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Part I
The UMRIDA Project



Vision, Objectives and Research
Activities

Charles Hirsch and Dirk Wunsch

Vision, Concepts and Main Challenges

The ultimate objective of aircraft design methodologies, within a fully computer-
ized design environment based on the concept of virtual prototyping (VP), is to rely
essentially on analysis: computer-aided design (CAD) definitions for the geometry,
computational fluid dynamics (CFD) for the aerodynamic loads and noise sources;
computational structural mechanics (CSM) for stresses and lifetime evaluations,
including combined fluid–structure interactions (FSI); conjugate heat transfer
(CHT) for heat fluxes and heat transfer; combustion modelling for emissions;
computational aeroacoustics (CAA) for noise estimations. This objective should
lead to a shorter design cycle, with fewer costly tests and as importantly, fewer
redesigns due to unanticipated test results.

An important limitation of the extensive application of analytical tools, at the
basis of virtual prototyping, is connected to the level of uncertainty they introduce
in the analysis and design process.

For example, when performing 3-D viscous flow analysis of engine components,
there is uncertainty in the definition of the boundary conditions representing the
operational environment; in the discrepancy between the CAD geometry and the
real geometry resulting from the manufacturing tolerances and assembly process; in
the true deformed geometry of the parts being analysed at engine operating con-
ditions. In addition, modelling uncertainties are present, resulting from imperfect
models for turbulence, multi-species reaction rates or combustion, as well as
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numerical errors from the set-up of the simulations (such as grid dependencies or
convergence levels).

This leads to a global uncertainty on the results of the analysis, on which
design decisions have to be taken. The ability to quantify the impact of these
uncertainties on the predicted behaviour of aeronautical components and to
account for these uncertainties in the design process is crucial for a reliable risk
management and better estimates of safety margins. Managing the design process
in the light of these uncertainties is therefore the key to robust design.

Introducing the probabilistic nature of uncertainties in simulation software
systems is a highly challenging undertaking, as the whole process transforms the
resolution of deterministic physical conservation laws, to non-deterministic
methods, governed by stochastic partial differential equations (SPDE). As a con-
sequence, predicted quantities, such as loads, lift, drag, efficiencies, emissions,
noise, …, are not represented anymore by single numbers, but by a Probability
Density Function (PDF), providing a domain of confidence, associated to the
considered uncertainties, introducing hereby a fundamental shift in paradigm for
the whole of the VP methodology.

The main concept is summarized in Fig. 1. The current deterministic approach is
to set single-valued computational conditions, leading to a single value for the
output quantity η (in red). When the uncertainty is introduced by a PDF, the output
quantity is also transformed into a probabilistic quantity. Figure 1 illustrates this
fundamental change, which can be strongly dependent on how the input uncertainty
parameter is defined. From the output PDF, one can derive the Cumulative
Distribution Function (CDF), leading to the definition of a domain of variation for a
given level of confidence, say 95%. This is shown on the right side of Fig. 1, which
shows the predicted PDF and CDF for the drag on an airfoil with geometrical
uncertainties. The vertical bar represents the deterministic prediction.

A very important property, shown intentionally on this Fig. 1, is that the
deterministic output, corresponding to the mean value of the input uncertain
variables, is not equal to the mean value of the output PDF.

The importance of assessing and quantifying the various uncertainties affecting
the virtual prototyping process, in particular in aeronautics, has been growing
significantly in the last few years in Europe and in the USA, and in particular as an

Fig. 1 Main concept of non-deterministic simulations
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outcome of the FP6 project NODESIM-CFD (Non-Deterministic Simulations for
CFD-based Design Methodologies), precursor of this UMRIDA project.

The incorporation, up to an advanced industrial level of uncertainties in the VP
methodology, has become a major necessity, in order to reduce the risks associated
to the design decisions based on numerical simulations and virtual prototyping.

Traditional Approach to Risk Management: Safety Factors

A traditional approach to risk management is the introduction of safety factors, or
safety margins, comparing the resistance of a system (which we can term as its
capacity), compared to the estimated loads (termed in general as requirement). In
the traditional and still current practice, left part of Fig. 2, a deterministic value is
estimated for the load xR and a value is provided, as best as possible, for the
maximum capacity xC, on basis of which a safety margin k = xC/xR is imposed on
the system.

Taking the safety margin at a sufficiently high value minimizes risk, but this will
generally have detrimental consequences on cost and performance. On the other
hand, taking into account uncertainties and their PDFs (right figures) provides
ranges (under the form of PDFs) for requirements (loads) and capacity (resistance)
in a rational way, allowing to define a failure region where the two PDFs over-
lap. Full safety, taking into account the known uncertainties, is obtained for k > 1,
upper right figure; while when k ≅ 1, a certain risk factor will exist, due to the small

Fig. 2 Rational approach to safety factors, based on UQ methodology (taken from Green [2])
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overlapping failure region. In case k < 1, a large failure region exists, which would
lead to a catastrophic design, of course to be rejected.

An important element in risk of failure assessment is the so-called inverse design
problem, namely trying to determine a level of acceptable uncertainty of the input
quantities, in order to keep the output uncertainties below an accepted level of risk
of failure.

Uncertainty Categorization

It is important to separate different types of uncertainties, based on their nature and
origin. It has now become standard practice in the Uncertainty Quantification
(UQ) literature (see, for instance, the recent overview book of Oberkampf and Roy
[4], to distinguish between epistemic, also called reducible, and aleatory, also
called irreducible, uncertainties).

The former are globally generated by numerical errors due to discretization
approximations and grid dependences, as well as lack of knowledge associated to
the imperfect physical models, such as turbulence, combustion or multiphase
models. They are considered as reducible uncertainties, since they could be reduced
through increased understanding and research, or more relevant physical data, and
are globally related to the lack of knowledge about the appropriate value to use for
the considered quantity.

The important consequence is that epistemic uncertainties have a fixed, but
poorly known, value in the analysis. For instance, the elastic modulus for a
composite material in a specific component is fixed but its value can be unknown or
poorly known; the turbulent viscosity in a CFD simulation is known to be subject to
the many approximations attached to turbulence models.

On the other hand, aleatory uncertainties are related to the inherent randomness
of the system being analysed, such as variability of operational conditions, geo-
metrical randomness from the manufacturing process, which cannot be reduced by
further data.

Hence, epistemic uncertainties are a property of the models applied in the
analysis, including the choices made by the modeller, while the aleatory
uncertainties are a strict property of the system being analysed.

The main reason for this distinction is the different ways of treatment and
quantification. The epistemic uncertainties will essentially be handled through
probabilistic techniques, while aleatory uncertainties, which form the main objec-
tive of the UMRIDA project, require more sophisticated and innovative techniques
in the framework of non-deterministic methods, such as Monte Carlo methods or
sensitivity-based methodologies, or Polynomial Chaos methods.

The methods for handling epistemic uncertainties, see, e.g. Helton and Oberkampf
[3] or Eldred et al. [1], place some type of bounds on the resulting output uncertainty,
largely based on subjective estimates of error andmodel uncertainty levels. It is indeed
difficult to provide objective estimates of the numerical errors, or of the error asso-
ciated with the weaknesses of a given turbulence model.

As both types of uncertainties are always present, their highly unknown and
nonlinear interactions are of importance.

6 C. Hirsch and D. Wunsch



Scientific and Technical Objectives

The UMRIDA project focuses on uncertainty management at all levels of the
analysis and design process, and it is believed to offer a significant potential for
innovative and safer designs. The technical objectives of UMRIDA can be sum-
marized as follows:

Objective 1: Develop innovative methods for UQ and Robust Design (RD) to
respond to the main challenges mentioned above.
Objective 2: Develop new methods for the large-scale introduction of the UQ
methodologies in robust design methods, in order to produce designs incorporating
the major uncertainties.
Objective 3: Apply the developed UQ and RD methods to complex systems of
particular interest for the aeronautical industry. To achieve this objective, industry
has pre-defined Industrial application Challenges (IC’s) with prescribed uncer-
tainties, including multi-physics applications, demonstrating the industries strong
needs for UQ and RD methods in their day-to-day work. This leads to a new
generation of database, including whenever possible, new experimental data with
controlled uncertainties, on which the methods will be tested and validated, as well
as best practices in the application of UQ and RD methods to industrial cases.
Objective 4: Advance UQ and RDM to the Technology Readiness Level 5–6 from
a presently estimated TRL of 2–3. Figure 3 illustrates this in relation to the pre-
cursor project NODESIM-CFD. A quantifiable objective is set by the industrial
partners as: handling at least ten simultaneous uncertainties, in a turn-over time
of no more than 10 h on a 100 core parallel processor.

Fig. 3 Progress in Technology Readiness Level (TRL) during the UMRIDA project
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Objective 5: Facilitate cooperation and dissemination of UQ and RDM awareness
towards European industries, research establishments and universities and foster
cooperation between different industries as airframe, turbo-engines, helicopters, and
sea and ground transportation, including the European CleanSky project.

Reaching these objectives will enable industry and all partners involved:

• To strengthen the competitiveness of the European Aeronautical Industry, since
UQ and RDM are not yet systematically used in industry (apart from some very
few attempts on research level). It is expected that, at the outcome of the project,
the innovative UQ and RD methodologies, to be developed in UMRIDA, will be
ready to being applied at a wider scale in the aeronautical industry.

• To secure global leadership by promoting the novel UQ and RD methods in
day-to-day industrial practice, beyond aeronautics, towards other transport
areas, such as land and sea. The downstream objective of the UMRIDA project
is to contribute to the integration of generalized risk analysis into all design
practices whereby safety margins, and the associated risks are identified at each
level of the product development.

Progress Beyond the State of the Art

In order to reach these objectives, a significant progress beyond the state of the art is
needed. The activities of UMRIDA project partners can be grouped into three main
fields:

I. Advance methods for uncertainty quantification

Three different approaches for uncertainty propagation are investigated. First,
method of moments (perturbation method) and adjoint-based methods; the
principle of these methods is the use of a Taylor series to expand an output quantity
around its mean. The key element here is the evaluation of first- and second-order
sensitivity derivatives in this Taylor series. Second, Monte Carlo methods
(multi-level Monte Carlo) are studied by several partners. The basic idea is to
perform a high number of deterministic simulations with sampled parameters and
evaluate output quantities on different levels in order to reduce significantly the
computation time in comparison with standard Monte Carlo methods. Third,
non-intrusive polynomial chaos or collocation methods are investigated. In these
methods, the principle resides in the expansion of the solution into a polynomial
chaos or an interpolating polynomial, which forms an approximation of the solution
around the uncertainties.

8 C. Hirsch and D. Wunsch



II. Characterization of most influential uncertainties and dimension reduction

A second approach to tackle many simultaneous uncertainties is to determine the
most influential uncertainties in the problem and solve only for these, in order to
reduce the dimensionality of the problem. This implies that the input uncertainties
are well known, which represents a challenge in itself for many industrial problems.

Thus, a first line of action is the accurate quantification of input uncertainties.
Output PDFs are dependent on the shape of input PDFs, and it is necessary to
develop a methodology that allows to derive correct information for input PDFs
from generally scarce experimental data or knowledge. A second line of action is
the identification of the most important uncertainties in the problem description.
A third line of action focuses on surrogate models or reduced order models for
the description of aerodynamic or turbomachinery test cases.

III. Advances in robust design and optimization methodologies

The last year of the UMRIDA project will focus on Robust Design Optimization
techniques. The objective of robust design is to produce designs which are less
sensitive to variations of conditions/parameters due to uncertainties. In general,
it must be noted that design under uncertainties is a new field of research and it
is unclear so far how to enforce robustness, robust objective/constraint formulations
and dependence on used optimizers within an industrial design environment. These
issues are addressed within UMRIDA.

Research Consortium

The research consortium formed to address the above challenges consists of the
following 21 partners, NUMECA International (Coordinator), DASSAULT Avia-
tion, EASN-ITS, LEONARDO Aircraft, MAN Diesel & Turbo Schweiz, TUR-
BOMECA, NPO-SATURN, ESTECO, ONERA, DLR, INRIA-Sophia, CIRA,
CIMNE, CERFACS, TU Delft, Vrije Universiteit Brussel, Warsaw University of
Technology, EPFL, Linkoping University, AIRBUS Group Innovation, TU Dres-
den. The logos are shown in Fig. 4.

Research Activities: UMRIDA Work Plan

One of the main objectives, namely the creation of a new generation of database,
focused on UQ and RDM, is further detailed, as it is at the heart of the research
work in UMRIDA. This database is in first priority constructed around the indus-
trial challenges (IC), submitted by the industrial partners of the UMRIDA project.
This is part of the top-down approach taken in this project, guided by the industrial
requirements of the aeronautical industry towards safer and more optimal designs,

Vision, Objectives and Research Activities 9



taken into account large numbers of uncertainties. This new database, with pre-
scribed uncertainties, will be the backbone of the two workshops, which are
expected to become landmarks in the validation and evaluation of UQ and RD

Fig. 4 UMRIDA consortium
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methods. It is intended to open up the workshops to worldwide participation with
the aim of gathering the best worldwide experts and to confront the UMRIDA
results and progress with related activities worldwide. This translates into the fol-
lowing work package structure.

WP1: General management and coordination

WP2: Improvement of methods for Uncertainty Quantification towards
industrial readiness

Objectives: Extension of UQ methods able to handle the UQ challenges identified
in Chapter “UMRIDA Test Case Database with Prescribed Uncertainties”, paving
the road towards a TRL 5–6, with a quantified objective to handle at least 10
simultaneous uncertainties within a turn-around time of the order of 10 h on 100
cores.

• Task 2.1: UQ methods for efficient handling of large number of uncertainties

• Task 2.2: Development of efficient UQ methods for general geometrical
uncertainties

• Task 2.3: Impact of numerical properties of CFD codes, numerical errors,
including issues of shock discontinuities on assessment and validation of UQ
methods

• Task 2.4: Methods for identification and quantification of input experimental
uncertainties, including methods to define tolerances in input parameters to
satisfy tolerance in output (inverse robust design).

WP3: Validation and evaluation of UQ methods for industrial test cases (in-
dustrial challenges)

Objectives: Develop the methodology of UQ towards industrial readiness, by
applying and assessing the methods developed in WP2, in view of the quantitative
objectives relevant to a TRL 5-6 objective.

• Task 3.1: Detailed specification of test cases, from basic to industrial challenge
level, including multi-physics, with preset uncertainties, including the creation
of new experimental data, with ‘controlled’ uncertainties, to establish an inno-
vative database for UQ validations

• Task 3.2: Application of methods of WP2 to the selected test cases

• Task 3.3: Efficient UQ methods for multidisciplinary applications.
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WP4: Robust design methodologies and applications

Objectives: Bring robust design methods to industrial readiness levels, covering
large number of uncertainties, including geometrical uncertainties, with applications
to Multidisciplinary Design Optimization (MDO).

• Task 4.1: Analysis of different methodologies for uncertainty incorporation in
objective/constraint formulations of the optimization process

• Task 4.2: Innovative methods for robust design under uncertainties

• Task 4.3: Application of robust design methods to selected industrial relevant
test cases, including general geometrical uncertainties.

Fig. 5 UMRIDA work plan
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WP5: Workshop, BP guideline for end-users, exploitation: dissemination,

Objectives: Set up two workshops for validation and evaluation of UQ and RD
methods at the level of the IC test cases. Dissemination and exploitation of the
UMRIDA methodologies.

• Task 5.1: Workshops on UQ and robust design at mid-term and at end of project

• Task 5.2: Best Practice Guide (BPG) for UQ and robust design methodologies

• Task 5.3: Dissemination and exploitation.

Figure 5 shows a diagram of the interactions between the different work pack-
ages and tasks.
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UMRIDA Test Case Database
with Prescribed Uncertainties

Sönke Klostermann

The UMRIDA Database for Uncertainty Quantification and Robust Design Meth-
ods comprises different test cases with prescribed uncertainties which have been
compiled using a common way of describing the different test cases. Generally, the
database describes the test case regarding the geometry, the mesh (if prescribed),
and the flow conditions. Furthermore details for the considered uncertainties are
given separating between geometrical uncertainties, operational uncertainties, and
modeling uncertainties which may be caused by epistemic uncertainties, for
example. It is differentiated between »Basic Challenges« (Table 1) and »Industrial
Challenges« (Table 2) of increased complexity regarding the model complexity
itself and the considered uncertainties. The industrial test cases have been submitted
by the UMRIDA project partners.

The purpose of the generic methodology description is to be (partly) independent
from the specific use case, allowing for a common view by all partners on the
different cases. A common language of all partner’s use case descriptions enables
for easier collaboration and better means of comparability of different UQ and
RDM methods.

In the section at hand we will briefly describe the basic and industrial challenges
given in Tables 1 and 2. More detailed test case descriptions of specific properties
will be given in the respective sections when necessary.
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BC-01: NASA Rotor 37

The Rotor 37 test case was designed and initially tested as part of a research
program involving four related axial-flow compressor stages. Then, the rotor was
retested as an isolated component, which is the geometry described here and
referred to as Rotor 37. Detailed description of the geometry, the experimental
setup, and a series of simulations cross-plotting the predictions can be found in [1].

The geometry of the Rotor 37 is given schematically in Fig. 1. The mesh is of
HOH-type and has shown a satisfying insensitivity to refinement with a final of 4.7
million mesh points. Further, a mesh with approximately 700,000 mesh points is
available. Data available for the Rotor 37 were obtained at the design point value of
an equivalent rotational speed of 17188.7 rpm (1800 rad/s). All data are available
in [1].

The following geometrical uncertainties are of importance and are result of
manufacturing and assembling tolerances:

• Tip clearance: Uncertainty in the tip clearance results from different sources,
such as tolerances in the casing or temperature differences between casing and
flow field (symmetric beta PDF, a = 0.5 * Mtip, b = 1.02 * Mtip, Mtip =
0.356 mm)

Table 1 Overview of basic challenges

Reference Test case name Provider

BC-01 NASA Rotor 37 NUMECA
BC-02 RAE 2822 airfoil NUMECA
BC-03 DLR-F6 DLR
BC-05 Shock–boundary layer interactions Stanford University (CIRA)

Table 2 Overview of industrial challenges

Reference Test case name Provider

IC-01 Helicopter engine combustor Turbomeca
IC-02 3D DLLM wing Airbus Group Innovations
IC-03 Falcon jet Dassault Aviation
IC-04 NPO Saturn industrial fan blade NPO Saturn
IC-05 NPO Saturn gas turbine HPT blade NPO Saturn
IC-06 Acoustic liner Alenia Aermacchi
IC-07 Industrial compressor stage MAN
IC-08 Supersonic laminar flow business jet CIRA/Dassault Aviation
IC-09 High-pressure compressor blade design Rolls-Royce Deutschland
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• Camber angles: (symmetric beta PDF, β1 = 5°, β2 = −70°, Min. value (a): 95%
β1, 95% β2, Max. value (b): 105% β1, 105% β2)

• Leading and trailing edge radii: Deviations in leading and trailing edge radii
result from manufacturing tolerances. The nominal values vary along spanwise
direction (symmetric beta PDF, a = 0.90 of Nominal, b = 1.10 of Nominal)

• Non-uniformity of blade spacing: Non-uniformity in the circumferential blade
spacing can be accounted for if more than one blade is simulated. Each
inter-blade spacing should be independent from the others, such that the cir-
cumferential displacement of the next blade is not linked to the displacement of
its neighbor (symmetric beta PDF, a = –1% of blade spacing, b = +1% of blade
spacing)

• Blade surface roughness: The RMS blade surface roughness is given in [1] to lie
between 0.5 and 1.25 μm (symmetric beta PDF).

The following operational uncertainties are of importance (values given in [1]):

• Inlet total pressure (symmetric beta PDF, a = 0.98, b = 1.02 of Nominal values)
• Static outlet pressure (symmetric beta PDF, a = 0.98, b = 1.02 of Nominal

values)
• Radial distribution of the inlet flow angle (cubic polynomial law with normal

distribution of random coefficients, Min. value −5%, Max. value +5%).

No epistemic uncertainties are considered.

Fig. 1 Blade and flow path coordinates of BC-01 (from [1])
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BC-02: RAE 2822 Airfoil

The test case corresponds to cases 6 and 9 in 2. Figure 2 shows the airfoil geometry.
The experimental data cover a range of conditions from fully subcritical flow to
conditions where a comparatively strong shock wave exists in the flow above the
upper surface of the airfoil. In total, 14 configurations have been measured, for
which the free-stream Mach number, angle of attack, and Reynolds Number are
given in [2].

The experimental flow conditions of these test cases must be corrected to
eliminate wall interference, since the experiments are performed with wind tunnel
walls. Several corrections are used for this test case, but no final convergence on the
correction to apply can be identified in available studies on this test case.

The following geometrical uncertainties are of importance and are result of
manufacturing and assembling tolerances:

• Thickness-to-chord ration: An uncertainty on the thickness-to-chord ratio is
imposed. The proposed uncertainty PDF is of symmetric beta PDF shape. It can
be varied for different control points (a = 0.97 Nominal, b = 1.03 Nominal)

• Camber line: The camber line is modified following a symmetric beta PDF at
several control points (a = Nominal −0.01%, b = Nominal +0.01%).

The following operational uncertainties are of importance:

• Free-stream Mach number (symmetric beta PDF, a = 0.95, b = 1.05)
• Angle of attack (symmetric beta PDF, a = 0.98, b = 1.02)

No epistemic uncertainties are considered.

Fig. 2 RAE 2822 airfoil
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BC-03: DLR F6

DLR-F6 wing-body configuration (DLR-F6 WB) is the geometry used for
AIAA CFD Drag Prediction Workshop (DPW) 2 and 3 in 2003 and 2006,
respectively, focusing on drag, lift, and pitching-moment predictions (Fig. 3). The
design condition is that M∞ = 0.75, CL = 0.5, Re = 5 * 106, which was used for the
single-point grid-sensitivity study on three grids (coarse, medium, and fine) for two
kinds of configurations, DLR-F6 WB without and with fairing (FX2B).

In DPW-3, a test case by changing angle of attack (AoA), which is one of the
operational uncertainties, in the range [−3.0°, −2.0°, −1.0°, −0.5°, 0.0°, 0.5°, 1.0°,
1.5°] was also discussed. In the fixed CL design condition, AoA is in the range
(−1.2°, 0.3°) for without fairing and (−0.9°, 0.4°) for with fairing, and CD is (261,
332 counts) for without fairing and (253, 293 counts), respectively, by twenty of
data by the participants [3]. Here, 1 count means 0.0001. Note that the AoA in the
design condition is in the range (−0.2°, 0.0°) by the DLR data [4].

The FX2B (DLR-F6 WB with fairing) has a fairing at the trailing edge (TE) of
the wing–fuselage junction to suppress the flow separation. This point is one of the
most sensitive points in grid densities for CP in the configuration without fairing
[3]. All necessary data for CFD calculations, which was used in DPW-3, are
available in the DPW-3 official Web site [5].

In UMRIDA, the wing thickness and leading edge shape for both DLR-F6 WB
with and without fairing are considered as the geometrical uncertainties.
In UMRIDA, the Mach number, angle of attack (AoA), and Reynolds number are
considered as the operational uncertainties. In DPW-3, some data were provided by
the participants by changing AoA in the range [−3.0°, −2.0°, −1.0°, −0.5°, 0.0°,
0.5°, 1.0°, 1.5°] for both DLR-F6 WB with and without fairing. In DPW-2, constant
CL (CL = 0.5) that drags rise in the range of M∞ [0.50, 0.60, 0.70, 0.72, 0.74, 0.75,
0.76, 0.77] was studied for DLR-F6 WB without fairing [6, 7].

Fig. 3 View of wing-body
configuration DLR-F6
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BC-05: Shock–Boundary Layer Interactions

The objective of this test case is to study the shock–boundary layer interactions
under free-stream and geometrical uncertainties of a 24° compression wedge in a
Mach 2 flow. An experimental data set is provided that is well suited to be used for
the validation of CFD codes which are intended to be used in design and analysis of
systems with stochastic inputs.

The experimental and computational setups are aimed to validate and quantify of
aleatory and epistemic uncertainties, determining the dominant contributions to
changes in the streamwise location of the shock-crossing point. Aleatory uncer-
tainties considered include geometric perturbations and variation of the inflow
conditions. The test section configuration and geometry is described in full detail in
[8–11], and it is sketched in Fig. 4.

A continuously operated Mach 2.05 wind tunnel is used in the experiment which
is fed from a 2D converging/diverging nozzle followed by a constant-area devel-
opment section of 45 × 47.5 mm. A contraction is produced by a 3-mm-long,
20°-angle compression wedge that spans the top wall of the duct and is responsible
for generating the oblique shock that impinges and reflects at the bottom wall.
Another constant-area section follows. The turbulent incoming boundary layers had
an average thickness of 5.4 mm at a streamwise location 21 mm upstream of the
foot of the wedge.

Small geometric perturbations in the form of a bump of height hb ð<0.2 δ0Þ
spanning the bottom wall are introduced at several streamwise locations, upstream
of the foot of the wedge. The quantity of interest is chosen as the streamwise
location of the shock-crossing point of the first bottom-wall STBLI measured at the
z = 21 mm (near-center) plane.

Fig. 4 Shock–boundary layer interaction experimental setup
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Besides geometric perturbations, we also consider aleatory uncertainties in the
inflow conditions in terms of the Mach number and the thickness of the turbulent
boundary layers. The experimental uncertainty in the measurement of streamwise
velocity was estimated as 5 m/s, which translates into Mach number variations of
±1%. For the boundary layer thickness, we consider variations of ±5%.

A possible approach to turbulent model uncertainties is described in [11] where
the epistemic uncertainty is associated with the Boussinesq eddy viscosity
hypothesis.

IC-01: Helicopter Engine Combustor

The test case concerns a database of pressure signal records taken in the combustor
casing of a helicopter engine. Such a database comprises operating conditions for
which thermo-acoustic instabilities appear. These instabilities are revealed by the
high amplitude of pressure fluctuations. Their occurrence is promoted at given
thermodynamics conditions such as pressure and temperature at the compressor
exit, but is very dependent on the combustor design. The combustion chamber
comprises a casing, breathed by the compressor, the combustor itself, which is
perforated by primary holes, dilution holes and cooling films, and injectors.

The combustor mesh covers the whole combustion chamber domain to account
for the effect of all components on combustion instabilities. This is particularly
important since the occurrence of these phenomena is highly sensitive to fine
geometrical features of the combustor. Several discretizations can be considered
depending on the simulation tool to be used. For instance, a Helmholtz solver needs
less than 1 million elements to give access to eigen-frequencies of the whole
combustor, while a large Eddy simulation code requires several tens of millions of
elements to resolve acoustics/flame interactions (Fig. 5). The considered operating

Fig. 5 LES mesh of the
Turbomeca combustor
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conditions are compressor outlet pressure ∼8 bars and compressor outlet temper-
ature ∼500 K.

Uncertainties concern the primary and dilution holes’ diameters and shapes.
Such uncertainties are of the order of a few percent but can modify the flow
distribution in the combustor. Other uncertainties are linked to the precise injection
point position in the swirlier both azimuthally and longitudinally which scatter less
than 1% of the reference value. Some of the combustor walls are also multiperfo-
rated where the diameter of the holes can scatter about 10% of the reference value.
In this study, large uncertainties on thermodynamic conditions should be consid-
ered around the nominal point for which experimental data are available.

For the LES and the Helmholtz solvers, modeling uncertainties are mainly
related to boundary conditions. Notably the impedance of upstream (compressor
stages) and downstream (turbines stages) components are poorly characterized. The
same problem arises concerning the multiperforated walls’ impedance. Other
modeling uncertainties also concern combustion processes inside the combustor.

IC-02: 3D DLLM Wing

For the robust optimization of a 3D wing, based on a differentiated lifting line
method (DLLM), the objective is to achieve an optimal robust design of the wing
regarding the wing’s lift over drag ratio. For preliminary drafts of the aircraft
configuration that is needed in early design phases, a full 3D simulation is too costly
and—even more importantly—the detailed design of the aircraft needed for this
approach normally does not yet exist.

The DLLM (based on Prandtl lifting line theory) is a one-dimensional simulation
process that relies on information from two-dimensional information on airfoil
level. This model proposes an improvement with regard to a typical nonlinear
lifting line model. In particular, it proposes not to start the resolution from a priori
known lift and circulation distribution, but to deduce it from the series of airfoils
composing the wing. Thus, the DLLM relies on a spanwise geometric description
of the wing where the plan form geometry is specified by several parameters
(Fig. 6).

The 3D wing is defined by the shape of six airfoils and a smooth interpolation
procedure between the different airfoils. The shape of each of the airfoils is defined
by 11 PARSEC parameters as proposed in [12]. The optimization of the lift over
drag ratio is constrained by a minimum value of the lift (accounting for aircraft
mass) and a minimum volume of the wing (accounting for required mission fuel
mass).

We consider that the design variables may exhibit some kind of uncertainty
which represents manufacturing tolerances or assembly effects, for example. Taking
into account uncertainties of design variables—we restrict the design space to the
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three chord lengths and the break value along the wing’s longitudinal axis—the
uncertainties are modeled as noise vector ξ = (ξ1, ξ2, ξ3, ξ4) given by a joint
probability density of normally distributed ξ1, ξ2, ξ3, ξ4 for a set of standard
deviations σ = [0.1, …, 0.5] to illustrate the effect of uncertainty on the location of
the optimal design point. We can assume that in addition to the uncertainties of the
design variables the operating conditions exhibit some form of uncertainty as well.
For example, the environmental conditions underlie a natural form of physical
scatter (temperature, pressure, humidity) or the operating conditions are controlled
by some kind of control loop that relies on measured data. For this reason, we
impose some normally distributed noise on the operating conditions.

IC-03: Falcon Jet

Industrial challenge IC-03 represents an industrial relevant external flow test case of
a Falcon business jet (Fig. 7) exhibiting several forms of uncertainty for the
geometry, the operating conditions, and the modeling. Table 3 summarizes the test
case parameters.

Geometric uncertainties are given by the spanwise twist angle distribution of the
wing (x/c = 0.25; rotation/ control section plane) on eight control sections modeled
by bounded, asymmetric beta PDF distributions (Holland approach) with a delta
twist angle minimum of –0.5° and a delta twist angle maximum of 0.2° with the
most likely value for the delta twist angle of 0.01°. The free-stream Mach number
and the angle of attack are modeled by the same type of distribution with AoA Min
of 1.97°, AoA Max of 2.1° and a free-stream Mach number minimum of 0.795 and
0.807 for the maximum value. Turbulence is modeled by Spalart–Allmaras, k-ε
SST two layers, k-ω SST Menter.

Span/2

Break chord

Tip chord

Root chord

Sweep angle

Break [%]

Fig. 6 Illustration of wing parameters for definition of simplified wing geometry
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IC-04: NPO Saturn Industrial Fan Blade

A modern civil aircraft fan blade is considered as an investigation object. This blade
must provide a high level of the aerodynamic efficiency (adiabatic coefficient of
efficiency) and necessary strength properties. Another important characteristic is the
fan blade flutter phenomenon sensitivity.

A fan blade is a complicated object, and obviously, it is subjected to geometrical
uncertainties from manufacturing tolerances and other production deviations. In

Table 3 General test case description of the Falcon jet test case

Mach number 0.8

Angle of attack 2°
Altitude 40,000 ft
Reynolds number 14.512 Million
Flow regime Fully turbulent
Wall treatment Adiabatic no-slip wall
Ref. density 0.30132 kg/m3

Ref. pressure 18820.15 Pa
Ref. temperature 216.65 K
Ref. velocity 236.57 m/s
Ref. length (mean aerodynamic chord) 2.888 m
Ref. area 49 m2

Moment reference point x = 9.0355 m, y = 0 m, z = 0 m

Fig. 7 Falcon business-jet geometry
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spite of all uncertainties, the fan blade should provide stable aerodynamic efficiency
and strength properties. That is why it is considered to solve multidimensional and
multidisciplinary optimization task (aerodynamic and strength) in robust statement
under uncertainties.

In aerodynamic calculations only the blade profile is modeled. In the strength
calculations, full blade (with foot) is considered. The blade foot has no geometrical
uncertainties (nominal geometry). Total pressure and total temperature in stationary
frame were used as inlet boundary conditions. The flow direction is set by
dimensionless angle components. In the proposed test case, geometrical uncer-
tainties from fan blade manufacture tolerances and deviations are considered
(Fig. 8). Probability density function was obtained as a result of statistical operation
upon the results of blades’ coordinate measurements.

The main uncertainties considered as it is shown in Fig. 8 are blade thicknesses
in different profile locations and maximal blade thickness. Profile angle of incidence
is also taken into consideration. In such a case, the total number of the considered
uncertainties is 54. Most of experimental stochastic parameters can be described by
means of Gaussian PDF distribution law with acceptable accuracy level. Some
parameters will have to be described by means of lognormal distribution and beta
distribution.

Fig. 8 Main geometrical uncertainties considered in blade section
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In this test case, operational uncertainties are not considered. Aerodynamic
calculation will have to be carried out in one point on operating line. Epistemic
uncertainties are not considered. Standard approach for fan blades aerodynamic
computations must be used (RANS modeling with using k-ɛ turbulence model).

IC-05: NPO Saturn Gas Turbine HPT Blade

A high-pressure turbine blade from an industrial gas turbine engine used for electric
power generation is considered as test case. The considered blade must provide
necessary level of aerodynamic efficiency and necessary temperature distribution of
the blade. The HPT blade at the real gas turbine engines shows strong influence of
the operational uncertainties on blade temperature distribution and aerodynamic
efficiency. Deviations in operational parameters result in oscillations in temperature
and pressure distributions at the inlet of the blade hot gas channel and in cooling air
pressure under the blade. At the same time, deviations of the tip gap values have a
strong influence on the aerodynamic efficiency and cooling effectiveness of the
blade tip. The turbine blade should provide stable cooling effectiveness of the
leading edge and high aerodynamic effectiveness; therefore, it is considered to solve
multidimensional optimization task (aerodynamic and heat transfer) (Fig. 9).

Total pressure and total temperature radial distribution in stationary frame were
used as hot gas path inlet boundary conditions. The blade tip gap is the only
considered geometrical uncertainty. Based on several experimental investigations
on prototype engines, it is considered to use theoretical Gaussian distribution for tip
gap PDF with a mean value of 0.5 mm and a standard deviation of 0.1 mm.

Outlet

Cooling air inlet

Axial gap inlet

Hot gas inlet

Fig. 9 Industrial HPT blade computational model
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Hot gas total pressure and total temperature mean values T*, P* in the channel
inlet and cooling air total pressure under the blade in relative coordinate frame Prel

*

are operational uncertainties. Hot gas temperature and pressure inlet values in the
channel were obtained from 90 industrial gas turbine engines experimental inves-
tigations and modeled by normal distributions (Table 4). Epistemic uncertainties
are not considered. Standard and verified NPO Saturn approach for turbine blades
CHT computations was used (RANS modeling with SST turbulence model).

IC-06: Acoustic Liner

Test case IC-06 deals with the optimal design of acoustic panels installed in typical
business-jet aero engine intakes. A dedicated acoustic panel construction will be
selected for multiobjective optimization. The objective functions are represented by
noise attenuations computed at two certification flight conditions in the far field
surrounding the nacelle. Acoustic requirements are prescribed by customers and
aviation agencies for the three typical flight conditions approach, side-line (or
takeoff) and flyover (or cutback).

As these requirements can be in contrast to each other and an acoustic liner
providing the best attenuation in one flight condition not necessarily performs well
in the other conditions, hence liners shall be designed through a multiobjective
optimization procedure. Specifically, a number of samples will be manufactured
and tested to detect the steady (or DC) flow resistance for a set of given impinging
air velocities by means of the AAEM DC-Flow rig (Fig. 10).

Geometrical parameters tolerances considered are influenced by the following
main factors: Honeycomb height (h), Facing sheet thickness (tfs), Facing sheet
effective open area (POAeff) and Holes diameter (d). Flight conditions uncertainties
are not being considered. Proprietary impedance model is not being investigated as
a source of (epistemic) uncertainties.

IC-07: Industrial Compressor Stage

The test case comprises the static components of industrial, radial compressor
stages as the main focus in radial compressor development has been put on the
impellers over the last years. Static parts have been less addressed. Therefore it is of

Table 4 Operational
uncertainties of IC-05 NPO
Saturn gas turbine HPT blade

Uncertainty Mean Standard
deviation

Distribution

ΔT* (K) 8.244 21.43 Normal
ΔP* (bar) −0.1165 0.236 Normal
ΔP*rel (bar) −0.1165 0.236 Normal
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interest to analyze these parts in more detail, especially since less data are available
and uncertainties have been less addressed (Fig. 11).

For the flow conditions gases with real gas properties will be used for operating
conditions with high Reynolds numbers due to the elevated operating pressures of
industrial compressor stages. The test case exhibits a high operating range that
means a high incidence variation may occur. The design flow for this application is
in the subsonic range.

For the consideration of uncertainties a special emphasis is laid on the entire
product life cycle of the industrial compressor due to the typically harsh operating
environment. The uncertainties take into account design adaptations, manufacturing
tolerances, assembly tolerances, operating conditions and service requirements.
Experimental reference data are available for validation.

Fig. 10 Illustration of IC-06
acoustic liner

Fig. 11 IC-07: Industrial
compressor stage
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IC-08: Supersonic Laminar Flow Business Jet

IC-08 deals with the design of a swept wing with a large extension of laminar flow
in working conditions for a supersonic laminar flow design of a business-jet class
aircraft (Fig. 12). The reference configuration is the optimized wing-body shape
produced by CIRA within the SUPERTRAC EU project. This shape, optimized for
natural laminar flow, used as baseline a configuration produced by Dassault Avi-
ation within the framework of the Supersonic Business Jet project, and made
available within SUPERTRAC project. Wing section airfoils and twist angle were
optimized in order to maximize the laminar flow region while monitoring and
controlling the pressure (vortex and wave) drag. A redesign of the wing using
robust or reliability based optimization tools is proposed for the UMRIDA project.

The flow conditions are those defined by the main cruise design point with a
Mach number of 1.6, a Reynolds number of 51.8 * 106, reference length of 6.27 m,
Angle of Attack of 3.65° and a lift coefficient of 0.182. The detailed description of
the original optimization problem is reported in Reference [13].

Natural laminar flow is mostly sensitive to the shape of the leading edge region
defined by the radius of the leading edge and the airfoil section thickness at ten
percent of the chord. The nominal range of variation for these parameters is 15% of
the radius of the leading edge of the initial configuration and 10% of the thickness in
the assigned position. A uniform probability distribution should be considered for
both parameters. However, an inverse approach may be considered where these
uncertain parameters are regarded as unknowns to be determined within the design
process.

Operational uncertainties are the classical ones related to Mach number and lift
coefficient. Mach and CL are modeled as four parameter beta distributions
(Table 5). A significant uncertainty in the determination of transition location is

Fig. 12 Supersonic laminar flow design of a business-jet class aircraft
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inherent to the methods for numerical transition prediction and in particular to the
eN method. A robust design approach should take into account this epistemic
uncertainty source. It will be modeled by a uniform distribution in the interval [16,
20].

IC-09: High-Pressure Compressor Blade Design

IC-09 is the aerodynamic axial high-pressure compressor rotor blade design in the
presence of measured and identified manufacturing uncertainties. One important
step for aleatory uncertainty quantification is to analyze and quantify the variability
of input data for a physical system such as an aero engine. This test case covers a
one and a half stage axial high-pressure compressor with one rotor blade and two
adjacent stator rows as physical system (Fig. 13) and a probabilistic model which
reflects real manufacturing uncertainties for the transonic rotor blade.

For one operating point the aerodynamic boundary conditions are part of the test
case. Upstream the first stator the inlet boundary conditions for the total pressure,
the total temperature and the absolute flow angle in radial direction are defined as
well as the radial static pressure distribution downstream the second stator at the
outlet of the computational domain.

The test case concentrates on realistic manufacturing tolerances, i.e. geometrical
uncertainties, thus no operational, modeling or other uncertainties are defined. For a
parametric model according to [14] probability density functions for each uncertain
variable and a positive definite correlation matrix are defined (Fig. 14). The

Table 5 Operational
uncertainties of IC-04
supersonic laminar flow
business jet

Parameter α β a b

Mach 4 4 1.55 1.65
CL 2.5 2.5 0.180 0.184

Fig. 13 One and a half stage
axial high-pressure
compressor
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probabilistic model has been derived from a sufficient number of optical surface
measurements of manufactured rotor blades. The resulting sets of data have been
reduced, discussed and statistically quantified [15].

In total the uncertain design space consists of 14 parameters. For the rotor
reference geometry the associated values for each uncertain parameter are known.
Based on the probabilistic model random deviations can be added to the mean/
reference values. These deviations as a consequence lead to a disturbed rotor
geometry and hence a varying aerodynamic performance.
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Uncertainties in Compressor
and Aircraft Design

Dirk Büche, Sönke Klostermann, G. Rogé and X. Loyatho

Introduction

The tremendous increase in computational power over the last decades allows for
complex numerical simulations of internal and external flows ranging from single
components such as compressor blades up to entire airplanes and aircraft engines
[1]. Furthermore, it allows increased modelling complexity: early 2D Euler solvers
have been replaced by Reynolds-averaged Navier–Stokes (3D RANS) simulations.
Nowadays dynamic simulations such as unsteady RANS and detached eddy sim-
ulation (DES) become more and more feasible. Besides the higher modelling
complexity, the computational power in combination with automated execution of
simulations (e.g. by scripting and queuing systems) allows for variation analysis as
well as automated design optimization.

Nevertheless, simulations will not be able to capture real-life machine behaviour
precisely as insufficient information is typically available. There is a lack of
information about the actual geometrical scattering of the manufactured and
assembled parts. Furthermore, limited knowledge exists about operation, for
example about operating conditions and machine degradation by fouling, wear and
corrosion. Finally, assumptions and simplifications are required for the computa-
tional modelling of non-resolvable effects such as unsteady flow or small turbulent
length scales.
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Most often simulations are deterministic using the nominal values for all inputs,
and by doing so, they ignore uncertainties. In contrast, the real performance of a
machine is non-deterministic and could be best described by probability distribu-
tions reflecting the scattering in geometry, operation and modelling uncertainties.

Several actions have been started to reduce this gap of uncertainty by capturing
information about production scattering as well as operational data and to extend
the simulation software to non-deterministic frameworks. For example, Garzon [2]
showed that the mean loss coefficient of an airfoil in a non-deterministic simulation
can be several percent higher compared to the deterministic simulation with the
nominal geometry.

This chapter focuses on how geometrical and operational uncertainties can be
captured and modelled. These models serve as input for the uncertainty quantifi-
cation and robust design optimization in the following chapters of this book. Due to
the different manufacturing techniques, geometrical uncertainties in massive tur-
bomachinery parts of industrial compressors differ to aircraft’s sheet metal struc-
tures. Uncertainties in the turbulence modelling and grid generation are handled in
chapters “Estimation of Model Error Using Bayesian Model-Scenario Averaging
with Maximum a Posteriori-Estimates and Numerical Uncertainties Estimation and
Mitigation by Mesh Adaption”.

Geometrical Uncertainties in Compressors

The focus is put on geometrical uncertainties that are relevant for the aerodynamic
performance of a turbomachine. The main interest lies in the main flow path which
comprises elements such as compressor blades, radial impellers, stator vanes, bends
and hub/shroud contours.

Geometrical uncertainties exist for the entire design and manufacturing chain
beginning with geometrical parameterization reaching over to the individual
machining steps and to final assembly activities of the turbomachine. Preparations
for the production of the compressor blades or impellers typically require conver-
sion of a parametrized geometrical model into a CAD system and further to CAM
data. This inevitably leads to some deviations due to different surface representation
models such as splines, Bézier curves, NURBS, multiple circular arcs or STL, just
to name a few. For axial compressors and turbines, the parameterization may
consist of several profiles along a stacking line. The stacked profiles are converted
into 3D surfaces within the CAD environment. Smoothing is often applied in order
to minimize geometric oscillations. The conversion of the CAD data into the CAM
environment may require further changes in the geometric representation. In the
following, we exclude the effects of these conversions and assume that there are
adequate tools to analyse and precisely control deviations originating from the
second versions.

The manufacturing as such typically requires a sequence of different steps, e.g.
casting, forging, welding, heat treatments, bending and machining. All steps in a
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manufacturing sequence are relevant for the final geometrical uncertainties; e.g.,
residual stresses may be present after forging, heat treatments or welding. These
may lead to geometric deformations upon machining.

Often, a variety of alternative manufacturing techniques can be applied, which
differ in cost and geometrical precision. The goal is to find an optimal trade-off
between cost and scattering. Only sensitive surface areas should be manufactured
with high precision, as the additional effort obviously has consequences for the
overall machining time and cost. Finding the required precision can be formulated
as optimization task as described in [3].

Classification by Size

DIN 4760 [4] defines six different orders of surface deviations. The first four orders
are relevant for aerodynamic performance, while the fifth and sixth order relate to
the microstructure of the material surface and are aerodynamically irrelevant. These
orders differ in the magnitude of the geometric deviations:

The first-order deviations affect the characteristic dimensions of the part. For
example, the total length, the leading edge thickness or an angle may deviate from
the nominal value as illustrated in Fig. 1. The deviations may be caused by the
inherent imprecision of the milling machine, an unprecise clamping or by wear of
the milling tool.

For the second-order deviations, only a small fraction of the surface is analysed.
There, the surface may be wavy; i.e., it may contain periodical surface structures
with very high aspect ratios. The aspect ratio between wavelength in surface
direction and perpendicular deviations is about 100:1–1000:1. The causes typically
are attributed to vibrations, to part deflection under machining forces or to shape
deviations of the milling tool itself.

Fig. 1 First-order geometrical uncertainties in shape and position
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The third-order deviations affect even smaller portions of the part surface. They
may be periodic or non-periodic deviations and are typically machining scores. The
milling scores depend on the tool-feeding motion. The ratio between wavelength
and deviation depths lies in the range of about 100:1–5:1.

The surface roughness is an example of the fourth-order deviation and is in the
range of a single micrometre.

On manufacturing drawings, tolerance intervals are often specified as illustrated
in Fig. 2. These intervals limit the maximum deviation. Geometrical deviations can
be classified by their actual shape. Offsets shift the entire shape and are typically
first-order deviations. Waviness is a typically second- or third-order deviation.
Another example is a kink or step. Kinks may be present at the interface of two
mating parts that differ with regard to their surface slopes or when surfaces are
machined from both ends. Steps may result from mating of parts at their interfaces.
Deviations of this kind may also be attributed to interrupted milling or turning
processes, e.g. after an exchange of the cutting tool or when parts are machined
from two directions.

Quantifying Geometrical Uncertainties

In the following sections, examples are given for how to quantify the first four
orders of shape deviations defined in the previous chapter. Different measurement
devices may be required.

Fig. 2 Possible shapes of geometrical deviations
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First-Order Shape Deviations
Maximum values for the first-order shape deviations are defined as geometrical
tolerances on the manufacturing drawings. These tolerances are either explicitly
given for a certain measure or can be given as general tolerances that are applicable
for all measures that are not specifically tolerated. A well-established general tol-
erance is the standard ISO 2768 [5]. Part I of this standard defines tolerances for
linear and angular dimensions. Part 2 adds shape and position tolerances.

ISO 2768 specifies the four different tolerance classes: very coarse, coarse,
medium and fine. These classes reflect typical workshop capabilities. For class
medium, Fig. 3 shows the tolerances for linear dimensions as a function of the
actual measured length. As expected, the absolute tolerance increases in steps as the
part grows in size. The relative tolerance however decreases substantially, as larger
dimensions can be manufactured with higher relative precision compared to small
ones.

Assuming that an aerodynamic profile has a length of 100 mm and trailing edge
thickness of 1 mm, the absolute tolerance is 0.3 mm and 0.1 mm, respectively. This
means that the relative tolerance for the length is 0.3%, whereas the tolerance for the
trailing edge thickness is 10%. This is an important fact to be carefully considered
when performing scale-ups or scale-downs of machines, especially when
small-sized prototypes are manufactured and tested and scaling to the final product
size is performed afterwards.

Figure 4 shows an example for a surface measurement of a compressor blade.
The deviation of the measured profile from the nominal contour is almost constant
along the measured surface, illustrating that this deviation represents the first-order
deviation. Neither waviness nor bumps are present in this example. The deviation
could result from a limited positioning of the part before milling. Clamping forces
that cause part deflection or deflections caused by milling forces could also be

Fig. 3 Relative and absolute tolerances for linear measures from DIN ISO 2768 part I
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considered as being causal to this deviation. The deviation is highly exaggerated in
the graphic representation as the actual one could hardly be seen by eye.

As a general rule of thumb, first-order shape deviations are typically in the order
of 0.1–1 mm.

Systematic measurements of actual compressor blades were reported by Garzon
[2] and Schmidt et al. [6] for 150 and 400 blades, respectively. Today, capturing 3D
geometric measurement data becomes more cost and time efficient as it can be done
in an automated manner using tools such as optical scanners which generate
complete surface information in one measurement.

Extracting statistical information from such measurements, e.g. probability
distributions, is only appropriate if a sound statistical basis exists; i.e., a sufficiently
high number of parts need to be manufactured with the same or similar manufac-
turing tools before being measured and analysed. If only a low number of parts are
manufactured and even different suppliers are assigned, then very limited statistical
information can be reasonably extracted.

Second- and Third-Order Shape Deviations
Since the first-order shape deviations are typically larger than 0.1 mm, compara-
tively simple tools such as sliding callipers can be used. The second- and
third-order shape deviations are smaller, typically in the order of 0.001–0.1 mm.
They require special measurement devices to be assessable.

Figure 5 shows the result of a 3D measuring device that measured points along a
line every 0.01 mm. The waviness of the surface is difficult to see with the naked
eye as the wavelength is about 0.6 mm and the amplitude of the deviation is only in
the order 0.005 mm. Therefore, the surface normal component is magnified in the
figure by a factor of 16. The waves result from the feed rate of the milling tool. Due
to the ratio of amplitude to wavelength, the measured property is located some-
where between the second- and third-order shape deviations.

Fig. 4 Measured first-order
deviation (black) between a
stator part (blue) and given
tolerance interval (green). The
deviation and tolerance
interval are highly
exaggerated
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Fourth-Order Shape Deviations The fourth-order deviation is surface roughness
and is typically expressed in Ra or Rz. Definitions are given in DIN EN ISO 4287.
The surface roughness is in the range of 0.1–10 µm, again one order of magnitude
smaller than the third-order deviations.

Büche et al. [7] describe the measurement of the surface roughness for a large set
of radial compressor impellers. The measured roughness values are shown in Fig. 6
with the aid of a histogram. The difficulty is to transfer these measured technical
roughness values into equivalent sand roughness values, which is typically used for
fluid mechanical calculations.

Geometrical Uncertainties from Compressor Operation

By experience, machine operation causes surface degradation due to corrosion,
erosion, particle impact and fouling. This increases surface roughness as well as
leakage flows in labyrinth seals. The extent can be quantified during service
inspections. These deviations are often larger than the acceptable manufacturing
tolerances.

Reducing the effect of this kind of uncertainties during operation is possible, but
it comes at an additional cost: parts can be made of higher-grade materials which
are more resistant against wear. Furthermore, in some applications better filter

Fig. 5 Exaggerated actual surface measurement with high resolution for the second- and
third-order shape deviations. Only by exaggerating the deviation in the normal direction of the
surface, these deviations from machining turn visible

0%

5%

10%

15%

20%

25%

30%

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Ra [µm]

re
la

tiv
e 

fre
qu

en
cy

Fig. 6 Histogram generated
from surface roughness
measurements on a large set
of radial compressor
impellers. Taken from Büche
et al. [7]

Uncertainties in Compressor and Aircraft Design 41



devices can be implemented with the effect that fouling and erosion are reduced.
Finally, shorter inspection and replacement intervals as well as frequent cleaning
can reduce the degradation level further.

Integration of Geometrical Uncertainties into Uncertainty
Quantification

The number of possible geometrical shape deviations is unlimited. For example, the
impact of a large particle can alter a blade surface very locally. Surface measure-
ments, in general, generate large amounts of data, which must be condensed in
some way before this data can be analysed further. This reduction can be done by
extracting only first-order deviations. Information about second- and third-order
deviation is typically suppressed.

One possible approach by means of random fields is described in chapter
“Estimation of Model Error Using Bayesian Model-Scenario Averaging with
Maximum a Posteriori-Estimates”. Another method is presented by Garzon [2],
who measured the surfaces of a large set of blades and computed the mean and
standard deviation for the geometrical deviations at each blade position. From this
local deviation information, covariance matrices were deducted. The main infor-
mation was then extracted with the use of an eigenvalue decomposition that
revealed the largest eigenvectors. These eigenvectors were used for the subsequent
robustness analysis.

A third approach is given by Schmidt et al. [6] who also measured a large set of
compressor blades. A standard profile parameterization was fitted through each
measured blade surface. The resulting parameter values allow for more intuitive
interpretation of the geometrical variation. Again, statistical information was
extracted from the parameterization.

In all approaches, the statistical information about the blade is condensed to a set
of eigenvectors as for Garzon [2] or to the blade parameters as for Schmidt et al. [6].

Operational Uncertainties for Compressors

Exact operating conditions are often unknown a priori and reasonable assumptions
become necessary in order to layout compressors. When, for example, an industrial
compressor is designed for an oil and gas production facility, the gas composition
of the future production can only be roughly forecasted as it changes with the
depletion of the field. Hence, the layout of industrial compressors must typically
fulfil a wide range of operating points with different pressure ratios and volumetric
flows. Uncertainty with regard to the suction flow such as gas composition, pressure
and temperature as well as operating point characterized by speed and pressure ratio
is typically represented by three non-dimensional parameters which are Mach
number, Reynolds number and flow coefficient.
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Geometrical Uncertainties in the Aircraft Outer Geometry

In order to treat geometrical uncertainties in aircraft design, we propose a
methodology to simulate random geometries based on measurements (e.g. by
photogrammetry [8]) by means of random fields. This allows us to take into account
uncertainties of the geometry for the computation of the aerodynamic performance
of an aircraft.

The proposed methodology is based on a probabilistic modelling of the manu-
factured geometry as a random perturbation of a nominal geometry G, the random
perturbation being modelled as a random field using an extension of the Box and
Jenkins method [9]. The methodology involves the following steps that we will
further detail in the following section:

1. Data preparation step for obtaining a meaningful statistical representation of the
measured geometrical uncertainties.

2. Data standardization step to make the data more suitable for the random field
modelling (Box-Cox transformation).

3. Identification of a deterministic trend in the data: the random geometry will be a
combination of this deterministic transformation and an additional random
perturbation of the nominal geometry.

4. Modelling of the random perturbation by a random field using its Karhunen–
Loève expansion.

5. The composition of all the previous steps in order to get the final random field
model.

6. The simulation of a random field in order to produce virtual prototypes of our
probabilistic model that can be used as input geometry for a subsequent CFD
performance calculation.

The information available to build a random geometry generator is made of two
distinct sequential steps: the representation of a nominal geometry (usually a dis-
cretized mesh) and a perturbation of the geometry based on a set of actual mea-
surements (usually coordinates of points). To begin with, we cannot directly use
these empirical data sets for statistical inference as there is no meaningful link
between the nominal geometry and the data sets. The data preparation step consists
of a data alignment step and a data pairing step.

For the data alignment step, we conduct a rigid body transformation of the raw
measurements in order to match the measurements as closely as possible to the
mesh vertices of the nominal geometry. This can be done by mapping the centres of
gravity for the mesh and the measurement cloud and by aligning the principle axes
of these two by means of a principal component analysis [10]. One measurement
cloud represents one measured component such as an aircraft wing.

Once the measurements and the vertices have been aligned, the most challenging
task is the pairing between the measurements and the vertices of the nominal
geometry. If we suppose that the measurements are a perturbation of the mesh
characterized by a small amplitude, it can be done in an efficient way by means of
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nearest neighbour search: each vertex xi is associated with the measurement ςki
(being the geometrical coordinates of the ith point of the measurement cloud k) such
that

ςk*i = argmin
ςkj

xi − ςkj

���
���. ð1Þ

With the displacement dki = ςk*i − xi associated with xi, the set of measurements
is converted into a corresponding displacement field xi, dki

� �
as shown in Fig. 7.

The collection of these fields forms a process sample that allows for building a
probabilistic model by means of a random field.

A random field is a generalization of a stochastic process that describes the
stochastic function of a point in an n-dimensional topological space [11]. The
random field is said to be Gaussian if all finite-dimensional distributions are mul-
tivariate normal distributions and fully defined by its mean and covariance function
[12].

Since we cannot expect this normally distributed property to hold for all geo-
metrical uncertainties that we want to take into account, we apply a Box-Cox
transformation in order to transform the raw data into a more suitable shape (i.e.
normally distributed shape) [13]. The transformation is defined by:

∀d > δ, Tλ, δ dð Þ =
d+ δð Þλ − 1

λ if λ>0
log d+ δð Þ if λ=0

(
ð2Þ

Fig. 7 Displacement field (amplitude)
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where λ ≥ 0 is a shape parameter and δ ∈ ℝ is a shift parameter. In the case of a
multidimensional random process, the transformation is applied component by
component. Given the value of δk (a typical choice is δk =0 for symmetric distri-
butions), the optimal value of λk is obtained by maximizing the following
log-likelihood function:

L λk; δk , Xk
i

� �
i=1, ... ,N

� �
=

− N
2 log

N − 1
N Var Tλk , δk Xk

� �� �� �

+ λk − 1
� �

∑
N

i=1
log Xk

i

� � ð3Þ

where N is the total number of measurement points for each geometrical uncer-
tainty. Given a discretized nominal geometry G represented by a mesh with vertices
ðxiÞi=1, ... , n, the restriction to a random field X:Ω × G → ℝ3 is the collection of
random vectors Xxið Þi=1, ..., n. If we stack these random vectors into a large random
vector Xn:Ω→ℝ3n, it has a Gaussian distribution with mean vector

μn =
μ x1ð Þ
⋮

μ xnð Þ

0
@

1
A ð4Þ

and covariance matrix

Σn =
C x1, x1ð Þ ⋯ C x1, xnð Þ

⋮ ⋱ ⋮
C xn, x1ð Þ ⋯ C xn, xnð Þ

0
@

1
A. ð5Þ

This representation is called the trend/covariance representation of the random
field.

For a discretized geometry represented by a mesh, the numerical representation
of the Gaussian random field by its mean and covariance vector is restricted to
small- and medium-sized problems due to its computational costs. For large-sized
problem, some kind of compression technique is required.

The Karhunen–Loève expansion allows representing the random field X by a set
of random variables Zlð Þl∈ℕ (that are uncorrelated for Gaussian random fields)

∀ ω, xð Þ ∈ Ω × G, X ω, xð Þ = ∑
l∈ℕ

Zl ωð Þψ l xð Þ ð6Þ

and deterministic basic functions ψ lð Þl∈ℕ where, for each l∈ℕ, ψ l:G→ℝ3 such
that

∀l∈ℕ2, ∫
G
ψ l ςð ÞC x, ςð Þdς = λ2l ψ l xð Þ ð7Þ
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where λ2l is a decreasing summable sequence of positive real numbers (Fig. 8). The
coefficients’ distribution is given by Zl ≈ N 0, λ2l

� �
. The basis is orthonormal with

respect to the covariance function [14]. In many cases, the decrease in the sequence
λ2l allows for a truncation of the sum in (2) leading to an effective compression. The
resulting covariance function reads

∀ x, ςð Þ∈G2,C x, ςð Þ= ∑
l∈ℕ

λ2l ψ l xð Þψ l ςð Þ. ð8Þ

The randomness of the probabilistic model is concentrated in the random vari-
ables Zlð Þl∈ℕ. The Karhunen–Loève expansion possesses some favourable prop-
erties if all the random variables are normally distributed, which is why we applied
the Box-Cox transformation on the raw data.

The simulation of a random field in order to produce virtual prototypes of our
probabilistic model is straightforward.

1. Simulate a realization of the random vector Zlð Þl∈ℕ according to its joint dis-
tribution function. In the case of the Karhunen–Loève representation of a
Gaussian random field, the random variables Zlð Þl∈ℕ are Gaussian and
independent.

2. Evaluate the ðl+1Þ deterministic functions ψ0, . . . , ψ l at the vertices of the
reference mesh x1, . . . , xnð Þ. These computations are common to all the real-
izations of the random field and can then be stored and reused.

Fig. 8 Illustration of the first basic function (blue) compared to the nominal geometry (red)
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3. Compute the deterministic trend function at the vertices of the reference mesh
x1, . . . , xnð Þ. These computations are common to all the realizations of the
random field and can then be stored and reused.

4. Apply the inverse Box-Cox transformation to each value of the random field
realization.

5. Convert the displacement realization into a random mesh realization by moving
each vertex xi by its associated displacement dki . Each displacement realization
represents one non-nominal geometry that can be used as input geometry for a
subsequent CFD performance calculation.

Geometrical Uncertainties from Aircraft Operation

The change of geometry during the lifetime of the aircraft may occur for several
reasons. As for compressor operation, surface degradation due to corrosion, ero-
sion, impact and fouling have to be considered for aircraft operation as well as
aeroelastic deformation as illustrated in Fig. 9. These deviations are also often
larger than the acceptable manufacturing tolerances.

Concerning geometry uncertainties, we have to take into account the details such
as discontinuities, bleed flows and protuberances like antennas as shown in Fig. 10
that are not included in an ideal CAD.

Last but not least, icing can change dramatically the shape, especially in the
locations highlighted in Fig. 11.

Fig. 9 Aeroelasticity effects on the aircraft
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Operational Uncertainties for Aircraft

As for compressor operation, aircraft operating conditions are often assumed and
not precisely known. For example, we can compare temperature, pressure versus
altitude for both standard and real atmospheres (database DLR ERA40/ECMWF,
www.ecmwf.int) as shown in Fig. 12 and Fig. 13, respectively.

In the same DLR database (a vertical profile measured somewhere between
Ireland and England, on 08 July 1992), we can observe the evolution of the module
and the direction of the wind velocity with the altitude (Fig. 14).

Despite non-homogeneous behaviour of the atmosphere with respect to location
and time, engineers use standard atmospheres for CFD computation. Moreover,
uniform pressure, temperature and velocity are imposed along the artificial
boundary of the computational domain (so-called infinity boundary).

Fig. 10 Typical elements that are missing in CAD models: antenna and bleed

Fig. 11 Typical locations for
icing
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Of course, unsteady flows, like gust or aircraft manoeuvre effects, are not con-
sidered for basic CFD calculations.

The same considerations can be made for engine nozzle boundary conditions.
For example, engineers consider basically uniform total temperature, total pressure
and Mach number. Sometimes, data are provided on engine exit plane, but not for
all the considered flight points.

Fig. 12 Standard atmosphere—temperature and pressure distribution

Fig. 13. Real atmosphere—temperature and pressure distribution

Fig. 14. Real atmosphere—wind vector
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Fuel consumption yields weight decrease during the flight (equilibrium of forces
imply modification of the lift coefficient). Despite fuel management during flight,
centre of gravity changes and trim modifications are needed.

Conclusions

Geometrical uncertainties exist in all physical parts due to manufacturing and
assembly tolerances as well as thermo-mechanical deformation and degradation
during operation. Reducing the level of uncertainty is in most cases possible but
typically increases cost. Tightening manufacturing tolerances should only be
accepted where the influence level justifies this.

Geometrical uncertainties are difficult to quantify and model as they can vary
over several orders of magnitude in size, beginning from surface roughness up to
length variations of the entire machine. Furthermore, geometrical deviations can be
arbitrary in shape, possibly manifested as kinks, bumps, local defects or surface
waviness, just to name a few. Geometrical uncertainties are also highly dependent
on the underlying manufacturing process(es) such as forging, casting or machining,
with or without finishing for massive compressor parts or assemblies of sheet
metals for aircraft wings. Geometrical uncertainties from aircraft operation and
operational uncertainties are often larger than the acceptable manufacturing
tolerances.

Methodologic approaches, nevertheless, exist that are able to reduce the com-
plexity by extracting the main features of a geometrical uncertainty. This allows for
integration of the variation in numerical simulations for uncertainty quantification
and robust design optimization. These simulations help in understanding uncer-
tainties and developing designs that are insensitive to uncertainties.
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Estimation of Model Error Using
Bayesian Model-Scenario Averaging
with Maximum a Posterori-Estimates

Martin Schmelzer, Richard P. Dwight, Wouter Edeling and Paola Cinnella

Introduction

The understanding of turbulence is one of the key challenges in classical mechanics.

A turbulent flow has a three-dimensional, time-dependent and random velocity field

[1], which is composed of a wide range of scales varying from the level close to

molecular dissipation of heat to the scales determined by the boundary conditions

of the flow domain. Despite great developments in the field of high-fidelity turbu-

lence modelling, such as improvements of the large eddy simulation (LES) approach

and hybrid methods combining Reynolds-averaged Navier–Stokes (RANS) and LES,

RANS ‘continues to be the standard approach used to predict a wide range of flows

for very complex configurations across virtually all aerospace product categories’

[2]. However, using the less-computationally demanding RANS approach comes at

the price of uncertainty due to approximate physical modelling such as turbulence

modelling.
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In recent years, research has focussed on two types of epistemic uncertainties

in relation to turbulence modelling, namely parameter uncertainty and model-form

uncertainty. Parameter uncertainty arises due to the fact that the closure coefficients

of the models are determined via calibration against simple flow configurations using

experimental data or scale-resolving simulations. A Bayesian calibration incorpo-

rating both the error of the experimental data and model inadequacy revealed how

strongly the posterior distributions of the closure coefficients vary even for a sim-

ple flow scenario of flow over a flat plate, with different pressure gradients ranging

from favourable to strongly adverse [3]. This observation makes the generalisation of

the coefficient unjustifiable. Similarly, a Bayesian analysis dealing with the predic-

tive performance of commonly used turbulence models, i.e. Launder-Sharma k − 𝜖,

Wilcox k − 𝜔, Spalart-Allmaras, Baldwin-Lomax and Stress-𝜔 showed that no supe-

rior model could be identified either for the given flow configurations [3].

Bayesian Model-Scenario Averaging (BMSA) uses a set of different closure mod-

els to compute both an ensemble prediction as well as a-posteriori measures of uncer-

tainty due to the choice of closure model. In addition, the variability of the clo-

sure coefficients over different calibration scenarios is included to inject uncertainty

caused by applying a set of coefficients to a predictive case for which they were not

specifically calibrated [4]. The full BMSA approach requires the propagation of var-

ious posterior distributions through a CFD code, an expensive endeavour when the

underlying flow case is computationally expensive. The costs could be mitigated by

using surrogate models per turbulence model in order to propagate the distributions

more efficiently [5]. However, also the construction of the surrogate can become

expensive for models with many closure coefficients.

In this work, we use a major simplification of the full BMSA approach in order

to make the technique accessible for industrial flow cases. The reduction of the costs

is based on using maximum a posteriori (MAP) estimates of the posterior distri-

butions of the closure coefficients, which means that only a single set of closure

coefficients per scenario and per model needs to be propagated through the code [6].

Furthermore, the BMSA method was developed using data of flat plate boundary-

layer flows, for which the Bayesian inference of the posterior closure coefficient was

conducted with a cheap boundary-layer code. The method has recently been applied

to airfoil and wing cases as examples in order to assess the predictive capabilities of

the BMSA framework for wall-bounded flows in external aerodynamics [6], which

represents a natural next step in terms of flow complexity. In this work, we apply the

method to other flow cases such as flow in a turbulent pipe at Re = 44,000 and flow

over periodic hills at ReH = 5600 in order to assess the robustness of the method also

for flow configurations outside of this natural domain. Finally, we also show results

for one of the industrial challenges of the UMRIDA project: a generic Falcon Jet

(IC-03).
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Bayesian Predictive Methodology

Calibration

The BMSA framework is based on the Bayesian calibration of the coefficients of clo-

sure models. Treating calibration as a stochastic problem, we obtain posterior prob-

ability distributions for the coefficients, which serve as our uncertain estimates of

the coefficients under the measurement error of the reference data and the modelling

error. The data used for the calibration consists of boundary-layer data sets from

the 1968 AFOSR-IFP-Stanford conference proceedings [7], which are both highly

resolved and subject to low measurement noise. The set contains a collection of wide

range of favourable and adverse pressure gradients.

A scenario, denoted S, is a particular flow set-up, including boundary conditions,

material parameters, and all other physical properties needed to define the flow, with

corresponding experimental data 𝐳. The CFD code mCFD(S;M,𝜽) takes as arguments

the scenario S ∈ S = {S1,… , SK}, a turbulence model M ∈ M = {M1,… ,MI}
and its closure coefficients 𝜽. Given an operator Hz(⋅) that maps the state to the mea-

sured quantities 𝐳 we can define a statistical model to relate 𝐳 and 𝜽:

𝐳 = 𝛿

[
Hz ◦mCFD(S;M,𝜽)

]
+ 𝜖, (1)

where 𝜖, 𝛿 are random variables (RVs) representing measurement noise and mul-

tiplicative model error respectively. The error of the measurements is modelled as

zero-mean additive Gaussian noise and the RV 𝛿 is a representation of the model

error, which following the approach of Cheung et al. [8] specifies 𝛿 as a corre-

lated Gaussian process, see also [3]. The Gaussian choice for both 𝜖 and 𝛿 yields

a Gaussian likelihood function, i.e. the pdf describing the probability of observing

the data given a realisation of 𝜽. Finally, an application of Bayes theorem [9] yields

the expression for the posterior distribution of 𝜽

p (𝜽|𝑧,M, S) =
p (𝑧|𝜽,M, S) p (𝜽|M, S)

p (𝑧|M, S)
∝ p (𝑧|𝜽,M, S) p (𝜽|M, S) . (2)

Here, p(𝜽|M, S) is the prior distribution which represents our knowledge of 𝜽 prior

to training M on 𝑧. Since the denominator in (2) does not depend on 𝜽 it is omitted

from consideration.

To obtain samples from the posterior distribution p(𝜽|𝐳,M, S), we employ the

Markov-Chain Monte Carlo method [10]. To reach convergence of the Markov-

chain, we observed that roughly 40,000 code samples were required [3]. Ordinar-

ily, this would constitute an excessive strain on available computational resources

in a CFD context. However, as our experimental data consisted of boundary-layer

quantities, we were in a position to use a fast boundary-layer code. As such, no real

computational bottleneck exists during the calibration phase.
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Prediction

Let 𝛥 be a quantity of interest (QoI) in a particular scenario, which may be a scalar,

vector, or functional quantity derived from the flow state, which can be expressed as

𝛥 ≃ H
𝛥
◦mCFD(S̃;M,𝜽), (3)

in which S̃ represents a flow scenario outside of the set of scenarios used within the

calibration phase.

We wish to obtain a stochastic estimate of 𝛥 conditional on a set of models M
and a set of training scenarios S for the predictive scenario S̃ ∉ S . The BMSA

methodology offers the evaluation of the posterior predictive distribution (ppd) for

𝛥 in case S̃ conditional on all training data:

p(𝛥 ∣ S̃, 𝐳) =
I∑

i=1

K∑

k=1
∫𝚯i

p(𝛥 ∣ S̃,Mi,𝜽) p(𝜽 ∣ Sk,Mi, zk)ℙ(Mi ∣ Sk, zk)ℙ(Sk) d𝜽. (4)

The first term on the right-hand side inside the integral represents the probabilistic

equivalent of the simulation results for the QoI given the flow scenario S̃, a tur-

bulence model Mi and closure coefficients 𝜽. The second and third terms are the

posterior probability density distribution of the closure coefficients and the posterior

model probabilities respectively, which are the output of the previously conducted

calibration procedure summarised in section “Calibration” and detailed in Edeling

et al. [3, 4]. The last term represents the scenario probabilities. The solution of the

multi-dimensional integral over the closure coefficients is the expensive part of the

method, because it requires as many code calls as the entries in the Markov-chain,

in this case 40, 000.

Therefore to obtain a practical estimate of p(𝛥 ∣ S̃, 𝐳), we propose to approximate

the marginal posterior probability distributions p(𝜽 ∣ Sk,Mi, zk) with Dirac-𝛿 func-

tions at their maximum a posteriori (MAP) values
1

𝜽
MAP
i,k ∶= argmax

𝜽∈𝚯i

p(𝜽 ∣ Sk,Mi, zk) (5)

so that

p(𝜽 ∣ Sk,Mi, zk) ≃ 𝛿

(
𝜽 − 𝜽

MAP
i,k

)
. (6)

The effect of this approxmation is to neglect the effect of within-model within-
scenario variance on the ppd. Thus the ppd variance will be reduced, but still include

the effect of multiple models and scenarios. Note that if perfectly plentiful data were

available in the training scenarios (and the models were able to fit the data exactly for

1
The MAP estimates are available online at [11].
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some values of the closure coefficients), then p(𝜽 ∣ Sk,Mi, zk) would be 𝛿-functions.

So one way to think of this approximation is as neglecting the effect of imperfect

training.

Substituting (6) into (4) leads to an approximation of the posterior predictive dis-

tribution p(𝛥 ∣ 𝐳) ≃ p̂(𝛥 ∣ 𝐳)

p̂(𝛥 ∣ S̃, 𝐳) =
I∑

i=1

K∑

k=1
ℙ(Mi ∣ Sk, zk)ℙ(Sk)∫𝚯i

p(𝛥 ∣ S̃,Mi,𝜽) 𝛿
(
𝜽 − 𝜽

MAP
i,k

)
d𝜽

=
I∑

i=1

K∑

k=1
ℙ(Mi ∣ Sk, zk)ℙ(Sk) p(𝛥 ∣ S̃,Mi,𝜽

MAP
i,k )

(a)
=

I∑

i=1

K∑

k=1
ℙ(Mi ∣ Sk, zk)ℙ(Sk) 𝛿

(
𝛥 − mCFD

(
S̃;Mi,𝜽

MAP
i,k

) )
. (7)

Equality (a) follows from the fact that the prediction of mCFD is deterministic for

deterministic 𝜽. The approximate ppd is therefore a weighted-sum of I × K 𝛿-

functions, one at each prediction of mCFD(S̃) for each model, and each scenario’s

MAP-estimate of 𝜽. The cost of evaluating the ppd is I × K runs of mCFD(S̃).
The first moment of p̂(𝛥 ∣ S̃, 𝐳) can be derived directly from (7). The expectation

is

𝔼[𝛥 ∣ S̃, 𝐳] = ∫ 𝛥 ⋅ p̂(𝛥 ∣ S̃, 𝐳) d𝛥

(a)
=

I∑

i=1

K∑

k=1
ℙ(Mi ∣ Sk, zk)ℙ(Sk) ∫ 𝛥 ⋅ 𝛿

[
𝛥 − mCFD

(
S̃;Mi,𝜽

MAP
i,k

)]
d𝛥

(b)
=

I∑

i=1

K∑

k=1
ℙ(Mi ∣ Sk, zk)ℙ(Sk) mCFD

(
S̃;Mi,𝜽

MAP
i,k

)
, (8)

where (a) follows from (7) and (b) is the integral-identity encoding the statement that

the mean of a deterministic quantity is the quantity itself.

Unlike the posterior model probabilities ℙ(Mi ∣ Sk, zk), which are informed using

the reference data during the training phase [4], the scenario probabilities ℙ(Sk) are

of a predictive nature. If reference data for the scenario S̃ would be available, ℙ(Sk)
could be optimised accordingly. However, in a predictive setting this data isn’t always

available. Therefore, ℙ(Sk) is defined based on model agreement per scenario Sk: If

the models show a high level of agreement regarding the value of 𝛥 under a specific

scenario Sk, this scenario receives a higher weight compared to other scenarios, in

which the models rather disagree. For that we exploit the principle, that if S̃ is similar

to Sk the models are expected to give accordingly similar predictions, because 𝜽
MAP
i,k

has been calibrated under the same data zk. As introduced in [4], this principle is

modelled by
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ℙ
(
Sk
)
∶=

𝜉
−p
k

∑K
j=1 𝜉

−p
j

, 𝜉k =
I∑

i=1
‖mCFD

(
S̃;Mi,𝜽

MAP
i,k

)
− 𝔼[𝛥 ∣ S̃, zk]‖2, (9)

in which p serves as a tuning parameter scaling the weighting procedure, i.e. for p = 0
all scenarios are equally weighted but for p → ∞ a single scenario is preferred.

Given all terms in (7), we now want to deduce uncertainty estimates from the

ppd. If the full range of ℙ(Mi ∣ Sk, zk)ℙ(Sk) is used, the uncertainty bound is largest

and determined by the extreme predictions of the entire ensemble. However, a more

reasonable approach is to draw samples from the ppd and use percentiles as min/max

levels to obtain a confidence interval of the ppd leading potentially to tight uncer-

tainty bounds. This is done in the following.

Incompressible Pipe Flow at Re = 44,000

We apply the BMSA method to turbulent flow in a straight pipe at Re = 44,000 with

validation data from a DNS simulation [12]. This flow case is, together with turbulent

flow over a flat plate and channel flow, one of the three canonical wall-bounded

flow types [1]. The main difference between flow in a pipe or channel and over a

flat plate lies in the development of the boundary layer. Assuming a uniform inflow

into a circular straight pipe a boundary layer at the wall develops and its thickness

increases downstream similarly to the flat plate case. Forced by the geometry of the

pipe the boundary layers from all sides will eventually merge in the middle of the

pipe. The distance from the entrance of the pipe to the point, where the boundary

layer fills the entire diameter, is known as the entry length. Beyond the entry length,

the flow is homogeneous in stream-wise direction. In contrast, the boundary-layer

thickness of a flat plate flow with zero pressure gradient is not bounded. However,

for all these wall-bounded flow types the physics close to the wall can be assumed to

be similar. Therefore, with the application of BMSA based on flat plate flow to pipe

flow is a proof-of-concept in order to assess the predictive capabilities of BMSA for

wall-bounded flows in general.

Simulation Set-up

The validation of the BMSA method is based on a comparison with averaged velocity

profiles from a DNS simulation [12]. Therefore, the steady-state RANS simulation

mimics the time-averaged DNS simulation by using appropriate boundary condi-

tions given in Table 1. In the DNS simulation, the mass flow rate is kept constant

via a time-varying adjustment of the pressure gradient in the stream-wise direc-

tion [12]. For the RANS simulation, the mass flow rate is kept constant via a fixed

inlet velocity and the pressure gradient is set to zero at the inlet. At the outlet, both
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Table 1 The Inlet conditions of velocity U, pressure P∕𝜌 and turbulent quantities [13]

𝐔 (m/s) P∕𝜌 (m2∕s2) k 𝜖 𝜔 𝜈̃

Inlet (1, 0, 0)T 𝐧 ⋅ ∇P = 0 0.00375 0.00835 25.0516 0.00027

Outlet 𝐧 ⋅ ∇𝐔 = 0 (0, 0, 0)T 𝐧 ⋅ ∇k = 0 𝐧 ⋅ ∇𝜖 = 0 𝐧 ⋅ ∇𝜔 = 0 𝐧 ⋅ ∇𝜈̃ = 0
Wall (0, 0, 0)T (0, 0, 0)T (0, 0, 0)T (0, 0, 0)T 8367238.00803 (0, 0, 0)T

the velocity gradients are set to zero and pressure is set to zero. In this way, the pres-

sure drop is computed according to the fixed mass flow. For the forward simulations

mCFD

(
Mi,𝜽

MAP
i,k

)
, the results of simulations with nominal values of the coefficients

mCFD(Mi,𝜽
o
i,k) are used as an initial condition in order to reduce iteration counts.

2

The geometry of a straight pipe is determined by its diameter and length. While

the diameter D is set in order to achieve the target Reynolds number, the length of the

pipe needs to be chosen sufficiently longer than the entry length in order to overcome

all effects at the inlet, such as the usage of different closure coefficients or the uniform

inflow velocity profile. The entry length is estimated by an empirical relation based

on the Reynolds number [13]

Lturb = 1.359 ⋅ D ⋅ Re1∕4D ⇒ Lturb ∼ 20D. (10)

For all simulations, a conservative value L = 200Dwas chosen. Due to the symmetry

of the case a wedge-shaped mesh with symmetric boundary conditions orthogonal to

the stream-wise direction was chosen [14]. Different meshes were initially studied,

with a total number of 2900, 5900 and 9900 cells, respectively. The differences for the

velocity profiles between the meshes were negligible, but in order to keep the error

small the finest mesh was chosen for all forward simulations. In order to study the

effect of the turbulence modelling and not additional modelling due to wall functions,

the thickness of the smallest cells close to the wall was defined according to y+ ≤ 1.0
and Low-Re turbulence models were used.

BMSA Prediction for Radial Velocity Profile

Applying the BMSA framework to the set of simulations leads to the expectation of

the radial velocity𝔼(U∕Ubulk|𝐳) as shown in Fig. 1a–c for different tuning parameters

of the smart-weighting method p = [0, 1, 2]. For the confidence interval, 10,000 sam-

ples were drawn from the posterior predictive mass function given in Eq. 7 for each

x∕R position. The 5th and 95th percentile of the population was used as the lower

and upper limit, respectively, containing 90% of the samples. For p = 0, i.e. uniform

2
The template-cases for each turbulence model are available on GitHub: https://github.com/shmlzr/

UQOpenFOAM.

https://github.com/shmlzr/UQOpenFOAM
https://github.com/shmlzr/UQOpenFOAM
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weighting of the scenarios, the impact of outliers on the confidence interval is large

leading to an over-prediction of the modelling error. Outliers are caused by sensi-

tivities of the models with respect to certain coefficients leading to predictions very

different compared to the ensemble mean. The effect is already reduced for p = 1,

for which the confidence interval is covering a tight bound around the expectation.

The shape matches with the shape of the majority of the ensemble of forward sim-

ulations. For increasing p, the confidence interval becomes tighter, since the smart

weighting consecutively increases the weight of Sk = 1300 as shown in Fig. 2b and

decreases the influence of the others, reducing the overall variance. Interestingly,

the MAP estimates for scenario Sk = 1300 are acquired based on a flow over a flat

plate with a moderately favourable pressure gradient and a boundary layer close to

an equilibrium state [4], which is very similar to the conditions for the flow in a pipe.

A comparison of the DNS data and the expectation for different p via the L2-norm

||𝔼[U∕Ubulk| ̃S, 𝐳] − Uo||2 (11)

given in Fig. 2a, where the high-resolution DNS data is interpolated by a cubic spline

to enable a point-by-point comparison, shows a minimal error for 0 < p < 2, but

also an increase of the error for higher values of p. Note that due to the use of MAP

estimates, the variance is missing the within-model within—scenario contribution.

Therefore, a reduction of the variance with smart weighting should be done with

care in order to not reduce the already underestimated variance even further. Thus,

the purpose of the smart weighting for the BMSA-with-MAP-approach should be

to exclude outliers, which can be achieved with relatively low p values. In such a

way an optimum of the width of the confidence interval and the correctness of the

expectation can be achieved.

BMSA Prediction for Pressure Drop

Another relevant quantity of interest for the turbulent pipe flow is the pressure drop

𝛥P over the pipe length. Table 2 gives the values for the pressure drop 𝛥P∕𝜌 nor-

malised by the fluid density 𝜌 and the corresponding Darcy friction coefficient fDarcy

fDarcy =
2 𝛥P D
𝜌 L U2 (12)

per model. The empirical reference value for the pressure drop is calculated from

the Colebrook–White equation, which is an approximation of the empirical Moody-

diagram,
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(a) p= 0 (b) p= 1

(c) p= 2

Fig. 1 BMSA prediction using different smart-weighting tuning parameter p

(a) (b)

Fig. 2 a L
2

error norm of difference between DNS data and BMSA expectation against p—value.

b Scenario-weights for several p-values. Description of scenarios in [3]
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Table 2 Pressure drop over pipe length for Launder-Sharma k − 𝜖, Wilcox (2006) k − 𝜔 and

Spalart-Allmaras using nominal closure coefficient [4]. The corresponding Darcy friction coeffi-

cient fDarcy is calculated using the Darcy–Weisbach equation. The empirical value for fDarcy is based

on the Colebrook equation for Re = 44,000 and the corresponding 𝛥P∕𝜌 is calculated using the

Darcy–Weisbach equation

Model 𝛥P∕𝜌 (m
2

s2
) fDarcy

Wilcox (2006) k − 𝜔 2.1427 0.02144

Launder-Sharma k − 𝜖 2.0478 0.02049

Spalart-Allmaras 2.2074 0.02208

Empirical value 2.1499 0.021499

1
√
f
= −2 log10

(
2.51
Re

√
f

)

(13)

with zero roughness at Re = 44,000. For several tuning parameters of the smart-

weighting methods, i.e. p ∈ [0, 8], the BMSA expectation of the pressure drop

𝔼[𝛥P ∣ S̃, 𝐳] is shown in Fig. 3 as well as the empirical reference data calculated

based on the Colebrook–White equation. Up to p = 4 the confidence interval still

covers a range including also the empirical reference value, which suggests that the

method successfully gives a reasonable uncertainty range. For larger tuning param-

eters, the confidence interval reduces drastically and puts all weight on one single

scenario, so that the confidence interval is not visible anymore. In line with the results

for the velocity profile (see section “BMSA Prediction for Radial Velocity Profile”),

also for the pressure drop p = 2 is a reasonable choice. The expectation consistently

underestimates the true value and is therefore worse than the baseline predictions,

see Table 2. However, since the BMSA method was not trained on pressure drop data

this is not unexpected and the main gain of BMSA is the confidence bounds instead

of replacing the baseline prediction with the point-estimate of the expectation.

Incompressible Flow over Periodic Hills at ReH = 𝟓𝟔𝟎𝟎

The periodic hill test case is based on the channel flow case, but with a lower surface

modified by a series of periodically arranged hills, and deals with flow separation

on the curved surface of the hills and reattachment on the flat plate region between

the hills [15]. Being computationally relatively cheap but still challenging in terms

of flow physics it has been used in several workshops as a benchmark test case [16].

We use DNS data of the mean flow field from Breuer et al. [15] for ReH = 5600,

defined using the stream-wise bulk velocity Ub between the hills crest and the upper

surface and the hill height H. The test case is known to be especially challenging

for linear eddy-viscosity models, which are not able to predict the mean effect of the
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Fig. 3 BMSA prediction of

pressure drop including

confidence interval for

several tuning parameter p of

smart-weighting method

unsteady fluctuation of the separation and reattachment points correctly [17]. Thus,

the application of BMSA to this challenging flow configuration is a test of the limits

of the framework utilising linear eddy-viscosity models being calibrated for flat plate

boundary-layer flows.

Simulation Set-up

In order to mimic the periodicity of the hill-geometry, periodic boundary conditions

were applied at the inlet and outlet and no-slip conditions at the walls. A volume

forcing is applied to each cell, which maintains a bulk velocity of Ub = 1.0 between

the hill’s crest and the upper surface. The functional form of the lower surface is

defined according to the ERCOFTAC test case description.
3

In order to study the

effect of the turbulence modelling and not additional modelling due to wall functions,

the thickness of the smallest cells close to the wall were defined according to y+ ≤ 1.0
and Low-Re turbulence models were used: Spalart-Allmaras, Launder-Sharma k − 𝜖

and Wilcox (2006) k − 𝜔 (for details of these models see [4]). Furthermore, a mesh

convergence study was conducted for each model using baseline coefficients and the

meshes in Table 3 were used for the application of the BMSA method.

Similar to the pipe flow case in section “Incompressible Pipe Flow at

Re = 44,000”, the results of the forward simulationsmCFD

(
Mi,𝜽

MAP
i,k

)
with nom-

inal values of the coefficients mCFD(Mi,𝜽
o
i,k) are used as an initial condition in order

to reduce iteration counts. For S14, the simulation using Wilcox (2006) k − 𝜔 didn’t

converge so that this scenario was excluded from the set leading to 13 used scenarios

in total.

3
Underlying flow regime 3–30, 2D Periodic Hill Flow: http://qnet-ercoftac.cfms.org.uk.

http://qnet-ercoftac.cfms.org.uk
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Table 3 Mesh size per closure model for flow of periodic hills at ReH = 5600
Mesh (nx × ny)

Spalart-Allmaras 100 × 110
Launder-Sharma k − 𝜖 150 × 140
Wilcox (2006) k − 𝜔 100 × 110

BMSA Prediction for Velocity Field

The baseline simulations for the three models show the expected behaviour as

reported in the literature for a larger Re-number [17]: while both Spalart-Allmaras

and the Wilcox (2006) k − 𝜔 over-predict the size of the recirculation zone, charac-

terised by a zero velocity component close to the wall, the Launder-Sharma k − 𝜖

under-predicts this flow feature.

The BMSA approach using MAP estimates of the posterior probability distribu-

tions outputs both an expectation of the velocity 𝔼[𝛥| ̃S, 𝐳], for which 𝛥 = Ux, and a

confidence interval. For the latter two types were chosen: one obtained by sampling

from the posterior predictive distribution and using the range from 1.0 to 99.0 per-

centile, i.e. 98% confidence interval, and another one by using the min/max range

of the ppd. We have chosen both a larger confidence interval and the entire range

of the distribution in order to take the expected low performance of the linear eddy-

viscosity models for this test case into account. Especially, the latter can be seen as

an approach trying to envelop the true process by all models and for all scenarios.

The smart-weighting technique to obtain the scenario probabilities as described in

section “Prediction” was applied along the y∕H-direction for each stream-wise loca-

tion for the 98% confidence interval. In that manner, the predictive similarity for each

scenario per model is evaluated locally for the stream-wise direction x.

The BMSA expectation 𝔼[𝛥| ̃S, 𝐳], as shown in Fig. 4, over-predicts the recircu-

lation zone, gives similar velocity profiles for x = 3.0 and 4.0 close to the lower

surface, but is completely off for other locations. Especially, for x = 0.0 the expec-

tation does not capture the local maximum of the velocity close to y∕H = 1.0, i.e.

at the hills crest, and over-predicts the velocity within the channel for every other

location. Throughout the different locations the expectation shows large differences

compared to the DNS for the upper part of the velocity profile.

The entire range of the posterior predictive distribution (ppd) and the 98% confi-

dence interval show large differences over the entire domain as shown in Fig. 4. The

ppd captures the DNS data for x ≥ 3, but does not capture the local velocity maxima

in the area of the free shear layer in the leeward region of x = 0–2.0. Interestingly,

for x ≤ 3.0 when the range of the ppd shrinks locally in y∕H-direction also the DNS

is still inside. However, this pattern is not the same for every y∕H-position, e.g. at

x = 2.0 the expectation and the DNS match for 0.5 ≤ y∕H ≤ 1, but the error is high.

For the relatively large confidence value 98%, the intervals shrink drastically, so that
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Fig. 4 BMSA for stream-wise velocity component Ux at several x-locations, 𝔼[𝛥| ̃S, 𝐳] (red), full

posterior predictive distribution (ppd) range (shaded grey) and confidence interval of 98% (shaded

blue) using p = 2. DNS data of Breuer et al. [15] (black)

the DNS data is only captured in a small lower band y∕H ≤ 1.0 for 3 ≤ x ≤ 7 and

for the part of the velocity profile in the middle of the channel.

Interestingly, in the reattachment region between the two hills, where the case is

similar to a flat plate, the BMSA approach in the present form with a confidence of

98% is able to capture the DNS data. However, the interval for the upper surface is

always negligible but the DNS data does not match with the expectation.

The large effect of the min/max profiles, which determine the min/max range of

the ppd, to capture the DNS data proves the aforementioned fact that the used linear

eddy-viscosity models suffer from restrictions which inhibit the reproduction of the

true flow state for this test case. However, posterior probability distributions of the

closure coefficients of the models inferred on other flow scenarios more equal to the

one here might lead to a different picture.

Industrial Test Case: Generic Dassault Falcon

The final test case we consider is the generic Falcon jet—a business jet including

tail, engine nacelles and winglets—at transonic conditions (Industrial challenge IC-
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03 of UMRIDA). The geometry is far more complex than any considered so far,

with a resulting spectrum of primary and secondary flows. We provide this case as

a demonstration of the applicability of our approach to problems of relevance in the

aerospace industry—unfortunately without a reference solution. LES is impractically

expensive here, and experimental data is not available. We attempt to justify the

results of BMSA based on the expected response of the simulation to the closure

modelling.

The CFD code used is Petrov–Galerkin finite-element RANS solver AETHER
used within Dassault Aviation. As a preliminary step, it was verified that the closure

models implemented in AETHER were identical to the models for which closure

coefficients were calibrated. The implementations of Spalart-Allmaras and Wilcox

k − 𝜔 were found to be sufficiently similar to the calibrated models, and in addi-

tion are regarded by Dassault Aviation as suitable for this test case. Of the 14 sets

of closure coefficients computed with each model, only five cases were able to be

successfully converged with k − 𝜔, whereas all S-A cases converged without issue.

BMSA requires a minimum of two models per scenario, and as such only five sce-

narios could be considered. Thus the spectrum of model results is substantially more

limited than for both previous test cases.

The resulting uncertainty in the pressure distribution at a cut on the wing (with

p = 0) can be seen in Fig. 5a, b. The uncertainty is concentrated around the shock

on the suction side, and even there is barely visible. Increasing p reduces the uncer-

tainty further. The very low variance can be attributed to two effects: (a) the real

lack of sensitivity of the pressure distribution to the turbulent boundary layer in an

essentially attached flow, for which an inviscid solution is already satisfactory, and

(b) the limited range of models and coefficients used in the study. Indeed by elimi-

nating exactly those coefficients that cause convergence problems (for k − 𝜔), we are

introducing additional bias into the sampling, likely biasing against extreme results.

The only alternative—of including unconverged solutions—is even less attractive

however.

More insight can be gained by looking at force coefficients: Fig. 6 shows total,

pressure and viscous drag coefficients, all evaluated by surface integration, with

mean and 95% confidence intervals, as a function of p. While pressure and viscous

drag have approximately the same magnitude, the viscous part completely dominates

the uncertainty—with CD,p varying at most 3 counts, and CD,v varying between 15

and 25 counts, depending on p. Thus the uncertainty in total drag is driven entirely by

CD,v. Given the observed lack of uncertainty in Cp-profiles, and the high sensitivity

of friction coefficients to closure modelling, this is not surprising—though it does

indicate that varying the closure model does not appear to have a significant effect on

separation behaviour in this case. Examining the relationship of uncertainty against

p reveals which quantities are dominated by model-differences (where uncertainty

is approximately constant with p), and for which quantities scenario differences are

significant. Here CD,p belongs to the former class, and CD,v to the latter.

In summary, the limited number of turbulence models and range of coefficients

lead to limited uncertainty in this case, for quantities of interest related to the pres-

sure, which is essentially governed by the inviscid flow behaviour. Significant uncer-
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(a) Full x/C domain. (b) Zoom at shock location.

Fig. 5 Pressure distribution at 30% span of the Falcon wing, y = 3848 mm

(a) total (b) pressure

(c) viscous

Fig. 6 Total, pressure and viscous drag coefficients for the full Falcon
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tainty is observed for viscous quantities such as friction drag. Resolving this in prac-

tical applications is the subject of ongoing work.

Conclusion

The BMSA approach based on MAP estimates of the posterior probability distribu-

tions of the closure coefficient has been applied to three different test cases.

For the flow in a straight pipe at Re = 44,000, the results for the velocity profile

and the pressure drop are in line with the validation data for this case, which shows

in general that the approach can successfully be applied to other test cases outside

of the set used for calibration.

The application of BMSA to the periodic hill test case at ReH = 5600 proves that

this test case is challenging for the linear eddy-viscosity assumption and also shows

the limits of the BMSA framework in the present form, provided that all models in

the chosen set employ the Boussinesq hypothesis. However, the resulting ppd is able

to capture most of the validation data successfully. A more suitable test case will

be evaluated for BMSA in the future, such as the flow over a backward-facing step,

for which the separation is forced by the geometry and not result of the simulation

itself. Furthermore, the question of how to incorporate model-form error within a

stochastic framework for UQ purposes is the topic of ongoing research.

Finally, the Falcon Jet test case (IC-03) revealed the open problem of how to

deal with many non-converged solutions within the BMSA methodology and the

successive artificial reduction of uncertainty by excluding these simulations from

the set of simulations, which is also a topic for further research.
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Uncertainties for Thermoacoustics:
A First Analysis

A. Ndiaye and F. Nicoud

Introduction to the Thermoacoustic Framework

Despite decades of intense research, combustion instabilities remain a challenging
topic in a range of engineering applications [1–6]. In particular, thermoacoustic insta-
bilities arise from the coupling between the combustor acoustics (with related waves
propagation and reflection) and flame dynamics (and associated heat release fluctua-
tions). These heat release fluctuations are generally delayed with respect to incident
disturbances (noise,modulation ofmixture fluctuations, convection of hydrodynamic
processes, etc.) and give rise to an unstable growth of pressure oscillations if they
happen to be in phase with the acoustic pressure fluctuations [7]. In extreme cases,
these oscillations lead to irreversible damages which can destroy the combustor or at
least decrease its lifetime. Therefore, the prediction and control of all acoustic modes
of the configuration at the design stage are required to avoid these instabilities and
their negative impact on the combustion system of interest.

Several approaches are available to model and compute combustion instabilities.
For example, large eddy simulation techniques appeared to be tremendously powerful
to capture both the combustion dynamics and even unstable and various types of
acoustic modes in complex gas turbines’ combustors [8–11]. Nevertheless, LES
approaches are known to be CPU expensive because they require solving the full
3D Navier–Stokes equations at high Reynolds number by taking into account many
complex physical processes in addition to incidental effects related to acoustics and
combustion phenomena. Moreover, if LES offers a nice picture of the flow structure
in a combustor, they do not explain themechanisms bywhich unstable modes appear.
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These difficulties have encouraged the widespread development and use of low-order
modelling techniques such as analytical tools or Helmholtz solvers. The advantage of
low-ordermodelling tools [12–14] lies in their ability to determine at reasonableCPU
cost both the eigenfrequencies and the growth or the decay rate of thermoacoustic
modes. In this study, a 3D parallel in-house Helmholtz solver is used to represent
thermoacoustic instabilities [15]. Such Helmholtz solver is based on an approximate
linear wave equation for small pressure disturbances, p1(x, t), which is derived from
the Navier–Stokes equations for reactive flows [6]:

∂2 p1(x, t)
∂t2

− ∇ · c20(x)∇ p1(x, t) = (γ − 1)
∂q1(x, t)

∂t
(1)

where q1(x, t) is the heat release fluctuation. In the framework of linear acoustics,
the pressure fluctuations as well as the heat release fluctuations have the form of
an harmonic waves: p1 = R[ p̂(x)e−iωt ] and q1 = R[q̂(x)e−iωt ]. Therefore, using
the harmonic assumption for the fluctuating variables, the wave equation in the time
domain, Eq. (1), becomes the followingHelmholtz equation in the frequency domain:

∇ · c20(x)∇ p̂(x) + ω2 p̂(x) = iω(γ − 1)q̂(x) (2)

where c0 is the speed of sound of the baseline flow,ω is the complex-valued pulsation
(ω = 2π f ), ρ0 corresponds to the mean density, and q̂(x) represents the unsteady
heat released from the flame: q

′
(x, t) = q̂(x)e−iωt .

The right-hand side term of Eq. (2) represents the flame response to acoustic
perturbations. In this study, it is modelled thanks to the n − τ formalism initially
introduced by [16] and [17] for confined flames. This formalism is also related to the
Flame Transfer Function (FTF) formulation:

F (ω) = Q̂

û
= n(ω)eiωτ(ω) (3)

where n is the gain of the flame response and τ the time delay between the overall
unsteady heat release produced by the flame Q̂ = ∫

V f
q̂dV and the velocity fluctu-

ation û measured at the burner mouth, in the cold gas region. The latter parameters
can be determined either experimentally [18], analytically [19] or numerically [20].

Once the flame response is modelled, Eq. (2) corresponds to an inhomogeneous
Helmholtz equation which is then solved as a nonlinear eigenvalue problem in the
frequency domain. The resolution of the eigenvalue problem gives access to the
pressure field p̂ and the complex angular frequency ω of the mode. The real part of
ω, ωr , is related to the frequency of oscillation of the mode while its imaginary part,
ωi , is the growth rate of the acoustic disturbances. Therefore, from the sign of ωi ,
it is possible to build a stability map which gathers all the thermoacoustic modes as
shown in Fig. 1.

The stability of a combustion chamber may be drastically impacted by many
effects ranging from combustion chemistry, impedance boundary conditions,
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Fig. 1 Location of the first
six thermoacoustic modes in
a typical combustor

geometry, swirler and combustor design, wall heat transfer, inlet temperatures to
spray characteristics. Aside from impedance boundary conditions and chamber
design away from the flame, all the above-mentioned factors are embodied in
the Flame Transfer Formulation that accounts for the Flame/Acoustic modelling
response. As of today, a key challenge remains in the development of accurate and
predictive combustion response models to detect potential combustor instability.
Effective modelling of the flame dynamics would certainly improve the understand-
ing of processes such as nonlinear phenomena responsible for limit-cycle oscillations,
the flame–acoustic coupling in industrial geometries, flame–vortices interactions and
the interaction of flames with distributed reaction zones or well-stirred reactors. Due
to the limited knowledge on all the aforesaid phenomena and the well-known sensi-
tivity of the flame response to any details (surface condition of the injection system,
manufacturing tolerances, fuel chemical composition, inlet conditions, thermal con-
ditions of the mainframe, etc), introducing Uncertainty Quantification in the context
of deterministic mathematical modelling to analyse the probabilistic aspects of the
simulation of thermoacoustic instabilities is an appealing perspective.

One of the overriding concern of the present work is to perform Uncertainty
Quantification to address the sensitivity of thermoacoustic results with respect to the
flamemodelling response parameters.Until very recently,UncertaintyQuantification
had virtually never been applied to thermoacoustics. This task will shed more light
towards reliable predictions of unstable modes beyond allowing to get insight on
the likely risk of a mode to be amplified or damped in gas turbine combustors.
Figure2 represents a stability map from a thermoacoustic analysis under Uncertainty

Fig. 2 Location of the first
six thermoacoustic modes in
a typical combustor on top of
their uncertain regions
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Quantification analysis. When no uncertainty is present, each mode corresponds to
a single point (black symbols) in the frequency plane. Here, modes 1, 4 and 6 are
unstable and should be controlled since their growth rateωi is positive. If uncertainties
are present, each mode belongs to an admissible region of the frequency plane. Mode
2 and 5 are now potentially dangerous and should be controlled too. Therefore,
Uncertainty Quantification analysis will contribute to study how the uncertainties
on the input parameters n and τ propagate into uncertainties on the growth rate
ωi . Introducing Uncertainty Quantification naturally gives rise to a new concept in
thermoacoustics, namely the risk factor of the acoustic mode, i.e. the probability for
a mode to be unstable (ωi > 0):

Risk Factor (%) = 100
∫ ∞

0
PDF(ωi ) dωi (4)

where PDF(ωi ) stands for the probability density function of the growth rate of
the acoustic disturbances. This quantity allows a continuous classification of the
thermoacousticmodeswhile the classical analysis is only binary (stable vs. unstable).
Note that to fairly assess the risk factor, it is necessary to have a realistic statistical
distribution of the input parameters n and τ , given by experimental data or early
numerical results.

The remaining of this section is devoted to a first UQ analysis of a swirled stabi-
lized combustion chamber, developed and built at EM2C laboratory in Paris (France)
[18, 21]. Two input parameters are considered: the amplitude (n) and time delay (τ ) of
the Flame Transfer Function formulation. At first, taking advantage of the affordable
numerical resources associated to the Helmholtz solver, a brute force Monte Carlo
approach is used to propagate random perturbations on the FTF input parameters
and compute probabilistically the growth rate of the acoustic mode. As the litera-
ture does not confer a clear accurate analysis on the uncertainty range of the FTF
input parameters, an uncertainty range based on experimental measurements of the
flame response (from experimentalists at EM2C (Paris) and IMFT (Toulouse)) was
used. Besides, in the absence of more information regarding the probability den-
sity functions, two different distributions were considered: a uniform distribution
and a β-distribution with the same mean and variance. The ranges of the uniform
distributions are directly deduced from the experimental data of the FTF amplitude
and time delay. Then, the UQ analysis is extended by using a reduced two-step UQ
strategy to deal efficiently with thermoacoustic phenomena in such a system. First,
three surrogate models are tuned from a moderate number of Helmholtz solutions (a
few tens). Then, these algebraic models are used to perform a Monte Carlo analysis
even less costly and to determine the risk factor of the acoustic mode.
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Experimental Set-up Description

The laboratory-scale experiment used in this study corresponds to a single swirled
stabilized combustor designed and built by Palies et al. [18, 21, 22] at the EM2C
laboratory. Initially, this academic systemwas used to investigate the nonlinearmech-
anisms involved in the flame dynamics of complex systems. As illustrated in Fig. 3,
the system features a confined swirled flame, an upstreammanifold, an injection unit
equipped with a swirler and a cylindrical flame tube. The fuel/oxidizer is injected
through the sidewalls located at the bottom of the upstream manifold. Once formed,
the mixture flows through the honeycomb grid to wreck large-scale turbulent struc-
tures. Then, the gas stream is accelerating into the convergent tube to decrease the
boundary layer thickness. The motion stabilizes the turbulent flame within the com-
bustion chamber, despite the absence of bluff-body.

This experiment is handy and practical because it was thought and conceived
in such a way that both the upstream manifold and the combustion chamber may
take, respectively, three and four different lengths. Hence, this simple system leads
to twelve possible geometries as summarized in Table 1.

To measure the flame response, a loudspeaker is placed at the back end of the
system. Moreover, two experimental conditions corresponding to two different air
flow rates were experimentally tested corresponding to flames A and B, with larger
power in the latter than in the former. Thus, from twelve possible geometries, the
system offers the advantage to investigate finally 24 different operating conditions.
Also, acoustic losses of the system were measured during the experimental phase.
This has been realized by sending an acoustic wave through the combustion chamber

Fig. 3 Numerical/experimental configuration. From Ref. [21]
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Table 1 Twelve different configurations explored: l1 indicates the upstream manifold length and
l3 corresponds to the combustion chamber length. Dimensions are given in millimetres. From Ref.
[23]

Cases studied l3 =100 l3 =150 l3 =200 l3 =400

Expe./Simu. l1 =96.0 C01 C02 C03 C04

Expe./Simu. l1 =160.0 C05 C06 C07 C08

Expe./Simu. l1 =224.0 C09 C10 C11 C12

to measure the response of the flame for a range of frequencies around resonance.
These losses are expressed for both types of flames: αA = 82 s−1 for flame A and
αB = 125 s−1 for flame B with an uncertainty of Δα = ±10 s−1.

The numerical acoustic modelling of the swirled combustor and its associated
linear stability analysis has been realized [23] via a Helmholtz solver developed at
CERFACS (the AVSP solver [15]). Since no damping is contained in the Helmholtz
equation, the system is considered to be stable when the growth rate ωi is smaller
than the damping rate α and similarly, when the computed growth rate is larger than
the damping rate, the system is considered to be unstable. Moreover, accounting for
the error Δα leads to the subsequent classification:

• Stable S: ωi < α − Δα

• Unstable U: ωi > α + Δα

• Marginal S/U: α − Δα < ωi < α + Δα.

Experimentally, amode is denoted S/Uwhen a lowamplitude frequency of oscillation
is detected, S if no fluctuation appears and U if a large amplitude limit cycle is
observed. The global comparative study between the experimental and numerical
stability results [23] is displayed in Fig. 4 and sum up in Table 2.

Fig. 4 Linearized stability prediction. The grey bounds indicate themarginally stable region defined
by Δα = ±10 s−1. Empty symbols indicate agreement with experimental results while filled sym-
bols represent partial agreement. Adapted from [23]
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Table 2 Linear stability analysis of flame A and flame B. Comparison between experimental
and numerical results. (S) Stable, (S/U) marginally stable/unstable, (U) unstable. The geometrical
configurations C01–C12 are defined in Table 1

Case Flame A Flame B

C01 C02 C03 C04 C01 C02 C03 C04

Experiment S S S U S S S-U U

Simulation S S S U S S S-U U

C05 C06 C07 C08 C05 C06 C07 C08

Experiment S S S-U U S S S UU

Simulation S S S-U U S S S-U U

C09 C10 C11 C12 C09 C10 C11 C12

Experiment S S S-U U S S S-U U

Simulation S S U U S S S U

An overall agreement inmost of the cases is observed for the numerical and exper-
imental stability analysis. Only three partial disagreements are observed because the
experiment predicts marginal stability (S/U) while the computation gives an insta-
bility or conversely. Uncertainty Quantification is thus used to further analyse one
of these operating points with partial disagreement and investigate if the difference
between the computational and experimental results could be explained by the lack
of knowledge of the input parameters: configuration 07 for the flame B was selected
for this purpose.

Uncertainty Quantification Analysis

Force Monte Carlo Method

The Monte Carlo method is a conventional Uncertainty Quantification algorithm
frequently used due to its conceptual simplicity and straightforward implementation.
It is used here to propagate the flame response uncertainties through the system with
the aim to forecast the PDF of the growth rate and subsequently the probability of
the first acoustic mode of the system to be unstable ( f0 = ω0

2π = 133 Hz), i.e. the risk
factor of the first acoustic mode.

Having only limited information regarding the actual range of uncertainty relevant
to the Flame Transfer Function parameters, quantitative data from two independent
experimentalists groups at (i) EM2C (Paris) and (ii) IMFT (Toulouse) was collected.
They provide statistically valid and reliable estimation of the uncertainties on n and
τ parameters which is fixed to σn

n̄ = στ

τ̄
= 10%. This range of uncertainty is therefore

adopted and applied to the following nominal experimental value: n̄ = 1080 J/m and
τ̄ = 4.73 ms. Also, the type of distribution followed by the FTF parameters is not
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Fig. 5 Uniform and β-PDF of an arbitrary random variable X with similar mean (μ) and standard
deviation (σ ), but with different range (R)

known and one needs to make sure that the shape of the PDF has only a limited
impact on the risk factor value. This is done by considering two typical distributions,
namely (i) a uniform distribution and (ii) a β-distribution (Fig. 5).

• The uniform distribution: The ranges of the uniform distributions are directly
deduced from the experimental values of the amplitude and time delay, i.e 10% of
the mean values (Fig. 5). The uniform PDF reads:

f UX = 1

||xmax − xmin|| for xmin ≤ x ≤ xmax (5)

Therefore, the mean μU
X and the variance vUX are:

μU
X = xmin + xmax

2
and vUX = 1

12
(RUμU

X )2 (6)

where RU represents the normalized range xmax−xmin

μU
X

of the uniform distribution:

here RU = 10%.
• The β-distribution: The β-distribution is characterized by its density function:

f ζ

Y = B(α, ζ )−1yα−1(1 − y)ζ−1 for 0 ≤ y ≤ 1 (7)

where B(α, ζ )= Γ (α)Γ (ζ )

Γ (α+ζ )
denotes the beta function, Γ (.) is the gamma function,

and α and ζ are two free parameters. Note that f ζ

Y is only defined for a reduced
randomvariableY on [0, 1]. The parametersα and ζ which characterize theβ-PDF
are deduced from the desired mean μ

ζ

Y and variance ν
ζ

Y of this reduced variable Y:

α = μ
ζ

Y

(
μ

ζ

Y (1 − μ
ζ

Y

v
ζ

Y

− 1

)

(8)
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and

ζ = (1 − μ
ζ

Y

(
μ

ζ

Y (1 − μ
ζ

Y

v
ζ

Y

− 1

)

(9)

To close the problem, the reduced variable Y in [0, 1] is related to the desired
random variable X in [xmin, xmax ]:

X = μ
ζ

X (1 + Rζ [2Y − 1]) (10)

Taking the mean and variance of the previous equation leads to the following
relations between characteristics of X and Y:

μ
ζ

Y = 1/2 and v
ζ

Y = ν
ζ

X

4R2
ζ

(μ
ζ

X )2 (11)

Consequently, the mean value of Y is fixed and its variance can be deduced by
imposing that the beta and uniform PDFs have the same characteristics, i.e. μζ

X =
μU

X and ν
ζ

X = νUX . Note, however, that the range of the β-PDF appears in (μζ

X ) (Eq.
11). If this range is chosen equal to the range of the previous uniform PDF (i.e.
Rζ = RU = 10%), then the ζ -distribution degenerates to the previous uniform
PDF. Consequently, the range Rζ is an additional free parameter. For this study,
this range is fixed to Rζ = 30% leading to the characteristic values α = ζ = 2.87.

The Monte Carlo sampling realized for the configuration 07 of the Flame B (see
Table2) using the uniform distribution is presented in Fig. 6.

In Fig. 6a, each point corresponds to a Helmholtz simulation in the complex
domain. The horizontal solid lines denote the acoustic losses α: 115 s−1 < αB <

135 s−1. The stable or unstable regions are evaluated using the difference ωi − α:

1. ωi − 115 s−1 < 0 corresponds to a stable system (S).
2. ωi − 135 s−1 > 0 corresponds to a unstable system (U).
3. 115 s−1 < ωi < 135 s−1 corresponds to a situation where the system is marginal

(neither stable nor unstable) (S/U).

The 4000 samples are then classified into three types: stable regime (S), unstable
regime (U) and marginal regime (S/U). In Fig. 6b, the PDF of the growth rate (ωi ) is
presented and shows that most of the thermoacoustic modes found by the Helmholtz
solver are in the stable regime. This leads to a risk factor close to 24%.

Following a similar methodology as for the uniform distribution, 4000 runs have
been performed using the Helmholtz solver by considering a β-distribution for the
input parameters n and τ . It has been found that the risk factor obtained from the
β-distribution is close to the one obtained by the uniform distribution: 24% for the
uniform distribution against 22% for the β-distribution. This shows that UQ results
areweakly affected by the distributions chosen for the input parameters n and τ for the
study of such academic cases which suggests that assessing the risk factor of a mode
without a clear knowledge of the uncertainties on the input data is relevant. In the rest
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Fig. 6 a Uncertainty region for the first acoustic mode for a uniform PDF with 10% uncertainty on
both the amplitude and time delay of the flame response. bHistogram of the growth rate of acoustic
disturbance for 4000 samples using the uniform distribution for the parameters n and τ

of the study, only the uniform distribution is kept. Moreover, the risk factor being 22–
24%, this simple UQ analysis shows that the computation is actually consistent with
the experimental data. Indeed, accounted for a realistic 10% uncertainty in the flame
response, this risk factor value means that the mode of interest is computationally
found stable in approximately 76–78% of the cases (recall that the mode of Case
07—Flame B was observed stable in the experiment; see Table 1).
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Multiple Linear Regression

Because Eq. (2) is an eigenvalue problem which is nonlinear in ωi , the response
surface ωi = ωi (n, τ ) is implicit and nonlinear. To speed up the UQ analysis, it is
worth investigating if this response surface can be approximated by explicit surrogate
models. Linear and quadraticmodels based on the uncertainties on the FlameTransfer
Function parameters n and τ are investigated in this section:

1. LMn−τ : a linear model based on the parameters n and τ of the Flame Transfer
function:

ω
model1
i = ζ0 + ζ1n + ζ2τ (12)

2. LMFT F : based on the Flame Transfer Function evaluated at ω = ω0, where
ω0 corresponds to the mode without flame coupling (corresponding to n=0).
The Flame Transfer Functions incorporate here physical nonlinearities into the
model:

ω
model2
i = ζ0 + ζ1R(ne jω0τ ) + ζ2�(ne jω0τ ) (13)

3. QMFT F : is a quadratic model based on the Flame Transfer Function also evalu-
ated at ω = ω0. Here, the physical nonlinearities are taken into account into the
model.

ω
model3
i = ζ0 + ζ1R(ne jω0τ ) + ζ2�(ne jω0τ ) + ζ3R(ne jω0τ )2 (14)

+ζ4�(ne jω0τ )2 + ζ5(R(ne jω0τ ) × �(ne jω0τ )) (15)

ThemodelsLMn−τ ,LMFT F andQMFT F can bewritten in linear algebra notation
as follows:

ωi = Xζ + ε = ωmodel
i + ε (16)

where Xζ is the matrix-vector product, and ζ = [ζ0, ζ1, ζ2, ζ3, ζ4, ζ5]T corresponds
to the regression coefficients of the model. These coefficients represent the mean
change in the response variable for one unit of change in the predictor variable.
ωi is considered to be a N × 1-dimensional vector containing the growth rate ωi

determined from N Helmholtz computations, and X is the matrix containing 1, n
and τ when using LMn−τ or 1,R(ne jω0τ ), �(ne jω0τ ) with LMFT F or 1,R(ne jω0τ ),
�(ne jω0τ ),R(ne jω0τ )2,�(ne jω0τ )2 and (R(ne jω0τ ) × �(ne jω0τ ))withQMFT F . This
for each samples and ε the N×1 vector of residuals:

ωi =

⎡

⎢
⎢
⎢
⎣

ωi1
ωi2
...

ωiN

⎤

⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎣

1 n1 τ1
1 n2 τ2
...

. . .
...

1 nN τN

⎤

⎥
⎥
⎥
⎦

, ζ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ0
ζ1
ζ2
ζ3
ζ4
ζ5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and ε =

⎡

⎢
⎢
⎢
⎣

ε1
ε2
...

εN

⎤

⎥
⎥
⎥
⎦
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A least squares methodology is used to determine the coefficients ζ of the three
models which minimize the error ε:

ζ̃ = (
Xt X

)−1
Xtωi (17)

where ζ̃ corresponds to the estimated parameters from the least squares, (Xt X)−1 is
called the “information matrix”, and Xt corresponds to the transpose of the Xmatrix.
The predicted values ω̃i for the mean of ωi are then determined as follows:

ω̃i = X ζ̃ = X
(
Xt X

)−1
Xtωi (18)

The objective is to use LMn−τ , LMFT F and QMFT F to estimate accurately and at
low cost the risk factor of the first acoustic mode of the system. To achieve this, a
reduced two-step UQ strategy is proposed:

1. Step 1: Find, at reasonable cost, the regression coefficients associated to sur-
rogate models, LMn−τ , LMFT F and QMFT F , using only a few samples of
Helmholtz simulations instead of 4000 Helmholtz simulations as performed in
the section “Conclusions” using a brute force Monte Carlo method.

2. Step 2: Apply a Monte Carlo on these surrogate models to assess the risk factor
of the mode.

At first, to find the regression coefficients of the surrogate models, the
4000 Helmholtz simulations of the Monte Carlo database obtained in the section
“Conclusions” are used. These coefficients are computed using Eq. (17), and the
correlation between the surrogate models and the reference Monte Carlo database is
evaluated.

R = E[(ωi − E(ωi ))(ω
model
i − E(ωmodel

i ))]
σωi σωmodel

i

(19)

In Eq. (19), E is the expectation, ωi corresponds to the reference growth rate, ωmodel
i

is the growth rate issued from linear least squares fitting, and σ corresponds to the
standard deviation from the reference growth rate and the estimated growth rate from
linear least squares fitting. Results of the model fitting are shown in Fig. 7 and their
corresponding correlations to the full Monte Carlo database are merged in Table3.

Results of the model fitting showed that LMFT F (Eq. 13) and the quadratic model
QMFT F (Eq. 15) are able to reproduce, respectively, 98% and almost 100% of the
growth rate variation, whereas the model LMn−τ reproduced 95% correlation of the
growth rate variations. For the rest of this study, the linear model LMFT F and the
quadratic model QMFT F are kept to approximate the risk factor of the mode at low
cost, i.e. relying on much less than 4000 Helmholtz computations.

Initially, to assess the number of Helmholtz computations required to fit these
surrogate models, several tuning of the ζ coefficients were performed. Typically, a
set of 3, 5, 6, 10, 20, 40 and 100 Helmholtz computations randomly selected from
the full Monte Carlo database are used. Once the surrogate models tuned, they are
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Fig. 7 Multiple linear regression computation: a using the surrogate model LMn−τ , b using the
surrogate model LMFT F and c using the surrogate model QMFT F

Table 3 Correlations coefficients of the surrogate models and the full Monte Carlo database com-
puted from AVSP.

Models Correlations

LMn−τ 0.9481

LMFT F 0.9761

QMFT F 0.9990

used to perform an affordable Monte Carlo to estimate the corresponding risk factor
of the mode. Besides, to evaluate the variability of the risk factor, the Monte Carlo
analysis based on the surrogate models LMFT F andQMFT F repeated 100 times for
each chosen set of Helmholtz simulations (from 3 to 100 Helmholtz simulations).
The results are displayed in Fig. 8 when using the linear model LMFT F and in Fig. 9
when using the quadratic model QMFT F .
In Figs. 8 and 9, the dashed lines represent the reference risk factor (≈24%), obtained
by the force Monte Carlo analysis over 4000 Helmholtz computations. The full
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Fig. 8 Risk factor estimated from a Monte Carlo analysis using the linear model LMFT F : a with
3 arbitrary samples from the full Monte Carlo database, b with 5 arbitrary samples from the full
Monte Carlo database, c with 10 arbitrary samples from the full Monte Carlo database, d with 40
arbitrary samples from the full Monte Carlo database, e with 70 arbitrary samples from the full
Monte Carlo database and f using 100 arbitrary samples from the full Monte Carlo database



Uncertainties for Thermoacoustics: A First Analysis 85

0 20 40 60 80
Number of replays

0

20

40

60

80

100
R
is
k
Fa
ct
or

in
%

RF estimation using Helmholtz solver
RF estimation from surrogate model

(a)

0 20 40 60 80
Number of replays

0

20

40

60

80

100

R
is
k
Fa
ct
or

in
%

RF estimation using Helmholtz solver
RF estimation from surrogate model

(b)

0 20 40 60 80
Number of replays

0

20

40

60

80

100

R
is
k
Fa
ct
or

in
%

RF estimation using Helmholtz solver
RF estimation from surrogate model

(c)

0 20 40 60 80
Number of replays

0

20

40

60

80

100

R
is
k
Fa
ct
or

in
%

RF estimation using Helmholtz solver
RF estimation from surrogate model

(d)

0 20 40 60 80
Number of replays

0

20

40

60

80

100

R
is
k
Fa
ct
or

in
%

RF estimation using Helmholtz solver
RF estimation from surrogate model

(e)

Fig. 9 Risk factor estimated from a Monte Carlo analysis using the linear model QMFT F : a with
6 arbitrary samples from the full Monte Carlo database, b with 10 arbitrary samples from the full
Monte Carlo database, (i) with 20 arbitrary samples from the full Monte Carlo database, c with 40
arbitrary samples from the full Monte Carlo database, d with 70 arbitrary samples from the full
Monte Carlo database and e using 100 arbitrary samples from the full Monte Carlo database
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Table 4 Risk factors and their associated standard deviations computed by the Monte Carlo and
surrogate models LMFT F and QMFT F using a different number of Helmholtz simulations from
the full MC database

Mean risk factors (in %) Standard deviations

Number of samples for the MC
study using LMFT F

3 21.45 8.92

5 22.88 4.93

10 23.13 3.18

20 23.54 1.80

40 23.59 1.20

100 23.32 0.83

Number of samples for the MC
study using QMFT F

6 23.69 6.95

10 24.19 1.95

20 24.24 0.81

40 24.31 0.73

100 24.40 0.69

lines correspond to the risk factor assessed by the surrogate models. Results show
that the discrepancies between the reference risk factor (≈24%) and the risk factor
estimated from the surrogatemodels decrease when the size of the samples increases,
as expected. A reliable estimation of the risk factor is reached on the basis of 10–100
Helmholtz simulation.

To ensure these observations, the mean risk factors and associated standard devi-
ations for each set of samples (from 3 to 100 Helmholtz simulations) were inves-
tigated to approximate the number of Helmholtz simulations required to tune the
ζ -coefficients and to accurately estimate the risk factor of the mode. The results are
shown in Table4, and they show that a few tens of Helmholtz simulations are enough
to get an accurate risk factor estimation with surrogate models. These results suggest
that a purely algebraic model is able to fairly assess at reduced cost the risk factor
of thermoacoustic modes and using about 20 Helmholtz simulations is sufficient to
accurately estimate the risk factor of the mode.

Conclusions

An Uncertainty Quantification analysis has been applied in the context of thermoa-
coustic instabilities in a single swirled combustor experiment. All eigenmodes of the
combustor have been assessed by means of a parallel Helmholtz solver. The Flame
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Transfer Function measured experimentally has been used as a flame model to feed
the Helmholtz solver. The frequency of oscillation as well as the growth rate of the
first thermoacoustic mode was computed in 24 different operating points, and the
stability analysis of the system has been realized by [23]. Numerical predictions are
coherent with the experimental observations of the combustor, except in 3 cases (out
of 24) where the agreement is only partial. Introducing Uncertainty Quantification
allows a more accurate mode classification than the usual binary one (stable or unsta-
ble), and thus a more reliable comparison between experimental observations and
numerical predictions. This leads to a continuous classification of the thermoacoustic
modes based on their probability to be unstable given the uncertainties on the flame
response, also called their risk factor. The risk factor associated to the first acous-
tic mode of the combustor was first assessed using a Monte Carlo approach based
on 4000 Helmholtz simulations of a single experimental operating point but with
random perturbations on the Flame Transfer Function parameters. Then, a two-step
UQ strategy was used to deal with thermoacoustics in such a system: (i) First, three
surrogate models were tuned from a moderate number of Helmholtz solutions. (ii)
Then, these algebraic models were used to perform a Monte Carlo analysis afford-
ably and to approximate the risk factor of the mode. The study proves that analytical
surrogate models can be used to predict the risk factors at reduced cost.
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Numerical Uncertainties Estimation
and Mitigation by Mesh Adaptation

Frédéric Alauzet, Alain Dervieux, Loïc Frazza and Adrien Loseille

Introduction

The numerical approximation involved in simulation Navier–Stokes software car-

ries certainly a systemic error, since this error can be reduced by applying some

supplementary effort. But the deviation between exact solution and approximated

one remains in practice an uncertain factor. The common strategy for the engineer is

to get convinced that numerical error is small. Of course if it is not enough small, the

simulation output cannot be efficiently used. A rational standpoint is to combine (i)

a strategy for obtaining a small error with (ii) an estimation of it. In this chapter, we

propose to address (i) with a sophisticated mesh adaptation method and to address

(ii) with the computation of a corrector, approximating the actual error.

The approximation or the estimate of the actual numerical error is a difficult task

addressed by many ways. Let us refer to the works [1] which also introduce the error

in the adaptive process. Our approach is close to the method of functional correction

of Giles, see for example [2].

Adaptive methods in aeronautics have been used for many different purposes. The

first one is generally to improve the prediction of complex phenomena (sonic-boom

prediction, drag prediction, high-lift configuration, blast, vortices, . . . ) while mini-

mizing the CPU cost. Then, it may be used to guarantee the optimal (second) order
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of convergence of the numerical scheme, especially when discontinuities (such as

shocks waves) are present in the flow field [3]. In addition, adaptivity is also con-

cerned with the assessment of the numerical solution. We distinguish the following

class of adaptive methods according to these purposes.

A first set of methods is based on the minimization of the interpolation error
of one or several sensors depending on the CFD solution [4–8]. Given a numerical

solutionWh, a solution of higher regularity Rh(Wh) is recovered, so that the following

interpolation error estimate [9, 10] holds:

‖Rh(Wh) −𝛱hRh(Wh)‖Lp ≤ N− 2
3

(

∫
𝛺

det
(
|HRh(Wh)|

) p
2p+3

) 2p+3
3p

where HRh(Wh) is the Hessian of the recovered solution and N an estimate of the

desired number of vertices. If an anisotropic mesh prescription is naturally deduced

in this context, interpolation-based methods do not take into account the features of

the PDE. Note that from a practical point of view, Rh(Wh) is never recovered, only

its first and second derivatives are estimated. Standard recovery techniques include

least-square, L2-projection, green formula, or the Zienkiewicz–Zhu recovery opera-

tor.

A second set of methods tends to couple adaptivity with the assessment of the

numerical prediction of one important scalar output computed from the flow. Goal-
oriented methods [2, 11–14] aim at minimizing the error

𝛿j = |j(W) − jh(Wh)|

committed on the evaluation of a scalar functional j depending on the approximate

field. An usual functional is the observation of the pressure field on an observation

surface 𝛾:

j(W) =
∫
𝛾

(
p − p∞
p∞

)2

,

where W and Wh are the solution and the numerical solution of the compress-

ible Euler equation, respectively. Goal-oriented methods do take into account the

features of the PDE, through the use of an adjoint state that gives the sensitivity

of W to the observed functional j. In order to solve the goal-oriented anisotropic

mesh optimization problem, an a priori analysis has been introduced [12, 15] which

restricts to the main asymptotic term of the local error. While a super-convergence

of |j(W) − jh(Wh)| is observed in some cases [16, 17], goal-oriented optimal meth-

ods are specialized for a given output, and in particular do not systematically pro-

vide a convergent solution field. In other words, the convergence of ‖W −Wh‖ (in

any norm) is not ensured. In addition, if the observation of multiple functionals is

possible (by means of multiple adjoint states), the optimality of the mesh and the

convergence properties of the approximation error may be lost.
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In each case, the aforementioned adaptive strategies address specifically one goal.

Consequently, it is still a challenge to find an adaptive framework that encompass all

the desired requirements: anisotropic mesh prescription, asymptotic optimal order of

convergence, assessment of the convergence of the numerical solution to the contin-

uous one, control of multiple functionals of interest, . . . This paper is a contribution

with a first attempt to formally predict all the different requirements. Our approach

is based on the design of a norm-oriented optimal method, which takes into account

the PDE features, and produces an approximate solution field which does converge

to the exact one in the norm chosen by the user. To do so, we derive a corrector that

estimates the approximation error. Contrary to the goal-oriented mesh adaptation,

the functional may be now any function of the approximation error. A particular

case involves multiple functionals of interest to be minimized simultaneously. For

instance, instead of the above 𝛿j, we can minimize the semi-norm-like functional:

j(Wh) = (drag(W) − drag(Wh))2 + (lift(W) − lift(Wh))2

while the goal-oriented should use two functionals, one for drag and one for lift or

specify a combination of them.

The paper is organized as follows. Section “Flow Solver Models” briefly recalls

the considered PDE and the numerical discretization. In section “Formal Error

Analysis Within the Continuous Mesh Framework,” the Hessian-based multiscale

and the goal-oriented error estimates are recalled, then a new norm-oriented error

analysis is derived formally. The norm-oriented mesh adaptation uses correctors

to estimate the approximation error, and section “Correctors for the Compressible

Navier–Stokes Equations” proposes two approaches for the case of the compressible

Euler equations within a linear and non linear setting. Finally, section “Numerical

Experiments: A Turbulent Transonic Falcon” compares different adaptation methods

and evaluates the corrector for 3D CFD problems.

Flow Solver Models

The methods which we propose rely on estimates applicable to ℙ1
-exact approx-

imations, i.e., approximations which are exact for affine analytical solutions. In

particular they apply directly to CFD solvers which are inspired by ℙ1
-continuous

finite-element approximation or, equivalently, based on a vertex-centered approxi-

mation like, N3S [18], SU2 [19], AERO [20, 21], or FUN3D [11]. In the present

paper, we have used the vertex-centered research software Wolf [4, 22].
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Flow Equations

The Navier–Stokes equations for mass, momentum, and energy conservation read:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌𝐮) = 0

𝜕(𝜌𝐮)
𝜕t

+ ∇ ⋅ (𝜌𝐮⊗ 𝐮) + ∇p = ∇ ⋅ 𝐅v
𝐮,

𝜕(𝜌E)
𝜕t

+ ∇ ⋅ ((𝜌E + p)𝐮) = ∇ ⋅ Fv
E,

where 𝜌 denotes the density, 𝐮 the velocity, E the total energy per unit mass, and p
the pressure. Symbols 𝐅v

𝐮,F
v
E,𝐅

v
are used for viscous fluxes which we shall not detail

for simplicity, see [22]. This system can be rewritten under vectorial form:

Wt + Fc
1(W)x + Fc

2(W)y + Fc
3(W)z = ∇ ⋅ 𝐅v

,

where W is the non-dimensioned conservative variables vector:

W = (𝜌, 𝜌u, 𝜌v, 𝜌w, 𝜌E)T

and 𝐅c(W) = (Fc
1(W),Fc

2(W),Fc
3(W)) are the convective (Euler) flux functions:

Fc
1(W) = (𝜌u, 𝜌u2 + p, 𝜌uv, 𝜌uw, u(𝜌E + p))T

Fc
2(W) = (𝜌v, 𝜌uv, 𝜌v2 + p, 𝜌vw, v(𝜌E + p))T

Fc
3(W) = (𝜌w, 𝜌uw, 𝜌vw, 𝜌w2 + p, w(𝜌E + p))T .

A weak formulation of this system writes for W ∈ V =
[
H1(𝛺)

]5
as follows:

∀𝜙 ∈ V , (𝛹 (W), 𝜙) =
∫
𝛺

∇𝜙 ⋅F (W) d𝛺 +
∫
𝛤

𝜙 F̄ (W) ⋅ 𝐧 d𝛤 = 0, (1)

with

F (W) = (Fc
1(W),Fc

2(W),Fc
3(W))T + (Fv

1(W),Fv
2(W),Fv

3(W))T

and where 𝛤 is the boundary of the computational domain 𝛺, 𝐧 the outward normal

to 𝛤 , and the boundary flux F̄ contains the boundary conditions.

In the case of a turbulent flow simulation, which we address with the Spalart–

Allmaras model, an equation for the turbulent viscosity 𝜈t is added to a slight modi-

fication of the previous system.
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Spatial Discretization

Equation (1) is discretized by a vertex-centered upwind finite-volume formulation

applied to unstructured tetrahedra meshes. The interested reader is invited to find a

detailed presentation in [4, 22]. To carry out the variational analysis, it is interesting

to present the finite-volume formulation as a stabilization of the Galerkin approxi-

mation.

LetH be a mesh of𝛺 composed of tetrahedra. We denote by𝛺h and𝛤h the linear

approximate of 𝛺 and 𝛤 defined by H . Let us introduce the following approxima-

tion space:

Vh =
{
𝜙h ∈ V ∩ C 0 |

| 𝜙h|K is affine ∀K element of H
}
.

The interpolation operator of the previous section is chosen as the usual ℙ1
operator:

𝛱h ∶ V ∩ C 0 → Vh we have 𝛱h𝜑(𝐱i) = 𝜑(𝐱i).

The weak discrete formulation writes:

∀𝜙h ∈ Vh,
(
𝛹h(Wh) , 𝜙h

)
= 0,

(
𝛹h(Wh) , 𝜙h

)
=
∫
𝛺h

∇𝜙h ⋅Fh(Wh) d𝛺h +
∫
𝛤h

𝜙hF̄h(Wh) ⋅ 𝐧 d𝛤h = 0

Fh = 𝛱hF ; F̄h = 𝛱hF̄ . (2)

Taking as in Relation (2) the ℙ1
-interpolation of the fluxes Fh as a discretiza-

tion principle produces a finite-element scheme which is identical to the central-

differenced finite-volume scheme built on the so-called median dual cells. In prac-

tice, this family of Mixed-Element-Volume schemes cannot be used in a

non-dissipative purely centered version. In [23, 24], MUSCL versions are described

and analyzed. For our analysis, we consider that the scheme under study is a Galerkin

formulation enriched with artificial stabilization terms under the form of numerical

diffusion. We write this as follows:

∀𝜙h ∈ Vh,
∫
𝛺h

∇𝜙h ⋅Fh(Wh) d𝛺h +
∫
𝛤h

𝜙hF̄h(Wh) ⋅ 𝐧 d𝛤h = −
∫
𝛺h

𝜙h Dh(Wh) d𝛺h (3)

According to [24], the numerical diffusion term is of higher order as soon as it is

applied to the interpolation of a smooth enough field W on a sufficiently regular

mesh:

|
∫
𝛺h

𝜙h Dh(Wh)d𝛺h| ≤ h3K(W)|𝜙h|L2 .

As a result, the numerical diffusion term is neglected in the remaining analysis.
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It is now useful to introduce the linearized operators A (resp. Ah) expressed in

terms of Jacobians of F and F̄ computed at W (resp. Fh and F̄h computed at Wh):

∀W ∈ V , ∀𝛿W ∈ V , A (W)𝛿W ∈ (V)′ and ∀𝜙 ∈ V ,

(A (W)𝛿W , 𝜙) =
∫
𝛺

∇𝜙 ⋅
𝜕F
𝜕W

(W)(𝛿W) d𝛺 +
∫
𝛤

𝜙
𝜕F̄ (W)
𝜕W

(𝛿W) ⋅ 𝐧 d𝛤 = 0 (4)

∀Wh ∈ Vh, ∀𝛿Wh ∈ Vh, Ah(Wh)𝛿Wh ∈ (Vh)′ and ∀𝜙h ∈ Vh,

(
Ah(Wh)𝛿Wh , 𝜙h

)
=
∫
𝛺h

∇𝜙h ⋅
𝜕Fh

𝜕W
(Wh)(𝛿Wh) d𝛺h

+
∫
𝛤h

𝜙h
𝜕F̄h(Wh)

𝜕W
(𝛿Wh) ⋅ 𝐧 d𝛤h = 0 . (5)

A and Ah are assumed to be invertible. We use in the sequel the notations A −1RHS
and A −1

h RHSh for the results of solving the corresponding systems with RHS and

RHSh as right-hand sides.

Formal Error Analysis Within the Continuous Mesh
Framework

The norm-oriented approach is an extension of the previous developments on

anisotropic (Hessian-based) and goal-oriented mesh adaptation. In these latter meth-

ods, the anisotropic mesh prescription (orientations and sizes) is given in a close

form. Each of them are tightly related to interpolation error measured on the solu-

tion field for Hessian-based methods, and the various fluxes for the goal-oriented

approach. We first recall formally the derivation of these estimates in the continuous

mesh framework. It leads to the definition of two kernels (interpolation and goal-

oriented) providing the optimal mesh. The norm-oriented approach is a combination

of these kernels with the derivation of a solution corrector. In this section, we focus

on controlling the implicit error 𝛱hu − uh. Controlling the approximation error will

consist in controlling the implicit error (corrector) and the interpolation error terms

simultaneously as:

u − uh = u −𝛱hu + 𝛱hu − uh.

Note that the implicit error can be seen as a vertex-wise error between the exact solu-

tion and the numerical one, whereas the interpolation error can be seen as geometric

deviation between the continuous solution and its ℙ1
representation on the mesh.
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Continuous Mesh Framework Formalism

In [25], we prove that any mesh can be represented by a continuous Riemannian

metric field M . The link between continuous mesh and discrete mesh is based on

the unit mesh concept [26]: given a Riemannian metric field M , a unit mesh is a

mesh having:

for all edges 𝐞 = AB, 𝓁M (𝐞) =
∫

1

0

√
tABM ((1 − t)A + tB)AB dt ∈

[

1
√
2
,

√
2

]

,

for all elements K, |K|M ≈
√
2

12
.

(6)

From a practical point of view, generating an anisotropic unit mesh H with respect

toM requires to use any anisotropic mesh generators, see [8, 11, 27–34] in 3D. Con-

versely, given a mesh H , the following metric field is a continuous representative

of H :

MP = exp
(∑

K∋P |K| ln(MK)
∑

K∋P |K|

)

,

where P is a vertex of H and MK is the unique metric representing element K, and

|K| is the volume of K. Consequently, if uh denotes a discrete quantity computed on

a given mesh, we use equivalently the notation uM that represents the same quanti-

ties represented on any unit mesh with respect to M . In the case of the interpolation

error, there is a strict equivalence between continuous u − 𝜋M u and discrete inter-

polation error u −𝛱hu, see [10]. The parametrization of a mesh by M instead of

h is advantageous for a priori analysis with anisotropic mesh. Indeed, it exists also

quantities of interest as the density, anisotropic ratios, differentiation that are well

defined on M .

Hessian-Based Multiscale Adaptation

Let us consider a mesh H which is unit for a metric M , in other words, M is

a continuous model of H . A Hessian-based adaptation relies on the choice of a

sensor u depending on the state variableW. According to the continuous mesh theory

[10, 25], the ℙ1
interpolation error u −𝛱hu can be approximated in terms of second

derivatives of u, i.e., the Hessian Hu of u, and of metric M :

|u −𝛱hu| ≈ |u − 𝜋M u|
𝛥

= trace(M − 1
2 |Hu|M

− 1
2 ), (7)

where |Hu| is derived from Hu by taking the absolute value of the eigenvalues. The

above expression is the continuous approximation of the ℙ1
interpolation error. Min-

imizing ‖u −𝛱hu‖L1(𝛺h) for a given number N of vertices can be recast in the con-
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tinuous setting as minimizing ‖u − 𝜋M u‖L1(𝛺) for a complexity C (M ) = N where

calculus of variation is available. The complexity C of M is the continuous counter

part of the number of vertices.

C (M ) =
∫
𝛺

√
det(M (𝐱)) d𝐱. (8)

Solving this optimization problem provides an optimal interpolation-based metric

(continuous mesh):

M opt
L1 (u) = argmin

C (M )=N
trace(M − 1

2HuM
− 1

2 ) .

The expression of the optimal continuous mesh in 3D is:

M opt
L1 (u) = N

2
3

(

∫
𝛺

(det ||Hu
|
|)

1
5

) 2
3

(det ||Hu
|
|)
− 1

5 |Hu| . (9)

The first factor of the RHS is a global normalization term set to obtain a continu-

ous mesh with complexity N, and (det ||Hu
|
|)
− 1

5 is a local normalization taking into

account the sensitivity of the L1 norm. Note that expressing the continuous interpo-

lation error for the optimal metric, Relation (9) shows that second-order convergence

is obtained for a smooth sensor [10]. The approach can be extended to non-smooth

sensor and still recovers the second-order convergence [3, 35].

In practice, computing the optimal metric is done approximatively, i.e., in a

discrete context with a couple (mesh, solution) denoted (H ,Wh), and iteratively

through the following fixed point algorithm. The Hessian of sensor u is replaced by

a numerical sensor of higher regularity Rh(uh) computed from the numerical sensor

uh using any recovery techniques.

Algorithm 1 Hessian-based multiscale adaptation

1. Compute state Wh on mesh H
2. Compute sensor uh = u(Wh) and Rh(uh)
3. Compute optimal metric M

opt
L1 (Rh(uh))

4. Generate a new adapted mesh H which is unit for metric M
opt
L1 (Rh(uh))

5. If not converge, goto 1.

For the remaining analysis, it is useful to introduce the kernel function KL1 that

gives the optimal metric for the ℙ1
interpolation error in L1 norm as a function of

the Hessian of u instead of u directly:

M opt
L1 (u) = KL1 (|Hu|) . (10)
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Indeed, for goal-oriented and norm-oriented analysis, the kernel will be applied to

more complex Hessian-like functions.

Goal-Oriented Adaptation

The Hessian-based multiscale adaptation is geometric thus generic and does not take

into account the PDE from which W is obtained. On the contrary, the goal-oriented

analysis relies on the considered PDE. According to Relations (1) and (3), we assume

that solution W and numerical solution Wh verify:

∫
𝛺

𝜙∇ ⋅F (W) + BI = 0 and
∫
𝛺h

𝜙h ∇ ⋅Fh(Wh) + BIh = 0, (11)

where BI and BIh are boundary integrals, and the discrete fluxes are simply:

Fh(⋅) = 𝛱hF (𝛱h(⋅)).

The goal-oriented analysis relies on the minimization of the error committed on

a scalar output functional j. We assume j to be smooth enough such that j can be

observed through its Taylor expansion:

j(W) ≈ j(Wh) + (
𝜕j
𝜕W

(W),W −Wh)

which leads to:

j(W) − j(Wh) ≈ (
𝜕j
𝜕W

(W),W −Wh) = (ggo,W −Wh). (12)

We recall in short the main result of the analysis given in Loseille et al. [12]. Intro-

ducing the adjoint state W∗
go defined by W∗

go = (A −1)∗ggo ≡ A −∗ggo, we have:

(ggo,Wh −W) ≤

∫
𝛺h

|∇W∗
go| |F (W) −𝛱hF (W)| d𝛺h +

∫
𝛤h

|W∗
go| |(F̄ (W) −𝛱hF̄ (W)) ⋅ 𝐧| d𝛤h.

If the boundary terms are neglected, it simplifies to

|j(W) − j(Wh)| ≈ (|∇W∗
go|, |F (W) −𝛱hF (W)|). (13)

Similarly to the previous section, from the continuous mesh theory, we get:
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(|∇W∗
go|, |F (W) −𝛱hF (W)|) ≡ (|∇W∗

go|, |F (W) − 𝜋M F (W)|)

= trace(M −1∕2 |∇W∗
go| ⋅ |HF (W)|M

−1∕2) ,

where M is a metric field representing the current mesh. Then, minimizing the

approximation error on functional j in L1 norm is equivalent to solve the optimization

problem:

M opt
go = argmin

C (M )=N
trace(M −1∕2 |∇W∗

go| ⋅ |HF (W)|M
−1∕2) ,

and |∇W∗
go| ⋅ |HF (W)| is a positive combination of symmetric matrices. Similarly to

the Hessian-based error analysis where the optimal metric is given by Relation (9)

and the kernel definition (10), we get:

M opt
go (W) = KL1 (|∇W∗

go| ⋅ |HF (W)|) = KL1 (|∇(A −∗ggo)| ⋅ |HF (W)|). (14)

Note that if we want to observe many output functionals, as many adjoints must

be evaluated. In addition, if we want to minimize the norm of the approximation

error, the above analysis cannot be applied directly.

Relation (14) gives a continuous expression of the optimal continuous mesh. In a

discrete context, all the continuous quantities are evaluated on the current mesh. We

use iterative Algorithm 2 to converge to the optimal solution.

Algorithm 2 Goal-oriented adaptation

1. Compute state Wh on mesh H

2. Compute adjoint state W∗
go,h using ggo,h =

𝜕j
𝜕W

(Wh) and Rh(Fh(Wh))

3. Compute optimal metric M
opt
go (Wh) = KL1 (|∇W∗

go,h| ⋅ |HRh(F h(Wh))|)
4. Generate a new adapted mesh H which is unit for metric M

opt
go (Wh)

5. If not converge, goto 1.

Norm-Oriented Adaptation

We are now interested in the minimization of a semi-norm such as:

‖L(W) − L(Wh)‖2L2(𝛺h)

where L is a given vector- or scalar-valued operator. Linearizing L using a Taylor

expansion, we have:

(

L(W) − L(Wh),L(W) − L(Wh)
)

≈
(
𝜕L
𝜕W

(W)(W −Wh),
𝜕L
𝜕W

(W)(W −Wh)
)

.
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Introducing the adjoint operator

(
𝜕L
𝜕W

)∗
, we can rewrite:

(

L(W) − L(Wh),L(W) − L(Wh)
)

≈
((

𝜕L
𝜕W

(W)
)∗ (

𝜕L
𝜕W

(W)
)

(W −Wh), (W −Wh)
)

then choosing:

gno =
(
𝜕L
𝜕W

(W)
)∗ (

𝜕L
𝜕W

(W)
)

(W −Wh) (15)

we get:

‖L(W) − L(Wh)‖2L2(𝛺h)
≈
(
gno, (W −Wh)

)
.

Now, we apply the goal-oriented analysis to minimize
(
gno, (W −Wh)

)
that leads to

the optimal norm-oriented metric:

M opt
no (W) = KL1 (|∇(A −∗gno)| ⋅ |HF (W)|) = KL1 (|∇W∗

no| ⋅ |HF (W)|) . (16)

where W∗
no = A −∗gno. The main difficulty is thus to evaluate gno. Indeed, contrary

to the goal-oriented case, gno depends on the approximation error W −Wh and not

only on the solution W. Consequently, it is necessary to derive an estimate of W −
Wh, this is done by the computation of a corrector, see section “Correctors for the

Compressible Navier–Stokes Equations”.

Now, let us give two examples. The simplest one is to consider the L2 norm of the

approximation error:

‖W −Wh‖
2
L2(𝛺h)

.

In this particular case,
𝜕L
𝜕W

(W) is the identity and gno reduces to the corrector itself

(W −Wh). A second example is controlling the approximation on the pressure p in

L2 norm:

‖p − ph‖2L2(𝛺h)
,

and we have
𝜕p
𝜕W

(W) = (𝛾 − 1)
(
𝐮2
2
,−u,−v,−w, 1

)

and

(
𝜕p
𝜕W

(W)
)∗ (

𝜕p
𝜕W

(W)
)

= (𝛾 − 1)2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐮4
4

−u 𝐮2
2
−v 𝐮2

2
−w 𝐮2

2
𝐮2
2

−u 𝐮2
2

u2 −uv −uw −u
−v 𝐮2

2
−uv v2 −vw −v

−w 𝐮2
2

−uw −vw w2 −w
𝐮2
2

−u −v −w 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



100 F. Alauzet et al.

In practice, all the continuous quantities are evaluated on the current mesh, so

does the corrector. Iterative Algorithm 3 is considered to converge to the optimal

solution.

Algorithm 3 Norm-oriented adaptation

1. Compute state Wh on mesh H
2. Compute an approximation gno,h of W −Wh
3. Compute adjoint state W∗

no,h and Rh(Fh(Wh))
4. Compute optimal metric M

opt
no (Wh) = KL1 (|∇W∗

no,h| ⋅ |HRh(F h(Wh))|)
5. Generate a new adapted mesh H which is unit for metric M

opt
no (Wh)

6. If not converge, goto 1.

Correctors for the Compressible Navier–Stokes Equations

The norm-oriented error estimate presented in the previous section requires an esti-

mate of the approximation error W −Wh. The approximation error can be decom-

posed into the interpolation error and the implicit error:

W −Wh = W −𝛱hW + 𝛱hW −Wh .

Then, the Hessian-based mesh adaptation theory (section “Hessian-Based

Multiscale Adaptation”) provides an estimate of the interpolation error, and the

implicit error is estimated by computing a corrector.

Given a numerical solution on a mesh Hh of size h, we intend to control the

implicit error. To this end, we geometrically divide the mesh size by two and split all

the elements with patterns leading to a new embedded mesh Hh∕2 of size h∕2. Then,

if we compute a solution of this new refined mesh, then it will have two different

effects:

∙ Add new degrees of freedom, so that every function (solution, fluxes, source terms,

. . . ) is better represented. This will reduce the interpolation error.

∙ Change the nodal value of the solution even for vertices issued from the initial

mesh of size h. For example, this process may increase the solution at every ver-

tices, so that 𝛱h
(
Wh∕2

)
−Wh > 0. This is implicit error that we try to control

here.

To do so, we first need to relate the implicit error on the solution to the mesh as it

has already been done for the interpolation error [10, 25]. In other words, we need

to figure out how adding/removing/moving a node and leaving the other unchanged

will globally affect the solution. As we do not know a priori W, we reconstruct a

corrected solution Wc closer to the exact one.
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As we do not have access to 𝛱hW, we choose to approach it with 𝛱hWh∕2. How-

ever, Wh∕2 is expensive to compute and once we have it, it is worthless to work with

Wh. Therefore, we are seeking for a way to mimic 𝛱hWh∕2 without computing Wh∕2.

