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Abstract. The growth of the Life Science Semantic Web is illustrated
by the increasing number of resources available in the Linked Open Data
Cloud. Our SWIT tool supports the generation of semantic repositories,
and it has been successfully applied in the field of orthology resources,
helping to achieve objectives of the Quest for Orthologs consortium. How-
ever, our experience with SWIT reveals that despite the computational
complexity of the algorithm is linear with the size of the dataset, the
time required for the generation of the datasets is longer than desired.

The goal of this work is the application of High Performance Com-
puting techniques to speed up the generation of semantic datasets using
SWIT. For this purpose, the SWIT kernel was reimplemented, its algo-
rithm was adapted for facilitating the application of parallelization tech-
niques, which were finally designed and implemented.

An experimental analysis of the speed up of the transformation pro-
cess has been performed using the orthologs database InParanoid, which
provides many files of orthology relations between pairs of species. The
results show that we have been able to obtain accelerations up to 7000x.

The performance of SWIT has been highly improved, which will cer-
tainly increase its usefulness for creating large semantic datasets and
show that HPC techniques should play an important role for increasing
the performance of semantic tools.
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1 Introduction

Biomedical research is producing vast amounts of data, which are usually stored
in databases. According to the 2017 Molecular Biology Database Update [7] there
are more than 1500 biological resources. Such resources are usually represented
in heterogeneous ways [3], which makes data retrieval and management hard for
life scientists and complicates the realization of the Web of Data [2] pursued by
the Semantic Web community. The growth of the Life Science Semantic Web is
illustrated by the increasing number of resources available in the Linked Open
Data Cloud, although the generation of semantic versions of biological datasets
require to develop specific scripts for each resource as in Bio2RDF [1], showing
limited possibility of reuse and standardization of the process.

An example is the biological subdomain of orthology, where the Quest for
Orthologs (QfO) consortium1 not only has realized of the potential of semantic
web technologies for promoting data sharing and interoperability but also tries
to standardize the process of generating RDF orthology datasets [13]. For this
purpose, QfO has developed the Orthology Ontology [6] and has used the SWIT
tool for implementing the standardized transformation process [6,9], which has
been applied to a few orthology resources.

The SWIT method uses an ontology to drive the transformation process and
to guarantee the logical consistency of the transformed dataset, and requires
to perform a series of time-consuming tasks to obtain the final RDF dataset.
Experiments performed with large orthology datasets show that the computa-
tional complexity of the SWIT method is linear with respect to the number of
data instances to generate, but this may take longer than expected for some use
cases. Consequently, investigating ways for accelerating the execution of SWIT
transformation processes could contribute to increase the practical usefulness of
SWIT for supporting the transformation of large datasets.

High-Performance Computing (HPC) has been identified as a key player for
optimizing and accelerating scientific applications in biomedicine [4,5,8]. HPC
is usually associated with supercomputers but HPC techniques can be applied
in less powerful servers by exploiting the capability of parallelization and dis-
tributed computing of current servers, and even personal computers. HPC tech-
niques have demonstrated to obtain extremely high gains in speed of biomedical
applications and the acceleration factor depends on the degree of parallelization
and distributed computing of a given application or problem.

In this paper we describe how SWIT has been re-engineering with the appli-
cation of HPC techniques in order to reduce the time required for generating
large RDF datasets. Re-engineering SWIT has required to modify the original
transformation algorithm and to adapt it for distributing the workload in parallel
processes. The importance of semantic web technologies and HPC is growing in
the areas of bioinformatics and biomedical informatics and this work sheds light
on how they can be combined for the progress of biomedical and computational
sciences.

1 http://www.questfororthologs.org.

http://www.questfororthologs.org
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The paper is structured as follows: Sect. 2 presents the functionality of SWIT,
along the optimizations performed on the tool. The results obtained in several
datasets are described in Sect. 3. In Sect. 4 the conclusions are presented.

2 Methods

This section describes SWIT functionality and all the procedures used for its
optimization and parallelization.

