
Chapter 6
Stability Definitions: Degrees
of Preference

In a water quality dispute, an environmental agency may greatly prefer that an indus-
trial enterprise does not seriously pollute a nearby river into which it discharges
wastes. The purpose of this chapter is to present a formal methodology that can
handle this type of “degree”, “strength”, or “level” of preference, which often arises
in practice, in order to determine its strategic consequences. More specifically, a
multiple-degree preference structure is developed within the paradigm of the Graph
Model for Conflict Resolution (GMCR) in conjunction with associated stability defi-
nitions for determining individual stability of each state fromagivendecisionmaker’s
(DM’s) viewpoint as well as the overall equilibria (Hamouda et al. 2004, 2006, Xu
et al. 2009, 2010, 2011). Within this structure, a DM may have multiple degrees of
preference when comparing pairs of states. For example, if state a is preferred to state
b, it may be mildly preferred at degree 1 (d = 1), more strongly preferred at degree
2 (d = 2), . . ., or maximally preferred at degree r (d = r ), where r > 0 is a fixed
parameter. The number of degrees, r , is unrestricted in this system, thereby extending
the earlier simple preference structure having two types of preferences consisting of
equally preferred (degree zero) and more preferred (degree one) in Chap. 4 and the
special case of three kinds of preferences (equally preferred, mildly preferred, and
greatly more preferred) discussed in detail in this chapter.

Themain properties of the preference structure according to degree are introduced
in Sect. 6.1 in this chapter. Because DMsmake moves and countermoves when inter-
acting with one another under conflict, reachable lists are defined in Sect. 6.2 to keep
track of the possible unilateral movements in one step from a given state for a par-
ticular DM with respect to multiple types of preference. When considering stability
definitions for more than two DMs, coalition moves are defined since two or more
DMs can participate in blocking a unilateral improvement by another DM. Sub-
sequently, multiple-degree versions of four stability definitions consisting of Nash
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stability, general metarationality, symmetric metarationality, and sequential stabil-
ity, are defined for the graph model with this extended preference structure and the
relationships among them are investigated. Additionally, in this chapter, matrix rep-
resentations of the four stabilities are presented for graphmodels having a preference
structure of up to degree 3.

6.1 Multiple Degrees of Preference

The simple preference structure discussed in Chaps. 3 and 4 contains two types of
preferences: indifference, in which a DM is indifferent between, or equally prefers,
two states, and strict preference, in which a DM prefers one state more than another.
The third kind of preference can be added by allowing a DM to greatly prefer one
state over another. Hence, an expanded preference structure for a given DM can
have two states being equally preferred (called preference of degree zero, or simply
d = 0), one state being more or mildly preferred over another (degree d = 1), or one
state being greatly more preferred than another (d = 2). In fact, one can extend two
degrees of preference to an unlimited number. Below, preference structures having
preferences of up to two degrees and the general case of having any number of
degrees are discussed in Sects. 6.1.1 and 6.1.2, respectively.

6.1.1 Three Types of Preference

A triplet relation on S that expresses strength of preference according to indifferent,
mild, or strong preference, was developed by Hamouda et al. (2004, 2006). For
states s, q ∈ S, the preference relation s ∼i q indicates that DM i is indifferent
between states s and q, the relation s >i q means that DM i mildly prefers s to q,
and s �i q denotes that DM i strongly prefers s to q. Similar to the properties for
simple preference given in Sect. 3.2.4, the characteristics of the preference structure,
{∼i ,>i ,�i }, containing three kinds of preference for eachDM i ∈ N , are as follows:

(i) ∼i is reflexive and symmetric;
(ii) >i and �i are asymmetric; and
(iii) {∼i ,>i ,�i } is strongly complete.

Note that {∼i ,>i ,�i } is strongly complete. Hence, if s, q ∈ S, then exactly one of
the following relations holds: s ∼i q, s >i q, s �i q, q >i s, or q �i s. Also, it is
assumed that, for any s, q ∈ S, s >i q is equivalent to q <i s. The preference type
“�i” has similar properties to “>i”.
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Table 6.1 Subsets of S with respect to three degrees of preference for DM i

Subsets of S Descriptions

�++
i (s) = {q : q �i s} States strongly preferred to state s by DM i

�
+m
i (s) = {q : q >i s} States mildly preferred to state s by DM i

�=
i (s) = {q : q ∼i s} States equally preferred to state s by DM i

�
−m
i (s) = {q : s >i q} States mildly less preferred than state s for DM i

�−−
i (s) = {q : s �i q} States strongly less preferred to state s by DM i

The set of feasible states, S, can be partitioned or divided into a set of non-
overlapping or disjoint subsets based on the types of preference relative to a specific
state s ∈ S. These categorizations of preferences are needed for carrying out stability
analyses according to different kinds of human behavior under conflict as explicitly
defined in Sect. 6.3. For example, a DM may be tempted to unilaterally move to a
mildly preferred state which can be blocked by another DMmoving to a state which
is greatly less preferred by the original DM. The descriptions of these different
classifications of preferences are presented in Table6.1.

Let s ∈ S and i ∈ N . Based on different structures of preferences, DM i can
identify different subsets of S. For simple preference, DM i can identify three subsets
of S with respect to a state s: the set of states more preferred by DM i than state s
(denoted by�+

i (s)); the set of states equally preferred to state s byDM i (�=
i (s)); and

the set of states less preferred byDM i to state s (�−
i (s)) (see Sect. 4.1 for details). For

the three types of preference, DM i can identify five subsets of S: �++
i (s), �+m

i (s),
�=

i (s), �
−m
i (s), and �−−

i (s), which are explained in Table6.1. Notice that in this
table that the set of states mildly preferred to state s by DM i , given by �

+m
i (s), have

an “m” in the superscript in order to distinguish this set from �+
i (s) for the case of

a simple preference structure in which �++
i (s) does not exist. Therefore, all states

that are more preferred to state s by DM i would be included in �+
i (s) for a simple

preference structure. Similar comments hold for the set �−m
i (s) in Table6.1.

In Sect. 6.3, a given DM can levy a sanction against a unilateral improvement by
DM i from state s if the sanctioning DM can put DM i in either a less preferred
or equally preferred state relative to state s. Therefore, the set of states given by
�

−−,−,=
i (s) = �−−

i (s) ∪ �
−m
i (s) ∪ �=

i (s), where ∪ denotes the union operation, is
important in various stability definitions. Note that in the graph model with strength
of preference, s �i q iff either s >i q or s �i q. Hence, the three types of preference
structure expand simple preference.

The simple preference structure having the set of binary relations given as {∼,�},
and the expanded preference structure with strength of preference, which has the set
of binary relations {∼,>,�}, are referred to as having two types of preferences
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Table 6.2 Degree of relative preference

Degree of strength Description Notation

d = r Preferred at degree r

r
︷ ︸︸ ︷

> · · · >

· · · · · · · · · · · · · · · · · ·
d = 3 Very strongly preferred ≫
d = 2 Strongly preferred �
d = 1 Moderately preferred >

d = 0 Equally preferred ∼

and three kinds of preferences, respectively. The existing two preference structures
in the graph model are extended to the general case of multiple types of preference
structures with any specified degree in the next section (Xu et al. 2009).

6.1.2 Multiple Degrees of Preference

A set of new and more general binary relations
d

︷ ︸︸ ︷

> · · · > for d = 1, 2, . . . , r , as
listed in Table6.2, are introduced in this section to represent DM i’s preference at
each degree d. With the introduction of these new binary relations, the three types
of preference structures in the graph model are extended from a triplet of relations,
to an r + 1 types of preference relations for DM i over the set of states, which is

expressed as {∼i ,>i ,�i , . . . ,
r�i } on S, where

r�i denotes
r

︷ ︸︸ ︷

> · · · >i , i.e., DM i has
preference at degree r for comparing states with respect to preference. For instance,
s ≫i q means that DM i very strongly prefers state s to state q. Similar to the case
for simple preference as described in Sect. 3.2.4, it is assumed that the preference
relations of each DM i ∈ N have the following properties:

(i) ∼i is reflexive and symmetric (i.e., ∀s, q ∈ S, s ∼i s, and if s ∼i q, then
q ∼i s);

(ii)
d�i for d = 1, 2, . . . , r , is asymmetric (i.e., s

r�i q and q
r�i s cannot occur

simultaneously); and

(iii) {∼i ,>i ,�i , . . . ,
r�i } is strongly complete (i.e. if s, q ∈ S, then exactly one of

the following relations holds: s ∼i q, s
d�i q, or q

d�i s for d = 1, 2, . . . , r ).