Note that we want a solution on Hh and not Hh∕2. If Wh∕2 or ∇ ⋅Fh
(
𝛱hWh∕2

)
are

known, we can compute a corrector Wc by solving

∫
𝛺h

𝜙h∇ ⋅Fh
(
Wc

)
=
∫
𝛺h

𝜙h∇ ⋅Fh
(
𝛱hWh∕2

)
,

where the right-hand side is a fixed source term. In that case, we have Wc = 𝛱hWh∕2
and the implicit error is given by Wc −Wh. As we do not know Wh∕2, we have to

clarify how to compute an approximation of the right-hand side term. In fact, we

are interested in the global modification of the solution at vertices induced by the

mesh refinement via the flux operator and not only in local modifications obtained

by a better representation through solution interpolation. Indeed, the residual of the

interpolated solution on the refined mesh is different from the residual of the solution

on the current mesh:

∫
𝛺h

𝜙h ∇ ⋅Fh∕2
(
Ih∕2Wh

)
=
∫
𝛺h∕2

Ih∕2𝜙h ∇ ⋅Fh∕2
(
Ih∕2Wh

)

≠
∫
𝛺h

𝜙h ∇ ⋅Fh
(
Wh

)
= 0.

where Ih∕2 is an interpolation operator from mesh Hh to mesh Hh∕2. The corrector

is thus given by the solution of the following system:

∫
𝛺h

𝜙h∇ ⋅Fh
(
Wc

)
=
∫
𝛺h

𝜙h ∇ ⋅Fh∕2
(
Ih∕2Wh

)
.

This consists in computing the residual of Wh with a higher precision, similarly to

what can be done with a higher order scheme. Another advantage is that the same

numerical scheme is considered to compute the corrector, only a source term is

added. Using multigrid tools, we can also compute Fh∕2
(
Ih∕2Wh

)
on the finer grid

and assemble the source term by accumulating this defect on the coarse grid.

Generally speaking, we can see that, if Fh∕2
(
Ih∕2Wh

)
has locally a mean value

close to 0, it means that Wh∕2 will have small local adjustments related to the new

degrees of freedom. On the contrary, if Fh∕2
(
Ih∕2Wh

)
is always positive, it means

that Wh∕2 will have a global change which will be reflected by the corrector.

From a practical point of view, the finer grids are never generated to avoid mem-

ory and CPU time overhead. Indeed, we can solve local problem in vertices neigh-

borhood by virtually refining the elements to compute the source terms. The flow

solver is then used to inverse the error equation directly, and provides the corrected

solution Wc.
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In the numerical experiments section, we have only considered the implicit error

Wc −Wh to represent the approximation error in the computation of gno given by

Relation (15). The interpolation error term has been neglected.

Numerical Experiments: A Turbulent Transonic Falcon

Test Case Description

The method is applied to the UMRIDA test case IC-03, Falcon jet, described in this

book. The flow is transonic with a Mach number of 0.8, an angle of attack 𝛼 = 2◦,

and a Reynolds of 14.512 million. The viscosity is computed using the Sutherland

law with a reference static temperature of 216.65 K. The Spalart–Allmaras RANS

turbulence model with no trip is used.

RANS Mesh Adaptation Simulation

For the RANS mesh adaptation, the structured boundary layer mesh is kept frozen

up to y+ = 500 and the mesh is adapted in the upper boundary layer region and the

outer field. We choose to control the interpolation error on the local Mach number

in L2 norm. Fifteen mesh adaptation iterations are performed. We split the adapta-

tion loop into three steps with an increasing theoretical complexity (outside of the

boundary layer region) specification at each step ranging from 100 000 to 400 000.

Within each step, the adapted mesh at a fixed theoretical complexity is converged in

five iterations. The final adapted meshes for each step contain:

∙ 2 298 958 vertices and 13 407 595 tetrahedra for a theoretical complexity of 100 000
∙ 6 168 815 vertices and 36 614 955 tetrahedra for a theoretical complexity of 200 000
∙ 10 337 483 vertices and 61 629 069 tetrahedra for a theoretical complexity of 400 000.

The final adapted mesh for the largest theoretical complexity is illustrated in

Fig. 1.

Such adapted meshes considerably enhance the efficiency of the flow solver and

the solution accuracy. We first notice that the wake is highly resolved and the wing tip

vortices are well captured. Second, mesh refinements along the shock on the upper

surface of the wing lead to an accurate computation of the shock–boundary layer

interaction. We also observe a nice transition between the boundary layer-structured

mesh and the adapted anisotropic mesh.
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Fig. 1 Transonic Falcon business jet. Top, Mach solution field. Bottom, final adapted meshes for

several cut planes in the volume

Discretization Uncertainties Quantification and Reduction

In this section, we are presenting how the corrector described in section “Correctors

for the Compressible Navier–Stokes Equations” can be used to quantify uncertainties

due to the mesh discretization and how mesh adaptation reduces these uncertainties.

They are analyzed on the pressure contours on the wing section at chord y = 3.84861.

The reference solution is the solution on the finest adapted mesh at iteration 15
containing more than 10 million vertices and 60 million tetrahedra. For the first

and the second adaptation steps, we compare the reference solution to the solutions

obtained at the first and the last adaptation of the step at a fixed complexity, see

Figs. 2 and 3. The pressure solutions are presented with error bars which are given

by plus or minus the solution correction. First, we observe the convergence of the

couple mesh-solution within the adaptive process at a fixed complexity, and also

the convergence of the corrector with a reduction of the error bars. This points out

that our formulation takes into account the algorithmic errors, i.e., the lack of itera-

tive convergence of the mesh adaptation process. Second, we observe the reduction

of the discretization uncertainties through the adaptive process when the complex-

ity is increased. Indeed, for the lowest complexity we notice large uncertainties for

the shock region due to its wrong position while these uncertainties are drastically

reduced for the medium complexity because its position is now well captured. Note

that the corrector is always computed on the current mesh and not on the finer grid,

and thus is able to accurately detect the regions of higher discretization error and

numerical error.
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Fig. 2 Transonic Falcon business jet. Pressure extraction on the wing section for the first (iteration

1) and the last (iteration 5) adapted meshes at theoretical complexity 100 000. In blue, the reference

pressure contour on the finest adapted mesh. In green, the current adapted mesh pressure contour

with the error bars provided by the corrector

Fig. 3 Transonic Falcon business jet. Pressure extraction on the wing section for the first (iteration

6) and the last (iteration 10) adapted meshes at theoretical complexity 200 000. In blue, the reference

pressure contour on the finest adapted mesh. In green, the current adapted mesh pressure contour

with the error bars provided by the corrector

Conclusions and Perspectives

We have described a method combining into a single formalism mesh adaptation and

solution correction strategies. Not only it helps obtaining more surely mesh conver-

gence, but also the corrector provides an estimate of the final error. The method is

based on a priori or a posteriori analysis of the different component of the error

arising when discretizing a PDE: interpolation error and implicit error, the approxi-

mation error being the sum of these two errors. The interpolation error is controlled

by the second derivatives of the solution, and its estimation is given by the feature-

based mesh adaptation theory. The implicit error is estimated by computing a cor-

rector. This corrector is computed by solving the state equation with an added source

term. This source term relies on the residual defect of the current numerical solu-
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tion by locally computing the solution residual on a subdivided grid. We show in

the numerical results that our formulation also takes into account the algorithmic

errors (lack of iterative convergence). Contrary to standard goal-oriented approaches

[2, 11–14], a corrector Wc of the whole flow field is computed. Consequently, this

approach allows us to correct any set of functional of interests simultaneously. The

corrected functionals are simply evaluated with respect to Wc.

For mesh adaptation, the corrector is used to compute the right-hand side term

of the adjoint state linear system. Then, the standard goal-oriented mesh adaptation

theory is used to derive the optimal adapted mesh [12].

If this method gives a track for better controlling numerical error, controlling the

second component of simulation error, namely model error, is not solved. While in

some future, we can hope to control the model error with very-high-fidelity DNS-like

calculations, the next decades will address it only with very large database comparing

accurate simulations and measurements. We refer, for instance, to [36–40].
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General Introduction to Polynomial
Chaos and Collocation Methods

Chris Lacor and Éric Savin

Polynomial Chaos Methodology

The polynomial chaos methodology (PCM) is a rather recent approach, which offers

a large potential for computational fluid dynamics (CFD) related non-deterministic

simulations, as it allows the treatment of a large variety of stochastic variables and

properties that can be described by probability density functions (PDFs). The method

is based on a spectral representation of the uncertainty where the basis polynomials

contain the randomness, described by random variables 𝜉𝜉𝜉 with values in a set 𝛤 ,

and the unknown expansion coefficients are deterministic, resulting in deterministic

equations. More specifically, if u is a random variable indexed by a spatial variable

𝐱 ∈ D ⊆ ℝd
(typically, d = 3 in physical space) and time t ≥ 0, the so-called poly-

nomial chaos expansion (PCE) reads:

u(𝐱, t, 𝜉𝜉𝜉) ≃ ℙP[u](𝐱, t, 𝜉𝜉𝜉) =
P∑

i=0
ui(𝐱, t)𝜓i(𝜉𝜉𝜉) . (1)

In the above, ui are the deterministic unknown expansion coefficients and represent

the random mode i of the random variable u. 𝜓i are N-variate polynomials which

are functions of 𝜉𝜉𝜉 = (𝜉1, 𝜉2,… , 𝜉N) where 𝜉j is a random variable with values in a

set 𝛤j. N is the number of input uncertainties which is also the number of random
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dimensions. It is assumed that these variables are independent and are real valued,

and hence 𝛤 = 𝛤1 × 𝛤2 ×⋯ × 𝛤N ⊆ ℝN
. Input uncertainties could, e.g., be associ-

ated with uncertain operational conditions or uncertainty in the geometry. For an

external flow around an airplane, the inlet Mach number, angle of attack, inlet pres-

sure, etc., are examples of operational conditions. Geometrical uncertainties are then

uncertainties on the shape of the shape of the plane due to manufacturing tolerances.

It is clear that because of the uncertain input, any flow variable, say u becomes also

uncertain, and can therefore be described as in Eq. (1). The total number of terms

P + 1 used in (1) depends on the highest order of the polynomial that is used (denoted

by p) and on the number of random dimensions. One has, see [1]:

P + 1 =
(N + p)!
N!p!

. (2)

The methodology was originally formulated by Wiener [2] and was much later redis-

covered and used for CFD applications by several groups, e.g., Xiu and Karniadakis

[3], Lucor et al. [4], Le Maître et al. [5], Mathelin et al. [6], and Walters and Huyse

[7] among others.

In the original method of Wiener [2], the projection basis 𝜓i is constituted by

Hermite polynomials. These are optimal for random variables with Gaussian dis-

tribution. Optimal means that, for increasing polynomial order, the expansion will

quickly converge in the mean-square sense. The condition for optimality is that the

polynomials are orthogonal with a weighting function 𝜉𝜉𝜉 ↦ WN(𝜉𝜉𝜉) which is exactly

the PDF of the set of random variables, i.e.:

∫
𝛤

𝜓i(𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 ∶= ⟨𝜓i, 𝜓j⟩ = 𝛾j𝛿ij , (3)

where 𝛿ij is the Kronecker symbol, and 𝛾j is a normalization constant. With a

proper scaling though, one can always normalize the polynomial basis such that

𝛾j ∶= ⟨𝜓j, 𝜓j⟩ = 1 ∀j. In the case of a multivariate Gaussian distribution, the Her-

mite polynomials satisfy the condition above with WN given by:

WN(𝜉𝜉𝜉) ≡
1√
(2𝜋)N

exp(−1
2
𝜉𝜉𝜉 ⋅ 𝜉𝜉𝜉) , (4)

where 𝜉𝜉𝜉 ⋅ 𝜉𝜉𝜉 =
∑N

j=1 𝜉
2
j is the standard Euclidian scalar product in ℝN

. Note that

because of the independence of the uncertainties, the PDF is the product of the PDF

of each of the uncertainties, i.e., WN(𝜉𝜉𝜉) =
∏N

j=1 W1(𝜉j) as defined above for Gaussian

uncertainties.

For uncertainties with other distributions, the orthogonality condition (3) gives

adapted polynomials, see e.g. [3], leading to the so-called Askey scheme; for exam-

ple, as already mentioned Hermite polynomials for Gaussian distributions, and

further Charlier polynomials for Poisson distributions, Laguerre polynomials for

Gamma distributions, Jacobi polynomials for Beta distributions, etc. In case of less



General Introduction to Polynomial Chaos and Collocation Methods 111

common distributions, an optimal PCM can always be found by constructing the

polynomials via a Gram-Schmidt procedure; see Witteveen and Bijl [8], in order to

satisfy (3). It should be noted that, if the optimal polynomials are not used, the PCM

will also converge (with increasing order) in the mean-square sense but much slower

than the exponential convergence with optimal polynomials; see [1].

In cases where the response of the system shows a localized sharp variation or

a discontinuous change, local expansions may be more efficient than expansions

with global polynomials, whose convergence will deteriorate due to the Gibbs phe-

nomenon. This has led to developments using wavelet expansions [9] and to multi-

element polynomial chaos [10, 11]. In the latter case, the random space is subdi-

vided in smaller elements in which new random variables are defined with associated

orthogonal polynomials that are constructed numerically.

As already mentioned, the dimension of the problem N is determined by the num-

ber of independent random input variables. In case of a random process (as opposed

to a random variable), a Karhunen-Loève expansion (also known as Principal Com-

ponent Analysis or Proper Orthogonal Decomposition) [12, 13] can be applied to the

correlation function R(𝐱, 𝐲) of the random process u(𝐱) indexed by 𝐱 ∈ D , to decom-

pose the random input process in a set of uncorrelated random variables. Assuming

∫
D R(𝐱, 𝐱)d𝐱 < +∞ (which is untrue for a stationary process withD ≡ ℝd

) and solv-

ing the eigenvalue problem:

∫D

R(𝐱, 𝐲)𝜙i(𝐲)d𝐲 = 𝜆i𝜙i(𝐲) (5)

with 𝜙i(𝐱) the eigenfunctions and 𝜆i the eigenvalues, the Karhunen-Loève expansion

of the random field u(𝐱) becomes:

u(𝐱) − u(𝐱) =
∑

i

√
𝜆i𝜉i𝜙i(𝐱) , (6)

where the 𝜉is are uncorrelated random variables, and u(𝐱) is the mean value at the

indexation point 𝐱. Note that if the process u is Gaussian, the random variables 𝜉i are

Gaussian as well, and hence, they are mutually independent.

A geometrical uncertainty is typically a random process where the coordinates of

a geometry are uncertain with some specific correlation length. Depending on the

correlation length of the process, the eigenvalues 𝜆i become quickly very small, so

that only few terms in the summation above have to be kept. This is not the case

however for a very short correlation length (e.g., white noise) resulting in a high-

dimensional chaos expansion for such processes. Non-Gaussian random processes

are much more difficult to treat than Gaussian [14]. In the former case, mean and

covariance are far from sufficient to completely specify the process. This remains an

active area of research.

The PCM can be implemented either in an intrusive or in a non-intrusive way

as follows.
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Intrusive Polynomial Chaos

In an intrusive PCM, the polynomial expansion of the unknown variables, Eq. (1),

is introduced in the model, e.g., for CFD applications, the Navier–Stokes equations.

Each unknown u is therefore replaced with its expansion coefficients ui. The num-

ber of unknowns is therefore basically multiplied with a factor P + 1, which can be

quite high for high stochastic dimensions and/or high polynomial order. In addition,

the model, e.g., CFD code, has to be adapted. The required effort for extending a

deterministic CFD code with the intrusive PCM depends on the characteristics of

the code: computer language, structured/unstructured, handling of data storage, etc.

In the framework of the NODESIM-CFD EU project, an intrusive PCM was imple-

mented in the commercial code Fine/Turbo of NUMECA. This has led to one of

the first applications of intrusive PCM to three-dimensional turbulent Navier–Stokes

flows [15]. The number of additional lines of code is very limited, compared to the

length of the original, deterministic code. However, changes are not restricted to a

local part of the code. This increases the risk of introducing bugs and requires some-

one who is very familiar with all aspects of the code. This is a big disadvantage

compared to non-intrusive PC and the main reason why the application of intrusive

PCM in commercial codes is very limited.

Nonetheless intrusive methods are more flexible and in general more precise than

non-intrusive methods; see Aleksev et al. [16]. This is also confirmed by Xiu [14],

who mentions that the intrusive method offers the most accurate solutions involving

the least number of equations in multi-dimensional random spaces, even though the

resulting equations are coupled.

It is to be noted that the treatment of geometrical uncertainties needs a different

approach compared to operational uncertainties. A possibility is to use a transforma-

tion such that the deterministic problem in a stochastic domain becomes a stochas-

tic problem in a deterministic domain, e.g., Xiu and Tartakovsky [17]. An alterna-

tive is the use of a so-called fictitious domain method [18, 19], or by introducing

the uncertainty directly in the surface normals within a control volume approach

[20, 21].

Non-intrusive Polynomial Chaos

In the UMRIDA EU project, all PCM contributions relate to non-intrusive

approaches. Basically, two different classes of approaches have been formulated:

(i) the so-called projection method, which is based on a numerical evaluation of

the Galerkin integrals; see Le Maître et al. [5, 22, 23] and Nobile et al. [24]; (ii)

regression methods based on a selected set of sample points; see Berveiller et al.

[25], and Hosder et al. [26–28].
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In the projection methods, starting from Eq. (1), the projection on 𝜓j yields:

∫
𝛤

u(𝐱, t, 𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 =
P∑

i=0
ui(𝐱, t)

∫
𝛤

𝜓i(𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉

= 𝛾juj(𝐱, t)
(7)

The last equation results from the orthogonality condition (3) and can be considered

as an equation for the unknown expansion coefficient uj. It requires the evaluation

of the integral in the left-hand side. A numerical quadrature formula is used. For a

single variable parameter, it reads:

∫
𝛤1

u(𝐱, t, 𝜉)𝜓j(𝜉)W1(𝜉)d𝜉 ≃
q∑

l=1
wlu(𝐱, t, 𝜉l)𝜓j(𝜉l) . (8)

The evaluation of the sum in the right-hand side requires an evaluation of the

unknown u in q sample points {𝜉l}1≤l≤q in 𝛤1 associated to q weights {wl}1≤l≤q.

Depending on the weighting function (PDF) W1, adapted Gaussian quadrature for-

mulations exist for an accurate evaluation: With q sample points, a polynomial

of order 2q − 1 is integrated exactly in one dimension. Examples are the Gauss-

Legendre quadrature (W1 = 1∕2 corresponding to a uniform distribution), the Gauss-

Hermite quadrature (W1 given by Eq. (4) in one dimension), etc. For a PCM of order

p, one takes q = p + 1. This guarantees exact quadrature if u(𝐱, t, 𝜉) can be described

by a polynomial of maximum order p + 1.

This extends to multiple stochastic dimensions by using a full-tensor product

quadrature with Q = qN sample points. This approach quickly becomes very expen-

sive for high-order and high stochastic dimensions. This has led to the use of sparse
grid sampling techniques, avoiding the full-tensorial sampling, e.g., the Smolyak

scheme [29]. Sparse grid schemes can be combined with the non-nested Gaus-

sian quadratures invoked above, as well as with nested quadratures, e.g., Clenshaw-

Curtis, Gauss-Patterson [30–33]. More recently, adaptive algorithms have been

developed that further reduce the cost [34–36]. The choice of quadrature sets is

discussed further on in section “Choices of Interpolation Set” in relation with the

stochastic collocation method. Alternatively, the numerical quadrature can also be

achieved using Monte Carlo simulation [37, 38], or Latin Hypercube sampling [39].

All in all, the evaluation of the left-hand side of Eq. (7) using Q sampling points

{𝜉𝜉𝜉l}1≤l≤Q in 𝛤 associated to Q weights {wl}1≤l≤Q yields:

u(𝐱, t, 𝜉𝜉𝜉) ≃ ℙP
Q[u](𝐱, t, 𝜉𝜉𝜉) =

P∑

i=0

(
1
𝛾 i

Q∑

l=1
wlu(𝐱, t, 𝜉𝜉𝜉l)𝜓i(𝜉𝜉𝜉

l)

)
𝜓i(𝜉𝜉𝜉) . (9)

In linear regression methods, the stochastic problem is solved in S samples in

stochastic space. For each sample s, Eq. (1) can be written as:
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u(𝐱, t, 𝜉𝜉𝜉s) =
P∑

i=0
ui(𝐱, t)𝜓i(𝜉𝜉𝜉

s) . (10)

This leads to S equations for the P + 1 unknowns ui. Note that this forms a linear

system. In order to make the solution less dependent on the choice of the samples,

oversampling is used and the system is solved with regression (i.e., the least squares

method); see Berveiller et al. [25] and Hosder et al. [26–28]. As a rule of thumb,

S = 2(P + 1) is a good choice; see [27]. Different sampling techniques can be used

such as Random, Latin Hypercube, Hammersley [27], roots of Hermite polynomials

of order p + 1 (for PCM of order p with Gaussian uncertainties) [25], Sobol’ quasi-

random sampling [40], etc.

In case of geometrical uncertainties, each of the different samples–both in the pro-

jection and the regression method–will correspond to a different geometry. Geomet-

rical uncertainties therefore require no special treatment in contrast with the intrusive

method.

The Collocation Method

The stochastic collocation (SC) method based on Lagrange interpolation has been

introduced in [41] and developed further on in e.g. [24, 42–45]. Examples of appli-

cations can be found in [46–51] among others. Along the same lines as Eq. (1),

the SC expansion is formed as a sum of multi-dimensional Lagrange interpolation

polynomials with respect to the N–dimensional random input variable 𝜉𝜉𝜉. Lagrange

polynomials interpolate a set of points in one dimension {𝜉l1}1≤l≤q1 in a bounded

interval 𝛤1 by the following functional form:

Ll(𝜉) =
q1∏

k = 1
k ≠ l

𝜉 − 𝜉k1

𝜉l1 − 𝜉k1

, (11)

such that Ll(𝜉k1) = 𝛿kl, 1 ≤ k, l ≤ q1; in addition, all Ll’s have order q1 − 1. For inter-

polation in multiple dimensions, the tensor product of one-dimensional Lagrange

polynomials can be formed. Eventually at this stage, it is assumed that the interpola-

tion set is formed by tensorization of one-dimensional sets. In other words, structured

interpolation sets are considered, for multivariate Lagrange interpolation on unstruc-

tured, arbitrary sets of nodes still raises numerous theoretical and practical difficul-

ties. Letting 𝐥 = (l1, l2 … lN) be a multi-index in ℕN ⧵ {𝟎}, the multi-dimensional

Lagrange polynomial L𝐥 reads:

L𝐥(𝜉𝜉𝜉) = Ll1 (𝜉1)⊗ Ll2 (𝜉2)⊗⋯⊗ LlN (𝜉N) , (12)

where different interpolation sets {𝜉lj}1≤l≤qj in different intervals 𝛤j may possibly be

used for each different dimension j. If Q is now the total number of such multi-
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dimensional interpolation points counted by a single index l, {𝜉𝜉𝜉l}1≤l≤Q, the SC

expansion of the random field u reads:

u(𝐱, t, 𝜉𝜉𝜉) ≃ 𝕀Q[u](𝐱, t, 𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱, t, 𝜉𝜉𝜉l)Ll(𝜉𝜉𝜉) , (13)

where the expansion coefficients are the random field evaluated at 𝜉𝜉𝜉
l
.

Choices of Interpolation Set

The key issue of the SC method is the choice of appropriate interpolation sets. A

natural, straightforward choice is quadrature nodes and weights as in Eq. (8). Multi-

dimensional quadrature sets 𝛩𝛩𝛩(N,Q) = {𝜉𝜉𝜉l,wl}1≤l≤Q, where 𝜉𝜉𝜉
l

is the l-th node in

𝛤 =
∏N

j=1 𝛤j and wl
is the corresponding weight, may be constructed from one-

dimensional (univariate) quadrature sets by full tensorization or sparse tensorization,

using Smolyak’s algorithm [29] as already invoked above.

Univariate Gauss quadratures 𝛩(1, q1) based on q1 integration points are tailored

to integrate on 𝛤1 ≡ [a, b] a smooth function 𝜉 ↦ f (𝜉):

∫
𝛤1

f (𝜉)W1(𝜉)d𝜉 ≃
q1−r∑

l=1
wlf (𝜉l) +

r∑

m=1
wq1−r+mf (𝜉q1−r+m) , (14)

such that this rule turns to be exact for univariate polynomials up to the order

2q1 − 1 − r. Here, r is the number of fixed nodes of the rule, typically the bounds

a, b. Depending on the choice of r, different terminologies are used:

∙ r = 0 is the classical Gauss rule;

∙ r = 1 is the Gauss-Radau (GR) rule, choosing 𝜉q1 = a or 𝜉q1 = b for instance;

∙ r = 2 is the Gauss-Lobatto (GL) rule, choosing 𝜉q1−1 = a and 𝜉q1 = b for instance.

Multivariate quadratures may subsequently be obtained by full or sparse tensoriza-

tion of these one-dimensional rules. Firstly, a fully tensorized grid is obtained by the

straightforward product rule:

𝛩𝛩𝛩(N,Q) =
N⨂

j=1
𝛩(1, qj) , (15)

which contains Q =
∏N

j=1 qj grid points in 𝛤 . Secondly, a sparse quadrature rule

can be derived thank to the Smolyak algorithm [29]. The so-called k–th level, N-

dimensional Smolyak sparse grid 𝛩̂𝛩𝛩(N, k) is obtained by the following linear combi-

nation of product formulas [52]:
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Fig. 1 Two-dimensional (N = 2) nodes based on a non-nested, one-dimensional Gauss-Lobatto

quadrature rule with q = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized

grid from Smolyak’s algorithm with k = 9 (Q = 193)

𝛩̂𝛩𝛩(N, k) =
k−1∑

l=k−N

∑

q1+⋯+qN=N+l
𝛩(1, q1)⊗⋯⊗𝛩(1, qN) . (16)

Clearly, the above sparse grid is a subset of the full-tensor product grids. It typically

contains Q ∼ (2N)k−1∕k − 1! nodes in 𝛤 whenever N ≫ 1 and k is fixed. By a direct

extension of the arguments divised in [31, 33], it can be shown that provided the

univariate quadrature rules 𝛩(1, q) are exact for all univariate polynomials of order

up to 2q − 1 (Gauss rules) or 2q − 3 (GL rules), the foregoing rule is exact for all

N–variate polynomials of total order up to 2k − 1 or 2k − 3, respectively. Figure 1

displays for example the two-dimensional full and sparse rules for an underlying

univariate GL quadrature (14) with q = 9 nodes andW1(𝜉) = (1 − 𝜉2)3,𝛤1 = [−1, 1].
For this example:

𝛩̂𝛩𝛩(2, 9) = 𝛩(1, 2)⊗𝛩(1, 7) + 𝛩(1, 3)⊗𝛩(1, 6) + 𝛩(1, 4)⊗𝛩(1, 5)
+ 𝛩(1, 2)⊗𝛩(1, 8) + 𝛩(1, 3)⊗𝛩(1, 7) + 𝛩(1, 4)⊗𝛩(1, 6)
+ 𝛩(1, 5)⊗𝛩(1, 5) + perm.

Here,Q = 193, compared toQ = 81with the fully tensorized rule (15). In [53], it has

been observed that sparse quadratures outperform fully tensorized quadratures with

non-nested underlying one-dimensional rules whenever N ≥ 4, though. If 𝛩(1, qi) is

now Clenshaw-Curtis (CC) univariate quadrature of i-th level for i > 1, such that:

𝜉l = −cos (l − 1)𝜋
qi − 1

, 1 ≤ l ≤ qi = 2i−1 + 1 ,

then the associated third-level bivariate sparse rule as constructed in, e.g., [32] for,

say, q = 9 is:
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Fig. 2 Two-dimensional (N = 2) nodes based on a nested, one-dimensional Clenshaw-Curtis

quadrature rule with q = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized

grid from Smolyak’s algorithm with k = 3 (Q = 29)

𝛩̂𝛩𝛩(2, 3) = 𝛩(1, 1)⊗𝛩(1, 5) + 𝛩(1, 3)⊗𝛩(1, 3)
+ 𝛩(1, 1)⊗𝛩(1, 9) + 𝛩(1, 3)⊗𝛩(1, 5) + perm.

(17)

The underlying univariate CC rules 𝛩(1, qi) are nested, that is, 𝛩(1, qi) ⊂ 𝛩(1, qi+1),
and consequently, the multivariate rules are nested as well, 𝛩̂𝛩𝛩(N, k) ⊂ 𝛩̂𝛩𝛩(N, k + 1).
They are in addition exact at least for all multivariate polynomials of total order

k [32]. Figure 2 displays the two-dimensional full rule (15) and third-level sparse

rule (17) corresponding to the univariate CC quadrature with q = 9 nodes. The total

number of nodes is significantly reduced with such a nested rule.

Link with Polynomial Chaos

The multi-dimensional Lagrange polynomials may be expanded on the

multi-dimensional polynomial chaos basis {𝜓i}0≤i≤P as in Eq. (1):

Ll(𝜉𝜉𝜉) =
P∑

i=0
⟨Ll, 𝜓i⟩𝜓i(𝜉𝜉𝜉) , 1 ≤ l ≤ Q ,

where P is given by Eq. (2) with polynomial total order p =
∑N

j=1 qj − N. The

expansion coefficients 𝓁li ∶= ⟨Ll, 𝜓i⟩ can be evaluated with the quadrature rule

{𝜉𝜉𝜉l,wl}1≤l≤Q also used as the interpolation set:

𝓁li ≃
1
𝛾
Q
i

Q∑

m=1
wmLl(𝜉𝜉𝜉

m)𝜓i(𝜉𝜉𝜉
m) = 1

𝛾
Q
i

wl𝜓i(𝜉𝜉𝜉
l) ,

where the second equality stems from the very definition of Lagrange polynomials.

Here, 𝛾
Q
i =

∑Q
l=1 w

l(𝜓i(𝜉𝜉𝜉
l))2 is the normalization constant for the polynomial chaos,
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which is simply 𝛾
Q
i = 𝛾i if the quadrature rule integrates exactly polynomials of total

order 2p. Consequently, the SC expansion (13) of the random field u reads:

𝕀Q[u](𝐱, t, 𝜉𝜉𝜉) ≃ 𝕀QP [u](𝐱, t, 𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱, t, 𝜉𝜉𝜉l)

P∑

i=0

1
𝛾
Q
i

wl𝜓i(𝜉𝜉𝜉
l)𝜓i(𝜉𝜉𝜉)

=
P∑

i=0

(
1
𝛾
Q
i

Q∑

l=1
wlu(𝐱, t, 𝜉𝜉𝜉l)𝜓i(𝜉𝜉𝜉

l)

)
𝜓i(𝜉𝜉𝜉) .

(18)

The bracketed sum above is the evaluation of the PC expansion coefficients ui by

the quadrature rule at hand. Hence, both PC and SC expansions are mathematically

equivalent, 𝕀QP ≡ ℙP
Q, though they are numerically slightly different [54].

Application to Uncertainty Quantification (UQ)

Once the polynomial expansion (1) or (13) has been derived, the first moments and/or

cumulants of the random field u can be computed using a quadrature rule 𝛩𝛩𝛩(N,Q)
and associated evaluations u(𝐱, t, 𝜉𝜉𝜉l), 1 ≤ l ≤ Q. Indeed, for a regular function u ↦
f (u), one can estimate a mean output functional by:

𝔼{f (u)}(𝐱, t) =
∫
𝛤

f (u(𝐱, t, 𝜉𝜉𝜉))WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 ≃
Q∑

l=1
wlf (u(𝐱, t, 𝜉𝜉𝜉l)) .

The mean 𝜇 is obtained for f (u) = u, the variance 𝜎2
is obtained for f (u) = (u − 𝜇)2,

the skewness 𝛽1 for f (u) = ( u−𝜇
𝜎
)3, the kurtosis 𝛽2 for f (u) = ( u−𝜇

𝜎
)4, etc. More gen-

erally, the j-th moment mj is obtained for f (u) = uj and may be used to compute the

characteristic function 𝛷U:

𝛷U(V) =
∫

eiU⋅VWU(dU) =
+∞∑

j=0

mj

j!
(iU)j ,

where by the causality principle (or transport of PDFs) for the random variable U ∼
u(⋅, 𝜉𝜉𝜉) one has:

WU(dU) =
||||
du−1
dU

||||
WN(u−1(dU)) .

Sobol’ sensitivity indices or global sensitivity indices may be computed alike; see

[14, 53, 55–57] and references therein. Denoting by Ij the set of indices corre-

sponding to the polynomials 𝜓k depending only on the j-th variable parameter 𝜉j, the

main-effect PCE-based Sobol’ indices are given by (see e.g. Sudret [57]):
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Sj(𝐱, t) =
1
𝜎2

∑

k∈I j

𝛾k(uk(𝐱, t))2 ,

owing to the normalization condition (3). More generally, if Ij1j2…js is the set of

indices corresponding to the polynomials 𝜓k depending only on the parameters

𝜉j1 , 𝜉j2 ,… 𝜉js , the s-fold joint PCE-based Sobol’ indices are:

Sj1j2…js (𝐱, t) =
1
𝜎2

∑

k∈I j1 j2…js

𝛾k(uk(𝐱, t))2 .

Conclusions

In this chapter, we have outlined the main ingredients of polynomial expansion meth-

ods for the pseudo-spectral analysis of random variables and fields, using either pro-

jections on orthonormal polynomials–the generalized polynomial chaos method, or

interpolations on Lagrange polynomials–the stochastic collocation method. We have

also shown how both approaches are actually intimately connected by a proper choice

of the integration/interpolation nodal sets used to compute the polynomial expansion

coefficients. However, alternative strategies have been recently considered in order to

evaluate them, which are detailed in the following chapters

“Generalized Polynomial Chaos for Non-intrusive Uncertainty Quantification in

Computational Fluid Dynamics” through “Screening Analysis and Adaptive Aparse

Collocation Methods”. Applications to uncertainty quantification and robust design

optimization for industrial challenges are given in parts III and IV.
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Generalized Polynomial Chaos
for Non-intrusive Uncertainty
Quantification in Computational Fluid
Dynamics

Vincent Couaillier and Éric Savin

Introduction

Complex aerodynamic analysis and design of aircraft use high-fidelity computa-

tional fluid dynamics (CFD) tools for shape optimization, for example, whereby

some robustness is achieved by considering uncertain operational, environmental,

or manufacturing parameters. Cruise flight conditions are generally transonic, as the

flow may become locally supersonic depending on the wing profiles. Hence, high-

fidelity simulations must be carried out in order to obtain a detailed description of

the flow structure for optimization purposes. When it comes to consider variable

parameters for sensitivity and robustness analyses, non-intrusive methods for uncer-

tainty quantification (UQ) are typically considered in CFD. Indeed, the complex flow

solvers are preferably treated as black boxes in order to compute the output quanti-

ties of interest that are required to evaluate the objective function of an optimiza-

tion process. The latter is often expressed in terms of moments of the quantities of

interest, such as the mean, standard deviation, or even higher-order moments (skew-

ness, kurtosis. . . ). Together with the Monte Carlo method or the method of moments,

the stochastic collocation and non-intrusive polynomial chaos expansion methods

introduced in the previous chapter “General Introduction to Polynomial Chaos and

Collocation Methods” are widely used for evaluating stochastic objective functions.

We more particularly focus on the latter approach in this chapter.

The polynomial chaos (PC) or homogeneous chaos expansion defined as the span

of Hermite polynomial functionals of a Gaussian random variable has been intro-

duced by Wiener [1] for stochastic processes. Mean-square convergence is guar-
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anteed by the Cameron-Martin theorem [2] and is optimal (i.e., exponential) for

Gaussian processes. For arbitrary random processes, the numerical study in [3] has

shown that the convergence rates are not optimal. This observation has prompted

the development of generalized chaos expansions (gPC) involving other families of

polynomials [3, 4]. They consist in expanding any function of random variables

into a linear combination of orthogonal polynomials with respect to the probability

density functions (PDFs) of these underlying random variables. PC and gPC expan-

sions have recently received a broad attention in engineering sciences, where they

are extensively used as a constructive tool for representing random vectors, matri-

ces, tensors, or fields for the purpose of quantifying uncertainty in complex systems.

Several implementation issues and applications are described in, e.g., [5–13] and

references therein.

The intrusive PC expansion originally introduced in [7, 14, 15] is based on a

Galerkin-type projection formulation of the model equations, typically the incom-

pressible or compressible Navier–Stokes equations in CFD, to derive the governing

equations for the spectral expansion coefficients of the output quantities of interest.

More precisely, the PC expansions of the model parameters and variables are substi-

tuted in the model equations, which in turn yield the evolution equations for the out-

puts from Galerkin projections using the orthogonal polynomials of the PC expan-

sions [6, 7, 10]. The projection coefficients are thus obtained by solving ordinary dif-

ferential equations in time. Regarding non-intrusive PC expansions, two approaches

for computing the PC coefficients of the output quantities of interest have usually

been considered: (i) the projection approach, in which they are computed by struc-

tured quadratures, i.e., Gauss quadratures, or unstructured quadratures, i.e., Monte

Carlo or quasi Monte Carlo sampling; and (ii) the regression approach, minimiz-

ing some error measure or truncation tolerance of the PC expansion for some par-

ticular values of the inputs (which can be the quadrature sets invoked just above,

for example). Both techniques suffer from some well-identified shortcomings when

the dimension of the parameter space, and the number of model evaluations alike,

increases. Indeed, a PC expansion of total degree p in N variable parameters contains

P =
(p+N

N

)
coefficients. A direct way to compute them is to use a tensor product grid

in the parameter space requiring about q ∼
(

p
2

)N
evaluations of the process. These q

runs are very often unaffordable for large parameter spaces and complex configura-

tions, as in CFD for example. Fortunately, the Smolyak algorithm [16] defines sparse

grid quadratures involving q ∼
(

p
2

)logN
points while preserving a satisfactory level

of accuracy. In [17], it has been observed that such sparse rules typically become

competitive with respect to tensor grids for dimensions N ≥ 4. Consequently, col-

location techniques with sparse quadratures or adaptive regression strategies have

been developed in order to circumvent the dimensionality concern [18–25].

In the application presented in this chapter, we adopt the regression approach.

We also aim at benefiting from the sparsity of the process outputs themselves to

reconstruct their PC representations in a non-adaptive way [26]. Indeed, we rely on

the common observation that many cross-interactions between the input parame-

ters are actually smoothened, or even negligible, once that have been propagated to



Generalized Polynomial Chaos for Non-intrusive Uncertainty . . . 125

some global quantities of interest processed from complex aerodynamic computa-

tions. The corresponding PC expansions should thus involve only low-order poly-

nomials, such that the contribution of the higher-order polynomials is negligible.

We can therefore expect to achieve a successful output recovery by the techniques

known under the terminology of compressed sensing [27, 28]. In this theory, the

reconstruction of a sparse signal on a given, known basis requires only a limited

number of evaluations at randomly selected points—at least significantly less than

the a priori dimension P of the basis. We thus resort to unstructured sampling sets to

recover sparse outputs. Compressed sensing is formulated as a constrained, underde-

termined system which may be solved by convex optimization algorithms. The rest

of this chapter is organized as follows. The formal framework of non-intrusive UQ is

briefly presented in the next section. The gPC expansion method itself is addressed

in section “Generalized Polynomial Chaos Expansion,” which is more particularly

focused on the non-intrusive computation of the PC coefficients by either projection

or regression approaches. This framework is illustrated in section “Application to

Transonic Turbulent Flow Around a Two-Dimensional RAE 2822 Airfoil” where the

application of the foregoing techniques to a two-dimensional transonic turbulent flow

around a RAE 2822 airfoil modelized by steady-state Reynolds-averaged Navier–

Stokes (RANS) equations is considered. The efficiency of a sparsity-based recon-

struction approach is emphasized. Some conclusions are finally drawn in section

“Conclusions”.

Uncertainty Quantification and Propagation: Model
Problem

In CFD applications, numerical models are built to simulate complex fluid flows

around rigid or flexible profiles. They are implemented in computer programs which

tend to become more and more sophisticated and extensive. These models often

exhibit certain features that may be considered as uncertain, or they depend on

parameters that may be considered as such. Propagation and quantification of uncer-

tainty aim at establishing a quantitative assessment of and some insight into the

impact that these uncertainties have on the predictions given by the models. State-

ments about the influence of uncertainties may serve to guide the allocation of

resources in order to reduce them, but are also essential in the process of validating

the models in the presence of uncertain parameters or in the process of optimizing a

design, among other objectives [29].

In this chapter, we think of a computational model as a linear or nonlinear map-

ping F of a set of input parameters 𝜉𝜉𝜉 in 𝛤 ⊆ ℝN
into a quantity of interest y; that

is,

y = F(𝜉𝜉𝜉) , F ∶ ℝN → ℝ , (1)

assuming without loss of generality that the quantity of interest is a scalar. Vector-

valued quantities of interest may be considered alike, following the same lines as
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exposed below. Here, it is also implicitly assumed that the uncertainties affecting

the model are embedded in the input variables 𝜉𝜉𝜉, or a subset of these variables; that

is, modeling uncertainties are not accounted for. In other words, modeling errors aris-

ing from modeling simplifications and assumptions are not considered here. Output-

predictor uncertainties pertaining to the quantity of interest, which may be subject

to an additive random noise, are also disregarded in this setting. Therefore, in the so-

called parametric approach promoted in this chapter, the uncertain input variables

𝜉𝜉𝜉 are representative of variable geometrical characteristics, boundary conditions,

loadings, physical or mechanical properties, or combinations of them. These input

parameters are represented by a ℝN
-valued random variable 𝛯𝛯𝛯 = (𝛯1, 𝛯2,… , 𝛯N),

the characterization of which requires the knowledge of its probability distribution

P𝛯𝛯𝛯 .𝛯𝛯𝛯 can be a continuous or a discrete, or even a combination of both, random vari-

able. In the former case, it is understood that the probability distribution thus admits

a probability density function (PDF) 𝜉𝜉𝜉 ↦ W𝛯𝛯𝛯 (𝜉𝜉𝜉) with values in ℝ+ = [0,+∞] such

that P𝛯𝛯𝛯 (B) = ∫
B W𝛯𝛯𝛯 (𝜉𝜉𝜉)d𝜉𝜉𝜉 for any subset B of ℝN

.

The mapping of 𝛯𝛯𝛯 through the computational model F then provides the char-

acterization of the quantity of interest as a real-valued random variable Y such that

Y = F(𝛯𝛯𝛯). By the causality principle, the probability distribution PY of Y is the

probability distribution of 𝛯𝛯𝛯 transported by the model F, i.e.:

PY (B) = P𝛯𝛯𝛯 (𝜉𝜉𝜉 ∈ ℝN ; F(𝜉𝜉𝜉) ∈ B) . (2)

The subsequent computation of statistical descriptors of the quantity of interest is

straightforward. Considering for example the mean 𝜇Y and variance 𝜎2
Y , one has:

𝜇Y =
∫ℝ

yPY (dy) =
∫ℝN

F(𝜉𝜉𝜉)P𝛯𝛯𝛯 (d𝜉𝜉𝜉) ,

𝜎2
Y =

∫ℝ
(y − 𝜇Y )2PY (dy) =

∫ℝN
(F(𝜉𝜉𝜉) − 𝜇Y )2P𝛯𝛯𝛯 (d𝜉𝜉𝜉) ,

(3)

assuming these integrals remain bounded; i.e., Y has finite variance; otherwise, the

statistical descriptors do not exist.

The evaluation of the multi-dimensional integrals above requires a thorough

knowledge of the computational model F, which of course has no analytical expres-

sion for complex configurations of industrial relevance. This can be achieved intru-

sively, by expliciting all dependences of the underlying physical and computational

models with respect to the parameters; see, e.g., [7, 11, 14, 15, 30, 31] and refer-

ences therein. This approach is seldom considered in CFD because the nonlinearity

of the physical model and complexity of the codes makes the implementation tricky.

Alternatively, the non-intrusive approach consists in expressing all dependences of

the quantity of interest Y with respect to the parameters by carefully chosen sampling

procedures or surrogates (also called response surfaces); see, e.g., [17–20, 32–39].

This is the approach retained in the following. More particularly, we address the con-

struction of polynomial surrogates using a family of multivariate orthogonal polyno-

mials with respect to the probability distributionP𝛯𝛯𝛯 of the random input parameters.
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Generalized Polynomial Chaos Expansion

Polynomial Surrogates

Let 𝐣 = (j1, j2,… jN) ∈ ℕN
be a so-called multi-index, we denote by 𝜉𝜉𝜉

𝐣
the multivari-

ate monomial associated to that multi-index as a function from ℝN
into ℝ such that

𝜉𝜉𝜉
𝐣 = 𝜉

j1
1 × 𝜉

j2
2 ×⋯ × 𝜉

jN
N . The modulus of 𝐣, namely |𝐣| = j1 + j2 +⋯ + jN , is also the

total order of the monomial 𝜉𝜉𝜉
𝐣
. Then a polynomial surrogate model Gp

of order p is

defined as an N-variate polynomial approximating the computational model F as

precisely as possible in the P𝛯𝛯𝛯 -weighted least-squares sense, i.e.:

F ≃ Gp =
p∑

|𝐣|=0
c𝐣𝜉𝜉𝜉

𝐣
, 𝐜 = arg min

𝐝∈ℝP

1
2 ∫ℝN

||||||
F(𝜉𝜉𝜉) −

p∑

|𝐣|=0
d𝐣𝜉𝜉𝜉

𝐣
||||||

2

P𝛯𝛯𝛯 (d𝜉𝜉𝜉) , (4)

where P is the number of monomials 𝜉𝜉𝜉
𝐣

such that 0 ≤ |𝐣| ≤ p. Conditions guarantee-

ing the existence (and possible uniqueness) of a solution to the above problem and

convergence of the surrogate Gp
as its order p is increased are summarized in [29].

In particular, it should be emphasized that provided the surrogate Gp
converges to

the computational model in the P𝛯𝛯𝛯 -mean-square sense, that is,

lim
p→+∞∫ℝN

|F(𝜉𝜉𝜉) − Gp(𝜉𝜉𝜉)|2 P𝛯𝛯𝛯 (d𝜉𝜉𝜉) = 0 ,

the probability distribution PYp of the random variable Yp = Gp(𝛯𝛯𝛯) converges to

the probability distribution PY of Y , Eq. (2), as p → +∞.

Polynomial Chaos Surrogates

Consider now Bp = {𝜓𝐣; 0 ≤ |𝐣| ≤ p} a set of N-variate polynomials 𝜓𝐣 spanning

the set of all polynomials of total order at most p and orthonormal with respect to

P𝛯𝛯𝛯 , that is,

∫ℝN
𝜓𝐣(𝜉𝜉𝜉)𝜓𝐤(𝜉𝜉𝜉)P𝛯𝛯𝛯 (d𝜉𝜉𝜉) ∶= ⟨𝜓𝐣, 𝜓𝐤⟩ = 𝛿𝐣𝐤 , 0 ≤ |𝐣| , |𝐤| ≤ p , (5)

where 𝛿𝐣𝐤 is theN-dimensional Kronecker symbol such that 𝛿𝐣𝐤 = 1 if 𝐣 = 𝐤 and 𝛿𝐣𝐤 =
0 otherwise. The existence of this basis is guaranteed provided that all monomials

𝜉𝜉𝜉
𝐣
, 0 ≤ |𝐣| ≤ p, are P𝛯𝛯𝛯 -square integrable and the P𝛯𝛯𝛯 -mean-square norm of all non

null polynomials of total order p is nonvanishing. Then, a polynomial surrogate Gp

may be constructed equivalently to the P𝛯𝛯𝛯 -weighted least-squares problem (4) by:
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F ≃ Gp =
p∑

|𝐣|=0
G𝐣𝜓𝐣 , 𝐆 = arg min

𝐠∈ℝP

1
2 ∫ℝN

||||||
F(𝜉𝜉𝜉) −

p∑

|𝐣|=0
g𝐣𝜓𝐣(𝜉𝜉𝜉)

||||||

2

P𝛯𝛯𝛯 (d𝜉𝜉𝜉) , (6)

where 𝐆 = {G𝐣; 0 ≤ |𝐣| ≤ p} and P is again the number of polynomials in the basis

Bp
. Owing to the orthonormality of the polynomials of that basis, the solution of

this problem reads:

G𝐣 = ⟨F, 𝜓𝐣⟩ , 0 ≤ |𝐣| ≤ p . (7)

The random variable Yp =
∑p

|𝐣|=0 G𝐣𝜓𝐣(𝛯𝛯𝛯) is known as a polynomial chaos expan-

sion of the quantity of interest Y . The basis Bp
is referred to as the polynomial chaos

(PC), or homogeneous chaos in the original terminology of Wiener [1]. Here, the

random parameters 𝛯𝛯𝛯 were Gaussian variables; the extension to non-Gaussian vari-

ables in, e.g., [3, 4] has been referred to as generalized polynomial chaos (gPC).

Lastly, the vector 𝐆 is formed with the so-called polynomial chaos coefficients

which completely characterize the surrogate model Gp
since the polynomial chaos

is known from the probability measure P𝛯𝛯𝛯 of the random inputs. Several methods

have been developed to compute them, which are usually classified into intrusive

or non-intrusive approaches; see the introductory chapter “General Introduction to

Polynomial Chaos and Collocation Methods”.

Computation of Polynomial Chaos Coefficients

The original intrusive approach introduced in [7, 14, 15] is based on a Galerkin-type

projection formulation of the model equations (typically partial differential equa-

tions, PDEs) onto a prescribed basis of orthonormal polynomials. The procedure

results in a so-called spectral problem formulated in terms of the polynomial chaos

coefficients of the solution of the model PDEs, which often requires important mod-

ifications of the associated computational model. For this reason, intrusive methods

are seldom considered in CFD applications as already noticed above. On the other

hand, non-intrusive approaches do not require any modification of the computational

model. The non-intrusive projection method numerically determines the polynomial

surrogate by approximating the integrals in (7) using dedicated structured (typi-

cally Gauss integration rules) or unstructured (e.g., Monte Carlo or quasi Monte

Carlo methods) sets of samples of the random input parameters𝛯𝛯𝛯 . The interpolatory

collocation method determines the polynomial surrogate by interpolating between a

set of evaluations of the computational model. It is strongly related to the projec-

tion method as outlined in chapter “General Introduction to Polynomial Chaos and

Collocation Methods”; see also the discussion in, e.g., [40]. In fact, it is also called

the pseudospectral collocation method in [13, 41]. Introducing a quadrature rule of

integration 𝛩𝛩𝛩(N,Q) = {𝜉𝜉𝜉l,wl; 1 ≤ l ≤ Q} formed by Q nodes 𝜉𝜉𝜉
l

in ℝN
and associ-

ated weights wl
in ℝ, the integral of any smooth, integrable function f ∶ ℝN → ℝ

with respect to P𝛯𝛯𝛯 can be approximated by the weighted sum:

https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
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∫ℝN
f (𝜉𝜉𝜉)P𝛯𝛯𝛯 (d𝜉𝜉𝜉) ≃

Q∑

l=1
wlf (𝜉𝜉𝜉l) .

Applying this rule to the computation of the polynomial chaos coefficients of Eq. (7),

one arrives at the following surrogate model Gp,Q
:

F ≃ Gp,Q =
p∑

|𝐣|=0
GQ

𝐣 𝜓𝐣 , GQ
𝐣 =

Q∑

l=1
wlF(𝜉𝜉𝜉l)𝜓𝐣(𝜉𝜉𝜉

l) , 0 ≤ |𝐣| ≤ p . (8)

The families of orthonormal polynomials forming Bp
and associated Gauss quadra-

ture rules are explicitly known and tabulated for some labeled probability distribu-

tions P𝛯𝛯𝛯 , such as Gamma distributions (corresponding to Laguerre polynomials),

Beta distributions (corresponding to Jacobi polynomials, including Legendre poly-

nomials for uniform distributions), Gaussian distributions (corresponding to Hermite

polynomials), Poisson distributions (corresponding to Charlier polynomials), bino-

mial distributions (corresponding to Krawtchouk polynomials); see [4, 11, 13, 30].

Alternatively, they can be generated numerically using the Gramm-Schmidt, Stielt-

jes or Chebyshev algorithm [42] and the Golub-Welsh algorithm [43] to compute

their associated Gauss nodes and weights. This procedure has been applied in, e.g.,

[44–46]. Another possibility is to consider unstructured quadrature sets, whereby the

nodes are sampled randomly or quasi-randomly in the domain of integration𝛤 ⊆ ℝN

according to their distribution P𝛯𝛯𝛯 , and the associated weights are typically wl = 1
Q

:

This is the Monte Carlo method and its by-products.

Another approach to determine the polynomial chaos coefficients is linear regres-

sion. In this setting, the set 𝛩𝛩𝛩(N,Q) is used to form a linear system in the unknowns

𝐆 by simply evaluating the surrogate model Gp
at the nodes {𝜉𝜉𝜉l; 1 ≤ l ≤ Q}:

𝛷𝛷𝛷𝐆 = 𝐲 , (9)

where 𝐲 = {yl = F(𝜉𝜉𝜉l); 1 ≤ l ≤ Q} is the vector of observations of the computa-

tional model F at the sampling nodes, and [𝛷𝛷𝛷]l𝐣 = 𝜓𝐣(𝜉𝜉𝜉
l) is the so-called Q × Pmea-

surement matrix. Numerous methods are available to solve this problem whenever

Q ≥ P, for example least-squares minimization [37, 47]. Likewise different strate-

gies exist for the choice of the sampling nodes {𝜉𝜉𝜉l; 1 ≤ l ≤ Q} which are reviewed

in, e.g., [29, 48–50]. We do not follow this approach in the subsequent developments

though. We are rather interested in the situation whereby Q ≤ P and more particu-

larly Q ≪ P, that is, underdetermined systems. This can be achieved thanks to some

recent mathematical results pertaining to the resolution of under-sampled linear sys-

tems promoting sparsity of the sought solution, known as compressed sensing or

compressive sampling [27, 28]. A recent review of the application of this approach

to polynomial surrogates reconstruction is proposed in [51]; see also [17, 26, 52–61].

The compressed sensing approach consists in reformulating Eq. (9) considered as an

underdetermined system as a minimization problem with some sparsity constraint,

namely:
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𝐆∗ = arg min
𝐠∈ℝP

{‖𝐠‖m; 𝐲 = 𝛷𝛷𝛷𝐠} , (Pm,0)

with the 𝓁m-norm ‖𝐠‖m = (
∑P−1

j=0
|||gj

|||
m
)

1
m , m > 0, and ‖𝐠‖0 = #{j; gj ≠ 0} other-

wise. Sparsity means that only a small fraction of the sought coefficients 𝐆∗
are

nonzero. Such a constraint is added to ensure well-posedness of (9) when Q < P
by seeking a solution with the minimum number of nonzero terms. The case m = 0
however yields a non-unique solution in general, which is in addition NP hard to

compute as the cost of global search is exponential in P. Further researches in com-

pressed sensing have shown that the convex relaxation of (P0,0) by considering the

𝓁1-norm instead yields a unique solution provided that the latter is sufficiently sparse

and that the measurement matrix 𝛷𝛷𝛷 has some prescribed properties. The problem

(P1,0) is referred to as basis pursuit [62] in the dedicated literature.

Now, the equality (9) is often too restrictive because the truncated p-th order poly-

nomial chaos basis Bp
is not complete for the exact representation of the observa-

tions 𝐲. Thus, a truncation error has also to be accounted for in the solution process.

This is accommodated by reformulating (P1,0) as:

𝐆∗ = arg min
𝐠∈ℝP

{‖𝐠‖1; ‖𝐲 −𝛷𝛷𝛷𝐠‖2 ≤ 𝜀} , (P1,𝜀)

for some tolerance 0 ≤ 𝜀 ≪ 1 on the polynomial chaos truncation. The latter prob-

lem is known as basis pursuit denoising (BPDN) [62]. The successful recovery of

𝐆 of Eq. (9) by solving(P1,𝜀) is guaranteed by the restricted isometry property
(RIP) which the measurement matrix 𝛷𝛷𝛷 has to satisfy. For each integer S ∈ ℕ∗

, the

isometry constant 𝛿S of 𝛷𝛷𝛷 is defined as the smallest number such that:

(1 − 𝛿S)‖𝐠S‖22 ≤ ‖𝛷𝛷𝛷𝐠S‖22 ≤ (1 + 𝛿S)‖𝐠S‖22

for all S–sparse vectors 𝐠S ∈ {𝐠 ∈ ℝP; ‖𝐠‖0 ≤ S}. Then, 𝛷𝛷𝛷 is said to satisfy the

RIP of order S if, say, 𝛿S is not too close to 1. This property amounts to saying

that all S–column submatrices of 𝛷𝛷𝛷 are numerically well-conditioned, or S (or less)

columns selected arbitrarily in 𝛷𝛷𝛷 are nearly orthogonal. Consequently, they form a

near isometry so that 𝛷𝛷𝛷 approximately preserves the Euclidean norm of S–sparse

vectors. The following theorem by Candès et al. [27, Theorem 1.2], [63, Theorem 3]

then states that (P1,𝜀) can be solved efficiently:

Theorem 1 ([27, 63]) Assume 𝛿2S <
√
2 − 1. Then, the solution 𝐆∗ to (P1,𝜀) satis-

fies:

‖𝐆∗ −𝐆‖2 ≤ C0
‖𝐆S −𝐆‖1√

S
+ C1𝜀

for some C0,C1 > 0 depending only on 𝛿2S.
This result calls for several comments. First, the coefficients 𝐆 are actually nearly

sparse, rather than strictly sparse, in the sense that only a small fraction of them

contribute significantly to the output statistics while the others are not strictly null.
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Opportunely, the foregoing theorem deals with all signals and not only the S–sparse

ones. Second, it also deals with noiseless recovery if 𝜀 = 0. Third, it is determin-

istic and does not involve any probability for a successful recovery. Lastly, the 𝓁1-

minimization strategy is non-adapted because it identifies the sparsity pattern, that

is the order (location) of the negligible coefficients in the polynomial chaos basis,

and the leading coefficients at the same time. The algorithm can therefore efficiently

capture the relevant information of a sparse vector without trying to comprehend that

vector [63]. This is clearly a much desirable feature for practical industrial applica-

tions.

Application to Transonic Turbulent Flow Around
a Two-Dimensional RAE 2822 Airfoil

The foregoing strategy of using a gPC expansion for uncertainty propagation and

quantification is applied to an aerodynamic problem taken from [17]. Here, we

consider a two-dimensional transonic turbulent flow around a RAE 2822 airfoil

modelized by the steady-state Reynolds-averaged Navier Stokes (RANS) equations

together with a Spalart-Allmaras turbulence model closure [64]. The nominal flow

conditions are the ones described in Cook et al. [65] for the test case #6 together

with the wall interference correction formulas derived in [66, pp. 386–387] and their

slight modifications suggested in [67, p. 130] (see also the CFD verification and val-

idation Web site of the NPARC Alliance [68]). The nominal free-stream Mach num-

ber M∞ = 0.729, angle of attack 𝛼∞ = 2.31◦, and Reynolds number Re = 6.50 ⋅ 106
(based on the airfoil chord length c, fluid velocity, temperature, and molecular

viscosity at infinity) arise from the corrections 𝛥M∞ = 0.004 and 𝛥𝛼∞ = −0.61◦
given in [67, p. 130] for the test case #6 outlined in Cook et al. [65], for which

M∞ = 0.725, 𝛼∞ = 2.92◦, and Re = 6.50 ⋅ 106. At last, the far-field temperature is

fixed at T∞ = 300 K and the ratio of specific heats of the air at 𝛾 = 1.4.

Definition of the Uncertainties

Our aim is to characterize the influence of variabilities of the free-stream Mach

number M∞ and angle of attack 𝛼∞ (operational parameters), and of the thickness-

to-chord ratio r = h∕c (geometrical parameter) on some aerodynamic quantities of

interest, such as the drag, lift, or pitching moment coefficients CD, CL, or Cm, respec-

tively. These variable parameters are assumed to be independent and to follow Beta

laws of the first kind 𝛽I. Therefore, their marginal PDFs read:

𝛽I(𝜉; a, b) = 1[Xm,XM](𝜉)
𝛤 (a + b)
𝛤 (a)𝛤 (b)

(𝜉 − Xm)a−1(XM − 𝜉)b−1

(XM − Xm)a+b−1
.
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Table 1 Symmetric 𝛽I laws for the variable geometrical and operational parameters

a = b Xm XM

𝛯1 4 0.97 × r 1.03 × r
𝛯2 4 0.95 ×M∞ 1.05 ×M∞
𝛯3 4 0.98 × 𝛼∞ 1.02 × 𝛼∞

In the above, 𝛤 (z) = ∫
+∞
0 tz−1e−tdt is the usual Gamma function, and [Xm,XM] is the

compact support of the random parameter 𝛯 ∼ 𝛽I. The parameters a = b as well as

the bounds Xm,XM for the three variable parameters 𝜉1 = r, 𝜉2 = M∞, 𝜉3 = 𝛼∞ are

gathered in the Table 1. This definition of uncertainties is part of the FP7 UMRIDA

Project (http://www.umrida.eu), which gathers a novel data base of industrial chal-

lenges with prescribed uncertainties for the validation of UQ techniques against

this series of relevant industrial test cases. We note in passing that the 𝛽I model

is the one arising from Jaynes’ maximum entropy principle [69] when constraints

on (i) the boundedness of the support [Xm,XM], and (ii) the values of the averages

𝔼{log(𝛯 − Xm)} and 𝔼{log(XM − 𝛯)}, are imposed.

Polynomial Basis and Sampling Nodes

From the analysis of section “Generalized Polynomial Chaos Expansion,” it is seen

that the main ingredients requested for the construction of polynomial surrogates

of the quantity of interest y = CD, CL, or Cm are the truncated polynomial basis

Bp
and the quadrature rule 𝛩𝛩𝛩(N,Q), for Q integration nodes and a total num-

ber of polynomials P =
(N+p

N

)
. In addition, we have here N = 3 for the parameter

space dimension. Owing to the choices made for the variable parameters consid-

ered for this case (see Table 1), we have 𝜉𝜉𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ 𝛤 =
∏3

j=1[X
(j)
m ,X(j)

M ] and

P𝛯𝛯𝛯 (𝜉𝜉𝜉) =
⨂3

j=1 𝛽I(𝜉j; 4, 4). Therefore, the integration nodes should be chosen from a

Gauss-Jacobi quadrature rule, and the polynomial basis Bp
should be constituted by

the multivariate Jacobi polynomials which are orthogonal with respect to the weight

function 𝜉𝜉𝜉 ↦ W3(𝜉𝜉𝜉) =
∏3

j=1W1(𝜉j) on [−1, 1]3 (after a proper renormalization of 𝛤 ),

where 𝜉 ↦ W1(𝜉j) = (1 − 𝜉2j )
3
. They are computed by:

𝜓𝐣(𝜉𝜉𝜉) =
3∏

k=1
𝜓jk (𝜉k) , |𝐣| ≤ p ,

where {𝜓jk ; jk ≥ 0} is the family of one-dimensional orthonormal Jacobi polyno-

mials with respect to the weight function W1. In the present study, the polynomial

surrogates Gp
constructed for the evaluation of the drag, lift, and pitching moment

coefficients are truncated up to the total order p = 8. Therefore, P =
(p+3

3

)
= 165

multivariate Jacobi polynomials are ultimately retained in those gPC expansions.

http://www.umrida.eu
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As for the sampling nodes {𝜉𝜉𝜉l; 1 ≤ l ≤ Q}, one may choose them as (i) the nodes

of a quadrature rule𝛩𝛩𝛩(N,Q) so that Eq. (8) can be used; or (ii) select them randomly

according to their PDF P𝛯𝛯𝛯 so that (P1,𝜀) can be used. Indeed, selecting the sam-

pling nodes randomly eases the fulfillment of the RIP and consequently increases

the efficiency of 𝓁1-minimization. The use of a structured sampling set (quadrature

rule) in the latter procedure is examined further on in [58], though. Quadrature rules

for the approximation of multivariate integrals have been introduced in the chapter

“General Introduction to Polynomial Chaos and Collocation Methods” of this book.

Univariate Gauss-Jacobi-Lobatto (GJL) quadratures𝛩𝛩𝛩(1, q) are aimed at integrating

a smooth function 𝜉 ↦ f (𝜉) defined on [−1, 1] by:

∫

1

−1
f (𝜉)(1 − 𝜉)a−1(1 + 𝜉)b−1d𝜉 ≃

q−2∑

l=1
wlf (𝜉l) + wq−1f (−1) + wqf (1) , (10)

where a, b > −1, such that this rule turns to be exact for polynomials up to the order

2q − 3. Here, the bounds ±1 are explicitly included in the quadrature nodes. The

reason why we include them in the rule stems from the fact that the basic engi-

neering practice would typically consider the evaluation of the physical model F at

the bounds of the support of the variable parameters. The main advantage of using

Gauss-Jacobi quadratures is that they do not add integration nodes for the increased

order a + b − 2 induced by the weight function (1 − 𝜉)a−1(1 + 𝜉)b−1. Since in our

case, we have chosen a total order p = 8, q = 10 GJL modes are needed to recover

exactly the orthonormality property (5) for the corresponding univariate Jacobi poly-

nomials. Indeed Q should be defined such that 2q − 3 ≥ 16 in this situation.

A multivariate quadrature rule may subsequently be obtained by full or sparse

tensorization of the above univariate rule. Firstly, a fully tensorized grid is obtained

by the straightforward product rule:

𝛩𝛩𝛩(N,Q) =
N⨂

j=1
𝛩(1, q) , (11)

which contains Q = qN nodes in 𝛤 . Secondly, sparse quadrature rules can be derived

thank to the Smolyak algorithm [16]. A brief overview is again given in the chapter

“General Introduction to Polynomial Chaos and Collocation Methods” of this book.

Such sparse rules have been considered in [17, 19, 22–25] among others but will

not be used here, though. Note also that a different number of nodes may be used

along each dimension for either product or sparse rules, as proposed in some adaptive

strategies [18–21, 23–25]. The fully tensorized rule in N = 3 dimensions based on a

10 nodes univariate GJL rule is displayed on Fig. 1(left). It contains Q = 103 nodes,

to be compared with the Q = 80 nodes sampled randomly for the application of the

𝓁1-minimization algorithm (P1,𝜀) (right).

http://dx.doi.org/10.1007/978-3-319-77767-2_7
http://dx.doi.org/10.1007/978-3-319-77767-2_7
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Fig. 1 Left: three-dimensional nodes based on a tensorized univariate GJL rule with q = 10 nodes

along each dimension and a = b = 4 (Q = 103). Right: randomly sampled nodes following a three-

dimensional symmetric 𝛽I law with a = b = 4 (Q = 80)

Computational Model

Once the node sets have been defined, either from a fully tensorized quadrature rule

or random sampling, it remains to run the computational model for each sampling

node 𝜉𝜉𝜉
l

in those sets to obtain the vector 𝐲 of observations of the quantity of inter-

est. The numerical approximation of the aerodynamic problem considered here is

computed using the elsA software [70]. At first, the RANS equations are discretized

in space by a cell-centered finite-volume method. The convective fluxes are com-

puted using the upwind Roe flux and a second-order MUSCL scheme [71] with a van

Albada limiter [72]. The diffusive fluxes are computed as the half sum of the normal

flux densities in the two adjacent cells sharing the current interface (with due care of

the boundary conditions on external interfaces), considering corrected cell-centered

gradients of the fluid velocity in these cells. The diffusive fluxes of the transport equa-

tion for the turbulent variable in the Spalart-Allmaras model are discretized using a

similar approach, whereas first-order Roe fluxes are used for the convective terms.

Finally, the source term of the transport equation is computed using the temperature

gradients at the center of the cells. Secondly, these semi-discretized RANS equa-

tions are solved in time using a backward Euler scheme up to convergence toward

a steady-state solution. The linearization of the resulting nonlinear implicit system

is performed using the Lower-Upper Symmetric Successive Overrelaxation (LU-

SSOR) scheme [73] with four relaxation cycles. The convergence is accelerated by

the use of multigrid techniques for steady flows. Uniform flow is considered as the

initial conditions for the iterations with respect to the time parameter.

The nominal problem is discretized using a 769c × 193c mesh shown in Fig. 2,

where the boundary at infinity was left intensionally far (at about 500c from the

airfoil). These values proved to be sufficient to avoid spurious reflection with the far-

field boundary. Given the large number of simulations to run, the numerical parame-

ters of the steady-state algorithm proved to be essential to insure a fast convergence.
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Fig. 2 Computational domain for the baseline configuration: overview of the mesh (left), close

view at the airfoil (right)
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Fig. 3 Magnitude of velocity (left) and static pressure coefficient Cp at the wall (right, solid line)

for the baseline configuration M∞ = 0.729, 𝛼 = 2.31◦, Re = 6.50 ⋅ 106. The latter is compared with

the experiment results gathered on the CFD verification and validation Web site of the NPARC

Alliance [68] (crosses)

Once all the foregoing numerical parameters have been fixed, the number of iter-

ations is determined from the evolution of the resulting global forces (not shown

here). A number of 2000 iterations appeared to be acceptable, the discrete residu-

als of all equations and their decrease being checked at every iteration. Hence, this

number of iterations has been retained for all subsequent calculations so far. The

flow is attached with a weak shockwave on the suction side. The contour plot of the

magnitude of the velocity and the static pressure profile at the wall are displayed on

Fig. 3 for the baseline configuration M∞ = 0.729, 𝛼∞ = 2.31◦, and Re = 6.50 ⋅ 106.

We see from this latter figure that our numerical results are in good agreement with

the experimental results reported in [68].
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Results

The mean 𝜇 and standard deviation 𝜎 of the drag, lift, and pitching moment coef-

ficients CD, CL, and Cm, respectively, are gathered in Table 2 for (i) either Q = 103
calls to the elsA computational model F with the 10-th level tensorized GJL rule

(see Fig. 1left) to evaluate the polynomial coefficients by projection, Eq. (8); (ii) or

Q = 80 calls with randomly selected nodes (see Fig. 1right) to evaluate the poly-

nomial coefficients by BPDN (P1,𝜀). The primary reason why we have chosen this

sampling size is for its ease of use with the multithreading setup of our CFD soft-

ware. However, the sparsity of the polynomial surrogates is observed to be S ≃ 10
from our numerical results. A common practical observation is that Q ≥ 4S ≃ 40
or so is usually enough for a successful recovery. Therefore, a new sampling set of

Q = 40 randomly selected nodes (not displayed here) has been generated and used to

construct other surrogate models by (P1,𝜀). The corresponding means and standard

deviations are also gathered in Table 2. As for solving this 𝓁1-minimization problem

(P1,𝜀), the Spectral Projected Gradient Algorithm (SPGL1) developed by van den

Berg and Friedlander [74] and implemented in the MATLAB package SPGL1 [75],

is used. The tolerance was fixed at 𝜀 = 10−5 and we were able to find a solution for all

surrogates with this a priori choice without resorting to cross-validation, for example

[26]. Further investigations should be carried on on this topic, though. It should also

be noted that no particular sampling strategy, such as stratification, low-discrepancy

series, or preconditioning, has been applied at this stage to construct the sampling

sets. Moreover, some weighting could be applied to the 𝓁1-norm as notice in [51]

and references therein. We have not considered that possibility either and left it to

future works.

The PDFs of the three aerodynamic coefficients considered in this study are dis-

played on Fig. 4 (in log scale) using the 10-th level tensorized quadrature rule and the

80 samples set. Figure 5 displays the same plots for the 40 samples set. These PDFs

were estimated from Ns = 100,000 evaluations of the gPC surrogates Gp
constructed

by either approaches and smoothing out the resulting histograms by a normal ker-

nel density function [76]. The horizontal axes are scaled by the mean value of each

coefficient computed with the tensorized quadrature rule. A very good agreement is

Table 2 Mean and variance of the aerodynamic coefficients computed by the 10-th level tensorized

GJL rule with Q = 103 and by 𝓁1-minimization with Q = 80 and Q = 40
GJL product rule (Q = 103) 𝓁1-minimization (Q = 80) 𝓁1-minimization (Q = 40)

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

CD 133.37e–04 34.13e–04 133.34e–04 34.05e–04 133.21e–04 33.78e–04

CL 72.27e–02 1.67e–02 72.27e–02 1.67e–02 72.29e–02 1.66e–02

Cm −453.99e–04 32.24e–04 −453.95e–04 32.18e–04 −453.73e–04 31.98e–04
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µ µ µ

Fig. 4 Comparison of the PDFs of the drag (left), lift (middle) and pitching moment (right) coef-

ficients computed by the 10-th level tensorized GJL rule (Q = 103, full lines) and 𝓁1-minimization

(Q = 80, dashed lines)

µ µ µ

Fig. 5 Comparison of the PDFs of the drag (left), lift (middle) and pitching moment (right) coef-

ficients computed by the 10-th level tensorized GJL rule (Q = 103, full lines) and 𝓁1-minimization

(Q = 40, dashed lines)

achieved by both methods. The reduction of the number of samples to the heuris-

tic lower limit of four times the sparsity S for use in the 𝓁1-minimization approach

essentially affects the tails of the PDFs.

Conclusions

In this chapter we have addressed various methodologies with relevance to the con-

struction of generalized polynomial chaos expansions (gPC) for parameterized com-

plex processes as encountered in computational fluid dynamics. The presentation has

been more particularly focused on the use of adapted sampling sets in the parame-

ter space using either structured or unstructured grids to construct the gPC expan-

sions. These techniques were illustrated with the example of a two-dimensional tran-

sonic turbulent flow around a RAE 2822 airfoil considering variable geometrical (the

thickness-to-chord ratio) and operational (the free-stream Mach number and angle

of attack) parameters. The quantities of interest are the usual drag, lift, and pitch-

ing moment coefficients for which polynomial surrogates are sought for using the

aforementioned sampling sets as learning sets.
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Firstly, multivariate quadrature rules based on univariate Gauss-Jacobi-Lobatto

rules have been used for the construction of these polynomials surrogates by pro-

jection. Secondly, observing a posteriori that the aerodynamic quantities of interest

are sparse in the multivariate polynomial chaos basis associated to the parameters

probability density functions, an 𝓁1-minimization approach has been applied in the

framework of the theory of compressed sensing. The latter allows to recover the gPC

expansion coefficients at a much lower computational cost than the quadrature rules

addressed in the first approach. Unstructured sampling nodes are preferred in this

process, selecting them randomly in the parameter space. Their number is typically

less than the dimension of the polynomial space where the surrogates are sought for,

and thus typically much less than the number of nodes of the multivariate quadra-

ture rules that have to be used for a given polynomial order. The 𝓁1-minimization

procedure is non-adaptive in the sense that it identifies both the amplitude of the lead-

ing expansion coefficients and their ranks. It thus constitutes a promising direction

for future developments in practical applications for more complex geometries and

flows, where adaptive strategies within the parametric space, weighted minimization,

or preconditioned sampling sets may be advantageous.
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Non-intrusive Probabilistic Collocation
Method for Operational, Geometrical,
and Manufacturing Uncertainties
in Engineering Practice

Dirk Wunsch, Rémy Nigro, Grégory Coussement and Charles Hirsch

Introduction

CFD simulations are run today with a unique set of input data such as boundary
conditions, physical model, or geometry parameters. In these deterministic simu-
lations, the system response is a single value. The actual operating conditions of
industrial products are, however, subject to operational and geometrical uncer-
tainties. In order to include these uncertainties into the CFD-based design process, a
new type of simulation is needed: non-deterministic simulations. This type of
approach allows to incorporate and propagate uncertainties. The outcome of a
non-deterministic simulation is not a single value, but a variation of the system
response.

The uncertainty propagation method used in this work is the Non-Intrusive
Probabilistic Collocation Method (NIPColM), where the collocation points are
selected by means of the Golub–Welsch algorithm [2] for quadrature of general
probability density function (PDF) shapes. This approach is combined with a sparse
grid technique which allows for a significant reduction in number of deterministic
simulations to be run.
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A particular challenge lies in the combination of operational and geometrical
uncertainties in an integrated design and simulation environment. While operational
uncertainties are considered by running the CFD solver with the same geometry and
the same mesh, but varying boundary conditions, geometrical uncertainties demand
in addition a changing geometry and changing mesh. Geometrical uncertainties can
be either expressed in parameterized form, also accounting for correlations, or as
uncertain fields. Random field and correlated engineering parameter models are
suitable for the handling of uncertainties resulting from manufacturing or assembly
variability.

This NIPColM is applied to the NASA rotor 37, first, accounting for simulta-
neous operational and geometrical uncertainties on the inlet total pressure profile,
static outlet pressure, the tip clearance, the leading edge angle and leading edge
radius [13], and second, as a random field of the blade surface [7].

The importance of accounting for combined operational and geometrical
uncertainties during the rotor design process is demonstrated in comparison with
the deterministic case. Scaled sensitivity derivatives calculated from the uncertainty
propagation method allow to assess objectively the influence of individual uncer-
tainties on the output quantity of interest. Finally, the non-deterministic simulation
results are evaluated in form of reconstructed PDFs of scalar output quantities.

Non-intrusive Probabilistic Collocation Method

The uncertainty propagation method used within this work is the Non-Intrusive
Probabilistic Collocation Method [4], which can be seen as a generalization of the
stochastic collocation method described in [5]. If a generic stochastic partial dif-
ferential equation is considered such as:

LðξÞuðx ⃗, t, ξÞ= Sðx ⃗, tÞ ð1Þ

• where L being a differential operator containing space and time derivatives;
• S being the source terms;
• ξ being a random input parameter;
• u being the non-deterministic solution.

In the non-intrusive probabilistic collocation method, Lagrange interpolating
polynomials are used to construct the following expansion:

uðx ⃗, t, ξÞ= ∑
Np

i=1
uiðx ⃗, tÞhiðξÞ ð2Þ
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• uiðx ⃗, tÞ is the deterministic solution at the collocation point ξi
• hiðξiÞ is the Lagrange interpolation polynomial corresponding to the collocation

point ξi.

The Lagrange interpolating polynomial is given by:

hiðξÞ= ∏
Np

k=1
k≠ i

ξ− ξk
ξi − ξk

ð3Þ

with: hiðξjÞ= δij and Np is the number of collocation points required by the
non-intrusive probabilistic collocation method.

The collocation points are selected as the Gauss quadrature points by means of
the Golub–Welsch algorithm for general probability density function (PDF) shapes
[2]. This has the advantage that any arbitrary PDF type can be used to describe the
uncertainties. In order to propagate the input uncertainty modeled by the random
variable ξi, Eq. (2) is introduced into Eq. (1). This provides a system of Np

uncoupled deterministic simulations:

LðξiÞuðx ⃗, tÞ= Sðx ⃗, tÞ ð4Þ

Once all Np computations are performed, the first four moments of any output
quantity φ are calculated based on the weights wk from the Gauss quadrature. The
mean follows from:

μ1 = ∑
Np

k=1
wkφkðx ⃗, tÞ ð5Þ

and the second (variance), third (skewness), and fourth moments (kurtosis) are
calculated as:

μn = ∑
Np

k=1
wkðφkðx ⃗, tÞ− μ1Þn ð6Þ

Sparse Grids for Multiple Simultaneous Uncertainties

In order to combine several simultaneous uncertainties, the quadrature must be
brought to the multi-dimensional case. This multi-dimensional quadrature is
achieved by means of tensor products. In the 1D case, the quadrature is given by:
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Qð1Þf = ∑
Np

i=1
f ðξiÞωi ð7Þ

Multi-dimensional quadrature is then obtained by tensor products:

QNdim f = ðQð1Þ ⊗ . . . ⊗QðNdimÞÞf ð8Þ

Each point along one direction is multiplied with each point along all other
directions, where the weights are calculated as the products of the 1D-weights.

This approach leads to an exponential increase in the number of points with the
number of dimensions. This is the so-called curse of dimensionality. Table 1
illustrates how the number of CFD runs scales with the number of dimensions
assuming 1D quadrature rules with 3 points. For two simultaneous uncertainties, 9
CFD runs need to be performed, while 10 simultaneous uncertainties would require
59,049 CFD runs, which is not feasible in practice.

Sparse grid quadrature can overcome this curse of dimensionality to a certain
extent and make non-intrusive collocation methods accessible for higher stochastic
dimensions. The implementation is based on Smolyak’s quadrature method [11].
For a review of sparse grid algorithms, the reader may refer to [5] and [13] for more
information on the construction of the sparse grid. Sparse grid quadrature works by
combining quadrature rules of different orders. To distinguish different orders, a
level index is introduced and the number of 1D quadrature points per level grows in
function of the chosen quadrature rule. In this work, Gauss quadrature is applied
where the number of points on subsequent levels grows with “2 * level + 1,” with
the level 0 quadrature rule being defined as the mid-point rule. To build the sparse
grid, difference formulas between two subsequent levels are defined and then
summed over all levels; the quadrature rule of level L is thus re-written as a sum of
differences over all levels from 0 to L. This allows to change the order of sum-
mation and tensor product and truncate the sum to a total level (or total order of the
underlying Lagrange polynomials).

Table 2 summarizes the number of quadrature points Np, contained in linear
growth sparse grid for levels of 1, 2, and 3 in comparison with a full tensor grid
with the same number of 1D quadrature points.

Table 1 Number of CFD
runs needed for
multi-dimensional uncertainty
problems applying tensor
product rule, assuming 3
collocation points in 1D

No. of stochastic dimensions No. of CFD runs

1 3
2 9
3 27
… …

10 59049

n (m = 3) mn
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The significant reduction in number of runs makes the simultaneous treatment of
many uncertainties in complex 3D CFD problems accessible. This is the basis for
the work performed here.

Statistical Output Analysis

The analysis of non-deterministic simulations using the NIPColM relies to a large
extent on the computed moments of output quantities, i.e., mean, variance, skew-
ness, and kurtosis. Besides the moments itself, which can be used to plot mean
values with bars indicating the variability of the response, PDFs can be recon-
structed based on these statistical output moments. Finally, the local surrogate that
the Lagrange interpolating polynomial represents, as given in Eq. (2), allows
computing scaled sensitivity derivatives.

Statistical Output Moments

Once all simulations are performed, statistical moments of output quantities are
automatically calculated, by taking the weights of the individual collocation points
into account. The mean, variance, skewness, and kurtosis are calculated following
Eqs. (5) and (6). This information is calculated for a selected number of scalar
output quantities but can be obtained for any CFD output quantity or output field of
interest. It is thus possible to compute mean and variance for a cut through the
computational domain, where the values are calculated point-by-point.

Table 2 Number of quadrature points Np contained in full tensor grid and sparse grid

Level 1 2 3
Dimension Tensor Sparse Tensor Sparse Tensor Sparse

1 3 3 5 5 7 7
2 9 5 25 17 49 45
3 27 7 125 31 343 105
4 81 9 625 49 2401 201
5 243 11 3125 71 16807 341
… … … … … … …

10 59049 21 ≈9.7e6 241 ≈2.8e8 1981
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Output PDF Reconstruction

Simulations performed with the non-intrusive probabilistic collocation method
characterize the output not directly by its PDF, but by the moments of this output
PDF, as stated above. The PDF can be reconstructed from its moments, which is
important, since the display of non-deterministic results by a mean value with an
uncertainty bar corresponding to ±σ implies a symmetric distribution around the
mean value, whereas the real system response might be characterized by a skew
distribution. To overcome this, the Pearson method [9] is used to reconstruct an
approximation of the PDF of a given output quantity from its first four moments.
Figure 1 shows a schematic of the standard PDF shapes to be selected in function of
the third and fourth statistical output moment by the Pearson method.

Scaled Sensitivity Derivatives

Another important element in the evaluation of non-deterministic solutions is the
relative influence of a given input uncertainty on the solution. This influence is
predicted by calculation of scaled sensitivity derivatives as done by [12] and
applied to the probabilistic collocation method. This increases, on the one hand, the
understanding of the system under investigation, and a variation of an uncertain
input can be directly linked to a variation in the output quantity of interest. On the
other hand, it provides an objective measure of the influence of uncertainties on the
output and allows therefore for an efficient reduction in number of uncertainties by
identifying uncertainties with little influence on the solution. This is particularly
important in systems where many uncertainties are present, and even with an
efficient sparse grid quadrature, the benefit of reducing the number of uncertainties
can be significant. On the example of a level 2 sparse grid with 10 uncertainties, if
the sensitivity analysis would show that 5 of these uncertainties have little

Fig. 1 Schematic of Pearson method
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influence, the number of simulations that needs to be performed can be reduced
from 241 to 71 as shown in Table 2.

The scaled sensitivity derivative is defined as the partial derivative of the
solution uðx ⃗, t, ξÞ with respect to the uncertain input parameter ξ, multiplied by the
standard deviation of the uncertain input parameter as:

σξi
∂uðx ⃗, t, ξÞ

∂ξi
ð9Þ

Assuming one single uncertain parameter and by introducing Eqs. (2) and (3)
into Eq. (9), the sensitivity derivative ∂u

∂ξ can be written as:

∂u
∂ξi

= ∑
Np

i=1
ui ∑

Np

j=0
j≠ i

1
ξi − ξj

∏
Np

k=1
k≠ j
k≠ i

ξ− ξk
ξi − ξk

ð10Þ

Here ξi stands for the value at collocation point i. The evaluation is done around
the nominal value. The scaled sensitivity derivative as in Eq. (9) is then obtained by
multiplying the partial derivative by the standard deviation of the input uncertainty.
This can be calculated for an arbitrary number of input uncertainties, and the
individual scaled derivatives can be compared and used to reduce the uncertainty
dimension by eliminating the uncertain variable with the lowest absolute values.

It is worth to mention that the here calculated scaled sensitivity derivatives are
equivalent to first-order approximations of the standard deviation obtained by
perturbation methods [10].

Simultaneous Operational and Geometrical Uncertainties

Another major difficulty on the way to the use of uncertainty quantification (UQ) in
a day-to-day engineering practice, after tempering the “curse of dimensionality,” is
to provide a user-friendly tool for combined operational and geometrical uncer-
tainties in a professional virtual prototyping environment. The principle is by far not
limited to CFD but could also be applied, for example, to structural mechanics or
aero-acoustics.

The use of operational uncertainties only implies modifying the boundary
conditions of a given number of CFD simulations. If a level 2 sparse grid with 10
simultaneous uncertainties is considered, then 241 individual simulations must be
initialized with correct modified boundary conditions and weights, respectively.
This process alone must be automatized and integrated to be usable in a day-to-day
engineering practice. If these 10 uncertainties include geometrical uncertainties,
based on the above example of 241 simulations to be set up, not only the boundary
conditions must be changed, but also the geometry and the mesh! This is
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completely unfeasible without an efficient integration into an engineering software
suite. An automatic generation of parameterized geometries for turbo-machinery
cases, automatic meshing, and initialization of computations in combination with
the probabilistic UQ method described above is used in this work.

Operational or geometrical uncertainties are selected in the workflow and
attributed with a PDF shape for each uncertainty. The Golub–Welsch algorithm [2]
used for the quadrature finds automatically suitable nodes and weights with respect
to the input measure.

Based on the sparse grid (or full tensor grid) detailed above, the Np individual
non-deterministic sub-computations are then set up automatically accounting for
varying boundary conditions due to operational uncertainties or varying geometry
and mesh, which are the result of geometrical uncertainties. The system of equa-
tions given by (4) is then solved without any further interference.

Manufacturing and Assembly Uncertainties

Uncertainties resulting from the manufacturing process of components cannot be
represented by considering the parameters of a parametric model as independent
random variables. The manufacturing variability, which lies within the imposed
tolerances, introduces correlations between different points on the surface, i.e.,
surface points are thus mutually dependent.

One way to account for these correlations is the use of a random field to describe
a surface. The NIPColM, however, such as many other UQ propagation methods,
cannot use dependent random variables as input in a direct way. To overcome this
and to represent the random field with a set of independent variables, principal
component analysis (PCA) is applied. In general, a truncation of the transformation
is applied to reduce the number of independent variables. The NIPColM is then
applied to the reduced orthogonal set of uncorrelated variables.

A second possibility to describe manufacturing uncertainties is by means of
correlations between engineering parameters. In analogy to the random fields, the
PCA is applied to the set of correlated variables; however, the uncorrelated set
obtained by the PCA is not truncated in this case.

Random Fields

A random field is a collection of random variables which includes their mutual
dependence, and they are thus suited to represent uncertainties resulting from
manufacturing variability. The number of random variables contained in the ran-
dom field can be either infinite, in the case of a continuous random field, or finite, in
the case of a discrete random field. A discretized geometrical surface can be defined
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as a discrete random field by considering the collection of the random variables to
be defined by the ensemble of the geometry points defining the discrete surface.

The relative influence between two random variables is expressed by the
so-called covariance.

Figure 2 shows realization of an airfoil surface considering each surface point as
an independent variable, i.e., without correlations (Fig. 2 left) and considering
correlations between the surface points (Fig. 2 right) by means of a covariance
function. It is clearly seen that correlations introduce preferential deformation
shapes on the geometry.

As mentioned above, correlated random variables such as in random fields
cannot be used directly in the NIPColM. A transformation of the correlated random
variables into a set of uncorrelated orthogonal variables is required. This is achieved
by means of a principal component analysis.

Principal Component Analysis

The principal component analysis is a method widely used to represent discrete
random fields by a reduced set of uncorrelated random variables; it is also known as
proper orthogonal decomposition (POD). The continuous version of a PCA is
known as Karhunen–Loeve Expansion (KLE) [3].

The expansion of a random field is expressed in Eq. (11)

Xt =Xt + ∑
M

k=1
ξPCAk *ϕk ð11Þ

Without any loss of generality, Eq. (11) can be modified in order to consider
only cases of zero-mean random fields ðXt =0Þ in Eq. (12).

Fig. 2 Realizations of an airfoil discretized with 200 points considering each of these points as
independent (left) or as a random field described with a covariance between each of its points
(right) (black: nominal value; colors: realizations)
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Xt = ∑
M

k=1
ξPCAk *ϕk ð12Þ

The eigenvectors are found by solving the eigenproblem on the covariance
matrix. The covariance matrix determines the covariance between each couple of
random variables contained in the random field. Its dimension is thus M ×M. As a
result, M eigenvectors of dimension 1×M and M eigenvalues are found. The
random variables ξPCAk defined by the PCA are uncorrelated. This property allows,
under the assumption of a Gaussian random field, to ensure that the random vari-
ables ξPCAk are independent. Moreover, the assumption of a Gaussian random field
leads to the conclusion that each individual random variable ξPCAk is Gaussian.

The first two moments of the probability distribution (i.e., mean and variance) of
these random variables ξPCAk are directly defined. As the random field is centered,
the random variables ξPCAk are also centered ðμ=0Þ and the variance of a Gaussian
random variable ξPCAk is equal to its corresponding eigenvalue ðσ2 = λkÞ.

In case the imposed random field is non-Gaussian, the use of the “Nataf trans-
formation” [6] allows to transform it into a Gaussian random field. The PCA can
then be applied on the transformed Gaussian random field.

The PCA output set can be used to approximate a discrete random field with a
number of random variables, which is much smaller than M. This can be achieved
by sorting the eigenvectors (i.e., the random variables) in decreasing order of their
eigenvalue. After sorting of the eigenvalues, the expansion can be truncated. The
number of remaining random variables N is chosen in order to ensure that the error
on the random field variation is kept inferior to an imposed value ϵ following
Eq. (13).

ϵ>1−
∑N

k=1 λk

∑M
k=1 λk

with λ1 > λ2 >⋯> λM ð13Þ

Correlated Parametric Uncertainties

In analogy to the random fields, the PCA is applied to the set of correlated vari-
ables, and the correlation is described by a probability distribution and a correlation
matrix. The probability distribution of each parameter and their correlation matrix
are usually determined by measurements on a set of manufactured geometries.

After application of the PCA, each eigenmode is defined as an uncertainty with a
truncated Gaussian probability distribution with a zero mean and a variance equal to
the eigenvalue. A zero mean can be assumed without any loss of generality by
considering each uncertainty as a perturbation of the geometry. Then the collocation
points are determined by the NIPColM on the orthogonal uncorrelated set of
variables that result from the PCA. For each of these collocation points, the
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deformation of each engineering parameter is computed based on the contribution
of each of the eigenmodes and the resulting deformation corresponds to a Gaussian
random field. Again if the PDF is non-Gaussian, the Nataf transformation is
applied. The deformation is then added to the mean value of the parameter to
determine the geometry of each collocation point.

Application to Rotor 37

The uncertainty quantification tool chain is applied to the NASA Rotor 37. Detailed
description of geometry, experimental setup, and a series of simulations
cross-plotting the predictions can be found in [1]. Figure 3 shows the measurement
sections and geometry of rotor 37.

Several operation points are run in order to build a performance curve. The static
outlet pressure values used to this purpose are given in Table 3.

Fig. 3 Rotor 37 measurement sections [1]

Table 3 Operating points for
rotor 37 performance map

Running point Static outlet pressure (Pa)

1 99,215
2 110,000
3 114,074
4 119,035
5 121,033
6 123,008
7 124,027
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Simulations are performed with the flow solver FINETM/Turbo [8], and the
uncertainty quantification methodology described above is integrated into FINETM/
Design3D. RANS equations and Spalart–Allmaras turbulence model are solved at a
constant rotating hub speed of 17,188 rpm. The convergence of each computation
is assessed by the global residuals (sum of all the residuals) and the evolution of the
mass flow through the computation domain (cf. Fig. 4). As the residuals decrease of
4 orders of magnitude and the error on the mass flow is below 0.025%, the CFD
computation is converged. All the CFD computations used for non-deterministic
simulations have the same level of convergence.

The developed tool chain is used to create non-deterministic sub-computations
accounting for simultaneous operational and geometrical uncertainties. These
simulations are set up in an automatic process accounting for the correct combi-
nation of boundary condition modifications due to operational uncertainties and
modified geometries due to geometrical uncertainties. For each of these simulations,
the correct geometry is built and meshed with Autogrid™, by keeping the number
of cells and the global mesh topology constant. Figures 5 and 6 illustrate, on the

Fig. 4 Convergence for the deterministic computation: (left) root mean square of the global
residuals; (right) evolution of the mass flow

Fig. 5 Global geometry view for tip gap. Circle identifying location of tip gap mesh shown in this
figure
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example of a varying tip gap, the automatic mesh generation process. Figure 5
shows a global view of the geometry with the tip gap, while Fig. 6 (left) shows the
mesh generated with the smallest tip gap and Fig. 6 (right) the mesh generated with
the largest tip gap.

Application of Simultaneous Operational and Geometrical
Uncertainties

Industrial configurations are characterized by a multitude of operational and geo-
metrical uncertainties, which can exceed the number of feasible uncertainties even
with sparse grid quadrature. The above-developed methodology and especially the
use of scaled sensitivities gives a valuable insight into the importance of individual
uncertainties on the non-deterministic results. Based on the work in [13], where the
trailing edge angle and a span-wise discretization of the blade angles were found to
have little influence, the uncertainty model given in Tables 4 and 5 is applied to the
rotor 37. Uncertainties on the total inlet pressure, static outlet pressure, tip gap,
leading edge angle, and leading edge radius are defined.

This definition of uncertainties on the rotor 37 is also part of the novel database
of industrial challenges with prescribed uncertainties, described in chapter
“UMRIDA Test Case Database with Prescribed Uncertainties” of the present book.

Fig. 6 (left) Geometry and automatically generated mesh with smallest tip gap. (Right) Geometry
and automatically generated mesh with largest tip gap

Table 4 Operational uncertainties imposed on the rotor 37

Uncertainty Most likely
value (m)

Minimum value
(%) (m)

Maximum value
(%) (m)

PDF type

Inlet total
pressure

Table at station
1 [9]

98 102 Symmetric
beta-PDF

Static outlet
pressure

Table 3 in this
document

98 102 Symmetric
beta-PDF
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Simulations are performed on a structured full hexahedral mesh, which consists
of 2.8 million mesh points, and the CPU-Booster in FINETM/Turbo is used to
accelerate the convergence.

The non-deterministic analysis was performed accounting for the uncertainties as
described in Tables 4 and 5, with a level 2 sparse grid (5 collocation points per
uncertainty direction), which results in 71 collocation points per UQ run. For
comparison and to show the convergence in function of the sparse grid level,
additional simulations are performed with level 1 (3 collocation points per uncer-
tainty direction) and level 3 (7 collocation points per uncertainty direction) sparse
grids, resulting in 11 and 341 collocation points per run, for levels 1 and 3,
respectively.

In order to build a performance curve, the 7 operating points from Table 3 were
run. One single simulation was performed in approximately 10 min clock time on
16 parallel cores, which corresponds to 0.95CPUh-core/Million points per simu-
lation. Table 6 compares the computation times needed for one operating point and
for the performance curve with 7 operating points in function of the sparse grid
level, accounting for 5 simultaneous uncertainties.

Total pressure ratio and efficiency over mass flow rate.

Accounting for simultaneous operational and geometrical uncertainties as described
in Tables 4 and 5, the total pressure ratio and efficiency are plotted over the mass
flow rate for the 7 operating points listed in Table 3 and displayed in Figs. 7 and 8,
respectively.

Table 5 Geometrical uncertainties imposed on the rotor 37

Uncertainty Most likely value (m) Minimum
value

Maximum
value

PDF type

Leading edge
angle

LEangle nominal value
from geometry

95% m 105% m Symmetric
beta-PDF

Leading edge
radius

LEradius nominal value
from geometry

90% m 110% m Symmetric
beta-PDF

Tip clearance Mtip = 0.356 mm 50% Mtip 150% Mtip Symmetric
beta-PDF

Table 6 Computation time needed for non-deterministic runs in function of sparse grid level, for
5 simultaneous uncertainties

Sparse grid
level

No. of simulations for 1
operating point

CPU h-core 1
operating point

CPU h-core
performance curve

1 11 29.3 205
2 71 189.3 1325
3 341 909.3 6365
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As seen in Figs. 7 and 8, the non-deterministic mean is not equal to the result of
the deterministic simulation. The deterministic simulation corresponds to a standard
CFD simulation where all parameters are set to their nominal values. Figure 8
shows the usual underestimation of the efficiency for this test case in the order of
2%, and the non-deterministic simulation shows slightly lower efficiencies, while
the maximum value is shifted to a lower mass flow rate. Displaying these results
with mean and standard deviation implies a symmetric distribution of the system
response around this mean. Thus assuming a Gaussian distribution, ±σ corresponds
the range into which roughly 68% of the results fall. This is the standard approach
for displaying these kinds of results, which however is misleading in case the output
distribution is not symmetric around the mean.

Indeed, if the first four statistical output moments are calculated and the Pearson
approach for PDF reconstruction is applied, it becomes apparent that the results
plotted in Figs. 7 and 8 are not symmetrically distributed around the mean. Table 7

Fig. 7 Absolute total
pressure ratio over mass flow
for 7 operating points defined
in Table 3 and accounting for
the 5 operational and
geometrical uncertainties
listed in Tables 5 and 6. UQ
bars are ±σ

Fig. 8 Isentropic efficiency
over mass flow for 7
operating points defined in
Table 3 and accounting for
the 5 operational and
geometrical uncertainties
listed in Tables 5 and 6. UQ
bars are ±σ
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lists the higher output moments for mass flow, total pressure ratio, and isentropic
efficiency for the operating point at 98% of the choke mass flow. Figure 9 displays
these values in terms of the normalized third (squared skewness) and fourth (kur-
tosis) moment in a sketch of a Pearson diagram for PDF reconstruction. It must be
noted that the higher moments (skewness and kurtosis) are not zero and the dis-
tributions are consequently not symmetric, due to nonzero skewness.

Figures 10 and 11 display on the example of the operating point at 98% of the
choke mass flow the reconstructed PDFs for total pressure ratio and isentropic
efficiency, respectively. The reconstructed PDFs are compared with the mean value
and their centered standard deviation to underline the misleading assumption of
symmetric distribution of the system response.

Scaled sensitivities in function of operating point.

The evaluation of scaled sensitivities is extremely useful in the analysis of the
non-deterministic simulation analysis as it provides an objective criterion for the
influence of a given uncertainty on the non-deterministic output. Figures 12 and 13
show the scaled sensitivities on the total pressure ratio and efficiency for the 5
uncertainties included in this study at 3 different operating points: 95.48, 98, and
99.96% of the choke mass flow. It can be seen that for all two quantities the scaled
sensitivity in dependence of the leading edge angle changes its sign for the oper-
ating point at 95.48% of the choke mass flow. While it is negative for the other two

Table 7 Higher output moments for mass flow, total pressure ratio, and isentropic efficiency for
the operating point at 98% of the choke mass flow

Mean Variance Skewness Kurtosis

Mass flow (kg/s) 20.444 0.0597 5.6648e−3 9.352e−3
Total pressure ratio (–) 2.087 1.0087e−4 −7.0768e−7 3.1617e−8
Efficiency (–) 0.850 3.1463e−5 −4.3184e−7 1.0205e−8

Fig. 9 Pearson diagram, showing the normalized third (squared skewness) and fourth (kurtosis)
moment for the operating point at 98% of the choke mass flow. Blue cross: mass flow, black star:
total pressure ratio, red triangle: isentropic efficiency
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Fig. 10 Reconstructed PDF
for total pressure ratio for
operating point at 98% of
choke mass flow.
Reconstructed PDF (solid
line), mean with centered ±σ
(point with UQ bar)

Fig. 11 Reconstructed PDF
for efficiency for operating
point at 98% of choke mass
flow. Reconstructed PDF
(solid line), mean with
centered ±σ (point with UQ
bar)

Fig. 12 Scaled sensitivities
for total pressure ratio at three
different operating points

Fig. 13 Scaled sensitivities
for efficiency at three different
operating points
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operating points, it is positive for this lowest mass flow operating point. This means
that increasing the leading edge angle leads to an increase in mass flow, total
pressure ratio or efficiency, while increasing the leading edge angle for the other
two operating points leads to a decrease in mass flow, total pressure ratio or
efficiency.

Pitch-wise averaged quantities at 98% choke mass flow.

In Figs. 14 and 15, the pitch-wise averaged total pressure ratio and efficiency are
evaluated at station 4 of the experimental setup of the rotor 37 and compared with
the deterministic prediction and experimental data given in [1]. It is seen that the
deterministic value differs from the non-deterministic mean. It should be noted that
in these plots the mean and standard deviation only are plotted, where the standard

Fig. 14 Non-deterministic
absolute total pressure ratio
plotted over normalized span
at a downstream position of
the rotor blade in comparison
with deterministic results and
experimental data. UQ bars
are ±σ

Fig. 15 Non-deterministic
isentropic efficiency plotted
over normalized span at a
downstream position of the
rotor blade in comparison
with deterministic results and
experimental data. UQ bars
are ±σ

160 D. Wunsch et al.



distribution is centered on the mean value. As seen from the previous section, the
bars should be drawn such that they account for asymmetry of the distributions.

Influence of sparse grid level.

Table 8 shows on the example of the operating point at 98% of the choke mass flow
that the mean and variances of the mass flow converge with a level 1 sparse grid for
this test case. For higher levels, the question of output moment convergences arises.
For this operating point, Table 9 lists the higher output moments of the mass flow
in function of the sparse grid level and Fig. 16 shows the projection on the Pearson
diagram, while Fig. 17 shows the reconstructed PDFs in function of the sparse grid
level.

A level 1 sparse grid is sufficient if only mean and variance are of interest.
However, it is seen in Fig. 14 that a level 1 sparse grid is not sufficient to recon-
struct correctly the output PDFs and higher levels are needed. With a level 3, the
higher output moments still vary but the shape of the PDF is already reasonably
well represented. A level 2 sparse grid leads to an error in the variance which is
three times smaller than the initial approximation error by the parametric model for
the variance. Comparing the reconstructed PDFs, a level 2 sparse grid could thus be
considered as sufficient for most UQ studies, except when the exact shape of the
output PDF must be determined with high precision, such at the tail of the
distribution.

Table 8 Higher output moments for mass flow at the operating point at 98% of the choke mass
flow comparing dependence on sparse grid level

Level Mean Variance Skewness Kurtosis

1 20.437 0.055 0.0113 0.0061
2 20.444 0.060 −0.00567 0.0094
3 20.440 0.062 −0.0055 0.0127
Ratio Mean Variance Skewness Kurtosis

L2/L1 (%) 100.03 108.91 −50.62 153.96
L3/L2 (%) 99.98 103.30 96.29 135.82

Table 9 Parameters for the covariance models used

Name Cov. length
(m) (=l)

Variance
(=σ2)

Accuracy
(=1− εÞ

Nb modes
(=N)

Nbcolloc points

SG lvl
1

SGlvl
2

Model A 0.05 1E−8 0.99 5 11 71

Model B 0.05 1E−6 0.99 5 11 71

Model C 0.025 1E−8 0.99 12 25 337
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Manufacturing Uncertainties as Random Fields
of the Blade Surface

In the following, the compressor blade surface points are considered as a random
field. The covariance matrix between these points, which is needed to compute the
PCA and therefore propagate the uncertainties with the NIPColM, is determined
based on a square exponential covariance function (Eq. (14)).

CovðdÞ= σ2 * exp −
d2

2l2

� �
ð14Þ

• where d is the distance between two points;
• CovðdÞ is the covariance function depending on a distance d;
• σ2 is the variance of the covariance function;

Fig. 16 Pearson diagram, showing the normalized third (squared skewness) and fourth (kurtosis)
moment for the operating point at 98% of the choke mass flow. Green cross: level 1, blue star: level
2, purple triangle: level 3

Fig. 17 Reconstructed PDF for mass flow for operating point at 98% of choke mass flow.
Reconstructed PDF in function of sparse grid level: level 1 (green dashed-point line), level 2 (solid
blue line), level 3 (purple dashed line)
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• l is the covariance length.

The two parameters used in this function (σ2 and l) can be linked to physical
properties of the random field: The variance σ2 is directly proportional to the
maximal amplitude of deformation induced by the random field. A high value of
this parameter corresponds to a high deformation, and its variation has no influence
on the shape of the deformation. The covariance length l represents the distance
in-between two geometrical points for which a non-negligible correlation exists.
Changing the covariance length changes the shape of the covariance function. If the
covariance length is zero, the uncertainties are considered as independent and thus
very wavy shapes are possible and if the covariance length is infinite, the resulting
uncertainty is represented with 1 mode corresponding to a translation applied on all
the geometrical points.

Three different models are used for the comparison and the model parameters are
given in Table 9. The influence of the variance and covariance length is shortly
shown in the following. The accuracy of the reconstruction, which is used to
truncate the expansion of the PCA, is kept at 99%, which was proven to be suffi-
cient [7]. The reader may refer to [7] for more details.

Influence of Variance.

Comparison of models A and B, where model B varies the variance by a factor 100,
shows on the example of the first 30 eigenvalues that their cumulative contribution
is identical, as seen in Fig. 18. This means that the order of the modes is not
influenced by the variance magnitude, but it scales by a factor 100.

Influence of the Covariance Length.

Comparison of models A and C, where model C varies the covariance length by a
factor 2 shows at the example of the first 20 eigenvalues that the cumulative value

Fig. 18 Order, magnitude, and cumulative value of eigenvalues comparing model A and B
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varies with the number of modes, when comparing model A and C as seen in
Fig. 19. This is inherently different from the influence of the variance. With an
increasing covariance length more eigenvalues are needed to reach the same
reconstruction accuracy as in the reference case of model A.

Table 10 shows the first four moments for the pressure ratio and the isentropic
efficiency. The mean value for the pressure ratio and the isentropic efficiency does
not change by more than 0.03%. The response surface is quasi-linear, given the
maximal deformation imposed. For both models, the reduced skewness is close to
zero and the reduced kurtosis is close to 3. This indicates that the resulting PDFs are
close to Gaussian distributions.

The shape of the PDF can also be deduced from the linearity of the response
surface. Indeed, as the input PDF is a Gaussian distribution and that the response
surface is linear, it can be concluded that the output PDF is close to a Gaussian
distribution. This information is important as it can allow to limit the UQ study to a
sparse grid level 1 instead of a sparse grid level 2, which as seen above results in a
decrease in the computational cost.

Figure 20 shows the reconstructed PDF for the pressure ratio and the isentropic
efficiency for models A and C. The PDF reconstruction shows that the model with a
smaller covariance length leads to a wider PDF. This is due to the fact that the
cumulative value of the eigenvalues grows slower for model C, i.e., the most
influential eigenmodes for model C have higher eigenvalues compared with model
A (except for mode 1), and thus larger deformations than the most influential modes
for the model A.

Fig. 19 Order, magnitude, and cumulative value of eigenvalues comparing model A and C
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Influence of the Mode Selection for the UQ Study.

As shown in Fig. 21, the most influential modes on the geometry are not necessarily
the most influential modes on different output quantities. This gives particular
importance to the percentage of surface reconstruction used, and reconstruction
accuracies 95, 99, and 99.9% are compared.

Table 10 First four moments for pressure ratio for models A and C

Cov. length (m) Mean Variance Reduced skewness Reduced kurtosis

0.05 2.0860 1.0180E−05 0.0854 2.8336
0.025 2.0857 1.7566E−05 0.0420 2.9447
Ratios 0.05/0.025 (%) 1.0002 57.953 203.441 96.227

Fig. 20 PDF reconstruction for pressure ratio (left) and isentropic efficiency (right) for models A
and C

Fig. 21 Scaled sensitivity derivatives for the 20 first modes (corresponds to 99.9% of the
geometry variation) for the total pressure ratio (left) and the isentropic efficiency (right)
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Figure 22 shows the reconstruction of the PDFs accounting for 95, 99, and
99.9% of surface reconstruction accuracy for total pressure ratio and isentropic
efficiency, and it is clearly seen that 95% of surface accuracy is not sufficient and
99% must be recommended based on this work.

Conclusions

An industry-ready uncertainty quantification tool chain is developed and success-
fully applied to both simultaneous operational and geometrical uncertainties and to
uncertainties resulting from manufacturing variability, where manufacturing
uncertainties are characterized by correlations of the manufactured surfaces. The
non-intrusive probabilistic collocation method is combined with a sparse grid
approach to drastically reduce the computational cost. If the mean and variance of
output quantities are sought, 10 simultaneous uncertainties can be propagated by
running 21 runs of a 3D CFD code making use of the sparse grid technique,
whereas without sparse grid technique 59049 CFD runs would be needed. The
sparse grid technique is thus one of the key features that make UQ in industrial
applications feasible. A second required element is the automatization of the entire
simulation chain, from uncertainty definition, simulation setup, post-processing and
in case of geometrical uncertainties, geometry modification and re-meshing. This
process is fully automated including the post-processing of the UQ simulations,
which consists of output PDF reconstruction and the calculation of scaled sensi-
tivity derivatives, very useful for the understanding and analysis of the simulations
or dimension reduction of the problem.

This tool chain is applied to the rotor 37, demonstrating its capability of handling
many simultaneous operational and geometrical uncertainties in turnaround times
significantly below the UMRIDA quantitative objective of less than 10 h for 10
simultaneous uncertainties on 100 cores. It is shown that a level 1 sparse grid is

Fig. 22 Reconstructed PDFs 95, 99, and 99.9% of the geometry variation kept for the total
pressure ratio (left) and isentropic efficiency (right)
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sufficient if the mean and variance of output quantities are needed and a level 2
sparse grid is sufficient for the reconstructed PDF shape for most engineering
applications. Manufacturing uncertainties are treated in two ways, first, where the
manufactured surface is considered as a random field and the covariance matrix of
the random field introduces the correlation of the individual surface points and
second, as correlated engineering parameters. In both cases, a principal component
analysis is used to transform the uncertainties into an uncorrelated set of random
variables. Both studies show that the variation of manufacturing uncertainties is
rather small due to the imposed manufacturing tolerances and output PDFs are
generally close to Gaussian. A level 1 sparse grid can be used for the propagation of
manufacturing uncertainties. It is shown that the eigenmodes which have the big-
gest influence on the surface reconstruction are not necessarily the modes with the
biggest influence on the prediction of output quantities and that the most influential
modes vary between quantities as shown at the example of isentropic efficiency and
total pressure ratio. As a conclusion, a surface reconstruction accuracy of 99%
seems necessary for the purpose of UQ studies on manufacturing variability.
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Non-intrusive Uncertainty Quantification
by Combination of Reduced Basis
Method and Regression-based
Polynomial Chaos Expansion

Mehrdad Raisee, Dinesh Kumar and Chris Lacor

Introduction

Uncertainty in the design and operation of engineering problems may arise from

various sources. The uncertainties in physical properties of materials and inevitable

randomness in boundary conditions and geometries, as well as physical models

uncertainties, are a few examples of such uncertainties that can significantly restrict

the reliability of deterministic designs. Gas, steam, wind, and hydraulic turbines are

examples of engineering devices that their operational condition and geometry might

be uncertain. Design of these turbomachines using deterministic computations may

fail in the presence of uncertainties. For a reliable design based on computational

fluid dynamics (CFD) predictions, it is necessary to include all sources of uncer-

tainty in the analysis and design process. However, CFD simulation of flows in real-

world engineering problems requires a fine 3D computational mesh, small time-step,

and high-dimensional stochastic space in the case of a large number of random vari-

ables. These dramatically increase the computational cost which is not desirable for

design proposes, highlighting the need for employing robust numerical schemes for

stochastic analysis of complex industrial flows. While efficient numerical methods

for the spatial and temporal discretization of the Navier–Stokes equations are well
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developed, effective numerical schemes for stochastic discretization are still rare

(see, e.g., [1, 2]).

In the literature, various techniques have been proposed for uncertainty quantifi-

cation (UQ). The Monte Carlo (MC) approach [3] is widely used for UQ because of

its simplicity and its superior property that the convergence rate does not depend on

the number of stochastic dimensions. Unfortunately, the conventional MC methods

converge slowly and often require a large number of realizations to achieve reason-

able accuracy and thus are impractical for problems with a large number of uncer-

tainties. Over the recent years, a number of other UQ approaches have been devel-

oped to represent and propagate uncertainties in engineering problems with a large

number of uncertainties. Some examples of commonly developed UQ methods are:

the multi-level Monte Carlo [4], the method of moments or the perturbation method

[5], and polynomial chaos expansion (PCE) [6, 7]. All these techniques have pos-

itive and negative features, and no single technique is optimal for all applications.

Following our previous work on UQ [8, 9], we focused on the PCE approach to

model uncertainty propagation. PCE methods have been successfully applied to var-

ious structural and solid mechanics problems by several researchers [6, 10]. Poly-

nomial chaos (PC) schemes have also been employed to fluid flow and heat transfer

problems [7, 8, 11–13]. The polynomial chaos representation can be implemented

through either intrusive or non-intrusive methods. The intrusive approach involves

the substitution of all uncertain variables in the governing equations with the polyno-

mial expansions consisting of P + 1 = (p + ns)!∕p!ns! unknown coefficients, where

ns is the number of stochastic dimensions and p is the polynomial order. Taking the

inner product of the equations yields P + 1 times the number of original equations

that can be solved by the same numerical schemes applied to the original deter-

ministic system. This requires the modification of the CFD codes, and it may be

difficult, expensive, and time-consuming for many CFD problems. Moreover, the

sources of most commercial codes are not accessible, and thus, it is not feasible

to implement the intrusive PC approach in such deterministic codes. For these rea-

sons, here, we focused on non-intrusive polynomial chaos (NIPC) methodology for

UQ. The NIPC method performs repeated simulations using deterministic solver

on limited number of samples which are chosen properly. Then, the polynomial

chaos expansion of output is constructed using deterministic solver evaluations. The

two main NIPC approaches used for UQ in CFD are spectral projection (sampling-

based and quadrature-based) and regression-based methods. The application of these

NIPC schemes to model stochastic problems can be found in [14, 15]. In the present

study, the regression-based NIPC scheme, introduced in section “Regression-Based

Polynomial Chaos Expansion,” is used for the evaluation of PCE coefficients. The

main weakness of all NIPC methods is the curse of dimensionality. In recent years,

some alternative methodologies such as sparse polynomial chaos [16], sparse grid

techniques [17], compressive sampling [18], and reduced models [1, 2] have been

developed to break the curse of dimensionality. In the framework of the EU FP7

project UMRIDA, this study focuses on the development of an efficient reduced basis

model for UQ. In recent years, several model reduction techniques have been pro-

posed for uncertainty quantification. Two examples of such works are [1, 2]. In [2],
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a generalized spectral decomposition (GSD) was proposed that gives the reduced

basis independent of the stochastic discretization scheme. In this method, the solu-

tion of the stochastic problem is first approximated as the summation over the product

of deterministic functions and random variables. The reduced basis functions then

appear as the solutions of a pseudo-eigenvalue problem whose dominant eigenspace

is associated with the desired optimal basis. In the final form of GSD, the solution

of only a few uncoupled deterministic problems and a few stochastic algebraic equa-

tions is required for the computation of deterministic functions and random variables.

As shown in [2], the implementation of GSD to a class of stochastic partial differen-

tial equations (SPDE) leads to drastic computational saving, although it does not cir-

cumvent the curse of dimensionality. In [1], an intrusive model reduction technique

was proposed for chaos representation of a SPDE to tackle the curse of dimensional-

ity. They applied it successfully to a 2D solid mechanics problem with randomness

in the elastic modulus where for a third-order PC (p = 3), they could reduce the num-

ber of basis functions to 5 as compared to P = 165 in the “standard PCE” using a

basis of the classical polynomials of the Askey scheme.

In this study, a regression-based non-intrusive reduced basis technique is devel-

oped. The model can be interpreted as a multi-level/multi-fidelity approach, where

many low-fidelity model evaluations are combined with few high-fidelity evalua-

tions to ensure accurate results at a lower CPU cost. In the framework of polynomial

chaos, such ideas are also explored by Palar et al. [19] and Ng and Eldred [20].

The remaining part of this paper is organized as follows: In section

“Regression-Based Polynomial Chaos Expansion,” the regression-based polynomial

chaos expansion is described. The model reduction methodology is presented in

section “Reduced Basis Methodology.” In section “Results and Discussion,” the

numerical results are presented and discussed. Finally, the main findings of the

present paper are summarized in section “Conclusions.”

Regression-Based Polynomial Chaos Expansion

Let assume u(xxx;𝜉𝜉𝜉) is the response of a stochastic system with ns random variables

𝜉𝜉𝜉 = {𝜉i}
ns
i=1. In PCE, the uncertain output u(xxx;𝜉𝜉𝜉) is decomposed into separable deter-

ministic and stochastic components as:

u(xxx;𝜉𝜉𝜉) =
P∑

i=0
ui(xxx)𝜓i(𝜉𝜉𝜉), (1)

where the total number of output modes, P + 1 = (p + ns)!∕p!ns!, is a function of

the order of polynomial chaos (p) and the number of random dimensions (ns).
The 𝜓i(𝜉𝜉𝜉)’s are orthogonal polynomials with respect to the probability density

function (PDF) of input random variables 𝜉𝜉𝜉:
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⟨𝜓i𝜓j⟩ = ⟨𝜓2
i ⟩𝛿ij. (2)

The quadrature-based NIPC scheme may be used for the evaluation of polynomial

chaos expansion. However, the application of tensor–product quadrature approach

for multi-dimensional problems suffers the curse of dimensionality since the required

number of model evaluations grows exponentially with the number of random

dimensions ns (i.e., (p + 1)ns ). Although sparse quadrature rules are more efficient,

still they are impractical for the stochastic problems with high dimensions. A more

affordable NIPC scheme to find the response surface of the output is the regression
method. The regression-based NIPC method starts with Eq. (1). To establish a closed

system, P + 1 sample points (𝜉𝜉𝜉s, s = 1, 2,… ,P + 1) are generated in the stochastic

space for a given PCE with P + 1 unknown coefficients and the stochastic function,

u(xxx;𝜉𝜉𝜉), is evaluated at these sampling points. This yields the following linear system

of equations:

⎛
⎜
⎜
⎜
⎜
⎜⎝

𝜓0(𝜉𝜉𝜉
1) ⋯ 𝜓i(𝜉𝜉𝜉

1) ⋯ 𝜓P(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
𝜓0(𝜉𝜉𝜉

s) ⋯ 𝜓i(𝜉𝜉𝜉
s) ⋯ 𝜓P(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

𝜓0(𝜉𝜉𝜉
P+1) ⋯ 𝜓i(𝜉𝜉𝜉

P+1) ⋯ 𝜓P(𝜉𝜉𝜉
P+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛹 (𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

u0(xxx)
⋮

ui(xxx)
⋮

uP(xxx)

⎞
⎟
⎟
⎟
⎟⎠

⏟⏟⏟
U

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉P+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
b

, (3)

or

𝛹U = b. (4)

The least squares solution of the linear system (3) is U = (𝛹T𝛹 )−1𝛹Tb.

Consistent with the literature (e.g., Hosder et al. [21]), we found that oversampling

with 2(P + 1) model evaluations is necessary to obtain satisfactory results for the

PCE. In principle, the sample points can be chosen freely. However, while random

sampling is the simplest, its major disadvantage is that the sample points may not

be space filling. This will have a repercussion on the accuracy of the results. An

alternative to the random sampling technique is the Latin hypercube sampling (LHS)

which offers better space filling characteristics. The basic idea is to divide the range

of each random variable into n bins of equal probability and then to generate N
samples such that, for each random variable, no two values should lie in the same bin.

However, LHS suffers from a major difficulty. Indeed, the accuracy of the LHS-based

estimates cannot be increased incrementally, i.e., by adding new sample points to

the already existing LHS sample set, since the new set will not be a Latin hypercube

anymore. An efficient method to build adaptive space filling design is the quasi-

random sampling (e.g., Hammersley, Halton, Sobol). In quasi-random sequences, a

deterministic sequence of points is generated. The main idea of using a quasi-random

sequence is to reduce the discrepancy of the sets of points. In the present work, the

coefficients of the PCEs are estimated by the regression-based NIPC, using the Sobol

sampling scheme [22].
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Due to the orthogonality of the basis, it is straightforward to show that the mean

is ⟨u(xxx;𝜉𝜉𝜉)⟩ = u0, and the variance of the response reads as:

𝜎2 = Var

( P∑

i=0
ui(xxx)𝜓i(𝜉𝜉𝜉)

)
=

P∑

i=1
u2i ⟨𝜓i𝜓i⟩. (5)

Reduced Basis Methodology

The above classical PCE (i.e., Eq. (1)) does not represent an optimal PC representa-

tion of u(xxx;𝜉𝜉𝜉). The optimal chaos expansion is the Karhunen–Loève (KL) expansion

(also known as proper orthogonal decomposition (POD)). However, this requires

the knowledge of the covariance of the solution, which is unknown. Assuming that

the behavior in spatial and random space can be decoupled, the covariance can be

obtained via inexpensive calculations on a coarse grid. The size of coarse grid, nec-

essary for the estimation of the optimal basis, can be identified through mesh adap-

tation in the spatial domain of the problem. Next, the problem can be solved on a fine

mesh using the previously defined optimal basis {zi(𝜉𝜉𝜉)}mi=0 where m is the number

of dominant eigenvalues. This indicates that the dimensionality of the KL expansion

can be reduced.

The first step in the model reduction scheme is to find an optimal basis using

POD, a well-known procedure for extracting basis functions using an ensemble of

realizations. To this end, suppose, on a fine grid, expression (6) represents an optimal

chaos expansion of the stochastic field u(xxx;𝜉𝜉𝜉):

u(xxx;𝜉𝜉𝜉) − ⟨u(xxx;𝜉𝜉𝜉)⟩ =
m∑

i=1
ûi(xxx)zi(𝜉𝜉𝜉), (6)

where the mean function is the coefficient of the zeroth-order basis (i.e., ⟨u(xxx;𝜉𝜉𝜉)⟩ =
û0) and {zi(𝜉𝜉𝜉)}mi=0 are the m + 1 dominant modes, forming the optimal basis.

On the coarse grid, the covariance matrix C(xxxi,xxxj) of the stochastic field can be

obtained from:

C(xxxi,xxxj) =
P∑

k=1
uk(xxxi)uk(xxxj)⟨𝜓2

k ⟩, (7)

where uk’s are the classical PCE coefficients obtained using Eq. (3) on the coarse

grid.

The corresponding eigenvalues 𝜈i and eigenfunctions 𝜙i(xxx) are the solution of the

following eigenvalue problem:

C𝜙i = 𝜈i𝜙i. (8)
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For a coarse mesh with n grid nodes the n × n covariance matrix has the following

form:

C =

⎛
⎜
⎜
⎜
⎜
⎜⎝

∑P
k=1 u

2
k(xxx1)⟨𝜓

2
k ⟩ ⋯

∑P
k=1 uk(xxx1)uk(xxxn)⟨𝜓2

k ⟩
⋮ ⋮ ⋮∑P

k=1 uk(xxxi)uk(xxx1)⟨𝜓2
k ⟩ ⋯

∑P
k=1 uk(xxxi)uk(xxxn)⟨𝜓2

k ⟩
⋮ ⋮ ⋮∑P

k=1 uk(xxxn)uk(xxx1)⟨𝜓2
k ⟩ ⋯

∑P
k=1 u

2
k(xxxn)⟨𝜓

2
k ⟩

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (9)

For a large value of n ≫ P, the solution of the above eigenvalue problem is time-

consuming and requires a large amount of memory for the data storage. To overcome

this problem, one can notice that the covariance matrix C is symmetric and thus can

be decomposed as:

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

u1(xxx1)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxx1)

√
⟨𝜓2

P⟩
⋮ ⋮ ⋮

u1(xxxi)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxxi)

√
⟨𝜓2

P⟩
⋮ ⋮ ⋮

u1(xxxn)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxxn)

√
⟨𝜓2

P⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y(n×P)

⊗

⎛
⎜
⎜
⎜⎝

u1(xxx1)
√

⟨𝜓2
1 ⟩ ⋯ u1(xxxi)

√
⟨𝜓2

1 ⟩ ⋯ u1(xxxn)
√

⟨𝜓2
1 ⟩

⋮ ⋮ ⋮ ⋮ ⋮

uP(xxx1)
√

⟨𝜓2
P⟩ ⋯ uP(xxxi)

√
⟨𝜓2

P⟩ ⋯ uP(xxxn)
√

⟨𝜓2
P⟩

⎞
⎟
⎟
⎟⎠

,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

YT (P×n)

(10)

where the P × n matrix YT
is the transpose of the n × P matrix Y .

Substitution of the above decomposition in Eq. (8) and multiplication by YT
yields:

YTY(YT𝜙i) = 𝜈i(YT𝜙i), (11)

This indicates that YTY has eigenfunctions YT𝜙i and the same eigenvalues as C.

However, YTY is only a P × P matrix, and thus, it is less expensive to find the eigen-

values and corresponding eigenfunctions than from the original covariance matrix

C. This makes the size of the eigenvalue problem independent of the coarse grid

size. By computing the eigenvalues from Eq. (11), the upper limit m in Eq. (6) can

be found by the size of the dominant eigenspace (11) such that
∑m

i=1𝜈i∕
∑

i 𝜈i is suf-

ficiently close to unity. In this work, the upper limit m is chosen to be the minimum

integer such that
∑m

i=1𝜈i∕
∑

i 𝜈i ≥ 𝜀 for a given 𝜀 (for instance 𝜀 = 0.99).

Having obtained ui(xxx) from the regression-based NIPC (Eq. 3) on the coarse grid

and eigenfunctions 𝜙i(xxx) from the solution of the eigenvalue problem (11), the set
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of optimal basis functions {zi(𝜉𝜉𝜉)}mi=0 can now be recasted as a linear combination of

the set of classical polynomial chaos functions; {𝜓i(𝜉𝜉𝜉)}Pi=1 using the following scalar

product:

zi(𝜉𝜉𝜉) = [u(xxx;𝜉𝜉𝜉) − ⟨u(xxx)⟩, 𝜙i(xxx)] =
P∑

j=1
𝛼ij𝜓j(𝜉𝜉𝜉), (12)

where the coefficients 𝛼ij are obtained via the scalar product:

𝛼ij =
∫R

uj(xxx)𝜙i(xxx)d ⃖⃗xxx. (13)

The m + 1 unknowns ûi’s in the optimal expansion can be obtained by substitu-

tion of m + 1 random vectors (𝜉𝜉𝜉
s
, s = 1,… ,m + 1) and the corresponding stochastic

outputs u(xxx;𝜉𝜉𝜉s) in Eq. (6). This yields the following linear system of equations:

⎛
⎜
⎜
⎜
⎜
⎜⎝

z0(𝜉𝜉𝜉
1) ⋯ zi(𝜉𝜉𝜉

1) ⋯ zm(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
z0(𝜉𝜉𝜉

s) ⋯ zi(𝜉𝜉𝜉
s) ⋯ zm(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

z0(𝜉𝜉𝜉
m+1) ⋯ zi(𝜉𝜉𝜉

m+1) ⋯ zm(𝜉𝜉𝜉
m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Z(𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

û0(xxx)
⋮

ûi(xxx)
⋮

ûm(xxx)

⎞
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (14)

Using Eqs. (12), (14) can be re-expressed as:

⎛
⎜
⎜
⎜
⎜
⎜⎝

z0(𝜉𝜉𝜉
1) ⋯

∑P
j=1 𝛼ij𝜓j(𝜉𝜉𝜉

1) ⋯
∑P

j=1 𝛼mj𝜓j(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
z0(𝜉𝜉𝜉

s) ⋯
∑P

j=1 𝛼ij𝜓j(𝜉𝜉𝜉
s) ⋯

∑P
j=1 𝛼mj𝜓j(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

z0(𝜉𝜉𝜉
m+1) ⋯

∑P
j=1 𝛼ij𝜓j(𝜉𝜉𝜉

m+1) ⋯
∑P

j=1 𝛼mj𝜓j(𝜉𝜉𝜉
m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Z(𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

û0(xxx)
⋮

ûi(xxx)
⋮

ûm(xxx)

⎞
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (15)

The matrix Z, containing the optimal basis, is already known from Eqs. (3) and (13),

and the right-hand side of Eq. (15) can be found from m + 1 runs of the deterministic

solver at 𝜉𝜉𝜉
1
,… , 𝜉𝜉𝜉

s
,… , 𝜉𝜉𝜉

m+1
on the fine mesh. Thus, the expansion coefficients ûi(xxx)

are obtained by the solution of the above linear system. Here, again oversampling is

required. Following the approach used in the regression-based NIPC analysis, 2(m +
1) sample points were found adequate to give acceptable results. As pointed out, the

coefficient of the zeroth-order basis (z0(𝜉𝜉𝜉)) is the mean output (i.e., ⟨u(xxx;𝜉𝜉𝜉)⟩ = û0),

while the variance is expressed as:
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𝜎2 =
m∑

i=1
û2i ⟨zi, zi⟩, (16)

where ⟨zi, zi⟩ = 𝜈i.

Results and Discussion

In the following subsections, numerical results for three benchmark stochastic prob-

lems, namely (I) Ackley function, (II) 2D RAE2822 transonic airfoil, and (III) 3D

NASA rotor 37, are presented and discussed.

Highly Irregular Ackley Function

The 2D Ackley function is a challenging test function for the validation of the devel-

oped reduced basis methodology due to its complex structural distribution. The

stochastic Ackley function is defined as:

u(xxx;𝜉𝜉𝜉) = −20(1 + 0.1𝜉3)
(
exp

[
−0.2(1 + 0.1𝜉2)

√
0.5(x2 + y2)

])
(17)

−exp
(
0.5

[
cos(2𝜋(1 + 0.1𝜉1)x) + cos(2𝜋(1 + 0.1𝜉1)y)

])
+ 20 + e,

where function coefficients (shown in red in Eq. (17)) are uncertain and the asso-

ciated random variables 𝜉𝜉𝜉 = {𝜉i}3i=1 are uniformly distributed over [−1, 1]3 with a

CoV of 0.0577.

Figure 1 shows the deterministic Ackley function (i.e., 𝜉𝜉𝜉 = 0) on different grids.

As expected, the Ackley function is highly irregular in 2D spatial space and is char-

acterized by a nearly flat outer region and a large hole at the center. The mesh refine-

ment from 5 × 5 to 160 × 160 reveals more details of the function. It was found that a

finer mesh with 400 × 400 nodes is necessary to reproduce the fine-scale structures

of the Ackley function, and thus, such a fine mesh is employed for the fine-scale

analysis. Figure 2 shows the distribution of the normalized eigenvalues in the linear

and semi-log scales when different grids are used for the coarse-scale analysis. A

high polynomial order (p = 13) is used for the coarse grid analysis. This is because

a regression-based NIPC analysis indicated that such a high polynomial order is nec-

essary to reproduce the details of the mean, variance, and skewness fields. As shown

in Fig. 2, the eigenvalues decay rapidly. Thus, only a limited number of modes (or

eigenvalues) are needed in the KL expansion. The number of chosen eigenvalues

depends on the accuracy of the statistics. For higher accuracy, a larger number of

modes should be taken into account. In Fig. 2b, as expected, the normalized eigen-

values distributions decrease slower with the finer grids. Results show that for this
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Fig. 1 Representation of Ackley function in different grids

Fig. 2 Normalized eigenvalues using different coarse mesh sizes for the stochastic Ackley func-

tion: a linear scale; b semi-log scale

nonlinear test case, an accurate solution is obtained when a 40 × 40 mesh is used

for the coarse grid analysis. In Fig. 3, the distributions of mean, variance, and skew-

ness fields returned using the reduced basis method are compared with the distribu-

tions obtained using regression-based NIPC. It is observed that with a reduced basis

of dimension m + 1 = 15 (correspond to 𝜀 = 0.99999999), the fine-scale results

are very close to those of the full NIPC. With reduced basis size m + 1 = 15, the
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Fig. 3 Comparison of mean, variance, and skewness fields for the Ackley function. First row:

mean field; second row: variance field; third row: skewness field

average relative error (𝜀r) in mean, variance, and skewness is of the order of 10−5,

10−3, and 10−2, respectively. Note, however, that for this case, the full PC analy-

sis needs 2(P + 1) = 1120 expensive function evaluations. Further analysis (not pre-

sented here for the sake of brevity) shows the reduced basis methodology is more effi-

cient than the classical PCE by more than one order of magnitude. Further efficiency

improvement can be achieved by using a smaller 𝜀 (e.g., 𝜀 = 0.99) and increasing the

allowable relative error in the statistical quantities. More details can be found in [23].

2D Transonic RAE2822 Airfoil

The 2D transonic flow around the RAE2822 airfoil represents a challenging config-

uration to investigate the performance of the developed reduced-order model due

to the shock formation. The nominal flow conditions; free stream Mach number

M = 0.734, angle of attack 𝛼 = 2.79◦, and Reynolds number Re = 6.5 × 106 are

considered for this test case. For the deterministic solution of the RAE2822 using

Ansys/Fluent, the second-order upwind scheme is employed for the approximation

of nonlinear convective terms in all transport equations. The Spalart–Allmaras tur-
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Fig. 4 The coarse and fine C-type meshes with: 3.0 × 103 and 4.4 × 104 grid nodes

bulence model is used for the predictions. To assess the accuracy of the results, a grid

study was performed with four different C-type meshes with, respectively, 7.5 × 102,

3.0 × 103, 1.1 × 104, and 4.4 × 104 grid nodes. A coarse mesh with 3.0 × 103 and the

finest mesh with 4.4 × 104 grids are shown in Fig. 4. It was found that the predictions

on the finest mesh are grid independent and thus are used for the fine-scale analysis.

The geometry of the airfoil is assumed to be subject to random deformations, and

variations of the airfoil boundary are modeled using the following Gaussian shaped

covariance:

Cov(si, sj) = 𝜎(si)𝜎(sj) exp

[
−
(si − sj)2

2b2

]
, (18)

where si and sj are positions along the airfoil, b is the correlation length, and 𝜎 is

the variance. For the RAE2822 airfoil, 0 ≤ s ≤ 2.032. Position s = 0 corresponds

to the leading edge and increases along the upper surface. A constrained standard

deviation, 𝜎(s) = 𝜎′S(s), is considered to freeze the leading and trailing edges of

the airfoil. The constraint functions on the upper and lower walls of the airfoil are,

respectively, expressed as:

S(s) =
⎧
⎪
⎨
⎪⎩

sin
(

𝜋s
su

)
0 ≤ s < su

sin
[
𝜋(s−su)

sl

]
su ≤ s < su + sl

(19)

where su = ∫upper ds and sl = ∫lower ds.
Using KL expansion, a stochastic process of a given covariance function can

always be approximated by a finite sum of products of deterministic spatial func-

tions and uncorrelated random variables. The geometrical uncertainty at the airfoil

surface can then be expressed as:

X⃗(s, 𝜉𝜉𝜉) ≈ X̄(s) +
ns∑

k=1

√
𝜆k𝜙k(s)𝜉k.n̂ (20)
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where X(s, 𝜉𝜉𝜉) is the airfoil coordinate at sample sample 𝜉𝜉𝜉, X̄(s) is the airfoil mean

coordinate, n̂ is a normal vector, and 𝜙k(s) and 𝜆k are eigenvalues and eigenfunctions

of the covariance kernel, respectively.

A case with the correlation length b = 0.05 and the standard deviation 𝜎′ = 0.001
is considered for the present analysis. The random variables are set to be uniformly

distributed over the stochastic space [−1, 1]ns where ns is the number of indepen-

dent random variables. The first ten highest modes of KL expansion are consid-

ered as uncertain for the UQ of the RAE2822 test case. The coarse-scale analysis

is performed on a mesh with 3.0 × 103 nodes (shown in Fig. 4), a grid size four-

teenth times smaller than the finest grid size. A classical PC analysis of third order

using regression-based NIPC is performed on the coarse grid to get the covariance in

stochastic space of the solution. In this analysis, the covariance matrix is built using

all primitive variables (𝜌; 𝜌U; 𝜌V; 𝜌E). The criteria of the selection of the coarse grid

are based on the analysis presented for the Ackley function. Starting from the POD

analysis on a very coarse mesh, the mesh size is gradually increased until sufficient

convergence of the POD eigenvalues. This is illustrated in Fig. 5 where the normal-

ized eigenvalues are shown for four different mesh sizes with 7.5 × 102, 3.0 × 103,

1.1 × 104, and 4.4 × 104 grid nodes. It is observed that already on the 3.0 × 103 grid,

the eigenvalues have converged. A classical PC analysis of third order using regres-

sion is performed on the coarse grid to get the covariance in stochastic space of the

solution. In the regression approach, a total of 572 samples are needed as the classical

PCE contains 286 polynomials. The Sobol quasi-random sequence is used to gener-

ate these sample points. For 𝜀 = 0.99, the size of the reduced basis is 22, requiring

44 deterministic CFD calculations on the fine grid. In Fig. 6, the results (pressure

coefficient) obtained with the reduced-order model and with the full PC are com-

pared. It is observed that the results of the reduced-order model are in acceptable

agreement with the results of the full model. On average, the errors in the mean Cp
and its variance are less than 0.2% and 5.0%, respectively. As shown in [24], for

Fig. 5 Normalized eigenvalues from the solution of four different grid sizes analysis
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Fig. 6 Comparison of pressure coefficient (𝜀 = 0.99): mean and std deviation using classical PC

and model reduction method

the present test case, the reduced basis method (using 𝜀 = 0.99) is almost 6–7 times

more efficient than the classical PC method. A detailed discussion on the effect of

criterion (𝜀) on the accuracy of the reduced basis method is presented in [24]. A case

where the covariance matrix in the reduced basis approach is build using only one

primitive variable (e.g., 𝜌U) is also analyzed, and similar results were obtained.

3D Transonic Rotor 37

For the validation of the developed reduced basis approach, uncertainty quantifica-

tion of the rotor 37, shown in Fig. 7, is further considered. The rotational speed of

the rotor is 17188 rpm, and the outlet static pressure is fixed at 110000 Pa. Combina-

tion of geometrical and operational uncertainties is considered for this test case. The

geometry of the rotor blade is parameterized into sections of 2D airfoils using Auto-

Blade of NUMECA. The rotor 37 blade is parameterized into three sections of 2D

airfoils (at 25, 50 and 75% of the blade height). For each airfoil section, leading and

Fig. 7 Meridional view of

the rotor 37 blade with tip

gap
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Fig. 8 Mean and std deviation of the pressure distribution around the rotor blade using reduced

model for PC order 2

trailing edge angles are considered as uncertain. To model geometrical uncertainty

around the blade, the uncertainty is also imposed on four half-thickness parame-

ters (coefficients of half-thickness Bezier curve) of each airfoil section. In addition

to these geometrical uncertainties, the tip clearance, the inlet total pressure profile,

and the static outlet pressure are also considered uncertain. As a result, a total of 21

uncertain parameters are used for the uncertainty quantification of the NASA rotor

37. Symmetric beta distributions (𝛼 = 𝛽 = 4) are chosen for all uncertain variables.

The details of this test case are given in [24]. Based on experience with previous test

cases, a coarse grid with 1.04 × 105 cells is chosen. With a fine grid of 7.66 × 105
cells, the fine-to-coarse grid ratio is almost 7.5. Using a PC order of 2,506 samples on

the coarse grid allows to get the covariance matrix. Based on the results from the pre-

vious test case, only the static pressure was used to construct the covariance matrix.

Similar to the previous test case, a very fast decay was observed in eigenvalues.

The 𝜀 is set to 0.9999 to capture most of the stochastic information from the coarse

grid. The size of the reduced basis is then 21, requiring only 42 deterministic CFD

simulations on the fine grid. Figure 8 compares the pressure distribution around the

blade at mid-span height with the classical polynomial chaos method for the second-

order PC. The mean (left) and the standard deviation (right) of the static pressure are

shown. It can be observed that both methods produce similar results. Further analy-

sis of the present test case in [24] indicates that the reduced basis method almost is

5 times more efficient than the regression-based NIPC.
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Conclusions

In this paper, an efficient non-intrusive model reduction technique for PCE is pre-

sented and discussed. The proposed algorithm relies on the fact that the ideal basis

for a stochastic field follows from its POD decomposition. This, however, requires

the covariance structure, which in the present approach is obtained from the PCE

on a coarse grid, assuming hereby that the stochastic behavior is largely independent

from the spatial scales. The size of the ideal basis that results depends on the number

of POD modes that are accounted for but is always significantly smaller than the full

PCE basis, especially for high stochastic dimensions. The reduced basis approach

was successfully applied to: (1) a highly irregular analytical function, (2) the 2D tran-

sonic RAE2822 airfoil with ten geometrical uncertainties, and (3) the 3D transonic

NASA rotor 37 with 21 geometrical and operational uncertainties. The numerical

results show that the reduced basis method is able to produce acceptable results for

the statistical quantities. The computation time of the reduced-order model is found

to be much lower than that of the classical PCE.
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Screening Analysis and Adaptive Sparse
Collocation Method

Alberto Clarich and Rosario Russo

Introduction

In many Uncertainty Quantification (UQ) problems, the number of uncertain
variables may cause the practical impossibility of building a numerical model which
takes into account all the uncertainties of the problem at hand, for a Robust Design
Optimization (RDO). The reduction of the number of variables and the reduction of
the number of samples to be calculated are the two key issues to apply robust
methodologies in real-world design problems.

Screening analysis techniques can help to identify the most important variables
and discard the less important, reducing the number of design points to evaluate.
Here we will discuss three different methodologies: the smoothing spline ANOVA
(SS-ANOVA) algorithm, the principal component analysis (PCA) methodology,
and the Morris screening technique.

Different sampling techniques can be used in Robust Design Optimization. The
classical are Monte Carlo sampling and Latin hypercube sampling (LHS). Recently,
a new technique based on the Polynomial Chaos Expansion (PCE) has proven to be
very efficient reaching the same accuracy with less number of samples. Here a
variant, the Adaptive Sparse Collocation PCE, is presented, which enables to
reduce the number of samples to the only ones needed to have a good estimation of
the robust design characteristics.
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Screening Analysis Implementing SS-ANOVA

Several tools dedicated to variable screening analysis can be used to determine
which uncertainty parameters are really important in a problem and which not.

Correlation coefficient (Pearson or Spearman [1]) or standard ANOVA is useful
to understand the degrees of correlation between two series of data, one containing
the uncertain parameters and the other containing the output response of a given
dataset. The limitation is that these statistical methodologies are fully reliable only
when the samples are representative enough, and this occurs, typically, when the
database is produced by a kind of Full Factorial Design of Experiments (DOE),
whose size increases exponentially with the number of variables.

Generally, databases coming from experimental tests may contain scarce data
and could not be produced by a given scheme; therefore, a methodology which is
more flexible and applicable also to scarce data is often necessary. An efficient
methodology, tested extensively during the UMRIDA project, is called smoothing
spline ANOVA (SS-ANOVA) [2]. SS-ANOVA models are a family of smoothing
methods suitable for both univariate and multivariate modeling and regression
problems characterized by noisy data, given the assumption of Gaussian-type
responses.

In particular, SS-ANOVA is a statistical modeling algorithm based on a function
decomposition similar to the classical analysis of variance (ANOVA) decomposi-
tion and the associated notions of main and interaction. Each term—main effects
and interactions—can be used to reveal the percentage of its contribution to the
global variance, since in a statistical model the global variance can be explained
(decomposed) into single model terms.

The main advantage respect to other statistical methodologies (like standard
ANOVA) relies on the fact that the relative significances of each term (therefore
main effects and interactions of the variables) are not just computed directly on the
available database, with the limitations underlined above, but are contained in the
regression model itself defined by the methodology, so they can be computed
analytically even from a limited and partially correlated database. In this paragraph,
we report the basic formulation of the methodology.

If for the moment we consider a generic univariate regression problem for the
function f(x): [0, 1] ⊂ ℝ → ℝ, we can write the following expression:

fi = f xið Þ+ εi, i=1, . . . , n ð1Þ

where n is the number of designs (sample set size) and εi ∼ N 0, σ2ð Þ represent
independent random errors normally distributed. A suitable solution to the
regression problem could be stated as a constrained minimization problem that can
be expressed in Lagrangian terms as:
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min L fð Þ+ λ

2
J fð Þ ð2Þ

where L(f) is defined as minus log likelihood of the model f(x) given the data, to be
minimized to maximize the data fit, and J(f) is defined as a quadratic roughness
functional, to be subjected by a constraint—J(f) ≤ ρ—that can be used to control
the overfitting (a large roughness guarantees a smoother model, while smaller
values imply rougher functions but with better agreement to the data).

The procedure of finding a proper function estimation by minimizing Eq. 2 is
called penalized likelihood method: In fact, the J term represents a penalty on the
roughness. This methodology is also referred to as penalty smoothing (or smoothing
method with roughness penalty), and λ takes the name of smoothing parameter.

In particular, with Gaussian-type responses, Eq. 2 can be rewritten as:

min
1
n
∑
n

i=1
fi − f xið Þð Þ2 + λ ∫

1

0
f ′′ xð Þ� �2

dx ð3Þ

This means that the likelihood expression of the model takes the usual form of a
least square function, while the penalty term (roughness) contains the second
derivative of the function f(x)—f″(x) = d2f/dx2—and takes therefore the aspect of a
measure of the curvature of the function over the domain. It can be proved [2] that
Eq. (3) corresponds to the definition of a natural cubic spline (i.e., a piecewise
cubic polynomial, with the knots at all of the distinct values of the sampling set
{xi}); therefore, the methodology takes the complete name of Cubic Smoothing
Spline ANOVA.

By extension to a multivariate problem of the type f(x): [0, 1]N ⊂ ℝN → ℝ,
Eq. 3 will take the general form of:

min
1
n
∑
n

i=1
fi − f xið Þð Þ2 + ∑

N

j=1
λj ∫

1

0
f ′′j xj
� �h i2

dx ð4Þ

If we assume for simplicity that the regression model f(x) can be expressed as a
sum of N independent components fj(xj), each one function of a single variable xj,
the regression model would take into account only main effects (the effect of each
single variable) and not interaction effects.

A more complete regression model, which has to consider also interaction
effects, will include in f(x) also the interaction terms fij(xi, xj) keeping unchanged the
general formulation of the least square functional (first term of Eq. (4)), while the
roughness functional J(f), accordingly to the “reproducing kernel Hilbert space”
theory, can be expressed as:

λJ fð Þ= λ ∑
p

k=1
θ− 1
k ⟨f , f ⟩k ð5Þ

Screening Analysis and Adaptive Sparse Collocation Method 187



with <f, f> inner product and λ, θk smoothing parameters, to be determined by a
proper data-driven procedure, such as the generalized cross-validation (GCV), as
described in [3]. The number of decomposition terms p is equal, considering all the
interaction terms, to N(N − 1)/2 with N number of variables, while it would be
equal just to N if only main effect terms were considered. Since any term is an
additional degree of freedom for the regression model f(x), the number p indicates
also the minimum number of sampling points needed to solve Eq. (4).

As a conclusion, independently whether only main terms fj(xj) or also interaction
terms fij(xi, xj) are considered, the regression model f(x) will always take the linear
combination form of spline basis functions fk as:

f xð Þ= ∑
p

k=1
fk ð6Þ

We can therefore apply the definition of internal product projecting the f(x) to
any function fk obtaining the value of its contribution (or probability), by the
(normalized) expression:

πk =
⟨fk, f ⟩

fk k2 ð7Þ

Expression (7) is called contribution index πk and expresses the relative sig-
nificance of the different terms composing the model, therefore the contribution of
each variable main effect or interaction effect. The normalization guarantees the
identity ∑p

k=1 πk =1.
There is still one condition important to be verified in order to guarantee the

reliability of the results, which is that the single fk must not be too much correlated,
situation that may occur for instance when the sample size is too low or bad
distributed or input variables are actually correlated. The measure of correlation or
collinearity can be given by the collinearity indices Kk defined as:

Kk =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
⟨fk, fk⟩

fkk k2
s

ð8Þ

These indices have the aspect of the diagonal terms of a normalized correlation
matrix; therefore, if the components are almost orthogonal to each other, the
collinearity indices have to be close to 1. Conversely, if the collinearity indices are
much greater than 1 (Kk ≫ 1), the values of the relevant πk indices may become
unreliable.
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Screening Analysis Using Principal Component Analysis

In many cases, a noisy database may reveal a hidden simplified structure that
underlies it, for instance, some variables may be redundant or the uncertainties may
be correlated for many reasons. It may be not always possible performing a
screening analysis to understand if some uncertainties may be directly excluded by
the analysis, those variables being not significant for the problem, but more often
(and in particular when experimental data only are available) it might be possible to
express the same complexity of the problem by using a different basis of coordi-
nates, characterized by a smaller dimension than the original basis. As an illus-
tration example, we can consider the database of Fig. 1.

The points of the chart represent different samples of the database, which is
defined by three variables x, y, z reported in the axis. The three variables may
represent three uncertainties of the system, and we assume that the database is
obtained by an experimental campaign.

It is possible to note how actually the points lie on a plane, which can be
represented by two coordinates only, that we call PC1 and PC2. The definition of
the database through the new coordinates system is technically a change of basis,
and the advantage of this new formulation is that we can build a numerical model
characterized by two uncertainties only instead of three, with a significant reduction
of the required sampling size for an accurate Robust Design analysis.

Of course the situation above is very peculiar, because it is rare to find cases for
which the uncertainties may be so highly correlated, but what is important is to find
a general methodology able to compute the most meaningful basis to re-express a
noisy and/or correlated dataset.

The primary need is to find a new basis of coordinates for which the system is
equivalent to the original one in terms of variance, since we want to express the
same uncertainty distribution of the original problem with the uncertainty distri-
bution of the new system.

