YE) =[E{Y(¢*)}} . G
=1

1<I<0
with:

X&) = Var{Y(E")} + Var{ S Y )} = 2Cov{Y(E¥), S Y "))
0 0 0 (6)
= GE*.E)+ ) Y AAGE e -2 Y ApE £
=1

=1 m=1
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The covariance between Y and JQY in Eq. (6) endows the set SQ with an inner
product and avoids the explicit knowledge of Y(&). This technique is also known as
the kernel trick and avoids explicit mappings where only the foregoing inner product
between samples in So is used in the evaluation of the covariance [20]. In addition,
the kernel function ¢ has to be positive definite; see [18] for a comprehensive review.
In the present work, the product of k one-dimensional Gaussian functions satisfying
the stationary covariance process assumption has been considered. However, other
kernels could be envisaged as in, e.g., [1, 18]. The covariance kernel used in the
present investigation is thus given by:

1 ol & —¢& :
Cov{Y(€), Y&} = p&. &) =exp |- ), < ") : (7)
2 k=1 Sk
where the kernel parameters § = ({},(,, ..., {y) have to be computed in order to

minimize the quadratic error between .7, Y(&*) and Y(£*) in Eq. (5). Here, N is the
dimension of the parameters space, which is N = 4 in the present work.

Optimization of the Inner Parameters of the Covariance Kernel

The computation of the inner parameters of the covariance kernel is a crucial step
for the accuracy of the interpolation and requires to solve a nonlinear problem in N
dimensions. The choice was made to compute the kernel parameters { using a cross-
validation procedure [17]. The so-called leave-one-out (LOO) method consists in
removing each point in the data set S, one by one and compute the mean-square
difference E between the Kriging .#,Y and its LOO counterpart fQZ_l Y computed
from S, \ {Y (&)}, at the location &', such that:

Q

E0uoo = = X (4., 7€) - v@h) . ®

=1

Q=

The computation of the Q new predictors .7/ _,Y can be done efficiently using
Rippa’s method [21]. A differential evolution algorithm has been subsequently used
to solve the optimization problem for the kernel parameters ¢ associated with Eq. (8).
Details about the algorithm can be found in [22].

Direct and Dual Estimate of Ordinary Kriging

Ordinary Kriging [3] is by far the most popular approach and has been considered
in the present investigations. It starts with the assumption that the mean of ¥ — .9, Y
vanishes although u is unknown. The unbiased constraint implies that:
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0
D AEI M- =0, ©)
=1

and thus ZZQ: . M(E*) = 1. Introducing the Lagrange multiplier y and canceling the
gradient with respect to A’ in Eq. (6), the system to be solved, together with the
condition (9), is given by:

0
2 NEIPE EM - 2" EN+2¢ =0, Vm=12,..,0,
=1
(10)

Q
D AEH =1,
=1

where the weights {1/(&7)}, <i<o are the coefficients of the linear interpolation (4)
defining the Kriging surrogate. They are thus computed as the solution of the linear
system:

BE'E") - p(E",E9) 1T ( A BHE',EY)

O A | : 1
$E.E) - 2.9 1([ 22| [ peC. &) 1
| 1 of\x 1

However, this method becomes very expensive when the data set S, is large,
and thus, numerous output values Y(&™) have to be computed. This difficulty can be
overcome by observing that the linear predictor .%,Y (£*) also reads:

[
TYE) = Y x'p(E £ + 72!, (12)
=1

where the weights {7z} 1<i<p are obtained as the solution of the system:

HEE) - pEED 1] 7 ) (¥E)
SRR T | BT N
$E2." ¢ 1|| 22 |7 |reo) 13

1 1 0 [\ 72+ 0

This approach is more convenient than (4) and (11) because the weights are now
independent of the unobserved shape parameters £*.
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Robust Optimization Based on the Surrogate Model

A tensorized grid of nine equidistributed abscissas for each of the four shape param-
eters of section “Shape Parameters” is used to obtain the data set S,; therefore,
Q = 9* = 6561. The values of the lift-to-drag ratios Y(&) in Sp as computed by
the elsA CFD software vary in the range [36.788,75.198]. The Krlglng surrogate
model for the present parametric problem is computed using Onera’s in-house soft-
ware META_NUMF [17]. It implements the various algorithms described in section
“Kriging Surrogate Model”. The inner parameters selected by the cross-validation
procedure are § ~ (0.1020,0.0472,0.0957,0.1434). Note that the second parameter
&, (which can be interpreted as a correlation length) is rather small compared to the
others. This may result in small amplitude oscillations in this direction. Also, note
that the computation for the surrogate model has been carried out on eight Intel®
Xeon® processors E5540 (8M cache, 2.53 GHz) for 5 days for the inner parameters
optimization. The surface response obtained using the Kriging surrogate is shown in
the two-parameters plan (£,,&;) at &, = —0.0025¢, &, = 0 and &, = 0.0025¢, &, =0
in Fig. 7.

The response surface has been further characterized using a particle swarm opti-
mization algorithm [23] to localize its extrema. The surrogate model is character-
ized by 28 local maxima {Y,, },,.<g, Where the global maximum is Y, ,, =~ 76.6724
located at:

max

& ax = (0.002143,-0.001873,0.001125,0.001162),
such that Y, = #,Y(&,,,,)- The 28 local maxima extracted from the above proce-
dure are listed below in Table 1 in 16 digits precision for illustration purposes. They
proved to verify ||V, Y (&) < 1072, where the gradient was computed using a second-
order centered finite difference scheme with a step 4&, = 0.5 - 107 x 0.0025¢ in
each direction k = 1,2, 3, and 4 in the design domain D. These maxima have subse-
quently been considered for an UQ study where the mean and the variance of each
maximum have been computed conditionally upon a prior probability distribution
of the shape parameters chosen as a Beta law of the first kind f; for each of them.

0.0015 s i . 00015

0.0025 0.0025 0.0025 0 0025

Fig. 7 Surface response in the (£, &;) plan for & = —0.0025 (left) and &, = 0.0025 (right) with
&, = 01in both cases
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Fig. 8 p; probability 3
distribution functions for

a = f = 6 (full line) and

a = f = 2 (dashed line) used
for modeling the uncertainty
on the design of the shape 2r
parameters

25f

This distribution function appears as a suitable choice when considering manufac-
turing defects since it has a compact support. In addition, it is the law arising from
Jaynes’ maximum entropy principle [24] if the averages E{log £} and E{log(1 — &)}
are given. The convention for the definition (on the normalized parameter domain
D) of the Beta distribution f; used in the present study is:

r
B, ) = 1[0,1](5)%5“4(1 _eyt, (14)

where z — I'(z) is the usual Gamma function defined by I'(z) = 0+°° t“~le~'dt. The
probability density functions are taken symmetric with « = f = 6 for the bump
located near the leading edge at 5% of the chord ¢ (parameter &) and @ = f =2
for the three other bumps (parameters &,, &; and &,); see Fig. 8. The amplitude of the
uncertainty was taken in the range +5 - 10~*c which is consistent with observations
from the industry [25]. The present mean and variance are computed by a Monte
Carlo procedure using n, = 10* samples. Given the convergence of the Monte Carlo
method as O(1/ \/n_s), the statistics have been rounded to two significant digits in
Table 2.

The solution of the UQ is shown in Table 2 for the maxima identified in Table 1.
The mean of the maxima appears to be lower than the maximum found during the
optimization process with variances in the range [0.1, 1.2]. We define the robust max-
imum Yy such that:

Yr(@) = E{Y(©)} -3V Var{Y(£)} 5)

has the largest value. Based on that definition, the maximum identified during the
optimization procedure (labeled m = 14 in Table 1 and highlighted in gray) is not
the robust one. Indeed, for the global deterministic maximum, Y, ~ 76.67 that

decreases to E{Y4} ~ 75.5 with 4/Var{Y},} =~ 0.74 which gives Y} 4,(§) =~ 73.28.
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On the other hand, the local robust maximum is the point labeled m = 7 in Table 2
and highlighted in light gray, for which Y; ~ 75.33, E{Y;} ~ 74.59 with a variance
of y/Var{Y;} ~ 0.39 and Y ;(§) ~ 73.42. This surrogate model appears therefore
as an interesting test case for robust optimization as the global maximum, when
subjected to uncertainty, happens to be less robust than a local maximum which
maximizes the mean of the quantity of interest and minimizes the standard deviation
associated with a stochastic process.

Conclusions

In this chapter, we have addressed an uncertainty quantification and shape optimiza-
tion problem for a RAE 2822 airfoil at transonic speeds using a Kriging-based sur-
rogate model of the lift-to-drag ratio. More specifically, the shape of the baseline
profile has been altered by four localized bumps of variable amplitudes on its suc-
tion side. Their locations have been selected so that they modify the position of
the shock which primarily drives the aerodynamic performance of the profile, such
as the lift and drag forces. The transonic flow about the airfoil has been simulated
using the Onera software elsA for each instance of the bump amplitudes in a ten-
sorized grid with nine equidistant sampling values for each amplitude parameter,
resulting in a dense data set of 9* samples. Each simulation has been performed for
carefully chosen numerical parameters optimized on the basis of the baseline con-
figuration compared with the available experimental results. The high-quality, dense
Kriging surrogate model interpolating the data set uses Gaussian covariance kernels
and exhibits multiple local maxima. They have been identified by a particle swarm
algorithm, although its results might not be exhaustive and more maxima might be
found using an alternative algorithm.

An uncertainty quantification analysis has subsequently been carried out about
each local maxima, assigning a variation range and a prior probability density func-
tion to the shape parameters to mimic the effect of design tolerances and aging. This
analysis has revealed that the global maximum, for example, is not necessarily the
most robust one in terms of its standard deviation or of a robust design criterion such
as the mean minus three times the standard deviation. It is thus believed that the data
set and results obtained in the present work constitutes an interesting test case for
assessing uncertainty quantification and/or robust optimization strategies in future
investigations.
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Surrogates for Combustion Instabilities )
in Annular Combustors

updates

M. Bauerheim, A. Ndiaye and F. Nicoud

Introduction

Large power densities encountered in gas turbines and engines can lead to large oscil-
lations of pressure and heat release, known as combustion instabilities
[1-3]. First described by Lord Rayleigh in the late nineteenth century, these thermo-
acoustic instabilities aroused the interest of industries in the 60’s when they became
a major issue in the design of the F-1 Apollo engine [2]. Nowadays, gas turbines
for electricity generation and aircraft engines also suffer from combustion instabil-
ities. Indeed, lean conditions which weaken the flame stabilizing mechanisms as
well as the annular shape of modern combustors (i.e., along e,, Fig. 1) promote
low-frequency azimuthal modes. Typical geometries feature an annular combustion
chamber connected to several burners (typically 10-20), which therefore increases
the number of uncertain parameters [4] and complexifies their statistical relationship
(for instance “Does neighboring flames are statistically correlated?”) [5, 6]. Because
of this complexity, experiments are still rare [7, 8] and numerical simulations are
CPU demanding [9-11]. Since Uncertainty Quantification (UQ) requires the evalu-
ation of several numerical and experimental realizations, new low-cost flexible tools
have to be developed to evaluate the risk of instability of such a system.

