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Abstract. Knowledge extraction is the discovery of knowledge from
structured and/or unstructured sources. This knowledge can be used to
build or enrich a domain ontology. Source code is rarely used. But imple-
mentation platforms evolve faster than business logic and these evolu-
tions are usually integrated directly into source code without updating
the conceptual model. In this paper, we present a generic approach for
knowledge extraction from source code of typed programming languages
using Hidden Markov Models. This approach consist of the definition of
the HMM so that it can be used to extract any type of knowledge from the
source code. The method is experimented on EPICAM and GeoServer
developed in Java and on MapServer developed in C/C++. Structural
evaluation shows that source code contains a structure that permit to
build a domain ontology and functional evaluation shows that source
code contains more knowledge than those contained in both databases
and meta-models.
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1 Introduction

Domain ontologies can be constructed using a bottom-up approach, using data
sources [6]. Several types of data sources can be used: texts (specifications, analy-
sis and design documents, user manuals, information on forums and blogs, etc.)
[7,15], databases [14,15], XML files [15], UML/Meta-model diagrams [4] and
source code [2,14].

Source code is any fully executable description of a software designed for a
specific domain: medical, industrial, military, communication, aerospace, com-
mercial, scientific, etc. It can be used for the collection, organization, storage
and communication of information. It is designed to facilitate repetitive tasks or
to process information quickly. To do this, it must be able to capture a set of
knowledge of the domain. For example, EPICAM, an epidemiological surveillance
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platform [11] allows health personnels to collect and share health information.
Then, it can capture knowledge of epidemiological surveillance.

Source code is written in a programming language that can be typed or
not. A programming language is a formal language that specifies a set of state-
ments that can be used to produce different types of output. They are distin-
guished according to the underlying programming paradigm. Some are designed
to support a paradigm (Java for example supports object-oriented programming,
Haskell supports functional programming), while other support several paradigms
(C++, C#).

Knowledge extraction from source code is rarely addressed in literature.
Bontcheva and Sabou [2], Zhao et al. [14] proposed to extract some aspect of
ontological knowledge from source code. Their approach have two drawbacks:
firstly, it is difficult to use it to extract any type of ontological knowledge and
secondly, it is difficult to adapt it from one source code to another.

In a previous work, we proposed an approach for knowledge extraction from
JAVA source code [1]. In this paper, we generalize this approach for knowledge
extraction from source code of typed programming languages. Then, the Sect. 2
presents an overview of Knowledge extraction principles and methods. In Sect. 3,
we present our approach, in Sect. 4 we present the experiments and evaluation,
and, in Sect. 5, we conclude.

2 Knowledge Extraction

According to Unbehauen et al. Knowledge Extraction is defined as “the cre-
ation of knowledge from structured (relational databases, XML) and unstruc-
tured (text, documents, images) sources” [12]. Knowledge that results from the
extraction process must be readable and interpretable by the machine and what
distinguishes it from the extraction of knowledge found in areas such as Auto-
matic Language Processing or Data Warehouses are the result of the extraction.
Indeed, when extracting knowledge, one do not expect only to obtain structured
information or the transformation into relational schema, but also the semantics
that this information can have. It is for this reason that learning ontologies can
be considered as a sub-domain of knowledge extraction [12]. Knowledge extrac-
tion uses a wide range of methods such as machine learning, knowledge acqui-
sition, natural language processing, information retrieval, artificial intelligence,
reasoning and database management [12,15].

Knowledge extracted from data sources can be very useful when build-
ing/enriching a domain ontology. In fact, more the knowledge of the field evolves
and more the experts are distributed, more experts are not easily accessible and
knowledge is likely to be incomplete, subjective and even obsolete. To overcome
the difficulties of collaborative approaches, users often turn to other data sources
such as dictionaries [7], Web documents [14], database schemas [14], meta-models
[4], UML diagrams [4], source code [2,14], etc. to extract knowledge.

