
Chapter 8
Coalitional Stabilities

Stability definitions for simple preference, unknown preference, degrees of pref-
erence, and hybrid preference (unknown combined with degree of preference) are
presented in Chaps. 4–7, respectively. A typical stability analysis is built upon a
noncooperative framework, with the underlying assumption being that each DM acts
independently in its own self interest, after calculating moves and countermoves by
its opponents. On the other hand, a coalitional analysis takes place in a cooperative
framework, and assesses whether individual DMs can jointly improve their posi-
tions by forming a coalition (Kilgour et al. 2001, Inohara and Hipel 2008a, b, Xu
et al. 2010, 2011, 2014). In fact, as emphasized in this book, after determining how
well a DM can fare on his or her own by carrying out individual stability analyses,
one should ascertain if a DM can do even better by cooperating with others via
executing coalitional stability analyses, which is the focus of this chapter. Outside
of Chap.8, discussions regarding the importance of coalition investigations are put
forward in Sect. 1.2.3 and portrayed in Fig. 1.5. Moreover, coalition modeling and
analysis should be embedded as a key function of a decision support system for
GMCR as explained in Sect. 10.2 and depicted in Figs. 10.2 and 10.4.

Coalition formation and stability analysis have long been active research areas in
game theory (Aumann and Hart 1994, van Deeman 1997). The coalitional analysis
considered in this book is confined to the Graph Model for Conflict Resolution
(GMCR) paradigm. It assesses whether a subset of self-interested and independent
DMs can gain by forming a coalition and coordinating their choices. The rationale
is that a nonequilibrium state is not sustainable, because at least one DM can deviate
from it in its own interest. An equilibrium, on the other hand, is expected to be
sustainable, as no DM is motivated to depart from it. However, when a subset of
DMs forms a coalition, an equilibrium may be upset via a sequence of joint moves
by the coalition. In this case, the target state must also be an equilibrium, as any
nonequilibrium state is transient. In Kilgour et al. (2001), this process is referred to
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as an “equilibrium jump”. Understandably the target state of an equilibrium jump
should make all members in the coalition better off and cannot be achieved by any
DM acting individually. Coalition analysis, therefore, aims to alert the analyst that
such a coalition exists and, if so, which equilibria are vulnerable to equilibrium jumps
and how these jumps can be achieved by coalitional joint moves.

Coalition movements under various preference structures are introduced in
Sect. 8.1. Subsequently, the logical representations of the four coalitional stabil-
ity definitions, coalitional Nash stability, coalitional general metarationality, coali-
tional symmetric metarationality, and coalitional sequential stability, are defined in
Sects. 8.2–8.5 under simple preference, unknown preference, three-level preference,
and hybrid preference, respectively. Additionally, in this chapter, matrix represen-
tations of coalitional stabilities are presented in Sects. 8.6–8.9 for the four types of
preference structures.

8.1 Coalition Movement Definitions

To define coalitional stabilities, concepts of coalitional improvement under various
preferences must be introduced.

Definition 8.1 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a coalitional improvement for H under simple preference from s,
denoted by s1 ∈ CR+

H (s), iff s1 �i s for every i ∈ H .

It is worth noting that CR+
H (s) �= R+

H (s), as R+
H (s) denotes all states that are attain-

able by coalition H via legal sequences of UIs from s (see Definition4.7). Although
each individual move is a UI for the mover, there is no guarantee that the terminal
state is preferred to s by any DM in H . On the contrary, CR+

H (s) is the subset of the
terminal states preferred to s by all DMs in the coalition, although any individual
move in the sequence may not be a UI for the mover.

Xu et al. (2010) extend the definition of coalitional improvement to weak coali-
tional improvement by including uncertain preference in the definition. A weak
coalitional improvement for a coalition is a state that is the result of a sequence
of moves from the status quo by members of the coalition, where each move is a
coalition improvement or uncertain move (CIUM), defined as follows.

Definition 8.2 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a coalition improvement or uncertain move for H from s, denoted
by s1 ∈ CR+,U

H (s), iff s1 �i s or s1 Ui s for every i ∈ H .

Here, CR+,U
H (s) differs from R+,U

H (s) in Definition5.18 in that R+,U
H (s) reflects

the steps of the process without taking into account the final result, while CR+,U
H (s)

is the final result, instead of the process. In other words, R+,U
H (s) requires each move

in a legal sequence to be a UIUM for themover, but the relative preference of the final
state and the status quo is not a concern. On the contrary, CR+,U

H (s) ensures that all
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coalition members prefer the terminal state to the status quo, or are uncertain about
their preference between these two states, without examining the relative preference
for each individual move along the legal sequence.

Similarly, a coalitional improvement can be extended to include strength of
preference.

Definition 8.3 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a mild or strong coalitional improvement for H from s under the
three-degree preference, denoted by s1 ∈ CR+,++

H (s), iff s1 >i s or s1 �i s for
every i ∈ H .

This means that, under a model with three degrees of preference, a coalitional
improvement is a state mildly preferred or strongly preferred to s by any DM in H
and is reachable by the coalition H . As before, note that CR+,++

H (s) �= R+,++
H (s),

because R+,++
H (s) (Definition6.9) denotes the states attainable by coalition H via

legal sequences of mild or strong unilateral improvements (MSUIs) from s. But
there is no guarantee that every DM in H prefers the terminal state to state s. On the
other hand, CR+,++

H (s) ensures that the terminal state is always mildly or strongly
preferred to s by all DMs in H though any individual move in the sequence may not
be an MSUI for the mover. The following definition of coalitional movement is for
the combination of unknown preference with three degrees of preference.

Definition 8.4 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a mild or strong or uncertain coalitional improvement for H from
s under hybrid preference, denoted by s1 ∈ CR+,++,U

H (s), iff s1 >i s, s1 �i s, or
s1 Ui s for every i ∈ H .

Now that the important concept of coalitional improvement or coalitional uncer-
tainty has been defined for various preference structures, the logical and matrix
representations of coalitional stabilities can be presented as follows.

8.2 Logical Representation of Coalitional Stabilities Under
Simple Preference

The logical representations of individual stabilities in the graph model for simple
preference, unknown preference, three degrees of preference and hybrid preference
are presented in Sects. 4.2, 5.2, 6.3 and7.2, respectively. In this section, logical rep-
resentations of coalitional stabilities are defined for the four kinds of preference
structure.

Firstly, coalitional stabilities under Nash, GMR, SMR, and SEQ with simple
preference are furnished.

Definition 8.5 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional Nash
stable for H , denoted by s ∈ SCNash

H , iff CR+
H (s) = ∅.
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From Definition8.1, CR+
H (s) honors the rule of no-successive-moves by the same

DM and, hence, this definition is applicable to both transitive and intransitive graph
models. As mentioned earlier, an empty coalition has no meaning, so it is assumed
hereafter that |H | > 0. If |H | = 1, then H = {i} and CR+

H (s) = R+
i (s). In this

special case, Definition8.5 reduces to individual Nash stability defined in Chap.4.
However, for a nontrivial coalition H ⊆ N , |H | ≥ 2, coalitional Nash stability
depends on the coalitional improvement listCR+

H (s), rather than coalition members’
individual UI lists, R+

i (s), for i ∈ H .
If state s ∈ S is Nash stable for every nonempty coalition H ⊆ N , it is called

universally coalitional Nash stable. The formal definition is described as follows.

Definition 8.6 State s ∈ S is universally coalitional Nash stable, denoted by
s ∈ SUCNash , iff s is coalitional stable for every nonempty coalition H ⊆ N .

Note that SCNash
H in Definition8.5 is different from SUCNash . SCNash

H is the set of
coalitional Nash stable states for some coalition H , whereas SUCNash contains all
coalitional Nash stable states.

For notational convenience, the notation to represent a preference relation in
coalition H is defined as follows.

Definition 8.7 For the graph model G, let H ⊆ N be a coalition. �	
H (s) = {t ∈ S :

s 
i t for at least one i ∈ H} in which s 
i t denotes s �i t or s ∼i t .

It is apparent that �	
H (s) considers only preference relative to state s without regard

to reachability from s.

Definition 8.8 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
general metarational (CGMR) for H , denoted by s ∈ SCGMR

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s).

If H = {i}, this definition reduces to individual GMR, defined in Sect. 4.2.3. If a
state is coalitional GMR for every coalition, it is called universally coalitional GMR
stable, formally defined as follows.

Definition 8.9 State s ∈ S is universally coalitional GMR stable, denoted by
s ∈ SUCGMR , iff s is coalitional GMR stable for every nonempty coalition H ⊆ N .

Definition 8.10 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
symmetric metarational (CSMR) for H , denoted by s ∈ SCSMR

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all

s3 ∈ RH (s2).

As usual, if H = {i}, Definition8.10 reduces to individual SMR, defined in
Sect. 4.2.3. If a state is coalitional SMR for every coalition, it is called universally
coalitional SMR stable, defined as follows.

Definition 8.11 State s ∈ S is universally coalitional SMR stable , denoted by
s ∈ SUCSMR , iff s is coalitional SMR stable for every nonempty coalition H ⊆ N .
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Normally, coalition H ’s opponents N − H may be treated as a coalition or as
individual DMs in the next two definitions.

Definition 8.12 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
sequentially stable (CSEQ1) for H , denoted by s ∈ SCSEQ1

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ CR+
N−H (s1) such that s2 ∈ �

	
H (s).

Definition 8.13 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
sequentially stable (CSEQ2) for H , denoted by s ∈ SCSEQ2

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ R+
N−H (s1) such that s2 ∈ �

	
H (s).

Remark: By employing the subclass improvement list concept, the SEQ stability
definition for coalition H introduced by Inohara and Hipel (2008a, b) considers cred-
ible sanctions by subcoalitions of opponents. But their result assumes that the rule
of no consecutive moves by the same DM has been lifted for the sake of tractability.
The implication is that the definition is applicable only to transitive graph models,
so in this book, one retains this restriction for coalitional stabilities. Because the
number of subcoalitions increases exponentially with the number of DMs in the
opponents, making the calculation of subclass improvement lists prohibitively dif-
ficult, H’s opponents N − H are treated here as a coalition or individual DMs, as
shown in Definitions 8.12 and 8.13, respectively.

As usual, when H = {i}, coalitional SEQwould be reduced to individual SEQ sta-
bility. Similarly, if state is coalitional SEQ for every coalition, it is called universally
coalitional SEQ stable. Specifically,

Definition 8.14 State s ∈ S is universally coalitional SEQ1 stable, denoted by
s ∈ SUCSEQ1 , iff s is coalitional SEQ1 stable for every nonempty coalition H ⊆ N .

Definition 8.15 State s ∈ S is universally coalitional SEQ2 stable, denoted by
s ∈ SUCSEQ2 , iff s is coalitional SEQ2 stable for every nonempty coalition H ⊆ N .

From the discussions above, it is clear that coalitional stability analysis extends
individual stabilities under simple preference. Next, the coalitional stabilities are
extended to preference with uncertainty.

8.3 Logical Representation of Coalitional Stabilities Under
Unknown Preference

DMs may exhibit different attitudes toward preference uncertainty when making
choices. For instance, an optimistic DM tends to view uncertainty as a potential
opportunity, while a pessimistic DM may regard an uncertain outcome as a risk.
In addition, a DM’s attitude towards uncertainty may change with the status quo
state: a DMwho has little to lose is more likely to take an aggressive attitude towards
uncertainty and treat it as a potential gain. On the contrary, a DMwho has little to gain
is highly likely to regard uncertain outcomes as a risk and adopt a conservative stance.
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To accommodate different attitudes toward preference uncertainty, Li et al. (2004)
define individual Nash, GMR, SMR, and SEQ stabilities with preference uncertainty
under four forms, a, b, c, and d (see Chap.5). The purpose of these four extensions
is to characterize a focal DM with diverse attitudes toward preference uncertainty,
ranging from aggressive tomixed to conservative.When coalitional GMR, SMR, and
SEQ stability definitions are extended from graph models with simple preference,
as presented in Sect. 8.2, to those with unknown preference, these four extensions
apply, depending on the focal coalition’s attitude towards preference uncertainty.

First, the coalitional Nash, GMR, SMR, and SEQ stabilities with indices a, b, c,
and d for unknown preference are described as follows. Let l ∈ {a, b, c, d}.

8.3.1 Logical Representation of Coalitional Stabilities
Indexed l

(1) Logical Representation of Coalitional Stabilities Indexed a

Definition 8.16 State s ∈ S is coalitional Nasha stable for H ⊆ N , denoted by
s ∈ SCNasha

H , iff CR+,U
H (s) = ∅.

Definition 8.17 State s ∈ S is coalitional GMRa for H ⊆ N , denoted by
s ∈ SCGMRa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s).

Definition 8.18 State s ∈ S is coalitional SMRa for H ⊆ N , denoted by
s ∈ SCSMRa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2).

Definition 8.19 State s ∈ S is coalitional SEQa for H ⊆ N , denoted by
s ∈ SCSEQa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	
H (s).

In extension a, the focal coalition members are conceived to be aggressive. They
are willing to deviate from the status quo state for uncertain outcomes in that uncer-
tainty is allowed at the incentive end for the focal coalition. Therefore, s ∈ SCNasha

H
is also said to be Nash stable for aggressive DMs in H . While assessing sanctions
by opponents, at least one coalition member must end up in a no-better-off position
in order to successfully block the focal coalition. Thus, uncertainty is not allowed at
the sanction end for the focal coalition.