To investigate azimuthal modes, 3D acoustic tools based on the non-homogeneous
Helmbholtz equation [12] have been adapted to annular configurations [13, 14].
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Fig. 1 3D view (left) of an azimuthal combustion instability (pressure fluctuations along the
azimuthal direction e,). Schematic view (right) of two neighboring burners

Recently, such a tool has been used for the UQ analysis of longitudinal modes in
a swirled combustor containing a few uncertain parameters [15], requiring thou-
sands of acoustic simulations to reach the statistical convergence. For annular cases
containing many uncertain parameters, more efficient low-order tools should be
employed. The principle is usually based on a network model of multiple con-
nected blocks [8, 14, 16, 17]. Galerkin projections, state-space models, or simple
1D tubes can be used for blocks, and their connections are made using jump condi-
tions [18, 19] or scattering matrices [8, 17]. In section “Network Model for Annular
Combustors,” a network model called Analytical Tool to Analyze and Control
Azimuthal Modes in Annular Combustors (ATACAMAC) is derived for an annular
combustion chamber fed by an arbitrary number of burners connected to an annu-
lar plenum [20-22]. This methodology allows the reduction of the system’s com-
plexity leading to an explicit analytical dispersion relation. This equation is implicit
and nonlinear in the complex angular frequency w. Solving this dispersion relation,
either analytically or numerically, gives access to w and therefore the growth rate
3 (w) which determines the stability of the mode: If J(w) > 0, the mode is unstable,
whereas J(w) < 0 implies a stable mode. Several cases will be analyzed in section
“Analytical and Numerical Resolutions,” revealing key parameters controlling the
stability such as the coupling between the chamber and the burners and symmetry
breaking. These parameters are partly unknown, which calls for UQ analysis. To
tackle this problem, the ATACAMAC framework is combined with adjoint [23, 24]
and Active Subspace [6, 25] techniques in section “Advanced Techniques for UQ
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Analysis,” leading to an efficient approach to perform UQ analysis at low costs on

non-trivial annular configurations [26].

Network Model for Annular Combustors

An analytical model for combustion instabilities can be constructed using inter-
connected 1D tubes. In each tube, representing a burner or an annular sector, the
upstream (w* = p’ + pycou’) and downstream (w™ = p’ — pycu’) acoustic waves
propagate from the curvilinear coordinate s, to s, + A4s at the sound speed ¢ (assum-
ing a null Mach number for simplicity [27]):

(1)

WE(sy + As) = w(sy)e™ oL/ ¢

where the value of ¢ depends on the location (c(u) in the burners and plenum, but
CZ in the chamber, Fig. 2). Thus, using Eq. (1), the azimuthal propagation in the ith
sector of the annular plenum and chamber can be combined to form a propagation

matrix R;(w) such that:

Pl inlet RN
enum inle 0 or x, = R,0 a Ooraxz.=R.0
4

(w’=0) —\‘

Fresh gas
(%)

R Flames
P
%i
- \ + £ >z
i i-th Burner : :
A NS Chamber outlet
4 Va4
4 b (W':O)

Fig. 2 Sketch of an annular combustion chamber fed by burners connected to a common annular
plenum. Because of the flame, the annular plenum and burners contain a fresh mixture character-
ized by a density p° and sound speed c?, whereas hot products with p) and ¢ are located in the

combustion chamber
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i-th Burner

PLENUM
CHAMBER

Fig. 3 H-junction connecting the annular plenum to the combustion chamber through the ith
burner. The analytical derivation by [20] leads to four coupling parameters I';_;

wt ekl /N 0 0 0 wt wt
L 0 —jk,2L, /N 0 0 r r
w ekhy w w
W‘E'r (Sip1) = 0 0 eM2LIN W’;’r (s;) = [Ry] wj+ (s9)
W 0 0 0 e7R2L/N || - w-
c c c

2
wherek, = w/ cg andk, = w/ cg are the wave numbers in the fresh and hot gases, and
L, and L, are the half-perimeter of the annular plenum and chamber. N is the number
of burners; consequently, 2L, /N and 2L, /N are the length of one sector delimited
by the coordinates s; and s, ;.

Each of the N sectors of the plenum is connected to the chamber through a burner,
creating a H-junction as shown in Fig. 3. Thus, the acoustic pressure p’ and velocity
' in the plenum are related to the pressure and velocity in the chamber. Using jump
conditions [18, 19], the acoustic propagation in the burner described by Eq. (1), and
an — v model for the unsteady heat release Q' produced by the flame (Q' = Fu' =
ne/®* ', where n and 7 are the gain and the time-delay of the Flame Transfer Function
denoted .%), an interaction matrix [7] is derived by [20]. It relates acoustic quantities
before the ith junction (coordinate si‘) to the ones after the junction (s;"):

+ + +
. SRV B .

w — w _ w _

AGH =PI G T o[PS =TT R |G 3)
w Ii500041 w w

where [P] is the matrix relating the Riemann invariants w* to the acoustic pressure
and velocity, and I;;_, 4 are the coupling parameters derived by [20]:
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-

S;
I, = —Ecotan(kuLi)
»
S; 1
F.2 = L —
L 28, sin(k,L;)
1 I.= S; chg 1+ne/®” (4)
i3 28, p0cY sin(k,L;)
s, Pc) j
j— i b T
r,= —2—&@(1 + ne/**)cotan(k,L;)

where L, is the i-th burner length and S, its cross section.! These coupling parameters
are also obtained in longitudinal configurations [28] and characterize how cavities
are coupled and interact (Fig. 3). Decoupling can be achieved using a large section
change at the burner junction, but it can be also affected by the flame itself (i.e., by
n and 7). Note that if I;; = I';, = 0 for all junctions i = 1, ..., N, then the annular
plenum is disconnected from the rest of the system.

Using the propagation and interaction matrices to connect the annular sectors, the
annular periodicity leads to the equation governing the acoustic modes behavior in
the annular plenum and chamber:

N

[Tz

i=1

®)

r-§| r~:€+§€| 'B€+
I
°§| = E§| ~§+

Equation (5) has non-trivial solutions if and only if the determinant is null, which
yields the dispersion relation to be solved:

N
det | [JiRITI-1, ) =0 (6)

i=1

where I, is the 4-by-4 identity matrix.

Analytical and Numerical Resolutions

The dispersion relation (6) is nonlinear in w, and thus, no general solution exists.
Numerical solvers can efficiently solve this equation, but explicit expressions are
still useful to understand key mechanisms controlling combustion instabilities.

IThese expressions assume a flame located exactly at the burner/chamber junction, i.e., z; =L
This location plays a crucial role for plenum modes.



252 M. Bauerheim et al.

Axisymmetric Configurations

In many practical applications, annular combustors are axisymmetric, meaning that
all sectors and flames are identical. It implies that in the analytical model, all matri-
ces [R;] and [7;] are similar (the subscript i can be omitted), which simplifies the
dispersion relation: det({[R][T]}" — 1,) = 0. This equation can be recast as

N
[ detrIITI = /") =0 & det(IRIT] - &N [)=0 forp=1,...,N

p=1
(N
This simplification highlights that in axisymmetric configurations, each sector
has the same acoustic behavior: The stability of the system can be deduced using
one sector (matrix [R][7]) which necessarily acts as a pure phase-lag 2pz /N, where
p corresponds physically to the azimuthal order. In the UQ context, it suggests that
investigating one azimuthal order in an axisymmetric annular chamber is not more
expensive than studying a longitudinal configuration. This result can be applied to
3D acoustic tools where the Bloch theory allows the computations of the annular
combustor using only one sector [29], and therefore, it can drastically reduce the
computational effort to evaluate the risk of instability.
Despite this apparent simplicity, annular configurations containing a chamber and
a plenum can exhibit complex lock-in and veering phenomena, for which the active
flames are a key ingredient.

« Considering first the simple case where all coupling parameters are null, i.e.,
I''=1I,=1;=1,=0, Bauerheim et al. [20] showed that the plenum and the
chamber are fully decoupled from the burners and flames. It results that eigen-
frequencies are f[? = pc2 /2L, (pure azimuthal decoupled mode in the plenum) or

ff = pcg /2L, (pure azimuthal decoupled mode in the chamber). Since the cold
mixture and hot gases have a different temperature, and the half-perimeter of the
plenum and chamber is different, eigenmodes in the plenum and chamber are
distinct.

