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Abstract. The efficient use of machine translation (MT) training data is being
revolutionized on account of the application of advanced data selection tech-
niques. These techniques involve sentence extraction from broad domains and
adaption for MTs of in-domain data. In this research, we attempt to improve
in-domain data adaptation methodologies. We focus on three techniques to
select sentences for analysis. The first technique is term frequency–inverse
document frequency, which originated from information retrieval (IR). The
second method, cited in language modeling literature, is a perplexity-based
approach. The third method is a unique concept, the Levenshtein distance,
which we discuss herein. We propose an effective combination of the three data
selection techniques that are applied at the corpus level. The results of this study
revealed that the individual techniques are not particularly successful in practical
applications. However, multilingual resources and a combination-based IR
methodology were found to be an effective approach.
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1 Introduction

The performance of statistical machine translation (SMT) [1] is heavily dependent on the
quantity of training data and the domain specificity of the test data as it relates to the
training data. An obstacle to optimal performance is the data-driven system not guar-
anteeing optimum results if either the training data or testing data are not uniformly
distributed. Domain adaptation is a promising approach to increasing the quality of
domain-specific translation systems with a mixture of out-of-domain and in-domain data.

The prevalent adaptation method is to choose the data to target the field or domain
from a general cluster of documents within the domain. However, the method is
applied when the quantity of data is adequately wide to cover some sentences that will
exist in the targeted field. Moreover, a domain-adapted machine translation system can
be attained through training that uses a chosen subset of the data. Axelrod et al. [2]
explained this point as a quasi-in-domain sub-part of the corpus instead of using the
complete corpus data.

The present paper focuses entirely on these auxiliary data selection methodologies,
which have advanced the development of narrow-domain SMT systems. Translation
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models that are trained in this way will have the benefit of enhanced word arrange-
ments. Furthermore, the system can be modified to avoid redundant pairs of phrases;
moreover, proper estimation can support reorganization of the elements of target
sentences.

The similarity measurement has an immense influence on the translation quality. In
this study, data selection methods that can boost the quality of domain-specific
translation were explored. To this end, data selection criteria were carefully analyzed.
Two models are thus considered in this paper. One is based on term frequency–inverse
document frequency (tf-idf); the other is a perplexity-based approach. These two
techniques have roots in information retrieval (IR) and language modeling for SMT.
A third approach uses the Levenshtein distance, which is then analyzed.

An evaluation revealed that each of these methods has advantages and disadvan-
tages. First, the tf-idf technique employs the text as a set of words and recovers
sentences that are similar. Although this approach helps reduce the number of
out-of-vocabulary words, it does not filter bad data. On the other hand,
perplexity-oriented measurement tools leverage an n-gram language model (LM),
which considers both a grammar’s word order and term distribution. It filters irrelevant
phrases and out-of-vocabulary words. However, the quality of the filtering depends
largely on the in-domain LM and quasi-in-domain sub-parts.

The methodology based on the Levenshtein distance is more stringent in its
approach than the other two. It is intended to explore the similarity index; however, in
terms of performance, it does not surpass the others on account of its reliance on data
generalization. As the number of factors increases, the complexity of the similarity
judgment also increases. This scenario can be depicted by a pyramid to show the
relevant intensities of multiple approaches. The Levenshtein distance approach is at the
top of the pyramid, perplexity is in the middle, and the tf-idf approach is at the bottom.
The positive and negative aspects of each method can be addressed by considering all
these criteria. If we consider additional factors, then the criterion at each highest point
will become stricter.

In this study, the above measurement approaches were combined and compared to
each separate method and to the modified Moore–Lewis filtering implementation in the
Moses SMT system. A comparative experiment was conducted using a generalized
Polish–English language movie-subtitle corpus and in-domain TED lecture corpus.
The SMT systems were adapted and trained accordingly. Utilizing the bilingual
evaluation understudy (BLEU) metric, the testing results revealed that the designed
approach produced a promising performance.