Preference information can be either transitive or intransitive. For states k, s, q ∈ S,

if k
d�i s and s

d�i q imply k
d�i q, then the preference

d�i is transitive. Otherwise, the
preferences are called intransitive. Note that the assumption of transitivity of pref-
erences is not required in the following definitions so that the results in this chapter
hold for both transitive and intransitive preferences. When all of the preferences for
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Table 6.3 Subsets of S for DM i with respect to multiple degrees of preference

Degree of strength Subsets of S Description

d = r �
+(r)
i (s) = {q : q

r
︷ ︸︸ ︷

> · · · >i s} States preferred to state s at degree
r by DM i

�
−(r)
i (s) = {q : s

r
︷ ︸︸ ︷

> · · · >i q} States less preferred to state s at
degree r by DM i

.

.

.

.

.

.

d = 3 �
+(3)
i (s) = {q : q ≫i s} States very strongly preferred to

state s by DM i

�
−(3)
i (s) = {q : s ≫i q} States very strongly less preferred to

state s by DM i

d = 2 �
+(2)
i (s) = {q : q �i s} States strongly preferred to state s

by DM i

�
−(2)
i (s) = {q : s �i q} States strongly less preferred to

state s by DM i

d = 1 �
+(1)
i (s) = {q : q >i s} States moderately preferred to state

s by DM i

�
−(1)
i (s) = {q : s >i q} States moderately less preferred to

state s by DM i

d = 0 �
(0)
i (s) = �=

i (s) = {q : q ∼i s} States equally preferred to state s by
DM i

a given DM i are transitive, the preferences are said to be ordinal and, hence, the
states in a conflict can be ordered or ranked from most to least preferred, where ties
are allowed. Sometimes this ranking of states according to preference is referred to
as a “preference ranking”.

A list and associated descriptions for the range of subsets of S with respect to
multiple types of preference are presented in Table6.3. Starting at the bottom of the
table at degree 0, the notation for the states equally preferred to state s by DM i
is given as �

(0)
i (s) or �=

i (s). Notice that for degree of strength d = 1, . . . , r, two
subsets of states are given for each degree as �

+(d)
i (s) and �

−(d)
i (s), to indicate

subsets of states preferred to state s at degree d by DM i , and states less preferred
to state s at degree d by DM i , respectively. Hence, overall there is a total of 2r + 1
subsets of S when considering multiple degrees of preference. A diagram displaying
these degrees of preference for DM i is furnished later in Sect. 6.2.2 as the left side
of Fig. 6.1.
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Fig. 6.1 Relationships
among subsets of S and
reachable lists from s
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6.2 Reachable Lists of a Decision Maker

In addition to preference, one must be aware of the moves DMs control when ascer-
taining stability. Accordingly, in this section, moves unilaterally controlled by a DM
in one step are defined as reachable lists for the cases of three types and multiple
kinds of preferences in Sects. 6.2.1 and 6.2.2, respectively. Potential moves by a DM
in the face of simple preference are defined using reachable lists in Sect. 4.1.1. In
the upcoming two subsections, let i ∈ N , s ∈ S, and m = |S| be the number of the
states in S. The notation given by ∩ denotes the intersection operation while ∪ is the
union operation. Recall that each arc of Ai ⊆ S × S indicates that DM i can make a
unilateral move (in one step) from the initial state to the terminal state of the arc.

6.2.1 Reachable Lists for Three Degrees of Preference

The reachable lists of a DM for three types of preference are defined as follows:

(i) R++
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} stands for DM i’s reachable list

from state s by a strong unilateral improvement. This set contains all states q
which are strongly preferred by DM i to state s and can be reached in one step
from s;
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Table 6.4 Unilateral movements for DM i in the three types of preference structure

Type of movements Description

R++
i (s) = Ri (s) ∩ �++

i (s) All strong unilateral improvements from state s
for DM i

R+m
i (s) = Ri (s) ∩ �

+m
i (s) All mild unilateral improvements from state s

for DM i

R=
i (s) = Ri (s) ∩ �=

i (s) All equally preferred states reachable from
state s by DM i

R−m
i (s) = Ri (s) ∩ �

−m
i (s) All mild unilateral disimprovements from state

s for DM i

R−−
i (s) = Ri (s) ∩ �−−

i (s) All strong unilateral disimprovements from
state s for DM i

(ii) R+m
i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s} denotes DM i’s reachable list from

state s by a mild unilateral improvement;
(iii) R−m

i (s) = {q ∈ S : (s, q) ∈ Ai and s >i q} denotes DM i’s reachable list from
state s by a mild unilateral disimprovement;

(iv) R−−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} is DM i’s reachable list from state

s by a strong unilateral disimprovement;
(v) R+,++

i (s) = R+m
i (s) ∪ R++

i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s or q �i s}
denotes DM i’s reachable list from state s by a mild unilateral move or strong
unilateral move.

From the above definitions, these reachable lists from state s by DM i can be
summarized as presented in Table6.4. As discussed in Sect. 4.1.1, DM i’s reachable
list from state s, Ri (s), representsDM i ′s unilateralmoves (UMs). Ri (s) is partitioned
according to the three kinds of preference structure as Ri (s) = R++

i (s) ∪ R+m
i (s) ∪

R=
i (s) ∪ R−m

i (s) ∪ R−−
i (s).

6.2.2 Reachable Lists for Multiple Degrees of Preference

The set Ri (s) denotes the unilateral moves (UMs) of DM i from s ∈ S, and is
also called i’s reachable list from s. It contains all states to which DM i can move,
unilaterally and in one step, from state s. Similarly, the set R+

i (s) = {q ∈ S : q ∈
Ri (s) and q

d�i s for d = 1, 2, . . . , r} contains DM i’s unilateral improvements
(UIs) from state s for all degrees of preference. Note that although the same notation
“R+

i (s)” is used in Sect. 4.1.1 to represent DM i’s unilateral improvements from
state s at degree 1, the meaning of R+

i (s) here differs from that: there, it denotes all
unilateral improvements, which can only be of degree 1 from s by DM i , whereas
here, it includes all unilateral improvements, no matter what degree. All reachable
lists from state s at each degree of preference for DM i are expressed by R+(r)

i (s), . . .,
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Table 6.5 Reachable lists of DM i at some degree of preference

Type of movement Description

R+(d)
i (s) = Ri (s) ∩ �

+(d)
i (s)

(d = 1, 2, . . . , r )
All unilateral improvements of degree
d from state s for DM i

R(0)
i (s) = R=

i (s) = Ri (s) ∩ �=
i (s)

(d = 0)
All equally preferred states reachable
from state s by DM i

Ri (s)−(d) (s) = Ri (s) ∩ �
−(d)
i (s)

(d = 1, 2, . . . , r )
All unilateral disimprovements of degree
d from state s for DM i

R+(1)
i (s), R(0)

i (s), R−(1)
i (s), . . ., and R−(r)

i (s). Let Ri (s) =
r
⋃

d=0
(R−(d)

i (s)∪ R+(d)
i (s))

and R+
i (s) =

r
⋃

d=1
R+(d)
i (s), where R+(d)

i (s) and R−(d)
i (s) for d = 0, 1, . . . , r, are

described in Table6.5. Additionally, the relations among the subsets of S, �+(d)
i (s)

and �
−(d)
i (s) for d = 0, 1, . . . , r, and the corresponding reachable lists from state s

for DM i , R+(d)
i (s) and R−(d)

i (s) for d = 0, 1, . . . , r, are depicted in Fig. 6.1.
Incorporating these extended multiple kinds of preference into the Graph Model

for Conflict Resolution results in multi-degree versions of the four basic solution
concepts presented in Sect. 6.4. The stability definitions for three types of preference
are presented in next section.

6.3 Logical Representation of Stabilities for Three Types
of Preference

Three types of preference including strength of preference are integrated into the
Graph Model for Conflict Resolution to extend the four basic solution concepts in
order to ascertain their strategic impacts. Recall that the three types of preference
are equally preferred (∼), mildly preferred (>), and strongly preferred (�) which
together form the preference structure denoted as {∼,>,�}. The four stability def-
initions given in the next subsection recognize two cases in which the degree of
strength in the three kinds of preference are distinguished. Firstly, general stabilities
are defined, and then the two subclasses, strong and weak, are determined. Stabili-
ties of the first kind are referred to as general because they are in essence the same
as the stability definitions using simple preference, as defined in Sect. 4.2. Stabil-
ity definitions are called strong or weak stabilities in order to reflect the additional
preference information contained in the strength of the preference relation. These
more sophisticated definitions furnish expanded strategic insights into a conflict
model that handles strength of preference. Sections6.3.1 and 6.3.3 furnish the above
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stability definitions for 2-DM and n-DM (n ≥ 2), respectively, while Sect. 6.3.2
presents definitions for reachable lists of a coalition of DMs required in the n-DM
stability definitions.