» When coupling factors are not null but satisfy |I;,_; 4| <1, solutions are close
to the fully decoupled case. Consequently, they can be searched as f, = fco + 6f and
= f[? + 6f. A Taylor expansion of the dispersion relation yields the solutions in

the case where the two annular cavities are not naturally coupled, i.e., when fz? and
fCO are not multiple of each other:

p) NI q p NI q
f”_Z_LC_ 4zL, fl’_sz_szp ®)

where I’ 10 (respectively I' f) is the value of the coupling parameter I’} (respectively
I)) at the frequency f = fﬁ (respectively f = fco): These modes are called “weakly
coupled.” This analytical expression is validated against a semi-analytical method
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Fig. 4 Growth rate J(f,) of the first azimuthal chamber mode (p = 1) in a combustor containing
an annular chamber and plenum with N = 4 burners. The FTF corresponds to n = 1.57 and the
time-delay 7 is varied from 0 to 7%, where 70 = 1/f? is the period of the mode. The growth rate is
estimated using Eq. (8) ([]), a semi-analytical solution (—), and by a 3D Helmholtz solver (X)

(the analytical dispersion relation in Eq. (6) is solved numerically using a Newton—
Raphson technique) as well as a 3D Helmholtz solution on an annular case with
N = 4 burners in Fig. 4. Note that the growth rate of these modes scales with the
number of burners N.

o When the weakly coupled assumption is not satisfied, the two annular cavities can
couple and oscillate at the same frequency, even if f[? and fL0 do not match: The
burners and flames tune one of the two cavities so that they can both resonate. In
this case, the acoustic mode cannot be identified as “plenum” or “chamber” modes
because the whole combustor is resonating: A bifurcation occurs as shown by
the stability map in Fig. 5: These modes are called “strongly coupled.” Compared
with WC modes where at least one time-delay stabilizes the configuration, one SC
mode is always unstable (the other one being always stable) whatever the time-
delay. It suggests that stabilizing the configuration requires first to decouple the
system before acting on the flames. In a UQ context, capturing the steep bifurcation
between WC/SC modes is a challenging task, especially since no explicit solutions
to guide the analysis are available for this case (Eq. (8) holds only for weakly
coupled modes).
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Fig.5 Stability map {R(f,), 3(f.)} of a configuration with N = 4 burners and the flame parameters
are varied: nfrom 0.25to 1.75and v/ T? from O to 1. It highlights the bifurcation between the weakly
coupled (WC) modes, close to the fully decoupled solutions (X and []), and the strongly coupled
(SC) modes for which no distinction plenum/chamber can be observed

Non-symmetric Configurations

The ATACAMAC tool applied to axisymmetric cases has revealed in section
“Axisymmetric Configurations” that the coupling parameters I',_; 4 governed the
stability of the system as well as the bifurcation between weakly and strongly coupled
modes. For UQ analysis, this result is of prime importance since the problem con-
tains only two uncertain parameters: The geometric parameters and the sound speed
are usually well known, whereas the most uncertain parameters are due to the flame
response to acoustics, i.e., the gain n and the time-delay z. While uncertainties on the
fuel or global equivalence ratio can impact all the N flame responses and associated
FTFs, turbulence or manufacturing tolerances yield uncertainties with low flame—
flame correlations. In other words, flames and burners are not necessarily identi-
cal, and thus, the framework developed in section “Axisymmetric Configurations”
does not hold anymore. Such a case also appears when passive control devices are
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introduced in the annular chamber to stabilize the system, e.g., Helmholtz res-
onators [30, 31] or baffles [32]. To account for this symmetry breaking effect, the
N flames are now considered different, i.e., with different gains n; and time-delays
7;. To ease the formulation, no plenum is considered here, i.e., I;; = I;, = 0. The
2-by-2 restrictions of the matrices [R;] and [7;] to the chamber modes make that only
I, n4 are relevant. Nevertheless, N is usually of the order of 10-20. In a com-
bustor containing 19 burners for example, it yields 38 uncertain parameters (the N
statistically independent gains and time-delays), which leads already to a large UQ
problem when solved with 3D acoustic tools.

Following a similar approach than the one considered for symmetric cases, Bauer-
heim et al. [4] showed that for weakly coupled modes, the complex frequencies of
the azimuthal mode of order p are:

0

0
C
1E= 50~ gar (Zox %) ©)

where % is the “coupling strength” defined as

N
=217 (10)
i=1

This parameter is the sum of all the coupling parameters of the system and is inde-
pendent of the pattern used to distribute the burner uncertainties along the annular
chamber. It corresponds to a symmetric effect.

The parameter +.% is the “splitting strength” which “splits” the two azimuthal
mode frequencies f* and f~. A convenient form of this parameter is obtained by
using the spatial Fourier transform of the coupling parameter distribution y:

N
5= Vr@p)r(=2p) where y(k) = Y I/ (11

i=1

Note that the “coupling strength” can be also recast in this form, i.e., X, = y(0). It
shows that only few specific patterns can affect the azimuthal mode stability. They
correspond to the Oth and the +2p” Fourier coefficients y of the coupling param-
eter or heat release distribution [33]. Unlike the coupling strength X, the splitting
parameter .#, can be changed by modifying the pattern of the burner types along the
annular chamber. Such a modification can be intended as when controlling devices
are introduced, or unintended when turbulence or uncertainties affect randomly the
flame response to acoustics. In a UQ perspective, the explicit solution of Eq. (11)
allows the CPU cost to be drastically reduced since only patterns associated with
7(0) and y(+2p) can be retained [4]. Recently, Ghirardo et al. [34] also show that
nonlinearities of the flame response itself can produce a splitting effect [22, 34].
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The azimuthal mean flow induced by swirlers or modern effusive plates can also
promote such a splitting [27].

Advanced Techniques for UQ Analysis

Compared with LES or 3D acoustic tools, the ATACAMAC tool allows brute-force
UQ techniques, like the Monte Carlo method, to be performed. The objective is to
estimate the uncertainty on the growth rate 3(f.) from the uncertainties of the N,
inputs. Indeed, while most studies intend to predict if the system is stable or unsta-
ble, the benefit of a UQ analysis is to assess the risk of instability, in other words
the probability of the mode to be unstable. This can be measured by the risk factor
introduced by Bauerheim et al. [5, 6]:

RF (%) = 100 / PDF(w,)dw, (12)
0

where w; = 2z3(f,) and PDF(w;) is the probability density function of the growth
rate w;. If the risk factor is RF = 0%, it implies that the mode is stable, whereas
RF = 100% corresponds to an unstable mode. Between these two extreme cases
associated with the classical binary stability prediction, the risk factor quantifies
how a mode is stable regarding the uncertainties of the inputs. Such an example is
displayed in Fig. 6 where a Monte Carlo method is used to estimate the risk factor
of the first azimuthal mode of a combustor containing N = 19 burners. Each point
in the stability map {R(f.), S(f.)} (left) corresponds to an ATACAMAC simulation.
Here, 10,000 simulations were required to reach the convergence and estimate the

+6 0.25

. . I .

STABLE PNSTABLE
TN : 14.77%

[}

801 804 807 810 ER jl A
Frequency (H.) Im(f) (s77)

Fig. 6 Monte Carlo analysis using 10,000 ATACAMAC simulations for the first weakly coupled
azimuthal chamber mode of a combustor containing N = 19 burners. Each point on the stability
map (left) corresponds to one ATACAMAC simulation. This method allows a robust estimation of
the growth rate PDF and its associated risk factor
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growth rate PDF (right). The integration of this PDF for positive growth rate gives
an approximation of the risk factor, here RF = 14%. In this case, it suggests that the
mode is probably stable, but further investigations should be done to ensure a safe
stable mode, i.e., RF = 0%. Note that a risk factor close to 50% is a useless prediction
since the mode can be either stable or unstable. This might be due to a lack of knowl-
edge of the key parameter uncertainties, or because the system is highly sensitive to
small errors.

Adjoint Analysis

Situations where the systems are highly sensitive to uncertainties suggest that a sen-
sitivity analysis could be used before performing an expensive Monte Carlo analysis.
The ATACAMAC framework allows a low-cost method for sensitivity computations
based on the adjoint analysis. The objective is not to compute the surface response
[S3(f)1(gy) in the whole parameter space {q;_; . N, }, as in a UQ analysis, but only
its gradients [S(f.)1(g,)/dq,. This knowledge allows the determination of (1) the
sensitivity of the system and (2) the critical parameters which strongly affect the
system’s ouput. Whereas a sensitivity analysis can be CPU demanding if estimated
using a finite difference, the adjoint method allows the computation of the gradients
with only one additional simulation whatever the number of input parameters N,.

The equation governing the system (Eq. (5)) can be recast as [M](w, ¢)X = X,
where [M] = Hf;l [R;1[T;] is the matrix of the system depending on the angular fre-
quency w and a set of parameters ¢, and X is the state vector corresponding to the
acoustic pressure and velocity at one specific annular coordinate. Its adjoint form
can be written as

(M1 (@}, q0) — 1) X} =0 (13)

where [M]" is the conjugate transpose of the matrix system [M], Xg is the adjoint
eigenvector, and wy is the conjugate of the complex angular frequency w, obtained
when solving the direct problem.

The knowledge of the adjoint eigenvector Xg allows the derivation of an approx-

imate solution of the direct problem around ¢,: In other words, Xg provides a
first-order approximation w = w, + (eq,)w; of the problem for a set of parameters
qo + €q, close enough to g,. Compared with finite differences where each direction
of the parameter space should be probed by changing one direction at a time, the
adjoint analysis provides this information for all the N, directions using only one
additional computation. Magri et al. [24] have shown that this first-order eigenvalue
drift reads
(X, 8M(wy, €q))X,)
W =- (14)
<X[ oM (w, qO)X0>
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Fig. 7 Relative error between finite difference and the adjoint-based first- and second-order sen-
sitivities on three annular configurations: a weakly coupled mode in a symmetric case (a and d); a
strongly coupled mode in a symmetric combustor (b and e); a strongly coupled mode with symmetry
breaking

where oM(w,, €q,) = M(w,, gy + €q,) — M(w,, q,) is the difference between the
matrix system at the frequency w,, for the two different yet close parameter sets g, and
qo + €4q;, and {.) is the inner product. Note that Magri et al. also derived a second-
order approximation, not detailed here for the sake of simplicity [24]. These first- and
second-order adjoint-based approximations are validated against the finite-difference
technique in Fig. 7 on three different cases:

« a weakly coupled mode in a symmetric case (a and d);
« astrongly coupled mode in a symmetric combustor (b and e);
« astrongly coupled mode with symmetry breaking (c and f).

The sensitivity analysis performed in Fig. 7 is associated with small determinis-
tic changes in the parameter space. The same approach can be employed in a UQ
context where the parameter change is chosen randomly, assuming this change is
small. Using two computations only (one direct and one adjoint computations), the
eigenvalue drifts can be computed for any random perturbation eq, at a low cost (no
additional computation is needed, and only Eq. (14) has to be evaluated numerically
for each sample). Such an adjoint-based method is validated against a classical and
CPU demanding Monte Carlo technique (a and b, red dashed lines) on a strongly
coupled mode in a non-symmetric annular combustor in Fig. 8. Results show that
only small errors are obtained using a first-order approximation (c and d), whereas
the growth rate PDF is well approximated by a second-order adjoint-based method
(e and f). This result reveals how low-order methods which allow sophisticated
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Fig. 8 Stability map (left) and PDF of the growth rate (right) of a strongly coupled case in a non-
symmetric annular combustor (10% of uncertainties on the flame parameters) estimated using a
finite difference (a and b and the red dashed lines), a first-order adjoint approximation (c and d),
and a second-order adjoint approximation (e and f). The dotted lines highlight the stability limit
S(w) = 0, and the green dot corresponds to the deterministic computation

techniques (adjoint analysis is much more difficult when using reactive 3D Navier—
Stokes solvers for instance) can provide efficient methods for UQ analysis of indus-
trial combustion chambers.