Fig. 1. Example of change
of basis in a database
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In addition, we want to find a basis whose coordinates are linearly independent
(orthogonal basis) so that it would not be possible to express any of them by a linear
combination of the others.

This means that we need to express the covariance matrix of the system in
function of the original coordinates and diagonalize the matrix in order to find its
eigenvalues and eigenvectors: A basis of coordinates coincident with the eigen-
vectors (principal components) will in fact be characterized by the largest values of
variance (eigenvalues) arranged in decreasing order up to the lowest and by null
covariance (orthogonal basis).

The eigenvectors characterized by small eigenvalues will therefore express a
coordinate of the system for which the variance of the database is negligible.
Therefore, by ranking the eigenvectors in order of decreasing eigenvalues, from the
highest (corresponding to the first principal component) to the smallest eigenvalue,
it is possible to keep only the main principal components neglecting the last ones:
The main principal components will in fact retain the highest fraction of the system
global variance, and, expressing the system in a new basis made by them only, will
also allow to express almost the same variance of the original system database with
a reduced number of coordinates. The methodology which aims to follow this
purpose is called principal component analysis (PCA).

The first step considered by PCA is the definition of the covariance matrix of a
database [4].

Let us consider by hypothesis a database made by m variables (the original basis
of coordinates) and n samples. If we call two of the coordinates as A and B, we will
have two vectors of measurements defined as:

a = a1, a2, . . . , an½ �, b= b1, b2, . . . , bn½ � ð9Þ

The variance of each vector can be expressed by the internal product notations
as:

σ2A = ⟨aiai⟩ ð10Þ

while the covariance between two variables, and therefore the degree of correlation,
can be expressed using the same notations as follows:

σ2AB = ⟨aibi⟩ ð11Þ

Considering that Eq. (11) is a particular case obtained when A = B, we may
build a matrix whose elements are expressed as:

σ2ab =
1

n− 1
abT ð12Þ

In this way, Eq. (12) is equivalent to Eq. (10), besides the introduction of a
constant for normalization. If we generalize the definition of the original basis of
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coordinates calling the single components as xi (where for instance x1= a and x2 =
b), the complete database can be defined in the original basis as a matrix X made by
m × n elements, and Eq. (12) becomes:

Cx =
1

n− 1
XXT ð13Þ

Matrix of Eq. (13) is defined as Covariance Matrix.
Note that covariance matrix is defined by a x suffix, because its elements are

expressed in the original basis X, so on the diagonal we will find the variance of the
system database for each original variable xi while on the off-diagonal, we will find
the covariance between the variables xi and xj.

At this point, the next step of the PCA is to diagonalize the covariance matrix.
This procedure in linear algebra corresponds to the search of the eigenvalues of the
matrix, i.e., into expressing the matrix by a new basis of (orthogonal) coordinates
(the eigenvectors), for which it becomes diagonal: The fact that the off-diagonal
terms are equal to 0 means that the covariance of the new coordinates is null
(orthogonal or not correlated components), and in addition it can be proved that the
first eigenvectors retain the highest values of variance.

In other words, we have to find a basis of m vectors Pi for which the original
variables X become expressed as Y and the covariance matrix CX becomes Cy with:

σ2Yk =
1

n− 1 λk
σ2YiYj =0

(
ð14Þ

Expressing the problem with the new base P, the original database X will
become defined as (considering that the change of basis is a linear operation):

Y =PX ð15Þ

At this point, we can express the covariance matrix CX in the new base,
obtaining:

CY =
1

n− 1
YYT =

1
n− 1

PXð Þ PXð ÞT = 1
n− 1

PXXTP ð16Þ

A symmetric matrix like XXT= A can in general (if not degenerate) be diago-
nalized by an orthogonal matrix of its eigenvectors, E, obtaining A = EDET where
D is the diagonal matrix (it follows in fact that A = EDE− → AE = ED which
means Aei = λiei for every i, which is the definition of the eigenvalue equation).

At this point, if we assume as we want to prove that the needed basis P is
coincident with the basis of the eigenvectors P = ET, we can get from Eq. 16:
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CY =
1

n− 1
P EDET� �

PT =
1

n− 1
P PTDP
� �

PT 1
n− 1

D ð17Þ

The last passage is obtained considering that eigenvectors are linearly inde-
pendent, so PT = P−1. Finding the eigenvectors of the covariance matrix or the
XXT matrix can therefore satisfy Eq. (6).

There are several methodologies to compute the eigenvalues of the matrix C, but
we have preferred to use the method based on the transformation to a tridiagonal
matrix by Householder orthogonal transformations, then extracting its eigenvalues
and eigenvectors by the tridiagonal QL algorithm. Further details of the method-
ology can be found in [5].

Screening Analysis Using the MORRIS Methodology

The last UQ methodology we propose can be used as a general method to identify
the most significant variables in any process.

Several different screening methods have been proposed in the literature (see,
e.g., [6]); most of them are really efficient, but they work well only in specific cases:
For example, the Sequential Bifurcation method, proposed by Bettonvil and
Kleijnen in [7], requires that main and interaction effects must be nonnegative;
others, as the Full Factorial or the Fractional Factorial methods, are computa-
tionally expensive.

The method presented by Morris in [8], with some improvements introduced by
Campolongo et al. in [9], has two important characteristics: It can be applied to all
problems, and it is computationally cheaper than other methods. For this reason, we
propose this methodology as the last UQ methodology; for simplicity, from here we
call the methodology [9] as Morris screening analysis.

Conversely from the first two methods presented here, this approach requires the
definition of a series of analysis under a pre-defined scheme; therefore, we cannot
apply it directly on an available experimental database, but rather we can apply it on
a numerical simulation model (for instance, a CFD model) where the uncertainties
have already been quantified with their distributions, in order to understand if it is
possible to represent the same response uncertainties of the problem by a reduced
number of parameters, and therefore by a reduced sampling size for any design
proposed in a Robust Design Optimization.

Consider the function f(x1,…, xn) of n variables (the uncertain parameters) and let
x1̃, . . . , x ̃Nf g be a set of N points in the variable space (the database). For each of

these points, we define n new points which define a trajectory, in such a way that:

x ̃io = xĩ
xĩk = xĩk− 1 +Δkek

ð18Þ
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with i = 1, …, N and k = 1,…, n. {e1, …, en} is the canonical base of R
n and Δk is

a proper percentage of the variable range (see Fig. 2 for an example of a trajectory
in a 3-D variable space). The purpose of defining the trajectories is the one to
measure how the function f changes when only one of the parameters is perturbed,
and in this way it is possible to compute the elementary effects dik as:

dik =
f xĩkð Þ− f xĩk− 1ð Þ

Δk
ð19Þ

Since the elementary effect of any variable k is given by N different factors (one
for each i), the definitive measures of sensitivity can be obtained by mean and
standard deviation of dik, obtaining in Eq. (20) respectively the mean deviation μk
and the standard deviation σk as:

μk = 1
N ∑

N

i=1
dik

σk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1 ∑
N

i=1
dik − μk
� �2s ð20Þ

The first measure of Eq. (20) represents the importance of the kth input factor
over the output (i.e., its main effect), while the second measure by the variance of
the elementary effects estimates the interactions of the kth input factor with the other
ones. Thanks to these two measures, we can sort the input variables by order of
importance. The procedure is generic for any problem, but we can apply it
specifically for UQ: The input variables x1, …, xn are the uncertain parameters of
the process, and the database x1̃, . . . , xÑf g is given by a sampling of their
uncertain distributions. By the evaluation of the elementary effects and the con-
sequent mean and standard deviation factors, the relative effect of each parameter
can be estimated, and the parameters with marginal effects can be excluded by the
process.

The method proposed until this point is the original Morris algorithm [8], which
basically has two problems:

Fig. 2. Example of
i-trajectory made by n + 1
points accordingly to Eq. (20)
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(i) If the output sign changes, some information could be lost;
(ii) If n is too large, the procedure could become too expensive, indeed it requires

N ⋅ (n + 1) evaluations.

Campolongo et al. in [9] proposed the following sensitivity measure in order to
overcome the first problem:

μ*k =
1
N

∑
N

i=1
dik
�� �� ð21Þ

Moreover, as a possible solution for the second problem, they proposed to
consider the factors of the problem x1, …, xn, and to divide the input variables into
M sets: G1, …, GM with M ≪ n. Let I1, …, IM be the sets of indices of the
variables within every group.

For each point xĩ, i = 1, …, N we build a trajectory with m = 1, …, M new
points:

x ̃io = xĩ
xĩm = xĩm− 1 +Δm ⋅ dm

ð22Þ

where dm = (dm1, …, dmn) is a vector associated with the mth group, such that:

dmi =1 i∈ Im
dmi =0 otherwise

ð23Þ

In this way, it is possible to compute the mean and the standard deviation for
every group, selecting the groups of variables which have the highest values of the
effects, eventually iterating the process P times by grouping the variables in dif-
ferent ways, selecting then the factors which occur more times in the most
important groups.

In any way, the grouping methodology is convenient when M P ≪ n, because
the overall number of evaluations will be equivalent to N ⋅P ⋅ (M + 1).

Sampling Methodologies for Robust Design Optimization

The first aspect to be taken in account when defining a robust design optimization is
the definition of an accurate sampling methodology.

The samples are defined in the variable space neighborhood of the nominal
design, following the statistical distribution of each uncertain parameter, and from
the evaluation of its performance, the response distribution can be evaluated.

This is a crucial point of analysis under uncertainties and consequently for a
RDO problem, since the procedure is to be repeated for any design proposed by the
optimization procedure.
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The sample points must be defined in such a way that the method for the
uncertainty quantification (UQ) of the performances could be accurate enough, but
at the same time, for the RDO purpose, the number of sample points should be low
enough to allow the application to cases of industrial relevance. The choice of the
sampling points is therefore strongly correlated to the method used for the uncer-
tainty quantification.

Monte Carlo and Latin Hypercube Sampling (LHS) are classical sampling
methodologies which can be used to compute directly statistical momentums in
function of sampling points database: As alternative, they can be also used to
populate the training database for methodologies like [10] based on DACE or RSM
(Response Surface) meta-models, by which momentum functions can be computed
on a large number of extrapolated samples.

As reported above, the simplest approaches for the UQ quantification are based
on the discretization of the momentum equations, in the sense that mean and
standard deviations may be computed directly following the expressions below:

C ̄D xð Þ= ∑n
i=1 CDi xð Þ

n
ð24Þ

σCD xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 ðCDi xð Þ−C ̄D xð ÞÞ2
n− 1ð Þ

s
ð25Þ

In these expressions the statistical momentums (here related to a drag coefficient
performance, CD ) are computed directly in function of the N samples of the
database. As already noted, this statistical approximation may be improved fol-
lowing methods DACE or other meta-models, to let the analysis be more significant
from the statistical point of view, just simply raising the number of sampling points
using a meta-model.

In any case, the approach followed by these types of UQ methods requires the
definition of a sampling set to be as much representative as possible of the uncertain
parameters distributions. For this purpose, two methodologies of Design of
Experiments (DOE) are available: Monte Carlo and Latin hypercube.

Monte Carlo is the simplest sampling methodology and is just based on a
random definition of sample points. More in particular, from Fig. 3, it is illustrated
how the Monte Carlo algorithm defines a sampling set of points: From a random
sequence of points defined by a uniform probability (ordinate), the sample points
are obtained by the projection of the former points onto a Gaussian Cumulative
Distribution (defined as Uncertainty Distribution of the input variable). The process
is then extended to a case with a generic number of variables. It is possible to prove
that the statistical moments, and as a result the mean and the standard deviation, of a
random sample converges to the exact moments of the full distribution as the
inverse of squared root of N, where N is the sample size.
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A more efficient sampling methodology, in the sense that the convergence of the
random sample to the exact full distribution is more rapid, and in particular pro-
portional to the inverse of N, is Latin hypercube sampling (LHS).

In this case (Fig. 4), if a LHS is composed of N points, and every variable is
divided in N strata with equal probability (the same portion of area under the
Gaussian distribution), every single stratum will be occupied by exactly one point.

Latin hypercube sampling has been designed specifically to produce better
accuracy than Monte Carlo in uncertainty quantification.

Non-intrusive Polynomial Chaos Expansion

In order to improve the efficiency for UQ of the sampling methodologies introduced
in previous paragraph, an important methodology that has been proposed is the
Polynomial Chaos Expansion [11].

This methodology consists essentially in expanding the uncertain variable
response in a suitable series and then determining analytically (and thus exactly) the
statistical moments of the truncated expansion. The expansion itself is referred to as
the “Chaos,”while the maximum degree of the expansion is called the “Chaos order.”

As a result, it can be proved that the estimate of the statistical moments con-
verges to true values at exponential rate, i.e., the error in the estimates scales as
exp(−N), where N is the sample size.

Fig. 3. Example of Monte
Carlo sampling

Fig. 4. Example of Latin
hypercube sampling
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Figure 5 above reports a comparison of the statistical moment relative errors,
relative to a mathematical test function [12], obtained using Monte Carlo or Latin
hypercube sampling and Polynomial Chaos Expansion. It emerges clearly the large
advantage of this methodology with respect to the former ones, since for a RDO
problem it is extremely important to obtain a good accuracy of UQ for each design
with the lowest possible number of samples.

There exist basically two types of Polynomial Chaos methodologies, the intru-
sive and the non-intrusive one. In the following part of this chapter, we describe
only the second methodology, because it is more versatile for every industrial
application and any simulation software, not requiring the modification of the solver
equations, but working directly on the results computed by the samples.

The basic idea of Polynomial Chaos methodology for UQ is that, under specific
conditions [11], a stochastic process can be expressed as a spectral expansion based
on suitable orthogonal polynomials, with weights associated with a particular
probability density function.

The idea is to project the variables of the problem onto a stochastic space
spanned by a set of complete orthogonal polynomials ψ that are functions of
random variables ξ(θ), where θ is a random event [13]. For example, the variable ϕ
has the following spectral infinite dimensional representation:

Φ x, t, θð Þ= ∑
∞

i=0
Φi x, tð ÞΨ i ξ θð Þð Þ ð26Þ

Equation (26) divides the random variable φðx, t, θÞ into a deterministic part,
i.e., the coefficient ϕiðx, tÞ, and a stochastic part, i.e., the Polynomial Chaos
ψ i ξ θð Þð Þ. The set of polynomials {ψ i} forms a complete orthogonal basis in the
Hilbert space determined by their support. The orthogonality relation takes the form
of:

⟨ψ iψ j⟩= ⟨ψ2
i ⟩δij ð27Þ

where δij is the Kronecker delta and <.,.> denotes the ensemble average, i.e., the
inner product in the Hilbert space of the variables ξ, which reads:

Fig. 5. Example of UQ
sampling convergence rate
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⟨f ξð Þ, g ξð Þ⟩ = ∫ f ξð Þg ξð Þw ξð Þd ξð Þ ð28Þ

with w(ξ) a weighting function. According to the Askey-chaos theory [14], a
specific weighting functions w(ξ) is to be selected for each probability density
function. For example, the weight for Gaussian distribution corresponds to Hermite
polynomials (Fig. 6), Exponential and Gamma distributions to Laguerre and gen-
eralized Laguerre polynomials respectively, Beta distribution to Jacobi polynomi-
als, and Uniform distribution to Legendre ones (Wiener–Askey scheme).

Thus, in the case of random inputs with Gaussian distribution, we represent the
variable φðx, t, θÞ in terms of an Hermite spectral representation (or Wiener chaos)
for which the weighting function reads

w ξð Þ= e−
1
2ξ

T ξ ð29Þ

apart from normalization factors.
In numerical applications, the series in Eq. (26) has to be truncated to a finite

number of terms (here denoted with N) or, equivalently, to a finite order. Hence, for
a Wiener chaos, Eq. (26) becomes::

ϕ x, t, θð Þ= ∑
N

i=0
ϕi x, tð ÞΨ i ξð Þ

= ∑
P1

p1 = 0
∑
P2

p2 = 0
. . . ∑

Pn

pn =0
Φp1p2p...pn x, tð ÞHp1 ξ1ð ÞHp2 ξ2ð Þ . . .Hpn ξnð Þ

ð30Þ

where Hpk ξkð Þ is the Hermite polynomial of order pk in terms of the kth random
variable ξk with Gaussian distribution N(0, 1). The number of total terms of the
series in Eq. (31), where a tensorial-expanded representation has been adopted, is
determined by:

Fig. 6. Example of Polynomial Chaos Expansion (Hermite polynomials)
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N +1=
n+ pð Þ!
n!p!

ð31Þ

with n the dimension of the uncertain variables ξ and p the highest order of
polynomials {Ψ i}.

By applying the orthogonality condition to the truncated spectral expansion, the
expectation value and variance of ϕðx, t, θÞ are straightforwardly found to be,
respectively, given by

EPC Φð Þ= μΦ =Φ0 x, tð Þ ð32Þ

VarPc Φð Þ= σ2Φ = ∑
N

I =1
Φ2

i x, tð Þ⟨ψ2
i ⟩

� � ð33Þ

with ⟨ψ2
i ⟩ the polynomial normalization.

Thus, the problem of uncertainty quantification is shifted to the determination of
the polynomial expansion coefficients ϕiðx, tÞ. Various techniques have been
developed for the solution of this problem (see Ref. [15]), and normally the sam-
pling points are evaluated at the roots of the polynomials. We follow the regression
or collocation method based on the least square minimization of the discrepancy
between ϕðx, t, θÞ and its truncated expansion:

min ∑
NS

j=1
Φ X, t, θð Þ− ∑

N

J =0
Φj X, tð Þψ j ξð Þ

����
����
2

ð34Þ

with NS the number of sampling points used to evaluate the discrepancy.
This approach has in fact the advantage that the samples can be arbitrarily

chosen, except for their number which has to be equal to or greater than the number
of points reported in Eq. (31). For the UQ tool implemented in modeFRONTIER
[11] optimization platform software from ESTECO, the sample can be generated by
means of a Latin hypercube sampling, and the solver of the least square problem of
Eq. 34 is the standard Levenberg–Marquardt method [16].

Adaptive Sparse Collocation

An efficient method to apply UQ with large number of variables is based on the
application of a regression analysis directly on the Polynomial Chaos Expansion
(PCE) expression, in other words the PCE will keep only those terms which
actually affect the output, discarding the others.

The methodology consists first in ranking the terms using a least angle regres-
sion (LAR) technique [17] and then in assessing how many PCE terms should be
kept.
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The order of selection of the PCE terms will reflect a ranking based on how
much each term affects the output. Once the ranking is done, it is necessary to
establish a way to choose how many PCE terms should be kept. The criterion for
this is based on the mean leave-one-out error ErrLOOð Þ.

ErrLOO =
1
N

∑
N

i=1
Δ2

i ð35Þ

where N is the number of samples and Δi =outputðxiÞ− M̂ xið Þ is the difference
between the output corresponding to the ith sample and the output computed from
the PCE obtained excluding from the training samples the ith. The criterion to select
the number of terms consists in monitoring the quantity:

RLOO ≡ 1−
ErrLOO

var outputð Þ #samples− #termsð Þ ð36Þ

RLOO is function of the number of PCE terms: It tends initially to increase as the
number of terms increases, but from a certain number of terms on, it starts showing
a decreasing trend. This index is in fact sensitive to overfitting problems, so that
optimal number of terms is generally much lower than the maximum possible
number equal to the original degree of freedom of the complete polynomial.

The described approach gives the important benefit of reducing the global
number of unknown coefficients for the PCE, and therefore giving the possibility as
well of reducing the number of sampling points, needed for the PCE training.
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General Introduction to Surrogate
Model-Based Approaches to UQ

Daigo Maruyama, Stefan Görtz and Dishi Liu

Introduction

The quantification of aerodynamic uncertainties with CFD is computationally
challenging due to two reasons: a large number of variables and high cost of CFD
models, which calls for efficient numerical methods. Table 1 shows a categorization
of some typical uncertainty quantification (UQ) methods to obtain some target
statistics of aerodynamic performance. They are basically of two types: direct
integration and surrogate-based integration. The former obtains the statistics by
directly integrating the CFD samples, while the latter does so by integrating on a
much cheaper surrogate built on the basis of the samples. These methods adopt
either scattered or regular grid sampling scheme; the former admits samples any-
where in the variable domain, while the latter only samples on a prescribed grid
(either tensorial or sparse).

In UQ problems with a large number of variables, like those with geometrical
uncertainties, the methods based on regular grid are less favored due to two reasons.
The first is their vulnerability to “curse of dimensionality”, even with sparse grid.
The second is their lack of tolerance to sample failures (which are not rare in CFD
computations). With methods based on scattered sampling schemes, one has much
more freedom in choosing sample number N and robustness against sample failures;
this group includes mainly Monte Carlo (MC) quadrature and quasi-Monte Carlo
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(QMC) quadrature. The MC quadrature have dimension-independent error con-
vergence rate O(N−1/2), while QMC, which does not belong to the MC-type
quadrature methods, has an upper-bound rate of O(logd(N)N−1) with d the number
of variables. Due to higher degree of sample uniformity, the latter can be more
accurate even with a large d.

In the other dimension in Table 1, surrogate-based methods are gaining more use
recently, e.g., radial basis functions, Kriging, and polynomial chaos expansion.
Surrogate-based methods have an advantage when the gradients can be sampled at a
relatively lower cost (e.g., by using an adjoint solver), because the direct integra-
tions cannot effectively utilize the gradient information (augmenting samples
generated by Taylor’s expansion are not statistically independent of the original
samples and hence bring no benefit to the accuracy of the statistics). Due to the
cheaper cost of gradients (in case that number of response quantities is smaller than
number of variables), surrogate-based methods utilize more information with the
same computational cost, and this advantage is expected to increase with number of
variables.

Surrogate models are frequently being used in the context of efficient quantifi-
cation of uncertainties. A surrogate model of the quantity of interest is much
cheaper to evaluate than the full-order model and can be used to obtain the target
statistics through sampling on the surrogate models. There are several types of
surrogate modeling methods that are being used, including response surface
methods using polynomial models, Kriging, radial basis functions (RBF), support
vector regression, and stochastic collocation. In this chapter, a general introduction
to Kriging and RBF models is presented for UQ applications. Both models are
constructed based on scattered data obtained by sampling the full-order model.
Different sampling methods are in use, such as Latin hypercube sampling, Monte
Carlo, and quasi-Monte Carlo sampling, and are typically referred to as design of
experiment methods (DoE). A discussion of the different DoE methods is, however,
beyond the scope of this chapter.

Kriging

Kriging is a statistical interpolation method suggested by Krige [1]. Kriging has
received growing popularity due to its good capability of predicting multidimen-
sional and highly nonlinear responses based on sampled data while providing a

Table 1 Some typical uncertainty quantification methods

Direct integration Surrogate-based integration

Scattered sampling Monte Carlo
Quasi-Monte Carlo

Non-intrusive polynomial chaos
Kriging
Radial basis functions

Regular grid sampling Sparse grid quadrature Stochastic collocation
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useful error estimation (indicating the uncertainty of the prediction). Here, an
approximation of a function of interest f ðxÞ with d variables (uncertain parameters
in UQ applications) x= x1, x2, . . . , xd½ �T is sought after. The approximation of f ðxÞ
at an arbitrary x by the Kriging model is generally represented as follows when
n samples of the function f ðxÞ are given as f xð1Þ

� �
, f xð2Þ
� �

, . . . , f xðnÞ
� �

:

f ð̂xÞ= β+ εðxÞ ð1Þ

where f ð̂xÞ is the predicted function value at an arbitrary point x, β is a global
constant, and εðxÞ is a stationary random process. Different types of Kriging exist.
The most commonly used types of Kriging are ordinary Kriging and universal
Kriging. When β is expressed by the mean of all of the given samples as
β=E f ðxÞ½ �, the model is called ordinary Kriging. On the other hand, when β is
expressed by regression such as expressed by a general linear or polynomial trend
model, the model is called universal Kriging. Some more detailed classification of
the different types of Kriging model can be found in [2].

The stationary random process εðxÞ indicates deviation from the constant value
β, having a Gaussian type PDF as N 0, σð Þ, where σ is the process variance. The
stationary random process εðxÞ is a covariance of arbitrary two points and satisfies
the following correlation matrix:

Corr ε xðiÞ
� �

, ε xðjÞ
� �h i

= σ2R xðiÞ, xðjÞ
� �

ð2Þ

where R is a spatial correlation function depending on xðiÞ and xðjÞ. There are several
forms of this correlation function such as Gaussian or cubic spline. Here Gaussian is
given as an example. In this case, the correlation function is expressed as:

R xðiÞ, xðjÞ
� �

= ∏
d

k=1
exp − θk x

ðiÞ
k − xðjÞk
��� ���2� �

ð3Þ

where θ= θ1, θ2, . . . , θd½ �T are the distance weights with respect to the variables
x= x1, x2, . . . , xd½ �T . Here in this stochastic model (Kriging model), one can define
the likelihood function L, which is a function denoted by β, σ, and θ as:

Lðβ, σ, θÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ð Þn Rj j

p exp −
f − βFð ÞTR− 1 f − βFð Þ

2σ2

 !
ð4Þ

where f = f xð1Þ
� �

, f xð2Þ
� �

, . . . , f xðnÞ
� �
 �T

, and F is a regression matrix in the case
of universal Kriging. When ordinary Kriging is adopted, F= 1, which is the
n-dimensional unit vector. The likelihood function L β, σ, θð Þ is to be maximized to
realize stochastically the best fitting to the data, which is called maximum
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likelihood estimation (MLE). The optimum β and σ can explicitly be determined
when L β, σ, θð Þ is maximized:

βðθÞ= FTR− 1F
� �− 1

FTR− 1f

σ2ðθÞ= 1
n

f − βFð ÞTR− 1 f − βFð Þ
ð5Þ

The optimum values of the hyperparameters θ are usually found by maximizing
the logarithm of likelihood function:

ln LðθÞ½ �= − n ln σ2ðθÞ� �
− ln RðθÞj j ð6Þ

Finally after the MLE, the predicted function value f ð̂xÞ at an arbitrary
unsampled location x* can be represented as follows:

f ̂ x*ð Þ= β+ rTR− 1 f − βFð Þ ð7Þ

where r= r 1ð Þ, r 2ð Þ, . . . , r nð Þ
 �T
is the correlation expressed by Eq. (2) between an

arbitrary unsampled location x* and the sample points; e.g., at the ith sample point,
it is expressed as:

ri =Corr ε x*ð Þ, ε xðiÞ
� �h i

ð8Þ

This leads us to estimate stochastic values such as mean, standard deviation,
maximum or minimum value, and probability density function (pdf) when the
prediction points x are considered as uncertain input parameters and the function
f ðxÞ is the quantity of interest (QoI).

Co-Kriging and Gradient-Enhanced Kriging

The correlation described in Eq. (2) is defined on the function values f ðxÞ at the
sample points x. Usually, the more the number of samples is increased, the better
the quality of the Kriging model becomes. Instead of increasing the number of
samples, secondary or auxiliary information available at the existing sample points
or at other locations, where no primary information is available, could be incor-
porated into the Kriging model. This idea is the so-called co-Kriging.
Gradient-enhanced Kriging is obtained if the partial gradients of QoI with respect to
the variables are available at the primary sample points in addition to the function
values and used as secondary information [3–6]. For instance, if the gradient
information is calculated efficiently by an adjoint CFD solver, the accuracy of the
Kriging model could be significantly improved. Gradient-enhanced Kriging
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(GEK) is introduced in brief in the following because of its importance in the
context of efficient quantification of aerodynamic uncertainties.

The correlation of Eq. (2) is modified as follows in GEK:

Corr ε xðiÞ
� �

, ε xðjÞ
� �h i

= σ2R xðiÞ, xðjÞ
� �

Corr ε uið Þ, ∂ε uj
� �
∂uk

� 

= σ2

∂R xðiÞ, xðjÞ
� �
∂xðjÞk

Corr
∂ε uið Þ
∂uk

, ε uj
� �� 


= σ2
∂R xðiÞ, xðjÞ
� �
∂xðiÞk

Corr
∂ε uið Þ
∂ul

,
∂ε uj
� �
∂uk

� 

= σ2

∂
2R xðiÞ, xðjÞ
� �
∂xðiÞl ∂xðjÞk

ð9Þ

Then, the size of the correlation matrix becomes nð1+ dÞ, f and F in Eqs. (4), (5),
and (7) are:

f = f xð1Þ
� �

, . . . , f xðnÞ
� �

,
∂f xð1Þ
� �
∂x1

,
∂f xð1Þ
� �
∂x2

, . . . ,
∂f xðnÞ
� �
∂xd

" #T
,

F= 1, . . . , 1, 0, 0, . . . , 0½ �T ,

respectively. Further enhancement by using the Hessian information has also pro-
posed, and some applications to uncertainty quantification (UQ) and aerodynamic
shape optimization were shown in [7]. This is a powerful surrogate modeling
method when the Hessian is evaluated efficiently with the help of automatic dif-
ferentiation (AD) tools [8].

Statistical Indicators in Kriging

Since the Kriging model is based on Bayesian statistics, it contains not only the
predicted values but also information of uncertainty or, in other words, the
approximation error at unsampled locations. For example, the mean square error
(MSE) sðxÞ at arbitrary points x is given by

sðxÞ= σ2 1− rTR− 1r+ rTR− 1F
� �

FTR− 1F
� �− 1

rTR− 1F
� �Th i

ð10Þ

The MSE is considered as one of the major indicators frequently used for error
estimation and adaptive sampling techniques [5, 9]. One other popular indicator
where the MSE in Eq. (10) is made use of is in the so-called expected improvement
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(EI) function [10]. This function indicates the probability that the predicted function
f ð̂xÞ is improved in terms of the current maximum or minimum sampled value of
f ðxÞ if a new sample is added at some location, or, in other words, this metric helps
to select the point which is statistically most advantageous to sample next. The EI is
represented as follows:

EIðxÞ= fmin − f ̂
� �

Φ fmin − f ̂
sðxÞ

� �
+ sðxÞϕ fmin − f ̂

sðxÞ
� �

, if sðxÞ>0

0, if sðxÞ=0

(
ð11Þ

where fmin is the current best sampled point (minimum function value). Φ and ϕ
denote the cumulative density function (CDF) and the probability density function
(PDF), respectively. EI for the maximum can be calculated by replacing fmin − f ̂
with f ̂ − fmax, where fmax is the current maximum sample value. A new sample is
filled in at the location where the EI function is maximal. EI is often used in
surrogate-based optimization to infill additional samples in order to enhance the
accuracy of the Kriging model around the maximum/minimum values. This opti-
mization strategy is called efficient global optimization (EGO).

An extension to multiobjective optimization problems, the so-called expected
hypervolume improvement (EHVI), has also been proposed [11, 12]. The relative
expected improvement (REI) function has been also studied for the purpose of
evaluating the mean value more efficiently in the context of UQ [13]. These dif-
ferent measures help to infill additional samples efficiently to refine and improve the
surrogate model. This possibility is being made use of in the following chapters
estimating stochastic quantities more accurately.

Radial Basis Functions (RBF)

The radial basis function (RBF) method is an approximation of an unknown
function by linear combination of radial basis functions expressed as follows:

f ð̂x*Þ= βTgðx*, xÞ= ∑
n

i=1
βigi

where gi =ϕ ri x*− xðiÞ
�� ��� � ð12Þ

where βT is a vector of weighted parameters which is uniquely determined by a set
of the given samples and corresponding function values by solving the concurrent
linear system in Eq. (12). n is the number of sample points, and ϕ is a radial basis
function, determined by the Euclidean distance r between an arbitrary unsampled
point x* and the sample point x. Then, the predicted function f ð̂x*Þ at an arbitrary
unsampled locations x* is calculated by Eq. (12).
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There are several classes of radial basis functions. A general classification is to
distinguish between compact support and global support. The radial basis functions
with compact support can be applied in mesh deformation [14]. In applications to
surrogate models, those with global support are often used. Table 2 shows seven
radial basis functions which are frequently used. The parameter a in Table 2 is
usually tuned for fitting to the samples.

This method can also utilize gradient information of the QoI, e.g., the
gradient-assisted RBF method proposed in [15]. Also, the gradients of the predicted
function f ð̂x*Þ can be obtained analytically by the following equation:

∂f ̂ x*ð Þ
∂x*

= βT
∂g
∂x*

= ∑
n

i=1
βiϕ

′ ri x*− xðiÞ
�� ��� �

∂ri
∂x*

where
∂ri
∂x*

=
x*− xðiÞ
� �T
ri x*− xðiÞk k

ð13Þ

where ϕ′ðriÞ= ∂ϕ ̸∂ri. A more detailed discussion on gradients and Hessians of
surrogated models based on RBF can be found in [16].

Summary

Radial basis function models and different types of Kriging models are often used to
approximate unknown functions based on scattered data. One of the major differ-
ences between these two methods is that Kriging provides the mean squared error of
the prediction. This statistical information can be used to improve the surrogate
model by adaptively sampling with respect to the targeted statistics of the quantity
of interest (QoI). This is of particular interest in UQ and robust design in aero-
dynamics, where CFD computations are very costly.

It is reported by one of the authors [17] that GEK and Kriging are more efficient
methods to propagate uncertainties through a CFD model than many others,

Table 2 Radial basis
functions with global support

Name ϕðrÞ
Thin plate spline r2 logðrÞ
Gaussian e− r2

Cubic ða+ rÞ3
Multiquadric biharmonics

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + r2

p

Inverse multiquadric biharmonics
ffiffiffiffiffiffiffiffiffiffi

1
a2 + r2

q
Quadric biharmonics 1 + r2

Inverse quadric biharmonics 1
1+ r2
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especially when the sample number is not large, e.g., N < 200 in a 9D nonlinear
model. The RBF method is suitable for scattered samples and high-dimensional
models. However, a large sample number could result in a large condition number
in the linear system which reduces the accuracy of RBF approximations [18], and
the gradient-assisted RBF method is not as widely used as gradient-enhanced
Kriging method.
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Comparing Surrogates for Estimating
Aerodynamic Uncertainties of Airfoils

Daigo Maruyama, Dishi Liu and Stefan Görtz

Introduction

In aerodynamic analysis and design of airfoils, the quantities of interest (QoI) are
typically the drag coefficient (Cd), the lift coefficient (Cl) (or the lift-to-drag ratio
L/D), the pitching moment coefficient (Cm), and the pressure distributions (Cp). In
the context of uncertainty quantification and robust design, the QoI are statistics of
the aerodynamic coefficients. Uncertain input parameters may be operational
parameters, such as the angle of attack (AoA), the Mach number (M), or the
Reynolds number (Re), and an inherently large number of geometric parameters.

There are two issues in terms of the computational cost and the accuracy when
constructing a surrogate model in applications to uncertainty quantification
(UQ) and robust design of airfoils. One is that the computational cost associated
with the construction of the surrogate model may not be negligible any more when
the space of input parameters is high-dimensional which is often of the case when
geometrical uncertainties are considered. In this chapter, we consider a test case
where every surface grid point of the CFD grid is considered uncertain, but we
assume a correlation between the points and make use of a truncated Karhunen–
Loève expansion (KLE) to reduce the number of parameters [1, 2].

The other issue is how the accuracy depends on the number of samples used to
build the different surrogate models. Therefore, we first present a general study in
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terms of accuracy of statistics of aerodynamic performance of an airfoil using
different surrogate models that are conducted. A larger number of sample points are
expected to enhance the quality of all of the surrogate models, but this will
inevitably lead to larger computational cost.

Suitable sampling techniques are required for different target statistics of the
aerodynamic performance statistics, such as mean of Cd, maximum value of Cd, or
minimum value of Cl. This is the second topic here and is of interest in the context
robust design as an application of UQ to aerodynamic design of airfoils. Therefore,
in this chapter, the following two topics are discussed:

(a) UQ using various surrogate models and different number of samples and
comparison to reference statistics;

(b) Sampling techniques for specific stochastic quantities of interest, including
adaptive sampling.

For the surrogate modeling part, we made DLR’s surrogate and reduced-order
modeling toolbox called SMARTy [3–5].

Comparison of Different Surrogate Models

As for the first topic, to investigate the efficiency of various surrogate models in the
context of UQ, we made two comparisons in which the methods are compared in
their efficiency of quantifying aerodynamic performance uncertainties of airfoils
caused by operational and/or geometric uncertainties. First, we compare Kriging
and gradient-enhanced Kriging (GEK) with direct integration for a viscous test
case. Second, we compare direct integration and four UQ methods based on
surrogate-based integration; i.e., we compare quasi-Monte Carlo (QMC) quadrature
with GEK, polynomial chaos (PC) combined with a sparse Gauss–Hermite
(SGH) quadrature, gradient-enhanced radial basis functions (GERBF), and a
gradient-enhanced polynomial chaos (GEPC) method for an inviscid test case (an
introduction to these methods can be found in [1]).

Unless otherwise stated, the computational cost is measured in terms of “com-
pensated evaluation number” Nc. For the gradient-employing methods, Nc = mN
with N denoting the number of sample Points and m denoting that of response
quantity, since the cost of computing the partial gradients of one response quantity
with respect to all uncertain parameters using an adjoint CFD solver equals
approximately to the cost of one nonlinear CFD evaluation and m denotes the
number of response quantities. For Kriging, QMC, and PC-SGH methods, Nc = N.

The reference statistics (against which the error of estimated statistics is judged)
in the first comparison is obtained by a direct integration of ten thousand QMC
samples, while that for the second comparison is acquired by an integration of four
million QMC samples. The accuracy of the latter reference statistics is estimated by
using the multipartition method [6].
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Viscous Test Case: Comparison of Kriging and GEK
This comparison is based on a CFD model of the viscous flow around the RAE2822
airfoil. We opt for DLR’s unstructured RANS solver TAU [7–9], the
Spalart-Allmaras turbulence model, a central flux discretization scheme, matrix
dissipation, and a “3v” multigrid cycle. The domain is discretized by a hybrid
unstructured grid in which the airfoil has 380 surface nodes, as shown in Fig. 1.
The uncertainties come from a random Mach number and angle of attack, together
with a random perturbation to the original airfoil geometry at every surface grid
point. The two operational variables are assumed to be beta-distributed around M =
0.729 and α = 2.31°, respectively. The perturbations in Mach number and angle of
attack are with a support within ±2% of the nominal values. The geometry per-
turbation is modeled by a random field parameterized into 24 independent Gaussian
variables through a truncated KLE. We kept all eigenvalues larger than 10−7 in the
truncated KLE approximation [1, 2]. The upper and lower surfaces of the airfoil
were treated as two separate random fields as their correlation in geometric varia-
tions is assumed weak in this test case.

Quasi-Monte Carlo quadrature and two surrogate-based UQ methods,
gradient-enhanced Kriging and plain Kriging, are applied to the test case, and their
efficiency is compared in estimating two statistics (mean and standard deviation) of
the coefficient of lift (Cl). The accuracy of the estimates is judged by comparison
with reference statistics which are based on 10,000 QMC samples. The computa-
tional cost is measured in terms of “compensated evaluation number” Nc. Note that
for the gradient-employing method (GEK) Nc is set to 2N in this particular com-
parison since here we only handle one system response quantity (SRQ), i.e., Cl.

Figure 2 shows the results of the comparison in terms of two different statistics
of Cl as a function of Nc. GEK is seen to converge faster than Kriging in estimating

Fig. 1 Grid of RAE2822
airfoil in viscous test case 1:
zoom around the airfoil
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all two statistics. This can obviously be attributed to the more information utilized
by the former with the help of the adjoint TAU solver. It can also be observed that if
the sample number is small, Kriging may perform worse than QMC. Figure 3
shows a comparison of the probability density functions (pdf) obtained by GEK and
QMC for the same computational cost (Nc = 40). It can be confirmed that the pdf by
GEK has much better agreement with that of the reference.

Inviscid Test Case: Comparison of Four Surrogate-Based Integration UQ
Methods and Direct Integration
This comparison is based on a CFD model of the inviscid flow around the
RAE2822 airfoil at a Mach number of 0.73 and an angle of attack 2.0°. We use the
TAU flow solver, opting for a central flux discretization, scalar dissipation, a
backward Euler solver, and a “4w” multigrid cycle. The domain is discretized by a
193-by-33 structured grid in which the airfoil has 128 surface nodes, as shown in
Fig. 4.

The source of uncertainty is a random perturbation to the original airfoil
geometry, which is modeled by a random field parameterized into nine independent
Gaussian variables through a KLE. Figure 5 shows three examples of the perturbed
geometry of the airfoil. With this parameterization of the uncertain geometry, the
five UQ methods mentioned above are applied to the test case and compared in
terms of their efficiency in estimating statistics of Cl and Cd, as well as the prob-
ability distribution functions (pdf), although here we only show results in terms of
Cd. The full set of the results can be referred to in [2].

The following statistics of Cd are estimated as:

1. Mean of Cd, μl, and μd,
2. Standard deviation of Cd, σd,
3. Exceedance probabilities PD, κ = PrfCD ≥ μD − κ ⋅ σDg with κ=2, 3.

The reference values of these statistics are obtained from a relatively large
number (N = 4 × 106) of quasi-Monte Carlo (QMC) samples of the CFD model.
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Fig. 2 Convergence of estimate Cl statistics to the reference statistics by various UQ methods
(note that Nc = 2N in case of GEK because only the gradient of Cl was considered, while Nc = N
for Kriging and QMC) [2]

216 D. Maruyama et al.



Since the theoretical error bound of QMC integration is not a practical accuracy
indicator, the standard deviations (ς) of these reference values are estimated by
using Snyder’s multipartition method [6] and tabulated in Table 1.

In the efficiency comparison of the UQ methods below the smallest measured
errors (measured against these reference values) in mean and standard deviation
(stdv) are at least 10 times larger than 3ς, which means, by taking the assumption
that these reference values are Gaussian distributed around the true values of the
statistics, the measured errors have a 99.73% confidence interval of at widest ±10%.
For exceedance probabilities, this confidence interval is also valid except for a few
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Fig. 3 Comparison of probability density functions (pdf) of lift coefficient obtained by GEK and
QMC for the same computational cost (Nc = 40) (note that Nc = 2N in case of GEK because only
the gradient of Cl was considered, while Nc = N for Kriging and QMC)

Fig. 4 Grid of RAE2822 airfoil in inviscid test case 2: the total grid (left) and zoom around the
airfoil (right)
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measured errors, as shown in Figs. 6 and 7, where the values of the corresponding
3ς are depicted by dashed lines without symbols.

The results of this comparison are shown in Figs. 6 and 7. The figures show the
errors of the five methods in estimating the target statistics of Cd. It is observed
there that generally the gradient-employing surrogate methods perform better than
direct integration methods. This can be ascribed to the fact that the former utilize
more information at the same computational cost. This advantage comes from the
cheaper cost of the gradients computed by an adjoint solver in the case that the
number of response quantities of interest is smaller than the number of variables (in
our case, 2 vs. 9), and the advantage would increase for a larger number of variables
or fewer response quantities. The PC-SGH method has only two data points due to
the very limited choice of sample numbers. It is hard to evaluate its error conver-
gence property based on only two data points.

This shows a fundamental shortcoming of sparse grid quadratures for a relative
high number of variables (9 in this test case). The GEPC method shows constant
convergence in error, but is not as efficient as the other two gradient-employing
methods. The reason could be that the increase of admissible order of polynomial
along increasing Nc is slow in this 9-variate problem and that the polynomial
surrogate tends to “overshoot” in the outskirts of the domain. But the PC methods
have a merit that they do not need a parameter optimization procedure. GEK and
GERBF are the most efficient methods as far as seen from these results. Beside the
cheaper gradients, this could be attributed to properties of the kernel functions they
use and the effort of tuning model parameters. Convergence rate of inverse
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Table 1 Estimated standard deviation of reference statistics for Cd [2]

ς(μD) ς(σD) ς(PD,2) ς(PD,3)

3.0e−9 1.4e−8 1.2e−5 6.8e−6
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multiquadric RBF was estimated Oðe− c ̸hÞ with h the “fill distance” and c a con-
stant, which translates to a rate in N at Oðe− cN1 ̸d Þ [10]. We assume the error in the
statistics is proportional to that in point-wise approximations, and find in this
9-variate test case the observed convergence rate is much better than Oðe− cN1 ̸9Þ—
this hints that the effective fill distance h reduces faster than OðN − 1 ̸dÞ due to that
some variables are less important than the others (typical for a KLE parameteri-
zation). GEK seems slightly better than GERBF in these results, especially at
smaller Nc values. But this cannot be generalized to other applications. In this
particular case, the advantage of GEK could come from the possible advantage of
the cubic spline kernel used over inverse multiquadric.

Different ways of utilizing gradient information by GEK (involving first- and
second-order derivatives and generating a symmetric kernel matrix) and GERBF
(involving only first-order derivatives and generating non-symmetric matrix) could
also contribute to the difference in their performance. At larger Nc values, a
“rebound” of error can be observed in GERBF and GEK results, more obvious in
the former. This is caused by the stabilizing treatment of these methods. Though an
uncertain relation (or trade-off principle) exists stating that accuracy and stability
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cannot be both good, more advanced stabilizing techniques, e.g., pivoted Cholesky
decomposition [11], could improve the convergence as sample number is large.
Figure 7 shows the pdf of Cd estimated by QMC and the three gradient-employing
surrogate methods with Nc = 33 (the smallest possible Nc value for GEPC method),
in comparison with the reference pdf (computed by four million QMC samples).
There one observes that for the same computational cost, the surrogate methods
yield much more accurate pdfs. This is consistent with their relative performance in
estimating the statistics. One question naturally arising here is whether the
advantage of gradient-employing surrogate methods observed in this test case can
be generalized to other cases. Our answer is “yes” for at least high-dimensional and
almost-everywhere-differentiable problems. This is based on the following argu-
ments. The particular configuration of the test case, e.g., discretization size and
excluding/including viscous effect, influences the precision at which the CFD
model approximates the true physics, while our study is on the precision at which
numerical integral approximates CFD statistics. These two precisions can be
studied separately. Yet this particular configuration could affect the CFD behavior
upon the geometric uncertainty, but it would not change our conclusion because
with cheaper gradients the former methods utilize more information than do the
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latter at the same cost. This advantage is independent of the configuration. And we
have been careful to make only a characteristic conclusion rather than a quantitative
one which could depend on the test case and its configuration.

One should notice that the advantage of the gradient-employing surrogate
methods should not be taken as universal. For example, on problems with few
variables or problems that are mostly non-differentiable the advantage might not
exist. If the problem has a very oscillatory topography, the advantage could only be
manifested with relatively more samples.

Sampling Techniques for Specific Stochastic Quantities
of Interest

Based on the results in the previous section, efficient sampling techniques suitable
for stochastic quantities of interest are discussed. In this section, we only consider
GEK and a fixed number of 30 samples. GEK with a Gaussian kernel (correlation
function) was adopted, and the hyperparameters were optimized by a global opti-
mizer (a differential evolution algorithm was used) by maximum likelihood esti-
mation (MLE). Note that setting up the entire GEK model took around 15 s. On one
core on our HPC cluster.

Here, we focus on different sampling techniques to evaluate the statistics of
quantities of interest (QoI) accurately for a fixed number of samples. The statistics
of QoI are, for instance, mean and standard deviation of the drag coefficient, which
are of interest in robust design applications with different measures of robustness,
for example, the “expectation measure” and the “mean-risk approach.” The maxi-
mum or minimum value of the QoI is necessary when the so-called “worst-case risk
measure” is used. It would be expensive in terms of the number of samples to
construct a versatile yet accurate surrogate model suitable to quantify any kind of
statistical value. Here, we focus on how to efficiently and accurately quantify the
statistical values which are directly necessary to evaluate a given objective function.
The statistical values to be considered in this section are mean, standard deviation,
maximum or minimum values of the drag coefficient (Cd), which is QoI.

The test case used in this section is the UMRIDA test case BC-02, which is
based on the RAE2822 airfoil. The flow solver and the grid used (see Fig. 1) are the
same as those described in the previous section for the viscous test case except that
the negative Spalart-Allmaras turbulence model [12] was used. The considered
operational and geometrical uncertainties are basically identical as well except that
the mean values of angle of attack (α) and Mach number (M) are 2.79° and 0.734,
respectively, to match the UMRIDA test case description. All of the 380 surface
grid nodes of the airfoil are considered uncertain and are parameterized by 10
independent variables ξ furnished by a truncated KLE [1, 2] to keep the relative
information content (the ratio between the principal eigenvalues and the total sum
of all eigenvalues) larger than 99% [13]. The uncertain input parameters are
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assumed to have normal distributions as α∼Nð2.79◦, 0.1◦Þ, M ∼Nð0.734, 0.005Þ,
and ξ∼Nð0, 1Þ.

When UQ methods are applied to robust design, one approach is to evaluate the
aerodynamic performance statistics for each nominal design, i.e., for different
combinations of design parameters. This means that a surrogate model needs to be
constructed at every iteration of the optimization process. Realizing high repro-
ducibility and accuracy with a limited number of samples and suitable surrogate
model construction for focusing on statistics of interest are required. Therefore, the
issues here in terms of surrogate model accuracy are dependent on the statistics of
interest on the following two issues:

(1) Initial set of points;
(2) Sample distributions and adaptive sampling.

Ideally, the statistics that are computed based on the surrogate model are inde-
pendent of the set of samples used to construct the surrogate model. Different sets of
points for a given number of samples can be obtained by extracting arbitrary
continuous rows from a Sobol sequence [14–16] used as QMC sampling, which can
maintain “uniformity” (also called “low discrepancy”) of the samples. This is
related to the first issue. Details of this strategy can be found in [17] and [18].
Discrepancy, which is a mathematical definition to measure the uniformity of
samples, of these different sets of 30 samples is constant.

These original sample sets form uniform distributions. Here, it is assumed that
the probability density functions (pdf) of the uncertain input parameters are given
by normal distributions. The uniformly distributed samples can be transformed into
normal distributions by using their cumulative density functions (cdf). Additional
samples can be infilled based on statistical information in Kriging, which is a
so-called adaptive sampling technique. Details are described later. These topics are
related to the second issue mentioned in the above.

The input parameters are the uncertain operational and geometrical parameters:
u= ða, ξÞ, where a= ðα, MÞ, and their normal distributions are truncated to
μu ±3σu. The statistics of interest are the following two kinds of statistical values f
as the output uncertainties:

f ≡ μCd
+ σCd ð1Þ

f ≡ max
u

ðCdðuÞÞ ð2Þ

These statistical values are named as “robust” and “reliability,” respectively.
They are used in the context of “expectation measure” and “mean-risk approach” as
robust design by Eq. (1) and “worst-case risk measure” as reliability-based design
by Eq. (2), respectively, to formulate objective functions. The evaluation of “reli-
ability” as expressed by Eq. (2) can also be regarded as a surrogate-based opti-
mization problem considering u as “design variables”. Maximizing Cd on a
surrogate model leads us to the idea of applying adaptive sampling techniques to
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construct more accurate surrogate models for the statistics of interest. If Kriging is
used, then the expected improvement (EI) function is a suitable indicator to yield
more accurate surrogate models. The procedure of evaluating the stochastic value
f is as follows (see also Fig. 8):

Step 1. Initial set of points are generated in the uncertain input parameter space
u= ða, ξÞ in truncated ranges of μu ±3σu by using QMC sampling.

Step 2. The CFD and adjoint calculations are performed for the sample points to
obtain Cd and its partial gradients with respect to the uncertain parameters
u= ða, ξÞ.

Step 3. A GEK surrogate model of Cd is constructed based on the initial samples.
Step 4. If necessary, adaptive sampling is applied to refine the surrogate model

with additional samples, and go back to Step 2. Otherwise, the construction
of a surrogate model finishes and any statistics is calculated on the sur-
rogate model.

The time-consuming part of this procedure is Step 2, unless many samples are
added in Step 4. At Step 1, we used a Sobol sequence for QMC sampling as
mentioned above. The distributions of the generated samples are either transformed

Fig. 8 Schematic diagram of two different procedures used to compute different statistics of
interest based on sampling techniques and surrogate modeling
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into the input pdf or a uniform is kept. At Step 4, stochastic values can be almost
uniquely obtained by using Monte Carlo (MC) or QMC on the surrogate model
with a sufficiently large number of samples (>105). During the steps from 1 to 4, the
surrogate model is reconstructed when additional samples are filled in. Note that in
any case, we chose to restrict the total number of samples to 30 to maintain the
same computational costs throughout, even in the case of adaptive sampling.

In the case of evaluation of “robust” as expressed by Eq. (1), “uniformity” of the
samples fitted to the input pdf could be an important factor to evaluate μCd

and σCd .
On the contrary, in the case of evaluating “reliability,” i.e., evaluating
maxuðCdðuÞÞ, any statistical information in the domains where the accuracy is
needed cannot be driven by the input pdf. In this case, statistical indicators such as
the mean-square error (MSE) of the prediction and the EI extracted from the
Kriging model can be useful. The statistical indicators are first uniformly generated
on the input uncertainties domain. More details about the adaptive sampling
strategy are explained here by following the procedure described above. To start
with, 24 initial samples with a uniform distribution are generated in Step 1. At Step
4, the expected improvement (EI) function is evaluated on the sufficiently large
number of samples with the uniform distributions by using QMC on the surrogate
model. EI is an indicator to find the sample that will most probably result in the
largest improvement of the surrogate if computed with CFD. Here, we aim to
maximize the Cd (see Eq. (2)). The formulation of EI in mono-objective maxi-
mization is represented by the following equation:

EIðuÞ= Cd̂ −Cdmax
� �

Φ
C ̂d −Cdmax

sðuÞ
� �

+ sðuÞϕ C ̂d −Cdmax

sðuÞ
� �

ð3Þ

where sðuÞ is the MSE of the surrogate model, u is the uncertain parameters, Cd̂ is
the value of the drag coefficient on the surrogate, Cdmax is the current maximum
value of all the initial samples evaluated with CFD, and Φ and ϕ denote the
cumulative density function (cdf) and the probability density function (pdf),
respectively. The EI value itself gives the probability that a sample point would
become the global optimum (maximum in this case). Here, the six highest EI values
are selected to determine six additional sample locations. Then, going back to Step
2, the CFD including adjoint calculations are executed on the six new sample
points. The surrogate model is reconstructed at Step 3 by using the all 30 samples.
Finally, maxu CdðuÞð Þ is obtained on the reconstructed surrogate model at Step 4. In
practice, it is estimated based on the surrogate model by using a random sampling
method using MC or QMC with a sufficiently large number of samples (>105)
instead of using an optimization algorithm. It is evaluated by the quantity at 99‰ of
the cdf of Cd expressed as maxu CdðuÞð Þ≈Cd99%max rather than taking maxu CdðuÞð Þ.

Now, we discuss how accurately the stochastic values f as represented by
Eqs. (1) and (2) are evaluated in terms of the issues (1) and (2). Figures 9 and 10
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show how the accuracy of f depends on the sample distribution used for con-
structing a surrogate model for each stochastic value. Both a uniform distribution
and a normal distribution of the samples used to construct the surrogate model were
considered. In addition, adaptive sampling was combined with a uniform initial
sample distribution, but only for the case of evaluating the “reliability” ðCd99%maxÞ.
The horizontal axis is the index of the different set of points. Each index corre-
sponds to a different set of 30 samples which were continuously extracted from the
Sobol sequence as explained in the above. The reference values to evaluate the
accuracy were obtained by using 105 direct CFD calculations on the Sobol
sequence-based QMC sampling.

The results indicate that different sampling strategies are required for different
stochastic values. This means that we should focus on the accuracy of the surrogate
model in specific domains of the (uncertain input) parameter space. In the case of
evaluating the “robustness” shown in Fig. 9, the samples are distributed according
to the input pdf (normal distributions in this case, red square symbols), leading to
higher accuracy in terms of the evaluated f than a uniform distribution (blue dia-
mond symbols). As for “reliability,” it can be observed in Fig. 10 that the com-
bination of a uniform sample distribution and adaptive sampling (green square
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symbols) effectively reduces the noise in the cost function f and can improve the
accuracy in terms of the absolute value of f compared to a uniform sample distri-
bution without adaptive sampling (diamond symbols). In this case, the accuracy of
the surrogate model in terms of Cd99%max was improved by adaptive sampling,
which plays an important role to determine the statistics of interest.

Figure 11 shows one example of the initial and adaptive sample distributions for
the worst-case risk measure, Cd99%max. The adaptively added sample points (red
square symbols) are mostly located close to the borders of the parameter space
where samples used in the case of the “mean risk” are usually sparse due to their
normal distribution. This shows that there is a trade-off in when trying to evaluate
different stochastic values with a single surrogate model. To obtain Cd99%max

accurately, a uniform initial sample distribution is preferable to avoid strong
extrapolation toward the borders of the parameter space where the maximum Cd
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may be located. If adaptive sampling is applied, a uniform initial sample distri-
bution is preferable to avoid a lack of accuracy of the EI function over the
parameter space which is required to determine the samples to be added. On the
contrary, to obtain μCd

and σCd , applying the input pdf of the uncertain parameters
to the sample distribution is recommended. Further adaptive sampling techniques,
e.g., a combination of MSE with the input pdf and EI, are of interest that account
for this problem.

Summary

In the first section, we evaluated statistics of aerodynamic performance (lift and
drag coefficients) such as mean, standard deviation, skewness, kurtosis, and prob-
ability density function, on a variety of surrogate models with gradient-assisted or
not, direct integration, and polynomial chaos with gradient assist or supported by
sparse Gauss–Hermite. The test case used here was the RAE2822 transonic airfoil.
The results show that globally to say the gradient-enhanced Kriging (GEK) is the
most accurate in calculating any kinds of statistics, especially for the probability
density function (pdf), which stands out compared with other methods.

Based on the results in the first section, the second section showed accuracy
results using adaptive sampling techniques to obtain specific stochastic quantities
which are mean and standard deviation (mean risk), and maximum (the worst-case
risk) of drag coefficient. The surrogate model, the number of the input uncertainties,
and the number of samples were fixed at GEK, 12 and 30, respectively. No specific
sampling strategy is necessary for evaluating mean and standard deviation as far as
“uniformity” of the samples, which is achieved by the Sobol sequence, is main-
tained and the samples distributions are fitted to the input probability density
function (pdf). On the contrary, adaptive sampling techniques using the expected
improvement (EI) in the uniformly distributed sample can efficiently assist to
evaluate the maximum value.
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Ordinary Kriging Surrogates
in Aerodynamics

Antoine Dumont, Jean-Luc Hantrais-Gervois, Pierre-Yves Passaggia,
Jacques Peter, Itham Salah el Din and Éric Savin

Introduction

Surrogate models become increasingly popular in performing various optimization

or uncertainty quantification (UQ) analyses. The principle of a surrogate model

relies on an efficient approximation method which estimates a scalar or vector-

valued input/output functional using a data set constituted by observations of this

functional, often computationally expensive [1]. For example, the computational

resources necessary to evaluate stochastic integrals are known to grow exponen-

tially with the number of dimensions due to the so-called curse of dimensionality.

This increase becomes even more critical when the integrands need to be evaluated

by intensive computations. Surrogate models are a non-intrusive alternative for such
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computations which can outcome the limitation emphasized before by providing

cheap representations of the integrands in the parameters space. These representa-

tions are typically computed using an interpolation or a regression procedure. How-

ever, when considering a moderate to large parameters space, efficient algorithms

are mandatory to derive accurate representations of parameterized integrands.

The Kriging procedure [2, 3] is a good candidate because of its robustness, accu-

racy, and ability to provide a description of the error done by replacing a complex

function by a Kriging surrogate. This approach is interpolating and assumes that the

function to approximate is the realization of a second-order Gaussian process. The

construction of this interpolation using a sampled data set is based on a covariance

function, often chosen as Gaussian, of which inner parameters have to be tuned up

in order to provide a reliable surrogate. Here, we apply this procedure to the sim-

ulation of airflow around a wing profile with the consideration of variable shape

parameters of the profile. The present study is more particularly dedicated to a two-

dimensional RAE 2822 airfoil simulated at transonic speed [4, 5]. It is a popular,

well-documented test case in the literature and has received much attention over the

past decades; see [6, 7] and references therein for an application to the develop-

ment of algorithms for shape optimization. Our objective is to obtain an accurate

surrogate for evaluating the aerodynamic performance of the airfoil when its shape

is altered, considering a dense data set with a moderately high dimension of the

parameters space (four in the present investigation). This accuracy is required for

a subsequent robust optimization of the airfoil. We note at this stage that the Krig-

ing procedure becomes computationally intractable for high-dimensional parameters

space and large data sets, and alternative techniques need be advocated in these situa-

tions as emphasized in [8]. They include, for example, sparse grid-based polynomial

projection or regression techniques using either structured or unstructured nodes,

as detailed in the previous chapters “General Introduction to Polynomial Chaos

and Collocation Methods” and “Generalized Polynomial Chaos for Non-intrusive

Uncertainty Quantification in Computational Fluid Dynamics” and references

therein.

The rest of this chapter is organized as follow. The next section “Test Problem”

introduces the parameterized test problem considered in this work and the numerical

tools used to construct the data set. Details about the Kriging method are presented

in section “Kriging Surrogate Model.” The inputs and results of a robust UQ study

based on a Kriging surrogate are described in section “Robust Optimization Based on

the Surrogate Model.” Finally, some conclusions are drawn in section “Conclusions.”

Test Problem

Actual cruise flight conditions are mostly transonic, meaning that the flow can

become locally supersonic due to the geometry of the wing profiles. Its accelera-

tion on the upper surface of the profiles induces a depression which is responsible

for the lift force. If this depression is too sharp, a discontinuity, or shock wave, is

https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
https://doi.org/10.1007/978-3-319-77767-2_7
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created to balance the pressure gradient at the trailing edge between the upper and

lower surfaces. The position and strength of the shock wave are responsible for a part

of the drag force, and hence, these features are of major importance in optimization,

for instance to minimize the drag force at constant lift force. Modifications of the

shape of the profiles can alleviate such issues by smoothing out the discontinuity,

hence increasing the lift force while decreasing the drag force. We thus consider a

test problem where the objective is to develop a numerical strategy to quantify the

influence of variable geometrical parameters of an airfoil on its aerodynamic perfor-

mances such as the lift and/or drag force.

More particularly, the present test case is a transonic turbulent flow around a RAE

2822 airfoil. The flow is modeled by the steady-state Reynolds-averaged Navier–

Stokes (RANS) equations together with a Spalart–Allmaras turbulence model clo-

sure [9], which are now routinely used for the quantification of design issues involv-

ing compressible aerodynamics. The baseline conditions of the flow are described

in [4] for the test case #6 together with the wall interference correction formu-

las derived in [10, pp. 386–387] and their slight modifications suggested in [11,

p. 130]. The operational parameters considered here are thus M∞ = 0.729 for the

free-stream Mach number, 𝛼∞ = 2.31◦ for the angle of attack, and Re = 6.50 ⋅ 106
for the Reynolds number based on the chord length c, fluid velocity, temperature,

and molecular viscosity at infinity. They arise from the corrections 𝛥M∞ = 0.004
and 𝛥𝛼∞ = −0.61◦ given in [11, p. 130] for the test case #6 outlined in [4], for which

M∞ = 0.725, 𝛼∞ = 2.92◦, and Re = 6.50 ⋅ 106.

Discretization and Numerical Parameters

In this section, we describe how the numerical simulations of the foregoing exam-

ple are performed. The flow is computed using the cell-centered finite volume CFD

software elsA [12]. The RANS equations are discretized using a 641c × 129c mesh,

shown in Fig. 1, where the boundary at infinity was left intentionally far at 450c from

the airfoil. These values proved to be sufficient to avoid spurious reflections with the

far-field boundary. The discretized numerical solution is obtained based on:

∙ A Roe flux using a second-order MUSCL scheme [13] (based on van Albada lim-

iter [14]) for the convective term of the RANS system;

∙ First-order Roe fluxes for the advection term of the turbulent variable;

∙ Corrected second-order diffusive terms based on the corrected mean of the cell-

centered gradients of the two adjacent cells;

∙ Source terms for the turbulent transport computed using the temperature gradients

at the center of the cells.

The flow is attached with a weak shock wave on the suction side. The static pres-

sure at the wall as well as the iso-Mach number levels are presented in Fig. 2. Given

the large number of simulations to run, the parameters of the steady-state algorithm

proved to be essential to insure a fast convergence. This was achieved using the fol-

lowing set of parameters:
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Fig. 1 Computational domain (left) and close view (right) of the mesh for the baseline RAE 2822

configuration

Fig. 2 Static pressure coefficient −Cp at the wall (left) and iso-Mach number levels (right) for the

baseline RAE 2822 configuration at M∞ = 0.729, 𝛼∞ = 2.31◦, Re = 6.50 ⋅ 106 compared with the

experimental data reported in [5]

∙ An implicit Lower-Upper Symmetric Successive Overrelaxation (LU-SSOR)

scheme [15] using four relaxation cycles, increasing the CFL conditions after 100
iterations to CFL = 50;

∙ A multi-grid approach for the Navier–Stokes system over two grid levels with two

iterations on the coarse grid;

∙ A single fine level iteration for the turbulent equation alternating with a multi-grid

iteration for the RANS system.

The corresponding decrease of the explicit residual for the mass flow is shown in

Fig. 3 (left). Once the numerical parameters have been fixed, the number of iterations

is determined from the evolution of the global forces, through a 30,000 iterations

calculation (decreasing discrete residuals of all equations being checked at every

iteration, the final reduction of the mass conservation residual, shown in Fig. 3, is
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Fig. 3 Convergence of the multi-grid simulations (one level of coarse grid) for the baseline mesh

(left) and maximum and minimum displacement (black lines) of the shape of the RAE 2822 profile

using the four parameters of the present study (left). Maximum (red) and minimum (blue) displace-

ment of the third bump alone

Fig. 4 Total forces along the x horizontal axis (left) and z vertical axis (right) as a function of the

number of iterations

2.5 ⋅ 104). After 6000 multi-grid cycles, the force values appeared to remain within

the range [−2∕10,000,+2∕10,000]which is acceptable, given the convergence error;

see Fig. 4. Hence, this number of iterations has been retained for all subsequent cal-

culations.

Shape Parameters

The shape of the baseline RAE 2822 profile is subsequently altered using four

B-spline functions, located on the suction side of the airfoil. These alterations are

responsible for triggering the pressure gradient induced by the geometry of the pro-

file. The pressure gradient is significantly altered even for small variations of the
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airfoil shape, which leads to nonlinear variations of the lift and drag forces. The

shape parameters used to alter the baseline configuration are:

∙ Four control points located at 5, 20, 40, and 60% of the chord c;

∙ The deformation is described by B-spline functions denoted by Sn(s) such that:

Sn(s) =
m−n−1∑

j=0
𝛼jb(j)n (s) , (1)

where the 𝛼j’s are the values of the deformed shape at the control points and s is

the curvilinear abscissa of the airfoil. The m − n basis functions b(j)n of degree n
are defined by the recurrence relation:

b(j)0 (s) ∶=
{

1 if sj ≤ s < sj+1 ,
0 otherwise,

and:

b(j)n (s) ∶=
s − sj

sj+n − sj
b(j)n−1(s) +

sj+n+1 − s
sj+n+1 − sj+1

b(j+1)n−1 (s) .

Here, m = 4 and n = 2 have been chosen;

∙ The amplitude 𝜉k, k = 1, 2, 3, or 4, of each B-spline varies in the range ±0.0025c
in the direction of the outward normal vector to the nominal (unaltered) profile;

∙ The leading edge and the trailing edge are considered as fixed.

The shape of the airfoil thus evolves continuously as a function of the shape parame-

ter vector 𝜉𝜉𝜉 ∶= (𝜉1, 𝜉2, 𝜉3, 𝜉4) which varies in the design domain

D = [−0.0025c, 0.0025c]4. The support of each spline independently of the others is

depicted in Figs. 5 and 6. The effect of the maximum and minimum displacements

is shown in Fig. 3 (right).

Fig. 5 Baseline configuration and deformation of each spline with an amplitude in the range

[−0.0025c, 0.0025c] at 0.05c (left) and 0.2c (right)
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Fig. 6 Baseline configuration and deformation of each spline with an amplitude in the range

[−0.0025c, 0.0025c] at 0.4c (left) and 0.6c (right)

Quantity of Interest

The quantity of interest is the lift-to-drag ratio Y where the lift coefficient is denoted

by CL and the drag coefficient by CD, such that:

Y(𝜉𝜉𝜉) =
CL(𝜉𝜉𝜉)
CD(𝜉𝜉𝜉)

. (2)

Note that in the present work the computation of the drag coefficient has been per-

formed using the far-field approach detailed in [16]. Our aim is thus to provide an

optimal approximation (in a sense clarified in the subsequent section) for the func-

tion 𝜉𝜉𝜉 ↦ Y(𝜉𝜉𝜉). This is achieved on the basis of Q > 0 repeated runs of the CFD soft-

ware for the altered configurations at selected parameter values 𝜉𝜉𝜉
l = (𝜉l1, 𝜉

l
2, 𝜉

l
3, 𝜉

l
4),

1 ≤ l ≤ Q, in the normalized parameter domain ̂D = [0, 1]4. The data set contain-

ing all the simulations is denoted by SQ = {Y(𝜉𝜉𝜉l); 1 ≤ l ≤ Q} in the following, with

Q = #SQ.

Kriging Surrogate Model

This section outlines the numerical procedure used to compute an optimal inter-

polant, or surrogate model, of the quantity of interest Y by the Kriging method [1–3,

17, 18]. It also describes the strategy retained to obtain optimized inner parameters

for the Kriging interpolant. For that purpose, we basically follow the presentation

in [8]. As already stated above, our aim is to use this surrogate to characterize the

influence of alterations of the baseline profile of the RAE 2822 airfoil described in

section “Shape Parameters” on its aerodynamic performance, as expressed here by

the ratio between the lift and drag coefficients (2).
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The Kriging Method

The Kriging method is based on the assumption that the quantity of interest Y(𝜉𝜉𝜉) is

a random variable which can be decomposed into [1]:

Y(𝜉𝜉𝜉) = 𝜇(𝜉𝜉𝜉) + 𝜀(𝜉𝜉𝜉) , (3)

where 𝜇(𝜉𝜉𝜉) and 𝜀(𝜉𝜉𝜉) are sought as a deterministic contribution and a random fluc-

tuation, respectively. The mean 𝜇 is typically sought as a constant or a low-order

polynomial—hence the following terminology [3] of: (i) simple Kriging if 𝜇 is con-

stant and known a priori; (ii) ordinary Kriging if 𝜇 is constant but unknown; or

(iii) universal Kriging if 𝜇 is an unknown polynomial of known order (a polyno-

mial chaos expansion, for example, as in [19]). The random process 𝜀 indexed by

the parameters 𝜉𝜉𝜉 is assumed to be a second-order, centered, mean-square stationary

process, or stationary covariance process in the terminology of [18], such that its

mean 𝜇

𝜀

= 𝔼{𝜀(𝜉𝜉𝜉)} and variance 𝜎
2
𝜀

= 𝔼{𝜀(𝜉𝜉𝜉)2} are, respectively, null and constant.

In these definitions, 𝔼{X} stands for the average of the random variable X. Thus, its

covariance function depends only on the difference 𝜉𝜉𝜉 − 𝜉𝜉𝜉

′
, and what is more the

lag distance ‖𝜉𝜉𝜉 − 𝜉𝜉𝜉

′‖, that is to say Cov{𝜀(𝜉𝜉𝜉), 𝜀(𝜉𝜉𝜉′)} = 𝔼{𝜀(𝜉𝜉𝜉)𝜀(𝜉𝜉𝜉′)} = 𝜙(𝜉𝜉𝜉, 𝜉𝜉𝜉′) =
𝜑(‖𝜉𝜉𝜉 − 𝜉𝜉𝜉

′‖). Here, the covariance of two random variables X and Y is defined by

Cov{X,Y} ∶= 𝔼{(X − 𝔼{X})(Y − 𝔼{Y})} and the variance of a random variable X
byVar{X} ∶= Cov{X,X}. In this framework, the approximation (or linear predictor)

of Y(𝜉𝜉𝜉∗) at the unobserved coordinates 𝜉𝜉𝜉
⋆

, denoted by IQY(𝜉𝜉𝜉
⋆), is a linear combi-

nation of the samples Y(𝜉𝜉𝜉l) ∈ SQ such that:

IQY(𝜉𝜉𝜉
⋆) =

Q∑

l=1
𝜆

l(𝜉𝜉𝜉⋆)Y(𝜉𝜉𝜉l) , (4)

where 𝜆

l(𝜉𝜉𝜉⋆) are weights. The aim of the Kriging method is then to derive the

best linear unbiased predictor in the sense of a mean-square error. It can be sought

as the solution of a constrained minimization problem where the objective func-

tion is the variance 𝜎

2(𝜉𝜉𝜉⋆) = Var{IQY(𝜉𝜉𝜉
∗) − Y(𝜉𝜉𝜉⋆)} with the unbiased constraint

𝔼{IQY(𝜉𝜉𝜉
⋆)} = 𝔼{Y(𝜉𝜉𝜉⋆)}, that is:

{𝜆l(𝜉𝜉𝜉⋆)}1≤l≤Q = arg min
{𝛬l}1≤l≤Q

{
𝜎

2(𝜉𝜉𝜉⋆);
Q∑

l=1
𝛬

l𝔼{Y(𝜉𝜉𝜉l)} = 𝔼{Y(𝜉𝜉𝜉⋆)}

}
, (5)

with:

𝜎

2(𝜉𝜉𝜉⋆) = Var{Y(𝜉𝜉𝜉⋆)} + Var{IQY(𝜉𝜉𝜉
⋆)} − 2Cov{Y(𝜉𝜉𝜉⋆),IQY(𝜉𝜉𝜉

⋆)}

= 𝜙(𝜉𝜉𝜉⋆, 𝜉𝜉𝜉⋆) +
Q∑

l=1

Q∑

m=1
𝛬

l
𝛬

m
𝜙(𝜉𝜉𝜉l, 𝜉𝜉𝜉m) − 2

Q∑

l=1
𝛬

l
𝜙(𝜉𝜉𝜉l, 𝜉𝜉𝜉⋆) .

(6)
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The covariance between Y and IQY in Eq. (6) endows the set SQ with an inner

product and avoids the explicit knowledge of Y(𝜉𝜉𝜉). This technique is also known as

the kernel trick and avoids explicit mappings where only the foregoing inner product

between samples in SQ is used in the evaluation of the covariance [20]. In addition,

the kernel function 𝜙 has to be positive definite; see [18] for a comprehensive review.

In the present work, the product of k one-dimensional Gaussian functions satisfying

the stationary covariance process assumption has been considered. However, other

kernels could be envisaged as in, e.g., [1, 18]. The covariance kernel used in the

present investigation is thus given by:

Cov{Y(𝜉𝜉𝜉),Y(𝜉𝜉𝜉′)} = 𝜙(𝜉𝜉𝜉, 𝜉𝜉𝜉′) = exp

[
−1
2

N∑

k=1

(
𝜉k − 𝜉

′
k

𝜁k

)2]
, (7)

where the kernel parameters 𝜁𝜁𝜁 = (𝜁1, 𝜁2,… , 𝜁N) have to be computed in order to

minimize the quadratic error between IQY(𝜉𝜉𝜉
⋆) and Y(𝜉𝜉𝜉⋆) in Eq. (5). Here, N is the

dimension of the parameters space, which is N = 4 in the present work.

Optimization of the Inner Parameters of the Covariance Kernel

The computation of the inner parameters of the covariance kernel is a crucial step

for the accuracy of the interpolation and requires to solve a nonlinear problem in N
dimensions. The choice was made to compute the kernel parameters 𝜁𝜁𝜁 using a cross-

validation procedure [17]. The so-called leave-one-out (LOO) method consists in

removing each point in the data set SQ one by one and compute the mean-square

difference E between the Kriging IQY and its LOO counterpart I l
Q−1Y computed

from SQ ⧵ {Y(𝜉𝜉𝜉l)}, at the location 𝜉𝜉𝜉

l
, such that:

E(Y)
LOO

= 1
Q

Q∑

l=1

(
I l

Q−1Y(𝜉𝜉𝜉
l) − Y(𝜉𝜉𝜉l)

)2
. (8)

The computation of the Q new predictors I l
Q−1Y can be done efficiently using

Rippa’s method [21]. A differential evolution algorithm has been subsequently used

to solve the optimization problem for the kernel parameters 𝜁𝜁𝜁 associated with Eq. (8).

Details about the algorithm can be found in [22].

Direct and Dual Estimate of Ordinary Kriging

Ordinary Kriging [3] is by far the most popular approach and has been considered

in the present investigations. It starts with the assumption that the mean of Y −IQY
vanishes although 𝜇 is unknown. The unbiased constraint implies that:
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Q∑

l=1
𝜆

l(𝜉𝜉𝜉⋆)𝜇 − 𝜇 = 0 , (9)

and thus
∑Q

l=1 𝜆
l(𝜉𝜉𝜉⋆) = 1. Introducing the Lagrange multiplier 𝜒 and canceling the

gradient with respect to 𝛬

l
in Eq. (6), the system to be solved, together with the

condition (9), is given by:

2
Q∑

l=1
𝜆

l(𝜉𝜉𝜉⋆)𝜙(𝜉𝜉𝜉l, 𝜉𝜉𝜉m) − 2𝜙(𝜉𝜉𝜉⋆, 𝜉𝜉𝜉m) + 2𝜒 = 0 , ∀ m = 1, 2,… ,Q ,

Q∑

l=1
𝜆

l(𝜉𝜉𝜉⋆) = 1 ,

(10)

where the weights {𝜆l(𝜉𝜉𝜉⋆)}1≤l≤Q are the coefficients of the linear interpolation (4)

defining the Kriging surrogate. They are thus computed as the solution of the linear

system:

⎡
⎢
⎢
⎢⎣

𝜙(𝜉𝜉𝜉1, 𝜉𝜉𝜉1) ⋯ 𝜙(𝜉𝜉𝜉1, 𝜉𝜉𝜉Q) 1
⋮ ⋱ ⋮ ⋮

𝜙(𝜉𝜉𝜉Q, 𝜉𝜉𝜉1) ⋯ 𝜙(𝜉𝜉𝜉Q, 𝜉𝜉𝜉Q) 1
1 ⋯ 1 0

⎤
⎥
⎥
⎥⎦

⎛
⎜
⎜
⎜⎝

𝜆

1

⋮
𝜆

Q

𝜒

⎞
⎟
⎟
⎟⎠

=
⎛
⎜
⎜
⎜⎝

𝜙(𝜉𝜉𝜉1, 𝜉𝜉𝜉⋆)
⋮

𝜙(𝜉𝜉𝜉Q, 𝜉𝜉𝜉⋆)
1

⎞
⎟
⎟
⎟⎠

. (11)

However, this method becomes very expensive when the data set SQ is large,

and thus, numerous output values Y(𝜉𝜉𝜉⋆) have to be computed. This difficulty can be

overcome by observing that the linear predictor IQY(𝜉𝜉𝜉
⋆) also reads:

IQY(𝜉𝜉𝜉
⋆) =

Q∑

l=1
𝜋

l
𝜙(𝜉𝜉𝜉l, 𝜉𝜉𝜉⋆) + 𝜋

Q+1
, (12)

where the weights {𝜋l}1≤l≤Q are obtained as the solution of the system:

⎡
⎢
⎢
⎢⎣

𝜙(𝜉𝜉𝜉1, 𝜉𝜉𝜉1) ⋯ 𝜙(𝜉𝜉𝜉1, 𝜉𝜉𝜉Q) 1
⋮ ⋱ ⋮ 1

𝜙(𝜉𝜉𝜉Q, 𝜉𝜉𝜉1) ⋯ 𝜙(𝜉𝜉𝜉Q, 𝜉𝜉𝜉Q) 1
1 ⋯ 1 0

⎤
⎥
⎥
⎥⎦

⎛
⎜
⎜
⎜⎝

𝜋

1

⋮
𝜋

Q

𝜋

Q+1

⎞
⎟
⎟
⎟⎠

=
⎛
⎜
⎜
⎜⎝

Y(𝜉𝜉𝜉1)
⋮

Y(𝜉𝜉𝜉Q)
0

⎞
⎟
⎟
⎟⎠

. (13)

This approach is more convenient than (4) and (11) because the weights are now

independent of the unobserved shape parameters 𝜉𝜉𝜉
⋆

.
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Robust Optimization Based on the Surrogate Model

A tensorized grid of nine equidistributed abscissas for each of the four shape param-

eters of section “Shape Parameters” is used to obtain the data set SQ; therefore,

Q = 94 = 6561. The values of the lift-to-drag ratios Y(𝜉𝜉𝜉l) in SQ as computed by

the elsA CFD software vary in the range [36.788, 75.198]. The Kriging surrogate

model for the present parametric problem is computed using Onera’s in-house soft-

ware META_NUMF [17]. It implements the various algorithms described in section

“Kriging Surrogate Model”. The inner parameters selected by the cross-validation

procedure are 𝜁𝜁𝜁 ≃ (0.1020, 0.0472, 0.0957, 0.1434). Note that the second parameter

𝜁2 (which can be interpreted as a correlation length) is rather small compared to the

others. This may result in small amplitude oscillations in this direction. Also, note

that the computation for the surrogate model has been carried out on eight Intel
Ⓡ

Xeon
Ⓡ

processors E5540 (8M cache, 2.53 GHz) for 5 days for the inner parameters

optimization. The surface response obtained using the Kriging surrogate is shown in

the two-parameters plan (𝜉1, 𝜉3) at 𝜉2 = −0.0025c, 𝜉4 = 0 and 𝜉2 = 0.0025c, 𝜉4 = 0
in Fig. 7.

The response surface has been further characterized using a particle swarm opti-

mization algorithm [23] to localize its extrema. The surrogate model is character-

ized by 28 local maxima {Ym}1≤m≤28, where the global maximum is Ymax ≃ 76.6724
located at:

𝜉𝜉𝜉max ≃ (0.002143,−0.001873, 0.001125, 0.001162) ,

such that Ymax = IQY(𝜉𝜉𝜉max). The 28 local maxima extracted from the above proce-

dure are listed below in Table 1 in 16 digits precision for illustration purposes. They

proved to verify ‖𝛁
𝜉𝜉𝜉

Y(𝜉𝜉𝜉)‖ < 10−2, where the gradient was computed using a second-

order centered finite difference scheme with a step 𝛥𝜉k = 0.5 ⋅ 10−3 × 0.0025c in

each direction k = 1, 2, 3, and 4 in the design domain D. These maxima have subse-

quently been considered for an UQ study where the mean and the variance of each

maximum have been computed conditionally upon a prior probability distribution

of the shape parameters chosen as a Beta law of the first kind 𝛽I for each of them.
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Fig. 7 Surface response in the (𝜉1, 𝜉3) plan for 𝜉2 = −0.0025 (left) and 𝜉2 = 0.0025 (right) with

𝜉4 = 0 in both cases
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Fig. 8 𝛽I probability

distribution functions for

𝛼 = 𝛽 = 6 (full line) and

𝛼 = 𝛽 = 2 (dashed line) used

for modeling the uncertainty

on the design of the shape

parameters

0 0.2 0.4 0.6 0.8 1
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1
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I

This distribution function appears as a suitable choice when considering manufac-

turing defects since it has a compact support. In addition, it is the law arising from

Jaynes’ maximum entropy principle [24] if the averages 𝔼{log 𝜉} and 𝔼{log(1 − 𝜉)}
are given. The convention for the definition (on the normalized parameter domain

̂D) of the Beta distribution 𝛽I used in the present study is:

𝛽I(𝜉; 𝛼, 𝛽) = 1[0,1](𝜉)
𝛤 (𝛼 + 𝛽)
𝛤 (𝛼)𝛤 (𝛽)

𝜉

𝛼−1(1 − 𝜉)𝛽−1 , (14)

where z ↦ 𝛤 (z) is the usual Gamma function defined by 𝛤 (z) = ∫
+∞
0 tz−1e−tdt. The

probability density functions are taken symmetric with 𝛼 = 𝛽 = 6 for the bump

located near the leading edge at 5% of the chord c (parameter 𝜉1) and 𝛼 = 𝛽 = 2
for the three other bumps (parameters 𝜉2, 𝜉3 and 𝜉4); see Fig. 8. The amplitude of the

uncertainty was taken in the range ±5 ⋅ 10−4c which is consistent with observations

from the industry [25]. The present mean and variance are computed by a Monte

Carlo procedure using ns = 104 samples. Given the convergence of the Monte Carlo

method as O(1∕
√
ns), the statistics have been rounded to two significant digits in

Table 2.

The solution of the UQ is shown in Table 2 for the maxima identified in Table 1.

The mean of the maxima appears to be lower than the maximum found during the

optimization process with variances in the range [0.1, 1.2]. We define the robust max-

imum YR such that:

YR(𝜉𝜉𝜉) = 𝔼{Y(𝜉𝜉𝜉)} − 3
√
Var{Y(𝜉𝜉𝜉)} (15)

has the largest value. Based on that definition, the maximum identified during the

optimization procedure (labeled m = 14 in Table 1 and highlighted in gray) is not

the robust one. Indeed, for the global deterministic maximum, Ymax ≃ 76.67 that

decreases to 𝔼{Y14} ≃ 75.5 with
√
Var{Y14} ≃ 0.74 which gives YR,14(𝜉𝜉𝜉) ≃ 73.28.
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On the other hand, the local robust maximum is the point labeled m = 7 in Table 2

and highlighted in light gray, for which Y7 ≃ 75.33, 𝔼{Y7} ≃ 74.59 with a variance

of
√
Var{Y7} ≈ 0.39 and YR,7(𝜉𝜉𝜉) ≃ 73.42. This surrogate model appears therefore

as an interesting test case for robust optimization as the global maximum, when

subjected to uncertainty, happens to be less robust than a local maximum which

maximizes the mean of the quantity of interest and minimizes the standard deviation

associated with a stochastic process.

Conclusions

In this chapter, we have addressed an uncertainty quantification and shape optimiza-

tion problem for a RAE 2822 airfoil at transonic speeds using a Kriging-based sur-

rogate model of the lift-to-drag ratio. More specifically, the shape of the baseline

profile has been altered by four localized bumps of variable amplitudes on its suc-

tion side. Their locations have been selected so that they modify the position of

the shock which primarily drives the aerodynamic performance of the profile, such

as the lift and drag forces. The transonic flow about the airfoil has been simulated

using the Onera software elsA for each instance of the bump amplitudes in a ten-

sorized grid with nine equidistant sampling values for each amplitude parameter,

resulting in a dense data set of 94 samples. Each simulation has been performed for

carefully chosen numerical parameters optimized on the basis of the baseline con-

figuration compared with the available experimental results. The high-quality, dense

Kriging surrogate model interpolating the data set uses Gaussian covariance kernels

and exhibits multiple local maxima. They have been identified by a particle swarm

algorithm, although its results might not be exhaustive and more maxima might be

found using an alternative algorithm.

An uncertainty quantification analysis has subsequently been carried out about

each local maxima, assigning a variation range and a prior probability density func-

tion to the shape parameters to mimic the effect of design tolerances and aging. This

analysis has revealed that the global maximum, for example, is not necessarily the

most robust one in terms of its standard deviation or of a robust design criterion such

as the mean minus three times the standard deviation. It is thus believed that the data

set and results obtained in the present work constitutes an interesting test case for

assessing uncertainty quantification and/or robust optimization strategies in future

investigations.
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Surrogates for Combustion Instabilities
in Annular Combustors

M. Bauerheim, A. Ndiaye and F. Nicoud

Introduction

Large power densities encountered in gas turbines and engines can lead to large oscil-

lations of pressure and heat release, known as combustion instabilities

[1–3]. First described by Lord Rayleigh in the late nineteenth century, these thermo-

acoustic instabilities aroused the interest of industries in the 60’s when they became

a major issue in the design of the F-1 Apollo engine [2]. Nowadays, gas turbines

for electricity generation and aircraft engines also suffer from combustion instabil-

ities. Indeed, lean conditions which weaken the flame stabilizing mechanisms as

well as the annular shape of modern combustors (i.e., along e
𝜃
, Fig. 1) promote

low-frequency azimuthal modes. Typical geometries feature an annular combustion

chamber connected to several burners (typically 10–20), which therefore increases

the number of uncertain parameters [4] and complexifies their statistical relationship

(for instance “Does neighboring flames are statistically correlated?”) [5, 6]. Because

of this complexity, experiments are still rare [7, 8] and numerical simulations are

CPU demanding [9–11]. Since Uncertainty Quantification (UQ) requires the evalu-

ation of several numerical and experimental realizations, new low-cost flexible tools

have to be developed to evaluate the risk of instability of such a system.

To investigate azimuthal modes, 3D acoustic tools based on the non-homogeneous

Helmholtz equation [12] have been adapted to annular configurations [13, 14].
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Fig. 1 3D view (left) of an azimuthal combustion instability (pressure fluctuations along the

azimuthal direction e
𝜃
). Schematic view (right) of two neighboring burners

Recently, such a tool has been used for the UQ analysis of longitudinal modes in

a swirled combustor containing a few uncertain parameters [15], requiring thou-

sands of acoustic simulations to reach the statistical convergence. For annular cases

containing many uncertain parameters, more efficient low-order tools should be

employed. The principle is usually based on a network model of multiple con-

nected blocks [8, 14, 16, 17]. Galerkin projections, state-space models, or simple

1D tubes can be used for blocks, and their connections are made using jump condi-

tions [18, 19] or scattering matrices [8, 17]. In section “Network Model for Annular

Combustors,” a network model called Analytical Tool to Analyze and Control

Azimuthal Modes in Annular Combustors (ATACAMAC) is derived for an annular

combustion chamber fed by an arbitrary number of burners connected to an annu-

lar plenum [20–22]. This methodology allows the reduction of the system’s com-

plexity leading to an explicit analytical dispersion relation. This equation is implicit

and nonlinear in the complex angular frequency 𝜔. Solving this dispersion relation,

either analytically or numerically, gives access to 𝜔 and therefore the growth rate

ℑ(𝜔) which determines the stability of the mode: If ℑ(𝜔) > 0, the mode is unstable,

whereas ℑ(𝜔) < 0 implies a stable mode. Several cases will be analyzed in section

“Analytical and Numerical Resolutions,” revealing key parameters controlling the

stability such as the coupling between the chamber and the burners and symmetry

breaking. These parameters are partly unknown, which calls for UQ analysis. To

tackle this problem, the ATACAMAC framework is combined with adjoint [23, 24]

and Active Subspace [6, 25] techniques in section “Advanced Techniques for UQ
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Analysis,” leading to an efficient approach to perform UQ analysis at low costs on

non-trivial annular configurations [26].

Network Model for Annular Combustors

An analytical model for combustion instabilities can be constructed using inter-

connected 1D tubes. In each tube, representing a burner or an annular sector, the

upstream (w+ = p′ + 𝜌0c0u′) and downstream (w− = p′ − 𝜌0c0u′) acoustic waves

propagate from the curvilinear coordinate s0 to s0 + 𝛥s at the sound speed c0 (assum-

ing a null Mach number for simplicity [27]):

w±(s0 + 𝛥s) = w±(s0)e±j𝜔𝛥s∕c
0

(1)

where the value of c0 depends on the location (c0u in the burners and plenum, but

c0b in the chamber, Fig. 2). Thus, using Eq. (1), the azimuthal propagation in the ith
sector of the annular plenum and chamber can be combined to form a propagation

matrix Ri(𝜔) such that:

Fig. 2 Sketch of an annular combustion chamber fed by burners connected to a common annular

plenum. Because of the flame, the annular plenum and burners contain a fresh mixture character-

ized by a density 𝜌
0
u and sound speed c0u, whereas hot products with 𝜌

0
b and c0b are located in the

combustion chamber
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Fig. 3 H-junction connecting the annular plenum to the combustion chamber through the ith
burner. The analytical derivation by [20] leads to four coupling parameters 𝛤i=1,…,4
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where ku = 𝜔∕c0u and kb = 𝜔∕c0b are the wave numbers in the fresh and hot gases, and

Lp and Lc are the half-perimeter of the annular plenum and chamber. N is the number

of burners; consequently, 2Lp∕N and 2Lc∕N are the length of one sector delimited

by the coordinates si and si+1.
Each of the N sectors of the plenum is connected to the chamber through a burner,

creating a H-junction as shown in Fig. 3. Thus, the acoustic pressure p′ and velocity

u′ in the plenum are related to the pressure and velocity in the chamber. Using jump

conditions [18, 19], the acoustic propagation in the burner described by Eq. (1), and

a n − 𝜏 model for the unsteady heat release Q′
produced by the flame (Q′ = Fu′ =

nej𝜔𝜏u′, where n and 𝜏 are the gain and the time-delay of the Flame Transfer Function

denotedF ), an interaction matrix [Ti] is derived by [20]. It relates acoustic quantities

before the ith junction (coordinate s−i ) to the ones after the junction (s+i ):
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where [P] is the matrix relating the Riemann invariants w±
to the acoustic pressure

and velocity, and 𝛤i,k=1,…,4 are the coupling parameters derived by [20]:
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⎧
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⎪
⎨
⎪
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𝛤i,1 = − Si
2Sp

cotan(kuLi)
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Si
2Sp
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(4)

where Li is the i-th burner length and Si its cross section.
1

These coupling parameters

are also obtained in longitudinal configurations [28] and characterize how cavities

are coupled and interact (Fig. 3). Decoupling can be achieved using a large section

change at the burner junction, but it can be also affected by the flame itself (i.e., by

n and 𝜏). Note that if 𝛤i,1 = 𝛤i,2 = 0 for all junctions i = 1,… ,N, then the annular

plenum is disconnected from the rest of the system.

Using the propagation and interaction matrices to connect the annular sectors, the

annular periodicity leads to the equation governing the acoustic modes behavior in

the annular plenum and chamber:

( N∏
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[Ri][Ti]
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(5)

Equation (5) has non-trivial solutions if and only if the determinant is null, which

yields the dispersion relation to be solved:

det

( N∏

i=1
[Ri][Ti] − Id

)

= 0 (6)

where Id is the 4-by-4 identity matrix.

Analytical and Numerical Resolutions

The dispersion relation (6) is nonlinear in 𝜔, and thus, no general solution exists.

Numerical solvers can efficiently solve this equation, but explicit expressions are

still useful to understand key mechanisms controlling combustion instabilities.

1
These expressions assume a flame located exactly at the burner/chamber junction, i.e., zf ,i = Li.

This location plays a crucial role for plenum modes.
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Axisymmetric Configurations

In many practical applications, annular combustors are axisymmetric, meaning that

all sectors and flames are identical. It implies that in the analytical model, all matri-

ces [Ri] and [Ti] are similar (the subscript i can be omitted), which simplifies the

dispersion relation: det({[R][T]}N − Id) = 0. This equation can be recast as

N∏

p=1
det([R][T] − ej2p𝜋∕N) = 0 ⇔ det([R][T] − ej2p𝜋∕NId) = 0 for p = 1,… ,N

(7)

This simplification highlights that in axisymmetric configurations, each sector

has the same acoustic behavior: The stability of the system can be deduced using

one sector (matrix [R][T]) which necessarily acts as a pure phase-lag 2p𝜋∕N, where

p corresponds physically to the azimuthal order. In the UQ context, it suggests that

investigating one azimuthal order in an axisymmetric annular chamber is not more

expensive than studying a longitudinal configuration. This result can be applied to

3D acoustic tools where the Bloch theory allows the computations of the annular

combustor using only one sector [29], and therefore, it can drastically reduce the

computational effort to evaluate the risk of instability.

Despite this apparent simplicity, annular configurations containing a chamber and

a plenum can exhibit complex lock-in and veering phenomena, for which the active

flames are a key ingredient.

∙ Considering first the simple case where all coupling parameters are null, i.e.,

𝛤1 = 𝛤2 = 𝛤3 = 𝛤4 = 0, Bauerheim et al. [20] showed that the plenum and the

chamber are fully decoupled from the burners and flames. It results that eigen-

frequencies are f 0p = pc0u∕2Lp (pure azimuthal decoupled mode in the plenum) or

f 0c = pc0b∕2Lc (pure azimuthal decoupled mode in the chamber). Since the cold

mixture and hot gases have a different temperature, and the half-perimeter of the

plenum and chamber is different, eigenmodes in the plenum and chamber are

distinct.

∙ When coupling factors are not null but satisfy |𝛤k=1,…,4| ≪ 1, solutions are close

to the fully decoupled case. Consequently, they can be searched as fc = f 0c + 𝛿f and

fp = f 0p + 𝛿f . A Taylor expansion of the dispersion relation yields the solutions in

the case where the two annular cavities are not naturally coupled, i.e., when f 0p and

f 0c are not multiple of each other:

fc =
pc0b
2Lc

−
c0N𝛤 0

4
4𝜋Lc

and fp =
pc0u
2Lp

−
c0bN𝛤

0
1

4𝜋Lp
(8)

where 𝛤
0
1 (respectively 𝛤

0
4 ) is the value of the coupling parameter 𝛤1 (respectively

𝛤4) at the frequency f = f 0p (respectively f = f 0c ): These modes are called “weakly

coupled.” This analytical expression is validated against a semi-analytical method



Surrogates for Combustion Instabilities in Annular Combustors 253

Normalized time-delay τc/T
0
c

G
ro

w
th

 r
at

e
Im

(f
c
)

UNSTABLE 

STABLE 

Fig. 4 Growth rate ℑ(fc) of the first azimuthal chamber mode (p = 1) in a combustor containing

an annular chamber and plenum with N = 4 burners. The FTF corresponds to n = 1.57 and the

time-delay 𝜏 is varied from 0 to T0
c , where T0

c = 1∕f 0c is the period of the mode. The growth rate is

estimated using Eq. (8) (□), a semi-analytical solution (−), and by a 3D Helmholtz solver (×)

(the analytical dispersion relation in Eq. (6) is solved numerically using a Newton–

Raphson technique) as well as a 3D Helmholtz solution on an annular case with

N = 4 burners in Fig. 4. Note that the growth rate of these modes scales with the

number of burners N.

∙ When the weakly coupled assumption is not satisfied, the two annular cavities can

couple and oscillate at the same frequency, even if f 0p and f 0c do not match: The

burners and flames tune one of the two cavities so that they can both resonate. In

this case, the acoustic mode cannot be identified as “plenum” or “chamber” modes

because the whole combustor is resonating: A bifurcation occurs as shown by

the stability map in Fig. 5: These modes are called “strongly coupled.” Compared

with WC modes where at least one time-delay stabilizes the configuration, one SC

mode is always unstable (the other one being always stable) whatever the time-

delay. It suggests that stabilizing the configuration requires first to decouple the

system before acting on the flames. In a UQ context, capturing the steep bifurcation

between WC/SC modes is a challenging task, especially since no explicit solutions

to guide the analysis are available for this case (Eq. (8) holds only for weakly

coupled modes).
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Fig. 5 Stability map {ℜ(fc),ℑ(fc)} of a configuration withN = 4 burners and the flame parameters

are varied: n from 0.25 to 1.75 and 𝜏∕T0
c from 0 to 1. It highlights the bifurcation between the weakly

coupled (WC) modes, close to the fully decoupled solutions (× and □), and the strongly coupled

(SC) modes for which no distinction plenum/chamber can be observed

Non-symmetric Configurations

The ATACAMAC tool applied to axisymmetric cases has revealed in section

“Axisymmetric Configurations” that the coupling parameters 𝛤k=1,…,4 governed the

stability of the system as well as the bifurcation between weakly and strongly coupled

modes. For UQ analysis, this result is of prime importance since the problem con-

tains only two uncertain parameters: The geometric parameters and the sound speed

are usually well known, whereas the most uncertain parameters are due to the flame

response to acoustics, i.e., the gain n and the time-delay 𝜏. While uncertainties on the

fuel or global equivalence ratio can impact all the N flame responses and associated

FTFs, turbulence or manufacturing tolerances yield uncertainties with low flame–

flame correlations. In other words, flames and burners are not necessarily identi-

cal, and thus, the framework developed in section “Axisymmetric Configurations”

does not hold anymore. Such a case also appears when passive control devices are
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introduced in the annular chamber to stabilize the system, e.g., Helmholtz res-

onators [30, 31] or baffles [32]. To account for this symmetry breaking effect, the

N flames are now considered different, i.e., with different gains ni and time-delays

𝜏i. To ease the formulation, no plenum is considered here, i.e., 𝛤i,1 = 𝛤i,2 = 0. The

2-by-2 restrictions of the matrices [Ri] and [Ti] to the chamber modes make that only

𝛤i=1,…,N,4 are relevant. Nevertheless, N is usually of the order of 10–20. In a com-

bustor containing 19 burners for example, it yields 38 uncertain parameters (the N
statistically independent gains and time-delays), which leads already to a large UQ

problem when solved with 3D acoustic tools.

Following a similar approach than the one considered for symmetric cases, Bauer-

heim et al. [4] showed that for weakly coupled modes, the complex frequencies of

the azimuthal mode of order p are:

f ±c =
pc0b
2Lc

−
c0b

4𝜋Lc

(
Σ0 ±S0

)
(9)

where Σ0 is the “coupling strength” defined as

Σ0 =
N∑

i=1
𝛤

0
i (10)

This parameter is the sum of all the coupling parameters of the system and is inde-

pendent of the pattern used to distribute the burner uncertainties along the annular

chamber. It corresponds to a symmetric effect.

The parameter ±S0 is the “splitting strength” which “splits” the two azimuthal

mode frequencies f +c and f −c . A convenient form of this parameter is obtained by

using the spatial Fourier transform of the coupling parameter distribution 𝛾:

S0 =
√
𝛾(2p)𝛾(−2p) where 𝛾(k) =

N∑

i=1
𝛤

0
i e

−j2k𝜋i∕N
(11)

Note that the “coupling strength” can be also recast in this form, i.e., Σ0 = 𝛾(0). It

shows that only few specific patterns can affect the azimuthal mode stability. They

correspond to the 0th and the ±2pth Fourier coefficients 𝛾 of the coupling param-

eter or heat release distribution [33]. Unlike the coupling strength Σ0, the splitting

parameter S0 can be changed by modifying the pattern of the burner types along the

annular chamber. Such a modification can be intended as when controlling devices

are introduced, or unintended when turbulence or uncertainties affect randomly the

flame response to acoustics. In a UQ perspective, the explicit solution of Eq. (11)

allows the CPU cost to be drastically reduced since only patterns associated with

𝛾(0) and 𝛾(±2p) can be retained [4]. Recently, Ghirardo et al. [34] also show that

nonlinearities of the flame response itself can produce a splitting effect [22, 34].
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The azimuthal mean flow induced by swirlers or modern effusive plates can also

promote such a splitting [27].

Advanced Techniques for UQ Analysis

Compared with LES or 3D acoustic tools, the ATACAMAC tool allows brute-force

UQ techniques, like the Monte Carlo method, to be performed. The objective is to

estimate the uncertainty on the growth rate ℑ(fc) from the uncertainties of the Nq
inputs. Indeed, while most studies intend to predict if the system is stable or unsta-

ble, the benefit of a UQ analysis is to assess the risk of instability, in other words

the probability of the mode to be unstable. This can be measured by the risk factor

introduced by Bauerheim et al. [5, 6]:

RF (%) = 100∫
∞

0
PDF(𝜔i)d𝜔i (12)

where 𝜔i = 2𝜋ℑ(fc) and PDF(𝜔i) is the probability density function of the growth

rate 𝜔i. If the risk factor is RF = 0%, it implies that the mode is stable, whereas

RF = 100% corresponds to an unstable mode. Between these two extreme cases

associated with the classical binary stability prediction, the risk factor quantifies

how a mode is stable regarding the uncertainties of the inputs. Such an example is

displayed in Fig. 6 where a Monte Carlo method is used to estimate the risk factor

of the first azimuthal mode of a combustor containing N = 19 burners. Each point

in the stability map {ℜ(fc),ℑ(fc)} (left) corresponds to an ATACAMAC simulation.

Here, 10,000 simulations were required to reach the convergence and estimate the

Fig. 6 Monte Carlo analysis using 10,000 ATACAMAC simulations for the first weakly coupled

azimuthal chamber mode of a combustor containing N = 19 burners. Each point on the stability

map (left) corresponds to one ATACAMAC simulation. This method allows a robust estimation of

the growth rate PDF and its associated risk factor
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growth rate PDF (right). The integration of this PDF for positive growth rate gives

an approximation of the risk factor, here RF = 14%. In this case, it suggests that the

mode is probably stable, but further investigations should be done to ensure a safe

stable mode, i.e., RF = 0%. Note that a risk factor close to 50% is a useless prediction

since the mode can be either stable or unstable. This might be due to a lack of knowl-

edge of the key parameter uncertainties, or because the system is highly sensitive to

small errors.

Adjoint Analysis

Situations where the systems are highly sensitive to uncertainties suggest that a sen-

sitivity analysis could be used before performing an expensive Monte Carlo analysis.

The ATACAMAC framework allows a low-cost method for sensitivity computations

based on the adjoint analysis. The objective is not to compute the surface response

[ℑ(fc)](qk) in the whole parameter space {qk=1,…,Nq
}, as in a UQ analysis, but only

its gradients [
.
ℑ(fc)](qk)∕dqk. This knowledge allows the determination of (1) the

sensitivity of the system and (2) the critical parameters which strongly affect the

system’s ouput. Whereas a sensitivity analysis can be CPU demanding if estimated

using a finite difference, the adjoint method allows the computation of the gradients

with only one additional simulation whatever the number of input parameters Nq.

The equation governing the system (Eq. (5)) can be recast as [M](𝜔, q)X = X,

where [M] =
∏N

i=1[Ri][Ti] is the matrix of the system depending on the angular fre-

quency 𝜔 and a set of parameters q, and X is the state vector corresponding to the

acoustic pressure and velocity at one specific annular coordinate. Its adjoint form

can be written as (
[M]H(𝜔∗

0, q0) − Id
)
X†
0 = 0 (13)

where [M]H is the conjugate transpose of the matrix system [M], X†
0 is the adjoint

eigenvector, and 𝜔
∗
0 is the conjugate of the complex angular frequency 𝜔0 obtained

when solving the direct problem.

The knowledge of the adjoint eigenvector X†
0 allows the derivation of an approx-

imate solution of the direct problem around q0: In other words, X†
0 provides a

first-order approximation 𝜔 = 𝜔0 + (𝜖q1)𝜔1 of the problem for a set of parameters

q0 + 𝜖q1 close enough to q0. Compared with finite differences where each direction

of the parameter space should be probed by changing one direction at a time, the

adjoint analysis provides this information for all the Nq directions using only one

additional computation. Magri et al. [24] have shown that this first-order eigenvalue

drift reads

𝜔1 = −
⟨X†

0 , 𝛿M(𝜔0, 𝜖q1)X0⟩

⟨X†
0 ,

𝜕M(𝜔,q0)
𝜕𝜔

X0⟩
(14)
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Fig. 7 Relative error between finite difference and the adjoint-based first- and second-order sen-

sitivities on three annular configurations: a weakly coupled mode in a symmetric case (a and d); a

strongly coupled mode in a symmetric combustor (b and e); a strongly coupled mode with symmetry

breaking

where 𝛿M(𝜔0, 𝜖q1) = M(𝜔0, q0 + 𝜖q1) −M(𝜔0, q0) is the difference between the

matrix system at the frequency𝜔0 for the two different yet close parameter sets q0 and

q0 + 𝜖q1, and ⟨.⟩ is the inner product. Note that Magri et al. also derived a second-

order approximation, not detailed here for the sake of simplicity [24]. These first- and

second-order adjoint-based approximations are validated against the finite-difference

technique in Fig. 7 on three different cases:

∙ a weakly coupled mode in a symmetric case (a and d);

∙ a strongly coupled mode in a symmetric combustor (b and e);

∙ a strongly coupled mode with symmetry breaking (c and f).

The sensitivity analysis performed in Fig. 7 is associated with small determinis-

tic changes in the parameter space. The same approach can be employed in a UQ

context where the parameter change is chosen randomly, assuming this change is

small. Using two computations only (one direct and one adjoint computations), the

eigenvalue drifts can be computed for any random perturbation 𝜖q1 at a low cost (no

additional computation is needed, and only Eq. (14) has to be evaluated numerically

for each sample). Such an adjoint-based method is validated against a classical and

CPU demanding Monte Carlo technique (a and b, red dashed lines) on a strongly

coupled mode in a non-symmetric annular combustor in Fig. 8. Results show that

only small errors are obtained using a first-order approximation (c and d), whereas

the growth rate PDF is well approximated by a second-order adjoint-based method

(e and f). This result reveals how low-order methods which allow sophisticated
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Stability map (left) and PDF of the growth rate (right) of a strongly coupled case in a non-

symmetric annular combustor (10% of uncertainties on the flame parameters) estimated using a

finite difference (a and b and the red dashed lines), a first-order adjoint approximation (c and d),

and a second-order adjoint approximation (e and f). The dotted lines highlight the stability limit

ℑ(𝜔) = 0, and the green dot corresponds to the deterministic computation

techniques (adjoint analysis is much more difficult when using reactive 3D Navier–

Stokes solvers for instance) can provide efficient methods for UQ analysis of indus-

trial combustion chambers.

Active Subspace

The adjoint analysis presented in section “Adjoint Analysis” provides an efficient

approach to tackle UQ problems involving a large number of uncertain parameters.

Nevertheless, such a method has some limitations:

∙ The adjoint method is well suited for smooth functions where a second-order

approximation is sufficient to capture the major fluctuations of the output.

∙ No indication is provided to quantify which and how parameters affect the surface

response.

∙ The adjoint method allows an efficient computation of the surface response using

the low-order model, but cannot be transferable to other tools. Note that applying

adjoint to more complex solvers (3D acoustic tools, LES solvers etc.) is a tedious

task [29, 35].

To overcome these constraints, the Active Subspace method developed by

Constantine et al. [25] was adapted to thermo-acoustics by Bauerheim et al. [6]. It
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can be used as a stand-alone approach or combined with the adjoint-based technique

proposed in section “Adjoint Analysis.” The objective is to reduce the number of the

uncertain parameters from Nq to just a few before employing other UQ technique

efficient in low dimensions. It is based on the uncentered covariance matrix of the

output gradient, which can be evaluated using finite difference or the adjoint:

C = 𝔼[∇q𝜔(∇q𝜔)T ] ≈
1
M

M∑

k=1
[∇q𝜔(q(k))(∇q𝜔(q(k)))T ] (15)

where the column vector ∇q𝜔 = [𝜕𝜔∕𝜕q1,… , 𝜕𝜔∕𝜕qNq
]T is the eigenvalue’s sensi-

tivity with respect to the Nq uncertain parameters, 𝔼(.) is the expectation operator,

and q(k) corresponds to the kth random sample of parameters among the M samples

available for the Active Subspace determination. Because the matrix C is symmetric,

it admits a real eigenvalue decomposition

C = W𝛬WT
(16)

where 𝛬 is the diagonal matrix [𝜆k] and Wk is the associated eigenvector. Based

on the relative importance in the eigenvalues 𝜆k (i.e., gaps between eigenvalues),

this method selects new variables, called the “active variables,” corresponding to

directions (i.e., linear combinations of the initial uncertain parameters) of signifi-

cant change in the output response. Other directions can be disregarded because of

not affecting the output. An example of spectra is given in Fig. 9 for a weakly (left)

and strongly (right) coupled modes in an annular combustion chamber containing

Fig. 9 Active Subspace spectra for a weakly (left) and strongly (right) coupled modes in an annular

combustion chamber containing 19 burners and 38 uncertain parameters (each FTF gains and time-

delays)
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19 burners and 38 uncertain parameters corresponding to the FTF gains and time-

delays. Figure 9 shows that only five active variables are significant. Note that the

first relevant eigenvalues converge rapidly (50 finite-difference samples for 38 uncer-

tain parameters). These spectra can be evaluated using the adjoint-based method to

reduce the cost:

∙ If the response surface is smooth, all random perturbations can be computed using

Eq. (14) based on the unperturbed case (i.e., no uncertainties), thus requiring only

two computations (one direct and one adjoint) whatever the number of parameters

Nq and the number of samples M.

∙ If the response surface is not smooth enough, the perturbed case 𝜔(q(k)) cannot be

obtained through Eq. (14): A direct computation is mandatory. However, in the

Active Subspace context, the adjoint can still be applied to extract the gradients

∇q𝜔 around 𝜔(q(k)) at a low cost. Consequently, the method needs a direct and

adjoint computations for each sample q(k), in contrast with finite differences which

require Nq + 1 direct computations for each sample: The adjoint-based approach

now scales linearly with the number of sample, i.e., 2 ×M, but is still independent

of the number of inputs Nq, whereas the finite differences scale like 2 ×M × (1 +
Nq). It shows that an Active Subspace method combined with adjoint computations

allows efficient uncertainty quantifications at low cost, even for large UQ problems

(i.e., large Nq).

The benefit of such a method is that the “active variables” obtained by ATACA-

MAC in this configuration can be reused on the same case but using more com-

plex acoustic tools, for instance a 3D Helmholtz solver. Moreover, Bauerheim et

al. [6] have shown that these active variables are not a mathematical artifact of the

method, but correspond to physical parameters. Using a spatial Fourier transform,

they showed that the problem can be reduced to only three active variables corre-

sponding to 𝛾(0) and 𝛾(±2p), as predicted by Eq. (11) for weakly coupled modes.

The Active Subspace approach reveals that these three parameters are also govern-

ing the strongly coupled modes for which no explicit solutions are available yet.

In a UQ perspective, this result highlights that a UQ analysis involving only three

uncertain parameters can be applied to study weakly or strongly coupled modes in

annular combustors. This dimension reduction is crucial since most of the UQ tech-

niques are effective only in low dimensions. As a conclusion, the Active Subspace

approach combined with an adjoint method constitutes an efficient method to per-

form a systematic UQ analysis for combustion instabilities in annular combustors at

the design stage.

Conclusion

While large UQ analysis for combustion instabilities is still out of reach when using

high-fidelity simulations or 3D acoustic tools, low-order models for

thermo-acoustics can be developed for annular combustors at a reduced cost. The
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ATACAMAC tool (Analytical Tool to Analyze and Control Azimuthal Modes in

Annular Combustors) is described to tackle this problem in complex geometries

where the combustor contains several burners connected to an annular plenum and a

combustion chamber. In some cases, called “weakly coupled modes,” fully explicit

analytical solutions can be derived for the complex frequencies of the system, for

which the imaginary part gives the stability of the system. It reveals key parameters

governing the stability of the system: (1) the “coupling strength” associated with

a symmetric effect and (2) the “splitting strength” due to symmetry breaking. This

framework allows the development of sophisticated techniques such as adjoint-based

sensitivity analysis. This approach gives the gradients of the growth rate using only

two computations whatever the number of parameters involved in the system. In a

UQ context, it provides at low cost a first- and second-order approximations of the

surface response. Results revealed that the PDF of the growth rate can be captured

efficiently for both weakly and strongly coupled modes. Finally, this method can

be combined with the Active Subspace approach to assess the risk of instability in

complex annular combustors even at the design stage.
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General Introduction to Monte Carlo
and Multi-level Monte Carlo Methods

Robin Schmidt, Matthias Voigt, Michele Pisaroni, Fabio Nobile,
Penelope Leyland, Jordi Pons-Prats and Gabriel Bugeda

Introduction

With Monte Carlo (MC) methods, we identify a broad class of approaches that rely
on the idea of approximating statistics of the response of a system by simulation
through sampling. Because of its simplicity, robustness, and dimension independent
convergence rate, MC methods can be used to characterize, in principle, any system
that has a probabilistic interpretation. MC methods are often the easiest way, and
sometimes the only feasible one, to solve a wide range high-dimensional problems.

Hereafter, we will denote random variables with capital letters and realizations of
those with lower case letters. Vectors and matrices are shown in bold.
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Suppose we are interested in computing the expected value E[Q] of a quantity of
interest (QoI) Q = Q(X) of a problem having some random elementsX. Assumewe
can generate N independent and identically distributed (i.i.d.) realizations X (i), i =
1, ..., N and for each of them evaluate the corresponding QOI Q(i) = Q(X (i)). Then
the MC estimator for the expectation E[Q] of Q is defined as:

EMC[Q] := 1

N

N∑

i=1

Q(X (i)). (1)

The simulation procedure that makes use of i.i.d. samples and the MC estimator
introduced in Eq. (1) to approximate E[Q] is generally called Crude Monte Carlo
(CMC).

Thanks to the Strong Law of Large Numbers, the approximation of EMC[Q] con-
verges with probability one (converges almost surely) to E[Q] as N → ∞ as long
as Q is integrable.

Moreover, EMC[Q] is an unbiased estimator:

E[EMC[Q]] = E[Q] (2)

meaning that the expected value of the MC estimator equals E[Q] for any N .
The rate of convergence of MC method can be described by the Central Limit

Theorem (CLT) using the concept of convergence in distribution (weak convergence,
size of the error with some probability). If the variance of Q, hereafter denoted with
Var [Q], is finite then the CLT asserts that

√
N

(
EMC[Q] − E[Q]) =⇒ √

Var [Q]N (0, 1) (3)

as N → ∞,whereN (0, 1) is a normal randomvariablewithmean zero andunit vari-
ance and =⇒ means convergence in distribution. From Eq.3, for N large enough,
we can derive confidence intervals for the estimator EMC[Q] of E[Q]:

∣∣EMC[Q] − E[Q]∣∣ ≤ Cα

√
Var [Q]√

N
(4)

with probability 1 − α, where Cα is a confidence parameter such that the cumulative
distribution function Φ of a standard normal random variable Φ(Cα) = 1 − α

2 .
From Eq. (4), we can draw three crucial conclusions:

• the rate of convergence of MC is O(N−1/2),
• for large N the error is normally distributed,
• the complexity of the computation depends solely on Var [Q].

If an exact representation of the QoI is not accessible and we rely on a numerical
approximation (e.g., a finite volume (FV) or finite element (FE) approximation in
fluid dynamics computations) with a discretization parameter M (number of spatial
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degrees of freedom), then Q is approximated by QM . The accuracy in estimating
E[Q] by EMC[QM ] can be quantified by considering the mean square error (MSE) of
the estimator:

e(EMC[QM ])2 := E[(EMC[QM ] − E[Q])2] = (E[QM − Q])2︸ ︷︷ ︸
(B-EMC)

+ Var[QM ]
N︸ ︷︷ ︸

(SE-EMC)

. (5)

On the right-hand side, we can isolate two distinct contributions. The first term, the
discretization error or bias (B-EMC), is the square error in mean between QM and
Q and depends solely on the space discretization parameter M . The second term,
the statistical error (SE-EMC), represents the variance of the estimator and decays
inversely with the number of samples N .

The Crude Monte Carlo (CMC) approach is summarized in the algorithm below.

Algorithm 1: Crude Monte Carlo Algorithm

CMC(N , M)
for i = 0 : N do

Generate random samples: QM (X (i))

compute EMC[QM ] := 1
N

∑N
i=1 QM (X (i))

CMC is a very elegant approach and has been proven to be robust and accurate
for non-smooth problems, nevertheless its very slow convergence rate O(N−1/2)

prevents to achieve reasonably estimations in acceptable time for large-scale aero-
dynamic applications that require the solution of computational expensive CFD
simulations.

Different strategies have been investigated in the last decades to accelerate MC
methods. They are all based on the idea of reducing the ratio on the right-hand side
of Eq. (4)

√
Var [Q]√

N
. The two most prominent categories of approaches are:

• Alternative Sampling techniques: increase the denominator term to converge more
rapidly by using deterministic (low-discrepancy) sequences, stratified sampling,
or Latin Hypercube Sampling rather than pseudorandom numbers.

• Variance Reduction techniques: reduce the numerator term Var [Q] by suitably
modifying the quantity Q in a consistent way (i.e., without changing the expecta-
tion) as in the Multi-Level Monte Carlo approach.

These methodologies will be presented in the following sections and chapters.
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Choice of Sampling Sequences

The generation of the x (i) sampleswith predefined probability distribution is a pivotal
procedure in MC methods. In this section, we review different approaches used to
generate pseudorandom and quasi-random numbers and methodologies required to
prescribe appropriate correlations to random variables.

Pseudorandom Numbers

The simplest procedure is random sampling. However, true random numbers are the
result of physical phenomenon as, for example, radioactive decay processes. Practi-
cal applications utilize pseudorandom numbers. Those results from pseudorandom
number generators (PRNGs), also referred to as deterministic random number gen-
erators, are based on some reproducible mathematical formulation. Starting from a
certain seed, the goal is to produce a sequence of uniform pseudorandom numbers
in the interval (0, 1) with statistical properties that are in very good agreement with
those of a true sequence of i.i.d. random variables. The period length of the PRNG
describes the number of random numbers until the sequence repeats itself. In gen-
eral, a small period seems bad; however, a larger period is not necessarily better. A
good PRNG has good performance in different criteria. A variety of theoretical and
empirical tests, see, e.g., [1], can be conducted to decide whether a PRNG can be
considered a good one.

The most common PRNG is based on recursive arithmetic, as, for example, linear
congruential generators. Popular PRNG is theMersenne Twister [2] or the combined
multiple recursive generator according to [3].

Quasi-random Numbers

Quasi-random numbers are the result of low-discrepancy sequences. The resulting
realizations are uniformly distributed in the interval [0,1). They exhibit much more
uniformity compared to random or pseudorandom numbers. Therefore, they increase
the convergence rate if used within MC methods. In order to specify the application
of low-discrepancy sequences in MC methods, the term Quasi-Monte Carlo (QMC)
is used. The convergence rate of QMC is usually close to O(N−1), which is higher
compared to CMC, see Eq. (4).

Uniformity is measured by utilizing discrepancy which is defined as follows. Let
B be a rectangle in the d-dimensional unit hypercube J with sides parallel to the
coordinate axes andm(B) its volume. The discrepancy of a set of N points in [0, 1)d
is defined as
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DN = sup
B∈J

∣∣∣∣
Number of points in B

N
− m(B)

∣∣∣∣ . (6)

The most common low-discrepancy sequences are Halton and Sobol sequences.
Both are based on the van der Corput sequence which is constructed by reversing
the base-b representation of the sequence of natural numbers. For more details,
concerning the construction of low-discrepancy sequences the interested reader is
referred to [1, 4, 5].

Although low-discrepancy sequences possess high uniformity in low dimen-
sions d (and large N ), they can exhibit poor space-filling behavior for small N
and large d. The d-dimensional Halton sequence, e.g., is constructed by pairing d
one-dimensional sequences based on d different prime numbers (usually the first d
primes). In the case of high dimensions, the base bmust be large. The corresponding
van der Corput sequences with large bases produce long linearly growing segments.
If these are paired with each other, a strongly linear space filling of the unit square
is obtained. Different techniques designated leap [6] and scramble [7] were created
in order to overcome these problems.

Pseudorandom Variables with Non Uniform Distribution

In order to generate a random variable X from an arbitrary distribution the following
two steps are involved.

1. Generation of uniform random numbers U1, ...,UN with the PRNG.
2. Transformation of Ui according to its respective probability density function

f (X) or joint probability density function f (X).

In the previous sections, we briefly presented how uniform pseudorandom num-
bers or uniform quasi-random numbers can be created. Here, we will describe two
transformation methods in order to get a random variable X from such a uniform dis-
tributed random variable. The most notable transformation methods are the inverse
transform method and the acceptance–rejection method.

In the inverse transformmethod, the random variable is calculatedwith the inverse
of the CDF F(X), see Algorithm 2.

Algorithm 2: Inverse-Transform Method
Generate U from U(0, 1)
Return X = F−1(U )
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The acceptance–rejection method directly works with the PDF f (X) of the con-
sidered random variable X . Moreover a further PDF g(X) is needed, such that for
some c ≥ 1, c g(X) ≥ f (X) for all x . It is assumed that random numbers can be
easily generated from g(X). The resulting method is described in Algorithm 3.

Algorithm 3: Acceptance-Rejection Method
Generate X from g(X)

Generate U from U(0, 1)
If U ≤ f (X)/(c g(X)) use X , otherwise reject X and repeat the process.

Stratification

If it is possible to divide a heterogeneous population into subpopulations each of
which is homogeneous, a precise estimate of, e.g., the subpopulations mean can be
obtained from a small sample. A combination of such estimates can deliver a precise
estimate of the whole population with smaller number of realizations compared to
CMC. This line of thought leads to stratified sampling. The idea behind stratified
sampling is to divide the population of N units into m non-overlapping subpopu-
lations, called strata. Each strata has Ni units with i = 1, ...,m and

∑
i Ni = N . A

sample of size ni with i = 1, ...,m and
∑

i ni = n is selected by some design within
each stratum. In case of a random sample in each stratum, the term stratified random
sampling is used. How to chose the strata depends on the particular problem. The
population mean per unit ESt[Q] can be estimated with

ESt[Q] =
∑m

i=1 Ni Ei[Q]
N

=
m∑

i=1

Wi Ei[Q] , (7)

where Wi denotes the stratum weight. Only when the sampling fraction is the same
in all strata which means e.g.

ni
n

= Ni

N
, (8)

the population mean corresponds to the sample mean. Such a stratified sampling is
called proportional. If a predefined cost function is available, an optimal allocation
of sample size can be achieved, e.g., in order to minimize the variance for ESt[Q].
A simple cost function can be a linear one where the cost is proportional to the size
of the sample but varies from stratum to stratum.

The variance of an estimated mean of random sampling is denoted Vran , of strati-
fied samplingwith proportional sample allocationVprop andwith optimumallocation
for fixed n it is Vopt . It is shown in [8] that the following relation holds.
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Vopt ≤ Vprop ≤ Vran (9)

Therefore, it can be argued that stratified sampling is always better compared to
random sampling when enough information is available for its appropriate imple-
mentation. However, enough information is represented, e.g., by the frequency dis-
tribution of the result quantity, which is often only estimated prior to a probabilistic
investigation. Therefore, the necessity of defining the strata is a major problem in
stratified sampling. In case of one result quantity and if it is known a priori, for
example, due to a reasonable number of measurements, a procedure to calculate the
strata and number of strata is given in [8]. The determination of the strata becomes
further complicated when many result quantities should be considered. The strata
definition for one result quantity may be inappropriate for other quantities.

Correlation and Discrepancy Control

So far, only the marginal distributions of single variables were taken into account
when creating random vectors. An N × d sample vector can be obtained by repeating
d times the generation of one-dimensional randomvariableswith N realizations. This
naive approach can lead to undesired dependencies between the variables whichmust
be avoided. On the other hand, specific interrelationships between the input variables
might be explicitly desired for a variety of probabilistic simulations, for example,
when treating measurements of a real system or in the context of sensitivity analyses,
where correlation is of great importance and must be considered.

Relations between input variables can be represented by correlation, for exam-
ple, using Pearson correlation coefficients (generally denoted with ρ) or Spearman
rank correlation coefficient (denoted with r ). According to Pearson, the correlation
coefficient for two random variables Xi and X j is defined as:

ρi j =
∑N

k=1(xki − xi )(xk j − x j )√
∑N

k=1(xki − xi )2
√∑N

k=1(xk j − x j )2

. (10)

The rank correlation coefficient is calculated with the ranks of the data.
A correlation matrixC of size d × d is obtained from a sample of the size N × d.

In the case of the correlation coefficient according to PearsonCi j = ρi j . Furthermore,
it is assumed that the desired correlation structure is known and predefined by a target
correlation matrix T.

There are two main groups of methodologies used to generate correlated random
vectors with arbitrary given marginal distribution and correlations:
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1. Methods that transform a correlated standard normal random variable into a
target non-normal variable

2. Methods that optimize the rank correlation structure of a sample.

The popular Nataf model [9] belongs to the first group. A standard normal random
vectorZwith a correlation matrixT′ is transformed component-wise into the desired
vector X with a correlation matrix T. The marginal transformation is obtained by:

Xi = F−1
i (Φ(Zi )) , (11)

where Φ is the standard normal CDF and Fi (Xi ) the CDF of Xi . The Nataf model
approach assumes that Z is jointly normal and uses the Pearson correlation coefficient
(invariant under nonlinear strictly increasing transformations) as in Eq. (11). Thus,
the relation T′ 
= T holds. In order to get the unknown matrix T′, each element ρ ′

i j
must be computed by solving:

ρi j =
∞∫

−∞

∞∫

−∞

xi − μi

σi

x j − μ j

σ j
ϕ2(zi , z j , ρ

′
i j )dzidz j , (12)

whereϕ2(zi , z j , ρ ′
i j ) designates the PDFof the bivariate standard normal distribution.

In order to avoid the elaborate solution of Eq. (12), empirical equations have been
developed such that ρ ′

i j = f(ρi j ) can be computed, see e.g. [10].
If the matrix T′ is available, uncorrelated standard normal distributed random

vectors canbe transformed into correlated ones bymeans ofCholesky transformation.
The Cholesky decomposition T′ = LLT provides the lower triangular matrix L. The
correlated random vectors are then obtained by applying XLT .

The idea of converting uncorrelated random variables into correlated ones by
orthogonal transformation is also the basis ofmethods belonging to the second group.
One of these was developed by Iman and Conover [11] and is known as Restricted
Pairing. The random vectors of individual random variables are generated according
to their respective probability distribution without taking into account correlations.
The restricted pairing technique uses the rank correlation coefficient. Compared to the
Pearson correlation coefficient, the latter has the advantage of being invariant under
monotonic transformations of the marginals. Algorithm 4 describes the procedure of
Restricted Pairing.

Algorithm 4: Restricted Pairing
Calculate C from X
Calculate lower triangular matrix Q from QQT = C
P from PPT = T
S = PQ−1

R = XST

Change the order in X in order to achieve the same ranks as in R



General Introduction to Monte Carlo … 273

Themethod proceeds from uncorrelated random variables. Practically, this is only
possible to a limited extent. Therefore, the correlation of the input sample is taken
into account by incorporating the rank correlation matrix C which results from the
available sample. In case of perfect correlation ri j = 1with i 
= j in the input sample,
the rows in each column of X can be randomly shuffled.

An iteratively improved implementation of the Restricted Pairing technique has
been presented in [12].

Besides the two aforementioned groups of methodologies, other approaches exist,
as, e.g., the usage of Copulas to construct a multivariate random vector of dependent
components.

A desired order within the sample can also be set up by solving a combinatorial
optimization problem. The optimization is based on a scalar quantity whichmeasures
the deviationE = T − A between target correlationmatrix and the actual correlation
matrixA. Vořechovský and Novák [13] described the deviation by root mean square
correlation rrms and minimized it by using Simulated Annealing and interchanging
a pair of two realizations xik and x jk .

rrms =
√
2

∑d−1
i=1

∑d
j=i+1(Ei j )2

d(d − 1)
(13)

A suitable matrix norm can also be used to measure the maximum absolute cor-
relation error:

rmax = max
1≤i≤ j≤d

|Ei j | (14)

If the correlation adjustment can be formulated as an optimization problem, a dis-
crepancy improvement can be obtained with the same approach only by exchanging
the objective. As an example, Liefvendahl and Stocki [14] used a genetic algorithm
to solve the optimization problem.

The description of the space-filling proprieties of samples by means of a scalar
quantity is possible with a multitude of criteria. An overview and an evaluation of
existing criteria can be found in [15]. Beside all, the centered L2 discrepancy [16]
shows good performances for projections in 2D subspaces.

C2 =
(
13

12

)d

− 2

N

N∑

i=1

d∏

k=1

(
1 + 1

2
|x (i)

k − 0.5| − 1

2
|x (i)

k − 0.5|2
)

+ 1

N 2

N∑

i, j=1

d∏

k=1

(
1 + 1

2
|x (i)

k − 0.5| − 1

2
|x ( j)

k − 0.5| − 1

2
|x (i)

k − x ( j)
k |

) (15)
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Latin Hypercube Sampling Method

Latin Hypercube Sampling (LHS) was first published by McKay et al. [17] and
further developed by Iman and Conover [18]. The method can reduce the variance
of an estimator compared to random sampling, which results in a reduction of the
sample size while maintaining the statistical significance.

A mathematical proof of the variance reduction compared to CMC was given by
McKay et al. [17] under the condition that the system behavior is monotonic in each
of its inputs. Iman and Conover [18] show for an additive model with uniform inputs
that the variance of an estimatedmean convergeswith a factor of N−2 faster compared
to CMC. Stein [19] demonstrated that the amount of variance reduction increases
with the degree of additivity in the model response. An experimental comparison of
LHS against CMC was carried out by Manteufel [20]. LHS estimates an unbiased
mean value as well as the distribution function. The bias in the estimation of the
variance is low and associated with a significantly lower sampling variability.

The idea behind LHS relates to stratified sampling. In LHS, only the marginal
distributions are stratified in such a way that each random variable X is divided into
N contiguous intervals of equal probability with respect to the corresponding CDF
F(X). For that purpose, the unit probability is divided into N intervals of identical
probability 1/N. These probability intervals are bounded by a lower φk−1 and upper
bound φk .

φk = k

N
with k = 1, ..., N (16)

The calculation of the corresponding interval bounds ξk over the values of the
random variable X can be performed by utilizing the inverse of the CDF F(X)

ξk = F−1(φk) . (17)

In each probability interval one realization xk must be selected. Therefore,
xk ∈ (ξk−1, ξk) holds. Besides random LHS where each realization xk is uniformly
distributed in its respective interval, mean and median LHS exist. For those meth-
ods different ways of selecting the sample values from the probability intervals are
applied. In case of median LHS each probability interval is selected by taking the
following set of sampling probabilities.

p = (p1, p2, ..., pk, ..., pN ) with pk = k − 0.5

N
(18)

The samples are selected using the inverse transformation of the probabilities in
p.

xk = F−1(pk) (19)

The mean in each interval is selected for mean LHS. It makes a numerical inte-
gration of the PDF f (X) necessary. The samples are selected using
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Fig. 2 Visual comparison of correlation optimized and discrepancy optimized median LHS; N =
100

xk =
∫ ξk
ξk−1

x f (X)dx
∫ ξk
ξk−1

f (X)dx
. (20)

Figure1 shows a visual comparison of different sampling techniques for N =
250 realizations. Figure2 extends the visual comparison and shows correlation and
discrepancy control for a median LHS with N = 100.

Multi-level Monte Carlo

As previously stated, CrudeMonte Carlo (CMC) sampling has a dimension indepen-
dent convergence ratewhich is not affected by the presence of possible discontinuities
in the parameter space. However, the CMC approach converges very slowly and is
impractical in complex applications that require accurate solutions. The Multi-Level
Monte Carlo (MLMC) method has been introduced by Heinrich [21, 22] in the con-
text of parametric integration and extended by Giles [23] to approximate stochastic
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differential equations (SDEs) in financial mathematics as a way to improve the effi-
ciency of MC simulations. Applications to PDEmodels with random parameters can
be found in [24–28].

Algorithm 5: Multi-Level Monte Carlo Algorithm

MLMC(L, {Nl }Ll=0)
for l = 0 : L do

for i = 0 : Nl do
Generate random input: ω(i,l)

Q(i)
Ml

← PROBLEMl (ω(i,l))

Q(i)
Ml−1

← PROBLEMl−1 (ω(i,l))

Y (i)
l = QMl − QMl−1

compute EMC[Yl ]
return EMLMC[QM ] = ∑L

l=0 E
MC[Yl ]

The key idea ofMLMC is to simultaneously drawMCsamples on several approxi-
mations QMl of Q built on a hierarchy of nested computational grids (with discretiza-
tion parameters M0 < M1 < · · · < ML = M) thanks to the linearity propriety of the
expectation operator. Indeed the expectation of a QoI computed on the finest level
can be written as a telescopic sum of the expectation of the QoI on the coarsest
level plus a sum of correction terms adding the difference in expectation between
evaluations on consecutive levels:

E[QML ] = E[QM0 ] +
L∑

l=1

E[QMl − QMl−1] =
L∑

l=0

E[Yl] (21)

with Yl = QMl − QMl−1 and Y0 = QM0 .

The MLMC estimator for E[Q] can be written as:

EMLMC[QM ] :=
L∑

l=0

1

Nl

Nl∑

i=1

Yl(ω
(i,l)) =

L∑

l=0

EMC[QMl − QMl−1], (22)

where the same realization ω(i,l) is used to compute the correction Yl(ω(i,l)) =
QMl (ω

(i,l)) − QMl−1(ω
(i,l)) on both levels whereas corrections on different levels

should be sampled independently.
The accuracy in estimating E[Q] by EMLMC[QM ] can be quantified by considering

the mean square error (MSE) of the estimator:
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e(EMLMC[QM ])2 := E[(EMLMC[QM ] − E[Q])2] = (E[QM − Q])2︸ ︷︷ ︸
(B-EMLMC)

+
L∑

l=0

Var[Yl]
Nl

︸ ︷︷ ︸
(SE-EMLMC)

.

(23)
The standard MLMC algorithm is summarized in Algorithm 5. The notation

PROBLEMl denotes a general ‘black-box’ CFD solver that computes the QoI of
the problem under investigation given a set of input values at the grid discretization
level l. The description of the treatment of specific geometric or operating input
random parameters will be provided in the following chapters.
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Latin Hypercube Sampling-Based Monte
Carlo Simulation: Extension of the
Sample Size and Correlation Control

Robin Schmidt, Matthias Voigt and Ronald Mailach

Introduction

In order to calculate an MC estimator for the expectation 𝔼[Q] of Q

𝙴𝙼𝙲[Q] ∶= 1
N

N∑

i=1
Q(X(i)), (1)

where Q is a quantity of interest with Q = M (X) with the deterministic model M .

The sample 𝐗 of some random variables Xi, i = 1, ..., d can be generated with dif-

ferent sampling approaches as already described in chapter “General Introduction to

Monte Carlo and Multi-level Monte Carlo Methods”. One of such methods is Latin

hypercube sampling (LHS). The method can reduce the variance of an estimator

compared to random sampling, which results in a reduction of the sample size while

maintaining the statistical significance. A drawback of the LHS compared to random

sampling is the procedure for the generation of the realizations and the associated

limitations in the extension of the sample. Depending on the selection of the sample

values, an extension of the sample size can be achieved by doubling or adding an

even multiple of its sample size.

The results from a Monte Carlo simulation in terms of sensitivities or robustness

measures mostly are in the form of point estimators available. The statistical qual-
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ity of these estimators can be determined only after completion of a Monte Carlo

simulation by using, e.g., confidence intervals. If the quality is not sufficient, the

sample size needs to be increased. Here, it may occur that deterministic calculations

must be discarded and a new LHS must be performed. This approach is especially

doubtful in conjunction with time-consuming and therefore very “expensive” deter-

ministic calculations. In the literature, various methods for extending a Latin Hyper-

cube sampling are described.

In [1] Pleming and Manteufel, use a level group approach, where at each level a

certain number of groups are added. Once the initial LHS design is created, an equal

number of realizations in the form of a group are added. Thereby the initial bins are

considered. A certain number of groups are necessary to maintain the LHS design

in each level. In the extension approach presented by Pleming and Manteufel, the

realizations are set at fixed bin fractions and not uniformly distributed in the inter-

val. This approach can be combined with an algorithm for correlation or discrep-

ancy control. A extension algorithm for stratified sampling was proposed by Tong

[2]. In case of LHS, the algorithm is able to extend the sample to an integral multi-

ple of its size. However, used in a hierarchical manner the sample size in each step

is extended at least twice the size of the predecessor matrix. In [3], Vořechovský

explored an approach that consists of an exponent and a base value. The added real-

izations follow from this approach. Two methods with the names LLHS and HSLHS

are presented. They differ with respect to the calculation rule and the base value. The

realizations are set at the median of the corresponding probability interval. A disad-

vantage of the LLHS is the deviation from the LHS design, which results in a group-

ing around the mean. If all existing realizations are considered the HSLHS yields to a

LHS design, however each extension by itself is not a LHS design. Recently, further

improvements were proposed by Vorechovskỳ [4] with an approach named HLHS.

The HLHS concept reminds of the HSLHS approach, however, it has been gener-

alized and combined with a correlation control and optimization algorithm based

on Simulated Annealing; see also [5]. Sallaberry et al. [6] presented an approach

to extend a LHS by doubling the sample while considering an existing correlation

structure. No subsequent correlation control procedure is necessary.

A method for extending a LHS should ideally have the following features:

∙ The concept of the LHS design should be maintained or at least it should be pos-

sible to reach a LHS design at a certain stage.

∙ The extension algorithm should be flexible.

∙ Correlation or discrepancy adjustment should be possible within the method or

with an external method.

The first two criteria usually contradict each other. Another reasonable feature

can be.

∙ Each extension is a separate LHS design in the same parameter space.
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Latin Hypercube Sampling

The procedure to create a random LHS is described in chapter “General Introduc-

tionto Monte Carlo and Multi-level Monte Carlo Methods”. However, minor changes

are carried out in order to increase the representation of the random variables X
marginal PDF, if the distribution is an asymptotically expiring one, as, e.g., the nor-

mal distribution. Statistical measures as, e.g., Var(X), which are a result of the sam-

ple, are very sensitive to the position of the realizations x1 and xN in the outermost

probability intervals. In such intervals, the mean is used instead of an uniformly dis-

tributed value. Therefore, Eq. (2) also presented in chapter “General Introduction to

MonteCarlo and Multi-level Monte Carlo Methods” is used to calculate x1 and xN .

For further reading see also [7].

xk =
∫ 𝜉k
𝜉k−1

xf (X)dx

∫ 𝜉k
𝜉k−1

f (X)dx
with k = 1,N (2)

As already emphasized, the usage is limited to realizations in the tails of asymp-

totically expiring distributions.

Extended Latin Hypercube Sampling

The extension algorithm extended Latin Hypercube sampling (eLHS) is based on the

choice of a sample group size denoted with Ng. The algorithm allows to extend an

existing sample of Ng realizations with any positive multiple of the same size. The

positive integer l, named level, denotes the different extension steps.

If a probabilistic simulation is already present, the existing number of samples

corresponds to the group size and is referred to as level l = 1. If no sample is already

available, level l = 1 results from an LHS with a sample size of Ng. The basic idea is

to select a small group size, e.g., Ng = d + 5 with d as the number of input variables,

and reach the desired total number of realizations N(l)
by extending l times.

N(l) = l ⋅ Ng (3)

The superscript (l) denotes the respective level. The flowchart in Fig. 1 describes

the extension procedure. Each random variable is handled individually. In each

extension step, only Ng realizations are added to the sample matrix. That means, the

division of each random variable X into N(l)
contiguous intervals of equal probability

1∕N(l)
with respect to the corresponding CDF F(X) is not maintained in each level of

the eLHS. Besides the level l, we introduce a control variable 𝜆. The relation between

𝜆 and the level l states whether a recalculation of the probability interval bounds is

necessary. If l = 2(𝜆−1) − 1, the probability interval bounds need to be recalculated.

https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
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Fig. 1 Flowchart of eLHS
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If l < 2(𝜆−1) − 1, vacant intervals are still available. The probability interval bounds

are defined as

𝜙

(𝜆)
k = k

2𝜆Ng
with k = 1, ..., 2𝜆Ng . (4)

The probability intervals are denoted with [ℑ(𝜆)
k ]. The corresponding interval

bounds over the values of the random variable X are denoted with 𝜉k. An integra-

tion of the PDF over the interval (𝜉(𝜆)k−1, 𝜉
(𝜆)
k ) would result in the probability interval

1∕(2𝜆Ng).

∫

𝜉

(𝜆)
k

𝜉

(𝜆)
k−1

f (X)dx = 1
2𝜆Ng

(5)

Equation (5) is solved numerically in order to compute the interval bounds 𝜉
(𝜆)
k .

The corresponding intervals are denoted with [I(𝜆)k ]. The interval bounds of the first

level and therefore with 𝜆 = 1 are designated as root bounds 𝜙
(1)
k and 𝜉

(1)
k . The cor-

responding intervals are designated as root intervals. The existing realizations 𝐱 are

assigned to the intervals [I(𝜆)k ]. Subsequently, an indicator value 𝜓k is determined

for each interval. For an empty interval, 𝜓k = 1, for an occupied one 𝜓k = 0. Based

on the indicator values, the number of free intervals per root interval can be deter-

mined. The realizations 𝐱(l) are assigned uniformly distributed to the empty intervals

bounded by 𝜉

(𝜆)
k . However, per root interval bounded by 𝜉

(1)
k only one realization is

added. This approach ensures that exactly Ng samples are added to the sample matrix

and, furthermore, that each extension 𝐱(l) represents a separate LHS. However, it

introduces a deviation from the LHS design in such levels.

As a result more than one empty interval per root interval is in certain levels

available, e.g., in level l = 3. In order to reduce the error compared to the LHS design,

the selection of the interval in such levels is based on the largest negative distance

between continuous and discrete distribution function of the present realizations 𝐱.

For this purpose, the lower distance between continuous and discrete distribution

function is defined as

D∗(xk) =
( k − 1
N(l−1) − F(xk)

)
with k = 1, ...,N(l−1)

. (6)

In Eq. (6), F(xk) denotes the continuous CDF of X. The minimum value of D∗
is a

measure of the lack of realizations in the PDF. Furthermore, the valueD+
, describing

the upper distance, is calculated with the present realizations.

D+(xk) =
(
F(xk) −

k
N(l−1)

)
with k = 1, ...,N(l−1)

(7)

For each root interval [I(1)j ] with j = 1, ...,Ng, the newly occupied interval is

located below the interval of the realization with
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Fig. 2 Schematic example with group size Ng = 3 and 4 levels

d∗ = min
xk∈(𝜉

(1)
j−1,𝜉

(1)
j )
(D∗(xk)) . (8)

Furthermore, the constraint, |d∗| > |D+(xj)| must be satisfied where xj designates

the highest random number in each root interval. Otherwise, the interval above xj is

selected.

Following from the described extension approach, we can summarize that the

combined extended sample of the size N(l)
is only for l = 2(𝜆−1) a true fully occupied

LHS; otherwise, certain probability intervals [ℑ(𝜆)
k ] stay empty.

Example: In Fig. 2 a, one-dimensional extension is shown for a uniform distribu-

tion U(0, 1) and a group size Ng = 3. The realizations are illustrated on a number ray

schematically. Level one contains N(1) = Ng = 3 realizations. In the second level, the

root sample is duplicated and the new realizations (in red) are assigned to the empty

intervals. In the third level, the interval bounds 𝜙
(2)
k and 𝜉

(2)
k are recalculated again.

However, two new empty intervals are per root interval available now. The intervals

to be occupied are selected by using d∗ and D+
. In the fourth level, no recalcula-

tion of the interval bounds in necessary. The present empty intervals are occupied

uniformly distributed (in green).

Selected Performance Results of eLHS

In order to evaluate the eLHS, two standard normal distributed random variables

X ∼ N(0, 1) are generated according to the experimental matrix shown in Table 1.

The rank correlation values of r = [0, 0.25, 0.5, 0.75, 0.99]T are examined for each

test point.

The following samples were generated with LHS. The same correlation values as

for the eLHS are used. Each test point of the two experimental matrices was repeated

100 times.

N =[15, 20, 30, 40, 50, 60, 65, 80, 100, 120,
130, 160, 200, 240, 260, 320]T

(9)
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Table 1 Experimental matrix eLHS

l N(l)

Ng = 5 Ng = 10 Ng = 20
3 15 30 60
4 20 40 80
6 30 60 120
8 40 80 160
10 50 100 200
12 60 120 240
13 65 130 260
16 80 160 320

Table 2 Realization in interval [I1] for Ng = 10
l xLHS xeLHS 𝜉

(l)
0 , 𝜉

(l)
1

1 −1.7550 −1.7550 −10 , −1.2816
2 −2.0627 −1.7550 −10, −1.6449
3 −2.2270 −2.3378 −10, −1.9600
4 −2.3378 −2.3378 −10, −1.9600
5 −2.4209 −2.3378 −10, −2.2414
... ... ... ...

8 −2.5887 −2.3378 −10, −2.2414
9 −2.6293 −2.8207 −10, −2.4977

Due to brevity of this chapter, the eLHS will be evaluated against the LHS con-

cerning the reproduction of the standard deviation s(X). For further results, the reader

is referred to [8]. The comparison is performed with the mean value of 100 repeti-

tions. Error bars describe the standard deviation s(s(X))) due to the repetition. The

target value of the estimated standard deviation s equals one.

The error of the LHS with respect to the target value decreases asymptotically

with increasing sample size N. The eLHS results deviate from the LHS due to the

empty intervals [Ik] at the levels {3, 6, 10, 12, 13}. Also, the scatter of the standard

deviation increases. In level {4, 8, 16}, all intervals are occupied and the standard

deviation of the eLHS samples should correspond to those of the LHS. However,

this can only be approximately achieved at level 16. This behavior is not visible for

the reproduction of the distribution function or mean value (see [8]). The reason

behind the deviations in {4, 8} is the allocation of the outermost intervals [I1] and

[IN] with the mean x-coordinate (see Eq. 2). Table 2 presents the realization of eLHS

and LHS in the interval [I1] as well as the corresponding bounds using the example

of Ng = 10. The value of 𝜉0 = −10 is selected for presentation purposes.
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Fig. 3 Standard deviation over the number of level

At level l = 1 eLHS and LHS posses the same value for the realization in the

interval [I1]. At level l = 2, the outermost interval is still occupied. Moreover, the

corresponding realization of eLHS is higher compared to the one of the LHS. The

LHS value is the required value for N = 20 in order to achieve a good representation

of 𝜎. Therefore, the estimated standard deviation is reduced. The described behavior

also applies to the levels l = 5...8 which is shown in Fig. 3.

The opposite case occurs in the levels l = 3, 9...15. The realization is smaller com-

pared to the required value for the appropriate number of realizations N(l)
. Therefore,

the estimated standard deviation of eLHS is increased compared to LHS. The influ-

ence of the realizations in the intervals next to the outermost intervals is shown at

level l = 4. These intervals are occupied by mean instead of randomly distributed

values which is a result of lower levels. In the case of l = 4, the intervals [I2] and

[IN−1] are occupied with the mean value from level l = 1. The result is a reduction

of the scatter of the standard deviation and a reduction of the deviation to the target

value.

Note, the described problem due to the usage of mean values is limited to asymp-

totically expiring distributions. Avoidance is possible by random assignment of the

outermost intervals [I1] and [IN]. From Fig. 3, we can see that in general the devia-

tions to the LHS decrease with increasing group size.

Correlation Control and Maintenance

As stated in chapter “General Introduction to Monte Carlo and Multi-level MonteCarlo

Methods”, the univariate random variables have to be assembled to the sample matrix

𝐗 of the size N × d according to their dependence structure. For this purpose, an

iterative Restricted Pairing (see chapter “General Introduction to Monte Carloand

Multi-level Monte Carlo Methods”) inspired by the work of Dandekar et al. [9] is

https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
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coupled with a simple random search procedure. The correlation adjustment pro-

cedure denoted Random Search Restricted Pairing (RSRP) is shown in Algorithm

1.

Algorithm 1: Correlation adjustment procedure

Initialize 𝐗 and 𝐗∗

while 𝛺(𝐗∗) > 𝛺term do
Generate 𝐗∗

Iterative Restricted Pairing with 𝐗∗

The sample matrix 𝐗 is initialized by linking the univariate random vectors. Each

column represents a random variable. The matrix 𝐗∗
is generated with each column

being a random permutation of the same column from 𝐗.