6.3.1 Two Decision Maker Case

In order to calculate the stability of a state for a given DM i ∈ N , it is necessary to
examine possible responses by all other DMs j ∈ N \ {i}. In a two-DM model, the
only opponent of DM i is the remaining DM j . For all of the definitions given in
next section, assume that N = {i, j} and s ∈ S.

6.3.1.1 Logical Representation of General Stabilities

Four general solution concepts are given below in which strength of preference is not
considered in sanctioning. However, the general stabilities are different from those
defined in Sect. 4.2 for simple preference, because the stability definitions for simple
preference do not directly take into account degree or strength of preference.

Definition 6.1 State s isNash stable forDM i , denoted by s ∈ SNash
i , iff R+,++

i (s) =
∅.
Definition 6.2 State s is general GMR (GGMR) for DM i , denoted by s ∈ SGGMR

i ,
iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈
�

−−,−,=
i (s).

Definition 6.3 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1), such that s2 ∈

�
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri (s2).

Definition 6.4 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

j (s1) such that

s2 ∈ �
−−,−,=
i (s).

6.3.1.2 Logical Representation of Strong and Weak Stabilities

When strength of preference is introduced into the graph model, stability definitions
can be strong or weak, according to the degree of sanctioning. For three kinds of
preference, stabilities are divided into strongly and weakly stable with respect to the
strength of possible sanctions. Hence, if a particular state s is general stable, then s
is either strongly stable or weakly stable. Strong and weak stabilities only include
GMR, SMR, and SEQ because Nash stability does not involve sanctions.
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Definition 6.5 State s is strongly GMR (SGMR) for DM i , denoted by s ∈ SSGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈

�−−
i (s).

Definition 6.6 State s is strongly SMR (SSMR) for DM i , denoted by s ∈ SSSMR
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1), such that s2 ∈ �−−

i (s)
and s3 ∈ �−−

i (s) for all s3 ∈ Ri (s2).

Definition 6.7 State s is strongly SEQ (SSEQ) for DM i , denoted by s ∈ SSSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

j (s1) such that
s2 ∈ �−−

i (s).

Definition 6.8 Let s ∈ S and i ∈ N . State s is weakly stable for DM i iff s is general
stable, but not strongly stable for some stability definition.

Example 6.1 (Stabilities for the Extended Sustainable Development Model under
Three-degree Preference) The sustainable development conflict is introduced in
Example 3.1. Here, this conflict is expanded to include three degrees of preference
for the two-DM case. Specifically, the conflict consists of two DMs: an environmen-
tal agency (DM 1: E) and a developer (DM 2: D); and two options: DM 1 controls
the option of being proactive (labeled P) and DM 2 has the option of practicing sus-
tainable development (labeled SD) for properly treating the environment. The two
options are combined to form four feasible states: s1, s2, s3, and s4. These results
are listed in Table6.6, where a “Y” indicates that an option is selected by the DM
controlling it and an “N” means that the option is not chosen.

The preference information for each DM among the four states is provided at the
bottom of Table6.6. As can be seen for the case of DM 1, this DM prefers s1 over
s3, greatly prefers s3 to s2, which is equally preferred to s4. Notice that DM 2 greatly
prefers s1 to s4. The graph model for the extended sustainable development conflict
is presented in Fig. 6.2. One can see, for instance from DM 1’s directed graph on the
left side of Fig. 6.2, that this DM controls the movement between states s1 and s3 as
well as s2 and s4.

The extended sustainable development model with three degrees of preference
is used to illustrate how to determine general and strong stabilities under the
three-degree version using Definitions6.1–6.8. In particular, first consider analyzing

Table 6.6 Extended sustainable development game in option form under three-degree preference

DM 1: Environmental agency

1. Proactive (P) Y Y N N

DM 2: Developer

2. Sustainable development (SD) Y N Y N

States s1 s2 s3 s4

Preferences s1 >1 s3 �1 s2 ∼1 s4 for DM 1 and
s3 >2 s1 �2 s4 ∼2 s2 for DM 2
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Fig. 6.2 Graph model for
the extended sustainable
development conflict under
three-degree preference
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state s1 with respect to general Nash stability for DM 1. From Fig. 6.2, DM 1 has
a unilateral move (UM) from s1 to s3. However, s1 is mildly more preferred to s3
by DM 1 because the move from s1 to s3 does not fall into the category of a mild
or strong unilateral improvement. Therefore, state s1 is general Nash stable for DM
1 according to Definition6.1. Moreover, s1 is also general GMR, SMR, and SEQ
stable for DM 1.

Next, one can assess whether s3 is general GMR stable for DM 1. From Fig. 6.2,
DM 1 has a mild unilateral improvement from s3 to s1 and DM 2 has a unilateral
move from s1 to s2. However, since s2 is strongly less preferred than s3 for DM 1,
state s3 is general GMR stable for DM 1 according to Definition6.2. The stabilities
of the other three states for the two DMs can be determined in a similar fashion.

Now, consider analyzing state s3 fromDM1’s viewpoint for GSMR stability using
Definition6.3. As can be seen from DM 1’s directed graph in Fig. 6.2a, DM 1 has a
mild UI from s3 to s1 and DM 2 has a UM from s1 to s2, from which DM 1 has only a
UM from s2 to s4. Because DM 1 is indifferent between s2 and s4, which are greatly
less preferred to state s3, s3 is GSMR stable for DM 1 using Definition6.3. General
SMR stability for other states can be calculated in a similar way.

To explain how general SEQ stability is calculated, consider state s3 from DM 1’s
perspective. Because DM 2’s possible countermove from s1 to s2 is, in fact, a move
to a greatly less preferred state, this DM has no credible sanction to stop DM 1 from
taking advantage of its UI from s3 to s1. Accordingly, state s3 is not general SEQ
stable for DM 1.

One could also provide an explanation for determining strong or weak stabilities
using Definitions6.5–6.8 for the extended sustainable development conflict. The
discussion would be quite similar to the general stabilities.

The stable states and equilibria for the extended sustainable development conflict
under three-degree preference are summarized in Table6.7, in which “

√
” for a given

state means that this state is general, strong, or weak stable for DM 1 or DM 2 and
“Eq” is an equilibrium for an appropriate solution concept. The results provided by
Table6.7 show that state s1 is a strong equilibrium for the four basic stabilities. State
s3 is strongly stable for GMR and SMR for all DMs. Hence, s1 and s3 are better
choices for decision makers.
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6.3.2 Reachable Lists of a Coalition of Decision Makers

To extend the definitions of the reachable lists for a coalition to take three kinds of
preference (∼,>,�) into account, a legal sequence of coalitional mild or strong
unilateral improvements (MSUIs) must be defined first. The reachable lists of coali-
tion H from state s by the legal sequences of UMs and UIs are defined in Sect. 4.2.2
for simple preference. The reachable lists of coalition H are expanded to three kinds
of preference in this section. A legal sequence of MSUIs is a sequence of allowable
mild unilateral improvements or strong unilateral improvements by a coalition, with
the same restriction that any member in the coalition may move more than once, but
not twice consecutively. The formal definition for reachable lists of coalition H by
the legal sequence of MSUIs is presented as follows.

Definition 6.9 Let s ∈ S, H ⊆ N , and H �= ∅. A mild or strong unilateral improve-
ment (MSUI) by H is a member of R+,++

H (s) ⊆ S, defined inductively by

(1) assuming �
+,++
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+,++
j (s), then s1 ∈ R+,++

H (s) and

�
+,++
H (s, s1) = �

+,++
H (s, s1) ∪ { j};

(3) if s1 ∈ R+,++
H (s), j ∈ H , and s2 ∈ R+,++

j (s1), then, provided �
+,++
H (s, s1) �=

{ j}, s2 ∈ R+,++
H (s) and �

+,++
H (s, s2) = �

+,++
H (s, s2) ∪ { j}.