2.1 SWIT

SWIT transforms and integrates heterogeneous biomedical data with the pur-
pose of generating open semantic repositories. Figure 1 shows the architecture of
SWIT. The transformation approach requires the prior definition of mapping rules
between an input schemaand aOWLontology.Next,we describe the SWIT inputs:

– Data instances: SWIT is able to process XML and relational data, from which
RDF/OWL can be generated.

– OWL Ontology: It supplies the domain knowledge for the transformation. The
ontology also contains constraints that are used for ensuring the generation of
logically consistent data.

– Transformation rules: They define how the content of the input dataset is trans-
formed into a semantic format. SWIT distinguishes between mapping rules and
identity rules.

Fig. 1. SWIT architecture.

Mapping Rules. They provide the links between the entities of the input data
schema and the entities of the OWL ontology. Next we provide an example of use of
these rules to transform input data into the Orthology Ontology. Listing 1.1 shows
the representation of the homology of two genes fromEscherichia coli andNemato-
cida parisii in orthoXML format [12], which is a format used by various orthology
resources. The mapping rule shown in Listing 1.2 is an entity rule that links the
<genes> in the input data with the Gene class of the ontology. The XPath query
defined in <nodepath> is processed by the libxml library2 and SWIT transforms
2 http://xmlsoft.org/.

http://xmlsoft.org/
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each “id” attribute from the input file into an instance of the class Gene. For this
example we get the individuals “gene 1” and “gene 2”.

Additional mapping rules for transforming the datatype property dct:identifier
of class Gene (attribute rule) and for the object property sio:codifies that links
Gene and Protein classes (relation rule) produce the result shown in Listing 1.3.

<database name=”UniProt” version=”Comp Proteomes 2013 06”
protLink=” ht tp : //www. uniprot . org / un iprot /”>
<genes>

<gene id=”1” prot Id=”P63284” geneId=”clpB”/>
<gene id=”2” prot Id=”I3EL83” geneId=”NEPG 02529”/>

</ genes>
</database>
<groups>

<orthologGroup id=”1”>
<s co r e id=” b i t ” value=”617”/>
<geneRef id=”1”>

<s co r e id=” inpa ra l og ” value=”1”/>
<s co r e id=” boots t rap ” value=”1”/>

</geneRef>
<geneRef id=”2”>

<s co r e id=” inpa ra l og ” value=”1”/>
<s co r e id=” boots t rap ” value=”1”/>

</geneRef>
</ orthologGroup>

</ groups>

Listing 1.1. Example of an input use case

<map>
<type>Arch2Class</ type>

<c l a s s><id>ht tp : // pur l . org /net / orth#Gene</ id></ c l a s s>
<arch>

<nodepath>/database / genes /gene/@id</nodepath>
</ arch>

</map>

Listing 1.2. Example of a mapping rule

<r d f :D e s c r i p t i o n rd f : about=” ht tp : // pur l . org /net / orth#gene 1 ”>
<d c t : i d e n t i f i e r rd f : da ta type=” s t r i n g ”>

clpB
</ d c t : i d e n t i f i e r>
< s i o : c o d i f i e s r d f : r e s o u r c e=” ht tp : // pur l . org /net / orth#

pro t e i n 1 ”/>
<r d f : t y p e r d f : r e s o u r c e=” ht tp : // pur l . org /net / orth#Gene”/>

</ r d f :D e s c r i p t i o n>

Listing 1.3. Output example
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Identity Rules. The input data might contain redundant entities that might be
considered different due to heterogeneity of the sources and the definition of the
mappings. For example, the application of the basic SWIT rules would generate
two different individuals (“gene 1” and “gene 2”) for the Listing 1.4 if the transfor-
mation is driven by the “id” property, despite the fact that they refer to the same
gene. SWIT provides identity rules for preventing such situation. They define the
set of datatype properties and object properties that permit to distinguish each
individual in the ontology. The Listing 1.5 shows a rule which states that a gene
is equivalent to another one if they have the same value for the property identi-
fier (case insensitive checking). In this example, it should be noted that http://
purl.org/dc/terms/identifier is mapped to the OrthoXML geneId attribute and
not to “id”.