The use of Restricted Pairing means the use of the Cholesky transformation. For

this purpose, it is necessary that the target and sample correlation matrices are sym-

metrical and positive definite. This property is granted in applications with physical

background. The requirement is violated as soon as the number of realizations of

the sample N is less than the number of random variables d. Therefore, the present

method can only be applied for N > d.

A comparison with other methods for correlation control is shown in Table 3. The

example deals with d = 15 independent uniform distributed variables U ∼ (0, 1) and

a sample size of N = 16. The optimization criterion

E =
d−1∑

i=1

d∑

j=i+1
(Eij)2 , (10)

was used where Eij denotes the elements of the error matrix 𝐄 (see chapter “Gen-

eralIntroduction to Monte Carlo and Multi-level Monte Carlo Methods”). The tests

were repeated 10 times, and the mean value for maximum absolute correlation devia-

tion rmax and root mean square correlation deviation rrms is shown. All three methods

provide comparable results, with the genetic algorithm [10] performing best.

The rank correlation of the added sample matrix 𝐗(l)
is set with the above pre-

sented RSRP after each marginal variable is extended. The flowchart of the approach

is shown in Fig. 4. Sallaberry et al. [6] showed that two samples with the same cor-

relation structure in turn lead to a similar correlation structure when they are joined

Table 3 Performance of correlation adjustment for d = 15 and N = 16
RSRP Simulated annealing [5] Genetic algorithm [10]

rmax 0.079 0.087 0.065
rrms 0.049 0.044 0.023

https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
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level1
N(1) = Ng

Generate LHS RSRP X(1)

level2
N(2) = 2Ng

eLHS RSRP X(2) rmax < rtermmax X
Yes

No

Fig. 4 Correlation control and eLHS for level l = 2

together. In the presented procedure, the whole sample matrix 𝐗 is tested concerning

its maximum absolute rank correlation error, after adjusting the correlations of the

new realizations and joining them with the existing sample. The correlation adjust-

ment in the new realizations 𝐗(l)
is repeated until rmax(𝐗) is less than a predefined

criterion, as, e.g., in [11].

Performance of RSRP and eLHS

The evaluation of RSRP in the extension procedure is done with the example

described in section “Selected Performance Results of eLHS.” Figure 5 shows the

maximum absolute correlation deviation over the extension level for the three group

sizes. A distinction is made within the five computed rank correlation values. Gener-

ally, it can be observed that the RSRP leads to very low maximum absolute correla-

tion deviations of at most 10−2. The samples with low group size, that also means low

group size variable ratio Ng∕d, and high correlation coefficient result in the highest

Fig. 5 Maximum absolute

correlation deviation rmax
over number of levels
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deviations. Comparing the samples with a group size of Ng = 10, the largest absolute

correlation deviations also arise from high correlations of r = 0.99. At a group size

of Ng = 20, which corresponds to 10 times the number of variables, this behavior is

no longer present. With increasing group size and thus variability of each level, the

correlation deviation decreases. Also, an increase in the number of levels results in

a decrease of the deviation.

Pleming et al. [1] propose to choose the size of the sample four times the number

of the random variables when applying Restricted Pairing with LHS. In the context

of eLHS and RSRP, we can deduce that for low up to medium correlations even a

factor of 2, that means Ng = 2d, can be enough to achieve low correlation deviations.

In case of very high correlations, we propose a factor >5.
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Multi-level Monte Carlo Method

Jordi Pons-Prats and G. Bugeda

Introduction

Uncertainty quantification has gained interest during the recent years. Two clear
examples are NODESIM-CFD and, the just finished, UMRIDA projects.

NODESIM-CFD project analysed the efficiency of Monte Carlo methods in front
of other uncertainty quantification techniques: Polynomial Chaos Expansion,
Probabilistic Collocation Methods, etc. It was concluded that Monte Carlo method
is not suitable for industrial application in CFD due to its demanding computational
cost, although this cost remains constant, or almost constant, with respect to the
number of uncertain parameters. The curse of dimensionality was a key issue to
keep the interest in Monte Carlo method.

UMRIDA project has focused its attention on a new and promising method
related to Monte Carlo, named Multi-Level Monte Carlo. The available literature
demonstrates how different levels of successive discretization levels of the analysis
lead to a better performance compared to standard Monte Carlo method. The big
number of evaluations remains on the coarse levels, while the refinements help to
converge to the mean and variance estimators more quickly and efficiently.

This present chapter describes the implementation tasks of the Multi-Level
Monte Carlo method for its application to the efficient handling of a large number of
uncertainties. It is foreseen that the resulting tool can provide a stand-alone
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methodology for uncertainty quantification, or it can be combined with optimization
tools to get a robust design tool.

To define a reference point, the Monte Carlo method is briefly introduced so a
clear comparison will be done, highlighting the differences between MC and
MLMC.

Description of Monte Carlo Method

Monte Carlo method is a well-established technique for sampling and producing
statistical analysis. It is well known that its brute force approach leads to a high
computational cost compared to other methodologies, but it is true that the com-
putational cost is independent of the number of uncertainties and their typology.
The accuracy getting the statistical moments of the results and as well as the easy
implementation of any sampling probabilistic density function (PDF) are advan-
tages of the Monte Carlo method.

This method formulates the mean value of a functional as:

EM Un
τ

� �
=

1
M

∑
M

k=1
Uk, n

τ

being

• E the mean value expectation,
• M the number of samples,
• U the functional investigated,
• τ the discretization of the functional,
• n the last time step of the numerical simulation (just to ensure the numerical

convergence of the simulation).

The other three statistical moments, namely the variance, skewness and kurtosis,
can be easily obtained in a similar way from the set of samples.

The whole Monte Carlo procedure can be summarized as:

1. Define the desired number of samples.
2. Calculate the stochastic points derived from the PDF of the input parameters.
3. Calculate the value of the functional for each stochastic point.
4. Calculate the statistical moments of the results.

It is clear from the formulation that the cost is directly related to the cost of
evaluating each sample. The total cost is the sum of each individual evaluation. Due
to the fact that a large number of samples are required to get accurate estimators of
the statistical moments, the final cost can be unaffordable.

As shown in Figs. 2 and 3, the statistical estimators converge to their final values
after an initial range with large oscillations. Figure 3 shows the detail of the
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finest mesh. The plot shows that in the analysed case about 500 samples were
required to get an almost stabilized value for the mean, although larger amounts are
accepted as necessary to fully stabilize these oscillations. This statement is rein-
forced by the data shown in Fig. 4, where the variance is plot regarding different
levels of accuracy and number of samples. To get an almost converged variance
value, more than 500 samples are required to really stabilize the oscillations. The
oscillations will be a problem-related issue, but it is clear that they will be related to
the number of uncertainties, the range of their variance and the influence of the
uncertain input parameter to the output variable. Then, it is easy to understand that
the number of samples to ensure variance converge can be large. These figures
show how increasing the level of accuracy and refining the mesh, the mean, and the
variance of the QoI also are refined. The meshes used are shown in Fig. 1, which
define the levels of accuracy named as L1, L2, L3, L4.

Fig. 1 Coarse-to-fine mesh refinement
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Description of the Multi-level Monte Carlo Method

The Multi-Level Monte Carlo method is based on similar criteria as standard Monte
Carlo. It also uses a set of samples to estimate the statistical moments, but in
MLMC case the samples are organized in successive refinement levels. Thanks to
this refinement, the number of samples to be used is expected to reduce each step
while speeding up the convergence of the statistical moments. The mentioned
refinement can be applied to the mesh size or to other parameters leading to an
improved accuracy of the output. The improvement in the performance of the
MLMC method, compared with the classical MC one, is based on the combination
of a big number of cheap samples with low accuracy providing a good convergence
of the statistical moments with a small number of expensive samples with high
accuracy providing good quality results for the estimation of the output variables.

As mentioned, the MLMC method is based on a combination of a large number
of evaluations with a low level of accuracy with a small number of evaluations with
a high level of accuracy. Let us assume a sequence P0, P1, . . . ,PL which approx-
imates a quantity of interest (QoI) not only with increasing accuracy, but also with
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increasing cost. Due to the linear property of the mean value operator, we have (see
Ref. [1])

E PL½ �=E P0½ �+ ∑
L

l=1
E Pl − Pl− 1½ �

and therefore we can use the following unbiased estimator for E PL½ �,

E PL½ �≈N− 1
0 ∑

n=1
Pð0, nÞ0 + ∑

L

l=1
N− 1

l ∑
Nl

n=1
Pðl, nÞl −Pðl, nÞl− 1

� �� �

In order to calculate the standard deviation,

V PL½ �= ∑
L

l=0
N− 1

l Vl Pn
l

� �

Vl Pn
l

� �
=

∑Nl
n=1 Pn

l −E Pn
l

� �� 	2
n− 1

being:

• Nl the number of samples for the l level of accuracy, and n the number of the
sample calculated at each step,

• Pðl, nÞl the result of the evaluation of the n sample of the l level of accuracy
(notice that the sampling points used for each level of accuracy are
independent),

• n the number of evaluated samples.

If we define Cl as the computational cost of the analysis of one sampling point
belonging to the first level of accuracy, then the overall cost of the multi-level
estimator is

CL = ∑
L

l=0
NlCl

For a fixed computational cost, and choosing the appropriate Lagrangian mul-
tiplier λ, the standard deviation is minimized by choosing

Nl = λ
ffiffiffiffiffi
Vl

Cl

r

A typical computer implementation of the MLMC method is as follows:

1. Start L = 0,
2. Estimate standard deviation Vl defining an initial number of samples Nl.
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Calculate optimal Nl using Nl =2ϵ− 2 ffiffiffiffiffiffiffiffiffi
Vlhl

p
∑L

l=0

ffiffiffiffiffiffiffiffiffiffiffi
Vl ̸hl

p� �
, being hl the

computational cost associated with the analysis of each sampling point and ϵ a
user-defined tolerance. The values that ϵ can usually take are from 10−1 to 10−4.
These typical values help to the convergence of the method, although it is
greatly dependant on the behaviour of the QoI.

3. Evaluate extra samples if optimal Nl is larger than the initial estimation
4. If L ≥ 2, test convergence using:

max M− 1 YL− 1j j, YLj j� �
<

1ffiffiffi
2

p M− 1ð Þϵ

or

YL −M− 1YL− 1


 

< 1ffiffiffi

2
p M2 − 1

� 	
ϵ

5. If L < 2, or not converged, L = L + 1
6. Go to (2), i.e. estimate standard deviation Vl defining an initial number of

samples Nl

To avoid misunderstandings, it should be clarified that what the Multi-Level
Monte Carlo method defines as “Level” means the difference of two consecutive
levels of discretization. See more details in the next section.

Look at Refs. [2–6] for more details.
On the following section, some analyses will be described using Multi-Level

Monte Carlo for two different refinement criteria.

Refinement Levels

As described, the MLMC method is based on successive refinement applied to the
solver. When dealing with FEM solvers, the easiest way to achieve this refinement
is using the mesh size. But it is not limited to, while other types of refinements are
also possible. The following sections present the one based on the mesh size and
another one based on the number of time steps of the simulation.

In order to clearly describe the refinement strategy, together with the application
of the MLMC method, two main analyses are presented. The first one is an
approximation of the BC-02 test case. It uses the same RAE2822 geometry, but
slightly different values for the AoA and M. Table 1 describes the related values.

The solver used in any case is based on Euler equations. The quantities of
interest are the coefficients of lift, drag and momentum, or a selection of one of
them.

Table 1 Definition of
uncertainties for the first
analysis

Parameter Mean Deviation

AoA 2.79 0.1

M 0.734 0.005
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Mesh Refinement
The initial analysis is based on the definition of four different mesh refinements.
Each mesh is used to calculate the behaviour of the statistical moments of the
quantity of interest. The objective is to compare the results from a single refinement
to those obtained combining the different levels of refinement, as the Multi-Level
Monte Carlo does. Each mesh has been calculated over the same set of stochastic
samples in order to reduce the variability associated with the sampling. The
Multi-Level Monte Carlo only determines that the two sublevels must use the same
set of samples, which is not the case in this preliminary analysis. Five hundred
samples are defined in each case. The defined meshes are the following:

• R0; coarse mesh; 318 nodes, 571 triangular elements
• R1; refinement 1; 1207 nodes, 2284 triangular elements
• R2; refinement 2; 4698 nodes, 9136 triangular elements
• R3; refinement 3; 18,532 nodes, 36,544 triangular elements

The procedure of the MLMC analysis is the following:

• Each level uses two consecutive refinements, except the initial level, which only
uses the coarser refinement.

• The statistical data of the quantity of interest is calculated in a standard way at
each level as described in previous equation. Each level contributes to the final
value of the estimators of the statistical moments of the QoI.

The refinement on the mesh is defined as described in Table 2.
The number of initial samples per levels has been chosen as 10 or 50, in regard

to define subcases enabling a comparison of the results.
The calculation of these test cases has been initiated from scratch. No previous

information has been used, so no estimation of the required number of levels and
samples is known a priori.

Mesh refinement discretization with AoA, M and thickness-to-chord ratio
stochastically defined.

With a preliminary analysis of the results, one can conclude that the mean value is
converging quite fast, which is important to reduce the computational cost. On the other
hand, the variability that the three uncertain parameters introduces can be easily iden-
tified on the value of the variance. Figure 5 shows the evolution of themean value of the
QoI along themulti-level analysis. The steps on the plot identify the contributionof each
new level. The convergence shown in thisfigure is typical for such a problemdefinition,
where the contribution of each level produces a new step increment, while it tends to
converge to the mean of the level. Defining different numbers of uncertain input
parameters will not lead to a different behaviour. Step size could be different, the local
convergence could be faster, and of course, the final converged value could be also
different, but the overall behaviour one should expect looks like in Fig. 5.

Table 2 Refinement of the
mesh

Parameter Level refinement Factor S

Mesh size h(l) = s^ − 1 * h(l − 1) 2
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Figure 6 shows the behaviour of the analysis from the point of view of the
method. It shows the number of samples defined and updated to fulfil the procedure
criteria of convergence. According to the tolerance the user defines, the updated
number of samples can be lower or higher. Typically, the lower the number of the
initial samples, the more probable to need additional samples is. For the successive
levels of refinement, the tolerance value λ also affects the number of samples each
level requires. In addition to this tolerance, two other values, also referred as
tolerance, are used to ensure the accuracy of the mean and variance during the
analysis. By default, the number of samples of the next level is directly related to
the final number of samples used in the previous level, as a way to manage the final
cost and keep it as reduced as possible.

Results obtained with MLMC analysis with levels of discretization are based on
the number of time steps.
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Now, the different levels of accuracy correspond with the different levels of
discretization, which correspond to the number of time steps of the finite element
analysis.

The selection of the number of time-steps, as the discretization criteria, is based
on the need to get a lower computational cost and an easy implementation of such a
test case.

Four tests are presented to assess the effect of tolerance of the mean and the
variance on the stopping criteria, as well as to assess the effect of defining the λ
value which is used to calculate the updated number of samples in each level.
Table 3 describes the values defined in each test case. It is clear that the three
parameters will influence the convergence ratio and will determine the final amount
of samples in each level as well as the number of levels to be calculated. It is
expected that the effect of the two tolerances will mainly determine the number of
levels, while the λ value will determine the number of samples.

The number of initial samples is not relevant to determine the convergence of the
method, from the point of view of reducing the number of samples of the successive
levels. Figures 7 and 8 show the evolution of the DMx and BKr test cases. Both of
them were using λ equal to 10−2. For low values of epsilon, the updated number of
samples (Nl) is usually lower than the calculated number of samples, which means
that no additional samples should be calculated. Figures 9 and 10 show the evo-
lution of required samples when λ is equal to 10−3 for 10 and 50 initial samples. In
these cases, the larger value of ɛ leads to the need to calculate more samples than
those initially defined, increasing the final total cost of the analysis. If the value of λ
is larger (10−4 in some cases), the number of samples presents a complete lack of
convergence to a minimum. The additional samples to calculate rapidly increase to
an absolutely unaffordable number of samples (millions of samples for instance),
which means the analysis should be discarded and stopped.

Let us focus on the convergence of the mean value and the value of the variance
of the quantity of interest (QoI), which in this case is the mean and the variance of
the Cl coefficient. One can easily realize that a large total number of samples are
obtained when a larger number of initial samples are defined. It is true that the final
convergence is also influenced by the stopping criteria the user defines. On the other
hand, the accuracy of the method, compared to a standard Monte Carlo analysis, is
greater with a reduced number of samples.

Table 3 Set-up of the MLMC tests

Test
name

Initial
samples

Tolerance of the
mean

Tolerance of the
variance

Tolerance
ɛ

DMx 10 10−6 10−9 10−2

BKr 50 10−6 10−6 10−2

DBe 10 10−6 10−9 10−3

D1Kr 50 10−6 10−9 10−3
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Fig. 7 Number of samples defining 10 initial samples

Fig. 8 Number of samples defining 50 initial samples

Fig. 9 Number of samples defining 10 initial samples
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Figures 11 and 12 show the evolution of the mean value over the calculation time.
The total number of samples (not the initial one) is used, as reference, to compare the
evolution of the convergence of the analysis. This evolution is compared with the
equivalent Monte Carlo analysis (with equal number of samples). The first point to
highlight is the reduction in cost we get using theMulti-LevelMonte Carlo. Evenwith
the same number of samples the final cost is reduced thanks to the fact that the
individual cost of each sample is also reduced. On the other hand, the accuracy in both
cases is similar. To get a MLMC final value closer to the MC, one greatly depends on
the intrinsic random character of the method. One could conclude that the gain using
MLMC is OK, but could still prefer using MC.

Then, if we analyse the variance, a greater difference between the two methods
can be identified.

Figures 13 and 14 show the evolution of the variance along the analysis, the
first over the time and the second over the number of total samples. The benefit

Fig. 10 Number of samples defining 50 initial samples
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of MLMC is now clear; the convergence of the variance is obtained easily with the
MLMC method for the same number of calculated samples. As the figures show,
MLMC variance takes less time to better converge than in the MC analysis.

Discussion

MLMC was initially used in the financial analysis. As far as the author knows, no
engineering application was developed. The MLMC method was described as an
upgrade of the standard Monte Carlo method, and the results justifying this state-
ment were confirming it. It is clear that the computational cost associated with the
financial analysis is usually lower than the cost of a CFD analysis. In the literature,
examples calculating thousands of samples are quite typical, but the reader should
consider that in CFD problems, launching thousands of computations is not
affordable and less practical. If, in addition, the user is considering industrial CFD
applications, the limitations are even more strict.

MC methods, including MLMC, are interesting when dealing with large number
of uncertainties. The curse of dimensionality is not a real problem in such methods,
as happened with other UQ methods also described in this book. The results
described in the previous chapters already included geometrical and
non-geometrical uncertainties without leading to a major problem.

The introduction of geometrical uncertainties did not represent a drawback for
the method. From the point of view of the uncertainty management, it means that a
geometrical uncertainty is treated as any other uncertainty.

Anyway, it is true that an issue can arise when dealing with geometrical
uncertainties. It is related to the geometry management and associated meshing
process. On the process of sampling and evaluating each sample, a geometrical
uncertainty will require to update the geometry and the mesh in order to evaluate
each sample. Some basic points should be considered to avoid problems:

• Range of the uncertain parameter: if it is not well defined, it could lead to a
wrong geometry. It could happen that either the geometry or the mesh was
impossible to be created/updated. A clear and simple example could be if the
uncertainty on one 2D airfoil parameter leads to the situation where the lower
profile crosses the upper one.

• Robustness of the geometry updating process: more generally speaking, the
previous point can be extended to ensure that the update of the geometry is
robust for any combination of the values of each uncertainty.

• Automatic update of the geometry: in addition to the robustness, the repeata-
bility and automation of the update process must be ensured. It is an important
point not only regarding the re-meshing process, but regarding the repeatability
of the whole process of evaluating the sample. The automation should be
complete in order to avoid user interaction which can halt the analysis
unnecessary.
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• Computational cost: an important issue is the computational cost of updating the
geometry and, mainly, of the finite element mesh, which can be considerable
and should be taken into account when defining the uncertainty analysis.

The present chapter has presented the MLMC in comparison with MC method.
This book describes other UQ methods that demonstrate impressive and interesting
performance when dealing with industrial applications. Anyway, Monte Carlo
methods, especially Multi-Level Monte Carlo, are always a safe bet for the accuracy
one can get, for the easy of the implementation, and for the robustness of the
method regarding the curse of dimensionality, mainly.
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Continuation Multi-level Monte Carlo

Michele Pisaroni, Fabio Nobile and Penelope Leyland

Multi-level Monte Carlo

As stated in the introductory chapter [1], the key idea of MLMC is to simultaneously

draw MC samples on several approximations QMl
of a quantity of interest (QoI) Q

built on a hierarchy of computational grids (with discretization parameters M0 <

M1 < · · · < ML = M). For the sake of explanation, we recall the MLMC estimator

for 𝔼[Q]:

𝙴𝙼𝙻𝙼𝙲[QM] ∶=
L∑

l=0

1
Nl

Nl∑

i=1
Yl(𝜔(i,l)) =

L∑

l=0
𝙴𝙼𝙲[QMl

− QMl−1
], (1)

The accuracy in estimating 𝔼[Q] by 𝙴𝙼𝙻𝙼𝙲[QM] can be quantified by considering

the mean squared error (MSE) of the estimator:

e(𝙴𝙼𝙻𝙼𝙲[QM])2 ∶= 𝔼[(𝙴𝙼𝙻𝙼𝙲[QM] − 𝔼[Q])2] =
(
𝔼[QM − Q]

)2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(B-𝙴𝙼𝙻𝙼𝙲)

+
L∑

l=0

𝕍ar[Yl]
Nl

⏟⏞⏞⏞⏟⏞⏞⏞⏟

(SE-𝙴𝙼𝙻𝙼𝙲)

. (2)
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We now make the following assumptions:

a1. The cost to compute one sample QMl
at level l is:

Cost(QMl
(𝜔(i))) ≤ c

𝛾
M𝛾

l , (3)

a2. 𝔼[QMl
] converges to 𝔼[Q] with rate 𝛼 w.r.t. Ml, i.e.,

|||𝔼[QMl
− Q]||| ≤ c

𝛼
M−𝛼

l (4)

for some c
𝛼
, 𝛼 > 0

a3. 𝕍ar[Yl] decays with rate 𝛽 w.r.t. Ml, i.e.,

𝕍ar[Yl] ≤ c
𝛽
M−𝛽

l , (5)

for some c
𝛽
, 𝛽 > 0 and 𝛼 ≥ min(𝛽, 𝛾).

For standard problems and discretization techniques, such assumptions are ver-

ified for some rates 𝛼, 𝛽, 𝛾 and constants c
𝛼
, c

𝛽
, c

𝛾
. The rates 𝛼, 𝛽 however will

heavily depend on the specific problem and discretization chosen and can vary con-

siderably.

It can be shown [2, 3] that these assumptions a1–a3, for any 𝜀 > 0, we can esti-

mate an optimal number of levels L = L(𝜀) and an optimal sample size
{
Nl
}L
l=0 on

each level such that

e(𝙴𝙼𝙻𝙼𝙲[QM])2 < 𝜀
2

(6)

and the cost to achieve a RMSE of 𝜀 is:

𝐂𝐨𝐬𝐭(𝙴𝙼𝙻𝙼𝙲[QM]) =
L∑

l=0
Nl ⋅ Cost(QMl

(𝜔(i))) ≲
⎧
⎪
⎨
⎪⎩

𝜀
−2

𝛽 > 𝛾,

𝜀
−2(log 𝜀)2 𝛽 = 𝛾,

𝜀
−2−(𝛾−𝛽)∕𝛼

𝛽 < 𝛾.

(7)

where ≲ means that the bound holds up to a multiplicative constant of 𝜀.

For 𝛽 > 𝛾 , the computation effort is primarily on the coarsest levels, whereas for

𝛽 < 𝛾 the primary cost is on the finest levels. For 𝛽 = 𝛾 , the efforts are spread across

all levels.

The complexity bound (7) improves in all cases the complexity of a Crude MC

(CMC) approach, which can be estimated as:

𝐂𝐨𝐬𝐭(𝙴𝙼𝙲[QM]) =
N∑

i=1
Cost(QM(𝜔(i))) ≲ 𝜀

−2−𝛾∕𝛼
(8)
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In particular, the rate 𝛽, that defines the decay of the variance of consecutive differ-

ences, plays an important role in the complexity gain of MLMC over CMC.

The result (7) is a theoretical bound on the best complexity achievable by a

MLMC method, but it brings also practical recipes to select the maximum level L
and the sample sizes {Nl}Ll=0 to achieve the optimal complexity.

We introduce a splitting parameter 𝜃 ∈ (0, 1) (usually taken as 𝜃 = 1
2
) and require

in our simulations that:

Bias ∶ 𝐁 ∶= ||𝔼[Q] − 𝔼[QM]|| ≤ (1 − 𝜃)𝜀, (9a)

Statistical Error ∶ 𝐒𝐄 ∶= 𝕍ar[𝙴𝙼𝙻𝙼𝙲[QM]] =
L∑

l=0

𝕍ar[Yl]
Nl

≤ 𝜃(2 − 𝜃)𝜀2 (9b)

so that the MSE:

e(𝙴𝙼𝙻𝙼𝙲[QM]) = 𝐁2 + 𝐒𝐄 ≤ 𝜀
2

(10)

From (4), the bias constraint (9a) is satisfied by choosing:

L = L(𝜀) ∶ ML(𝜀) ≥

(
(1 − 𝜃)𝜀

c
𝛼

)− 1
𝛼

(11)

On the other hand, following the optimization argument in [2], the statistical error

constraint (9b) is satisfied by choosing:

Nl(𝜀) =

⌈(
1

𝜃(2 − 𝜃)𝜀2

)√
𝕍ar[Yl]

Cl

L∑

k=0

√
Ck𝕍ar[Yk]

⌉
(12)

In practical aerodynamic applications, we are usually required to compute quan-

tity of interest Q(x, 𝜔) that are scalar fields defined on a certain domain D (e.g.,

pressure coefficient around an airfoil). In this case, we enforce the MSE to be smaller

than 𝜀
2
, where in the definition of the MSE, we measure for convenience the spatial

error in the L2 norm (mean-square sense) [4].

e(𝙴𝙼𝙻𝙼𝙲[QM])2 ∶= 𝔼[‖𝙴𝙼𝙻𝙼𝙲[QM] − 𝔼[Q]‖2L2(D)]

= ‖𝔼[QM −Q]‖2L2(D)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(B-𝙴𝙼𝙻𝙼𝙲)

+
L∑

l=0

1
Nl

‖𝕍ar[Yl]‖L1(D)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(SE-𝙴𝙼𝙻𝙼𝙲)

. (13)

where Yl = QMl
−QMl−1

.
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Following the same arguments presented above, we enforce:

Bias ∶ 𝐁 ∶= ‖𝔼[QM −Q]‖L2(D) ≤ (1 − 𝜃)𝜀, (14a)

Statistical Error ∶ 𝐒𝐄 ∶= 𝕍ar[𝙴𝙼𝙻𝙼𝙲[QM]] =
L∑

l=0

‖𝕍ar[Yl]‖L1(D)
Nl

≤ 𝜃(2 − 𝜃)𝜀2

(14b)

From (4), the bias constraint (14a) is satisfied by choosing L as in (11) and the

statistical error constraint (14b) is satisfied by choosing:

Nl =
⎡
⎢
⎢
⎢

(
1

𝜃(2 − 𝜃)𝜀2

)√
‖𝕍ar[Yl]‖L1(D)

Cl

L∑

k=0

√
Ck‖𝕍ar[Yl]‖L1(D)

⎤
⎥
⎥
⎥

(15)

Given a hierarchy of discretizations with M0 < M1 < ⋯ from the practical point

of view the standard MLMC algorithm is generally composed of four steps:

1. Theoretical or computational estimation of the problem-dependent rates and con-

stants (P =
{
c
𝛼
, 𝛼, c

𝛽
, 𝛽, c

𝛾
, 𝛾

}
).

2. Estimation of 𝕍ar[Yl] (or ‖𝕍ar[Yl]‖L1(D) in case of scalar field).

3. Estimation of the optimal number of levels L from (11) and sample sizes Nl from

(12) (or (15) in case of scalar field).

4. Run the hierarchy {0,… ,L} with an optimal
{
Nl
}L
l=0.

Theoretical estimates for the rates 𝛼 and 𝛽 exist for certain classes of PDEs with

random parameters [5–8] and depend on the smoothness of the data of the problem

as well as the smoothing proprieties of the differential operator. On the other hand,

the parameter 𝛾 depends on the number of spatial dimensions of the deterministic

problem and the efficiency of the deterministic solver.

The total cost of MLMC strongly depends also on the problem-dependent con-

stants c
𝛼
, c

𝛽
, c

𝛾
as they enter in the choice of the optimal parameters L,

{
Nl
}L
l=0, and

these have to be estimated numerically as accurately as possible. The common prac-

tice is to compute the rates and the constants by performing an initial screening over

the first few levels {0,… ,L} with a predefined sample size N and fit the rates and

constants via a least squares procedure.



Continuation Multi-level Monte Carlo 309

Algorithm 1: MLMC Screening

SCREENING(N, L)
for l = 0 ∶ L do

for i = 0 ∶ N do
Generate random samples: 𝐎(𝜔(i,l)), 𝐆(𝜔(i,l))
Q(i)

Ml
← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))

Q(i)
Ml−1

← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l−1 (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))
Y (i)
l = QMl

− QMl−1

estimate
{
Cl

}
,

{|||𝔼[QMl
− Q]|||

}
,
{
𝕍ar[Yl]

}

compute P = {c
𝛼
, c

𝛽
, c

𝛾
, 𝛼, 𝛽, 𝛾} using least squares fit

compute L using (11) and Nl using (12) for scalar QoI or (15) for scalar field QoI

return L,
{
Nl

}L
l=0

The main drawback of this procedure is that for computationally expensive prob-

lems, this screening phase, whose cost is usually not accounted for in the literature,

can be quite time-consuming. In particular, if L andN are chosen too large the screen-

ing phase might turn out to be more expensive than the overall MLMC simulation on

the optimal hierarchy {0,… ,L}. On the other hand, if L and N are chosen too small,

the extrapolation of the convergence rates 𝛼 and 𝛽 on finer levels might be quite unre-

liable. The screening procedure for standard MLMC is summarized in Algorithm 1.

Continuation Multi-level Monte Carlo

To overcome the above-mentioned limitations of the standard MLMC algorithm con-

cerning the screening phase, we consider here the Continuation Multi-Level Monte

Carlo (C-MLMC) algorithm proposed in [1]. The key idea of C-MLMC is to solve for

the QoI with a sequence of decreasing tolerances and progressively improve the esti-

mation of the problem-dependent parameters P that, as presented before, directly

control the number of levels and sample sizes. To achieve a certain RMSE of 𝜀, we set

a slightly smaller tolerance
𝜀

r2
with r2 > 1 and define a sequence of decreasing toler-

ances 𝜀0 > 𝜀1 > · · · > 𝜀i > · · · > 𝜀k =
𝜀

r2
with 𝜀i = r1𝜀i+1 where, for a given 𝜀0 > 𝜀,

the number k of iterations is given by:

k =

⌊−log( 𝜀

r2
) + log(𝜀0)

log(r1)

⌋
. (16)
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Eventually, we might still run the algorithm for few more iterations with toler-

ances 𝜀k+j =
𝜀k

r2j
until the actual estimated RMSE is below 𝜀.

At the ith iteration of the C-MLMC algorithm with prescribed tolerance 𝜀i, we

compute the optimal number of levels by solving the following discrete optimization

problem and by exhaustive search:

(Li, 𝜃i) = argmin
L∈[Li−1,…,LMAX],𝜃∈(0,1)

s.t. c
𝛼
M−𝛼

L =(1−𝜃)𝜀i

𝐂𝐨𝐬𝐭(𝜀i, 𝜃,L) (17)

using the cost model:

𝐂𝐨𝐬𝐭(𝜀i, 𝜃,L) =
(

1
𝜃(2 − 𝜃)𝜀2i

)( L∑

l=0

√
Cl𝕍ar[Yl]

)2

(18)

obtained with an optimal choice of Nl (computed with 12).

The essential feature of the C-MLMC with respect to standard MLMC algorithm

is that the parameter set P is computed on the fly and updated at each iteration of

the algorithm. The estimation of the parameters that describe the cost (c
𝛾
, 𝛾) and the

bias (c
𝛼
, 𝛼) is relatively straightforward since these quantities can be estimated also

with just few realizations per level. The estimation of the variances 𝕍ar[Yl], on the

other hand, can be quite inaccurate with a small sample size. In a standard MLMC,

such variances are usually computed using a sample variance estimator:

𝕍ar[Yl] ≈ 𝚅𝙼𝙲[Yl] =
1

Nl − 1

Nl∑

n=1

(
Yl(𝜔(n,l)) − 𝙴𝙼𝙲[Yl]

)2
(19)

At the deepest levels, usually we do not have enough realizations to accurately

compute 𝚅𝙼𝙲[Yl] (asymptotically accurate only as Nl → ∞) and estimate the sample

sizes Nl for the next iteration, as well as the parameters (c
𝛽
, 𝛽) needed to extrapolate

𝕍ar[Yl] hence Nl on new levels that are added at the next iteration.

Collier et al. [1] presented an intuitive methodology based on Bayesian updates

that use samples generated on all levels to locally improve the estimation of 𝕍ar[Yl].
Using the bias model 𝔼[Yl] ≈ 𝜇l ∶= c

𝛼
M−𝛼

l and variance model 𝕍ar[Yl] ≈ 𝜆
−1
l ∶=

c
𝛽
M−𝛽

l with c
𝛼
, 𝛼, c

𝛽
, 𝛽 estimated from the previous iteration of the C-MLMC algo-

rithm. The idea is to describe Yl as a Gaussian random variable N (𝜇l, 𝜆
−1
l ) and

perform a Bayesian update of 𝜇l and 𝜆
−1
l based on the collected values Yl(𝜔(n,l)) and

a Normal-Gamma prior distribution with maximum at 𝜇l and 𝜆l. The posterior is

also a Normal-Gamma, with maximum at

𝜇
MAP
l =

Nl𝙴𝙼𝙲[Yl] + k0𝜇l

k0 + Nl
and 𝜆

MAP
l =

𝛯1,l −
1
2

𝛯2,l
(20)
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with:

𝛯1,l =
1
2
+ k1𝜆l +

Nl

2
, (21a)

𝛯2,l = k1 +
Nl − 1

2
𝚅𝙼𝙲[Yl] +

k0Nl(𝙴𝙼𝙲[Yl] − 𝜇l)2

2(k0 + Nl)
. (21b)

The parameters k0 and k1 represent our “certainty” on 𝜇l and 𝜆
−1
l . The resulting

update formula for 𝕍ar[Yl] ≈ 𝜆
−1
l is then:

𝚅𝙲[Yl] ∶=
𝛯2,l

𝛯1,l −
1
2

l > 0 (22)

We can easily show that:

Nl → ∞ ⟹ 𝚅𝙲[Yl] →
1

Nl − 1

Nl∑

n=1

(
Yl(𝜔(n,l)) − 𝙴𝙼𝙲[Yl]

)2
(23)

thus recovering the sample variance estimator, whereas

Nl = 0 ⟹ 𝚅𝙲[Yl] =
1
𝜆l

= c
𝛽
M−𝛽

l (24)

thus using just the prior model with fitted parameters (c
𝛽
, 𝛽).

Finally, following the above arguments, we approximate the variance of the

MLMC estimator as:

𝕍ar[𝙴𝙼𝙻𝙼𝙲[QM]] =
L∑

l=0

𝕍ar[Yl]
Nl

≈
L∑

l=0

𝚅𝙲[Yl]
Nl

(25)

and the total MSE as:

e(𝙴𝙼𝙻𝙼𝙲[QM]) ≈
|||𝙴

𝙼𝙲[YL]
|||
2
+

L∑

l=0

𝚅𝙲[Yl]
Nl

. (26)

The resulting algorithm is described in Algorithm 2.
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Algorithm 2: Continuation Multi-Level Monte Carlo.

CMLMC(N, L, LMAX, k0,k1, r1, r2, 𝜀M, 𝜀0)
for l = 0 ∶ L do

for i = 0 ∶ N do
Generate random samples: 𝐎(𝜔(i,l)), 𝐆(𝜔(i,l))
Q(i)

Ml
← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))

Q(i)
Ml−1

← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l−1 (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))
Y (i)
l = Q(i)

Ml
− Q(i)

Ml−1

compute
{
Cl

}
,
{||𝙴𝙼𝙲[Yl]||

}
,
{
𝚅𝙼𝙲[Yl]

}

compute P by least squares fit

compute 𝚅𝙲[Yl] using (22)

compute iE using (16)

while i < iE or 𝚃𝙴𝚛𝚛 > 𝜀M do
compute 𝜀i
compute Li and 𝜃i using (17)

for l = 0 ∶ Li do
compute Nl using (12)

for i = 0 ∶ Nl do
Generate random samples: 𝐎(𝜔(i,l)), 𝐆(𝜔(i,l))
Q(i)

Ml
← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))

Q(i)
Ml−1

← 𝖯𝖱𝖮𝖡𝖫𝖤𝖬l−1 (𝐎(𝜔(i,l)), 𝐆(𝜔(i,l)))
Y (i)
l = Q(i)

Ml
− Q(i)

Ml−1

update
{
Cl

}Li
l=0,

{||𝙴𝙼𝙲[Yl]||
}Li
l=0,

{
𝚅𝙼𝙲[Yl]

}Li
l=0

update 𝙴𝙼𝙻𝙼𝙲[QM] =
∑L

l=0 𝙴
𝙼𝙲[Yl]

compute (c
𝛼
, 𝛼) ←

{||𝙴𝙼𝙲[Yl]||
}Li
l=0 using least squares fit

compute (c
𝛾
, 𝛾) ←

{
Cl

}Li
l=0 using least squares fit

compute (c
𝛽
, 𝛽) ←

{
𝚅𝙼𝙲[Yl]

}Li
l=0 using least squares fit

update P = {c
𝛼
, c

𝛽
, c

𝛾
, 𝛼, 𝛽, 𝛾}

update 𝚅𝙲[Yl],
estimate 𝐁 ≈ 𝙴𝙼𝙲[YLi ]
estimate 𝕍ar[𝙴𝙼𝙻𝙼𝙲[QMi

]] using (25)

compute 𝚃𝙴𝚛𝚛 = 𝐁 +
√

𝕍ar[𝙴𝙼𝙻𝙼𝙲[QMi
]]

i = i+1

return 𝙴𝙼𝙻𝙼𝙲[QM]

Model Problems

We consider turbulent compressible flows modeled by the Favre-averaged (density-

weighted average f̃ = 𝜌f∕𝜌) Navier–Stokes equations [9, 10]:
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𝜕𝜌

𝜕t
+ 𝜕

𝜕xi

(
𝜌ũi

)
=0, (27a)

𝜕

𝜕t
(
𝜌ũi

)
+ 𝜕

𝜕xj

(
𝜌ũiũj

)
= −

𝜕p
𝜕xi

+
𝜕𝜎ij

𝜕xj
+

𝜕𝜏ij

𝜕xj
(27b)

𝜕

𝜕t
(
𝜌Ẽ

)
+ 𝜕

𝜕xj

(
𝜌ũjH̃

)
= 𝜕

𝜕xj

[
ũi𝜎ij + 𝜎iju′′i

]
(27c)

+ − 𝜕

𝜕xj

[
−qj + cp𝜌u′′j T ′′ − ũi𝜏ij +

1
2
𝜌u′′i u

′′
i u

′′
j

]
(27d)

where we denote with 𝜏ij = −𝜌u′′i u
′′
j the Reynolds stress term and 𝜎ij the viscous

stress tensor. The former is approximated by solving the Spalart–Allmaras turbu-

lence model with quadratic constitutive relation [11]. We approximate the turbulent

heat flux cp𝜌u′′j T ′′ ≈ − cp𝜇̃t

Prt
𝜕T̃
𝜕xj

following a Reynolds analogy, and we use a constant

turbulent Prandtl number Prt = 0.9. Sutherland’s Law is employed to compute the

dynamic viscosity from the temperature of the ideal gas (Pr = 0.72).

The above-mentioned equations are discretized on structured grids (finite volume

method) and advanced in time using a fully implicit time-stepping scheme. Local

time-stepping and algebraic multigrid (AMG) are used for convergence acceleration

to the steady-state solution.

Model Problems: NASA ROTOR-37

The first problem we consider is the well-established turbomachinery test case

NASA ROTOR-37 (UMRIDA BC-01), a transonic axial flow compressor. The rotor

has 36 blades and an aspect ratio of 1.19, rotates at 17188.7 (rpm) [1800 (rad/s)],

leading to a tip speed of 454 (m/s). A detailed description of the geometry, the orig-

inal experimental setup, and a series of simulations can be found in [12, 13].

The design parameters of the rotor are summarized in the following Table 1.

Determinsitic results The computational model (Fig. 1b) consists of one blade with

periodic boundary conditions. The rotation is imposed to the hub and the blade, while

the shroud is kept fixed. Total pressure and total temperature profiles derived from

Table 1 Design values for the NASA ROTOR-37 problem

Quantity Symbol Design value

Rotor total pressure ratio P2∕P1 2.106
Rotor total temperature ratio T2∕T1 1.270
Rotor adiabatic efficiency 𝜂ad 0.877
Mass flow (kg/s) ṁ 20.188
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(a) (b)

Fig. 1 a NASA rotor 37 and b computational model

Table 2 MLMC 4-levels grid hierarchy for the ROTOR-37 problem. CTime[s] is the real time in

seconds required to compute one deterministic simulation on the prescribed number of cpus

Level Spanwise nodes Cells y+ CTime[s] (n.cpu)
L0 33 156,769 1−2 110 (80)
L1 53 536,669 1−2 225 (128)
L2 73 1,244,133 1−2 435 (192)
L3 93 2,241,801 1−2 837 (224)
L4 113 4,253,889 1−2 1588 (256)

experiments [12] are imposed at the inlet boundary, and the static pressure is varied

at the outlet to change the mass flow.

The proprieties of the 4-levels grid hierarchy used in the C-MLMC, generated

using NUMERCA Autogrid, are presented in the following Table 2 along with the

average computational time required to compute one deterministic simulation using

CFD++ software environment.

We ensure an appropriate refinement near the small tip clearance [0.356 (mm)]

and that near the boundaries the y+ is between 1 and 2, for all the grid levels, to

accommodate the requirements of Spalart–Allmaras turbulence model employed in

the CFD simulations. In Fig. 2, we observe a good agreement between the computa-

tional results obtained with the finest grid level (L4) and experimental measurements

of Reid and Moore [13]. The significant differences between numerical results and

measurements are in the rotor stall region. For this reason, we will only consider

operating points before stall conditions [ṁ > 20.5 (kg/s)].

Figure 3 presents the flow features on the suction and pressure side of the blade

and at 50% of the span for the maximum adiabatic efficiency conditions (𝜂ad =
0.876). We distinguish the bow shock at the leading edge of the blade and a classical

𝜆−shock region (Fig. 3g) on the suction side where the shock impacts the boundary

layer. In downstream of the shock–boundary layer interaction, we identify a flow sep-

aration region. Such separation can be inferred also by looking at the skin friction

(Fig. 3c), the boundary layer transition and at the turbulence index (Fig. 3e) at the

wall. Additionally, the boundary layer transition induces a sudden increase of eddy

viscosity (Fig. 3h).
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(a) Rotor adiabatic efficiency (b) Rotor total pressure ratio

Fig. 2 Experimental and computational compressor maps of the ROTOR-37. The green circles

indicate the design parameters presented in the previous table

Table 3 Operating uncertainties for the ROTOR-37 stochastic analysis

Quantity Reference (r) Uncertainty T N (𝜇, 𝜎,XLO,XUP)
INLET Ptot 18 pt. profile (see Fig. 4) T N (r, 1%,−2%,+2%)

Ttot 18 pt. profile (see Fig. 4) T N (r, 1%,−2%,+2%)
OUTLET po C1 = 92500.0 (Pa) T N (r, 1%,−2%,+2%)

C2 = 99215.0 (Pa) T N (r, 1%,−2%,+2%)
C3 = 110000.0 (Pa) T N (r, 1%,−2%,+2%)

Stochastic Results using C-MLMC After assessing the validity of the CFD model,

we now propagate uncertainties to study their effects on the performances of the

rotor using the C-MLMC approach presented in section “Continuation Multi-level

Monte Carlo.” We consider operating uncertainties in the inlet total pressure and total

temperature profile and the outlet static pressure. The uncertainties on the parameters

are modeled as truncated Gaussian random variables where we use the notation y ∼
T N (𝜇, 𝜎2

, a, b) to denote a r.v. with density function

p(y) =
⎧
⎪
⎨
⎪⎩

0 y < a
1
z

1√
2𝜋𝜎

e−
(y−𝜇)2

2𝜎2 a ≤ y ≤ b and z = ∫
b
a

1√
2𝜋𝜎

e−
(y−𝜇)2

2𝜎2 dy
0 y > b.

(28)

The following Table 3 summarizes the reference operating parameters and the

uncertainties considered for the following simulations.

Figure 4 depicts the inlet uncertain total pressure and total temperature profiles.

The same random perturbation from the reference profile of the total pressure and

temperature is applied to every point on the inlet (fully correlated perturbation).

In Fig. 5, we present the stochastic results for the adiabatic efficiency, rotor total

pressure ratio, stage total pressure ratio, and mass flow for the ROTOR-37 affected

by operating uncertainties (3 uncertain parameters). For the three analyzed cases

(C1, C2, C3 in the mean outlet pressure p0), we plot the compressor map with mean

± standard deviation for the four quantities of interest. We notice that the mean values
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(a) Total pressure (Pa) - blade suction side (b) Total pressure (Pa) - blade pressure side

(c) Skin friction - blade suction side (d) Skin friction - blade pressure side

(e) Turb. index - blade suction side (f) Turb. index - blade pressure side

(g) Mach number - 50% span (h) Eddy viscosity - 50% span

Fig. 3 Deterministic results for the ROTOR-37. Left: suction side; right: pressure side



Continuation Multi-level Monte Carlo 317

Fig. 4 Uncertain total pressure and total temperature inlet profiles. The blue line represents the

mean profile (𝜇), the shaded gray area is one standard deviation (±𝜎), and the red lines are the

upper and lower boundaries of the uncertain range (XLOW , XUP)

of ṁ, 𝜂ad, P2∕P1 and P3∕P1 in the stochastic case are comparable with the determin-

istic ones, as observed by [14, 15]. Additionally, we also observe that the mass flow

ṁ is the most sensitive quantity to variations in the operating parameters as quanti-

fied in Table 4. The variability of ṁ, 𝜂ad, P2∕P1 and P3∕P1 seems to increase as we

approach the stall conditions.

Model Problem: RAE2822

The second problem we consider is the 2D RAE2822 (UMRIDA BC-02), a super-

critical airfoil which has become a standard test case for transonic flows. A detailed

description of the airfoil geometry, the original experimental setup and a series of

simulations can be found in [16, 17]. For this specific problem, we consider as scalar

field QoI the pressure coefficient Cp of the RAE 2822 affected by operating and geo-

metric uncertainties due to fluctuations in the surrounding flow and manufacturing

tolerances. The nominal geometry of the RAE2822 airfoil is defined with a set of

PARSEC parameters [18]. The following table summarizes these parameters and

the operating conditions considered hereafter (corrected flow conditions for case 6

in [17]).

Figure 6 illustrates the nominal geometry of the RAE 2822 and the meaning of

the parameters in Table 5.

Determinsitic results The proprieties of the 4-levels structured C-grid hierarchy

used in the C-MLMC simulations are presented in the following Table 6 along with
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(a) Rotor adiabatic efficiency

(b) Rotor total pressure ratio (P2/P1) and Stage total pressure ratio (P3/P1)

Fig. 5 Experimental, deterministic and stochastic results for the compressor map of the ROTOR-

37. Each red interval correspond to mean ± standard deviation

the average computational time required to compute one deterministic simulation

using CFD++ software environment. A close-up view of the structured grid in the

proximity of the leading edge for level 0 and level 1 is presented in Fig. 7.

As for the ROTOR-37 previous problem, we ensure that near the boundaries the

y+ is between 1 and 2 for all the grid levels to fulfill the requirements of the Spalart–

Allmaras turbulence model. In Fig. 8, we compare the computational results obtained
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Table 4 Deterministic and stochastic results for the ROTOR-37

Case-po Deterministic Stochastic (% 𝜎)

C1 = 92500.0 (Pa) ṁ = 20.8564 (kg/s) ṁ = 20.8621 ±
0.2371 (kg/s) (1.13%)

𝜂ad = 0.8756 𝜂ad = 0.8755 ± 0.0009 (0.10%)
P2∕P1 = 1.9540 P2∕P1 =

1.9534 ± 0.0093 (0.47%)
P3∕P1 = 1.9255 P3∕P1 =

1.9252 ± 0.0105 (0.54%)
C2 = 99215.0 (Pa) ṁ = 20.8564 (kg/s) ṁ = 20.8440 ±

0.2424 (kg/s) (1.16%)

𝜂ad = 0.8760 𝜂ad = 0.8758 ± 0.0008 (0.09%)
P2∕P1 = 1.9813 P2∕P1 =

1.9812 ± 0.0113 (0.57%)
P3∕P1 = 1.9559 P3∕P1 =

1.9558 ± 0.0106 (0.54%)
C3 = 110000.0 (Pa) ṁ = 20.6653 (kg/s) ṁ = 20.6706 ±

0.2777 (kg/s) (1.34%)

𝜂ad = 0.8726 𝜂ad = 0.8724 ± 0.0010 (0.11%)
P2∕P1 = 2.0464 P2∕P1 =

2.0451 ± 0.0137 (0.67%)
P3∕P1 = 2.0204 P3∕P1 =

2.0190 ± 0.0135 (0.67%)

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

Fig. 6 Geometry of the RAE 2822 transonic airfoil and PARSEC parameters that define the geom-

etry of the airfoil

with the finest grid level (L4) and experimental measurements [17] and we observe

a good agreement.

Stochastic Results using C-MLMC We now propagate geometric and operating

uncertainties in the model to study their effects on the Cp profile of the airfoil using

the C-MLMC approach. We consider operating uncertainties in the far-field Mach

number and angle of attach and geometric uncertainties in the PARSEC coefficients

that define the shapes of the airfoil. In case of geometric uncertainties that affect

the shape of the airfoil, for each random geometry (set of PARSEC coefficients) we

deform the existing grid levels by solving a linear elasticity problem on the volume

grid to accommodate the new boundary definition (Fig. 9).
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Table 5 Geometric and operating reference parameters for the RAE2822 problem

Symbol Reference value

Operating 𝛼∞ 2.31
M∞ 0.729
Rec 6.5 ⋅ 106

p∞ (Pa) 101,325

T∞ (K) 288.5
Symbol Design value

Geometric Rs 0.00839
Rp 0.00853
xs 0.431
xp 0.346
ys 0.063
yp −0.058
Cs −0.432
Cp 0.699

𝜃s −11.607
𝜃p −2.227

Table 6 MLMC 4-levels grid hierarchy for the RAE2822 problem. CTime[s] is the real time in

seconds required to compute one deterministic simulation on the prescribed number of cpus

Level Airfoil nodes Cells y+ CTime[s] (n.cpu)
L0 160 7722 1−2 13.9 (16)
L1 320 31,442 1−2 49.7 (24)
L2 640 126,882 1−2 336.9 (32)
L3 1280 509,762 1−2 2145.5 (40)
L4 2560 2,043,522 1−2 6854.3 (48)

X

Y

-0.02

0

0.02

X

Y

-0.02

0

0.02

-0.01 0 0.01 0.02 0.03 0.04

(a) L0

-0.01 0 0.01 0.02 0.03 0.04

(b) L1

Fig. 7 Leading edge close-up view of level 0 and 1 grids for the RAE2822 problem
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(a) Experimental (black squares) and com-
putational (red line) Cp coefficient around
the airfoil

(b) Mach number

Fig. 8 Deterministic results for the RAE2822 airfoil

Fig. 9 Grid deformation to

accommodate the geometric

uncertainty
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0.1

The following Table 7 and Fig. 10 summarize the operating and geometric param-

eters and their uncertainties modeled as truncated Gaussian random variables (see

(28)).

In Fig. 11, we present the stochastic results for the pressure coefficient profile

Cp around the airfoil under operating uncertainties (2 uncertain parameters here-

after denoted as OPER(2)), geometric uncertainties (8 uncertainties denoted as

GEOM(8)), and operating and geometric uncertainties at the same time (10 uncer-

tainties denoted as OPER(2) + GEOM(8)) presented in Table 7.



322 M. Pisaroni et al.

Table 7 Operating and geometric uncertainties for the RAE2822 stochastic analysis

Quantity Reference (r) Uncertainty

T N (𝜇, 𝜎,XLO,XUP)
Operating 𝛼∞ 2.31 T N (r, 2%,−2%,+2%)

M∞ 0.729 T N (r, 5%,−5%,+5%)
Rec 6.5 ⋅ 106 −
p∞ (Pa) 101,325 −
T∞ (K) 288.5 −

Geometric Rs 0.00839 T N (r, 0.25%,−1%,+1%)
Rp 0.00853 T N (r, 0.25%,−1%,+1%)
xs 0.431 T N (r, 0.5%,−1%,+1%)
xp 0.346 T N (r, 0.5%,−1%,+1%)
ys 0.063 T N (r, 0.5%,−3%,+3%)
yp −0.058 T N (r, 0.5%,−3%,+3%)
Cs −0.432 T N (r, 0.5%,−1%,+1%)
Cp 0.699 T N (r, 0.5%,−1%,+1%)
𝜃s −11.607 −
𝜃p −2.227 −

Fig. 10 Probability density functions of the operating (red) and geometric (blue suction side and

green pressure side) parameters for the RAE2822 stochastic analysis
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Fig. 11 UQ analysis results for the RAE2822 presenting the mean pressure coefficient profile

around the airfoil and its standard deviation. Experimental data from [17]
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Fig. 12 C-MLMC hierarchies for two different sets of uncertain parameters (left) and aggregate

computational cost compared with MC (right). The solid lines in the cost plot are an extrapolated

model based on the rates and constants (𝛼. c
𝛼
, 𝛽, c

𝛽
, 𝛾, c

𝛾
) fitted in C-MLMC. The red and blue

squares are the actual computed cost and error in the C-MLMC simulations

Lastly, we present in Fig. 12 the level sample sizes at each iteration of the C-

MLMC algorithm to achieve a relative error 𝜀r = 0.6% on the L2 norm of the pres-

sure coefficient for theOPER(2) andOPER(2) +GEOM(8) cases. Additionally, we

compare the aggregate cost (total CPU time) required by our implementation of C-

MLMC with the MC method to achieve a RMSE of 𝜀. Notice how the performance of

the C-MLMC is only mildly affected by the number of uncertain parameters. More-

over for the target relative tolerance 𝜀r = 0.6%, the gain in computational cost of

C-MLMC over MC is about two orders of magnitude and is expected to increase

even further if smaller tolerances are prescribed. The results match nicely the theo-

retical estimates.
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Introduction to Intrusive Perturbation
Methods

Alain Dervieux

Introduction

Perturbation methods generally refer to methods in which the evaluation of several

values of some function is made easier by introducing derivatives of it. Starting from

a given black box simulation software, perturbation methods involve to get some

derivative of the software, which cannot be performed without an intrusion into it,

that is, some effort in the application-dependant software transformation and further

development.

We can regroup in “Intrusive Perturbation Methods” two of such intrusions, in

relation to two different problematics.

∙ (a) In uncertainty propagation by perturbation or moments, the probabilistic behav-

ior of the physical process output is evaluated by a two-step scheme: (1) derive a

surrogate black box by derivation of the initial black box, and (2) identify the

moments of the surrogate black box or use it in a sampling-based PDF evaluator

such as the Monte Carlo method.

∙ (b) In robust optimization, the uncertainty propagation in the state system can be

applied in a non-intrusive manner, but the research of an optimum may then be

addressed with an extended gradient method, which relies on an intrusive adjoint-

based functional derivation. The robust/probabilistic optimization then can use,

for example, the following three steps ([4, 7] and “Second Order Derivatives for

Geometrical Uncertainties” in this book): (1) build probabilistic state and func-

tional with, for example, an NIPC, (2) compute the gradients of the mean and of

the variance of the functional, and (3) update the design variable with a combina-

tion of the two gradients.
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As already mentioned problematic (b) is addressed in chapter “Second Order

Derivatives for Geometrical Uncertainties”.

The rest of this section is devoted to problematic (a).

Some Perturbation Methods for Uncertainty Management

Considering an unknown random variable, one way to try to know its PDF is to

approximate it. In some cases, this can be done from a collection of known PDFs as

in PC methods. Otherwise, the straightforward method is the full nonlinear Monte

Carlo (MC) technique or more efficiently Multi-level Monte Carlo as described

in papers included in chapter “Multi-level Monte Carlo Method”. A full nonlinear

Monte Carlo method gives us complete and exact information about uncertainty

propagation in the form of its PDF, but with a prohibitively expensive cost in terms

of CPU time. Then, it can be useful to use surrogate models which are designed in

order to be less CPU consuming. A particular class of surrogate model is built by

a Taylor expansion of the initial functional. An example of derivatives computation

with Automatic Differentiation (AD) is given in chapters “Introduction to Intrusive

Perturbation Methods and Their Range of Applicability” and “Use of Automatic

Differentiation Tools at the Example of TAPENADE”. Derivatives can also be used

through the classical method of moments or through MC/Moments hybrid methods

like the inexpensive Monte Carlo. The two next paragraphs explain these approaches.

Method of Moments

To reduce the computational cost, we may think to use only some (derivate) quanti-

ties characterizing the distribution of the input variables instead of an entire sample

drawn from a population with a given PDF. The idea behind the Method of Moments

is based on the Taylor series expansion of the original nonlinear functional around

the mean value 𝜇
𝛾
= E[𝛾] of the input control 𝛾 , and then computing some statistical

moments of the output (usually mean and variance). In this way, we are assuming

that the input control 𝛾 can be decomposed as sum of a fully deterministic quantity

𝜇
𝛾

with a stochastic perturbation 𝛿𝛾u with the property E[𝛿𝛾u] = 0. With these defi-

nitions, the Taylor three-term expansion of the functional j(𝛾) around the mean value

𝜇
𝛾

is

j(𝛾) = j(𝜇
𝛾
+ 𝛿𝛾u) = j(𝜇

𝛾
) + G𝛿𝛾u +

1
2
𝛿𝛾

∗
uH𝛿𝛾u + O(‖𝛿𝛾u‖3) (1)

https://doi.org/10.1007/978-3-319-77767-2_22
https://doi.org/10.1007/978-3-319-77767-2_22
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http://dx.doi.org/10.1007/978-3-319-77767-2_45
http://dx.doi.org/10.1007/978-3-319-77767-2_48


Introduction to Intrusive Perturbation Methods 329

where G =
𝜕j
𝜕𝛾u

|
|
|𝜇

𝛾

is the gradient of the functional with respect to the uncertain vari-

ables and H =
𝜕
2j

𝜕𝛾u
2
|
|
|𝜇

𝛾

is the Hessian matrix, both evaluated at the mean of the input

variables 𝜇
𝛾
.

By considering various orders of the Taylor expansion (1) and taking the first and

the second statistical moment, we can approximate the mean 𝜇j and the variance

𝜎
2
j of the functional j(𝛾) in terms of its derivatives evaluated at 𝜇

𝛾
and in terms of

statistical moments of the control 𝛾 .

First-order moment methods:

⎧
⎪
⎨
⎪
⎩

𝜇j = j(𝜇
𝛾
) + O

(

E
[
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2
u
])

𝜎
2
j = E

[(
G𝛿𝛾u

)2
]

+ O
(

E
[
𝛿𝛾

3
u
]) (2)

Second-order moment methods:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜇j = j(𝜇
𝛾
) + 1

2
E
[
𝛿𝛾

∗
uH𝛿𝛾u

]
+ O

(

E
[
𝛿𝛾

3
u
])

𝜎
2
j = E

[(
G𝛿𝛾u

)2
]

+ E
[(
G𝛿𝛾u

)(
𝛿𝛾

∗
uH𝛿𝛾u

)]
− 1

4
E
[
𝛿𝛾

∗
uH𝛿𝛾u

]2+

+ 1
4
E
[(
𝛿𝛾

∗
uH𝛿𝛾u

)2
]

+ O
(

E
[
𝛿𝛾

4
u
])

(3)

With this method, it is clear that we are using only some partial information about the

input uncertainties; in fact, we are using only some statistical moments of the control

variable instead of full information available with its PDF, and we will not have

anymore the PDF of the propagated uncertainty, but only its approximate mean and

variance. Another important point is that the Method of Moments is applicable only

for small uncertainties, due to the local nature of Taylor expansion approximation.

Two things should be noted here: the first one is that for applying the Method

of Moments, we need the derivatives of the functional with respect to the control

variables affected by uncertainties: in particular, we need the gradient for the first-

order method, and gradient and Hessian for the second-order method.

We are interested by an equation-constrained functional of the form j(𝛾) =
J(𝛾,W), where W = W(𝛾) is solution of the state equation

W = W(𝛾) ⇔ 𝛹 (𝛾,W) = 0,

we have for the derivative

𝜕j
𝜕𝛾u

= 𝜕J
𝜕𝛾u

+ 𝜕J
𝜕W

𝜕W
𝜕𝛾u

.
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We know the solution W(𝛾) by its numerical values as results of a program assem-

bling an appropriate system and solving it with an appropriate solution algorithm,

e.g., a fixed point method. Its differentiation can be considered as a from-scratch

software development. It can be much more safe and efficient to use an Automatic

Differentiation tool (like TAPENADE, [3]) in order to obtain the needed derivatives.

The same remarks apply to the computation of the Hessian matrix. In particular, we

note that the derivatives are computed at the mean value of the control 𝜇
𝛾
, so they

are fully deterministic and can be picked out from the expectations in Eqs. (2) or (3).

In other words, we can write

E
[(
G𝛿𝛾u

)2
]

=
∑

i,k
GiGkE

[
𝛿𝛾

(i)
u 𝛿𝛾

(k)
u
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=
∑
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GiGkCik

E
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∗
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u
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]

(4)

where Gi =
𝜕j
𝜕𝛾

(i)
u

|
|
|𝜇

𝛾

are the elements of the gradient, Hik =
𝜕
2j

𝜕𝛾
(i)
u 𝜕𝛾

(k)
u

|
|
|𝜇

𝛾

are the ele-

ments of the Hessian matrix, andCik = E
[
𝛿𝛾

(i)
u 𝛿𝛾

(k)
u
]
= cov(𝛾 (i)u , 𝛾

(k)
u ) are the elements

of the covariance matrix. Every expectation term E[… ] in Eq. (4), is defined by

the statistical model of the uncertainties and could be computed in a preprocessing

phase.

For example, for the important case where the uncertainties are normally dis-

tributed, we have:

E
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]
= CikClm + CilCkm + CimCkl

and if these (normal) uncertainties are independent, then holds the relation Cik =
𝜎
2
i 𝛿ij where 𝜎
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and Eq. (4) becomes
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The second comment to do for the Method of Moments concerns the equation of

the variance for second-order moment (3): although we have taken into account the

term E
[(
𝛿𝛾

∗
uH𝛿𝛾u

)2]∕4, the error is still of the order of E
[
𝛿𝛾

4
u
]
. This is because the

other terms of the same kind require the knowledge of order of derivatives higher

than the second. In fact, it can be shown that the fourth-order term in O(E
[
𝛿𝛾

4
u
]
)

depends on the third derivative of the functional.

From the previous discussion, it is clear that in order to apply the Method of

Moments, we need to solve only one (expensive) nonlinear system with derivatives

(at the mean 𝜇
𝛾
) and then apply (inexpensive) Eqs. (2) or (3) where, for the fully

nonlinear Monte Carlo approach of the previous subsection, we need to solve N ≫ 1
nonlinear state systems.

An application of this method for aerospace applications can be found in [6].

Inexpensive Monte Carlo

This method, developed by [2], is based on the idea of adjoint error correction as

proposed by [5], and it could be viewed at midpoint of Monte Carlo and Method of

Moments. The discrete adjoint equation corresponding to state equation and func-

tional is (
𝜕𝛹

𝜕W

)∗

Π =
(

𝜕J
𝜕W

)∗

(6)

where Π is the adjoint solution. The key here is to perform a Taylor series expansion

for the functional and for the state equation with respect to the state variables W, and

then using the adjoint Eq. (6).

For the functional, the first-order Taylor expansion with respect to the generic

state W0 is

J(𝛾,W) = J(𝛾,W0) +
𝜕J
𝜕W

|
|
|(𝛾,W0)

(W −W0) + O
(
‖W −W0‖

2)
.

Using the adjoint Eq. (6), we have

J(𝛾,W) = J(𝛾,W0) +
(

Π∗ 𝜕𝛹

𝜕W

)
|
|
|(𝛾,W0)

(W −W0) + O
(
‖W −W0‖

2)
. (7)

A first-order Taylor expansion of the state equation gives us

0 = 𝛹 (𝛾,W) = 𝛹 (𝛾,W0) +
𝜕𝛹

𝜕W
|
|
|(𝛾,W0)

(W −W0) + O
(
‖W −W0‖

2)
.

Replacing the first-order derivative in the (7) with the analogous term in the last

equation, we obtain
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J(𝛾,W) = J(𝛾,W0) −
(
Π∗

𝛹

)
|
|(𝛾,W0)

+ O
(
‖W −W0‖

2)
(8)

where the state equation 𝛹 and the adjoint solution Π∗
are both evaluated at the point

(𝛾,W0). Finally, if we use an approximate adjoint solution Π∗ = Π̃∗ + O(‖Π − Π̃‖)
instead of the exact one, we have

J(𝛾,W) = J(𝛾,W0) − Π̃∗
𝛹 (𝛾,W0) + O

(
‖W −W0‖

2
, ‖W −W0‖ ‖Π − Π̃‖

)
. (9)

From Eq. (6), we can see the adjoint solutionΠ as a function of the variables 𝛾 and

W, and then, remembering that the state variables depend on the control (W = W(𝛾))
through the state equation, we have

Π(𝛾,W) = Π(𝛾,W(𝛾)) = 𝜋(𝛾).

Thus, if we expand at the first-order the latter equation around the mean value of the

control 𝜇
𝛾

(as we did in the previous subsection), we obtain

Π(𝛾,W) = 𝜋(𝜇
𝛾
) + O(‖𝛿𝛾u‖) = Π(𝜇

𝛾
,W(𝜇

𝛾
)) + O(‖𝛿𝛾u‖) (10)

where 𝜋(𝜇
𝛾
) = Π(𝜇

𝛾
,W(𝜇

𝛾
)) is the solution of the adjoint system (6) with the deriva-

tives computed at the point (𝜇
𝛾
,W(𝜇

𝛾
)). It is clear that considering Π as a func-

tion on the only variable 𝛾 and identifying the approximate adjoint solution Π̃ with

𝜋 = Π(𝜇
𝛾
,W(𝜇

𝛾
)) we have O(‖Π − Π̃‖) = O(‖𝛿𝛾u‖), and Eq. (9) becomes

J(𝛾,W) = J(𝛾,W0) − 𝜋
∗
𝛹 (𝛾,W0) + O

(
‖W −W0‖

2
, ‖W −W0‖ ‖𝛿𝛾u‖

)
. (11)

Now it only remains to decide how to choose the approximation W0. As usual, we

perform a first-order Taylor expansion of W(𝛾) around 𝜇
𝛾

W(𝛾) = W(𝜇
𝛾
) + dW

d𝛾u
|
|
|𝜇

𝛾

𝛿𝛾u + O(‖𝛿𝛾u‖2)

then we have two options

IMC1 W0 = W(𝜇
𝛾
) and then

J(𝛾,W) = J(𝛾,W(𝜇
𝛾
)) − 𝜋

∗
𝛹 (𝛾,W(𝜇

𝛾
)) + O

(
‖𝛿𝛾u‖

2)
(12)

IMC2 W0 = W(𝜇
𝛾
) + dW

d𝛾u
|
|
|𝜇

𝛾

𝛿𝛾u and then

J(𝛾,W) = J(𝛾,W0) − 𝜋
∗
𝛹 (𝛾,W0) + O

(
‖𝛿𝛾u‖

3)
(13)

where the first approach has an overall leading error of second order, while the second

approach has an overall leading error of third order.
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In contrast to the fully nonlinear Monte Carlo, where has to be solved one non-

linear system 𝛹 (𝛾,W) = 0 for each sample point 𝛾i = 𝜇
𝛾
+ 𝛿𝛾u,i, in the inexpensive

Monte Carlo we evaluate the residual 𝛹 (𝛾i,W0) for each sampling point, resulting in

a computationally less expensive method.

To be more clear, the algorithm is summarized as follows:

∙ choose the mean control 𝜇
𝛾

and solve the nonlinear system 𝛹 (𝜇
𝛾
,W) = 0

∙ solve the adjoint linear system

(
𝜕𝛹

𝜕W
|
|
|(𝜇

𝛾
,W(𝜇

𝛾
))

)∗

𝜋 =
(

𝜕J
𝜕W

|
|
|(𝜇

𝛾
,W(𝜇

𝛾
))

)∗

∙ (if we use the IMC2) compute the matrix
𝜕W
𝜕𝛾u

|
|
|𝜇

𝛾

(this is could be done solving m

linear system, where 𝛾u ∈ ℝm
)

∙ construct the N sampling point 𝛾i = 𝜇
𝛾
+ 𝛿𝛾u,i with i = 1,… , N

∙ (if we use the IMC2) compute the N extrapolations of the state variables W0,i =
W(𝜇

𝛾
) + 𝜕W

𝜕𝛾u

|
|
|𝜇

𝛾

𝛿𝛾u,i

∙ compute the N values j(𝛾i) using Eq. (12) for IMC1 or Eq. (13) for IMC2

To see the relations with the results obtained with the Method of Moments

(Eqs. 2–3), we can note that in the equation there are two terms (J and 𝛹 ) as function

of 𝛾 that could be expanded up to the first order without increasing the error order,

i.e.,

J(𝛾,W) = J(𝜇
𝛾
,W(𝜇

𝛾
)) + 𝜕J

𝜕𝛾u

|
|
|(𝜇

𝛾
,W(𝜇

𝛾
))
𝛿𝛾u − 𝜋

∗
𝛹 (𝛾,W(𝜇

𝛾
)) + O

(
‖𝛿𝛾u‖

2)

= j(𝜇
𝛾
) + 𝜕J

𝜕𝛾u

|
|
|(𝜇

𝛾
,W(𝜇

𝛾
))
𝛿𝛾u − 𝜋

∗ 𝜕𝛹

𝜕𝛾u

|
|
|(𝜇

𝛾
,W(𝜇

𝛾
))
𝛿𝛾u + O

(
‖𝛿𝛾u‖

2)
(14)

where we used the property 𝛹 (𝜇
𝛾
,W(𝜇

𝛾
)) = 0. Taking the expectation (and remem-

bering that E[𝛿𝛾u] = 0), we have

𝜇j = j(𝜇
𝛾
) + O

(

E
[
𝛿𝛾

2
u
])

(15)

i.e., the same equation for the mean of the functional obtained with the first-order

moment method (2).

Orientation

Independently of which of the above formulations are chosen, the main effort is

devoted in the computation of derivatives. The chapters “Algorithmic Differentiation

for Second Derivatives” and “Second Order Derivatives for Geometrical

Uncertainties” are devoted to this issue.

https://doir.org/10.1007/978-3-319-77767-2_21
https://doir.org/10.1007/978-3-319-77767-2_21
https://doi.org/10.1007/978-3-319-77767-2_22
https://doi.org/10.1007/978-3-319-77767-2_22
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Algorithmic Differentiation for Second
Derivatives

Alain Dervieux

Introduction

In this section, we study two methods for obtaining second derivatives of a functional

subject to a state equation. We introduce analytic formulas which can then be used

in combination with a non-global application of an Automatic Differentiation (AD)

tool like TAPENADE [7]. This second step is not addressed here but will be pre-

sented in details in chapter “Use of Automatic Differentiation Tools at the Example

of TAPENADE”.

More precisely, we recall that we are interested by obtaining the first and second

derivatives of a functional j depending of 𝛾 ∈ ℝn
and expressed in terms of a state

W ∈ ℝN
as follows: {

𝜓(𝛾) = 𝛹 (𝛾,W(𝛾)) = 0
j(𝛾) = J(𝛾,W(𝛾)).

(1)

We observe that 𝛾 → W(𝛾) is a function implicitly defined through the state equation

𝛹 (𝛾,W(𝛾)) = 0 and the functional j(𝛾) = J(𝛾,W(𝛾)) is evaluated from the solution

of the state equation corresponding to 𝛾 . Then, we distinguish two different points

of view:

∙ Implicit differentiation: it consists to differentiate directly the implicit function j as

a function of the control variable 𝛾 . This means that the entire program involving

the solution algorithm for state equation is differentiated in one way.

∙ Differentiation of explicit parts: the second point of view is to apply differentiation

only to routines which compute explicit functions, that is functions 𝛹 and J and

then use one of the available composite derivative formula in order to get dj∕d𝛾 .
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Also, two different formulas of composite derivatives can be applied:

∙ The Tangent mode applied to a program computing 𝛷 produces another routine

computing, from u and from an arbitrary direction u̇ (of same dimension as u), the

derivative in direction u̇:

u, u̇ ↦
𝜕𝛷

𝜕u
(u)u̇ = 𝜙

′
p(wp−1)𝜙′

p−1(wp−2)⋯𝜙
′
1(w0)u̇. (2)

∙ The Reverse mode when applied to the previous program computing 𝛷 produces a

routine which computes, from u and from an arbitrary direction v̄ (of same dimen-

sion as v), the following product of same dimension as u:

u, v̄ ↦

(
𝜕𝛷

𝜕u
(u)

)∗

v̄ = 𝜙
′∗
1 (w0)𝜙′∗

p−1(wp−2)⋯𝜙
′∗
p (wp−1)v̄. (3)

If we choose an implicit differentiation, differentiating the entire routine j can be

performed with either Tangent or Reverse mode of the AD tool; see chapter “Surro-

gate Model-Based Approaches to UQ and Their Range of Applicability”. It permits

to obtain directly a differentiated program, in a black box manner, with the risk that

this program has a rather good reliability but not sufficiently good performances.

To analyze this issue, we observe that since the routine computing the functional j
contains the iterative solver method for the state equation, the differentiated routines

will contain this solver in differentiated form. We assume that we need n
iter

iterations

in order to obtain the nonlinear solution, and that for each iteration, we have an

unitary cost.

Tangent mode produces a program that we need to apply n time for computing

the entire gradient. The cost is n(n
iter
𝛼T ) where 𝛼T is the overhead associated with

the differentiated code with respect to the original one. One has usually 1 < 𝛼T < 4;

see for example [5]. Further, the memory requirements will be about the same as for

the undifferentiated code.

With Reverse mode, we are able to obtain the entire gradient with a single evalua-

tion of the differentiated routine. But the usual Reverse mode produces a code which

involves two successive parts:

∙ a forward sweep close to original code, and

∙ a (backward sweep) performed in the opposite order of the original code.

The problem is that the backward sweep needs data computed in the forward sweep,

but in the opposite order, that is from last data computed in the forward sweep to

first ones. In one way to solve this, the Store-All (SA) strategy, these data are stored

during the forward sweep.

The total cost (in terms of CPU time and memory) strongly depends on the strat-

egy applied by the AD tool to solve the problem of inverse order differentiation for

the original routine. For the case of the SA strategy, the CPU cost will be (n
iter
𝛼R)

with 1 < 𝛼R < 5, i.e., 𝛼R times the undifferentiated code, but the required memory

will be n times greater. For a Recompute-All (RA) strategy, the CPU cost will be

http://dx.doi.org/https://doi.org/10.1007/978-3-319-77767-2_43
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(n2
iter
𝛼R), i.e., (n

iter
𝛼R) the nonlinear solution, but the memory will be the same of

the undifferentiated routine. For real large programs, neither SA nor RA strategy

can work, we need a special storage/recomputation trade-off in order to be efficient

using checkpoints (see [7]). Obviously, with checkpointing, the CPU cost will be

greater than the cost of SA strategy and it can be shown [6] that the cost for the dif-

ferentiated code can be of the order of s
√

n
iter

(where s is the number of snapshots

available).

In many cases, these strategies (SA, RA, or SA/RA) are compulsory. This is the

case for unsteady nonlinear systems, where main iteration is time advancing, and

for which we do not know a strategy working without the intermediate-time state

variable values. Checkpointing can be applied quasi-automatically by the Automatic

Differentiator or applied by hand-coding.

When the iterative algorithm is a fixed point one, with enough convergence to

the fixed point, only the final state variable is necessary for backward sweep. Some

intervention of the programmer is useful for avoiding the storage of unnecessary

intermediate values of state variable.

Lastly, the behavior (efficiency, stability) of differentiated solution algorithms is

questionable, while a natural and conservative tendancy is to re-use the algorithm

used for state—preconditioner, iterator—for solving adjoint systems.

From the previous arguments, in case of simple explicit solvers, the implicit dif-
ferentiation is a good option, but for more sophisticated solvers (GMRES, . . . ) we
recommand the differentiation of explicit parts/routines, followed by an assembly of
these by the programmer.

We present now in more details this latter strategy.

Computation of First Derivative

Using the chain rule, the gradient of the functional j(𝛾) = J(𝛾,W(𝛾)) is given by

dj
d𝛾

= 𝜕J
𝜕𝛾

+ 𝜕J
𝜕W

dW
d𝛾

where the derivatives of the state variables W(𝛾) are obtained solving the linear sys-

tem
d𝜓
d𝛾

= 𝜕𝛹

𝜕𝛾
+ 𝜕𝛹

𝜕W
dW
d𝛾

= 0.

Two strategies can be applied.
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Direct Differentiation (Tangent Mode)

It consists in computing the Gâteaux or directional derivatives with respect to each

component direction (ei = (0,…0, 1, 0,… , 0)T , where 1 is at the i-th component):

dj
d𝛾i

=
dj
d𝛾

ei =
𝜕J
𝜕𝛾i

+ 𝜕J
𝜕W

dW
d𝛾i

(4)

with:
𝜕𝛹

𝜕W
dW
d𝛾i

= −𝜕𝛹

𝜕𝛾
ei (5)

This has to be applied to each component of 𝛾 , i.e., n times and the cost is n linearised

N-dimensional systems to solve. If we choose to solve the single system (5) with an

iterative matrix-free method, and the solution is obtained after n
iter,T step, the total

cost will be of the order of 𝛼Tn
iter,T , i.e., n

iter,T evaluation of the matrix-by-vector

operation
(
𝜕𝛹

𝜕W

)
x, where each evaluation costs 𝛼T times the evaluation of the state

residual 𝛹 (𝛾,W) (and the cost of the state residual is taken as reference equal to 1).

Therefore, the cost of the full gradient will be n𝛼Tn
iter,T .

Inverse Differentiation (Reverse Mode)

The complete gradient is given by the equation

(
dj
d𝛾

)∗

=
(
𝜕J
𝜕𝛾

)∗

−
(
𝜕𝛹

𝜕𝛾

)∗

Π0 (6)

where Π0 is the solution of the linear system

(
𝜕𝛹

𝜕W

)∗

Π =
(

𝜕J
𝜕W

)∗

. (7)

This computation needs only one extra linearised N-dimensional system, the adjoint

system (some methods for calculation of the adjoint solutions are described in [4]).

If we choose to solve the adjoint system (7) with an iterative matrix-free method, we

can apply the same estimate done as in the case of the Tangent mode differentiation,

but this time the overhead associated with the evaluation of the matrix-by-vector

operation
(
𝜕𝛹

𝜕W

)∗x with respect to the state residual evaluation will be 𝛼R (and usually

𝛼R > 𝛼T ) and the number of iteration n
iter,R for the convergence of the solution could

be different from n
iter,T of the previous case (but the asymptotical rate of convergence

will be the same of the original linear system
(
𝜕𝛹

𝜕W

)
x = b, see [4]). Therefore, the cost

for the gradient will be 𝛼Rn
iter,R, and the Reverse mode differentiation for the gradient

computation is cheaper than the Tangent mode if n ≫ 1.

For second derivatives, we have different possibilities.
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Second Derivative by Tangent on Tangent

These methods were initially investigated by [12] along with various other algo-

rithms, but the publication does not go into the implementation details for a generic

fluid dynamic code. Here, we present the mathematical background behind the idea

and the efficient AD implementation of Ghate and Giles [3] but with a different anal-

ysis of the computational cost.

Main Property

Starting from the derivative (4), we perform another differentiation with respect to

the variable 𝛾k obtaining

d2j
d𝛾id𝛾k

= D2
i,kJ + 𝜕J

𝜕W
d2W

d𝛾id𝛾k
(8)

where

D2
i,kJ = 𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

ei

)
ek +

𝜕

𝜕W

(
𝜕J
𝜕𝛾

ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕J
𝜕𝛾

ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕J
𝜕W

dW
d𝛾i

)
dW
d𝛾k

.

Differentiating Eq. (5), we get

D2
i,k𝛹 + 𝜕𝛹

𝜕W
d2W

d𝛾id𝛾k
= 0 (9)

where

D2
i,k𝛹 = 𝜕

𝜕𝛾

(
𝜕𝛹

𝜕𝛾
ei

)
ek +

𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕W
dW
d𝛾i

)
dW
d𝛾k

.

Substituting the second derivatives of the state with respect to the control variables

d2W
d𝛾id𝛾k

in Eq. (8) from Eq. (9), we get

d2j
d𝛾id𝛾k

= D2
i,kJ − 𝜕J

𝜕W

(
𝜕𝛹

𝜕W

)−1

D2
i,k𝛹

= D2
i,kJ − Π∗

0D2
i,k𝛹

(10)

where Π0 is the solution of the adjoint system (7) evaluated at the point (𝛾,W(𝛾))
solution of the state equation 𝛹 (𝛾,W) = 0.
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The n derivatives
dW
d𝛾i

should be computed (and stored) using tangent mode differ-

entiation of the nonlinear solver algorithm, and each derivative costs n
iter,T𝛼T . If we

need the full Hessian matrix, we have to evaluate the quantity (10) n(n + 1)∕2 times;

i.e., we have to evaluate the terms D2
i,k𝛹 and D2

i,kJ for i = 1,… , n and j = i,… , n
due to the symmetry of the Hessian, and each evaluation of D2

i,k𝛹 costs 𝛼
2
T (the eval-

uation of D2
i,kJ is negligible with respect to D2

i,k𝛹 ). Therefore, the full Hessian costs

n𝛼T [niter,T + (n + 1)𝛼T∕2]. With similar arguments, if we want only the diagonal part

of the Hessian, the cost is n𝛼T [niter,T + 𝛼T ].

Global ToT Algorithm

Solve

𝛹 (𝛾,W) = 0 n
iter
𝛹(

𝜕𝛹

𝜕W

)∗

Π0 =
(

𝜕J
𝜕W

)∗

n
iter
𝛼R𝛹 + 𝛼RJ

For i = 1,… , n solve

𝜕𝛹

𝜕W
dW
d𝛾i

= −𝜕𝛹

𝜕𝛾
ei (niter

+ 1)𝛼T𝛹

For i = 1,… , n and j = 1,… , i

𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

ei

)
ej 𝛼

2
TJ

𝜕

𝜕𝛾

(
𝜕J
𝜕W

dW
d𝛾j

)
ei 𝛼

2
TJ

𝜕

𝜕W

(
𝜕J
𝜕W

dW
d𝛾j

)
dW
d𝛾i

𝛼
2
TJ

𝜕

𝜕𝛾

(
𝜕𝛹

𝜕𝛾
ei

)
ej 𝛼

2
T𝛹

𝜕

𝜕𝛾

(
𝜕𝛹

𝜕W
dW
d𝛾j

)
ei 𝛼

2
T𝛹

𝜕

𝜕W

(
𝜕𝛹

𝜕W
dW
d𝛾j

)
dW
d𝛾i

𝛼
2
T𝛹
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Second Derivative by Tangent on Reverse

This consists in the direct derivation in any direction ei, i = 1, n of the (non-scalar)

function:

(
𝜕j
𝜕𝛾

)∗

(𝛾,W(𝛾)) =
(
𝜕J
𝜕𝛾

)∗

(𝛾,W(𝛾)) −
(
𝜕𝛹

𝜕𝛾

)∗

Π(𝛾,W(𝛾))

where W(𝛾) and Π(𝛾,W(𝛾)) are solutions of the above two state systems.

Main Property

The mains computations to apply are summed up in the following lemma:

Lemma the second derivatives can be computed as:

𝜕

𝜕𝛾i

(
𝜕j
𝜕𝛾

)∗

=
(
𝜕
2j

𝜕𝛾2

)
ei =

𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)∗

ei +
𝜕

𝜕W

(
𝜕J
𝜕𝛾

)∗ dW
d𝛾i

+

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
ei −

𝜕

𝜕W

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
dW
d𝛾i

−
(
𝜕𝛹

𝜕𝛾

)∗

𝜆i

(11)

For each i = 1,… , n, Eq. (11) needs Π0, the solution of the adjoint system

(
𝜕𝛹

𝜕W

)∗

Π =
(

𝜕J
𝜕W

)∗

(12)

and two perturbed N-dimensional linear systems:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝛹

𝜕W
dW
d𝛾i

= −𝜕𝛹

𝜕𝛾
ei

(
𝜕𝛹

𝜕W

)∗

𝜆i =
𝜕

𝜕𝛾

(
𝜕J
𝜕W

)∗

ei +
𝜕

𝜕W

(
𝜕J
𝜕W

)∗ dW
d𝛾i

+

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕W

)∗

Π0

]
ei −

𝜕

𝜕W

[(
𝜕𝛹

𝜕W

)∗

Π0

]
dW
d𝛾i

(13)

where all the functions in Eqs. (11)–(13) are evalued at the final state (in order to
verify 𝛹 (𝛾,W(𝛾)) = 0). In addition, the second linear system in (13) is of the same
type of the adjoint system (12) but with a different right-hand side, so we can use the
same algorithm (but with different initial data) for both equations.

It is useful to note that Eq. (11) gives us an entire column (or row, by symmetry)

of the Hessian matrix, where the Tangent-on-Tangent approach (10) gives us a single
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element. Another interesting point is that the Tangent-on-Reverse method does not

requires to know in advance all the derivatives of the state variables respect to the

control; i.e., we can compute the derivative
dW
d𝛾i

for a given index i, then use it in

Eqs. (11) and (13) to obtain the i-th column (or row) of the Hessian and then we can

avoid to store it for the next index i + 1.

The cost associated to the full Hessian evaluated with the Tangent-on-Reverse

approach is

∙ n(𝛼Tn
iter,T ) for computing the derivatives of the state variables respect to the con-

trol
dW
d𝛾i

(i = 1,… , n)

∙ n𝛼R𝛼T for evaluating the quantities on the right-hand side of Eqs. (11) and (13)

∙ n(𝛼Rn
iter,R) for solving the n adjoint systems in the (13)

Therefore, the full Hessian costs n[𝛼Tn
iter,T + 𝛼R𝛼T + 𝛼Rn

iter,R].

Details of Calculations

First of all, we note that the tangent derivative along the direction 𝛿 of a

(n-dimensional) function f (𝛾) = F(𝛾,W) is

df
d𝛾

𝛿 = 𝜕F
𝜕𝛾

𝛿 + 𝜕F
𝜕W

dW
d𝛾

𝛿

= 𝜕F
𝜕𝛾

𝛿 − 𝜕F
𝜕W

(
𝜕𝛹

𝜕W

)−1
𝜕𝛹

𝜕𝛾
𝛿

= 𝜕F
𝜕𝛾

𝛿 + 𝜕F
𝜕W

𝜃

where 𝜃 is the solution of the linear system

𝜕𝛹

𝜕W
𝜃 = −𝜕𝛹

𝜕𝛾
𝛿.

Now, we can perform the tangent derivative (along the direction 𝛿) of
( dj

d𝛾

)∗
(

d2j
d𝛾2

)
𝛿 = d

d𝛾

(
dj
d𝛾

)∗

𝛿 = d
d𝛾

(
𝜕J
𝜕𝛾

)∗

𝛿 − d
d𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π
]
𝛿.

The first term is

d
d𝛾

(
𝜕J
𝜕𝛾

)∗

𝛿 = 𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)∗

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕𝛾

)∗

𝜃.
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The second one is a little more complex

d
d𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π
]
𝛿 =

[
d

d𝛾

(
𝜕𝛹

𝜕𝛾

)∗

Π
]
𝛿 +

(
𝜕𝛹

𝜕𝛾

)∗ dΠ
d𝛾

𝛿

= d
d𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
𝛿 +

(
𝜕𝛹

𝜕𝛾

)∗

𝜆

= 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
𝛿 + 𝜕

𝜕W

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
𝜃 +

(
𝜕𝛹

𝜕𝛾

)∗

𝜆

where Π0 is the solution of the linear system (solved at the final state)

(
𝜕𝛹

𝜕W

)∗

Π =
(

𝜕J
𝜕W

)∗

(14)

and 𝜆 = dΠ
d𝛾

𝛿. Now, we perform a tangent derivative of the adjoint Eq. (14)

d
d𝛾

[(
𝜕𝛹

𝜕W

)∗

Π
]
𝛿 = d

d𝛾

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝛿 +

(
𝜕𝛹

𝜕W

)∗ dΠ
d𝛾

𝛿

= 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝛿 + 𝜕

𝜕W

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝜃 +

(
𝜕𝛹

𝜕W

)∗

𝜆

= 𝜕

𝜕𝛾

(
𝜕J
𝜕W

)∗

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕W

)∗

𝜃.

So 𝜆 is the solution of the linear system

(
𝜕𝛹

𝜕W

)∗

𝜆 = 𝜕

𝜕𝛾

(
𝜕J
𝜕W

)∗

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕W

)∗

𝜃+

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝛿 − 𝜕

𝜕W

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝜃.

Reassembling all the terms, we have that the projection of the Hessian in a direc-

tion 𝛿 is given by

(
d2j
d𝛾2

)
𝛿 = 𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)∗

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕𝛾

)∗

𝜃+

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
𝛿 − 𝜕

𝜕W

[(
𝜕𝛹

𝜕𝛾

)∗

Π0

]
𝜃 −

(
𝜕𝛹

𝜕𝛾

)∗

𝜆
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where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
𝜕𝛹

𝜕W

)∗

Π0 =
(

𝜕J
𝜕W

)∗

𝜕𝛹

𝜕W
𝜃 = −𝜕𝛹

𝜕𝛾
𝛿

(
𝜕𝛹

𝜕W

)∗

𝜆 = 𝜕

𝜕𝛾

(
𝜕J
𝜕W

)∗

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕W

)∗

𝜃+

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝛿 − 𝜕

𝜕W

[(
𝜕𝛹

𝜕W

)∗

Π0

]
𝜃 .

Global ToR Algorithm

Solve

𝛹 (𝛾,W) = 0 n
iter
𝛹(

𝜕𝛹

𝜕W

)∗

Π0 =
(

𝜕J
𝜕W

)∗

n
iter
𝛼R𝛹 + 𝛼RJ

For i = 1,… , n

solve
𝜕𝛹

𝜕W
dW
d𝛾i

= −𝜕𝛹

𝜕𝛾
ei (niter

+ 1)𝛼T𝛹

̇JW 𝛼T𝛼RJ
̇J
𝛾

𝛼T𝛼RJ
̇
𝛹W 𝛼T𝛼R𝛹
̇
𝛹

𝛾
𝛼T𝛼R𝛹

solve

(
𝜕𝛹

𝜕W

)∗

𝜆i =
̇JW − ̇

𝛹W n
iter
𝛼R𝛹

̇J
𝛾
− ̇
𝛹

𝛾
−
(
𝜕𝛹

𝜕𝛾

)∗

𝜆i 𝛼R𝛹
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Comparison Between ToT and ToR

At this point, the natural question arising from the previous analysis is about the

choice of the method that is less expensive for a given problem. We have seen that

the algorithms for ToT and ToR approaches have some common parts (the solution

of the adjoint system and the evaluation of the state derivatives), so the comparison

of the two approach should be done in cost of the part that characterize the two

algorithms:

∙ n(n + 1)
2

𝛼
2
T for ToT

∙ n𝛼R[𝛼T + n
iter,R] for ToR

For a very large number of variables, hundreds in practical cases, the ToR can

be more efficient since its complexity is not quadratic. In practice, the ToT is more

performant.

Remark If we are interested in a (scalar!) functional depending on the gradient, then

it can be interesting to apply a second inverse differentiation. We do not consider

here this direction. ⊓⊔

Concluding Remarks

This section has presented the main lines of the second differentiation of a functional

subject to a state equation.

The next step in the obtention of a second-order Taylor surogate software model

is the effective implementation of these second derivatives. That step is presented in

details in chapter “Use of Automatic Differentiation Tools at the Example of TAPE-

NADE”.

Many other informations concerning the method and concerning application to

robuste optimization can be found in [1, 2, 8–11].
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Second-Order Derivatives
for Geometrical Uncertainties

Marcin Wyrozębski, Łukasz Łaniewski-Wołłk and Jacek Rokicki

Introduction

Today, computational fluid dynamics (CFD) methods form a very important part of

a modern design process. CFD solvers have reached high level of maturity and they

are able to simulate even very complex flows. As the computing power constantly

increases, the interest in the shape optimization methods starts to grow rapidly. The

introduction of adjoint method and their application for the computation of the gradi-

ent and for the sensitivity analysis allows for an important reduction in time required

for the optimization process [1–3]. Further development is possible through appli-

cation of second-order sensitivity analysis [4–6]. This new method takes advantage

of using the Hessian matrix within the optimization process.

In the classical approach, the simulated models are treated as fully determinis-

tic, while the real, manufactured products might differ from the designed version.

Moreover, computations are often carried out only for a specified operational condi-

tions, while they might be variable in real-life scenarios. Apart from the variability of

operational conditions, variability of the geometry itself has a significant impact on

the system performance. Therefore, this variability should be included in the design

process.

The geometrical uncertainty can be regarded as a continuous field, that has to be

somehow discretized. In our approach, we propose to use for this purpose the existing

CFD surface mesh. This leads to a large number of correlated uncertainties corre-
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sponding to the normal shift of the surface nodes. The resulting set of uncertainties

is too large to be analyzed in a reasonable time with such methods as Polynomial

Chaos [7] or Meta-Modeling [8].

Handling of such uncertainties is frequently done with the help of some reduction

techniques. Most of these techniques, e.g., Karhunen-Loeve (KL) decomposition,

are based on the correlation structure [9]. Some, such as Active Subspace [10, 11],

gain from the use of the gradient information, requiring however the Monte Carlo

sampling which increases computational complexity. All these methods provide a

new basis in a linear space, which is optimal for discretization and quantification of

the given uncertainty field. The presented approach has the same goal, but takes into

account the information both from the correlation structure as well as from the local

behavior of the objective near a selected design point.

Still different approach that is presented in this paper is called a Method of

Moments (MoM) and allows to compute some stochastic parameters of the objec-

tive function basing on its local behavior. In order to do that, it uses Taylor series

expansion, and therefore, computation of the derivatives of the objective is required.

In CFD applications, the adjoint method is used in order to obtain sensitivity infor-

mation. However, in most cases MoM methods require not only the gradient of the

objective but also its Hessian. Martinelli and Duvigneau [12] present an application

of the second-order Method of Moments to an uncertainty quantification test case,

considering free-stream Mach number and angle of attack as random variables. In

this paper, we are using similar approach, but for a very large set of geometrical

uncertainties.

Methodology

In this Section, we present a novel approach for geometrical uncertainties quan-

tification based on the information on the second derivatives. First, the details of

the method are presented, and subsequently, the equations for the required Hessian

matrix computations are derived. Finally, we provide a method to reduce the set of

nodal uncertainties using for this purpose the Radial Basis Functions.

Proposed Method

Let us now assume that the discretised random field 𝜁 has a zero mean valueE[𝜁 ] = 0
and the covariance matrix Cij = E[𝜁i𝜁j]. Let us also assume that the analyzed objec-

tive function f depends on the set of deterministic parameters x describing the geom-

etry for which 𝜁 forms an additive uncertainty defining geometry variability. Our

main goal is the quantification of the random variable f (x + 𝜁 ). The expected value

of the objective with respect to the uncertainties can be written, using Taylor series,

as:
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E[f (x + h𝜁 )] = E
[
f (x) + h𝜁i

𝜕f
𝜕xi

+ 1
2
h2𝜁i𝜁j

𝜕2f
𝜕xi𝜕xj

+ o(h3)
]

= f (x) + h
𝜕f
𝜕xi

E
[
𝜁i
]
+ 1

2
h2

𝜕2f
𝜕xi𝜕xj

E
[
𝜁i𝜁j

]
+ o(h3)

The substitution of the mean and the covariance of 𝜁 (Cij = E[𝜁i𝜁j]) gives:

E[f (x + h𝜁 )] = f (x) + 1
2
h2Cij

𝜕2f
𝜕xi𝜕xj

+ o(h3) (1)

Repeating the same operation for the variance gives:

Var
2f (x + h𝜁 ) = h2

𝜕f
𝜕xi

𝜕f
𝜕xj

Cij + o(h3)

In computational practice, we can find the deterministic value of the objective f (x)
by converging the discrete CFD solution. The covariance matrix Cij is (by assump-

tion) known, e.g., from sampling measurements. The remaining element is the eval-

uation of the second derivative Hessian matrix
𝜕2f

𝜕xi𝜕xj
. Unfortunately, the dimension

of the full Hessian matrix is extremely high being proportional to the number of

surface nodes of the mesh.

Therefore, the proposed approach is based on the idea to reduce the number of

analyzed uncertainties. This reduction process has to approximate the expected value

as accurately as possible. Considering the second-order term in the formula (1), we

notice that the product of the two matrices can be intepreted as a trace of their prod-

uct:

Cij
𝜕2f

𝜕xi𝜕xj
= Tr(CH) =

∑
p
𝜆p

where 𝜆p are the eigenvalues of the generalized eigenvalue problem:

𝜕2f
𝜕xi𝜕xj

vp = 𝜆pC−1vp (2)

This in turn gives a straightforward way to approximate the expected value (1) by

calculating the eigenvalues starting from the largest one (highest absolute value).

As the multiplication
𝜕2f

𝜕xi𝜕xj
v has a cost of the same level as a standard adjoint

calculation, the cost of solving the eigenvalue problem (2) can be greatly reduced

by using iterative methods such as the Power Method or the Inverse Power Method.

The total cost of the proposed algorithm is proportional to the number of analyzed

eigenvalues; therefore, the trade-off between accuracy and the computational cost

has to be considered. Additionally, the eigenvectors of (2) can be used as candidates
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for the reduction of the set of geometrical uncertainties for other UQ methods such

as Monte Carlo.

As eigenvectors of (2) are orthogonal to both the Hessian and the covariance

matrix, their use can be very beneficial. This second-order cross-derivatives expressed

in such basis are zero. Thus, the number of coefficients that has to be found in the

polynomial approximation is reduced by an order of magnitude and this can be use-

ful for the Polynomial Chaos and the Meta-Modeling methods. The orthogonality

with respect to the covariance matrix means that the uncertainties are independent,

which is a significant assumption for many UQ methods.

Hessian Matrix Computation

The ability to efficiently calculate the directional second-order derivative of an objec-

tive function is very important for the presented approach. By the directional deriva-

tive, we understand
𝜕2J

𝜕xi𝜕xj
𝛽j, where 𝛽 is an arbitrary vector. The applied method is

called “Tangent-on-Reverse” and is presented in detail in chapter “Introduction to

Intrusive Perturbation Methods.” In this Section, we briefly present the resulting

algorithm.

Assume we have a state vector u(𝛼) depending on a vector of parameters 𝛼. Let the

objective function be defined as (e.g., lift force) J(u, 𝛼) and the governing equation

(discretisation’s residual of the, e.g., Navier–Stokes equation) as R(u) = 0.

To efficiently calculate the second-order derivative, one can apply the following

steps:

1. Find the flow solution u by solving the primal equation

R(u) = 0 (3)

2. Find the adjoint solution v by solving the adjoint equation

𝜕Ri

𝜕uj
vi = − 𝜕J

𝜕uj
(4)

3. Compute the gradient of the objective function

d
d𝛼k

J = 𝜕J
𝜕𝛼k

+ vi
𝜕Ri

𝜕𝛼k

4. For each direction 𝛽

(a) Find b by solving the tangent equation

https://doi.org/10.1007/978-3-319-77767-2_20
https://doi.org/10.1007/978-3-319-77767-2_20
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𝜕Ri

𝜕uq
bq = −𝛽r

𝜕Ri

𝜕𝛼r
(5)

(b) Find a by solving the adjoint equation

𝜕Ri

𝜕uj
ai = −

[(
bq

𝜕

𝜕uq
+ 𝛽r

𝜕

𝜕𝛼r

)
𝜕

𝜕uj
(J + vsRs)

]
(6)

(c) Calculate the second-order derivative of the objective function (in the direc-

tion of 𝛽) using

𝛽p
d2

d𝛼kd𝛼p
(J) = ai

𝜕Ri

𝜕𝛼k
+
(
bq

𝜕

𝜕uq
+ 𝛽r

𝜕

𝜕𝛼r

)
𝜕

𝜕𝛼k
(J + vsRs)

As it can be seen from the above, the evaluation of the second-order derivative in

a specific direction is divided into two parts. Firstly, we solve the adjoint equation

for the gradient of the objective function (4). Subsequently, we solve two additional

equations: one tangent and one adjoint. By solving these equations, one obtains sec-

ond derivative of the objective J w.r.t. design parameters (𝛼k, 𝛼p) computed in the

direction 𝛽.

Uncertain Deformations

In this section, a method to reduce the number of uncertainties is presented. For this

purpose, Radial Basis Function (RBF) interpolation is used. This can be interpreted

as a method of Low-Rank Approximation [13] of the covariance matrix.

As a result of discretization of the continuous geometrical uncertainty field, one

obtains a large number of correlated uncertainties with one random variable describ-

ing the uncertainty of position along a specific direction (in this paper, it is always

z-axis). Due to the fact that the number of nodes of the surface mesh can be very

high, especially for complex cases, the resulting set of random variables is too large

for further analysis.

One possible approach is called a Low-Rank Approximation and attempts to

approximate the covariance matrix C with a product VVT
where V has only few

nonzero columns.

Let us assume that the set of nodal positions is denoted by xj while the corre-

sponding uncertainties are 𝜁i (i = 1,… ,N). Then, our uncertain geometry qj can be

written as

qi = xi + 𝜁i
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Set of nodal uncertainties spans the whole ℝN
space. Recalling formula (1), we can

express the expected value of the objective function under the full basis of uncer-

tainties as:

E[f (x + h𝜁 )] = f (x) + 1
2
h2Cij

𝜕2f
𝜕xi𝜕xj

+ o(h3)

Computation of the full Hessian matrix (with dimension N × N) is too expen-

sive; therefore, we have to apply the reduction. Let us assume that the vectors

𝜙1 …𝜙M ∈ ℝN
, (M ≪ N) represent some arbitrary chosen nodal displacements

(value 𝜙ij denotes the displacement of a i-th node generated by 𝜙j) and the corre-

sponding random variables 𝛼1,… , 𝛼M that will create our new, reduced set of uncer-

tainties. Using our new basis, we can approximate full variability of the geometry

as:

𝜁i ≈
M∑
j=1

𝛷ij𝛼j, i = 1,… ,N

qi ≈ q̂i = xi +
M∑
j=1

𝛷ij𝛼j, i = 1,… ,N

where 𝛷 = (𝜙ij) is a rectangular matrix N ×M. Using this reduced basis, we can

express our formula for the mean value of the objective as:

E[f (x + h𝜁 )] ≈ f (x) + 1
2
h2ĈijĤij + o(h3)

where the Hessian matrix Ĥij and the covariance matrix Ĉij are defined as:

Ĥij
def

=
𝜕2f

𝜕q̂i𝜕q̂j
=

M∑
k,l=1

𝛷ik𝛷jl
𝜕2f

𝜕𝛼k𝜕𝛼l
, i, j = 1,… ,N

Ĉij
def

= Cov(q̂i, q̂j) =
M∑

k,l=1
𝛷ik𝛷jlCov(𝛼k, 𝛼l), i, j = 1,… ,N

In order to provide the best approximation accuracy, one can specify covariance

matrix of the new random variables 𝛼 by solving the Least Square Problem:

‖‖‖Cov(q̂i, q̂j) − Cov(qi, qj)
‖‖‖2 = min!

Low-Rank Approximation allows for the dimension reduction; however, this method

has limited accuracy that depends on M—the number of the considered directions 𝜙

(higher M increases the required computational cost, smaller M lowers the approxi-

mation accuracy).
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The selection of the reduced basis 𝛷 can be arbitrary. In the present case, the

Gaussian Radial Basis Functions (RBF) is of the form

𝜙(𝜉) = exp
(
−
(𝜉 − 𝜉0)2

2𝜇2

)
(7)

where 𝜉 denotes an independent variable (nodal position), 𝜉0 points at the center of

RBF while 𝜇 is the RBF radius.

It is important to understand that the Low-Rank Approximation is reducing the

number of uncertainties to a level which is computationally (and memory-wise)

achievable. For a high radius of correlation of the uncertainty field, the covariance

matrix is dense and it is impossible to store it all for a very high number of nodal

uncertainties (hundreds of thousands). With the use of LRA, we can reduce this

number to a feasible value such as hundreds or thousands, without loosing the qual-

ity of the covariance structure. This procedure is effective because the full covariance

matrix has a low rank in the first place.

On the other hand, the eigenvalue problem presented earlier is aimed at reducing

the number of uncertainties even further using not only the covariance information,

but also the properties of the objective. These two methods are coupled to obtain the

maximum reduction of the computational cost.

Results

In this section, we present the demonstration of the proposed methodology. Firstly,

however, details regarding solver implementation are provided. Then, the test case is

briefly described including the geometry, the boundary conditions, the used meshes

and the assumed uncertain deformations. Following this, the spectrum of the eigen-

values of the generalized eigenproblem (2) is presented and the relation between the

required number of modes and the radius of RBF is discussed. The objective mean

value for the defined uncertainties and its comparison with those obtained by the

other methods is shown at the end.

The results presented in the present paper were obtained by the in-house solver

Flow2/RED. The solver is based on the Residual Distribution (RD) method [14, 15]

has been developed at the Warsaw University of Technology (WUT) [16, 17]. RD

is an alternative method to Finite Volume and Finite Element and has few important

advantages. It allows to apply multidimensional upwind scheme and has a compact

nearest-neighbor stencil. Moreover, it can capture discontinuities occurring in the

flow in a monotone and parameter-free manner.

This solver is capable to simulate steady and compressible Euler, Navier–Stokes,

and RANS equations in 2D and 3D. The common turbulence models, such as Spalart-

Allmaras and k-𝜔, are implemented. Flow2/RED solver can be executed across

multiple nodes with MPI communication. The solver has been validated in the earlier
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projects ADIGMA [18] and IDIHOM [16] and proved to be a highly efficient tool

capable of addressing industrial-scale cases.

The presented UQ methodology was implemented in Flow2/RED. The authors

extended its functionality by creating a new module which is responsible for compu-

tation of the gradient of the objective function using an adjoint method (at present is

is a leading method in aerodynamic optimization). The most important parts of the

adjoint module are (i) the assembling algorithm for the Jacobian matrix and (ii) the

solver of the linear system. In the Residual Distribution Method, the global resid-

ual vector and the Jacobian matrix (for a full mesh) is assembled from the local

residuals and the matrices computed for each cell. The important property of the

RD method is the locality of computations. For a particular element, the computa-

tions do not depend on other cells, and therefore, the algorithm can be easily paral-

lelized. The second part of the module is responsible for computation of the Hessian-

by-vector multiplication and mainly consists of the assembling and solving of two

linear system—the tangent (5) and the adjoint (6). As the Jacobian matrix is non-

symmetric, the Generalized Minimal Residual Method (GMRES) is used.

The proposed method requires computation of the derivatives of residual R and of

the objective J. In order to compute them numerically, one can use Finite Difference

Method. This method works fast and is easy to implement; nevertheless, it allows

only for approximate calculation of the derivatives. This problem can be alleviated

by the use of Automatic Differentiation (AD) tools, which are capable of reproducing

derivatives exactly (up to the floating point precision), but usually are difficult to

apply properly in a mature code, as they have specific requirements regarding the

way the initial code is written. One can identify two approaches used in the AD

tools: the operator overloading and the source transformation [19]. The first one has

higher memory requirements, because all operations that have to be differentiated

must be stored at run-time in memory on a so-called tape. In contrast, the source

transformation approach analyzes directly the source code and produces the extended

code, that can calculate the required derivatives. In the present work, we use the

TAPENADE [20], source transformation tool developed at INRIA. The previously

mentioned property of the RD method regarding the cell locality of residuum is

very beneficial, as it is sufficient to differentiate only part of the code responsible

for residuum calculation at the generic cell. This significantly simplifies the source

transformation process.

BC-03 Test Case

The test consisted in simulations of the 3D, transonic, inviscid flow (see UMRIDA

database, case BC-03 [21]). The geometry is a DLR F6 fuselage, wing, pylon, and

nacelle configuration [22]. As an objective, we have considered the lift force for the

free-stream Mach number M = 0.75 and AoA corresponding to the lift coefficient

CL = 0.5.
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Fig. 1 Inviscid mesh (2.6 ⋅ 106 tetrahedral elements)

Fig. 2 Contour plot of the non-dimensional density 𝜌∕𝜌0 (final solution)

For the sake of simplicity, the flow was treated as inviscid. We have used four

meshes with approximately 0.3 ⋅ 106, 1.1 ⋅ 106, 1.7 ⋅ 106 and 2.6 ⋅ 106 tetrahedral ele-

ments. The presented results were obtained with the finest mesh shown in Fig. 1. The

contours of the density for the converged flow solution are shown in Fig. 2.

For this test case, we have assumed the covariance matrix structure using the

Gaussian function:

C(xi, xj) = 𝜓(xi)𝜓(xj) exp

(
−
|xi − xj|2

2𝜎2

)
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Fig. 3 Contour plot of a nodal variance

where xi are the points on the surface, |x − y| denotes the euclidean distance, 𝜎 is a

radius of correlation, and 𝜓(x) is the “fixing” function. This function is not zero only

there where the geometry is affected by uncertainties (in this case on the wing). The

function is smooth to preserve the continuity of the geometry and is defined as:

𝜓(𝜉) = 1 − exp
(
−
dwall(𝜉)
2𝜎2

)

where dwall(𝜉) defines the distance of a node 𝜉 from the nearest wall.

For the analyzed case, we have the fixed fuselage and the nacelle, leaving wing,

and pylon surfaces variable. Surface plot of nodal variance is shown in Fig. 3. Such

approach can lead to a limitation of geometry variability, but, as it can be seen, its

range is limited to a region close to a fixed zone.

For the representation of geometry variability, we have assumed 40 uncertain

deformations represented by the Gaussian Radial Basis Functions. Centers of RBFs

are located in such way that the best approximation of covariance structure for a full

set of nodes 𝜁 is achieved. The centers are distributed sequentially, one by one, using

a maximum variance condition proposed in [23]. The collection of RBFs is initial-

ized with the node for which the uncertainty variance Var(x) = C(x, x) is maximal.

For a given collection of RBFs, one can decompose the uncertainty into two parts:

the part which is fully represented by a linear combination of these RBFs and the

residual part. The variance of the residual part can be efficiently calculated and it is

used for the selection of the next RBF. This procedure is continued until a maximum

value of the residual variance function is lower than a given threshold or until M
reaches the specified size.

In order to verify the implementation of the code, we have arbitrarily selected

3 RBFs and compared the Hessian matrix calculated by the Kriging method based

on the full factorial computation. Comparison of these matrices is presented in the
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Fig. 4 Radial Basis Functions distributed on the surface

Table 1 Comparison of the Hessian matrices obtained with the Flow2/RED code and the Kriging

method

Flow

⎡⎢⎢⎢⎣

−12.016278 3.071211 0.452490
3.071211 −36.655157 1.389806
0.452489 1.389807 −21.116542

⎤⎥⎥⎥⎦
Kriging

⎡⎢⎢⎢⎣

−11.845916 2.986513 0.453560
2.986513 −37.395125 1.386518
0.453560 1.386518 −21.049571

⎤⎥⎥⎥⎦
Relative error

⎡⎢⎢⎢⎣

−1.44% −2.84% 0.24%
−2.84% 1.98% −0.24%
0.24% −0.24% −0.32%

⎤⎥⎥⎥⎦

Table 1. Results obtained with these two approaches are in a good agreement, with

a maximum relative error of 2.84%.

In order to verify the proposed methodology, we have computed the mean value

with the present method using the in-house solver and we have compared it with

the results of Monte Carlo (2000 samples) and the Kriging methods (full factorial of

343 = 7× 7× 7 samples). Comparison of the objective correction due to geometrical

uncertainties Δf = E[f (x + h𝜁 )] − f (x) can be found in the Table 2. It can be seen

that the Monte Carlo and Kriging are in close agreement while the analyzed method

predicts the correction different by 13%. However, if we compare the influence only

up to second-order in the Kriging method, we can see that both results are similar,

which means that the major part of the error in the mean value prediction comes

from the Taylor series truncation.
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Table 2 Comparison of the objective correction for different methods

Method Δf
Monte Carlo −0.4026461

Kriging −0.4025724

Our method −0.3514531

Kriging (second order) −0.3489399

Fig. 5 Spectrum of

eigenvalues module
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Once we have successfully verified the correction of the objective function caused

by geometrical uncertainties Δf , we can proceed to the analysis of the spectrum of

the generalized eigenvalue problem (2).

The proposed Hessian reduction method is based on the assumption that one can

represent the most of the second-order contribution with only few eigenvalues and

the corresponding eigenvectors (so-called modes). In order to verify this assump-

tion, we are showing the spectrum of eigenvalues moduli (Fig. 5). It can be seen that

the eigenvalues decrease almost exponentially. Therefore, it seems possible to keep

sufficient level of accuracy using only a limited number of largest eigenvalues.

The further investigation is focused on finding the number of required modes

which are needed to represent the assumed level (in this case 99%) of second-order

contribution in the Taylor expansion (1) as a function of correlation radius of our

assumed uncertainty deformations 𝜙. We have solved the eigenproblem in three dif-

ferent ways and compared the representation based on the eigenvectors of the Hessian

(A) and the covariance matrix (B) treated separately with the present method based

on the generalized eigenproblem solution (C). The results can be found in Fig. 6.

One can see that for the case (A), the number of modes remains the same for all

cases. It is worth mentioning that only 6 out of 40 eigenvectors can be neglected as

they provide only 1% of information. Considering case (B), one can notice that the
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Fig. 6 Number of modes

required to represent 99% of

second-order contribution
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number of modes is decreasing as the correlation radius increases. Compared with

(A), such behavior is beneficial and can reduce computational time when correlation

radius is large. However for smaller radii, the situation is opposite and the approach

(B) might even require the full spectrum of eigenvalues. Considering the proposed

method (C), one can notice that the number of required modes is never larger than it

is for the two other approaches. For the full range of correlation radius, our method

requires always smaller number of modes than in the approach (B), and for a small

radius, we are at least as good as (A).

Summary

The presented second-order sensitivity method for handling geometrical uncertain-

ties was proven to give good approximation of the objective function mean value and

effectively reduce the number of uncertainties.

This method is based on the assumption that the full Hessian matrix can be

replaced by the reduced form obtained using eigen decomposition and selection of

only a small number of largest eigenvalues without an important loss in the second-

order contribution. Numerical results shown in this paper confirm that for the ana-

lyzed test case, this assumption is verified. Moreover, the analyzed method always

gives a larger reduction of the uncertainty space than the techniques that use the Hes-

sian and the covariance matrices separately. The number of the required eigenvalues

(and the corresponding eigenvectors) is smaller for a full range of correlation radius

(of our uncertain deformations 𝜙).

Another very important property of the proposed method is that the resulting

eigenvectors of the generalized eigenvalue problem can be used for further UQ anal-
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ysis. The covariance matrix expressed in such basis is diagonal, which means that

the uncertainties are independent. This significantly simplifies further UQ analysis.

On the other hand, the Hessian matrix in this basis is also diagonal, which means

that there are less coefficients to be determined in the polynomial approximation.

The method needs further development; in particular, the mean value is not the

only stochastic parameter of interest (e.g., one might be interested also in the vari-

ance). Similarly, the current implementation of the method requires explicit assemble

of the full Hessian matrix. It would be beneficial in terms of computational time to

use a method in which only the largest eigenvalues are found (e.g., power method,

Arnoldi/Lanczos), without assembling of the Hessian.

As results shown in this paper cover only inviscid Euler flow, the method has to

be verified also for the Navier-Stokes and the RANS models.
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Application of UQ for Turbine
Blade CHT Computations

K. Vinogradov and G. Kretinin

Introduction

Thermal state of the parts in the gas turbine engine hot section defines the structural
integrity, as well as the service time and the engine lifecycle cost.

A HPT blade is one of the most crucial and loaded parts. A great number of
efforts are applied in order to provide the required thermal state and the necessary
level of turbine blade cooling efficiency. However, the most part of numerical
studies of phenomena and processes, as well as efforts to optimize and improve
structural characteristics (enormous number of studies) are put into practice on
model problems (flat planes, model blades) [1–6].

The HPT blades characteristics are affected by a great number of factors and
uncertainties such as geometrical variations (e.g., turbine blade tip clearance),
operational deviations (temperature and pressure of hot gas before the HPT blade,
as well as pressure of cooling air under the HPT blade).

Consideration of uncertainty influence on a HPT blade is particularly urgent in
the course of actual operation. Operational environment of a HPT blade is signif-
icantly affected by operational variations, as well as by efficiency decreasing over
engine life. Stochastic fluctuations of the HPT blade operational parameters require
the implementation of probabilistic optimization criteria in order to obtain robust
solution of the optimization task. In this connection, the authors set the main task of
the research: to define how the operational and geometrical uncertainties influence
the thermal state of one of the key blade areas (leading edge and blade tip) with
convection–film cooling and aerodynamic efficiency of a HPT blade by means of a
computational study. The second task was the possibility of finding a steady robust
solution for film-cooling holes configuration on the blade leading edge and robust
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optimum tip gap values for blade tip cooling and kinetic energy losses. So, the
authors make an effort to optimize the thermal state of the most thermally loaded
blade components providing a compromise with aerodynamic efficiency.

Geometry and CFD Domain

The 3D-model of a cooled HPT blade in Siemens NX v8.5 was used to generate the
computational area. The 3D-model is presented in Fig. 1.

The cooling system of the blade is of the convection–film type. The internal
serpentine passages are used as a convection cooling system. The ribbing of internal
passages is applied to intensify the convective heat transfer. Film cooling is made
by of two rows of film-cooling holes on the leading edge. The cooled air is supplied
into serpentine channels and discharged through the holes in trailing edge of the
blade.

In this study, two regions with maximal thermal loads are considered as the
blade areas. There are the leading edge and the blade tip.

It should be noted that radial form of film-cooling holes conforms to the hot gas
leakage line on the blade (film-cooling rows in the initial variant are placed along
it). Their form is presented here as parametric in order to automate the row
placement change. Both hole rows on the leading edge are parameterized as fol-
lows: α is the hole axis angle calculated in relation to stagnation point, L is the
distance to the stagnation point in the targeted section. The parameterization layout
and the parameters applied are presented in Fig. 2.

In our study, the arrangement of both rows changes simultaneously and the
distance between them remains invariable. The developed method of parameteri-
zation allows changing the film-cooling hole row arrangement with minimal
parameter number (at that the radial distribution does not change) providing
approximately steady value of convective heat transfer intensity.

Fig. 1 HPT blade geometry and film-cooling holes rows parameterization
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The computational model includes the blade solid domain, the internal cooling
passages, and the hot gas path. The blade profile surface, internal passages, and hub
end-wall surface are considered as the conjugate heat transfer interfaces. The blade
foot is modeled by means of heat boundary conditions (surface temperature, flow
temperature, and heat transfer coefficient).

A non-structured tetrahedral grid was used for mesh generation of the blade
channel and the internal blade cavity with seven prismatic layers (growth ratio 1.5
and the first cell size 1–6 m). The non-structured tetrahedral grid was applied to
mesh generation of the blade body. The mesh model of the blade body is shown in
Fig. 2.

ANSYS ICEM CFD was used to generate this type of mesh. The unstructured
tetrahedral mesh was developed to carry out heat transfer calculations and to
determine temperature distribution in the solid domain. The node-to-node tech-
nology was used to couple the internal cooling passages domain and the solid
domain. The boundary layer mesh of hot gas path domain was refined by dimen-
sionless wall distance. y+ values around 1 were achieved to accommodate the full
solution through the viscous sublayer. The height of the first element next to the
wall was 1–6 m.

A preliminary grid dependency test as in [1] was performed in order to check the
grid density influence on the results and to determine the optimal number of grid
nodes. Figure 4 presents the efficiency for a blade leading edge at different grids.
The number of nodes in the considered grids is as follows: from about 1.5 million
nodes to about 8 million nodes. As it was demonstrated, the results from about 6.5
million nodes showed a good fit with the results from about 8 million nodes.
Therefore, the former number (6.5 million) was selected as the optimal number of
nodes. The number of nodes for internal cooling passages domain is about 2.2
million, for the hot gas path domain is about 2.5 million, for solid domain it
amounts to approximately 1.7 million. Views of the chosen grid for leading edge
film-cooling holes are presented in Fig. 3. The computations were equated for one
blade with periodic boundary conditions.

Fig. 2 Blade body mesh
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Three-dimensional Reynolds-averaged Navier–Stokes analyses of fluid flow and
film cooling were performed with the help of ANSYS CFX 14.5 [7] which employs
an unstructured grid system. The solutions were obtained using the finite volume
method of discretization of the compressible RANS equations. The shear stress
transport (SST) turbulence model [8] is used as a turbulence viscosity equation
solving and closure system of equations. The SST model is put into action by
solving a turbulence frequency-based model (k-ω) near the wall and a (k-ɛ) model

Fig. 3 Internal cooling passages mesh

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 S,m

Mesh 1 (1.5m nodes) Mesh 2 (2.2m nodes) Mesh 3 (3.5m nodes)
Mesh 4 (6.5m nodes) Mesh 5 (8m nodes)

Fig. 4 Grid dependency test

368 K. Vinogradov and G. Kretinin



in the main flow. The blending function developed by Menter [9] ensures a smooth
transition between the two models. Bardina et al. [10] showed that the SST model
captures a flow separation more effectively than other eddy viscosity models, and,
thus, predicts the near-wall turbulence that is essential in prediction of turbulent
heat transfer.

SST turbulence model is used in a significant amount of the works [11] in the
field of CFD modeling and analysis of film-cooling process. Thus, Didenko et al. in
the paper [12] accomplished verification of this approach to simulation of conjugate
heat transfer on HPT blades.

The chemically ideal air–gas mixture from ANSYS CFX was used as a working
medium. Air and gas had only differences for their thermodynamic state. Air
entered the blade cooling passages and went out into the air–gas channel through
the holes on the leading edge and the exit slit. Gas entered the inlet of the blade
passage. As the material for the blade, heat-resistant alloy was accepted. Main
boundary conditions are shown in Fig. 5.

The boundary conditions at the inlet of the computational model (radial distri-
bution of temperature, pressure, and flow angle) were accepted according to the
design gas-dynamic calculations for the gas turbine under consideration. Temper-
ature and pressure radial distributions are presented in Fig. 6. Initial design Rey-
nolds number is based on blade chord length (b), and outlet velocity at midspan—
Reb = 1.15 * 106. Isentropic Mach number at midspan—Ma = 0.715. The results
of CHT computations of cooling efficiency for the blade areas under consideration
were area averaged on the blade surfaces shown in Fig. 7. The two most important

Fig. 5 Boundary conditions
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blade areas (the leading edge and the blade tip) were considered. Low LE cooling
effectiveness level can lead to blade breakdown (due to hot gas penetration into
cooling passages). Blade tip breakdown leads to essential aerodynamic efficiency
reduction due to tip gap increase. In both cases, we will be able to have acceptable
average cooling effectiveness.

As a result, the cooling efficiency was obtained being calculated by the formula:

Θ=
Trec,m −Tcw

Trec,m −Ttc
ð1Þ

To assess aerodynamic performance kinetic energy loss value ζ was applied. The
loss value was calculated by the Sieverding formula [13]:

ζ=1−
1− P1 ̸P*

1

� �ðk− 1Þ ̸k

1− P1 ̸P*
0

� �ðk− 1Þ ̸k ð2Þ

Total pressureTotal temperature

Fig. 6 Inlet hot gas parameters radial distributions

Fig. 7 Surfaces of averaging for leading edge and tip

370 K. Vinogradov and G. Kretinin



This parameter can be used to access aerodynamic characteristics of the blade. In
this case, changes in flow rate of coolant are not taken into account. However, hot
gas and cooling air pressure ratios were set as constants (hot gas path total pressure
P* and cooling air total pressure P*

rel were considered as correlated parameters).
Therefore, the total coolant flow rate does not have essential changes.

UQ and RDO Problem Statement

In the test case proposed, the HPT blade tip gap is the only considered geometrical
uncertainty resulting from HPT manufacture tolerance and assembling deviations.
The authors chose the theoretical Gaussian distribution for tip gap pdf function, due
to several experimental investigations on prototype engines. The nominal dimen-
sions’ assembly draft value of the tip gap was obtained as 0.5 mm and set as the
mean value. The standard deviation was 0.1 mm.

In this test case, the following operational deviations are examined: hot gas total
pressure and total temperature mean values T*, P* in the channel inlet are the first
and the second operational uncertainties. Deviations of these parameters result from
uncertainties of manufacture and assembling deviations of engines parts (com-
pressor, combustion chamber, turbine, etc.) and from different engines operating
time and conditions.

Cooling air total pressure under the blade in relative coordinate frame P*
rel is the

third operational uncertainty. This operational uncertainty has the same pdf distri-
bution as the hot gas pressure because both parameters depend on compressor
pressure ratio. These parameters were considered as correlated.

Hot gas temperature and pressure inlet values in the channel were obtained from
experimental investigations of 90 industrial gas turbine engines. These engines are
similar to the engine optimized in the paper, in terms of dimension, power, and
efficiency. During the abovementioned engine tests, the exhaust gas temperature
(EGT) and the compressor pressure ratio were measured. The EGT and the com-
pressor pressure ratio for these engines are presented in Fig. 8.
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Hot gas parameters in the channel inlet and cooling air parameters are calculated
from EGT values (experimental data is showed in Fig. 8) by means of verified
thermodynamic calculations methodology used at NPO Saturn. Correlation and
dependence between EGT and hot gas parameters were obtained on several test
engines and implemented into a thermodynamic model. The radial distribution of
total temperature after the combustion chambers has almost the same character. The
data was acquired from the combustion chambers separate tests of the reviewed
engines. Therefore, we can assume the constant shape of the radial temperature
distribution. In spite of that, the mean values of the exhaust temperature of the
combustion chamber and pressure in real engines change according to variation of
EGT from Fig. 8. Meanwhile, deviations of the mean temperature and pressure in
the hot gas path inlet ΔT*, ΔP* were set as operational deviations. ΔP*

rel was
considered as a parameter correlated to ΔP*. In our research, the epistemic
uncertainties were not taken into consideration due to dimensionality problem.
More than 60 calculations for the six parameters considered were executed.

The general statement of the RDO and UQ procedure is described in chapter
“Uncertainties Identification and Quantification.” In our research, we consider a tip
gap being the value of the blade tip clearance, α the angle of the film-cooling hole
arrangement axis, and L the distance to the leakage point as variable parameters
(vector x). Thus, variables α and L are regarded as the deterministic ones, and tip
gap is considered as the stochastic value distributed according to the normal law
with mean square deviation 0.1 mm. As an external conditions’ vector (e), we take
into consideration corrections for input pressure and temperature, as well as those
for cooling air pressure ΔP*, ΔT*, ΔP*

rel. These parameters are the stochastic
values, which distribution laws were obtained from the experimental data and are
shown in Fig. 9. Standard deviation for ΔT* was 21.42 K and 0.236 bar for ΔP*.

T*∆

Fig. 9 External conditions vector components pdf (for hot gas temperature deviations)
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It is necessary to note that in robust optimization task ΔP* and ΔP*
rel were con-

sidered as correlated parameters with correlation coefficient equal to 1.
When solving robust design optimization, efficiency values y= f (x, e) are the

random ones. In this case, it is necessary to use probabilistic optimization criteria
y ̃(x ̄). In our study, we regard the cooling efficiency values (for the leading edge and
the tip) and those of the kinetic energy loss provided with 90% probability as
probabilistic criteria Pc f (x, e)≤ y ̃(x ̄)f g≥Pp the efficiency value ensured with
probability no less than the one given [14]. It is the most general criterion, used for
most robust optimization tasks. Sometimes we need to solve few robust opti-
mization tasks at different given probability levels. A probabilistic constraint tip gap
value ≥ 0.2 mm provided with 90% probability was considered in our work.

The main problem occurring while solving robust design optimization problem
is that of determining probabilistic criteria values. The simplest and the most uni-
versal method of evaluation of probabilistic criteria is the Monte Carlo method. The
main advantage of this method, as applied to RDO problems, is the absence of
necessity to make any priori assumptions about the goal function peculiarities
(smoothness, monotony, continuity, differentiability, and so on). However, the
efficiency of the Monte Carlo method applied while solving real-life problems
largely depends on the required accuracy of definition of probabilistic criteria.
Particularly, applying the gradient methods of optimization, requiring high accuracy
of definition of probabilistic criteria, results in high computational expense (re-
quired number of tests at each iteration of extremum search makes up ≈106 to 109).

When solving the task under consideration, we used the Monte Carlo method
along with the method of multi-criterion optimization IOSO [15] as well as the
procedure of multi-level optimization involving surrogate models [16–18].

In the present work, APPROX software was used for surrogate model con-
struction. This software was developed by Sigma technology and NPO Saturn in
EU FP6 program NODESIM-CFD [19]. The response surfaces constructed based
on the artificial neural network modeling (radial basis function) [20] in combination
with modified full square regression as the low-fidelity model.

HPT Blade RDO Problem Solution

To construct surrogate model iterative procedure was implemented to CHT com-
putations in ANSYS CFX. Within the applied procedure of multi-level optimiza-
tion, four iterations were carried out. Initial Design of Experiments (DoE) had 32
calculations with additional 10 calculations at every multi-level optimization iter-
ation. Therefore, total number of calculations in database to construct surrogate
model was ≈70. At the first step, the initial DoE based on 32 CHT computations
was constructed. The Sobol uniform sequence algorithm was applied to generate
initial combinations of variable parameters. In Fig. 10, two flow patterns and
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distributions of the cooling flow concentration on the blade surface for points from
1 multi-level iteration were presented.

Point 33 (a) is characterized by a high level of leading edge cooling effectiveness
due to hot gas and cooling flow interaction (mixing) in this region. Point 40 (a) has
a high level of blade tip cooling effectiveness and low kinetic energy losses ζ.
However, LE cooling effectiveness is extremely low for this point. Therefore,
Fig. 15 shows that different combination of uncertainty parameters provides dif-
ferent interaction between hot gas and cooling air with a wide range of considered
areas cooling effectiveness and aerodynamic efficiency.

Surrogate model database modifications (criteria and variable parameters) via
multi-level iterations for leading edge and blade tip cooling effectiveness are pre-
sented in Fig. 11. Variations of accuracy for low-fidelity models via iterations for
the first criterion (leading edge cooling efficiency) are shown in Fig. 12.

It should be noted that accuracy of approximation of the first criterion (leading
edge cooling efficiency) has the minimal value less than 2%.

The tendency is noticeable toward increase of low-fidelity model accuracy under
the growth of the number of iterations for all the considered criteria. It should be
noted that accuracy of approximation of the second criterion (blade tip cooling
efficiency) has the minimal value about 1.5%.

We can stop multi-level optimization iterations process when prediction accu-
racy is compared with database average accuracy. We have attained this necessary
accuracy level at the 4th multi-level optimization iteration.

Therefore, the obtained surrogate model can provide the necessary level of
prediction accuracy to carry out investigations of the different robust optimization
task statement. It is possible to increase the number of iterations or to apply another
response surfaces technique to improve the quality of approximation (if it is
necessary).

Using the obtained surrogate model, we have solved different optimization tasks,
based on deterministic principles and different robust criteria.

Fig. 10 Distribution of metal temperature and cooling flow concentration on blade surface for
points 33 (a) and 40 (b) from surrogate model database
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Using probabilistic criteria, the robust optimal solutions for the mentioned RDO
task were obtained. Pareto set and the chosen point are presented in Fig. 13. We
choose an “angle point” (red dot in Fig. 13) from Pareto set. Obviously, the desire
to reduce the kinetic energy loss to minimal values can result in sufficient decrease

LE_90%

re
b_

90
%

Fig. 11 Surrogate model database modifications (criteria) via iterations for leading edge and
blade tip cooling effectiveness

Pareto set average accuracy

Prediction accuracy

Data base average accuracyLE
,  %

Fig. 12 Variation of surrogate models accuracy for leading edge cooling effectiveness
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in cooling efficiency both as to the tip and as the leading edge (left part of the graph
in Fig. 13). At the same time, the trade-offs make it possible to get reasonable
values for both the cooling efficiency and the loss. The point regarded as a sought
for solution of the task is indicated in red. In such a case, choosing of the angle
point is the most evident optimization result.

It should be mentioned that we obtained necessary levels of robust criteria
characterizing the leading edge cooling effectiveness, the blade tip cooling effec-
tiveness, and kinetic energy losses at the chosen point from the Pareto set (angle
point).

• ΘLE > 0.343 with 90% probability;
• Θreb > 0.193 with 90% probability;
• ζ<0.133 with 90% probability;

Comparison of the obtained robust solution with a deterministic optimum point
is presented in Fig. 14.

The deterministic criterion (ΘLE) is 4.5% more for Point 3 (the deterministic
optimum point). It should be noted that the robust criterion (with 90% probability)
is 1.8% less than for the RDO procedure result.

LE
_9

0%

90%

( reb_90%>0.19)

Fig. 13 Results of the two-criteria RDO task (eΘreb 90% > 0.19-constraint)
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UQ Based on RDO Results via Surrogate Model Refinement

On the basis of the analysis of the robust optimization results, three points were
chosen from the obtained set of the Pareto-optimal solution for the detailed
investigation and verification of the execution of the uncertainty quantification
during the robust optimization process on a single surrogate model.

These points were chosen because of the necessity to investigate optimization
space subdomains with the maximal values of individual optimization criteria.

This approach was made possible by the particular features of the algorithms
used (Monte Carlo+RSM+IOSO). Additional generation of the Design of Exper-
iments, refinement of the approximating functions (surrogate model), and evalua-
tion of the probabilistic criteria were conducted in the vicinity of the chosen points.
Areas of interests chosen for the refinement of a surrogate model by generating
additional points for the Design of Experiments are shown in Fig. 15.

For the refinement of the surrogate model, a special procedure was developed.
Generally, it consists of seven steps.

1. Generation of 16 uniformly distributed points in the neighboring areas of each
of the chosen points using Sobol generator; the areas are shown in Fig. 15 (red
rectangles);

2. Selection of 30 points from the resulting set by a specific criterion. Maxi-
mization of minimal distance from existing in the DoE points in the parameter
space; Bmin →max;

3. Computation of the obtained 30 points on a high-level 3D CFD model (CHT of
HPT blade);

LE

LE=0.363 LE=0.347

Robust optimum
solution

Deterministic
optimum solution

Fig. 14 Probability density functions for RDO solution and deterministic optimum point
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4. Extending DoE after processing result of the CFD computations;
5. Modification of the approximating functions on the basis of CFD results;
6. Evaluation of the probabilistic criteria and distribution laws on the refined

surrogate model;
7. Comparison of the robust optimization results and UQ results.

Employed procedure allows to carry out UQ during solving process of robust
optimization problem on the various level of surrogate model refinement. At the
same time, it allows to evaluate probabilistic criteria for every point in the original
DoE.

Comparison with evaluation results according to robust optimization model for
the point 1 is shown in Fig. 16 (comparison of the pdf for leading edge cooling).
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Fig. 16 Refinement of selected point’s parameters evaluation. LE cooling effectiveness
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Comparison of the integral accuracy of the surrogate models for the point 1
before and after refinement (robust optimization and uncertainty quantification) is
shown in Table 1.

Table 1 shows that maximal deviation between probabilistic criteria for the two
surrogate models is observed for the θL̃E 90% values and is less than 2% (0.006 by
absolute cooling efficiency), which indicates similarity between results of both
models and possibility, in principle, of using robust optimization surrogate model
for uncertainty quantification.

Results of computations and evaluations of probabilistic criteria on the refined
surrogate model in comparison with evaluation results according to robust opti-
mization model for the point 3 are shown of Fig. 17 (comparison of the probability
densities for all criteria under consideration).

Comparison of the integral accuracy of the surrogate models for the point 2
before and after refinement (robust optimization and uncertainty quantification) is
shown in Table 2.

Table 2 shows that maximal deviation between probabilistic criteria for the two
surrogate models is observed for the θreb 90% values and is equal to 2.7% (0.005 by
absolute cooling efficiency). This discrepancy was caused by using this criterion as
a constraint for the robust optimization. The other two parameters are equal

Table 1 Accuracy
comparison between RDO
surrogate model and UQ
model for point №1

θ̃LE 90% θ̃reb 90% ζ ̃reb 90%

RDO 0.337 0.192 0.132
UQ_refinement 0.331 0.192 0.133
Δ (%) 1.9 −0.4 −0.1

Fig. 17 Refinement of selected point’s parameters evaluation. LE cooling effectiveness
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between models with even higher precision, which indicates similarity between
results of both models and possibility, in principle, of using robust optimization
surrogate model for uncertainty quantification.

Conclusions

1. One of the most promising techniques to solve UQ and RDO problems in
coupling is, for example, usage of approximate assessments of probabilistic
criteria under Monte Carlo combined with direct optimization techniques IOSO.

2. Application of the multi-level optimization procedure offers a significant
reduction of the computation cost and time expenditures for the solution of
complex real-life problems while maximizing the probability of manufacturing.

3. Uncertainty quantification using combined method (Monte Carlo+RSM+IOSO)
was performed. Primary characteristics and probabilistic criteria of the thermal
state and aerodynamic characteristics of the HPT blade were obtained.

4. Conducted investigation has shown that surrogate model constructed during
robust optimization provides acceptable accuracy of the predictions of the
numerical characteristics of the model and required probabilistic criteria (mean,
standard deviation, etc.). Initial surrogate model (RDO) has shown acceptable
accuracy in comparison with extended and refined models on all three examined
regions. On average, the difference between results is below 2.5–3%.

5. The largest difference between surrogate models (about 6%) was observed in the
case of probabilistic criteria of the blade tip thermal state, which was used as a
constraint. It was caused by the low number of computational points in the
subregion used in solving robust optimization problem.

6. Results of solving robust optimization problem let us estimate probabilistic
criteria with acceptable accuracy in the required regions of the space of
parameters and optimization criteria. This proves that employed approach to
solving problems of UQ and RDO simultaneously is highly efficient.

Table 2 Accuracy
comparison between RDO
surrogate model and UQ
model for point №3

θ̃LE 90% θ̃reb 90% ζ ̃reb 90%

RDO 0.262 0.216 0.143
UQ_refinement 0.267 0.222 0.142
Δ (%) −1.8 −2.7 0.3
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Application of Uncertainty
Quantification Methodologies to Falcon

G. Rogé and X. Loyatho

Geometry, Design Point, Modelization

Geometry:

The geometry of the generic Falcon Jet has been delivered to workshop participants.
The CAD model was available under several formats: .CATPart, Catia V5R20
ServicePackage 6 HotFix74; igs; .stp.

Access rights have been granted upon request for the own work of the only
Parties (Alenia Aermacchi SPA, Institut National de Recherche en Informatique et
en Automatique, NUMECA, Vrije Universiteit Brussel and Technische Universiteit
Delft) involved in IC-03 test for the purposes and the duration of UMRIDA project.

Any publication of data resulting from the use of this “Géométrie Falcon
Générique” will be subject to the prior authorization of DASSAULT AVIATION in
accordance with article 8.3.

All the data were written on a CD ROM (confidential and the intellectual
property of DASSAULT AVIATION. It may not be used, reproduced, modified, or
disclosed without its authorization) (Fig. 1).

Design Point:

The general description of the Falcon Jet test case is the following: Mach num-
ber = 0.8, Angle of Attack = 2°, Altitude = 40,000 ft = 12,192 m, Reynolds
number = 14.512 Million (based on mean aerodynamic chord), Reference den-
sity = 0.30132 kg/m3, Reference pressure = 18820.15 Pa, Reference tempera-
ture = 216.65 K, Reference velocity = 236.57 m/s, Reference length = Mean

G. Rogé (✉) ⋅ X. Loyatho
Dassault Aviation, 78 quai Marcel Dassault, 92552 Saint-Cloud, France
e-mail: gilbert.roge@dassault-aviation.com

X. Loyatho
e-mail: ximun.loyatho@dassault-aviation.com

© Springer International Publishing AG, part of Springer Nature 2019
C. Hirsch et al. (eds.), Uncertainty Management for Robust Industrial Design
in Aeronautics, Notes on Numerical Fluid Mechanics and Multidisciplinary
Design 140, https://doi.org/10.1007/978-3-319-77767-2_24

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_24&amp;domain=pdf


aerodynamic chord = 2.888 m, Reference area = 49 m2 (full aircraft), Moment
reference point: (x = 9.0355 m, y = 0 m, z = 0 m).

Modelization:

The modelization is the following: Reynolds-Averaged Navier–Stokes (RANS) 3D,
Wall treatment: adiabatic no-slip wall, Flow regime: fully turbulent. Turbulence
modeling: Spalart–Allmaras or k-ε SST two layers or k-ω SST Menter, Volume
mesh: y+ ∼ 1.

Uncertainties

Aerodynamic parameters:

Two aerodynamic parameters have been considered: the angle of attack and the free
stream Mach number. Stochastic modelization follows bounded, asymmetric beta
PDF distributions (Holland approach) with the following parameters: angle of attack
min = 1.97°, angle of attack max = 2.1°, most likely value for angle of attack = 2°,
free stream Mach number min = 0.795°, free stream Mach number max = 0.807°,
most likely value for free stream Mach number = 0.8 (Figs. 2 and 3).

Fig. 1 Generic Falcon Jet
(IC-03)

Fig. 2 Beta law for AoA
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Geometric parameters:

Eight geometric parameters have been considered: These parameters control wing
spanwise twist angle distribution (x/c = 0.25; rotation/control section plane). The
eight control sections (S2, …, S9) are the following: 0.999 y + 0.008
z = 1240.614; 2205.710; 3131.413; 3848.613; 5293.181; 6628.500; 8074.377;
9244.835 mm.

Stochastic modelization follows Bounded, Asymmetric Beta PDF distributions
(Holland approach) with the following parameters: Delta twist angle min = −0.5°,
Delta twist angle max = 0.2°, Most likely value for Delta twist angle = 0.01°
(Figs. 4 and 5).

Fig. 3 Beta law for free
stream Mach number

Fig. 4 Beta law for twist
angle
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Modeling uncertainties (epistemic):

Modelization uncertainties have been considered both using different RANS Tur-
bulence models: Spalart–Allmaras, k-ε two layers, k-ω SST Menter, and different
set of coefficients for these models.

Numerical error:

Numerical error has been considered through mesh: volume mesh: Y+ = 1, Y+ < 1,
Y+ > 1; skin mesh density: 2; other effects.

Expected Output

For total drag coefficient (CD), lift coefficient (Cl), pitch moment coefficient (Cm),
wing spanwise cCl(y) distribution, Cp distribution (cutter y = 3848 mm), the goal
is to compute both 4 first statistical moments (mean value, standard deviation,
skewness, kurtosis) and PDF/CDF.

One of the additional objectives is to perform the following cross comparisons
between partners: RANS exploitation, sensitivity study (first and second deriva-
tives), uncertainty propagation study (Method of Moment, Monte Carlo family,
Polynomial Chaos family, other methods), study of cross effects (e.g., turbulence
modeling—mesh), global UQ on the database incorporating modelization (turbu-
lence), numerical error (mesh), operational (AoA, free stream Mach number), and
geometrical (wing spanwise twist angle distribution) uncertainties.

Fig. 5 Control sections
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Results Dassault Aviation

CFD framework:

Dassault Aviation in-house Navier–Stokes solver AETHER is based on Streamline
Upwind Petrov Galerkin (SUPG: more precisely, GLS, Galerkin Least Square)
stabilized finite element approach. Navier–Stokes equations are symmetrized using
entropy variables. Finite element spatial discretization is based on unstructured
tetrahedral elements. A fully implicit iterative time-marching procedure based on
GMRES (BSOR preconditioning) algorithm allows us to an efficient resolution.
Domain decomposition and parallelized (using MPI) led us to a scalable and out-
performing code.

Source code differentiated with Tapenade (Automatic Differentiation product of
INRIA) led us to Direct and Adjoint approach.

Baseline calculation:

In order to build a reference point for uncertainties study, our choice is the
following: Spalart–Allmaras and an unstructured tetrahedral mesh (7.17 Million
vertices, 42.6 Million tetrahedral elements) (Figs. 6 and 7).

Fig. 6 Mesh symmetry
plane, y = 0. Zoom

Fig. 7 Cp distribution
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Mesh effect:

Four unstructured tetrahedral meshes have been built starting from the same surface
mesh: MESH 1, 7.17 Million vertices; MESH 2, 8.60 Million vertices; MESH 3,
8.91 Million vertices; MESH 4, 9.66 Million vertices (Fig. 8).

Turbulence modeling effect:

Three modelizations have been compared: Spalart–Allmaras; k-omega SST
MENTER; k-epsilon 2 layers (Fig. 9).

Fig. 8 Mesh effect (Spalart–
Allmaras)

Fig. 9 Model effect (Mesh 1)
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Aerodynamic parameters:

For uncertainty propagation approach, Method of Moments, order 1 has been used
(Figs. 10, 11, 12 and 13).

Fig. 10 Mach number effect
(Spalart–Allmaras, Mesh 1).
Cp. (± standard deviation)
Cutter y = 3848 mm

Fig. 11 Mach number effect
(Spalart–Allmaras, Mesh 1).
Drag (± standard deviation)
versus Mach
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Geometric parameters:

For uncertainty propagation approach, Method of Moments, order 1, has been used
(Figs. 14, 15 and 16).

Fig. 12 AoA effect (Spalart–
Allmaras, Mesh 1).
Cp. (± standard deviation)
Cutter y = 3848 mm

Fig. 13 AoA effect (Spalart–
Allmaras, Mesh 1). Drag
(± standard deviation) versus
AoA
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Partner’s Results

NUMECA:

CFD framework:

NUMECAFINE TM/OPEN Solver Navier–Stokes is based on a second-order
central difference scheme. Convergence criterion is to reach 7 orders of magnitude
on relative residual. For a simulation starting from scratch, CPU is: 16 h on 1 core.

Fig. 14 Eight twist angles. Cp ± standard deviation distribution

Fig. 15 Dassault Aviation.
Eight twist angles.
Cp ± standard deviation.
Cutter y = 3848 mm
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Baseline calculation:

In order to build a reference point for uncertainty study, NUMECAS’s choice is the
following: Spalart–Allmaras and a coarse mesh (no viscous layer) with around 3
Million of unstructured hexahedral cells, 3.5 Million of vertices and refinement
close to: LE, TE, and wing/nacelles wake (Figs. 17 and 18).

For uncertainty propagation approach, Sparse Grid Level 1 NIPC, 31 collocation
points (Smolyak quadrature) have been used.

CPU is 5 h on 100 cores (10 uncertainty variables: 8 twist angles, AoA, Mach)
(results are given on Figs. 19, 20 and 21).

Fig. 16 Dassault Aviation.
Eight twist angles.
cCl ± standard deviation
distribution

Fig. 17 Surface Mesh (Hexpress/Hybrid mesh generator)
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Fig. 18 Pressure coefficient contours and streamlines on undeformed geometry at nominal
operating conditions

Fig. 19 Cutter
y = 3848 mm. Mean value of
Cp. Red color: RANS
Dassault Aviation; Green
color: NUMECA (coarse
mesh without viscous
layer → too backward
shock, as with Euler
approximation)
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Alenia Aermacchi (Leonardo):

Leonardo performs only Euler calculations. Of course, Euler instead of RANS
approach let Leonardo a too backward shock.

For uncertainty propagation approach, Method of Moment Order 2 has been
used (Figs. 22 and 23).

Fig. 20 NUMECA. Eight
twist angles. Cp ± standard
deviation. Cutter
y = 3848 mm

Fig. 21 NUMECA. Eight
twist angles. cCl ± standard
deviation distribution
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Global coefficients comparison:

Dassault Aviation NUMECA LEONARDO

CD 0.03110 0.00620
CI 0.37291 0.39300
Cm −0.07537 −0.17500
Std CD 0.00030 0.00027 0.0201
Std CI 0.00411 0.00640 0.0101
Std Cm 0.00076 0.00320 0.0107

Fig. 22 Cutter
y = 3848 mm. Mean value of
Cp. Red color: RANS
Dassault Aviation; Green
color: Leonardo

Fig. 23 Cutter
y = 3848 mm. Standard
deviation of Cp. Red color:
RANS Dassault Aviation;
Green color: Leonardo
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Collaboration TU DELFT—Dassault Aviation

TU Delfts UQ approach is based on Bayesian Model Scenario Averaging (BMSA).
For the Spalart–Allmaras, 14 sets of 7 coefficients (KAPPA, CW2, CW3, CV1,

CB1, CB2, SIGMA) have been built by TU Delft.
RANS calculations, using Dassault Aviation RANS code Aether has been per-

formed (Figs. 24 and 25).

Fig. 24 Uncertainty on
Spalart’s coefficients. Cp for
the 14 sets of coefficients.
Cutter y = 3848 mm

Fig. 25 UQ on Spalart’s
coefficients. Cp ± Std. Cutter
y = 3848 mm. Zoom close to
shock
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Conclusion/Lessons Learned

A UQ Database incorporating modelization (turbulence), numerical error (mesh),
operational (AoA) and geometrical (wing spanwise twist distribution) uncertainties
have been established for IC-03 Falcon Test Case.

Recommendations:

1. Error

• Machine zero solution residual convergence (implicit scheme)

• Results approach constant CD, Cl, Cm, Cp, Cf with grid size adaption
(consistent mesh family)

2. Modelization

• Uncertainty on model and model’s coefficients (BMSA approach) has to be
checked at least on the finer mesh

3. Shape uncertainty

• A large number of uncertain variables (with associated PDF) has to be taken into
account. Variables could be dependent or not.

• Despite shock arising in transonic domain, first and second derivatives with
respect to shape design parameters (like twist angle, relative thickness) are
pertinent. MoM order 1 is very efficient. MoM order 2 is needed in case where
first-order derivative is close to zero.