Definition6.9 is similar to Definition4.7 for simple preference in Sect. 4.2.2 and
Definition5.18 for unknownpreference inSect. 5.2.2. It is also an inductive definition.
By (2) in Definition6.9, the states reachable from s are identified and added to the
set R+,++

H (s); then, using (3), all states reachable from those states are identified and
added to R+,++

H (s); afterwards the process is repeated in finitely many steps until no
further states are added to the coalitional reachable list by legal sequences of mild or
strong unilateral improvements, R+,++

H (s). For �
+,++
H (s, s1), if s1 ∈ R+,++

H (s), then
�

+,++
H (s, s1) ⊆ H is the set of all last DMs in legal MSUI sequences from s to s1.

Suppose that �+,++
H (s, s1) contains only one DM j ∈ N . Then any move from s1 to

a subsequent state s2 must be made by a member of H other than j ; otherwise DM
j would have to move twice in succession.

6.3.3 n-Decision Maker Case

Within an n-DM model (n ≥ 2) for three degrees of preference structure, DM i’s
opponents, N \ {i}, consist of a group of one or more DMs. In order to analyze
the stability of a state for DM i ∈ N , it is necessary to take into account possible
responses by all other DMs j ∈ N \ {i}. The key components in stability definitions
for three degrees of preference are reachable lists of coalition N \ {i} from state s,
RN\{i}(s) and R+,++

N\{i} (s), discussed above. The stability definitions for two DM cases
presented in Sect. 6.3.1 are extended to general n-DM models next.
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6.3.3.1 Logical Representation of General Stabilities

Four standard solution concepts are given below in which strength of preference
is not considered in sanctioning. However, the general stabilities are different from
those defined in Sect. 4.2.3 for simple preference, because stability definitions for
simple preference cannot analyze conflict models having strength of preference. Let
i ∈ N and s ∈ S for the following definitions.

Definition 6.10 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff

R+,++
i (s) = ∅.
Nash stability definitions are identical for both the 2-DM and the n-DM models

because Nash stability does not consider opponents’ responses.

Definition 6.11 State s is general GMR (GGMR) for DM i , denoted by s ∈ SGGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �
−−,−,=
i (s).

Definition 6.12 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri (s2).

Definition 6.13 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i} (s1) such that

s2 ∈ �
−−,−,=
i (s).

Similar to 2-DM case, general stabilities for n-DM models are partitioned into
strong or weak stabilities according to the level of sanctioning. Strong and weak
stabilities only includeGMR, SMR, and SEQbecauseNash stability does not involve
sanctions.

6.3.3.2 Logical Representation of Strong and Weak Stabilities

Definition 6.14 State s is strongly GMR (SGMR) for DM i , denoted by s ∈ SSGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �−−
i (s).

Definition 6.15 State s is strongly SMR (SSMR) for DM i , denoted by s ∈ SSSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri (s2).

Definition 6.16 State s is strongly SEQ (SSEQ) for DM i , denoted by s ∈ SSSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i} (s1) such that
s2 ∈ �−−

i (s).

The important components, RN\{i}(s1) and R+,++
N\{i} (s1), in Definitions6.14–6.16

are defined in Sects. 4.2.2 and 6.3.2, respectively, for H = N\{i}. The definition of
weak stability is presented next.

Definition 6.17 Let s ∈ S and i ∈ N . State s is weakly stable for DM i iff s is
general stable, but not strongly stable for some stability definition.
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6.4 Logical Representation of Stabilities for Multiple
Degrees of Preferences

The following stability definitions for multiple kinds of preference are analogous to
the concepts for three types of preference presented in Sect. 6.3. The multiple-degree
preference is included into the Graph Model for Conflict Resolution resulting in
multilevel versions of the four basic solution concepts, Nashk , GMRk , SMRk , and
SEQk for k = 0, 1, . . . , r. The stability definitions in a 2-DM conflict model are
presented next.

6.4.1 Two Decision Maker Case

6.4.1.1 Logical Representation of General Stabilities

Definition 6.18 State s is general Nash stable (GNash) for DM i , denoted by
s ∈ SGNash

i , iff R+
i (s) = ∅.

Definition 6.19 State s isgeneralGMR (GGMR) forDM i , denoted by s ∈ SGGMR
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s).

Definition 6.20 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2).

Definition 6.21 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s).

Note that in this section the meaning of R+
i (s) differs from that in Sect. 4.1.1 to

representDM i’sUI fromstate s for simple preference; there, it denotes all one-degree
unilateral improvements from s by DM i , whereas here, it includes all unilateral
improvements, no matter how many degrees of preference. For three degrees of
preference discussed above, general stabilities are divided into strongly and weakly
stable according to the strength of the possible sanction, i.e., if a particular state s
is general stable, then s is either strongly stable or weakly stable. Within multiple
degrees of preference, the general stabilities are constituted by stabilities at each
level of preference.
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Fig. 6.3 Nash stability at
degree k for DM i
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6.4.1.2 Logical Representation of Stabilities at Degree k

Firstly, definitions are nowgiven for different strengths ofNash stability. Even though
unilateral improvements do not exist under Nash stability, the idea of strength of sta-
bility can still be captured using the degree of preference for the most preferred states
to which the DM could unilaterally move. All these states must be less preferred than
the initial state. A special definition is required for the case inwhich nomovements of
any type exist for the DM. In particular, if DM i has no unilateral move at all degrees
of preference from state s, state s is extremely stable. The stability is proposed next.

Definition 6.22 If Ri (s) = ∅, then state s is super stable for DM i at any degree of
preference, denoted by s ∈ SSuper

i .

Definition 6.23 State s is Nash stable (Nash0) at degree 0 for DM i , denoted by
s ∈ SNash0

i , iff R+
i (s) = ∅ and R(0)

i (s) �= ∅.

Notice in the definition of Nash0 that no unilateral improvements by DM i from
state s exist but an equally preferred state must be present.

Definition 6.24 For 1 ≤ k ≤ r , state s is Nash stable (Nashk) at degree k for DM

i , denoted by s ∈ SNashk
i , iff R+

i (s) ∪ (
k−1
⋃

d=0
R−(d)
i (s)) = ∅ and R−(k)

i (s) �= ∅.

For Nashk stability, the most preferred state to which DM i can unilaterally move
from s is located at degree −k (below degree 0). The kth degree Nash stability is
depicted in Fig. 6.3. The super stability is referred to as Nash stability at the highest
degree, because no unilateral moves exist for DM i from s.

When multiple-degree preference is incorporated into the graph model, GMR,
SMR, and SEQ stabilities at different degrees can be distinguished according to the
strength of the sanctions.
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Fig. 6.4 GMR stability at
degree k for DM i
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Definition 6.25 State s is general metarational (GMR0) at degree 0 for DM i ,
denoted by s ∈ SGMR0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

(0)
i (s) and

R j (s ′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Based on Definition6.25, when DM i has no UIs from state s and it is Nash0
stable, as in Definition6.24, then state s is also GMR stable at degree 0.

Definition 6.26 For 1 ≤ k ≤ r − 1, state s is general metarational (GMRk) at

degree k for DM i , denoted by s ∈ SGMRk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R j (s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

−(k)
i (s) and R j (s ′

1)
⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

Figure6.4 contains a specific example to explain the meaning of Definition6.26.
Notice that DM i has UIs from state s to states s1 and s ′

1, each of which can be at
any degree from 1 to r . From state s1, DM j , who is DM i’s opponent, has one
unilateral move to state s2 (labeled R j (s1)), which is as shown on the degree axis to
be of degree −q, where q can range from k to r relative to s. With respect to state
s ′
1, DM j can move to state s ′

2, which is only located at degree −k relative to state s.
Therefore, state s for DM i possesses general meterational stability at degree k for
which 0 < k < r according to Definition6.26.
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If all of DM i’s UIs from a state are sanctioned at the highest degree r (exactly
r levels below the state), then the state is called general metarational at degree r . Its
formal definition is given below.

Definition 6.27 State s is general metarational (GMRr ) at degree r for DM i ,

denoted by s ∈ SGMRr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or

R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with
s2 ∈ �

−(r)
i (s).

For DM i , if a UI from a state is sanctioned at degree k below the state and all
other UIs from the particular state are sanctioned at a degree of at least k below the
state, and these corresponding sanctions cannot be avoided by any counterresponse,
then the state is called SMR stable at degree k. Its formal definition is given below.

Definition 6.28 State s is symmetric metarational (SMR0) at degree 0 for DM i ,
denoted by s ∈ SSMR0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

(0)
i (s) and

R j (s ′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅, as well as s3 ∈

r
⋃

d=0
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪

Ri (s ′
2).