The remainder of this paper is organized as follows. Related literature is reviewed
in Sect. 2. Related models are analyzed in Sect. 3. Section 4 describes evaluation
methods. The experiment results and conclusions are outlined in Sect. 5.

2 State of the Art

Existing literature discusses data adaptation for SMT from multiple perspectives, such
as finding unknown words from comparable corpora [3], corpora weighting [4], mixing
multiple models [5–7], and weighted phrase extraction [8]. The predominant criterion
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for data selection is tf-idf, which originated in the area of IR. Hildebrand et al. [9]
utilized this IR technique to choose the most similar sentence—albeit with a lower
quantity—for translation model (TM) and LM adaptation. The results strengthen the
significance of the methodology for enhancing translation quality, particularly for LM
adaptation.

In a study much closer to the present research, Lü et al. [10] suggested reorganizing
the methodology for offline, as well as online, TM optimization. The results are much
closer to those of a realistic SMT system. Moreover, their conclusions revealed that
repetitive sentences in the data can affect the translation quality. By utilizing approx-
imately 60% of the complete data, they increased the BLEU score by almost one point.

The second technique in the literature is a perplexity approach, which is common in
language modeling. This approach was used by Lin et al. [11] and Gao et al. [12]. In
that research, perplexity was utilized as a standard in testing parts of the text in
accordance with an in-domain LM approach. Other researchers, such as Moore and
Lewis [13], derived the unique approach of a cross-entropy difference metric from a
simpler version of the Bayes rule. This methodology was further examined by Axelrod
et al. [2], particularly for SMT adaptation, and they additionally introduced an
exclusive unique bilingual methodology and compared its results with contemporary
approaches. Results of their experiments revealed that, if the system was kept simple
yet sufficiently fast, it discarded as much as 99% of the general corpus, which resulted
in an improvement of almost 1.8 BLEU points.

Early works discuss separately applying the methodology to either a TM [2] or an
LM [10]; however, in [10], Lü suggests that a combination of LM and TM adaptation
will actually enhance the overall performance. Therefore, in the present study, TM and
LM optimization was investigated through a combined data selection method.

3 Combined Corpora Adaptation Method

Four selection criteria are discussed to describe the examined models: tf-idf, perplexity,
Levenshtein distance, and the proposed combination approach.

3.1 TF-IDF

In the approach based on tf-idf, each document Di is represented as a vector
wi1; wi2; . . .;winð Þ, where n is the vocabulary size. Thus, wij is calculated as:

wij ¼ tfij � log idfj
� �

:

where, tfiji is the term frequency (TF) of the j-th word in the vocabulary in the doc-
ument Di and idfj is the inverse document frequency (IDF) of the j-th word. The
similarity between the two texts is the cosine of the angle between the two vectors. This
formula is applied in accordance with Lü et al. [10] and Hildebrand et al. [9]. The
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approach supposes that M is the size of the query set and N is the number of similar
sentences from the general corpus for each query. Thus, the size of the tf-idf-based
quasi-in-domain sub-corpus is defined as:

SizeCos�IR ¼ M � N:

3.2 Perplexity

Perplexity focuses on cross-entropy [14], which is the average of the negative loga-
rithm of word probabilities. Consider:

H p; qð Þ ¼ �
Xn
i¼1

pðwiÞ log qðwiÞ ¼ � 1
N

Xn
i¼1

log q wið Þ;

where p is the empirical distribution of the test sample. If wi appears n times in the test
sample of size N, then qðwiÞ is the probability of the wi event approximated from the
training set.

Perplexity (pp) can be simply calculated at the base point presented in the system. It
is often applied as a symbolic alternative to perplexity for the data selection as:

pp ¼ bH p;qð Þ;

where b is the basis of measured cross-entropy, and H p; qð Þ is the cross-entropy as
given in [14] which is often used as a substitute for perplexity in data selection [2, 13].