(2) Logical Representation of Coalitional Stabilities Indexed b

Definition 8.20 State s ∈ S is coalitional Nashb stable for H ⊆ N , denoted by
s ∈ SCNashb

H , iff CR+
H (s) = ∅.

Definition 8.21 State s ∈ S is coalitional GMRb for H ⊆ N , denoted by s ∈
SCGMRb
H , iff for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s).
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Definition 8.22 State s ∈ S is coalitional SMRb for H ⊆ N , denoted by
s ∈ SCSMRb

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2).

Definition 8.23 State s ∈ S is coalitional SEQb for H ⊆ N , denoted by
s ∈ SCSEQb

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	
H (s).

Compared to the stability definitions for a coalition in extension a, this extension
does not treat uncertain moves as sufficient incentive for the focal coalition to deviate
from the status quo. The focal coalition under this extension presumably exhibits
a mixed attitude towards preference uncertainty, conservative at the incentive end
but aggressive at the sanction end (Li et al. 2004). Although Definitions8.20–8.23,
respectively, look the same as Definitions8.5, 8.8, 8.10, and 8.13, they are in fact
different in the sense that Definitions 8.20–8.23 assume preference uncertainty but
uncertainmoves are neither strong enoughmotivation for the focal coalition to deviate
from the status quo nor allowed as valid sanctions to deter the focal coalition. On the
other hand, Definitions 8.5, 8.8, 8.10, and 8.13 assume graph models with simple
preference.

(3) Logical Representation of Coalitional Stabilities Indexed c

For convenience, let �
	,U
H (s) = {t ∈ S : s 
i t or s Ui t for at least one i ∈ H}.

As Nash stability does not examine countermoves by the opponents, similar to the
individual stability case in Chap. 5, SCNashc

H = SCNasha
H .

Definition 8.24 State s ∈ S is coalitional GMRc for H ⊆ N , denoted by
s ∈ SCGMRc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s).

Definition 8.25 State s ∈ S is coalitional SMRc for H ⊆ N , denoted by
s ∈ SCSMRc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2).

Definition 8.26 State s ∈ S is coalitional SEQc for H ⊆ N , denoted by
s ∈ SCSEQc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	,U
H (s).

Extension c assumes that uncertain moves are allowed as sufficient incentives and
sanctions for the focal coalition and is designed to characterize focal coalition mem-
bers with mixed attitude towards preference uncertainty: aggressive at the incentive
end but conservative at the sanction end.

(4) Logical Representation of Coalitional Stabilities Indexed d

Similar to the individual stability case, SCNashd
H = SCNashb

H .

Definition 8.27 State s ∈ S is coalitional GMRd for H ⊆ N , denoted by
s ∈ SCGMRd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s).
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Definition 8.28 State s ∈ S is coalitional SMRd for H ⊆ N , denoted by
s ∈ SCSMRd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2).

Definition 8.29 State s ∈ S is coalitional SEQd for H ⊆ N , denoted by
s ∈ SCSEQd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	,U
H (s).

Coalitional stability definitions in extension d are devised for conservative focal
coalitions: When contemplating incentives, they do not envision uncertain moves as
opportunities (preference uncertainty is not allowed as incentives); while assessing
sanctions, these DMs would view uncertain moves as potential harm (preference
uncertainty is allowed as valid sanctions).

Let l ∈ {a, b, c, d}. As usual, if state s ∈ S is coalitional Nash, GMR, SMR,
or SEQ stable for each coalition H ⊆ N under a particular extension l, it is called
universally coalitional Nash, GMR, SMR, or SEQ stable indexed l, and denoted
by s ∈ SUCNashl , s ∈ SUCGMRl , s ∈ SUCSMRl , or s ∈ SUCSEQl . It is obvi-
ous that SUCGMRl = ∩H⊆N S

CGMRl
H , SUCSMRl = ∩H⊆N S

CSMRl
H , and SUCSEQl =

∩H⊆N S
CSEQl
H .

The logical representations of the coalitional stabilities for simple preference and
unknown preference have been described in Sects. 8.2 and 8.3. The logical repre-
sentation of coalitional stabilities when there are three degrees of preference are
presented next.

8.4 Logical Representation of Coalitional Stabilities Under
Three Degrees of Preference

Two-degree preference (simple preference) is often inadequate for modeling the
complex strategic conflicts that arise in practical applications, so it is natural to
explore how to expand coalitional stability from two-degree preference, presented
in Sect. 8.2, to the three-degree version. The coalitional stability definitions given
below for three degrees of preference recognize three distinct categories of stability
that are general coalitional stability, strong coalitional stability, and weak coalitional
stability. Coalitional stability definitions are called strong or weak to reflect the
additional preference information contained in the strength of preference relation.
General coalitional stabilities are defined first.

8.4.1 General Coalitional Stabilities

In order to analyze the coalitional stability of a state for a coalition H ⊆ N , it is nec-
essary to take into account possible responses from the opponents of H, j ∈ N − H .
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The reachable lists of coalition H from state s, RH (s) and R+,++
H (s), defined in

Sects. 4.2.2 and6.3.2, respectively, are used in this subsection for coalitional stability
definitions for three degrees of preference . A mild or strong coalitional improve-
ment from s for H , CR+,++

H (s), is presented in Definition8.3. General coalitional
stabilities are defined next.

Definition 8.30 For H ⊆ N , state s ∈ S is general coalitional Nash stable for
coalition H , denoted by s ∈ SGCNash

H , iff CR+,++
H (s) = ∅.

State s is general coalitional Nash stable for coalition H iff H has no coalitional
improvements from state s. Nash stability takes no account of possible responses by
the opponents of H for any move by H away from s.

To develop the coalitional versions of GMR, SMR, and SEQ, it is necessary to
identify coalition H ’s UMs, RH (s), MSUIs, R+,++

H (s), and coalitional improve-
ments, CR+,++

H (s), from state s.

Definition 8.31 For H ⊆ N , state s is general coalitional GMR (GCGMR) for
coalition H , denoted by s ∈ SGCGMR

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ RN−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some DM i ∈ H .

Definition 8.32 State s is general coalitional SMR (GCSMR) stable for coalition H ,
denoted by s ∈ SGCSMR

H , iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1),

such that s �i s2, s >i s2, or s ∼i s2 for at least one i ∈ H and s �i s3, s >i s3, or
s ∼i s3 for all s3 ∈ RH (s2).

State s is general coalitional SMR stable for H iff, for every s1 that H can attain
from s, and that is mildly or strongly preferred to s by everyone in H , there exists
s2 that N − H can reach from s1 that someone in H finds no more preferable than
s, and, moreover, every s3 that H can attain from s2 is no more preferable than s for
some member of H . If the sanction imposed by the opponents on H ’s improvement
cannot be mitigated by coalition H ’s counterresponse, then coalition H is better off
staying at the original state. Coalitional SMR presumes one step more foresight than
coalitional GMR.

Coalitional SEQ stability examines the credibility of sanctions of coalition H ’s
improvements by its opponents. The legality of sequences of improvements by sub-
coalitions of N − H is another issue. Similar to Sect. 8.2, H ’s opponents N − H
may be treated as a coalition or as individual DMs in the next two definitions.

Definition 8.33 For H ⊆ N , state s is general coalitional SEQ1 (GCSEQ1) for
coalition H , denoted by s ∈ SGCSEQ1

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ CR+,++
N−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some i ∈ H .

The state s ∈ S is general coalitional SEQ1 stable for H iff, for every s1 that H can
reach from s which everyone in H mildly or strongly prefers to s, there exists s2 that
N − H can reach from s1 such that everyone in N − H mildly or strongly prefers
s2 to s1 and someone in H finds s2 no more preferable than s. (Note that s2 may be
reachable from s1 by unilateral moves rather than unilateral improvements.)
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This is the same as saying that, for every coalitional unilateral improvement by H
from s, there is a response that can be achieved by N−H such that at least one person
in H finds the coalitional improvement sanctioned. In this case, at least one person
in H would rather be at s than at s2. This person therefore refuses to contribute to
the move from s to s1. (Of course, if this person is not essential to making the move
from s to s1 in the first place, then he or she could be dropped from the coalition.)

Alternatively, H ’s opponents can be treated as individual DMs, producing the
general coalitional SEQ2 stability, defined as follows:

Definition 8.34 For H ⊆ N , state s is general coalitional SEQ2 (GCSEQ2) for
coalition H , denoted by s ∈ SGCSEQ2

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ R+,++
N−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some i ∈ H .

8.4.2 Strong or Weak Coalitional Stabilities

When degree of preference is introduced into the graph model, general coalitional
stability definitions can be strong or weak, according to the degree of sanctioning.
For a risk-averse coalition H , if all of coalition H ’s improvements from a particular
state are strongly sanctioned, then the status quo state possesses an extra degree of
stability, called strong stability. A coalitional improvement of a focal H is sanctioned
strongly if it could result in a greatly less preferred state relative to the initial state,
and this sanction cannot be avoided by an appropriate counterresponse.

Definition 8.35 For H ⊆ N , state s is strong coalitional GMR (SCGMR) for coali-
tion H , denoted by s ∈ SSCGMR

H , iff for every s1 ∈ CR+,++
H (s) there exists at least

one s2 ∈ RN−H (s1) such that s �i s2 for some DM i ∈ H .

Under strong coalitional GMR stability, all H ’s coalitional improvements can be
strongly sanctioned by the opponents.

Definition 8.36 State s is strong coalitional SMR (SCSMR) stable for coalition H ,
denoted by s ∈ SSCSMR

H , iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1),

such that s �i s2 for at least one i ∈ H and s �i s3 for all s3 ∈ RH (s2).

If the strong sanction imposed by the opponents on H ’s improvements cannot be
mitigated by coalition H’s counterresponse, then at least one member of the coalition
H is better off staying at the original state. Two following definitions are analogous
to Definitions8.33 and 8.34.

Definition 8.37 For H ⊆ N , state s is strong coalitional SEQ1 (SCSEQ1) for
coalition H , denoted by s ∈ SSCSEQ1

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ CR+,++
N−H (s1) such that s �i s2 for at least one i ∈ H .

Definition 8.38 For H ⊆ N , state s is strong coalitional SEQ2 (SCSEQ2) for
coalition H , denoted by s ∈ SSCSEQ2

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ R+,++
N−H (s1) such that s �i s2 for at least one i ∈ H .
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For three-degree preference, general coalitional stabilities are classified as strong
and weak according to the strength of the possible sanctions. Let GCGS and SCGS
denote general coalitional graph model stability, GCNash, GCGMR, GCSMR,
GCSEQ1, or GCSEQ2, and strong coalitional graph model stability, SCGMR,
SCSMR, SCSEQ1, or SCSEQ2, respectively. Strong coalitional Nash stability is
excluded because CNash stability does not involve sanctions. The symbol WCGS
denotes weak coalitional graph model stability , WCGMR, WCSMR, or WCSEQ,
under three-degree preference. Weak coalitional stability is defined as follows:

Definition 8.39 For H ⊆ N , state s is weak coalitional stable for coalition H ,
denoted by s ∈ SWCGS

H , iff s ∈ SGCGS
H but s /∈ SSCGS

H .

A weak coalitional stable state means that it is general coalitional stable for some
stability, but not strong coalitional stable for the corresponding stability. Hence, if a
particular state s is general coalitional stable, then s is either strong coalitional stable
or weak coalitional stable.

8.5 Logical Representation of Coalitional Stability with
Hybrid Preference

The logical representations of coalitional stabilities under unknown preference and
three-level preference have been defined in Sects. 8.3 and 8.4, respectively. The two
types of preference are combined into the hybrid preference structure. The coalitional
stabilities under the hybrid preference are discussed in this section.

8.5.1 General Coalitional Stabilities with Hybrid Preference

The hybrid preference is to combine three-level preference and unknown preference
together. Therefore, general coalitional stabilities within hybrid preference expand
the general coalitional stabilities under simple preference, unknown preference, and
three-degree preference. Let l ∈ {a, b, c, d}.

8.5.1.1 General Coalitional Stabilities Indexed l

(1) General Coalitional Stabilities Indexed a

For coalitional stabilities indexed a, coalition H is willing to move to states that are
mildly preferred or strongly preferred, as well as states having uncertain preference
relative to the status quo but does not wish to be sanctioned by a strongly less
preferred, mildly less preferred, or equally preferred state relative to the status quo.
The definitions given below assume that s ∈ S and i ∈ N .
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Definition 8.40 For the graph model G, let H ⊆ N be a coalition. Define
�

,<,∼
H (s) = {t ∈ S : s �i t, s >i t, or s ∼i for at least one i ∈ H} and

�
,<,∼,U
H (s) = {t ∈ S : s �i t, s >i t, s ∼i t, or s Ui t for at least one i ∈ H}.

Note that �,<,∼
H (s) and �

,<,∼,U
H (s) do not consider the reachability from s.

Definition 8.41 State s ∈ S is general coalitional Nasha stable for coalition H ⊆
N , denoted by s ∈ SGCNasha

H , iff CR+,++,U
H (s) = ∅.

Definition 8.42 State s ∈ S is general coalitional GMRa for coalition H ⊆ N ,
denoted by s ∈ SGCGMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

RN−H (s1) such that s2 ∈ �
,<,∼
H (s).

Definition 8.43 State s ∈ S is general coalitional SMRa for coalition H ⊆ N ,
denoted by s ∈ SGCSMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) for all s3 ∈ RH (s2).

Definition 8.44 State s ∈ S is general coalitional SEQa for coalition H ⊆ N ,
denoted by s ∈ SGCSEQa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,<,∼
H (s).

