
Learning Ecosystem Metamodel Quality
Assurance

Alicia García-Holgado(&) and Francisco J. García-Peñalvo

GRIAL Research Group, Computer Sciences Department,
Research Institute for Educational Sciences, University of Salamanca,

Salamanca, Spain
{aliciagh,fgarcia}@usal.es

Abstract. The learning ecosystem metamodel is a framework to support
Model-Driven Development of learning ecosystems based on Open Source
software. The metamodel must be validated in order to provide a robust solution
for the development of this type of technological solutions. The first phase of the
validation process has done manually, but to ensure the quality of the meta-
model, the last phase should be made using a tool. The first version of the
metamodel is an instance of MOF, the standard defined by the Object Man-
agement Group. There are not stable tools to support the definition and mapping
of metamodels and models using the standards. For this reason, is necessary to
transform the metamodel from MOF to Ecore in order to use the tools provided
by Eclipse. This work describes the transformation process and the measures to
ensure the quality of the learning ecosystem metamodel in Ecore.

Keywords: Metamodel � Model Driven Development � Learning ecosystems
Information systems � Software engineering � Ecore � Quality

1 Introduction

Technological ecosystems are a set of software tools connected by information flows to
provide new extra functionality than each tool separately and to support knowledge
management processes inside any kind of institution [1]. Furthermore, these techno-
logical solutions have an important human factor represented through two input flows,
the methodology and the management, not only by the users that use the ecosystem.
Learning ecosystems are a kind of technological ecosystem focus on learning man-
agement both in companies and institutions.

This technological approach is the evolution of traditional information systems and
offers advantages such as the ability to evolve in different dimensions [2, 3] or the
reusing of heterogeneous tools already developed to build new systems. On the other
hand, the definition, development and deployment of this type of software solutions is
complex and involves several problems identified in previous works [4]. Based on this
analysis, an architectural pattern has been defined [2] as an input to define a metamodel
to support Model-Driven Development (MDD) of learning ecosystems. The basic idea
of a metamodel is to identify the main concepts and their relations of a given problem
domain used to describe the models of that domain [5].

© Springer International Publishing AG, part of Springer Nature 2018
Á. Rocha et al. (Eds.): WorldCIST'18 2018, AISC 745, pp. 787–796, 2018.
https://doi.org/10.1007/978-3-319-77703-0_78

http://orcid.org/0000-0001-9663-1103
http://orcid.org/0000-0001-9987-5584
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77703-0_78&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77703-0_78&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77703-0_78&domain=pdf

The learning ecosystem metamodel [6] is a Platform-Independent Model (PIM) to
define learning ecosystems based on Open Source software. It has been defined using
the Model-Driven Architecture (MDA) proposed by the Object Management Group
(OMG) to apply MDD using the OMG standards for visualizing, storing, and
exchanging software designs and models [7]: Meta Object Facility (MOF), Unified
Modeling Language (UML), XML Metadata Interchange (XMI) and
Query/View/Transformation (QVT). The ecosystem metamodel is a M2-model in the
four–layer metamodel architecture; it is an instance of the Meta Object Facility (MOF).

The validation of the metamodel has been carried out through the instantiation of
conceptual models of learning ecosystems. Two Model-to-Model (M2M) transforma-
tions have been made in previous works to test that the metamodel allows to define a
real learning ecosystem. In particular, the models instantiated from the learning
ecosystem metamodel are learning ecosystems for knowledge management in two
different contexts, PhD Programmes with an Open Access policy [8] and the Spanish
Public Administration [2]. Both models fulfil the metamodel constraints verified from a
theoretical point of view. These preliminary validations are available in [9, 10].

To complete the validation process is necessary verify that the instances of the
learning ecosystem metamodel are reciprocated to the deployment of the learning
ecosystem in a real context, in other words, it is necessary to transform the PIM model
of a learning ecosystem in a PSM (Platform Specific Model) model. To ensure the
validity of the process, the transformations should be done using a tool, not manually.

Although OMG provides several standards to support MDA, there are no stable
tools to support the definition and mapping of metamodels and models using those
standards. However, Eclipse has Eclipse Modelling Project (EMF), a set of Eclipse
plugins that provide a framework to develop metamodels using Ecore and to support
automatic Model-to-Model and Model-to-Text transformation through the definition of
transformation rules. Ecore [11] is a meta-metamodel based on MOF focused on being
simpler and more practical. Further, the designers of Ecore have participated in the
definition of the core of MOF 2.0, Essential MOF or EMOF, so both are very similar.
For this reason, the last phase of the validation process will be developed using EMF.