Let HI p; qð Þ and HO p; qð Þ be the cross-entropy of the wi string in accordance with
the language model, which is subsequently trained by a general-domain dataset and an
in-domain dataset. While examining the target (tgt) and source (src) dimensions of the
training data, three perplexity-based variants exist. The first one, known as basic
cross-entropy, is defined as:

HI�src p; qð Þ:

The second is Moore-Lewis cross-entropy difference [13].

HI�src p; qð Þ � HG�src p; qð Þ:

which attempts to choose the sentences that are most identical to the ones in I but
unlike others in G. Both the standards mentioned above consider only sentences in the
source language. Moreover, Axelrod et al. [2] proposed a metric that adds
cross-entropy differences to both sides:

HI�src p; qð Þ � HG�src p; qð Þ½ � þ HI�tgt p; qð Þ � HG�tgt p; qð Þ� �
:

For instance, candidates with lower scores [3, 15, 16] have a higher relevance to the
specific target domain. The sizes of the perplexity-based quasi-in-domain subsets must
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be equal. In practice, we work with the SRI Language Modeling (SRILM) toolkit to
train 5-gram LMs with interpolated modified Kneser–Ney discounting [17, 18].

3.3 Levenshtein Distance

In information theory and computer science, the Levenshtein distance is regarded as a
string metric for the measurement of dissimilarity between two sequences. The
Levenshtein distance between points or words is the minimum possible number of
unique edits to the data (e.g., insertions or deletions) that are required to replace one
word with another.

The Levenshtein distance can additionally be applied to a wider range of subjects as
a distance metric. Moreover, it has a close association with pairwise string
arrangement.

Mathematically, the Levenshtein distance between two strings a, b (of length aj j
and bj j, respectively) is given by leva;b aj j; bj jð Þ, where:

leva;b i; jð Þ ¼
max i; jð Þ ifmin i; jð Þ ¼ 0

min
leva;b i� 1; jð Þþ 1
leva;b i; j� 1ð Þþ 1

leva;b i� 1; j� 1ð Þþ 1 ai 6¼bjð Þ

8<
: otherwise:

8>><
>>:

Here, 1 ai 6¼bjð Þ is the indicator function, which is equal to 0 when ai ¼ bj; otherwise,

it is equal to 1. Furthermore, leva;b i; jð Þ is the distance between the first i characters of a
and the first j characters of b. The first component has the least correspondence to the
deletion (from a to b), the second-closest correspondence to the insertion, and the most
correspondence to a match or mismatch.

3.4 Combined Methods1

As was first explained by Wang et al. [19], there are three basic processing stages in
data selection for domain adaptation. First, we extract sentence pairs from a parallel
corpus. A generalized domain corpus is obtained based on significance and corre-
sponding relevance to the targeted domain. Second, the samples are reorganized to
maintain the quasi-in-domain sub-corpus. These first two steps are applicable to a
general domain monolingual corpus and they are significant for selecting sentences for
a language model. Once a large number of sentence pairs are collected, these models
are scheduled for data training and will eventually represent the target domain.

In a similar fashion, the similarity index measurement is required to choose the
sentences for a quasi-in-domain sub-corpus. For the similarity measurement, three
approaches are regarded as the most suitable. First, the tf-idf criterion identifies the
similarity by considering the word overlap. This technique is particularly helpful in
reducing out-of-vocabulary words. Nevertheless, it is sensitive to irrelevant data in the
system. The perplexity-based criterion, on the other hand, is more focused on the

1 https://Github.Com/Krzwolk/Text-Corpora-Adaptation-Tool.
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n-gram word order. Meanwhile, the Levenshtein distance considers the word order,
position of the words, and word overlap. Of the three approaches, it is the most
stringent.