Active Subspace

The adjoint analysis presented in section “Adjoint Analysis” provides an efficient
approach to tackle UQ problems involving a large number of uncertain parameters.
Nevertheless, such a method has some limitations:

o The adjoint method is well suited for smooth functions where a second-order
approximation is sufficient to capture the major fluctuations of the output.

« No indication is provided to quantify which and how parameters affect the surface
response.

» The adjoint method allows an efficient computation of the surface response using
the low-order model, but cannot be transferable to other tools. Note that applying
adjoint to more complex solvers (3D acoustic tools, LES solvers etc.) is a tedious
task [29, 35].

To overcome these constraints, the Active Subspace method developed by
Constantine et al. [25] was adapted to thermo-acoustics by Bauerheim et al. [6]. It
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can be used as a stand-alone approach or combined with the adjoint-based technique
proposed in section “Adjoint Analysis.” The objective is to reduce the number of the
uncertain parameters from N, to just a few before employing other UQ technique
efficient in low dimensions. It is based on the uncentered covariance matrix of the
output gradient, which can be evaluated using finite difference or the adjoint:

M
1
C=ElV,a(V,0) ]~ 7 ¥ [V,0q®) 0q")] (15)
k=1
where the column vector V @ = [dw/dq,, ..., 0w/ 0qu]T is the eigenvalue’s sensi-

tivity with respect to the N, uncertain parameters, E(.) is the expectation operator,
and ¢® corresponds to the kth random sample of parameters among the M samples
available for the Active Subspace determination. Because the matrix C is symmetric,
it admits a real eigenvalue decomposition

C=waAwT (16)

where A is the diagonal matrix [4,] and W, is the associated eigenvector. Based
on the relative importance in the eigenvalues A, (i.e., gaps between eigenvalues),
this method selects new variables, called the “active variables,” corresponding to
directions (i.e., linear combinations of the initial uncertain parameters) of signifi-
cant change in the output response. Other directions can be disregarded because of
not affecting the output. An example of spectra is given in Fig. 9 for a weakly (left)
and strongly (right) coupled modes in an annular combustion chamber containing

Weakly coupled mode , Strongly coupled mode
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Fig.9 Active Subspace spectra for a weakly (left) and strongly (right) coupled modes in an annular
combustion chamber containing 19 burners and 38 uncertain parameters (each FTF gains and time-
delays)
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19 burners and 38 uncertain parameters corresponding to the FTF gains and time-
delays. Figure 9 shows that only five active variables are significant. Note that the
first relevant eigenvalues converge rapidly (50 finite-difference samples for 38 uncer-
tain parameters). These spectra can be evaluated using the adjoint-based method to
reduce the cost:

« If the response surface is smooth, all random perturbations can be computed using
Eq. (14) based on the unperturbed case (i.e., no uncertainties), thus requiring only
two computations (one direct and one adjoint) whatever the number of parameters
N, and the number of samples M.

o If the response surface is not smooth enough, the perturbed case w(g*’) cannot be
obtained through Eq. (14): A direct computation is mandatory. However, in the
Active Subspace context, the adjoint can still be applied to extract the gradients
V, o around w(¢®) at a low cost. Consequently, the method needs a direct and
adjoint computations for each sample ¢®, in contrast with finite differences which
require N, + 1 direct computations for each sample: The adjoint-based approach
now scales linearly with the number of sample, i.e., 2 X M, but is still independent
of the number of inputs N, o whereas the finite differences scale like 2 X M X (1 +
N,). Itshows that an Active Subspace method combined with adjoint computations
allows efficient uncertainty quantifications at low cost, even for large UQ problems
(i.e., large Nq).

The benefit of such a method is that the “active variables” obtained by ATACA-
MAC in this configuration can be reused on the same case but using more com-
plex acoustic tools, for instance a 3D Helmholtz solver. Moreover, Bauerheim et
al. [6] have shown that these active variables are not a mathematical artifact of the
method, but correspond to physical parameters. Using a spatial Fourier transform,
they showed that the problem can be reduced to only three active variables corre-
sponding to y(0) and y(+2p), as predicted by Eq. (11) for weakly coupled modes.
The Active Subspace approach reveals that these three parameters are also govern-
ing the strongly coupled modes for which no explicit solutions are available yet.
In a UQ perspective, this result highlights that a UQ analysis involving only three
uncertain parameters can be applied to study weakly or strongly coupled modes in
annular combustors. This dimension reduction is crucial since most of the UQ tech-
niques are effective only in low dimensions. As a conclusion, the Active Subspace
approach combined with an adjoint method constitutes an efficient method to per-
form a systematic UQ analysis for combustion instabilities in annular combustors at
the design stage.

Conclusion

While large UQ analysis for combustion instabilities is still out of reach when using
high-fidelity simulations or 3D acoustic tools, low-order models for
thermo-acoustics can be developed for annular combustors at a reduced cost. The
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ATACAMAC tool (Analytical Tool to Analyze and Control Azimuthal Modes in
Annular Combustors) is described to tackle this problem in complex geometries
where the combustor contains several burners connected to an annular plenum and a
combustion chamber. In some cases, called “weakly coupled modes,” fully explicit
analytical solutions can be derived for the complex frequencies of the system, for
which the imaginary part gives the stability of the system. It reveals key parameters
governing the stability of the system: (1) the “coupling strength” associated with
a symmetric effect and (2) the “splitting strength” due to symmetry breaking. This
framework allows the development of sophisticated techniques such as adjoint-based
sensitivity analysis. This approach gives the gradients of the growth rate using only
two computations whatever the number of parameters involved in the system. In a
UQ context, it provides at low cost a first- and second-order approximations of the
surface response. Results revealed that the PDF of the growth rate can be captured
efficiently for both weakly and strongly coupled modes. Finally, this method can
be combined with the Active Subspace approach to assess the risk of instability in
complex annular combustors even at the design stage.
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General Introduction to Monte Carlo )
and Multi-level Monte Carlo Methods

updates

Robin Schmidt, Matthias Voigt, Michele Pisaroni, Fabio Nobile,
Penelope Leyland, Jordi Pons-Prats and Gabriel Bugeda

Introduction

With Monte Carlo (MC) methods, we identify a broad class of approaches that rely
on the idea of approximating statistics of the response of a system by simulation
through sampling. Because of its simplicity, robustness, and dimension independent
convergence rate, MC methods can be used to characterize, in principle, any system
that has a probabilistic interpretation. MC methods are often the easiest way, and
sometimes the only feasible one, to solve a wide range high-dimensional problems.

Hereafter, we will denote random variables with capital letters and realizations of
those with lower case letters. Vectors and matrices are shown in bold.
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Suppose we are interested in computing the expected value E[ Q] of a quantity of
interest (Qol) QO = Q(X) of a problem having some random elements X. Assume we
can generate N independent and identically distributed (i.i.d.) realizations X©, i =
1, ..., N and for each of them evaluate the corresponding QOI Q) = Q(X@). Then
the MC estimator for the expectation E[ Q] of Q is defined as:

| & 4
Q)= ) 0. (1)
i=l1

The simulation procedure that makes use of i.i.d. samples and the MC estimator
introduced in Eq. (1) to approximate E[ Q] is generally called Crude Monte Carlo
(CMO).

Thanks to the Strong Law of Large Numbers, the approximation of E*“[ Q] con-
verges with probability one (converges almost surely) to E[Q] as N — oo as long
as Q is integrable.

Moreover, EYC[ Q] is an unbiased estimator:

E[E"[Q]] = E[Q] (@)

meaning that the expected value of the MC estimator equals E[ Q] for any N.

The rate of convergence of MC method can be described by the Central Limit
Theorem (CLT) using the concept of convergence in distribution (weak convergence,
size of the error with some probability). If the variance of Q, hereafter denoted with
Var[Q], is finite then the CLT asserts that

VN (E"[Q] - E[Q]) = /Var[Q].# (0, 1) 3)

as N — oo, where .47 (0, 1) is anormal random variable with mean zero and unit vari-
ance and = means convergence in distribution. From Eq. 3, for N large enough,
we can derive confidence intervals for the estimator E*“[Q] of E[Q]:

v Var[Q]
VN
with probability 1 — «, where C,, is a confidence parameter such that the cumulative

distribution function @ of a standard normal random variable @ (C,) = 1 — 3.
From Eq. (4), we can draw three crucial conclusions:

|E"[0] — E[Q]]| < Cq 4)

e the rate of convergence of MC is O (N —172y,
e for large N the error is normally distributed,
e the complexity of the computation depends solely on Var[Q].

If an exact representation of the Qol is not accessible and we rely on a numerical
approximation (e.g., a finite volume (FV) or finite element (FE) approximation in
fluid dynamics computations) with a discretization parameter M (number of spatial
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degrees of freedom), then Q is approximated by Q). The accuracy in estimating
E[Q] by EM[ Q] can be quantified by considering the mean square error (MSE) of
the estimator:

Var[QM]

e(E™[Ou])? := E[E™[Qu] — E[Q])*] = (E[Qy — Q1)* + ——— &)
-— = N
B-2) (SE-E¥C)

On the right-hand side, we can isolate two distinct contributions. The first term, the
discretization error or bias (B-EYC), is the square error in mean between Q,; and
0 and depends solely on the space discretization parameter M. The second term,
the statistical error (SE-E™), represents the variance of the estimator and decays
inversely with the number of samples N.

The Crude Monte Carlo (CMC) approach is summarized in the algorithm below.

Algorithm 1: Crude Monte Carlo Algorithm

CMC(N, M)
for i =0: Ndo
L Generate random samples: Q (X (@)

compute E"°[Q ] := % YN Qu(XD)

CMC is a very elegant approach and has been proven to be robust and accurate
for non-smooth problems, nevertheless its very slow convergence rate O(N~'/?)
prevents to achieve reasonably estimations in acceptable time for large-scale aero-
dynamic applications that require the solution of computational expensive CFD
simulations.

Different strategies have been investigated in the last decades to accelerate MC
methods. They are all based on the idea of reducing the ratio on the right-hand side

of Eq. (4) —VY"F:V[Q]. The two most prominent categories of approaches are:

o Alternative Sampling techniques: increase the denominator term to converge more
rapidly by using deterministic (low-discrepancy) sequences, stratified sampling,
or Latin Hypercube Sampling rather than pseudorandom numbers.

e Variance Reduction techniques: reduce the numerator term Var[Q] by suitably
modifying the quantity Q in a consistent way (i.e., without changing the expecta-
tion) as in the Multi-Level Monte Carlo approach.