The main purpose of this work is to ensure the quality of the learning ecosystem
metamodel. More specifically, the objectives are to describe the transformation of the
learning ecosystem metamodel from MOF to Ecore in order to use the tools provided
by EMF, and to apply a quality framework to both MOF and Ecore version.

The paper has been organized in the following way. Section 2 describes the
methodology used to transform the metamodel from MOF to Ecore. Section 3 describe
the transformation of the learning ecosystem metamodel and the differences between
both versions. Section 4 analyses the quality of the learning ecosystem metamodel both
MOF and Ecore. Finally, Sect. 5 summarizes the main conclusions of this work.

2 Methodology

In order to guarantee the quality of the learning ecosystem metamodel, a series of
analysis and transformations have been performed. First, the metamodel instantiated
from MOF has been analysed following the quality framework provided by

788 A. García-Holgado and F. J. García-Peñalvo

López-Fernández et al. [12]. The objective has been to recognise the quality problems
of the metamodel to solve them in the Ecore version.

After the analysis, the learning ecosystem metamodel in MOF has been transformed
in an instance of Ecore. Both metamodels are M2-model in the four-layer metamodel
architecture provided by MDA (Fig. 1). Both MOF and Ecore support the use of XMI
enabling the interchange of models, and model instances through XML based on
DTDs/XML schemas generated from the corresponding models [13]. However, in this
work the transformation has been made manually because of several problems with the
tool used to define the metamodel in MOF. This one was made with a UML class
diagram in Visual Paradigm and it has not been possible to import it into Eclipse using
XML Metadata Interchange (XMI). The instance of Ecore has been made using the
Graphical Modelling for Ecore included in EMF.

The first version of the metamodel has a set of constraints defined with Object
Constraint Language (OCL) and included in the metamodel as annotations. During the
transformation process, these constraints have been reviewed and finally twelve con-
straints have been included in the Ecore metamodel. Moreover, the constraints in the
Ecore metamodel are included in each element using the OCLinEditor provided by
EMF.

Finally, the quality of the learning ecosystem metamodel instantiated from Ecore
has been checked. It has been used the same metamodel quality framework than in the
MOF version.

3 Learning Ecosystem Metamodel

The first version of the learning ecosystem metamodel instantiated from MOF is
published in García-Holgado and García-Peñalvo [6] and is available in high resolution
in http://doi.org/10.5281/zenodo.829859.

Fig. 1. Different abstraction levels of the learning ecosystem metamodel

Learning Ecosystem Metamodel Quality Assurance 789

http://doi.org/10.5281/zenodo.829859

This section describes the mapping between the MOF version of the metamodel to
an instance of Ecore, as well as a set of improvements to ensure the quality of the
learning ecosystems instantiated from the final version of the metamodel.

3.1 Ecore Metamodel

The transformation from MOF to Ecore has made manually. To prevent confusion, this
work uses the “MOF” prefix for concepts in MOF and the “E” prefix for concepts in
Ecore.

First, each MOFClass has been mapped in a EClass and three new classes have
been defined. On the one hand, two children have been added to the hierarchy of
Infrastructure: IndexingService element was detected during the preliminary validation
when the metamodel was instantiated in the learning ecosystem for knowledge man-
agement in the Spanish Public Administration; and OtherSystemTool replaces the
MOFClass “…” because ellipsis are forbidden symbols in EClass names. On the other
hand, the MOFClass InformationFlow has been divided in two EClasses, one with the
same name that represents the communication between software tools either through
human interaction or through the development of software mechanisms; and one for
representing the implementation of the information flow, CommunicationMechanism.

Secondly, each MOFAttribute has been mapped in a EAttribute. In this process,
some new EAttributes have been defined in order to fulfil one of the EMF best prac-
tices, all classes must have a unique identifier attribute. Specifically, a EAttribute name
or title has been added to: InformationFlow, CommunicationMechanism, Ser-
viceInterface and ServiceOperation.

Moreover, other EAttributes have been included to have the required information to
transform PIM models to PSM models. In particular, ExternalTool has two new
EAttributes of type EString related to the connection between the ecosystem and the
external tool (id, key); InternalTool has three new EAttributes of type EBoolean to
determine some features related to information needs - complexity of the contents
(complexContentType), use of questionnaires or surveys (questionnaire) and use for
teaching (teaching) -; and User has a new EAttribute to distinguish his/her role in the
institution, a EAttribute of a EEnum defined in the metamodel, userType.