<gene id=”1” prot Id=”P63284” geneId=”clpB”/>
<gene id=”2” prot Id=”p63284” geneId=” clpb ”/>

Listing 1.4. Two alike genes

<c l a s s><id>ht tp : // pur l . org /net / orth#Gene</ id></ c l a s s>
<and>

<requirement>
<scope>ALL</ scope>
<dataproperty>

ht tp : // pur l . org /dc/ terms/ i d e n t i f i e r
</ dataproperty>
<value>EQUALS IGNORE CASE</ value>

</ requirement>
</and>

Listing 1.5. Identity rule

2.2 Optimizations

The experience in the application of SWIT to the transformation of large datasets
has revealed that despite the computational complexity increases linearly with the
number of entities to be transformed, it is slower than expected, and we have iden-
tified some limitations to the performance: (1) use of an interpreted language; (2)
inefficient memory management; (3) the execution of identity rules using SPARQL
queries create an execution bottleneck; and (4) the sequential execution of the
transformation. In this section we describe the optimizations designed and imple-
mented to overcome this limitations. The code modernization3 will be based on
three independent steps: Scalar Tuning, Memory and Threading. These steps are
performed at the level of single-node.

Scalar Tuning. The first optimization has been to re-implement the SWIT ker-
nel in C/C++, since compiled code languages provide faster executions than inter-
preted ones such as Java, which is experimentally demonstrated in [10].
3 https://software.intel.com/en-us/articles/what-is-code-modernization.

http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
https://software.intel.com/en-us/articles/what-is-code-modernization
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Memory. SWIT creates ontology individuals as a result of the execution of the
mapping rules, and they are frequently used by SWIT during the process when
axioms have to be added to them. The original SWIT algorithm stores them using
hash maps of vectors, which is not optimal. The renovated algorithm provides a
faster access by using two hash maps hashed differently by integers, both maps
are composed of pointers to individuals and not copies, so keeping the coherence.
One of the maps grants that no failure happens when searching for an individual,
if this exists, while the other map could miss in some searches since it acts as a
greedy algorithm. The speed up of the execution of searches with the two maps is
up to 2x.

The optimization of memory management also affects the process of identifying
and merging equivalent individuals through the identity rules, which is one of the
SWITbottlenecks. The newmethod uses twohashmapsof vectorswhere point-
ers to individuals are stored: a map for AND conditions and another one for ORs.
The memory optimizations required the modification of the SWIT algorithm for
the creation of RDF/OWL individuals. For example, in order to process an AND
condition the pseudocode is:

checkDuplicate (Individual ind , Identity identityAND ,
IndividualMap andMap) {

// Extract and concatenate the individual ’s properties
string resume = extractProperties(ind , identityAND);
int hash = doHash(propertiesConcat );
vector <Individual > indVector = andMap[hash];
// Individuals with the same hash
for (int i = 0; i < indVector.size(); i++) {
Individual coincidence = indVector[i];
string coincidenceResume = extractProperties(

coincidence , identityAND);
if (coincidence.ontologyClass () == ind.ontologyClass

() && coincidenceResume == resume) {
ind.setCoincidence (coincidence);
return;

}
}
andMap[hash].add(ind);

}

The same is applied on theOR map, however instead of extracting and concate-
nating all the properties of the individual according to an identityOR rule (line 4),
properties will be extracted and compared one by one.

For example, if we state that one gene is identified by the database and
its gene id, for the AND map the value of the variable resume would be
“database+gene id” of the current individual. On the contrary, if we state that
they are similar if the database or the gene id matches, then resume would con-
tain “database” first, and if there are no coincidences for that certain database,
then the algorithm would extract the next property “gene id” and check if there
is any duplicate.
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Threading. This step provides a parallelization of the execution of SWIT and
the largest speed up. The parallel design consists in setting one input file and one
SWIT instance per core, so the parallelization only works when multiple files are
established. When transforming a single large file, we need to split it in several
smaller files to enable parallelization. We use the “gnu parallel” [14] software in
order to carry out this task which allows us to parallelize at process level with a
script.