Symmetric metarationality at degree k (0 < k ≤ r ) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 6.29 For 1 ≤ k ≤ r − 1, state s is symmetric metarational (SMRk+)

at degree k for DM i , denoted by s ∈ S
SMRk+
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅
and R−(k)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one

s2 ∈ R j (s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

−(k)
i (s) and R j (s ′

1)
⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅, as well as

s3 ∈
r
⋃

d=k
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪ Ri (s ′

2).

Figure6.5 vividly illustrates the SMR stability at k+ for DM i . Stability SMRk−

is defined by S
SMRk−
i = SGSMR

i ∩ SGMRk
i − S

SMRk+
i . Equivalently,

Definition 6.30 For 1 ≤ k ≤ r − 1, state s is symmetric metarational (SMRk−)

at degree k for DM i , denoted by s ∈ S
SMRk−
i , iff s ∈ SGMRk

i and R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well as there exists s ′

1 ∈ R+
i (s) and
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Fig. 6.5 SMR stability at
degree k+ for DM i
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Definition 6.31 State s is symmetric metarational (SMRr+) at degree r for DM

i , denoted by s ∈ SSMRr+
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅,

or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with
s2 ∈ �

−(r)
i (s) and s3 ∈ �

−(r)
i (s) for any s3 ∈ Ri (s2).

Definition 6.32 State s is symmetric metarational (SMRr−) at degree r for DM i ,
denoted by s ∈ SSMRr−

i , iff R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least

one s2 ∈ R j (s1)with s2 ∈ �
−(r)
i (s) and s3 ∈

r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well

as there exists s ′
1 ∈ R+

i (s) and for every s ′
2 ∈ R j (s1)∩�

−(r)
i (s), Ri (s ′

2)∩�
(−d)
i (s) �= ∅

for at least one d ∈ {0, . . . , (r − 1)}.
Sequential stability at degree k is similar to the stability of GMR at the same

degree. The only modification is that all DM i’s UIs are subject to credible sanctions
by DM i’s opponent. Its formal definition is given below.

Definition 6.33 State s is sequentially stable (SEQ0) at degree 0 forDM i , denoted
by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R+

j (s ′
1) such that s ′

2 ∈ �
(0)
i (s) and

R+
j (s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.
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Fig. 6.6 SEQ stability at
degree k for DM i
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Definition 6.34 For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

degree k for DM i , denoted by s ∈ SSEQk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
j (s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R+

j (s ′
1) such that s ′

2 ∈ �
−(k)
i (s) and R+

j (s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

Figure6.6 can be used to explain the meaning of Definition6.34. In fact, Defini-
tion6.34 is similar to Definition6.29. The only difference is that DM j , who is DM
i’s opponent, has one unilateral improvement to state s2 at a degree ranged from k
to r relative to s. With respect to state s ′

1, DM j has a unilateral improvement s ′
2,

which is only located at degree −k relative to state s. Therefore, state s for DM i is
sequentially stable at degree k for which 0 < k < r according to Definition6.34.

Definition 6.35 State s is sequentially stable (SEQr ) at degree r for DM i , denoted

by s ∈ SSEQr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
j (s1) with s2 ∈ �

−(r)
i (s).

In an n-DM model, where n ≥ 2, the opponents of a DM can be thought of
as a coalition of one or more DMs. To extend the graph model stability definitions
to stability definitions in n-DM models with multiple degrees of preference, the
definitions of a legal sequence of moves for three degrees of preference presented in
Sect. 6.3.2 must first be extended to take multiple degrees of preference into account.
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6.4.2 Reachable Lists of a Coalition of Decision Makers

A legal sequence of UMs in a graph model with multiple degrees of preference for
a coalition of DMs is a sequence of states linked by unilateral moves controlled by
members of the coalition, in which a DM may move more than once, but not twice
in succession. As explained in Sect. 4.2.2 before Definition4.6, this rule allows the
GMCR methodology to handle intransitive moves, in addition to transitive moves.
When H = {i}, a legal sequence of UMs for the coalition H reduces to a unilateral
move of DM i .

Let the coalition H ⊆ N satisfy |H | ≥ 2 and let the status quo state be s ∈ S.
Define RH (s) ⊆ S, the reachable list of coalition H from state s by a legal sequence of
UMs in a graphmodel with multiple degrees of preference. The following definitions
are adapted from Fang et al. (1993) and Hamouda et al. (2006):

Definition 6.36 Let s ∈ S, H ⊆ N , and H �= ∅. Here, R j (s) =
r
⋃

d=0
(R−(d)

j (s) ∪
R+(d)

j (s)) for any j ∈ H . A unilateral move by H is a member of RH (s) ⊆ S, defined
inductively by:

(1) if j ∈ H and s1 ∈ R j (s), then s1 ∈ RH (s) and �H (s, s1) = �H (s, s1) ∪ { j};
(2) if s1 ∈ RH (s), j ∈ H and s2 ∈ R j (s1), then, provided �H (s, s1) �= { j},

s2 ∈ RH (s) and �H (s, s2) = �H (s, s2) ∪ { j}.
Note that Definition6.36 is analogous toDefinition4.6, but, here, unilateral moves

include the states that are reachable from state s by multiple degrees of preference
(may have more than three degrees) listed in Table6.5.

In a graph model with multiple degrees of preference, a legal sequence of UIs
for coalition H is a sequence of states linked by unilateral improvements including
each-degree UIs controlled by members of the coalition H with the usual restriction
that amember of the coalitionmaymovemore than once, but not twice consecutively.
The formal definition is given below.

Definition 6.37 Let R+
j (s) =

r
⋃

d=1
R+(d)

j (s) for any j ∈ H . A unilateral improvement

by H is a member of R+
H (s) ⊆ S, defined inductively by:

(1) if j ∈ H and s1 ∈
r
⋃

d=1
R+(d)

j (s), then s1 ∈ R+
H (s) and �+

H (s)(s, s1) =
�+

H (s)(s, s1) ∪ { j};
(2) if s1 ∈ R+

H (s), j ∈ H and s2 ∈
r
⋃

d=1
R+(d)

j (s1), then, provided�+
H (s)(s, s1) �= { j},

s2 ∈ R+
H (s) and �+

H (s, s2) = �+
H (s, s2) ∪ { j}.

Definition6.37 is identical to Definition6.36 except that each move is to a state
strictly preferred with some degree of preference by the mover to the current state.
Similarly, �+

H (s, s1) includes all last movers in a legal sequence of UIs by coalition
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H from state s to state s1. Specifically, this definition is inductive: first, using (1),
the states reachable by a single DM in H from s by one step UIs in multiple levels
of preference are identified and added to R+

H (s); then, using (2), all states reachable
from those states are identified and added to R+

H (s); afterwards the process is repeated
until no further states are added to R+

H (s) by repeating (2). Because R+
H (s) ⊆ S, and

S is finite, this limit must be reached in finitely many steps.

6.4.3 n-Decision Maker Case

6.4.3.1 Logical Representation of General Stabilities

Super stability and Nash stability definitions are identical for both the 2-DM and the
n-DM models because these stabilities do not consider the opponents’ responses.
Let i ∈ N and s ∈ S for the following definitions.

Definition 6.38 State s ∈ S is GGMR for DM i , denoted by s ∈ SGGMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s).

Definition 6.39 State s ∈ S is GSMR for DM i , denoted by s ∈ SGSMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s) and

s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2).

Definition 6.40 State s ∈ S is GSEQ for DM i , denoted by s ∈ SGSEQ
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s).

6.4.3.2 Logical Representation of Stabilities at k Degree

Similar to 2-DM conflicts, solution concepts for n-DM conflicts can be defined
as different-degree stabilities, according to degrees of preference. Nash stability
definitions in multiple DM conflicts are the same as those in 2-DM cases. Therefore,
only the extended GMR, SMR, and SEQ are defined here. For DM i , if a UI from
state s is sanctioned by the legal sequence of UMs of i’s opponents in exactly k
degrees below s and all other UIs from state s are sanctioned in at least k degrees
below s, then the status quo s is called general metarational at degree k. The process
is portrayed in Fig. 6.7 and the formal definition is given below.

Definition 6.41 State s is GMR0 for DM i , denoted by s ∈ SGMR0
i , iff either

R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists
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Fig. 6.7 General
metarationality at degree k
for DM i
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at least one s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and there exists at least one s ′

1 ∈

R+
i (s)ands ′

2 ∈ RN\{i}(s ′
1)suchthats

′
2 ∈ �

(0)
i (s)andRN\{i}(s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Definition 6.42 For 1 ≤ k ≤ r − 1, state s is GMRk for DM i , denoted by s ∈
SGMRk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(k)
i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

If all of DM i’s UIs from a state are sanctioned at exactly r degrees below the
state, then the state is called general metarational at degree r . Its formal definition is
given below.