Finally, each MOFAssociation has been mapped in a EReference. This process has
been more difficult because in the learning ecosystem metamodel the MOFAssociations
had not defined the navigability. Instead, Ecore support uni-directional and
bi-directional references and it is mandatory define the navigability and a unique name
for each EReference. Also, the upper and lower bounds of EReferences have been
reviewed and some changes have been made: the lower bound of the EReference
configConsumer is 0 instead 1; and the lower bound of the EReference estab-
lishedMethodology is 0 instead 1.

Figure 2 show the result of the mapping process from MOF to Ecore and the
changes made to support the M2M transformations in EMF. The final version of the
learning ecosystem metamodel in Ecore is available in high resolution on the following
link https://doi.org/10.5281/zenodo.1066369.

790 A. García-Holgado and F. J. García-Peñalvo

http://dx.doi.org/10.5281/zenodo.1066369

3.2 OCL Constraints

The MOF version of the learning ecosystem metamodel has four OCL constraints [6].
During the mapping from MOF to Ecore some new OCL constraints has been defined
to guarantee the correct instantiation of the metamodel. In particular, eight new OCL
constraints have been defined in the metamodel. Moreover, two constraints defined in
the MOF metamodel have been modified.

The twelve constraints have been included in the Ecore metamodel using the
OCLinEditor provided by EMF.

Regarding the modifications, the constraint to ensure the required components of a
learning ecosystem has been changed to allow more than one monitorization tool,
because sometimes there are several monitorization tools that are part of other com-
ponents and combined provide the monitorization of the ecosystem.

context Ecosystem invariant requieredComponents:
self.components -> select(c |

c.oclIsTypeOf(MailServer)) -> size() = 1
and self.components -> select(c |

c.oclIsTypeOf(Monitorization)) -> notEmpty()
and self.components -> select(c |

c.oclIsTypeOf(UserManagement)) -> size() = 1
and self.components -> select(c |

c.oclIsTypeOf(InternalTool)) -> notEmpty()
and self.components -> select(c |

c.oclIsTypeOf(Management)) -> notEmpty()
and self.components -> select(c |

c.oclIsTypeOf(Methodology)) -> notEmpty()
and self.components -> select(c |

c.oclIsTypeOf(User)) -> notEmpty();

Fig. 2. Learning ecosystem metamodel in Ecore

Learning Ecosystem Metamodel Quality Assurance 791

An information flow always involves two different software tools, both for services
and properties. The constraint for ensuring that a software tool cannot consume a
service provided by itself has been redefined and a new constrain for properties has
been defined.

context SoftwareTool invariant differentService:
self.consumedService -> forAll(k |

k.provider -> forAll(j | j <> self));
context SoftwareTool invariant differentConfig:

self.usedProperty -> forAll(k |
k.configProvider <> self);

Five of the new constraints are focused on the relationships among the components.
First, a software tool cannot be contained itself directly or by transitivity:

context SoftwareTool invariant ownContainer:
self.softwareComponent -> forAll(k | k <> self);

An external tool cannot contain or be container of other software tools and a data
repository cannot be a component of other software tool:

context DataRepository
invariant independentExternalTool1:

self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(ExternalTool));

context InternalTool
invariant independentRepo_ExternalTool2:

self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(DataRepository))

and self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(ExternalTool));

context ExternalTool
invariant independentExternalTool2:

self.softwareComponent -> forAll(k |
not k.oclIsKindOf(Infrastructure)) and

self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(DataRepository)) and

self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(InternalTool));

context Infrastructure
invariant independentRepo_ExternalTool1:

self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(DataRepository))

and self.softwareComponent -> forAll(k |
not k.oclIsTypeOf(ExternalTool));

792 A. García-Holgado and F. J. García-Peñalvo

Finally, when a software tool consumes a service or a property must be at least an
information flow between it and the service or property provider:

context SoftwareTool
invariant servicewithInformationFlow:

self.consumedService -> isEmpty() or
self.consumedService -> forAll(k |

k.informationFlow -> exists(j |
j.source = self and k.provider -> exists(m |

m = j.destination)));
context SoftwareTool
invariant propertywithInformationFlow:

self.usedProperty -> isEmpty() or
self.usedProperty -> forAll(k |

k.informationFlow -> exists(j |
j.source = self and
j.destination = k.configProvider));

4 Quality of the Metamodel

The quality of the learning ecosystem metamodel has been checked using the meta-
model quality framework proposed by López-Fernández et al. [12]. This framework is
composed by thirty features that metamodels should follow (Table 1). The features are
divided in four categories: (1) design, properties signalling a faulty design (an error);
(2) best practices, basic design quality guidelines (a warning); (3) naming conventions,
questions related to the use of verbs, nouns, etc.); (4) metrics, measurements of
metamodel elements and their threshold value [14].