In this study, a combination of the corpora and language models is used. These
three methods are first individually used to identify the quasi-in-domain sub-corpora.
They are later combined during the reorganization phase to collectively leverage the
benefits of all three metrics. Similarly, these three metrics are joined for domain
adaptation during the translation process. Experimental evidence demonstrated the
success of this process. In addition, our adaptation tool is freely available for use.

4 Evaluation

To advance machine translation (MT), the quality of the MT results must be evaluated.
It has been recognized that using humans to evaluate MT approaches is costly and time
consuming [20]. As a result, human evaluation cannot remain abreast of the growing
and continual need for MT evaluation. Consequently, the development of automated
MT evaluation techniques is critical. Evaluation is particularly crucial for translation
between languages of different families, such as Polish and English languages from
respective Germanic and Slavic families [20, 21].

In Reeder [21], Reeder compiled an initial list of SMT evaluation metrics. Further
research led to the development of newer metrics. Prominent metrics include Bilingual
Evaluation Understudy (BLEU), the National Institute of Standards and Technology
(NIST), Translation Error Rate (TER), and the Metric for Evaluation of Translation
with Explicit Ordering (METEOR). These metrics were used in the present research for
evaluation.

In this study, we employed the most renowned metric, BLEU, which was devel-
oped based on a premise similar to that used for speech recognition. It is described in
Papineni et al. [16] as follows: “The closer a machine translation is to a professional
human translation, the better it is.” Accordingly, the BLEU metric is designed to
measure how close SMT output is to those of human reference translations. It is
important to note that translations, whether SMT or human, may significantly differ in
word usage, word order, and phrase length [16].

4.1 Statistical Significance Tests

In cases in which the differences in the above metrics are not significant, a statistical
significance test can be performed. The Wilcoxon test [22] (also known as the
signed-rank or matched-pairs test) is one of the most renowned alternatives to the
Student’s t-test for dependent samples. It belongs to the group of non-parametric tests
and is used to compare two (and only two) dependent groups that involve two mea-
surement variables.

The Wilcoxon test is employed when the assumptions for the Student’s t-test for
dependent samples are not valid. For this reason, it is considered an alternative to the
latter test. The Wilcoxon test is additionally used when variables are measured on an
ordinal scale (in the Student’s t-test, the variables must be measured on a quantitative
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scale). The requirement for Wilcoxon test application is the potential to rank differences
between the first and second variable (the measurement). On an ordinal scale, it is
possible to calculate the difference in levels between two variables; therefore, the test
can be used for variables calculated on such a scale. In the case of quantitative scales,
this test is used if the distributions of these variables are not close to the normal
distribution.

Hypotheses for the Wilcoxon test are formulated as:

H0 : F1 ¼ F2;

H1 : F1 6¼ F2:

In this test, as in the case of the Student’s t-test, a third variable is used. The third
variable specifies the absolute value of the difference between the values of the paired
observations. It involves ranking measurement differences for subsequent observations.
First, the differences between measurements 1 and 2 are calculated. Then, the differ-
ences are ranked (the results are arranged from lowest to highest), and subsequent ranks
are assigned to them. The sum of the ranks is then calculated for differences that are
negative and those that are positive (results showing no differences are not significant
here). Subsequently, the larger sum (of negative or positive differences) is chosen. This
result constitutes that of the Wilcoxon test statistic if the number of observations does
not exceed 25.

For larger samples, it is possible to use the asymptotic convergence of the test
statistic (assuming that H0 is true) for the normal distribution N(m, s), where

m ¼ n nþ 1ð Þ
4

;

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þ 2nþ 1ð Þ

24

r
:

The Wilcoxon test is also known as the signed-rank test because it requires cal-
culation of ranks assigned to different signs (negative and positive differences). As with
the Student’s t-test for dependent samples, data missing from one measurement
eliminates the entire observation from the analysis. Only the observations measured for
the first and second time are considered for the analysis. This is clearly because it is
necessary to subtract one result from the other.