These methodologies will be presented in the following sections and chapters.
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Choice of Sampling Sequences

The generation of the x ) samples with predefined probability distribution is a pivotal
procedure in MC methods. In this section, we review different approaches used to
generate pseudorandom and quasi-random numbers and methodologies required to
prescribe appropriate correlations to random variables.

Pseudorandom Numbers

The simplest procedure is random sampling. However, true random numbers are the
result of physical phenomenon as, for example, radioactive decay processes. Practi-
cal applications utilize pseudorandom numbers. Those results from pseudorandom
number generators (PRNGs), also referred to as deterministic random number gen-
erators, are based on some reproducible mathematical formulation. Starting from a
certain seed, the goal is to produce a sequence of uniform pseudorandom numbers
in the interval (0, 1) with statistical properties that are in very good agreement with
those of a true sequence of i.i.d. random variables. The period length of the PRNG
describes the number of random numbers until the sequence repeats itself. In gen-
eral, a small period seems bad; however, a larger period is not necessarily better. A
good PRNG has good performance in different criteria. A variety of theoretical and
empirical tests, see, e.g., [1], can be conducted to decide whether a PRNG can be
considered a good one.

The most common PRNG is based on recursive arithmetic, as, for example, linear
congruential generators. Popular PRNG is the Mersenne Twister [2] or the combined
multiple recursive generator according to [3].

Quasi-random Numbers

Quasi-random numbers are the result of low-discrepancy sequences. The resulting
realizations are uniformly distributed in the interval [0,1). They exhibit much more
uniformity compared to random or pseudorandom numbers. Therefore, they increase
the convergence rate if used within MC methods. In order to specify the application
of low-discrepancy sequences in MC methods, the term Quasi-Monte Carlo (QMC)
is used. The convergence rate of QMC is usually close to O(N~"), which is higher
compared to CMC, see Eq. (4).

Uniformity is measured by utilizing discrepancy which is defined as follows. Let
B be a rectangle in the d-dimensional unit hypercube J with sides parallel to the
coordinate axes and m (B) its volume. The discrepancy of a set of N points in [0, 1)
is defined as
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Number of points in B
Dy = sup —m(B)| . (6)
BeJ N

The most common low-discrepancy sequences are Halton and Sobol sequences.
Both are based on the van der Corput sequence which is constructed by reversing
the base-b representation of the sequence of natural numbers. For more details,
concerning the construction of low-discrepancy sequences the interested reader is
referred to [1, 4, 5].

Although low-discrepancy sequences possess high uniformity in low dimen-
sions d (and large N), they can exhibit poor space-filling behavior for small N
and large d. The d-dimensional Halton sequence, e.g., is constructed by pairing d
one-dimensional sequences based on d different prime numbers (usually the first d
primes). In the case of high dimensions, the base b must be large. The corresponding
van der Corput sequences with large bases produce long linearly growing segments.
If these are paired with each other, a strongly linear space filling of the unit square
is obtained. Different techniques designated leap [6] and scramble [7] were created
in order to overcome these problems.

Pseudorandom Variables with Non Uniform Distribution

In order to generate a random variable X from an arbitrary distribution the following
two steps are involved.

1. Generation of uniform random numbers Uy, ..., Uy with the PRNG.
2. Transformation of U; according to its respective probability density function
f(X) or joint probability density function f(X).

In the previous sections, we briefly presented how uniform pseudorandom num-
bers or uniform quasi-random numbers can be created. Here, we will describe two
transformation methods in order to get a random variable X from such a uniform dis-
tributed random variable. The most notable transformation methods are the inverse
transform method and the acceptance—rejection method.

In the inverse transform method, the random variable is calculated with the inverse
of the CDF F(X), see Algorithm 2.

Algorithm 2: Inverse-Transform Method

Generate U from U(0, 1)
Return X = F~1(U)
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The acceptance-rejection method directly works with the PDF f(X) of the con-
sidered random variable X. Moreover a further PDF g(X) is needed, such that for
some ¢ > 1, c g(X) > f(X) for all x. It is assumed that random numbers can be
easily generated from g(X). The resulting method is described in Algorithm 3.

Algorithm 3: Acceptance-Rejection Method

Generate X from g(X)
Generate U from U(0, 1)
IfU < f(X)/(cg(X)) use X, otherwise reject X and repeat the process.

Stratification

If it is possible to divide a heterogeneous population into subpopulations each of
which is homogeneous, a precise estimate of, e.g., the subpopulations mean can be
obtained from a small sample. A combination of such estimates can deliver a precise
estimate of the whole population with smaller number of realizations compared to
CMC. This line of thought leads to stratified sampling. The idea behind stratified
sampling is to divide the population of N units into m non-overlapping subpopu-
lations, called strata. Each strata has N; units withi = 1, ..., m and Zi N;i=N.A
sample of size n; withi = 1, ..., m and Zi n; = n is selected by some design within
each stratum. In case of a random sample in each stratum, the term stratified random
sampling is used. How to chose the strata depends on the particular problem. The
population mean per unit ES'[ Q] can be estimated with

"N E -
EY[Q] = w =) W ElQl, (7)
i=1

where W; denotes the stratum weight. Only when the sampling fraction is the same
in all strata which means e.g.

===, ®)

the population mean corresponds to the sample mean. Such a stratified sampling is
called proportional. If a predefined cost function is available, an optimal allocation
of sample size can be achieved, e.g., in order to minimize the variance for ES Q1.
A simple cost function can be a linear one where the cost is proportional to the size
of the sample but varies from stratum to stratum.

The variance of an estimated mean of random sampling is denoted V,.,,, of strati-
fied sampling with proportional sample allocation V ., and with optimum allocation
for fixed n it is V. It is shown in [8] that the following relation holds.
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V()pl = Vprop = Vran (9)

Therefore, it can be argued that stratified sampling is always better compared to
random sampling when enough information is available for its appropriate imple-
mentation. However, enough information is represented, e.g., by the frequency dis-
tribution of the result quantity, which is often only estimated prior to a probabilistic
investigation. Therefore, the necessity of defining the strata is a major problem in
stratified sampling. In case of one result quantity and if it is known a priori, for
example, due to a reasonable number of measurements, a procedure to calculate the
strata and number of strata is given in [8]. The determination of the strata becomes
further complicated when many result quantities should be considered. The strata
definition for one result quantity may be inappropriate for other quantities.

Correlation and Discrepancy Control

So far, only the marginal distributions of single variables were taken into account
when creating random vectors. An N x d sample vector can be obtained by repeating
d times the generation of one-dimensional random variables with N realizations. This
naive approach can lead to undesired dependencies between the variables which must
be avoided. On the other hand, specific interrelationships between the input variables
might be explicitly desired for a variety of probabilistic simulations, for example,
when treating measurements of a real system or in the context of sensitivity analyses,
where correlation is of great importance and must be considered.

Relations between input variables can be represented by correlation, for exam-
ple, using Pearson correlation coefficients (generally denoted with p) or Spearman
rank correlation coefficient (denoted with r). According to Pearson, the correlation
coefficient for two random variables X; and X ; is defined as:

S G — X)) (nj — X )
\/le(\l_l(xki - W\/m

The rank correlation coefficient is calculated with the ranks of the data.

A correlation matrix C of size d x d is obtained from a sample of the size N x d.
In the case of the correlation coefficient according to Pearson C;; = p;;. Furthermore,
itis assumed that the desired correlation structure is known and predefined by a target
correlation matrix T.

There are two main groups of methodologies used to generate correlated random
vectors with arbitrary given marginal distribution and correlations:

(10)

Pij =
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1. Methods that transform a correlated standard normal random variable into a
target non-normal variable
2. Methods that optimize the rank correlation structure of a sample.

The popular Nataf model [9] belongs to the first group. A standard normal random
vector Z with a correlation matrix T’ is transformed component-wise into the desired
vector X with a correlation matrix T. The marginal transformation is obtained by:

X = F7 ' (®(Z)), (11)

where @ is the standard normal CDF and F;(X;) the CDF of X;. The Nataf model
approach assumes that Z is jointly normal and uses the Pearson correlation coefficient
(invariant under nonlinear strictly increasing transformations) as in Eq. (11). Thus,
the relation T’ # T holds. In order to get the unknown matrix T’, each element p;;
must be computed by solving:

o0 o0

Xi— i X — W

pij = / / ;]—‘](02(21',2]', pi)dzidz; (12)
—00 —00

O; 0

where ¢5(z;, z;, plf j) designates the PDF of the bivariate standard normal distribution.

In order to avoid the elaborate solution of Eq. (12), empirical equations have been
developed such that p; = f(pij) can be computed, see e.g. [10].

If the matrix T’ is available, uncorrelated standard normal distributed random
vectors can be transformed into correlated ones by means of Cholesky transformation.
The Cholesky decomposition T = LL” provides the lower triangular matrix L. The
correlated random vectors are then obtained by applying XL .

The idea of converting uncorrelated random variables into correlated ones by
orthogonal transformation is also the basis of methods belonging to the second group.
One of these was developed by Iman and Conover [11] and is known as Restricted
Fairing. The random vectors of individual random variables are generated according
to their respective probability distribution without taking into account correlations.
The restricted pairing technique uses the rank correlation coefficient. Compared to the
Pearson correlation coefficient, the latter has the advantage of being invariant under
monotonic transformations of the marginals. Algorithm 4 describes the procedure of
Restricted Pairing.

Algorithm 4: Restricted Pairing

Calculate C from X

Calculate lower triangular matrix Q from QQT =c¢C

P from PPT =T

S=PQ!

R = XS7

Change the order in X in order to achieve the same ranks as in R
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The method proceeds from uncorrelated random variables. Practically, this is only
possible to a limited extent. Therefore, the correlation of the input sample is taken
into account by incorporating the rank correlation matrix C which results from the
available sample. In case of perfect correlation;; = 1 withi # j in the input sample,
the rows in each column of X can be randomly shuffled.

An iteratively improved implementation of the Restricted Pairing technique has
been presented in [12].

Besides the two aforementioned groups of methodologies, other approaches exist,
as, e.g., the usage of Copulas to construct a multivariate random vector of dependent
components.