Knowledge extraction from source code aims to extract knowledge embedded
in source code of software through an automated process. The technique gener-
ally used is to do a reverse engineering to analyse the source code in order to
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extract knowledge [2,14]. Some works propose the use of source code to enrich
an ontology constructed from schemas (for example, a database schema) [14],
others use user interfaces only [14], others propose to use the source code to
generate concepts [2,14]. Knowledge extraction from source code can be per-
formed by statistics, symbolic and multi-strategies approaches [10]. Symbolic
techniques are more precise, more robust, but they can be complex to imple-
ment, difficult to generalize, inflexible, and it can be costly to adapt from one
source code to another. Statistical methods are more computable, general, scal-
able, easy to adapt from one source code to another. For these reasons we will
used a statistical approach to extract knowledge from source code.

3 KNESC: A Generic Approach for Knowledge
Extraction from Source Code

3.1 Source Code vs HMM

Hidden Markov Model (HMM) [8,9] is a statistical model composed by: (1) Q =
{q1, q2, . . . , qn}, a set of states; (2) O = {o1, o2, . . . , on}, a set of observations;
(3) T : qt → qt+1, a unidirectional transition function between states; (4) S :
S(q) = o, a function for observation emission [8,9]. In this definition, qi are the
states of the model, q1 is the initial state and qn is the final state, oi are the observed
symbols, each transition of the T function is associated with its probability to be
taken from a state qt at time t to another state qt+1 at time t+1. Each observation
is associated with its probability of being emitted by a state qt at a time t. HMMs
are generally used for pattern recognition, automatic voice processing, automatic
natural language processing, character recognition [8], etc.

Source code can be modelled using HMMs. In fact, source code can be seen
as a text composed of a set of words organized by following a certain syntax.
Because source code follows a syntax, we assume that we can define the order
in which different words are entered by the programmer. We assume that before
entering the first word (at time t), the programmer reflects on the label of that
word and as a function of it, defines the label of the next word (at time t + dt)
and so on. For example, in C, before entering “struct”, the programmer knows
its label (a word that describes a data structure) and the label of the next word
(the name of data structure closed to domain vocabulary). Thus, the current
word depends only on the current label, the next label depends on the previous
label, and so on. An example of HMM annotated with class labels for Java source
code is given in Fig. 1. In the next section, we present our approach composed of
four main steps: Model definition, model training, model using and knowledge
extracted validation.
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Fig. 1. HMM example

3.2 HMM Definition

To define the structure of the HMM, we studied (manually) the organization of the
source code of the typed languages. Generally, data structures, attributes, condi-
tions are surrounded by one or more words. Some of these words are predefined in
advance in the programming language. To label the source code, we have defined
four labels, corresponding to four hidden states of the HMM: (1) PRE: corre-
sponding to the preamble of the information. This preamble is usually defined
in advance for typed programming languages; (2) TARGET: is the target, i.e.,
the information sought. This information may be preceded by one or more words
belonging to the PRE set. The information we are looking for are the names of the
data structures, the attributes, some relationships between data structures. They
are usually preceded by a meta-data that describes them. For example, in Java, the
meta-data “class” allows to identify a class. The meta-data (e.g. “class”) and the
data (“Patient”, for example) will all be marked as targets; (3) POST: any infor-
mation that follows the information sought. In some cases, POST is a punctuation
character or a braces (“;” or “}”); (3) OTHER: any other word in the vocabulary
that neither precedes nor follows the information sought.

3.3 HMM Training

Once the model structure is defined, the parameters of the transition and emis-
sion models must be estimated from the training data. To do this, we assume
that we have access to T corpus labelled ft knowing that ft is not just a sequence
of words but a sequence of word pairs with the word and its label as presented by
the Fig. 1. To train the model, we assume that we can define the order in which
different words are entered by the programmer. We assume that before entering
the first word, the developer reflects on the label of that word and as a function
of it, defines the label of the next word and so on. The current word depends
only on the current label, the next label depends on the previous label, and so
on. The process continues until the end of the file. We model this situation by
the equation:

ft = [(wt
1, e

t
1), ..., (w

t
d, e

t
d)], (1)

words(ft) = [wt
t, ..., w

t
d], (2)

labels(ft) = [et1, ..., e
t
d]. (3)
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Where wi and ei are sentences and labels of fi files respectively. In practice,
wi are concepts, properties, axioms or words that make up the rules. When they
are concepts, they are composed of properties and semantic relations with other
concepts. They are then labelled by ei, and represent the hidden states of the
HMM. From the training data, we can extract the statistics for the HMM:

– On the first label: P (q1) given by the formula 4. The a priori probability that
the first label is ‘a’ is the number of times the first label in the training corpus
is equal to ‘a’ in all documents divided by the number of documents.

P (H1 = a) =
∑

t freq(e
t
1 = a, ft)

T
. (4)

– On the relation between a word or a sentence and its syntactic class P (Sk | qk)
(formula 5). Conditional probability that the kth word is ‘w’ knowing that the
label is ‘b’ is the number of times I have seen the word ‘w’ associated with the
label ‘b’ in the document ft divided by the number of times I see the label ‘b’
associated with any other word in the ft documents. For example, “Patient”
can be a concept, a property, but can not be a rule.

P (Sk = w | qk = b) =
∑

t freq((w, b), ft)∑
t freq((′∗, b), ft) (5)

– On the relation between the adjacent syntactic label P (qk−1 | qk) (formula
6). Probability qk+1 is equal to label ‘a’ knowing that qk is equal to label ‘b’
(previous hidden state) is the number of times ‘a’ follows ‘b’ in the training
data divided by the number of times that ‘b’ is followed by any other label.

P (Hk+1 = a | Hk = b) =
∑

t freq(b, a), label(ft) + 1
∑

t freq(b, ∗′), label(ft) + 1
. (6)

To avoid zero probabilities for transitions or emissions that do not occur in
the training data, we have added a smoothing term (+1).

For example, let us consider the HMM of Fig. 1. Then, training corpus
for identifying concepts and properties would be: [(“public”, PRE), (“class”,
TARGET), (“Patient”, TARGET), (“extends”, TARGET), (“ImogEntityImpl”,
TARGET), (“{”, OTHER), (...), (“int”, TARGET), (“age”, TARGET), ...]. The
training phase is an automatic phase. In fact, once the sets PRE, POST and
OTHER have been defined, a simple algorithm can make it possible to identify
them automatically in the training data and to count the occurrence of each
element in order to calculate the above probabilities.

3.4 Knowledge Extraction

During this phase, potentially relevant knowledge will be identified and retrieved,
some entities will be re-encoded. The problem of extracting knowledge from the
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source code has been reduced to the problem of syntactic labelling. This is to
determine the syntactic label of the words of a text [8]. In our case, it will be
a matter of assigning a tag to all the words of the source code and extracting
the words marked as target word. This problem can be solved using HMM [8,9].
To do this we retrieve a sequence of states V (X | M) which has the greatest
probability of producing an observation sequence. For example, in our case, it
will be to find for the files f1, ..., fn, a sequence q1, ..., qn that is plausible. For
this, the formula 7 will be used to determine the most plausible strings.

P (X | M) = argMaxq1...ql∈Ql

l+1∏

k=1

P (qk−1 → qk)P (qk ↑ xk). (7)

From the extracted knowledge, two candidate terms to be concepts are related
if one is declared in the structure of the other. One may identify three types of
relations:

– Association: if two classes ‘A’ and ‘B’ are candidate terms to be concepts
and class ‘B’ is declared as attribute of class ‘A’, then classes ‘A’ and ‘B’ are
related. Class ‘A’ is the domain, class ‘B’ the range and the cardinality of the
association will be used to express relations of higher arity.

– Taxonomy: if two classes ‘A’ and ‘B’ are candidates terms to be concepts and
class ‘B’ extends the class ‘A’ (in JAVA, the keyword “extends” is used), then,
one can define a taxonomic relation between the classes ‘B’ and ‘A’.