Definition 6.43 State s is GMRr for DM i , denoted by s ∈ SGMRr
i , iff either

r−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s).

For DM i , if a UI from a state is sanctioned by the legal sequence of UMs of DM
i’s opponents at degree k and all other UIs from the particular state are sanctioned
at degree at least k, and these corresponding sanctions cannot be avoided by any
counterresponse, then the state is called symmetric metarational at degree k. The
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Fig. 6.8 Symmetric
metarationality at degree k+
for DM i
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stability of SMR at degree k is portrayed in Fig. 6.8 and the formal definition is given
below.

Definition 6.44 State s is SMR0 forDM i , denoted by s ∈ SSMR0
i , iff either R+

i (s) =
∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one

s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

(0)
i (s) and RN\{i}(s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅, as well

as s3 ∈
r
⋃

d=0
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪ Ri (s ′

2).

Symmetric metarationality at degree k (0 < k ≤ r ) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 6.45 For 1 ≤ k ≤ r − 1, state s is SMRk+ for DM i , denoted by

s ∈ S
SMRk+
i , iff either

k−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(k)
i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅, as well as s3 ∈

r
⋃

d=k
�

−(d)
i (s) for any s3 ∈

Ri (s2) ∪ Ri (s ′
2).
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Stability SMRk− is defined by SSMRk−
i = SGSMR

i ∩ SGMRk
i − SSMRk

i . Equivalently,

Definition 6.46 For 1 ≤ k ≤ r − 1, state s is SMRk− for DM i , denoted by s ∈
S
SMRk−
i , iff s ∈ SGMRk

i and R+
i (s) �= ∅, and for every s1 ∈ R+

i (s) there exists at least

one s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and s3 ∈

r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2),

as well as there exists s ′
1 ∈ R+

i (s) and for every s ′
2 ∈ RN\{i}(s ′

1) ∩ (
r
⋃

d=k
�

−(d)
i (s)),

Ri (s ′
2) ∩ �

(−d)
i (s) �= ∅ for at least one d ∈ {0, . . . , (k − 1)}.

Definition 6.47 State s is SMRr+ for DM i , denoted by s ∈ SSMRr+
i , iff either

r−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s) and s3 ∈ �

−(r)
i (s) for any

s3 ∈ Ri (s2).

Definition 6.48 State s is SMRr− for DM i , denoted by s ∈ SSMRr−
i , iff R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well as there exists s ′

1 ∈ R+
i (s)

and for every s ′
2 ∈ RN\{i}(s1) ∩ �

−(r)
i (s), Ri (s ′

2) ∩ �
(−d)
i (s) �= ∅ for at least one

d ∈ {0, . . . , (r − 1)}.
The onlymodification betweenGMRk and SEQk is that allDM i’sUIs are subject

to credible sanctions by the legal sequence of UIs of DM i’s opponents. Figure6.9
depicts sequential stability at degree k. Its formal definition is given below.

Definition 6.49 State s is sequentially stable (SEQ0) at level 0 for DM i , denoted
by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R+

N\{i}(s
′
1) such that s ′

2 ∈ �
(0)
i (s) and

R+
N\{i}(s

′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Definition 6.50 For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

level k for DM i , denoted by s ∈ SSEQk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
N\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R+

N\{i}(s
′
1) such that s ′

2 ∈ �
−(k)
i (s) and R+

N\{i}(s
′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.
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Fig. 6.9 Sequential stability
at degree k for DM i
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Definition 6.51 State s is sequentially stable (SEQr ) at level r for DM i , denoted

by s ∈ SSEQr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
N\{i}(s1) with s2 ∈ �

−(r)
i (s).

When n = 2, the DM set N becomes {i, j} in Definitions 6.41–6.51, and the
reachable lists for H = N \ {i}by legal sequences ofUMsandUIs from s1, RN\{i}(s1)
and R+

N\{i}(s1), degenerate to R j (s1) and R+
j (s1), DM j’s corresponding reachable

lists from s1. Obviously, Definitions6.25–6.35 are special cases of Definitions6.41–
6.51, so the same notation is used for two DM cases and n-DM situations.

6.4.4 Interrelationship Among Stability Definitions
for Multiple Degrees of Preference

In Sect. 4.2.4, relationships among the four basic stabilities consisting of Nash,
GMR, SMR, and SEQ are presented for two types of preference (or simple pref-
erence). Within Sect. 6.3.3, stabilities under three kinds of preference are defined. In
Sect. 6.4.1.2, the four stability definitions at degree k are formally defined. In the fol-
lowing five theorems, a range of theoretical relationships among and within stability
definitions for different degrees of preference are proven.

Theorem 6.1 The interrelationships among the four basic stabilities at degree k are

SNashk
i ⊆ S

SMRk+
i ⊆ SGMRk

i , S
SMRk−
i ⊆ SGMRk

i , and SNashk
i ⊆ SSEQk

i ⊆ SGMRk
i ,
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Fig. 6.10 Interrelationships
among four stabilities at
level k

for 0 ≤ k ≤ r .

Proof When k = 0, the results are obvious, since there are no unilateral improve-
ments by DM i relative to state s, but there exist equally preferred states. Assume

that 0 < k ≤ r . If s ∈ SNashk
i , then

k−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(k)
i (s) �= ∅. This

implies that state s ∈ S
SMRk+
i using Definitions6.45 and 6.47. Hence, if s ∈ SNashk

i

for 0 ≤ k ≤ r , then s ∈ S
SMRk+
i , which implies SNashk

i ⊆ S
SMRk+
i .

Using Definitions6.41–6.47, if s ∈ S
SMRk+
i , it is obvious that s ∈ SGMRk

i for

0 ≤ k ≤ r . Therefore, the inclusion relations SNashk
i ⊆ S

SMRk+
i ⊆ SGMRk

i now
follow.

Based on Definitions6.46 and 6.48, the relation S
SMRk−
i ⊆ SGMRk

i is obvious.
Relations SNashk

i ⊆ SSEQk
i ⊆ SGMRk

i can be similarly verified. �

Let 0 ≤ k ≤ r . The inclusion relationships presented by Theorem6.1 are depicted
in Fig. 6.10. One should keep in mind that these relationships among stabilities are
valid for the situations in which all stabilities being compared have the same degree.
As can be clearly seen in this diagram, for example, if a state is Nashk , it is also
GMRk , SMRk+ , and SEQk , which is similar to the finding in Fig. 4.4 for the case
of simple preference.

The next theorem confirms the relationship that exists for a specific stability
definition at two different degrees. In particular, for each of the stability definitions,
there are no common stable states when the preferences are different degrees.

Theorem 6.2 Let 0 ≤ h, q ≤ r . When h �= q, the relationships between stabilities
at h degree and at q degree are

SNashh
i ∩ S

Nashq
i = ∅, (6.1)

SGMRh
i ∩ S

GMRq

i = ∅, (6.2)

S
SMRh+
i ∩ S

SMRq+
i = ∅, S

SMRh−
i ∩ S

SMRq−
i = ∅, S

SMRh+
i ∩ S

SMRh−
i = ∅, and (6.3)

SSEQh
i ∩ S

SEQq

i = ∅. (6.4)
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Proof First, Eq. 6.1 is proven. Assume that h > q. If there exists s ∈ SNashh
i ∩

S
Nashq
i , then s ∈ SNashh

i and s ∈ S
Nashq
i . Therefore, R+

i (s) ∪ (
h−1
⋃

d=0
R−(d)
i (s)) = ∅ and

R−(h)
i (s) �= ∅ as s is Nashh stable. Since h − 1 ≥ q, R−(q)

i (s) = ∅. This contradicts
the hypothesis that s is Nashq stable. Therefore, Eq. 6.1 holds.

Now, Eq.6.2 is verified. If s ∈ (SNashh
i ∪ S

Nashq
i ), Eq. 6.2 is obvious. Assume

that h > q and s /∈ (SNashh
i ∪ S

Nashq
i ). If there exists s ∈ SGMRh

i ∩ S
GMRq

i , then

s ∈ SGMRh
i and s ∈ S

GMRq

i . Because s is GMRq stable, R+
i (s) �= ∅ and for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=q
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(q)

i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=q+1
�

−(d)
i (s)) = ∅. This implies that for all s ′

2 ∈ RN\{i}(s ′
1),

s ′
2 ∈

q
⋃

d=0
�

−(d)
i (s) which means s ′

2 /∈
r
⋃

d=h
�

−(d)
i (s) as h > q. This contradicts with

the hypothesis that s is GMRh stable. Therefore, Eq. 6.2 follows.
Finally, the verification of Eqs. 6.3 and 6.4 can be similarly carried out using

contradiction. �

The interrelationships among general stabilities, super stability, and stabilities at
each degree are presented in the following theorem. Specifically, for each of the
stability definitions, the set of stable states over the general stabilities is the same as
the union of all of the stable states over all of the degrees of preference plus the super
stable states.