3 Results

In this section we describe the results obtained by applying the renovated SWIT
algorithm for the transformation of biomedical data. The results will be inter-
preted in terms of the acceleration obtained in comparison to the original algo-
rithm. A demo version will be placed in a git repository4, so reproducibility can be
accomplished.

3.1 Experimental Setting

In this experiment we have used data from the orthology domain, which has been
the domain in which SWIT has been recently used [6,9]. More concretely, we have
used data from Inparanoid 8, which provides the data in XML5. Each XML file con-
tains the pairwise orthologs between two given species identified by the InParanoid
algorithm [11]. The Inparanoid files use the orthoXML format [12]. In this exper-
iment we have used a total of 37436 orthoXML files corresponding to the pairwise
orthology relations for two species and the complete InParanoid database:

– Hyaloperonospora arabidopsidis: 166 files, sizes between 167 KB and 3,1 MB
– Homo sapiens: 142 files, sizes between 168 KB and 5,6 MB
– The entire Inparanoid database: 37128 files (43G)

For the transformation of data we have used the Orthology Ontology6 and the
mapping file from orthoXML to the Orthology Ontology7.

The experiments have been run in the following computers:
Personal computer (PC): It has an Intel R© CoreTM i5-6400 with 4 cores (4
threads, no hyper-threading) running up to 2,7 GHz and 8 GB RAM DDR4.
Mendel server (Mendel): It provides 2 chips of Intel R© Xeon R© E5-2698 v4 with
20 cores each (2 hyper-threading), making a total of 40 physical cores or 80 virtual
cores, running at 2,2 GHz and 128 GB RAM DDR4.

4 https://Neobernad@bitbucket.org/Neobernad/swit-test.git.
5 http://inparanoid.sbc.su.se/download/8.0 current/Orthologs OrthoXML/.
6 http://purl.bioontology.org/ontology/ORTH.
7 http://sele.inf.um.es/swit/ortho/mappingsOrthoXML.xml.

https://bitbucket.org/Neobernad/swit-test.git
http://inparanoid.sbc.su.se/download/8.0_current/Orthologs_OrthoXML/
http://purl.bioontology.org/ontology/ORTH
http://sele.inf.um.es/swit/ortho/mappingsOrthoXML.xml


698 J. A. Bernabé-Dı́az et al.

3.2 Results of the Experiment

The results of the transformation of the H.arabidopsidis collection are shown
in Tables 1 and 2. The times are measured using the two different architectures
described in Sect. 3.1. ‘Java’ stands for the original SWIT implementation, ‘C’
stands for the C version of SWIT, and ‘Parallel’ stands for the parallelization of
the C version of SWIT. The column ‘N.I’ stands for the time without identity
rules, that is to say, SWIT executions do not apply the identification of equivalent
individuals shown in Sect. 2.1. On the contrary, the column ‘W.I’ (with identities)
shows time executions making use of the detection of equivalent individuals. The
most important column in these experiments is ‘W.I’, because it shows the opti-
mization of the bottleneck of the SWIT Java version, and how it was reduced in the
new version. The column ‘N.I’ also shows an execution time boost due to the gen-
eral optimizations performed (i.e. code re-implementation from Java to C/C++,
greedy algorithm/search).

In this collection the parallelized and optimized SWIT enhances the speed up to
4000x, from an execution time of 11626,296 s (≈3 h and 10 min) down to 2,78 s.