(2) General Coalitional Stabilities Indexed b

Definition 8.45 State s ∈ S is general Nashb stable for coalition H ⊆ N , denoted
by s ∈ SGCNashb

H , iff CR+,++
H (s) = ∅.

Definition 8.46 State s ∈ S is general coalitional GMRb for coalition H ⊆ N ,
denoted by s ∈ SGCGMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s).

Definition 8.47 State s ∈ S is general coalitional SMRb for coalition H ⊆ N ,
denoted by s ∈ SGCSMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) for all s3 ∈ RH (s2).

Definition 8.48 State s ∈ S is general coalitional SEQb for coalition H ⊆ N ,
denoted by s ∈ SGCSEQb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)
such that s2 ∈ �

,<,∼
H (s).

(3) General Coalitional Stabilities Indexed c

Definition 8.49 State s ∈ S is general coalitional Nashc stable for coalition H ⊆ N ,
denoted by s ∈ SGCNashc

H , iff CR+,++,U
H (s) = ∅.

Definition 8.50 State s ∈ S is general coalitional GMRc for coalition H ⊆ N ,
denotedby s ∈ SGCGMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).



8.5 Logical Representation of Coalitional Stability with Hybrid Preference 305

Definition 8.51 State s ∈ S is general coalitional SMRc for coalition H ⊆ N ,
denoted by s ∈ SGCSMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) for all s3 ∈ RH (s2).

Definition 8.52 State s ∈ S is general coalitional SEQc for coalition H ⊆ N ,
denoted by s ∈ SGCSEQc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,<,∼,U
H (s).

(4) General Coalitional Stabilities Indexed d

Definition 8.53 State s ∈ S is general coalitional Nashd stable for coalition
H ⊆ N , denoted by s ∈ SGCNashd

H , iff CR+,++
H (s) = ∅.

Definition 8.54 State s ∈ S is general coalitional GMRd for coalition H ⊆ N ,
denoted by s ∈ SGCGMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).

Definition 8.55 State s ∈ S is general coalitional SMRd for coalition H ⊆ N ,
denoted by s ∈ SGCSMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) for all s3 ∈ RH (s2).

Definition 8.56 State s ∈ S is general coalitional SEQd for coalition H ⊆ N ,
denotedby s ∈ SGCSEQd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).

8.5.2 Strong Coalitional Stabilities with Hybrid Preference

The notation related to strong preference is defined within the hybrid preference
framework.

Definition 8.57 For the graph model G, let H ⊆ N be a coalition. �
H (s) = {t ∈

S : s �i t for at least one i ∈ H}.
Definition 8.58 Let l ∈ {a, b, c, d}. Strong coalitional Nashl stable for coalition
H ⊆ N is identical with general coalitional Nashl stable for coalition H ⊆ N . In
other words, SSCNashl

H = SGCNashl
H .

For example, when l = a, then SSCNasha
H = SGCNasha

H .

8.5.2.1 Strong Coalitional Stabilities Indexed l

(1) Strong Coalitional Stabilities Indexed a

Definition 8.59 State s ∈ S is strong coalitional GMRa for coalition H ⊆ N ,
denoted by s ∈ SSCGMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s).
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Definition 8.60 State s ∈ S is strong coalitional SMRa for coalition H ⊆ N ,
denoted by s ∈ SSCSMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s) and s3 ∈ �

H (s) for all s3 ∈ RH (s2).

Definition 8.61 State s ∈ S is strong coalitional SEQa for coalition H ⊆ N ,
denoted by s ∈ SSCSEQa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

H (s).

(2) Strong Coalitional Stabilities Indexed b

Definition 8.62 State s ∈ S is strong coalitional GMRb for coalition H ⊆ N ,
denoted by s ∈ SSCGMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s).

Definition 8.63 State s ∈ S is strong coalitional SMRb for coalition H ⊆ N ,
denoted by s ∈ SSCSMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s) and s3 ∈ �

H (s) for all s3 ∈ RH (s2).

Definition 8.64 State s ∈ S is strong coalitional SEQb for coalition H ⊆ N ,
denoted by s ∈ SSCSEQb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)
such that s2 ∈ �

H (s).

(3) Strong Coalitional Stabilities Indexed c

Definition 8.65 State s ∈ S is strong coalitional GMRc for coalition H ⊆ N ,
denoted by s ∈ SSCGMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s).

Definition 8.66 State s ∈ S is strong coalitional SMRc for coalition H ⊆ N ,
denoted by s ∈ SSCSMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s), and s3 ∈ �

,U
H (s) for all s3 ∈ RH (s2).

Definition 8.67 State s ∈ S is strong coalitional SEQc for coalition H ⊆ N ,
denoted by s ∈ SSCSEQc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,U
H (s).

(4) Strong Coalitional Stabilities Indexed d

Definition 8.68 State s ∈ S is strong coalitional GMRd for coalition H ⊆ N ,
denoted by s ∈ SSCGMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s).

Definition 8.69 State s ∈ S is strong coalitional SMRd for coalition H ⊆ N ,
denoted by s ∈ SSCSMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s), and s3 ∈ �

,U
H (s) for all s3 ∈ RH (s2).

Definition 8.70 State s ∈ S is strong coalitional SEQd for coalition H ⊆ N ,
denoted by s ∈ SSCSEQd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)

such that s2 ∈ �
,U
H (s).
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8.6 Matrix Representation of Coalitional Stability Under
Simple Preference

Although the four basic coalitional stabilities are defined for simple preference in
Sect. 8.2, unknown preference in Sect. 8.3, three degree-preference in Sect. 8.4 and
hybrid preference in Sect. 8.5, they are represented logically, which make coding
difficult. In order to develop algorithms to implement these coalitional stabilities
more easily, matrix representation of coalitional stabilities under various preference
structures is introduced in the following sections. The matrix version of coalitional
stability under simple preference is presented first (Xu et al. 2014).

8.6.1 Coalitional Improvement Matrix

Letm = |S| denote the number of states, E be them×mmatrix with each entry equal
to 1, and es denote the sth standard basis vector of them-dimensionalEuclidean space,
R

S . Recall that the UM reachability matrix MH is constructed using two approaches
that are based on the incidence matrix B and the adjacency matrix J presented in
Chaps. 4 and 5, respectively.

Amatrix approach is proposed in this section to construct the coalitional improve-
ments from state s, CR+

H (s), given in Definition8.1 in logical form.

Definition 8.71 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is defined as the m × m matrix CM+

H with
(s, q) entry

CM+
H (s, q) =

{
1 if q ∈ CR+

H (s),
0 otherwise.

It is clear that CR+
H (s) = {q : CM+

H (s, q) = 1}. Then

CR+
H (s) = eTs · CM+

H ,

if CR+
H (s) is written as 0–1 row vectors, where a “1” at the j th element indicates

coalition H has a coalitional improvement from s to s j . Note that eTs denotes the
transpose of es , the sth standard basis vector of m-dimensional Euclidean space.
Therefore, the coalitional improvement matrix for coalition H , CM+

H , can be used
to construct the coalitional improvements of H from state s, CR+

H (s).
Using Definition8.1, the coalitional improvement matrix of H can be constructed

by the following theorem.Recall that P−,=
H = ∨

i∈H
P−,=
i (“

∨
” denotes the disjunction

operator described in Definition3.16).

Theorem 8.1 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is expressed as
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CM+
H = MH ◦ (E − P−,=

H ). (8.1)

Proof To prove Eq.8.1, assume that C = MH ◦ (E − P−,=
H ).Using the definition for

matrix MH given in Chaps. 4 and 5, C(s, q) = 1 iff MH (s, q) = 1 and P−,=
H (s, q) =

0, which together imply that there is q ∈ RH (s) such that P−,=
i (s, q) = 0 for every

DM i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s for every
i ∈ H , so that q ∈ CR+

H (s), according to Definition8.1. Thus, CM+
H (s, q) = 1

using Definition8.71. Hence, CM+
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H and C
are 0–1 matrices, it follows that CM+

H = MH ◦ (E − P−,=
H ). �

8.6.2 Matrix Representation of Coalitional Stabilities

For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth element
and 0 everywhere else and e be an m-dimensional vector with every entry 1. Let
(
−→
0 )T denote the transpose of

−→
0 .

Theorem 8.2 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional Nash stable for H, denoted by s ∈ SCNash

H , iff eTs ·CM+
H · e = 0.

Proof Since eTs · CM+
H · e = 0 iff eTs · CM+

H = (
−→
0 )T , then CR+

H (s) = ∅
using Definition8.71. Consequently, the proof of this theorem follows by
Definition8.5. �

Coalitional Nash stability extends individual Nash stability. For example, If
|H | = 1, Theorem8.2 reduces to the matrix representation of individual Nash sta-
bility presented in Theorem4.3. Specifically,

Corollary 8.1 For the graph model G, let i ∈ N. If eTs · CM+
{i} · e = 0, then s is

Nash stable for DM i.

From Corollary8.1, coalitional Nash stability is a generalization of individual Nash
stability.

Theorem 8.3 For the graph model G, state s ∈ S is universally coalitional Nash
stable for every H ⊆ N, denoted by s ∈ SUCNash, iff

∑
∀H⊆N

eTs · CM+
H · e = 0.

Proof Since
∑

∀H⊆N
eTs · CM+

H · e = 0 iff for any H ⊆ N , eTs · CM+
H · e = 0.

By Theorem8.2, eTs · CM+
H · e = 0 iff s ∈ S is coalitional Nash stable for H .

Consequently,
∑
H⊆N

eTs · CM+
H · e = 0 iff s ∈ S is coalitional Nash stable for every

coalition H ⊆ N . The proof is completed by Definition8.6. �

Theorem8.3 shows thematrix representation of universally coalitional Nash stability
equivalent to logical representation stated in Definition8.6.
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Similar to the individual GMR stability, define coalitional GMR stabilitymatrix as

MCGMR
H = CM+

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.2)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMR stable for H .

Theorem 8.4 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional GMR stable for H, denoted by s ∈ SCGMR

H , iff MCGMR
H (s, s) = 0.

Proof Since

MCGMR
H (s, s) = (eTs · CM+

H ) · [(E − sign
(
MN−H · (P−,=

H )T
)) · es]

=
m∑

s1=1

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)],

then MCGMR
H (s, s) = 0 holds iff

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)] = 0, (8.3)

for every s1 ∈ S − {s}. It is clear that Eq. 8.3 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=
H )T �= 0,

for every s1 ∈ CR+
H (s). Therefore, for a coalitional improvement from s, s1 ∈

CR+
H (s), there exists at least one s2 ∈ RN−H (s1) with P−,=

H (s, s2) = 1 that is equiv-
alent to s 
i s2 for some DM i ∈ H . According to Definition8.8, MCGMR

H (s, s) = 0
implies that s is coalitional GMR stable for H . �

Theorem8.4 shows that this matrix method, called matrix representation of coali-
tional GMR stability, is equivalent to the logical version of the same stability given in
Definition8.8. To analyze the coalitional GMR stability at s for coalition H , one only
needs to identify whether the diagonal entry MCGMR

H (s, s) of the coalitional GMR
matrix is zero. If so, s is coalitional GMR stable for H ; otherwise, s is coalitional
GMR unstable for H . Similar to individual GMR stability, all information about
coalitional GMR stability is contained in the diagonal entries of the coalitional GMR
stability matrix.

If |H | = 1, Theorem8.4 reduces to the matrix representation of individual GMR
stability presented in Theorem4.10. Specifically,

Corollary 8.2 For the graph model G, let i ∈ N. if MCGMR
{i} (s, s) = 0, then s is

GMR stable for DM i.
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Coalitional SMR is similar to coalitional GMR except that coalition H expects to
have a chance to counterrespond to its opponent (N − H)’s response to H ’s original
move. Define the coalitional SMR stability matrix as

MCSMR
H = CM+

H · [E − sign(F)]

in which

F = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMR stable for H .

Theorem 8.5 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMR for H, denoted by s ∈ SCSMR

H , iff MCSMR
H (s, s) = 0.

Proof Since

MCSMR
H (s, s) = (eTs · CM+

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=

H (s, s3))
))]

,

then MCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=
H (s, s2) �= 0, (8.4)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=
H (s, s3)) = 0. (8.5)

Equation8.4 means that s 
i s2 for at least one DM i ∈ H , i.e., s2 ∈ �
	
H (s) that

is given in Definition8.7. Equation8.5 is equivalent to

P−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.6)
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Obviously, for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that Eqs. 8.4

and 8.5 hold iff for every s1 ∈ CR+
H (s) there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2). Therefore, the proof of this

theorem follows using Definition8.10. �

Theorem8.5 displays this matrix method, called matrix representation of coali-
tional SMR stability, which is equivalent to the logical version given in Defini-
tion8.10. To calculate coalitional SMR stability at s for H , one only needs to assess
whether the diagonal entryMCSMR

H (s, s)of coalitional SMRstabilitymatrix is zero. If
so, s is coalitional SMR stable for H ; otherwise, s is coalitional SMR unstable for H .

Corollary 8.3 For the graph model G, let i ∈ N. if MCSMR
{i} (s, s) = 0, then s is

SMR stable for DM i.

Coalitional sequential stability is similar to coalitional GMR stability, but includes
only those sanctions that are “credible”. If H ’s opponents are treated as a coalition,
the coalitional SEQ1 stability matrix MCSEQ1

H is defined as

MCSEQ1
H = CM+

H · [E − sign
(
CM+

N−H · (P−,=
H )T

)].
The following theorem provides the matrix method to analyze whether state s is
coalitional SEQ1 stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.6 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQ1 stable for H, denoted by s ∈ SCSEQ1

H , iff MCSEQ1
H (s, s) = 0.