A desired order within the sample can also be set up by solving a combinatorial
optimization problem. The optimization is based on a scalar quantity which measures
the deviation E = T — A between target correlation matrix and the actual correlation
matrix A. Vofechovsky and Novék [13] described the deviation by root mean square
correlation r,,,; and minimized it by using Simulated Annealing and interchanging
a pair of two realizations x;; and x .

Frms = \/ 2X0 Do (B (13)

dd—-1)

A suitable matrix norm can also be used to measure the maximum absolute cor-
relation error:

Fmax = max |Ej; 14
max ISiSdel l]| ( )

If the correlation adjustment can be formulated as an optimization problem, a dis-
crepancy improvement can be obtained with the same approach only by exchanging
the objective. As an example, Liefvendahl and Stocki [14] used a genetic algorithm
to solve the optimization problem.

The description of the space-filling proprieties of samples by means of a scalar
quantity is possible with a multitude of criteria. An overview and an evaluation of
existing criteria can be found in [15]. Beside all, the centered L? discrepancy [16]
shows good performances for projections in 2D subspaces.

N
13 2 1 1
1 N
e S |< _| _0.5]— | D _0.5]— |x<’) x,§’>|)

i,j=1k=1

5)
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Latin Hypercube Sampling Method

Latin Hypercube Sampling (LHS) was first published by McKay et al. [17] and
further developed by Iman and Conover [18]. The method can reduce the variance
of an estimator compared to random sampling, which results in a reduction of the
sample size while maintaining the statistical significance.

A mathematical proof of the variance reduction compared to CMC was given by
McKay et al. [17] under the condition that the system behavior is monotonic in each
of its inputs. Iman and Conover [18] show for an additive model with uniform inputs
that the variance of an estimated mean converges with a factor of N 2 faster compared
to CMC. Stein [19] demonstrated that the amount of variance reduction increases
with the degree of additivity in the model response. An experimental comparison of
LHS against CMC was carried out by Manteufel [20]. LHS estimates an unbiased
mean value as well as the distribution function. The bias in the estimation of the
variance is low and associated with a significantly lower sampling variability.

The idea behind LHS relates to stratified sampling. In LHS, only the marginal
distributions are stratified in such a way that each random variable X is divided into
N contiguous intervals of equal probability with respect to the corresponding CDF
F (X). For that purpose, the unit probability is divided into N intervals of identical
probability 1/N. These probability intervals are bounded by a lower ¢;_; and upper
bound ¢y.

k

The calculation of the corresponding interval bounds &, over the values of the
random variable X can be performed by utilizing the inverse of the CDF F(X)

E=F (0. (17)

In each probability interval one realization x; must be selected. Therefore,
X € (&x—1, &) holds. Besides random LHS where each realization x; is uniformly
distributed in its respective interval, mean and median LHS exist. For those meth-
ods different ways of selecting the sample values from the probability intervals are
applied. In case of median LHS each probability interval is selected by taking the
following set of sampling probabilities.

k—0.5
N

P = (p1, P2, s P> -y PN) With p = (18)
The samples are selected using the inverse transformation of the probabilities in

p. |
X =F~(pr) (19)

The mean in each interval is selected for mean LHS. It makes a numerical inte-
gration of the PDF f(X) necessary. The samples are selected using
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Pseudo-Random Quasi-Random Halton LHS
1.0 < . - TR KL R e e e e L0y s : 5
M . o e e e e . o S . . . . ) PILLTE I o~
08 Lo e et 08 et e St e e sl 08 e - ol s
0.6 306 [ 0.6 ' .
. K A
o . :P
04 '. - 04 b2 : 0.4 . " .
A O . o . o .
02,4 Y O 02 et N 0.2 F%eus .
0.0 . T . s ) ool e, "% B A 00L_% & o° e L]
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Fig. 1 Visual comparison of 250 pseudorandom, Halton quasi-random and random Latin Hyper-
cube samples
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Fig. 2 Visual comparison of correlation optimized and discrepancy optimized median LHS; N =
100

o xf(X)dx 0
Xp= >
CTE fX0d

Figure 1 shows a visual comparison of different sampling techniques for N =
250 realizations. Figure 2 extends the visual comparison and shows correlation and
discrepancy control for a median LHS with N = 100.

Multi-level Monte Carlo

As previously stated, Crude Monte Carlo (CMC) sampling has a dimension indepen-
dent convergence rate which is not affected by the presence of possible discontinuities
in the parameter space. However, the CMC approach converges very slowly and is
impractical in complex applications that require accurate solutions. The Multi-Level
Monte Carlo (MLMC) method has been introduced by Heinrich [21, 22] in the con-
text of parametric integration and extended by Giles [23] to approximate stochastic
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differential equations (SDESs) in financial mathematics as a way to improve the effi-
ciency of MC simulations. Applications to PDE models with random parameters can
be found in [24-28].

Algorithm 5: Multi-Level Monte Carlo Algorithm

MLMC(L, {N}}f-,)
for/=0:Ldo
for i =0: N;do

Geperate random input: oD
0] < PROBLEM, (@)
0} < PROBLEM,_; (@)
Yl(l) = QM[ - QM]-]

| compute E*C[Y]

| return E"MMC[Qy] = Z,L:O EMC[Y;]

The key idea of MLMC is to simultaneously draw MC samples on several approxi-
mations Q y, of O built on a hierarchy of nested computational grids (with discretiza-
tion parameters My < M, < --- < My = M) thanks to the linearity propriety of the
expectation operator. Indeed the expectation of a Qol computed on the finest level
can be written as a telescopic sum of the expectation of the Qol on the coarsest
level plus a sum of correction terms adding the difference in expectation between
evaluations on consecutive levels:

L L
E[Qwm,]=E[Qum]+ Y EIQu — Qu, 1= Y E[¥] 1)
=1 =0
with Yl = QM, — QM,,I and YQ = QMU'

The MLMC estimator for E[Q] can be written as:
L 1 N, L
EMLMC = o Y, w(i,l) — EMC _ , 22)
[Q] I;j N ; 1) ; [Qm, — Oum,,] (

where the same realization w‘"? is used to compute the correction Y;(w") =
Owm, (@®y — 0 M (@) on both levels whereas corrections on different levels
should be sampled independently.

The accuracy in estimating E[ Q] by E™[Q,] can be quantified by considering
the mean square error (MSE) of the estimator:
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= Varly,
(B0, 1) 1= EI(E™C[Q,] — EIQI] = (Bl Qw — Q)+ Y —oit],
—_— o N
(B_EMLMC)
(SE_EMLMC)
(23)

The standard MLMC algorithm is summarized in Algorithm 5. The notation

PROBLEM; denotes a general ‘black-box” CFD solver that computes the Qol of
the problem under investigation given a set of input values at the grid discretization
level I. The description of the treatment of specific geometric or operating input
random parameters will be provided in the following chapters.
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Latin Hypercube Sampling-Based Monte )
Carlo Simulation: Extension of the Oneck o
Sample Size and Correlation Control

Robin Schmidt, Matthias Voigt and Ronald Mailach

Introduction

In order to calculate an MC estimator for the expectation E[Q] of Q

N
E€I0] = < ) 0K, M
i=1

where Q is a quantity of interest with Q = . (X) with the deterministic model ..
The sample X of some random variables X;, i = 1, ...,d can be generated with dif-
ferent sampling approaches as already described in chapter “General Introduction to
Monte Carlo and Multi-level Monte Carlo Methods”. One of such methods is Latin
hypercube sampling (LHS). The method can reduce the variance of an estimator
compared to random sampling, which results in a reduction of the sample size while
maintaining the statistical significance. A drawback of the LHS compared to random
sampling is the procedure for the generation of the realizations and the associated
limitations in the extension of the sample. Depending on the selection of the sample
values, an extension of the sample size can be achieved by doubling or adding an
even multiple of its sample size.

The results from a Monte Carlo simulation in terms of sensitivities or robustness
measures mostly are in the form of point estimators available. The statistical qual-
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ity of these estimators can be determined only after completion of a Monte Carlo
simulation by using, e.g., confidence intervals. If the quality is not sufficient, the
sample size needs to be increased. Here, it may occur that deterministic calculations
must be discarded and a new LHS must be performed. This approach is especially
doubtful in conjunction with time-consuming and therefore very “expensive” deter-
ministic calculations. In the literature, various methods for extending a Latin Hyper-
cube sampling are described.

In [1] Pleming and Manteufel, use a level group approach, where at each level a
certain number of groups are added. Once the initial LHS design is created, an equal
number of realizations in the form of a group are added. Thereby the initial bins are
considered. A certain number of groups are necessary to maintain the LHS design
in each level. In the extension approach presented by Pleming and Manteufel, the
realizations are set at fixed bin fractions and not uniformly distributed in the inter-
val. This approach can be combined with an algorithm for correlation or discrep-
ancy control. A extension algorithm for stratified sampling was proposed by Tong
[2]. In case of LHS, the algorithm is able to extend the sample to an integral multi-
ple of its size. However, used in a hierarchical manner the sample size in each step
is extended at least twice the size of the predecessor matrix. In [3], Vofechovsky
explored an approach that consists of an exponent and a base value. The added real-
izations follow from this approach. Two methods with the names LLHS and HSLHS
are presented. They differ with respect to the calculation rule and the base value. The
realizations are set at the median of the corresponding probability interval. A disad-
vantage of the LLHS is the deviation from the LHS design, which results in a group-
ing around the mean. If all existing realizations are considered the HSLHS yields to a
LHS design, however each extension by itself is not a LHS design. Recently, further
improvements were proposed by Vorechovsky [4] with an approach named HLHS.
The HLHS concept reminds of the HSLHS approach, however, it has been gener-
alized and combined with a correlation control and optimization algorithm based
on Simulated Annealing; see also [5]. Sallaberry et al. [6] presented an approach
to extend a LHS by doubling the sample while considering an existing correlation
structure. No subsequent correlation control procedure is necessary.

A method for extending a LHS should ideally have the following features:

o The concept of the LHS design should be maintained or at least it should be pos-
sible to reach a LHS design at a certain stage.

» The extension algorithm should be flexible.

» Correlation or discrepancy adjustment should be possible within the method or
with an external method.

The first two criteria usually contradict each other. Another reasonable feature
can be.