– Attributes: if a class ‘A’ is a candidate term to be a concept and contains the
attributes ‘a’ and ‘b’ of basic data types (integers, string, etc.), then, ‘a’ and
‘b’ are attributes of class ‘A’.

3.5 Knowledge Validation

The knowledge obtained can be validated manually by a domain expert or semi-
automatically [3]. In fact, our goal is not to provide accurate knowledge, but to
facilitate the work of knowledge engineers and domain experts during the phase
of knowledge elicitation of the ontology engineering process.

In the next section, we experiment the approach on EPICAM and GeoServer
developed in Java and MapServer developed in C/C++. All our experiments
have been coded in Java and during it, we considered that the knowledge we
need are concepts, properties, axioms and rules.

4 Experiment and Validation

To validate our approach, we experiment it on JAVA and C/C++ programming
languages. In the next sections, we exploit the structure of Java source code to
define the HMMs (HMM for concepts, properties, axioms and, HMM for rules)
and we use these HMMs to extract the knowledge.
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4.1 Knowledge Extraction from JAVA Source Code

Defining HMM Model for JAVA. A set of Java source code allowed to
identify the elements corresponding to the sets PRE, TARGET, POST and
OTHER. Concepts, properties, and axioms can be identified by class names, class
attributes, relationships between classes respectively. Rules can be identified
under conditions (if (condition) - else). In [1], we present the definition of two
HMMs for JAVA source code: one for the identification of concepts, properties
and axioms and the second for the identification of rules. In these HMMs, each
state emitted a word corresponding to a word from the source code; Elements
that cannot be fully enumerated (for example, the TARGET state), a name is
used to designate all the symbols emitted by this state (for example, the word
“data” is used to designate all the terms emitted by the state TARGET).

Meta-data allowed to identify the candidates terms to be concepts, properties
of concepts and axioms. For example, if we have extracted the following terms:
“package edu.hospital.patientRecord ... class Patient extends Person ... int age ...
List<Exam> listExam”, then, a simple algorithm can be used to identify every
element:

– “package edu.hospital.patientRecord”: identify which package contains
all other elements and can be used to identify the class hierarchy;

– “class Patient extends Person”: means that “Patient” and “Person” are
candidate terms to be concepts and there is a hierarchical relationship between
“Patient” and “Person”;

– “int age, List <Exam> listExam”: means that “age” and “listExam”
are properties of the concept “Patient” and there is a relationship between
“Patient” and “Exam” class;

– “List<Exam> listExamen”: allows to define an axiom because it can be
translated by: “a patient has one or more exams”.

Training HMM on Data. Currently, the corpus is labelled by hand. In our
case, since it was possible to identify the PRE and POST sets, we automati-
cally labelled our corpus by defining an algorithm which, based on the source
code, constructs the transition model between hidden states and emission mod-
els between different states. A set of JAVA source codes were downloaded from
github and from these source codes we trained the HMMs. This data source
consists of 24 files. These files contain 1186 instructions and 12 conditions.

The HMMs we have just construct can be used to extract candidate terms
to be concepts, properties, axioms and rules of any Java source code.

Knowledge Extraction from EPICAM. The EPICAM platform [11] is an
Open Source platform for epidemiological surveillance of tuberculosis. It helps
health personnels to collect and share useful health information. Because EPI-
CAM is developed in Java, we will exploit the structure of the Java source code to
extract the knowledge. From this source code, we have extracted 377, 5205, 260,
263 candidates terms to be concepts, properties, axioms and rules respectively.
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Knowledge Extraction from GeoServer Source Code. GeoServer is an
Open Source map server developed in Java [5]. It allows users to edit, process
and share geospatial data. The source code downloaded from github contains
13038 files and 2150161 instructions. The HMM we have just presented was
used to extract the candidate terms to be concepts, properties, or axioms from
GeoServer source code. We have extracted 3522, 22020, 1404 candidates terms
to be concepts, properties and axioms respectively.