• NIPC/Sparse Grid is an efficient approach up to ten uncertain variables.
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Application of UQ to Combustor Design

S. Richard, J. Lamouroux, A. Ndiaye and F. Nicoud

Introduction

Combustion instabilities refer to the sustained pressure fluctuations of acoustic
phenomena in combustors where unsteady combustion takes place [5]. Historically,
the handling of combustion instabilities has been achieved through hardware design
changes, and these modifications have included changes in fuel delivery system,
changes in fuel injection distribution pattern and modifications to the combustor or
combustor liner geometry. Design modifications have been made in the aim to
considerably reduce the oscillations behavior of the system so as to avoid the
coupled oscillations which lead to combustion instabilities. Because of the inherent
nonlinearities associated with the turbulent flow or chemical reactions, the coupled
interactions of acoustic waves and heat release fluctuations, combustion instabilities
mechanisms are very complex to study. Besides, the numerous parameters involved
may be huge. It is necessary to control them by taking care of uncertainties on input
parameters and underlying models. Typically, the flame models obtained experi-
mentally or numerically are known to be uncertain and these uncertainties can lead
to strong variations of the system. In the present case, the flame model parameters
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are extracted from self-excited LES computation of a whole annular helicopter
combustor (Fig. 1). Uncertainties on such parameters are associated to grid
refinement, combustion and turbulence model quality, numerics and boundary
conditions which may affect the flame response to acoustic perturbations.

This configuration has been studied using large eddy simulation techniques by
the mean of the AVBP code [2, 4] that are powerful for studying the dynamics of
turbulent flames and their interactions with the acoustic waves [6].

However, these simulations are very CPU demanding and faster tools such as
low-order tools are required in the design process of new burners. Therefore, a
sensitivity analysis of thermo-acoustic results with respect to the input parameters is
thus a necessary step toward reliable predictions of unstable modes in such complex
systems.

In Fig. 2, a typical result of a thermo-acoustic analysis is showed, i.e., a set of
modes, each with its own frequency and growth rate. When no uncertainty is
present, each mode corresponds to a single point (black symbols) in the frequency
plane. Here, modes 1, 4, and 5 should be controlled or avoided since the growth rate
ωi is positive. If uncertainties are present, each mode belongs to an admissible
region of the frequency plane. Mode 2 (and maybe 6) should also be considered. It
suggests that taking into account uncertainties is required for reliable predictions of
combustion instabilities. The study of thermos-acoustic instabilities can be achieved

Fig. 1 Full helicopter engine (right) and detailed view of the annular combustor (left)

Fig. 2 Location of the first
six thermo-acoustic modes in
a typical combustor
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from several approaches: theoretical models, full-scale large eddy simulations
(LES) or by low-order network methods. The problem using theoretical models
remains the large number of hypothesis required simplifying the problem, and
hence, only academic or highly simplified configurations can be studied. Using
large eddy simulation (LES) to predict the dynamics of turbulent flames and their
interactions with the acoustic waves is a good way to reproduce and describe the
behavior of these instabilities. However, even when LES simulations confirm that a
combustor is unstable, they neither suggest how to control the instability, nor give a
measure of the results uncertainty. The CPU cost when using LES techniques is
also very high, and faster tools are required to simplify the design process of the
system. For example, performing parametric studies where hundreds of simulations
are required is not tractable with LES, even on today’s computers. A linear wave
equation for small pressure perturbations p1(x; t) can be derived from the reactive
Navier–Stokes equations by neglecting turbulence and viscous effects and assuming
a frozen baseline flow:

∇ ⋅ ð 1
ρ0
∇p1Þ− 1

γp0

∂
2p1
∂t2

= − γ − 1
γp0

∂q1
∂t

ð1Þ

where q1 is the heat release fluctuation. Assuming harmonic pressure p1 = p ̂ xð Þeiωt
and heat release fluctuations q1 = q ̂ xð Þeiωt, this equation becomes:

∇ ⋅ ð 1
ρ0
∇p ̂Þ+ ω2

γp0
p ̂= iωγ − 1

γp0
q ̂ðxÞ ð2Þ

where p ̂ and q ̂ are the complex amplitude of the pressure and heat release distur-
bance, ω=2πf is the complex angular frequency of the thermos-acoustic mode.
The density ρ0 and the specific heat ratio γ can depend on space x and are known
quantities related to the baseline flow; the thermodynamic pressure p0 is constant
under the zero Mach number assumption. In this equation, the right-hand side term
is closed by a flame transfer function (FTF) using the n-τ model. It is a global
complex valued quantity that links the heat release fluctuations integrated over the
flame zone to the velocity fluctuation of the acoustic wave at some reference
location xref which is generally placed at the burner inlet:

Q̂ðωÞ=FðωÞu ̂ðxref Þ ⋅ nref ,
Q̂=

Z
Ω
q ̂dΩ

ð3Þ

The FTF is also associated to a unit vector nref. The flame response can be
deduced either from:

• Theoretical model for simple flames
• Large eddy simulation. In the present study, the FTF parameters have been

deduced from a self-excited LES calculation of a Safran Helicopter Engines
combustor
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• Experimental data

The global expression of the FTF reads:

FðωÞ= nðωÞeiωτ ð4Þ

where n is the amplitude of the flame response and corresponds to the time delay of
the latter. To be exploited numerically, the FTF information must be recast in order
to give access to the local heat release q ̂ instead of only the volume integrated bQ.
This is done by introducing the local amplitude and time delay in such a way that:
q ̂ xð Þ= nlocal xð Þeiωτlocal xð Þ. The preceding equations then provide the following
constraint:

neiωτ =
Z
Ω
nlocal eiωτlocal dτ ð5Þ

Further assuming that nlocal has a constant value within the flame region and is
zero elsewhere allows relating the local FTF to the global one, experimentally
measured. The time delay local can then be taken everywhere equal to the global
value given from the experiment. They are known to control combustion insta-
bilities although being uncertain. One objective of this report is to assess the sen-
sitivity of the computed complex angular frequency to these uncertain parameters.

The test case targeted corresponds to a full annular helicopter combustor fed
with N injectors and flames schematically represented in Fig. 3. Each of these
injectors has 2 uncertain input parameters, n the FTF amplitude and τ the FTF time
delay. It is therefore a high-dimensional UQ problem since 2 × N uncertain
parameters are involved. Also, these types of annular system favor azimuthal modes
that consist on a radial propagation of acoustic waves into the system. To deal with
the curse of dimensionality, two strategies have been adopted (a) a brute force
Monte Carlo analysis is performed directly on the 2 × N uncertain parameters and
(b) the dimension of the system is reduced using a UQ methodology called active

Fig. 3 The annular
configuration studied with
one plenum connecting N
burners and an annular
chamber
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subspace. As Monte Carlo methods are known to be expensive, the goal is to
understand the system variations by using only the strongest dimensions provided
by the active subspace approach.

The present chapter is organized as follows. The second section presents the full
annular combustor studied and the LES setup used to simulate this system.
The third one presents the Helmholtz solvers used to study thermos-acoustic
activity of the combustor. In section “Uncertainty Quantification of the
Annular Helicopter Combustor,” a brute force Monte Carlo methodology is applied
to evaluate the uncertain region associated to the first acoustic mode of the system.
The active subspace methodology proposed by CERFACS in chapter “Surrogates
for Combustion Instabilities in Annular Combustors” of this book is used to reduce
the system dimension. Then, the relevant dimensions of the system are used to fit a
linear surrogate model. The purpose is to compute uncertain region of the first
acoustic mode of the system with an affordable number of simulations using the
model. Finally, the prediction and the accuracy of the low-order model are validated
against the initial full Monte Carlo analysis.

LES of a Safran Helicopter Engines Annular Helicopter
Combustor

The industrial validation case targeted in this study is an annular helicopter com-
bustion chamber equipped with N burners. Each burner is composed of swirlers in
which fuel is injected to efficiently mix kerosene with air prior to combustion. In
this study, LES is first used to retrieve FTF parameters from a detailed compressible
CFD unsteady computation with the AVBP solver (Fig. 4). Such a procedure
avoids the realization of expansive tests based on pressure and heat release records.
To reduce uncertainties on boundary conditions, the chamber casing is also sim-
ulated. The computational domain starts after the inlet diffuser and ends between
the high-pressure stator and rotor. In this section, the flow is choked, allowing an
accurate acoustic representation of the outlet. The air flowing in the casing feeds the
combustion chamber through the swirlers, cooling films, and dilution holes, all of
those being explicitly meshed and resolved. Multi-perforated walls used to cool the
liners are taken into account by a homogeneous boundary condition. Such a con-
dition is not suited to account for acoustic damping at the combustor wall, resulting
in a zero dissipation of acoustic waves at the combustor liner, thus often leading to
an overestimation of the acoustic activity in the combustion chamber.

In the present LES, strong acoustic oscillations are found at a frequency close to
500 Hz (Fig. 5), allowing to directly retrieve FTF parameters of the burners. These
parameters are the following: n = 7612 J/m and τ = 1.77 ms.

These parameters will be used for acoustic computations in the following. At this
stage, it is not possible to fully understand the origin of the acoustic instability, even
if a longitudinal mode is suspected from the analysis of the pressure field. In this
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report, the risk factor associated to the different acoustic modes of the system—

including both azimuthal and longitudinal modes, i.e., the probability of the mode
to become unstable is targeted.

Acoustic Computations

The 3D Helmholtz Solver AVSP

To provide an acoustic analysis of the system studied, the Helmholtz solver
developed at CERFACS and called AVSP is initially used to solve Eq. (1) in the
full annular combustor. The aim of this tool is to provide acoustic analysis in

Fig. 4 Full annular Safran Helicopter Engines helicopter combustor (validation case)

Velocity

Heat release

Fig. 5 Velocity and heat release fluctuations from Safran Helicopter Engines’ LES computation
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three-dimensional configurations by taking into account the flame acoustics inter-
actions. For solving the problem given by Eq. (1), it is necessary to give to this
code the mean pressure p0, the mean density ρ0, and the mean field of sound speed
c20 = γ p0

ρ0
obtained from the time-average LES results. The outputs of the solver are

the pressure field p ̂ and the complex angular frequency ω of the acoustic mode: its
real part ωr corresponds to the frequency of oscillation and ωi is the growth rate of
the acoustic disturbances. AVSP is used to study initially thermos-acoustic activity
of the system. As the system is complex, one Helmholtz computation using AVSP
takes 1–10 h running on 32 cores for the full annular combustor.

Single-Sector Computation with AVSP

In order to focus on the longitudinal mode observed in the LES, single-sector
computations are performed with AVSP. Such computations do not allow retrieving
azimuthal modes since rigid walls are considered as boundary conditions between
two different sectors. First, passive flame simulations (i.e., without introducing
acoustic–flame interactions) are performed to identify eigenacoustic modes of the
combustor (Table 1). Several frequencies are found, the first one being around
500 Hz, i.e., close to the one observed in the LES. Active flame simulations are
then conducted, in which the 500 Hz frequency is targeted. These simulations
exhibit the presence of an unstable longitudinal mode at a frequency of 490 Hz
(Table 2 and Fig. 6). This result allows to state that combustion instabilities
appearing in the LES may be related to a longitudinal mode of the combustor.

Full Annular Combustor Computation with AVSP

Single-sector computations can only give access to longitudinal or transverse
modes of the combustor. However, azimuthal modes could also appear, needing for
full combustor (360°) acoustic computations. Passive flame simulations lead to the
results presented in Table 3. The longitudinal mode suspected in the LES analysis
and confirmed in the single-sector calculations is retrieved, while possible azi-
muthal modes are also identified at higher frequencies. At this stage, it is however

Table 1 Combustor eigenfrequencies from single-sector passive flame simulations

Passive flame
Mode index Mode structure Frequency (Hz) Growth rate (s−1)

1 – 495.55 0.0
2 – 1005.99 0.0
3 – 1591.93 0.0
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not possible to know if these modes could be unstable or not. This is why a new set
of Helmholtz simulations is performed including an active flame model based on
the FTF parameters to represent the flame/acoustic interactions. Each simulation
aims at converging one target mode extracted from the passive flame computation.
Results obtained from the new simulations are presented in Table 4 and Fig. 7. It is
shown that both longitudinal and azimuthal modes may be unstable, as their growth
rate is found slightly positive. It should also be underlined that the quite low values
of the growth rate bring uncertainties to this statement, underlying the interest of
performing a UQ analysis of this configuration.

In this UQ analysis, 2 × N uncertain parameters are involved thus, it is worth
investigating on a way to speed up and get at lower cost thermos-acoustic modes of
the system. A new analytical tool developed at CERFACS and called ATACA-
MAC is therefore used as a surrogate model for AVSP and is more suitable for UQ
analysis in the following.

Table 2 Combustor eigenfrequencies and associated growth rates from single-sector active flame
simulations

Active flame
Mode index Mode structure Frequency (Hz) Growth rate (s−1)

1 Longitudinal 490.14 1.0e−1
2 Longitudinal 1004.22 9.22e−2
3 Longitudinal 1591.48 1.1e−1

Fig. 6 Pressure perturbation from active flame simulations

Table 3 Combustor eigenfrequencies from full combustor passive flame simulations

Passive flame
Mode index Mode structure Frequency (Hz) Growth rate (s−1)

1 Longitudinal 495.55 0.0
2 Azimuthal 683.20 0.0
3 Azimuthal 683.228 0.0
4 Azimuthal 950.46 0.0
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Analytical Tool to Analyze and Control Azimuthal Mode
in Annular Chambers

The Analytical Tool to Analyze and Control Azimuthal Mode in Annular Chambers
(ATACAMAC) has been developed to handle more complex geometries with an
arbitrary number of burners [1] or configurations with two annular cavities which
can couple an annular plenum and an annular chamber [1]. This study focuses on
such a configuration with a 1D annular plenum which connects N burners and a 1D
annular combustion chamber, representative of a real industrial gas turbine.
The ATACAMAC tool is based on the annular network reduction, which first splits
the full annular combustor into N sectors containing one sector of the annular
chamber and plenum and an H connector between the annular cavities and the
burners.

Each sector is split into two parts:

• Propagation in annular cavities (plenum or chamber): the plenum and the
chamber can be treated separately. Pressure (p′) and velocity (u′) fluctuations in
the ith sector of the plenum and chamber at the azimuthal position θ, Xθ = [p′p (θ);
u′p(θ); p′c(θ); u′c(θ)]

T are linked to acoustics quantities Xθ+Δθ the location θ+Δθ by
a 4-by-4 rotation matrix Ri(Δθ).

• Interactions which couple the annular plenum and the annular chamber via the
burner and the flame: acoustic pressure and velocity before the junction (θ−) are
linked to the acoustic quantities after the junction (θ+) by a 4-by-4 matrix Ti

Table 4 Combustor eigenfrequencies from full combustor active flame simulations

Active flame
Mode index Mode structure Frequency (Hz) Growth rate (s−1)

1 Longitudinal 490.14 1.22e−1
2 Azimuthal 680.17 6.05e−2
3 Azimuthal 680.24 6.27e−2
4 Azimuthal 950.42 −6.16e−2

Fig. 7 Pressure fluctuation modulus field. Left—first longitudinal mode (490 Hz); right—first
azimuthal (standing) mode (680 Hz)
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which depends on four coupling parameters [1]: Γi,1 corresponds to the plenum/
burner interaction while Γi,4 is associated with the chamber/burner coupling. Γi,2

and Γi,3 are cross-interactions between the plenum and the chamber. The matrix
Ti is obtained from jump conditions at null Mach number. The 4-by-4 matrix
associated with the complete ith sector (interaction+propagation, which corre-
sponds to Δθ = 2π/N) is then equal to:

Xiðθ0 + 2π ̸NÞ=RiXiðθ+
0 Þ=RiTiXiðθ−

0 Þ ð6Þ

Since the quantities between neighboring sectors are equivalentXi(θ0
−) =Xi−1(θ0 +

2π/N), using the periodicity condition XN+1(θ0) = X1(θ0) yields:

X1ðθ0Þ= ð ∏
1

k=N
RiTiÞX1ðθ0Þ ð7Þ

The eigenvector problem of Eq. (7) has non-trivial solutions if, and only if, its
determinant is null leading to the dispersion relation:

detð ∏
1

k=N
RiTi − IdÞ=0 ð8Þ

The annular chamber is studied with identical burners and flames so that all
coupling parameters Γi and matrices Ri or Ti are the same (the subscript i can be
omitted in this section).

Since ATACAMAC relies on a simplified description of the combustor geom-
etry, an adjustment of some geometrical parameters has first to be performed to fit
3D results from AVSP. Such an adjustment is based on the objective of reproducing
both the real and imaginary part of the targeted eigenmode for a number of imposed
FTF delays τ, which is a key parameter for flame instabilities prediction. In practice,
this is mostly done slightly varying the burner length, since the burner (or injector)
geometry is complex and its acoustic length is not easy to extract from a CAD.
Results from this fitting procedure are presented in Fig. 8 and Table 5.

Uncertainty Quantification of the Annular Helicopter
Combustor

Principle

ATACAMAC is used to study how the uncertainties on n and τ propagate into
uncertainties on the growth rate ωi and to determine the risk factor of the acoustic
mode, i.e., the probability for a mode to be unstable (ωi > 0):
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Risk Factor ð%Þ=100
Z ∞

0
PDFðωiÞ dωi ð9Þ

Parameters of the FTF (n and τ) are varied to produce stability maps of the
configuration. The literature does not confer a clear accurate analysis on the
uncertainty range of the FTF parameters n and τ. The latter may have a
non-negligible impact on the stability of the system. We thus retained the same
values as those proposed by CERFACS on the first industrial test case of the project
(see chapter “Surrogates for Combustion Instabilities in Annular Combustors”): σn/
n = 10% and στ/τ = 5%, where ncrocco = 3.916 and τcrocco = 7.097e−4 correspond
to the nominal LES values.

Brute Force Monte Carlo Analysis

Uncertainty quantification analysis is adopted to determine the risk factor of the first
azimuthal mode of the system using the ATACAMAC tool (f0 = ω0/2π = 680 Hz),
i.e., the probability for this mode to be unstable. To do so, a brute force Monte

Fig. 8 Real (left) and imaginary (right) parts of a targeted combustor eigenmode for several FTF
delays—comparisons between AVSP and ATACAMAC after adjustment of the burner length
parameter

Table 5 Comparison of the frequency and growth rate of a targeted unstable mode obtained from
AVSP and ATACAMAC computations after adjustment of the burner length parameter. Results
are obtained with the FTF delay extracted from the LES

Active flame: AVSP versus ATACAMAC
Mode index Mode structure Frequency (Hz) Growth rate (s−1)

AVSP 1st azimuthal 680.17 6.05e−2
ATACAMAC 1st azimuthal 681.25 6.024e−2
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Carlo is first performed on the 2 × N uncertain input parameters. Convergence tests
have proved that 8,000 samples are sufficient to evaluate the factor as well as mean
and standard deviation of the growth rate (Fig. 9).

This study was done by taking care of the fact that the uncertainty on τ may lead
to strong variations of the growth rate. The risk factor defined as the probability that
the mode is unstable is approximately 30%. Monte Carlo methods are expensive to
implement, that is the reason why a new UQ approach called active subspace
(Constantine et al. 2014) is adopted to reduce the system dimensions.

Active Subspace Methodology

Active subspace (Constantine et al. 2014) is used to reduce the dimension of the
parameter space from 2 × N dimensions to just a few. To find active variables of
the system, the method requires gradient evaluation to detect which directions in the
parameter space lead to strong variations of the growth rate. Other directions
leading to a flat response surface are not useful for describing the combustor
stability and hence can be disregarded. The gradient of the growth rate g(pk) with
respect to the input parameters pk = (ni,τi)i=1,N of the kth sample denoted
∇gðpkÞ= ð∇k

pgÞ was thus computed by finite differences.

Fig. 9 Monte Carlo results
using 8,000 samples: PDF of
the mode to be unstable. Such
a computation takes around
10 min versus days with the
AVSP code
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The uncentered covariance matrix C of the gradient vector can then be expressed
as the following:

C=𝔼½ð∇k
pgÞð∇k

pgÞT �≃ 1
M

∑
M

k =1
ð∇k

pgÞð∇k
pgÞT ð10Þ

where 𝔼 is the expectation operator and M is the number of samples. Since this
matrix is symmetric, positive, and semidefinite, it admits a real eigenvalue
decomposition:

C=WΛWT ,Λ= diagðλ1, . . . , λmÞ, λ1 ≥⋯≥ λm ≥ 0 ð11Þ

where W is the eigenvector corresponding to the coefficients of a linear combination
of input parameters (Wp

T) and are the eigenvalues which quantify the effect of the
active variable Wp

T on the growth rate response g(p): the higher λi is, the more
significant the active variable Wi

Tp is on the average output response. Figure 10
displays the eigenvalues spectrum obtained by the active subspace method using N
= 500 samples.

It shows that only the first 3–4 active subspaces are relevant and control the
system variations. The first active variable is a constant corresponding to an
equi-weighted linear combination, i.e., associated with the mean flame transfer
function over the N burners. Furthermore, a change of variables could be used to
ease the physical interpretation of active variables as well as improve the accuracy
of the singular value decomposition:

ðni, τiÞ .ℜðF ̂ðω0ÞÞ,ℑðF ̂ðω0ÞÞ ð12Þ

Fig. 10 Eigenvalues
spectrum obtained by the
active subspace method using
N = 500 samples
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where F = [F1, …, FN]
T is the array of FTF of all the N burners viewed as a

periodic complex signal, bF is the he Fourier transform of the collection of FTF,
Fi(ω

0) is the FTF of the ith flame depending on the parameter ni,τi and the pulsation
of the chamber in the absence of burners ω0 = πc0/Lc.

Figure 11 confirms that only 4D active subspace are relevant. Other coefficients
play only a minor role. The idea is using the 3D active subspace to t a surrogate
linear model. This algebraic model is used to perform a Monte Carlo analysis at
reduce cost to determine the risk factor of the first azimuthal mode.

Surrogate Linear Model Regression

The active subspace approach applied in the previous section has provided suc-
cessful results by reducing the 2 × ND parameter space into a 3D space involving
physical quantities associated with the Fourier transform of the FTF. A two-step
method is therefore proposed to estimate at low cost the risk factor of the first
azimuthal mode:

• few samples are used to fit a low-order model

ωî = α0 + α1Av1+ α2Av2+ α3Av3+ α4Av4 ð13Þ

where α’s coefficient are tuned using only few samples of the initial Monte Carlo
database.

Fig. 11 Eigenvalues
spectrum obtained by the
active subspace method using
N = 500 samples and
ℜðF ̂ðω0ÞÞ,ℑðF ̂ðω0ÞÞ
formalism
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• a Monte Carlo is applied on this low-order model.

Results of the model fitting are displayed in Fig. 12 where ATACAMAC growth
rates (using 100 samples) are compared with estimations obtained with the
low-order model. The low-order model has been replayed 100,000 to assess the
growth rate as well as the risk factor of the first azimuthal mode at low cost.
Therefore, the risk factor is approximately equal to 49.87%. The latter is close to the
one assessed previously using Monte Carlo approach (52%).

Conclusion

In this chapter, a new methodology for UQ proposed by CERFACS in this project
and called active subspace was used. This approach [3] detects which directions (or
linear combination of directions) in the parameter space lead to strong variations of
the growth rate. Other directions leading to fit response surface are not useful for
describing the combustor stability and are disregarded, thus reducing the dimension
of the surface response. In this study, computing the active variables requires a
singular value analysis of the gradient of the surface response, which is to be
performed with respect to all the 2 × N dimensions. For the helicopter combustor,
gradient computations were achieved by finite differences to build the active
variables W = (W1, W2, W3) and tune the linear regression model.

Being able to assess the gradient of the growth rate ωi(p) at much lower cost than
performing finite differences is, thus, necessary to achieve an efficient UQ analysis.

Fig. 12 ATACAMAC
growth rates (100 samples)
are compared with
estimations obtained with the
low-order model
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This can be achieved with the adjoint methods and would provide several benefits
as sensitivity analysis using a 3D nonlinear Helmholtz solver as AVSP code. It
would directly take into account all geometry features.
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Manufacturing Uncertainties
for Acoustic Liners

N. Magnino

Introduction

Reduction of aeronautical noise pollution is a design challenge with social, com-
mercial, and technical implications because it eases the acceptance of new airports to
match the always increasing demand of air transportations and reduces taxes and fee
from government agencies and local administrations imposed to the airliner oper-
ating a noisy fleet, but further reduction of noise levels can be achieved only with
introduction of innovative concepts of the design and the manufacturing of almost all
the aircraft subsystems especially if they want newly produced aircrafts to respect
the certification requirements imposed by authorities that are envisaged to be more
and more stringent in the future. In modern turbofan engines, the fan contribution is
one of the most important sources as the predominant portion of the thrust derives
from the fan with the noise propagating both upstream irradiating from the inlet and
downstream from the exhaust. As Leonardo Finmeccanica is one of the world’s top
suppliers of engine nacelles systems for big airliners, regional and business jets, we
will focus only on the inlet noise which can be attenuated using sound-absorbing
acoustic panels, aka acoustic liners installed just before the fan. In general, an
acoustic liner consists of a porous external layer (facing sheet), which permits the
passage of sound waves, one or more layers of honeycombs that act as Helmholtz
resonators (eventually separated by a porous septum in the case of DDOF or multiple
degree of freedom as they are called) and, finally, by a rigid backing skin. As
acoustic liners have to prove effective at least in all the certification conditions
prescribed by customer and authorities (i.e., Approach, Sideline, and Flyover), the
design process (especially in the preliminary phase where a lot of scenarios are to be
considered) is by nature a multi-objective optimization between eventually
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conflicting requirements that can be done manually with a traditional trial and error
method as in the past or automatically [2] with various algorithms but with the risk to
get local or just ideal optima whose real performance falls short in the field due to
uncertainties (e.g., manufacturing tolerances) not being accounted, that is the
rationale behind the participation of Leonardo Finmeccanica in UMRIDA (Fig. 1).

Acoustic Model of a Leonardo Finmeccanica Engine
Nacelle Liner

The industrial validation case targeted in this study is a typical regional jet engine
nacelle integrating an acoustic liner consisting of N Helmholtz resonating cavities.
Each one is essentially composed of a honeycomb cell of a specific height targeted
to attenuate the design frequency of the impinging noise being closed at the bottom
by a rigid backing skin and on top by a porous face sheet whose holes dissipate
energy as the acoustic waves travel back and forth. A consolidated (all metal
SDOF) acoustic liner technology has been selected (Fig. 2) from vast Leonardo
Finmeccanica production of acoustic liners, based on usefulness, readiness, and
cost. The name of the program and the customer as well as engine data and liner
impedance together with some technological process details will not be disclosed,
as they are strictly company confidential. A quick note about the acronym used to
identify the type of panel, single degree of freedom, means there is no division in
the honeycomb cell as opposed to DDOF where a septum is inserted into it. The
main geometrical uncertain parameters of typical SDOF with their driving factors
and the four uncertainties considered in UMRIDA marked in solid black while
others are grayed out:

Fig. 1 Full engine nacelle (right) and detailed views of the acoustic panel interior (upper left) and
perforated facing skin (lower left)
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Acoustic requirements are prescribed by customers and aviation agencies for
three typical flight conditions: Approach; Sideline (or take-off); and Flyover (or
cut-back) illustrated in Fig. 3.

As these requirements can be in contrast to each other and an acoustic liner
providing the best attenuation in one flight condition not necessarily performs well
in the other conditions, hence liners shall be designed through a multi-objective
optimization procedure [2, 3]. Objective function represented by noise attenuation
computed at certification flight conditions in the far-field surrounding the nacelle is
considered. FNM has established an experimental database relevant for the inves-
tigation of manufacturing tolerances of acoustic panels. Specifically, a number of
samples have been manufactured and tested to detect the steady (or DC) flow
resistance for a set of given impinging air velocities by means of the FNM DC flow
rig. Section “Results of Experimental Database Distribution Fitting” will illustrate
how the experimental database has been used to quantify the manufacturing
uncertainties. At the same time, FNM has prepared a numerical model represen-
tative of the nacelle with the acoustic liner using the commercial aero-acoustic
software MSC Actran. In this finite element model, the liner is represented by a
boundary condition of acoustic admittance whose values are taken from the
in-house [4] impedance model via a spreadsheet updated by a macro as a function

• Face sheet open area (PoAeff);     f(Machinery Tool); 
• Honeycomb height (h); f(Material); 
• Holes diameter (d);                         f(Nacelle Geom., Machinery Tool); 
• Holes shape;        f(Manufacturing process);
• Holes pitch (p);                               f(Nacelle Geom., Manufacturing process);
• Perforation angle (α);                     f(Machinery Tool); 
• Face sheet thickness (tfs); f(Material, Manufacturing process); 
• Backing skin configuration;            f(Material, Manufacturing process). 

Fig. 2 Nacelle SDOF liner acoustic panel
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of geometrical and operational parameters. More details about Actran model are
reported in next paragraph, while in section “Integration of Aeroacoustic Model
Within modeFRONTIER Framework” we will describe how modeFRONTIER
software from ESTECO has been used to automate the execution of a series of
acoustic simulations for the purpose of an accurate UQ of the system response.

Aero-acoustic Model of the Liner

For the sake of UQ, the CAA simulations have been restricted to only one condition
(the most computational demanding one, i.e., take-off), with the purpose to consider
more in the further tasks of the UMRIDA project, after having identified the most
efficient strategy. The geometrical parameters of the acoustic panel described in the
previous chapter are entered into a proprietary impedance model [4] together with
values depending on flight condition to get the admittance table in the format
accepted by the boundary condition in the computational acoustic finite element
model. Simulations have been performed with MSC Actran software developed by
Free Field Technology, on an axisymmetric 2D model comprising of about 30,000
quadratic elements. The level of refinement of the mesh must be enough to resolve
the convected waves associated with the frequencies and flow speed considered

Fig. 3 Noise certification reference points
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(highest for take-off) and could be eventually refined to gain accuracy despite an
increase in computational costs. The simulation time to complete one configuration
design was about 2 min running in parallel on eight cores of one of the compu-
tational nodes in the FNM’s HPC. As cost function ideally it should be used the
effective Perceived Noise Level (EPNL) as prescribed by the certification author-
ities, but in order to calculate it it’s necessary to have the whole airplane’s noise
modeled, not only the fan and also all the 1/3 octave band center frequencies should
be considered leading to computational costs not compatible with UMRIDA. In this
work, we will use a simpler metric that can be computed more easily: the overall
sound pressure level (OASPL) defined in:

OASPL=10Log∑
j
10

SPLj
10 ð1Þ

SPLðf Þ=10Log
∑90◦

40◦ ∑m, n prms
2 ðϑ, f ,m, nÞ

p2ref

 !
ð2Þ

The OASPL uniformly sums over the directivity angles and over frequencies the
Sound Pressure Level (SPL) which is a function of the frequency, the root mean
square of the acoustic pressure function of radial and azimuthal modes (that
propagate out of the nacelle) and directivity angle at a distance of 150 ft according
to the scheme in Fig. 4.

All the Actran simulations were performed at two frequencies—the BPF and its
first harmonic 2BPF—and the range of directivity used in this work is 50°–80°,
considered the most critical for the take-off condition (the only one considered for
UQ). In fact, noise radiating from engine inlet is tonal and therefore at the Blade
Passage Frequency (BPF) and its harmonics higher sound levels are propagated. In
this view, a liner should be optimized to attenuate the noise mainly at these
frequencies.

Acosutic Liner

Modal base

Fig. 4 Schematic of far-field propagation and ACTRAN mesh with acoustic panel circled
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UQ of Experimental Database Parameters

The first step is the UQ of the geometrical uncertainties of the acoustic liner.
A campaign of experiments has been conducted by FNM, which has performed the
geometrical measurements of a series of acoustic panels. The database could
therefore be imported in modeFRONTIER software from ESTECO and analyzed
with distribution fitting tool in order to find the statistical distributions which better
fit the experimental data. In order to perform the UQ of the acoustic performances
through a numerical model (sections “Integration of Aeroacoustic Model Within
modeFRONTIER Framework” and “UQ of Acoustic Response”), it is in fact
necessary to first define analytically a distribution which can be considered when
defining the numerical sampling, in order to be accurately representative of the real
database. Next sections will describe the basics of the distribution tool, while after
the theoretical background exposition we will report the results of the analysis
applied to the experimental data.

Distribution Fitting Tool

The distribution fitting tool available in modeFRONTIER software is useful to find,
from a database of 11 statistical distributions, the one that best fits an existing
experimental data distribution.

As illustrated in Fig. 5, the input is an ASCII file containing the database relative
to uncertainties or fluctuations of an existing system. The tool elaborates as output

database 
(uncertainties on 
input variable)

DISTRIBUTION 
FITTING TOOL

Distribution that
best fit database

-1.6919014887911508
-1.2281345213770103
-0.9834573559383085
5.887732058022885
-0.4660459255889362
1.3085665419856252
-0.9693579383675555
-1.03419851040223
-1.2868133964200348
-1.8090502658357865
-0.06878162675903932
2.242829456959847
-2.327985795314203
-

ASCII file: e.g.
-Mach number measured during flight
-Alpha measured during flight
-Manufacturing tolerances database

Uniform
Normal
Cauchy
Logistic
Exponential

Lognormal
Weibull
Gamma
Chisquare
Beta 
Student

?
Kolmogorov-Smirnov 
test

Fig. 5 ESTECO’s distribution fitting tool
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the statistical distribution that best fits these data, giving as output also the most
relevant parameters that identifies it. The tool uses two indexes to quantify how
much the statistical distribution fits the experimental one, the Kolmogorov–Smir-
nov (K–S) test and the maximum likelihood function, explained in sec-
tions “Kolmogorov–Smirnov Test” and “Maximum Likelihood Function”. An
internal optimization is performed, the input parameters being the distribution type
and the relative parameters (i.e., mean and standard deviation for Normal), and the
objective function being the maximization of the K–S coefficient. In particular, a
genetic algorithm is used (i.e., NSGAII [5] from modeFRONTIER) as global
search, and then a gradient-based algorithm (i.e., BFGS [6]) is used for local
refinement. As output, the 11 different statistical distributions are sorted from the
one with lowest value of KS test coefficient (worst fitting) to the one with highest
value of KS test (best fitting). As discussed above, for all the distributions the
relative parameters are reported. In addition, for the best fitting distribution, a plot
that compares the cumulative statistical distribution with the database one is given.

Kolmogorov–Smirnov Test

With respect to Fig. 6, consider a database cumulative distribution FN(x) and a
generic statistical distribution F(x). The distance D is computed as the maximum
absolute value difference between the database and statistical distribution:

D= max
−∞< x< +∞

FNðxÞ− FðxÞj j ð3Þ

Fig. 6 Definition of K–S test
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The Kolmogorov–Smirnov function is then defined as 1D:

KS= 1−D ð4Þ

In the optimization run by the distribution fitting tool, this quantity KS is to be
maximized, and the maximum value will have a superior limit of 1.

Maximum Likelihood Function

An alternative to the K–S parameter to quantify the quality of the statistical dis-
tribution fitting is the maximum likelihood function [7]. Actually, the internal
optimization of the algorithm is performed through the KS test, but the user can
read out for each statistical distribution also this function:

L= ∏
n

i=1
P Xi, αð Þ

−NLL= −
1
n
ln Lð Þ

ð5Þ

In the expression above, α represents the statistical distribution parameter, and
P(xi) represents the probability of the statistical distribution corresponding to the
point xi. The function L is thus computed by the product of the probability cor-
responding to each point of the database that results particularly high only if the
statistical probability is high in correspondence of the database points, that happens
only if the database distribution is similar to the statistical one. The normalized
likelihood function (–NLL) is computed as described in Eq. 5, and thus it is a
function to be minimized.

Results of Experimental Database Distribution Fitting

The different geometrical measurements obtained by the experimental campaign on
the acoustic panel, relatively to: cell depth, face sheet thickness, holes diameter, and
percentage of open area, are then analyzed. Figs. 7, 8, and 9 report the outcome of
the distribution fitting tool of modeFRONTIER, applied to each parameter’s
measurements. The first two charts in every figure are relative to the PDF and the
CDF (probability and cumulative density function) of the experimental data.
Selecting any of the available statistical distribution, the latter one can be
over-imposed on the chart to compare the fitting. Another chart on the left-bottom
corner reports Lilliefors diagram: Basically, a good fitting is obtained when all the
database points (the points of the chart) are contained inside the red lines, which
represent the limits of the selected analytical distribution. Moreover, the parameter
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to quantify correctly the fitting, as noted in section “Maximum Likelihood Func-
tion”, is the maximum log likelihood (LL) function. If we order the LL values from
the lowest to the highest, we get the distribution which better fits the experimental
data. The chart in the right-bottom corner therefore indicates for each distribution
the optimal parameters to fit the database distribution and which is the best one.
These results will then be used by the numerical model (section “Integration of
Aeroacoustic Model Within modeFRONTIER Framework”) to evaluate a series of
sampling points needed to quantify the performance uncertainties.

The optimal distribution regarding cell depth parameter is the logistic, defined by
a location and a scale parameter. The fitting in this case is pretty good (59% of KS

Fig. 7 Distribution fitting tool results of cell depth h

Fig. 8 Distribution fitting tool results of face sheet thickness t
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test), but the likelihood is still high considering a Normal distribution (−2.77 vs.
−2.84 of the Logistic), indicating that a Normal distribution could be used as well
to represent this database.

The optimal distribution regarding face sheet thickness parameter could be the
Normal or the Weibull, defined by a location and a scale parameter in the second
case, and by other two shape parameters in the first. The fitting in this case is not
pretty good accordingly to KS test, but just because the distribution is strongly
characterized by a coarse discretization (due to measurements limitation). Never-
theless, the LL parameter indicates that the likelihood with these distributions is
high (also Lilliefors test confirms it); therefore, it is right to assume one of these
ones as the theoretical distribution for this parameter (that is not limited in reality to
discrete values).

The optimal distribution for the face sheet hole diameter parameter is the Normal
or the Weibull, defined by a location and a scale parameter. The fitting is less good
than in the other cases, but the LL is still the highest considering these distributions
(−2.94 for Normal and −2.95 for Weibull) (Fig. 10).

For the PoAeff distribution, few data are available (eight measurements), but they
are nevertheless enough to give high values of KS factor for many distributions,
confirming that the uncertainty can be modeled correctly (previous series have even
too many samples that may give overfitting an outliers problem). In particular,
Normal distribution has a LL equal to −5.4. For the sake of simplicity, it is
therefore been decided to consider a Normal distribution for all the parameters of
the database, since this type of distribution matches correctly all the variables. The
distributions parameters are summarized in Table 1.

Fig. 9 Distribution fitting tool results of hole diameter deff
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Fig. 10 Distribution fitting tool results of PoAeff

Table 1 Summary of uncertain parameters UQ

Uncertainty Distribution type Mean Standard deviation

Cell depth h Normal 12.544 1.5069E−2
Sheet thickness t Normal 0.8103 2.2625E−2
Hole diameter d Normal 1.3162 1.2803E−2
Percentage of open area PoA Normal 0.060088 1.0815E−3

Fig. 11 modeFRONTIER workflow for aero-acoustic model process automation
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Integration of Aeroacoustic Model Within
ModeFRONTIER Framework

Figure 11 represents the workflow created in modeFRONTIER, (the optimization
platform software developed by ESTECO), utilized for the automatic execution of
the aero-acoustic simulations.

The horizontal flow is related to the application process which has to be executed
for each design simulation, and a dedicated node module is placed in the loop
connected to the other ones. The first node is the direct interface with OpenOffice,
linking to a spreadsheet version of the proprietary semi-empirical model of the
acoustic impedance, developed by Leonardo Finmeccanica [4] to predict the
impedance of the acoustic liner as a function of the given geometrical and flow
parameters associated with flight condition considered. The input parameter nodes
contain all the info related to the distributions, as defined in section “UQ of
Experimental Database Parameters”. Below the OpenOffice interface, the data flow
continues with the extraction of the response data; in this case, three vectors are
defined by three buffer nodes: a set of 24 1/3 octave bands central frequencies in the
50–10,000 Hz range, the real and the imaginary part of the admittance. The buffer
nodes are therefore linked to the following application of the process flow, which is
the direct interface to MSC Actran software developed by Free Field Technology.
This node contains all the information necessary for the aero-acoustic simulation:
(i) An input template file is used to indicate in which position the impedance data
have to be written, (ii) a driver panel contains the batch command to execute the
software by giving in input the model file, and (iii) an output template is used to
indicate which output files have to be extracted by the analysis. The Actran node
contains also a call to MSC PLTViewer with a Python script to calculate out of all
the solution files the OASPL, the final response of the workflow. Apart from the
process automation, the first part of the workflow contains the DOE and the
scheduler nodes. The first one is used to define the design of experiments to be
evaluated; in this case, this is just the nominal or mean value of the distributions, the
values being defined in Table 1. The other node contains the algorithm selected for
the execution of the designs, in this case just a DOE sequence but the same
architecture serves also for optimization not shown here. The RDO properties are
defined in the dedicated panel: To analyze the proper sampling strategy, we could
change the number of sampling points, the order of the polynomial chaos, and the
application of the adaptive sparse methodology that will be described in next
section. In the next chapter, we will then report the results obtained for the UQ of
the response following different methodologies, and finally, it will be selected as the
methodology giving the most accurate results with the least possible number of
sampling simulations.
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UQ of Acoustic Response

The numerical simulations can be performed automatically accordingly to the
specified scheduler algorithm. In order to find the most efficient UQ methodology,
we first performed a large DOE series, to be used to validate the different
methodologies applied. For this purpose, initially we have run a series of 500
simulations, driven by Latin Hypercube DOE from modeFRONTIER, and then
have obtained the UQ of the acoustic performances by the application of a poly-
nomial chaos expansion of the second order.

Adaptive Sparse Polynomial Chaos Methodology for UQ

Since in this UQ problem the number of geometrical uncertainties is not large, the
application of a SS-ANOVA screening tool in order to reduce the number of
important uncertainties is not applicable. We will therefore apply a modified ver-
sion of regression analysis, called adaptive sparse polynomial chaos methodology
[8], which aims not to reduce the number of uncertainties to apply polynomial
chaos expansion, but rather aims to reduce the number of terms of the same
polynomial chaos expansion. The intention is the same (i.e., to perform an accurate
UQ by a reduced number of sampling points, thus making the subsequent robust
design optimization task feasible), but in this way it can be achieved without
necessarily discarding completely any of the uncertain parameters. The method-
ology is basically defined by a stepwise regression analysis [1], where the poly-
nomial chaos expansion terms are iteratively added or removed, according to the
way they improve or worsen the regression model, which is quantified by a
R-square value, computed on the complete database. Once the optimal set of
polynomial terms (i.e., the set giving the highest R-square) is found, the UQ of the
response can be obtained by the reduced polynomial chaos expansion as sketched in
Fig. 12.

As an example from [8], Fig. 13 shows how the R-square changes with the
number of polynomial terms, and how the optimal value is normally reached by an

Fig. 12 Adaptive sparse polynomial chaos methodology
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intermediate number of polynomial terms (too few are not accurate, and too many
gives overfitting).

Another important advantage of the proposed approach, beside the one of
improving the quality of the UQ with the available database, is the possibility to
reduce progressively the number of sampling points, until a satisfactory threshold of
accuracy is achieved.

UQ Results

In Table 2 are reported the results obtained with a progressively lower number of
sampling points together with the optimal number of polynomial chaos terms (full
or sparse).

It can be noted that the mean value of the OASPL response of the system can be
obtained with high accuracy even by a low number of samples, and also the
standard deviation is very accurate (less than 0.05% of error) with just 30 samples
and accurate enough even with 15 samples (2% of error), which is the minimum
number required for a second order. To improve further the quality of the
approximation with 15 samples, the sparse polynomial chaos methodology has been
applied, reducing the number of polynomial terms to 10. Figure 14 shows the
convergence plots for the mean and standard deviation of OASPL obtained with the
different methodologies applied.

Finally, Fig. 15 reports the polynomial terms that are retained in order to obtain
the maximum R-square (0.99) regression: The “^1” suffix after the variable indi-
cates that this term is of the first order, the “^2” indicates that this term is of the
second order, and the underscore “_” indicates that this is a mixed term. In par-
ticular, variable h appears to be important only in interaction with the other
parameters, while variables PoA, and subsequently, t, and d, are the most important

The sensitive variable to stop adding terms is:≡ 1 − ( )(# −# )

# terms

R
LO

O

Fig. 13 Example of R-square versus number of polynomial terms for UQ
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ones. R-squared value (close to 1.0) and other regression indicators are also
explicitly readable in Fig. 15, confirming the good fitting of the PCE expansion.
The error on standard deviation is therefore reduced (from 2% to less than 0.1% as
reported in Table 2) by avoiding the overfitting on those terms having no effect in
the system.

Table 2 Comparison of UQ of acoustic performances by different methodologies

Sampling µ(OASPL) σ(OASPL) (error)
500 samples—full PCE 133.29711 1.4613E−5 (0%)
100 samples—full PCE 133.29711 1.4612E−5 (0.0068%)
30 samples—full PCE 133.29711 1.4606E−5 (0.048%)
15 samples—full PCE 133.29712 1.4319E−5 (2.0%)
15 samples—sparse PCE 133.29711 1.4612E−5 (0.0068%)

Fig. 14 Convergence of OASPL moments versus samples number for different methodologies

Fig. 15 Sparse polynomial chaos expansion terms for optimal OASPL regression
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Conclusion

In this chapter, a new methodology for UQ based on regression analysis, developed
by ESTECO within the UMRIDA project [8] and called adaptive sparse polynomial
chaos expansion [1], was used. This approach aims not to reduce the number of
uncertainties but the number of the terms of the polynomial chaos expansion
without necessarily discarding any parameter. This methodology was selected as
perfectly fitting the industrial case of the engine nacelle acoustic liner, where the
number of uncertain geometrical parameters subjected to manufacturing tolerances
considered here is as low as four. The adaptive sparse polynomial chaos expansion
methodology proved very successful not only allowing to improve the quality of the
UQ but also to reduce the number of samples to 15 and the terms of the polynomial
expansion to only 10, avoiding overfitting and thus achieving an error for the
standard deviation of the OASPL of less than 0.1% much lower than the 2% error
produced by the 15 samples full PCE.
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Manufacturing Uncertainties
in High-Pressure Compressors

Rémy Nigro, Dirk Wunsch, Grégory Coussement and Charles Hirsch

Introduction

Uncertainty quantification (UQ) methods are now a major topic in academic
research. However, these methods are not yet widely used in daily engineering
design practice. In this chapter, we demonstrate the industrial applicability of the
methodology described in chapter “Non-intrusive Probabilistic Collocation Method
for Operational, Geometrical and Manufacturing Uncertainties in Engineering
Practice”.

The problems classically used for the validation of UQ methodologies contain a
limited number of uncorrelated uncertainties. Thus, two major research topics must
be tackled to be able to industrialize the UQ methods: the treatment of a high
number of uncertainties and the use of correlations.

The first problem comes from the dimensionality of the problem: the cost of
several methods increases exponentially with the number of uncertainties, leading
to the so-called curse of dimensionality. As industrial test cases may contain several
simultaneous uncertainties, some methods, such as the Smolyak sparse grid,
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which is used in this work, are developed to temper this curse (more details on this
technique in chapter “Non-intrusive Probabilistic Collocation Method for
Operational, Geometrical and Manufacturing Uncertainties in Engineering
Practice”).

The second problem refers to the correlation between geometrical parameters
which may modify deeply the deformations caused by the uncertainties.

Figure 1 shows the differences in the realizations of two different sets of
uncertainties: one without any correlations (left) and one with correlations between
the uncertainties (random field) (right). This figure clearly shows that the defor-
mations imposed are highly dependent on the correlations. Therefore, as correla-
tions exist in industrial problems, the UQ method must be able to tackle them. In
this work, the principal component analysis (PCA) is used to tackle this problem,
and for the detailed description of the method, the reader may refer to chapter “Non-
intrusive Probabilistic Collocation Method for Operational, Geometrical and
Manufacturing Uncertainties in Engineering Practice”.

The non-intrusive probabilistic collocation method (NIPColM) is used to tackle an
industrial test case from the UMRIDA database. A total of 15 correlated uncertainties
are defined on the geometry of a rotor blade, which is computed with its two adjacent
stator rows (1.5-stage high-pressure compressor in chapter “UMRIDA Test Case
Database with Prescribed Uncertainties”). The results are discussed in terms of
computational cost for a given accuracy and in terms of sensitivity of some quantities
of interest with respect to the input correlated uncertainties.

Fig. 1 Realizations of an
airfoil discretized with 200
points considering each of
these points as independent
(top) or as a random field
described with a covariance
between each of its points
(bottom) (black: nominal
value; colours: realizations)
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Description of the IC-09: 1.5-Stage High-Pressure
Compressor

The uncertainties are defined by optical measurements of industrially manufactured
blades. A parametric model, which has been built to reflect the geometry variation
of this system, is used to determine a set of correlated uncertainties (they are the
parameters of the model) [1] (Fig. 2).

The uncertainty quantification is performed using the NIPColM method coupled
with the PCA as described in chapter “Non-intrusive Probabilistic Collocation
Method for Operational, Geometrical and Manufacturing Uncertainties in
Engineering Practice”. The geometry variation is only considered on the rotor
stage (no uncertainties considered on the stator stages).

The NIPColM is applied by solving a set of deterministic CFD runs (at each
collocation points defined by the method). The CFD problem is defined with the
RANS equations and Spalart–Allmaras turbulence model. A mixing plane tech-
nique is used at the interface between each row and one blade passage is meshed, as
shown in Fig. 3. The rotor stage has a constant rotating hub speed. Each stator has a
shroud fillet and a hub gap, while the rotor has a hub fillet and a shroud gap. The
inlet boundary conditions are defined by azimuthal-averaged radial profiles of total
conditions (pressure and temperature) and flow direction (angles), while the outlet
is defined by an azimuthal-averaged static pressure profile. The mesh consists of 3.6
million cells and has been selected after a mesh convergence study.

The CFD simulations are performed with the flow solver FINETM/Turbo [2], and
the uncertainty quantification methodology described in the reference documents is
integrated in FINETM/Design3D. The convergence of each computation is assessed
by the analysis of the global residuals (sum of all the residuals) and the evolution of
the mass flow through the computation domain (cf. Fig. 4). As the residuals
decrease of five orders of magnitude and the error on the mass flow is below 0.01%,

Fig. 2 One-and-a-half axial high-pressure compressor stages of an aero-engine as physical system
to be investigated under real manufacturing uncertainties (courtesy of Rolls-Royce Deutschland)
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the CFD computation is converged. All the CFD computations have the same level
of convergence. The deterministic flow of this 1.5-stage compressor presents sec-
ondary flows through the gaps on each blade and a shock on the rotor blade (cf.
Fig. 5).

Parametric Model

The uncertainties are defined on a parametric model which has been constructed to
represent the blade deformations with a set of parameters which have a physical
meaning. The parametric model developed by Lange et al. [3] consists in a

Fig. 3 Computational domain for the 1.5-stage high-pressure compressor

Fig. 4 Convergence for the deterministic computation: (left) root mean square of the global
residuals; (right) evolution of the mass flow
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parameterization of a set of blade sections (cf. Fig. 6). Each of them is described by
two parameters for its position (axial and tangential), the stagger angle and the
chord length, allowing to define the chord location for each section. The camber
line, described by its leading and trailing edge angle and by the value and the
position of the maximal camber, is determined based on the leading and trailing
edge position (extrema of the chord). Finally, the thickness law, which is described
by the value and the position of the maximal thickness and two additional points
defining the value and the position of the leading and trailing edge thickness, is
added to the camber line in order to define the profile section. In this work, six
sections are used to describe the geometry. The fillet radius between the blade and
the hub is also considered as a parameter.

Fig. 5 Flow visualization: (left) velocity vectors across the different gaps (highlights the vortex
created through the gap) and (right) iso-surface of Mach = 1 (highlights the shock location)

Fig. 6 Parameters describing a section [3]
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In total, there are 85 parameters: 14 parameters per sections multiplied by 6
sections, which lead to 84 parameters and the fillet radius. Each of these parameters
is a potential uncertainty and can theoretically be correlated by another one.

As the geometry is parameterized, the geometry used as nominal design for the
UQ computation (i.e. the parameterized one) is not identical to the initial CAD
geometry. As the UQ should be performed on the original geometry, the parametric
model must be fitted with a high accuracy to the defined geometry. Figure 7 shows
that the maximal absolute difference between the initial and parameterized geometry
is inferior to 7 µm, which is acceptable for the purpose of this study as shown in [4].

Treatment of the Uncertainties

The parametric model is used to describe the geometry of each manufactured blade:
first, for each measured blade, the parameters of the model are determined to match
the optical measurements. This set of parameter values is then used to determine the
probability density function of each parameter and their correlation.

Lange et al. [1] have shown that the parameters describing the blade section are
highly correlated in the spanwise direction. This is due to the manufacturing process
used for these blades: forging. The high spanwise correlation allows to limit the
number of uncertainties by considering only one uncertainty for each section
parameter. This means that the uncertainty describing the maximal thickness is
defined as a deformation value, which will be applied on all the blade sections,
leading to a thinner or a thicker blade. This observation obtained by means of the
Spearman’s rank coefficient in [1] allows to reduce the number of uncertainties
from 85 to 15.

Fig. 7 Differences between the design geometry and the parameterized one
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The correlated parameters are treated as described in chapter “Non-intrusive
Probabilistic Collocation Method for Operational, Geometrical and Manufacturing
Uncertainties in Engineering Practice” in order to obtain a set of uncorrelated
uncertainties which can be used with the NIPColM: the PCA [5] is applied to the
correlation matrix to obtain a set of 15 uncorrelated uncertainties describing a
Gaussian random field. The truncation of modes usually performed with the PCA is
not possible in this case as a huge reduction of the dimensionality has already been
applied a priori through the analysis of the correlation matrix and the high spanwise
correlation.

A set of collocation points is obtained for the NIPColM coupled with the Smolyak
sparse grids. Then, an inverse PCA transform allows to obtain the collocation points in
terms of parametric Gaussian uncertainties. However, as the input uncertainties are
described with different types of PDF, the Nataf transform [6] is applied to have a
deformation corresponding to the true PDF shape. The geometry variability repre-
sented with the resulting collocation points corresponds to the random field described
with the correlated uncertainties and their defined PDF shape.

An example of the resulting deformations is given for the second eigenmode in
Fig. 8. Every parameter, including the fillet radius, is modified simultaneously for
each collocation point. A specific treatment based on a butterfly topology of the
mesh in the fillet region allows to keep a good mesh quality for different fillet radii
(see Fig. 9).

Fig. 8 Example of deformation based on the extremum values of the second eigenmode on the
section at 20% span

Fig. 9 Mesh near the hub for two different geometries: the mesh quality is ensured even with a
varying fillet radius
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The application of this technique to the test case described in section “Descrip-
tion of the IC-09: 1.5 Stage High Pressure Compressor” allows to accurately rep-
resent the geometrical uncertainties and therefore to obtain meaningful UQ results.

Analysis of the Uncertainty Quantification Result

As the NIPColM accuracy depends on the number of levels used, the first analysis
performed determines that in the case of this industrial test case, the sparse grid
level 1 is sufficient to determine the mean and the standard deviation as already
shown in [7] for an academic test case.

A second analysis is performed to assess the capability of this method to
determine the influence of the input correlated parameters on the quantities of
interest such as the efficiency based on the scaled sensitivity derivatives as used
in [7].

Influence of the Level of Sparse Grid and Corresponding
Computation Cost

The convergence test is performed on the two first levels of sparse grids. With the
15 uncertainties defined for this test case, the total number of collocation points (i.e.
CFD runs) is 31 for the first level and 511 for the second one. The higher levels are
not computationally affordable (5921 CFD runs for a level 3 and 53 921 CFD runs
for a level 4).

The comparison of the two first statistical moments (mean and standard devia-
tion) between the two different levels shows that the mean value does not change
more than 0.1% for the efficiency, the pressure ratio and the mass flow, while the
standard deviation of these three quantities has a maximal variation of 8.3%
(cf. Table 1). Therefore, it can be determined that the mean and the variance can be

Table 1 Difference between the statistics found with a sparse grid level 1 and a sparse grid level 2
for the efficiency, the pressure ratio and the mass flow

Efficiency (–) Pressure ratio (–) Mass flow (kg/s)
Mean Std dev Mean Std dev Mean Std dev

Difference between
SGL1 and SGL2 (%)

−0.039 8.344 −0.004 6.922 −0.099 −2.202
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accurately estimated with a sparse grid level 1 (SGL1). This conclusion was also
found on another compressor and with a different set of uncertainties [4].

As the sparse grid level 1 only gives an accurate estimation of the mean and the
variance, the PDF can be reconstructed using a Gaussian approximation (i.e.
imposing that the PDF has a Gaussian distribution with the mean and the variance
determined from the UQ computation). This reconstruction can be compared with
the PDF reconstructed thanks to the Pearson method [8] based on the first four
moments determined with the sparse grid level 2.

The sparse grid level 1 gives valuable information on the approximate shape of
the PDF for a reduced cost. Indeed, the PDF obtained with a level 2 has a com-
putational overhead of 16.5 in comparison with the level 1 and gives roughly the
same interval of variation for the quantities of interest. The evaluation of a PDF
shape with a sparse grid level 1 is accurate when the output PDF is symmetric,
which is almost the case for this problem (Fig. 10).

Based on the cost of one single CFD run, which is 4.1 CPU * Hours, the level 1
sparse grid is compliant with an industrial use as it has a computational cost of
128.1 CPU * Hours, meaning that with only 16 cores, the total time is 7.75 h. The
sparse grid level 2 has a total cost of 2112 CPU * Hours. As the limit value defined
within the UMRIDA project for an efficient UQ method in industry is 10 h on 100
cores with ten simultaneous uncertainties, it can be seen that a level 1 sparse grid
fully meets the objective in terms of computational time (l7.75 h on 16 cores with
85 possible uncertainties reduced to 15) (Table 2).

Sensitivities of the Performances with Respect
to the Input Uncertainties

As it has been proven that the sparse grid level 1 is sufficient to obtain accurate UQ
results and that it meets the computational time requirements inherent to the
industry, the sensitivities can be computed with a sparse grid level 1 (only 31 CFD
runs).

The scaled sensitivities are used to determine the uncertainties with the most
influence on the global quantities such as the pressure ratio and the efficiency as

Fig. 10 PDFs for the isentropic efficiency and the total pressure ratio of the 1.5 stage as a function
of the sparse grid level
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seen in Fig. 11. One important information is that the most influential mode in
terms of geometry deformation (i.e. the first mode) is not the mode with the highest
impact on the quantities of interest (here, the pressure ratio and the efficiency).
However, the first five modes are the most influential. Even if the first few modes
have an important influence on the quantities of interest, the last modes still have a
non negligible impact. Therefore, a truncation of the number of modes cannot be
performed without a loss of accuracy on the UQ result.

Table 2 Computational cost for the UQ computation for the sparse grid level 1

#CFD
runs

Time for 1 CFD
run on 16 cores
(h)

Cost for 1 CFD
run (CPU *
Hours)

Total time
on 16 cores
(h)

Total cost
(CPU *
Hours)

Level
1

31 0.25 4.1 7.75 128.1

Fig. 11 Scaled sensitivity derivatives of the efficiency (top) and the pressure ratio (bottom) with
respect to the eigenmodes
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An important information based on the scaled sensitivity derivatives of the
quantities of interest with respect to the eigenmodes is to obtain the sensitivities of
the output quantities with respect to the input uncertainties (i.e. the parameters of
the parametric model).

A qualitative way to obtain such sensitivities is to display the results for two
collocation points with extremum value for a given eigenmode and check the
geometry deformation and its influence on the flow as given in Fig. 12. The
application of this method to the third eigenmode, which has the most influence on
the efficiency, shows that the variation of the overall blade thickness is important.
This thickness variation leads to an important modification of the flow field.
Figure 12 shows that the acceleration at leading edge is higher for high values of
the third eigenmode. The boundary layer near the pressure side is also wider for
high values of the third eigenmode. This boundary layer leads to more important
losses and thus a lower efficiency.

The scaled sensitivity derivatives can be computed with respect to the input
correlated uncertain parameters, allowing a quantitative comparison of the influence
of the different uncertain parameters. Indeed, from the derivatives with respect to
each eigenmodes, which are computed to determine the scaled sensitivity deriva-
tives shown previously, it is possible to compute the derivatives with respect to
each input parameter using the directional derivatives. Once these derivatives are
computed, the scaled sensitivities are obtained by multiplying them with the
standard deviation of the parameter. The result of this treatment is shown in Fig. 13.

The leading edge thickness has the highest influence on the efficiency. As the
sensitivity is negative, it means that a reduction of the thickness leads to an increase
of the efficiency, which is an expected result. The fillet radius seems to have a high
impact on the efficiency, meaning that it cannot be neglected during the UQ
analysis.

Fig. 12 Comparison of the relative Mach number for two different collocation points: the one
with the smallest value of the third mode (left) and the one with the highest value of the third mode
(right)
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The influence of the leading edge thickness can be validated through an Ant-Hill
plot determined from the 511 CFD runs performed for the sparse grid level 2 (cf.
Fig. 14) where the efficiency for each collocation point is shown as a function of the
leading edge thickness, and a linear correlation is clearly seen. This confirms the
results found with the scaled sensitivity derivatives. The Ant-Hill plot of the effi-
ciency as a function of the chord length does not show a clear influence of this
parameter, confirming the small sensitivity of the efficiency with respect to the
chord length.

The Spearman correlation coefficients determined by Lange et al. [1] show the
same trend as the ones found with the scaled sensitivities: the leading edge
thickness has the highest impact on the efficiency, and all the thickness-related
parameters have also a high impact on this quantity of interest. The chord length
parameter has a small impact on the efficiency in comparison with the thickness.
As, qualitatively, the same sensitivities are found with the two methods, the use of
scaled sensitivity derivatives to assess the influence of the input parameters on the

Fig. 13 Scaled sensitivity derivative of the efficiency with respect to the initial set of uncertain
parameters

Fig. 14 Ant-Hill plot of the efficiency as a function of the leading edge thickness (left) or as a
function of the chord length (right) based on the 511 CFD runs performed for a sparse grid level 2
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quantities of interest can be validated and is thus a possible alternative to Spearman
correlation coefficients and other Ant-Hill plots (Fig. 15).

The computational cost needed to obtain the sensitivities and the mean and
standard deviation for quantities of interest is highly reduced in comparison with a
Monte Carlo simulation consisting of 500 samples, which was the method used by
Lange et al. [1]. Indeed, only 31 samples are needed to obtain the same trend for the
sensitivity, which means the cost has been reduced by a factor 16 with the NIP-
ColM coupled with PCA in comparison with a Monte Carlo simulation.

Conclusions

The method for the treatment of simultaneous correlated uncertainties developed in
chapter “Non-intrusive Probabilistic Collocation Method for Operational,
Geometrical and Manufacturing Uncertainties in Engineering Practice” has been
successfully applied to an industrially relevant test case which is part of the
UMRIDA database. This test case is a 1.5-stage high-pressure compressor in which
the parameters are the uncertainties described with a PDF and the correlations
between them. A total of 15 correlated uncertainties are used.

It has been shown that a level 1 sparse grid consisting of 31 CFD runs is
sufficient to obtain an accurate estimation of the two first statistical moments (mean
and standard deviation) of some global quantities such as the pressure ratio and the
efficiency. Moreover, the output PDF shape can be estimated with this level 1 and a
Gaussian shape approximation based on these two first moments. The PDF shape
can be estimated with only two moments since the response is symmetric.

The scaled sensitivity derivatives are computed with respect to the input
uncertainties with a sparse grid level 1 as it is sufficient for the convergence of the
method. The thickness-related parameters are shown to have an important impact
on the efficiency, which is also found with Ant-Hill plots based on a sparse grid

Fig. 15 Spearman rank coefficient of the efficiency for each uncertain parameter [1]
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level 2 or with Spearman correlation coefficients computed based on a Monte Carlo
sampling of 500 samples [1].

Therefore, a sparse grid level 1 gives accurate UQ results with only 31 CFD runs
while a Monte Carlo sampling needs 500 samples to give the same qualitative
sensitivity, and a sparse grid level 2 needs 511 samples to give a similar interval of
variation for the quantities of interest. This means that the computational cost has
been reduced by a factor 16 in comparison with a Monte Carlo sampling.
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Part IV
Robust Design Optimization (RDO)

and Applications



Formulations for Robust Design
and Inverse Robust Design

Alberto Clarich and Rosario Russo

Introduction

Multi-disciplinary Robust Design Optimization (RDO) is achieving more and more
popularity in the aerospace community: Many optimization methodologies have
been developed to produce solutions that are interesting for practical industrial
cases. In fact, most of the industrial processes are permeated by uncertainties: The
numerical design is generally different, from a geometric point of view, from the
manufactured product because of the dimensional tolerances, and, more frequently,
the working point is not fixed, but is characterized by some fluctuations in the
operating variables. Normally, in these conditions, the traditional single-point
optimization methodologies tend to over-optimize the final design, giving excellent
performances in the design point but limiting the off-design characteristics.
Consequently, the application of Robust Design methodologies to improve the
performances stability seems to be the most correct approach in the research
activities (Fig. 1).

The classical formulation of a RDO problem consists in the definition of two
different objectives for each criterion to be optimized: the optimization of the
average performance of the system, and the minimization of the standard deviation
of the same performance, which guarantee the stability of the same. This problem is
normally solved following a multi-objective optimization approach, as it will be
discussed in section “Multi-objective RDO Optimization,” while in section “Sin-
gle-Objective RDO Optimization (Min-Max Approach)” a different approach,
based on a single-objective reliability-based optimization method, will be proposed
as a valid and particularly efficient alternative.
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In conclusion, the advantages of Inverse RDO, or Tolerance Design, will be
introduced at the end of this chapter, to answer to the industrial need of containing
manufacturing and maintenance costs while guaranteeing the required
performances.

Multi-objective RDO Optimization

The first approach for RDO that we propose in this chapter is based on the defi-
nition of a multi-objective optimization problem, consisting generally in the opti-
mization of the mean value of the performances and on the minimization of their
standard deviation. As an example of formulation, the objective functions in the
RDO of an airfoil for (lift-constrained) drag reduction in case of uncertainties in the
cruise Mach number [1] will become:

min
D,αðMÞ

ðEðcdÞ, σ2ðcdÞÞ ð1Þ

The mean and variance Cd are defined as follows:

E cdð Þ= ∫
Mmax

Mmin

cdðD, α,MÞpðMÞdM ð2Þ

Fig. 1 Robust Design
Optimization
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σ2 cdð Þ= ∫
Mmax

Mmin

cdðD, α,MÞ−E cdð Þ½ �2pðMÞdM ð3Þ

where p(M) is the probability density function of the Mach Number defined in the
interval Mmin < M < Mmax.

This approach guarantees the definition of a complete Pareto frontier as trade-off
of the optimal solutions, in terms of mean performance and in terms of their
stability or robustness. This means that at the end of the optimization the designer
has the freedom to select the best solutions having a large variety of possibilities
depending on which criteria should be privileged.

The problem of this approach is that a multi-objective optimization algorithm is
to be chosen, since the definition of a single objective as weighted sum of the
different criteria cannot be proposed for the impossibility of knowing a priori the
proper weights for the particular optimization problem. Multi-objective optimiza-
tion algorithms are in fact generally very robust, but they require a higher number
of simulations than a single-objective optimization case, and for a RDO problem the
number of simulations may be not feasible from a practical point of view (this
number being multiplied by the sampling size for each design to obtain the overall
number of simulations required).

A very efficient and robust class of optimization algorithms is the one of the
Evolutionary, and in particular the Genetic Algorithms (GA) [2, 3]. This class of
algorithms is based on the definition of an initial set of designs, the population of
individuals, whose performance evaluations are used by the algorithm to propose a
new population or set of designs, by following predefined operations—like
Selection, Crossover, Mutation—inspired by Natural Evolution, that guarantee the
generation of new designs, which keep the best pieces of information of their
parents. The evolution of a defined number of generations produces as result the
improvement of the objectives until a convergence to the ideal Pareto frontier is
obtained.

The population size and therefore the overall number of simulations required is
determined by the number of variables and objectives, in such a way that it is
possible to define a “rule of thumb” to link linearly the overall number of simu-
lations to the optimization problem size.

Generally, the population size should be given by 2 ⋅ n ⋅m, where n is the number
of variables and m the number of objectives; therefore, for a problem of two
objectives, like the one defined for a RDO (maximize mean performance and
minimize standard deviation), this number becomes equal to 4 ⋅ n. Considering in
addition that at least 20–30 generations should be evaluated to accurately predict
the Pareto frontier, we would need about 100 ⋅ n designs to complete a RDO
optimization.

To understand the complexity of the problem, we may consider an RDO
problem characterized by 10 input variables, 2 objectives, and 3 uncertainties.
Applying a polynomial chaos (PCE) approximation of second order, 10 samples for
each design may be enough. Accordingly, to the rule of thumb exposed above,
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we might need a total of 100 ⋅ 10 ⋅ 10, i.e., 10,000 simulations, that for a model of
industrial relevance could correspond to a non-affordable CPU time making the
application unfeasible.

For this reason, often it has been proposed in the literature a different opti-
mization strategy, using Game Theory-based algorithms [4] which decomposes the
input variable space between two players (if there are two objectives, or more in
other cases) each one in charge of a single objective. Each objective is then min-
imized by each player using a fast and efficient single-objective algorithm, such as
the simplex [5], and after some iteration, the best solutions found by each player are
shared by the same to start a new step, until a convergence is obtained.

The advantage of this algorithm is that it does not search for a complete Pareto
frontier, but for few compromise solutions between the contrasting objectives,
therefore the computational time is much lighter than a cooperative strategy like the
Genetic Algorithm.

As another rule of thumb, the overall number of designs required by the MOGT
algorithm [4] is on the order of 10 ⋅ n ⋅m, where n is the number of variables and
m of the objectives (considering at least 10 steps where each player perform a
reduced simplex execution of about n designs, the double of the variables charged
on it).

Single-Objective RDO Optimization (Min-Max Approach)

In order to reduce more significantly the overall number of simulations for an RDO
problem, we propose in this section another approach, followed also in one of our
previous works [6].

The basic idea is to reduce the number of objectives, so that a single-objective
algorithm can be applied.

To achieve this purpose, the so-called min-max or max-min approach is fol-
lowed. The idea is to maximize the minimum or worst performance of a distribution
function to be maximized (for instance, the aerodynamic efficiency of a wing), or to
minimize the maximum or worst limitation to be minimized (for instance, the drag
coefficient of a wing).

The effect of this approach is the “shift” of the performance distribution in the
desired direction, so in a certain sense both the average performance and the sta-
bility at the uncertainties are optimized. Looking for instance at Fig. 2 taken from
the NODESIM-CFD Project [6], the drag coefficient distribution of an optimized
airfoil configuration under this approach will be shifted below the baseline distri-
bution, since we minimize the maximum value of the distribution or its higher tail.

Besides this objective, other criteria shall be considered (like lift and momen-
tum), but if they can be expressed as constraints, a single-objective algorithm could
still be applied.

Generally speaking, the idea is to constraint the worst (maximum or minimum)
value of the distribution to be under or above a defined limit (for instance, the
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minimum lift should be higher than the desired limit, so that it could be guaranteed
even in the worst uncertain conditions).

In formulas, the RDO problem defined previously by Eq. 1 will become:

min
D, αðMÞ

max cdðMÞð Þ ð4Þ

Before analyzing the possible single-objective algorithms that may be chosen, it
is opportune to discuss about the definition of maximum and minimum values of a
distribution.

In the case of a normal distribution of the performance, since it is unlimited the
concept of the extremes may be replaced by a given percentile of the distribution,
for instance, 95 or 99%. Usually, the reference value is 99.73% because for a normal
distribution it corresponds to the 3-sigma level (see Fig. 3).

This analysis is also called six sigma, since six times the standard deviation
corresponds to the 99.73% of the complete distribution, a value that can be assumed
enough representative of the whole distribution.

Fig. 2 Example of min-max
RDO

Fig. 3 Six sigma correlation for a normal distribution
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Since by Polynomial Chaos analysis, we can compute mean and standard
deviation with high accuracy, and the computation of the maximum or minimum
value with the expression MEAN ± 3σ can be evaluated for each design of the
RDO optimization; therefore, the objective function can be defined this way.

The limitation of this approach occurs when the performance does not follow a
normal distribution: in this case, the six-sigma formulation may not correspond
exactly to the same percentile of the distribution, so from design to design the
computation of the objective function could be not accurate. This problem is even
more evident for a particular class of RDO problems, the reliability-based design
optimization, where any constraint may be defined on a given percentile of the
distribution.

In order to solve the problem of the accuracy of the min-max approach and make
the RDO optimization more efficient, a new methodology, based on the application
of Polynomial Chaos on the Reliability RDO, will be introduced in section
“Reliability-Based RDO Optimization.”

There are several single-objective algorithms which may be applied to solve the
max-min RDO problem.

A large variety of algorithms is offered by the gradient-based class, which is
actually based on the computation of the gradient of the objective function (by finite
difference approximation), and on the iterative movement in the direction of
objective improvement. This class includes algorithms such as BFGS, SQP,
NLPQLP.

Even though these algorithms are very accurate, they cannot be proposed as a
Global Research solution, because they are not robust: Depending on the starting
point, they usually converge very soon to the closest local maximum, which is not
necessarily the global maximum (Fig. 4, left).

For this reason, we prefer to introduce a different single-objective algorithm, less
accurate but more robust and in particular very fast in convergence: the Nelder and
Mead simplex [5]. The algorithm is based on the definition of a geometrical figure
of n+1 vertices, the simplex, in the variable space of n-dimensions (n is the number
of variables, and each vertex represents one different design solution). At each

Fig. 4 Convergence to local optima for gradient-based algorithms (left); simplex (right)
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iteration, the worst point with respect to the objective function is replaced by a new
point, whose variables are obtained by geometrical operations in the n-variables
space (Fig. 4 right): The first operation is a Reflection through the plane made by
the other points of the simplex, then accordingly to the fitness of the new point there
could be an Expansion in the same direction of the Reflection (if the new solution is
particularly good) or a Contraction (in the opposite case).

The operations are repeated iteratively until convergence to the global optimum.
To introduce in this case a rule of thumb based on experience, we could affirm

that the convergence of simplex in a single-objective optimization problem may be
reached by 5 ⋅ n iterations, which is a number much lower than the two-objective
optimization cases proposed in the previous chapter.

The advantage of the approach presented, the single-objective min-max, is
particularly evident.

Reliability-Based RDO Optimization

In most of the aeronautical or industrial applications, the need of defining con-
straints or objectives on the percentiles of some performances distribution, like the
minimum value of lift or momentum for an airfoil, emerges clearly, and the way
these constraints are generally treated at the state of the art (six sigma) is accurate
only in particular cases (normal distribution of the performances).

In most real application cases, the fact that the real distribution of the perfor-
mances is different produces an error in the definition of the constraint function,
which gives as effect a wrong estimation of the failure probability of each proposed
design (the probability that this design does not respect the constraint), and most
important it can bias the optimization toward a less efficient solution.

For this reason, the accurate estimation of the constraint functions becomes
fundamental in a generic problem of Robust Design Optimization in industrial
practice.

Generally, an optimization problem in which there is the requirement of the
satisfaction of constraints or limits, which should be achieved for a specified per-
centage of the performance distribution, or for which the percentage of solutions
not satisfying the limits (failure probability) must be minimized, is called
reliability-based design optimization.

In the literature, there exist already some approaches to solve this kind of
problems, in particular First-Order Reliability Method (FORM) or Second-Order
Reliability Method (SORM) [7] that evaluate the failure probability of any candi-
date design on the basis of its uncertainties distribution and of the given limits to be
respected.

Approximation methods, such as FORM and SORM, have been developed in
the area of structural reliability. These methodologies have been described in detail
for instance by Dr. Xiaoping Du in Ref. [8].
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Reliability analysis aims at estimating the probability that any structure or
mechanical component will fail to meet a predefined criterion. A reliability problem
is often formulated in terms of a vector of random input variables
X = X1,X2, . . . ,XNð Þ representing uncertain quantities, such as loads, material
properties, structure dimensions, environmental factors, and a performance function
gðXÞ, which describes the limiting state of the structure in terms of X. By con-
vention, gðXÞ≤ 0 denotes the failure domain, whereas gðXÞ>0 denotes the safe set.
Since the boundary between the safe and failure set is given by gðXÞ=0, the
performance function is also referred to as the limit state function (LSF).

Instead of computing the reliability R=PfgðXÞ>0g, one usually computes its
complement, i.e., the probability of failure, which reads

pf =P gðXÞ≤ 0f g= ∫
g Xð Þ≤ 0

fXðXÞdX ð5Þ

with fXðXÞ denoting the joint probability density function (PDF) of the random
variable vector X.

In order to overcome problems which might arise in the calculation of the failure
probability integral in real-world applications, approximation methods like FORM
and SORM have been developed over the years.

Two principal steps are involved in these approximation methods. The first step
consists in simplifying the integrand fXðXÞ so that its contours become more regular
and symmetric; the second consists in simplifying the integration domain. After the
execution of these two steps, an analytical solution to the probability integration
will be easily found.

The first simplification is achieved by transforming the original random variables
X into independent random variables U = U1,U2, . . . ,UNð Þ that follow a standard
normal distribution (i.e., a Gaussian distribution with zero mean and unit standard
deviation). In the literature, the original variable space is called X-space, while the
standard normal space is called U-space.

After the variable transformation, the failure probability becomes

pf =P gðUÞ≤ 0f g= ∫
gðUÞ<0

ΦUðuÞdu ð6Þ

where ΦUðuÞ is the joint PDF of U.
The second simplification is achieved by approximating the limit state function

(constraint satisfaction). The name First-Order Reliability Method comes from the
fact that the LSF is linearized with a first-order Taylor expansion. The linearization
is performed at a convenient point, i.e., the point that has the highest probability
density on the frontier g Uð Þ=0 between safe and failure set. This point is named
Most Probable Point (MPP) and it is the LSF shortest distance point from the U-
space origin, as shown in Fig. 2. The distance between the MPP and the origin
represents the so-called reliability index β.
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The model for the MPP search can be rewritten as a constrained single-objective
optimization problem:

minU uk k
subject to gðuÞ=0

�
ð7Þ

where uk k stands for the norm (length or magnitude) of a vector. The solution to the
model given in Eq. 8 is the MPP (Fig. 5).

After the two steps described above, the failure probability is easily computed as

pf =Φð− βÞ ð8Þ

with Φ denoting the standard normal cumulative distribution function (CDF).
Second-Order Reliability Methods account for second-order nonlinearities of the

performance function. Further details about the MPP search in FORM and SORM
approaches are available in the literature [7].

Here, we only stress the following facts. In industrial applications, the calcula-
tions of derivatives might be very expensive, assuming that the performance
function is differentiable at all. Besides, for particular problems, FORM might not
even converge, or locating the MPP might be very difficult.

An important limit of these methodologies can therefore be represented by the
high number of evaluations that may be required by the algorithm to compute the
failure probability with accuracy, which makes often practically unfeasible its
application to optimization problems of industrial relevance, in particular when the
computational time required for each evaluation is very expensive.

For these reasons, we propose in next section “Innovative Reliability RDO
Methodology Based on PCE” a new methodology to deal efficiently with a
reliability-based design optimization problem of industrial relevance, which con-
jugates accuracy and low number of needed evaluations.

Fig. 5 Reliability problem
definition
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The methodology is derived from the Robust Design Optimization applying the
Polynomial Chaos methodology. The polynomial coefficients are here also used to
evaluate the complete cumulative distribution function of the performances of the
design, from which it is possible to retrieve accurately the failure probability for the
prescribed limits/constraints or objectives of the problem.

Innovative Reliability RDO Methodology Based on PCE

Polynomial Chaos Expansion (PCE) [9] is one of the most efficient methodologies
employed for uncertainty quantification, and it is commonly used to solve RDO
problems [6, 10].

The main advantage of this methodology relies in the possibility of computing
the mean and standard deviation of a given distribution with high accuracy by
means of a reduced number of sampling points. In particular, it can be proved that
the convergence to exact statistical moments follows an exponential rate with
respect to the number of sampling points [11], whereas sampling techniques, such
as Monte Carlo (MC) or Latin-Hypercube sampling (LHS), converge much more
slowly (as the inverse square root of the sampling size and as the inverse sampling
size, respectively).

The basic idea of Polynomial Chaos methodology for UQ is that, under specific
conditions [9], a stochastic process can be expressed as a spectral expansion based
on suitable orthogonal polynomials, with weights associated to a particular prob-
ability density function.

The idea is to project the variables of the problem onto a stochastic space
spanned by a set of complete orthogonal polynomials ψ that are functions of
random variables ξðθÞ, where θ is a random event [10]. For example, the variable ϕ
has the following spectral infinite dimensional representation:

Φðx, t, θÞ= ∑
∞

i=0
Φiðx, tÞΨiðξðθÞÞ ð9Þ

Now, we want to apply PCE expansion to define the criteria required by a
generic reliability-based RDO problem, which is basically the definition of a per-
centile of the performance distribution or a failure probability.

Equation 10 can in fact be used as a meta-model for the Φðx, t, θÞ function,
which represents basically the output performance function of the input variables
X and t and of the random event θ or uncertain parameters ξðθÞ. The PCE can be
used to determine, by means of a MC or LHS, an accurate CDF of the function Φ.

The evaluation of the performance function in industrial use cases can be very
demanding, since it often involves expensive CFD or structural simulations. In the
strategy proposed, instead, these expensive evaluations are required only to
determine the coefficients of the PCE. Once found, the evaluation of the
meta-model on any sample is practically free in terms of CPU. Once the CDF is
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accurately obtained, from the given constraint value we can easily retrieve the
corresponding percentage in the distribution, i.e., the failure probability (Fig. 6).

In this way, a Robust Design Optimization problem can be defined, using as
criteria for the optimization the minimization of the failure probability: In other
words, we search for a new design for which the failure probability for the given
uncertainties distribution is minimized, either for a new design for which a given
percentile (e.g., 99%) of its distribution is minimized.

The big advantage of this approach with respect to using FORM/SORM
methodologies is the reduced number of sampling points needed to obtain the
Polynomial Chaos-based meta-model (Eq. 10), if compared to the iterations needed
to compute the reliability index for each design required by FORM/SORM
methodologies.

Tolerance Design: Background

The motivation of Reverse-Multi-Objective Robust Design Optimization
(R-MORDO) methodology, called also Tolerance Design, comes basically from
economic reasons in industrial production.

To improve the quality of a product, it is necessary to avoid excessive warranty
costs, derived mainly by the failures typical when the product is not designed taking
into account any uncertainty in the process, i.e., without performing a Robust
Design analysis (RDO). At the same time, however, an excessive care of the
uncertainties could drive to very restrictive solutions, i.e., solutions that does not
allow the input parameters to vary but within very small tolerances, causing to
enhance production costs.

Figure 7 expresses in fact the two extreme situations that may occur in a design
optimization: The area on the left is the one characterized by excessive warranty
costs, where for instance Robust Design is not applied in the Design phase

Fig. 6 CDF predicted by
Polynomial Chaos used to
retrieve failure probability
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(low Quality), and as a consequence, high Warranty Costs are expected, since the
uncertainties not taken into account will produce recurrent failures.

On the other side, the area on the right represents a case in which a RDO
methodology is applied with excessive quality; i.e., the minimization of the per-
formance instability is pushed far below any reasonable necessity or constraint, for
instance considering very small manufacturing tolerances in the design phase, with
a big raise in the production costs.

A best solution is a trade-off design (central area in the picture) that can be
obtained following two different objectives: optimize the mean performances under
the given constraints (RDO objective), and minimize the standard deviation or
tolerance of the input variables at the same time.

In fact, if we are able to optimize the performance distribution of the design
configuration and respect the given constraints by a solution whose manufacturing
or operational tolerances are higher than the baseline model, it means that we are
able to obtain the needed performance by a lower production cost.

As an example of application, we could consider the RDO optimization of an
airfoil subjected to manufacturing tolerances (uncertainties on the thickness), in
which one objective is the minimization of the mean drag coefficient and a con-
straint is represented by the satisfaction of a minimum given lift coefficient and a
maximum given momentum coefficient, by a high percentage of the distribution (for
instance, 99.97%). This typical RDO problem becomes a R-MORDO problem if we
consider as an additional objective the maximization of the thickness tolerance
(maximization of standard deviation of a normal distribution of the thickness).

In formulas, the R-MORDO problem becomes:

min
D, αðMÞ

max cdðMÞð Þ
max
D, αðMÞ

tolðMÞ ð10Þ

At the end of the optimization, we might select among a trade-off of different
solutions, characterized by respecting the given constraints by minimizing the mean

Fig. 7 MORDO and
R-MORDO costs

458 A. Clarich and R. Russo



drag coefficient or by maximizing the manufacturing tolerance of the airfoil, i.e.,
respecting the given constraints with the lowest manufacturing costs as possible.

Figure 8 reports an example of the trade-off solutions that may be obtained by a
R-MORDO problem. In the abscissa, a single uncertain parameter, which is also a
design variable of the optimization problem, is reported while the curve represents
the corresponding performance function.

Three different possible solutions of the R-MORDO problem are represented in
the figure, each one characterized by a different tolerance (standard deviation of the
input variable normal distribution, centered on each nominal design point). As we
can see the performance distribution of the three solutions is practically the same,
the Normal distribution of the performance has in fact a standard deviation which is
about the same in three cases; this means that the three solutions, from a RDO point
of view, are as robust in the same way.

By the way, solution 2 is characterized by a larger input tolerance than solutions
0 and 1: From a R-MORDO or tolerance Design point of view, this solution is then
to be preferred to the other two, since it guarantees the same RDO performances
with a much lower manufacturing or quality costs.

The R-MORDO methodology is fully implemented in the multi-objective
optimization platform modeFRONTIER from ESTECO [12].

modeFRONTIER is a multi-disciplinary optimization platform in which any
CAE simulation software can be integrated to define an optimization loop, selecting
a proper optimization algorithm, including a suite dedicated to RDO problems.

In the main workflow of the platform, which is used to describe the optimization
process, each input variable or uncertainty is represented by a node where to define
range of variation and distribution parameters of that variable.

Fig. 8 R-MORDO solutions
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In the same way, output variables coming as result from any process node of the
workflow can be used to define the objectives/constraints of the optimization
problem.

As an example, Fig. 9 reports a very simple modeFRONTIER workflow, where
on the left a basic optimization (vertical) chain is defined: On the top, the green
node represents an input variable characterized by its Normal distribution (repre-
sented by the σ symbol), and the variable is then connected to a process node, in
this case MATLAB, which is the application used to evaluate the performances of
each design solution, and from the application node an output variable, represented
by the cyan node, can be extracted.

Also the output variable is represented with a σ symbol since in a RDO problem
it is also characterized by a distribution, and therefore the objective function (the
arrow node at the bottom) may be defined for instance on the mean value of the
distribution or to a given percentage (for instance, six sigma) of it.

The optimization chain on the left represents therefore a simple RDO problem
definition in modeFRONTIER workflow.

By the way, the introduction of the other vertical chain on the right makes the
problem become a R-MORDO: An additional input variable is introduced, to
represent the standard deviation of the main input variable distribution: In other
words, this new parameter controls the tolerance of the main input variable. To this
variable, a second objective is assigned, which is simply the maximization of this
standard deviation or tolerance.

Figure 10 reports a detail of the two variables in modeFRONTIER workflow: If
we call the first input variable X, the second variable may be called Sigma_x. The X
node main panel, at the right of the figure, reports then in the distribution properties
as value for the Standard Deviation of the selected (Normal) distribution the
variable Sigma_x instead of a fixed number, as usually occurs in a RDO problem.

Once the workflow is defined this way, the optimization can be performed by
modeFRONTIER.

For the sampling phase, an opportune Polynomial Chaos expansion is selected,
and an opportune Optimization algorithm can be selected.

The algorithm will then launch the execution of several different design con-
figurations, each one sampled at the variation of the uncertain variable, until the

Fig. 9 Example of
R-MORDO implementation
in modeFRONTIER
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prescribed objectives will be satisfied by the reaching of the Pareto frontier, or set of
not-dominated solutions.

This set represents the trade-off of the two objectives considered, i.e., from one
side the maximization of the mean performances, and from the other side the
maximization of the input tolerance, so the reduction of manufacturing costs. The
user can then finally select the definitive solution accordingly own preference.
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Robust Design of Initial Boundary Value
Problems

Jan Nordström and Markus Wahlsten

Introduction

Real-world systems based on partial differential equations are affected by a wide

range of uncertainties. Common areas include climatology [1], turbulent combustion

[2], flow in porous media [3], electromagnetics [4], and seismology [5] to name a

few examples.

Non-intrusive methods use information from multiple runs of existing determin-

istic codes for a particular statistical input [6, 7]. Standard quadrature techniques,

often in combination with sparse grid techniques, can be used to obtain the statistics

of interest. Intrusive methods are based on polynomial chaos expansions leading to

a system of equations for the expansion coefficients [8, 9]. This implies that new

non-deterministic codes must be developed. The statistical properties are obtained

by a single run for a larger system of equations. Examples of semi-intrusive methods

also exist.

In this investigation, we take a step back from the technical developments men-

tioned above and focus on fundamental questions for the governing initial boundary

value problem (IBVP) and in particular on the influence of boundary conditions. Our

aim is to minimize the uncertainty or variance of the solution for a given stochas-

tic input. The variance reduction technique in this paper is closely related to well-

posedness of the governing initial boundary value problem. In particular, it depends

on the sharpness of the energy estimate, which in turn depends on the given boundary

conditions.
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The technique used in this analysis is directly applicable to linear problems such as

Maxwell’s equations, the elastic wave equations, the linearized Euler equations, and

the linearized Navier–Stokes equations where the uncertainty is known and limited to

the data in the problem. The theoretical derivations are for simplicity and clarity done

in one space dimension and for one stochastic variable. The extension to multiple

space dimensions and stochastic variables is straightforward and would add more

technical details but no principal problems.

The Continuous Problem

Consider the following incompletely parabolic system of equations,

ut + Aux + Buy + Cuz = Fx + Gy + Hz x ∈ 𝛺, t ≥ 0
Hu = g(x, t, 𝜉) x ∈ 𝜕𝛺, t ≥ 0

u = f (x, 𝜉) x ∈ 𝛺, t = 0,
(1)

where

F = D11ux + D12uy + D13uz,

G = D21ux + D22uy + D23uz,

H = D31ux + D32uy + D33uz.

(2)

The solution is represented by the vector u = uk(x, t, 𝜉), k = 1,… ,M, where x =
(x, y, z) and 𝜉 = (𝜉1, 𝜉2,… , 𝜉L) is the vector of variables describing the stochastic

variation of the problem. The M × M matrices A,B,C,Dij are constant and symmet-

ric. H is the boundary operator defined on the boundary 𝜕𝛺. f (x, 𝜉) and g(x, t, 𝜉) are

the data to the problem. With a proper form of the matrices involved, the problem

(1) is the linearized and symmetrized compressible Navier–Stokes equations [10].

The Energy Method

We multiply the equation in (1) by uT
and integrate over the domain. By rearranging

and defining ‖u‖2 = ∫
𝛺

uTu dx dy dz, we obtain

‖u‖2t + 2DI = BT , (3)

where

DI =
∫
𝛺

⎡
⎢
⎢
⎣

ux
uy
uz

⎤
⎥
⎥
⎦

T
⎡
⎢
⎢
⎣

D11 D12 D13
D21 D22 D23
D31 D32 D33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ux
uy
uz

⎤
⎥
⎥
⎦

dx dy dz

BT = −
∮
𝛿𝛺

uTĀu − 2uTD̄∇u ds.

(4)
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In (4), ds =
√

dx2 + dy2 + dz2, ∇u = [ux, uy, uz]T and

Ā = n1A + n2B + n3C, D̄ = [D1,D2,D3],
D1 = n1D11 + n2D21 + n3D31, D2 = n1D12 + n2D22 + n3D32,

D3 = n1D13 + n2D23 + n3D33

(5)

where n = (n1, n2, n3)T is the outward pointing unit normal to 𝛿𝛺. The matrices

Ā, D1, D2, and D3 are of size M × M. By diagonalizing BT , we can write the bound-

ary conditions in the following general way

Hu = (H− − RH+)u = g (6)

where R is a matrix satisfying

RT
𝛬

−R + 𝛬
+
> 0. (7)

In (6) and (7), H+
and H−

are eigenvectors corresponding to the positive (𝛬
+

) and

negative (𝛬
−

) ones, respectively.

We can prove, (see [11] for more details).

Proposition 1 The problem (1) with boundary conditions (6) and the condition (7)
is strongly well-posed.
Proof Time integration of (3) subject to (3) with boundary conditions leads to the

following estimate

‖u(T)‖2 + 2
∫

T

0
DI dt = ‖f‖2 +

∫

T

0
BTc + gT (|𝛬−

𝐌| + |G|)g dt, (8)

where BTc is given by

BTc = −
[

W+

g

]T [RT
𝛬

−
𝐌R + 𝛬

+
𝐌 (𝛬−

𝐌R)T
𝛬

−
𝐌R −G

] [
W+

g

]

. (9)

The term BTc in (9) is negative semi-definite when G is chosen appropriately and R is

chosen such that (7) holds. By providing these choices, a bound on (8) is obtained. By

imposing the correct number of boundary conditions, also uniqueness and existence

are guaranteed.

The Semi-discrete Problem

In this section, we formulate a semi-discrete finite difference scheme based on

summation-by-parts operators (SBP) [12] and simultaneous approximation terms

(SAT) [13].
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The semi-discrete version of (1) on SBP-SAT form can be written as

vt + (Dx ⊗ Iy ⊗ Iz ⊗ A)v + (Ix ⊗ Dy ⊗ Iz ⊗ B)v
+ (Ix ⊗ Iy ⊗ Dz ⊗ C)v
= (Dx ⊗ Iy ⊗ Iz ⊗ IM)F + (Ix ⊗ Dy ⊗ Iz ⊗ IM)G
+ (Ix ⊗ Iy ⊗ Dz ⊗ IM)H
+ (P−1

x ENx
⊗ Iy ⊗ Iz ⊗ IM)(𝛴̃(H̃− − R̃H̃+)v − eNx

⊗ g)
v(0) = f .

(10)

The discrete solution is arranged as

v =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0
v1
⋮
[vi]
⋮

vNx

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [vi] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0
v1
⋮
[vj]
⋮

vNy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦i

[vj]i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0
v1
⋮
[vk]
⋮

vNz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ij

[vk]ij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1
v2
⋮
vl
⋮

vM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ijk

,

where vijkl approximates ul(xi, yj, zk, t, 𝜉).
For simplicity, we only study the boundary at x = 1, since the analysis of the

remaining boundaries is completely analogous. In (10), Dx,y,z = P−1
x,y,zQx,y,z is the

discrete approximation of the first derivative in space in the x, y, and z direc-

tion, respectively. Ix, Iy, Iz, and IM are the identity matrices of size Nx + 1, Ny + 1,

Nz + 1, and M. The matrices E0x
and ENx

are zero except for the element (1, 1) and

(Nx + 1,Nx + 1), respectively, which is equal to 1. Similarly, the vector elements in

eNx
are zero with the exception of the last element which is 1. Px,y,z is a positive

definite diagonal matrix, and Qx,y,z is an almost skew-symmetric matrix satisfying

Qx,y,z + QT
x,y,z = ENx,y,z

− E0x,y,z
= 𝔹 = diag[−1, 0,… , 0, 1].

We have also introduced the numerical fluxes

F = (Ĩ ⊗ D11)vx + (Ĩ ⊗ D12)vy + (Ĩ ⊗ D13)vz
G = (Ĩ ⊗ D21)vx + (Ĩ ⊗ D22)vy + (Ĩ ⊗ D23)vz
H = (Ĩ ⊗ D31)vx + (Ĩ ⊗ D32)vy + (Ĩ ⊗ D33)vz,

(11)

where the notation Ĩ = (Ix ⊗ Iy ⊗ Iz) and

vx = (Dx ⊗ Iy ⊗ Iz ⊗ IM)v,
vy = (Ix ⊗ Dy ⊗ Iz ⊗ IM)v,
vz = (Ix ⊗ Iy ⊗ Dz ⊗ IM)v,

(12)

have been used. The boundary data g is the original boundary data vector of the

problem (1) at x = 1.

The discrete boundary operators H̃+
and H̃−

are decomposed as
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H̃+ = (Ix ⊗ Iy ⊗ Iz ⊗ H+
0 ) + (Dx ⊗ Iy ⊗ Iz ⊗ H+

Dx
)

+ (Ix ⊗ Dy ⊗ Iz ⊗ H+
Dy
) + (Ix ⊗ Iy ⊗ Dz ⊗ H+

Dz
)

H̃− = (Ix ⊗ Iy ⊗ Iz ⊗ H−
0 ) + (Dx ⊗ Iy ⊗ Iz ⊗ H−

Dx
)

+ (Ix ⊗ Dy ⊗ Iz ⊗ H−
Dy
) + (Ix ⊗ Iy ⊗ Dz ⊗ H−

Dz
).

(13)

In a similar fashion as in the continuous problem, the matrix R̃ is defined as

R̃ = (Ĩ ⊗ R), (14)

and finally H̃
H̃ = H̃− − R̃H̃+

. (15)

The penalty matrix 𝛴̃ will be chosen such that stability is achieved.

Stability

To prove stability of the numerical scheme (10), we use the discrete energy method

[14, 15], and the SBP properties described above.

We can now prove, (see [11] for further details),

Proposition 2 The numerical approximation (10) with boundary operators (13) and
penalty coefficients

𝛴̃ = (H̃−)T (Ĩ ⊗𝛬
−
𝐌) = ((Ĩ ⊗ H−

0 ) + (Dx ⊗ Iy ⊗ Iz ⊗ H−
Dx
)

+ (Ix ⊗ Dy ⊗ Iz ⊗ H−
Dy
) + (Ix ⊗ Iy ⊗ Dz ⊗ H−

Dz
))T (Ĩ ⊗𝛬

−
𝐌),

(16)

is strongly stable.

Proof Applying the discrete energy method to (10) and integrating in time gives us

‖u‖2Pxyz
+ 2

∫

T

0
DI dt = ‖f‖2Pxyz

+
∫

T

0

[

BT + gT
Nx
(|𝛬−

𝐌| + |G|)gNx

]

dt, (17)

with

BT = −
⎡
⎢
⎢
⎣

W̃+

W̃−

g

⎤
⎥
⎥
⎦

T

Nx

(
Pyz ⊗ T̃2

) ⎡
⎢
⎢
⎣

W̃+

W̃−

g

⎤
⎥
⎥
⎦Nx

≤ 0,

which concludes the proof.

Remark 1 Note the similarity between the semi-discrete estimate (17) and the con-

tinuous counterpart (8).
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Stochastic Formulation

In this section, we focus on the stochastic properties of (1). Due to the fact that we

have a provably stable scheme which converges to the continuous solution under

mesh refinement, we only need to study the stochastic properties of the problem in

the continuous setting.

Consider the following form of (1) where we highlight the stochastic nature of

the data.

ut + Aux + Buy + Cuz = Fx(u) + Gy(u) + Hz(u)
Hu = g(x, t, 𝜉) = 𝔼[g] + 𝛿g(x, t, 𝜉)

u = f (x, 𝜉) = 𝔼[f ] + 𝛿f (x, 𝜉).
(18)

In (18), we denote Fx = Fx(u), Gx = Gx(u), and Hx = Hx(u) in order to stress their

corresponding dependence on u. By taking the expected value of (18) and defining

v = 𝔼[u], we obtain

vt + Avx + Bvy + Cvz = Fx(v) + Gy(v) + Hz(v)
Hv = 𝔼[g]

v = 𝔼[f ],
(19)

where we have used the linearity property of Fx, Gy, and Hz.

Remark 2 Equation (19) is equivalent to the equation determining the first term in

a polynomial chaos expansion; see [16].

Next, the difference between (18) and (19) together with the definition e = u − v
gives

et + Aex + Bey + Cez = Fx(e) + Gy(e) + Hz(e)
He = 𝛿g(x, t, 𝜉)

e = 𝛿f (x, 𝜉).
(20)

The Mean Value

Regarding the relation between boundary conditions and the expected values, we

need Theorem 1 below. To this end, let P(⋅) denote a general linear differential oper-

ator, H1 and H2, two different boundary operators, and w the exact solution when

solving the deterministic problems (21) and (22) (for 𝛿gu = 𝛿gv = 0)

ut + P(u) = F,
H1u = H1w + 𝛿gu,

u(x, 0) = w(x, 0),
(21)
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vt + P(v) = F,
H2v = H2w + 𝛿gv,

v(x, 0) = w(x, 0).
(22)

Theorem 1 The expected value of the solutions to the two problems (21) and (22) is
the same (i.e., 𝔼[u] = 𝔼[v]) if the added randomness has zero mean (i.e., 𝔼[𝛿gu] =
𝔼[𝛿gv] = 0).

Proof See [11].

Theorem 1 implies that the boundary and initial data are extracted from the exact

deterministic solution. The fact that w is the solution to both problems implies that

it must satisfy the relation wt + P(w) = F.

Remark 3 This situation is very common in practice since the boundary and initial

data are extracted from an exact solution (i.e., from reality), together with a small

stochastic error (assumed in this scenario to be unbiased (i.e., have zero mean)) com-

ing from measurements or other sources.

Remark 4 The result regarding equal means is important and makes it possible for

us to focus entirely on minimizing the variance. The expected value is left unchanged

for any choice of well-posed boundary conditions (provided that the data is extracted

from the exact solution, and the added uncertainty has zero mean).

Variance Formulation

We apply the energy method to (20) while using the same structure of boundary

conditions as in (6)

He = (H− − RH+)e = E− − RE+ = 𝛿g = 𝛿g− − R𝛿g+. (23)

This procedure gives (see the previous analysis leading up to (8)) the following equa-

tion

‖e‖2t + 2DIe = −
∮
𝛿𝛺

[
E+

𝛿g

]T [RT
𝛬

−
𝐌R + 𝛬

+
𝐌 (𝛬−

𝐌R)T
𝛬

−
𝐌R 𝛬

−
𝐌

] [
E+

𝛿g

]

ds, (24)

where

DIe =
∫
𝛺

⎡
⎢
⎢
⎣

ex
ey
ez

⎤
⎥
⎥
⎦

T
⎡
⎢
⎢
⎣

D11 D12 D13
D21 D22 D23
D31 D32 D33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ex
ey
ez

⎤
⎥
⎥
⎦

dx dy dz.

By taking the expected value of (24) and noting that

𝔼[‖e‖2] = 𝔼[‖u − 𝔼[u]‖2] =
∫
𝛺

𝔼[(u − 𝔼[u])2] dx dy dz = ‖Var[u]‖1 , (25)



470 J. Nordström and M. Wahlsten

we obtain the final result

‖Var[u]‖1,t + 2𝔼[DIe] = −
∮
𝛿𝛺

𝔼[(E+)T𝛬+
𝐌(E

+)] + 𝔼[(𝛿g−)T𝛬−
𝐌(𝛿g−)]

+ 𝔼[(R𝛿g+)T𝛬−
𝐌(R𝛿g+)] − 2𝔼[(R𝛿g+)T𝛬−

𝐌(𝛿g−)]
+ 𝔼[(𝛿g− − R𝛿g+ + E−)T𝛬−

𝐌(RE+)] ds.

(26)

Remark 5 Note that (26) is a complete description of how the variance in the solu-

tion develops in time.

Next, we will consider (26) in three different scenarios: zero variance on the bound-

ary, decaying variance on the boundary, and large variance on the boundary.

Zero Variance on the Boundary By assuming no uncertainty in the boundary data

(𝛿g = 𝛿g+ = 𝛿g− = 0), (26) yields

‖Var[u]‖t + 2𝔼[DIe] = −
∮
𝛿𝛺

𝔼[(E+)T (𝛬+
𝐌 + RT

𝛬
−
𝐌R)(E+)] ds. (27)

From (27), we clearly see that the optimal (in terms of variance reduction) choice of

R is zero and that all nonzero elements in R will lead to an increase in the L1-norm

of the variance of the solution.

Decaying Variance on the Boundary We now assume time-decaying variances in

the boundary data. By considering only the terms depending on the matrix R in (26),

we get

−
∮
𝛿𝛺

𝔼[(R𝛿g+)T𝛬−
𝐌(R𝛿g+)] + 2𝔼[(R𝛿g+)T𝛬−

𝐌(𝛿g−)]

− 𝔼[(𝛿g− − R𝛿g+ + E−)T𝛬−
𝐌(RE+)] ds.

(28)

As can be seen in (28), the optimal choice of R depends on the various correlations

between the data g+ and g− and the variables E+
and E−

. However, in the long run,

the problem is well-approximated by the zero variance on the boundary case. The

optimal choice also in this case is R = 0.

Large Variance on the Boundary When having large non-decaying uncertainty on

the boundary, we cannot draw any general conclusions of the best choice of R since

the correlation terms in (28) will dominate.

Applications

An Application to Inviscid Flows

We study different subsonic outflow boundary conditions for the Euler equations

with random boundary data. The linearized one-dimensional symmetrized form of

the Euler equations with frozen coefficients is, see [17],
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Ut + ĀUx = 0. (29)

In (29),

U =

[

c̄
√
𝛾𝜌̄

𝜌, u, 1
c̄
√
𝛾(𝛾 − 1)

T

]T

, Ā =

⎡
⎢
⎢
⎢
⎢
⎣

ū c̄
√
𝛾

0
c̄
√
𝛾

ū
√

𝛾−1
𝛾

c̄

0
√

𝛾−1
𝛾

c̄ ū

⎤
⎥
⎥
⎥
⎥
⎦

, (30)

and Ā = X𝛬XT
where

X =

⎡
⎢
⎢
⎢
⎢
⎣

−
√

𝛾−1
𝛾

1
√
2𝛾

1
√
2𝛾

0 1
√
2

− 1
√
2

1
√
𝛾

√
𝛾−1
2𝛾

√
𝛾−1
2𝛾

⎤
⎥
⎥
⎥
⎥
⎦

, 𝛬 =
⎡
⎢
⎢
⎣

ū 0 0
0 ū + c̄ 0
0 0 ū − c̄

⎤
⎥
⎥
⎦

.

The perturbation variables 𝜌, u, p, T , c, and 𝛾 represent the normalized density, veloc-

ity, pressure, temperature, speed of sound, and the ratio of specific heat. The overbar

denotes variables at the constant state where Ā is calculated. We have used ū = 1,

c̄ = 2, 𝜌̄ = 1, and 𝛾 = 1.4.

The boundary conditions are of the type (6). Together with the characteristic case,

we study the following two settings of R0 and R1 in the non-characteristic case

Characteristic R0 = [0, 0]T , R1 = [0, 0],
Pressure R0 = [0, 0]T , R1 = [0,−1], (31)

Velocity R0 = [0, 0]T , R1 = [0,+1]. (32)

Note that the non-characteristic boundary condition (31) corresponds to specifying

the pressure p and (32) corresponds to specifying the velocity u.

For completeness, we introduce the characteristic variables

XTU =
[

1
√
𝛾−1𝜌̄c̄

(p − c̄2𝜌), 1
√
2𝜌̄c̄

(p + c̄𝜌̄u), 1
√
2𝜌̄c̄

(p − c̄𝜌̄u)
]T

. (33)

The non-decaying randomness in the boundary data is given by 𝜌 = u = p = 0.1 +
3 cos(2𝜋t)𝜉3. In all calculations below, we use the characteristic boundary condi-

tions on the inflow boundary. On the outflow boundary, three different boundary

conditions are considered. We either specify the ingoing characteristic variable or

the pressure or the velocity. We restrict ourselves to the study of large variance on

the boundary.

We show results for 𝜉 ∼ N (0, 1) and 𝜉 ∼ U (−
√
3,
√
3) and compare the L1-

norm of the variance for the characteristic, pressure, and velocity boundary con-

dition, respectively. Figure 1 shows that even without a decaying variance on the
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Fig. 1 L1-norm of the variance as a function of time for 𝜉 ∼ N (0, 1) and characteristic, pressure,

and velocity boundary condition

Table 1 Integral of the L1-norm of the variance for different values of the matrices R0 and R1 for

𝜉 ∼ N (0, 1) and 𝜉 ∼ U (−
√
3,
√
3)

Case Characteristic Pressure Velocity

∫
T
0 ‖Var[u]‖ dt Normal 2579.0 3264.0 3143.0

Uniform 663.9 840.3 809.1

boundary, the characteristic boundary conditions give us the smallest variance. Fig-

ures for the cases with uniformly distributed randomness are omitted due to the

resemblance to the normally distributed cases. We also compare the different bound-

ary conditions by integrating the L1-norm of the variance from zero to T . Table 1

shows the total L1-norm of the variance of the solution for the different cases. As

seen from Table 1, the characteristic boundary condition gives in total the lowest

L1-norm of the variance.

An Application to Viscous Flows

Next, we add on viscosity and consider the linearized and symmetrized Navier–

Stokes equations in one dimension; see [18, 19]

Ut + AUx = 𝜀BUxx, (34)
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where U and A are given in (30), while

B = diag
(

0, 𝜆 + 2𝜇
𝜌̄

,
𝛾𝜇

Pr𝜌̄

)

. (35)

We also use A = X𝛬XT
, B̃ = XTBX, where

B̃ = 1
2

⎡
⎢
⎢
⎣

𝜙̃𝛼
2

𝜙̃𝛼 𝜙̃𝛼

𝜙̃𝛼 𝜙̃ + 𝜃 𝜙̃ − 𝜃

𝜙̃𝛼 𝜙̃ − 𝜃 𝜙̃ + 𝜃

⎤
⎥
⎥
⎦

, 𝜙̃ = 𝜆 + 2𝜇
𝜌̄

, 𝜃 = (𝛾 − 1)𝜇
Pr𝜌̄

, 𝛼 =
√

2
𝛾 − 1

.

The variables and parameters are 𝜇, 𝜆, Pr, 𝜀 and represent the dynamic and second

viscosity, the Prandtl number, and the inverse Reynolds number. The overbar denotes

the constant state around which the Navier–Stokes equations are linearized.

In our calculations, we use the following numerical values

𝜌̄ = 1, ū = 1, c̄ = 2, p̄ = 1, 𝜆 = −2
3
,

𝛾 = 1.4, 𝜀 = 0.01, Pr = 0.7, 𝜇 = 1.
(36)

The boundary conditions are of the type (6), where R0 and R1 are matrices of sizes

3 × 2 and 2 × 3. The boundary cases which we compare are the following

Characteristic: R0 =
[
0 0 0
0 0 0

]T

, R1 =
[
0 0 0
0 0 0

]

,

Specifying u: R0 =
[
0 0 0
0 0 0

]T

, R1 =
[
0 −1 r13
0 0 r23

]

,

Specifying p − 𝜀

(
𝜃

𝜌̄

)

ux: R0 =
[
0 0 0
0 0 0

]T

, R1 =
[
0 1 r̃13
0 0 r̃23

]

,

Inflow 1: R0 =
[
0 s21 0
0 s22 s32

]T

, R1 =
[
0 0 0
0 0 0

]

,

Inflow 2: R0 =
[

s̃11 0 0
s̃12 s̃22 s̃32

]T

, R1 =
[
0 0 0
0 0 0

]

.

(37)

Note that specifying u and p − 𝜀(𝜃∕𝜌̄)ux are both well-posed boundary conditions at

a subsonic outflow boundary; see [20].

The choices of R0 and R1 in (37) are made such that condition (7) is satisfied. The

randomness imposed in the boundary data is given by

𝜌 = u = p = 1 + 3 cos(2𝜋t)𝜉3 + 3 sin(2𝜋t)𝜉32 ,
𝜌x = ux = px = 3 cos(2𝜋t)𝜉31 + 3 sin(2𝜋t)𝜉32 .

The characteristic variables in this problem are the same as the ones in (33). The

boundary conditions used in the comparison are two well-known outflow boundary
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Fig. 2 L1-norm of the variance as a function of time for normally distributed 𝜉1 and 𝜉2 for charac-

teristic and non-characteristic boundary conditions when having large non-decaying boundary data

for the Navier–Stokes equations

Table 2 Integral of the L1-norm of the variance for different values of R0 and R1 for T = 5 and

different distributions

BC Charact. Velocity Pressure Inflow 1 Inflow 2

∫
T
0 ‖Var[u]‖ dt Uniform 1501.8 1687.9 1558.6 1514.8 1423.8

Normal 4425.8 4974.3 4593.2 4464.2 4196.0

conditions (specifying u and specifying p − 𝜀( 𝜃
𝜌̄
) (with characteristic boundary con-

ditions as inflow) and two artificially constructed inflow boundary conditions (with

characteristic boundary conditions as outflow).

Figure 2 shows the L1-norm of the variance for the different cases stated in (37).

Table 2 illustrates the integrated L1-norm of the variance of the solution for the five

different boundary conditions. From Table 2, we note that the generalized character-

istic (R = 0 for all boundaries) gives in this case the second lowest total variance. In

this case, only the boundary condition inflow 2 gives a smaller total variance. From

Fig. 2, we observe that the inflow boundary conditions (inflow 1 and inflow 2) pro-

vide a significant smaller variance than the outflow boundary conditions (specifying
u and specifying p − 𝜀( 𝜃

𝜌̄
)).
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An Application in Electromagnetics

The relation between the electric and magnetic fields is given by, see [21],

𝜇
𝜕H
𝜕t

= −∇ × E, 𝜀
𝜕E
𝜕t

= ∇ × H − J,
∇ ⋅ 𝜀E = 𝜌, ∇ ⋅ 𝜇H = 0,

(38)

where E, H, J, 𝜌, 𝜀, and 𝜇 represent the electric field, magnetic field, electric current

density, charge density, permittivity, and permeability. In this example, we let 𝜌 = 1,

𝜀 = 1, and 𝜇 = 1. By also letting J = 0, we can write (38) in matrix form as

Sut + Aux + Buy = 0,

where u =
[
Hz,Ex,Ey

]T
and

S =
⎡
⎢
⎢
⎣

𝜇 0 0
0 𝜀 0
0 0 𝜀

⎤
⎥
⎥
⎦

, A =
⎡
⎢
⎢
⎣

0 0 1
0 0 0
1 0 0

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

0 −1 0
−1 0 0
0 0 0

⎤
⎥
⎥
⎦

.

Furthermore, we introduce the eigendecomposition

𝛬A = 𝛬B =
⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎥
⎥
⎦

, XA =
⎡
⎢
⎢
⎢
⎣

− 1
√
2
0 − 1

√
2

1
√
2

0 − 1
√
2

0 1 0

⎤
⎥
⎥
⎥
⎦

, XB =
⎡
⎢
⎢
⎢
⎣

1
√
2

0 1
√
2

0 −1 0
1
√
2

0 − 1
√
2

⎤
⎥
⎥
⎥
⎦

.

The boundary conditions are of the type (6), where in this case R is represented

at the North, South, East, and West boundary (seen in Fig. 3). Together with the

characteristic case (CHA), we study the following cases
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Table 3 Integral of the L1-norm of the variance for different values of the matrices RN , RS, RE ,

and RW for 𝜉 ∼ N (0, 1) and 𝜉 ∼ U (−
√
3,
√
3)

Case CHA BC1 BC2

∫
T
0 ‖Var[u]‖ dt Normal 74.9 87.1 106.6

Uniform 921.1 1070.7 1311.8

BC1 RN = [+1
2
, 0]T , RS = [0,−1

2
],

RE = [+1
2
, 0]T , RW = [0,+1

2
],

BC2 RN = [−1
2
, 0]T , RS = [0,+1

2
],

RE = [−1
2
, 0]T , RW = [0,−1

2
],

CHA RN = [0, 0]T , RS = [0, 0],
RE = [0, 0]T , RW = [0, 0].

(39)

In (39), both BC1 and BC2 specify a linear combination of Hz, Ex, Ey at the North

and East boundaries and Hz, Ex at the South and West boundaries. In CHA, the char-

acteristic variables

XT
A u =

[
−Hz + Ex

√
2

,Ey,
−Hz − Ex

√
2

]T

, XT
B u =

[
Hz + Ey
√
2

,−Ex,
Hz − Ey
√
2

]T

are specified.

When constructing boundary and initial data, we assume randomness in Hz, Ex,

and Ey given by

Hx = Ex = Ey = 1 + sin(2𝜋x) sin(2𝜋y) + 3 cos(2𝜋t)𝜉.

In Fig. 4, we compare the L1-norm of the variance for BC1, BC2, and CHA for

𝜉 ∼ N (0, 1). We also compare the total variance for the three different cases in

Table 3. As can be seen, the trend from the previous sections remains, namely that

the characteristic boundary condition (CHA) gives the smallest variance.

Summary and Conclusions

We have studied how the boundary conditions affect the uncertainty of the solution

when the initial and boundary data are uncertain. A general incompletely parabolic

system of equations has been studied, and general well-posed boundary conditions

have been derived. The boundary conditions lead to strongly well-posed and strongly

stable continuous and discrete problems, respectively.
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Fig. 4 L1-norm of the variance as a function of time for 𝜉 ∼ N (0, 1) and BC1, BC2, and CHA

Next, randomness was added to the analysis and a formulation relating the vari-

ance of the solution with the boundary condition imposed was derived. Hence, a

formulation describing the relation between the variance of the solution and the

imposed boundary conditions was obtained. It was proven that the expected value

of the solution is independent of the choice of boundary condition in the linear case

given that the boundary and initial data are taken from the exact solution.

The technique was applied to the one-dimensional linearized Euler, Navier–

Stokes and Maxwell’s equations, where the case of having large non-decaying vari-

ance on the solution was shown for different types of boundary conditions. The

results were in line with the model problem showing that the generalized charac-

teristic boundary condition was a good choice, however, the boundary condition

Inflow 2 provided a smaller total variance for the Navier–Stokes case. For the Euler

and Maxwell cases, the characteristic boundary condition provided the smallest total

variance.

With deterministic boundary data, we conclude that the optimal choice of bound-

ary operator is the generalized characteristic boundary conditions. When having

decaying variance in the boundary data, the optimal choice is determined by the dif-

ferent correlations between the inflow and outflow boundary data. However, for long

times, the optimal choice is again the generalized characteristic boundary conditions.

With large non-decaying variance in the boundary data, no general conclusions can

be drawn, although the numerical results suggest that the generalized characteristic

boundary conditions are generally a good choice.
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Robust Optimization with Gaussian
Process Models

Krzysztof Marchlewski, Łukasz Łaniewski-Wołłk, Sławomir Kubacki
and Jacek Szumbarski

Introduction

An optimization process of a certain engineering solution is usually a complex task

which should be tackled by appropriate methods and using criteria defined specifi-

cally for a given problem. In this chapter, we focus on problems which admit descrip-

tion in terms of sufficiently regular objective functions. Typically, at least continuity

with respect to all variables is demanded.

A topic of effective evaluation of such objective functions remains constant in

the area of interests of scientists and engineers. The systematic progress in numeri-

cal methods and growing availability of high-performance computers are additional

factors contributing to further intensification of this research.

In order to solve particular optimization problems, various specialized algorithms

have been developed in the last few decades. Still, the main challenge is to apply them

routinely to problems of industry-relevant complexity. In this context, it is crucial to

design optimization algorithms which need as few as possible objective function

evaluations, typically very costly both in terms of computational time and hardware

resources.

One of the approaches which enjoy continuously increasing popularity is the

response surface method (RSM), also called the method of meta-modelling or
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surrogate modelling. The essential idea of the surrogate-based optimization is to

approximate the parametric variations (response) of real optimized model by their

multidimensional algebraic approximation. Such approximation consists basically of

two main ingredients: a set of basic functions used to span the response surface and

a selection algorithm for samples of a real model response used to train a surrogate.

Different approaches have been proposed within the RSM framework: application of

radial basis functions or thin-plate splines approximation, approximation by Gaus-

sian processes or using artificial neural networks. A comprehensive overview of the

response surface method and their application in engineering design and optimiza-

tion can be found in [1, 2].

Despite their popularity, the response surface methods suffer the same funda-

mental difficulty—all of them tend to be prohibitively expensive when applied to

optimization problems with large number of design/control variables. In such cir-

cumstances, the number of samples necessary to fit the data (to train the RSM-based

meta-model) is rising exponentially with a number of variables. This effect is com-

monly referred to as the curse of dimensionality (e.g. [3]).

To create a meta-model, interpolation between the sample points in a design space

of an optimized model is needed. However, in practice the response evaluated at

these sample points is affected by random errors. Hence, to properly estimate the

model response one needs to take uncertainty quantification into account. This is why

the Gaussian process (GP) regression (Kriging) has become a popular approach to

surrogate-based optimization. Due to its underlying probability framework, it allows

us to tell how uncertain different parts of the Kriging model are. Knowing uncer-

tainty of the model, we can design a sampling criterion which targets improvement

of the GP model in selected subset of sampling points. These points are indicated

as a compromise between search for the global minimum and accuracy in locating

it (search for the local minimum). That approach is called the efficient global opti-

mization (EGO) [4].

In recent years, increasing pressure on shortening the design cycle and implemen-

tation to production has stimulated growing interest in robust optimization methods.

In this context, augmentation of optimization procedures with uncertainty quantifica-

tion (UQ) has become mandatory. Generally, sources of uncertainties can be divided

into two main groups. Epistemic (or systematic) uncertainties appear due to such

factors like imperfection or oversimplification of the physical models, insufficiently

accurate identification/measurements of the model parameters, lack of perfection in

manufacturing procedure or other factors which are currently out of control, but—at

least in principle—depend on our knowledge and solicitude. Aleatory (or statistical)

uncertainties appear due to factor which is essentially out of control, typical example

being operating conditions. Uncertainties which are not controllable are particularly

important and often crucial for both a design process and safety operation of a tech-

nical system (e.g. icing problem in aircraft [5]).

The need of performing simultaneously the optimization procedure combined

with uncertainty quantification is the essence of the idea of the robust design opti-

mization (RDO). The most straightforward implementation of the RDO concept is

to perform sequential steps, i.e. optimize and assess uncertainty in two separate
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sub-steps of the iterative process. Such approach is reliable but usually very time-

and resource-consuming. To reduce the time needed for each step, the robust opti-

mization is frequently based on the RSM [6].

In this chapter, we propose a method capable of performing the optimization and

UQ procedures simultaneously. The proposed method is based completely on ana-

lytical approach. Hence, it allows one to perform the RDO very efficiently. First

attempts to develop such approach were presented in [7]. The method is based on the

GP regression supplemented with the sampling criterion stemmed from the expected

improvement [4] idea. The modification consists in taking into account a correlation

between sampled objective function and the mean response of the Kriging model.

We called this approach the relative expected improvement (REI) method [8].

This chapter is organized as follows. In the next section, we present a formal def-

inition of the optimization problem. Details of the proposed algorithm are described

in the section “Kriging-Based Optimization and Uncertainty Quantification”. The

section “Example of Application” presents the results of the optimization of the duct

channel delivering air to the turboprop engine. In the last section, we briefly sum-

marized the optimization methodology.

Problem Statement

In order to thoroughly describe the developed methodology, two spaces have to be

introduced. First one is a space of all possible values of the design variables. The

extreme values of these variables should be determined by an experienced engi-

neer. This set of values is called a design space and denoted as 𝕏. The points in this

space are 𝐱 = (x1,… , xL), where L is a dimension of the problem. A second space

contains values of the design variables which arise from considering influence of

the uncertainties. While introducing an objective function, a detailed description of

these variables will be presented. This set is called a sampling space 𝕊 and contains

points 𝐬 = (s1,… , sL). It should be noticed that S ⊆ X.

Let us assume that an objective function F (𝐱) is known. Its domain is the 𝕏
space. We also assume that a variable 𝐱 = (x1,… , xL) is influenced by additive

uncertainties. It means that the real value of the objective is a random variable

F(𝐬) = F (𝐱 + 𝜉), where 𝜉 is the random variable with a probability density function

g (𝐱) and the zero mean. We can define a mean response as:

Ferr(𝐱) ∶= 𝔼
𝜉

F (𝐱 + 𝜉) (1)

Symbol 𝔼
𝜉

denotes an expected value with respect to the uncertainty 𝜉. A domain of

the function Ferr is the 𝕏 space.

In the similar way, we define a variation of the function with respect to the uncer-

tainty:

𝜎

2
err(𝐱) ∶= 𝕍𝔸ℝ2

𝜉

F (𝐱 + 𝜉) (2)
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These two statistical moments can be used to quantify the basic information about

the objective function influenced by the uncertainties.

Kriging-Based Optimization and Uncertainty Quantification

The evaluation of the objective function F is in most cases very expensive. Therefore,

one would like to evaluate quantities Ferr(𝐱) and 𝜎

2
err(𝐱) by means of RSM. In our

method, we use the Gaussian process prediction (commonly known as Kriging) for

that.

More precisely, a technique which will be presented in the following section con-

sists of the following steps:

1. Performing a Design of Experiment (DoE) procedure and evaluation of the objec-

tive function for prescribed combination of input parameters.

2. Fitting the Kriging model to the obtained data and validating it through the leave-

one-out cross-validation (LOOCV).

3. Applying a sampling criterion to improve the initially fitted model. Particularly,

finding the maximum value of the relative expected improvement and sampling

the objective function if necessary.

4. Checking a stop condition and returning to the point 2 if convergence requirement

is not fulfilled.

Design of Experiment

A data set is required to fit the first model. In the beginning, our knowledge of the

deterministic function is very limited; therefore, the initial sample points had to be

chosen randomly and evenly at the same time. Their number has to be large enough to

capture main features of the objective function. We cannot perform the full factorial

experiment because it would imply an extensive evaluation of the objective function.

That is why we used a Latin hypercube sampling (LHS) method [9, 10].

Assume that N samples F(𝐱i) from the objective function are taken. We use N =
2 ⋅ L + 3. Such formula is dictated by the number of unknown Kriging parameters

which should be estimated to fit the model. In the process, we get the set of N points

X =
{
𝐱1,… , 𝐱N}

and the values of the objective function in these points f (𝐱i) = fi.
Set X is often augmented with a point corresponding to a base design for the

following reasons. First, the objective function value for such design is probably

already evaluated. Secondly, this step allows one to assess if the designs found by

the algorithm are better than the base design.
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Kriging

The real objective function is unknown, but we can estimate its values taking advan-

tage of the Gaussian process. We assume that the objective function is a realization

of a random field

F (𝐱) = 𝜀 (𝐱) + 𝜇 (𝐱)

The term 𝜇(𝐱) is a trend function of the form

𝜇 (𝐱) =
M∑

j=1
𝛽jhj (𝐱)

where h1, h2, … , hM are basis functions and 𝛽j are unknown coefficients. It is com-

mon to use a linear trend function

𝜇 (𝐱) = 𝛽0 +
L∑

j=1
𝛽jxj

The term 𝜀(𝐬) is a centred Gaussian process

𝜀 ∼ ℕ (0,𝐂(X,Y))

where 𝐂(X,Y) is a covariance matrix, and X and Y are random vectors. Properties

of functions generated with such GP depend strongly on the covariance function

c(x, y). The process 𝜀 is assumed stationary, so that c(x, y) = c(x − y). One of the

basic functions is the Gaussian kernel which for one-dimension is given by formula

gg(x − y; 𝜃) = exp
(
−
(x − y)2

2𝜃2

)

In many dimensions, it is convenient to take

c
(
𝐱 − 𝐲, 𝜎2

, 𝜏

2
, 𝜃

)
= 𝜎

2
L∏

k=1
gg(xk − yk; 𝜃k) + 𝜏

2
𝛿𝐱,𝐲

where symbol 𝛿𝐱,𝐲 denotes the Kronecker delta

𝛿𝐱,𝐲 =
{

1, 𝐱 = 𝐲
0, 𝐱 ≠ 𝐲

Parameter 𝜃 is a length scale for a case, 𝜏
2

is a so-called nugget effect introduced to

deal with a noise of the solver, and 𝜎

2
parameter improves estimation of variance.
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These quantities are called the Kriging parameters. They are estimated with the max-

imum likelihood estimation (MLE) method. The choice of the covariance kernel will

be discussed in detail in section “Utilizing Different Covariance Kernels”.

Next, we can define estimators of the expected value and variance of the process

̂F(𝐱) = 𝔼FF(𝐱) (3)

𝜎̂

2(𝐱) = 𝕍𝔸ℝ2
FF(𝐱) (4)

Following the usual Kriging approach, we assume that the expected value esti-

mator has the properties:

∙ It is a linear combination of known objective function values

̂F(𝐱) =
N∑

i=1
ai(𝐱)F

(
𝐱i)

∙ It is unbiased

𝔼
(
̂F(𝐱)

)
= 𝔼 (F(𝐱)) , and

∙ The mean squared error (MSE) is minimal

MSE(𝐱) = 𝔼
(
̂F(𝐱) − F(𝐱)

)2 = min

These assumptions allow us to write the Kriging estimators in the forms

̂F(𝐱) = hT
𝛽 + rT𝐑−1 (F −𝐇𝛽) (5)

and

𝜎̂

2(𝐱) = c(𝐱 − 𝐱) − rT𝐑−1r +
(
h −𝐇T𝐑−1r

)T (𝐇T𝐑−1𝐇
)−1 (h −𝐇T𝐑−1r

)
(6)

where

𝛽 =
(
𝐇T𝐑−1𝐇

)−1 𝐇T𝐑−1F

∙ h—a vector of basis function values for 𝐱; hj = hj (𝐱),
∙ 𝐇—a matrix of transposed vectors h for each 𝐱i

; Hij = hj
(
𝐱i)

,

∙ r—a vector of covariance function values for each 𝐱 − 𝐱i
; ri = c

(
𝐱 − 𝐱i)

,

∙ F—a vector of known values of the objective function; Fi = F
(
𝐱i)

,

∙ R—a matrix of covariance function values for all 𝐱i − 𝐱j
; Rij = c

(
𝐱i − 𝐱j)

.

The result of applying the described approach can be seen in Fig. 1. The black

dots are the samples of the objective function. The grey lines are the samples from

the GP in the presence of the measured values. The black line is the mean value, and

the dashed lines constrict the 95% confidence intervals.
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Fig. 1 Twenty samples

from a GP. Black dots are

measurements points, black

line is the mean value, and

dashed lines are limits for

95% confidence intervals
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Having the expected value and variance estimators, we can define the mean value

of the mean response as:

̂Ferr(𝐱) ∶= 𝔼
𝜉

̂F (𝐱 + 𝜉) (7)

which can be expressed as the following convolution

̂Ferr(𝐱) =
(
̂F ∗ g

)
(𝐱) (8)

Similarly, the variance of the mean response is defined as

𝜎̂

2
err(𝐱) ∶= 𝕍𝔸ℝ2

𝜉

̂F (𝐱 + 𝜉) (9)

and using convolution properties, we can write

𝜎̂

2
err(𝐱) =

(
̂F2 ∗ g

)
−
(
̂F ∗ g

)2
(10)

Finally, we can derive explicit formulas for the mean response values

̂Ferr(𝐱) =
(
̂F ∗ g

)
(𝐱) = (h ∗ g)T𝛽 + (r ∗ g)T𝐑−1 (F −𝐇𝛽) (11)

and variance

𝜎̂

2
err (𝐱) = (g ∗ c ∗ g) − (r ∗ g)T𝐑−1(r ∗ g) + (12)

(
(h ∗ g) −𝐇T𝐑−1(r ∗ g)

)T (𝐇T𝐑−1𝐇
)−1 ((h ∗ g) −𝐇T𝐑−1(r ∗ g)

)

The estimation accuracy of the obtained model should be checked. To this aim, a

leave-one-out cross-validation is performed. If results indicate a poor fitting quality,

the MLE method is performed or the Kriging parameters are tuned manually.
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The crucial feature of the proposed approach is that all convolutions can be cal-

culated analytically. To do so, we have to assume:

1. The error 𝜉 has a normal density function

(
𝜉 ∼ N

(
0, 𝜎2

g

))
of a form

g(𝜉) =
L∏

k=1

1
√

2𝜋𝜎2
g,k

exp

(

−1
2

𝜉

2
k

𝜎

2
g,k

)

2. The covariance function has the form

c
(
𝐱i − 𝐱j

, 𝜎

2
, 𝜏

2
, 𝜃

2) = 𝜎

2
L∏

k=1
exp

⎛
⎜
⎜
⎜
⎝

−

(
xi

k − xj
k

)2

2𝜃2k

⎞
⎟
⎟
⎟
⎠

+ 𝜏

2
𝛿𝐱i

,𝐱j ,where

The variable 𝜃k is a shape parameter for our function c
(
𝐱i − 𝐱j

, 𝜎

2
, 𝜏

2
, 𝜃

)
. The

parameters 𝜎

2
and 𝜃

2
are introduced to improve Kriging model adjustment to

the known data. Values of those parameters are found by maximal likelihood

estimate (MLE).

3. The trend function is the polynomial

𝜇 (𝐱) = 𝛽0 +
L∑

j=1
𝛽jxj

Utilizing Different Covariance Kernels

Functions sampled from the described GP approximate well a certain class of objec-

tive functions. A quality of this approximation depends on a kernel type used as a

covariance function. By quality, we mean the ability to estimate an actual objec-

tive function using a minimal number of samples. There are many different kernels

used in various cases. We prefer using kernels belonging to the Matern family [11].

Particularly, the kernel with smoothness parameter 𝜈 = 5∕2 is our choice which

means that the random process based on such kernel is twice differentiable. The

reason for such choice is twofold. First, we would like to optimize only the con-

tinuous objective functions. Second, we can measure directly only a value of the

objective function. Thus, we do not want to assume too much about the properties of

the objective function. According to our experience, there are cases in which addi-

tional assumptions may lead to poor estimation results. The Matern kernel is of the

form

gmat(xi
, xj

, 𝜃) =

(

1 +
√
5|xi − xj|

𝜃

+ 5(xi − xj)2

3𝜃2

)

exp

(

−
√
5|xi − xj|

𝜃

)
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In described analytical approach, only the Gaussian functions or their linear com-

binations can be used. That is why the Matern 5/2 kernel is approximated by Gaus-

sian functions. To this aim, the least squares method is used. It is important to ensure

the following conditions:

∙ The approximation is positive-definite.

∙ The maximal discrepancy between approximation and Matern 5/2 function (resid-

ual) is low.

∙ The approximation is independent of the Kriging parameters, particularly the

covariance radius 𝜃.

In effect of imposed conditions, the approximation takes the form

ḡmat(xi
, xj

, 𝜃) =
M∑

m=1
am ⋅ exp

(
−
((xi − xj)∕𝜃)2

2𝜆m

)
=

M∑

m=1
am ⋅ gm(xi

, xj
, 𝜃)

Coefficients am are determined by minimization of sum of square differences between

ḡmat − gmat with the nonnegative least squares method (NNLS). This technique

ensures that the approximation is positive-definite. Values of parameters 𝜆m of the

Gaussian functions are determined by a nonlinear optimization of the squared resid-

uals’ sum. The multidimensional Matern kernels are defined in the following form

ḡmat(𝐱i
, 𝐱j

, 𝜃) =
M∑

m=1
am

L∏

l=1
gm(xi

l, x
j
l, 𝜃l)

In this chapter, the uncertainties of the variables are considered Gaussian. Some-

times, different distributions are better suited. Following the described method of

utilizing various covariance kernels, one can take advantage of other probability dis-

tributions (e.g. beta distribution). Again, the following conditions should hold:

∙ The approximation is positive.

∙ The maximum difference between the cumulative distribution function of the

probability function and its approximation is low.

Relative Expected Improvement

In the beginning of the optimization process, our knowledge about the objective func-

tion is limited. That is why the process of choosing initial points (Latin hypercube

sampling) does not use any information of this function. In contrast to it, the pro-

cedure of adding points to the existing set should utilize the previously constructed

surrogate model. That step is one of the most important parts in the optimization

based on the RSM. The commonly used approach (e.g. EGO algorithm [4]) is called

the expected improvement (EI) method. It uses the fact that the objective function
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value can be modelled as a realization of a Gaussian field with the mean value and

the covariance equal to the Kriging estimators. As the best point to measure the

objective function, we choose point 𝐱 for which the expression

EI(𝐱) = 𝔼
(
max
𝐱∈D

(
fmin − ̂F(𝐱), 0

))

is maximized. This function is called the expected improvement and can be expressed

as

EI(𝐱) =
(
fmin − ̂F(𝐱)

)
𝛷

(
fmin − ̂F(𝐱)

𝜎̂(𝐱)

)

+ 𝜎̂(𝐱)𝜙
(

fmin − ̂F(𝐱)
𝜎̂(𝐱)

)

(13)

where 𝜙 is the density and 𝛷 is the cumulative distribution function of the standard

normal distribution ℕ(0, 1).
We use an extension of this method proposed by Laniewski [8]. Two main dif-

ferences should be noticed. First, we cannot relate improvement of our model to

sampled optimum. The function which is optimum we are looking for ̂Ferr(𝐱) (mean

performance) is different from the function which value we can calculate F(𝐱) (per-

formance for one, deterministic design). For this reason, we take the minimum of our

mean performance as a reference value. Second, a variance of the model should be

calculated with respect to the new sample in the points 𝐬. We want to know how the

model changes if the deterministic function is measured. This important distinction

is taken into account and leads to the method called the relative expected improve-

ment (REI) which makes use of the formula (13). The only modifications appear in

the expressions for fmin, ̂F(𝐱) and 𝜎̂(𝐱). They can be expressed in the following steps:

1. The values of the design parameters 𝐱min for which the mean response reaches its

minimum value should be found. Since we use the estimator rather than deter-

ministic mean response, reaching this goal needs taking into account also the

variation of the response. For example, one can search for:

min
𝐱min∈D

(
̂Ferr (𝐱min) + 2𝜎̂err (𝐱min)

)

2. The formula for the Kriging model variance at the point 𝐱 should take into account

the relation between the objective function evaluation at the 𝐬 point and the model.

In consequence, one should obtain the expression for:

𝜎̂

2
err, rel(𝐱, 𝐬)

which measures the relative variance of the ̂Ferr(𝐱) if the objective function is

sampled in 𝐬.
3. The quantity obtained in the step (1) and the formula derived in the step (2) should

be used to calculate REI (𝐱, 𝐬). The values of 𝐱 and 𝐬 should be found in order
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to maximize the expression. A domain of 𝐱 is a design region, and a domain of

𝐬 is a sampling space. The obtained parameters 𝐬 are these for which we should

evaluate the objective function.

Example of Application

The optimization procedure based on the Gaussian process is not efficient for high-

dimensional objective functions. Such property is characteristic for every RSM. Per-

forming the optimization would require using a lot of sampling points (the course

of dimensionality). Conveniently, there are engineering problems which can be for-

mulated in terms of relatively small number of design variables. Needless to say, a

selection of such variables may not be an easy task which necessitates a great deal

of engineering experience.

Let us imagine that an objective function is linear in most dimensions. It means

that only in few dimensions the function should be sampled densely. There exist

methods of reducing a dimension of the problem (e.g. [12]). They are capable of

indicating the dimensions significant in the process of optimization but with the cost

of additional sampling. We will show in this example that in case of optimization

based on GP such methods are unnecessary.

Formulation of the Test Case

The technical object which we would like to optimize is a duct channel delivering

air to the engine of the small aircraft I − 23 (see Fig. 2). This aircraft is powered by

the turboprop engine in tractor configuration: air is drawn in the channel through

the inlet located in the nacelle below the spinner and then transported to the engine

compressor.

The aim of the optimization was to reduce a total pressure drop between the inlet

to the channel and its outlet. To achieve this goal, the shape of the channel had to be

modified.

Fig. 2 Engine location and

the channel
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Fig. 3 Channel duct. The

red dots are the morphing

points. The grey surface

cannot be deformed. The

yellow cylinder is a dummy

block substituting the engine.

The black surface is the only

area which can be deformed

The maximum deformation was determined basing on a computational mesh. The

appearance of negative volumes was the factor limiting the deformation. The defor-

mation was applied in the morphing points and distributed over the whole computa-

tional mesh by means of the radial basis function method, with parts of the domain

fixed (Fig. 3).

The uncertainties of the design variables were arbitrary. It was assumed that each

of them is a random variable with the Gaussian density function, the zero mean and

the standard deviation equal to 10% of the maximum deformation.

To perform the optimization, a computational set-up was prepared. The hybrid

mesh consisting of the boundary layer mesh and unstructured mesh elements was

prepared. The basic conditions of the simulation are summarized in Table 1.

Table 1 Computational set-up summary

Condition Value

Flow Turbulent (Re = 3.8 ⋅ 105)

Flight attitude 3000 (m)

Inlet gauge pressure 72,426 (Pa)

Pressure jump (Fan) 8768 (Pa)

Solver ANSYS fluent (density-based)

Flow Compressible

Scheme Second-order upwind

Turbulence model SST k − 𝜔
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Optimization Summary

We started the optimization process with the DoE. There were N = 3 ⋅ L + 3 = 63
points generated with means of the LHS method. Then, the objective function eval-

uations (calculation of the pressure drops) were performed. Two evaluations failed

due to mesh issues. This fact forced us to do two additional iterations. The values of

the objective function in these cases were assumed to be equal to those predicted by

the Kriging model, which prevented the REI algorithm from sampling in the neigh-

bourhood of the unconverged samples.

The sampling space was determined to be 𝕊 = [−0.4, 0.4]L. The initial model

fitting procedure showed that the optimum will be located near the limits of the

sampling space. It is a situation leading to poor estimation results near the limits.

Because of that, the design space was restricted to 𝕏 = [−0.32, 0.32]L. With this

step, we ensure that the influence of the Kriging extrapolation outside the bound-

aries would not affect the optimization procedure.

In the process of optimization, 150 samples have been generated in the parallel

mode. More specifically, our algorithm allows us to generate new points where the

objective function should be calculated without waiting for all of the previous com-

putations to finish. In order to generate the new point, our method does not change

the Kriging model but only modifies underlying probabilities. These modifications

consist of assuming zero variance of the Kriging model in points corresponding

to ongoing calculations and proceeding with the REI algorithm on such model. It

allowed us to run five simulations simultaneously.

Results

The results of the performed optimization process can be seen in Fig. 4. The blue

triangles are indicating the values of the objective function obtained with the LHS

method. The red squares are the deterministic results of REI sampling. The calcula-

tions which failed to converge are indicated with the orange trapezoids. Our reference

point is the green star which is the base design to be improved. We can see that some

of the randomly generated samples (with the LHS method) are already better than the

reference value. It means that relatively big improvement of the objective function

should be achieved. The black dots indicate actual value of the optimum estimated

by the Kriging model, and the vertical bars are the confidence intervals.

The improvement of the objective function is obtained early during the optimiza-

tion process (66 iterations), but the confidence interval for the optimum point is too

high. After adding new points, the minimum value changes rapidly. It is the moment

when the algorithm is focused more on improvement of the objective function value

than on the UQ. When the iteration number reaches 90, we can see that changes are
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Fig. 4 Results of the optimization process of the channel delivering air to the turboprop engine

slower. Of course, the improvement of the objective function value and the UQ are

done simultaneously but we can say that in that moment UQ dominates the search for

the optimum. That situation lasts till iteration 155 when the optimum point variance

is low and the algorithm starts to check other points.

To sum up, the optimum value is found early during the optimization process

(improvement of 8.04%). The optimum is located on the boundaries of 23 design

variables. Its location changes only in seven dimensions during the optimization. It

means that the objective function should be checked only within these seven dimen-

sions. The optimization algorithm behaves like it would optimize L = 7 dimensional

objective function not L = 30 which substantially lowers amount of iterations nec-

essary to find the objective function optimum.

Summary

The method described in this chapter allows one to find—in a limited number of

steps—the optimum of the objective functions first moment with respect to uncer-

tain parameters. It is achieved by using the properties of the Kriging approxima-

tion and the new method of sampling. The method is based on the relative expected

improvement (REI) criterion. The key advantage of the method is that it allows for

the function evaluations only in points which improve our knowledge on the loca-
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tions of the robust minimum. The properties of the method allow also for the efficient

parallelization of the optimization process. The underlying probability makes the

proposed approach robust to solver failures and mesh issues. In effect, the described

method is particularly suitable for cooperation with external objective function eval-

uators. The quality of the response surface is constantly checked by means of leave-

one-out cross-validation. Such approach allows us to decide if the surrogate model

is sufficiently accurate. The present approach facilitates incorporation of uncertain-

ties of design variables by analytical convolutions of Gaussian functions. It does

not mean, however, that the proposed method is restricted only to uncertainties with

normal distributions. Other distributions can be incorporated providing that they can

be approximated by a weighted sum of Gaussian functions. Any other distribution

can be used assuming that it can be approximated by a weighted sum of Gaussian

functions.

The REI criterion indicates the new points improving the knowledge about the

optimum. It means that the new points are added also in order to minimize the vari-

ation of the optimum. The algorithm is performing simultaneously the search for an

optimal design and its UQ.
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Robust Design in Turbomachinery
Applications

Rémy Nigro, Dirk Wunsch, Grégory Coussement and Charles Hirsch

Introduction

Nowadays, the aerodynamic design procedures are still overwhelmingly deter-
ministic in character, neglecting the influences of uncertainties. There are two major
classes of uncertainty-based design problems that can be identified: robust design
and reliability-based design problems. A reliability-based design seeks a design
with a probability of failure less than an acceptable value, while robust design aims
at finding a design insensitive to small changes of uncertainties. A robust design
optimization will therefore reduce the level of reduction of performance when
deviating from the nominal conditions.

Figure 1 illustrates the principle of a robust design optimization at the example
of a function with two minima. In a deterministic optimization formulation, one
would seek to minimize the cost function and an adequate optimizer will identify
the minimum on the left as the global optimum, since it shows the lowest value. If
the design parameter is now uncertain and represented by a PDF as illustrated by
the red-colored PDF on the abscissa, the system response varies significantly over
the range of variability of this design parameter. This is illustrated by the
red-colored PDF on the ordinate. This distribution could, for example, represent the
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variation of the efficiency. A robust design optimization formulation, on the other
hand, will not only seek to minimize the mean of the cost function, but also to
minimize the variability of the cost function. In mathematical terms, this is
expressed by minimizing the mean value of the cost function and the standard
deviation of the same cost function. The optimization problem becomes thus
multi-objective with several optimal solutions. It is clearly seen from Fig. 1 that the
minimum on the right of the figure illustrated by PDFs in green color shows a much
more narrow distribution of the cost function for the same variability of the input
quantity (the design parameter on the abscissa)! This is thus a robust optimum.

In order to calculate the statistical output quantities (mean and variance), a
design optimization strategy needs to be coupled with a method for the uncertainty
quantification. In the following, a coupling of the non-intrusive probabilistic col-
location method as described in chapter “Non-intrusive Probabilistic Collocation
Method for Operational, Geometrical and Manufacturing Uncertainties in
Engineering Practice” and a multi-objective surrogate-based optimization is
applied. This coupling is based on the construction of a surrogate model for both
the design parameters and the uncertain variables. The method is then applied to the
Rotor 37 test case, and the differences between deterministic and robust optima are
discussed.

Surrogate-Assisted Optimization

Deterministic design optimization is often a process based on surrogate-assisted
genetic algorithms. This process can be summarized as follows. First, a Design of
Experiments (DoE) samples the design space by running full 3D CFD simulations.
For each design, the parameters are modified, the geometry is adapted, and the
mesh is regenerated. Various DoE such as Latin Hypercube Sampling (LHS) [5],

Fig. 1 Principles of robust design optimization: differences between a deterministic (red) and a
robust optimum (green)
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Plackett-Burmann [4] and many others can be applied; the common goal is to
sample the design space with as little samples as possible. Second, based on the
DoE, a surrogate model (or response surface model) approximates the solution
across the design space. In the following, an artificial neural network [2] is used.
Other surrogate modelling techniques such as kriging [6] can also be applied. This
allows to access values between the DoE points and runs the optimization on the
surrogate model, which is significantly cheaper than running full 3D CFD simu-
lations for every design. The error between the surrogate and the real system
response needs to be controlled. Third, a genetic algorithm searches the design
space on the surrogate model and finds an optimal design. This optimal design is
run as a 3D CFD simulation, and the simulation result is used to update the
surrogate. Figure 2 illustrates this process on a 1D example. The black squares
represent the DoE, the red dash-dotted line is the initial surrogate approximation,
the optimizer finds an optimal solution on the surrogate (red star), then a 3D CFD
computation is performed, and the surrogate is updated, which results in the blue
dashed line. This is an iterative process that is repeated until convergence on an
optimal solution is reached.

Robust Design Optimization Method

For robust design optimization, the UQ method presented in chapter “Non-intrusive
Probabilistic Collocation Method for Operational, Geometrical and Manufacturing
Uncertainties in Engineering Practice” needs to be coupled with the optimization
procedure. As seen above, the optimization objectives and constraints are not single

Fig. 2 Principles of a
surrogate-based optimization
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values in robust optimization, but the mean value and standard deviation of the
objective functions. The statistical moments, which are the output of the UQ
method, need to be calculated for every single design optimization. The most
straightforward approach would be to run full 3D CFD simulations for every point
in the DoE and calculate a surrogate for the statistical moments. This is, however,
very costly, since a database usually contains hundreds of points. At the example of
10 simultaneous uncertainties, which requires 21 CFD simulations per point in the
DoE, it is easy to see that for 200 points in the DoE, the computation cost would
increase by a factor of 21, which is not feasible in industrial design practice.

The proposed solution is a mixed Design of Experiments (DoE) comprising of
both the design variables and the uncertainties. To build this mixed DoE, the
uncertainties are added as additional dimensions to the DoE, which requires har-
monizing the way the dimensions are sampled independently from their type of
distribution. Generally, design parameters in traditional DoE-based optimization are
sampled uniformly from a given interval [a, b], such as depicted in Fig. 3. If the
sampling of uniformly distributed design parameters must be harmonized with the
sampling of arbitrary probability distributions of the uncertain variables, the uni-
form sampling of the design parameters must be expressed in terms of a PDF. It is
clear that in the case of design parameters, the uniform PDF is the equivalent
distribution type. The sampling procedure, as described in Fig. 3, is now the fol-
lowing. The PDF (uniform) is represented by its Cumulative Distribution Function
(CDF), which on its ordinate ranges from 0 to 1. If the ordinate is divided into equal
probable sections, the values of the design parameters corresponding to these
sections account for the same probability. As an example, if four sections are
chosen, each of the design parameter intervals accounts for 25% of the PDF
distribution.

For an arbitrary PDF shape, such as sketched in Fig. 4, the principle remains the
same. The PDF is expressed as CDF, and it is divided into equal probable intervals,
which are mapped onto the uncertain parameter. The probability interval spacing is

Fig. 3 Sampling of a design parameter from a uniform distribution in interval [a, b]
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uniform in both cases of a uniform and arbitrary PDF, but the design and uncertain
parameter spacing vary in function of the PDF shape.