» Each extension is a separate LHS design in the same parameter space.
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Latin Hypercube Sampling

The procedure to create a random LHS is described in chapter “General Introduc-
tionto Monte Carlo and Multi-level Monte Carlo Methods”. However, minor changes
are carried out in order to increase the representation of the random variables X
marginal PDF, if the distribution is an asymptotically expiring one, as, e.g., the nor-
mal distribution. Statistical measures as, e.g., Var(X), which are a result of the sam-
ple, are very sensitive to the position of the realizations x; and x, in the outermost
probability intervals. In such intervals, the mean is used instead of an uniformly dis-
tributed value. Therefore, Eq. (2) also presented in chapter “General Introduction to
MonteCarlo and Multi-level Monte Carlo Methods” is used to calculate x; and x,.
For further reading see also [7].

o (X)dx

== with k= 1,N 2
k
[t fX)dx
As already emphasized, the usage is limited to realizations in the tails of asymp-
totically expiring distributions.

Extended Latin Hypercube Sampling

The extension algorithm extended Latin Hypercube sampling (eLHS) is based on the
choice of a sample group size denoted with N,. The algorithm allows to extend an
existing sample of N, realizations with any positive multiple of the same size. The
positive integer /, named level, denotes the different extension steps.

If a probabilistic simulation is already present, the existing number of samples
corresponds to the group size and is referred to as level / = 1. If no sample is already
available, level [ = 1 results from an LHS with a sample size of N,. The basic idea is
to select a small group size, e.g., N, = d + 5 with d as the number of input variables,
and reach the desired total number of realizations N’ by extending / times.

NO =1.N, A3)

The superscript (I) denotes the respective level. The flowchart in Fig. 1 describes
the extension procedure. Each random variable is handled individually. In each
extension step, only N, realizations are added to the sample matrix. That means, the
division of each random variable X into N contiguous intervals of equal probability
1/N® with respect to the corresponding CDF F(X) is not maintained in each level of
the eLHS. Besides the level /, we introduce a control variable A. The relation between
4 and the level [ states whether a recalculation of the probability interval bounds is
necessary. If [ = 24=1 — 1, the probability interval bounds need to be recalculated.
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Fig. 1 Flowchart of eLHS
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If [ < 247D — 1, vacant intervals are still available. The probability interval bounds
are defined as

kK with k= 1,..,2*N, .

A _
d)k - Z/INg g

“4)

The probability intervals are denoted with [Sg) ]. The corresponding interval

bounds over the values of the random variable X are denoted with &,. An integra-
tion of the PDF over the interval (.flii)l , fl(f)) would result in the probability interval
1/(2*N,).

JX)dx = ®)

Equation (5) is solved numerically in order to compute the interval bounds 5,({’1).

The corresponding intervals are denoted with [II((’D]. The interval bounds of the first

level and therefore with 4 = 1 are designated as root bounds q’)l((l) and 5151). The cor-
responding intervals are designated as root intervals. The existing realizations x are
assigned to the intervals [Iliﬂ)]. Subsequently, an indicator value y; is determined
for each interval. For an empty interval, y;, = 1, for an occupied one y;, = 0. Based
on the indicator values, the number of free intervals per root interval can be deter-
mined. The realizations x are assigned uniformly distributed to the empty intervals
bounded by 519)' However, per root interval bounded by fl(cl) only one realization is
added. This approach ensures that exactly N, samples are added to the sample matrix
and, furthermore, that each extension x® represents a separate LHS. However, it
introduces a deviation from the LHS design in such levels.

As a result more than one empty interval per root interval is in certain levels
available, e.g., inlevel / = 3. In order to reduce the error compared to the LHS design,
the selection of the interval in such levels is based on the largest negative distance
between continuous and discrete distribution function of the present realizations x.
For this purpose, the lower distance between continuous and discrete distribution
function is defined as

D*(x) = ("_—1 - F(xk)) withk =1, NUD ©)
NU-D

In Eq. (6), F(x;) denotes the continuous CDF of X. The minimum value of D* is a
measure of the lack of realizations in the PDF. Furthermore, the value D*, describing
the upper distance, is calculated with the present realizations.

¥ = (Fox) = with k= 1. NOD -

wis)
NU-D

For each root interval [I;l)] with j = 1,...,N,, the newly occupied interval is

located below the interval of the realization with
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Fig. 2 Schematic example with group size N, = 3 and 4 levels

d*= min (D*(x)). ®)

1 1)
xeEh "

Furthermore, the constraint, |d*| > |D* (x;)| must be satisfied where x; designates
the highest random number in each root interval. Otherwise, the interval above X; is
selected.

Following from the described extension approach, we can summarize that the
combined extended sample of the size NV is only for [ = 2~D a true fully occupied
LHS; otherwise, certain probability intervals [Sl(f)] stay empty.

Example: In Fig. 2 a, one-dimensional extension is shown for a uniform distribu-
tion U(0, 1) and a group size N, = 3. The realizations are illustrated on a number ray
schematically. Level one contains NV = N, = 3 realizations. In the second level, the
root sample is duplicated and the new realizations (in red) are assigned to the empty
intervals. In the third level, the interval bounds d)f) and 5,52) are recalculated again.
However, two new empty intervals are per root interval available now. The intervals
to be occupied are selected by using d* and D*. In the fourth level, no recalcula-
tion of the interval bounds in necessary. The present empty intervals are occupied
uniformly distributed (in green).

Selected Performance Results of eLHS

In order to evaluate the eLHS, two standard normal distributed random variables
X ~ N(0, 1) are generated according to the experimental matrix shown in Table 1.
The rank correlation values of r = [0,0.25,0.5,0.75,0.99]7 are examined for each
test point.

The following samples were generated with LHS. The same correlation values as
for the eLHS are used. Each test point of the two experimental matrices was repeated
100 times.

N =[15,20, 30, 40, 50, 60, 65, 80, 100, 120,

9
130, 160, 200, 240, 260, 320]” ®
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Table 1 Experimental matrix eLHS

I NO
Ng:5 Ng=10 Ng:20

3 15 30 60

4 20 40 80

6 30 60 120

8 40 80 160

10 50 100 200

12 60 120 240

13 65 130 260

16 80 160 320
Table 2 Realization in interval [/, ] for N, = 10

1 ALHS xeLHS 5(1)’ 551)

1 —1.7550 —1.7550 —10, —1.2816
2 —2.0627 —1.7550 —10, —1.6449
3 —2.2270 —2.3378 —10, —1.9600
4 —2.3378 —2.3378 —10, —1.9600
5 —2.4209 —2.3378 —10, —2.2414
8 —2.5887 —2.3378 —10, —2.2414
9 —2.6293 —2.8207 —10, —2.4977

Due to brevity of this chapter, the eLHS will be evaluated against the LHS con-
cerning the reproduction of the standard deviation s(X). For further results, the reader
is referred to [8]. The comparison is performed with the mean value of 100 repeti-
tions. Error bars describe the standard deviation s(s(X))) due to the repetition. The
target value of the estimated standard deviation s equals one.

The error of the LHS with respect to the target value decreases asymptotically
with increasing sample size N. The eLHS results deviate from the LHS due to the
empty intervals [/;] at the levels {3, 6, 10, 12, 13}. Also, the scatter of the standard
deviation increases. In level {4, 8, 16}, all intervals are occupied and the standard
deviation of the eLHS samples should correspond to those of the LHS. However,
this can only be approximately achieved at level 16. This behavior is not visible for
the reproduction of the distribution function or mean value (see [8]). The reason
behind the deviations in {4, 8} is the allocation of the outermost intervals [/;] and
[Zy] with the mean x-coordinate (see Eq. 2). Table 2 presents the realization of eLHS
and LHS in the interval [/,] as well as the corresponding bounds using the example
of N, = 10. The value of §, = —10 is selected for presentation purposes.
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o eLHS: N, =5 r=0.75 o eLHS: =10; r =0.75 o eLHS: =20;r=0.75
A LHS: N 5,20, 30, 40, A LHS: N = 30,40, 60, 80, A LHS = 60, 80,120, 160,
50,60,65,80; r = 0.75 100, 120, 130, 160; = 0.75 200, 240, 260, 320; r = 0.75
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Fig. 3 Standard deviation over the number of level

At level [ =1 eLHS and LHS posses the same value for the realization in the
interval [I;]. At level [ = 2, the outermost interval is still occupied. Moreover, the
corresponding realization of eLHS is higher compared to the one of the LHS. The
LHS value is the required value for N = 20 in order to achieve a good representation
of o. Therefore, the estimated standard deviation is reduced. The described behavior
also applies to the levels / = 5...8 which is shown in Fig. 3.

The opposite case occurs in the levels [ = 3,9...15. The realization is smaller com-
pared to the required value for the appropriate number of realizations N©. Therefore,
the estimated standard deviation of eLHS is increased compared to LHS. The influ-
ence of the realizations in the intervals next to the outermost intervals is shown at
level [ = 4. These intervals are occupied by mean instead of randomly distributed
values which is a result of lower levels. In the case of / = 4, the intervals [/,] and
[Zy_;] are occupied with the mean value from level [ = 1. The result is a reduction
of the scatter of the standard deviation and a reduction of the deviation to the target
value.

Note, the described problem due to the usage of mean values is limited to asymp-
totically expiring distributions. Avoidance is possible by random assignment of the
outermost intervals [/;] and [/y]. From Fig. 3, we can see that in general the devia-
tions to the LHS decrease with increasing group size.

Correlation Control and Maintenance

As stated in chapter “General Introduction to Monte Carlo and Multi-level MonteCarlo
Methods”, the univariate random variables have to be assembled to the sample matrix
X of the size N X d according to their dependence structure. For this purpose, an
iterative Restricted Pairing (see chapter “General Introduction to Monte Carloand
Multi-level Monte Carlo Methods”) inspired by the work of Dandekar et al. [9] is
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coupled with a simple random search procedure. The correlation adjustment pro-
cedure denoted Random Search Restricted Pairing (RSRP) is shown in Algorithm
1.

Algorithm 1: Correlation adjustment procedure
Initialize X and X*
while Q(X*) > Q
Generate X*
Iterative Restricted Pairing with X*

do

term

The sample matrix X is initialized by linking the univariate random vectors. Each
column represents a random variable. The matrix X* is generated with each column
being a random permutation of the same column from X.

The use of Restricted Pairing means the use of the Cholesky transformation. For
this purpose, it is necessary that the target and sample correlation matrices are sym-
metrical and positive definite. This property is granted in applications with physical
background. The requirement is violated as soon as the number of realizations of
the sample N is less than the number of random variables d. Therefore, the present
method can only be applied for N > d.