4.2 Knowledge Extraction from C Source Code

Defining HMM Structure for Concepts. A set of source code written in
C was downloaded from github and it was used to identify the elements corre-
sponding to the PRE, POST, TARGET and OTHER sets automatically. The
candidates terms to be concepts is identified by the name of data structures (for
example, “struct Coordinates {” identifies “Coordinates” as a candidate term to
be a concept). The HMM is defined by:

– PRE = {struct}, a set of words that precede TARGET.
– TARGET = {struct, wi}, ∀i, wi−1 ∈ PRE, the set of all words that we are

looking for.
– POST = { “{,”, * }, the end of the condition.
– OTHER = {wi}, wi /∈ PRE ∧ wi /∈ TARGET , the set of all other words.

Training HMM on Data. As we did for JAVA source code, the HMM built
in the previous step will automatically run on a training data. To do this, a set
of C source codes was downloaded from github. This data source consists of 24
files. The HMM obtained can be used to extract knowledge from any source code
written in C language.

Extracting Knowledge from MapServer Source Code. MapServer is an
Open Source map server developed at the University of Minnesota [13]. Its source
code contains 711 files and 425266 instructions. We used the HMM trained to
extract candidate terms to be concepts and have extracted 294 terms. We noticed
without being surprised that certain terms (e.g., x, y, xy, Map, Coords, Line,
Point, data, etc.) are both in the list of MapServer and GeoServer candidate
terms. Indeed, both applications are in the same domain.

4.3 Evaluation

To validate our approach, we evaluated the knowledge extracted from EPICAM
source code. To do it, we have considered structural evaluation (representation
of the ontology has a graph) and functional evaluation (conceptualization of
the ontology) [3]. We have compared the knowledge extracted to a gold stan-
dard [3] manually constructed with domain experts in our previous work using
EPICAM meta-model and database. Structural evaluation shows that from the
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source code, we can extract a structure allowing to build a domain ontology
and functional evaluation shows that source code contains more knowledge than
meta-model and database; It is the only data source containing the rules.

4.4 Advantages of the Approach

To show the benefits of our approach, we compare it to a parser-based approach.
To do it, we defined four comparison criteria:

– Genericity: our approach uses a set of simple keywords to identify terms in
the source code in order to train the model. This makes it possible to extract
any type of terms from any type of source code. With the parser approach,
there are two possibilities: define a generic parser that uses a regular expression
to identify terms or develop a parser for each programming language. In both
cases, this work is not obvious for a knowledge engineer who does not always
have the knowledge on programming or on the definition of regular expressions
(the syntax is less intuitive than what we propose). If we take the example of
our experiment, we used the same source code to extract terms from JAVA
and C source code.

– Ease to use: with our approach, to modify the elements to extract, the
knowledge engineer modifies the sets PRE, POST, OTHER, which is less
difficult than to define a regular expression or modify the source code of a
parser.

– Difficulties in the implementation: the development of a tool based on
our approach is more difficult than the development of a parser because there
are many libraries allowing the development of the parsers. However, once the
tool is developed, it is easy to use.

– Performance: unlike parsers, with our approach, we usually have false pos-
itives (terms that were extracted and were not affected by the extraction).
But, by training correctly the model, one have good performances.

5 Conclusion

To conclude, we propose an approach consisting of a generic method allowing
the extraction of knowledge from source code of typed languages. It consists
of defining a HMM by providing PRE, POST and OTHER sets, training the
HMM on data sources and use it for any software for this programming language.
This approach can then be extended to any programming language because all
have a structure making it possible to define PRE, POST and OTHER sets. We
experiment this approach by extracting knowledge from EPICAM and GeoServer
developed in Java, and MapServer developed in C/C++. The experimentations
were conclusive.

Our approach have therefore a number of shortcomings to be addressed.
It was experimented on typed programming language such as JAVA, C, and
C++ having a particular structure. It would be interesting to experiment it in
another type of programming languages like functional languages (Haskel, Lisp)
or untyped languages (PHP).
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