The DoE sampling is performed in both cases over uniform intervals in terms of
probability with the help of the CDF, which allows using the same parametric
manager for design and uncertain variables, available in the optimization software.
The mixed design variable and uncertainty space can thus be integrated easily with
a traditional DoE optimization technique. The main advantage lies in the compu-
tational costs compared to an approach where every point in the DoE is run with a
UQ simulation. At the hand of the above-cited example of 10 simultaneous
uncertainties, which require 21 CFD simulations per point in the DoE and a DoE
size of 200 points, the computation cost decreases from 4200 CFD runs (20 design
variables * 10 DoE samples * 21 UQ points) to 300 CFD runs for the mixed design
and uncertain space ((20 design variables + 10 uncertainties) * 10 DoE samples).
This gain in computation time is achieved at the expense of not having the statistical
moments directly available in the surrogate. Therefore, at each optimization cycle, a
full UQ computation is performed, which allows to have an accurate evaluation of
the statistical moments (i.e., the mean and the standard deviation). These results are
used to update the surrogate model.

Robust Design Optimization Definition
of the BC-01: Rotor 37

The detailed description of the geometry and the experimental setup of the Rotor 37
can be found in [1]. Figure 5 shows the measurement sections and geometry.

Simulations are performed with the flow solver FINETM/Turbo [3] and the
uncertainty quantification methodology developed in [7]. RANS equations and
Spalart–Allmaras turbulence model are solved at a constant rotating hub speed of
17188 rpm on a mesh with approximately 2.8 million mesh points.

Fig. 4 Sampling of an uncertain variable from an arbitrary probability density function in interval
[a, b]
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The geometry of the compressor blade is parameterized with six spanwise
sections. The design space, which consists of 49 dimensions, is formed by the
following geometrical parameters:

• The tangential stacking law (relative to the leading edge)
• The leading and trailing edge blade angles in each section
• The axial stacking law (relative to the leading edge)
• The meridional chord (axial position of the trailing edge)
• The maximal thickness in each section (each section keeps its thickness law

shape but the maximal thickness can be modified).

The objective of this robust optimization is to maximize the mean value of the
isentropic efficiency while minimizing the standard deviations of the isentropic
efficiency, of the absolute pressure ratio, and of the mass flow. An additional
constraint is included on the mean value of the absolute total pressure ratio: It
cannot decrease more than 10% of the original design value (i.e., it cannot be below
1.9).

Uncertainties are considered on the inlet total pressure, the outlet static pressure,
leading edge radius, leading edge blade angle, and tip clearance. They are all
defined with a symmetric Beta PDF following the test case description in the
UMRIDA database, as described in chapter “UMRIDA Test Case Database with
Prescribed Uncertainties.”

Fig. 5 Rotor 37 measurement sections [1]
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Robust Design Optimization Analysis and Comparison
with Deterministic Optimization

The difference between deterministic and robust optimization lies mainly in the
definition of the optimization objective functions. While in the deterministic opti-
mization the efficiency is maximized, the robust design optimization maximizes the
mean value of the efficiency and minimizes its standard deviation as well as
the standard deviation of other quantities. The deterministic optimization is here a
single objective optimization, while the robust design optimization is
multi-objective by inclusion of the standard deviations in the objectives. Conse-
quently, Pareto fronts form the optimal robust design space. In order to compare the
deterministic optimum with the robust optima, a UQ simulation is run for the design
parameter values of the deterministic optimum. This allows computing the mean
value and standard deviations of the objective functions and includes the deter-
ministic optimal design into the Pareto plots.

Figure 6 shows the two-dimensional Pareto plot, where the standard deviation of
efficiency is plotted over the mean value of efficiency. Three optimal robust designs
are retained in comparison with the original design, and the deterministic optimal
design is rerun with a UQ simulation as explained above. The yellow star indicates
the position of the original design. It is seen that all optima increase the mean
efficiency and that the robust designs decrease the standard deviation of efficiency
in comparison with the original design, whereas the deterministic design increases
the standard deviation of efficiency. The largest increase in mean efficiency of
3.63% compared to the original design is achieved by design 3, while it reduces the
standard deviation by 34.00%. The robust optimal design 1 leads to the largest
reduction in standard deviation of efficiency by 62.23%, at expense of a slightly
smaller increase in mean efficiency of 2.48% compared to the original design. It is
noteworthy that the mean value of efficiency of the deterministic optimal design

Fig. 6 Pareto plot for standard deviation of efficiency plotted over the mean value of efficiency for
the original and optimal designs
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(green triangle in Fig. 6) is below the mean value of efficiency of the robust design
3 (purple diamond in Fig. 6).

Given the multi-objective character of the robust design optimization and from a
purely conceptual point of view, the deterministic optimization should lead to the
largest efficiencies. This is also the case in this study, where the absolute value of
efficiency predicted by the deterministic optimization is 0.886, but its mean value as
a result of the UQ study on the found optimum is 0.875, as seen in Fig. 6. Figure 7
shows the reconstructed PDFs of the original and optimal designs. The recon-
structed PDF of the deterministic optimal design shows clearly the highest deter-
ministic value, but also the highest efficiency variability, which varies from
approximately 0.84 to 0.89 and thus over a range of 5 points in efficiency, while the
robust optimal design 3 varies from approximatively 0.86 to 0.88 and thus over a
range of 2 points in efficiency. This is an indication that the variance of the robust
optima is smaller than the one for the deterministic optimum, which proves the
interest of the robust optimization.

Globally, all PDFs show an improvement in efficiency for all optimal designs in
comparison with the original design, while only the robust optimal designs reduce
the standard deviation in efficiency and are thus less sensitive to uncertainties
compared with the original design.

As a robust design optimization is a multi-objective optimization, also the
standard deviation of the pressure ratio was set as objective for minimization. It is
recalled that the pressure ratio was also attributed with a constraint on its absolute
value. The Pareto plot in Fig. 8 shows that it was not possible to minimize the
standard deviation in pressure ratio and that the standard deviations increase
between 5.13% for the robust optimal design 2 and 49.07% for the deterministic
optimum compared to the original design.

The reconstructed PDFs of the pressure ratio in Fig. 9 show an increase of its
mean value for all optimal designs, although the mean value of the pressure ratio is
almost unchanged for the deterministic design. It is interesting to note that the

Fig. 7 Probability density function of the isentropic efficiency for the original, deterministic
optimum, and robust optimal designs
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optimal designs lost the slight skewness of the original design in distribution of the
pressure ratio. The smallest standard deviation in pressure ratio is achieved by the
robust optimal design 2, which has only a minor increase of 5.13% compared to
the original design.

All mean values and standard deviations for the optimal designs are summarized
in Table 1, comparing the optimal designs with the original design.

The calculation of scaled sensitivity derivatives allows to assess the influence of
the individual uncertainties on the solution across the retained optimal designs.
Figures 10 and 11 show the scaled sensitivity derivatives for the isentropic effi-
ciency and total pressure ratio, respectively. All designs show a rather small sen-
sitivity to the leading edge radius, which means that the performances are almost
not influenced by this uncertain parameter given its probability distribution. The tip
gap has a non-negligible influence on these two quantities.

Fig. 8 Pareto plot for standard deviation of pressure ratio plotted over the mean value of
efficiency for the original and optimal designs

Fig. 9 Probability density function of the pressure ratio for the different designs selected
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Table 1 Variations of mean value and standard deviation of efficiency and pressure ratio for the
optimal designs in comparison with the original design

Efficiency (−) Pressure ratio (−)
Mean (%) Std deviation (%) Mean (%) Std deviation (%)

Deterministic +2.94 +124.46 +0.17 +49.07
Design 1 +2.48 −62.23 +0.79 +29.85
Design 2 +0.98 −29.10 +0.83 +5.13
Design 3 +3.63 −34.00 +1.84 +36.21

Fig. 10 Scaled sensitivity derivatives of the isentropic efficiency with respect to the input
uncertainties for the original and optimal design

Fig. 11 Scaled sensitivity derivatives of the total pressure ratio with respect to the input
uncertainties for the original and optimal design
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The leading edge blade angle shows the largest sensitivities and the largest vari-
ations between the designs on the efficiency. It is by far the highest for the deter-
ministic design, which shows also the highest standard deviation for the efficiency.
This shows the importance of including objectives on the standard deviation into the
optimization formulation, i.e., the importance of a robust optimization formulation.

Design 2 shows overall a smaller sensitivity on the pressure ratio, even if it is
slightly higher than the original design.

Figure 12 shows a comparison of the blade shapes of the original and optimal
blade designs. While the original blade has a straight leading edge, all optimal

(a) Original blade shape (b) Deterministic optimal design

(d) Robust optimal design 2

(e) Robust optimal design 3

(c) Robust optimal design 1

Fig. 12 Blade shape for original and optimal designs; a original R37 blade, b deterministic
optimal design, c robust optimal design 1, d robust optimal design 2, e robust optimal design 3
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designs show a curved leading edge. The robust optimal design 2 shows a back
sweep of the tip region of the blade in contrast to the other designs.

Full UQ performance curves, including all the uncertainties for all the designs,
have been obtained, as shown in Fig. 13, which provides information on off-design
performances of the selected compressor blade designs. As seen in Fig. 13, the
choke mass flow is increased for every robust optimum, while it is slightly
decreased for the deterministic optimum in comparison with the original design.
The mean efficiency is increased for every optimal design and for all mass flow
rates analyzed. One important point to note is that the standard deviation of the
efficiency is only improved at the design point for the robust optima, while it is
increasing at off-design points, for all optimal designs. This means that multi-point
robust design optimizations are needed in order to reduce the performance vari-
ability across the entire operating range. In this case, the standard deviation of the
off-design points needs to be added to the robust objective formulation.

Fig. 13 Isentropic efficiency and pressure ratio as a function of mass flow, comparing the three
robust designs with the deterministic optimal design and the original design. a Design 1, b design
2, c design 3
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Figure 14 displays the spanwise profiles of efficiency and pressure ratio at sta-
tion 4, and at 98% of the choking mass flow, for the three robust designs, compared
to the original and deterministic UQ results.

(a) Design 1

(b) Design 2

(c) Design 3

Fig. 14 Radial profiles of isentropic efficiency and pressure ratio at the station 4 comparing
the three robust optimal designs with the deterministic optimal design and the original blade.
a Design 1, b design 2, c design 3
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The standard deviation of both the pressure ratio and the efficiency is smaller for
the three robust designs than for the deterministic optimal design all along the
span-height. Design 2 has a distribution, which is very close to the original blade,
with a small and almost constant increase of both the efficiency (0.01 point) and the
pressure ratio (0.02) in comparison with the original design. Designs 1 and 3 have
similar deviations on the efficiency profiles from the original one, with an important
increase of efficiency from 60% span up to the blade tip. However, while design 3
keeps the same level of efficiency as the original design from the hub up to 20%
span, design 1 shows a small drop of efficiency (2 points) in this area. The pressure
ratio profile for design 1 has a maximum at 40% of span-height, while the other
designs have this maximum around 10% of span-height. As the geometry and the
radial profiles are considerably modified for the various designs, differences are also
expected for the off-design conditions.

Figure 15 compares the flow fields for the smallest and largest leading edge
blade angles within the variation range of the LE PDF, for each of the three selected
designs at the flow conditions used during the optimization.

The influence of the leading edge blade angle on the shock intensity and its
location, for the optimized designs, is shown, comparing with the original design.
The large effect of the leading edge blade angle on the flow field can be considered
as the main cause of the variation of the efficiency and of its related large standard
deviation.

Computational Costs of Robust Design Optimization
Applied to Case BC-01: Rotor 37

The computational cost of a robust design optimization scales directly with the
number of full 3D CFD simulations that need to be performed. This cost is com-
pared with the cost for the deterministic optimization in Table 2. In both cases, 10
points per dimension of the DoE are used, and the deterministic DoE has 49
dimensions for the design variables, while the robust design optimization DoE has
54 dimensions (49 design variables and 5 uncertainties). This results in 490 and 540
3D CFD runs for the deterministic and robust DoE, respectively. In both cases, a
total of 40 global optimization cycles were used and after every global optimization
cycle, the surrogate was updated with a CFD run. The computational overhead
amounts thus almost entirely from the surrogate update, where 40 CFD runs are
needed for the deterministic simulation against 440 for the robust optimization.
A total of 530–980 CFD runs mean a computational overhead of 1.85 for the robust
design optimization.
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(a) Original design

(b) Deterministic optimum

(c) Robust design 3

Fig. 15 Static pressure on the suction side at low mass flow rates, showing the smallest and
largest leading edge blade angle configuration per design
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Conclusions

A strategy for robust design optimization (RDO) is proposed, i.e., optimization
under uncertainties reducing the variability of the system output with respect to the
input uncertainties. This strategy relies on the non-intrusive probabilistic colloca-
tion method for the uncertainty propagation and a surrogate-assisted optimization
strategy. In order to allow for RDO within reasonable turnaround times, a mixed
Design of Experiments (DoE) is built, which comprises of design variables and
uncertainties as individual dimensions. This reduces the cost by one order of
magnitude compared to an approach where every point in the DoE is run with a UQ
simulation. The robust design optimization problem is formulated as a simultaneous
maximization of the mean efficiency and minimization of standard deviations of
efficiency and of other global output quantities at the example of the Rotor 37. In
addition, a deterministic design optimization is performed and the obtained per-
formance improvements and geometries are compared and discussed. In order to
compare the optimized deterministic design with the robust designs, a UQ simu-
lation is done for the deterministic design variable set and added to the Pareto plots
showing, for example, the standard deviation of isentropic efficiency over mean
value of isentropic efficiency. The deterministic optimal design increases the
standard deviation of the isentropic efficiency when the uncertainties are consid-
ered. It becomes thus more sensitive to variations in the uncertain input space
compared with the original design. This shows the importance of robust design
optimization, not only that it allows to reduce the standard deviation of the
response, but a deterministic optimization of a problem attached with uncertainties
might lead to the selection of sub-optimal design choices.

Table 2 Detail of the computational cost comparing a robust design optimization with a
deterministic optimization

Robust design
optimization

Deterministic
optimization

Number of points per dimensions in the
initial DoE

10 10

Number of dimensions in the DoE 54 49
Total number of CFD runs for the DoE 540 490
Number of CFD runs per updates 11 1
Number of updates 40 40
Total number of CFD runs for the
optimization updates

440 40

Total number of CFD runs 980 530
Computational costa (CPU hours) 2617 1415
aConsidering that 1 CFD run has a cost of 2.67 CPU Hours (10 min on 16 cores)
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The influence of scaled sensitivity derivatives is discussed. The computational
overhead amounts in this study to a value of 1.85, allowing to reach an increase in
mean efficiency for one of the robust optimal designs of 3.63%, while reducing the
standard deviation of efficiency by 34.00%. This is nearly 0.7% more in mean value
of efficiency compared with the deterministic design, which in addition leads to an
increase of 124% in standard deviation of efficiency. The comparison of
non-deterministic performance curves for the deterministic and robust optimal
design shows that a multi-point formulation is needed, where the standard devia-
tions of the objective function at off-design points are included into the robust
objective formulation.

Overall, the significant differences in optimal blade shape between the deter-
ministic and robust designs are a clear indication that robust optimization must be
addressed for the future of industrial turbomachinery and global optimization.
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Robust Design Measures for Airfoil
Shape Optimization

Daigo Maruyama, Stefan Görtz and Dishi Liu

Introduction

Deterministic aerodynamic optimization results in designs that are optimal under
nominal conditions. Robust design optimization, on the other hand, accounts for
variability in the design process and results in designs that are less sensitive to small
random perturbations. Here, robust design measures are discussed in the context of
airfoil shape optimization. Generally, in deterministic aerodynamic design of air-
foils, the quantities of interest (QoI) are the drag coefficient (Cd), the lift coefficient
(Cl), and the pitching moment coefficient (Cm). The drag coefficient or the
lift-to-drag ratio (L/D) is often used to measure the aerodynamic performance and is
used to formulate objective functions to be minimized or maximized in shape
optimization. The pitching moment coefficient and the lift coefficient are often used
to constrain the optimization problem. The pressure coefficient (Cp) is also con-
sidered for a variety of design purposes such as shock location/strength control or
natural laminar flow design. In inverse design optimization, the objective function
is the error (e.g., root mean square error) between the current and a target Cp

distributions, which needs to be specified by an experienced designer.
In a nondeterministic setting, statistics of the QoI are introduced to formulate

“robustness measures.” Here, we considered the mean and standard deviation of
aerodynamic coefficients to formulate what is typically called an expectation or
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mean-risk approach, and their maximum or minimum value for risk management.
These two formulations are generally called robust design optimization (RDO) and
reliability-based design optimization (RBDO), respectively. Cd is considered as an
important aerodynamic coefficient in this context. The robustness of Cl may be
regarded to be less important than Cd as long as the minimum Cl satisfies the lift
constraint.

In this chapter, QoI based on the drag coefficient (Cd) are used as robustness
measures unless otherwise noted. The lift coefficient Cl is used as a constraint to
maintain a constant value. Another constraint used here is to keep the maximum
thickness-to-chord ratio constant since it directly influences Cd. These constraints
are maintained at the nominal conditions.

Next, the uncertainty factors in airfoil aerodynamics are introduced. The sta-
tistical variation of Cd may be caused by random variations of the flight conditions,
such as the angle of attack α, the free-stream Mach number M, and Reynolds
number Re, due to changing atmospheric conditions. The airfoil shape may also be
subject to manufacturing tolerances and to degradation during operations. These
factors are irreducible and considered as realistic uncertainties (aleatory uncer-
tainties). On the other hand, numerical and modeling errors are an additional source
of uncertainty that has an impact on the robust design results. These are reducible
uncertainties (epistemic uncertainties). Figure 1 shows a simple depiction of these
uncertainties in numerical flow simulations. Here, we focus on simulating the effect
of irreducible uncertainties on shape design by using stochastic methods. The angle

- Operational parameters (AoA, M, 
Re, etc...)

- Geometrical parameters

CFD solver
- Turbulence models
- Boundary conditions
- etc.

Grid
(mesh generation,
mesh deformation)

Geometry definition
(CAD model, parameterization)

(Numerical)
Input

Uncertainty

In numerical simulation
In reality

Modeling by
uncertainty quantification

(UQ)

Epistemic
(Reducible) 
Uncertainty

Aleatory
(Irreducible)
Uncertainty

- Aerodynamic coefficients (CL, CD, 
CM, etc...)

- Cp distributions
- etc.

(Realistic)
Input

Uncertainty

Output
Uncertainty

Reduced by robust 
design optimization 

(RDO)

Fig. 1 Overview of aleatory and epistemic uncertainties in numerical simulation
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of attack and the free-stream Mach number are considered as operational uncer-
tainties with a mean and standard deviation as defined by the UMRIDA BC-02 test
case description. The geometrical uncertainties were parameterized by using a
truncated Karhunen–Loève expansion (tKLE) [1, 2].

To evaluate the aerodynamic performance of the airfoil, DLR’s flow solver TAU
[3–5] was used. Fully turbulent computations were performed with the negative
Spalart–Allmaras turbulence model [6]. We opted for a central flux discretization,
matrix dissipation, the lower/upper symmetric Gauss–Seidel (LU-SGS) implicit
method for time integration in a backward Euler solver, and a “3v” multigrid cycle.
A quasi two-dimensional hybrid unstructured grid with prisms and tetrahedral
elements was used for the RANS simulations. The geometry changes caused by the
nominal shape optimization or by the geometrical uncertainties are accomplished by
using a radial basis function-based mesh deformation tool developed at DLR [7].
Figure 2 (left) shows the baseline grid around the unperturbed RAE2822 airfoil.
A detailed view of the grid close to the surface of the airfoil is shown on the
right-hand side.

Deterministic Design Optimization

First of all, the results of deterministic design optimization (DDO) are presented.
This section also includes a brief discussion of errors due to epistemic uncertainties
as shown in Fig. 1. Figure 3 shows the flowchart of the deterministic optimization
framework. This framework was developed based on a DLR in-house aerodynamic
shape optimization toolbox named Pyranha [8]. A generalized optimization prob-
lem for both deterministic design optimization and robust design optimization is
described as follows:

Fig. 2 Hybrid unstructured grid around RAE2822 airfoil. The number of grid nodes is around
29,000. Far-field (left), near-field (right)
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min
χ

f χð Þ
s.t. t ̸c= const.

Cl = const.

9
=

;
ð1Þ

where χ denotes the 10 deterministic design variables, t and c are maximum
thickness and chord length respectively, and Cl is the lift coefficient. Here, Bern-
stein polynomials were used to define 10 design parameters and applied to the
camber line to satisfy the thickness constraints. In DDO, the cost function f ðχÞ can
be considered deterministic under the assumption that epistemic uncertainties can
be neglected. In this case, f ðχÞ in Eq. (1) can be expressed as:

f ðχÞ=CdðχÞ ð2Þ
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Figure 4 shows the history of the objective function and the design variables
during the course of the optimization. The Subplex algorithm [9] was used to
optimize the cost function f ðχÞ. It is a gradient-free optimization method. It can be
observed in Fig. 4 that after 500 iterations of the optimizer, the oscillations in the
objective function are much less than 1 drag count (1 drag count = 10−4). We
conclude that epistemic errors due to the CFD solver, the mesh deformation, and the
parameterization are negligible in our approach.

Robust and Reliability-Based Design Optimization

Robust design is now introduced based on the optimization problem formulation
defined in Eq. (1). We distinguish between robust design optimization (RDO) based
on the “expectation measure and mean-risk approach” and reliability-based design
optimization (RBDO) based on the “worst-case risk measure” as briefly introduced
above. The cost function f ðχÞ is evaluated by means of uncertainty quantification
(UQ) methods and is regarded as stochastic as denoted by f ðχ, a, ξÞ. Once the
input probability density function (pdf) is defined, the stochastic cost function
f ðχ, a, ξÞ can be regarded as deterministic, i.e., as f ðχÞ, assuming that the statistics
of the QoI can be accurately evaluated. This also motivates the use of deterministic
optimizers in RDO and RBDO. The following two functions are introduced for
robust and reliability-based design optimization, respectively:

f ðχÞ≡ μCd
ðχÞ+ σCdðχÞ ð3Þ

f ðχÞ≡ max
a, ξ

Cdðχ, a, ξÞð Þ ð4Þ

where χ, a, and ξ denote the design variables, the uncertain operational parameters,
and the uncertain geometry parameters furnished by tKLE, resulting in 10 inde-
pendent standard Gaussian variables, respectively. Concerning the geometrical
uncertainties, initially we assume a random perturbation θðxÞ of each surface grid
node in the direction normal to the airfoil surface on both the upper and lower
surfaces with zero-mean normal distributions, i.e., θðxÞ ∼ N 0, σθðxÞð Þ. Here, it is
assumed that the random perturbations are spatially correlated by a Gaussian cor-
relation function. Then, the KLE can decompose these correlated variables into
uncorrelated ones. Only a relatively small number of the first several significant
modes is retained. Finally, the correlated random perturbation θðxÞ is transformed
into a smaller number of independent standard Gaussian variables as ξ ∼ Nð0, 1Þ.
In our test case, the number of random geometrical variables is reduced from 380 to
10 by using the tKLE. Figure 5 displays σθ distributions, and the baseline airfoil
and three instances of the randomly deformed airfoil with the deformation 10 times
exaggerated for better illustration. This setting means that perturbations are the
largest at the mid-chord and zero at the leading and trailing edges. The maximum σθ
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of each surface is 1% of the maximum thickness-to-chord ratio of RAE2822, which
is 0.1211.

The UQ method used here to compute the stochastic objective functions (also
called the robustness measure) f ðχÞ expressed by Eqs. (3) and (4) is a combination
of design of experiments (DoE) and surrogate modeling, which are implemented in
DLR’s surrogate modeling for aerodynamic data toolbox in Python (SMARTy)
[10–12]. Details of the methods used to evaluate Eqs. (3) and (4) are described in
[13]. In that chapter, gradient-enhanced Kriging (GEK) [10–12] is shown to pro-
duce more accurate estimates of the stochastic quantities for a given computational
cost than Kriging or direct integration. As shown in [13], in practice, the maximum
Cd in Eq. (4) is evaluated by the quantity at the 99th percentile of the cumulative
density function (cdf) expressed as Cd99%max since we do not use optimization
approaches to find the maximum value but use random search methods based on
QMC on the constructed surrogate model for further improvement of efficiency of
the process. In this approach, the cases with overestimated maximum values caused
by extrapolations of the scattered sample points can be more evitable.

Besides, accuracy cannot be guaranteed in an acceptable accuracy level when the
maximum value of quite high accuracy of the surrogate model is required, which
may cause a drastic increase of the computational process.

Next, the optimization process for RDO and RBDO is shown in Fig. 6. The
process is basically the same for RDO and RBDO. The robustness measure f is
calculated at each iteration of the optimization by the procedure shown in Fig. 6
(right) and described in [13]. This leads to a unique value of f at each iteration.

The uncertain input parameters are assumed to have a normal distribution with a
given mean and standard deviation except for the mean of the angle of attack α. The
mean of the angle of attack is determined by an additional CFD computation at each
iteration of the optimizer to satisfy the constant Cl constraint according to Eq. (1).
Note that once the input probability density function (pdf) is defined, the stochastic

Fig. 5 Distribution of the standard deviation of each surface node (left), and examples of the
original and perturbed RAE2822 airfoil (right)
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cost function f is almost uniquely determined. Then, any errors in f are considered
as epistemic uncertainties.

The Subplex algorithm [9] was used to optimize the stochastic cost function f. In
this algorithm, initially the simplex algorithm is assigned into several decomposed
subspaces. Thus, it is generally more efficient than the Simplex algorithm for cases
with many design variables. Moreover, the Subplex method is applicable to noisy
cost functions [9]. It should be noted that less noise of the output design variables
would result in a more accurate cost function value, which may also lead to a
different optimal solution, details of which can be found in [14]. It is also important
to note that there is no guarantee that the Subplex algorithm converges to the global
optimum when the cost function f has more than one local optimum. However, one
of the advantages of this algorithm is that it is a gradient-free optimization algo-
rithm. Therefore, it is easy to implement when the gradients of the stochastic cost
functions such as the maximum Cd are difficult and/or expensive to compute.
Accuracy issues including the impact of a noisy objective function due to epistemic
errors on the optimal solution are presented in [14].

Therefore, in this chapter, the influence of different measures of robustness on
the optimal solution is discussed based on the optimization results. As a prereq-
uisite, the robustness measure f should be evaluated accurately. We used a fixed
number of 30 samples. Under this condition, the sampling techniques used to
construct a surrogate model for the UQ part in every iteration of RDO and RBDO
are as follows [13, 14]:

Compute Cost Function f 
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(by design variables)
Mesh Deformation

Design
Variables

CFD to determine µα

- α~N(µα, σα), M~N(µM, σM)
- ξ~N(0, 1) 
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f = µCd + σCd
f = Cdmax
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Fig. 6 Overview of framework for robust design optimization (RDO) and reliability-based design
optimization (RBDO)
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• RDO: GEK with 30 QMC samples whose distribution is the same as the input
pdf (normal distributions).

• RBDO: GEK with 24 uniformly distributed QMC samples and 6 additional
samples selected with the EI-based adaptive sampling technique.

The robustness measures established above were applied to design optimization
using the UMRIDA BC-02 test case, which is based on the RAE2822 airfoil. The
test case, mesh and flow conditions, setting of uncertainty factors, and all of the
other conditions are common with those in the previous section of this chapter.

Figure 7 shows the history of the stochastic objective function f (f ≡ µCd + σCd)
and of the design variables in RDO (expectation measure and mean-risk approach)
using a normal distribution of 30 samples to build the GEK surrogate model which
in turn is used to estimate the statistics in every optimization cycle. It can be seen
that there are more oscillations in the objective function f after the design variables
almost converged than in the case of the deterministic design optimization
(DDO) shown in Fig. 4. These additional oscillations can be attributed to the
epistemic uncertainties which are due to a lack of accuracy of the stochastic
quantities (more details of these errors can be seen in [14]). The same can be
observed in the case of RBDO (the worst-case risk measure) in Fig. 8.

Figure 8a shows the history of the stochastic objective function f (f ≡ Cd99%max)
and the evolution of the design variables in the case of RBDO (worst-case risk
measure) using a uniform distribution of the initial samples and the adaptive sampling
technique. Additionally, the optimization history obtained by a uniform distribution
of all 30 samples (without any adaptive sampling) is shown in Fig. 8b since this
approach led to a better final result. According to [13, 14], the adaptive sampling

Marker : Objective Function f (f=µCd+σCd)
Lines     : Design Variables (10)

30 Sobol samples with input pdf (normal) distributions

Optimum

Area of fewchanges of
design variables

Fig. 7 Histories of the objective function and design variables in robust design optimization
(RDO)
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strategy typically leads to more accurate estimation ofCd99%max, which was tested by
using the initial RAE2822 airfoil. However, Fig. 8 indicates that the optimal solution
fopt found without adaptive sampling is better in terms of the cost functions f than the
one designed with adaptive sampling. The optimal design variables χopt , which are

30 Sobol samples with uniform distributions

Marker : Objective Function f (f=Cd99%max)
Lines : Design Variables (10)

Optimum

Area of fe changes of design variables

(a)

(b)

Fig. 8 Histories of the objective function and design variables in reliability-based design
optimization (RBDO)—a surrogate models constructed by scattered samples with adaptive
sampling technique and b surrogate models constructed by scattered samples without adaptive
sampling technique
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deterministic in this procedure, also reveal the differences between these two
approaches (with and without adaptive sampling).

Figure 9 shows a comparison of the optimal airfoils. From the viewpoint of the
performance improvement, we infer that the cost function f evaluated based on the
surrogate model constructed with adaptive sampling converged to a “local opti-
mum.” The two optimal airfoils are further investigated by “re-evaluating” the
statistics. This is done by constructing 100 surrogate models based on 100 different
sets of 30 samples used to construct the surrogate model for each of the airfoil.
Cd99%max is then computed on each of the 100 surrogate models, and the average
Cd99%max is evaluated. The author showed this strategy also in [13–15]. Table 1
shows a comparison of Cd99%max for the airfoils designed by using the GEK-based
UQ method with and without adaptive sampling. The airfoil obtained by the method
without adaptive sampling achieves around 10 drag counts better performance in
terms of Cd99%max than the airfoil obtained with adaptive sampling. Then, an
interesting result can be presented related to this fact. Figure 10 compares the initial
airfoil (RAE2822), the deterministically designed airfoil, the robustly designed
airfoil, and the airfoil resulting from reliability-based design “without” adaptive
sampling. They are termed “initial airfoil,” “deterministic airfoil,” “robust airfoil,”
and “reliability airfoil” as in Fig. 10, respectively. It can be observed that there are
much fewer differences between the “robust airfoil” and the “reliability airfoil” than
between the airfoils resulting from reliability-based design with and without
adaptive sampling as shown in Fig. 9.

Each of the statistics of interest for the four airfoils was fairly and accurately
“re-evaluated” as described above. They are tabulated in Table 2. Cd of the nominal
airfoils is shown as well. As expected, the three optimized airfoils feature the best
objective function value for their respective objective function. This indicates that
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Fig. 9 Comparison of airfoils obtained by reliability-based design optimization (RBDO) based on
two different UQ approaches with and without adaptive sampling
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during the shape optimization the stochastic objective functions (f = µCd + σCd,
Cd99%max) were accurately evaluated by our UQ approach, which combines effec-
tive sampling techniques with gradient-enhanced surrogate models. The fact that
the “robust airfoil” and the “reliability airfoil” are relatively similar in shape is
reasonable since minimizing Cd99%max could also result in minimizing σCd in most
practical cases. In fact, the minimum σCd (in addition to the minimum Cd99%max) is
featured by the “reliability airfoil,” not by the “robust airfoil.” Of course, the
minimums of the original objective function f = µCd + σCd itself and the mean
value µCd are achieved by “robust airfoil.” Minimizing µCd implicitly contains the

Table 1 Comparison of maximum Cd (quantity at the 99th percentile of the cumulative density
function) of designed airfoils, UQ based on GEK surrogate w/o adaptive sampling and with
EI-based adaptive sampling

RBDO w/o adaptive sampling (cts.) With adaptive sampling (cts.)

Cd99%max 167.2 176.0
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Fig. 10 Comparison of initial airfoil (RAE2822) and the airfoils obtained by deterministic design
optimization (DDO), robust design optimization (RDO), and reliability-based design optimization
(RBDO)

Table 2 Values of the objective function/robustness measures of the initial and optimized airfoils

Objective Initial (cts.) Deterministic (cts.) Robust (cts.) Reliability (cts.)

μCd 192.2 137.2 135.9 138.5
σCd 27.4 11.2 9.9 8.2
μCd + σCd 219.6 148.4 145.8 146.7
Cd99%max 257.7 179.1 169.1 167.2
Cd 190.6 122.9 127.7 134.4
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effect of reducing Cd at the nominal condition. Therefore, roughly to say, the
“robust airfoil” is a kind of airfoil that has a performance in between the “deter-
ministic airfoil” and the “reliability airfoil.” Cd of that airfoil at the nominal con-
dition is in fact in between that of the “deterministic airfoil” and the “reliability
airfoil,” but the differences between them are within a few drag counts.

The aerodynamic characteristics of these four airfoils are summarized in
Figs. 11, 12, and 13. Figures 11 and 12 describe aerodynamic characteristics at the
nominal conditions by showing the pressure coefficient (Cp) distributions of the
four designed airfoils, respectively. It can be observed that the strength of the shock
wave was directly reduced in DDO. The shock wave of both of the robust airfoils,
on the other hand, is not reduced as much, but its location moved upstream to
around x/c = 0.5 where the largest random geometry deformations may occur (see
also the left hand of Fig. 5).

Figure 13 represents Cp distributions of 95% highest density intervals of the four
airfoils to show the statistics of the aerodynamic characteristics. These statistics
were simply evaluated by using the CFD results of the 30 samples but taking the
mean value of 100 different sets of sample points as done for statistics of Cd. These
figures show that the location of the shock wave of the “initial airfoil” is not
sensitive to random perturbations. On the other hand, the strength of the shock
wave of the “deterministic airfoil” tends to be smaller than that of the “initial
airfoil.” However, the location of the shock wave is much more sensitive to the
random perturbations and may vary between 0.2 and 0.6 of the chord line. We
could say that both the “robust airfoil” and the “reliability airfoil” have the
advantages of both the “initial airfoil” and the “deterministic airfoil”; i.e., the range
of the possible shock locations of the robust and reliable airfoils is smaller than that
of the deterministic one and the 95% highest density intervals is also smaller than
that of the “initial airfoil.”

The fact that the optimized airfoils achieve the best aerodynamic performance in
terms of the two robustness measures demonstrates that the UQ methods for
evaluating the robustness measurements and the developed robust design frame-
work successfully worked. The framework can also be applied to other test cases.

at the nominal conditions

Initial (RAE2822)
Deterministic
Robust
Reliability

Fig. 11 Surface pressure coefficient (Cp) distributions at the nominal conditions of initial airfoil
(RAE2822), deterministic, robust, and reliability-based designed airfoils
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Summary

Two types of robustness measurements were introduced to perform robust aero-
dynamic shape optimization based on the UMRIDA BC-02 airfoil test case. The
airfoil was assumed to be subject to random geometry perturbations, which were
represented by 10 independent standard Gaussian parameters furnished by a trun-
cated Karhunen–Loève expansion. In addition, two operational uncertainties were
considered. One robustness measure is focusing on the expectation measure and
mean-risk approach. The other one is for risk management where we focus on the
worst-case risk, which is the so-called reliability analysis. These robustness mea-
sures were formulated by the sum of mean and standard deviation of the drag
coefficient, and the maximum value was evaluated by using the quantity at the 99th
percentile of the cumulative density function of Cd, respectively. At each opti-
mization cycle of the nominal shape optimization, which was conducted by the

Fig. 12 Pressure coefficient (Cp) of initial airfoil (RAE2822), deterministic, robust, and
reliability-based designed airfoils at the nominal conditions
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Subplex algorithm, they were calculated by effective sampling techniques with an
assistance of a gradient-enhanced Kriging surrogate model to reduce the number of
CFD computations, which is the most time-consuming part. The gradients were
efficiently computed by an adjoint solver. The robustness measures were efficiently
calculated by constructing a surrogate model based on 30 CFD and adjoint com-
putations in the 12-dimensional uncertain input parameters space, and several
hundred of optimization iterations were performed.

The robustly designed airfoils were compared with each other and with the initial
airfoil and a deterministically designed airfoil. Each optimized airfoil successfully
showed the best performance in terms of its objective function. The differences
between the airfoils designed based on the two different robustness measurements
are smaller than those between them and the deterministically designed one. The
key differences are in the shock location and its strength. According to the 95%
confidence intervals of the pressure distributions, both of the robustly designed
airfoils feature the advantages of both the initial and the deterministically designed
airfoils, which are robust to the shock location and its strength to random
perturbations.

The developed framework was demonstrated for a generalized robust airfoil
shape optimization process. It can also be applied to practical robust design
applications such as considering the transition location as the quantity of interest,
i.e., robust natural laminar airfoil design, and also to 3D aircraft cases.
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Robust Design with MLMC

Michele Pisaroni, Fabio Nobile and Penelope Leyland

Introduction

The ever-increasing demand for aircrafts with better performance, higher reliabil-

ity, and robustness at lower cost requires nowadays optimization techniques seeking

optimality under uncertain conditions that may arise during design, manufacture,

and operation of the vehicle. The vast majority of problems in aircraft production

and operation require decisions made in the presence of large number of uncertain-

ties such as the geometrical and operational parameters that characterize aerody-

namic systems. Designs obtained with deterministic optimization techniques seek-

ing only optimality in a specific set of conditions may have very poor off-design

performances.

Optimization under uncertainty (OUU) is a broad class of methodologies that

address mainly the following two problems:

∙ Robust Design Optimization (RDO): focuses on the performances of a system

under perturbations of the design conditions. Prescribed probabilistic measures of

robustness (involving mean, variance, or higher moments) as objective functions

are used to robustify the design. In this framework, the optimal design should be

most insensitive to perturbations of the design.

∙ Reliability-Based Design Optimization (RBDO): focuses on safety-under-

uncertainty aspects of the system and deals generally with the optimization of a
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deterministic objective function subject to probabilistic constraints (failure prob-

ability or reliability indices). The optimal design has, in this framework, a higher

degree of confidence and guarantees a prescribed minimum level of reliability

under uncertain conditions.

We consider transonic airfoils under geometric uncertainties due to manufac-

turing tolerances and operating uncertainties due to atmospheric turbulence. In the

RDO framework, we wish not only to minimize shock drag losses at a given speed,

as in deterministic optimization, but also require that the drag and its dispersion are

minimized under a set of operating uncertain conditions.

Non-intrusive uncertainty propagation techniques and derivatives-free approaches

have gained a lot of interest in the recent years as they simply require multiple solu-

tions of the original model and can use industrial CFD solvers as black box. Poly-

nomial Chaos (PC) [1–3] and Stochastic Collocation (SC) [4] methods have been

successfully employed in different engineering fields to built response surfaces in

the stochastic variables while Kriging regression [5] has been mainly employed

to build meta-models in the design variables. All these approaches have a strong

potential for RDO but they are known to suffer the so-called curse of dimension-

ality (dramatic computational cost increases with the number of uncertain/design

variables). In addition, those approaches based on global basis functions that span

the entire stochastic domain may see their performances and accuracy jeopardized

if the problem under investigation presents strong discontinuities as in the case of

transonic/supersonic flows.

On the other hand, Monte Carlo (MC) methods have a dimension independent

convergent rate and have been proven to be robust and accurate for non-smooth prob-

lems. Nevertheless, their very slow convergence rates make them chimerical for prac-

tical applications. As introduced in chapter “General Introduction to Monte Carlo

and Multi-level Monte Carlo Methods”, the Multi-Level Monte Carlo (MLMC)

method can be employed to approximate the expectation (and higher moments)

of an output quantity of interest (QoI) with a limited computational budget. The

robustness and accuracy of the classical MLMC implementation strongly rely on

the problem-dependent convergence rates of the output quantity of interest over the

hierarchy of meshes, and the corresponding rate of cost increases to dictate the num-

ber of levels and the number of realizations per level. For many engineering prob-

lems, such parameters are generally estimated through a computational expensive

screening procedure performed prior to the actual uncertainty analysis. In chapter

“Continuation Multi-level Monte Carlo” and in [6], we have adapted the Continua-

tion Multi-Level Monte Carlo (C-MLMC) algorithm presented in [7] to propagate

operational and geometrical uncertainties in aerodynamic flow problems. As shown

in [6], the C-MLMC is robust and efficient and leads to considerable speedup of few

orders of magnitude over a traditional MC method for both inviscid and viscous flow

problems.

In this chapter, we present a RDO technique based on the combination of evolu-

tionary algorithms (EAs) and the Continuation Multi-Level Monte Carlo (C-MLMC)

methodology to treat robust optimization problems in aerodynamic design. In partic-

https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
http://dx.doi.org/10.1007/978-3-319-77767-2_19
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ular, we focus on flows around an airfoil with uncertain operating conditions (angle

of attack, Mach number) and aim at obtaining a shape to minimize the drag or max-

imize the lift-to-drag ratio.

Methodology

We consider a general mathematical formulation of a single objective robust design

optimization problem (RDO):

RDO ∶
⎧
⎪
⎨
⎪
⎩

min
x

R (f (x))

s.t C (g(x)) ≤ 0
xL ≤ x ≤ xU

(1)

where x is the vector of design variables.

We denote with R (f (x)) the robust loss function (or fitness in case of maximiza-

tion) which is typically a function of mean (denoted with 𝜇 which is function of the

vector of design variables x and the system parameter p) and the standard deviation

(denoted with 𝜎 which is also function of the vector of design variables x and the

system parameter p) of some problem-specific quantity of interest Qr that has to be

optimized:

R (f (x)) = F(𝜇Qr
(x, p), 𝜎Qr

(x, p)) (2)

C (g(x)) denote a set of deterministic or probabilistic constraints which typically

depend on some constant reference values C∗
, mean and standard deviation of some

problem-specific quantity of interest Qc that have to be constrained:

C (g(x)) = G(C∗
, 𝜇Qc

(x, p), 𝜎Qc
(x, p)) (3)

xL and xU are the lower and upper bounds for the design variables.

We employ evolutionary algorithms (EAs) in conjunction with the Continuation

Multi-Level Monte Carlo (C-MLMC) presented in chapter “Continuation

Multi-level Monte Carlo.” C-MLMC is used to compute efficiently the robust loss

function R (f (x)) and the set of probabilistic constraints C (g(x)) that involve mean

and standard deviations. EAs are known to be well suited for solving RDO prob-

lems because they ideally do not make any assumption about the underlying fitness

landscape and are noways employed in different engineering fields.

https://doi.org/10.1007/978-3-319-77767-2_19
https://doi.org/10.1007/978-3-319-77767-2_19
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Combination of EAs and C-MLMC

Evolutionary algorithms (EAs) are a broad class of optimization approaches that aim

at simulating the evolution of a population through successive generations of better

performing individuals [8]. A generic EA uses mechanisms inspired by biological

evolution, such as reproduction, mutation, and selection. The candidate solutions are

treated as individuals in a population, and the fitness function determines the quality

of the solutions.

We denote with 𝛩

n
j the population of j individuals at the generation n:

𝛩

n
j = {𝜃1, 𝜃2,… , 𝜃j} (4)

Each individual 𝜃i is defined by a set of properties (its genotype) which in our appli-

cation is a set of k geometrical parameters defying the shape of an airfoil.

𝜃i = {g(i)1, g(i)2 … , g(i)k} (5)

Namely we employ the PARSEC coefficients as genotype for the individuals consid-

ered hereafter (Fig. 1).

At each generation, the fitness 𝜙 of each individual in the population is evaluated.

The fitness can be seen as a figure of merit and can be interpreted, in our setting, as

the value of the robust objective function in the optimization problem that we want

to solve.

𝜙i = R
(
f (𝜃i, p)

)
(6)

We indicate with 𝛷

n
j the set of the fitness values of all j individuals at generation n:

𝛷

n
j = {𝜙1, 𝜙2,… , 𝜙j} (7)

The structure of a generic EA is presented in Algorithm 1.

In the generic EA, we can distinguish between problem-specific and algorithm-

specific components.

Fig. 1 Geometry of the RAE 2822 transonic airfoil and PARSEC parameters that define the geom-

etry of the airfoil
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Algorithm 1: Generic EA

GENERATOR → 𝛩

0
j

EVALUATOR (𝛩
0
j ) → 𝛷

0
j

while TERMINATOR (𝛷i
j , N

i) not True do
SELECTOR ( ̃𝛩

i−1
j , 𝛷

i−1
j ) → ̃

𝛩

i
j

CROSSOVER ( ̃𝛩
i
j) →

̃

𝛩

i
j

MUTATOR ( ̃𝛩
i
j) → 𝛩

i
j

EVALUATOR (𝛩
i
j) → 𝛷

i
j

REPLACER (𝛩
i
j , 𝛷

i
j) →

̃

𝛩

i
j

update i = i + 1
update Ni = Ni−1 + j

Problem-Specific Components:

∙ GENERATOR: defines how individuals are created. In the present airfoil prob-

lem, it is a set of routines that generates PARSEC parameters [9] that satisfy the

geometrical constraints.

∙ EVALUATOR: dictates how fitness values are computed from individuals.

In case of:

– Deterministic Optimization: the fitness is computed by interrogating a black box

CFD solver that provides the airfoil coefficients (CL, CD or L∕D).

– Robust Optimization: the fitness is computed by estimating 𝜇Qr
(x, p) and

𝜎Qr
(x, p) using the C-MLMC methodology presented in the following section.

Algorithm-Specific Operators:

∙ SELECTOR: determines which individuals should become parents. The prob-

ability for an individual to be selected is weighed by its fitness. The better the

fitness, the higher the probability to be selected.

∙ CROSSOVER: dictates how offspring is created from the parents. The genotypes

of the parents are randomly cut and re-assembled to generate the offspring.

∙ MUTATOR: performs a random substitution of some “chromosomes” in the

genotype representing an individual. Mutation enhances the probability of explor-

ing untouched areas of the design space avoiding premature convergence in local

minimum.

∙ REPLACER: determines which individuals survive into the next generation. The

elitist selection is used to pick the best individuals from the current generation to

carry over to the next, unaltered.

∙ TERMINATOR: determines when the evolution should end.
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Starting from an initial population 𝛩

0
j of randomly generated individuals, new

generations are iteratively developed by applying the above-mentioned operators to

the individuals of the previous. In each generation, the fitness of every individual in

the population is evaluated. The individuals with highest fitness are selected from

the current population, and each individual’s genotype is recombined and possibly

randomly mutated to form a new generation. The algorithm terminates when either

a maximum number of evaluations has been computed, or a satisfactory fitness level

has been reached for the whole population.

Computation ofR (f (x, p)) and C (g(x, p)) using C-MLMC

Suppose we are interested in the expected value 𝜇Q = 𝔼[Q] and variance 𝜎

2
Q =

𝕍ar[Q] of a QoI Q = f (u) of the solution u of a fluid dynamics problem computed

using a numerical approximation with a discretization parameter M (number of spa-

tial degrees of freedom).

The MLMC estimator uses a sequence of approximations QM0
, QM1

, … ,QML
=

QM of increasing accuracy; hence, M0 < M1 < · · · < ML = M and evaluate the

expectation 𝔼[Q] as:

𝔼[Q] ≈ 𝙴𝙼𝙻𝙼𝙲[QM] ∶=
L∑

l=0
𝙴𝙼𝙲[QMl

] − 𝙴𝙼𝙲[QMl−1
], (8)

where each term is a Monte Carlo estimation of 𝔼[QMl
− QMl−1

] independent of the

other levels.

Similarly, a MLMC estimator for 𝕍ar[Q] can be easily constructed as:

𝚅𝙼𝙻𝙼𝙲[QM] ∶=
L∑

l=0
𝚅𝙼𝙲[QMl

] − 𝚅𝙼𝙲[QMl−1
], (9)

where 𝚅𝙼𝙲[QMl
] and 𝚅𝙼𝙲[QMl−1

] are the MC variance estimators for 𝕍ar[QM] com-

puted on level l and l − 1:

𝚅𝙼𝙲[QM] ∶=
1

N − 1

N∑

i=1

(
QM(𝜔(i)) − 𝙴𝙼𝙲[QM]

)2
. (10)

using the same samples, whereas estimations on different levels are independent. To

overcome some of the limitations of classical MLMC approach and to further reduce

the computational burden required to accurately compute the problem-dependent

parameters needed to estimate the optimal number of levels and samples per level to

achieve a prescribed tolerance, we employ in this work the C-MLMC approach [6, 7].

Additionally, we leverage on the self-tuning nature of C-MLMC approach presented
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in chapter “Continuation Multi-level Monte Carlo” to effectively accommodate its

application in RDO framework.

Thanks to the rigorous mean square error estimators that exist for the MLMC esti-

mators for mean and variance [10] and we are able to approximate, with a controlled

accuracy, in just one run of our C-MLMC algorithm the following quantities:

∙ mean and standard deviation of the QoI that has to be optimized: 𝜇Qr
(x, p),

𝜎Qr
(x, p)

∙ mean and standard deviation of the QoI that has to be constrained: 𝜇Qc
(x, p),

𝜎Qc
(x, p)

For the airfoil problem presented next, we compute in one C-MLMC run the mean

and standard deviation of lift and drag coefficients (CL and CD) as well as the ratio

of lift and drag (L∕D).

Robust Transonic Airfoil Shape Optimization

We consider hereafter the transonic RAE2822 airfoil [11, 12] affected by operating

uncertainties modeled as truncated Gaussian random variables (Table 1).

The initial geometry of the RAE2822 airfoil is defined with a set of PARSEC

parameters [9] and is illustrated in Fig. 1.

We employ the PARSEC parametrization of the airfoil shape, which defines the

set of design variables and corresponding ranges (geometrical constraints) for the

design and geometric constraints variable set. The allowed design range for the geo-

metrical parameters defining the shape of the airfoil is presented in Table 2.

MLMC hierarchy In this work, we employ a 5-levels structured grid hierarchy for

the C-MLMC simulations. The features of the grid levels are presented in Table 3

along with the average computational time required to compute one deterministic

simulation (on one CPU) using the MSES collection of programs for the analysis

of airfoils [13]. MSES solves the steady Euler equations with a finite volume dis-

cretization over a streamline grid and is coupled via the displacement thickness,

Table 1 Operating uncertainties for the RAE2822 problem

Quantity Reference (r) Uncertainty

T N (𝜇, 𝜎,XLO,XUP)
Operating 𝛼∞ 2.31 T N (r, 2%,−2%,+2%)

M∞ 0.729 T N (r, 5%,−5%,+5%)
Rec 6.5 ⋅ 106 −
p∞ [Pa] 101325 −
T∞ [K] 288.5 −

http://dx.doi.org/10.1007/978-3-319-77767-2_19
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Table 2 Geometric design parameters for the RAE2822 problem

Quantity Reference (r) Design range (%)

Geometric design

parameters

Rs 0.00839 90–115

Rp 0.00853 90–115

xs 0.431 80–125

xp 0.346 80–125

ys 0.063 80–125

yp −0.058 80–125

Cs −0.432 80–125

Cp 0.699 80–125

𝜃s −11.607 –

𝜃p −2.227 –

Table 3 MLMC 5-levels grid hierarchy for the RAE2822 problem

Level Airfoil nodes Cells CTime (s)

L0 47 1739 1.9
L1 71 2627 3.2
L2 107 3959 5.7
L3 161 5957 7.5
L4 243 8991 14.7
L5 365 13505 17.9

with a two-equation integral solver for the viscous regions of the boundary layer

and trailing wakes.

RDO problem formulations We now present the following RDO problems:

Transonic Airfoil RDO1: we wish to minimize the weighted sum of the mean and

the standard deviation of the drag coefficient Cd of the airfoil (C∗
d denote the drag

coefficient of the original RAE2822 airfoil). We constrain the shape of the airfoil to

the range of design parameters in Table 2. Additionally, we prescribe the mean of the

lift coefficient 𝜇CL
to be above the 90% of the original RAE 2822 airfoil (denoted as

C∗
L).

RDO1(a) ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min
x

𝜇Cd
(x, p)
C∗
d

+
𝜎Cd

(x, p)
C∗
d

s.t 𝜇CL
(x, p) ≥ 0.9 ∗ C∗

L

xL ≤ x ≤ xU

(11)

The geometrical constraints are handled by the GENERATOR that selects the

appropriate genotype of the individuals to accommodate the prescribed bounds. The

lift coefficient however is not available before the evaluation of the individual and
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Fig. 2 Application of a

linear penalty function to the

fitness in case of violation of

the lift coefficient constraint

requires a different treatment. We employ a penalty function following the approach

of Coello [14]. The penalty function gives a fitness disadvantage to individuals vio-

lating a constraint, proportional to the amount of constraint violation.

More specifically the RDO1(a) is rewritten as a penalization problem as:

RDO1(a) ∶
⎧
⎪
⎨
⎪
⎩

min
x

𝜇Cd
(x, p)
C∗
d

+
𝜎Cd

(x, p)
C∗
d

+
5(C∗

L + 𝜇CL
(x, p))

C∗
L

s.t xL ≤ x ≤ xU

(12)

Figure 2 shows the fitness (dotted in the region where the constraint is violated)

and the penalty function (in red). The continuous green line represents the fitness

that is actually assigned to the individuals.

In Fig. 3, we compare the performance of the original RAE2822 airfoil with those

of the robust optimized shape (obtained by solving the RDO1(a) presented above)

and the deterministic optimal shape. The latter is obtained by solving the following

problem:

DO1 ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min
x

Cd(x, p)
C∗
d

s.t CL(x, p) ≥ 0.9 ∗ C∗
L

xL ≤ x ≤ xU

(13)

As it might be observed by looking at the Cd dispersion plot in Fig. 3 and Table 4,

the deterministic optimal DO1 shape achieves the best reduction in drag coefficient

at the operating conditions (M = 0.729, 𝛼 = 2.31, Re = 6.5e6, diamond symbol in

the plot). However, the RDO1(a) robust shape presents a lower variability of Cd in

the operating range with the same mean drag coefficient of DO1.

Transonic Airfoil RDO2: we wish to maximize the mean of the airfoil lift-to-drag

ratio L∕D and minimize its standard deviation. As in the previous problem, the thick-

ness of the airfoil is constrained:
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Fig. 3 RDO1(a) robust optimal shape and DO1 deterministic optimal shape compared with the

initial RAE2822 airfoil. Top left plot: Cd of the airfoils. The diamond symbols correspond to the Cd
of the airfoils at deterministic design conditions (M = 0.729, 𝛼 = 2.31, Re = 6.5e6). Top right plot:

pressure coefficient profiles of the airfoils at deterministic design conditions. Lower plot: airfoil

shapes

Table 4 Deterministic (DO1) and Robust (RDO1(a)) optimal airfoil shape performances com-

pared to the RAE2822

RAE2822 DO1 RDO1(a)

M = 0.729 𝛼 = 2.31 Re = 6.5e6 Cd = 0.0112 𝐂𝐝 = 𝟎.𝟎𝟎𝟖𝟔 Cd = 0.0097
M = T N (0.729, 2%,−2%,+2%)
𝛼 = T N (2.31, 5%,−5%,+5%)
Re = 6.5e6

Cd = 0.0135 ±
0.0049 (36%)

Cd = 0.0107 ±
0.0031 (29%)

𝐂𝐝 = 𝟎.𝟎𝟏𝟎𝟕±
𝟎.𝟎𝟎𝟐𝟎 (𝟏𝟖%)

RDO2(a) ∶

{
max

x
𝜇L∕D(x, p) − 𝜎L∕D(x, p)

xL ≤ x ≤ xU
(14)

In Fig. 3, we compare the performances of the original RAE2822 airfoil with

those of the robust optimized shape (obtained by solving the RDO2(a) presented

above) and the deterministic optimal shape. The latter is obtained by solving the

following problem:

DO2 ∶

{
max

x
L∕D(x, p)

xL ≤ x ≤ xU
(15)

Looking at the L∕D dispersion plot in Fig. 4 and Table 5, the deterministic optimal

DO2 shape achieves the highest L∕D ratio at the operating conditions (M = 0.729,
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Fig. 4 Performances of the RAE2822 airfoil, RDO2(a) robust optimal shape and DO2 determin-

istic optimal shape. RDO2(a) robust optimal shape and DO1 deterministic optimal shape compared

with the initial RAE2822 airfoil. Top left plot: L∕D of the airfoils. The diamond symbols correspond

to the L∕D of the airfoils at deterministic design conditions (M = 0.729, 𝛼 = 2.31, Re = 6.5e6).

Top right plot: pressure coefficient profiles of the airfoils at deterministic design conditions. Lower

plot: airfoil shapes

Table 5 Deterministic (DO2) and Robust (RDO2(a)) optimal airfoil shapes performances com-

pared to the RAE2822

RAE2822 DO2 RDO2(a)

M = 0.729 𝛼 = 2.31 Re = 6.5e6 L∕D = 62.42 𝐋∕𝐃 = 𝟖𝟏.𝟐𝟓 L∕D = 68.79
M = T N (0.729, 2%,−2%,+2%)
𝛼 = T N (2.31, 5%,−5%,+5%)
Re = 6.5e6

L∕D = 56.32 ±
27.84 (28%)

𝐂𝐝 = 𝟔𝟗.𝟕𝟏 ±
14.20 (20%)

L∕D = 63.64 ±𝟕.𝟗𝟎
(𝟏𝟐%)

𝛼 = 2.31, Re = 6.5e6, diamond symbol in the plot). The RDO2(a) robust shape

presents a lower variability of L∕D in the operating range at the cost of lower mean

L∕D ratio compared to DO2.
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Value-at-Risk and Conditional
Value-at-Risk in Optimization Under
Uncertainty

Domenico Quagliarella

Introduction

Many industrial optimization processes must take account of the stochastic nature of

the system and processes to design or redesign and consider the random variability

of some of the parameters that describe them. Thus, it is necessary to characterize

the system that is being studied from various points of view related to the treatment

of uncertainty. In particular, it is necessary to consider the sensitivity of the system

to the uncertain parameters and assess its reliability. Having established the ability

to characterize the system from this point of view, it is necessary to build an opti-

mization loop that can improve its reliability, or that is capable of providing a robust

optimum, or that could withstand acceptably random perturbations of design param-

eters or operating conditions. The classical approach to this problem is the so-called

“robust design optimization” (RDO), which tries to maximize the expected perfor-

mance and simultaneously to minimize the performance sensitivity with respect to

random parameters (variance). Instead, the “reliability-based design optimization”

(RBDO) tries to find the optimum design by explicitly assigning a specific level of

risk and a given level of reliability. In financial engineering, this corresponds to the

concept of minimizing the value-at-risk (VaR). In terms of optimization problems,

this means to assign a specific quantile of the probability distribution corresponding

to the function to be optimized as the actual objective function and to minimize its

value. Therefore, if the goal is that the value of a given objective function f is less

than a specific value ̄f in 75% of possible cases, the following constraint on the cor-

responding quantile should be imposed: 𝜈
0.75 ≤ ̄f . Alternatively, the problem can be

set as the minimization of 𝜈
0.75

and a function f is thus obtained which is less than

or equal to the value given by the optimization of the quantile in 75% of cases. If,
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instead, the objective is min 𝜈1, then the purpose of the optimization procedure is

to improve the worst-case scenario, as it happens when the problem is of minimax

type.

Although conceptually very attractive, and despite its official adoption as a stan-

dard measure of risk in the industry regulations, VaR is often a difficult measure

to use and not very tractable numerically, outside of cases in which the loss distri-

butions are normal. An alternative measure of risk is the conditional value-at-risk

(CVaR), also called superquantiles. CVaR retains all the desirable features of VaR,

but solves many of the problems associated with the use of VaR and makes optimiza-

tion problems more tractable. One of the advantages of CVaR is that it is a consistent

measure of risk [1]. Also, it is possible, in the risk optimization process, to avoid the

explicit evaluation of a given level of CVaR by using a special function (F
𝛼

), intro-

duced in [2, 3], which reduces the problem to the evaluation of expected values and

to the minimization over a scalar. Moreover, a result of fundamental importance for

optimization is that function F
𝛼

preserves convexity. However, it should be stressed

that not always the use of CVaR is better than VaR; in particular, well-modeled prob-

ability distribution tails are required to obtain an accurate estimate of CVaR, and this

is not always easily achievable. The approach to optimization under uncertainty here

described is an evolution of what presented in [4, 5], with the introduction of differ-

ent risk function, namely VaR and CVaR, that can be used in the optimization loop

and the capability of evaluating estimation error end confidence intervals within the

optimization process.

Risk Measures

In optimization under uncertainty, inevitably, we have to deal with random events,

modeled by random variables. This means that the first thing to do to treat the prob-

lem from a mathematical point of view is to agree on a way to measure the risk.

Therefore, we have to introduce a functional of a random variable vector that quan-

tifies the level of risk:

R(X) (1)

Subsequently, we have to decide a level of risk that we consider acceptable, let us say

C, bearing in mind that there will inevitably be adverse events. Hence, an inequality

is defined

R(X) ≤ C (2)

that bounds the risk measure chosen. Then, if the random variables representative of

the costs depend on a deterministic decision vector 𝐳, we are led naturally to define

a constrained minimization problem:

min
𝐳∈Z⊆Rn

R0(X(𝐳)) s. to: Ri(X(𝐳)) ≤ ci, i = 1,… ,m (3)
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In the next sections, we will further develop this approach and we will introduce

multi-objective problems too.

Here, instead, we will concentrate on the nature and definition of risk measures

mainly following the approach described in [6]. Let us start with the simplest possible

example. Indeed, the most immediate and familiar way to measure risk is to say that,

on average, one should have X ≤ C. In symbols

𝜇(X) ≤ C ⟶ R(X) = 𝜇(X) = EX (4)

Subsequently, if we want to be more stringent, we can add a condition on standard

deviation

𝜇(X) + 𝜆𝜎(X) ≤ C ⟶ R(X) = 𝜇(X) + 𝜆𝜎(X) (5)

or on variance

𝜇(X) + 𝜆𝜎

2(X) ≤ C ⟶ R(X) = 𝜇(X) + 𝜆𝜎

2(X) (6)

Although attractive for their simplicity, these risk measures have several problems,

both from the practical point of view and from the theoretical one. From the the-

oretical point of view, these last two measures do not meet the criteria of coher-

ence defined in [1]. From the practical point of view, instead, the addition to the

mean of a term constituted by the standard deviation or the variance is equivalent

to define a constraint on these statistics quantities following a Lagrangian approach.

This implies that, to work properly, the (𝜇, 𝜎) space should be convex. Furthermore,

also in this case, imposing a constraint on a given 𝜎 level requires the assignment a

specific value to 𝜆 that is not known a priori.

Value-at-Risk and Conditional Value-at-Risk

Alternatively, we can explicitly assign that the random variable of interest is less

than or equal to the desired limit:

𝜈

𝛼(X) ≤ C, 𝛼 ∈ (0, 1) ⟶ R(X) = 𝜈

𝛼(X) (7)

where 𝜈

𝛼

is the 𝛼-quantile or value-at-risk (VaR) in the terminology used in finan-

cial engineering. More formally, according to [7–9], let X be a random variable and

FX(y) = Pr{X ≤ y} be the cumulative distribution function (CDF) of X. Then, the

inverse CDF of X can be defined as QX(𝛾) = F−1
X (𝛾) = inf{y ∶ F(y) ≥ 𝛾}. Thus, for

any 𝛼 ∈ (0, 1), the 𝛼-VaR of L is univocally defined as

𝜈

𝛼 = F−1
X (𝛼), (8)
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Fig. 1 FX and its inverse QX

and it can be considered the maximum loss that can be exceeded only in a frac-

tion of cases equal to (1 − 𝛼). The infimum is used in the definition of the inverse

CDF because cumulative distribution functions are, in general, weakly monotonic

and right-continuous (see [10]). Figure 1 shows a cumulative distribution, FX , and

its inverse, QX , in the presence of discontinuities. It is clear that, once known and

uniquely defined the inverse, the quantile (VaR) is immediately defined as a func-

tion of its 𝛼-probability. From a practical standpoint, VaR offers several advantages

compared to the measures defined using mean and variance. In particular, the use of

quantiles (VaR) allows us to define the risk functional directly in terms of the cumu-

lative distribution function. This, as we shall see in the following sections, allows us

to approach with ease and immediacy reliability-based optimization problems. How-

ever, from a theoretical point of view, VaR, despite being superior in many ways to

traditional risk measures, does not respect all the axioms necessary to qualify as a

coherent measure of risk [1, 11].

On the contrary, the conditional value-at-risk (CVAR), while maintaining the pos-

itive features of VaR, also respects all theoretical criteria to qualify as a coherent

measure of risk. The 𝛼-CVaR of X can be thought of as the conditional expectation

of losses that exceed the 𝜈

𝛼

level and can be expressed as

c𝛼 = 1
1 − 𝛼

∫

1

𝛼

𝜈

𝛽d𝛽 (9)

as it was first outlined by Acerbi in [12]. In Fig. 2, the area representing the integral

in formula (9) is highlighted. References [2, 3, 13] show that c𝛼 can also be written

as the following stochastic program:

c𝛼 = inf
t∈R

{
t + 1

1 − 𝛼

E[X − t]+
}

(10)
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Fig. 2 Quantile and 𝛼-tail

Fig. 3 CVaR preserves

convexity

with [a]+ = max{0, a}. The set of optimal solutions to the stochastic program (10)

is, according to [9], T = [𝜈𝛼, u𝛼] with u𝛼 = sup t ∶ F(t) ≤ 𝛼. In particular, 𝜈
𝛼 ∈ T ,

so

c𝛼 = 𝜈

𝛼 + 1
1 − 𝛼

E[X − 𝜈

𝛼]+ (11)

When X has a positive density in the neighborhood of 𝜈
𝛼

, then 𝜈

𝛼 = u𝛼 . Therefore,

the stochastic program defined in Eq. (10) has a unique solution, and

c𝛼 = E[X|X ≥ 𝜈

𝛼] (12)

with E[X|X ≥ 𝜈

𝛼] also known as expected shortfall or tail conditional expectation.

CVaR satisfies all the axioms that define a coherent measure and, above all, pre-

serves convexity, as it can be qualitatively appreciated from Fig. 3.
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This implies that if the original optimization problem is convex, its transforma-

tion obtained using CVaR is still convex and, hence, all the powerful machinery

developed for the solution of convex optimization problems can still be exploited.

VaR and CVaR Estimation

In most cases of our interest, the value of the risk functions must be estimated from

a finite number of samples. In this work, the Empirical Cumulative Distribution
Function (ECDF) and the Weighted Empirical Cumulative Distribution Function
(WECDF) are used for this purpose. The definitions of ECDF [14] and WECDF

are reported here for the sake of completeness.

Empirical Cumulative Distribution Function Definitions

We preliminarily recall that, as usual, the probability space is defined using the clas-

sical tern (𝛺,F , 𝜇) consisting of a sample space𝛺 of possible outcomes, a 𝜎-algebra

F ⊆ 2𝛺, collection of all the considered events (where each event is a set contain-

ing zero or more outcomes), and a probability measure function 𝜇 ∶ F → [0, 1] that

assigns probabilities to the events.

Definition 1 ECDF, Multivariate Let X ∶ 𝛺 ↦ Rd
a random variable, 𝐱i =

(xi1,… , xid) a random sample of X, 𝜇 the defined probability measure, and 𝛼
𝛼 =

(𝛼1,… , 𝛼d) a generic vector in Rd
. The multivariate “empirical distribution func-

tion” is defined, for n samples {𝐱1,… , 𝐱n}, as

̂Fn
𝜇

(𝛼𝛼) =
number of elements in the sample ≤ 𝛼

𝛼

n
= 1

n

n∑
i=1

1{𝐱i ≤ 𝛼
𝛼} (13)

where 1{A} is the indicator function of event A:

1A(x) ∶=

{
1 if x ∈ A,
0 if x ∉ A,

(14)

and 𝐱i ≤ 𝛼
𝛼 meaning xij ≤ 𝛼j, ∀j = 1,… , d. Note that the last relation defines a partial

order and, if it is true, then 𝐱i is either dominated by 𝛼
𝛼 or equal to it.

Definition 2 WECDF, Multivariate As a first step, the previous definition is

extended introducing a variable jump wi so that, instead of having a step function

that jumps up of a fixed quantity related to the data point number, we have:
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̂Fn
𝜇;𝐰(𝛼𝛼) =

n∑
i=1

wi1{𝐱i ≤ 𝛼
𝛼} (15)

with
n∑
i=1

wi = 1

This weighted ECDF definition will be used to change the probability measure (target

measure 𝜈) and to approximate the CDF that would have been obtained according to

this new measure F
𝜈

(𝛼𝛼).
From now on, therefore, when the optimization algorithm will require the cal-

culation of the FQ(s), it will use instead its estimator ̂Fn
𝜇;𝐰(s), where n indicates the

number of samples used to estimate this ECDF (WECDF).

Note that each indicator function, and hence the ECDF (WECDF), is itself a ran-

dom variable. This is a very delicate issue to consider. Indeed, if the EDCF (WECDF)

is used to approximate the deterministic operator Q(s), a direct residual influence of

the random variables that characterize the system under investigation remains on

PQ(s). In other words, Q(s) behaves as a random variable, but with the important dif-

ference that its variance tends to zero when the ECDF (WECDF) approximates the

CDF with increasing precision. It is possible to demonstrate that the estimator ̂FQn
(s)

is consistent, as it converges almost surely to FQ(s) as n → ∞, for every value of s
[15]. Furthermore, for the Glivenko–Cantelli theorem [16], the convergence is also

uniform over s. This implies that, if the ECDF is calculated with sufficient accuracy,

it can be considered and treated as a deterministic operator. On the other hand, if the

number of samples, or the estimation technique of the ECDF, do not allow to con-

sider it as such, one can still correlate the variance of the ECDF with the precision of

the obtained estimate. Of course, if the ECDF is estimated in a very precise way, it

is possible to use for the optimization also an algorithm conceived for deterministic

problems, provided that it has a certain resistance to noise. Conversely, if the ECDF

is obtained from a coarse sample, its practical use is only possible with optimization

algorithms specifically designed.

Value-at-Risk and Conditional Value-at-Risk Computation

For the sake of simplicity, VaR and CVaR estimation procedures will be given only

for the univariate distribution case. If we have a finite number of samples, that is, a

ECDF, we proceed as described below. If x1, x2,… , xn are n independent and iden-

tically distributed (i.i.d.) observations of the random variable X, then the 𝛼-VaR of

X can be estimated by

𝜈̂

𝛼;n = X⌈n𝛼⌉∶n = ̂F−1
n (𝛼) (16)
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where Xi∶n is the ith order statistic from the n observations, and

Fn(t) =
n∑
i=1

1{xi ≤ t} (17)

is the empirical CDF constructed from the sequence ̃X of x1, x2,… , xn, 1{⋅} is the

indicator function, and t is a scalar value (conversely to the case of Eqs. 13 and 15).

When a weighted empirical distribution is used, instead, 𝛼-VaR can be estimated, for

a given probability level 𝛼, using the formula reported below

k
𝛼∑

k=1
wk ≥ 𝛼 >

k
𝛼

−1∑
k=1

wk (18)

to compute the index k
𝛼

, from which 𝜈̂

𝛼;n
is directly obtained:

𝜈̂

𝛼;n = x(k
𝛼

) (19)

To evaluate the 𝛼-CVaR of X, instead, Ref. [9] suggests to use the estimator

ĉ𝛼;n = inf
t∈R

{
t + 1

n(1 − 𝛼)

n∑
i=1

[xi − t]+
}

(20)

or, equivalently

ĉ𝛼;n = inf
t∈R

{
t + 1

1 − 𝛼

E[ ̃X − t]+
}

(21)

where the ECDF of ̃X is Fn. Using Eq. (11), we have a direct estimate of c𝛼:

ĉ𝛼;n = 𝜈̂

𝛼;n + 1
n(1 − 𝛼)

n∑
i=1

[xi − 𝜈̂

𝛼;n]+ (22)

When the WECDF is used, instead, we have:

ĉ𝛼;n = 1
1 − 𝛼

[( k
𝛼∑

k=1
wk − 𝛼

)
x(k

𝛼

) +
n∑

k=k
𝛼

+1
wkx(k)

]
(23)

Robust Optimization Algorithm

The robust optimization problem (3) has to be redefined in terms of estimates of

the risk functions in order to be numerically solved. Therefore, extending also to

multi-objective problems, we have:
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min
𝐳∈Z

𝜌̂i;n(𝐳) i = 1,… , p s. to: 𝜌̂i;n(𝐳) ≤ ci i = p + 1,… , p + q (24)

where 𝜌̂i;n is an estimator of the generic risk measure Ri obtained using a sample of

size n. The constraints are also assigned considering a set of inequalities defined in

terms of q further risk measure estimates.

The quality of the risk function estimate directly influences the optimization

results. Therefore, the following guidelines should be used in building a robust opti-

mization procedure:

∙ try to use the largest number of samples compatible with the computational budget

in the estimation of the risk function;

∙ use advanced sampling techniques such as multi-level Monte Carlo, or other

importance sampling methods;

∙ use optimization algorithms not quite sensitive to noise since, from the point of

view of the optimization algorithm, the higher or lower quality of an estimate can

be seen, in the broad sense, as noise level that influences the value of objective

functions and constraints;

∙ use of computational statistics methods to evaluate estimate accuracy and confi-

dence intervals; here in particular, the bootstrap method is used, which has the

important characteristic of being a nonparametric method [17].

These issues, with varying degrees of importance, have been present in all the

literature related to the optimization under uncertainty. The stochastic nature of risk

function estimates has led the research related to the multi-objective method to sev-

eral extensions of the classical Pareto front concept. In [18], for example, the Pareto

front exploration in the presence of uncertainties is faced introducing the concept of

probabilistic dominance, which is an extension of the classical Pareto dominance,

while in [19], a probabilistic ranking and selection mechanism is proposed that intro-

duces the probability of wrong decision directly in the formula for rank computation.

An interesting approach, similar in some aspects to the one here described, is found

in [20] where a quantile-based approach is coupled with the probability of Pareto
nondominance (already seen in [19]). Here, contrary to the cited work, the optimiza-

tion technique introduced relies on direct estimation of the risk functions obtained

through the ECDF or the WECDF and of their confidence intervals computed using

the nonparametric bootstrap method.

However, it should be emphasized that the use of confidence intervals within an

optimization algorithm can be misleading, given that, as is well known, they are not

a measure of the degree of probability that an unknown parameter value lies in a

specific interval [21]. The confidence intervals are functions of random variables

and therefore are themselves random variables. consequently, their use to evaluate

the difference of unknown statistical parameters (in our case VaR and CVaR) related

to different distributions must be done with great caution and taking into account

that two confidence intervals with a large overlap might not provide any information

on the actual difference of the unknown parameter in the two different distributions.

Another important point is that the stochastic nature of the sampling for risk func-

tion estimation makes sure that an evolutionary optimization algorithm tends to bring
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out “pathological samples,” that is, samples that give an underestimation of the risk

function in minimization problems. The simplest remedy, when it is not possible to

refine the sampling, is to make sure that a pathological sampling does not extend its

effect beyond a single evolutionary algorithm generation. Consequently, if it is pos-

sible, elitism should not be used so that the effect of a single estimate is limited to the

current generation. If elitism has to be used, it is necessary to change the activation

mechanism taking into account the confidence intervals.

Change of Probability Measure

The robust optimization algorithm here presented relies on the use of risk measures,

such as VaR and CVaR, as objectives, and one of the main problems posed by this

approach is that obtaining an adequate sampling of the random variables that govern

the risk function has very often prohibitive computational costs. Therefore, the need

often arises to obtain good estimates of the risk function during the optimization

process even in the presence of few samples that have not been generated according

to the true distribution of the input random variables. Hence, we have to deal with the

problem of computing the weights of a Weighted Empirical Cumulative Distribution

Function (WECDF) in order to obtain a suitable change of probability measure. The

approach here presented is strictly related to what described in [22, 23].

Empirical Importance Weights Computation

The change of probability measure is obtained through an optimization process

aimed to assign suitable values to the weights of the WECDF. We will refer this pro-

cess as “Empirical Importance Weights Computation.” A suitable objective function

is chosen:

𝜔

2
m(𝐰) =

1
2

m∑
k=1

(
̂Fn
𝜇;𝐰(𝐭

k) − F
𝜈

(𝐭k)
)2

(25)

with {𝐭1,… , 𝐭m} a properly chosen set of sample points. Using the definition of the

weighted ECDF, we obtain:

𝜔

2
m(𝐰) =

1
2

m∑
k=1

( n∑
i=1

wi1{𝐱i ≤ 𝐭k} − F
𝜈

(𝐭k)
)2

(26)

that considering also the constraints associated with the weights leads to the follow-

ing optimization problem:
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𝐰 = argmin
𝐰

𝜔

2(𝐰)
s. to: wi ≥ 0, i = 1,… , n

n∑
i=1

wi = 1
(27)

As Fn
𝜇;𝐰 is a linear function with respect to the parameter vector 𝐰, it can be solved

using a nonnegative least squares algorithm, like the Lawson and Hanson algorithm

[24], or transforming it into a convex quadratic programming problem [22]. Choos-

ing 𝐭 = 𝐱i, we obtain the following linear equation system:

⎧
⎪⎪⎨⎪⎪⎩

n∑
i=1

wi = 1
n∑
i=1

wi1{𝐱i ≤ 𝐱k} = F
𝜈

(𝐱k) ∀k ∈ 1,… , n
(28)

This formulation, however, may lead to an ill-posed problem when the dimension of

the random vector 𝐱 increased. Alternatively, the system can be obtained considering

a random hyperrectangle Hk strictly contained in the unit cube Hk ⊂ U = [0, 1]n and

v(⋅) a function that represents the probability that the random variable vector 𝐱 takes

on a value contained in Hk. So we have

⎧
⎪⎪⎨⎪⎪⎩

n∑
i=1

wi = 1
n∑
i=1

wi1{𝐱i ∈ Hk} = v(Hk) ∀k ∈ 1,… ,K
(29)

Note that if the cuboid is either void or contains all the points, the resulting equation

should be discarded as it could lead to nonconsistent results. Alternatively, it is pos-

sible to discard the equation with less than, let us say, q points and more than n − q
points. Figure 4 reports some random hypercuboid examples that are used to indi-

viduate the points needed to build the K rows of system (29). The figure illustrates,

in a case in which the random vector has two components, the process by which the

random rectangles are generated. Note that the rectangles can intersect.

Problem (29) is characterized by a linear equality, namely the first equation, that

should hold. Several methods are available to force this constraint either exactly or

approximately. Here, this is approximately (but satisfactorily) accomplished by heav-

ily weighting the first equation and solving the resulting nonnegative least squares

system [24].
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Fig. 4 Example of random cuboids used to build the equations of system (29)

Example

Figure 5 reports the result obtained to restore the proper CDF related to the function:

f = 1
n

n∑
i=1

(
2𝜋 − ui

)
cos

(
ui − di

)
(30)

with 𝐮 ∈ [0, 3]n ,𝐝 ∈ [0, 2𝜋]n, and n = 6. The probability measure was changed to

let the random vector 𝐮 have components with a uniform distribution function.

100,000 random hyperrectangle constraints were generated (of which 85,548

were usable because the cuboid contained at least one point and not all the avail-

able points).

Limits of the WECDF Correction Process

Although very effective, the technique of the empirical importance weights has sig-

nificant limitations, especially related to the fact that the empirical cumulative distri-

bution is defined by a set of points. Indeed, the demonstration of the well-posedness
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Fig. 6 Univariate uniform distribution approximated using a very coarse WECDF

of the optimization problem is an open question, and if the result seems quite good

in the case of empirical distributions defined with many samples, on the other hand a

starting distributions very coarse may result in a barely acceptable weighted ECDF.

This is the case, for example, reported in Fig. 6. The results obtained with a denser

sampler, as those reported in Fig. 7, appear much more acceptable, even though the

value of many weights is equal to zero at the end of the process.
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Fig. 7 Uniform distribution approximated using a dense WECDF

Bootstrap Error Analysis

The results of any optimization algorithm for robust or reliable design depend in an

essential way on the quality of estimation of the risk measures to be minimized. In the

approach here presented, these risk functionals rely on the evaluation of the ECDF

or the WECDF estimators. This leads in a natural way to deal with two issues: how

to evaluate the quality of the risk functional estimates used in the multi-objective

optimization problem, and how to possibly get better estimates with a given compu-

tational effort. Related to these two points, however, there are other problems too:

Is it possible to conceive an algorithm that can account for the error in the risk esti-

mates? Is it possible to find estimators of ECDF that give the required accuracy in

the computation of the risk measures of interest for the optimization problem?

The approach here proposed for error assessment and estimation is based on the

bootstrap method introduced by Efron in 1977 [25, 26]. This method represents a

major step forward in the statistical practice because it allows to accurately assess

the variability of any statistical estimator without making any assumption about the

type of distribution function involved. Suppose that a statistic

T(X) = T
(
x1, x2,… , xn

)
(31)

is given, evaluated on a set of data

X =
{
x1, x2,… , xn

}
(32)
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Fig. 8 Bootstrap error analysis

belonging to an assigned space X. The bootstrap essentially consists in repeatedly

recalculating the statistic T employing a tuple of new samples

X∗ =
{
x∗1, x

∗
2,… , x∗n

}
(33)

obtained by selecting them from the collection
{
x1, x2,… , xn

}
with replacement.

The repeated calculation of T
(
x∗1, x

∗
2,… , x∗n

)
gives a set of values that provides a

good indication on the quality of the distribution of T .

Therefore, to calculate the accuracy of a generic risk measure, like 𝜈

𝛼

or c𝛼 ,

obtained using the estimators 𝜈̂

𝛼;n
or ĉ𝛼;n, the bootstrap procedure can be applied

to the samples used to compute the estimator.

Figure 8 illustrates graphically the process of bootstrapping. Suppose we have

a series of random data made by a set of numbers, such as the realizations of a

random variable and another quantity, our quantity of interest 𝜃, related to the first.

The original observations related to these pairs appear in the table at the top left of

the figure. Let us suppose then to make many copies of each of these random variable

realizations data and to put them all in a lottery number shaker from which then we

will extract our couples randomly, taking care to return the numbers in shaker at

the end of each series of extractions. Each new set must contain the same number

of samples of the original, but, by virtue of the sampling mechanism chosen, some

realizations will be present more than once, while others will be absent in the new

series. The tables at the bottom in the figure represent this process and the realizations

selected more than once are highlighted using a circle.



556 D. Quagliarella

Hence, if T is the estimator of the quantity of interest 𝜃, we say T(X) = ̂

𝜃, for a

given sample X. For each bootstrap sample X∗
i , it is possible to compute the related

estimator value T(X∗
1 ),… ,T(X∗

n ). In this way, we obtain n different estimates of 𝜃

that can be used to calculate the “bootstrap mean,” the “bootstrap variance,” the “per-

centiles bootstrap,” etc., which are approximations of the corresponding unknown

values of the quantity of interest, and carry information about the distribution of

T(x). Starting then from these estimated quantities, it is possible to calculate stan-

dard error, confidence intervals, to test hypotheses, etc.

Different methods and algorithms are available to compute the confidence inter-

vals from the bootstrap distribution. We report here, for the sake of completeness,

the two simpler and more commonly used approaches, namely the “basic bootstrap”

and the “percentile bootstrap.” The basic bootstrap uses in a straightforward way the

empirical quantiles obtained from the bootstrap distribution related to the estimator

of the quantity of interest:

(
2 ̂𝜃 − ̂

𝜃

∗
(1−𝛼∕2); 2 ̂𝜃 − ̂

𝜃

∗
(𝛼∕2)

)
(34)

where ̂

𝜃

∗
(1−𝛼∕2) is the 1 − 𝛼∕2 percentile of the bootstrapped coefficients ̂

𝜃

∗
. The per-

centile bootstrap uses again the quantiles, but with a different formulation:

(
̂

𝜃

∗
(𝛼∕2); ̂𝜃

∗
(1−𝛼∕2)

)
(35)

For further details and more advanced techniques, see [17, 27, 28].

VaR and CVaR Error Estimation Example

In the following section, an example of application of the bootstrap technique is

illustrated. This example is related to the characterization of the standard error of

VaR and CVaR calculated on an empirical distribution quite densely defined (21105

samples), but with a few jumps in the upper tail. This distribution is shown in Fig. 9.

The values of VaR and CVaR are calculated according to formulas (18) and (23)

and are reported in Table 1.

Figures from 10, 11, 12 and 13 report the bootstrap probability density distribu-

tions for VaR and CVaR at 𝛼 = 0.90 and 𝛼 = 0.99 alongside the quantile–quantile

Table 1 VaR and CVaR values at some 𝛼 values in the upper CDF tail

𝛼 VaR CVaR

0.90 0.101067 0.1268328

0.99 0.203824 0.2441841
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Fig. 9 Reference empirical

distribution for the VaR and

CVaR error estimation

example

0.250.00 0.05 0.10 0.15 0.20

plot that compares their cumulative distribution with the normal cumulative distri-

bution. 10,000 bootstrap iterations were used to generate these data.

The analysis of these figures shows that, at least for this particular distribution,

CVaR has a more regular, smooth and next to the normal distribution than VaR. How-

ever, this apparent advantage, especially evident in the tails, not always corresponds

to more favorable values for bias and standard error.

Figure 14 compares the VaR and CVaR plot related to the example distribution.

Finally, Fig. 15 is probably the most significant for our purposes. It was obtained

by extracting 1,000 samples randomly from the original data set and performing the

bootstrap procedure on these samples for 𝛼 = 0.99. The values of VaR and CVaR

obtained from these subdistributions are then shown on the charts alongside with the

related bootstrap standard error reported as errorbar. The comparison of these inter-

vals with the estimate obtained from the full sample is indicative of the error related

to a very coarse sampling. The comparison between the results obtained for VaR

and CVaR shows, on the whole, less variability and greater consistency of results

obtained with CVaR when the number of available samples decreases.

Optimization Example

The function reported in Table 2, taken from [29], is used as a benchmark to test

the VaR-/CVaR-based approach to robust optimization. With respect to the function

reported in the reference, the following changes have been introduced: The ranges

of design and uncertain parameters have been changed as reported in table, and a
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Fig. 10 Bootstrap distribution for VaR risk function at 𝛼 = 0.90 and related quantile–quantile plot

multiplicative factor equal to 1∕n has been introduced to make easier the result com-

parison when the dimension of the parameter space changes. The random variables 𝐮
have a uniform distribution function. Table 3 reports the solutions to the optimization

problems

min 𝜈0 = min
𝐝∈D,𝐮∈U

f (𝐝,𝐮)

min 𝜈1 = min
𝐝∈D

max
𝐮∈U

f (𝐝,𝐮)

over the Cartesian product of D and U. The first problem represents the best possible

solution obtainable if the 𝐮 are considered as design parameters varying in U. The

second one, instead, minimizes the maximum possible loss or, alternatively, maxi-

mizes the minimum gain, according to the framework of decision theory [30]. These

solutions have been obtained analytically and verified by exhaustive search for n = 1.

It is worth to note that these particular optimal solutions are the same whatever is

the dimension of the search space.
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alpha CVaR bias std. error
0.90 0.1268328 1.153863e-05 0.00109707

Fig. 11 Bootstrap distribution for CVaR risk function at 𝛼 = 0.90 and related quantile–quantile

plot

The optimization examples reported here are instead related to the minimization

of 𝜈
0.9

and c0.9, whose numerical solutions are quite near to the solution of min 𝜈1,

although not identical. The optimization method used here is a simple genetic algo-

rithm based on local random walk selection [31, 32]. Crossover operator is the classi-

cal one-point crossover which operates at bit level, and also mutation operator works

at bit level. Therefore, the real variable vector is transformed into a bit string in which

each real variable is encoded using 63 bits. Gray coding is used to smooth the effect

of bit mutation and crossover. Finally, no elitism is used in the optimization runs. Two

different optimization runs have been performed, the first one using 𝜈

0.9
as objective

function and the second one using instead c0.9. The dimension of design variable vec-

tor and uncertain parameter vector was set to n = 6. Each run was divided into two

stages: In the first one, the ECDF used to estimate the risk function was computed

using 100 Monte Carlo samples, while in the second stage 1000 samples were used.

The population size was set to 64 elements for each stage, and the last population of

the first stage was used to initialize the population of the second one. The number of

generations was set to 10 for the first stage, while it was set to 20 for the second one.
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Fig. 12 Bootstrap distribution for VaR risk function at 𝛼 = 0.99 and related quantile–quantile plot

In every stage of all the optimization runs, the crossover probability was set to 80%

and the mutation rate to 1%. Figure 16 reports the evolution history related to the 𝜈
0.9

(VaR)-based optimization run, while Fig. 17 is related to the c0.9 (CVaR) run. As can

be easily observed, the trend of the two runs is very similar, and similar results are

obtained in terms of optimal values, as reported in Table 4.

Of course, two single runs cannot be used to draw statistically significant conclu-

sions about the quality of one approach over the other, and an in-depth analysis of

the advantages of a risk function with respect to another must necessarily consider

a systematic benchmark activity on many different objective functions and problem

sizes. This aspect will be further investigated in future work.
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alpha CVaR bias std. error
0.99 0.2441841 0.001955025 0.004689159

Fig. 13 Bootstrap distribution for CVaR risk function at 𝛼 = 0.99 and related quantile–quantile
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Fig. 14 VaR versus CVaR plot comparison
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Fig. 15 VaR versus CVaR bootstrap standard error comparison

Table 2 Benchmark function table

ID Function Ranges

MV4 f =
1
n

∑n
i=1

(
2𝜋 − ui

)
cos

(
ui − di

) 𝐮 ∈ [0, 3]n ,𝐝 ∈ [0, 2𝜋]n

Table 3 Benchmark functions table 𝜈

0
and 𝜈

1
optimal values

ID 𝜈

0 = min
𝐝∈D,𝐮∈U

f (𝐝,𝐮) 𝜈

1 = min
𝐝∈D

max
𝐮∈U

f (𝐝,𝐮)

𝐝 𝐮 f 𝐝 𝐮 f
MV4 [3.1416]n [0]n −6.283185… [4.6638]n [0]n −0.305173…

Conclusions

Robust-based optimization and reliability-based optimization are very challenging

from the computational point of view. Consequently, the introduction of these tech-

niques in the industrial practice cannot be separated from finding new methods that

significantly enhance computational efficiency and the ability to exploit with max-

imum effectiveness the information produced during the optimization process. The

philosophy of the analysis carried out in this work can be effectively summarized

in what written above. The approach proposed here has its roots in the introduction

of risk measures appropriate to the problem in question and, above all, with charac-

teristics, in terms of information conveyed, more favorable than most classical and

well-established techniques.

Alongside to this “rational” and, in a sense, axiomatic definition of the concept

of risk, very present in the literature to date, there are also in this work a whole

series of techniques designed to improve the computational efficiency of the opti-
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Fig. 17 Evolution history for the CVaR-based two stage optimization run

Table 4 VaR and CVaR runs optimal results

ID 𝐝 𝜈

0.9 c0.9

VaR run 4.460 4.617 4.546 4.473 4.657 4.565 −2.495 −2.156
CVaR

run

4.618 4.528 4.497 4.473 4.645 4.557 −2.461 −2.197
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mization process. We started from the extensive adoption of the cumulative probabil-

ity distribution function paradigm and the introduction of two empirical estimators,

namely ECDF and WECDF, which are the basis for the calculation of risk functions

in the optimization process. Then, we introduced two risk measures, namely VaR

and CVaR, whose benefits are reported and illustrated, with reference to current lit-

erature. Subsequently, we dealt with the technique of change of probability measure

which allows, with relative ease, to estimate correctly the risk functions, even when

it is not possible to use the correct distributions in the input random parameters,

because, for example, the space of random parameters was explored using impor-

tance sampling or optimization techniques. Finally, we introduced the “bootstrap-

ping” computational statistics technique to interactively estimate the standard errors

and confidence intervals during the optimization process, even when the input distri-

butions are not known or not specified, or when they are too coarse. All of the tech-

niques described above were blended and integrated into an optimization algorithm

whose preliminary results, here reported as example, seem to confirm the advan-

tages of this approach compared to more traditional methods. Further developments

are underway to better assess and demonstrate the benefits and possible limitations

of this methodology.
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Combination of Polynomial Chaos
with Adjoint Formulations
for Optimization Under Uncertainties

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Introduction

Over the last decade, design optimization is receiving more and more interest in

engineering applications. Conventional optimization deals with the problem of find-

ing numerically the minimum (or maximum) of an objective function. In aeronau-

tics, an example of optimization can be considered as finding the optimal shape of

an aircraft wing that minimizes the drag while maintaining the prescribed lift and

geometry constraints.

For optimization, sampling-based random search algorithms (gradient free, such

as Genetic algorithm) [1, 2] and gradient-based methods [3, 4] are common method-

ologies. Evolutionary algorithms are less dependent to the starting point, as the

whole design space is explored. Therefore, there is less risk of ending up in a

local minimum. Gradient-based methods show fast convergence to the optimum but

strongly dependent on the starting point and hence higher risk of ending up in a local

minimum. The derivatives needed in gradient-based optimization can be computed

efficiently by using the adjoint approach. Adjoint methods are nowadays widely used

for optimization with a large number of design variables.

Robust optimization is an extension of conventional optimization where uncer-

tainties are also included in the design procedure. In computational modeling, there
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are always numerous input parameters such as material properties, geometry, bound-

ary conditions, initial conditions, whose values are often inaccurate or uncertain.

The polynomial chaos method (PCM)-based uncertainty quantification (UQ)

approach offers a large potential for non-deterministic simulations. In PCM, stochas-

tic variables with different distributions can be handled both with intrusive and non-

intrusive approaches. The properties of the input random variables and the output

stochastic solution can be described in terms of its statistical moments and probabil-

ity density functions. The polynomial chaos methodology was originally formulated

by Wiener [5] in an intrusive framework and was further expanded by Xiu and Kar-

niadakis [6]. Several non-intrusive polynomial chaos methods (NIPCM) were also

developed during recent years [7–9]. NIPCM are sampling-based methods and can

be implemented easily into any in-house and commercial CFD code. For these rea-

sons, here, non-intrusive polynomial chaos is used.

The presence of uncertainties brings several difficulties to the optimization pro-

cess. Introducing uncertainties in the design process, the objective becomes non-

deterministic and can be characterized by its mean, variance, and higher-order

moments. It means, the optimization problem becomes multi-objective in presence

of uncertainties. In case of a multi-objective optimization, one can either combine all

objective functions into one single objective function by a weighted sum, or, alter-

natively, keep the different objectives which usually leads to a so-called Pareto front.

These are different designs, where, if one compares design x on the front with design

y on the front, x is not better than y in all objectives. With the increase in compu-

tational power and resources, optimization under uncertainties has become a very

active area of research.

Several methods for robust optimization have been proposed independently and

applied in different scientific fields. Wang et al. [2] applied non-intrusive polyno-

mial chaos with multi-objective genetic algorithm for the robust optimization of

rotor blades. Palar et al. [10] recently applied robust optimization in the aerody-

namic shape optimization of a transonic airfoil using non-intrusive polynomial chaos

with gradient-free evolutionary algorithm. Sriram and Jameson [3] proposed a robust

optimization framework to optimize the mean value of a given objective function

using polynomial chaos and adjoint-based gradient methods. Schillings and Schulz

[11] proposed a polynomial chaos and gradient-based robust optimization frame-

work to optimize the objective function defined as a combination of the mean and

the variance. They applied it to aerodynamic shape optimization under uncertainties

in 2D Euler flows. Recently, Maruyama et al. [12] proposed a robust optimization

framework using surrogate models and applied it for robust design of a 2D airfoil

under uncertainties.

In this chapter, a new approach for robust optimization is presented. Our goal is to

combine the non-intrusive polynomial chaos uncertainty quantification method with

adjoint methods for robust optimization and apply it in CFD applications.
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Polynomial Chaos for UQ

The polynomial chaos expansion is the spectral representation of a random variable,

which decomposes the random variable into separable deterministic and stochastic

parts. Let J be the objective function of a stochastic problem with n input random

variables. In polynomial chaos expansion, the uncertain objective J(x;𝜉𝜉𝜉) is decom-

posed in a basis of complete orthogonal polynomials as:

J(x;𝜉𝜉𝜉) =
P∑

i=0
Ji(x)𝜓i(𝜉𝜉𝜉) (1)

where Ji are deterministic PC coefficients. 𝜓i are the multi-dimensional orthog-

onal polynomials which are function of the independent random variables 𝜉𝜉𝜉 ={
𝜉1, 𝜉2 … , 𝜉n

}
and are used to span the n-dimensional stochastic space. Here 𝜉j is a

random variable with a specific probability density function.

If p is the highest order of polynomial considered to approximate the stochastic

response and n is the number of random variables, the total number of terms P +
1 in Eq. 1 depends on the order of polynomial (p) and on the number of random

dimensions (n) as:

P + 1 =
(n + p)!
n!p!

(2)

The polynomials 𝜓i are orthogonal with respect to the probability distribution

function WWW of the random variables 𝜉𝜉𝜉. Orthogonality means that:

<𝜓i𝜓j> = ∫
𝜉𝜉𝜉

𝜓i(𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WWW(𝜉𝜉𝜉)d(𝜉𝜉𝜉) = <𝜓2
i >𝛿ij (3)

where 𝛿ij is the Kronecker delta and <𝜓i𝜓j> is the inner product.

The expectation or the mean of u can be written as:

E[J] = ∫
𝜉𝜉𝜉

J(x;𝜉𝜉𝜉)WWW(𝜉𝜉𝜉)d(𝜉𝜉𝜉)

= ∫
𝜉𝜉𝜉

{
P∑

i=0
Ji(x)𝜓i(𝜉𝜉𝜉)}WWW(𝜉𝜉𝜉)d(𝜉𝜉𝜉)

= J0

(4)
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Further, the variance of the uncertain parameter u can be written as:

𝜎2
J = E[(J − E[J])2]

= ∫
𝜉𝜉𝜉

{
P∑

i=1
Ji(x)𝜓i(𝜉𝜉𝜉)}2W(𝜉𝜉𝜉)d(𝜉𝜉𝜉)

=
P∑

i=1
J2i (x)<𝜓

2
i >

(5)

The PC expansion coefficients (Ji) can be computed using sampling-based non-

intrusive methods such as regression, projection, or collocation methods. Currently,

the quadrature-based projection method is considered to compute the PC expansion

coefficients of the objective and the gradient of the objective.

The Adjoint Method

The adjoint methods have long been considered as a preferable choice for gradient-

based optimization. In a design optimization problem, an objective function J(U, 𝛼)
is a function of the state variables U and the design variables 𝛼. Based on the deriva-

tion of the adjoint equations, adjoint solvers can be classified as discrete and con-

tinuous. In a continuous adjoint solver, the adjoint equations are derived from the

governing equation and then they are discretized. However, in a discrete adjoint

solver, the governing equations are first discretized and then the adjoint equations

are obtained. Both approaches have their positive and negative aspects. However,

the discrete adjoint formulations are explained below. The adjoint method aims at

computing the gradient of the objective function with respect to the design variables

𝛼. The total derivative of the objective function, G = dJ
d𝛼

can be written as:

G = dJ
d𝛼

= 𝜕J
𝜕𝛼

+ 𝜕J
𝜕U

dU
d𝛼

(6)

The partial derivatives in the above equation can be evaluated directly by varying

the design variables and re-evaluating the objective function in the numerator. How-

ever, evaluation of the term
dU
d𝛼

requires the solution of the governing equations. If

R(U, 𝛼) = 0 represents the residuals of the flow equations of an aerodynamic prob-

lem, the total derivative of the flow equations with respect to the design variables 𝛼

can be expressed as:

dR
d𝛼

= 𝜕R
𝜕𝛼

+ 𝜕R
𝜕U

dU
d𝛼

= 0 (7)
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or

dU
d𝛼

= −
(
𝜕R
𝜕U

)−1 𝜕R
𝜕𝛼

(8)

which gives the change in the state variables U with respect to the design variables 𝛼.

By combining Eqs. 6 and 8, we obtain the following expression for the total gradient:

G = dJ
d𝛼

= 𝜕J
𝜕𝛼

− 𝜕J
𝜕U

(
𝜕R
𝜕U

)−1 𝜕R
𝜕𝛼

(9)

Now let assume 𝜆 satisfies the following linear equation:

(
𝜕R
𝜕U

)T
𝜆 =

(
𝜕J
𝜕U

)T
(10)

which is also known as the adjoint equation and 𝜆 is the vector of the adjoint variables

or the adjoint solution. Combining Eqs. 9 and 10, one finally obtains the following

expression for the gradient G:

G = dJ
d𝛼

= 𝜕J
𝜕𝛼

− 𝜆T
𝜕R
𝜕𝛼

(11)

Polynomial Chaos with Adjoint Formulations for Robust
Optimization

When introducing uncertainties in a design process, the objective function is no

longer deterministic and can be characterized by its mean and variance, i.e., in a

robust design the optimization becomes multi-objective. Gradient-based optimiza-

tion of the mean objective and of the variance of the objective therefore requires the

gradient of both quantities. The gradient of the mean objective is combined with the

gradient of its variance using weights.

Stochastic Objective and Its Gradient

In stochastic applications, the objective function (J) will also be stochastic and can

be written in terms of polynomial chaos expansion as:
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J =
P∑

i=0
Ji𝜓i(𝜉𝜉𝜉) (12)

where the mean value of J is J̄ = J0 and the variance of J is 𝜎2
J =

∑P
i=1 J

2
i <𝜓

2
i >.

The gradient of the objective function J with respect to the design variable can

be expressed as:

G = ∇J =
P∑

i=0
∇Ji𝜓i(𝜉𝜉𝜉) =

P∑

i=0

dJi
d𝛼

𝜓i(𝜉𝜉𝜉) =
P∑

i=0
Gi𝜓i(𝜉𝜉𝜉) (13)

In stochastic applications, the stochastic objective function is usually written as

the weighted sum of its statistical moments. Considering a multi-objective optimiza-

tion, a new objective function can be defined as a linear combination of the mean

and the standard deviation of the original objective function as:

I = K1J̄ + K2𝜎J (14)

In order to optimize (or minimize) the objective function I using gradient-based

methods, one needs to compute the gradient of the objective function I with respect

to the design variable as:

∇I = K1∇J̄ + K2∇𝜎J (15)

From Eq. 13

∇J̄ = ∇J0 = G0 (16)

where ∇J̄ is the gradient of the mean and G0 is the mean of the objective gradient.

The gradient of the variance can be expressed as:

∇𝜎2
J =

P∑

i=1
∇J2i <𝜓

2
i > (17)

or

2𝜎J∇𝜎J = 2
P∑

i=1
JiGi<𝜓

2
i > (18)
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The above equation can further simplified as:

∇𝜎J =
1
𝜎J

P∑

i=1
JiGi<𝜓

2
i > (19)

where Ji and Gi are the PC expansion coefficients of the objective and its gradient,

respectively.

Non-intrusive Calculation of PC Expansion Coefficients

For a deterministic sample j:

Gj =
(
dJ
d𝛼

)j

=
(
𝜕J
𝜕𝛼

− 𝜆T
𝜕R
𝜕𝛼

)j

= 𝜕Jj
𝜕𝛼

− 𝜆T
𝜕Rj

𝜕𝛼
(20)

Define the gradientG of the stochastic objective function J. The polynomial chaos

expansion of the gradient G can be written as:

G = dJ
d𝛼

= ∇J =
∑(

dJ
d𝛼

)

i
𝜓i(𝜉𝜉𝜉) =

∑
Gi𝜓i(𝜉𝜉𝜉) (21)

The Galerkin projection of the above expansion with 𝜓i:

Gi = <G𝜓i>∕<𝜓2
i > (22)

Similarly, the Galerkin projection of the stochastic objective function can be writ-

ten as:

Ji = <J𝜓i>∕<𝜓2
i > (23)

Using the numerical quadrature method, PC coefficients of Gi and Ji can be writ-

ten in terms of deterministic solutions Gj
and Jj as:

Gi =
(
dJ
d𝛼

)

i
= 1

<𝜓2
i >

N∑

j=1
Gj𝜓i(𝜉𝜉𝜉j)wj

(24)
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and

Ji =
1

<𝜓2
i >

N∑

j=1
Jj𝜓i(𝜉𝜉𝜉j)wj

(25)

where Gj
and Jj are from deterministic sample j and N is the total number of deter-

ministic simulations. Once the PC coefficients Gi and Ji are computed using above

equations, the gradient of the stochastic objective I (Eq. 14) can be formulated in

order to optimize the stochastic function.

Aerodynamic Shape Optimization of the RAE2822 Airfoil
Under Uncertainties

To validate the developed approach, here the robust optimization approach is applied

to a 2D transonic airfoil, the RAE2822 under operational uncertainties. The adjoint

solver and the flow solver of SU2 (an open-source CFD solver) are coupled with the

polynomial chaos method for the optimal shape design under uncertainties. The opti-

mization procedure is performed using a Python-based optimizer SciPy. The SciPy

is a gradient-based optimizer for solving nonlinear optimization problems with con-

straints using the sequential least square programming (SLSQP) algorithm [13].

Test Case Description

In this section, the robust design methodology is applied to one of the basic test case

of the UMRIDA project, the RAE2822 airfoil in transonic viscous flow. The airfoil

geometry is described in Cook et al. [14]. The nominal flow conditions correspond

to Mach number M∞ = 0.729, angle of attack 𝛼 = 2.31
◦
, and Reynolds number Re∞

= 6.5 × 106. The operating flow conditions for the test case correspond to case 6

(AGARD report, [14]) with corrected wall interference. The Mach number and the

angle of attack are considered as uncertain parameters with standard deviations of 𝜎M
= 0.01 and 𝜎𝛼 = 0.4◦ respectively. Both uncertain inputs are considered as uniformly

distributed parameters. The stochastic information of the input data is tabulated in

Table 1.

Table 1 UQ data for RAE2822 airfoil

Variables Mean Std Distribution

Mach number 0.729 0.01 Uniform

Angle of attack 2.31
◦

0.4
◦

Uniform
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For optimization, the objectives considered are the mean drag coefficient and

its standard deviation with a constraint in the mean lift. For uncertainty quantifica-

tion, the quadrature-based second-order polynomial method is used. The quadrature

points for PC order 2 are the roots of the third-order Legendre polynomial (for uni-

formly distributed uncertainties). Two uncertainties and second-order polynomial

requires (p + 1)n = 9 individual runs of the flow and the adjoint solver in each iter-

ation of the optimization process. The optimization problem becomes as:

min K1C̄d + K2𝜇Cd
(26)

subjected to ∶
C̄l ≥ Co

where C̄d is the mean drag coefficient and 𝜇Cd
is the standard deviation of the drag

coefficient. C̄l, the mean lift coefficient is an inequality which is maintained greater

than a constant Co during the optimization process.

Deterministic Solution

For the RAE2822 airfoil, the unstructured hybrid mesh with 13,937 cells, used for

the CFD simulation, is shown in Fig. 1. The computational domain and grid cells

near the airfoil surface are depicted in the zoomed area (see Fig. 1). A verified and

validated solver SU2 is used for deterministic CFD solutions. The Spalart–Allmaras

(SA) model is used for modeling of turbulence. In addition to solving the RANS

equations, the adjoint equations can be also solved in SU2 to calculate the surface

Fig. 1 RAE2822: computational domain (left) and zoomed mesh near to airfoil (right)
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Fig. 2 RAE2822: pressure coefficient comparison (SU2 and experimental results)

sensitivities for the optimization purposes. In Fig. 2, the pressure coefficient for the

test case is depicted. The pressure coefficient distribution obtained with the SU2

solver is also compared with experimental results (see Fig. 2). It can be observed

that the numerical predictions of the Cp using the SA turbulence model are in close

agreement with the measurements.

In a gradient-based aerodynamic shape optimization model, the chosen objective

function is optimized by computing its gradient with respect to the shape or design

parameters. The gradient of the objective function with respect to the deformation

in the geometry is computed using the adjoint approach. The adjoint solver of SU2

computes the surface sensitivities at each node of the airfoil surface.

Shape Parameterization

For aerodynamic shape optimization problems, design variables are related to the

surface boundaries. The design variables are important aspect of an optimization

process. A simple way to construct the design variables is to consider surface mesh

points. During the optimization process, the independent movement of these surface

points may lead to a non-smooth configuration. The shape parameterization ensures

smooth geometry deformation. Therefore, in an optimal shape design process, it is

essential to parameterize the geometry using an appropriate parameterization tech-

nique. In this way, the design parameters can be defined and geometry changes

with respect to the design parameters can be provided to the optimizer. Shape
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Fig. 3 Hicks–Henne bump functions for t2 = 10 and t1 = 0.05, 0.10, 0.15,… , 0.95

parameterization is needed for evolutionary and genetic algorithms as well as for

gradient-based optimization.

For robust optimization, the shape of the airfoil is parameterized and modified

using a set of Hicks–Henne bump functions. Hicks–Henne bump functions recently

received popularity in modeling small perturbations in many shape optimization

problems [15].

The Hicks–Henne functions are defined as:

f (x) = [sin(𝜋x
log0.5
logt1 )]t2 ; 0 ≤ x ≤ 1 (27)

where t1 is the x location of the maximum and t2 is the width of the bump.

The modified airfoil shape can be expressed as a weighted sum of sin functions

(Hicks–Henne):

y = ybase +
N∑

1
aifi(x) (28)

where (a1, a2,. . .aN) are N design variables which are used to control the magnitude

of the shape functions. In Fig. 3, the Hicks–Henne bump function for t2 = 10 and

t1 = 0.05, 0.10, 0.15,… , 0.95 is shown. The bump functions reach maximum at the

given values of t1 = 0.05, 0.10, 0.15,… , 0.95.

The bump functions are applied to the baseline airfoil to modify the shape of

the airfoil. A total of 38 Hicks–Henne bump functions are applied to the upper and
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the lower surface of the airfoil at 5, 10, . . . , 95% of the chord length. In this way,

38 coefficients of the bump functions are considered as the design variables. The

leading and trailing edges are kept fixed in the design process by not adding any

shape function to those points.

Robust Optimization

In this section, the initial geometry of the RAE2822 airfoil is taken for the shape

optimization in order to minimize the drag as the objective function. A built-in

gradient-based optimizer using SLSQP algorithm in SU2 framework combines the

flow solver, the adjoint solver, and the mesh deformation tools to minimize the objec-

tive function. By using a simple chain rule, the surface sensitivities (computed with

adjoint solver) are projected into the design space. For uncertainty quantification at

each iteration of the optimization process, the input values of the Mach number and

angle of attack for all CFD runs are shown in Table 2.

In Fig. 4, the convergence history and CFD solutions are plotted for all CFD runs.

As it can be observed, the CFD solutions and residuals for all the samples are con-

verged.

In the robust optimization process, the objective function (a weighted sum of

the mean and its standard deviation) and the gradient of the objective function are

provided to the optimizer. By changing the weights, the results for three different test

cases are obtained. The first case is where a higher weight is given to the mean (i.e.,

K1 = 0.9 and K2 = 0.1), for the second test case, more weight is given to the standard

deviation (i.e., K1 = 0.1 and K2 = 0.9), and the last case is where equal weights are

given to the mean and the standard deviation.

In Fig. 5, the optimization history of the mean and the standard deviation for the

three test cases is shown. From the optimization history, one can see that for all the

test cases, the mean and the standard deviation of the drag coefficients are optimized

after a few iterations only.

In Table 3, the mean and the standard deviation of the drag coefficient are shown

for the baseline RAE2822, deterministic optimized airfoil, and for the robust design

of the three test cases. From Table 3, it can be seen that for the case 1, where more

weight is given to the mean, the optimized mean drag is lower than in all other

designs. Similarly for case 2, where more weight is given to the standard devia-

tion, the standard deviation is lower than in all other designs. Case 3, where equal

Table 2 Mach number and AoA samples for RAE2822 airfoil

S1 S2 S3 S4 S5 S6 S7 S8 S9
M 0.715 0.729 0.742 0.715 0.729 0.742 0.715 0.729 0.742

AoA 1.773
◦

1.773
◦

1.773
◦

2.31
◦

2.31
◦

2.31
◦

2.846
◦

2.846
◦

2.846
◦
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Fig. 4 CFD solution and residuals for all CFD runs of RAE2822 airfoil

Fig. 5 Optimization history for the mean and the standard deviation of the three cases

Table 3 Mean and std of the drag coefficient for baseline RAE, optimized and robust airfoils

Case Mean Cd Std Cd CoV

RAE2822 baseline 1.45729679e−02 3.88569535e−03 26.66% mean

Det. optimized 1.24683603e−02 2.51665720e−03 20.18% mean

Case 1, K = (0.9, 0.1) 1.20657193e−02 1.47263413e−03 12.20% mean

Case 2, K = (0.1, 0.9) 1.27927945e−02 1.33563551e−03 10.44% mean

Case 3, K = (1, 1) 1.21520489e−02 1.34977932e−03 11.11% mean
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Fig. 6 Airfoil shape: RAE2822 baseline and optimized

weights are given to the mean and the standard deviation, optimizes both values, i.e.,

the mean and the standard deviation simultaneously. For case 3, the optimized mean

value is very close to the mean value of case 1, and the optimized standard deviation

is very close to the standard deviation of case 2.

When the uncertainties are applied to the airfoil obtained with a deterministic

optimization, the mean drag coefficient is reduced by approximately 15% and the

coefficients of variance by approximately 25% compared to the original design (see

Table 3). When the uncertainties are included in the design process (case 1 and

case 2), the coefficients of variance are reduced by approximately 50%, making the

final designs robust with respect to the uncertainties. In Fig. 6, the airfoil designs

for all cases, i.e., the baseline RAE2822, optimal shape (without uncertainties) and

robust shape for both the test cases (under uncertainties) are shown. It can be seen that

during the optimization process, mostly the area near the shock region is deformed.

Three different robust airfoil designs (for the cases under uncertainties) are obtained.

The shapes of these airfoils are quite different from the one without uncertainties.

In Fig. 7, the standard deviation of Cd is plotted against the mean Cd for these three

cases of robust designs making a Pareto front.

It is clear that this is just a part of the full Pareto front. This is related to the

use of a gradient-based method where only part of the design space is explored in

the neighborhood of the original airfoil. Putting it in another way: A gradient-based

method will allow shape optimizations of, e.g., a VW car (for drag reduction) but

it will not change it into a Ferrari (with even lower drag). For this an evolutionary

method would be needed exploring the design space to a large extent.
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Fig. 7 Three points on the Pareto front

Conclusion

In this chapter, the non-intrusive polynomial chaos methods are combined with

the adjoint-based gradient methods. The developed robust optimization method is

applied to the optimal shape design of the RAE2822 airfoil using the flow solver

and the adjoint solver of SU2. For the RAE2822 airfoil, three optimal designs are

obtained by considering three different points on the Pareto front. Currently, the

quadrature-based polynomial chaos is used for uncertainty quantification as only two

operation uncertainties are considered in the robust optimization process. However,

for a large number of uncertainties (e.g., geometrical uncertainties), an efficient non-

intrusive UQ method such as sparse quadrature and reduced basis can be employed

easily to the robust optimization approach.
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Robust Multiphysics Optimization
of Fan Blade

K. Vinogradov, G. Kretinin and I. Leshenko

Introduction and Task Statement

One of the most relevant tasks is the fan blade robust multiphysics optimization
under geometrical uncertainties. A modern civil aircraft fan blade is considered as
an investigation object. The blade must provide high level of the aerodynamic
efficiency (adiabatic coefficient of efficiency) and necessary structural properties.
The fan blade flutter phenomenon sensitivity is also considered. Computational
model of the fan blade for test case IC-04 includes blade solid domain and air path.
CAD model of the blade profile is presented in Fig. 1. From enormous number of
calculations necessitates to solve multiphysics robust optimization problem task
statement with one blade was chosen. In aerodynamic calculations only blade
profile is modeled. In the strength calculations, full blade (with foot) is considered.
Blade foot has no geometrical uncertainties and variable parameters and is not
involved in optimization procedure (nominal geometry). Computational aerody-
namic model of the fan blade is presented in Fig. 1. NUMECA AutoBlade 8.9.1
was used as parameterization software to construct computational mesh and to
automatize meshing and aerodynamic calculations procedures. Simplified param-
eterized blade model in NUMECA AutoBlade is also present in Fig. 1. The next
cross sections were considered: 0, 30, 50, 70, 85, 100% of the normalized blade
height.

Computational mesh provided for this test case IC-04 consists of the two parts.
For CFD aerodynamic calculations, hexahedral structured mesh is used. To gen-
erate this type of mesh, NUMECA AutoGrid5 is used. The number of nodes for
aerodynamic calculations is 1 300 000 nodes. Aforementioned number of nodes
was chosen based on preliminary grid dependency test at the same aerodynamic
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calculations for other fan and compressor blades. Chosen mesh has growth ratio 1.5
and the first cell size 5−6 m. “H–O–H” topology of the computational mesh was
used because this mesh type provides high mesh quality level and necessary
computational time.

To carry out strength analysis and to determine mode of deformation hexahedral
combined (structured/unstructured) mesh also was used. To generate this type of
mesh, ANSYS Mechanical Meshing was used. The number of nodes for strength
analysis is approximately 100 000 nodes. Aerodynamic mesh of the fan blade is
presented in Fig. 2. Mesh for structural analysis is also presented in Fig. 2.

Fig. 1 Computational model for aerodynamic calculations

Fig. 2 Computational mesh for aerodynamic and structural calculations
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Total pressure and total temperature in stationary frame were used as inlet
boundary conditions. The flow direction is set by dimensionless angle components.
Boundary conditions for aerodynamic calculations are set in accordance with
standard atmosphere conditions. To couple parameterized blade profile and constant
blade foot specify technology in ANSYS Mechanical APDL was developed. By
means of additional curves and surfaces sketching, we can construct intermediate
blade part between profile and foot in hub blade cross section for different stagger
angles. Visualization of this procedure is present in Fig. 3.

Analysis of fluid flow and film cooling has been performed using NUMECA
FINE/Turbo [1] which employs a structured grid system. The solutions have been
obtained using the finite volume method to discretize the compressible RANS
equations. The Spalart–Allmaras turbulence model is used as a turbulence viscosity
equation solving and closure system of equations. The boundary conditions at the
outlet of the computational model (radial distributions of pressure were accepted
according to the preliminary aerodynamic calculations at the operating point, near
the stall margin and in other areas of interest. One of the key features of aerody-
namic calculations and optimization task statement is the one optimization iteration
corresponds to five aerodynamic calculations (operating point-95% of Speed, 80%
of speed to flutter sensitivity, and three points to determine stall margin in automatic
mode). Deterministic optimization task statement of the FSI multiphysics problem
is presented in the section “General Robust Design Optimization Task Statement”.

Fig. 3 Intermediate blade part between profile and foot
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Geometrical Uncertainties Considered

In the proposed test case, huge number of geometrical uncertainties was considered.
There are geometrical uncertainties from fan blade manufacture tolerances and
deviations. Scheme of the considered blade sections location and scheme of the
main geometrical uncertainties considered (red circles) in blade section are pre-
sented in Fig. 4.

Red circles show cross sections chose for providing uncertainties and further UQ
investigations. The main uncertainties considered as it is shown in Fig. 5 are blade
thicknesses in different profile locations (at 3 mm from leading and trailing edges
(e1, e2), and 20 mm from leading and trailing edges (e3, e4) and maximal blade
thickness in section (E). Profile angle of incidence is also taking into consideration.

General information example for the considered geometrical uncertainties is
presented in Table 1. In this table, main statistic parameters (mean value, variance,
and distribution law) for probability density function description are presented.
Geometrical uncertainties are presented by means of deviations from nominal fan
blade dimensions. Nominal fan blade dimensions were obtained from CAD model
of the fan.

Example of the theoretical graphs of the probability density functions in com-
parison with experimental bar graphs for presented uncertainties is shown in the
Fig. 5.

Analysis of probability density function graphs for considered geometrical
uncertainties showed most of experimental stochastic parameters can be described
by means of Gaussian pdf distribution law with acceptable accuracy level. Some
parameters will have to be described by means of lognormal and beta distribution.

Fig. 4 Scheme of the considered blade geometrical uncertainties
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General Robust Design Optimization Task Statement

Let us consider mathematical formalization of the RDO problems. While creating a
technical system, the designers are to form the vector of values of system efficiency
y= y1, y2, . . . , ymð Þ, which are to be maximized, minimized, and constrained, to
form the vector of variable parameters x= x1, x2, . . . , xnð Þ, varying of which leads
to the variation of the efficiency, and to form the vector of external conditions
e= e1, e2, . . . , ekð Þ. The correlation between these vectors as y = f (x, e) forms the
mathematical model of the system under investigation. The existence of a mathe-
matical model makes it possible to formulate a design problem as an optimization
task, which lies in the search of one or several vectors x* ∈D that ensure the best (in
some way) efficiency. Here

D= fx∈Rn xj−
�
� ≤ xj ≤ xj+1, j=1, . . . , n; gi x, eð Þ ≤ 0, i=1, . . . ,wg ð1Þ

is the search region, gi x, eð Þ is the constrained efficiency values. Such an “ideal”
design problem statement was regarded, until recently, as a necessary and sufficient
condition to obtain an optimal design. In practice, however, such an approach of

Fig. 5 Theoretical pdf example in comparison with experimental bars

Table 1 Example of general information about geometrical uncertainties

Name of the uncertainty Mean value Variance Law of distribution

ΔE15 −0.0896 0.079 Gaussian
ΔTHETA15 −0.4239 4.9772 Gaussian
Δe2_15 μ = −1.199 σ = 0.302 Lognormal
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solving real-life tasks deals with serious problems connected with impossibility to
implement optimal project solutions. The main reason for this lies in the existence
of a large number of uncertainties, which are not taken into account while modeling
the system, optimization problem statement, and solving procedure.

The attempt to include uncertainties in design problem formalization results in
the necessity to consider relations: x= x x ̄, ξxð Þ; e= e e ̄, ξeð Þ, where x ̄, e ̄ are the ideal
vectors of variable parameters and environmental conditions; ξ= ξx, ξeð Þ corre-
sponds to the vector of random values including the uncertainties in implementation
of variable parameters and environmental conditions. Generally, to solve a RDO
problem one must be able to determine system efficiency values y= f x, eð Þ for
given values of x ̄, e ̄, and hence to know the laws of distribution of vector com-
ponents ξ [2]. In our situation, we consider aforementioned geometrical uncer-
tainties (blade thickness) in five cross sections of the blade. These parameters are
the stochastic values, which distribution laws were obtained as a result from the
experimental data and are shown (as example) in Fig. 5. Blade leading edge and
trailing edge angles as to stagger angle were set as variable parameters in param-
eterization model. Total number of variable parameters and uncertainties are 42. As
a probabilistic criteria were used efficiency values with probability no less than one
given (P = 90%).

The main problem occurring while solving robust design optimization problem is
determining probabilistic criteria values. The simplest and the most universal method
of evaluation of probabilistic criteria is the Monte Carlo method. The main advantage
of this method, as applied to RDO problems, is no necessity of setting of any a priori
assumptions about the goal function peculiarities (smoothness, monotony, continuity,
differentiability, and so on). However, the efficiency of the Monte Carlo method
when solving real-life problems to a great extent depends on the required accuracy of
definition of probabilistic criteria. Particularly, applying the gradient methods of
optimization, requiring high accuracy of definition of probabilistic criteria, resulting
in high computational expense (required number of tests at each iteration of extre-
mum search makes up ≈106−109). The second approach includes a number of
methods which are based on different approximation techniques (Taylor’s series,
response surfaces, and so on). In this approach, results of response surface modeling
algorithms (surrogate models) are used for probabilistic criteria evaluation. When
solving the task under consideration, we used the Monte Carlo method along with the
method of multicriteria optimization IOSO [3] as well as the procedure of multilevel
optimization involving surrogate models [1–7].

Deterministic Optimization Results

To solve deterministic optimization task, aerodynamic and stress/flutter sensitivity
computations in NUMECA FINE/Turbo and ANSYS Mechanical APDL were
carried out in one software loop. Deterministic optimization results were used as
initial DoE to further robust optimization process (to construct surrogate model for
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robust optimization in iterative procedure). Necessary information about deter-
ministic optimization task statement is presented in Fig. 6.

Some additional details about deterministic optimization are presented below.
Objective functions:

• increasing of the aerodynamic efficiency at rotating speed n = 0.95;
• increasing of the stall margin at rotating speed n = 0.95 (no less than 0.1);
• decreasing maximal static stresses in blade profile;
• decreasing flutter sensitivity across TBC criterion (Torsion-bending coupling).

Constraints: compressor pressure ratio, mass flow at rotating speed n = 0.95,
n = 0.8

Variables: camber line form (blade LE and TE angles), stagger angle in six
sections.

Fig. 6 Task statement
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TBC criterion is the experimental-based dependence between torsion and
bending displacement by first flexion mode for leading edge and trailing edge
control points.

Scheme of the TBC criterion calculations and necessary mathematical equations
is presented in Fig. 7.

Based on aforementioned task, statement and details more than 2500 iterations
of the deterministic optimization were carried out. Essential improvement for all
criteria considered was obtained as a result of the optimization. Aerodynamic
efficiency was improved on 1%, stall margin improvement was 0.75, and equivalent
von Mises stress (sstt) was decreased on 42%. We selected four points with max-
imal levels of criteria considered. Comparison between aerodynamic and multi-
physics optimization is presented in Fig. 8. Figure 8 shows that the results of
aerodynamic optimization have a much higher level of aerodynamic efficiency and
stall margin (D_Ky) but poor structural properties (static stresses in the blade profile
and flutter sensitivity are too high (TBC > 0.3)). Such structural properties make
the blade non-viable. The results of deterministic multiphysics optimization are
represented with yellow triangles and show worse aerodynamic characteristics (by
0.9% of aerodynamic efficiency) than the results of aerodynamic optimization. At
the same time, they show much higher structural characteristics. In particular, level
of von Mises stress on 35–40% less, flutter sensitivity is TBC < 0.22. The results of

Fig. 7 TBC criterion formulation
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the multiphysics optimization have the essential difference in all criteria considered
(aerodynamic efficiency difference is 0.8%, stall margin difference is 4–5%, and
different stress level (max difference 15–19%). The results of this comparison prove
the necessity of multiphysics optimization. Some of the aerodynamic characteristics
of the results of deterministic multiphysics optimization are presented in Fig. 9.
Structural characteristics of the fan blades (distribution of the von Mises stress) for
the results of deterministic multiphysics optimization are presented in Fig. 10 that
show that substantial differences in the level of maximal stress are present between
all of represented blades.

Thus, the problem of multiphysics optimization of the fan blade (aerodynam-
ics + strength + flutter sensitivity) in the deterministic approach has been solved.

Fig. 8 Comparison between aerodynamic and multiphysics optimization

(a) Initial blade (b) Max efficiency (c) Min stresses

Fig. 9 Flow patterns in span 50% in operating point for some results
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Pareto sets for all four criteria under consideration were obtained. Results of
deterministic optimization were used as initial DoE for the robust optimization
problem.

Multilevel Robust Design Optimization Using Surrogate
Models and IOSO Technique

In the present work, Approx software [8] is used for the surrogate model construction.
This software allows us to obtain different types of the surrogate models: from
full-square regression models [9] to different types of artificial neural networks.

The central point during construction of the surrogate model is the choice of the
structure of the approximating function. Models based on linear regression with the
function parameters defined as:

Par=K0 + ∑
N

i=1
Ki ⋅mi ð1Þ

where К0, Ki—regression coefficients.
Within this work, due to the large number of the problem parameters, it was

decided to use modified method of least squares with an extended set of variables.
The approach is based on full-square regression with the regressors formed on an

extended set of variables. The extended set of variables is comprised not only of the
variables themselves but also of their functional dependencies. Number of regres-
sors might end up very large, so the algorithm uses adaptive selection of only those
regressors that represent the response surface the most fully. Tuning of the

(a) Max efficiency (b) Min static stress (c) Min flutter sens.

Fig. 10 3D stress code results (static stress in the fan) for some multiphysics optimization results
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parameters of the response surface of this kind takes into account as many of the
regression coefficients as possible, as well as the relative accuracy achieved by the
adaptive selection procedure. The higher is the number of the regression coefficients
the more accurately the starting points can be described. Scheme of the surrogate
model construction in Approx software is presented in Fig. 11. The typical situa-
tion, while solving a problem of optimization of complex engineering systems, is
that the user has several tools of various degree of fidelity to perform the analysis.
These tools differ according to their levels of complexity of modeling the actual
physical phenomena and their different levels of numerical accuracy. The
high-fidelity tools could be represented by detailed nonlinear mathematical models
of the researched systems or even by the experimental samples of such systems.
However, the use of such tools in optimization is associated with significant time
expenditures.

The low-fidelity (surrogate) models also allow carrying out optimization search,
but the reliability of the obtained results can be rather low. Therefore, within the
framework of the development of RDO methodology for complex systems, the
methods based on the combination of various fidelity analysis tools are widely
practiced.

The objective here is to offer the procedure of multiobjective optimization of
complex systems based on the adaptive use of analysis tools of various levels of
complexity. The intention is to minimize the use of high-fidelity time-consuming
tools for the analysis. This approach ensures the possibilities to search
Pareto-optimal set of solutions and also ensures improving the surrogate mathe-
matical model.

The simplified scheme of work for the multilevel optimization procedure can be
represented as follows (Fig. 12).

Fig. 11 Surrogate model creating scheme in Approx software
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• Generation of surrogate model on the basis of the data set previously obtained.
• Solution of the multiobjective optimization problem based on a surrogate model.

Updating of the objectives and constrained parameters obtained for the Pareto
set using the high-fidelity analysis tool.

• Refinement of the surrogate model.
• Replacement of the surrogate model and return to step II.

The particular features of the problem define the number of iterations for such a
multilevel procedure. The number of applications of high-fidelity analysis tools is
limited to the product of the number of iterations and the number of Pareto-optimal
solutions. Interaction between Approx software and IOSO optimization algorithm is
presented in Fig. 13.

The information stored during the search is used to improve the surrogate
models. However, this model is correct not for the entire initial search area but only
for a certain neighborhood of the obtained Pareto set. This ensures purposeful
improvement of approximating properties only in the area of optimal solutions that
noticeably reduce the computing effort to construct surrogate models. In this
approach, results of response surface modeling algorithms (surrogate models) are
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Fig. 12 Scheme of multilevel optimization procedure via IOSO NM software
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used for probabilistic criteria evaluation. In our case, uncertainty quantification and
robust optimization tasks are solving together.

RDO Results for Fan Blade

Surrogate model construction for RDO procedure.
At the first step, initial DoE based on deterministic optimization results was

constructed. To generate initial combinations of the variable parameters deter-
ministic optimization task was solved. Within the applied procedure of multilevel
optimization, 15 global iterations were carried out. Initial design of experiments has
1400 calculations based on deterministic optimization results. Additional 25–50
calculations (high-fidelity CFD simulation) at every multilevel iteration of the
optimization were carried out. Total number of calculations in database to construct
surrogate model was ≈500. Variations of accuracy of low-fidelity models via
iterations are shown in Fig. 14. The tendencies for all criteria considered are
noticeable toward increase of low-fidelity model accuracy under the growth of the
number of iterations. It should be noted that the worse accuracy of approximation
has the maximal value less than 2% (for TBC criterion).

Fig. 13 IOSO NM interaction algorithm with surrogate model

Fig. 14 Surrogate model
accuracy modifications
(aerodynamic efficiency)
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The next accuracy levels were obtained:

• 0.3% for mass flow rate$
• 0.006% for aerodynamic efficiency
• 0.015% for stall margin
• 1% for static stress
• 1.8% for TBC criterion.

During iteration refinement of the surrogate model, substantial nonlinearity in
the change of the model accuracy was observed which was caused by the high
dimensionality of the problem (42 parameters). In spite of aforementioned prob-
lems, obtained surrogate model can provide necessary level of prediction accuracy
to carry out robust optimization based on these results. Overview of the optimizing
search during robust optimization on probabilistic criteria (efficiency and strength
with 90% confidence) for some of 15 multilevel iterations is shown in Fig. 15. The
figure shows clear tendency for the aerodynamic efficiency to increase and for the
maximal stress to decrease during the robust optimization.

As a result, evident Pareto set between aerodynamic efficiency and structural
properties has formed on the 15 iterations. It has a pronounced corner point. In
addition, the search dynamic demonstrates the influence of complexity and multi-
physicality of the problem on the obtained result.

Fig. 15 Surrogate model database modifications for aerodynamic efficiency and static stress
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Dynamic of the change of the Pareto set between aerodynamic efficiency and
structural properties during multilevel iteration of robust optimization is presented
in Fig. 16. Figure 16 shows tendency for the values of probabilistic criteria to
improve. For example, for efficiency with P = 90% the gain was about 1.4% and for
maximal stress the reduction was 19%. This result demonstrates high efficiency of
the developed and employed technology for the robust optimization problems of
high dimensionality. As a final result of the optimization, according to the tradi-
tional rules of the Pareto set analysis, the “angle point” corresponding to the best
aerodynamic efficiency and structural properties was used.

The probability density distribution of the aerodynamic efficiency for deter-
ministic and robust optimization results is presented in Fig. 17. The chart clearly
demonstrates the achieved improvement. During the initial stages of the robust
optimization, the deterministic and the mean values of a criterion had worsened but
eventually (on the fifteenth iteration) there was a significant gain in the mean value
of efficiency, decrease in its variance (from σ = 0.08 to σ = 0.059%), as well as an
increase in the probabilistic criterion up to Δη90% = 0.15%.

The probability density distribution of the structural properties (static von Mises
stress) for deterministic and robust optimization results is presented in Fig. 18. The
tendencies for the distributions are similar to the ones for the aerodynamic char-
acteristics. The results of the deterministic optimization have the highest mean
value and probabilistic criterion (SSTT90%) for the static stress. During the initial
stages of the robust optimization, the mean value of the stress as well as its variance
had decreased. On the fifteenth iteration, further significant decrease of the mean
value of the stress, its variance (from σ = 1.362 MPa to σ = 0.982 MPa), and a
decrease in the probabilistic criterion were obtained. The probability density

Fig. 16 Pareto set (between aerodynamic efficiency and static stress) modifications via multilevel
iterations of robust optimization
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distribution of the stall margin for deterministic and robust optimization results is
presented in Fig. 19. The results of the deterministic optimization have the highest
mean value and probabilistic criterion (D_Ky90%) for the stall margin, which was
caused differences in the task statement of the deterministic and robust optimiza-
tion. The deterministic optimization was supposed to maximize the stall margin but
for the robust optimization it was used as a constraint. During the initial stages of
the robust optimization, the mean value had decreased while the variance had
increased significantly. By the fifteenth iteration, the mean value had not changed

Fig. 17 Pdf for deterministic and robust optimization results (aerodynamic efficiency)

Fig. 18 Pdf for deterministic and robust optimization results (structural properties)
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much while the variance had decreased significantly (from σ = 1.3 to σ = 0.6%).
Thus, the results of robust optimization can guarantee a probabilistic constraint on
the stall margin.

Conclusions

1. One of the most promising techniques to solve RDO problems in coupling is
usage of approximate assessments of probabilistic criteria under Monte Carlo
combined with direct optimization techniques IOSO.

2. Application of the multilevel optimization procedure offers a significant
reduction of the computing time expenditures for the solution of complex
real-life problems while maximizing the probability of manufacturing the object
under study.

3. Deterministic multiphysics optimization of a fan blade has been carried out. The
fan aerodynamic efficiency has been increased, the maximal stress in the blade
profile, and flutter sensitivity has been decreased. Pareto sets were constructed
from the results of the deterministic optimization.

4. The problem of the robust optimization of a fan blade under the influence of
geometrical uncertainties (deviations of manufacturing) has been stated and
solved by means aforementioned technique. The total number of parameters
was 42.

5. From the results of the robust optimization a point from a Pareto set has been
obtained which can provide maximal efficiency, minimal stress in the blade
profile and the necessary level of the stall margin and the flutter sensitivity with
the 90% probability. Furthermore, during the robust optimization the variance of

Fig. 19 Pdf for deterministic and robust optimization results (stall margin)
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the aerodynamic and the structural properties caused by the geometrical
uncertainties has decreased. The variance has decreased on average from 1.3 to
0.6%.

6. The results show high efficiency of using the developed approach for the robust
optimization problems with a high number of geometrical uncertainties.

7. The objectives of the further research will be the increase in the number of the
optimization criteria and the uncertainty quantification in the blade foot and also
the direct simulation of vibro-stress in the blade (two-way FSI) during the robust
optimization.
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UQ Sensitivity Analysis and Robust
Design Optimization of a Supersonic
Natural Laminar Flow Wing-Body

Domenico Quagliarella and Emiliano Iuliano

Introduction

Within the UMRIDA project an aerodynamic configuration of a supersonic busi-

ness jet wing-body was defined and proposed as baseline for a robust aerodynamic

shape design problem. This configuration, while being of industrial interest, is not

covered by copyright or confidentiality clauses and can be used for benchmarks and

comparisons even outside of the UMRIDA consortium.

The present chapter reports the robust optimization task that was carried out to

enhance the natural laminar flow (NLF) on the wing of the aforementioned super-

sonic business jet under geometrical uncertainties. The reference wing-body config-

uration has been already optimized by CIRA within the SUPERTRAC EU project by

using deterministic methods: Hence, robust optimization has been used to refine the

aerodynamic design in order to produce an optimal wing-body shape which offers a

better behavior with respect to uncertainties in wing geometry.

In order to take into account the propagation of the uncertain input variables dis-

tribution onto the objective function and establish criteria for robust optimization,

various risk measures can be defined in the context of robust and reliability-based

optimization, and different risk functional definitions can lead to different approaches

to the problem of optimization under uncertainty. The optimization framework here

adopted is based on the value-at-risk (VaR) and conditional value-at-risk (CVaR)

risk measures, also called quantile and super-quantile, respectively, which were orig-

inally conceived in the area of financial engineering. Very coarse VaR and CVaR

estimations are used in the optimization process and, as this could lead to inaccurate
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estimation of the objective function cumulative distribution, the “bootstrap” compu-

tational statistics technique is used to get an estimate of standard error and confidence

intervals of the risk function.

After a brief recall of the theory behind the risk measures and their inclusion

within a robust optimization process, the baseline description and the design problem

definition, available in the database of the UMRIDA project, are reported. Then, the

adopted shape parameterization, the definition of the uncertain variables and a rough

sensitivity analysis are presented. Finally, the results obtained by using the VaR and

CVaR risk measures are reported and related issues are discussed.

Theory Recall

The approach to robust and reliability-based design here adopted relies on the use of

various risk measures, and it is described in detail in chapter “Value-at-Risk and Con-

ditional Value-at-Risk in Optimization Under Uncertainty” of this collection and in

the UMRIDA deliverable reports [1, 2]. In a very concise outline, the starting point

is the formal definition of a risk measure, together with the consideration that dif-

ferent risk functional definitions can lead to different approaches to the problem of

optimization under uncertainty and, hence, to different results. Here, in particular,

the value-at-risk (VaR) and conditional value-at-risk (CVaR) measures are adopted

to evaluate the wing-body aerodynamic performance in the risk measure-based opti-

mization algorithm. Coherently, with what exposed in chapter “Value-at-Risk and

Conditional Value-at-Risk in Optimization Under Uncertainty” and in [1] the “boot-

strap” computational statistics technique is used to get an estimate of the standard

error on VaR and CVaR.

Value-at-Risk and Conditional Value-at-Risk

The solution of the NLF design optimization problem here illustrated relies on the

application of two risk measures, namely the value-at-risk (VaR) and the conditional

value-at-risk (CVaR), also called quantiles and superquantiles. These risk measures

originated in the area of financial engineering, but they are very well and naturally

suited to reliability-based design optimization problems and they represent a viable

alternative to more traditional robust design approaches. The definitions of VaR and

CVaR, taken from [3–5] and adopted in [2], are here briefly reported for the sake

of completeness. Let X be a random variable and F(y) = Pr{X ≤ y} be the cumu-

lative distribution function (CDF) of X. Then the inverse CDF of X can be defined

as F−1(𝛾) = inf{y ∶ F(y) ≥ 𝛾}. Following the definitions of [5], and coherently with

what reported in [6], for any 𝛼 ∈ (0, 1), the 𝛼-VaR of X is defined as

𝜈
𝛼 = F−1(𝛼), (1)

https://doi.org/10.1007/978-3-319-77767-2_34
http://dx.doi.org/10.1007/978-3-319-77767-2_34
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and it can be considered the maximum loss that can be exceeded only in (1 − 𝛼)100%
of cases. Correspondingly, the 𝛼-CVaR of X can be thought of as the conditional

expectation of losses that exceed the 𝜈
𝛼

level, and can be expressed as

c𝛼 = 1
1 − 𝛼 ∫

1

𝛼

𝜈
𝛽d𝛽 (2)

as it was first outlined by Acerbi in [7]. References [8–10] show that c𝛼 can also be

written as the following stochastic program:

c𝛼 = inf
t∈ℝ

{
t + 1

1 − 𝛼
E[X − t]+

}
(3)

with [a]+ = max{0, a}. The set of optimal solutions to the stochastic program (3) is,

according to [5], T = [𝜈𝛼, u𝛼] with u𝛼 = sup t ∶ F(t) ≤ 𝛼. In particular, 𝜈
𝛼 ∈ T , so

c𝛼 = 𝜈
𝛼 + 1

1 − 𝛼
E[X − 𝜈

𝛼]+ (4)

In the case where we have a finite number of samples, that is a ECDF, we proceed

as described below. If X1,X2,… ,Xn are n independent and identically distributed

(i.i.d.) observations of the random variable X, then the 𝛼-VaR of X can be estimated

by

𝜈̂
𝛼;n = X⌈n𝛼⌉∶n = F−1

n (𝛼) (5)

where Xi∶n is the i-th order statistic from the n observations, and

Fn(y) =
n∑
i=1

1{Xi ≤ y} (6)

is the empirical CDF constructed from the sequence X̃ of X1,X2,… ,Xn, and 1{⋅} is

the indicator function. The estimation of 𝛼-CVaR of X, according to reference [5],

can be directly obtained using Eq. (4):

ĉ𝛼;n = 𝜈̂
𝛼;n + 1

n(1 − 𝛼)

n∑
i=1

[Xi − 𝜈̂
𝛼;n]+ (7)

Robust Optimization Algorithm

A robust optimization problem can be defined in terms of an arbitrary number of risk

measures of different types within the framework of multi-objective optimization:

min
𝐱

𝜌̂i;n(𝐱) i = 1,… , p (8)
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being p the number of objectives chosen, 𝐱 ∈ X ⊆ ℝm
the vector of deterministic

design parameters, and 𝜌̂i;n an estimator of the risk measure 𝜌i obtained using a sam-

ple of size n. The problem is easily extended to the constrained case considering the

following set of inequalities defined in terms of q further risk measures:

𝜌̂i;n(𝐱) ≤ Ki i = p + 1,… , p + q (9)

Regardless of the algorithm used, it is evident that the result of the optimization

will be affected by the quality of the risk function estimate and, therefore, by the

number of samples and by the algorithm used to obtain it. We note in this regard that

advanced importance sampling algorithms can significantly increase the quality of

the risk function estimation. From the point of view of the optimization algorithm,

the higher or lower quality of an estimate can be seen, in the broad sense, as noise

(more or less random) that influences the value of objective functions and constraints.

Therefore, the first thing to do, in the absence of other possibilities, is to use an

optimization algorithm scarcely sensitive to noise. In this work, we chose to use a

gradient-free algorithm, in particular, the ADG multi-objective genetic algorithm

developed in-house [11–13]. In any case, even an algorithm not quite sensitive to

noise, but not explicitly designed for robust optimization problems will respond in a

non-ideal way when applied to this class of problems. In particular, the most critical

phase of the optimization process occurs when the magnitude of the improvement

obtainable in a single step of the algorithm is of the same order of magnitude than

the uncertainty in the estimation of the risk function. Therefore, it is of fundamental

importance to adapt the optimization algorithms so that they can operate effectively

in these situations. They must therefore be equipped with the ability to evaluate the

error related to a sample of given size and to the algorithm used to obtain the estimate.

It is important to note that the error estimate must be applied to each set of sam-

ples that constitute an ECDF, since this, similarly to the value of the risk functions

(which are the building blocks of our robust design and optimization system) also

depends on the particular value assumed by the deterministic design parameters.

Once the error value is available, it can be used at various levels in the algorithm.

In the present work, in particular, it is simply used to decide when to stop the and

possibly switch to a more refined sampling level in the estimation of risk functions.

Here we adopt the bootstrapping technique to measure the accuracy of our estimates

[14] in terms of variance, confidence intervals, and prediction errors. The details of

the non-parametric bootstrap method used are, again, reported in [1] and in chapter

“Value-at-Risk and Conditional Value-at-Risk in Optimization Under Uncertainty”.

Design Problem Description

The reference configuration is the optimized wing-body shape produced by CIRA

within the SUPERTRAC EU project [15]. This shape was optimized for natural lam-

inar flow and was obtained from a baseline configuration produced by Dassault Avia-

http://dx.doi.org/10.1007/978-3-319-77767-2_34
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tion within the framework of the Supersonic Business Jet project and made available

within SUPERTRAC project. The inboard wing has a 65
◦

leading-edge sweep angle,

while the outboard-wing sweep is 56
◦
. The wing semi-span is 9.35 m and the aspect

ratio is 3.5. The cruise flight Mach number is 1.6.

Within SUPERTRAC project, wing section airfoils and twist angle were opti-

mized in order to maximize the laminar flow region while monitoring and control-

ling the pressure (vortex and wave) drag. Compared to SUPERTRAC baseline, the

optimized wing showed an improved extent of laminar flow. The airfoil wing sec-

tions optimized by CIRA are not covered by copyright, so the test case is usable

without non-disclosure agreements.

Geometry and Design Problem Definition

Figure 1 reports the UMRIDA baseline in isometric and orthographic projection,

while wing-body geometric features are summarized in Table 1.

Fig. 1 UMRIDA baseline view

Table 1 Wing-body geometric features

Parameters Values

Inboard sweep 65

Outboard sweep 56

Semi-span length 9.35 m

Aspect ratio 3.5

Wing area 50 m
2
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Table 2 Design flow conditions

Parameters Values

Mach 1.6

Reynolds 51.8 × 106

Lref 6.27 m

AOA 3.65

CL 0.182

Fig. 2 UMRIDA optimized baseline features

The flow conditions for the optimization problem are those related to the main

cruise design point and are reported in Table 2.

Figure 2 shows the N factor map on the wing suction side (left) and the transition

locations (suction and pressure side) along the wingspan (right) as compared to the

baseline wing. The deterministic optimization managed to damp the N factor lev-

els so that not only the laminar flow is naturally enhanced (as observable from the

right-hand side picture) but also the application of active flow control (e.g., suction)

would require much less energy to further decrease the friction drag by increasing

the laminar flow portion.

Optimization Problem

The detailed description of the original optimization problem is reported in [15]. A

synoptic view of design condition, constraints, and objective as set up by CIRA is

summarized in Table 3. The objective function here proposed has been changed to

account for the new characterization of Mach and lift coefficient as uncertain param-

eters, and it is defined as:
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Table 3 Problem definition

Design variables
Wing twist −3;+3
Wing section shape User choice

Design point
Mach number 1.6

Reynolds number 51 millions

Reference chord 6.27 (m)

Altitude 44,000 (ft)

Lift coefficient 0.182

Design constraints
Lift coefficient CL ≥ 0.180
Pitching moment CM ≥ −0.05
Trailing edge angle tea ≥

∼
tea= 0.050 (rad)

Leading-edge radius lea ≥
∼
lea= 0.0020 (m)

Objective
G(CL,CD,CM , ler, tea, Slam,u, Slam,l) To be minimized

G = Ka
CD + CD,M + CD,L

CL

∼
CL
∼
CD

− KuSlam,u − KlSlam,l+

+ KrP
(
1 − ler

∼
ler

)
+ KtP

(
1 − tea

∼
tea

)

with the terms below aimed at accounting the contribution to drag due to trim:

CD,M = max[0, 0.05(
∼
CM −CM)]

CD,L = max[0, 1.0(
∼
CL −CL)]

and where
∼
CL,

∼
CD, and

∼
CM are, respectively, the lift, drag, and pitching moment coef-

ficients of the baseline, and Ka,u,l,r,t are constant values that define the relative impor-

tance of the corresponding aerodynamic/geometric performance component. Used

values are: Ka = 0.2, Ku = 0.3, Kl = 0.5, Kr = 100, and Kt = 100. The quadratic

penalty function is activated only if its argument is positive. Hence, P has the fol-

lowing expression:

P(x) =
{

x2 if x > 0
0 if x ≤ 0

The function Slam is introduced to estimate the transition position along the whole

wingspan, and it is defined as
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Fig. 3 Computational setup for the objective function computation

Slam = 1
S ∫

b∕2

0
Xtr(y)dy

where S is the wing area, b/2 is the half-span length, and Xtr(y) is the chordwise

laminar to turbulent transition location at spanwise section y. The right-hand side

picture in Fig. 2 provides a graphical representation of Xtr(y). The function Slam may

assume any value between zero and one, with Slam = 0 meaning that the flow is fully

turbulent and Slam = 1 meaning that the flow is fully laminar. In other words, it gives

an estimate of the fraction of the wing area along which the flow runs laminar.

Computational Model

The physical and computational model adopted for objective function computation

is thoroughly described in [15]. A scheme of the computational setup is reported in

Fig. 3 for the sake of completeness.

Definition of Uncertainties

The definition of uncertain parameters must take into account the design problem

at hand. The aim of the designer is to obtain a configuration that has a satisfactory
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level of laminar flow even in the presence of parameters and working conditions not

completely deterministic and controllable. A further difficulty is due to the epistemic

uncertainty inherently included in the computational model for the transition from

laminar to turbulent flow. This can significantly affect the performance calculation

of the new configurations. Consequently, a good design should be quite robust even

with respect to this latter type of uncertainty sources.

Geometrical Uncertainties

Natural laminar flow is mostly sensitive to the shape of the leading edge region.

This is due to its effect on pressure coefficient gradient which, in turn, is one

of the factors that have most influence on the transition. Here, the deterministic

parameterization (i.e., parameters to obtain the best performance in an optimiza-

tion process) of the wing shape is univocally defined and the uncertain param-

eters (i.e., parameters to control the shape change due to geometrical uncertain-

ties) are seen as additive terms whose values are extracted from known statistical

distribution. In other words, given {x1, x2,… , xn} the set of deterministic design

variables whose realization {x∗1, x
∗
2,… , x∗n} univocally defines the three-dimensional

wing surface S∗(x∗1, x
∗
2,… , x∗n), the uncertainty in the geometry definition is intro-

duced by adding a set of random design variables {𝜉1, 𝜉2,… , 𝜉n} to the realization

of the deterministic set, so that the wing surface is represented by the statistical

function S∗(x∗1 + 𝜉1, x∗2 + 𝜉2,… , x∗n + 𝜉n). In the present case, uniform probability

distributions are considered for all geometric uncertain parameters.

Section “Shape Parameterization and Sensitivity Analysis” will give details about

the chosen parameterization.

Operational Uncertainties

Operational uncertainties are the classical ones related to Mach number and lift coef-

ficient (CL). Mach and CL are modeled as four parameter beta distributions. For the

sake of completeness, we recall that the probability density function f for a ≤ x ≤ b
and shape factors 𝛼, 𝛽 is given by

f (x; 𝛼, 𝛽, a, b) =
(y − a)𝛼−1(b − y)𝛽−1)
(b − a)𝛼+𝛽−1B(𝛼, 𝛽)

and by f = 0 otherwise, with B(𝛼, 𝛽) = ∫
1
0 u𝛼−1(1 − u)𝛽−1du. The Table 4 summa-

rizes the parameters that define the Mach and CL random variables.