Theorem 6.3 The interrelationships among general stabilities, super stability, and
stabilities at each level are

SGNash
i = (SSuper

i ) ∪
(

r
⋃

d=0

SNashd
i

)

, (6.5)

SGGMR
i = (SSuper

i ) ∪
(

r
⋃

d=0

SGMRd
i

)

, (6.6)

SGSMR
i = (SSuper

i ) ∪
(

r
⋃

d=0

(S
SMRd+
i ∪ S

SMRd−
i )

)

, and (6.7)

SGSEQ
i = (SSuper

i ) ∪
(

r
⋃

d=0

SSEQd
i

)

. (6.8)

Proof Equation6.5 is derived directly from Definitions6.22–6.24. Now consider

the proof for Eq.6.6. The inclusion relation SGGMR
i ⊇ (SSuper

i ) ∪ (
r
⋃

d=0
SGMRd
i ) is
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Fig. 6.11 The legal
sequence of UM from state
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obvious from Definitions6.41–6.43. It will be proved that the inclusion relation

SGGMR
i ⊆ (SSuper

i ) ∪ (
r
⋃

d=0
SGMRd
i ) holds. The two cases will be respectively proved

when s ∈ (SSuper
i ∪ SGNash

i ) and s /∈ (SSuper
i ∪ SGNash

i ). For any s ∈ SGGMR
i , based

on Definition6.38, if s ∈ (SSuper
i ∪ SGNash

i ), then the above inclusion relation must
be true.

Next, assume that s /∈ (SSuper
i ∪ SGNash

i ). Let |R+
i (s)| = l denote the cardinality

of R+
i (s). Then, for any s ∈ SGGMR

i , R+
i (s) �= ∅ and for every sk ∈ R+

i (s) (k =
1, . . . , l), there exists at least one s ′

k ∈ RN\{i}(sk) with s ′
k ∈

r
⋃

d=0
�

−(d)
i (s). Let Qk =

{q : q ∈ RN\{i}(sk) ∩
r
⋃

d=0
�

−(d)
i (s)}. It is obvious that s ′

k ∈ Qk . Hence, Qk �= ∅. Let

z ∈ Qk and be DM i’s least preferred in the state set Qk . Since z ∈ RN\{i}(sk) ∩
(

r
⋃

d=0
�

−(d)
i (s)), there exists 0 ≤ rk ≤ r such that z ∈ �

−(rk )
i (s) for k = 1, . . . , l.

Therefore, either rk = r or RN\{i}(sk) ∩ (
r
⋃

d=rk+1
�

−(d)
i (s)) = ∅. This process is

portrayed in Fig. 6.11.
Let rm = min{rk : k = 1, . . . , l}. Then, 0 ≤ rm ≤ r . It is easy to follow that if

s ∈ SGGMR
i and R+

i (s) �= ∅, then s ∈ S
GMRrm
i . In fact, for every sk ∈ R+

i (s), there
exists at least one s ′

k ∈ RN\{i}(sk) with s ′
k ∈ �

−(rk )
i (s). Since 0 ≤ rm ≤ rk , then

s ′
k ∈

r
⋃

d=rm

�
−(d)
i (s), and s ′

m ∈ RN\{i}(sm) with s ′
m ∈ �

−(rm )
i (s). Based on the rule of

selecting rm , either rm = r so that s ∈ SGMRr
i , or RN\{i}(sm)∩ (

r
⋃

d=rm+1
�

−(d)
i (s)) = ∅

so that s ∈ S
GMRrm
i . From the above discussion, Eq. 6.6 is proven.

Equations6.7 and 6.8 can be proven in a fashion similar to that just presented for
Eq.6.6. �
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Let SNash
i , SGMR

i , SSMR
i , and SSEQ

i denote the set of stable states for DM i for
Nash, GMR, SMR, and SEQ stability, respectively, in the graph model for simple
preference presented in Sect. 4.2.3. When r = 1, stabilities having multiple-degree
preference degenerate to the stabilities presented in Sect. 4.2.3, which includes two
types of preference. Specifically,

Theorem 6.4 For the multiple levels of preference, when r = 1, SSuper
i ∪ SNash0

i ∪
SNash1
i = SNash

i , SSuper
i ∪ SGMR0

i ∪ SGMR1
i = SGMR

i , SSuper
i ∪ SSMR0

i ∪ SSMR1+
i ∪

SSMR1−
i = SSMR

i , and SSuper
i ∪ SSEQ0

i ∪ SSEQ1
i = SSEQ

i .

Stability calculations for the preference structure for r = 2 in the graph model
for multiple degrees of preference produces the same stability findings as found for
the three types of preference or strength of preference framework. More specifically,
let SSGMR

i , SSSMR
i , and SSSEQ

i denote the set of strong stable states for strongly
GMR, SMR, and SEQ stability, respectively, presented in Sect. 6.3.3.2. The stabilities
at degree 2 in the graph model with three kinds of preference degenerate to the
corresponding strong stabilities presented in Sect. 6.3.3.2, except for the states that
are Nash stable, because Nash stable states are not considered in strong GMR, SMR,
and SEQ stability in Sect. 6.3.3.2. Formally, this is expressed in the next theorem.

Theorem 6.5 For the multiple degrees of preference, when r = 2, SGMR2
i \SNash2

i =
SSGMR
i , SSMR2+

i \SNash2
i = SSSMR

i , and SSEQ2
i \SNash2

i = SSSEQ
i .

The previous two theorems can be easily proven using the appropriate stability
definitions.

6.5 Matrix Representation of Stability Definitions
for Three Degrees of Preference

Thematrix representations for conflict resolution for simple preference and unknown
preference are presented in Sects. 4.3 and 5.3, respectively. It is natural to extend the
logical form for conflict resolution under the three types of preference presented in
Sect. 6.3 to the matrix representation. Following definitions for preference matrices
and a reachability matrix in Sect. 6.5.1, matrix representation for various stability
definitions for the two DM and n-DM cases for both general and strong stabilities
are presented in Sects. 6.5.2 and 6.5.4, respectively, for three degrees of preference.

6.5.1 Preference Matrices Including Strength of Preference

Preference information is an important component in the Graph Model for Conflict
Resolution under the three types of preference. Preference matrices corresponding
to the preference information are constructed now.
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Let m = |S| denote the number of states. For DM i , a mild or strong unilateral
improvement matrix (MSUI matrix) J+,++

i is an m × m matrix defined by

J+,++
i (s, q) =

{

1 if q ∈ R+,++
i (s),

0 otherwise,
(6.9)

where R+,++
i (s) stands for DM i’s reachable list from states s by a MSUI as defined

at the start of Sect. 6.2.1. Because the elements of the vector es are assigned a value
of zero except for the element connected to state s where a value of 1 is given,
R+,++
i (s) = eTs · J+,++

i , if R+,++
i (s) is written as a 0-1 row vector, where a “1”

at the j th element indicates DM i has a MSUI from s to s j . The MSUI matrix
J+,++
i depicts DM i’s mild or strong unilateral improvements in one step. To carry

out a stability analysis, a set of matrices corresponding to strength of preference is
constructed next. Specifically,

P++
i (s, q) =

{

1 if q �i s,
0 otherwise,

and

P−−
i (s, q) =

{

1 if s �i q,

0 otherwise.

Therefore, (P++
i )T = P−−

i , where T denotes the transpose of a matrix.

P−−,−,=
i (s, q) =

{

1 if q �i s, q <i s, or (q ∼i s and q �= s),
0 otherwise.

and

P+,++
i (s, q) =

{

1 if q >i s or q �i s,
0 otherwise.

For three-degree preference, P−−,−,=
i (s, q) = 1 − P+,++

i (s, q) for s, q ∈ S and
s �= q.