Proof Since

MCSEQ1
H (s, s) = (eTs CM+

H ) · [(E − sign(CM+
N−H · (P−,=

H )T )
)
es]

=
|S|∑
s1=1

CM+
H (s, s1)[1 − sign

(
(eTs1CM+

N−H ) · (eTs P
−,=
H )T

)],

then MCSEQ1
H (s, s) = 0 holds iff

CM+
H (s, s1)[1 − sign

(
(eTs1CM+

N−H ) · (eTs P
−,=
H )T

)] = 0,∀s1 ∈ S. (8.7)

It is clear that Eq.8.7 is equivalent to

(eTs1CM+
N−H ) · (eTs P

−,=
H )T �= 0 for any s1 ∈ CR+

H (s).

This implies that for any s1 ∈ CR+
H (s), there exists at least one s2 ∈ CR+

N−H (s1)
with s 
i s2 for some DM i ∈ H that satisfies s2 ∈ �

	
H (s). The proof of this theorem

follows using Definition8.12. �
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Note that the coalitional SEQ1 stability matrix is identical to the coalitional GMR
stability matrix except that the UM reachability matrix for H ’s opponents, MN−H ,
is replaced by the coalitional improvement matrix CM+

N−H .
Similar to the previous two theorems, thematrix representation of coalitional SEQ

stability is equivalent to the logical version given in Definition8.12. Once, when the
diagonal entry at (s, s) is zero, the state s under consideration is coalitional SEQ1

stable for H . The following theorem is equivalent to the coalitional SEQ2 stability
given in Definition8.13. Define the coalitional SEQ2 stability matrix MCSEQ2

H is
defined as

MCSEQ2
H = CM+

H · [E − sign
(
M+

N−H · (P−,=
H )T

)].
Theorem 8.7 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQ2 stable for H, denoted by s ∈ SCSEQ2

H , iff MCSEQ2
H (s, s) = 0.

Corollary 8.4 For the graph model G, let i ∈ N. Then, (1) MCSEQ1
{i} = MCSEQ2

{i} ;

(2) If MCSEQ1
{i} (s, s) = 0 or MCSEQ2

{i} (s, s) = 0, then s is SEQ stable for DM i.

8.7 Matrix Representation of Coalitional Stabilities Under
Unknown Preference

8.7.1 Matrix Representation of Coalitional Improvement or
Uncertain Move

Letm = |S| denote the number of states, E be them×mmatrix with each entry equal
to 1, and es denote the sth standard basis vector of them-dimensionalEuclidean space,
R

S . Recall that the UM reachability matrix MH is constructed using Theorem4.9.
Amatrix approach is presented in this section to construct the coalitional improve-

ments and coalitional improvements or uncertain moves from state s, CR+
H (s) and

CR+,U
H (s), given in Definitions8.1 and 8.2, respectively, in logical form.

Definition 8.72 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is defined as the m × m matrix CM+

H with
(s, q) entry

CM+
H (s, q) =

{
1 if q ∈ CR+

H (s),
0 otherwise.

Moreover, the coalitional improvement or uncertain move matrix for H is defined as
the m × m matrix CM+,U

H with (s, q) entry

CM+,U
H (s, q) =

{
1 if q ∈ CR+,U

H (s),
0 otherwise.
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It is clear that CR+
H (s) = {q : CM+

H (s, q) = 1} and CR+,U
H (s) = {q :

CM+,U
H (s, q) = 1}. Then

CR+
H (s) = eTs · CM+

H and CR+,U
H (s) = eTs · CM+,U

H ,

if CR+
H (s) and CR+,U

H (s) are written as 0–1 row vectors, where a “1” at the j th ele-
ment indicates coalition H has a coalitional improvement from s to s j and coalition
H has a coalitional improvement or uncertain move from s to s j , respectively. Note
that eTs denotes the transpose of es , the sth standard basis vector of m-dimensional
Euclidean space. Therefore, the coalitional improvement and coalitional improve-
ment or uncertain move matrices for coalition H , CM+

H and CM+,U
H , can be used to

construct the coalitional improvements and the coalitional improvements or uncertain
moves of H from state s, CR+

H (s) and CR+,U
H (s), respectively.

Theorem 8.8 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is expressed as

CM+
H = MH ◦ (E − P−,=,U

H ). (8.8)

Proof ToproveEq.8.8, assume thatC = MH ◦(E−P−,=,U
H ).Using the definition for

matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and P−,=,U
H (s, q) =

0, which together imply that there is q ∈ RH (s) such that P−,=,U
i (s, q) = 0 for every

DM i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s for every
i ∈ H , so that q ∈ CR+

H (s), according to Definition8.1. Thus, CM+
H (s, q) = 1

using Definition8.72. Hence, CM+
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H and C
are 0–1 matrices, it follows that CM+

H = MH ◦ (E − P−,=,U
H ). �

Note that CM+
H �= MH ◦ P+

H . Recall that matrix P+
H = ∨

i∈H
P+
i (“

∨
” denotes

the disjunction operator described in Definition3.16). (MH ◦ P+
H )(s, q) = 1 iff

MH (s, q) = 1 and P+
H (s, q) = 1, which means that there is q ∈ RH (s) such that

P+
i (s, q) = 1 for some DM i ∈ H . This is not consistent with the definition of

CM+
H .

It is worth to note that matrix CM+
H defined in Theorem 8.8 is different from

the matrix specified in Theorem8.1 that cannot be used to analyze conflict models
with preference uncertainty. The matrix defined in Theorem8.8 contains information
about uncertain preference. Using Definition8.2, the coalitional improvement or
uncertain move matrix of H can be constructed by the following theorem. Recall
that P−,=

H = ∨
i∈H

P−,=
i .

Theorem 8.9 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement or uncertain move matrix for H is expressed as

CM+,U
H = MH ◦ (E − P−,=

H ). (8.9)
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Proof To prove Eq.8.9, assume that C = MH ◦ (E − P−,=
H ).Using the definition for

matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and P−,=
H (s, q) = 0,

which together imply that there is q ∈ RH (s) such that P−,=
i (s, q) = 0 for every DM

i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s or q Ui s for every
i ∈ H , so that q ∈ CR+,U

H (s), according to Definition8.2. Thus, CM+,U
H (s, q) = 1

using Definition8.72. Hence, CM+,U
H (s, q) = 1 iff C(s, q) = 1. Since CM+,U

H and
C are 0–1 matrices, it follows that CM+,U

H = MH ◦ (E − P−,=
H ). �

Theorems8.8 and 8.9 provide a matrix approach to construct the coalitional
improvements from state s by H ,CR+

H (s), and coalitional improvements or uncertain
moves for state s by H ,CR+,U

H (s). After obtaining the two important components of
coalitional stability definitions with unknown preference, the matrix representation
of coalitional stabilities can be constructed as follows. Let l ∈ {a, b, c, d}.

8.7.2 Matrix Representation of Coalitional Stabilities
Indexed l

(1) Matrix Representation of Coalitional Stabilities Indexed a

For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth element
and 0 everywhere else and e be an m-dimensional vector with every entry 1. Let
(
−→
0 )T denote the transpose of

−→
0 .

Theorem 8.10 For the graph model G, let H ⊆ N be a nonempty coalition.
State s ∈ S is coalitional Nasha stable for H, denoted by s ∈ SCNasha

H , iff
eTs · CM+,U

H · e=0.

Proof Since eTs · CM+,U
H · e = 0 iff eTs · CM+,U

H = (
−→
0 )T , then CR+,U

H (s) = ∅
using Definition8.72. Consequently, the proof of the theorem follows by
Definition8.16. �

Define coalitional CGMRa stability matrix for coalition H as

MCGMRa
H = CM+,U

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.10)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRa stable for H .

Theorem 8.11 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional GMRa stable for H, denoted by s ∈ SCGMRa

H , iff MCGMRa
H

(s, s) = 0.

Proof Since

MCGMRa
H (s, s) = (eTs · CM+,U

H ) · [(E − sign
(
MN−H · (P−,=

H )T
)) · es]
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=
m∑

s1=1

CM+,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)],

then MCGMRa
H (s, s) = 0 holds iff

CM+,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)] = 0, (8.11)

for every s1 ∈ S − {s}. It is clear that Eq. 8.11 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=
H )T �= 0,

for every s1 ∈ CR+,U
H (s). Therefore, for a coalitional improvement or uncertainmove

from s, s1 ∈ CR+,U
H (s), there exists at least one s2 ∈ RN−H (s1)with P−,=

H (s, s2) = 1
that is equivalent to s 
i s2 for some DM i ∈ H . According to Definition8.17,
MCGMRa

H (s, s) = 0 implies that s is coalitional GMRa stable for H . �

Theorem8.11 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRa stability, is equivalent to the logical version of the same stability given
in Definition8.17.

Coalitional SMRa is similar to coalitionalGMRa except that coalition H expects
to have a chance to counterrespond to its opponent (N−H)’s response to H ’s original
move. Define the coalitional SMRa stability matrix as

MCSMRa
H = CM+,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theoremestablishes amatrixmethod to determinewhether
state s is coalitional SMR stable for H .

Theorem 8.12 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRa for H, denoted by s ∈ SCSMRa

H , iff MCSMRa
H (s, s) = 0.

Proof Since

MCSMRa
H (s, s) = (eTs · CM+,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,U
H (s, s1)[1 − sign (F(s1, s))]
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with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=

H (s, s3)
))]

,

then MCSMRa
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,U

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+,U

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=
H (s, s2) �= 0, (8.12)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=
H )(s, s3) = 0. (8.13)

Equation8.12 means that s 
i s2 for at least one DM i ∈ H . Equation8.13 is
equivalent to

P−,=
H (s, s3) �= 0 for any s3 ∈ RH (s2). (8.14)

Obviously, for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that s 
i s2

and Eq.8.13 hold iff for every s1 ∈ CR+,U
H (s) there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2). Therefore, the proof of this theorem

follows using Definition8.18. �

Theorem8.12 displays that this matrix method, called matrix representation of
coalitional SMR stability, is equivalent to the logical version given in Definition8.18.
To calculate coalitional SMRa stability at s for H , one only needs to assess whether
the diagonal entry MCSMRa

H (s, s) of coalitional SMRa stability matrix is zero. If so,
s is coalitional SMRa stable for H ; otherwise, s is coalitional SMRa unstable for H .

Coalitional sequential stability is similar to coalitional GMR stability, but includes
only those sanctions that are “credible”. The coalitional SEQa stability matrix
MCSEQa

H is defined as

MCSEQa
H = CM+,U

H · [E − sign
(
M+,U

N−H · (P−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQa stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.13 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQa stable for H, denoted by s ∈ SCSEQa

H , iff MCSEQa
H (s, s) = 0.
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Proof Since

MCSEQa
H (s, s) = (eTs CM+,U

H ) · [
(
E − sign(M+,U

N−H · (P−,=
H )T )

)
es]

=
|S|∑
s1=1

CM+,U
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=
H )T

)
],

then MSEQa
H (s, s) = 0 holds iff

CM+,U
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=
H )T

)
] = 0,∀s1 ∈ S. (8.15)

It is clear that Eq.8.15 is equivalent to

(eTs1M
+,U
N−H ) · (eTs P

−,=
H )T �= 0 for any s1 ∈ CR+,U

H (s).

It implies that for any s1 ∈ CR+,U
H (s), there exists at least one s2 ∈ R+,U

N−H (s1) with
s 
i s2 for some DM i ∈ H that satisfies s2 ∈ �

	
H (s). The proof of this theorem

follows using Definition 8.19. �

Note that the coalitional SEQa stability matrix is identical to the coalitional GMRa

stability matrix except that the UM reachability matrix for H ’s opponents, MN−H ,
is replaced by the coalitional improvement or uncertain move matrix CM+,U

N−H .

(2) Matrix Representation of Coalitional Stabilities Indexed b

The following theorems establish relationships between logical and matrix represen-
tations for coalitional stabilities indexed b under unknown preference. The extension
indexed b excludes uncertainty in preferences when the focal coalition H considers
incentives to leave a state and evaluates sanctions from its opponents. However, the
following coalitional definitions are different from the coalitional stability defini-
tions without preference uncertainty as discussed in Sect. 8.6, because the previous
definitions cannot be used to analyze coalitional stabilities with uncertain preference.

Theorem 8.14 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional Nashb stable for H, denoted by s ∈ SCNashb

H , iff eTs ·CM+
H ·e = 0.

Define coalitional CGMRb stability matrix for coalition H as

MCGMRb
H = CM+

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.16)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRb stable for H .

Theorem 8.15 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRb stable for H, denoted by s ∈ SCGMRb

H , iff MCGMRb
H (s, s)= 0.
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Theorem8.15 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRb stability, is equivalent to the logical version of the same coalitional
GMRb stability given in Definition8.21.

Define the coalitional SMRb stability matrix as

MCSMRb
H = CM+

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRb stable for H .

Theorem 8.16 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRb for H, denoted by s ∈ SCSMRb

H , iff MCSMRb
H (s, s) = 0.

The coalitional SEQb stability matrix MCSEQb
H is defined as

MCSEQb
H = CM+

H · [E − sign
(
M+,U

N−H · (P−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQb stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.17 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQb stable for H, denoted by s ∈ SCSEQb

H , iff MCSEQb
H (s, s) = 0.

The proofs of the above theorems on coalitional stabilities indexed b are similar to
the proofs for thematrix representation of coalitional stabilities indexed a. Therefore,
these proofs are left as exercises.