In the present context, operational uncertainties are taken into account only in the

sensitivity analysis phase in order to assess their first-order effect on the performance.
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Table 4 Uncertain operational parameters

Parameter 𝛼 𝛽 a b
Mach 4 4 1.55 1.65

CL 2.5 2.5 0.180 0.184

Model Uncertainties (Epistemic)

One of the challenges that have to be faced when approaching the numerical design

of natural laminar flow wings is the reliable estimation of the point of transition from

laminar to turbulent flow. A significant uncertainty in the determination of transition

location is inherent to the methods for numerical transition prediction and in par-

ticular to the eN method. A robust design approach should take into account this

epistemic uncertainty source. If the eN method is chosen, then the uncertain param-

eter to be considered is the Ncritical factor. Its nominal value has been fixed at 18 for

deterministic runs, while it will be modeled by a uniform distribution in the interval

[16, 20] when considered as uncertain parameter. As for the operational uncertain-

ties, the N factor uncertainty are considered only in the sensitivity analysis phase.

Shape Parameterization and Sensitivity Analysis

Parameterization Approach

The criticality of a parameterization that effectively models the uncertainty in the

form of the leading edge of a wing lies mainly in the fact that these parameters must

simultaneously act on a small portion of the wing and, at the same time, should not

produce discontinuities such to prevent the use of the fluid dynamic solver or interfere

with the parameterization of the deterministic variables that control the shape of the

whole wing. The method here chosen is based on NURBS. It uses a grid of 21 × 7
NURBS control points (CPs) defined on the whole wing surface (see Fig. 4) and a

subset of it (21 CPs) is used to control the wing leading-edge shape. As depicted

in Fig. 5, seven control points are employed to modify the wing leading edge shape

in the streamwise direction using a third-order basis functions, and three control

points, with second-order basis functions, operate spanwise. The design variables

are identified with the vertical displacements of the control points.

As aforementioned, the uncertainty in the wing shape geometry is represented

by a uniform random perturbation 𝜉i, i = 1,… , n that is added to the vertical dis-

placements of the deterministic set of NURBS control points. Table 5 summarizes

the deterministic and uncertain design variables together with their ranges and dis-

tributions.



UQ Sensitivity Analysis and Robust Design Optimization . . . 611

Fig. 4 NURBS control points to control the whole wing shape (21 × 7)

Fig. 5 Active NURBS control points to control local leading-edge shape modifications (7 × 3)

Sensitivity Analysis

A sensitivity analysis has been performed to preliminarily identify, using the analysis

of variance, the main dependencies and interactions of the uncertain variables.

The combined effects of geometry and operating condition uncertainties are here

considered using sensitivity analysis. This task is aimed to discover the global sen-

sitivities of the objective function related to the baseline configuration with respect

to the above-reported uncertainty sources.

The sensitivities are computed in the hypothesis that uncertain variables are char-

acterized by an uniform distribution on their whole range. The expected goal of this

screening activity is the identification of the most important uncertain variables, rel-

ative to their effect on the complete objective function.
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Table 5 Uncertain design variables details

Design

variable

Lower

bound

Upper

bound

Random

variable

Lower

bound

Upper

bound

Distribution

x0 −35 −15 𝜉0 −1 1 UNIFORM

x1 −30 −10 𝜉1 −1 1 UNIFORM

x2 −25 −5 𝜉2 −1 1 UNIFORM

x3 −2 3.5 𝜉3 −0.275 0.275 UNIFORM

x4 20 40 𝜉4 −0.5 0.5 UNIFORM

x5 50 90 𝜉5 −2 2 UNIFORM

x6 90 160 𝜉6 −3.5 3.5 UNIFORM

x7 −20 0 𝜉7 −1 1 UNIFORM

x8 −20 0 𝜉8 −1 1 UNIFORM

x9 −20 0 𝜉9 −1 1 UNIFORM

x10 −2 3.5 𝜉10 −0.275 0.275 UNIFORM

x11 5 30 𝜉11 −1.25 1.25 UNIFORM

x12 20 50 𝜉12 −1.5 1.5 UNIFORM

x13 40 80 𝜉13 −2 2 UNIFORM

x14 −20 10 𝜉14 −1.5 1.5 UNIFORM

x15 −20 10 𝜉15 −1.5 1.5 UNIFORM

x16 −20 10 𝜉16 −1.5 1.5 UNIFORM

x17 −2 3.5 𝜉17 −0.275 0.275 UNIFORM

x18 5 30 𝜉18 −1.25 1.25 UNIFORM

x19 10 30 𝜉19 −1 1 UNIFORM

x20 15 50 𝜉20 −1.75 1.75 UNIFORM

Variance-Based Decomposition via Sobol Indices

The parametric study was performed computing the Sobol indices via variance-based

decomposition which is a form of global sensitivity analysis that decomposes the

variance of the model output into fractions which can be attributed to single input

variables and into other parts related to sets of interacting input variables. This kind

of analysis is able to deal with nonlinear responses and to evaluate the effect of inter-

actions in non-additive systems. A basic assumption is that inputs are independently

and uniformly distributed within the unit hypercube.

The total variance of the sampled response function is decomposed as:

Var(Y) =
d∑
i=1

Vi +
d∑
i<j

Vij +⋯ + V12…d (10)

where Vi is the variance due to the pure variation of factor Xi:

Vi = VarXi

(
EX∼i

(
Y|Xi

))
(11)
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and Vij is the variance due to the pure variation of both factors Xi,Xj:

Vij = VarXij

(
EX∼ij

(
Y|Xij

))
(12)

with ∼ i notation indicating the effect of all variables except Xi.

The Sobol index Si is defined as

Si =
Vi

Var(Y)
, (13)

and it measures the main (first order) effect, e.g., the effect of varying Xi alone, but

averaged over variations in the other input parameters. The following relations hold:

d∑
i=1

Si ≤ 1,
d∑
i<j

Si +
d∑
i<j

Sij +⋯ + S12…d = 1 (14)

The index STi measures instead the total effect, e.g., the contribution of all terms

in the variance decomposition which do include Xi. Thus, the first-order effect plus

the interactions are accounted by:

STi =
EX∼i

(
VarXi

(
Y|X∼i

))

Var(Y)
= 1 −

VarX∼i

(
EXi

(
Y|X∼i

))

Var(Y)
(15)

The interaction effect between, e.g., Xi and Xj is counted in both STi and STj, hence

we have
d∑
i=1

STi ≥ 1 (16)

Design Space Sampling

The goal of this sensitivity analysis is to understand the contribution of the uncer-

tainty sources on the whole design problem and, hence, the full objective function

value is considered (see section “Optimization Problem”), which is a weighted mix-

ture of aerodynamic efficiency and of a measure of laminar portions on the wing

surfaces.

An Orthogonal Array Latin Hypercube sampling strategy [16] was chosen as it

has both orthogonality and stratification features and is therefore a good choice for

computing Sobol indices. The Sobol indices were computed using a corrected ver-

sion of Saltelli’s formula [17, 18] which is implemented within DAKOTA package.

The sampling size chosen to fill the hypercube required 21,025 evaluations.
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Failure Handling

The geometry modification process has been set up by empirically fixing the varia-

tion ranges of the uncertain geometry variables in order to obtain a global uncertainty

in the description of the leading edge shape that was within the order of 5% of the

wing section shapes. This has made unavoidable having mesh generator/CFD solver

failures for particular combinations of some design variables The observed proba-

bility of failure was 0.006%: Although quite limited, failed samples may have the

capacity to impair the computation of variance contributions and, hence, they have

to be handled appropriately to not reduce the reliability of the computed sensitivity

indices.

In this work, an exploratory approach was adopted to the problem of handling

failed samples, by imposing a fictitious value to the objective function of the candi-

date sample in case of failures within the computational chain. Three different failure

modes were experimented here:

1. assign a large response penalization to failed samples;

2. assign a response value close to the mean of the objective function values of the

samples database;

3. assign a response value slightly larger than the maximum objective function

value of the samples database;

In the subsequent sections, the results obtained with each of these approaches are

reported and discussed. Thanks to DAKOTA restart capabilities, assigning new

response values to particular samples is very easy and does not require the re-

computation of the objective function database.

Sensitivity Analysis Results

The Si (main effect) and STi (total effect) indices are reported in Figs. 6 and 7, respec-

tively. Variables from 0 to 20 represent the shape variables, while variables 21 and 22

identify Mach and CL variables. It can be observed from Fig. 6 that the main effect is

predominantly concentrated on variables 8, 12, 13, and 15 that control the pressure

side shape on the mid-outboard wing. These variables have the highest influence on

the objective function, but the main effect of Mach and CL (variable 21 and 22) is

also significant. These results are in good agreement with preliminary, coarse grid

CFD analyses not reported here.

It appears also evident that adding a large penalty to failed computations might

lead to mask the true influence of the design parameters on the objective function.

To avoid this problem, different strategies to assign a score to failed computations

were tried. In particular, we found that assigning an objective value equal to the aver-

age or to the maximum value computed from the successful computations does not

seem to affect the results quality in terms of relative sensitivities. Figure 7 is related

to the variable total effect, e.g., including the interactions with the other variables,

and it tells a different story. Here the mean value and the maximum value curves
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evidence that all the parameter shape values show significant interactions. Inboard

wing variables (from 0 to 6) and Mach/CL variables have statistically less importance

with respect to mid-outboard ones. The large penalty curve shows how the interac-

tion between variables 9, 11, 16, and 18 (controlling the leading edge radius and

shape on the mid-outboard wing) plays a major role in generating failed samples.

The sum of main and total index values are reported below to allow a comparison

of the importance order of these effect when the objective function values related to

failed configurations are changed:
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Fig. 8 Influence of Ncritical
(Nc) on lower surface

laminar flow extension
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0.
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0.
22

0.
26

0.
30

Nc

d∑
i=1

Si =
⎧
⎪⎨⎪⎩

0.006 (large penalty)
0.39 (mean value)
0.24 (max value)

(17)

d∑
i=1

STi =
⎧
⎪⎨⎪⎩

3.32 (large penalty)
6.68 (mean value)
5.34 (max value)

(18)

The sensitivity analysis suggests that, at least with the chosen parameterization, it

is not straightforward to obtain clear indications toward the reduction of the number

of variables or simplification of the model. However, it clearly shows that the cor-

rect management of computational chain failures has a crucial role in the setup of

the optimization problem. In other words, while some variables have a main effect

considerably higher than other ones, the interaction effects are significant for each

variable, and this implies that a reduction of the number of uncertain variables is not

advisable here.

Sensitivity Analysis with Respect to Model Uncertainties

The most important parameter in determining the behavior of the computational

chain modeling the laminar to turbulent flow transition is, undoubtedly, the critical

value Ncritical of the amplification factor N, when the eN transition method is adopted

[19]. Consequently, it was decided to focus the sensitivity analysis to just this param-

eter, the value of which, among other things, must be obtained from experimental

correlations. In our case, in order to simplify the interpretation of the numerical test

data, it was decided to study its effect exclusively on the extension of laminar zone

on the lower surface of the wing, namely Slam,l. The parameter Ncritical was, hence,

sampled according to an uniform distribution in [16, 20]. The population sample is

composed of 400 members and includes the baseline.
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Table 6 Analysis of variance for the Ncritical linear model fit

Response: 𝛥xll
Df Sum Sq Mean Sq F value Pr(> F)

Ncritical 1 0.48266 0.48266 126,694 <2.2 × 10−16

Residuals 398 0.00152 0.00000

The results, summarized in Table 6 and reported in Fig. 8, show that, at least for

the limited region of parameter space in proximity to the baseline, the overall effect of

Ncritical is almost perfectly linear. Therefore, if the same behavior would be confirmed

also for the optimized configuration, its effect may be easily taken into account using

a linear correlation which can be applied even after the optimization phase.

Wing-Body Robust Optimization

Problem Setup

The objective of this section is to perform a robust optimization by using both VaR

and CVaR risk measures. A genetic algorithm is launched with a population size of

32 with 1% activation probability of the classical bit mutation (with binary strings

represented using Gray code) and 80% activation probability of one point crossover.

A total number of 32 generations have been computed; however, significant results

have been obtained after just five generations as it will be made clear afterward. In

order to partially mitigate the drawback of using only 16 samples within the uncer-

tainty quantification internal loop, the bootstrap technique is used to estimate the

confidence intervals. In the following, the VaR results will be shown first together

with a discussion on the lack of accuracy in the tail prediction due to coarse sampling;

then, the adoption of the CVaR measure will be introduced as a potential remedy of

such issues and CVaR-based optimization results will be finally shown.

Uncertainty Quantification of the Baseline Configuration

Prior to getting in the optimization phase, the baseline configuration has been ana-

lyzed and the propagation of the input uncertainties over the objective function has

been quantified. A random plan of 160 samples has been used to compute the VaR

and CVaR levels from the empirical cumulative distribution function (ECDF). More-

over, a non-parametric bootstrap analysis with 10,000 repetitions (extracted from the

160 samples with sample re-injection) has been performed to estimate the standard

error of both VaR and CVaR measures. Results are shown in Fig. 9. The plot indi-
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Fig. 9 Var and CVaR curves and their confidence intervals computed using non-parametric boot-

strap

cates that the spread of the objective function due to the uncertain variables is quite

large (from about −0.025 to −0.0075) and that a big role is played by the tails of

the distribution, especially the upper one where an increase in the CVaR gradient is

clearly observed. As a matter of fact, the following optimization phase is expected

to achieve two main objectives: The first is to move the curves toward the left-hand

side of the plot in order to minimize the target response in average; the second is to

minimize the variation along the x-axis, thus making the response distribution more

compact.

VaR-Based Optimization: Results and Discussion

Value-at-risk response function at 𝛼 = 0.9 is estimated with 16 Monte Carlo sam-

ples during the optimization phase, while in the post-run analysis phase results are

validated using 160 samples. Figure 10 shows the convergence history of the opti-

mization run: As the response value scale is quite large, a zoom around the optimal

values is proposed in Fig. 11. The simulation has been stopped after 32 generations;

however, a kind of convergence is observable by looking at the plateau after 800

evaluations.

Figure 12 depicts a comparison of ECDF curves as obtained with the VaR crite-

rion at selected generations 5, 15, 21, and 32. Two basic features can be observed:

1. the ECDF curve is globally and progressively shifted toward the left region as

the problem is cast in a minimization fashion;
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Fig. 11 Evolution history after 32 generations (zoom) for the VaR optimization run

2. the local slope of the ECDF is becoming steeper and steeper with the progress

of the optimization simulation.

This behavior allows to reduce both the mean and the variance of the uncertain

response. However, in order to evaluate the effect of the coarse sampling within

the uncertainty quantification step and to estimate the noiseness of 𝜈
0.9

during the

optimization process, a bootstrap analysis is performed on the ECDF of the base-

line shape and of the computed optima at generations 5, 15, 21, and 32: Basically,
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Fig. 12 Comparison of the ECDF obtained with VaR at different generations

given a set of 16 (as during the optimization run) random samples involving only the

uncertain variables, a high number of sub-sampling sets of dimension 16 are drawn

from the initial set with replacement and confidence intervals are estimated. This has

been done by using 5 different initial sampling sets and results are shown in Fig. 13.

It can be observed that the general trend is in line with the progress of the simulation,

as the mean values decrease with increasing number of generations. However, the

bootstrap analysis highlights that the noise level in the estimation might not allow

a correct ranking of the population elements: As a matter of fact, it is not clearly

distinguishable which is the best design candidate between generations 21 and 32

optima by looking at the confidence intervals. Indeed, dealing with an optimization

under uncertainty problem, we cannot refer only to mean values, as those values may

be strongly dependent on the sample size that has been used to compute them. This

is what Fig. 13 suggests: The combined effect of value-at-risk measure and coarse

sample size may lead to confusion in candidate ranking in advanced stages of the

optimization process.

Another evidence of this behavior is reported in Fig. 14 where a similar bootstrap

analysis is repeated over one (instead of 5) sampling set of size 160 (ten times the

previous size): Moreover, both value-at-risk and conditional value-at-risk measures

at 𝛼 = 0.9 have been computed and shown with the related confidence interval. The

grey curve (i.e., VaR values) basically confirms the onset of possible problems in

comparing solutions with good ranking, i.e., the optimum candidate at generation

32 presents larger confidence intervals with respect to generation 21: This means

that it has been selected only by chance due to the fact that the VaR-based criterion

is not able to detect such issues. On the other hand, the black dotted curve (i.e., CVaR

values) provides better information as, according to such criterion, the generation 21

optimum is definitely preferable to generation 32. This provides the final information
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Fig. 14 VaR, CVaR at 𝛼 = 0.9 and related confidence intervals for a 160 sample ECDF

about the capability of both approaches; however, it should be recalled that the results

in Fig. 14 have been obtained over a sample size of 160, which is computationally

not practical when dealing with an optimization under uncertainty. Hence, the next

question is naturally: Is CVaR able to properly rank candidates even by decreasing

the sample size? The answer is condensed in Figs. 15, 16 and 17: Here, the objective

function values, both VaR and CVaR, are computed by repeating 31 times the random

drawing of samples of respectively 16, 32, and 64 size from the 160-size sampling
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Fig. 16 VaR and CVaR at 𝛼 = 0.9 over 32-size repeated samples drawn from a 160 sample ECDF

set that has been mentioned above. With this approach, by taking the sampling size

to its limit of 160, the curves in Fig. 14 would be obtained.

Of course, by increasing the sample size, the spread tends to narrow as more

and more samples are common to the repetitions, but the interesting point lies in

observing that, starting from 32 samples, the CVaR measure is able to detect the

mentioned issue on generation 32, as the response distribution is located higher (i.e.,

it is worse on average) and is wider (i.e., it has larger variability) than generation 21.
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Fig. 17 VaR and CVaR at 𝛼 = 0.9 over 64-size repeated samples drawn from a 160 sample ECDF

As a result, a new optimization using the CVaR risk measure as objective function

is envisaged and detailed in the following section.

CVaR-Based Optimization: Results and Discussion

The CVaR-based optimization is performed by using nearly the same setup as the

previous one, except for the following differences:

∙ the genetic algorithm is stopped after 40 generations (32 in the VaR-based opti-

mization);

∙ the inner sampling to quantify the response uncertainty for each design candidate

is enlarged to 32 (instead of 16). This reflects the need to have a reliable estimation

of the risk measure (as observed in the final part of the previous section).

∙ the starting point is the deterministic optimum as found by running the genetic

algorithm without any uncertain variable. In the previous optimization, the base-

line shape has been used instead.

∙ the first random population is initialized by considering a hypercube whose size

is 10% the original design space size: This should avoid a large spread of the

objective function data in the initial stages of the process. In the previous case, no

compression has been used.

Figure 18 reports the ECDF of five design, namely: the baseline shape, the deter-

ministic optimum, the optima at generations 21 and 32 of the VaR-based optimization

and the new CVaR-based optimum obtained at the final generation 40. The plot well
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Fig. 18 Comparison of the ECDF obtained with CVaR-based optimization versus VaR based,

deterministic, and baseline

explains how the CVaR optimization improves both the VaR value and the tail of the

ECDF, even with respect to the VaR-based optima. As a matter of fact, the perfor-

mance degradation in the tail is much more acceptable with respect to other solutions.

Moreover, if compared to the ECDF built on the deterministic optimum, a kind of

“counter-clockwise rotation” can be noticed which improves both the response distri-

bution mean and the variance. As a consequence, dealing with a robust optimization

problem, the drawback consists in having the lowest objective function value located

on the deterministic optimum curve. Such a result of the optimization process is fur-

ther shown in Figs. 19 and 20, where the VaR and CVaR curves are respectively

depicted with the same approach as in Fig. 9. The CVaR-based and the determinis-

tic optima are considered together with the baseline configuration. The comparison

clearly confirms what has been already observed about the effect of the robust opti-

mization and allows to further notice that the confidence intervals on the CVaR-based

optimum are significantly reduced throughout the whole ECDF curve. This is not a

trivial improvement as it underlines that not only the CVaR solution is more robust,

but it is also much less sensitive to the sampling adopted to compute the ECDF.

A comparison of laminar to turbulent transition prediction is proposed in Figs. 21

and 22, respectively, for the suction (upper) and pressure (lower) sides of the wing

surface. On the left-hand side, the solution on the baseline shape is shown, while the

CVaR optimum is depicted on the right-hand side. The plots are obtained by project-

ing the transition locus along the wingspan for each individual along the ECDF pre-

sented above. Hence, a kind of “transition band” is obtained: The more it is located

far from the leading edge, the better is the response value and the larger is the band,

the higher is the response spread with uncertainty. It can be noticed that the solution

does not change too much on the upper side, where a larger sensitivity to the uncer-
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Fig. 21 Transition line

envelopes comparison for the

wing upper surface with

𝛼 ≤ 1

BASELINE OPTIMIZED

Fig. 22 Transition line

envelopes comparison for the

wing lower surface with

𝛼 ≤ 1

BASELINE OPTIMIZED

tain variables is observed on the outboard wing. However, the bulk of the response

function is linked to the transition prediction on the lower side, where a sensible

increase of the overall performance along the inboard wing and a significant reduc-

tion of the uncertainty along the outboard wing are evident.

Conclusions

The use of an optimization approach based on VaR and CVaR as risk measures has

been successfully applied to an aerodynamic robust design problem of industrial

interest. Within this context, VaR and CVaR risk measures appeared to be, in terms
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of information conveyed, more favorable than more classical and well-established

techniques based on expected value and variance. The problem at hand was charac-

terized by a rather high number of design variables and uncertain parameters. Fur-

thermore, the evaluation of the aerodynamic characteristics of a given configuration

required a rather high computational effort. This imposed the use of a very rough

estimate of VaR and CVaR risk functions in the optimization process, and, conse-

quently, the adoption of an optimization algorithm relatively insensitive to noise and

the use of a statistical technique capable to estimate the error and the confidence

intervals related to a given sample. To this purpose, the bootstrapping method was

chosen. The bootstrap analysis allowed to verify up to what stage of the optimization

process the VaR estimates were accurate, stable and consistent enough to allow the

optimization algorithm to progress toward the optimal solution. When this limit was

reached, the introduction of CVaR, computed using a larger sample, allowed further

progress in the optimization. The adoption of this strategy made possible that a sim-

ple genetic algorithm achieved significant results in a few generations of evolution.

The baseline and optimal solutions obtained were validated using a more refined

sampling which, together with bootstrap analysis for the calculation of confidence

intervals, confirmed the reliability of the solutions obtained through the optimization

process.

Further work is needed to enhance the ranking capabilities of the algorithm near

the optimum as the noise introduced by the coarseness of the samples could in some

circumstances lead to misleading conclusions even when used in conjunction with

confidence interval estimation methods. Therefore, it is likely that we will have to

resort to a hierarchy of computational models of increasing complexity and fidelity,

as well as to advanced statistical sampling techniques such as importance sampling

and multi-level Monte Carlo methods.

A final consideration is devoted to the need to better define the well posedness

of a robust design optimization problem. Indeed, it is very important to accurately

define the margins of uncertainty that characterize the problem parameters and the

design and operating conditions, because a definition not consistent with the reality

of these margins is likely to make the optimal solution to the robust design problem

either inefficient if the uncertainty margins are unnecessarily restrictive or not really

robust if too optimistic and reduced margins are given.
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Robust Compressor Optimization
by Evolutionary Algorithms

Dirk Büche

Introduction

Robust design optimization (RDO) seeks for designs that are insensitive with
respect to uncertainties. Uncertainties are always present in the real-world appli-
cations resulting especially from manufacturing processes, operating conditions,
thermo-mechanical deformation and machine degradation over the lifetime. A pre-
requisite for robust design optimization is that the uncertainties are known and
quantified, as the magnitude and type of the uncertainties influence the optimization
result. Otherwise, the result of the robust design optimization is of no practical
use [1].

The magnitude and thus the effect of uncertainties in a real machine can typically
be reduced at the expense of additional cost and time, but is never zero. This
applies, for example, to manufacturing processes as more expensive machining
equipment and increased machining time typically increase precision. Furthermore,
operational degradation can be reduced by shortening service intervals.

Roughly 15 years ago, automated design optimization of aerodynamic shapes
became a viable alternative to the manual design thanks to the increase in com-
putational power and more efficient CFD solvers. The rapid increase in computa-
tional power allowed for the evaluation of a larger set of design alternatives which
is necessary for automated optimization, especially if robust methods such as
evolutionary algorithms are employed. The roots of evolutionary algorithms
(EAs) are found back in the 1960s with early publications, e.g. by Rechenberg [2].
At those times, parallel computing was not considered feasible. EAs became
popular in the 1990s when conferences such as GECCO, CEC and PPSN were
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established and are even more interesting in today’s parallel computing environ-
ments due to their population-based parallel and robust search.

EAs imitate the process of natural evolution. They evolve a population of
individuals, where each individual is one possible solution to the design problem.
For example, an individual might represent a parameter set for a compressor blade
or an aircraft design. Each individual is evaluated using numerical or experimental
methods such as computational fluid dynamics (CFD) and/or computational
structural mechanics (CSM). The result is then an evaluated solution to the design
problem. On average, better solutions are selected as parent population for the next
iteration of the EA. From the selected parents, an offspring population is generated
by selecting properties of different parents (recombination) and adding some ran-
dom variation (mutation). Advanced algorithms such as the CMA-ES [3] extract
statistical information over several iterations to learn about optimal mutation
strength. This highly accelerates the convergence speed of the algorithm to the
optimum.

The early design optimizations found in the literature typically considered only a
single design condition (operating point) due to computational cost constraints. This
may lead to poor results as outlined by Huyse and Lewis [4]. Their first opti-
mization considered an airfoil for a single free flow Mach number: The design
attained improvements only over a very narrow Mach number range close to the
design condition, while off-design behaviour was poor. Similarly, an optimization
with multiple but fixed Mach numbers was insufficient as the parameterization of
the airfoil allowed for generating several localized optima around the specified
points. Their solution was to define the Mach number as random variable. This
resulted in a true improvement over the considered Mach number range.

Others such as Büche [5] extended the optimization to a multidisciplinary
optimization problem including also structural aspects such as mechanical stresses
and eigenfrequencies as this is the only way to obtain a solution that fulfils all
requirements concurrently and can be integrated in an actual machine. The analyses
considered multiple operating points and the design parameterization prohibited
localized adaptation.

Today’s computing power allows for either larger numerical models such as 3D
unsteady simulations or more cost-intensive extensions such as robust design.
Including uncertainty quantification in the automated optimization can increase
computational cost by a factor of up to 100 [6]. This paper discusses how robust
design optimization could be handled in a very cost-effective manner by extracting
further information from the population for uncertainty quantification. The pro-
posed method is analysed using simple test functions and then applied to the
optimization of radial compressor designs.
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Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES)

The CMA-ES is only briefly described herein as several very detailed descriptions
and tutorials exist provided by the main developer, Nikolaus Hansen. We refer to
the implementation of Hansen et al. [6] and define a simple test problem. The
problem is a quadratic function f xð Þ with two design variables x1 and x2:

fell = x21 + 10 ⋅ x22 ð1Þ

The contour plot is given in Fig. 1. Due to the elliptic contour lines, the function
is also referred to as the ellipsoid function.

The optimization starts by generating an initial solution. Let this solution be set
to xp = 0.5, 0.5½ �. The solution is the parent for the following iteration by means of
the CMA-ES algorithm. A new population of λ solutions is generated as copies of
the parent and by adding random mutation as illustrated in Fig. 1. In mathematical
terms, mutation adds to each solution xj, j=1,⋯, λ a random vector z, taken from a
scaled, multivariate normal distribution:

xj = xp + z, z∼ σ ⋅N 0,Cð Þ ð2Þ

The normal distribution N 0,Cð Þ has zero mean and a symmetric, positive def-
inite covariance matrix C as well as a multiplierσ denoted as step size. The random
vector z can be generated by a vector of normally distributed random numbers n
with unit variation ni ∼N 0, 1ð Þ and the following multiplication:

Fig. 1 Left: Start of an evolutionary optimization on a simple test function: Initial parent (red plus
sign), mutation distribution (red circle) and generated population of solutions (green x). Right:
Iteration no. 7 where the mutation distribution is adapted to the local curvature of the function and
reduced in magnitude
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z= σ ⋅B ⋅D ⋅ n ð3Þ

where B is the matrix of ortho-normal eigenvectors of C and D is a diagonal matrix
comprising the square root of the eigenvalues of C as diagonal elements. Both
matrices result from an eigenvalue decomposition. The matrix C can be regenerated
by

C=B ⋅D ⋅D ⋅BT ð4Þ

As initialization for this optimization, we set the covariance matrix to the identity
matrix C= I and the step size to σ =0.5. In Fig. 1, the red circle represents the
distance of one standard deviation from the parent xp. Therefore, the probability
that a new solution is within this circle is 68%.

The population of solutions is evaluated on the problem fell xð Þ and then ranked
according to the resulting objective values fell. The μ best solutions are selected and
recombined by a weighted sum, giving solutions of higher rank a higher weight w
as defined in [6]:

xp = ∑
μ

i=1
wi ⋅ xi ð5Þ

The recombined solution xp is the new parent and used for the next iteration. An
included procedure updates the step size σ and covariance matrix C according to the
distance and direction of the best solutions compared to the previous parent solution
as outlined in [6]. This algorithm allows adjusting the mutation distribution very
efficiently such that the covariance matrix approximates the local curvature matrix

Fig. 2 Left: Iteration no. 25 where the algorithm has converged to the optimum. Right: The
mutation strength is successfully adjusted such that exponential convergence is obtained
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of the function to be optimized. This is illustrated in the right part of Fig. 1, where
the mutation ellipsoid agrees well with the local contour line.

Thanks to adaptation of the mutation distribution, the CMA-ES converges
exponentially towards to the optimum. Figure 2 shows the population of iteration
no. 25 which collapsed in the optimum and also displays the evolution of the
mutation strength and distance of the parent to the optimum over the iterations.

Robust Design Optimization Problem

Robust design optimization (RDO) is not straightforward as there are already dif-
ferent understandings about the term itself. In classical optimization, robust opti-
mization refers to the convergence of an algorithm. In that case, a robust algorithm
finds the true optimum with a high probability and is unlikely get stuck by pre-
mature convergence or in local optima.

In the context of uncertainties, robust optimization refers to the goal of finding an
optimum solution to a problem that is insensitive with respect to the uncertainties.
In the following, we refer to the latter definition. According to [7], uncertainties can
be divided into four classes: (1) noise in the evaluation, (2) uncertainties in the
design variables and parameters, (3) approximation errors by model building, and
(4) time varying functions as illustrated in Fig. 3.

The main focus of this work is on uncertainties ξ in the design variables or other
input parameters x= xi, , i=1 . . .Df g resulting, e.g., from manufacturing tolerances
or operational uncertainties. This can be modelled by:

F xð Þ= f x+ ξð Þ, ξ∼N 0,Θð Þ ð6Þ

where N is a normal distribution with zero mean and covariance matrix Θ. An
illustration is given in the middle of Fig. 3.

Fig. 3 Possible uncertainties in optimization which are noise in the evaluation (Left),
uncertainties in the design variables (Middle) and approximation error by models (Right)
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A solution that is insensitive to such uncertainties is referred to as robust
solution. Evaluating the robustness of a solution can significantly increase com-
putational cost as more simulations are required. Finding an efficient tool is a key
focus of this paper.

Given f x+ ξð Þ as the stochastic simulation result, the interest is in different
robust quantities such as the mean E and variance var of the result:

E f xð Þð Þ= ∫Ω f x+ ξð Þ ⋅w ξð Þdξ ð7Þ

var f xð Þð Þ= ∫Ω f x+ ξð Þ−E f xð Þð Þð Þ2 ⋅w ξð Þdξ ð8Þ

where w is the weight function belonging to the probability distribution of the
uncertainties ξ. In general, these integrals cannot be solved analytically and only be
approximated by a finite set of samples. To do so, different uncertainty quantifi-
cation methods were described in the previous chapters of this book. For the
simplest method, the Monte Carlo method, the result converges with 1 ̸

ffiffiffiffi
N

p
, where

N is the number of simulations. The robust optimization problem can then be
formulated as

find x* = argmin E f x+ ξð Þð Þð Þ, given ξi ∼N 0,Θið Þ ð9Þ

Evolutionary algorithms evolve a population of solutions over several iterations
to converge towards the optimum. The question is how to integrate UQ into an
evolutionary optimization in the most cost-efficient manner. In the literature [7],
different approaches exist.

The first approach is denoted as explicit averaging. For each solution in the
population, an UQ is conducted. Each UQ requires a set of solver evaluations. The
mean objective value may be considered as a robust result. Thus, compared to a
deterministic optimization, the total computational cost of a robust optimization
multiplies with the number of evaluations NUQ that are required for one UQ. This
approach is very expensive, increasing the total cost by a factor of 3 to 100 [6].

Explicit averaging could also make use of response surfaces. Response surfaces
are cost-efficient surrogates of the real numerical solver but introduce further
uncertainties. They are trained on already evaluated solutions of the actual or
previous iterations, typically located in the neighbourhood of the solution to be
analysed. However, these surrogates are less effective in higher dimension [6] due
to the curse of dimensionality. Furthermore, the simulation results must be suffi-
ciently smooth and well behaved such that an approximation with lower order
functions is sufficiently representative. As we are also interested in off-design
compressor operation, the behaviour of the objective function can become highly
nonlinear or even discontinuous in design space.

Implicit averaging suggests adding random perturbation to all solutions in a
population. Statistical information for UQ can then be extracted from the
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population, given that the population is sufficiently spread over the design space.
This approach is more cost-efficient as the solutions are not resampled as in explicit
averaging.

CMA-ES with Uncertainty Quantification

The CMA-ES has several properties that make it an ideal candidate for robust
optimization. The algorithm is well-established and analysed in the literature. It is
population based and uses a direct search (no gradient information is used). In the
selection operator, individuals in the population are simply ranked; thus, no detailed
information about the objective function is needed. The non-elitist selection oper-
ator in CMA-ES reduces the risk of getting stuck in local minima. The algorithm
converges fast to the optimum by learning the optimal mutation parameters.

Other evolutionary algorithms such as genetic algorithms use recombination as
their main variation operator. This makes it difficult to analyse the actual variation
strength. In contrast, CMA-ES uses a multivariate normal distribution which allows
direct comparison of the variation strength with the given uncertainty level. Thus,
implicit averaging can be used for UQ.

We follow two approaches in order to generate a robust optimization. The
approaches are based on the implicit averaging (Implicit-CMA-ES) and a modifi-
cation of CMA-ES (MinMut-CMA-ES).

Implicit-CMA-ES

Implicit averaging is used as described above. In each iteration, CMA-ES generates
a new population of solutions with design variables x. Before evaluating the designs
with the given solver, uncertainty is added by a random perturbation vector ξ:

F = f x+ ξð Þ, ξi ∼N 0, θ2i
� � ð10Þ

The main assumption is that the selection operator in CMA-ES picks on average
robust solutions as these solutions, by definition of robustness, are less prone to
deterioration due to the perturbation vector. This implicit averaging requires a
sufficiently large population size. The advantage of this approach is its simplicity.
The CMA-ES is unchanged as perturbation is added for the evaluation of the
solution and the perturbed vectors are not passed on to the CMA-ES.
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MinMut-CMA-ES (Minimum Mutation)

The second approach requires modifying the CMA-ES source code. The mutation in
CMA-ES is a multivariate, correlated normal distribution N 0, σ2 ⋅Cð Þ. During each
iteration, a deterministic algorithm adjusts the mutation distribution. The underlying
idea for the novel robust optimization is to keep the mutation strength above a lower
limit with the effect that the mutation strength is always larger or equal to the
uncertainty. The assumption is that more solutions are picked from robust areas of
the design space than from sensitive areas with steep function value gradient.

Hansen et al. [6] propose to adjust the step size σ in order to guarantee a
minimum mutation strength. However, the covariance matrix C might degenerate
leading to highly correlated mutation. Then, mutation occurs mainly in one (cor-
related) space direction (i.e. the main eigenvector of CÞ, such that the actual
uncertainty is poorly represented. In order to prevent degradation, we propose to
adjust the covariance matrix C instead of the step size σ. The mutation strength n in
each design space direction xi can be obtained by solving the equation:

σ ⋅B ⋅D ⋅ n= ei ⇒n=1 ̸σ ⋅D− 1 ⋅BT ⋅ ei ð11Þ

where ei is a unit vector in direction i. The actual mutation strength (standard
deviation) is then

pi =
1
n2k k ð12Þ

Fig. 4 Comparison of the standard deviation of the mutation distributions (red ellipse) with the
uncertainty strength (black ellipse). In the beginning of the mutation (left), the mutation strength is
larger than the uncertainty, whereas at a later generation (right), it can be below the uncertainty
effect and needs to be adjusted in some space dimensions (magenta ellipse)
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In each iteration, the mutation strength is compared with the uncertainty and
adjusted if required. Figure 4 illustrates the procedure by plotting a contour line in a
distance of one time the standard deviation for the mutation and for the uncertainty.
The left part of Fig. 4 shows the beginning of the optimization, where the mutation
strength is p1 = p2 = 0.5, while the uncertainties for x1 and x2 areΘ1 = 0.1,Θ2 = 0.05
and thus much smaller than the mutation strength. The mutation distribution is not
adjusted, and the uncertainty has no effect on the convergence.

The right part of Fig. 4 illustrates a later iteration, where the mutation strength is
smaller than the uncertainties. The mutation distribution is correlated such that the
ellipse has a certain aspect ratio. When looking exactly into each axis direction, the
mutation strength is smaller than the uncertainty as the mutation ellipsoid is within
the uncertainty ellipsoid such that the diagonal elements of the covariance matrix
are therefore adjusted by

Cii←Cii ⋅
Θ2

i

p2i
, if pi <Θi ð13Þ

The result of the adjustment is added to Fig. 4. This adjustment does not
guarantee that the mutation strength in each axis direction is exactly met. However,
as the mutation is adjusted gradually over the generations, the adjustments are on
average small.

It has to be noted that this is only one possible approach to adjust the covariance
matrix. Alternatively, any of the D ⋅ D+1ð Þ

2 elements of the matrix C, specifically the
non-diagonal elements, could be adjusted as well.

Experimental Analysis on Simple Test Functions

A simple test function is the so-called sphere function, which is a non-scaled
quadratic function with

fsph = ∑
D

i=1
x2i ð14Þ

The optimum is at xi =0∀i=1, . . . ,D. The optimum is robust as the vicinity is
smooth and continuous. By adding a step function at the optimum with the form

fsph, rob = ∑
D

i=1
x2i + αi, αi =

0.1 ifxi >0
0 else

�
ð15Þ

the location of the optimum is unchanged but becomes very sensitive towards small
uncertainties. A contour plot is given in Fig. 6. For the first test, the number of
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Implicit-CMA-ES                                  MinMut-CMA-ES

Fig. 5 Convergence of the Implicit-CMA-ES and the MinMut-CMA-ES on the 2D test function
plotted over the number of iterations. The mutation strength represented by lengths of the
eigenvectors of the mutation distribution (upper figure) and the design variables of the parent
(lower figure) are shown

Implicit-CMA-ES                                   MinMut-CMA-ES

Fig. 6 Contour plots illustrating the final population of the two robust variants of the CMA-ES
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parameters is set to D=2, xi, i=1, 2 ∈ − 1, 1½ � and uncertainties are normally dis-
tributed with zero mean and standard deviation θi, i=1, 2 = 0.1.

An optimization run is started with the two robust approaches Implicit-CMA-ES
and MinMut-CMA-ES. As starting point, the point xi, i=1, 2 = 0.5 is chosen for both
approaches. Figures 5 and 6 illustrate the convergence of these two approaches.

Figure 5 illustrates that roughly at iteration 10, the mutation strength is about 0.1
and thus similar to the level of uncertainty. From here on, the two approaches
behave differently. While Implicit-CMA-ES further converges and reduces the
mutation strength, the implemented modification in MinMut-CMA-ES prevents a
further decrease of the mutation strength as shown in the lower contour plots in
Fig. 6 and lower graphs in Fig. 5. Both algorithms converge to a point of roughly
xi, i=1, 2 = − 0.08, thus a distance of roughly the standard deviation of the uncer-
tainty ξi from the step function in each dimension.

In order to test the behaviour of the two approaches for a typical number of
design variables, which often lies in the range of 6–30, we increase the number of
design variables to D=20 with design space xi, i=1, ...,D ∈ − 1, 1½ � and set the
population size of the CMA-ES to λ=50. The uncertainty is set to a realistically

Implicit-CMA-ES                                  MinMut-CMA-ES

Fig. 7 Convergence of the Implicit-CMA-ES and the MinMut-CMA-ES on the 20-dimensional
test function. The mutation strength represented by lengths of the eigenvectors of the mutation
distribution (upper figure) and the design variables of the parent (lower figure) are shown
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small value of i, i=1, ...,N =0.01, while the step in the test function fsph, rob is kept at
0.1.

Figure 7 illustrates the results of the two investigated methods. The adaptation of
mutation distribution is more important in this case compared to the previous one,
because the uncertainty is significantly smaller and allows for a higher convergence
towards a point in the close vicinity of the optimum.

The adaptation of the mutation works successfully which can be seen from the
decrease in mutation strength with increasing iteration number. Furthermore, the
robustness in the final solution is demonstrated as both approaches converge to
negative design variable values with a certain distance to the step in the function.

Implicit-CMA-ES seems to converge roughly to xi = − 0.024, i.e. about 2.4
times the standard deviation of the uncertainties of Θi = 0.01 from the
step. MinMut-CMA-ES converges closer towards the optimum with about
xi = − 0.009 which corresponds roughly to 1 time standard deviation of the
uncertainties and agrees with the result of the 2-dimensional test function, but with
a different level of uncertainty.

The final result of the two approaches differs. The Implicit-CMA-ES delivers a
more robust solution than the MinMut-CMA-ES as seen by the about 2.5 times
larger distance of the final solutions to the step in the function.

Further work is needed to analyse these effects more precisely. For example,
three different statistical quantities for the parent solution of the Implicit-CMA-ES
are plotted in Fig. 8 over the number of iterations. The quantities are the deter-
ministic function value f xð Þ, the mean value for the given uncertainties E xð Þ and
the robust mean (median) M xð Þ. The optimization reduces all quantities to a certain
level. It has to be discussed in future work how these quantities correlate with the
two different approaches for the robust optimization.

Fig. 8 Convergence of the
Implicit-CMA-ES on the
20-dimensional test function
over the iterations. For the
parent solution, the
deterministic function value
f xð Þ as well as the mean E xð Þ
and median value M xð Þ for
the given uncertainties is
plotted
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Robust Compressor Optimization

The proposed robust optimization approach MinMut-CMA-ES is applied to the
design optimization of a high-pressure radial compressor stage. Radial compressor
stages typically comprise of a radial impeller, a diffuser, a bend and a return
channel. An example is given by Büche et al. [8]. Here, we focus on the impeller
and especially on the impeller blades.

First, the geometry is parametrized and the uncertainties are set. Then, two
different optimization approaches are executed independently which are the original
CMA-ES (deterministic optimizer) that does not consider uncertainties and the
proposed MinMut-CMA-ES (robust optimizer) including uncertainties.

Geometrical Uncertainties

The manufactured shape of the blades always differs from the nominal, generating
geometrical uncertainties. Two examples are given in Fig. 9. The actual leading
edge can deviate in thickness (shape tolerance) or can be shifted or rotated (position
tolerance). Actual values for the geometrical uncertainties can be extracted, e.g.,
from actual manufacturing measurements of the quality department. While draw-
ings usually only define deviation limits, actual measurements provide statistical
information as probability distributions, given a sufficiently high number of mea-
sured samples.

Fig. 9 Leading edge of a
blade profile (black line) with
two different shape
deviations: increased
thickness (blue) and
meridional shift (cyan)
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Impeller blade profiles can be parameterized by subdividing the profile into the
four regions: leading edge (LE), trailing edge (TE), suction side (SS) and pressure
side (PS). Each of the four regions is defined using limited number parameters.

Given statistical information for overall geometric uncertainty σtot of the leading
edge, the question is how to transfer this into uncertainties of the individual
parameters. As an example, the leading edge is assumed to be described by three
parameters, which are nose radius rLE , metal angle αLE and radial position RLE.
Assuming that the individual effects of these parameters are equal, normally dis-
tributed and pointing into the same space axis, the total effect of the uncertainties is

0, σ2tot
� �

=N 0, σ2rLE
� �

+N 0, σ2αLE
� �

+N 0, σ2RLE

� �
ð16Þ

The total variance σ2tot is then given by

σ2tot = σ2rLE + σ2αLE + σ2RLE
ð17Þ

and the standard deviations are

σrLE = σαLE = σRLE =
1p
3
⋅ σtot ð18Þ

For the other three regions, PS, SS and TE, the same approach is applied as for
the LE. For PS and SS, the LE and TE parameters have to be considered too as they
also influence their shape. In total, 14 uncertainties are considered.

Fig. 10 Typical compressor characteristics
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Comparison Between Deterministic and Robust Design
Optimization

The optimization goal is to maximize the efficiency of multiple operating points
with constraints on the minimum required range in flow from surge to choke and a
minimum required pressure rise expressed by means of polytropic head (see
Fig. 10).

The deterministic optimization does not consider uncertainties and thus uses the
standard implementation of the CMA-ES without adding any uncertainties to the
solution. The robust design optimization uses the MinMut-CMA-ES with the
uncertainties given in Chapter “Numerical Uncertainties Estimation and Mitigation
by Mesh Adaption”.

The convergence of both algorithms is illustrated in Fig. 11. In the beginning of
the optimization, the mutation strength is much larger than the uncertainties. Thus,
deterministic optimization and robust optimization do not differ as shown by
roughly identical evolution of the objective function and design variables up to
evaluation 2500. From there on, the deterministic algorithm reduces further the
mutation strength. In contrast, the robust optimization keeps a minimum mutation

Fig. 11 Comparison of the deterministic and the robust optimization for the target function (upper
left) and three design variables as function of the number of evaluations
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strength which is especially visible for the leading edge angle βLE. After 6000
evaluations, both algorithms have converged as no improvement in the objective
function is visible over the last 1’000 evaluations.

As best solution for the deterministic optimization, the solution with minimum
objective value is selected. For the robust optimization, the best solution is com-
puted as the mean of the design variable values of the last 500 evaluations.

For both best solutions, a deterministic evaluation and an UQ are performed. The
best solution of the deterministic optimization has a slightly lower deterministic
target value as the best solution of the robust optimization. Furthermore, when
running an UQ for both best solutions, the mean and standard deviation of the target
function are very similar, as can be seen by the histogram in Fig. 12. What is
surprising is that the influence of the uncertainties is low in this example. When
computing the influence of a single flow coefficient instead of multiple operating
points, there is a clear effect. However, computing the influence over the entire
operating range, the effects cancel partially. As an example, increasing metal angles
at LE or TE typically improves the efficiency towards choke while deteriorating the
efficiency towards stability limit.

Overall, it can be concluded that for the considered case, the uncertainties are
sufficiently low such that the influence is minor. Thus, the manufacturing deviations
are adequate to guarantee a product fit for the intended purpose.

Fig. 12 Histogram to
illustrate the result of the
uncertainty quantification for
the final result of the
deterministic and robust
optimization

644 D. Büche



Summary and Outlook

Robust design optimizations require additional data and methods compared to
deterministic ones. First, quantitative information about the uncertainties must be
available and modelled by a probability distribution. Then, the optimization algo-
rithm has to be modified to integrate uncertainty quantifications in a cost-efficient
manner.

A robust evolutionary optimization algorithm was proposed and tested on a
simple test function and for a radial compressor design case. The robust opti-
mization needed roughly at the same computational effort. The best solution of the
deterministic and robust optimization differs as the uncertainties influence the
optimization, even though to a marginal extent in the compressor example. This
allows for concluding that the actual manufacturing tolerances are sufficiently low
for given requirements.

As an outlook, more robust design optimizations are required to confirm these
first findings and to get more insight into the effect on the final design. Furthermore,
other uncertainties, especially from the compressor assembly, need to be included.
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Robust Optimization of Acoustic Liners

N. Magnino

Introduction

Reduction of aeronautical noise pollution is a technical challenge for designer with
social, commercial implications because of repercussions on the acceptance of new
airports and potential reduction of fees and taxes imposed by agencies and local
governments on airliners. In modern turbofan engines, the fan contributes greatly to
the total noise because of the predominant portion of the fan thrust, hence the great
attention given to the design of the acoustic liners installed inside the engine nacelle
just in front of the fan. In general, these devices have a sandwich construction
consisting at least of a porous external facing sheet, to allow the passage of sound
waves into one or more layers of honeycombs that act as Helmholtz resonators
closed by a rigid backing skin to allow reflection. As acoustic liners have to be
effective in all the certification conditions prescribed by authorities, the design
process is by nature a multi-objective optimization between eventually conflicting
requirements. Especially in the preliminary phase, where a lot of scenarios are to be
considered, that can be done manually via traditional trial-and-error legacy proce-
dures, or with various algorithms [1], but at the risk of obtaining local or just ideal
optima whose real performance falls short in the field. In this chapter, we will
document an innovative methodology developed within UMRIDA by Leonardo
Finmeccanica in cooperation with ESTECO to do automatic multi-objective robust
design optimization based on efficient single-objective reliability-based formulation
[2], taking into account the uncertainties due to manufacturing tolerances experi-
mentally measured and analyzed with the efficient adaptive sparse polynomial
chaos expansion used for UQ (Fig. 1).
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Definition of MORDO Test Case

The industrial validation case targeted in this study is a typical regional jet engine
nacelle integrating an acoustic liner consisting of N Helmholtz resonating cavities.
Each one is essentially composed of a honeycomb cell of a specific height targeted
to attenuate the design frequency of the impinging noise, being closed at the bottom
by a rigid backing skin and on top by a porous face sheet to dissipate energy as the
air passes through. A consolidated (all metal single degree o freedom, i.e., with each
honeycomb cell being undivided) acoustic liner technology has been selected
(Fig. 3) from vast Leonardo Finmeccanica production, with the objective function
being represented by the noise (attenuated by the liner) computed at the prescribed
certification flight points. Please note that the name of the program and the customer
as well as engine data and liner impedance together with some technological
process details will not be disclosed, as they are strictly company confidential.
Acoustic requirements are prescribed by customers and aviation agencies for three
typical flight conditions: approach, sideline (or takeoff), and flyover (or cut-back),
as illustrated in Fig. 2.

Since these requirements can be in contrast to each other and an acoustic liner
providing the best attenuation in one flight condition not necessarily performs well
in the other conditions, liners shall be designed through a multi-objective opti-
mization procedure. The geometrical uncertain parameters considered with their
main influencing factors are:

Fig. 1 Full engine nacelle (right) and detailed views of the acoustic panel interior (upper left) and
perforated facing skin (lower left)
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• Honeycomb height (h) f(Material)
• Face sheet thickness (tfs) f(Material, Manufacturing process)
• Face sheet open area (PoAeff) f(Machinery Tool)
• Holes diameter (deff) f(Nacelle Geom., Machinery Tool)

These geometrical parameters are input into a proprietary semi-empiric impe-
dance model [3] together with values depending on flight condition to produce the
admittance to be applied to the boundary condition representing the acoustic liner in
the finite element model used by computational acoustic code utilized. Indeed
numerical simulations have been performed with MSC Actran software developed
by Free Field Technology, on an 2D axisymmetric model consisting of about 30000

Fig. 3 Nacelle SDOF liner acoustic panel

Fig. 2 FAR Part 36 noise certification conditions
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quadratic elements; the level of refinement of the mesh being enough to resolve the
highest frequencies present considering the maximum speed of the flow in critical
areas like the lip. As a cost function, it should be used ideally the quite realistic
effective perceived noise level (EPNL), but in order to calculate it, we would need
to have the whole aircraft’s noise sources modeled, (not only the engine as it is the
case normally). Moreover, all the 1/3 octave band center frequencies should be
considered in the calculation, thus leading to unacceptable computational cost. In
this work, we opted for another simpler metric, more easily computed, which is
normally used in preliminary design and is capable to prove the MORDO
methodology, i.e., the overall sound pressure level (OASPL) defined as:

OASPL=10 log ∑
j
10

SPLj
10 ð1Þ

SPLðf Þ=10 log
∑90◦

40◦ ∑m, n p
2
rms ðϑ, f ,m, nÞ

p2ref

 !
ð2Þ

The above-mentioned objective function uniformly sums over the directivity
angles and over frequencies the sound pressure level (SPL) which is a function of
the frequency, the root mean square of the acoustic pressure of the duct radial and
azimuthal modes computed, and directivity angle at a distance of 150 ft according
to the scheme in Fig. 4.

All the Actran simulations were performed at two frequencies the blade passage
frequency (BPF) and its first harmonic 2BPF and for a range of angles that varies
depending on flight condition and in accordance with customer preferences. In fact,
noise radiating from an inlet is mainly tonal, and therefore, at the BPF and its
harmonics, higher sound levels are propagated. For this reason, a liner should be
optimized to attenuate the noise primarily at these frequencies. The simulation time
to complete one configuration design was about 2 min running in parallel on 8
cores of one of the computational nodes present in FNM’s AAHPC cluster.

Acoustic Liner

Fig. 4 Schematic of far-field propagation and ACTRAN mesh with acoustic panel circled
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Setup of MORDO Case in modeFRONTIER

The workflow used to set up the automatic optimization in modeFRONTIER is
similar to the one already prepared and reported in chapter “Manufacturing
Uncertainties for Acoustic Liners” used to perform the tests needed to find the
optimal number of sampling points and methodology for an accurate UQ of the
system response OASPL (Fig. 5).

The main components, including the impedance model and the Actran model
interface, remain unaltered, as well as the nodes that define the input parameters of
the system, i.e., the geometrical variables h, t, d, and PoA. This time, however,
besides the distribution definition (as obtained from the experimental data), we have
to select the range of variation of these parameters, based on experience and wider
enough to let the optimization algorithm explore the variables space. All the data
are summarized in Table 1 here.

From the Actran interface, all the OASPL signal of interest is extracted, corre-
sponding to the different flight conditions that are evaluated. Finally, the objectives
are applied to the responses of interest: Accordingly to the approach considered and
described in the following chapters, they can be applied to mean value, standard

Fig. 5 modeFRONTIER workflow for aeroacoustic robust design optimization

Table 1 Summary of uncertain parameters and their range of variation

Uncertainty Distribution σ Range

Cell height Normal 1.5069E−2 [10–18 mm]
Face sheet thickness Normal 2.2625E−2 [0.7–1.35 mm]
Hole diameter Normal 1.2803E−2 [1–2.5 mm]

Percentage of open area Normal 1.0815E−3 [3–15%]
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deviation, or percentile, as computed by modeFRONTIER following the procedures
based on polynomial chaos and described in chapter “Manufacturing Uncertainties
for Acoustic Liners.”

Preliminary RDO on Single Condition

In order to verify also on the IC-06 the conclusions derived within UMRIDA on the
airfoil application of BC-02, a simplified version of the aeroacoustic model has
been tested, considering a single flight condition, i.e., takeoff because of its higher
frequencies that imply more propagating acoustic modes and require finer grid,
hence a higher computational cost. We had to confirm that a single-objective
approach, based on the minimization of an extreme percentile of a quantity to be
reduced (min-max approach) and combined with the application of polynomial
chaos approximation for the accurate definition of the percentile, has revealed to be
much more efficient than the classical approach, based on the minimization of the
mean value of the performance and the minimization of its standard deviation, in
terms of quality of results and number of simulations spent. In order to obtain a
comparison based on the same number of simulations, it has been decided to set to
50 the maximum number of designs for the optimization approach, and to 15 the
number of samples for each design (minimum for an accurate UQ using a
second-order polynomial chaos with four uncertainties). Figure 6 shows the result
obtained following the first approach, i.e., a single-objective optimization using
Simplex algorithm [4] and defining as objective the minimization of the 99.97%
percentile of the OASPL (P99.97(OASPL), i.e., the value corresponding to the
99.97% cumulative percentage of the cumulative distribution function of the
OASPL signal). In order to compare this result with the others, in Fig. 6 are plotted
the mean and standard deviation of OASPL, each point corresponding to a different
design evaluated. It can be observed that most of the 50 designs evaluated are

Fig. 6 1-obj optimization
results (Simplex 50 designs):
OASPL mean versus st.dev
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placed around the optimal region of the space, corresponding to low value of mean
and standard deviation. In particular, design #47 is selected as the best one, and its
detailed values are summarized for comparison in Table 2. The next approach
considered is based on two-objective methodology and the results plotted in Fig. 7.
In this case, a genetic algorithm (MOGAII of modeFRONTIER [5]) is being
applied. Due to the low total number of designs allowed, only five generations of
ten designs each have been evaluated, which is normally a too small quantity to
expect good results. In fact, using the same chart, we can see that the designs found
are more distributed in the variable space, and just a few are really close to the
optimal region, confirming that this classical methodology is not efficient when a
low number of simulations are a key factor to choose the optimization. More in
detail, even if the mean value of OASPL of the best design RID #27 is practically
the same, 120.4 dB (Table 2), the best standard deviation is higher (6.79E−5 vs.
5.55E−5) than the one obtained by the single-objective approach. As a further
confirmation, we also plot in Fig. 8 the results obtained letting the GA algorithm
run up to 20 generations, for a total of 200 designs. At the end, the final values are
similar to the one obtained by the Simplex with more designs gathering around the
optimum. The absolute best design with a standard deviation value of 4.95E−5
represents an improvement too small w.r.t. 5.55E−5 for the Simplex to justify an
increase that large in computational cost.

Table 2 Comparison of best designs performances obtained in different approaches

Fig. 7 2-obj optimization
results (MOGAII 50 designs):
OASPL mean versus st.dev
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In Table 2 here above are presented the values for the best results obtained
following the three different approaches executed, in terms of mean/standard
deviation/percentile of the OASPL, and in terms of CPU hours spent to obtain the
results. For 50 designs of 15 samples simulations, each taking 2 min on 8 cores, the
total computational effort for the single-objective approach is equal to 240 CPU
hours. If the two-objective optimization is stopped after the same number of
evaluations, the computational cost is the same, but the performance is worse. In
order to improve slightly the performance, the GA approach is to be extended to at
least 200 designs, which requires a total of 960 CPUh, 4 times more! Please note
that the global UMRIDA target is being able to handle a large number of uncer-
tainties (>10) including geometrical uncertainties, in a turnaround time in the order
of 10 h on a cluster of 100 cores size: 10 uncertainties × 10 CPUh × 100 cores.
That means 1000 CPUh is a limit that cannot be passed, even with a number of
uncertainties larger (10) that the one considered in this case. We can add that
passing from four to ten uncertainties, it would almost multiply by 4 the possible
number of samples, considering that the minimum number N of samples for a
polynomial chaos expansion of order 2 is given by:

N =
ðn+2Þ!
n!*2!

ð3Þ

It follows then that if by 4 uncertainties the minimum number of samples
(eventually reduced by adaptive sparse method) is equal to 15, by 10 uncertainties
that number would be possibly as big as 66. It follows the number of CPUh in the
last column of Table 2 as an estimation of the global computational effort, to the
reference case of UMRIDA project. It appears that the GA two-objective classical
approach cannot be competitive w.r.t. UMRIDA goal; conversely, the
single-objective approach remains competitive also if the number of uncertainties is
increased to 10. In Table 2 are detailed also the geometrical values of the best

Fig. 8 2-obj optimization
results (MOGAII 200
designs): OASPL mean
versus st.dev
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designs obtained by the different methodologies, for a further analysis of the results.
It is interesting to note that the designs found by MOGAII are quite different
especially in terms of PoA and honeycomb cell depth h; in particular, the SIMPLEX
finds quickly an optimum design quite similar to the baseline with a slightly higher
PoA and slightly higher h, while all the designs the MOGA-II finds are with the
lowest admissible PoA, and apart from the design #26 that has an h at the upper
bound, all the others have lower values. The hole diameter d for all the designs is
lower than the baseline and close to the limit. Moving from these observations, a
few general considerations can be done to comment briefly on preliminary results.
Very low values (below 5%) of PoA in general make the impedance of nonlinear
acoustic liners too sensible to incident SPL which is dependent on engine RPM that
may be slightly changed by pilot input especially during takeoff, approach, and
landing maneuvers from nominal values, thus making the solution inherently
non-robust. Also, from a manufacturing point of view, without getting too much
into company confidential details, it can be asserted in general that too low values
of PoA are critical because it is difficult to guarantee required uniformity over the
liner (ideally, there should be at least two holes per honeycomb cell); small holes
are difficult to realize with high accuracy and are subject more easily to clogging.

Multi-criteria Optimization Problem

After the execution of the tests described in previous section, the optimization
methodology has been applied to a multiple flight conditions (approach, cut-back,
and takeoff) problem, using the same numerical model developed but computing
now a different OASPL for each flight condition as the angle range for integration
of SPL changes according to experience and customer preferences as follows:

• 1: OASPL_app, approach condition, 40–70° range for SPL integration
• 2: OASPL_cbk, cut-back condition, 50–80° range for SPL integration
• 3: OASPL_tko, takeoff condition, 50–80° range for SPL integration

Figure 9 above illustrates the main workflow that has been implemented in
modeFRONTIER to define this optimization problem. The four geometrical
parameters are directly connected to a sub-system node, here called “flight condi-
tion,” and a fourth input called “flight_cond” is added. For any design configuration
and sample point proposed by the robust design optimization algorithm, the
sub-system node will be executed in a loop of three times, one for each value of the
flight_cond parameter. For each execution of the sub-system (Fig. 10), an Actran
analysis is performed to evaluate the OASPL performance at the corresponding
flight condition, and a vector node called OAPSL in Fig. 9 is extracted, contacting
for each component the corresponding OASPL parameter. The last calculator node
of Fig. 9 workflow is then used to extract from the vector the single responses, and
then, assign these values to the optimization objectives/constraints, later described.

Robust Optimization of Acoustic Liners 655



It is worth noting that this workflow could be easily generalized for any number of
flight conditions. The process flow used for the execution of Actran simulations is
illustrated in Fig. 10. A first OpenOffice node is used to extract, in function of the
different flight condition, the corresponding values to be used in the Actran model.
The parameters, together with the admittance table function of the design param-
eters and flight condition, are then transferred by the corresponding nodes to the
Actran node, which executes Actran analysis and Python script to let PLTViewer
utility calculate the OASPL from raw solution files.

The main optimization workflow is completed by the definition of constraints/
objectives. As explained in order to avoid a drastic increment of design simulations,
we decided to define a single-objective function: the average of the three single
OASPL performance parameters (i.e., the 99.97% percentile of OASPL signal at
each flight condition). To prevent penalization of any of the flight conditions, a
constraint on each OASPL is added: to be lower than the baseline value. In con-
clusion, the multi-criteria (but single-objective constrained) optimization problem is
defined by:

Fig. 9 Main MORDO workflow in modeFRONTIER for multiple flight conditions problem

Fig. 10 Subprocess workflow in modeFRONTIER to execute Actran simulations
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∧P99.97 OASPLð Þ P99.97 OASPLð Þ= 1
3
∑
c
P99.97 OASPLcð Þ ð4Þ

P99.97 OASPLcð Þ < P99.97 OASPLbasec

� �
c= app, cbk, tko ð5Þ

Also in this case, it is worth to note that the procedure can be extended to any
number of flight conditions, without impacting on the optimization, apart from the
obvious additional constraints and for the additional CPU time of CAA simulations.
Conversely, a multi-objective approach would raise heavily the number of simu-
lation required by the number of objectives considered. We have therefore retained
also the same 15 samples and second-order sparse polynomial chaos required for
the UQ of the single-objective approach proposed in previous chapter. However, we
are solving the single-objective problem using independently two different algo-
rithms, the SIMPLEX and a genetic algorithm (MOGAII in modeFRONTIER), to
determine which approach is the most efficient. In Fig. 11, it is offered a visual
comparison between SIMPLEX, and MOGAII in terms of convergence speed. As
expected, the SIMPLEX is faster to approach a convergence trend after only 20
designs, while the MOGAII requires at least 40 designs that correspond to four

Fig. 11 P99.97(OASPL) convergence history of SIMPLEX versus MOGA-II
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generations. Nevertheless, the gain in terms of objective function is limited, i.e.,
121.06 for MOGAII @ RID #150 versus 121.25 for SIMPLEX @ RID #54

Figure 12 offers a visual comparison between designs explored by SIMPLEX
(hollow diamonds) and MOGAII (hollow circles) algorithms in terms of standard
deviation of OASPL plotted versus the mean of the OASPL for all the three
certification conditions. It can be observed that SIMPLEX as well as MOGAII
improve w.r.t. baseline (black solid square) not only in terms of the percentile, as
already shown in Fig. 11, but also both the mean and the standard deviation of
AOASPL; with takeoff being the most improved and approach the less and the
takeoff being the only one for which even MOGAII RID #59 is better than
SIMPLEX RID #54. Eventually, it would be possible to favor one condition
(typically according to customer requirements) or another selecting a different
solution design following any user criteria; for this application, we have selected the
design RID #150 which represents the best tradeoff being the minimum average of
all the three conditions.

In Fig. 13, a 3D Pareto front visualization of the results is offered to ease
comprehension of the single contribution of the three components to the global
P99.97(OASPL). On the three axes are the components of the P99.97(OASPL) for
each condition, i.e., approach, cut-back, takeoff. The SIMPLEX series is repre-
sented by spheres, while tetrahedrons identify MOGAII. The contour plot is colored

Fig. 12 μ,σ(OASPL) plots for app, cbk, and tko conditions of SIMPLEX versus MOGA-II
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to the absolute value of the global P99.97(OASPL) in dB as well as the size with the
reference sphere for 120 dB at the bottom. The best robust designs found by
SIMPLEX, RID #54 and MOGAII RID #59 and #150 are distinguishable in white,
while the value for the baseline design is marked with a black cube. It can be noted
that MOGAII has two Pareto fronts the first one being quite similar to SIMPLEX’s
one, while the second extends down further improving all the performance criteria.
The values reported in Table 3 allow for quantitative comparison of the optimal
design versus the baseline.

Apart from the exception represented by the cut-back, it is proved by raw
numbers that minimizing the average of the 99.97% percentile of the OASPL with
the constrain for each P99.97 to be lower than the respective value at the baseline

Min _ max_OASPL = 120

Fig. 13 3D Pareto optimization results of SIMPLEX versus MOGA-II

Table 3 Comparison of best design mean and st. dev. for all flight conditions
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indeed improves also the mean and the standard deviation of each OASPL. Please
note that the values related to optimal result are reported after the validation
obtained running a series of 150 samples around the optimal design. Since the
results are practically coincident, it is confirmed that 15 samples were enough
accurate to estimate not only the UQ of the baseline, but for any design proposed
during the optimization. Figure 14 illustrates the same concept visually showing
how in these plots it is evident the shift to the left of the PDFs for all the certifi-
cation points progressing from the baseline to best SIMPLEX RID #54 to MOGAII
best RID #150, thus proving the effectiveness of the min–max single approach that
minimizes the 99.97% percentile of the average of the OASPLs. Table 4 shows in
detail the key parameters for the best robust designs found; the maximum total gain
by MOGAII RID #150 is 0.7 dB w.r.t. the baseline, while SIMPLEX provides
0.5 dB with less than half of the CPUh cost. It is also clear that the MOGA-II tops
at the bottom of the range imposed for h, d, and t. The number of repeated designs
increases as the optimization progresses and that is expected given the discrete base.

3D scatter plot of Fig. 15 (same conventions as for Fig. 13 apply here, except for
size that is scaled after thickness) is used to try to graphically represent
P99.97(OASPL) as function of PoA, h, d, and t, to visually identify how each one of

Fig. 14 MORDO probability density function plot of SIMPLEX versus MOGA-II
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the uncertainties contributes to the objective. It can be noted that best RIDs of
MOGAII group at the lower boundaries of the range for all uncertainties except
PoA, while the SIMPLEX’s are more centered also for h and d.

Conclusion

In this chapter is described the implementation and presented the results of an
automatic multi-objective robust design optimization methodology applied to a
problem of great relevance for the aerospace industry: the acoustic performance of

Table 4 MORDO results summary table

t = 1E-3 

Fig. 15 3D scatter plot of variables for SIMPLEX versus MOGA-II
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the liner of a typical regional jet engine nacelle produced by Leonardo Finmec-
canica. The preliminary tests, performed on a single flight condition, have con-
firmed the efficiency of the proposed min–max strategy, with the definition of a
single-objective function based on a reliability optimization approach (maximiza-
tion of percentile performances), combined with the efficient adaptive sparse
polynomial chaos method for UQ. The same methodology has successfully been
extended to the multiple flight conditions problem, reaching a convergence within a
small number of iterations (circa 20–40 robust designs), the usage of a genetic
algorithm bringing most robust results at the expense of a higher computational
effort w.r.t. Simplex.
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Application of Robust Design
Methodologies to Falcon

G. Rogé and X. Loyatho

Geometry and Design Point

The industrial test case generic Falcon jet (IC-03) deals with the same choice as
baseline for UQ study: an unstructured tetrahedral mesh (7.17M nodes), a free
stream Mach number = 0.85, an altitude = 40,000 ft, a Spalart–Allmaras turbu-
lence model, and a CL target = 0.35 (Figs. 1 and 2).

The CFD framework includes Dassault Aviation in-house Navier–Stokes solver
AETHER (RANS model, finite element approach), gradient by finite difference,
direct or adjoint method. The optimization framework is built on local optimization/
gradient-based method (Fig. 3).

Geometrical deformation:

Two kinds of geometrical variables are considered. The first set deals with opti-
mization variables for design conception. In our study, we have selected wing
trailing edge camber angle (Fig. 4).

The second set deals with uncertainty variables. In our study, we have selected
wing tip twist angle (Fig. 5).

We remain than, using adjoint methodology, the complexity is independent of
the number of variables.
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Fig. 1 Generic Falcon jet (IC-03)

Fig. 2 Mesh. symmetry plane y = 0. Zoom

Fig. 3 RANS results
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Deterministic Optimization

For the initial shape, we have camber = 0° and twist = 0°.
For Mach = 0.85 and CL = 35 cts, we have AoA ¼ 1:76◦ and CD = 390.5 cts

(Figs. 6 and 7).
CPU time (on 2048 procs BullX cluster; all the CPUs are given for this cluster)

is 20’ for 1 RANS and 20’ for 1 adjoint.

Deterministic optimization problem:

We have to solve the following control problem (Figs. 8 and 9):

Fig. 4 Camber = −15°

Fig. 5 Twist = +5°

Application of Robust Design Methodologies to Falcon 665



Fig. 6 Baseline Cp

Fig. 7 Baseline polar curve
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Fig. 8 Polar curves for different TE camber angle

Fig. 9 Drag coefficient versus TE camber angle
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minCD
Variables: AoA, TECamber Angle x

c = 0.75
� �

Constraint: CL= 35 cts

Deterministic optimum: The whole optimization problem is solved in *10 h.
We obtain camber = −4.1° and CD = 378.6 cts (Gain = 11.9 cts) (Fig. 10).

Robust Optimization

UQ: We first set some notations

Xoutput ¼ F Xinput
� �

The Method of Moment—first-order approach gives the same probability law
for Xoutput than for Xinput.

We obtain easily the mean value:

μoutput ¼ F μinput
� �

and the standard deviation: σoutput ¼ ∇Fj j× σinput
In our example:

Xinput ¼ Twist

Xoutput ¼ CD

Fig. 10 Baseline versus
deterministic optimum (zoom
close to TE)
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∇CD ¼ ∂CD
∂Twist is computed by finite differences, direct or adjoint method.

The twist angle uncertainty, i.e., the level of confidence on structural modeling
(lack of knowledge) is (Figs. 11 and 12)

σinput ¼ σ twist ¼ 1◦

σ constraint Robust optimization problem:

We have to solve the following control problem (Figs. 13 and 14):

min μCD
Variables: AoA;Camber
Constraint: CL ¼ 35 cts; σCD ≤ 15 cts

σ constraint optimum: is obtained in *15 h.
We obtain camber = −5.2° and CD = 379.0 cts (Gain = 11.5 cts) (Fig. 15).
MinMax (cf chapter “Formulations for Robust Design and Inverse Robust

Design” [2]) Robust optimization problem:
We have to solve the following control problem (Figs. 16 and 17):

Fig. 11 UQ analysis on polar
curves (± standard deviation)
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min ðμCD þ 3σCDÞ
Variables: AoA;Camber
Constraint: CL ¼ 35 cts

MinMax optimum is obtained in *15 h.
We obtain camber = −7.0° and CD = 383.4 cts (Gain: 7.1 cts) (Figs. 18, 19,

and 20).

Fig. 12 Mean value versus standard deviation (CD)

Fig. 13 Robust optimization
with constraint on standard
deviation. CD versus camber
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Remark: According to MoM order 1 methodology and Pearson approach, for the
same price as σ constraint optimization, we are in position to solve Reliability
Optimization.

In addition to

X_input probability law → X_output: same law

Mean value: μ_output = F(μ_input)

Standard deviation: σoutput ¼ ∇Fj j × σinput

We recall that: Third and fourth statistical moment coefficients are unchanged.

Fig. 14 Robust optimization
with constraint on standard
deviation. Mean value versus
standard deviation

Fig. 15 Baseline versus
constraint optimum (zoom
close to TE)
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Different objectives, different results!

Discussion about the way to manage both a large number of uncertain variables
and a large number of design variables:

ForMethod of moment order 1;we have : μCD ¼ CD; σCD ¼ ∂CD
∂Twist

����

����× σTwist

Local optimization methods need gradients of cost and constraints respect to
optimization variables:

Fig. 16 CD and CD+3
standard deviation versus
camber

Fig. 17 MinMax optimum
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Fig. 18 Baseline versus MinMax optimum (zoom close to TE)

Fig. 19 Baseline versus robust design solutions

Fig. 20 Summary: robust design methods
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∂μCD
∂Camber

;
∂σCD

∂Camber

1. If MoM is suitable (small amplitude for uncertain variables, derivability)

• if #optimization var≫ #uncertain var, then use adjoint approach to compute
gradients of cost and constraints respect to optimization var.

• if #uncertain var≫ #optimization var, then use adjoint approach to compute
gradients of cost and constraints respect to uncertain var.

• if #optimization var≫ 1 and #uncertain var≫ 1, then Hessian of cost and
constraints is needed: e.g., ∂

2CD
∂Camber∂Twist

2. Else use NIPC/Sparse Grid for UQ and adjoint approach to compute gradients of
cost and constraints respect to optimization var:

Conclusion/Lesson’s Learned

A well-posed formulation both for standard and robust optimization of a Falcon
shape (IC-03 test case) has been given. Results obtained with two robust approa-
ches have been compared to standard result. Discussion about impact of robustness
concludes this work.

Recommendations:

1. Robustness

• In order to avoid large degradation respect to initial for the cost functional, we
need to control his derivatives close to the optimum.

• Probability of failure has to be an eligible constraint for aerodynamics engineer.
PDF of uncertain variables is needed.

• An intermediate formulation between a weighted cost functional based on mean
value and standard deviation and a formulation based on probability or CDF
is to add terms for third and fourth moments (skewness and kurtosis).

2. Multipoints

• Weights have to be chosen through mathematics (Gram–Schmidt …) and
physics (flight path statistics …) considerations.

• Independent CFD calculations have to be solved in parallel mode.
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Part V
UMRIDA Best Practices: Methods

for Uncertainty Quantification, RDO
and Their Applicability Range



Uncertainties Identification
and Quantification

Dirk Büche, Sönke Klostermann and Martin Schmelzer

Introduction

The performance of a system such as a turbomachine or an aircraft can only be
predicted with limited precision as there are uncertainties. For the performance
prediction, all system parameters are typically set to their nominal values; however,
in reality they deviate due to various effects as for example manufacturing toler-
ances and variation in the operational conditions. Thereby, actual values typically
deviate in both mean value and distribution from the nominal values. Furthermore,
the prediction tool introduces additional uncertainties and limited prediction pre-
cision. The tools include simplifications due to model assumptions such as, e.g.
given by empirically set model parameters in turbulence models of CFD or
assumptions such as steady-state flow.

There are tremendous efforts to identify and measure the most relevant uncer-
tainties. The measurement results are typically converted into a probability distri-
bution. The most important distributions are uniform, Gaussian, and beta
distributions.

The probability distributions then serve as input for uncertainty quantification
(UQ) and robust design optimization (RDO). UQ follows the goal of predicting the
influence of the uncertainties on the system behaviour. RDO searches for a system
design that has both high performance and is insensitive to the given uncertainties.
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It is important to note that both UQ and RDO assume that the uncertainties are
given. This paper however addresses the process of identifying and of modelling
uncertainties. Furthermore, it shows their consequence on a robust design
optimization.

Uncertainties in Product Development

In product development, the optimization of entire systems such as aircrafts or
system components such as winglets or flaps is a key engineering activity. The goal
is to obtain the best system performance given a set of requirements on technology,
cost, and manufacturing techniques. Especially in early design phases, many of the
key parameters of an aircraft such as engine weight or wingspan are uncertain.
These uncertainties may result from the fact that only rough estimates for the
component performance are available. However, the total system performance has
to be estimated and optimized. When optimizing the system for specific values of
the components only, there is a risk of a highly sensitive optimum. Instead, the
design should be optimized such that the resulting performance is insensitive to the
uncertainties. This minimizes the risk of redesigning in case of larger deviations in
some estimated values.

With each design freeze in the development process, the level of uncertainty
decreases as more and more parameters are determined. This then allows for more
precise and more complex modelling techniques such as 3D CFD on system level
and the start of detailed development on component level. The level of uncertainty
can often be specified by the component developer and then directly integrated into
UQ and RDO tools.

Nevertheless, not all uncertainties can be eliminated: Especially, uncertainties
from manufacturing scattering, assembly, and operation remain. These uncertainties
are difficult and expensive to quantify. An overview is given in the chapter
“Uncertainties in Compressor and Aircraft Design”. Uncertainties in the prediction
tools are addressed in the chapter “Estimation of Input Uncertainties for Turbulence
Modelling”.

Designing with Uncertainties

Designers are typically aware of some of the uncertainties in both the design and the
simulation models required for running the performance prediction of the design.
However, there is often a lack of knowledge about the actual variation magnitude
and stochastic distribution as well as the effect of these uncertainties on the system
performance. In order to obtain more clarity, two different actions may be
performed.
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In the first action, the designer may be interested in an analysis that quantifies the
effect of uncertainties on the system performance. From the probability distribution
of the uncertainty, several samples are drawn by tools such as Monte Carlo or Latin
Hypercube and evaluated by the prediction tool. Then, statistical properties such as
mean and variance of the result are computed. This is referred to as uncertainty
quantification (UQ).

The second action is more complex and addresses design optimizations that
include uncertainties. The goal is to find a robust design which is both highly
performant and is also insensitive to the uncertainties. This action is referred to as
robust design optimization (RDO). But how can uncertainties be quantified and
modelled? Precise knowledge about the uncertainties is a key prerequisite for robust
design optimization as otherwise the optimization result is of no practical use [1].

Modelling Uncertainties

Depending on the available data, uncertainties are typically modelled with either
probabilistic models or domain (or interval)-based models.

In probabilistic models, each uncertainty is described by a probability density
function (PDF) such as uniform, Gaussian, or beta distribution. Inter-correlation
between the uncertainties is often represented by covariance matrices. Typically,
these PDFs have lower probabilities in the tail regions of the distributions. Setting
up PDFs requires a sufficiently large set of measurement data, which can be
expensive to generate. Examples for such measurements can be found in [2–4].

Typical examples for applying domain-based models are uncertainties that are
extracted from manufacturing drawings. A drawing always defines theoretical exact
dimensions as well as tolerance intervals. The interval defines a lower and upper
limit for the measure, but no probability distribution is provided. Due to the lack of
measurements, the actual scattering of the geometry is unknown. For this reason,
worst-case scenarios using always the tolerance limits (even that they might be very
unlikely to occur) may drive the design into very conservative layouts thus reducing
overall performance. However, domain-based models can also be converted into
probabilistic models by either assuming a uniform probability density between the
tolerance limits or by choosing a Gaussian distribution, assuming a certain per-
centage (e.g. 95%) of all measures within the tolerance interval.

While for statistical analysis such as design of experiments, domain-based
models are sufficient, and UQ or RDO such as described in the chapters “General
Introduction to Monte-Carlo and Multi-level Monte-Carlo Methods” and “Robust
Compressor Optimization by Evolutionary Algorithms” typically require proba-
bilistic models for all uncertainties.
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An Example for Input Uncertainties for Turbulence
Modelling with Reynolds-Averaged Navier–Stokes

A common problem in CFD based on Reynolds-Averaged Navier–Stokes (RANS)
for industrial flow cases is how to deal with the epistemic uncertainties due to the
usage of imperfect turbulence models. The non-universality of existing modelling
approaches is illustrated by the vast number of existing models such as Spalart–
Allmaras, k–ε, k–ω, or SST, varying in complexity and calibrated on canonical flow
cases or optimized for specific applications. So far, mainly “expert” experience is
used to decide the modelling strategy for the problem at hand and to estimate
non-quantitatively the reliability of the output, based on problem knowledge and
experience. However, for industrial circumstances in which the goal is to design
new and innovative products, for which no or only sparse validation data is
available, this expert experience is over-strained. This questions the capability of
CFD as a predictive tool in industry. The need for a quantitative measure of the
uncertainty on the flow is therefore high and subject to ongoing research.

The field of UQ for industrial problems often deals with efficient propagation of
measured or estimated uncertainties on input variables. Using an expensive code to
compute the quantity of interest (QoI), the uncertainty due to modelling is of a
different ilk. It cannot always be traced back to physical quantities such as
geometry, inflow parameters, boundary conditions. This is due to the fact that the
mathematical form of the model is the result of modelling assumptions, and its
inputs are not necessarily even physical quantities. For the case of RANS-based
linear eddy viscosity one-point closures, the models aim to capture the mean effect
of the dynamics of the Reynolds stress tensor using a linear stress–strain relation.
Transport equations are derived from a combination of physical intuition and
fundamental principles. Therefore, an UQ methodology needs to focus on the input
parameters to the model (model-parameter uncertainty) and on the underlying
modelling assumptions (model-form uncertainty).

The transport equations of any RANS-based model are closed by coefficients;
e.g. for the Launder–Sharma k–ε model, we have four coefficients: κ, Cμ, Cε2, σk.
Commonly, these coefficients are identified by deterministic calibration on
canonical and simple flow cases, such as decaying homogeneous isotropic turbu-
lence or turbulent flow in a channel. In industry, the coefficients are subject to
application-dependent optimization leading to an extensive library of coefficients
per model.

In the chapter “Estimation of Model Error using Bayesian Model-Scenario
Averaging with Maximum A Posteriori Estimates” of this book, the methodology
of Bayesian Model-Scenario Averaging (BMSA) introduced by Edeling et al. [1, 5]
was presented which uses stochastic estimates of the closure coefficients as esti-
mates of the parametric input uncertainties. The uncertainty on the closure coeffi-
cients is identified by Bayesian calibration of the models using boundary layer data
sets from the AFOSR-IFP-Stanford Conference Proceedings [6]. Using the Markov
chain Monte Carlo (McMC) algorithm for Bayesian inverse modelling requires
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several thousand forward calls of the models in order to achieve converged chains
for the coefficients. In order to not propagate the full chains through the code
Maximum A Posteriori (MAP) estimates of the underlying probability distributions
are used, which lead to a single value per coefficient for each model and flow
scenario. This is detailed out in the above-mentioned chapter. The MAP estimates
applied within the BMSA methodology serve as our global input uncertainties to
the turbulence modelling framework.

An Example for Robust Design Optimization

In this chapter, an example for a RDO is described. The focus is on how to set up
the problem as well as on the influence of the uncertainties on the outcome of the
optimization. This is illustrated with the help of a simple, bimodal function with
two design variables.

Problem Specification

The first step is the problem specification that gathers all information required for
running a RDO. The optimization in general is defined as the search for a solution x
in the design space X that minimizes an objective function(s) J xð Þ such as aero-
dynamic efficiency

J xð Þ, x= x1, x2, . . . , xDð Þ ∈ X⊆ℝD ð1Þ

while concurrently fulfilling inequality constraints G xð Þ such as on mechanical
integrity requirements

G xð Þ≤ 0. ð2Þ

The design variables x as well as model parameters may be uncertain and
modelled by their nominal values xi, i=1, ...,D and uncertainties ξi, which is given by
a probability distribution such as a Gaussian distribution with

ξi =N 0, σ2i
� � ð3Þ

As an example, a test function with the two design variables x1 and x2 is
selected:

J x1, x2ð Þ=15 ⋅ x21 + x22
� �

− 100 ⋅ e− 5 x1 + 1.6ð Þ2 + x2 + 1.6ð Þ2ð Þ. ð4Þ

The function has two minima (bimodal). The inequality constraints are given by
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G x1, x2ð Þ= x1 − 0.5ð Þ2 + x22 − 4
x1 + 0.5ð Þ2 + x22 − 4

� �
≤ 0 ð5Þ

and could be interpreted as circular bounds of the design space. The test function is
shown in Fig.® 1.

The test function is extended by defining both design variables as noisy, leading
to the following objective and constraint functions:

J x1, x2, ξ1, ξ2ð Þ=J x1 + ξ1, x2 + ξ2ð Þ. ð6Þ

G x1, x2, ξ1, ξ2ð Þ=G x1 + ξ1, x2 + ξ2ð Þ ð7Þ

Robustness and Risk Formulation

This step is denoted as robustness and risk formulation. An optimization will lead
to a robust solution, if instead of the objective function J a robust measure ρJ such
as the mean E Jð Þ is optimized

ρJ =E Jð Þ=
Z
ξ
w ξð Þ ⋅ J x+ ξð Þdξ,

where w ξð Þ is the probability density function of the uncertainties ξ.
A reliability measure ρG representing the constraints is defined in the same

manner as

ρG =E Gð Þ

Fig. 1. Non-robust test function with a non-robust global and a robust local optimum

684 D. Büche et al.



Typically, the two measures cannot be computed by analytical integration but
are approximated by a set of sample points that represent the probability space
adequately. This is denoted as uncertainty quantification (UQ). The simplest
approach is sampling by Monte Carlo methods. Different UQ methods are given in
the chapters “General Introduction to Monte-Carlo and Multi-level Monte-Carlo
Methods” and “Latin Hypercube Sampling based Monte Carlo Simulation: Method,
Extension of the Sample Size and Correlation Control”.

Optimization

In the optimization step, the robust optimization problem for the robustness measure
ρJ and reliability measure ρG is solved. Algorithms for RDOs are given in the
chapter “Robust Compressor Optimization by Evolutionary Algorithms and 28
Formulations for Robust Design and Inverse Robust Design”.

Analysis

The last step is the analysis where the robustness of the solution is verified and it is
checked if the solution fulfils the performance target. Special care is taken in case of
disjoint constraints.

Figure 2 shows the results of a RDO example for three different noise levels. For
the lowest noise level of σ =0.1, the optimum is within the vicinity of the global
minimum of the function. This optimum is very sensitive and thus not considered as
sufficiently robust. For an increase in noise to σ =0.2, the optimum is still found in
the vicinity of the global minimum but a higher probability exists that the constraint
for the chosen α-level is violated.

Fig. 2. Contour plot of the objective function with overlaid inequality constraint (red border) for
N10 = 2048 and three different noise levels σ =0.1, 0.2, and 0.3.
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With a further increase of the noise level to σ =0.3, the optimization result
differs. The optimum is now close to the robust region around the local optimum.
This emphasizes the importance of sufficient knowledge about the level of uncer-
tainty. Depending on the level, the optimization result changes. Furthermore, the
effect of the uncertainties has to be resolved sufficiently in order to guide the
optimization to the robust optimum. This may require additional computational
effort by sufficiently large sample size to accurately describe the effects of
uncertainty.

Conclusions

Uncertainties are present in all engineering optimization tasks. Precise knowledge
about the uncertainties with respect to their probability distribution is required in
order to be able to specify the task correctly. Otherwise, the UQ and RDO results
may be misinterpreted and the wrong optimum solution is chosen.

The dilemma is that data about uncertainties is typically limited and insufficient
to generate a statistical representation by probability distribution. Thus, best guesses
are required. For manufacturing problems, geometrical tolerances from manufac-
turing drawings may be considered.
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Problem Setup

Governing Equations

Let D ⊂ ℝd
(typically d = 3 in physical space) be a fixed domain with a boundary

𝜕D and 𝐱 ∈ D the physical coordinates. Let (Ω,A ,P) be a probability space where

Ω is the abstract set of elementary events, A is a 𝜎-algebra of subsets of Ω, and P
is a probability measure on A . Our aim is to approximate the random field u(𝐱;𝜉𝜉𝜉) ∶
D × 𝛤 → ℝm

satisfying the parameterized partial differential equations:

L (𝐱, 𝜉𝜉𝜉; u) = 0 in D ,

B(𝐱, 𝜉𝜉𝜉; u) = 0 on 𝜕D ,

(1)

where L is a linear or nonlinear differential operator, and B is a boundary operator.

Here 𝜉𝜉𝜉(𝜔) = (𝜉1(𝜔), 𝜉2(𝜔),… , 𝜉N(𝜔))∶ Ω → 𝛤 ⊆ ℝN
is a vector of random param-

eters defined on (Ω,A ,P) with probability distribution PΞΞΞ, of which components

𝜉1, 𝜉2,… , 𝜉N are mutually independent random variables with values in subsets of

ℝ, 𝛤1, 𝛤2,… , 𝛤N , respectively. We consider without lost of generality that the ran-

dom field u has scalar values, i.e., m = 1. In practice, one may also be interested in

quantities:
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y = F(u(⋅;𝜉𝜉𝜉)), (2)

that are functions of the solution u of the boundary value problem (1), in addition to

the solution itself. In computational fluid dynamics for instance, u may be the pres-

sure field satisfying the compressible Navier–Stokes equations about a fixed profile,

and y may be the aerodynamic forces (e.g., drag, lift) exerted by the flow on that

profile. In this latter case, the differential operator L may also depend on time t, and

the boundary value problem (1) needs be supplemented with initial conditions. We

do not consider that more general situation in the following discussion, for its main

features basically extend to time-dependent problems.

Probabilistic Framework

The vector of random parameters 𝜉𝜉𝜉 is representative of variable geometrical char-

acteristics, boundary conditions, loads, physical or mechanical properties, or com-

binations of them. It can be discrete, continuous, or a combination of both. In the

continuous case, it is understood that its probability distribution PΞΞΞ admits a prob-

ability density function (PDF) 𝜉𝜉𝜉 ↦ WΞΞΞ(𝜉𝜉𝜉) with values in ℝ+ = [0,+∞] such that

PΞΞΞ(B) = ∫B WΞΞΞ(𝜉𝜉𝜉)d𝜉𝜉𝜉 for any subset B of ℝN
. In addition, PΞΞΞ(d𝜉𝜉𝜉) = P1(d𝜉1) ×

P2(d𝜉2) ×⋯ ×PN(d𝜉N) owing to the assumption of mutual independence. In the

present setting, it is further assumed that the random parameters are exponentially

integrable, that is there exists 𝛽 > 0 such that:

∫
ℝN

e𝛽‖𝜉𝜉𝜉‖PΞΞΞ(d𝜉𝜉𝜉) < +∞, (3)

where ‖𝜉𝜉𝜉‖ = (
∑N

n=1 𝜉
2
n)

1
2 is the usual Euclidean norm in ℝN

. Any distribution with

compact support satisfies the above condition, for example uniform or beta distribu-

tions, as well as the gamma or normal distributions. Together with mutual indepen-

dence, it ensures that each random variable 𝜉n possesses finite moments of all orders,

that is 𝔼{||𝜉n||
k} = ∫ℝ |𝜉|k Pn(d𝜉) < +∞ for all k ∈ ℕ. This (uniquely) defines a

sequence of univariate orthonormal polynomials {𝜓 (n)
j }j∈ℕ associated with the prob-

ability measure Pn for all 1 ≤ n ≤ N, and a sequence of multivariate orthonormal

polynomials {𝜓𝐣}𝐣∈ℕN associated with the probability measure PΞΞΞ given by:

𝜓𝐣(𝜉𝜉𝜉) =
N∏

n=1
𝜓

(n)
jn
(𝜉n), 𝐣 = (j1, j2,… , jN) ∈ ℕN

, (4)

such that {𝜓𝐣(𝜉𝜉𝜉)}𝐣∈ℕN constitutes an orthonormal sequence of random variables in the

space L2(Ω, 𝜎(𝜉𝜉𝜉),P) of second-order random variables defined on the probability

space endowed with the 𝜎-algebra 𝜎(𝜉𝜉𝜉) generated by the random parameters𝜉𝜉𝜉; see [1,

Theorem 3.6]. Alternatively, the polynomial set {𝜓𝐣}𝐣∈ℕN constitutes an orthonormal
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basis of the functional space L2(ℝN
, 𝜎B(ℝN),PΞΞΞ(d𝜉𝜉𝜉)) of square-integrable functions

with respect to PΞΞΞ, where 𝜎B(ℝN) is the Borel 𝜎-algebra on ℝN
.

Consequently, any random variable u in L2(Ω, 𝜎(𝜉𝜉𝜉),P) can be expanded in a

series of multivariate orthonormal polynomials in the random parameters 𝜉𝜉𝜉 as:

u =
∑

𝐣∈ℕN

u𝐣𝜓𝐣(𝜉𝜉𝜉), u𝐣 = 𝔼{u𝜓𝐣(𝜉𝜉𝜉)} =
∫ℝN

u𝜓𝐣(𝜉𝜉𝜉)PΞΞΞ(d𝜉𝜉𝜉). (5)

This is the so-called generalized polynomial chaos expansion. Likewise, the random

field 𝐱 ↦ u(𝐱;𝜉𝜉𝜉) satisfying Eq. (1) has finite energy from physical considerations,

so it belongs to L2(ℝN
, 𝜎B(ℝN),PΞΞΞ(d𝜉𝜉𝜉)) and can be expanded as:

u(𝐱;𝜉𝜉𝜉) =
∑

𝐣∈ℕN

u𝐣(𝐱)𝜓𝐣(𝜉𝜉𝜉), u𝐣(𝐱) = 𝔼{u(𝐱;𝜉𝜉𝜉)𝜓𝐣(𝜉𝜉𝜉)} =
∫ℝN

u(𝐱;𝜉𝜉𝜉)𝜓𝐣(𝜉𝜉𝜉)PΞΞΞ(d𝜉𝜉𝜉).

(6)

In practical numerical applications, the foregoing expansions are truncated up to a

total order p such that |𝐣| = j1 + j2 +⋯ + jN ≤ p. Denoting by ℙp[⋅] the orthogonal

projection onto the space of N-variate polynomials of total degree p in 𝜉1, 𝜉2,… , 𝜉N ,

say Vp
N , we seek for an approximate solution ℙp[u] of Eq. (1) in Vp

N as:

u(𝐱;𝜉𝜉𝜉) ≃ ℙp[u](𝐱;𝜉𝜉𝜉) =
∑

|𝐣|≤p
u𝐣(𝐱)𝜓𝐣(𝜉𝜉𝜉),

which, by reordering the multi-indices 𝐣 such that |𝐣| ≤ p, also reads:

u(𝐱;𝜉𝜉𝜉) ≃ ℙp[u](𝐱;𝜉𝜉𝜉) =
P∑

j=0
uj(𝐱)𝜓j(𝜉𝜉𝜉), P + 1 =

(
N + p
p

)

. (7)

From [1, Theorem 2.2], the sequence ℙp[u] converges to u in the mean-square sense

in L2(Ω, 𝜎(𝜉𝜉𝜉),P) provided that the condition (3) is fulfilled, i.e.,

lim
p→+∞

𝔼{|u − ℙp[u]|2} = 0.

Mean-square convergence classically implies convergence in probability, which in

turn implies convergence in distribution, the converse being of course untrue in the

general case.

Now the deterministic functional coefficients 𝐱 ↦ uj(𝐱) in the truncated series

remain unknown since the random field u is unknown. Weighted versions of Eq. (1)

together with the above approximation are considered in order to determine them.
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Stochastic Galerkin Method

Similarly to the weak formulation of deterministic problems, one can form the weak

form of Eq. (1) and seek an approximate solution up ∈ Vp
N such that:

𝔼{L (𝐱, 𝜉𝜉𝜉; up)v(𝜉𝜉𝜉)} = 0 ∀v(𝜉𝜉𝜉) ∈ Vp
N , 𝐱 ∈ D ,

𝔼{B(𝐱, 𝜉𝜉𝜉; up)v(𝜉𝜉𝜉)} = 0 ∀v(𝜉𝜉𝜉) ∈ Vp
N , 𝐱 ∈ 𝜕D ,

(8)

where 𝔼{⋅} stands for the mathematical expectation. The resulting system becomes

a deterministic one in the physical domain D for the coefficients uj(𝐱) and may be

solved by standard discretization techniques, e.g., finite elements, finite volumes,

finite differences, boundary elements, etc; see [2] and references therein for an exten-

sive presentation of this method.

Stochastic Collocation Method

Alternatively, one may seek an approximate solution formed by interpolation between

solutions of Eq. (1) for Q particular choices of the random parameters 𝜉𝜉𝜉, namely the

set {𝜉𝜉𝜉l}1≤l≤Q of so-called nodes, such that:

L (𝐱, 𝜉𝜉𝜉l; u(𝐱;𝜉𝜉𝜉l)) = 0 ∀l = 1, 2,… ,Q, 𝐱 ∈ D ,

B(𝐱, 𝜉𝜉𝜉l; u(𝐱;𝜉𝜉𝜉l)) = 0 ∀l = 1, 2,… ,Q, 𝐱 ∈ 𝜕D .

(9)

Then the approximate solution 𝕀Q[u] to Eq. (1) reads as the Lagrange interpolation

[3–6]:

u(𝐱;𝜉𝜉𝜉) ≃ 𝕀Q[u](𝐱;𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱;𝜉𝜉𝜉l)Ll(𝜉𝜉𝜉), (10)

where {Ll}1≤l≤Q is the set of N-variate Lagrange polynomials based on the nodes

{𝜉𝜉𝜉l}1≤l≤Q chosen so that uniqueness of the interpolation is ensured. Sufficient con-

ditions for such a proper interpolation are outlined in [7]. Choosing the nodes within

a quadrature rule ΘΘΘ(N,Q) = {𝜉𝜉𝜉l,wl}1≤l≤Q tailored such that
∑Q

l=1 w
lf (𝜉𝜉𝜉l) is a good

approximation of the N-dimensional integral ∫ℝN f (𝜉𝜉𝜉)PΞΞΞ(d𝜉𝜉𝜉) = 𝔼{f (𝜉𝜉𝜉)} for suffi-

ciently smooth functions f, and the collocation approach may be used to compute an

approximate solution ℙp
Q[u] defined by:
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ℙp
Q[u](𝐱;𝜉𝜉𝜉) =

P∑

j=0

( Q∑

l=1
wlu(𝐱;𝜉𝜉𝜉l)𝜓j(𝜉𝜉𝜉

l)

)

𝜓j(𝜉𝜉𝜉)

=
Q∑

l=1
u(𝐱;𝜉𝜉𝜉l)

(

wl
P∑

j=0
𝜓j(𝜉𝜉𝜉

l)𝜓j(𝜉𝜉𝜉)

)

=
Q∑

l=1
u(𝐱;𝜉𝜉𝜉l)L̃l(𝜉𝜉𝜉)

(11)

in view of Eq. (7); that is, the quadrature set ΘΘΘ(N,Q) is used to evaluate the coeffi-

cients uj(𝐱) in Eq. (7). The latter approach is called pseudo-spectral collocation in [8].

Provided that the quadrature ruleΘΘΘ(N,Q) integrates exactly all N-variate polynomi-

als of total order 2p and Ll ∈ Vp
N , one has L̃l ≡ Ll owing to the orthonormalization of

the polynomials {𝜓j}0≤j≤P which are such that 𝔼{𝜓j(𝜉𝜉𝜉)𝜓k(𝜉𝜉𝜉)} = 𝛿jk, the Kronecker

symbol.

Regression

In regression approaches, the P + 1 expansion coefficients in Eq. (7) are determined

on the basis of a set of observations {u(⋅;𝜉𝜉𝜉l}1≤l≤Q, obtained by computations or

measurements, of the random variable or field u for some particular choices of the

random parameters 𝜉𝜉𝜉, again the set {𝜉𝜉𝜉l}1≤l≤Q. They consist in solving a weighted

least-squares minimization problem:

𝐔 = arg min
𝐔̂∈ℝP+1

1
2

(

𝐲 −ΦΦΦ𝐔̂
)T

𝐖
(

𝐲 −ΦΦΦ𝐔̂
)

, (12)

where 𝐲 = (u(⋅;𝜉𝜉𝜉1), u(⋅;𝜉𝜉𝜉2),… , u(⋅;𝜉𝜉𝜉Q))T is the vector of observations, [ΦΦΦ]lj = 𝜓j(𝜉𝜉𝜉
l)

is the so-called Q × (P + 1) measurement matrix, 𝐖 is a Q × Q weighting matrix,

and 𝐔 = (u0, u1,… , uP)T is the sought vector of coefficients. This is the approach

retained in, e.g., [9, 10], for which numerous methods are available to solve this opti-

mization problem whenever Q > P. In [11–14], for example, the choice of the obser-

vation set {𝜉𝜉𝜉l}1≤l≤Q is also discussed. Alternatively, one may consider the situation

wherebyQ ≤ P and more particularlyQ ≪ P, that is, underdetermined systems. This

can be achieved thanks to some recent mathematical results pertaining to the reso-

lution of under-sampled linear systems promoting sparsity of the sought solution,

known as compressed sensing or compressive sampling [15, 16]. A recent review of

the application of this approach to generalized polynomial chaos expansions is pro-

posed in [17]; see also [18] for an application in the context of the UMRIDA project.

The compressed sensing approach consists in reformulating the least-squares mini-

mization problem (12) as a convex minimization problem with some sparsity con-

straint, namely
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𝐔 = arg min
𝐔̂∈ℝP+1

{‖𝐔̂‖1; ‖𝐖(𝐲 −ΦΦΦ𝐔̂)‖2 ≤ 𝜀}, (13)

for some tolerance 0 ≤ 𝜀 ≪ 1 on the polynomial chaos truncation (7). Here the

𝓁m-norm is ‖𝐚‖m = (
∑P

j=0
|
|
|
aj
|
|
|

m
)

1
m for m > 0, and ‖𝐚‖0 = #{j; aj ≠ 0} otherwise.

Sparsity means that only a small fraction of the sought coefficients 𝐔 are non-

negligible. The latter problem is known as basis pursuit denoising (BPDN) [19]. It is

uniquely solved thanks to some ad hoc mixing properties of the measurement matrix

ΦΦΦ which are briefly reviewed in the chapter “Generalized Polynomial Chaos for

Non-intrusive Uncertainty Quantification in Computational Fluid Dynamics” of this

Book.

Intrusive Versus Non-intrusive Methods: General Comments

The stochastic Galerkin method is intrusive in that it may require significant alter-

ations of the existing deterministic codes used for solving numerically the bound-

ary value problem (1). Generally, it also yields coupled equations for the expansion

coefficients of its solutions. Hence, new codes need be developed to handle the larger

and coupled systems of equations arising from the Galerkin formulation. A recent

application of an intrusive approach to the 3D compressible Navier–Stokes equa-

tions can be found in Dinescu et al. [20]. The stochastic collocation method and

regression methods are non-intrusive in that they require only repetitive executions

of the existing deterministic codes for carefully selected parameters values. They

are the preferred methodologies in CFD, and for their applicability is not affected

by the complexity and high nonlinearity of the existing flow solvers so long as they

achieve a reasonable accuracy. However, it is to be expected that, for a fixed total

order of the polynomial expansion, say, the non-intrusive methods may require the

solutions of a much larger number of equations than that of the intrusive Galerkin

method, especially for higher dimensions N of the stochastic space [21]. The alias-

ing error induced by the numerical quadrature rules used in collocation methods may

increase with the stochastic dimension alike, indicating that the intrusive Galerkin

method may actually offer the most accurate and least demanding solutions in higher

dimensions.

A final remark worth to mention is that most of the techniques developed so far,

being either intrusive or non-intrusive, have been tested for elliptic and parabolic

equations, of which solutions are known to be smooth with respect to space and

time. Hyperbolic systems have been much less studied, one important issue being

the consideration of the characteristics of the original equations in their Galerkin

weak formulation. This issue is addressed in, e.g., [22–24], though.

https://doi.org/10.1007/978-3-319-77767-2_8
https://doi.org/10.1007/978-3-319-77767-2_8


Polynomial Chaos and Collocation Methods and Their Range of Applicability 693

Overview of the Methodologies Used in UMRIDA

Within UMRIDA, four different non-intrusive methodologies have been imple-

mented. They are described shortly hereafter, with their main advantages and disad-

vantages. For more details, the reader is referred to the UMRIDA Book.

Sparse Quadrature Sampling Schemes

NUMECA and ONERA both developed a stochastic collocation (SC) method using

possibly sparse numerical quadrature rules Θ(N,Q). The SC expansion of a time-

dependent random field 𝐱, t ↦ u(𝐱, t;𝜉𝜉𝜉) reads:

u(𝐱, t;𝜉𝜉𝜉) ≃ 𝕀Q[u](𝐱, t;𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱, t;𝜉𝜉𝜉l)Ll(𝜉𝜉𝜉), (14)

where the expansion coefficients are the random field evaluated at the nodes

{𝜉𝜉𝜉l}1≤l≤Q. In stochastic dimension one (N = 1), the nodes 𝜉
l
are chosen as the numer-

ical quadrature points associated with the PDF 𝜉 ↦ W1(𝜉) of the single random

parameter 𝜉. The moments are then calculated using numerical quadrature, e.g., for

the mean:

𝔼{u}(𝐱, t) =
∫
𝛤1

u(𝐱, t; 𝜉)W1(𝜉)d𝜉

≃
Q∑

l=1
wlu(𝐱, t; 𝜉l), (15)

and similar expressions for the higher-order moments. In higher stochastic

dimensions, the numerical quadrature formulas involve tensor products of the one-

dimensional quadrature nodes. Such a tensorization quickly becomes very expensive

in terms of the number of sampling nodes—the so-called curse of dimensionality.

NUMECA therefore used a sparse quadrature sampling scheme, based on Smolyak’s

algorithm [25]. It significantly reduces the number of samples at the cost of ignoring

some higher-order coupling terms in the expansion. Since the expansion coefficients

of these terms can supposedly be small, this has only a small impact on the accuracy

of the calculated moments. The basic methodology is for scalar random data but by

repeating it, it can also be used for random fields.
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Adaptive Sparse Polynomial Chaos

This methodology is used by AGI and ESTECO. It is based on the regression

approach developed by Blatman and Sudret [26–28]. The basic idea of this approach

is that in the classical polynomial chaos (PC) expansion of a time-dependent random

field:

u(𝐱, t;𝜉𝜉𝜉) ≃ ℙP[u](𝐱, t;𝜉𝜉𝜉) =
P∑

j=0
uj(𝐱, t)𝜓j(𝜉𝜉𝜉), (16)

the expansion coefficients uj(𝐱, t) of many of the higher-order terms are negligible.

An iterative procedure is developed to find out which are the important terms to

be retained. The procedure is based on least angle regression (LAR, as opposed to

numerical quadrature) and is quite efficient. Compared to the classical regression

approach by least-squares minimization, where oversampling is used with typically

Q = 2P samples, under-sampling is used here. The size of the experimental design

(ED) is difficult to select a priori but a sequential one can be chosen. A leave-one-

out procedure is used to test the quality of the proposed expansion. Apart from the

size of the ED, the choice of the location of the sampling nodes is also important.

Depending on the problem at hand, the solution might be more or less sensitive to

this choice. The basic methodology is for scalar random data but a procedure has

been proposed for random fields as well based on proper orthogonal decomposition

(POD) in [29].

Compressive Sampling

This methodology is used by ONERA. As in the adaptive sparse PC expansion of the

foregoing section, it exploits the fact that many terms in the PC expansion of Eq. (16)

are negligible. The leading expansion coefficients are determined by regression from

an underdetermined system with the following additional condition:

‖𝐔‖1 =
P∑

j=0

|
|
|
uj(𝐱, t)

|
|
|

is minimal. (17)

This latter condition expresses the sparsity of the expansion; see Eq. (13). Different

software packages are available to solve Eq. (13), such as SPGL1 [30] or CVXOPT
[31]. The obtained result is comparable to that of the adaptive sparse PC expan-

sion but there is of course some dependency on the used software. However, the

𝓁1-minimization procedure has the great advantage of being non adaptive, as it iden-

tifies both the amplitude and the rank of the leading coefficients in a single run. This

is a much desirable feature for practical industrial applications with complex config-

urations. The size of the ED and the location of the sampling points can also have an
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effect on the quality of the solution. The basic methodology is for scalar stochastic

data but by repeating it, it can also be used for stochastic fields.

Reduced Basis Method

This methodology is developed by VUB. Instead of the classical PC expansion of

Eq. (16) with the polynomials {𝜓j(𝜉𝜉𝜉)}0≤j≤P as the basis, an expansion in a reduced

basis is used:

u(𝐱, t;𝜉𝜉𝜉) ≃
m∑

j=0
ûj(𝐱, t)zj(𝜉𝜉𝜉), (18)

where the new basis is formed by {zj(𝜉𝜉𝜉)}1≤j≤m and m ≪ P so that less expansion

coefficients have to be determined. The new basis can be determined via a Karhunen–

Loève expansion, also known as POD. This requires however the knowledge of the

covariance of the random field u(𝐱, t;𝜉𝜉𝜉). Assuming that this covariance (in stochastic

space) is largely independent from the resolution in real space, it can be determined

by a PC analysis on a coarse grid. Once the reduced basis is found, the expansion

Table 1 Comparison of different PC methods used in the UMRIDA project

Method Idea Methodology Technique Application

Sparse quadrature

PC

Cheaper

numerical

quadrature

Sparse instead of

tensorial

quadrature rule

Numerical

quadrature

Scalar data

extendable to

fields by

repeating

procedure

Sparse PC Only most

important terms

in PC

decomposition

are kept

Different

expansions tried

in a systematic

and iterative way

Regression LAR

or stepwise

Scalar data

extendable to

fields using POD

Compressive

sampling

Only most

important terms

in PC

decomposition

are kept

Found in one shot Regression with

constraint

Scalar data

extendable to

fields by

repeating

procedure

Reduced basis Find optimal PC

decomposition

based on

covariance and

POD

PC on coarse

grid. All above

techniques can be

used to reduce

CPU on coarse

mesh

Regression on

fine grid

Fields >1 field:

use covariance of

all fields scalar

data: use reduced

basis of the field

data (scalar data

depends on field

data)
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coefficients are computed with (overdetermined) regression, typically using Q = 2m
samples. The size of the reduced basis depends on the number of POD modes taken

into account. Normally, only few modes suffice, but if the correlation length is small,

more modes are needed for an accurate representation. Nevertheless, m ≪ P so that

significantly less samples are needed on the fine grid compared to a “full” PC expan-

sion. It is also to be noted that for the coarse grid PC analysis, any of the other meth-

ods discussed here—e.g., compressive sampling, sparse adaptive PC expansion—

can be used to further increase the efficiency. As the methodology is based on the

covariance, it is directly applicable to random fields solely. In case of different ran-

dom fields, the covariance of all the fields is to be used in principle. However, tests

with the RAE2822 basic case considered in the UMRIDA project showed that, using

only one random field, e.g., the pressure field, the resulting reduced basis is very

similar to that obtained using all random fields. For scalar data, which are usually

derived from (a) random field(s), the reduced basis derived from these field(s) can

be used. The different methodologies are summarized in Table 1.

Comparison of the Different Methodologies in Terms
of Efficiency

We remind here that the total order of the polynomial expansion (6) is denoted by p.

If the stochastic dimension is N = 1, then the Lagrange polynomials in Eq. (14) are

of order p. Hence, p + 1 quadrature points {𝜉l}1≤l≤p+1 are needed. Since u(𝐱, t; 𝜉l) in

Eq. (14) is the value of u(𝐱, t) at the quadrature point 𝜉
l
, this implies that p + 1 sim-

ulations are needed. If the stochastic dimension is N > 1, this becomes (p + 1)N in

the case of a fully tensorized scheme based on p + 1 nodes in each dimension. Using

a sparse quadrature rule instead, different levels k can be considered, where k varies

from k = 1 up to k = p + 1. The number of quadrature points, and hence the number

of simulations, for a sparse quadrature of level k and N ≫ 1 can be approximated as:

Q ≃ (2N)k

k!
. (19)

If we set to unity the cost of a single simulation, this is also the total cost. It

should be noted that, with the full tensorial scheme, polynomials up to a total order

N(2p + 1) (i.e., a product of N polynomials each of order 2p + 1 in each dimension)

are integrated exactly, whereas, with the sparse scheme of level k based on an under-

lying one-dimensional Gauss rule with p + 1 nodes, only polynomials up to total

order 2k − 1 are integrated exactly, i.e., maximal order 2p + 1 for the highest level

k = p + 1.

In the reduced basis method implemented by VUB, a full PC expansion con-

structed by regression is first considered on a coarse grid. The total number of sam-

ples required for the regression is Q = 2(P + 1), where P + 1 is again the number

of terms in the expansion of Eq. (16). In stochastic dimension N, P + 1 =
(N+p

p

)
.
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The total cost is therefore 2c ×
(N+p

p

)
where c takes into account the coarseness of

the grid; that is, c is the ratio of coarse to fine grid size. Next, regression is used on

the fine grid. Assuming the reduced basis has dimension m, this requires 2m fine grid

samples, with a cost 2m. Based on the RAE2822 and ROTOR37 test cases defined

in the UMRIDA project where respectively N = 10 and N = 21 uncertain parame-

ters were considered, a reduced basis of size m ≃ 20 can be expected, whereas for

the value of the coarse to fine grid size c = 1
8

is found acceptable. The total cost can

therefore be estimated as
1
4
×
(N+p

p

)
+ 40.

In the adaptive sparse PC expansion and compressive sampling approaches, the

number of samples Q is not directly related to p and N. However, as an underde-

termined system of equations is considered for the regression analysis, Q is (much)

smaller than P + 1. ESTECO, for instance, used Q = 200 samples for the RAE2822

test case with N = 13 uncertainties, going up to the PC order p > 10. A similar num-

ber can be derived from the literature. Blatman and Sudret [28] mention speedups

of 3.3–10.2 compared to full PC expansions of order 2, when the stochastic dimen-

sion varies from N = 30–70. This leads to an equivalent of Q = 300–500 samples.

In compressive sampling, ONERA used Q = 80 samples for the RAE2822 test case

with N = 3 uncertainties. As a rule of thumb, the number of samples to be used in

compressive sampling is typically four times the sparsity S ≡ ‖𝐔‖0 of the sought

solution, that is the number of non-negligible coefficients: Q ≥ 4S. In Hampton and

Doostan [32], errors of less than 1% in the mean (compared to full PC expansion) are

obtained with about 200–300 samples for an example with N = 20. A choice of 100
samples for N = 5, 180 samples for N = 10 and 250 samples for N = 20 therefore

seems appropriate for both methods.

Based on the reasoning above, which admittedly gives only rough cost estimates,

the costs of the different methods are compared in Tables 2 through 4 below for

N = 5, N = 10 and N = 20, respectively. The first two rows show the number of

samples of full PC with respectively regression (assuming 2P samples) and a ten-

Table 2 Cost of different PC methods used in UMRIDA for N = 5 and varying total order p
Method N = 5 p = 1 p = 2 p = 3 p = 4
Full PC

regression

12 42 112 252

Tensorial

quadrature PC

32 243 1024 3125

Sparse quadrature

PC

50 (11) 166 (71) 417 (341) 833 (1341)

Adaptive sparse

PC

100 100 100 100

Compressive

sampling

100 100 100 100

Reduced basis 42 45 54 72
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Table 3 Cost of different PC methods used in UMRIDA for N = 10 and varying total order p
Method N = 10 p = 1 p = 2 p = 3 p = 4
Full PC

regression

22 132 572 2002

Tensorial

quadrature PC

1024 59,049 1,048,576 9,765,625

Sparse quadrature

PC

200 (21) 1333 (241) 6666 (1981) 26,666 (12981)

Adaptive sparse

PC

180 180 180 180

Compressive

sampling

180 180 180 180

Reduced basis 43 47 112 290

Table 4 Cost of different PC methods used in UMRIDA for N = 20 and varying total order p
Method N = 20 p = 1 p = 2 p = 3 p = 4
Full PC

regression

42 462 3542 21252

Tensorial

quadrature PC

1,048,576 3.486E9 1.099E12 95.367E12

Sparse quadrature

PC

800 10,666 106,666 853,333

Adaptive sparse

PC

250 250 250 250

Compressive

sampling

250 250 250 250

Reduced basis 45 98 483 2697

sorized numerical quadrature with (p + 1)N samples. For the sparse quadrature sam-

pling and reduced basis approaches, PC total orders up to p = 4 are considered. For

sparse quadrature sampling, the given cost is for the scheme with the highest level

k. According to the results obtained by NUMECA, this highest level is not always

required. For the ROTOR37 case, for instance, NUMECA reports differences of only

0.02% and 3%, respectively, on the mean and variance if the level k = 2 is used

instead of the level k = 3. The cost of sparse quadrature sampling using lower levels

is found in the columns more to the left. That is, for a PC order p = 4 the number of

samples required for k = 4 is found in the column p = 4, those of k = 3 in column

p = 3, those of k = 2 in column p = 2 etc. (Tables 2 through 4).

It is important to stress once more that the tables above are based on very rough

cost estimates. Nevertheless, some conclusions can be drawn. Assuming that, in

practice, at least a PC total order of 3 is needed for accurate results, we focus on

the last two columns in the tables.
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∙ The adaptive sparse PC and compressive sampling seem the most efficient meth-

ods, especially when going to high-stochastic dimensions. Whereas for N = 5 the

reduced basis is most efficient, this is not the case anymore forN = 10 andN = 20;

∙ The sparse quadrature sampling, though much more efficient than the fully ten-

sorized quadrature sampling, seems less efficient than the other methods. When

comparing it to the full PC with regression, the sparse quadrature sampling is not

competitive for N = 5. At the higher stochastic dimensions considered, N = 10
and N = 20, it can compete with the other methods only if the lowest level is used

(p = 1). It is stressed that the number of samples mentioned is based on a general

formula which gives a rough estimate only. Depending on the numerical quadra-

ture formula used (e.g., with nested or non-nested stencils), the number of samples

might be lower. This is illustrated in Tables 2 and 3 for N = 5 and N = 10 where

the number of samples for the sparse numerical formulas used by NUMECA is

mentioned in between brackets. In those cases, the sparse quadrature sampling

method is competitive with the other methods for the higher stochastic dimen-

sions N = 5 and N = 10, if one restricts it to the level k = 2;

∙ Looking at the effect of increasing the stochastic dimension N, the efficiency of

adaptive sparse PC and compressive sampling increases with it. This is also clearly

found in Blatman and Sudret [28], who mention speedups of 3.3–10.2 compared

to full PC of order 2, when the stochastic dimension varies from N = 30–70. Sim-

ilarly for the reduced basis, the speedups compared to full PC with regression

of the same order p are respectively 3.5, 6.9, and 7.8 (for p = 4 and N = 5, 10,

and 20, respectively). If sparse quadrature sampling is compared to full PC with

regression and p = 4, there is only a speedup if the formulas of level k = 1 or

k = 2 are used. For level 2, the speedups for N = 5, 10, and 20 are respectively

1.5, 1.5, and 2.0—based on the number of samples from the approximate formula

(19). With the number of samples used by NUMECA, this becomes 3.5 and 8.3,

respectively, for N = 5 and 10. We can therefore conclude that, compared to stan-

dard PC methods, all considered methods become more efficient with increasing

stochastic dimension. Therefore, they allow to partially mitigate the effect of the

“curse of dimensionality.”

Comparison of Computing Times on UMRIDA Test Case
ROTOR37

The NASA ROTOR37 is an axial flow transonic compressor designed and experi-

mentally tested by Reid and Moore [33]. In the UMRIDA project, the working point

corresponding to a rotational speed of Ω =17,188 rpm and an outlet static pressure

of p
out

=11,000 Pa is chosen. This corresponds to a mass flow which is 98% of the

mass flow at choking conditions.

Only two partners contributed to this test case, using PC methodology: NUMECA

with sparse quadrature sampling, and VUB with the reduced basis method.
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Table 5 CPU cost in h on 100 cores for the ROTOR37 test case on the actual mesh and corrected

for mesh size of 1M cells

Partner Method N Mesh (Mcells) CPU (h/100

cores)

CPU 1M mesh

(h/100 cores)

NUMECA Sparse quad.

k = 1
10 2.8 0.56 0.20

Sparse quad.

k = 2
10 2.8 6.43 2.29

VUB Reduced basis 12 0.77 0.23 0.29

Reduced basis 21 0.77 0.66 0.86

Uncertainties are imposed by both partners on the following operational parameters:

the inlet total pressure profile (described with one uncertainty, i.e., assumed fully

correlated) and the outlet static pressure. In addition, geometrical uncertainties are

introduced on the tip clearance and the blade parametrization: leading and trailing

edge angles at different spanwise locations as well as blade half thickness parameters

(VUB) and leading edge radius (NUMECA). In total, VUB considered two cases

with respectively N = 12 and 21 uncertainties, whereas NUMECA used N = 10
uncertainties. Both partners used the same simulation code, i.e., the FINE/Turbo

solver of NUMECA with RANS and Spalart–Allmaras turbulence model and cen-

tral scheme with artificial dissipation and multigrid algorithms. NUMECA used a

grid with 2.8 million points, VUB with 0.77 million. The PC total order considered

was p = 2.

Table 5 compares the CPU times. The numbers given are the CPU hours on 100
cores. In the last column, corrected numbers are given, taking into account the dif-

ference in grid size: they are rescaled for a grid of 1 million points, hereby assuming

the computational cost is linear with grid size (as should be the case when using

multigrids). One of the milestones of the UMRIDA project was the ability to handle

a large number of uncertainties (N > 10), including geometrical uncertainties, in a

turnaround time of the order of 10 h on a cluster of 100 cores. This milestone is there-

fore clearly achieved with the present methodologies. Comparing the corrected times

for NUMECA (N = 10) with those of VUB (N = 12) the estimated results of Table 3

are confirmed, if one takes into account that the actual size of the reduced basis was

only m = 7 (instead of 20 anticipated in Table 3). According to Table 3, the reduced

basis method should be 2.2 times more expensive than the level 1 sparse quadrature

method of NUMECA, and 5.1 times more efficient than NUMECA’s level 2 method.

The actual numbers (from Table 5) are respectively 1.5 times more expensive and 7.9

more efficient, which is thus explained by the smaller reduced basis.

The level 1 results of NUMECA provide only an approximation of the mean and

the variance and do not allow for an accurate estimation of the PDF, in contrast

to the level 2 results and the reduced basis results. Taking this into account, the

reduced basis method seems more efficient, at least for this application. Looking at

the VUB results, the effect of the stochastic dimension can also be evaluated. In the
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case N = 21, the number of POD modes considered (i.e., the size of the reduced

basis) was such that the sum of the corresponding eigenvalues (in absolute value)

was 99.99% of the total sum. In the case N = 10, this was only 99.9%. This resulted

in a reduced basis of size m = 21 for N = 21 and m = 7 for N = 10. If we correct for

this effect and assume the same basis size ofm = 21 forN = 10, the CPU time would

be 0.38 (instead of 0.23) compared to 0.66 for N = 21. This is more or less a linear

increase with the number of uncertainties and not an exponential one as observed in

classical methods, due to the “curse of dimensionality.”

Conclusions

The different methodologies, used in UMRIDA to deal with the “curse of dimen-

sionality,” are compared for their efficiency. Based on rough estimates of the num-

ber of required simulations, it is found that all methods allow to mitigate the “curse

of dimensionality.” For the sparse quadrature method and the reduced basis method,

this is also confirmed by simulations of the 3D compressible Navier–Stokes test case

ROTOR37 with a stochastic dimension of at least N = 10. It is also confirmed that

the UMRIDA milestone, of a turnaround time of the order of 10 h on a cluster of 100

cores for a case N = 10, is clearly achieved. In the ROTOR37 test case, the required

simulation time is at least an order of magnitude less.
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Surrogate Model-Based Approaches
to UQ and Their Range of Applicability

Daigo Maruyama, Dishi Liu and Stefan Görtz

Introduction

In the context of aerodynamic design under uncertainty, surrogate modeling is
considered as one of the suitable approaches to efficiently calculate statistics of the
quantity of interest (QoI) under scattered data. The surrogate model-based
approaches to UQ here in this chapter are the method that the statistics ideally
computed by a large number of data information are obtained by complementary
data by an assistance of surrogate models in the uncertainty parameters space. The
scattered data as sample points is produced by using Design of Experiments
(DOE) and adaptive sampling if necessary in this chapter. The dependency of the
statistics of the QoI on the number and distribution of sample points used to build a
surrogate model and on the kind of surrogate model is discussed in [1]. In the case
of robust design, the statistical value of interest is the sum of the mean and standard
deviation of the QoI, or its maximum value. Each of them is considered as the
objective function in optimization processes. Note that QoI here is lift coefficient
Clð Þ or drag coefficient Cdð Þ evaluated by a CFD computation.
In this chapter as Best Practice Guide it is discussed which kind of methods are

the most efficient for computing the statistics of QoI as the objective function in
certain tolerances of accuracy compared to the reference, e.g., one drag count
(=10−4). The errors less than this order can be sometimes regarded as epistemic
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uncertainties due to imperfectness of CFD solvers. To accurately and efficiently
compute the statistical values of interest, we focus on the following three aspects:

• Type of surrogate model;
• Number of sample points (used to build the surrogate model); and
• Distribution of sample points (used to build the surrogate model).

The type of surrogate models and a sufficient number of sample points are firstly
shown in section “Selection of Surrogate Models and the Number of Samples”.
Then, efficient sampling techniques considering both the number and distribution of
sample points are introduced in section “Sampling Techniques for Different Mea-
sures of Robustness” for computing the above-mentioned two kinds of objective
functions in the robust design optimization. The CFD solver used to evaluate the
aerodynamic coefficients on the sample points is the DLR-TAU-code [2–4]. Fully
turbulent computations were performed with the negative Spalart–Allmaras tur-
bulence model [5]. A quasi-two-dimensional hybrid unstructured grid with prisms
and tetrahedral elements was used for the RANS simulations.

Selection of Surrogate Models and the Number of Samples

The points to discuss here are which surrogate model is used and how many sample
points are selected. The direct integration of quasi-Monte Carlo (QMC) sampling,
Kriging, and GEK are compared. The comparison is performed in terms of the
accuracy of the statistics for a given number of samples used to build the surrogate
model. The influence of different numbers of samples is also studied. The distri-
bution of the sample points is based on the Sobol sequence [6–8], maintaining a
high degree of “uniformity” (low-discrepancy) of samples even in high-dimensional
cases (≥ 10). Figure 1 shows the distributions of mean and standard deviation of
estimated lift coefficient Clð Þ [9]. Details of the test case are introduced in [9]. GEK
requires the gradients with respect to the input uncertainty parameters, which can be
efficiently computed by an adjoint solver. Therefore, Nc = 2 N in case of GEK
where N is the number of sample points. Note that the input uncertainty space is 26
dimensions in this test case.

As can be observed in Fig. 1, GEK has comprehensively less errors than the
others and converges faster than Kriging along with increase of the number of
samples. One can observe that the errors of them when the number of sample points
is more than around 15 (Nc ≈ 30 in Fig. 1) nearly converge to the reference. This is
one reason why GEK is recommended.

Another reason to use GEK is further efficiency in high-dimensional cases.
When GEK is used, the scattered data information to build a GEK surrogate model
is efficiently replenished since the computational cost of an adjoint solver is
independent of the dimensionality. This could compensate one of the bottlenecks
that the number of sample points should be increased with of the dimensionality
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(details can be referred in [10]). We judge that the required number of sample points
to satisfy the good accuracy does not change so much even if the dimensionality
increases.

Because of the above-mentioned reasons, our conclusion of selecting surrogate
models is GEK when the gradients of the QoI are able to be calculated efficiently by
an adjoint solver. The number of sample points can be more than around 15.
More details on the number of sample points and sampling techniques are intro-
duced in the next section.

Sampling Techniques for Different Measures of Robustness

Criteria to Assess the Accuracy of the Statistics of QoI

Here, we focus also on the accuracy of specific statistical values of the QoI by GEK
(also Kriging as comparison) with different distributions of the sample points. Two
fixed numbers of sample points (12 and 30) are used to be compared with each
other. The QoI considered here is the drag coefficient Cdð Þ. The measures of
robustness (objective functions) f considered here are:

f ≡ μCd
+ σCd ð1Þ

f ≡ max
u

Cd uð Þð Þ ð2Þ

where u denotes input uncertainty parameters whose dimensionality is 12 in the
applications to the UMRIDA BC-02 test case. The optimizations of these stochastic
quantities are called “expectation measure with mean-risk approach” and

nc=30 nc=30

Fig. 1 Convergence of estimate Cl statistics (mean and standard deviation) to the reference
statistics by various UQ methods (note that Nc = 2 N in case of GEK because only the gradient of
Cl was considered, while Nc = N for Kriging and QMC) [10]
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“worst-case risk measure,” respectively. These statistics expressed by Eqs. (1) and
(2) are ideally uniquely determined under fixed probability density functions (pdfs)
of the input uncertainty parameters u. Note that the pdfs of the input uncertainty
parameters are assumed to be normally distributed. Details of these equations on
how to calculate f by using surrogate models can be seen in [1].

The accuracy is assessed in terms of the following three criteria:

(1) The expected value (mean) μf of f obtained for different distributions of the
sample points;

(2) The dispersion (standard deviation) σf of f obtained for different distributions
of the sample points; and

(3) The influence of the above two values μf and σf on the result of robust design,
fopt, χopt.

The first and second criteria are to investigate the accuracy of f itself. The third
criterion is then for examining the accuracy of the optimal solutions in terms of
fopt, χopt in applications to robust design. The closer the mean μf is to the reference
fref and the closer the standard deviation σf is to 0, the better the accuracy of the
estimated f .

The different sets of the sample points are achieved by consecutive rows in the
Sobol sequence where “uniformity” (low-discrepancy) is maintained. Three dif-
ferent sets of 30 sample points in two dimensions are shown in Fig. 2i as an
example. Each set of sample points was constructed by extracting 30 consecutive
rows in the Sobol sequence. These different sets of sample points are transformed
by using the cumulative density function (cdf) of uncertain input parameters (e.g.,
see Fig. 2ii). The uniformity is conserved for each set of sample points. The reason
why different sets of sample points are used is as follows.

In robust design, the robustness measures expressed by Eqs. (1) and (2) have to
be evaluated at every iteration of the optimization, corresponding to different design
variables. In other words, a new surrogate model needs to be built at each iteration
and the statistics are evaluated on the surrogate model. Assuming a fixed number of
samples and a low-discrepancy distribution of the samples, ideally the statistics
should be insensitive to the sample set used to build the surrogate model. The
surrogate models we use here allow for different sample sets to be used. This
advantage is used below to study the effect of the sample set on the accuracy of the
statistics; see Fig. 3.

Note that in this section, Kriging and GEK with a Gaussian kernel (correlation
function) were adopted and the hyperparameters were optimized by a global
optimizer (a differential evolution algorithm was used) by maximum likelihood
estimation (MLE).
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Results

Here, two investigations in terms of the criteria (1)–(3) are demonstrated, leading
to the best approaches to quantify/optimize the robustness represented by Eqs. (1)
and (2).

Investigation of the number of sample points

The first investigation is about influences due to the number of sample points when
different sets of sample points of the Sobol sequence are used. The criteria (1)–(3)
introduced in the previous sub-section are firstly investigated by using the statistical
value f of Eq. (1) as f ≡ μCd + σCd. The following two numbers of sample points
are discussed:

(a) 12 samples; and
(b) 30 samples.

Figure 3 shows the cost function f distributions evaluated by 100 different sets
of sample points for (a) and (b) extracted from arbitrary consecutive rows of the
Sobol sequences. Considering the cases that an adjoint solver is not available, the
results obtained by using Kriging are also described as (a*) and (b*) for compar-
ison. The reference value in the figure was evaluated by direct integration of 105

Sobol sequence samples. It can be observed that the cost function f evaluated by
using GEK has tendency of less dispersions and better agreement with the reference
than Kriging. The criteria (1) and (2) in the previous sub-section are discussed here
with Fig. 3. Now the mean μf and standard deviation σf of these distributions can
be calculated from the 100 cost functions f1 ∼ f100 in Fig. 3.

Figure 4 summarizes μf and σf , which represent the accuracy of (a) and (b) from
the above-mentioned criteria (1) and (2). μf is transformed into the absolute error as
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μf − fref
�� ��, where fref is the reference value. The computational cost as the hori-
zontal axis is simply counted by the number of CFD computations with an
assumption that the additional computational cost of the adjoint calculation for
GEK is identical to that of the state calculation of flow in CFD. Concerning the
error tolerances, the errors are discussed with the order of the drag count (where one
drag count is 10−4 and is denoted as 1 ct.) since the epistemic uncertainties caused
by CFD is considered to be not completely negligible in the order of less than 1 ct.

μf in (a) and (b) (12 and 30 samples with GEK) have few differences (see
Fig. 4i). This fact is in a good agreement with the conclusion in the previous section
(see also Fig. 1). On the contrary, σf decreases with increase of the number of
samples (see Fig. 4ii). The errors of both μf and σf in (b) are less than 1 ct. How σf
influences to the optimum solution is introduced next. Note that it can be observed
from Fig. 4 that “(a) 12 samples with GEK” is even better than “(b*) 30 samples
with Kriging” in terms of both accuracy for μf and σf , and efficiency.

Now the criterion (3) is discussed with results of applications to robust design
optimization. Details of the optimization procedure can be seen in [11]. Figures 5
and 6 show the optimization histories of the cost function f f ≡ μCd + σCdð Þ and
design variables χ . The cost function f of Figs. 5 and 6 at each iteration was
computed by (a) and (b), respectively. We can observe that the optimum results f is
quite different from each other. This can be confirmed in the areas where the design
variables are almost constant; i.e., the configuration is almost fixed. This fact is
caused by the difference of σf in Fig. 4ii while the mean value μf in Fig. 4i is
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almost constant. Table 1 summarizes the cost function f of the two designed air-
foils, which were re-evaluated by the common strategy (b) 30 samples. This table
clarifies that more accurate evaluation could lead to an optimal solution with better
performance.

Finally as comparison, a fixed set of sample points (see Fig. 2i), i.e. a fixed
consecutive row of the Sobol sequence is added as another type of sampling
technique for comparison:

(c) 30 samples (by using a fixed set of sample points).

The set of sample points which has the closest f to bf was picked up from f1 ∼ f100
in Fig. 3 and that set of sample points was fixed and used for each iterative process.
The histories of f , χ and the re-evaluated f of the optimum configuration are shown
in Fig. 7 and Table 1, respectively. There are few differences between the sampling
strategies (b) 30 samples and (c) 30 samples (by using a fixed set of sample points).
The conclusion here is that σf due to different sets of sample points is important
here as “another indicator” to determine the number of sample points.

Marker : Objective Function f (f=μCd+ Cd)
Lines     : Design Variables (10)

30 Sobol samples with GEK

Area of few changes of
design variables

Estimated mean values
in this fixed-configuration area

Optimum
10 drag counts

Fig. 6 Histories of objective function evaluated by (b) 30 samples with GEK and design variables
in robust design optimization (RDO)

Table 1 Values of objective function f f ≡ μCd + σCdð Þ of optimized airfoils obtained by different
strategies (a) 12 samples, (b) 30 samples, (c) 30 samples (by using a fixed set of sample points)

(a) (cts.) (b) (cts.) (c) (cts.)

μCd
144.4 135.9 136.2

σCd 14.1 9.9 10.8

f ≡ μCd
+ σCd

� �
158.5 145.8 147.0
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Investigation of distribution of sample points

In the second investigation, more details of influences of distribution of sample
points are demonstrated. That is, the distributions of the sample points are not only
by the original Sobol sequence but the one transformed into input pdf (normal
distributions here, see Fig. 2ii) and/or the one with dynamic infilled sample points.
The number of samples and the surrogate model are fixed at 30 and GEK,
respectively. The sampling techniques used are:

(a) input pdf (normal distributions);

(b) uniform distributions;

(c) uniform distributions and an adaptive sampling.

Suitable sample techniques for different measures of robustness (statistical val-
ues of QoI) are introduced in [1]. The results obtained here are straightforward as
follows:

• For evaluating mean and standard deviation of QoI (expectation measure with
mean-risk approach) represented by Eq. (1), the same distributions as the pdf of
the input uncertainty parameters (normal distributions are often used) can be
applicable.

• For evaluating maximum or minimum value of QoI (worst-case risk measure)
represented by Eq. (2), an adaptive sampling technique in the uniform distri-
butions leads to good accuracy.
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Qualitative substantiation of them is demonstrated here. Figures 8 and 9 show
cost function f f ≡ μCd + σCdð and f ≡ maxu Cd uð Þð Þ, respectively) distributions
evaluated by 100 different sets of Sobol sample points by (a) input pdf (normal
distributions), (b) uniform distributions, (c) uniform distributions with adaptive
sampling (only for Fig. 9), and μf and σf , as with Figs. 3 and 4 for the first
approach. The adaptive sampling technique here is an Expected-Improvement (EI)-
based approach to search for the maximum or minimum value of QoI on the
surrogate model. The initial sample points are the Sobol sequence with 24 points.
The surrogate model is updated in stages by an imposed sample point until the total
number of sample points reaches to 30. Details of the adaptive sampling technique
can be found in [1].

In Fig. 8, for the cost function f ≡ μCd + σCd by Eq. (1), μf and σf by the input pdf
(normal distributions) are lower than the uniform distributions and are lower than 1
ct, respectively. Note that μf and σf by the normal distributions correspond to (b) 30
samples in Figs. 2 and 3, and also its optimization result can be seen in Fig. 5.

On the other hand, for the cost function f ≡ maxu Cd uð Þð Þ by Eq. (2), the
expected value μf by the input pdf (normal distributions) is lower than 1 ct.,
whereas σf is quite large as can be also confirmed in Fig. 9(a) that f varies widely
with different sets of the Sobol sample points. On the contrary, σf by the uniform
distributions is low but μf is overestimated with around 3 cts. as also can be seen in
Fig. 9(a). The uniform distributions with an adaptive sampling technique bring the
same accuracy as the input pdf for f ≡ μCd + σCd in terms of both μf and σf , which
are less than 1 ct.

In this chapter, the types of surrogate models, the number and distribution of
sample points were discussed. In the worst-case risk measure, dynamic adaptive
sampling techniques are necessary to keep the same order of accuracy as the
expectation measure with mean-risk approach. Further improvement of the accu-
racy of evaluating the cost functions could be led by a variety of adaptive sampling
techniques to enhance the quality of the Kriging-based surrogate models [12, 13].
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Summary

The accuracy and efficiency of surrogate model-based approaches to UQ and their
application to robust design were demonstrated for the UMRIDA BC-02 test case.
Twelve uncertain parameters, yielding a 12-dimensional input parameter space for
surrogate model construction, were considered. Both Kriging and gradient-
enhanced Kriging (GEK) were investigated. GEK was shown to lead to a good
agreement of the statistical values such as the mean and standard deviation of the
aerodynamic coefficients with reference values when the number of samples is more
than around 12. GEK is the best choice when an adjoint solver is available. The
accuracy of the statistics was also investigated from the point of view of how the
sampling influences the surrogate model used in robust design. It was confirmed
that the error dispersions of the statistical cost function is a function of the number
of samples, the distribution of the samples. Sampling techniques in accordance with
statistics to be evaluated are required to reduce the error dispersion and to achieve
good robust design solutions. Different robustness measures can be evaluated
accurately to within one drag count by using 30 sample points.
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Monte Carlo-Based and Sampling-Based
Methods and Their Range of
Applicability

Robin Schmidt, Matthias Voigt, Michele Pisaroni, Fabio Nobile,
Penelope Leyland, Jordi Pons-Prats and Gabriel Bugeda

Motivation

Uncertainty quantification (UQ) has become nowadays an essential ingredient in

aerodynamic robust design and optimization. Despite the advances in computational

fluid dynamics (CFD) and the wide availability of modern parallel computer archi-

tectures, the efficient propagation of uncertainties from the sources to the quantities

of interest (QoI) of the problem under investigation is still a significant challenge,

especially when many sources of uncertainties are present and when each determin-

istic realization requires the solution of high-fidelity models with many degrees of

freedom.
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The geometrical and operational parameters that characterize aerodynamic sys-

tems in mathematical and computational models are naturally affected by aleatory

uncertainties due to the intrinsic variability of manufacturing processes and the sur-

rounding environment. These uncertainties have to be taken into account to achieve

and guarantee the highest safety standards and to design aerodynamic systems whose

performance is unchanged when exposed to variabilities.

Non-intrusive uncertainty propagation techniques have gained a lot of interest in

the recent years as they simply require multiple solutions of the original model and

can use the computational flow solver as black box. Polynomial chaos (PC) [1, 2]

and stochastic collocation (SC) [3] have been successfully applied in different engi-

neering fields and have strong potential for efficient and accurate UQ but they suffer

the so-called curse of dimensionality (computational cost dramatically increase with

the number of uncertain variables). Real aerodynamic systems can be affected by an

innumerable number of uncertainties, and any accurate UQ analysis will be high

dimensional, in particular if geometrical uncertainties are considered.

In addition, if the latter approaches are based on global basis functions that span

the entire stochastic domain, their performances and accuracy can be jeopardized

if the problem under investigation, governed by nonlinear mathematical models,

present strong discontinuities as in the case of transonic, supersonic, and hypersonic

flows.

On the other hand, sampling-based approaches like Monte Carlo (MC) methods

have a dimension independent convergence rate and have been proven to be robust

and accurate for non-smooth problems; nevertheless, their very slow convergence

rate makes them chimerical for practical aerodynamics applications that require the

solution of expensive computational fluid dynamics (CFD) models.

The Multi-Level Monte Carlo (MLMC) method has been introduced by Hein-

rich [4] in the context of parametric integration and thereupon extended by Giles [5]

to approximate stochastic differential equations (SDEs) in financial mathematics as

a way to improve the efficiency of MC simulations. The key idea of MLMC algo-

rithms is that one can draw MC samples simultaneously and independently on several

approximations of the problem under investigation on a hierarchy of computational

grids (levels). The expectation of an output quantity of interest (QoI) is computed as

a sample average of the coarsest solutions corrected by averages of the differences

of solutions computed on two consecutive levels in the hierarchy. By this way, most

of the computational effort can transport from the finest level (as in a standard MC

approach) to the coarsest one.

In this chapter, the applicability issues of Monte Carlo (MC) and sampling-based

methods with special focus on the Multi-Level-Monte Carlo (MLMC) method is

taken into account. The aim is to provide a set of comments and conclusions from

the perspective of the applications developed and the experience gained.
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Remarks on the Selection of the Stochastic Variables

The selection of the stochastic variables and their stochastic definition is of prime

importance not only on the definition of the MC/MLMC analysis, but to any other

UQ methodology. Correlation between variables, sensitivity of the problem to their

variability, number of stochastic variables, and typology of the variables must be

taken into consideration before starting any single computation. If in addition the UQ

method should be used along a robust design optimization analysis, all this applies

as well to the design variables.

Regarding UQ analysis, the number of uncertain parameters will determine the

efficiency of the method. As stated in section “Motivation,” the convergence of

Monte Carlo methods is independent to the number of uncertain parameters. There-

fore, Monte Carlo methods are the one suffering less from the curse of dimension-

ality. However, the larger the number of uncertain parameters, the more difficult the

definition of the problem will be. Due to the fact that the computational cost, and

computational time will be considerable, it is better to spend a sufficient amount of

time taking care of a good definition of the initial conditions. That means, for exam-

ple, to have a sufficiently large number of experimental measurements in order to

be able to deduce the distributions of and the correlations between uncertain param-

eters. Correlated variables should be properly defined from the perspective of this

correlation. Otherwise, the results can mask variability effects.

Range of Application of MC Methods

MC methods are suitable for any number of stochastic input variables. As already

mentioned in section “Motivation,” they are particularly recommendable for a high

number of input variables. MC simulation does not make any assumptions about the

investigated system (e.g., uncorrelated, continuous, smooth, no branching system,

etc.) and thus consistently realizes the work with black box models.

By using variance reduction methods such as Stratification or Latin Hypercube

Sampling (LHS), a reduction in the sample size by many times is possible. When

applying Quasi-Monte Carlo methods, especially for high number of stochastic vari-

ables d > 10, special care is to be taken to achieve good space filling. Here, optimized

Latin hypercube samples can show better discrepancy and space filling.

Finally, MC and also MLMC have demonstrated their ability to deal with any kind

of uncertain parameter. The aeronautical applications have been developed in the

UMRIDA project described both geometrical and operational uncertainties, which

MC and MLMC method have been able to deal without any problems.
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Random Number Generation

We recommend the use of already existing random number generators of different

programming languages. For example, the mentioned Mersenne Twister

with very good performance (see chapter “General Introduction to Monte Carlo and

Multi-level Monte Carlo Methods”) is already included in the C++ Standard 2011.

Guide Values

Note, the values given here serve only as a rough guide. The quality of an MC sim-

ulation must always be ensured by means of suitable criteria such as, for example,

confidence intervals of the various statistical result quantities. For various objectives

of a Monte Carlo analysis, a value for Crude Monte Carlo (CMC) with random sam-

pling and a value for optimized LHS (OLHS) is given. The sample size N depends

on the nature of the result quantity, their variability and confidence level.

∙ Estimate the mean and coefficient of variation

NCMC ≈ 500,… , 1000; NoLHS ≈ 50,… , 100
∙ Estimate robustness (without rare events)

NCMC ≈ 500,… , 1000; NoLHS ≈ 50,… , 100
∙ Estimate sensitivities (depends on the used sensitivity measure)

NCMC ≈ 500,… , 2000; NoLHS ≈ 50,… , 200
∙ Estimate probability of occurrence Po

(assumption: magnitude of probability is small,

coefficient of variation of the standard error ≈ 0.1)

NCMC ≈ 100∕Po; NoLHS ≈ 10∕Po (see [6], p. 54)

∙ Estimate robustness with rare events

NCMC ≈ 100∕Po; NoLHS ≈ 10∕Po.

Assessment of MLMC Applicability

Sampling and Levels of Discretization

MLMC method is based on the definition of a hierarchical evaluation of the problem.

Course mesh defines the first level to increase the refinement of the mesh and the

accuracy of the levels. From the first level, the successive levels are the difference

of the two discretizations, which means the number of evaluations is double. The

number of evaluations in each level and the number of levels greatly depend on the

defined final accuracy. The final evaluation cost of each individual is the total cost of

the MLMC evaluation, so the two mentioned factors, namely the number of samples

https://doi.org/10.1007/978-3-319-77767-2_16
https://doi.org/10.1007/978-3-319-77767-2_16
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per level, and the number of levels is really relevant. Although they cannot be reduced

to nothing, a good definition of the levels of accuracy and the tolerances on the mean

and variance values the method uses will create a difference. A trade-off analysis

should be necessary in order to keep the cost under control, but a simple rule is

to consider the following factors: (i) Accuracy of the solver; (ii) Physical meaning

of the QoI and the capability to measure this magnitude. Do not define a MLMC

accuracy larger than these two parameters. It has no sense and can lead to a never-

ending evaluation. If the analyzed problem is about aeronautics, for example, and

the QoI is the lift and the drag coefficients (C
l
and C

d
), the baseline values should be

assessed, so tolerance around 10−3, for the C
l
, and 10−4, for the C

d
, could be more

than enough. Of course, if the defined levels define a fine mesh which is not able to

get this accuracy, then the values should be increased to avoid looking for something

which is not feasible with the setting you are working with.

Solver Coupling

The black box strategy is a nice option in order to facilitate the integration of any

kind of optimizer and solver with the MLMC code. The black box strategy enables to

deal with each solver almost independently. Only some connection should be created

to transfer information from one point to another. But those parameters only used in

one of the black boxes should not be transferred along the chain, so a simplified

procedure can be defined. It is certain that the strategy should be adjusted to the

specific problem the user is dealing with, which means it could not be so transparent

when transferring the parameters. Anyway, from a general perspective and saving

particular cases, it is a good solution.

Computational Cost

Whenever the computational resources or the time is limited, the computational cost

can be an issue. Since limiting the computations to a certain time can lead to a mis-

matching of the accuracy criteria, the optimal use of the computational resources is

mandatory. It is clear that the cost of each individual MLMC analysis should be ana-

lyzed carefully. Limiting the number of samples and the number of levels for each

analysis is feasible, but requires a lot of effort. It is not easy to define an universal

setting for the tolerance which works for all the cases. It can happen that some of the

analysis can have a lack of convergence. It can be caused because the tolerances on

mean and variance, or the tolerance of the method itself have been defined too small,

or on the contrary too relaxed. In this second case, which is the one the user should

avoid, the number of samples does not stop to increase in each iteration. In some

cases, it could be advisable to define a time-out instruction. Linux systems enable

to define the time-out instruction when calling the solver. If the run of the solver
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is longer than the predefined time, it will be stopped and an error message will be

returned. Windows systems require a customized programming. Anyway, whenever

the time-out instruction should be used, the user can be sure that the final results

will have no sense, so it should be always avoided to halt the analysis. Due to the

fact that the computational cost and time are always to keep under control, and the

parallelization of the code is fully advisable. Another option could use a grid com-

puting environment. There are several open source libraries which help to define and

implement the grid computation. The requirement is to have some spare computers,

with administration privileges. Usually, a daemon should be installed in the slave

computers, while the solver and calculation files can both be directly transferred by

the master machine only when required, or can be installed beforehand on the slave

computer, and only the parameters should be transferred by the master. The expe-

rience with HTCondor, a high-throughput computing open source library, is really

positive. It enables to save time using the whole computational power in the room or

department. The grid of computation can be easily enlarged or decreased according

to the needs and availability. The only modification the code requires is to automate

the call of the evaluations, creating them according to the grid requirements.
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Introduction to Intrusive Perturbation
Methods and Their Range
of Applicability

Alain Dervieux

Introduction

Perturbation methods generally refer to methods in which the knowledge of some

quantities is made easier by introducing exact or approximate derivatives of them.

Starting from a given black box simulation tool, perturbation methods involve to get

some derivative of it, which cannot be performed without an intrusion into the black

box, that is without some effort in the transformation and further development of the

application-dependent software.

Intrusive perturbation methods can be of two sorts, in relation with two different

problematics.

(a) In uncertainty propagation by perturbation or moments, the probabilistic behav-

ior of the physical process output is evaluated by a two-step scheme: (1) derive

a surrogate black box by derivation of the initial black box, (2) use the surrogate

black box in a sampling-based integrator such as Monte Carlo.