5 Results and Conclusions

TED data comprise a unique lecture domain; however, this domain is not as wide as
that of the movie subtitles corpus OpenSubtitles (OPEN). An SMT system most
effectively operates in a uniquely defined domain, which presents another challenge for
the system. If the challenge is not adequately addressed, it can decrease the translation
accuracy. The domain adaptation quality largely depends on the training data used to
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optimize the language and translation models in the SMT system. This challenge can be
addressed by selecting and extracting domain-centric training data from a general
corpus and a generalized domain monolingual corpus. The quasi-in-domain sub-corpus
is produced through this process.

In this study, experiments were conducted on the Polish–English language pair.
The corpora statistics are shown in Table 1. In the Polish (PL) and English
(EN) columns, the number of unique words is given for each language; the number of
bilingual sentences is given in the “PAIRS” column.

In Table 2, the corpora statistics are presented for the average sentence lengths for
each language and corpus. Both tables expose large disparities between the text
domains.

Multiple versions of the SMT system were evaluated through the experiments.
Using the Moses SMT system, we trained a baseline system with no additional data
(BASE), a system that employs additional subtitle corpora with no adaptation (NONE),
a system adapted using Moore–Lewis filtering (MML) [2] built into Moses, a system
using tf-idf adaptation (TF-IDF), a system using perplexity-based adaptation (PP), a
system using data selected by the Levenshtein distance (LEV), and, lastly, a system
combining the three methods as described in Sect. 3.4 (COMB). In Table 3, we present
the amount of data from the OPEN corpus that remained after each filtration method.

Table 1. Corpora statistics

CORPORA PL EN PAIRS

TED 218,426 104,117 151,228
OPEN 1,236,088 749,300 33,570,553

Table 2. Average sentence lengths

CORPORA PL EN

TED 13 17
OPEN 6 7

Table 3. Number of remaining bi-sentences after filtration

Filtration method Number of bi-sentences

NONE 33,570,553
MML 1,320,385
TF-IDF 1, 718,231
PP 2,473,735
LEV 1,612,946
COMB 983,271
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Additional data were used for training both the bilingual translation phrase tables
and language models. The Moses SMT system was used for tokenization, cleaning,
factorization, conversion to lower case, splitting, and final cleaning of corpora after
splitting. Training of a 6-gram language model was accomplished using the KenLM
Modeling Toolkit [17]. Word and phrase alignment was performed using the SyM-
GIZA++ tool [23]. Out-of-Vocabulary (OOV) words were addressed using an unsu-
pervised transliteration model [24]. For evaluation purposes, we used an automatically
calculated BLEU metric [25] and official International Workshop on Spoken Language
Translation (IWSLT) 2012 test datasets2. The results are shown in Table 4. Statistically
significant results in accordance with the Wilcoxon test are marked with an asterisk ‘*’;
those that are very significant are denoted with ‘**.’

As shown by Table 4, ignoring the adaptation step only slightly improves PL
EN translation and degrades EN ← PL translation. As anticipated, other adaptation
methods have a rather positive impact on translation quality; however, in some cases,
the enhancement is only minor.

The most significant improvement in translation quality was obtained using the
proposed method combining all three metrics. It should be noted, however, that the
proposed method was not computationally feasible in some cases, even though it
produced satisfactory results. In the best-case scenario, fast comparison metrics, such as
perplexity, will filter most irrelevant data; however, in the worst-case scenario, most
data would be processed by slow metrics.

Summing up, we successfully introduced a new combined approach for the
in-domain data adaptation task. In the general case, it provides better adaptation results
than those of state of the art methods separately in a reasonable amount of time.

Table 4. Corpora adaptation results

SYSTEM BLEU
PL ! EN EN ! PL

BASE 17.43 10.70
NONE 17.89* 10.63*
MML 18.21** 11.13*
TF-IDF 17.92* 10.71
PP 18.13** 10.88*
LEV 17.66* 10.63*
COMB 18.97** 11.84**

2 iwslt.org
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