(3) Matrix Representation of Coalitional Stabilities Indexed c

Coalitional Nash stability similar to the individual stability case in Chap. 5 does not
examine countermoves by the opponents, so SNashc

H = SNasha
H .

Define coalitional CGMRc stability matrix for coalition H as

MCGMRc
H = CM+,U

H · [E − sign
(
MN−H · (P−,=,U

H )T
)
], (8.17)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRc stable for H .

Theorem 8.18 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRc stable for H, denoted by s ∈ SCGMRc

H , iff MCGMRc
H (s, s)= 0.

Theorem8.18 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRc stability, is equivalent to the logical version of the same coalitional
GMRc stability given in Definition8.24.
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Define the coalitional SMRc stability matrix as

MCSMRc
H = CM+,U

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRc stable for H .

Theorem 8.19 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRc for H, denoted by s ∈ SCSMRc

H , iff MCSMRc
H (s, s) = 0.

The coalitional SEQc stability matrix MCSEQc
H is defined as

MCSEQc
H = CM+,U

H · [E − sign
(
M+,U

N−H · (P−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQc stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.20 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQc stable for H, denoted by s ∈ SCSEQc

H , iff MCSEQc
H (s, s) = 0.

The proofs of the above theorems on coalitional stabilities indexed c are left as
exercises.

(4) Matrix Representation of Coalitional Stabilities Indexed d

As mentioned before, similar to the individual stability case in Chap. 5 coalitional
Nash stability does not examine countermoves by the opponents, so SNashd

H = SNashb
H .

Define coalitional CGMRd stability matrix for coalition H as

MCGMRd
H = CM+

H · [E − sign
(
MN−H · (P−,=,U

H )T
)
], (8.18)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRd stable for H .

Theorem 8.21 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRd stable for H, denoted by s ∈ SCGMRd

H , iff MCGMRd
H (s, s) = 0.

Proof Since

MCGMRd
H (s, s) = (eTs · CM+

H ) · [
(
E − sign

(
MN−H · (P−,=,U

H )T
))

· es]
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=
m∑

s1=1

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=,U

H )T
)
],

then MCGMRd
H (s, s) = 0 holds iff

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=,U

H )T
)
] = 0, (8.19)

for every s1 ∈ S − {s}. It is clear that Eq. 8.19 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=,U
H )T �= 0,

for every s1 ∈ CR+
H (s). Therefore, for a coalitional improvement from s, s1 ∈

CR+
H (s), there exists at least one s2 ∈ RN−H (s1) with P−,=,U

H (s, s2) = 1 that is
equivalent to s 
i s2 or s Ui s2 for some DM i ∈ H . According to Definition8.27,
MCGMRd

H (s, s) = 0 implies that s is coalitional GMRd stable for H . �

Theorem8.21 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRd stability, is equivalent to the logical version of the same coalitional
GMRd stability given in Definition8.27.

Define the coalitional SMRd stability matrix as

MCSMRd
H = CM+

H · [E − sign(F)]

in which

F = MN−H · [(P−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRd stable for H .

Theorem 8.22 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRd for H, denoted by s ∈ SCSMRd

H , iff MCSMRd
H (s, s) = 0.

Proof Since

MCSMRd
H (s, s) = (eTs · CM+

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−,=,U
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=,U

H (s, s3)
))]

,

then MCSMRd
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=,U
H (s, s2) �= 0, (8.20)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=,U
H )(s, s3) = 0. (8.21)

Equation8.20 means that s 
i s2 or s Ui s2 for at least one DM i ∈ H . Equa-
tion8.21 is equivalent to

P−,=,U
H (s, s3) �= 0 for any s3 ∈ RH (s2). (8.22)

Obviously, for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that s 
i s2

or s Ui s2 and Eq.8.22 hold iff for every s1 ∈ CR+
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2). Therefore, the proof

of this theorem follows using Definition8.28. �
The coalitional SEQd stability matrix MCSEQd

H is defined as

MCSEQd
H = CM+

H · [E − sign
(
M+,U

N−H · (P−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQd stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.23 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQd stable for H, denoted by s ∈ SCSEQd

H , iff MCSEQd
H (s, s) = 0.

Proof Since

MCSEQd
H (s, s) = (eTs CM+

H ) · [
(
E − sign(M+,U

N−H · (P−,=,U
H )T )

)
es]

=
|S|∑
s1=1

CM+
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=,U
H )T

)
],

then MSEQd
H (s, s) = 0 holds iff

CM+
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=,U
H )T

)
] = 0,∀s1 ∈ S. (8.23)
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It is clear that Eq.8.23 is equivalent to

(eTs1M
+,U
N−H ) · (eTs P

−,=,U
H )T �= 0 for any s1 ∈ CR+

H (s).

It implies that for any s1 ∈ CR+
H (s), there exists at least one s2 ∈ R+,U

N−H (s1) with
s 
i s2 or s Ui s2 for some DM i ∈ H that satisfies s2 ∈ �

	,U
H (s). The proof of this

theorem follows using Definition 8.29. �

8.8 Matrix Representation of Coalitional Stability with
Three Degrees of Preference

The logical representation of coalitional stabilities under three-degree preference is
discussed in Sect. 8.4. The matrix form of these coalitional stabilities is introduced
as follows.

8.8.1 Matrix Representation of Mild or Strong Coalitional
Improvement

Definition 8.73 For the graph model G, the mild or strong coalitional improvement
matrix for coalition H is an m × m matrix CM+,++

H with (s, q) entry

CM+,++
H (s, q) =

{
1 if q ∈ CR+,++

H (s),
0 otherwise.

The mild or strong coalitional improvement matrix is equivalent to the coalitional
reachable list, CR+,++

H (s), defined in Sect. 8.1. The matrix CM+,++
H can be con-

structed as follows.
To carry out coalitional stability analysis, recall a set of matrices corresponding

to three-level preference defined in Chap. 6.

P++
i (s, q) =

{
1 if q �i s,
0 otherwise,

P−−
i (s, q) =

{
1 if s �i q,

0 otherwise,

P+,++
i (s, q) =

{
1 if q >i s or q �i s,
0 otherwise,
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and

P−−,−,=
i (s, q) =

{
1 if s >i q, s �i q, or (s ∼i q and s �= q),

0 otherwise.

Based on the above definitions, the UM adjacency matrix Ji , mild or strong
unilateral improvement adjacency matrix J+,++

i , and preference matrix P+,++
i for

DM i have the relationship among them:

J+,++
i = Ji ◦ P+,++

i .

Theorem 8.24 For the graph model G, let H ⊆ N be a nonempty coalition. The
mild or strong coalitional improvement matrix for H is expressed as

CM+,++
H = MH ◦ (E − P−,−−,=

H ). (8.24)

Proof To prove Eq.8.24, assume that C = MH ◦ (E − P−,−−,=
H ). Using the def-

inition for matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and
P−,−−,=
H (s, q) = 0, which together imply that there is q ∈ RH (s) such that

P−,−−,=
i (s, q) = 0 for every DM i ∈ H . Therefore, C(s, q) = 1 iff there is

q ∈ RH (s) with q >i s or q �i s for every i ∈ H , so that q ∈ CR+,++
H (s),

according to Definition8.3. Hence, CM+,++
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H
and C are 0–1 matrices, it follows that CM+,++

H = MH ◦ (E − P−,−−,=
H ). �

Note that CM+,++
H �= MH ◦ P+,++

H . Recall that matrix P+,++
H = ∨

i∈H
P+,++
i (“

∨
”

denotes the disjunction operator described inDefinition3.16). (MH ◦P+,++
H )(s, q) =

1 iff MH (s, q) = 1 and P+,++
H (s, q) = 1, which means that there is q ∈ RH (s) such

that P+,++
i (s, q) = 1 for some DM i ∈ H . This is not consistent with the definition

of CM+,++
H .

8.8.2 Matrix Representation of General Coalitional
Stabilities

Let m = |S| denote the number of states and E be the m ×m matrix with each entry
equal to 1. For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth
element and 0 everywhere else and e be anm-dimensional vector with every entry 1.
Let (

−→
0 )T denote the transpose of

−→
0 . Recall that the UM reachability matrix MH

is constructed using Theorem4.9. General coalitional stabilities are presented using
matrix approach next.

Theorem 8.25 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nash stable for H, denoted by s ∈ SGCNash

H , iff eTs ·
CM+,++

H · e = 0.
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Proof Since eTs · CM+,++
H · e = 0 iff eTs · CM+,++

H = (
−→
0 )T , then CR+,++

H (s) = ∅.
Consequently, the proof of the theorem follows by Definition8.30. �

Similar to the individual general GMR stability for the three-degree preference,
define general coalitional GMR stability matrix as

MGCGMR
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.25)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMR stable for H .

Theorem 8.26 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMR stable for H, denoted by s ∈ SGCGMR

H , iff
MGCGMR

H (s, s) = 0.

Proof Since

MGCGMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign
(
MN−H · (P−,−−,=

H )T
)) · es]

=
m∑

s1=1

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)],

then MGCGMR
H (s, s) = 0 holds iff

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)] = 0, (8.26)

for every s1 ∈ S − s. It is clear that Eq. 8.26 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=
H )T �= 0,

for every s1 ∈ CR+,++
H (s). Therefore, for a coalitional mild or strong improve-

ment from s, s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ RN−H (s1) with

P−,−−,=
H (s, s2) = 1 that is equivalent to s >i s2, s �i s2 or s ∼i s2 for some

DM i ∈ H . According to Definition8.31, MGCGMR
H (s, s) = 0 implies that s is

general coalitional GMR stable for H . �

Theorem8.26 shows that this matrix method, called matrix representation of gen-
eral coalitional GMR stability, is equivalent to the logical version of the same stability
given in Definition8.31. To analyze the general coalitional GMR stability at s for
coalition H , one only needs to identify whether the diagonal entry MGCGMR

H (s, s)
is zero. If so, s is general coalitional GMR stable for H ; otherwise, s is general
coalitional GMR unstable for H .

General coalitional SMR stability is similar to general coalitional GMR except
that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMR stabilitymatrix as
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MGCSMR
H = CM+,++

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMR stable for H .

Theorem 8.27 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMR for H, denoted by s ∈ SGCSMR

H , iff MGCSMR
H (s, s) = 0.

Proof Since

MGCSMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,−−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P+,++

H (s, s3))
))]

,

then MGCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++

H (s), which
is equivalent to the statement that, for every s1 ∈ CR+,++

H (s), there exists s2 ∈
RN−H (s1) such that

P−,−−,=
H (s, s2) �= 0, (8.27)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=
H (s, s3)) = 0. (8.28)

Equation8.27 means that s >i s2, s �i s2, or s ∼i s2 for at least one DM i ∈ H .
Equation8.28 is equivalent to

P−,−−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.29)
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Obviously, for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.27 and 8.28 hold iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1)

such that s >i s2, s �i s2, or s ∼i s2 and s >i s3, s �i s3, or s ∼i s3 for
some DM i with all s3 ∈ RH (s2). Therefore, the proof of this theorem follows using
Definition8.32. �

Theorem8.27 displays that this matrix method, called matrix representation of
general coalitional SMR stability, is equivalent to the logical version given in Defini-
tion8.32. To calculate general coalitional SMR stability at s for H , one only needs to
assess whether the diagonal entryMGCSMR

H (s, s) is zero. If so, s is general coalitional
SMR stable for H ; otherwise, s is general coalitional SMR unstable for H .

General coalitional sequential stability is similar to general coalitional GMR sta-
bility, but includes only those sanctions that are “credible”. If H ’s opponents are
treated as a coalition, the general coalitional SEQ1 stability matrix MGCSEQ1

H is
defined as

MGCSEQ1
H = CM+,++

H · [E − sign
(
CM+,++

N−H · (P−,−−,=
H )T

)].
The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQ1 stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.28 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQ1 stable for H, denotedby s ∈ SGCSEQ1

H , iff MGCSEQ1
H (s, s) = 0.

Proof Since

MGCSEQ1
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(CM+,++
N−H · (P−,−−,=

H )T )
)
es]

=
|S|∑
s1=1

CM+,++
H (s, s1)[1 − sign

(
(eTs1CM+,++

N−H ) · (eTs P
−,−−,=
H )T

)],

then MGCSEQ1
H (s, s) = 0 holds iff

CM+,++
H (s, s1)[1 − sign

(
(eTs1 · CM+,++

N−H ) · (eTs · P−,−−,=
H )T

)] = 0,∀s1 ∈ S.

(8.30)
It is clear that Eq.8.30 is equivalent to

(eTs1 · CM+,++
N−H ) · (eTs · P−,−−,=

H )T �= 0 for any s1 ∈ CR+,++
H (s).

It implies that for any s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ CR+,++

N−H (s1)
with s >i s2, s �i s2 or s ∼i s2 for some DM i ∈ H . The proof of this theorem
follows using Definition8.33. �



8.8 Matrix Representation of Coalitional Stability with Three Degrees of Preference 327

Note that the general coalitional SEQ1 stability matrix is identical to the general
coalitional GMR stability matrix except that the UM reachability matrix for H ’s
opponents, MN−H , is replaced by the mild or strong coalitional improvement matrix
CM+,++

N−H .
Similar to the previous two theorems, the matrix representation of general coali-

tional SEQ1 stability is equivalent to the logical version given in Definition8.33.
When the diagonal entry at (s, s) is zero, the state s under consideration is general
coalitional SEQ1 stable for H . The following theorem is equivalent to the coalitional
SEQ2 stability presented in Definition8.34. Define the coalitional SEQ2 stability
matrix MGCSEQ2

H as

MGCSEQ2
H = CM+,++

H · [E − sign
(
M+,++

N−H · (P−,−−,=
H )T

)].
Theorem 8.29 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQ2 stable for H, denotedby s ∈ SGCSEQ2

H , iff MGCSEQ2
H (s, s) = 0.