The first version of the metamodel did not comply the features D03 and BP03.
The MOF version of the metamodel has an abstract class, InformationFlow, that was a
superclass of only one class, Service. In the Ecore version of the metamodel, in order to
comply the feature D03, the Property class has been included in the hierarchy of
InformationFlow. Furthermore, the InformationFlow class has been divided in two
classes, one with the same name that represent the communication between two tools
and another one named CommunicationMechanism to describe the software mecha-
nism used to establish that communication, in case there was.

Regarding the feature BP03, there is a class in the metamodel in MOF, Ecosystem,
that contains all classes except two, Property and InformationFlow. The Ecore version
of the metamodel has two new composition associations, one between the root class
and InformationFlow, and other between the root class and the new class
CommunicationMechanism.

Learning Ecosystem Metamodel Quality Assurance 793

Table 1. Features of the metamodel quality framework [12]

Design

D01 An attribute is not repeated among all specific classes of a hierarchy
D02 There are no isolated classes (i.e., not involved in any association or hierarchy)
D03 No abstract class is super to only one class (it nullifies the usefulness of the abstract

class)
D04 There are no composition cycles
D05 There are no irrelevant classes (i.e., abstract and subclass of a concrete class)
D06 No binary association is composite in both member ends
D07 There are no overridden, inherited attributes
D08 Every feature has a maximum multiplicity greater than 0
D09 No class can be contained in two classes, when it is compulsorily in one of them
D10 No class contains one of its superclasses, with cardinality 1 in the composition end

(this is not finitely satisfiable)
Best practices
BP01 There are no redundant generalization paths
BP02 There are no uninstantiable classes (i.e., abstract without concrete children)
BP03 There is a root class that contains all others (best practice in EMF)
BP04 No class can be contained in two classes (weaker version of property D09)
BP05 A concrete top class with subclasses is not involved in any association (the class

should be probably abstract)
BP06 Two classes do not refer to each other with non-opposite references (they are likely

opposite)
Naming conventions
N01 Attributes are not named after their feature class (e.g., an attribute paperID in class

Paper)
N02 Attributes are not potential associations. If the attribute name is equal to a class, it is

likely that what the designer intends to model is an association
N03 Every binary association is named with a verb phrase
N04 Every class is named in pascal-case, with a singular-head noun phrase
N05 Element names are not too complex to process (i.e., too long)
N06 Every feature is named in camel-case
N07 Every non-boolean attribute has a noun-phrase name
N08 Every boolean attribute has a verb-phrase (e.g., isUnique)
N09 No class is named with a synonym to another class name
Metrics
M01 No class is overloaded with attributes (10-max by default)
M02 No class refers to too many others (5-max by default) – a.k.a. efferent couplings (Ce)
M03 No class is referred from too many others (5-max by default) – a.k.a. afferent

couplings (Ca)
M04 No hierarchy is too deep (5-level max by default) – a.k.a. depth of inheritance tree

(DIT)
M05 No class has too many direct children (10-max by default) – a.k.a. number of

children (NOC)

794 A. García-Holgado and F. J. García-Peñalvo

The learning ecosystem metamodel instantiated from Ecore (Fig. 2) fulfils with the
thirty features that compose the framework. Highlight the metrics:

• M01. Maximum number of attributes in a class of the metamodel is 4.
• M02. The classes with more references to others are InformationFlow, Soft-

wareTool and Ecosystem with a Ce value of 3.
• M03. The classes more referred from others are InformationFlow with a Ca value of

4, and SoftwareTool and Objective with a Ca value of 3.
• M04. The deepest hierarchy has a DIT value of 4, where the root class is

Component.
• M05. The class with more children is Infrastructure with a NOC value of 5.

5 Conclusions

The learning ecosystem metamodel is a M2-model in the four-layer metamodel
architecture provided by MDA. The main objective of this metamodel is to provide a
Computing Independent Model (CIM) for describing learning ecosystems building
from software components, human elements and information flows between them.

The validation of the metamodel is necessary to provide a robust solution for the
development of this type of technological solutions. In previous works a first phase has
been carried out; two M2M transformations have been made to test that the metamodel
allows to define real learning ecosystems. These preliminary validations have been
made manually because there are no stable tools that support the standards defined by
OMG.

The transformation from MOF to Ecore of the learning ecosystem metamodel
represents an important step in the validation process because of the Ecore version can
be an input in the different modelling tools provided by Eclipse. Furthermore, the
metamodel instantiated from Ecore (Fig. 1) is a quality metamodel according to the
quality framework proposed by López-Fernández et al. [12].