(b) In robust optimization, the uncertainty propagation in state system can be applied

in a non-intrusive manner, but the research of an optimum may then be addressed

with an extended gradient method, which relies on an intrusive adjoint-based

functional derivation. The robust/probabilistic optimization then can use for

example the following three steps: (1) build probabilistic state and functional

with for example a non-intrusive polynomial chaos method, (2) compute the

gradients of the mean and of the variance of the functional, and (3) update the

design variable with a combination of the two gradients.

In this section, we concentrate on problematics (a) relying on second derivatives

of the functionals. More precisely, we recall in short the essential information on
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the algorithms for differentiating in order to examine in which range the different

options can be applied more efficiently. By range, we clearly refer to the number of

parameters.

Engineering studies often deal with scalar outputs. By the way, many methods

like response surface method are too computer costly when applied to mechani-

cal fields themselves. Let us rely on the Optimal Control context for the definition

of main problematics and methods. Developing an Optimal Control-based analy-

sis starts from an existing simulation application and reuses key parts of it. Let us

identify these parts. Given a set of parameters, a simulation software gives a pre-

diction of a physical process. For instance, a “numerical wind tunnel” predicts the

flow of air around a plane shape, using only computation. The predicted flow is the

unique solution of a (set of) mathematical equation which we call the state equation,

according to Optimal Control terminology. Numerical resolution of the discretized

state equation involves in fact two important parts.

∙ One is the assembling part: for given arbitrary values of the state variables W and

using values of external parameters 𝛾 (e.g., the geometry), it computes a residual
array, which reflects how the state variables satisfy the state equation. It is therefore

written:

state residual∶ (𝛾,W) ↦ 𝛹 (𝛾,W)

where 𝛹 is in fact the left-hand side of the N-dimensional discretized state equa-

tion (N can be millions):

𝛹 (𝛾,W) = 0.

∙ The other one is the solution algorithm: for a given fixed external parameters 𝛾 ,

it uses (possibly hundreds times) the residual returned by the state residual to

(finally) produce the state solution W(𝛾) that nullifies the residual (or at least makes

it sufficiently small).

state-resolution∶ 𝛾 ↦ W(𝛾)
such that 𝛹 (𝛾,W(𝛾)) = 0.

This is most often done iteratively, by incremental modifications of an arbitrary

initial state, each modification driven by the residual for the current state.

To turn a simulation application into an Optimal Control application requires an

additional ingredient, the objective functional that will evaluate a scalar cost for any

possible parameters and state. Given a set of parameters 𝛾 , which we now view as

control parameters, and given the corresponding solution state W(𝛾), it computes

one (or several) optimization criterion, i.e., the value of the objective functional for

these control parameters and state. This objective functional takes into account all

industrial targets and constraints for a given process or product.

objective-assembler∶(𝛾,W) ↦ J(𝛾,W)
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The goal of Optimal Control is to find control parameters 𝛾 which will make the

objective functional smaller.

When the size of the parameter array is small, many methods can find the mini-

mum easily enough. However for large numbers of control parameters, approaches

that use analytic gradients become necessary. We advocate the following strategy to

obtain these gradients:

∙ from the state residual, develop a gradient-assembler that computes the residual

corresponding to derivatives of the state equation. This part of the strategy relies

on Automatic Differentiation (AD).

∙ develop an adequate resolution algorithm for the gradient and second derivatives.

Therefore use the gradient-assembler to iteratively find the requested gradient.

In order to compute the gradient of a function using AD, we can choose between

two modes: Tangent and Reverse mode differentiation. Now we want to compute

the gradient j′ of the constrained functional using the differentiation of explicit parts

implementing 𝛹 and J with the two differentiation modes.

Tangent Mode First-order Differentiation

It consists in computing the Gâteaux-derivatives of j with respect to each component

direction ei, i = 1,… , n (ei = (0,…0, 1, 0,… , 0)T , where 1 is at the ith component):

dj
d𝛾i

=
dj
d𝛾

ei =
𝜕J
𝜕𝛾

ei +
𝜕J
𝜕W

dW
d𝛾

ei (1)

where
dW
d𝛾

ei is the solution of the linear system:

𝜕𝛹

𝜕W
dW
d𝛾

ei = −𝜕𝛹

𝜕𝛾
ei . (2)

In order to get the gradient, (2) must be solved and (1) has to be evaluated at the

point (𝛾h,Wh) for each vector ei of the canonical basis, i.e., n times and the main cost

is due to the solution of n linearized N-dimensional systems.

If we choose to solve the single system (2) with an iterative method (that could be

performed using AD without store the matrix
𝜕𝛹

𝜕W
into memory, see [5]), and the solu-

tion is obtained after n
iter,T step, the total runtime cost will be of the order of 𝛼Tn

iter,T ,

i.e., n
iter,T evaluation of the matrix-by-vector operation

𝜕𝛹

𝜕W
x, where we assume that

each evaluation costs 𝛼T times the evaluation of the state residual 𝛹 (𝛾,W) and the

cost of the state residual is taken as reference equal to 1. Therefore, the runtime cost

of the full gradient will be n𝛼Tn
iter,T .
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Reverse Mode First-order Differentiation

The complete gradient is given by the equation

(
dj
d𝛾

)T

=
(
𝜕J
𝜕𝛾

)T

−
(
𝜕𝛹

𝜕𝛾

)T

𝛱 (3)

where 𝛱∶ (𝛾,W) ↦ 𝛱(𝛾,W) ∈ ℝN
(the adjoint state) is the solution of the linear

system (
𝜕𝛹

𝜕W

)T

𝛱 =
(

𝜕J
𝜕W

)T

. (4)

It is important to note that the above formulation permits us to obtain all the deriva-

tives needed by (3)–(4) using only Reverse mode differentiation of the programs

implementing J(𝛾,W) and 𝛹 (𝛾,W).
To compute the gradient j′ with this approach, we thus need to solve only one

linearized N-dimensional system, the adjoint system (4). If we choose to solve the

adjoint system with an iterative method, we can apply the same estimate as in the case

of the Tangent mode differentiation but, this time, the overhead associated with the

evaluation of the matrix-by-vector operation
(
𝜕𝛹

𝜕W

)Tx with respect to the state residual

evaluation will be 𝛼R (and usually 𝛼R > 𝛼T ) and the number of iterations n
iter,R for

the convergence of the solution could be different from n
iter,T of the previous case (in

our experience, the number of iterations needed by, e.g., GMRES; see [6], to solve

the system Ax = b and ATx = c are of the same order; see [5]): therefore, the total

runtime cost for the gradient will be 𝛼Rn
iter,R.

From the previous arguments, it clearly appears that if we need to compute the

gradient j′ only, the Reverse mode is cheaper in terms of CPU time than the Tangent

mode if n ≫ 1. Nevertheless, the Tangent mode algorithm in section “Tangent Mode

First-order Differentiation” will be used in the following because it is the basis for

the Hessian computation with the Tangent-on-Tangent approach.

Tangent-on-Tangent Second-order Differentiation

In the same manner as the computation of the gradient to compute second deriva-

tives, we have different possibilities, which are theoretically equivalent, but they dif-

fer in the computational cost (and the choice of the best strategy depends, in the end,

on the number n of the control variables for the given functional). Moreover, the best

strategy depends on which use of the second-order derivative we need, i.e., the best

strategy to obtain the full Hessian matrix could be different from the best strategy to

obtain its diagonal part or the multiplication of the Hessian matrix by a vector.

The first method to obtain the second-order differentiation of a constrained func-

tional performs two successive Tangent mode differentiations for both the functional
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and the state residual and use the adjoint state to compute every single element in

the Hessian matrix [4]: we call this approach Tangent-on-Tangent (ToT). The sec-

ond approach (Tangent-on-Reverse, ToR) performs a Tangent mode differentiation

of the gradient (3) obtained with Reverse differentiation (section “Reverse Mode

First-order Differentiation”).

This method was initially investigated by [7] along with various other algorithms,

but the publication does not go into the implementation details for a generic fluid

dynamic code. Here we present the mathematical background behind the idea and the

efficient AD implementation of [4] but with a different analysis of the computational

cost.

Starting from the ith element of the gradient (1), we perform another differentia-

tion with respect to the variable 𝛾k obtaining the i-k element of the Hessian matrix

(
d2j
d𝛾2

)
i,k

=
d2j

d𝛾id𝛾k
= D2

i,kJ + 𝜕J
𝜕W

d2W
d𝛾id𝛾k

(5)

where

D2
i,kJ = 𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

ei

)
ek +

𝜕

𝜕W

(
𝜕J
𝜕𝛾

ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕J
𝜕𝛾

ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕J
𝜕W

dW
d𝛾i

)
dW
d𝛾k

.

(6)

Differentiating the Eq. (2), we get

D2
i,k𝛹 + 𝜕𝛹

𝜕W
d2W

d𝛾id𝛾k
= 0 (7)

where

D2
i,k𝛹 = 𝜕

𝜕𝛾

(
𝜕𝛹

𝜕𝛾
ei

)
ek +

𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕W
dW
d𝛾i

)
dW
d𝛾k
(8)

and ei(ek) is the usual vector of the canonical basis with 1 at the ith (kth) component

and zero otherwise. Substituting the second derivatives of the state with respect to

the control variables
d2W

d𝛾id𝛾k
in Eq. (5) from Eq. (7), we get

d2j
d𝛾id𝛾k

= D2
i,kJ − 𝜕J

𝜕W

(
𝜕𝛹

𝜕W

)−1

D2
i,k𝛹

= D2
i,kJ −𝛱

TD2
i,k𝛹

(9)

where 𝛱 is the solution of the adjoint system (4). The i-k element of the Hessian

matrix
( d2j

d𝛾2
||𝛾h

)
is then obtained evaluating the (9) at the point (𝛾h,Wh) solution of

the state equation 𝛹 = 0, namely
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(
d2j
d𝛾2

||||𝛾h

)
i,k

=
(
D2

i,kJ
)||(𝛾h,Wh)

−𝛱
T
h
(
D2

i,k𝛹
)||(𝛾h,Wh)

(10)

where 𝛱h ∈ ℝN
is the solution of the adjoint linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝛱h =
(

𝜕J
𝜕W

||||(𝛾h,Wh)

)T

. (11)

The n derivatives
dW
d𝛾i

in the formulas for D2
i,kJ and D2

i,k𝛹 should be computed

(and stored) solving the linear systems

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)
dW
d𝛾i

= −
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
ei i = 1,… , n (12)

and this task can be performed using an iterative matrix-free method [5]. We assume

the number of iterations needed for the iterative linear solver to the convergence

of the solution to be n
iter,T , and each iteration calls a tangent-differentiated routine

implementing the matrix-by-vector multiplication
𝜕𝛹

𝜕W
x whose cost is 𝛼T times the

cost of the original routine implementing the evaluation of the state residual𝛹 (𝛾,W).

Description of the Algorithm for the Hessian Matrix with the ToT Approach.
The algorithm to compute the Hessian matrix with the ToT approach can be summa-

rized as follows:

1. compute the state Wh such that 𝛹 (𝛾h,Wh) = 0;

2. compute W̄J =
(

𝜕J
𝜕W

||||(𝛾h,Wh)

)T

;

3. compute the adjoint state 𝛱h solving the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝛱h = W̄J;

4. for each element of the canonical basis ei, i = 1,… , n

(a) compute 𝛹̇
(i)
𝛾

=
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
ei;

(b) compute (and store) the vector 𝜃
(i)
h solution of the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)
𝜃
(i)
h = −𝛹̇ (i)

𝛾
; (13)

5. for i = 1,… , n and k = i,… , n

(a) compute
(
D2

i,k𝛹
)||(𝛾h,Wh)

;

(b) compute
(
D2

i,kJ
)||(𝛾h,Wh)

;

(c) compute

(
d2j
d𝛾2

||||𝛾h

)
i,k

=
(
D2

i,kJ
)||(𝛾h,Wh)

−𝛱
T
h
(
D2

i,k𝛹
)||(𝛾h,Wh)

.
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From Eq. (10), we see that the ToT approach gives us a single element i-k of

the Hessian matrix at time, then using the symmetry property of the Hessian we

can compute the full n × n matrix applying
n(n+1)

2
time the steps 5(a)–5(c) in the

algorithm above.

For each element i-k, we need to know the vectors 𝜃
(i)
h = dW

d𝛾i
and 𝜃

(k)
h = dW

d𝛾k
obtained solving iteratively (e.g., using GMRES) the linear system (13) whose cost

is 𝛼Tn
iter,T

(for simplicity we assume that the number of iterations needed to solve

the linear system is independent from the right-hand side).

Moreover, the quantity
(
D2

i,k𝛹
)||(𝛾h,Wh)

(step 5a) can be obtained with a single

invocation of the differentiated-twice subroutine of state_residual
(psi, gamma, w), and its cost is 𝛼

2
T times the cost of the evaluation of the

residual 𝛹 (𝛾,W) (that it is assumed to be unitary). The analogous quantity relative to

the functional
(
D2

i,kJ
)||(𝛾h,Wh)

(step 5b) can be obtained with a single

invocation of the differentiated-twice subroutine of objective-assembler
(j, gamma, w) and its cost is negligible with respect to running the subrou-

tinestate_residual(psi, gamma, w), being negligible the cost to evaluate

the subroutine objective-assembler(j, gamma, w) with respect to

state_residual (psi, gamma, w).

Therefore, assuming the adjoint state 𝛱h to be available, the evaluation of the full

Hessian with the ToT approach costs

n𝛼T
[
n

iter,T + (n + 1)
2

𝛼T
]

(14)

and we note that the cost is quadratic respect to the dimension of the control variables

but, if we have n
iter,T ≫ n, the main contribution could be from the cost to solve the

n linear systems (13). Therefore, if the dimension of the control variables n is small,

the cost is dominated by the solution of the linear systems; otherwise, (and assuming

the number of iterations n
iter

to be independent from n), the main cost is due to the

differentiated-twice subroutines.

Another important thing to note is the fact that with ToT we can compute the

diagonal of the Hessian without computing the extra-diagonal values, due to the fact

that the Hessian is built element-by-element: this fact results in a cost for the entire

diagonal of

n𝛼T
[
n

iter,T + 𝛼T
]

(15)

(i.e., one linear system (13) and one evaluation of the differentiated-twice routines

in the steps 5(a)–5(c) for each element of the diagonal).

Tangent-on-Reverse Option

This consists in the direct derivation in any direction ei, i = 1,… , n of the (non-

scalar) function:
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(
dj
d𝛾

)T

=
(
𝜕J
𝜕𝛾

)T

−
(
𝜕𝛹

𝜕𝛾

)T

𝛱 (16)

where W∶ 𝛾 ↦ W(𝛾) such that𝛹 (𝛾,W) = 0 and𝛱∶ (𝛾,W) ↦ 𝛱(𝛾,W) is the adjoint

state defined as

𝛱 =
(
𝜕𝛹

𝜕W

)−T(
𝜕J
𝜕W

)T

. (17)

To build the algorithm to compute the Hessian in the present context, we need

the following

Lemma Let 𝛾h ∈ ℝn and Wh ∈ ℝN such that 𝛹 (𝛾h,Wh) = 0 and let

j∶ℝn ⟶ ℝ
𝛾 ⟼ j(𝛾) ∶= J(𝛾,W) (18)

then the projection of the Hessian
(

d2j
d𝛾2

||||𝛾h

)
∈ ℝn×n along a direction 𝛿 ∈ ℝn is

given by

(
d2j
d𝛾2

||||𝛾h

)
𝛿 =

[
𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
𝛿 +

[
𝜕

𝜕W

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
𝜃h +

−
[
𝜕

𝜕𝛾

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h,Wh)
𝛿 −

[
𝜕

𝜕W

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h,Wh)
𝜃h +

−
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)T

𝜆h

(19)

where 𝛱h, 𝜃h, 𝜆h ∈ ℝN satisfy

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝛱h =
(

𝜕J
𝜕W

||||(𝛾h,Wh)

)T

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)
𝜃h = −

(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
𝛿

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝜆h = 𝜕

𝜕𝛾

(
𝜕J
𝜕W

)T

𝛿 + 𝜕

𝜕W

(
𝜕J
𝜕W

)T

𝜃h +

− 𝜕

𝜕𝛾

[(
𝜕𝛹

𝜕W

)T

𝛱h

]
𝛿 − 𝜕

𝜕W

[(
𝜕𝛹

𝜕W

)T

𝛱h

]
𝜃h.□

(20)

If we apply this lemma using 𝛿 = ei (where ei = (0,… , 1,… , 0)T is the vector
having the only non-zero value at the i-th position, i.e., the i-th element of the canon-
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ical basis of ℝn), it means that we are computing the ith column (and, by symmetry,
the ith row) of the Hessian, obtaining

(
d2j
d𝛾2

||||𝛾h

)
ei =

[
𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
ei +

[
𝜕

𝜕W

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
𝜃
(i)
h +

−
[
𝜕

𝜕𝛾

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h,Wh)
ei −

[
𝜕

𝜕W

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h,Wh)
𝜃
(i)
h +

−
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)T

𝜆
(i)
h .

(21)

Then, to compute the full Hessian, we need to apply the Hessian-by-vector multipli-

cation (21) to each component of the canonical basis of ℝn
.

For each i = 1,… , n, Eq. (21) needs the adjoint state 𝛱h, solution of the adjoint

system (
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝛱h =
(

𝜕J
𝜕W

||||(𝛾h,Wh)

)T

(22)

and the arrays 𝜃
(i)
h , 𝜆

(i)
h solutions of the linear systems:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝜕𝛹

𝜕W
||||(𝛾h ,Wh)

)
𝜃
(i)
h = −

(
𝜕𝛹

𝜕𝛾

||||(𝛾h ,Wh)

)
ei

(
𝜕𝛹

𝜕W
||||(𝛾h ,Wh)

)T

𝜆
(i)
h =

[
𝜕

𝜕𝛾

(
𝜕J
𝜕W

)T]||||(𝛾h ,Wh)
ei +

[
𝜕

𝜕W

(
𝜕J
𝜕W

)T]||||(𝛾h ,Wh)
𝜃
(i)
h +

−
[
𝜕

𝜕𝛾

((
𝜕𝛹

𝜕W

)T

𝛱h

)]||||(𝛾h ,Wh)
ei −

[
𝜕

𝜕W

((
𝜕𝛹

𝜕W

)T

𝛱h

)]||||(𝛾h ,Wh)
𝜃
(i)
h

(23)

where all the derivatives in the Eqs. (21)–(23) are evalued at the final state Wh. More-

over, the second linear system in (23) is of the same type of the adjoint system (22)

but with a different right-hand side, so we can use the same matrix-free algorithm

and the same preconditioner (but with different right-hand side) for both equations.

Description of the Algorithm for the Hessian Matrix with the ToR Approach.
The algorithm to compute the Hessian matrix with linearized system can the ToR

approach can be summarized as follows:

1. compute the state Wh such that 𝛹 (𝛾h,Wh) = 0;

2. compute W̄J =
(

𝜕J
𝜕W

||||(𝛾h,Wh)

)T

;

3. compute the adjoint state 𝛱h solving the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝛱h = W̄J;

4. for each element of the canonical basis ei, i = 1,… , n:
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(a) compute 𝛹̇
𝛾
=
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
ei;

(b) compute the vector 𝜃
(i)
h solving the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)
𝜃
(i)
h = −𝛹̇

𝛾
;

(c) compute
̇̄WJ =

[
𝜕

𝜕𝛾

(
𝜕J
𝜕W

)T]||||(𝛾h,Wh)
ei +

[
𝜕

𝜕W

(
𝜕J
𝜕W

)T]||||(𝛾h,Wh)
𝜃
(i)
h ;

(d) compute ̇̄𝛾J =
[
𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
ei +

[
𝜕

𝜕W

(
𝜕J
𝜕𝛾

)T]||||(𝛾h,Wh)
𝜃
(i)
h ;

(e) compute
̇̄W
𝛹
=
[
𝜕

𝜕𝛾

((
𝜕𝛹

𝜕W

)T

𝛱h

)]||||(𝛾h ,Wh)
ei +

[
𝜕

𝜕W

((
𝜕𝛹

𝜕W

)T

𝛱h

)]||||(𝛾h ,Wh)
𝜃
(i)
h ;

(f) compute ̇̄𝛾
𝛹
=
[
𝜕

𝜕𝛾

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h ,Wh)
ei +

[
𝜕

𝜕W

((
𝜕𝛹

𝜕𝛾

)T

𝛱h

)]||||(𝛾h ,Wh)
𝜃
(i)
h ;

(g) compute the vector 𝜆
(i)
h solving the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)T

𝜆
(i)
h = ̇̄WJ − ̇̄W

𝛹
;

(h) compute 𝛾̄
𝛹
=
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
𝜆
(i)
h ;

(i) compute the i-th column (or row) of the Hessian matrix:

(
dj
d𝛾

||||𝛾h

)
ei = ̇̄𝛾J − ̇̄𝛾

𝛹
− 𝛾̄

𝛹
.

From the previous algorithm, we see that for each column of the Hessian matrix

we need to solve two linear systems: one is to compute the vector 𝜃
(i)
h (step 4b) and the

other is to compute the vector 𝜆
(i)
h (step 4g). Moreover, the quantities

̇̄WJ , ̇̄𝛾J (steps 4c

and 4d) can be obtained with a single invocation of the twice-differentiated subrou-

tine of objective-assembler(j, gamma, w); while the quantities
̇̄W
𝛹

, ̇̄𝛾
𝛹

(steps 4e and 4f) can be obtained with a single invocation of the differentiated-twice

subroutine of state_residual.

The computational cost for a single Hessian-by-vector multiplication, evaluated

with the Tangent-on-Reverse approach, can be estimated with the same assumptions

made in section “Tangent-on-Tangent Second-order Differentiation” and is due to

the following contributes:

∙ 𝛼Tn
iter,T for computing the derivatives of the state variables respect to the control

𝜃
(i)
h = dW

d𝛾i
(step 4b), where n

iter,T is the number of iterations needed by the matrix-

free algorithm to solve the linear system;

∙ 𝛼R𝛼T for evaluating the quantities
̇̄W
𝛹

, ̇̄𝛾
𝛹

(steps 4e and 4f) with the single invo-

cation of the subroutine state_residual;
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∙ 𝛼Rn
iter,R for computing the vector 𝜆

(i)
h (step 4g), where n

iter,R is the number of iter-

ations needed by the matrix-free algorithm to solve adjoint systems.

Therefore, the full Hessian evaluation with ToR costs

n𝛼T
(
n

iter,T + 𝛼R +
𝛼R

𝛼T
n

iter,R
)

(24)

and we note that the major contribution is due to the solution of the linear systems,

usually being the number of iterations to the convergence ≫ 𝛼R.

Another important thing to note is the fact that with ToR, we cannot compute the

diagonal of the Hessian without computing the extra-diagonal values, due to the fact

that the Hessian is built column-by-column (or, by symmetry, row-by-row) using the

above lemma on the elements of the canonical basis.

As minor remark, ToR approach for the full Hessian does not need to store the

derivatives of the state variables respect to the control 𝜃
(i)
h = dW

d𝛾i
for all i = 1,… , n,

but it can use the same memory locations for the various 𝜃
(i)
h , resulting in a mem-

ory saving and in a serialization of the algorithm, while using a different location

for each vector results in an easily parallelizable algorithm (each Hessian-by-vector

multiplication is independent from the others, so each evaluation can be run in

parallel).

Comparison Between ToT and ToR

At this point, the natural question arising from the previous analysis is about the

choice of the method that is less expensive for a given problem. The cost to evaluate

the full Hessian, its diagonal part and the Hessian-by-vector multiplication for the

two different strategies, is given in Table 1, where we do not take into account the

cost to solve the state equation 𝛹 = 0 and to solve the adjoint system (4).

From the algorithms in sections “Tangent-on-Tangent Second-order

Differentiation” and “Tangent-on-Reverse option,” we note that the two approaches

to evaluate the full Hessian share a common part, namely the computation of the

derivatives of the state variables respect to the control
dW
d𝛾i

(i = 1,… , n) as solution

of the linear system

(
𝜕𝛹

𝜕W
||||(𝛾h,Wh)

)
dW
d𝛾i

= −
(
𝜕𝛹

𝜕𝛾

||||(𝛾h,Wh)

)
ei . (25)

This cost appears in Table 1 as the n𝛼Tn
iter,T term, therefore the characteristic cost

grows as
n(n+1)

2
𝛼
2
T for the ToT approach and n𝛼R

(
𝛼T + n

iter,R
)

for ToR. Thus, we can

say that, using a single strategy to compute the full Hessian, ToT has a lower com-

putational cost with respect to ToR if
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Table 1 ToT and ToR comparison. Computational cost for the evaluation of the full n × n Hessian

matrix, only its diagonal part and the Hessian-by-vector multiplication. 𝛼T , 𝛼R are the overheads

associated with the Tangent- and Reverse-mode differentiation for the subroutine implementing the

evaluation of the state residual. n
iter,T , n

iter,R are the number of iterations needed for the matrix-free

algorithm to solve the tangent and adjoint linear system, respectively. The values in the table do not

take into account the runtime cost to compute the adjoint state 𝛱h, that is assumed to be available.

The cost to compute the adjoint state 𝛱h as solution of the adjoint linear system (4) can be estimated

as 𝛼Rn
iter,R

Hessian (full) Hessian (diagonal) Hessian-by-vector

ToT n𝛼T
[
n

iter,T +
(n + 1)

2
𝛼T

] n𝛼T
[
n

iter,T + 𝛼T
]

n𝛼T
[
n

iter,T + 𝛼T
]

ToR n𝛼T
(
n

iter,T + 𝛼R +
𝛼R

𝛼T
n

iter,R
) – 𝛼T

(
n

iter,T + 𝛼R +
𝛼R

𝛼T
n

iter,R
)

n < 2
𝛼R

𝛼T

(
1 +

n
iter,R

𝛼T

)
− 1. (26)

Therefore, ToT is cheaper than ToR if the dimension n of the control 𝛾 is small. This

last result can be used to build better strategy (i.e., less time-consuming) for the full

Hessian using ToT and ToR for evaluate different parts of the Hessian. The key idea

is to use ToT to build the upper triangular part of the Hessian until the n̄th column and

then evaluate the remaining n − n̄ columns with ToR (using the Hessian-by-vector

multiplication). This mixed strategy costs

⎧⎪⎪⎨⎪⎪⎩

n𝛼Tn
iter,T + n(n + 1)

2
𝛼
2
T for n ≤ n̄

n𝛼Tn
iter,T + n̄(n̄ + 1)

2
𝛼
2
T + (n − n̄)𝛼R

(
𝛼T + n

iter,R
)

for n > n̄

(27)

where optimal values for n̄ are found to be n̄ =
𝛼R

𝛼T

(
1 +

n
iter,R

𝛼T

)
. For a given prob-

lem, we assume that the values 𝛼T , 𝛼R can be obtained with not too much effort in

a preprocessing phase, using program profiling. Much more difficult could be the

estimate of n
iter,R, the number of iterations needed to solve the adjoint linear system,

in fact this number depends on many factors: the dimension of the problem itself, the

dimension of the Krylov space, the kind of preconditioner used, etc. A comparison

for the cost of the full Hessian using different strategies is given in Fig. 1 where we

assumed n
iter,R = n

iter,T = 300 for the number of iterations needed to solve the lin-

ear systems (direct and adjoint) and 𝛼T = 2, 𝛼R = 4 for the overhead associated with

the Tangent differentiation and Reverse differentiation (obtaining the corresponding

threshold value for the mixed strategy n̄ = 302).
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Fig. 1 Comparison for the cost of the full Hessian using different strategies as a function of n, the

dimension of the control variable 𝛾 . We assumed n
iter,R = n

iter,T = 300 for the number of iterations

needed to solve the linear systems (tangent and adjoint) and 𝛼T = 2, 𝛼R = 4 for the overhead asso-

ciated with the Tangent differentiation and Reverse differentiation (obtaining the corresponding

threshold value for the mixed strategy n̄ = 302)

Large Number of Uncertainties

An important output of the previous sections is that the ToT approach generally

should be chosen for a number N of uncertain variables less than 1000 while the

ToR may be preferred larger numbers N. The total cost will be about 1000 linearized

systems to solve, for obtaining 1,000,000 second derivatives. For N ≥ 1000, the total

cost will be about 2000 linearized systems to solve, for obtaining 1,000,000 second

derivatives. The best of these options is therefore linearly increasing with N, this is

an important advantage of the perturbation approach.

We have first to identify why we need so many parameters:

∙ They can (in most part) correspond to the discretization of a continuous field. In

this case, the number of degrees of freedom could be decreased or the derivatives

on some intermediate nodes can be obtained by interpolation.

∙ They can correspond to the discretization of a continuous field which is not avail-

able, for example for software reasons (discrete shapes inside Katia).
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Fig. 2 ToT approach

∙ The worst case is when these parameters cannot be related to a continuous analog.

Once we are convinced that N cannot be reduced, it is necessary to compute all

these derivatives in the shortest wall-clock time. This can be obtained thanks to par-

allel computing. Of course, each linearized system can be solved in a shorter time

with a parallel computer using, for example mesh partitioning. But, also, we observe

that the solution of the different systems and the assembly of different right-hand

sides can be performed independently, with memory saving.

We restrict to the ToT option. Figure 2 depicts the main part of the algorithm.

After solving the state and adjoint, the derivatives 𝜃i of flow field W with respect to

each uncertain variable Ci need be computed. Then N2
derivatives need be assembled

(without system resolution).

It is clear that the derivatives 𝜃i constitute the main computational effort, and that

they can be computed in separate runs.

Further improvements can imagine from the observation that these systems have a

common matrix and different right-hand sides. Many published works propose smart

solvers for this context; see for example [3]. They use Gram–Schmidt/Krylov basis

or/and deflation methods. In the latter case, coarse grid inverse matrices can be built

once for all. These coarse grids can be derived either from eigenvalues of the matrix

of from coarser meshes.
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Static POD methods can also be used both for multiple RHS and for multidisci-

plinary optimization. We refer for example to the work of Farhat (e.g., [2]). We also

point out that a simplified shape modification method can be introduced in the POD

model for example as in [1].

Conclusion

The cost of a perturbation approach (PA) for uncertainty propagation combines a

sensitivity analysis with Monte Carlo-like post-processing. The implementation of

PA is quite intrusive and complex since it involves a sensitivity (first and second

order) calculation. Among other methods, Automatic Differentiation can be applied.

When the number N of uncertain variables increases, the computational cost of this

approach is linear with respect to N. But it can be enormous for large N. Several

sources of parallelism can help to reduce the time to compute, therefore using many

processors. The reduction of computational complexity can be obtained mainly by

two ways:

∙ the use of preconditioned solvers adapted to multiple RHS,

∙ the derivation of sensitivity on reduced order models.
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Use of Open Source UQ Libraries

Sönke Klostermann and R. Lebrun

For this section, we aim to demonstrate the use of open source software for aircraft
preliminary design at the example of a wing configuration robust design optimiza-
tion. On airfoil level, we demonstrate the meta-modelling of the relation between the
lift and drag coefficients and the parameters used to describe the airfoil shape.
The meta-model is built with the open source library OpenTURNS that is dedicated
to the treatment of uncertainty [1]. For the mesh construction on airfoil level, the
three-dimensional finite element mesh generator GmSH is used [2]. The computa-
tions on airfoil level are conducted with the open source CFD code SU2 [3, 4].

Meta-Modelling on Airfoils’ Level

Our aim is to construct a meta-model that will replace the CFD computation for a
2D airfoil. Hence, the surrogate model will have as inputs, the different design
variables defining the geometry of the airfoil, and the physical parameters linked to
the operating conditions and will return the different aerodynamic coefficients.

For the design variables defining the airfoil geometry the so-called PARSEC
parameters have been proposed by Sobieczky [5] that define the airfoil shape
(Fig. 1) by means of 11 parameters given in Table 1.

One of the drawbacks of the PARSEC parameterization is that, for certain
combination of parameters values, a non-geometrical shape (e.g. bumps or cross-
ings between upper and lower surface) can be obtained. For this reason, acceptable
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intervals for the maximum and minimum values according to [6] are given in
Table 1.

For a further reduction of the complexity, some of the above parameters have
been removed. Similar to the NACA 4-digit airfoils family, the leading-edge radius
of curvature is expressed by a relation of the upper and lower surface maximum
thickness. Furthermore, the wedge angle and the trailing-edge thickness have been
set to constant values as they have very little effect on the actual aerodynamic
performance. Including the two operational parameters Angle of Attack (AoA) and
Mach number, we have in total 10 input parameters for the meta-model.

For the creation of the meta-model, we use a computation chain as illustrated in
Fig. 2 that generates a mesh in GmSH based on the geometrical information

Fig. 1 Illustrations of sample realizations of the airfoils defined by the PARSEC parameters

Table 1 PARSEC-11 parameterization parameters

Parameter Description Minimum Maximum

rLE Leading-edge radius of curvature 0.005 0.00938
xu Upper surface max. thickn. location 0.36 0.45
zu Upper surface maximum thickness 0.045 0.057
zxxu Upper surface curvature at xu −0.555 −0.26
xl Lower surface max. thickn. location 0.3 0.56
zl Lower surface maximum thickness −0.058 −0.04
zxxl Lower surface curvature at xl 0.28 1.1
zTE Trailing-edge position −0.02 0.009
ΔzTE Trailing-edge thickness 0.005 0.0082
αTE Trailing-edge direction angle −0.13 −0.08
βTE Trailing-edge wedge angle 0.1 0.29
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derived from the PARSEC parameters. The computational mesh together with the
operational conditions is used to calculate the CFD result inside SU2.

In the current tests, we try to recover a highly nonlinear function from R10 to R2

based on a database of size 49,775, which is split into a learning database of size
44,797 (90% of the database) and a test database of size 4978 (the remaining 10% of
the database) using the following strategy:

• Explore the polynomials in 10 variables up to degree 100 using a hyperbolic
enumeration function that allows to favour low-dimension interactions upon the
full interactions.

• The parametric search includes a search for the best total degree and the best
hyperbolicity coefficient.

• For each coefficient (lift and drag), the best approximation is built using an
internal cross-validation based on the corrected leave-one-out cross-validation,
and the quality is assessed on the test database. The selection is done using the
corrected Q2 coefficient (variance of the residual over the initial variance of the
quantity to approximate).

The quality of the meta-model resulting from this approached can be assessed,
where a good agreement of the meta-model with the model on the test database is
shown (Fig. 3).

The meta-model for the lift coefficient is on the left, with a Q2 coefficient of
99.87% and a hyperbolicity exponent of q = 0.547, meaning that the coefficient is a
function of the geometric and environmental parameters that includes significant
interactions between the parameters. The total degree is 30, meaning that the
function is significantly nonlinear.

The meta-model for the drag coefficient is on the left, with a Q2 coefficient of
99.96% and a hyperbolicity exponent of q = 0.5, meaning that the coefficient is a
function of the geometric and environmental parameters that includes less inter-
actions between the parameters than for the lift coefficient. The total degree is 35,
meaning that the nonlinearity is more pronounced than for the lift coefficient.

In order to improve the performance of the SPCE algorithm, some improvements
have been implemented in the OpenTURNS software (cf. Table 2) such as paral-
lelization of the evaluation of the polynomial basis, OpenBLAS for a parallel

Fig. 2 Computation chain for the creation of the airfoil meta-model
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approach for the linear algebra part of the computations and a switch to the normal
equation instead of the QR decomposition to solve the least-squares problems.

Optimization of Wing Configuration

We aim to optimize the wing configuration of a generic passenger transport aircraft
sized similar to current generation short- to medium-range narrow-body aircraft,
taking into account uncertainties on design parameters and operational conditions to
account for the scatter of physical boundary conditions and system characteristics
(test case IC-02). Since the aim is to do the optimization in early phases of the
development process—where detailed information about the design do not yet exist
—a coarse approximation of the system performance based on a simplified wing
geometry is deemed sufficient, thus enabling for lower computational costs (Fig. 4).

Several options exist in order to simulate the flow over a three-dimensional wing
to compute lift and drag for a given configuration. Three important options can be
noted as compressible Euler equations, Navier–Stokes equations for Newtonian
fluids, and Prandtl lifting line theory. The first two options necessitate a full
three-dimensional simulation process making these options computationally costly.

Fig. 3 Assessment of the meta-model quality for the lift coefficient on the left and the drag
coefficient on the right

Table 2 Running time and speed-up with respect to the 1.2 version of OpenTURNS for the
sparse chaos meta-modelling step

OpenTURNS 1.2 OpenTURNS 1.3 OpenTURNS 1.4

Time (s) 43,040 19,089 2332
Speed-up 1 2.25 18.45
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In addition, one needs a detailed three-dimensional design description. As we
intend to do the optimization in early phases of the design process, this normally
does not yet exist.

The Prandtl lifting line theory is a one-dimensional simulation process that relies
on information from two-dimensional information on airfoil level (e.g. from 2D
CFD computations or a surrogate model). It is a linearized fluid model that enables
for an estimation of the lift and especially the lift-induced drag [7]. The so-called
Differentiated Lifting Line Method (DLLM) as a nonlinear lifting line method has
been developed that enables for the estimation of the wing’s lift, induced drag,
wave drag, friction drag, and viscous drag. In the nonlinear lifting line method, the
state variables are the induced angles of attack over discrete sections of the wing.

The text user interface of OpenTURNS is accessible via the Python program-
ming language. The implementation of the DLLM is based on pure Python, and
therefore, interaction between both codes can be implemented straightforward.
The DLLM code is called by the sequential Monte Carlo algorithm of Open-
TURNS (cf. section BPG I. Best Practices for Input Uncertainty Identification and
Quantification) as a “PythonFunction” within a “NumericalMathFunction” that
overrides the latter and delivers the results from the specified Python code.

The DLLM code acts as surrogate model to deliver an approximate solution for
the aerodynamic performance of the full three-dimensional wing configuration for a
given set of input parameters. A more detailed description of interfacing with
OpenTURNS can be found in the reference guide [1]. The DLLM code relies on
NumPy [8] and SciPy [9] for some general numerical methods and some visual-
ization tasks, so the whole computation chain is based on open source software.

We choose a probabilistic approach to model the uncertainties as this does not
lead to an overestimation of worst-case scenarios which is typical for domain-based
uncertainty formulations. We consider that the design variables may exhibit some

Span/2

Break chord

Tip chord

Root chord

Sweep angle

Break [%]

Fig. 4 Illustration of wing parameters for definition of simplified wing geometry
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kind of uncertainty which represents manufacturing tolerances or assembly effects,
for example.

In addition to the uncertainties of the design variables, we can consider that the
operating conditions exhibit some form of uncertainty as well. For example, the
environmental conditions underlie a natural form of physical scatter (temperature,
pressure, humidity) or the operating conditions are controlled by some kind of
control loop that relies on measured data. The random measurement error inevitably
leads to some uncertainty on these operating conditions (e.g. Mach number, alti-
tude, AoA).

Within the limited capability of the geometrical description of our simplified
model, the variation of the different sections’ twist angle enables for a simplified
modelling of manufacturing tolerances regarding the local aerodynamic properties
on airfoil level. A more detailed consideration of random geometry by means of
random fields (cf. book section “Uncertainties in Compressor and Aircraft Design”)
would require a fully detailed three-dimensional geometry representation which is
out of the scope here.

Our optimization objective is to minimize the drag for a given configuration
under cruise conditions as the cruise drag has a major influence on the overall fuel
consumption of an aircraft. Table 3 shows the operating conditions for the opti-
mization problem.

For the design variables of the optimization problem that fully describe the
simplified geometry according to Fig. 5, the initial values are chosen so they
approximately resemble the values of an Airbus A320 as a typical current gener-
ation short- to medium-range narrow-body aircraft. For each parameter, an opti-
mization range with lower and upper bound has been assigned as given in Table 4.

For the sequential Monte Carlo algorithm, the parameter setting is given in
Table 5. The solving of our optimization problem is done by the COBYLA algo-
rithm [10].

The inequality constraints of the chance-constrained optimization problem are
defined by two result quantities of the DLLM: a minimum value for the wings lift
and a minimum value for the wings reference surface.

The minimum value for the lift is a typical optimization constraint for aerody-
namic optimization problems as the optimized configuration must be able to pro-
duce enough lift for level flight during cruise conditions given a mass for the

Table 3 Operating
conditions in cruise case

Factor Quantity

Temperature (sea level) 15 °C
Pressure (sea level) 101,325 Pa
Humidity 0
Altitude 10,000 m
Mach number 0.8
Angle of attack 3.5°
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Fig. 5 Optimization result for chord length at break and tip for design variable uncertainty of
σ =0.2 (left) and σ =0.3 (right)

Table 4 Design variables initial values with lower and upper bound for optimization

Design variable Initial value Lower bound Upper bound

Span (m) 34.1 10 50
Sweep angle (°) 34 0 40
Break (%) 33 20 40
Root chord (m) 6.1 5 7
Break chord (m) 4.6 5 7
Tip chord (m) 1.5 1 4
Root height (m) 1.28 1 1.5
Break height (m) 0.97 0.8 1.2
Tip height (m) 0.33 0.2 0.5
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aircraft. In our case, the minimum lift is set to Lmin = 850,000 N resembling a
typical take of mass for this type of aircraft.

Typically, the aircraft wing is used to store a significant amount of fuel. To
account for this volume, we set a minimum value for the reference surface as
second inequality constraint with Sref = 120 m2. From a pure aerodynamic view,
the resulting optimum will always be located at the maximum allowable span and
sweep angle as this configuration will have the lowest drag and the highest lift over
drag. From a structural point of view, this type of wing is prohibitive of course as
we would not be able to design such a slender wing with a high sweep angle at
affordable costs.

Within this study, we do not have access to a corresponding structural com-
putation that we might use to get more sensible optimization results with these
design variables. For the optimization—taking into account uncertainties of design
variables and operating conditions—we restrict the design space to the three chord
lengths and the break value along the wing’s longitudinal axis. The other design
variables are fixed to their initial values given in Table 4.

The uncertainties are modelled as noise vector ξ= ξ1, ξ2, ξ3, ξ4ð Þ given by a joint
probability density of normally distributed ξ1, ξ2, ξ3, ξ4 for a set of standard devi-
ations σ = 0.1, 0.2, 0.3, 0.4, 0.5½ � for the design variables to illustrate the effect of
uncertainty on the location of the optimal design point.

As described above, we can assume that in addition to the uncertainties of the
design variables the operating conditions exhibit some form of uncertainty as well.
For this reason, we impose some normally distributed noise on the operating
conditions. We assume a normally distributed noise vector that is added to the
nominal Mach number with a standard deviation of σMach =5×10− 4. For the
temperature, we define σTemp =1 ◦C and for the pressure σPr =100 Pa. In order to
take into account local manufacturing tolerances on airfoil level, we define a nor-
mally distributed noise vector for the twist angle of each airfoil with a standard
deviation of σTwist =0.1◦. The effect of increased uncertainty for the design vari-
ables with constant uncertainty in the operating conditions is illustrated in Fig. 5.

For an increase in the design variables’ uncertainty, the sample size used to
model the uncertain parameters plays an important role (as can be seen by the
longer optimization path for increasing sample size on the right) and should be
taken into account when estimating the computational costs of a robust design
optimization study.

Table 5 Parameter setting
for sequential Monte Carlo
algorithm

Parameter Setting

NLHS 1000
N0 2
ε0 5 × 10−3

nlocal 100
nrobust 5
α 0.9
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Conclusion

In our opinion, the open architecture of open source software like for example
OpenTURNS provides a feasible environment to incorporate RDO at early stages of
the development into the design loop including different physics of interest without
additional licensing issues enabling for easier collaboration between departments
and risk share partners. This would enable for an incorporation of additional con-
straints to achieve more robust design under real-world scenarios as the proposed
non-intrusive approach does not exhibit any methodical restriction regarding the
design variables or optimization constraints.
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Uncertainty Quantification
in an Engineering Design Software
System

Dirk Wunsch, Rémy Nigro, Grégory Coussement and Charles Hirsch

Introduction

The UMRIDA project reached significant progress in the field of uncertainty
quantification (UQ) and robust design optimization (RDO). This is demonstrated by
the successful application of UQ and RDO to industrial challenges from the
UMRIDA database and clearly shows that the technology readiness level
(TRL) was significantly increased to a level of industrial applicability during the
project. However, UQ is still a new field to many design engineers and the com-
plexity and usability of UQ and RDO methods remain a challenge.

In order to reach a widespread application of these methods in industry, it seems
mandatory to reduce the user-experienced complexity of the tools as much as
possible and automatize the UQ toolchains. The UQ toolchain in FINETM [1] is
designed towards this goal and described in the following, emphasizing aspects
related to the user experience and usability.

Selection of Sparse Grid Level

As shown in chapter “Manufacturing Uncertainties in High-Pressure Compressors”,
multiple simultaneous uncertainties lead to an exponential increase in the number of
simulations that need to be run. This is the so-called curse of dimensionality. To
overcome this curse of dimensionality to a certain extent and make non-intrusive
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collocation methods accessible for multiple uncertainties, a sparse grid technique
was introduced. This method chooses the order of the underlying Lagrange inter-
polating polynomials in function of a “level”. The experience gained on the
application to several test cases showed that a level 1 sparse grid is sufficient, when
only the mean value and its standard deviation (or variance) are required. This is
notably the case for manufacturing uncertainties. A level 2 sparse grid is needed if
the full probability distributions of output quantities are required. Table 1 shows the
number of CFD runs required comparing the standard method with the introduced
sparse grid approach. Table 2 proofs at the example of five simultaneous uncer-
tainties applied to the rotor 37 (In this volume, chapter “UMRIDA Test Case
Database with Prescribed Uncertainties”), that the sparse grid is sufficiently accurate
with respect to the standard method. The selection of the sparse grid level is one of
the two required inputs from user side for a UQ simulation in FINETM.

UQ Simulation Set-up for Both Simultaneous Operational
and Geometrical Uncertainties

The identification and characterization of input uncertainties rely on expert
knowledge. The identification of the range of variability of the operating conditions
(boundary conditions) or the determination of the geometric variability must be
provided by the software user. The result of experimental measurements is often
provided in form of a mean value attached with error bars. This information can be

Table 1 Comparison of collocation points (CFD runs) required in function of needed output

Number of uncertainties Sufficient for mean and
variance

Sufficient for PDF shape

Basic Sparse grid Basic Sparse grid

1 3 3 5 5
2 9 5 25 17
3 27 7 125 31
4 81 9 625 49
5 243 11 3125 71
… … … … …

10 59,049 21 9.7 * 106 241

Table 2 Ratio of sparse over
basic method for estimation of
mean value and variance for
several output quantities
applied to the rotor 37

Sparse/basic Mean Variance

Mass flow rate (kg/s) 1.0001 0.9949
Total pressure ratio (–) 1.0000 1.0102

Isentropic efficiency (–) 1.0001 1.0047
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used to define the uncertain problem. As explained in chapter “Vision, Objectives
and Research Activities” of this volume, the shape of the input distribution matters
and has an influence on the solution.

The UQ software should ease the input of limited measurement data. If for
example only the minimum, maximum and mean values are known, a beta-PDF can
be defined on these grounds, and this process is automatized in FINETM. In addi-
tion, FINETM provides the possibility to enter different input PDF shapes for every
boundary condition or geometrical parameter selected. Figure 1 shows, on the
example of operational conditions, the selection process of boundary conditions for
UQ simulations. A simple check is needed. Figure 2 shows the equivalent selection
procedure for geometrical uncertainties based on a parametric model.

Independent of the choice of operational or geometrical uncertainties, the only
additional user input required is the definition of the distribution itself, as seen in
Fig. 3. A selection of predefined shapes such Gaussian or beta distributions is
available. In addition, user-defined distribution in form of profiles can be given as
input.

Once all input distributions are defined, the collocation points are generated and
the individual computations accounting for simultaneous operational and geomet-
rical uncertainties are generated automatically. This means that the boundary
conditions and geometrical parameter values are modified jointly, the geometries
are changed and re-meshed, the simulations are run and the UQ post-processing is
performed. All of this without any further user action in a fully automated chain.

Fig. 1 Selection of operational uncertainties in FINETM

Fig. 2 Selection of geometrical uncertainties in FINETM
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UQ Simulation Set-up for Manufacturing Uncertainties

In the case of manufacturing uncertainties, which are characterized by correlations
between the geometrical parameters or surface points, a covariance matrix needs to
be provided by the user. Figure 4 shows the selection of the surface that is to be
considered as a random field (uncertain surface) and Fig. 5 the definition the
covariance matrix. A principal component analysis is performed and the number of
modes that are retained are automatically calculated based on the reconstruction
accuracy defined by the user as shown in Fig. 5.

It is recommended to retain at least 99% of the surface reconstruction accuracy,
since one per cent error in the surface reconstruction translates into larger errors on
the prediction accuracy of the simulation output quantities, as described in chapter
“Non-intrusive Probabilistic Collocation Method for Operational, Geometrical, and
Manufacturing Uncertainties in Engineering Practice” of this volume. It was shown
that due to the small variability resulting from the manufacturing process (which

Fig. 3 Definition of input uncertainties

Fig. 4 Selection of surfaces to be considered as random fields
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necessarily lies within the defined tolerances) a level 1 sparse grid is usually suf-
ficient for the simulation of manufacturing uncertainties.

Once the correlations and reconstruction accuracy are defined, the process of
simulation set-up, geometry modification, simulation execution and post-processing
is automated in the same way as for combined operational and geometrical
uncertainties.

Application of the Automatized UQ Simulation Chain

Every UQ simulation consists of a given number of independent deterministic
simulations, which are set up as described above. For each of these simulations, the
correct geometry is built and meshed by keeping the number of cells and the global
mesh topology constant. Figures 6 and 7 illustrate, on the example of a varying
leading edge blade angle, the automatic mesh generation process. Figure 6 shows a
global view of the geometry while Fig. 7(left) shows the mesh generated with the
smallest leading edge blade angle and Fig. 7(right) the mesh generated with the
largest leading edge blade angle.

The UQ post-processing is automated, such that mean value and variance as well
as higher moments of output quantities are calculated without user interference for
all output quantities defined in the simulation set-up. This allows, if based on the
mean and variance, to plot results with ±σ (standard deviation) around the mean
value. The ±σ interval contains 68.3% of the values for a Gaussian distribution, and

Fig. 5 Set-up page for manufacturing uncertainties
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it therefore provides a range of confidence for the CFD results as shown in Fig. 8.
Figure 9 shows the automatically reconstructed PDF of the absolute total pressure
ratio based on the first for statistical output moments computed. Figure 10 shows
scaled sensitivity derivatives, which indicate how a quantity varies with a given
uncertainty.

Fig. 6 Global geometry view indicating constant radius cut with mesh visualization. Zoom in
Fig. 7

Fig. 7 (Left) Geometry and automatically generated mesh with smallest leading edge blade angle.
(Right) Geometry and automatically generated mesh with largest leading edge blade angle
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Fig. 10 Scaled sensitivity derivatives of output total pressure ratio for different uncertainties

Fig. 8 Absolute total pressure ratio over mass flow comparing deterministic results with results
from UQ simulation

Fig. 9 Reconstructed PDF of absolute total pressure ratio
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Conclusions

A fully automated UQ environment for engineering practice is developed in
FINETM. It is shown how to account in a very user-friendly way for simultaneous
operational, geometrical and manufacturing uncertainties in an engineering design
software. The user-friendliness is achieved by fully automating the process for
modifying geometry, meshing, CFD and UQ post-processing. The curse of
dimensionality is overcome to a certain extent by the use of sparse grids. A level 1
sparse grid is appropriate for estimation of mean value and standard deviation,
while a level 2 sparse grid is needed for an appropriate estimation of the PDF shape
of output quantities. The use of scaled sensitivities, which are part of the automated
post-processing, helps to understand the influence of individual uncertainties on the
solution. The reliability of a design can be assessed by building a domain of
confidence through PDF reconstruction. The same methodology is applicable to the
principal component analysis of manufacturing uncertainties, where only the
covariance matrix for the uncertain surfaces and the required reconstruction accu-
racy of the surface are required. Alternatively, correlations between design
parameters can be considered. This results in eigenmodes that need to be propa-
gated. The propagation of these modes and corresponding geometry modifications
are equally automated. For manufacturing uncertainties, generally, a level one
sparse grid is sufficient since the variability usually lies within tight manufacturing
tolerances. The proposed software system reduces the user-experienced complexity
of UQ to a minimum and makes it accessible in the daily engineering practice.
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Use of Automatic Differentiation Tools
at the Example of TAPENADE

Alain Dervieux

This section recalls what is automatic differentiation (AD) and explains how the AD

tool TAPENADE [6] is applied on the routines computing a functional (subject to a

state equation) in order to get new routines computing the second derivative of the

functional with respect to a specified parameter.

Automatic Differentiation

Given a program P computing a function 𝛷

𝛷∶ℝm → ℝn

u ↦ v
(1)

we want to build a program that computes the derivatives of 𝛷. Specifically, this pro-

gram should compute the derivatives of the dependent variables (i.e., some variables

in v) with respect to the independent variables (i.e., some variables in u). The pro-

gram P is a sequence of instructions I1,I2,… ,Ip that can be identified as a compo-

sition of functions, where each simple instructions Ik is a function 𝜙k∶ℝqk−1 → ℝqk .

Thus we see P ∶ {I1,I2,… ,Ip} as

u ↦ v = 𝛷(u) = 𝜙p ◦𝜙p−1 ◦⋯◦𝜙1(u)

and the derivative is obtained using the chain rule
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𝜕𝛷

𝜕u
(u) = (𝜙′

p ◦𝜙p−1 ◦⋯◦𝜙1(u))⋅

⋅ (𝜙′
p−1 ◦⋯◦𝜙1(u))⋅

⋅ ⋯ ⋅

⋅ 𝜙′
1(u)

or in a more compact way

𝜕𝛷

𝜕u
(u) = 𝜙

′
p(wp−1)𝜙′

p−1(wp−2)⋯𝜙
′
1(w0)

wherew0 = u andwk = 𝜙k(wk−1). We note here that if we are not interested in the full

Jacobian (that is expensive because its computation would involve matrix-by-matrix

multiplications), we can compute the derivatives along a given direction (Gâteaux

differentiation) using matrix-by-vector multiplications.

The Tangent mode applied to a routine computing 𝛷 produces another routine

computing, from u and from an arbitrary direction u̇ (of same dimension as u), the

derivative in direction u̇:

u, u̇ ↦
𝜕𝛷

𝜕u
(u)u̇ = 𝜙

′
p(wp−1)𝜙′

p−1(wp−2)⋯𝜙
′
1(w0)u̇ (2)

In order to use matrix-by-vector multiplications, the obtained routine computes the

derivatives in the same order as the initial routine computes the original values (right

to left in Eq. (2)). We note that tangent mode delivers only one real number if 𝛷 is

a real valued functional.

The Reverse mode when applied to the previous initial routine computing 𝛷

produces a routine which computes, from u and from an arbitrary direction v̄ (of

same dimension as v), the following product of same dimension as u:

u, v̄ ↦
(
𝜕𝛷

𝜕u
(u)

)∗

v̄ = 𝜙
′∗
1 (w0)𝜙′∗

p−1(wp−2)⋯𝜙
′∗
p (wp−1)v̄. (3)

To use matrix-by-vector multiplications, we need to store (or to recompute) the inter-

mediate results wk and using them in reverse order. For a functional of n variables,

the routine produced by the reverse mode delivers n numbers and to compute the

gradient of the functional, it can be (at least theoretically) n times more efficient

than the tangent mode.

To better understand how AD works, we introduce a special notation (similar in

some way to the notation in [5]) that will help us for a correct implementation. First

of all, we assume that the function

f∶ ℝnx ×ℝny → ℝm

(x, y) ↦ f (x, y)
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is implemented by the routine func(f,x,y), where x and y are the variables that

should contain the x ∈ ℝnx and y ∈ ℝny respectively, and f is the variables where

will be stored the result f (x, y) ∈ ℝm
(i.e., func(f,x,y) is a “subroutine” in FOR-

TRAN language or a “void function” in C/C++ terminology).

For differentiation, we need to know which are the independent variables (that

are input parameters of the function) and which are the dependent variables (out-

put parameters). For the simplicity of our explanation, we assume that no variable

is at the same time an input and an output. In our notation, we use an arrow over

any parameter containing the independent variable and an arrow under any param-

eter containing the dependent variable, thus, if we want to specify that the routine

func(f,x,y) (implementing the function f (x, y)) has f as output and x, y as input

we write

func(f
↓
,

↓
x,

↓
y) (4)

Furthermore, if we would specify that the function is evaluated with some specific

values x = x0 and y = y0 we shall write

func( f
f (x0,y0)

,
x0
x,

y0
y)

where the value written over a parameter means “value taken by the input variable”

and the value under a parameter means “value stored in the output variable.”

The last step is to specify which mode, tangent or reverse, we use for differen-

tiation and study the output generated by the AD tool (TAPENADE in our case)

that performs the differentiation required. First of all, we must keep in account that

for each independent variable with respect to which we differentiate, we shall have

a correspondent dual variable that will be of the same kind (input) if we use tan-

gent mode, and of the opposite kind (output) if we use the reverse mode. The same

thing happens for the dependent (output) variables: the dual variables will be output

variables in the case of tangent mode and input variables for reverse mode.

Using the notation previously introduced, tangent mode differentiation for the

case (4) respect all the independent variables x and y gives us

func_d(f,fd,x,xd,y,yd)

where the new parameters fd (output), xd (input) and yd (input) are the dual vari-

ables of f, x, and y (the d character after the variables and function name means

“dot”). If we give at the new input parameters xd and yd the values ẋ ∈ ℝnx and

ẏ ∈ ℝny , respectively, we obtain

func_d( f
f (x0,y0)

, fd
𝜕f
𝜕x
ẋ+ 𝜕f

𝜕y
ẏ
,
x0
x,

ẋ
xd,

y0
y,

ẏ
yd)
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where the output parameter fd contains the value ḟ = 𝜕f
𝜕x
ẋ + 𝜕f

𝜕y
ẏ with ḟ ∈ ℝm

(and

the derivatives
𝜕f
𝜕x

and
𝜕f
𝜕y

are both evaluated at (x0, y0)).
Reverse mode differentiation of (4) gives us

func_b(f,fb,x,xb,y,yb)

where now we have a new input parameter fb and two new output parameters xb
and yb (the b character after the variables and function name means “bar”). Storing

the value f̄ ∈ ℝm
in the parameter fb, we obtain

func_b( f
f (x0,y0)

,
f̄
fb,

x0
x, xb(

𝜕f
𝜕x

)∗
f̄
,
y0
y, yb(

𝜕f
𝜕y

)∗
f̄

),

i.e., the output parameters xb and yb will contain the values x̄ =
(
𝜕f
𝜕x

)∗ f̄ and ȳ =(
𝜕f
𝜕y

)∗ f̄ , respectively, (with x̄ ∈ ℝnx , x̄ ∈ ℝny and the derivatives
𝜕f
𝜕x

,
𝜕f
𝜕y

both evaluated

at (x0, y0)).
For the case where we are differentiating with respect to only some independent

variables (e.g., x), we obtain for tangent mode

func_dx_d( f
f (x0,y0)

,fd
𝜕f
𝜕x
ẋ
,
x0
x,

ẋ
xd,

y0
y) (5)

and for reverse mode,

func_dx_b( f
f (x0,y0)

,
f̄
fb,

x0
x, xb(

𝜕f
𝜕x

)∗
v
,
y0
y) (6)

where the suffix _dx means that the differentiation is performed with respect to only

the independent variable x.

It interesting to note here that if we need to solve a linear system A𝜉 = b where

A = 𝜕f
𝜕x

or A =
(
𝜕f
𝜕x

)∗
and b is a known vector, we can do it without storing the matrix

A. This can be done by using the so-called matrix-free iterative algorithms (like

GMRES, see e.g. [11]) that do not need to know the matrix A, but only its effect

on a given vector 𝜉i, i.e., the matrix-by-vector multiplication A𝜉i. With the analysis

done to study the result of AD on a routine, we could perform this multiplication

using the derivatives (5) or (6) obtained by AD. To be more clear, given a general

GMRES routine, we need to replace any matrix-by-vector occurrence of the kind A𝜉i
with the corresponding routine (5) or (6), depending on the definition of A: we shall

use the tangent mode derivative (5) if A = 𝜕f
𝜕x

and the reverse mode derivative (6) if

A =
(
𝜕f
𝜕x

)∗
.
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Second Differentiation with Tangent-on-tangent Option

This method was initially investigated by Ghate and Giles [12] along with various

other algorithms, but the publication does not go into the implementation details for

a generic fluid dynamic code. Here, we present the mathematical background behind

the idea and the efficient AD implementation of [4] but with a different analysis of

the computational cost.

Theory

We are interested by obtaining the second derivatives of a functional j depending of

𝛾 ∈ ℝn
and expressed in terms of a state W ∈ ℝN

as follows:

{
𝜓(𝛾) = 𝛹 (𝛾,W(𝛾)) = 0
j(𝛾) = J(𝛾,W(𝛾)) .

(7)

We apply twice the differentiation with respect to the variable 𝛾k obtaining

d2j
d𝛾id𝛾k

= D2
i,kJ +

𝜕J
𝜕W

d2W
d𝛾id𝛾k

(8)

where

D2
i,kJ = 𝜕

𝜕𝛾

(
𝜕J
𝜕𝛾

ei

)
ek +

𝜕

𝜕W

(
𝜕J
𝜕𝛾

ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕J
𝜕𝛾

ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕J
𝜕W

dW
d𝛾i

)
dW
d𝛾k

.

Similarly, we get

D2
i,k𝛹 + 𝜕𝛹

𝜕W
d2W
d𝛾id𝛾k

= 0 (9)

where

D2
i,k𝛹 = 𝜕

𝜕𝛾

(
𝜕𝛹

𝜕𝛾
ei

)
ek +

𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ei

)
dW
d𝛾k

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
ek

)
dW
d𝛾i

+ 𝜕

𝜕W

(
𝜕𝛹

𝜕W
dW
d𝛾i

)
dW
d𝛾k

.

Substituting the second derivatives of the state with respect to the control variables

d2W
d𝛾id𝛾k

in Eq. (8) from Eq. (9) we get

d2j
d𝛾id𝛾k

= D2
i,kJ −

𝜕J
𝜕W

(
𝜕𝛹

𝜕W

)−1

D2
i,k𝛹

= D2
i,kJ − Π∗

0D
2
i,k𝛹

(10)
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where Π0 is the solution of the adjoint system evaluated at the point (𝛾,W(𝛾)) solu-

tion of the state equation 𝛹 (𝛾,W) = 0.

The n derivatives
dW
d𝛾i

should be computed (and stored) using tangent mode differ-

entiation of the nonlinear solver algorithm, and each derivatives costs n
iter,T𝛼T . If we

need the full Hessian matrix, we have to evaluate the quantity (10) n(n + 1)∕2 times,

i.e., we have to evaluate the terms D2
i,k𝛹 and D2

i,kJ for i = 1,… , n and j = i,… , n
due to the symmetry of the Hessian, and each evaluation of D2

i,k𝛹 costs 𝛼
2
T (the eval-

uation of D2
i,kJ is negligible with respect to D2

i,k𝛹 ). Therefore, the full Hessian costs

n𝛼T [niter,T + (n + 1)𝛼T∕2]. With similar arguments, if we want to compute only the

diagonal part of the Hessian, the cost is n𝛼T [niter,T + 𝛼T ].

Implementation Details

Let us suppose that the subroutine computing the state residual equation 𝛹 (𝛾,W) is

state_residuals(psi,gamma,w), where the input variables are gamma and

w, and the output variable is psi.

𝚜𝚝𝚊𝚝𝚎_𝚛𝚎𝚜𝚒𝚍𝚞𝚊𝚕𝚜(𝚙𝚜𝚒
↓
,

↓
𝚐𝚊𝚖𝚖𝚊,

↓
𝚠)

If we perform a differentiation in tangent mode with respect to the input variables

𝚐𝚊𝚖𝚖𝚊 and 𝚠, we have

𝚜𝚝𝚊𝚝𝚎_𝚛𝚎𝚜𝚒𝚍𝚞𝚊𝚕𝚜_𝚍(𝚙𝚜𝚒
↓
, 𝚙𝚜𝚒𝚍

↓
,

↓
𝚐𝚊𝚖𝚖𝚊,

↓
𝚐𝚊𝚖𝚖𝚊𝚍,

↓
𝚠,

↓
𝚠𝚍)

where 𝚐𝚊𝚖𝚖𝚊𝚍 = 𝛾̇ , 𝚠𝚍 = Ẇ are input variables and 𝚙𝚜𝚒𝚍 =
(
𝜕𝛹

𝜕𝛾

)
𝛾̇ +

(
𝜕𝛹

𝜕W

)
Ẇ is an

output variable.

Now we differentiate in tangent mode the output variable 𝚙𝚜𝚒𝚍 with respect to

𝚐𝚊𝚖𝚖𝚊 and 𝚠, obtaining

𝚜𝚝𝚊𝚝𝚎_𝚛𝚎𝚜𝚒𝚍𝚞𝚊𝚕𝚜_𝚍_𝚍(𝚙𝚜𝚒
↓
, 𝚙𝚜𝚒𝚍

↓
, 𝚙𝚜𝚒𝚍𝚍

↓
,

↓
𝚐𝚊𝚖𝚖𝚊,

↓

𝚐𝚊𝚖𝚖𝚊𝚍𝟶,
↓

𝚐𝚊𝚖𝚖𝚊𝚍,
↓
𝚠,

↓

𝚠𝚍𝟶,
↓
𝚠𝚍)

(11)

where 𝚐𝚊𝚖𝚖𝚊𝚍𝟶 = ̇𝛾0, 𝚠𝚍𝟶 = Ẇ0 are input variables and

𝚙𝚜𝚒𝚍𝚍 = ̇̇
𝛹 = 𝜕

𝜕𝛾

(
𝜕𝛹

𝜕𝛾
𝛾̇

)
̇𝛾0 +

𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
𝛾̇

)
Ẇ0 +

𝜕

𝜕W

(
𝜕𝛹

𝜕𝛾
̇𝛾0

)
Ẇ + 𝜕

𝜕W

(
𝜕𝛹

𝜕W
Ẇ
)
Ẇ0

is an output variable.
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In order to evaluate the term D2
i,k𝛹 , we must call the routine (11) with the right

arguments, that is:

𝚜𝚝𝚊𝚝𝚎_𝚛𝚎𝚜𝚒𝚍𝚞𝚊𝚕𝚜_𝚍_𝚍(𝚙𝚜𝚒
𝛹

, 𝚙𝚜𝚒𝚍
𝛹̇

, 𝚙𝚜𝚒𝚍𝚍
̇̇
𝛹

,
𝛾

𝚐𝚊𝚖𝚖𝚊,
ek

𝚐𝚊𝚖𝚖𝚊𝚍𝟶,
ei

𝚐𝚊𝚖𝚖𝚊𝚍,
W
𝚠,

dW
d𝛾k

𝚠𝚍𝟶,
dW
d𝛾i
𝚠𝚍)

where

𝚙𝚜𝚒𝚍𝚍 = ̇̇
𝛹 = D2

i,k𝛹

and where ei (ek) is the usual vectors of the canonical basis with 1 at the i-th (k-th)

component and zero otherwise. The derivative of the state variables respect to the

control
dW
d𝛾i

is obtained as solution of the linear system
(
𝜕𝛹

𝜕𝛾i

)
+
(
𝜕𝛹

𝜕W

) dW
d𝛾i

= 0.

The same previous argument applies to the evaluation of the term D2
i,kJ. In this

case, we perform a tangent-on-tangent derivative of the routine

𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗𝚊𝚕(𝙹
↓
,

↓
𝚐𝚊𝚖𝚖𝚊,

↓
𝚠)

and we get

𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗𝚊𝚕_𝚍_𝚍(𝚓
J
, 𝚓𝚍

J̇
, 𝚓𝚍𝚍
D2

i,kJ
,

𝛾

𝚐𝚊𝚖𝚖𝚊,
ek

𝚐𝚊𝚖𝚖𝚊𝚍𝟶,
ei

𝚐𝚊𝚖𝚖𝚊𝚍,
W
𝚠,

dW
d𝛾k

𝚠𝚍𝟶,
dW
d𝛾i
𝚠𝚍)

where the evaluation of D2
i,kJ will be in the variable jdd.

It is useful to note that the n derivatives of the state with respect to the control
dW
d𝛾i

must be evaluated and stored before any evaluation of D2
i,kJ or D2

i,k𝛹 . If the number

of the state variables N and/or the number of the control variable n are high, the

previous strategy could be not applicable. One possible solution for this problem

could be to store the vectors
dW
d𝛾i

into the hard disk instead of keeping them into the

RAM, but this strategy will have some negative impact on the performance of the

computation due to the I/O overhead.

Numerical Experiments

The interest of this approach is briefly illustrated by the building of the drag response

surface for a particular wing shape of business aircraft (courtesy of Piaggio Aero

Ind.), for a transonic regime. See the shape and the mesh in Fig. 1. The nomi-

nal operational conditions are defined by the free-stream Mach number M∞ = 0.83
and the incidence 𝛼 = 2◦. We suppose that only these two quantities are subject to
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Fig. 1 Wing shape and mesh in the symmetry plane

Fig. 2 Drag coefficient versus Mach number and angle of attack (first-order spatial accuracy) for

the transonic wing: nonlinear simulations (first image), percentage relative difference between the

nonlinear simulations and the second-order Taylor approximation (second image). For the top plot,

we have solved 21 × 21 nonlinear systems 𝛹 = 0

random fluctuations. For simplicity, we assume that their PDF is Gaussian with given

mean and variance. The mean values correspond to the nominal values. The section

of the initial wing shape corresponds to the NACA 0012 airfoil.

For the present work, due to the fact that we consider only two uncertain variables,

we used a ToT approach for the Hessian evaluation. The accuracy of the second-order

response surface obtained with the differentiated software is not different from the

one obtained in other works, such as those of Ghate and Giles [3] who, by the way,

also used TAPENADE, but on a different CFD software and for a different CFD

case. We illustrate the accuracy obtained with our example in Fig. 2. The direct

evaluation required 21 × 21 nonlinear simulations. The second-order approximation

required only one nonlinear state equation 𝛹 = 0 plus 4 linear systems using ToT.

Relative error is less than 2%. Using only first derivatives produces an error of 16%.

Let us mention that this method compares also well with Kriging methods as was

demonstrated in the comparison paper [8] (Fig. 3).
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Fig. 3 First-order (first image) and second-order (second image) Taylor approximation around

𝛼 = 2◦ and M = 0.83; For the first- and second-order Taylor approximation, we have solved only

one nonlinear system

Concluding Remarks

This section has presented the main lines of the implementation of the second dif-

ferentiation of a functional subject to a state equation. Many other informations con-

cerning the method and concerning application to robust optimization can be found

in [1, 2, 7–10].
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Formulations for Robust Design
and Inverse Robust Design

Alberto Clarich and Rosario Russo

Best Practice for Robust Design

The classical approach to solve a Robust Design Optimization problem is based on
the definition of a multi-objective optimization problem, consisting generally in the
optimization of the mean value of the performances and on the minimization of
their standard deviation [1]. The drawback of this methodology is the high number
of simulations generally required to solve a multi-objective optimization problem,
whatever optimization algorithm is selected.

For this reason, in the course of UMRIDA project we have developed and
applied a different methodology, which is based on the Reliability Design Opti-
mization approach [2]. This methodology is based on the typical requirement of
aeronautical or industrial practice of defining constraints or objectives on the per-
centiles of some performances distribution, like the minimum value of lift or
momentum for an airfoil, or the maximum value of drag. It is in other words
required to limit the worst stochastic performance below the desired limit which
may be prescribed by any normative, or elsewhere to improve the worst stochastic
performance as an optimization objective.

It emerges clearly that if we are able to convert a two-objective optimization
problem (optimize mean and minimize standard deviation of any performance) into
a single objective one (optimize worst stochastic performance), we can reduce
drastically the number of simulations required to obtain the optimal results.

The way the “worst” stochastic performance can be defined may depend on a
prescribed normative (for instance, this is a typical requirement for automotive
industry that requires a given percentile of injury criteria during crash-tests to be
below a safety threshold), or can be arbitrary defined as an objective (following a
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Six Sigma rule, we may identify the 99.97‰ of a performance parameter to be
minimized, such as a drag coefficient, or a 0.03‰ of a performance parameter to be
maximized, such as a lift coefficient).

Normally, in literature the reliability analysis often implements methodologies
like FORM or SORM that evaluate the failure probability of any candidate design
on the basis of its uncertainties distribution and of the given limits to be respected.
One limit of this methodology can be represented by the high number of evalua-
tions that may be required by the algorithm to compute the failure probability with
accuracy, which makes often practically unfeasible its application to optimization
problems of industrial relevance, in particular, when the computational time
required for each evaluation is very expensive.

The methodology that we have developed instead just requires the computation
of the needed percentile from a large Monte Carlo population evaluated directly
using the Polynomial Chaos expansion of the requested performance. This
methodology takes advantage of the small sampling that is required to compute the
Polynomial Chaos coefficients, so that the number of numerical simulations is
limited to the samples required for its UQ (that as discussed in chapter “Reduced
Basis Methods Using Regression Based Polynomial Chaos” can be drastically
reduced by the application of Adaptive Sparse Collocation methods).

Finally, the single-objective optimization problem can be efficiently solved
applying any optimization algorithm, such as the Nelder–Mead Simplex, or a
genetic algorithm which could be more robust but requiring an higher number of
design simulations.

For this reason, the proposed reliability optimization approach based on Poly-
nomial Chaos exploitation for the computation of percentiles, guarantees high
efficiency both in terms of quality of results, and in terms of computational cost,
whatever is the industrial field of application.

In the following paragraph, we illustrate the efficiency of the methodology by
analyzing the test case results developed during UMRIDA, giving an indication of
the applicability range based on the outputs which may be reachable and the costs
(in terms of engineering and CPUh); in addition, an indication of the industrial
reproducibility of the methodology outside aeronautics, will also be depicted.

Efficiency and Applicability of Robust Design Formulation

In order to assess the efficiency of the Reliability-based Robust Design Formula-
tion, we report the results of the test case IC-06 elaborated during UMRIDA project
[3], and fully described in chapter “Surrogate Model Based Approaches to UQ and
their Range of Applicability” of this Appendix.

The object of the optimization problem is an acoustic panel of a typical regional
jet engine inlet produced by Alenia Aermacchi (AAEM) integrating an acoustic
liner to reduce noise emissions. The objective is the noise attenuation at certified
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flight conditions (approach, take-off, or cut-back) in the far field surrounding the
nacelle.

Geometrical uncertain parameters are indicated in Table 1. The table includes
also the distribution type and properties of the uncertainties, as they have been
quantified during UMRIDA project using the distribution fitting tool of mode-
FRONTIER, and the range of variation that has been considered for the opti-
mization problem.

These parameters are entered into a proprietary impedance model together with
values depending on flight condition to produce the admittance to be applied to the
acoustic liner in the computational acoustic code.

Simulations have been performed with ACTRAN software from FFT, on an
axisymmetric model of about 30,000 quadratic elements; the level of refinement of
the mesh being enough to resolve the frequencies considered and could be even-
tually refined to gain accuracy despite increase in computational costs. The simu-
lation time to complete one configuration design was about 2 min for each flight
condition running in parallel on eight cores of a computational node of AAEM’s
AAHPC.

As a cost function, we have used a simple metric function: the overall sound
pressure level (OASPL). In fact, noise radiating from an inlet is tonal and therefore
at the blade passage frequency (BPF) and its harmonics higher sound levels are
propagated. In this view, a liner should be optimized to attenuate the noise mainly
at these frequencies. This objective function uniformly sums over the directivity
angles and over frequencies the sound pressure level (SPL) which is a function of
the frequency, the root mean square of the acoustic pressure of the duct radial and
azimuthal modes computed and directivity angle at a distance of 150 ft. All the
ACTRAN simulations were performed at two frequencies: the BPF and its first
harmonic 2BPF; finally, the range of directivity used in this work is 50°–80°;
considered the most critical for the take-off condition.

To set up the complete process flow, from the automatic simulation analysis to
the algorithm implementation, a workflow has been implemented in mode-
FRONTIER software. As a first proof of concept, we first define an optimization
problem where only one criterion is considered, i.e., a single OASPL signal, cor-
responding to the 50°–80° integral of noise pressure levels, related to a single flight
condition (take-off).

Taking advantage of the Adaptive Sparse Collocation method (chapter “Reduced
Basis Methods Using Regression Based Polynomial Chaos”), we can perform an

Table 1 Summary of uncertain parameters and their range of variation

Uncertainty Distribution type Standard deviation Range of variation

Cell depth Normal 1.5069E−2 10–18 mm
Sheet thickness Normal 2.2625E−2 0.7–1.35 mm
Hole diameter Normal 1.2803E−2 1–2.5 mm
Percentage of open area Normal 1.0815E−3 3–15%
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efficient UQ of the signal using just 15 sample points for each design proposed by
the optimization.

In order to compare the proposed methodologies, we have defined a total (target)
number of designs to be evaluated equal to 50, which corresponds to a total number
of cpu hours of about 240 (50 designs × 15 samples × 2.30/60 h × 8 cpus). We
can estimate that in case of 10 uncertainties, due to the additional effort required by
the Polynomial Chaos UQ, the total number of cpu hours could be 4 times higher
(since the minimum number of samples required by a Polynomial Chaos expansion
of order 2 moves from 15 to 66 passing from 4 to 10 uncertainties); therefore, we
would reach a total of 1,000 cpuh to solve a 10 uncertainties problem, which is an
acceptable requirement for the industrial practice.

The reliability-based approach requires the definition of a single objective, the
minimization of the 99.97‰ of the OASPL_50–80 signal response; therefore, we
have applied the simplex single-objective algorithm of modeFRONTIER defining
50 total iterations. The performance of the best design is reported in Table 2.

These results are compared with the one obtained by the classical approach, i.e.,
the multi-objective optimization of mean and standard deviation of OASPL_50–80
(both to be minimized applying MOGAII Genetic Algorithm of modeFRONTIER
[2]). In this case, only five generations of ten designs each one has been evaluated,
which is generally a small number to expect important results from. In fact, even if
the mean value of OASPL is practically the same, 120.4 dB, the best standard
deviation is higher (6.79E−5 instead of 5.55E−5) than the one obtained by the
single-objective approach, confirming the higher efficiency of the reliability-based
approach.

On the other side, if we continue the multi-objective optimization considering a
total of 20 generation (i.e., a total of 200 design evaluations), as reported in Table 2
we may expect a relative improvement of the standard deviation objective (about
1.8%), which is however paid by a total cost of cpu hours 4 times greater.

If this additional cost could be acceptable in the test case considered, charac-
terized by 4 uncertainties only, it would not be acceptable in case of an higher
number of uncertainties, such as 10, for which the compromise solution obtained by
the reliability approach may be more convenient.

To generalize the results, in UMRIDA project also a more demanding opti-
mization problem has been considered, including as objectives the OASPL signals

Table 2 Comparison of best designs performances obtained in different approaches

RDO
approach

Mean of
OASPL

Standard
deviation of
OASPL

99.97‰ of
OASPL

Cpu hours 4 uncertainties–
projection for 10* (cpuh)

1 obj 50 des 120.4 5.55E−5 120.42323 240–960
2 obj 50 des 120.4 6.79E−5 120.42324 240–960
2 obj 200 des 120.4 4.95E−5 120.42309 960–3840
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corresponding to three different flight conditions (take-off, approach, and cut-back).
In order to keep the advantages of the single-objective reliability-based approach, in
such cases when the different criteria to be optimized are homogenous, it is con-
venient to sum all the criteria into a single objective (in this case, the average of the
OASPL signals measured for each flight condition). Since the sum of objectives
may penalize one of them, it is advised to include one additional constraint for each
objective, for instance, to guarantee a performance not lower than one of the
baseline configuration, for each of the criteria considered.

In formulas, we get:

• 99.97‰ of OASPL_app to be lower than 123.35278 (baseline)
• 99.97‰ of OASPL_cbk to be lower than 120.00368 (baseline)
• 99.97‰ of OASPL_tko to be lower than 121.90074 (baseline)
• Minimize (99.97‰ of OASPL_app + 99.97‰ of OASPL_cbk + 99.97‰ of

OASPL_tko)/3.

For this application, a simplex algorithm can be used to reach a convergence
threshold quite satisfactory even after 20–50 designs (as noted above), either a
genetic algorithm could be applied to improve slightly the results (about 0.1%) after
50–100 designs. Reporting the results of the second approach, in Fig. 1 the baseline
configuration (ID 0) is highlighted, as well as one of the optimal solutions chose, ID
89, that improves of over 1% all the three criteria with respect to the baseline
configuration.

Fig. 1 Optimization results (OASPL percentiles at three flight conditions)
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The improvement may be considered small, but it has to be considered that the
sensitivity of the parameters to the response function is very small, and that the
selection of the best design is always a trade-off between each criterion: The
marginal improvement of each criterion separately may in this case reach 6–7%. In
this way, if we decide that one criterion is most important than another (for
instance, the approach flight condition), we can select the optimal design in order to
get a greater improvement of the most important criteria (in this case, of 5%), with a
contained loss of performance for the other criteria (in this case, less than 1%).

Also in case of heterogeneous criteria (such as for instance drag coefficient and
lift coefficient of an airfoil), it is recommended to reduce as far as possible the
number of objective functions, possible to one only (in this case, drag minimization
may be more convenient), keeping the other criteria as constraints (lift and
momentum coefficients to be respectively greater than and lower than the baseline
ones), the same approach that has been followed in [2].

About the applicability of this methodology outside the range of UMRIDA
applications (aeronautics), it is worth to remember that Reliability-based Robust
Design Optimization is a practice already common in several industrial fields, in
particular automotive, as it can be proved by several ESTECO’s customer of
modeFRONTIER software [4].

In the automotive industry, a typical problem could be, for instance, represented
by crash safety analysis: The safety restraint system should guarantee in case of
impact an acceleration value on different parts of the human body less than a critical
limit (NCAP normative), and of course the lower is the percentage of the crashes for
which the accelerations violate this limit (considering a stochastic distribution due
to the uncertainties of the system), the better is the reliability of the system [5].

Another typical industrial requirement could be related to manufacturing toler-
ances: Performance of the product should respect any prescribed limit or threshold
(and here the advantage of reliability approach), under the distribution of the
manufacturing tolerances [6].

To conclude the analysis in Fig. 2, we report a simplified function, expressing
the number of simulations (samples) required at the variation of number of
uncertainties and number of variables. The function is based on the assumption that
the number of samples for the UQ of the response is given by the minimum number
of samples for a Polynomial Chaos expansion of order 2 (and the application of
Adaptive sparse methods may reduce further this number), and that to solve a
single-objective optimization problem, an empirical rule of 5 × n (with n number
of variables) number of design evaluations could be enough to obtain a good
convergence.

As for the main target of UMRIDA, to solve a Robust Design Optimization
Problem of ten uncertainties by a computational effort of 1,000 cpuh (100 h on 10
CPUs cluster), limiting the number of design variables to 10 (that could coincide
with the same uncertain parameters or not necessarily), we may require a number of
simulations around 3,000: It is therefore expected to have numerical models enough
accurate that can require about 1/3 cpuh. If this requirement is not allowable, the
solution is to reduce the number of uncertainties (eventually using one of the

770 A. Clarich and R. Russo



screening methods described in chapter “Reduced Basis Methods Using Regression
Based Polynomial Chaos”), or to reduce the number of optimization parameters, to
the ones that are still most important in the process.

Best Practice for Reverse Robust Design

The motivation of R-MORDO (Reverse-Multi-Objective Robust Design Opti-
mization) methodology, called also Tolerance Design, comes basically from eco-
nomic reasons in industrial production.

To improve the quality of a product it is necessary to avoid excessive warranty
costs, derived mainly by the failures typical when the product is not designed taking
into account any uncertainty in the process, i.e., without performing a Robust
Design Optimization (RDO). At the same time, however, an excessive care of the
uncertainties could drive to very restrictive solutions, i.e., solutions that do not
allow the input parameters to vary but within very small tolerances, causing the
production costs go higher.

A optimal solution can be a trade-off design that can be obtained following two
different objectives: optimize the mean performances under the given constraints
(RDO objective), and maximize the standard deviation or tolerance of the input
variables at the same time.

In fact, if we are able to optimize the performance distribution of the design
configuration and respect the given constraints by a solution whose manufacturing
or operational tolerances are higher than the baseline model, it means that we are
able to obtain the needed performance by a lower production cost.

The way a problem of this kind can be treated is not dissimilar from a Generic
Robust Design Problem (for which the best practice is the application of Adaptive
Sparse Polynomial Chaos for the uncertainties quantification, and definition of a
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single-objective function with additional constraints on other criteria [7]), with the
difference that one of the criteria to be treated is the value of the tolerances (main
parameter of the uncertainties distribution, which can be for instance the standard
deviation of a normal distribution, or the range of a uniform or a beta), which has to
be optimized or to be constrained (if we want to privilege another criteria to be
optimized and keep the tolerances over a desired value).

As an example of application, as it will be discussed in next section, we could
define as objective the maximization of the manufacturing tolerances of an airfoil,
keeping as constraint the extreme percentile values of the aerodynamic perfor-
mances (99.97‰ of drag and momentum, and 0.03‰ of lift). The results of the
optimization would be read as the reproduction of the desired performances
(baseline), by an higher tolerance on the uncertainties, therefore a reduced manu-
facturing (and maintenance, when, for instance, also operational uncertainties are
considered) costs.

Conversely, one might prefer to optimize the percentile performances (therefore,
maximizing 99.97‰ of drag with constraints on lift and momentum), keeping a
constraint on the tolerances, less tight than the baseline solution.

In every case, a very important factor to consider is how to couple together
tolerances coming from several uncertainties, generally coming from heterogeneous
quantities, and even different type of distributions. Since the definition of separate
objectives (one for each tolerance) may increase drastically the simulation costs, as
discussed in previous chapter, it is recommended to define a single-objective
function, defining a tolerance factor which could then be used for each separate
uncertainty to get the tolerance value from a scale range (from minimum to max-
imum tolerance). In the next section, we illustrate by an example of application how
this procedure could be implemented, and which results can be obtained, also in
terms of computational costs and applicability coverage.

Efficiency and Applicability of Reverse Robust Design
Formulation

As application case for Reverse Robust Design, we selected the RAE2822 airfoil
test case [4].

The baseline airfoil model is a RAE2822, with nominal Mach number equal to
0.734 and angle of attach equal to 2.79°, Reynolds number equal to 6.5E6. The
uncertainties considered are three, and precisely:

• Thickness (σ = 0.005), Normal distribution
• Mach (σ = 0.005), Normal distribution
• angle (σ = 0.1), Normal distribution.
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Simulations have been performed through FINE/Open software from
NUMECA, with a full turbulent (Spalart-Allmaras model) model of about 6 mil-
lions of cells; the level of refinement of the mesh is very accurate, because it is
important to reduce the effect of numerical uncertainties, which are not considered
in the problem. The simulation time to complete one configuration design on a
2-cpu core is about 1 h.

The simulation model has been implemented in modeFRONTIER software from
ESTECO, to guarantee an automatic execution of the optimization processes. The
airfoil shape is automatically modified using a Bezier curve, a parametric curve that
remains continuous and regular at the variation of the control point position. In our
case, four control points are used for both the two Bezier curves, to be added
respectively on the upper profile and to the lower profile of the RAE2822 airfoil to
modify its shape [5].

For each of the aerodynamic performances, a specific constraint is defined, in
order to guarantee the performance of the baseline configuration, and more
specifically:

• Constraint 1: 00.03‰ of Cl > 0.9
• Constraint 2: 99.97‰ of Cd < 0.0757
• Constraint 3: 99.97‰ of Cm < 0.1305.

Besides the satisfaction of these constraints, the definition of the optimization
problem is completed by the maximization objective of the tolerance factor (tol).
This parameter can arbitrary vary between 0 and 1 (0% means no tolerance, while
100% means maximum tolerance), and it is a common multiplier of the single
uncertainties standard deviation parameters.

Basically, a 0 tolerance will leave the baseline uncertainties unaltered, while a
100% value will amplify the standard deviation to the maximum value that we
arbitrary considered as feasible for this problem. The standard deviation parameters
inside the input variables nodes of the workflow are then defined as follows:

• Standard deviation of Mach = 0.005 * (1 − tol) + 0.0075 * tol
• Standard deviation of Angle = 0.1 * (1 − tol) + 0.15 * tol
• Standard deviation of Thickness = 0.005 * (1 − tol) + 0.01 * tol.

For each design proposed by the optimization, 10 sampling points have been
evaluated using the Polynomial Chaos Expansion (deliverable D4.1 for more
details); the number of sampling points has been defined after proper tests of
convergence (the error of estimation for the output performance main moments are
less than 1% for the baseline configuration).

After a small number of design evaluations (25 using Simplex algorithm), it has
been possible to reach a satisfactory convergence, to the values indicated in
Table 3.

In particular, the optimal tolerance objective has reached a value of 24.7%,
which means that we can guarantee at least the same stochastic performance of the
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baseline, under a significant percentage of tolerance increment for all the
uncertainties.

About the computational costs, the results are perfectly in line with the summary
chart of chapter (Fig. 2), i.e., 250 simulations for a problem of 8 design variables
and 3 uncertainties.

Also in this case, the range of applicability of the methodology goes far over
aeronautical applications, being automotive and industrial requirements in general
very demanding in terms of manufacturing costs reduction.

In UMRIDA project, we have applied as test the same methodology here
described to a heat exchanger manufacturing [6] problem.

A cellular element of a cross-flow heat exchanger (HE), which is repeated along
three directions for the air (cold) side and for the liquid (hot) side in the whole heat
exchanger, is represented by an analytical function able to define its performances
(Nu Nusselt number and Cf friction coefficient), in function of geometrical (height,
length, pitch, and thickness of the fins) and operational (Re Reynolds and Pr Prandtl
number) parameters. The objective of the optimization is to respect the constraints
on the performances (mean value of friction coefficient Cf and 99.97‰ of heat
transfer coefficient to be respectively below 0.040 and 4000 W/m2K, i.e., the
baseline performances), with the additional objective to maximize the tolerance on
the geometrical and operational parameters. Also in this case, a common tolerance
factor tol is used to evaluate the tolerance of each parameter and is used to define
the objective function to be maximized.

Since the number of uncertainties is equal to six, in this case a number of 50
design samples have been considered (a little higher than the minimum required,
since in this case the computational cost is very low).

As a result, we have been able to respect the given constraints on the mean
performances, with a tolerance value of 30% of the considered range: for instance,
the geometrical dimensions will have a manufacturing tolerance of 50 μm instead
of 1 μm, and the Re and Pr number tolerance is ten times higher than the other case.

Table 3 Baseline and optimized airfoil configuration performances

Airfoil Mach
(σ)

Angle
(σ)

Thickness
(σ)

Max 99.97%
Cd

Max 99.97%
Cm

Min 0.03%
Cl

Baseline
RAE2822

0.005 0.1 0.005 7.568E−2 1.309E−1 9.019E−1

Optimized 0.0057 0.114 0.00637 6.968E−2 1.305E−1 9.045E−1
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Use of RD in Multiphysics Applications

S. Richard and N. Magnino

Guidelines for UQ Applied to Combustion Instabilities
in Aero-engines

Chain of Tools for UQ: Main Steps to Follow

It has been shown in numerous studies from the literature that unsteady CFD
simulations can be used to capture combustion instabilities in complex geometries.
It is however hardly conceivable having recourse to 3D LES to deal with uncer-
tainties in a reasonable computational timeframe. Nevertheless, CFD is needed for
the knowledge of the flame response to acoustic perturbations, accounting for the
real geometry and confinement effects. Such flame response can be extracted in the
form of a flame transfer function to be imposed on acoustic solvers like 3D
Helmholtz tools. These solvers are also not adapted to achieve intensive robust
design studies but furnish reference results on unstable modes and associated
growth rates accounting for the full annular combustor geometry. The obtained
reference results can then be fitted by lower order models like quasi-analytical tools
or surrogate models in order to evaluate the risk of occurrence of combustion
instabilities (CI) following UQ approaches. This step-by-step procedure constitutes
the first element of the best practices to follow regarding RD of stable combustors
(Fig. 1). Guidelines associated with each step are provided in the following
sections.
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CFD to Establish a Reference Flame Transfer Function

In this chapter, it is proposed to perform a UQ study on combustion instabilities.
A first step is therefore to define a reference flame transfer function for unsteady
CFD simulations (a compressible LES solver is mandatory). The objective of these
simulations is not to find and understand possible unstable modes of the combustor,
including all scenarios like longitudinal, transverse and azimuthal modes. Thus, it is
proposed to minimize the CFD effort by reducing the problem on the base of its
symmetries. For that purpose, only one sector of the combustor should be simulated
and acoustic forcing at the combustor inlet should be used with amplitudes of the
order of a few percentage of the operating airflow rate. Such a forcing allows
obtaining heat release fluctuations characteristic of CI and finally to retrieve by
post-processing the parameters n and τ of the combustor flame transfer function
following:

q′ ∼ nu′ðt− τÞ

where n is the gain and τ the delay of the FTF, q′ is the heat release fluctuation, t the
time and u′ the velocity fluctuation.

The obtained FTF parameters will be the main variables to be used for the RD
study, because they are the most uncertain ones. Indeed, slight manufacturing
variations are known to play a role on UQ occurrence. In addition, modelling errors
from CFD like turbulence/flame interactions or two-phase flow description may
affect the flame dynamics and response to acoustic forcing. For this reason, it highly
recommended when possible to perform a small DOE varying the flame LES filter
size or the droplet diameter to get an order of magnitude of FTF parameters
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Fig. 1 Full annular Safran Helicopter Engines helicopter combustor (validation case)
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uncertainty. If this is not possible, values proposed by CERFACS on the base of
several experimental data could be used: σn/n = 10% and στ/τ = 5%.

Recommendations for the Use of Acoustic Tools

To avoid expensive 3D Helmholtz simulations, it is proposed to exploit a
quasi-analytical tool called ATACAMAC for the UQ study. ATACAMAC is a
network-based description of the whole annular combustor and gives access to
azimuthal modes which are often the main concern of combustor design engineers.
However, the simplified geometrical description of the combustor limits the pre-
dictive character of such tools. It is thus recommended to fit 3D results obtained
with a 3D Helmholtz computation (here the AVSP code) accounting for the whole
complexity of the combustion chamber, by adjusting the geometrical parameters of
ATACAMAC presented in Fig. 2.

Fig. 2 Network model geometrical parameters
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The baseline parameters like the combustor of injector cross sections denoted S
are not uncertain and can be directly extracted from the CAD. On the contrary, the
injector length L or the mean combustor dome radius can be difficult to define due
to the complexity of the combustor shape. These parameters are therefore fitted to
ensure a proper description of a targeted unstable mode growth rate when modi-
fying the FTF delay in both ATACMAC and AVSP (see Fig. 3). An important
requirement of the fitting procedure is to correctly represent the change of sign of
the growth rate. Once ATACAMAC is fitted, a Monte Carlo analysis on the base of
5000–10 000 samples can be performed for a first estimation of the CI probability
(Fig. 4).

Fig. 3 Real (left) and imaginary (right) parts of a targeted combustor eigen-mode for several FTF
delays—comparisons between AVSP and ATACAMAC after adjustment of the burner length
parameter

Fig. 4 Monte Carlo results
using 8,000 samples: stability
map of the first azimuthal
mode is displayed by varying
n and τ parameters
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Guidelines for MORDO Applied to Aero-engine Acoustic
Liners

Workflow for MORDO of Acoustic Liners

Acoustic propagation of engine noise is highly influenced by the liner impedance
model, fan model and flow field parameters, as shown in Fig. 5, but within
UMRIDA project the focus was only on the uncertainties of the geometrical
parameters of the liner that have a direct impact on the acoustic impedance. Indeed
the motivation behind FNM participation was to investigate the viability of an
automatic multiobjective optimization methodology capable to efficiently produce a
design of an acoustic liner robust in terms of attenuation of the noise with respect to
the real uncertainties of the panel due to the manufacturing tolerances and in a
reasonable turnaround time.

So the base ground to build an efficient RDO methodology for acoustic liners is
the experimental database of measurements to develop UQ upon. The four uncer-
tainties that influence the most the acoustic impedance of the liner according to the
proprietary semi-empiric model are: Percentage of open Area (PoAeff), honeycomb
cell Height (h), holes diameter (deff), face sheet Thickness (tfs) as illustrated in
Fig. 6.

Fig. 5 Nacelle liner acoustic design scheme

Fig. 6 Nacelle SDOF liner
acoustic panel
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In Table 1 are reported for each variable the characteristics of the distribution as
determined by using the ESTECO Fitting Tool, together with the range necessary
for the optimization to explore the space and the step which has to be a trade-off
between actual manufacturing values and a reasonable dimension of the set.

Exploiting modeFRONTIER’s recent capability to streamline complexity with
addition of subprocess nodes, two workflows were built, one nested into the other:
Fig. 7 shows at a glance the whole internal workflow to execute Actran’s
aero-acoustic simulation for each of the certification conditions, while Fig. 8 shows
the outer automation loop to cycle through and compute final objective function
P99.97(OASPL).

Table 1 Liner uncertainties PDF, range and discretization

Uncertainty Distribution σ Range Step Base

PoA Normal 1.08E−03 [3–15%] 1.00E−03 121
h Normal 1.51E−05 [10–18 mm] 1.00E−05 801
d Normal 1.28E−05 [1–2.5 mm] 1.00E−05 151

t Normal 2.26E−05 [0.7–1.35 mm] 1.00E−05 71

Fig. 7 Engine nacelle acoustic MORDO workflow
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Key Drivers/Recommendations for MORDO of Acoustic
Liners

The key drivers to successfully develop and implement an efficient automatic
methodology for multiobjective robust design optimization—that allowed
improving an already hand-optimized panel, but more importantly to make it much
more robust—including:

• a wise selection of uncertainties to consider and careful assessment of manu-
facturing tolerances to build a valid experiment database;

• an integrated and structured multicode workflow open to additions and
expansions;

• tuning of mathematical and FE Actran model to make CPU cost compatible with
preliminary design time constraints and UMRIDA 10 u × 100 cores × 10
CPUh goal;

• rigorous step-by-step validation of tools being developed with intermediate tests
on simplified models;

• efficient UQ thanks to Adaptive Sparse Polynomial Chaos Expansion;
• efficient RDO with Reliability–Based approach that by minimizing the per-

centile of global OASPL minimizes also mean and standard deviation of single
OASPLs;

• choice of different optimization algorithm based on opportunity, e.g., SIMPLEX
best is only 0.2 dB worse than MOGAII but with less than half CPU cost.

Fig. 8 Engine nacelle acoustic MORDO automation loop
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Geometrical Uncertainties—Accuracy
of Parametrization and Its Influence
on UQ and RDO Results

Dishi Liu, Daigo Maruyama and Stefan Görtz

Introduction

Random variations in the geometry of an aircraft (e.g., due to manufacturing tol-
erance) may introduce a large number of variables if uncertainty quantification
(UQ) of its aerodynamic performance is to be performed. Due to the “curse of
dimensionality,” this makes the numerical integration of the performance statistics
computationally expensive. However, since the geometry variations at different
locations are by nature correlated, the number of variables can be greatly reduced if
the correlation is exploited. This reduced-order modeling can be furnished by a
truncated Karhunen–Loève expansion (KLE) of the random field that models the
variation. Details of truncated KLE approximation can be found, e.g., in [1] for a
similar application.

Assuming that the geometry is discretized for the purpose of computational fluid
dynamics (CFD) simulations, a full KLE representation of the random field defined
on a given surface mesh yields M variables, where M is the number of surface grid
points. Model reduction is achieved by discarding the variables corresponding to
“small” eigenvalues of the correlation matrix of the random field such that only
K <M variables are retained.

There are different choices for the threshold to delimit “small” eigenvalues. The
first choice is based on the machine precision, i.e., M ⋅ eps 1.0ð Þ with eps rð Þ the
floating-point precision of a real number r (the elements of the correlation matrix
are positive and ≤ 1.0). We denote the corresponding value of K as K*. The
precision of the computer that we used for this study is about M ⋅ 2.22e−16. One
could also set the threshold based on the accuracy of the flow solutions used to
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estimate the statistic of aerodynamic quantities; e.g., make it equal to the minimum
residual that is used as the CFD solver convergence threshold (in our case, 1.0e−8).
The argument behind these choices is the assumption that small geometry variations
lead to small perturbations in aerodynamic performance. If the perturbation is so
small that is not distinguishable, it needs not to be imposed. Other choices for the
threshold based on practical needs could also be adopted, e.g., some limitation in
the number of variables that can be considered. Figure 1 displays the declining
eigenvalues in one of the test cases in section “Test Case” and the two thresholds
for truncation which lead to K* = 19 and K =10, respectively.

Two questions about the variable reduction are of our interest:

1. How much is the loss of accuracy of the statistics if “smaller” K values are used,
i.e., if fewer KLE terms are retained?

2. Can smaller values of K help improve the efficiency of surrogate-based inte-
gration of the statistics?

In the first question, by “smaller” K values we mean values of K smaller than the
K* that corresponds to the machine accuracy. The second question is related to the
common belief that for a given number of samples, surrogate models with more
variables are less accurate (the so-called “curse of dimensionality”).

In this work, we make some numerical experiments (tabulated in Table 1) based
on a 2D Euler test case in the hope to shed some light on these two questions.
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Table 1 Test cases with different number of uncertain variables K and two different correlation
lengths ℓ(percentage of total perturbation variance kept in brackets)

Correlation length ℓ 0.2 0.1

Num. of variables K* 38 60
Num. of variables K 16 (99.9%)

10 (98.1%)
4 (74.7%)

28 (99.9%)
20 (98.5%)
10 (83.6%)
4 (48.6%)
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Test Case

This study is carried out based on the RAE2822 airfoil at a Mach number of 0.73
and an angle of attack of 2.0°. Figure 2 shows the structured grid used for the
inviscid flow computations with the Euler solver of DLR’s CFD code TAU [2–4].

The upper and lower surfaces of the airfoil are assumed subject to two inde-
pendent random fields discretized on the surface grid (Fig. 3 left) featuring a
Gaussian-type correlation with correlation length ℓ as described in [1]. The stan-
dard deviation of the zero-mean perturbation is assumed a function of x, σp(x) =

Fig. 2 Structured grid for the RAE2822 airfoil: far-field grid (left) and detailed view around the
airfoil (right)
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Fig. 3 Surface grid points of RAE2822 airfoil (left) and distribution of standard deviation of the
random perturbation (right)
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0.01 ⋅ 4 ⋅ Zmax ⋅ x ⋅ (1 − x), with Zmax the maximum thickness of the airfoil, as
graphed in the right part of Fig. 3. The σp(x) features diminishing perturbations
toward the leading and training edges of the airfoil to guarantee convergence of the
CFD solver and has its maximum at the mid-cord.

We try two different correlation lengths, ℓ = 0.2 and 0.1 for the random field.
The respective K* for the upper and lower random fields are Ku

* = Kb
* = 19 and

Ku
* = Kb

* = 30. For the case ℓ = 0.2, we consider three test cases with smaller
K values, i.e., Ku= Kb = 2, 5, and 8, respectively, and for ℓ = 0.1 four test cases
with Ku= Kb = 2, 5, 10, 14, respectively. Table 1 lists the test cases in which
K = Ku + Kb and K

* = Ku
* + Kb

* are the total number of variables that parameterize
the random geometry perturbation. The two cases with K = 16 and K = 28 are
based on the truncation threshold given by the convergence threshold of our CFD
solver of 1e−8. The number in bracket in Table 1 is the percentage of total per-
turbation variance kept (average of upper and lower fields). The target statistics are
mean and standard deviation of lift and drag coefficients (CL and CD), denoted as
μL, σL, μD, and σD.

Impact of KLE Truncation on the Statistics

For every test case, we compute the target statistics by a direct integration of a very
large number (N) of quasi-Monte Carlo (QMC) samples of the CFD model. The
N numbers are listed in Table 2. We call the statistics obtained from the k-variable
test cases k-statistics and those from k*-variable test cases k*-statistics. The impact
of the KLE truncation is evidenced by the discrepancy between the K- and K*-
statistics, as tabulated in Tables 3 and 4.

The reliability of these discrepancies is verified through an accurate estimation of
the statistics, for which we use Snyder’s multi-partition method [5] since the theo-
retical error bound of QMC integration is not a practical accuracy indicator. Suppose
S denotes any of the above statistics, by this method one makes an equal-size m-
partition of all the N samples and computes m estimates S′i, i = 1, …, m by inte-
grating on each partition only. Then, compute their sample standard deviation ςm
which is an estimate of standard deviation of the QMC estimation of S with sample
number N/m. To extrapolate ςm to ς1, one computes ςm for four values of m, i.e.,
m = {128, 64, 32, 16}, and fit a line across the four [log(N/m), log(ςm)] points using
the weighted linear least squares method; them values are used as weights to account
for the increasing variability for smaller values of m. With the fitted slope a and
intercept b,we have ς1 = exp(a*log(N) + b) as an estimate of the standard deviation
of the QMC integral of S with N samples. This estimate is tabulated for all statistics
in Table 5.

For every discrepancy SK − SK* in Tables 2 and 3, if both 3*ς1(SK) and
3*ς1(SK*) are no larger than p(SK − SK*), we regard that discrepancy reliable.
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p(SK − SK*) denotes the precision of the discrepancies in Tables 2 and 3; e.g., for
“−5.3e−5” the precision is 1e−6. By assuming the QMC estimated statistics are
Gaussian distributed around the “true” statistics, the above inequalities guarantee a
99.73% confidence in the precision of the statistics and hence of their discrepancy.
The discrepancies in bold font in Table 3 are those fail this judgment, and the
corresponding ς1 are also shown in bold font in Table 4. The failure is due to
limitation in computing resource to achieve a sample number N that is large
enough. Standard deviations are harder to estimate than means, and statistics of CD

are harder than those of CL.
In the results that are reliable, we found that the truncation can have remarkable

impact on the statistics. The impact is larger for CD than for CL, larger for the
standard deviation than for the mean (more evidently seen in the relative discrep-
ancy), and larger for the cases with shorter correlation length than for those with
longer one. Not surprisingly, in these experiments the truncations always lead to
underestimated σL and σD and always lead to overestimated μL and underestimated
μD (i.e., undervalue the performance degenerating effect of the geometric

Table 3 Discrepancy of K- and K*-statistics of CL

ℓ = 0.2 (K* = 38) ℓ = 0.1 (K* = 60)

K = 4 K = 10 K = 16 K = 4 K = 10 K = 20 K = 28

μL,K − μL,K* 3.0e−4 3.5e−5 2.1e−6 1.1e−3 6.2e−4 1.2e−4 1.0e−5
(μL,K − μL,K*)/μL,K* 3.7e−4 4.2e−5 2.6e−6 1.4e−3 7.6e−4 1.6e−4 1.4e−5
σL,K − σL,K* −1.3e−3 −2.1e−4 −6.2e−6 −2.0e−3 −1.3e−3 −2.0e−4 −1.7e−6
(σL,K − σL,K*)/σL,K* −1.9e−1 −3.0e−2 −9.1e−4 −3.4e−1 −2.2e−1 −3.7e−2 −1.1e−3

Table 4 Discrepancy of K- and K*-statistics of CD

ℓ = 0.2 (K* = 38) ℓ = 0.1 (K* = 60)

K = 4 K = 10 K = 16 K = 4 K = 10 K = 20 K = 28

μL,K − μL,K* −5.3e−5 −7.4e−6 −3.6e−7 −2.0e−4 −9.7e−5 −1.4e−5 −8.1e−7
(μL,K − μL,K*)/μL,K* −1.1e−2 −1.5e−3 −7.3e−5 −4.0e−2 −1.9e−2 −2.8e−3 −2.2e−4
σL,K − σL,K* −5.9e−5 −6.5e−6 −1.6e−7 −1.0e−4 −3.8e−5 −4.2e−6 −2.6e−7
(σL,K − σL,K*)/σL,K* −1.3e−1 −1.4e−2 −3.6e−4 −2.1e−1 −7.8e−2 −9.8e−3 −1.5e−3

Table 5 Estimated standard deviation of the statistics

ℓ = 0.2 ℓ = 0.1

K = 4 K = 10 K = 16 K* = 38 K = 4 K = 10 K = 20 K = 28 K* = 60

ς1(μL) 1e−7 4e−8 5e−8 4e−8 8e−8 1e−7 3e−7 3e−7 4e−7
ς1(σL) 1e−7 9e−8 1e−7 1e−7 1e−7 8e−7 1e−6 1e−6 9e−7
ς1(μD) 1e−8 1e−8 1e−8 9e−9 8e−9 2e−8 6e−8 1e−7 8e−8
ς1(σD) 3e−8 2e−8 3e−8 1e−8 4e−8 3e−7 4e−7 8e−7 5e−7
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uncertainties), which is the result of the reduced variance of the random pertur-
bation imposed. Truncation that keeps more perturbation variance leads to smaller
accuracy loss.

Impact of KLE Truncation on GEK Efficiency

The statistics could also be estimated by using gradient-enhanced kriging
(GEK) surrogate method with much smaller number of CFD samples. The gradients
of CL and CD with respect to all variables could be obtained by an adjoint solver at
an additional cost roughly equals to that for two CFD evaluations. The GEK sur-
rogates are constructed by using both the sampled responses and the gradients. So
the statistics can be obtained by an integration of a large number (3 * 105, in our
case) of QMC samples of the surrogate model.

In general, the convergence rate of surrogate models, i.e., the speed that its mean
squared error is reduced by increasing samples, will slow down with more vari-
ables. For example, error bounds of approximation with Gaussian and inverse
multiquadric (a popular radial basis function) kernel are shown to be C1 e− c2 ̸h in
[6], with h the “fill distance” (the largest distance between any nearest sample site
neighbors). This translates to a bound in sample number N as C1 e− c3N1 ̸d

which
deteriorates with increasing d, the number of variables. This favors a conclusion
that for a certain sample number the accuracy of surrogate methods could be
improved by reducing the number of variables, and hence so could the accuracy of
the statistics based on the surrogate. This is the reason why further truncation from
K* is sometimes temptable. But the above convergence rate is based on an
assumption that all the variables have the same importance; if this is not the case
(just like in a KLE parameterization), the conclusion might be different.

To investigate the influence of the variable reduction in the accuracy of GEK
surrogate of CL and CD, we compare the GEK error convergence rate with various
K values. The error consists of two parts: The first can be written as ek = |Ŝk − Sk|
with Ŝk the statistics estimated by the GEK-based integration and Sk the corre-
sponding K-statistics, and this part is the approximation error of GEK. The second
is |Sk − Sk*|, the discrepancy of K- and K*-statistics, since the GEK-based statistics
is converging to Sk instead of Sk*. The second part is obviously larger for smaller
K’s, but in a certain range of smaller N the first part can be dominative. If with
smaller K’s the first part converges so fast that compensates the larger second part,
further truncation from K* would be beneficial in terms of efficiency in obtaining
statistics in this range of N.

GEK in these experiments are implemented by using SMART toolbox [7],
opting for cubic spline correlation function with hyper-parameters tuned by a
maximum likelihood estimation.
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Figures 4 and 5 display the convergence of ek in estimating statistics of CL and
CD, both axes are in logarithm scale. By these results it seems the convergence rate
(the slope of the curve) is not handicapped by larger K value, if we exclude the
stagnated convergence of the test case K = 28 due to the inaccuracy of its K-
statistics. The smaller error magnitude for smaller K’s is due to the relative sim-
plicity of the surrogate with less variables (not surprisingly this is more obvious in
the case with smaller correlation length because their truncations cause more loss in
perturbation variance, as quantified in Table 1), but the error of the GEK surrogates
with different number of variables are reduced at nearly the same speed with respect
to N. This is not complying with the theoretical convergence rate.

We attribute this phenomenon to two reasons: First are the characteristics of the
KLE parameterization. The variables as KLE coefficients are readily sorted in terms
of importance. Variables with higher rank are less important (declining faster for
larger correlation length ℓ) so that including more variables would not introduce
more complexity to the surrogate in the same proportion. This can be observed in
the percentage of perturbation variance retained by various K as tabulated in
Table 1.
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The second reason is the relatively “cheap” gradient information obtained by
using adjoint solver. The number of “conditions” (responses and their derivatives)
utilized by GEK is (d + 1) ⋅ N, which increases along d, but the cost remains stable
as roughly that of 2N CFD evaluations irrelevant to d; i.e., the higher the number of
variables, the cheaper the gradients. This helps to break the “curse of
dimensionalities.”

Now, we take the second part of the error into consideration; i.e., measure the
error as Ek = |Ŝk − Sk*| (using the K*-statistics as the reference value), and the
negative effect of further truncation from K* is revealed in Figs. 6 and 7. Due to the
discrepancy of K- and K*-statistics, Ek with K much smaller than K* are not con-
verging. Only E16 (ℓ = 0.2) and E28 (ℓ = 0.1) display a converging trend, and the
associated K values keep 99.9% perturbation variance.

The result in these experiments shows reducing variables is not improving the
convergence rate of GEK. Choosing K < K* will handicap the accuracy of
GEK-integrated statistics unless that K keeps enough variance of the random per-
turbation field.
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Practical Applications to RDO

The influences of the accuracy of the parameterization, which was accomplished by
a truncated Karhunen–Loève expansion (tKLE), on the results of robust design
optimization (RDO), are finally discussed here. Under the condition that the KLE is
sufficiently truncated, the accuracy of tKLE can be recovered by adding sample
points, or the gradient information using GEK, and the number of the gradients also
increases with K. For this reason, we concluded that GEK could efficiently com-
pensate the errors due to lack of the sample points. One approach to investigate it
was achieved by dispersion of different sample collocations. More details of this
approach are discussed in [8]. Figure 8 shows mean and standard deviation of the
stochastic cost function f ðf ≡ μCd + σCdÞ of the initial configuration by two different
numbers of eigenvalues (K = 10 and 26) of tKLE. The truncated number of
eigenvalues K =10 satisfies neither the threshold of the flow solver nor the machine
tolerance. That of K =26 does the threshold of the machine tolerance. The
stochastic cost function f is evaluated by GEK with a fixed number of samples as
30. Greater σf indicates greater dispersion (more errors) due to the lack of samples.
The figure shows σf in K =26 is less than that in K =10. This can lead that the
gradient information in GEK, with the help of an adjoint solver, can really
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compensate the problem of the number of sampling without any loss of the accu-
racy of the geometrical uncertainties unless the CPU time for construction of GEK
model grows huge to become comparable to CFD computations. This should be
also applied to robust design.

The result of an application to RDO is presented here. Figure 9 shows the
histories of the stochastic objective function f ðf ≡ μCd + σCdÞ in RDO and the
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designed airfoil configurations, by different numbers of eigenvalues (K = 10 and
26, ℓ = 0.2) of tKLE. The stochastic objective function f is evaluated by GEK with
a fixed number of samples as 30. Since there could be differences between the
embodied geometrical features due to tKLE by K =10 and K =26, the comparison
of the statistical performance between these two designed configurations is difficult
(there is a slight difference between the evaluated f by K =10 and K =26 as can be
observed by σf in Fig. 8). We can focus on that there is a difference in the opti-
mized geometrical configurations in Fig. 9. Our conclusion is that if the statistics
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Fig. 9 Histories of objective function in application to robust design optimization (RDO) (a) and
the designed airfoil configurations (b), by different numbers of eigenvalues (K = 10 and 26,
ℓ = 0.2) of truncated Karhunen–Loève expansion (KLE). f is evaluated by gradient-enhanced
kriging (GEK) with a fixed number of samples as 30
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can be computed efficiently with the help of an adjoint solver to use GEK, suffi-
ciently small eigenvalues in KLE should be maintained unless the number of the
truncation becomes big in such a case of 3D aircraft/wing models.

Summary

To investigate the influence of the accuracy of random field approximation to the
accuracy of the estimation of performance statistics, we conduct a series of
numerical experiments with different truncation of Karhunen–Loève expansion
(KLE) (hence different number of variables in the model) for random perturbation
in the geometry of a RAE2822 airfoil and compare the statistics of lift and drag
coefficients and efficiency of gradient-enhanced kriging (GEK) in each scenario.

Statistics obtained with different number of variables are different, and the
reliability of the discrepancies is justified by an accurate estimation of the statistics.
The size of discrepancy is related to the geometry perturbation variance kept by the
KLE truncation.

It is observed in the experiments that the GEK’s error convergence rate is not
improved by reducing variables. This can be attributed to the cheaper gradient
information obtained by adjoint solver in the cases with more variables, and also to
the not evenly distributed “importance” of the variables as KLE coefficients.

The results of this investigation indicate that excessive KLE truncation will not
improve the efficiency of surrogate-based statistics integration. On the contrast, it
handicaps the accuracy of the statistics. The truncation should be made with a
reasonably small threshold on the eigenvalues of the random field’s covariance
matrix, e.g., based on machine precision or CFD solver precision. The lack of the
proper truncation could cause different results also in applications to robust design
optimization.
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Analysis and Interpretation
of Probabilistic Simulation Output

Alberto Clarich and Rosario Russo

Obtaining the input/output cumulative distribution function (CDF) or probability
density function (PDF) would be the main goal when dealing with uncertain input
parameters. Indeed, once output CDF and output PDF are known, all the infor-
mation about the uncertainties’ effect of the system at hand can be monitored and
then potentially controlled during the project phase.

In most of the cases unfortunately, evaluating output PDF or CDF is too
expensive in terms of requested samples and the first statistical moments (mean and
standard deviation) can be enough in practical applications. However, in real cases,
where the outputs are complex function of uncertain input parameters, the output
uncertainties cannot be modeled with a normal distribution, so a simple Six Sigma
test would be not accurate to assess the stability and then the quality of the output
performance.

For this reason, a way to estimate the output statistics and percentiles of the
outputs, independently from the hypotheses on the CDF or PDF outputs, is
required; if indeed a given percentile is known, the optimization can focus directly
on the percentile value, not only optimizing the performance but also keeping at the
same time the output uncertainties under control.

In this chapter, a best practice guide is therefore provided to evaluate output
uncertainties, namely main output statistical moments and percentiles.

Input Parameter CDF and PDF Reconstruction

If a proper number of experimental samples are available, a way to obtain the
output CDF and PDF can be achieved by a distribution fitting approach.
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The distribution fitting tool developed within the modeFRONTIER software [1]
allows to find, from a database of 11 statistical distributions (Normal, Cauchy,
Logistic, Exponential, Lognormal, Weibull, Gamma, Chi Square, Beta, Student,
Uniform) the one that best fits the given database (set of samples).

The tool finds the statistical distribution and parameters that best fits the samples
database.

The tool uses two indexes to quantify how much the statistical distribution fits
the database, the Kolmogorov–Smirnov (K-S) and the Likelihood.

The K-S test is based on the maximum distance between the discrete CDF
computed by the available samples and the theoretical CDF (with given parameters)
to check.

The likelihood is given by

L= ∑
n

i=1
p xið Þ ð1Þ

where p xið Þ is the PDF corresponding to the sample xi; since the likelihood is often
small, usually it is considered minus its logarithm, the so-called log-likelihood.

Basically, an internal optimization is performed, the input parameters being the
relevant parameters (i.e., mean and standard deviation for normal) and the objective
function being the minimization of the log-likelihood (Fig. 1).

In particular, a genetic algorithm is used (NSGAII) as global search, and then, a
gradient-based algorithm (BFGS) is used for local refinement.

As output, the 11 different statistical distributions are sorted from the one with
lowest value of KS test coefficient (worst fitting) to the one with highest value of
KS test (best fitting).

For all the distributions, the relative parameters are reported together with the
K-S significance test index.

Fig. 1. Example of distribution fitting tool in modeFRONTIER
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In addition, for the best-fitting distribution, a plot that compares the theoretical
CDFs with the discrete CDF from the database is given.

The distribution fitting approach, however, is applicable when the number of
samples is large enough (as an order of magnitude hundreds of samples is
requested), otherwise the estimation of the distribution parameter would be too
rough; to have an idea to have a reliable result, the K-S index should be at least
95%.

Steps and Assumptions to Assess Output Uncertainties

We can summarize in the following six steps the operations to be followed in order
to asses efficiently the output uncertainties.

1. Estimation of the input uncertainties by a distribution fitting approach (see
previous paragraph), following the hypothesis that the input uncertainties are
uncorrelated. Especially in parametric optimization, based on, at most, few tens
of parameters to be controlled and optimized, this hypothesis can be valid in
many cases.

2. Consider the input uncertain parameters of the system at hand and evaluate how
much each uncertain parameter affects the outputs of interest. Input parameters
that do not affect the outputs beyond given thresholds should be discarded and
not considered as uncertain input parameter. A tool that can be used for this kind
of analysis is Smoothing Spline ANOVA [2] (described in Chapter “Screening
Analysis and Adaptive Sparse Collocation Method”). A meaningful criterion is
to keep only the uncertain input parameters that are able to catch up to 90% of
the output variance (considering single and interaction effect).

3. The analysis above can be performed starting from a design of experiment size
that, as order of magnitude, should be around the minimum number of samples
to catch a second-order response, namely n+2ð Þ!

2n! , with n number of input
parameters. A Latin Hypercube DoE algorithm can be used to initialize the
design population. The distribution parameters of each uncertain variable are set
according to the assigned input PDF evaluated before.

4. If some uncertain parameters are also free variables of a successive optimization
procedure, then the described analysis to filter out the unimportant uncertain
parameters should be repeated around different nominal values of the opti-
mization variables to check whether the behavior of the system is uniform
within their range of variation.

5. Once the most important input uncertainties are identified, it is necessary to
estimate the output uncertainties statistics (typically mean standard deviation
and percentiles). As described in Chapter “Screening Analysis and Adaptive
Sparse Collocation Method,” an effective approach is the Polynomial Chaos
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Expansion enhanced with the sparse approach and implemented within the
modeFRONTIER software. The first goal is to assess how many samples are
necessary to have a reliable estimation of the statistics. For these reasons once
again is worth starting (if possible in terms of computational time) with a
number of samples that is about twice the minimum number of samples to
compute a second-order polynomial expansion, then the number of samples can
be reduced, monitoring at the same time the R-squared Leave One Out and
Adjusted R-square LOO [3] (Fig. 2).

In order to achieve reliable statistic results, it is needed to consider the minimum
number of samples and the minimum polynomial degree which give adjusted
R-Squared results close to 1. These values can be considered as reference values to
be used for a robust design optimization.

6. The final step in the definition of the optimization problem is the definition of
objective(s) function. Since the number of designs required by the optimization
is directly proportional to the the number of objectives, in order to reduce the
computational effort it might be important to reduce as much as possible the
number of objectives. This can be achieved basically in two ways:

(i) consider the most important criteria as one objective and keep the other
criteria when possible as constraints (such as the case of airfoil drag
minimization with constraints on lift and momentum), or sum together
criteria which are homogenous (such as the case of acoustic performance at
three different flight conditions);

(ii) prefer the reliability-based optimization approach to the classical
multi-objective approach (optimize mean performance and minimize
standard deviation), since, by optimization the worst percentile (e.g., 99.9
or 0.03) of the performance distribution, the whole distribution can be
optimized keeping only one objective per criteria instead of two.
Finally, the choice of the optimization algorithm is important: If the sim-
ulation times are very expansive, a fast algorithm like Simplex

Fig. 2. Example of adaptive sparse PCE log report in modeFRONTIER
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(single-objective) or Game Theory (multi-objective) could be used to find a
compromise solution by a reduced number of design evaluations, other-
wise more robust algorithms like genetic algorithm could be used as
alternative.

Selection of Probabilistic Optimal Design from RDO

There are several tools which can be used to select the optimal solutions, from the
Pareto frontier, once the optimization is completed.

If the number of objectives is contained, scatter or bubble charts, like the one
reported in Fig. 3 from modeFRONTIER software [4], can be used: It is possible to
highlight only Pareto designs in the chart, and it is possible to monitor up to four
optimization criteria: ordinate and abscissas (approach and cut-back OASPL per-
formances in the aeroacoustic application reported in Fig. 3), color of the bubbles
(takeoff flight condition in the example), and eventually a four criteria can be
selected as size of the bubbles.

In case of higher number of criteria, parallel chart like the one reported in Fig. 4
can finally be used: Every line represents a different design of the Pareto front, and
every column reports a different objective/constraint or variable; by using the rel-
ative filter sliders, the user can easily filter out the not-desired solutions that find the
optimal solution. More advanced tools, called MCDM (multi-criteria decision
making), are available as well in software like modeFRONTIER, in the case the
user would like to express some weights for every objective, obtaining at the end a
ranking of all the Pareto solutions on the basis of the indicated preferences.

Fig. 3. Optimization results (OASPL percentiles at three flight conditions)
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Summary of UMRIDA Best Practices

Jordi Pons-Prats and Gabriel Bugeda

Uncertainty quantification (UQ) is becoming a strategic step in the design phase.
Robust Design Optimization (RDO) is the following step. The Technological
Readiness Level (TRL) of intrusive and non-intrusive methodologies is increasing
rapidly, although several limitations remain. Nowadays, UQ is a major trend in
research, because there is a lot of room for improvement.

It is well accepted, both by academia and industry, that uncertainty is an intrinsic
issue affecting the design. This is not new at all. Methods to deal with uncertainty
quantification exist from many years ago, just to mention Monte Carlo method as
the main reference. The computational cost of these kinds of methods does not help
to spread their use. However, not only the methods are important, but also the
definition of the uncertainties, where they are applied, and the final analysis of the
results are key for a good application.

The definition of new methods is a key issue and much research is focussed on
it. This book is a clear example of this research; methods are presented both from
the point of view of the methodology and also from the point of view of the
application. The research that has been described in the previous chapters is the
outcome of the UMRIDA project, but also of the NODESIM-CFD project, which
was the first step. The present annex confirms the Best Practice Guide for an
improved and industrial-oriented application of uncertainty quantification (UQ) and
Robust Design Optimization (RDO) methods.

The Best Practice Guide, jointly with the UMRIDA book, has presented several
methodologies; from Monte Carlo to Methods of moments, just to mention two of
them. The present annex, as a Best Practice Guide, contains also a discussion about
how to deal with UQ and RDO. The following list is a summary of methodologies:

J. Pons-Prats (✉) ⋅ G. Bugeda
Aeronautical Group, CIMNE, 08034 Barcelona, Spain
e-mail: jpons@cimne.upc.edu

G. Bugeda
Universitat Politecnica de Catalunya - BarcelonaTech, 08034 Barcelona, Spain

© Springer International Publishing AG, part of Springer Nature 2019
C. Hirsch et al. (eds.), Uncertainty Management for Robust Industrial Design
in Aeronautics, Notes on Numerical Fluid Mechanics and Multidisciplinary
Design 140, https://doi.org/10.1007/978-3-319-77767-2_53

805

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_53&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_53&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77767-2_53&amp;domain=pdf


• Non-intrusive polynomial chaos;
• Non-intrusive probabilistic collocation method;
• Adaptive sparse collocation method;
• Reduced basis methods;
• Surrogate-based methods;
• Monte Carlo-based methods;
• Intrusive perturbation methods.

Regarding the methods for RDO, the previous UQ methods have been combined
with evolutionary techniques (covariance matrix-assisted, genetic algorithms) as
well as gradient-based and adjoint-based techniques. For both cases, namely UQ
and RDO, the book has presented the methods and their applications to industrial
problems.

The Best Practice Guide is focused on the issue to take into consideration when
dealing with these methodologies. It also includes the description and references to
several tools, some of them are commercial software, which can be used for an as
easy as possible implementation of UQ and RDO analysis. Tools like TAPENADE,
a software devoted to the differentiation of a functional, developed by INRIA, or
OpenTURNS, an open-source library for uncertainty and reliability analysis, whose
development is funded by AIRBUS, EDF and PHIMECA, are two examples of the
tools for UQ. On the other hand, RMOP, the CIMNE’s optimization platform, or
modeFRONTIER, scheduled by ESTECO, has been used in the framework of RDO
analysis. FINE™ is a commercial solver for CFD problems, by NUMECA, which
already integrated the UQ analysis as an option within its menu. It is a quite
exceptional case due to the full integration of UQ methodologies into a commercial
package. The standard procedure to couple the UQ analyser with the solver requires
the use of PYTHON wrappers, or other type of scripting. The scripts contain the
entire list of steps to be performed from the definition of the problem to its final
execution. For a full automation of the analysis, it is required that all the steps can
be called without user interaction. If you are dealing with a RDO analysis, this
automation must be robust enough to go through an iterative process without
manual and user interaction. But this is not the only issue to take into account.

The Best Practice Guide chapters have identified some key issues to bear in mind
when formulating the analysis. These issues are pretty common when dealing with
either a UQ or a RDO analysis. As a summary, the list of issues is as follows:

• Definition of the uncertainty: the user must have a clear idea about the uncer-
tainty and its statistical behaviour, in order to translate that into a representative
set of numerical samples, but also to accordingly select the analysis method.
First chapter of this Guide is focused on the process to identify and model
uncertainties. Uncertainties from the lack of knowledge of the phenomena, but
also related to manufacturing tolerances, or the error derived from experimental
measurements or numerical tools must be considered and modelled according to
their real behaviour, in order to understand the final effect over the output of the
analysis.
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• Analysis of sensitivity: in order to simplify the analysis, those variables with
lower effect on the variability of the output could be removed. This item links to
the first one, if there is a lack of knowledge about the uncertainty, an analysis of
sensitivity can help to identify the most relevant uncertain parameters to deal
with.

• Sampling: all the methods require to calculate from few to hundreds of samples.
Monte Carlo-based methods are the ones that demand the largest number of
samples. Random selection could be an alternative option, but not the best one.
So, a careful selection of the sampling technique is also relevant. There are a lot
of techniques that optimize the selection of samples, from Design of Experi-
ments to Sparse Grid Level technique (when dealing with collocation methods).

• The “Curse of Dimensionality” is an important issue when dealing with UQ and
RDO. There are several methods that suffer from this problem; it can be shortly
described as “the larger the number of uncertain variables is, the more costly the
analysis will be”. So it is more than necessary to spend time before starting the
computation to save computing time.

• Truncation errors could be considered as an issue, but as described in chapter
“Formulations for Robust Design and Inverse Robust Design”, the efficiency of
the method is not improved while the accuracy is handicapped.

• Computational cost reduction; it is well known that the computational cost of
UQ and RDO could reach unaffordable levels, especially for industrial appli-
cations. Applying simplifications through the solver itself, or by using surrogate
models, is a good option. The tests done by UMRIDA partners considered
Reduced Order Models, definition of transfer functions as well as surrogate
models like Kriging, gradient-enhanced Kriging or Differentiated Lifting Line
Method (DLLM), which implemented through OpenTURNS acted as a surro-
gate model for the coefficient calculation, to mention three of them.

• Results analysis: it is important to highlight this item, since the full statistical
information of the results could be highly expensive to obtain. The evaluation of
PDF and CDF is usually computationally unaffordable due to the fact that the
required number of samples increases rapidly. On the other hand, first statistical
moments, namely the mean and the standard, are easy to calculate so usually
used as reference. It means the assumption of a normal distribution for the
output is accepted, while for complex problems could be a wrong assumption.
The last chapter of this Best Practice Guide provides some recommendations
about the analysis and interpretation of the results, so it is worth to read it
carefully.

It is also relevant to focus our attention to the difference between an intrusive and
a non-intrusive method. Some of the methods presented in this book have both
implementations, but the associated analysis cost could be completely different.
This is because the intrusive methods can use information directly from the cal-
culation, adjoint information, for instance, but this benefit could be overlapped by
the implementation cost. A non-intrusive method works as a black box; internal
data is not available from the solver, so only the final value of the functional is
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available. The simple and usually fast implementation of a non-intrusive method is
compensated by the additional information that an intrusive method can use. So a
clear trade-off must be solved by the developer, and sometimes by the user, when
selecting a method.

Although a lot of work is already done, and the TRL of the methods is increased
to 6–8, there is still room for improvement. From the industrial perspective, the
methods should be more attractive; reducing the computational cost, simplifying the
implementation of the analysis, so industrial partners can extend daily use of UQ
and RDO in their design office.

The aim of UMRIDA partnership has been not only to describe the method-
ologies, which are done in the main body of the book, but also to provide a guide
for newcomers. The experience accumulated during the UMRIDA project, as well
as during its parent project NODESIM-CFD, is intended to make UQ and RDO
methods better understood, to spread the word across the engineering community so
lead to an extensive use of these methodologies in any engineering and science
field.

This annex to the UMRIDA book conforms the Best Practice Guide of UQ and
RDO methods.
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Project Summary and Outlook

Charles Hirsch and Dirk Wunsch

UMRIDA Project Commitment

The UMRIDA project focused on uncertainty management and robust design
methodologies at all levels of the analysis and design process. The technical
objectives of UMRIDA are listed in chapter “Vision, Objectives and Research
Activities”. The main objectives were the development of innovative methods for
UQ and RDM, the large-scale introduction of UQ methodologies into robust
design, application of UQ and RDM to the created database with prescribed
uncertainties by meeting the UMRIDA objective of handling at least 10 simulta-
neous uncertainties, in a turnover time of no more than 10 h on a 100 core parallel
computer, and to facilitate the cooperation and dissemination toward European
industries, research establishments, and universities.

In order to reach these objectives, a significant progress beyond the state of the
art was needed. The activities of UMRIDA project partners were grouped into three
main fields of activity, namely advancing methods for uncertainty quantification,
characterization of the most influential uncertainties and dimension reduction, and
advances in robust design methodologies.

In the following, the work performed in UMRIDA is assessed against these
objectives in view of the three main fields of activity and around the following core
objectives of the UMRIDA project:

• Construction of a novel and unique database of industrial relevant challenges
with prescribed uncertainties
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• The UMRIDA quantifiable objective of: “development and application of UQ
methods for large number of uncertainties (>10) within an acceptable CPU
return time of 10 h on no more than 100 cores parallel processors including
multidisciplinary applications”

• Application to industrial challenges and hereby increasing the Technology
Readiness Level (TRL) from currently 2–3 to 5–6.

Novel and Unique Database with Prescribed Uncertainties

A unique database with prescribed uncertainties for UQ and RDM was built within
the UMRIDA project as presented in chapter “UMRIDA Test Case Database with
Prescribed Uncertainties”. The purpose of the generic methodology description is to
be (partly) independent from the specific use case, thus allowing for a common
view by all partners on the different test cases. A common language of all partner’s
use case descriptions enables for easier collaboration and better means of compa-
rability of different methods within the project. For this purpose, a test case
description template has been used for the description of all test cases differentiating
between the test case description and the definition of uncertainties. Finally, the
database comprises of four basic test cases and nine industrial test cases spanning a
range of applications as diverse as 2D cases to full 3D cases for exterior aerody-
namics, turbomachinery design, and multidisciplinary applications such as aero-
and thermo-acoustics, and fluid–structure interaction.

The database test cases with prescribed uncertainties were used throughout the
project by the project partners as benchmarks for the development of various UQ
and RDO methodologies and in particular for the workshops on UQ held in Delft
on April 15 till 16, 2015, and on RDO held in Brussels from September 21 till 23,
2016. The database formed thus the backbone of the activities within UMRIDA and
fulfills one part of objective 3 defined in chapter “Vision, Objectives and Research
Activities”.

Progress in Methods for Uncertainty Quantification (UQ)

The work with respect to uncertainty propagation performed within UMRIDA is
based on three classes of uncertainty propagation techniques: method of moments
(perturbation method) and adjoint-based methods; sampling, Monte Carlo, and
multilevel Monte Carlo methods; polynomial chaos and collocation methods. These
are applied to operational and geometrical uncertainties, uncertainties resulting
from the manufacturing and assembly process, and modeling (epistemic) uncer-
tainties, and by some partners combined with techniques that rely on surrogate
modeling.
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The general speedup reached by the developed methods is in the order of 5–10,
when compared to standard approaches, such as classical regression-based poly-
nomial chaos, tensorized sampling, or classical Monte Carlo. The standard
approaches used as reference are listed in Tables 1, 2, and 3 for all methods. In
some cases, the speedup compared with the situation at the start of the project can
be significantly larger if, for example, sparse grid techniques are compared with full
tensor grids. Tables 1, 2, and 3 provide an overview of speedups reached for the
various UQ methods.

The above methodologies were applied to test cases from the UMRIDA data-
base, showing that the UMRIDA quantifiable objective is successfully reached by
several partners by applying a variety of methods (reduced basis method, method of
moments, level 2 sparse grid, multilevel Monte Carlo, gradient-enhanced kriging)
to deal with test cases from the UMRIDA database (BC-01, BC-02, BC-03).
Industrially relevant and representative test cases (IC-03, IC-04, IC-05, IC-06, and
IC-09) were also successfully handled fulfilling the UMRIDA objective. Table 4
compares the required computational effort for UQ comparing different methods on
some test cases with the UMRIDA quantifiable objective in CPUh/100 cores. In
these units, the UMRIDA quantifiable objective corresponds to a value of 10 and
values smaller than 10 fulfill the objective. Reaching the quantifiable objective is a
direct result of the above-presented speedups and was reached as a milestone after
the first UMRIDA workshop.

Table 1 Speedup achieved by the consortium for polynomial chaos and collocation methods if
applied to database test cases

Polynomial chaos and collocation methods
Partner Method Test

case
Number of
uncertainties

Speedup Reference
for speedup

Airbus group
innovation

Sparse PC OpenTURNS
1.4 (OT1.4)

IC-02 8 geometrical
2 operational

18 OT1.2

ESTECO Adaptive sparse PC BC-02 11 geometrical
2 operational

7 Classical
PC

ONERA Compressive sampling BC-02 1 geometrical
2 operational

12.5 Tensorized
sampling

NUMECA Sparse probabilistic
collocation

BC-02 10 geometrical 8.3 Classical
PC with
regression

BC-01 6 geometrical
3 operational

7.2 Classical
PC with
regression

VUB Reduced basis method
with regression-based PC

BC-02 10 geometrical 6.7 Classical
PC with
regression

BC-01 19 geometrical
2 operational

4.6 Classical
PC with
regression
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Table 2 Speedup achieved by the consortium for Monte Carlo and sampling techniques if applied
to database test cases

Monte Carlo and sampling techniques
Partner Method Test

case
Number of
uncertainties

Speedup Reference for
speedup

CIMNE Multilevel MC BC-02 13 5 Class MC
DLR Quasi-MC

+gradient-enhanced
surrogates (Kriging, RBF,
PC)

BC-02 26 geometrical
2 operational

5-6 Class.
quasi-MC

TU
Dresden

(Extendible) LHS IC-09 15 geometrical 10 Class MC
(random
sampling)

Table 3 Speedup achieved by the consortium for perturbation techniques if applied to database
test cases

Perturbation techniques
Partner Method Test

case
Number of
uncertainties

Speedup Reference for
speedup

Leonardo
+INRIA

Automatic
differentiation

BC-02 12 geometrical
2 operational

2.5 Finite diff

Table 4 Benchmarking of developed methods against the UMRIDA quantifiable objective

Test
case

Partner Method Nature and number of
uncertainties

Equations solved/
mesh size (106)/#
of runs

CPUh/
100
cores

BC-01 VUB Reduced basis
with regression
(PC order 2)

19 geometrical+2
operational

RANS/0.77/42 (on
fine grid)

0.66

BC-01 NUMECA Level 1 sparse
grid

10 operational
+geometrical

RANS/2.8/21 0.56

Level 2 sparse
grid

10 operational
+geometrical

RANS/2.8/241 6.43

BC-01 Saturn-NPO Surrogate-based
Monte Carlo

10 geometrical RANS/2.8/54 1.18

BC-02 Leonardo Second-order
method of
moments with
auto. diff.

12 geometrical, 2
operational

RANS with
auto-differentiation/
0.04/1

1.68

BC-02
BC-03

WUT Second-order
sensitivity

40 geometrical, no
operational

Euler/0.44/1 1.3

IC-03 DASSAV First-order
method of
moments

10 geometrical Linearized RANS
7.1/10

9.16

IC-03 INRIA Norm-oriented
anisotropic mesh
adaptation

Estimate a point-wise
error accounting for
discretization errors and
to drive adaptivity

RANS/1-10/20 4.8
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Finally, UQ strategies were applied to non-aerodynamic cases, including
thermo-acoustics, acoustics, and aeroelasticity with up to 10 operational and geo-
metrical uncertainties. INRIA developed a set of numerical methods for the
reduction and estimation of numerical errors and applied it reaching the UMRIDA
quantifiable objective to the test case IC-03. This work contributes to reaching the
objectives 1, 2, 3, and 4, which are listed in chapter “Vision, Objectives and
Research Activities”.

Progress in Characterization of Most Influential
Uncertainties and Dimension Reduction

A first very important step in the quantification and propagation of uncertainties is
the correct quantification of input uncertainties. TU Dresden and Airbus Group
Innovation focused on measurement of production scatters. There are several
problems to address in quantification of geometry variability due to production.
These include the analysis of point cloud data, data reduction (as the available data
is in many cases substantial), and statistical analysis. MAN Diesel and Turbo
Schweiz worked on methods for identification and quantification of input experi-
mental uncertainties. The life cycle of turbomachinery was outlined, and the major
documents that deliver data for the input uncertainty quantification were identified.
These documents are instructions, drawings, guidelines, and protocols. The iden-
tified uncertainties were used to analyze and improve internal manufacturing
instructions for rotating parts.

Several partners worked on dimension reduction techniques in order to reduce
the cost of uncertainty propagation techniques. VUB worked on reduced basis
methods coupled with regression-based polynomial chaos, where coarse mesh
solutions were used to sample a covariance matrix, which in return was used to
reduce the dimensionality of the problem. Techniques based on Karhunen–Loeve
Decomposition or Principal Component Analysis were applied by several partners
to random fields representing production variability or to the handling of correlated
engineering parameters. On such reduced bases, CIMNE and NUMECA used
non-intrusive uncertainty quantification methods: MLMC and probabilistic collo-
cation, respectively. Two partners (WUT and Leonardo) developed first- and
second-order sensitivity methods for their in-house solvers, with the help of INRIA
on the usage of their automatic differentiation software.

Surrogate modeling techniques for airfoils were used by ONERA and DLR.
ONERA worked on kriging-based surrogate models for the lift-to-drag ratio, while
DLR worked on adaptive gradient-enhanced surrogate models, using the adjoint
TAU code, and compared the efficiency and accuracy with kriging, direct inte-
gration (quasi-MC), and full MC reference statistics.

This work contributes to reaching the objectives 1, 2, 3, and 4, which are listed
in chapter “Vision, Objectives and Research Activities”.
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Progress in Robust Design and Optimization Methodologies

The challenge for robust design optimization lies in coupling optimization methods
with the UQ approaches developed in the project. Most of the partners used the
UMRIDA database test cases including industrial challenges (IC) for the assess-
ment of their developed methods. The geometries to be optimized were described
using both deterministic (nominal) design parameters and stochastic variables. In
some of the applications, the number of stochastic variables exceeded 10, which
was set as a threshold to be achieved to ensure the success of UMRIDA. The
stochastic objective functions were optimized by using gradient-free algorithms,
which are easy to implement for various types of stochastic quantities, whereas
VUB formulated a gradient-based method using an adjoint solver. All uncertainty
propagation techniques developed within UMRIDA were used, i.e., polynomial
chaos or collocation methods, sampling-based methods and multilevel Monte
Carlo, and perturbation methods. Different objectives functions were formulated to
obtain robust or even reliability-based approaches. Finally, the developed robust
design frameworks were demonstrated mainly by using high-fidelity methods such
as RANS solvers for CFD simulations. The different partners demonstrated that
methods for uncertainty quantification can successfully be integrated into design
optimization frameworks to achieve a robust and reliability-based design capability
based on high-fidelity CFD. The successful application of RDO to industrial
challenges from the UMRIDA database was demonstrated during the final
UMRIDA workshop, where RDO techniques were applied to the basic challenges
BC-01 and BC-02 and to industrial challenges IC-02, IC-03, IC-04, IC-05, IC-06,
and IC-07. The computational resources needed for RDO were judged acceptable in
an industrial context. This work contributes to the objectives 1, 2, 3, and 4 listed in
chapter “Vision, Objectives and Research Activities”.

Dissemination and Exploitation

Being at the forefront of the current research in the field in UQ and RDM,
UMRIDA introduced a fundamental shift in engineering practice accounting for
uncertainties in the simulation process. The UMRIDA partners recognize the
importance of spreading awareness on the novel results of the project, and the entire
consortium has actively contributed to the diffusion of the project outcomes.
UMRIDA partners produced a long list of publications in highly ranked journals, as
well as proceedings publications, presentations in various conferences, seminars,
workshops, and other fora.

In overall, the UMRIDA dissemination outcomes can be summarized in numbers
as follows:

• More than 60 scientific papers were published: 20 in peer-reviewed journals
and 41 in conference proceedings.
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• More than 40 presentations were realized in international conferences.
• Approximately, 70 presentations were realized in workshops, including the

two UMRIDA workshops, specialized in UQ and RDO.
• Approximately, 20 presentations were realized in technical seminars,

summer schools, and other events.
• Eight academic theses were developed within the activities of UMRIDA.
• Ten UMRIDA-related entries were published at newsletters of mass out-

reach, including the EASN Association Newsletter and the EnginSoft
Newsletter.

• Twelve press releases, announcements, and presentations were published at
various EC-supported and other media; these include popularized articles
through CORDIS, as well as information shared across the European Com-
mission’s social media channels.

• Two UMRIDA workshops and symposia open to external participants were
realized. The final workshop counted 60 participants, where 22 participants were
external to the project and saw a total of 33 presentations over its 2.5 days
duration. It was rounded off by a roundtable discussion on the industrial
maturity of UQ methods.

• The current book with its Best Practice Guide summarizing the most sig-
nificant outcomes and giving advice in the use of UQ and RDM is believed to be
a valuable contribution to the dissemination of UQ and RDM methods.

Developed UQ and RDM techniques and methods are already available in the
design practice of UMRIDA partners or have been introduced in software packages
developed and commercialized by UMRIDA partners. The further, the new findings
have found their entry into the teaching activities of academic partners. The dis-
semination and exploitation activities fulfill objective 5 listed in chapter “Vision,
Objectives and Research Activities”.

Conclusions and Identified Future Challenges

The UMRIDA project reached nearly all objectives and in its whole clearly
responds to all main challenges and goals that were set out to reach the start of the
project. The UMRIDA database with prescribed uncertainties formed the backbone
of the project, and it was used for assessment of the developed uncertainty quan-
tification and robust design optimization methodologies. The successful application
of UQ and RDO to industrial challenges from the UMRIDA database during the
two workshops demonstrates that the TRL was significantly increased to a level of
industrial applicability. The developed UQ and RDO methods are now in use by the
industrial project partners, and software vendors integrated the findings of the
project into their commercial software offer. First functionalities have been avail-
able to their clients since midterm of the project on and the availability of methods
is constantly enlarged. Some industrial and academic partners contribute to
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in-house or open-source libraries, which equally have been extended throughout the
project. The application of all types of uncertainty propagation techniques inves-
tigated in UMIRDA to industrial challenges from the database shows that they meet
the quantifiable objective of 10 uncertainties in less than 10 h turnaround time on
100 core parallel computers.

The final UMRIDA workshop showed with the application to a large number of
industrial challenges that the integration of these UQ techniques into robust design
formulations was successful. The outcome of UMRIDA is believed to push the
deployment of UQ and RDO techniques, certainly by the project partners, but also
by industry and academia. The final workshop counted 33 high-level presentations
on UQ and RDO and attracted a total of 60 participants, where 22 came from
outside of the consortium. The workshop was concluded with a roundtable dis-
cussion of the industrial maturity of UQ and RDO methods, which gave a retrospect
on the project, but also helped to identify future challenges. Four main future
challenges were identified.

Industrial challenges representing multidisciplinary applications such as fluid–
structure interaction, or aero- and thermo-acoustics are already part of the UMRIDA
database. Based on the experience of industrial project partners, multidisciplinary
integration in the product development cycles is identified as the weak link in the
chain and must be more integrated with the robust and reliable product design
process to assure that all physics are captured. This includes UQ and RDO for
multi-operating-point problems, such as a performance curve for turbomachinery or
a full flight envelope of an aircraft. At the example of an aircraft, preliminary design
is performed by means of CFD, while structural and aerodynamic departments need
to work together to analyze flutter, where CFD provides the loads and CSM pro-
vides the twist angles of a wing, for example.

This example of flutter analysis and the needed interaction between design
departments sheds light on the second identified challenge, which is uncertainty
management. Although UMRIDA carries uncertainty management in its name, the
main focus of the project laid on the development of uncertainty propagation and
robust design optimization techniques. Some aspects of uncertainty management
were addressed in the ambitious work description of the UMRIDA project, such as
including multidisciplinary test cases, work contributions on epistemic uncertainties
as well as model update by Bayesian techniques. Now that an adequate industrial
readiness is reached, addressing aeroelastic uncertainties in an aircraft flight
envelope appears on the horizon as a next possible goal.

Currently, robust design optimization is performed on one configuration,
whereas the aircraft design is a long-year process in which the RDO inputs will
change with time. This shows clearly that the simulations need to be adapted during
the design process and raises the question, on a design point of view, of how to
design a wing section knowing that changes will come later. This again relates to
the multidisciplinary integration identified as first future challenge. Such a process
is likely to use tools and methodologies of different accuracy from preliminary
design tools to high-fidelity CFD codes, for example. All these methodologies
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come with epistemic uncertainties, and it seems necessary to include both aleatory
and epistemic uncertainties in the UQ approach.

Another important element relates to the complexity of organizations and their
processes, such as exchange of data between different departments, different
business units, or with external suppliers. It is clear that a more efficient product
design process that can account for uncertainties along the design chain and that
provides the necessary tools to be applicable in complex organizations bears a huge
potential of increased efficiency and lower costs. All these aspects ranging from
model updates during the duration of the design process combined epistemic and
aleatory uncertainties, and process integrations can be summarized under the
challenge of uncertainty management.

A third identified challenge relates somewhat to the organizational complexity
and is concerned with the difficulties of extracting manufacturing variability from
the production process in order to accurately define the input uncertainties. There
is no standardized way of identifying or measuring uncertainties to be used in a
unified way in the design process. Besides difficulties to obtain data from the
production units or from external suppliers, it might be difficult to measure sensible
data if the production volume is very low, such as in the case of custom built
machines. One possibility is to base input uncertainty definitions on tolerances
defined in technical norms, but this option will not be available in the case of
additive manufacturing, where measurements of the surface variability seem
necessary.

A final challenge identified is related to the complexity and usability of the UQ
and RDO methods. It seems mandatory to reduce the user-experienced complexity
of the tools as much as possible in order to make them accessible and easily
understandable to a wide range of design engineers and non-technical decision
takers. Some partners already addressed this aspect in UMRIDA, but not at last due
to the novelty of UQ and RDO methods, many tools still require expert knowledge.
This goes in hand with the second challenge identified on uncertainty management.
The provided tools need to clearly state the range of applicability, need to be
understandable and usable in a multidisciplinary design process, which is regularly
updated with new data input, and ideally provide information on the cost savings
that can be achieved.
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