The proof of this theorem is similar to the proof of Theorem8.28.

8.8.3 Matrix Representation of Strong Coalitional Stabilities

When three degrees of preference is introduced into the graph model, general coali-
tional stability definitions may be strong or weak, according to the strength of sanc-
tioning. The followingmatrix representations of strong or weak coalitional stabilities
are equivalent to the logical forms presented in Sect. 8.4.2.

Define the strong coalitional GMR stability matrix as

MSCGMR
H = CM+,++

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.31)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMR stable for H .

Theorem 8.30 For the graph model G, let H ⊆ N be a nonempty coalition.
State s ∈ S is strong coalitional GMR stable for H, denoted by s ∈ SSCGMR

H ,
iff MSCGMR

H (s, s) = 0.

Proof Since

MSCGMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign
(
MN−H · (P−−

H )T
)) · es]

=
m∑

s1=1

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−−

H )T
)],
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then MSCGMR
H (s, s) = 0 holds iff

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−−

H )T
)] = 0, (8.32)

for every s1 ∈ S − {s}. It is clear that Eq. 8.32 is equivalent to

(eTs1 · MN−H ) · (eTs · P−−
H )T �= 0,

for every s1 ∈ CR+,++
H (s). Therefore, for a mild or strong coalitional improvement

from s, s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ RN−H (s1)with P

−−
H (s, s2) = 1

that is equivalent to s �i s2 for some DM i ∈ H . According to Definition8.35,
MSCGMR

H (s, s) = 0 implies that s is strong coalitional GMR stable for H . �

Theorem8.30 shows that this matrix method, called matrix representation of
strong coalitional GMR stability, is equivalent to the logical version of the same
stability given in Definition8.35. To analyze the strong coalitional GMR stability at
s for coalition H , the diagonal entry (s, s) of matrix MSCGMR

H is identified whether
it is zero. If so, s is strong coalitional GMR stable for H .

Define the strong coalitional SMR stability matrix as

MSCSMR
H = CM+,++

H · [E − sign(F)]

in which

F = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMR stable for H .

Theorem 8.31 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMR for H, denoted by s ∈ SSCSMR

H , iff MSCSMR
H (s, s) = 0.

Proof Since

MSCSMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−−
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−−

H (s, s3))
))]

,

then MSCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++

H (s), which
is equivalent to the statement that, for every s1 ∈ CR+,++

H (s), there exists s2 ∈
RN−H (s1) such that

P−−
H (s, s2) �= 0, (8.33)

and
m∑

s3=1

MH (s2, s3) · (1 − P−−
H (s, s3)) = 0. (8.34)

Equation8.33 means that s �i s2 for at least one DM i ∈ H . Equation8.34 is
equivalent to

P−−
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.35)

Obviously, for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.33 and 8.34 hold iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1)

such that s �i s2 and s �i s3 for some DM i with all s3 ∈ RH (s2). Therefore, the
proof of this theorem follows using Definition 8.36. �

Theorem8.31 provides a matrix method, called matrix representation of strong
coalitional SMR stability, which is equivalent to the logical version given in Defi-
nition8.36. The following theorem displays the matrix method to identify whether
state s is strong coalitional SEQ1 stable for H when H ’s opponents, N − H , are in
a coalition. Let the strong coalitional SEQ1 stability matrix MSCSEQ1

H be defined as

MSCSEQ1
H = CM+,++

H · [E − sign
(
CM+,++

N−H · (P−−
H )T

)].
Theorem 8.32 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQ1 stable for H, denoted by s ∈ SSCSEQ1

H , iff MSCSEQ1
H (s, s)= 0.

Proof Since

MSCSEQ1
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(CM+,++
N−H · (P−−

H )T )
)
es]

=
|S|∑
s1=1

CM+,++
H (s, s1)[1 − sign

(
(eTs1CM+,++

N−H ) · (eTs P
−−
H )T

)],

then MSCSEQ1
H (s, s) = 0 holds iff
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CM+,++
H (s, s1)[1 − sign

(
(eTs1 · CM+,++

N−H ) · (eTs · P−−
H )T

)] = 0,∀s1 ∈ S. (8.36)

It is clear that Eq.8.36 is equivalent to

(eTs1 · CM+,++
N−H ) · (eTs · P−−

H )T �= 0 for any s1 ∈ CR+,++
H (s).

It implies that for any s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ CR+,++

N−H (s1)
with s �i s2 for some DM i ∈ H . The proof of this theorem follows using
Definition8.37. �

The following theorem is equivalent to the strong coalitional SEQ2 stability
presented in Definition8.38. The strong coalitional SEQ2 stability matrix MSCSEQ2

H
is defined as

MSCSEQ2
H = CM+,++

H · [E − sign
(
M+,++

N−H · (P−−
H )T

)].

Theorem 8.33 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQ2 stable for H, denotedby s ∈ SSCSEQ2

H , iff MSCSEQ2
H (s, s)= 0.

The proof of this theorem is left as an exercise.

8.9 Matrix Representation of Coalitional Stability
with Hybrid Preference

After discussing matrix representations of coalitional stabilities with unknown pref-
erence and with three degrees of preference, respectively, it is nature to construct the
matrix form of the coalitional stabilities under hybrid preference.

8.9.1 Matrix Representation of Coalitional Improvement
Under Hybrid Preference

Definition 8.74 For the graph model G, the mild or strong or uncertain coalitional
improvement matrix for coalition H is anm×m matrixCM+,++,U

H with (s, q) entry

CM+,++,U
H (s, q) =

{
1 if q ∈ CR+,++,U

H (s),
0 otherwise.
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The mild or strong or uncertain coalitional improvement matrix is equivalent
to the coalitional reachable list CR+,++,U

H (s) given in Definition8.4. The matrix
CM+,++,U

H can be constructed as follows. To carry out coalitional stability analysis,
recall a set of matrices corresponding to hybrid preference defined in Chap. 7.

The following m ×m matrices are important in stability definitions under hybrid
preference. Let E denote the m ×m matrix with each entry 1 and let I be the m ×m
unit matrix. Then, m × m preference matrix P+,++,U

i is defined as

P+,++,U
i (s, q) =

{
1 if q >i s, q �i s, or q Ui s,
0 otherwise.

For hybrid preference, P−−,−,=
i = E − I − P+,++,U

i .

Theorem 8.34 For the graph model G, let H ⊆ N be a nonempty coalition. The
mild or strong coalitional improvement matrix, CM+,++

H , and mild or strong or
uncertain coalitional improvement matrix, CM+,++,U

H , for H are expressed as

CM+,++
H = MH ◦ (E − P−,−−,=,U

H ), (8.37)

CM+,++,U
H = MH ◦ (E − P−,−−,=

H ), (8.38)

respectively.

Proof Equation8.37 is left as an exercise. To prove Eq.8.38, assume that C = MH ◦
(E − P−,−−,=

H ).Using the definition for matrix MH given in Chap.4, C(s, q) = 1 iff
MH (s, q) = 1 and P−,−−,=

H (s, q) = 0, which together imply that there is q ∈ RH (s)
such that P+,++,U

i (s, q) = 1 for every DM i ∈ H . Therefore, C(s, q) = 1 iff
there is q ∈ RH (s) with q >i s, q �i s or q Ui s for every i ∈ H , so that
q ∈ CR+,++,U

H (s), according to Definition8.74. Hence, CM+,++,U
H (s, q) = 1 iff

C(s, q) = 1. Since CM+,++,U
H and C are 0–1 matrices, it follows that CM+,++,U

H =
MH ◦ (E − P−,−−,=

H ). �

Note that CM+,++
H here is different from the matrix in Theorem8.24 which cannot

be used to analyze situations with uncertain preference. Furthermore, CM+,++,U
H �=

MH ◦ P+,++,U
H . Recall that matrix P+,++,U

H = ∨
i∈H

P+,++,U
i (“

∨
” denotes the

disjunction operator described in Definition3.16). (MH ◦ P+,++,U
H )(s, q) = 1 iff

MH (s, q) = 1 and P+,++,U
H (s, q) = 1, which means that there is q ∈ RH (s) such

that P+,++,U
i (s, q) = 1 for someDM i ∈ H . This is not consistent with the definition

of CM+,++,U
H .
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8.9.2 Matrix Representation of General Coalitional
Stabilities with Hybrid Preference

8.9.2.1 Matrix Representation of General Coalitional Stabilities
Indexed l

(1) Matrix Representation of General Coalitional Stabilities Indexed a

Let m = |S| denote the number of states and E be the m ×m matrix with each entry
equal to 1. For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth
element and 0 everywhere else and e be anm-dimensional vector with every entry 1.
Let (

−→
0 )T denote the transpose of

−→
0 . Recall that the UM reachability matrix MH

is constructed using Theorem4.9. General coalitional stabilities are presented using
matrix approach next.

Theorem 8.35 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nasha stable for H, denoted by s ∈ SGCNasha

H , iff
eTs · CM+,++,U

H · e = 0.

Proof Since eTs · CM+,++,U
H · e = 0 iff eTs · CM+,++,U

H = (
−→
0 )T , then CR+,++,U

H
(s) = ∅ using Definition8.74. Consequently, the proof of the theorem follows by
Definition8.41. �

Similar to the individual generalGMRa stability for the hybrid preference, define
general coalitional GMRa stability matrix as

MGCGMRa
H = CM+,++,U

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.39)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRa stable for H .

Theorem 8.36 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRa stable for H, denoted by s ∈ SGCGMRa

H , iff
MGCGMRa

H (s, s) = 0.

Proof Since

MGCGMRa
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign
(
MN−H · (P−,−−,=

H )T
)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)],

then MGCGMRa
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)] = 0, (8.40)
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for every s1 ∈ S − {s}. It is clear that Eq. 8.40 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=
H )T �= 0,

for every s1 ∈ CR+,++,U
H (s). Therefore, for a coalitional mild, strong, or uncertain

improvement from s, s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ RN−H (s1)

with P−,−−,=
H (s, s2) = 1 that is equivalent to s2 ∈ �

,<,∼
H (s), i.e., s >i s2, s �i s2,

or s ∼i s2 for some DM i ∈ H . According to Definition8.42, MGCGMRa
H (s, s) = 0

implies that s is general coalitional GMRa stable for H . �

Theorem8.36 shows that the matrix representation of general coalitional GMRa

stability is equivalent to the logical version of the same stability given in Defini-
tion8.42. To analyze the general coalitionalGMRa stability at s for coalition H , one
only needs to identify whether the diagonal entry MGCGMRa

H (s, s) is zero.
General coalitional SMRa stability is similar to general coalitionalGMRa except

that coalition H expects to have a chance to counterrespond to its opponents’
(N − H) response to H ’s original move. Define the general coalitional SMRa sta-
bility matrix as

MGCSMRa
H = CM+,++,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRa stable for H .

Theorem 8.37 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRa for H, denoted by s ∈ SGCSMRa

H , iff MGCSMRa
H (s, s) = 0.

Proof Since

MGCSMRa
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,−−,=
H (s, s2) ·

⎡
⎣1 − sign

⎛
⎝ m∑
s3=1

(
MH (s2, s3) · (1 − P−,−−,=

H (s, s3))
)⎞
⎠

⎤
⎦ ,
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then MGCSMRa
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++,U

H (s),
which is equivalent to the statement that, for every s1 ∈ CR+,++,U

H (s), there exists
s2 ∈ RN−H (s1) such that

P−,−−,=
H (s, s2) �= 0, (8.41)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=
H (s, s3)) = 0. (8.42)

Equation8.41 means that s >i s2, s �i s2, or s ∼i s2 for at least one DM i ∈ H .
Equation8.42 is equivalent to

P−,−−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.43)

Obviously, for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.41 and 8.42 hold iff for every s1 ∈ CR+,++,U
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) with all s3 ∈ RH (s2). Therefore, the

proof of this theorem follows using Definition8.43. �

Theorem8.37 displays the matrix representation of general coalitional SMRa sta-
bility, which is equivalent to the logical version given in Definition8.43. To calculate
general coalitional SMRa stability at s for H , one only needs to assess whether the
diagonal entry MGCSMRa

H (s, s) is zero.
General coalitional sequential stability is similar to general coalitional GMR

stability, but includes only those sanctions that are “credible”. The logical representa-
tion of two types of coalitional SEQ stability under hybrid preference was discussed,
the matrix form is provided here for CSEQ2 only. If H ’s opponents are treated
as a coalition, the general coalitional SEQa stability matrix MGCSEQa

H is defined
as

MGCSEQa
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQa stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.38 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQa stable for H, denoted by s ∈ SGCSEQa

H , iff MGCSEQa
H (s, s)= 0.

Proof Since

MGCSEQa
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign(M+,++,U

N−H · (P−,−−,=
H )T )

)
es]
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=
|S|∑
s1=1

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1M

+,++,U
N−H ) · (eTs P

−,−−,=
H )T

)
],

then MGCSEQa
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N−H ) · (eTs · P−,−−,=
H )T

)
] = 0,∀s1 ∈ S.

(8.44)
It is clear that Eq.8.44 is equivalent to

(eTs1 · M+,++,U
N−H ) · (eTs · P−,−−,=

H )T �= 0 for any s1 ∈ CR+,++,U
H (s).