A comparison with other methods for correlation control is shown in Table 3. The
example deals with d = 15 independent uniform distributed variables U ~ (0, 1) and
a sample size of N = 16. The optimization criterion

d-1 d
E=Y Y (E), (10)

i=1 j=i+1

was used where Ej; denotes the elements of the error matrix E (see chapter “Gen-
erallntroduction to Monte Carlo and Multi-level Monte Carlo Methods”). The tests
were repeated 10 times, and the mean value for maximum absolute correlation devia-
tion r,,,, and root mean square correlation deviation r,,,, is shown. All three methods
provide comparable results, with the genetic algorithm [10] performing best.

The rank correlation of the added sample matrix X is set with the above pre-
sented RSRP after each marginal variable is extended. The flowchart of the approach
is shown in Fig. 4. Sallaberry et al. [6] showed that two samples with the same cor-
relation structure in turn lead to a similar correlation structure when they are joined

Table 3 Performance of correlation adjustment ford = 15 and N = 16

RSRP Simulated annealing [5] | Genetic algorithm [10]
max 0.079 0.087 0.065

r 0.049 0.044 0.023

rms
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Fig. 4 Correlation control and eLHS for level [ = 2

together. In the presented procedure, the whole sample matrix X is tested concerning
its maximum absolute rank correlation error, after adjusting the correlations of the
new realizations and joining them with the existing sample. The correlation adjust-
ment in the new realizations X is repeated until r,,,,(X) is less than a predefined
criterion, as, e.g., in [11].

Performance of RSRP and eLHS

The evaluation of RSRP in the extension procedure is done with the example
described in section “Selected Performance Results of eLHS.” Figure 5 shows the
maximum absolute correlation deviation over the extension level for the three group
sizes. A distinction is made within the five computed rank correlation values. Gener-
ally, it can be observed that the RSRP leads to very low maximum absolute correla-
tion deviations of at most 1072, The samples with low group size, that also means low
group size variable ratio N, /d, and high correlation coefficient result in the highest
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deviations. Comparing the samples with a group size of N, = 10, the largest absolute
correlation deviations also arise from high correlations of r = 0.99. At a group size
of N . = 20, which corresponds to 10 times the number of variables, this behavior is
no longer present. With increasing group size and thus variability of each level, the
correlation deviation decreases. Also, an increase in the number of levels results in
a decrease of the deviation.

Pleming et al. [1] propose to choose the size of the sample four times the number
of the random variables when applying Restricted Pairing with LHS. In the context
of eLHS and RSRP, we can deduce that for low up to medium correlations even a
factor of 2, that means Ng = 2d, can be enough to achieve low correlation deviations.
In case of very high correlations, we propose a factor >5.
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Introduction

Uncertainty quantification has gained interest during the recent years. Two clear
examples are NODESIM-CFD and, the just finished, UMRIDA projects.

NODESIM-CFD project analysed the efficiency of Monte Carlo methods in front
of other uncertainty quantification techniques: Polynomial Chaos Expansion,
Probabilistic Collocation Methods, etc. It was concluded that Monte Carlo method
is not suitable for industrial application in CFD due to its demanding computational
cost, although this cost remains constant, or almost constant, with respect to the
number of uncertain parameters. The curse of dimensionality was a key issue to
keep the interest in Monte Carlo method.

UMRIDA project has focused its attention on a new and promising method
related to Monte Carlo, named Multi-Level Monte Carlo. The available literature
demonstrates how different levels of successive discretization levels of the analysis
lead to a better performance compared to standard Monte Carlo method. The big
number of evaluations remains on the coarse levels, while the refinements help to
converge to the mean and variance estimators more quickly and efficiently.

This present chapter describes the implementation tasks of the Multi-Level
Monte Carlo method for its application to the efficient handling of a large number of
uncertainties. It is foreseen that the resulting tool can provide a stand-alone
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methodology for uncertainty quantification, or it can be combined with optimization
tools to get a robust design tool.

To define a reference point, the Monte Carlo method is briefly introduced so a
clear comparison will be done, highlighting the differences between MC and
MLMC.

Description of Monte Carlo Method

Monte Carlo method is a well-established technique for sampling and producing
statistical analysis. It is well known that its brute force approach leads to a high
computational cost compared to other methodologies, but it is true that the com-
putational cost is independent of the number of uncertainties and their typology.
The accuracy getting the statistical moments of the results and as well as the easy
implementation of any sampling probabilistic density function (PDF) are advan-
tages of the Monte Carlo method.
This method formulates the mean value of a functional as:

n 1 & k,n
EM [U,J = ngl UT’

being

e E the mean value expectation,

M the number of samples,

U the functional investigated,

7 the discretization of the functional,

n the last time step of the numerical simulation (just to ensure the numerical
convergence of the simulation).

The other three statistical moments, namely the variance, skewness and kurtosis,
can be easily obtained in a similar way from the set of samples.
The whole Monte Carlo procedure can be summarized as:

. Define the desired number of samples.

. Calculate the stochastic points derived from the PDF of the input parameters.
. Calculate the value of the functional for each stochastic point.

. Calculate the statistical moments of the results.

B W N =

It is clear from the formulation that the cost is directly related to the cost of
evaluating each sample. The total cost is the sum of each individual evaluation. Due
to the fact that a large number of samples are required to get accurate estimators of
the statistical moments, the final cost can be unaffordable.

As shown in Figs. 2 and 3, the statistical estimators converge to their final values
after an initial range with large oscillations. Figure 3 shows the detail of the
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Fig. 1 Coarse-to-fine mesh refinement
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Fig. 2 Mean value of Qol versus shots

finest mesh. The plot shows that in the analysed case about 500 samples were
required to get an almost stabilized value for the mean, although larger amounts are
accepted as necessary to fully stabilize these oscillations. This statement is rein-
forced by the data shown in Fig. 4, where the variance is plot regarding different
levels of accuracy and number of samples. To get an almost converged variance
value, more than 500 samples are required to really stabilize the oscillations. The
oscillations will be a problem-related issue, but it is clear that they will be related to
the number of uncertainties, the range of their variance and the influence of the
uncertain input parameter to the output variable. Then, it is easy to understand that
the number of samples to ensure variance converge can be large. These figures
show how increasing the level of accuracy and refining the mesh, the mean, and the
variance of the Qol also are refined. The meshes used are shown in Fig. 1, which
define the levels of accuracy named as L1, L2, L3, L4.
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Description of the Multi-level Monte Carlo Method

The Multi-Level Monte Carlo method is based on similar criteria as standard Monte
Carlo. It also uses a set of samples to estimate the statistical moments, but in
MLMC case the samples are organized in successive refinement levels. Thanks to
this refinement, the number of samples to be used is expected to reduce each step
while speeding up the convergence of the statistical moments. The mentioned
refinement can be applied to the mesh size or to other parameters leading to an
improved accuracy of the output. The improvement in the performance of the
MLMC method, compared with the classical MC one, is based on the combination
of a big number of cheap samples with low accuracy providing a good convergence
of the statistical moments with a small number of expensive samples with high
accuracy providing good quality results for the estimation of the output variables.

As mentioned, the MLMC method is based on a combination of a large number
of evaluations with a low level of accuracy with a small number of evaluations with
a high level of accuracy. Let us assume a sequence Py, Py, ..., P which approx-
imates a quantity of interest (Qol) not only with increasing accuracy, but also with
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increasing cost. Due to the linear property of the mean value operator, we have (see
Ref. [1])

E[PL] =E[P] + i E[P,-P,_]

and therefore we can use the following unbiased estimator for E[Py],

L N
E[P]~N;! 21 Py + 121 {Nl_l 21 (Pl(l’ ' 1)>}
n= = n=

In order to calculate the standard deviation,

M

VIP]= X N7 'Vi[P]

I
Z o

L (P -E[P])?
n—1

>

=

dide

being:

e N; the number of samples for the 1 level of accuracy, and n the number of the
sample calculated at each step,

° Pfl’“) the result of the evaluation of the n sample of the I level of accuracy
(notice that the sampling points used for each level of accuracy are
independent),

e n the number of evaluated samples.

If we define C, as the computational cost of the analysis of one sampling point
belonging to the first level of accuracy, then the overall cost of the multi-level
estimator is

L
CL= E NG

1=0

For a fixed computational cost, and choosing the appropriate Lagrangian mul-
tiplier A, the standard deviation is minimized by choosing

Vi

Ni=M /=
1 G
A typical computer implementation of the MLMC method is as follows:

1. Start L =0,
2. Estimate standard deviation V| defining an initial number of samples N;.
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Calculate optimal N; using N1=2€‘2\/V1h1(Z,L=0\/Vl/h1>, being h; the

computational cost associated with the analysis of each sampling point and € a
user-defined tolerance. The values that € can usually take are from 10~ to 107,
These typical values help to the convergence of the method, although it is
greatly dependant on the behaviour of the Qol.

3. Evaluate extra samples if optimal Nj is larger than the initial estimation

4. If L > 2, test convergence using:

_ 1
max{M ™Yo _|,[YL|} < —=(M-1)e

V2

or

|YL—M—1YL_1|<L(M2—1)e

V2

|91

. If L < 2, or not converged, L=L + 1
6. Go to (2), i.e. estimate standard deviation V| defining an initial number of
samples N;

To avoid misunderstandings, it should be clarified that what the Multi-Level
Monte Carlo method defines as “Level” means the difference of two consecutive
levels of discretization. See more details in the next section.

Look at Refs. [2—6] for more details.

On the following section, some analyses will be described using Multi-Level
Monte Carlo for two different refinement criteria.

Refinement Levels

As described, the MLMC method is based on successive refinement applied to the
solver. When dealing with FEM solvers, the easiest way to achieve this refinement
is using the mesh size. But it is not limited to, while other types of refinements are
also possible. The following sections present the one based on the mesh size and
another one based on the number of time steps of the simulation.

In order to clearly describe the refinement strategy, together with the application
of the MLMC method, two main analyses are presented. The first one is an
approximation of the BC-02 test case. It uses the same RAE2822 geometry, but
slightly different values for the AoA and M. Table 1 describes the related values.

The solver used in any case is based on Euler equations. The quantities of
interest are the coefficients of lift, drag and momentum, or a selection of one of
them.

Table 1 Definition of
uncertainties for the first
analysis

Parameter Mean Deviation
AoA 2.79 0.1
M 0.734 0.005
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Mesh Refinement

The initial analysis is based on the definition of four different mesh refinements.
Each mesh is used to calculate the behaviour of the statistical moments of the
quantity of interest. The obj