Table 1. Time table

Time (seconds) N.I W.I

Java 138, 238 11626, 296

C 78, 683 78, 9

C, Mendel 31, 446 31, 946

Parallel C, Mendel 2, 705 2, 786

Table 2. Speed up table

Speed up from Java, PC N.I W.I

C 1, 756x 147, 354x

C, Mendel 4, 396x 363, 935x

Parallel C, Mendel 51, 1x 4173, 114x

Next, the results for the H.sapiens collection are shown in Tables 3 and 4. This
collection is one of the largest datasets found in InParanoid database. In order
to process its 142 files, the personal computer required of 30111,894 s (≈ 8 h and
20 min) to finish the execution of SWIT Java. Running on the same architecture,
PC, a speed up of 254x was achieved by using SWIT C/C++ (without parallel
execution). The acceleration was improved even further when the optimized SWIT
was processed in the server, reaching an increase of 7862 times faster than the orig-
inal version, and decreasing the time from 30111,894 to just 3,8 s.

Table 3. Time table

Time (seconds) N.I W.I

Java 175, 378 30111, 894

C 116, 486 118, 271

C, Mendel 41, 415 42, 951

Parallel C, Mendel 3, 721 3, 830

Table 4. Speed up table

Speed up from Java, PC N.I W.I

C 1, 505x 254, 6x

C, Mendel 4, 234x 701, 07x

Parallel C, Mendel 47, 13x 7862, 114x
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Finally, we tested SWIT with the whole InParanoid database which holds up to
274 species and a total of 37128 files. The executions were processed only in the
server, using the detection of duplicated individuals (identity rules) for both runs.
The results are displayed in Tables 5 and 6.

Table 5. Time table

Time (seconds) W.I Time (hours)

Java, Mendel 3310920 919

Parallel C, Mendel 3450 0, 95

Table 6. Speed up table

Speed up from Java, Mendel W.I

Parallel C, Mendel 959, 68x

The original version of SWIT (Java) required of 919 h and 43 min (38 days)
to transform the entire InParanoid database. Nevertheless, after the optimization
and parallelization step, we have increased the speed up to 959x, taking less than
1 h to process the same amount of data.

4 Discussion and Conclusions

HPCtechniques can be useful for accelerating semantic applications such as SWIT,
which uses OWL ontologies and reasoning for generating RDF/OWL datasets.
The methods developed in this work have obtained accelerations of SWIT exe-
cutions up between 1000x and 7000x. This means that transformation processes
which could take even one day with the original version would only need seconds
to complete with the new method.

SWIT not only supports the generation of semantic repositories but is also able
to generate integrated repositories by exploiting identity conditions which permit
to identify equivalent individuals in different resources, which can then be merged
or linked through owl:sameAs axioms. The application of the identity rules has
also been optimized as a result of this work, so we are also optimizing the semantic
integration of datasets, although further tests with an integration goal are needed.

It should also be noted that we have focused on the optimization of the SWIT
kernel, which means that some post-processing activities such as the generation
of “pure” RDF from OWL content has not been studied so far. We are also in the
process of migrating the online version of SWIT and creating the web services that
will permit third-party applications to use the new version of the algorithm.

These results are a clear justification for applying HPC to support semantic
web tools, especially in biomedicine, which require the processing of large volumes
of data. Speeding-up the generation of logically consistent, ontology-driven seman-
tic datasets could also ensure that the latest version of the resources are rapidly
available for the community. For example, we believe that this will help to increase
the productivity of normalization efforts such as the one pursued in the Quest for
Orthologs consortium.
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ogy ontology: development and applications. J. Biomed. Semant. 7, 34 (2016)

7. Galperin, M.Y., Fernndez, X.M., Rigden, D.J.: The 24th annual nucleic acids
research database issue: a look back and upcoming changes. Nucleic Acids Res.
45(D1), D1–D11 (2017)

8. Hautaniemi, S., Laakso, M.: High-performance computing in biomedicine. In: 2013
International Conference on High Performance Computing and Simulation (HPCS),
p. 233. IEEE (2013)

9. Legaz-Garćıa, M.D.C., Miñarro-Giménez, J.A., Tortosa, M.M., Fernández-Breis,
J.T.: Generation of open biomedical datasets through ontology-driven transforma-
tion and integration processes. J. Biomed. Semant. 7, 32 (2016)
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