It implies that for any s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ R+,++,U

N−H (s1)
with s2 ∈ �

,<,∼
H (s). The proof of this theorem follows using Definition8.44. �

Note that the general coalitional SEQa stability matrix is identical to the general
coalitional GMRa stability matrix except that the UM reachability matrix for H ’s
opponents, MN−H , is replaced by the mild, strong or uncertain reachability improve-
ment matrix M+,++,U

N−H .

(2) Matrix Representation of General Coalitional Stabilities Indexed b

Theorem 8.39 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nashb stable for H, denoted by s ∈ SGCNashb

H , iff
eTs · CM+,++

H · e = 0.

This theorem is different from Theorem8.25 presented in Sect. 8.8.2 though their
representations are identical. Theorem8.39 can analyze Nash stability with hybrid
preference.

Define the general coalitional GMRb stability matrix as

MGCGMRb
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.45)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRb stable for H .

Theorem 8.40 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRb stable for H, denoted by s ∈ SGCGMRb

H , iff
MGCGMRb

H (s, s) = 0.

General coalitional SMRb stability is similar to general coalitionalGMRb except
that coalition H expects to have a chance to counterrespond to its opponents’
(N − H) response to H ’s original move. Define the general coalitional SMRb sta-
bility matrix as

MGCSMRb
H = CM+,++

H · [E − sign(Q)]
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in which

Q = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRb stable for H .

Theorem 8.41 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRb for H, denoted by s ∈ SGCSMRb

H , iff MGCSMRb
H (s, s) = 0.

Although matrix representations ofGCNashb,GCGMRb andGCSMRb do not
include uncertain preference, they may be used to analyze situations with preference
uncertainty. If H ’s opponents are treated as a coalition, the general coalitional SEQb

stability matrix MGCSEQb
H is defined as

MGCSEQb
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQb stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.42 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQb stable for H, denoted by s ∈ SGCSEQb

H , iff MGCSEQb
H (s, s)= 0.

The proofs of the general coalitional stabilities indexed b are similar to the general
coalitional stabilities indexed a. The proofs are left for readers.

(3) Matrix Representation of General Coalitional Stabilities Indexed c

Theorem 8.43 For the graph model G, let H ⊆ N be a nonempty coalition.
SGCNashc
H = SGCNasha

H .

Let MGCGMRc
H denote the general coalitional GMRc matrix. It is defined by

MGCGMRc
H = CM+,++,U

H · [E − sign
(
MN−H · (P−,−−,=,U

H )T
)
], (8.46)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRc stable for H .

Theorem 8.44 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRc stable for H, denoted by s ∈ SGCGMRc

H , iff
MGCGMRc

H (s, s) = 0.

Proof Since

MGCGMRc
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign

(
MN−H · (P−,−−,=,U

H )T
))

· es]



8.9 Matrix Representation of Coalitional Stability with Hybrid Preference 337

=
m∑

s1=1

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=,U

H )T
)
],

then MGCGMRc
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=,U

H )T
)
] = 0, (8.47)

for every s1 ∈ S − {s}. It is clear that Eq. 8.47 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=,U
H )T �= 0,

for every s1 ∈ CR+,++,U
H (s). Therefore, for a coalitional mild, strong, or uncertain

improvement from s, s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ RN−H (s1)

with P−,−−,=,U
H (s, s2) = 1 that is equivalent to s2 ∈ �

,<,∼,U
H (s), i.e., s >i

s2, s �i s2, s ∼i s2, or s Ui s2 for some DM i ∈ H . According to Definition8.50,
MGCGMRc

H (s, s) = 0 implies that s is general coalitional GMRc stable for H . �
General coalitional SMRc stability is similar to general coalitional GMRc except

that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMRc stability matrix
as

MGCSMRc
H = CM+,++,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,−−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRc stable for H .

Theorem 8.45 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRc for H, denoted by s ∈ SGCSMRc

H , iff MGCSMRc
H (s, s) = 0.

Proof Since

MGCSMRc
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−,−−,=,U
H (s, s2) ·

⎡
⎣1 − sign

⎛
⎝ m∑

s3=1

(
MH (s2, s3) · (1 − P−,−−,=,U

H (s, s3))
)⎞
⎠

⎤
⎦ ,

then MGCSMRc
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++,U

H (s),
which is equivalent to the statement that, for every s1 ∈ CR+,++,U

H (s), there exists
s2 ∈ RN−H (s1) such that

P−,−−,=,U
H (s, s2) �= 0, (8.48)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=,U
H (s, s3)) = 0. (8.49)

Equation8.48 means that s >i s2, s �i s2, s ∼i s2, or s Ui s2 for at least one DM
i ∈ H . Equation8.49 is equivalent to

P−,−−,=,U
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.50)

Obviously, for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.48 and 8.49 hold iff for every s1 ∈ CR+,++,U
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) with all s3 ∈ RH (s2). Therefore,

the proof of this theorem follows using Definition8.51. �

The general coalitional SEQc stability matrix MGCSEQc
H is defined as

MGCSEQc
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQc stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.46 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQc stable for H, denoted by s ∈ SGCSEQc

H , iff MGCSEQc
H (s, s) = 0.

Proof Since

MGCSEQc
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign(M+,++,U

N−H · (P−,−−,=,U
H )T )

)
es]

=
|S|∑
s1=1

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1M

+,++,U
N−H ) · (eTs P

−,−−,=,U
H )T

)
],

then MGCSEQc
H (s, s) = 0 holds iff
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CM+,++,U
H (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N−H ) · (eTs · P−,−−,=,U
H )T

)
] = 0,∀s1 ∈ S.

(8.51)
It is clear that Eq.8.51 is equivalent to

(eTs1 · M+,++,U
N−H ) · (eTs · P−,−−,=,U

H )T �= 0 for any s1 ∈ CR+,++,U
H (s).

It implies that for any s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ R+,++,U

N−H (s1)

with s2 ∈ �
,<,∼,U
H (s). The proof of this theorem follows using Definition 8.52. �

(4) Matrix Representation of General Coalitional Stabilities Indexed d

Theorem 8.47 For the graph model G, let H ⊆ N be a nonempty coalition.
SGCNashd
H = SGCNashb

H .

Define the general coalitional GMRd stability matrix as

MGCGMRd
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=,U

H )T
)
], (8.52)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRd stable for H .

Theorem 8.48 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRd stable for H, denoted by s ∈ SGCGMRd

H , iff
MGCGMRd

H (s, s) = 0.

General coalitional SMRd stability is similar to general coalitionalGMRd except
that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMRd stability matrix
as

MGCSMRd
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,−−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,−−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRd stable for H .

Theorem 8.49 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRd for H, denoted by s ∈ SGCSMRd

H , iff MGCSMRd
H (s, s) = 0.

The general coalitional SEQd stability matrix MGCSEQd
H is defined as

MGCSEQd
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQd stable for H when H ’s opponents, N−H , are in a coalition.
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Theorem 8.50 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQd stable for H, denoted by s ∈ SGCSEQd

H , iff MGCSEQd
H (s, s)= 0.

The proofs of the general coalitional stabilities indexed d are similar to the general
coalitional stabilities indexed a. The proofs are left for readers.

8.9.3 Matrix Representation of Strong Coalitional Stabilities
with Hybrid Preference

When hybrid preference is introduced into the graph model, general coalitional sta-
bility definitions indexed a, b, c or d may be strong or weak coalitional stability
definitions indexed a, b, c or d, according to the degree of sanctioning. The follow-
ing matrix representations of strong coalitional stabilities under hybrid preference
are equivalent to the logical forms presented in Sect. 8.5.2.

Theorem 8.51 For the graph model G, let H ⊆ N be a nonempty coalition and
l ∈ {a, b, c, d}. State s ∈ S is general or strong coalitional Nashl stable for H,

denoted by s ∈ SGNashl
H or s ∈ SSNashl

H , respectively. Then SSNashl
H = SGNashl

H .

8.9.3.1 Matrix Representation of Strong Coalitional Stabilities
Indexed l

(1) Matrix Representation of Strong Coalitional Stabilities Indexed a

The strong coalitional GMRa stability matrix is defined as

MSCGMRa
H = CM+,++,U

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.53)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRa stable for H .

Theorem 8.52 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRa stable for H, denoted by s ∈ SSCGMRa

H , iff
MSCGMRa

H (s, s) = 0.

Theorem8.52 shows that the matrix representation of strong coalitional GMRa

stability is equivalent to the logical version of the same stability given in Defini-
tion8.59. The diagonal entry (s, s) of matrix MSCGMRa

H is identified whether it is
zero. If so, s is strong coalitional GMRa stable for H .

Define the strong coalitional SMRa stability matrix as

MSCSMRa
H = CM+,++,U

H · [E − sign(Q)]
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in which

Q = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRa stable for H .

Theorem 8.53 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRa for H, denoted by s ∈ SSCSMRa

H , iff MSCSMRa
H (s, s) = 0.

Theorem8.53 provides a matrix method, which is equivalent to the logical ver-
sion given in Definition8.60. The following theorem displays the matrix method to
identify whether state s is strong coalitional SEQa stable. Let the strong coalitional
SEQa stability matrix MSCSEQa

H be defined as

MSCSEQa
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−−
H )T

)
].

Theorem 8.54 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQa stable for H, denotedby s ∈ SSCSEQa

H , iff MSCSEQa
H (s, s)= 0.

(2) Matrix Representation of Strong Coalitional Stabilities Indexed b

Define the strong coalitional GMRb stability matrix as

MSCGMRb
H = CM+,++

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.54)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRb stable for H .

Theorem 8.55 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRb stable for H, denoted by s ∈ SSCGMRb

H , iff
MSCGMRb

H (s, s) = 0.

Define the strong coalitional SMRb stability matrix as

MSCSMRb
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRb stable for H .

Theorem 8.56 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRb for H, denoted by s ∈ SSCSMRb

H , iff MSCSMRb
H (s, s) = 0.
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The following theorem displays the matrix method to identify whether state s
is strong coalitional SEQb stable. Let the strong coalitional SEQb stability matrix
MSCSEQb

H be defined as

MSCSEQb
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−−
H )T

)
].

Theorem 8.57 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQb stable for H, denotedby s ∈ SSCSEQb

H , iff MSCSEQb
H (s, s)= 0.

(3) Matrix Representation of Strong Coalitional Stabilities Indexed c

The strong coalitional GMRc stability matrix is defined as

MSCGMRc
H = CM+,++,U

H · [E − sign
(
MN−H · (P−−,U

H )T
)
], (8.55)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRc stable for H .

Theorem 8.58 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRc stable for H, denoted by s ∈ SSCGMRc

H , iff
MSCGMRc

H (s, s) = 0.

Theorem8.58 shows that the matrix representation of strong coalitional GMRc

stability is equivalent to the logical version of the same stability given in Defini-
tion8.65. The diagonal entry (s, s) of matrix MSCGMRc

H is identified whether it is
zero. If so, s is strong coalitional GMRc stable for H .

Define the strong coalitional SMRc stability matrix as

MSCSMRc
H = CM+,++,U

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−,U
H )T ◦

(
E − sign

(
MH · (E − P−−,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRc stable for H .

Theorem 8.59 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRc for H, denoted by s ∈ SSCSMRc

H , iff MSCSMRc
H (s, s) = 0.

Theorem8.59 provides a matrix method, which is equivalent to the logical ver-
sion given in Definition8.66. The following theorem displays the matrix method to
identify whether state s is strong coalitional SEQc stable. Let the strong coalitional

SEQc stability matrix MSCSEQc
H be defined as
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MSCSEQc
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−−,U
H )T

)
].

Theorem 8.60 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQc stable for H, denoted by s ∈ SSCSEQc

H , iff MSCSEQc
H (s, s)= 0.

(4) Matrix Representation of Strong Coalitional Stabilities Indexed d

Define the strong coalitional GMRd stability matrix as

MSCGMRd
H = CM+,++

H · [E − sign
(
MN−H · (P−−,U

H )T
)
], (8.56)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRd stable for H .

Theorem 8.61 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRd stable for H, denoted by s ∈ SSCGMRd

H , iff
MSCGMRd

H (s, s) = 0.

Theorem8.61 shows that the matrix representation of strong coalitional GMRd

stability is equivalent to the logical version of the same stability given in Defini-
tion8.68. The diagonal entry (s, s) of matrix MSCGMRd

H is identified whether it is
zero. If so, s is strong coalitional GMRd stable for H .

Define the strong coalitional SMRd stability matrix as

MSCSMRd
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−,U
H )T ◦

(
E − sign

(
MH · (E − P−−,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRd stable for H .

Theorem 8.62 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRd for H, denoted by s ∈ SSCSMRd

H , iff MSCSMRd
H (s, s) = 0.

Theorem8.62 provides amatrix method, which is equivalent to the logical version
given in Definition8.69. The following theorem displays the matrix method to iden-
tify whether state s is strong coalitional SEQd stable. Define the strong coalitional

SEQd stability matrix MSCSEQd
H as

MSCSEQd
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−−,U
H )T

)
].
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Table 8.1 Options and feasible states for the Lake Gisborne conflict

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

States s1 s2 s3 s4 s5 s6 s7 s8

Theorem 8.63 For the graph model G, let H ⊆ N be a coalition. State s ∈ S
is strong coalitional SEQd stable for H, denoted by s ∈ SSCSEQd

H , iff MSCSEQd
H

(s, s) = 0.