In future works the validation process will be completed defining a set of trans-
formation rules to transform a PIM model instantiated from the learning ecosystem
metamodel to a PSM model that represent the deployment of the learning ecosystem in
a real context.

Acknowledgments. This research work has been carried out within the University of Salamanca
PhD Programme on Education in the Knowledge Society scope (http://knowledgesociety.usal.es)
and was supported by the Spanish Ministry of Education, Culture and Sport under a FPU
fellowship (FPU014/04783).

This work has been partially funded by the Spanish Government Ministry of Economy and
Competitiveness throughout the DEFINES project (Ref. TIN2016-80172-R) and the Ministry of
Education of the Junta de Castilla y León (Spain) throughout the T-CUIDA project (Ref.
SA061P17).

Learning Ecosystem Metamodel Quality Assurance 795

http://knowledgesociety.usal.es

References

1. García-Peñalvo, F.J., García-Holgado, A. (eds.): Open Source Solutions for Knowledge
Management and Technological Ecosystems. IGI Global, Hershey (2017)

2. García-Holgado, A., García-Peñalvo, F.J.: Architectural pattern to improve the definition and
implementation of eLearning ecosystems. Sci. Comput. Program. 129, 20–34 (2016)

3. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: The role of software licenses in open
architecture ecosystems. In: IWSECO@ ICSR (Year)

4. García-Holgado, A., García-Peñalvo, F.J.: The evolution of the technological ecosystems: an
architectural proposal to enhancing learning processes. In: Proceedings of the First
International Conference on Technological Ecosystem for Enhancing Multiculturality
(TEEM 2013), 14–15 November 2013, Salamanca, Spain, pp. 565–571. ACM, New York
(2013)

5. Gómez-Sanz, J.J., Pavón, J.: Meta-modelling in agent oriented software engineering. In:
Garrijo, F.J., Riquelme, J.-C., Toro, M. (eds.) Ibero-American Conference on Artificial
Intelligence 2002, vol. 2527, pp. 606–615. Springer, Heidelberg (2002)

6. García-Holgado, A., García-Peñalvo, F.J.: A metamodel proposal for developing learning
ecosystems. In: Zaphiris, P., Ioannou, A. (eds.) Learning and Collaboration Technologies.
Novel Learning Ecosystems. LCT 2017. Lecture Notes in Computer Science, vol. 10295.
Springer, Cham (2017)

7. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley,
New York (2002)

8. García-Holgado, A., García-Peñalvo, F.J., Rodríguez-Conde, M.J.: Definition of a techno-
logical ecosystem for scientific knowledge management in a Ph.D. programme. In:
Proceedings of the Third International Conference on Technological Ecosystems for
Enhancing Multiculturality (TEEM 2015), 7–9 October 2015, Porto, Portugal, pp. 695–700.
ACM, New York (2015)

9. García-Holgado, A., García-Peñalvo, F.J.: Definición de ecosistemas de aprendizaje
independientes de plataforma. IV Congreso Internacional sobre Aprendizaje, Innovación y
Competitividad (CINAIC 2017), 4–6 October 2017, Zaragoza, Spain (2017)

10. García-Holgado, A., García-Peñalvo, F.J.: Preliminary validation of the metamodel for
developing learning ecosystems. In: Dodero, J.M., Ibarra Sáiz, M.S., Ruiz Rube, I. (eds.)
Proceedings of the 5th International Conference on Technological Ecosystems for
Enhancing Multiculturality (TEEM 2017), 18–20 October 2017, Cádiz, Spain. ACM,
New York (2017)

11. Eclipse Foundation: http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/
eclipse/emf/ecore/package-summary.html

12. López-Fernández, J.J., Guerra, E., de Lara, J.: Assessing the quality of meta-models. In:
Boulanger, F., Famelis, M., Ratiu, D. (eds.) MoDeVVa, CEUR Workshop Proceedings,
Valencia, Spain, vol. 1235, pp. 3–22 (2014)

13. Gerber, A., Raymond, K.: MOF to EMF: there and back again. In: Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, pp. 60–64. ACM (Year)

14. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

796 A. García-Holgado and F. J. García-Peñalvo

http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html

	Learning Ecosystem Metamodel Quality Assurance
	Abstract
	1 Introduction
	2 Methodology
	3 Learning Ecosystem Metamodel
	3.1 Ecore Metamodel
	3.2 OCL Constraints

	4 Quality of the Metamodel
	5 Conclusions
	Acknowledgments
	References