The matrix representation of coalitional stabilities under hybrid preference pre-
sented in this section is identicalwith the logical formdiscussed inSect. 8.5.However,
the matrix form is more efficient for calculating coalitional stabilities than logical
representation.

8.10 Application: Coalition Analysis for Lake Gisborne
Conflict with Simple Preference

In this section, the matrix approach is used to analyze the coalitional stability for the
Lake Gisborne conflict with simple preference. Recall from Sects. 5.4 and 7.5 that
the graph model for the Lake Gisborne Conflict has the following DMs and options:

• Federal Government of Canada (Federal): its option is to continue a Canada-wide
accord on the prohibition of bulk water export (Continue) or not,

• Provincial Government of Newfoundland and Labrador (Provincial): its option is
to lift the ban on bulk water exports (Lift) or not, and

• Support groups (Support): their option is to appeal for continuing the Lake Gis-
borne project (Appeal) or not.

The three DMs and the options they control are listed on the left in Table8.1.
Together, the three options create eight possible states as listed on the right in
Table8.1, where a “Y” indicates that an option is selected by the DM controlling
it and an “N” means that the option is not chosen. Each state, shown as a column
of Ys and Ns in Table8.1, represents a possible scenario as to what could occur.
For instance, s4 means that the Federal Government will continue prohibiting bulk
water exports, the Provincial Government will lift the ban on bulk water exports,
and the Support Groups will not appeal for implementing this project. The graph
model capturing the possible moves by the three DMs in the Lake Gisborne conflict
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Fig. 8.1 Graph model of
moves for the Lake Gisborne
conflict 1s 7s

6s

5s

2s

3s

4s 8s

Federal Federal Federal Federal

Provincial

Support

Support

Support

Support

Provincial Provincial

Provincial

Table 8.2 Preference information for the Lake Gisborne model with low water price

DMs Certain preferences

Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Provincial s2 � s6 � s1 � s5 � s4 � s8 � s3 � s7
Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

Table 8.3 Preference information for the Lake Gisborne model with high water price

DMs Certain preferences

Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Provincial s3 � s7 � s4 � s8 � s1 � s5 � s2 � s6
Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

is shown in Fig. 8.1, where the labels on the arcs identify the DMs who control the
relevant moves.

Besides the DMs, states, and potential moves, the other key component of a
graph model is the relative preferences for each DM. Tables8.2 and 8.3 provide the
preferences for the situations inwhich the price of water is low and high, respectively.
Notice that only the preferences for the Provincial Government are different for these
two conflicts. In these tables, the symbol given by � means more preferred. When
the price of water is low, the Provincial most prefers state s2 from Table8.2. State s2
indicates that the Provincial sides with the Federal for protecting the environment.
With the increasing price of water, Table8.3 shows that state s3 is most preferred by
the Provincial. It means that the economical-oriented provincial government will lift
the ban on bulk water exports. Two attitudes of the Provincial will result in different
coalitions anddifferent coalitional stability resolutions.Due to themethods to analyze
the two models for the Lake Gisborne conflict are similar, the following discussions
will be based on the second case in which the Provincial sides with the Support
Groups. The reachability matrices for the Lake Gisborne model is constructed using
the algebraic approach next.



346 8 Coalitional Stabilities

Table 8.4 UM reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix MN−{1} MN−{2} MN−{3}
State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

3 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0

4 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0

5 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1

7 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1

8 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0

Table 8.5 UI reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix M+
N−{1} M+

N−{2} M+
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8.10.1 Reachability Matrices in the Lake Gisborne Model

N = {1, 2, 3}={Federal, Provincial, Support} is the set of three DMs. Use the
Lake Gisborne model as an example to demonstrate how the algebraic approach
works for building UM, UI, and CI (Coalitional Improvement) reachability matrices
(Xu et al. 2014). One can adhere to the following steps:

• Construct matrices, Ji , J
+
i , P+

i , and P−,=
i , for i = 1, 2, and 3, using information

provided in Fig. 8.1 and Table8.3;
• Calculate the UM, UI, and CI reachability matrices, MH , M

+
H , and CM+

H by
H = N − {i} for i = 1, 2, and 3, respectively;

• Three reachability matrices are shown in Tables8.4, 8.5, and 8.6.

For example, using Table8.5, one has:
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Table 8.6 CI reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix CM+
N−{1} CM+

N−{2} CM+
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

eT2 · M+
N−{1} = (0, 0, 0, 1, 0, 1, 0, 1),

which means that the reachable list of H = N − {1} by the legal UIs from state
s2, R

+
H (s2) = {s4, s6, s8}, i.e., states s4, s6, and s8 can be reached by any legal UI

sequence, by coalition H = {2, 3}, from the status quo s = s2. However, from
Table8.6,

eT2 · CM+
N−{1} = (0, 0, 0, 1, 0, 0, 0, 1),

which indicates that the coalitional improvements from s2 by coalition H = {2, 3} are
CR+

H = (0, 0, 0, 1, 0, 0, 0, 1). Asmentioned after Definition8.1, normally, R+
H (s) �=

CR+
H (s). It is clear from this example that R+

H (s2) �= CR+
H (s2) for H = {2, 3}. In

fact, although s6 ∈ R+
H (s2), s6 /∈ CR+

H (s2) for H = {2, 3}, since s2 �2 s6.

8.10.2 Coalitional Stability Results in the Lake Gisborne
Model

After obtaining three important components, UM, UI, and CI reachability matrices
(MH , M+

H , and CM+
H , respectively), coalitional stabilities, CNash, CGMR, CSMR,

CSEQ1, and CSEQ2, can be calculated using Theorems 8.2 and 8.4–8.7 and are
shown in Table8.7.

Both of the foregoing water export conflicts were thoroughly analyzed using the
algebraic methodology for coalitional analysis provided in this chapter. In the first
dispute for which the price of water is low, the only equilibrium according to both
noncooperative stability calculations and coalitional stability when the Federal and
Provincial Governments form a coalition (H = {1, 2}) is s6. From Table8.1, state
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Table 8.7 Coalitional stabilities of the Lake Gisborne model for various coalitions with high water
price

State Stability {1} {2} {3} {1, 2} {1, 3} {2, 3}
s1 CNash

CGMR

CSMR

CSEQ1

CSEQ2

s2 CNash
√ √ √

CGMR
√ √ √

CSMR
√ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √

s3 CNash
√ √ √ √ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √ √ √

CSEQ2
√ √ √ √ √

s4 CNash
√ √ √ √ √ √

CGMR
√ √ √ √ √ √

CSMR
√ √ √ √ √ √

CSEQ1
√ √ √ √ √ √

CSEQ2
√ √ √ √ √ √

s5 CNash
√ √

CGMR
√ √

CSMR
√ √

CSEQ1
√ √

CSEQ2
√ √

s6 CNash
√ √ √ √

CGMR
√ √ √ √

CSMR
√ √ √ √

CSEQ1
√ √ √ √

CSEQ2
√ √ √ √

s7 CNash
√ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √

s8 CNash
√ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √
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s6 is the situation in which the Federal Government continues to promote a ban, the
Provincial Government does not lift the ban, and the Support Groups appeal. In this
case, the Provincial Government is environmentally oriented. For the second conflict,
in which the price of water is high, the noncooperative stability results are listed in
the 3, 4, and 5th columns of Table8.7. Obviously, state s4 is an equilibrium for all
individual noncooperative stability definitions consisting of Nash, GMR, SMR, and
SEQ; s8 is also an equilibrium for GMR and SMR individual stabilities. However,
notice from Table8.7 that when the Provincial Government and the Support Groups
form a coalition (H = {2, 3}), s8 is coalitionally unstable for CGMR and CSMR. As
can be seen from Table8.1, at s8, the Support Groups are appealing, which is not nec-
essary because the Provincial Government and the Support Groups are cooperating.
Therefore, state s8 is not long-term stable. For nontrivial coalitions, the cooperative
stabilities are listed in the three columns on the right of Table8.7. Observe that s4 is
universally CNash, CGMR, CSMR, CSEQ1, and CSEQ2 stable, which means that
at state s4, the Federal Government continues with the ban, the Provincial Govern-
ment lifts the ban and the Support Groups do not appeal. State s4 is a resolution of
the conflict when the price of water is high. In this case, the water export project will
proceed.

8.11 Important Ideas

Coalition analysis should form a key component of every formal conflict resolu-
tion investigation. After determining what a given DM can accomplish on his or
her own and in his own self-interest, one should determine if the DM can do even
better by cooperating with others. The coalition ideas presented in this chapter pro-
vide a solid mathematical foundation for coalition modeling and analysis, which can
be programmed into a decision support system (DSS) for GMCR, as explained in
Sect. 10.2. Hence, an encompassing coalition approach to formal conflict studies can
be fully operationalized for employment by researchers, teachers, students, and prac-
titioners working in many fields. The logical representation of coalitional stability
analyses for four key solution concepts are presented in this chapter for the four types
of preference structures given in Chaps. 4–7. Moreover, the matrix representation of
coalitional analysis under a range of preference framework given later in this chapter
means that coalitional analysis can be readily incorporated into the construction of
the engine for a DSS for GMCR, as explained in Sect. 10.2. Accordingly, coalitional
analysis is now a fully mature decision technology within the paradigm of GMCR,
which can be readily utilized as evidenced by the water export conflict application
presented in Sect. 8.10.
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8.12 Problems

8.12.1 Select a current conflict, such as an international trading dispute or negotiat-
ing a climate change agreement, which is of direct interest to you. Explain why you
think coalition modeling and analysis may or may not be an important tool for better
resolving this conflict.

8.12.2 In a coalition improvement given in Definition8.1, a state is a coalition
improvement for the members of a coalition with respect to another state if and only
if the state to which the DMs are jointly moving is more preferred by all of the
members of the coalition. For a conflict of your choice, provide an example of a
coalition improvement. Explain how this move could be carried out in practice via
appropriate communication among the coalition members.

8.12.3 The game of Prisoner’s Dilemma is presented in Problem 3.5.1. If both DMs
were to move together from state s4 to state s1 in this conflict, this constitutes an
example of a coalition improvement. Write a short discussion about interpreting
Prisoner’s Dilemma as some type of typical or generic real-world dispute, such as
a trading or environmental dispute. Explain sensible steps that could be taken in
practice to ensure that both DMs move together from state s4 to s1 and, hence,
no DM defects during this process. Why is the move from state s4 to s1 called an
equilibrium jump?

8.12.4 In the game of Chicken in Problem 3.5.4, both DMs or drivers moving
together from state s1 to state s4 is an example of a coalition improvement as presented
in Definition8.1. Furnish an example of a real-world interpretation of the game of
Chicken. Explain how the two DMs could improve together from state s1 to state s4
via taking appropriate measures.

8.12.5 If a conflict consists of only two DMs, these two DMs can still participate in
a coalition improvement as presented in Definition8.1. However, when there are only
two DMs in a conflict, there are no other DMs left in the conflict to block possible
coalition improvements. Explain why the definitions for coalitional stabilities given
in Sect. 8.2 for simple preference work when there are only two DMs. Why are these
coalitional stability definitions identical to the stability definitions given in Chap.4
for simple preference with no coalitions having two or more DMs?

8.12.6 The Lake Gisborne conflict over the proposed exportation of water is pre-
sented in Sect. 8.10. Apply the logical form of the coalitional stability definitions
given in Sect. 8.2 to the Lake Gisborne example to show by hand how you calculate
various coalitional stabilities. Be sure to present the special situation for which there
are no coalitions for each stability definition.

8.12.7 For the Elmira groundwater contamination dispute first presented in
Sect. 1.2.2 in the book, calculate by hand the coalitional stabilities for simple pref-
erence using the matrix formulation given in Sect. 8.6. Be sure to include sample
calculations and the stability results for the special situation in which there are no
coalitions.



8.12 Problems 351

8.12.8 For the coalition investigation approach presented in this chapter, it is
assumed that DMs will form a coalition during a conflict when it is in their interest
to do so, as reflected by the way a coalition improvement is defined in Definition8.1.
However, other ways to study coalitions exist. In particular, in some situations, such
as a military alliance among nations during warfare, a coalition may last through-
out the duration of the dispute. Accordingly, researchers developed a procedure for
determining the preference of a coalition based on the preferences of the individual
coalition members (Kuhn et al. 1983, Hipel and Fraser 1991, Meister et al. 1992,
Hipel and Meister 1994). By referring to the research of these authors, outline how
coalition preferences are ascertained. Explain how these authors identify possible
coalition formation and how coalitional stability analyses are executed. Describe a
specific actual dispute forwhich you think this approach could be useful for obtaining
strategic insights.

8.12.9 Logical definitions of coalitional stabilities under unknown preference are
presented in Sect. 8.3. By employing a real-world application of your choice, explain
a situation in which you think this kind of coalitional analysis could prove to be
informative.

8.12.10 For the case of three degrees of preference, logical definitions for coalitional
stability are provided in Sect. 8.4. Describe an actual situation in which you think
this kind of coalitional stability analysis could provide insightful strategic findings.

8.12.11 Hybrid preference coalitional stability definitions, in which both unknown
preference and three degrees of preference are simultaneously taken into account,
are presented in Sect. 8.5. Based on an actual dispute which is of direct interest to
you, describe why you think this hybrid coalitional stability approach could provide
insightful strategic findings.

8.12.12 The matrix representations of coalitional stability under simple, unknown,
three degree, and hybrid preference are presented in Sects. 8.6–8.9, respectively. As
explained in Sect. 10.2, these matrix representations are needed for designing and
programming a flexible decision support system (DSS) especially for the analysis
engine. Using diagrams, outline how you would design a DSS which can handle
coalitional analyses.
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