Based on the aforementioned definitions, for DM i , a set of adjacency matrices,
Ji and J+,++

i , and preference matrix P+,++
i have the following relationship between

them:

J+,++
i = Ji ◦ P+,++

i ,

where “◦” denotes the Hadamard product given in Definition3.15.
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6.5.2 Two Decision Maker Case

6.5.2.1 Matrix Representation of General Stabilities

Equivalent matrix representations of the aforementioned logical definitions for Nash
stability, GGMR, GSMR, and GSEQ in a two-DM graph model can be determined
directly by using the matrices containing information regarding possible moves such
as J+,++

i and those keeping track of preferences. Let i ∈ N , |N | = 2, and m = |S|.
Let E denote anm×m matrix with each entry equal to 1. Define them×m Nash

matrix MNash
i as

MNash
i = J+,++

i · E .

Theorem 6.6 State s ∈ S is Nash stable for DM i iff MNash
i (s, s) = 0.

Note that Theorem6.6 provides a matrix method to assess whether state s is Nash
stable for DM i by identifying the Nash matrix’s diagonal entry MNash

i (s, s).
For the case of general GMR stability, define the m × m matrix MGGMR

i as

MGGMR
i = J+,++

i · [E − sign
(

Jj · (P−−,−,=
i )T

)],

where E is an m × m matrix with each entry having a value of 1.

Theorem 6.7 State s is general GMR (GGMR) for DM i iff MGGMR
i (s, s) = 0.

Proof Since MGGMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign
(

Jj · (P−−,−,=
i )T

)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T

)],

thenMGGMR
i (s, s) = 0 iff J+,++

i (s, s1)[1−sign
(

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T

)] = 0,
for ∀s1 ∈ S. This implies that MGGMR

i (s, s) = 0 iff

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T �= 0,∀s1 ∈ R+,++

i (s). (6.10)

From Eq.6.10, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-

dimensional row vector eTs1 · Jj has a value of 1 for the s2th element and the m-
dimensional column vector (P−−,−,=

i )T · es has an entry of 1 for the s2th element.
Therefore, MGGMR

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R j (s1) with s2 ∈ �
−−,−,=
i (s). �

In order to consider the general SMR stability, define the m × m matrix MGSMR
i

as MGSMR
i = J+,++

i · [E − sign(F)], with
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F = Jj · [(P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))].

Theorem 6.8 State s is general SMR (GSMR) for DM i iff MGSMR
i (s, s) = 0.

Proof Let G = (P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))

.

Since MGSMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign(F)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m

∑

s2=1

Jj (s1, s2) · G(s2, s),

and G(s2, s) = P−−,−,=
i (s, s2)[1 − sign

(

m
∑

s3=1

(

Ji (s2, s3)P
+,+
i (s, s3)

)

)

], thus,

MGSMR
i (s, s) = 0 holds iff F(s1, s) �= 0, ∀s1 ∈ R+,++

i (s), which is equivalent
to the statement that, ∀s1 ∈ R+,++

i (s), ∃s2 ∈ R j (s1) such that

P−−,−,=
i (s, s2) �= 0, (6.11)

and
m

∑

s3=1

(

Ji (s2, s3)P
+,++
i (s, s3)

) = 0. (6.12)

Obviously, for ∀s1 ∈ R+,++
i (s), ∃s2 ∈ R j (s1), Eq. 6.11 holds iff s2 ∈ �

−−,−,=
i (s).

For ∀s1 ∈ R+,++
i (s), ∃s2 ∈ R j (s1), Eq. 6.12 holds iff for all s3 ∈ Ri (s2),

P+,++
i (s, s3) = 0 which implies s3 ∈ �

−−,−,=
i (s).

Therefore, MGSMR
i = 0 iff for every s1 ∈ R+,++

i (s) there exists s2 ∈ R j (s1) such
that s2 ∈ �

−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for all s3 ∈ Ri (s2). �

In order to analyze general SEQ stability using matrix approach, define them×m
matrix MGSEQ

i as

MGSEQ
i = J+,++

i · [E − sign
(

J+,++
j · (P−−,−,=

i )T
)

].

Theorem 6.9 State s is general SEQ (GSEQ) for DM i iff MGSEQ
i (s, s) = 0.

Proof Since MGSEQ
i (s, s) = (eTs · J+,++

i ) · [
(

E − sign
(

J+,++
j · (P−−,−,=

i )T
))

·es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T
)

],
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then MGSEQ
i (s, s) = 0 iff for any s1 ∈ S,

J+,++
i (s, s1)[1 − sign

(

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T
)

] = 0.

This implies that MGSEQ
i (s, s) = 0 iff

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T �= 0,∀s1 ∈ R+,++
i (s). (6.13)

By Eq.6.13, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector eTs1 · J+,++
j has the s2th element 1 and the m-dimensional column vector

(P−−,−,=
i )T · es has the s2th element 1.
Therefore, MGSEQ

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R+,++
j (s1) with s2 ∈ �

−−,−,=
i (s). �

6.5.2.2 Matrix Representation of Strong Stabilities

Corresponding to the logical representation of strong stabilities for three degrees
of preference, matrix representation of strong GMR, SMR, and SEQ stabilities are
presented below according to the degree of sanctioning. For three kinds of preference,
these stabilities are divided into strongly andweakly stablewith respect to the strength
of possible sanctions. Hence, if a particular state s is general stable, then s is either
strongly stable or weakly stable. Strong and weak stabilities only include GMR,
SMR, and SEQ because Nash stability does not involve sanctions.

In the upcoming theorems, let i ∈ N , |N | = 2, and m = |S|. To consider strong
GMR stability, define the m × m matrix MSGMR

i as

MSGMR
i = J+,++

i · [E − sign
(

Jj · (P−−
i )T

)].

Theorem 6.10 State s ∈ S is strong general metarational (SGMR) for DM i iff
MSGMR

i (s, s) = 0.

In order to analyze strong SMR stability, define the m × m matrix MSSMR
i as

MSSMR
i = J+,++

i · [E − sign(Jj · F)],

with

F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)].

Theorem 6.11 State s ∈ S is strong symmetric metarational (SSMR) for DM i iff
MSSMR

i (s, s) = 0.
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In order to calculate strong SEQ, define the m × m matrix MSSEQ
i as

MSSEQ
i = J+,++

i · [E − sign
(

J+,++
j · (P−−

i )T
)

].

Theorem 6.12 State s ∈ S is strong sequentially stable (SSEQ) for DM i iff
MSSEQ

i (s, s) = 0.

The proofs of Theorems6.10–6.12 are similar to those of the three general stabil-
ities presented in Theorems6.7–6.9, respectively, in Sect. 6.5.2.1.

Let GS denote a graph model stability, GMR, SMR, or SEQ. The symbols GGS,
SGS, andWGS respectively represent a general stability, GGMR, GSMR, or GSEQ,
the strong stability, SGMR, SSMR, or SSEQ, and the weak stability, WGMR,
WSMR, or WSEQ, under three degrees of preference. MGGS

i and MSGS
i denote

DM i’s general stability matrix, MGGMR
i , MGSMR

i , or MGSEQ
i , and DM i’s strong

stability matrix, MSGMR
i , MSSMR

i , or MSSEQ
i , respectively. Based on the notation,

one has the following theorem.

Theorem 6.13 State s ∈ S is weak stable (WGS) for DM i iff MGGS
i (s, s) = 0, but

MSGS
i (s, s) �= 0.

Theorem6.13 means that if s is general stable, but not strong stable for a GS
stability, then s is weak stable for the GS stability.

Example 6.2 (Stabilities for the Extended Sustainable Development Model under
Three-degree Preference by using Matrix Representation) The sustainable develop-
ment conflict is explained in Example 3.1. In this illustration, this conflict is expended
to include three degrees of preference for the two-DM case. Specifically, the conflict
consists of two DMs: an environmental agency (DM 1: E) and a developer (DM 2:
D); and two options: DM 1 controls the option of being proactive (labeled P) and
DM 2 has the option of practicing sustainable development (labeled SD) for properly
treating the environment. The two options are combined to form four feasible states:
s1, s2, s3, and s4. These results are listed in Table6.8, where a “Y” indicates that an
option is selected by the DM controlling it and an “N” means that the option is not
chosen.

From Table6.8, DM 1 and DM 2’s preference information includes strength.
The graph model for the extended sustainable development conflict is presented in
Fig. 6.12.

From the graph model, the UM adjacency matrices for each DM are constructed
by

J1 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

and J2 =

⎛

⎜

⎜

⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

.
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Table 6.8 Extended sustainable development game in option form

DM 1: Environmental agency

1. Proactive (P) Y Y N N

DM 2: Developer

2. Sustainable development (SD) Y N Y N

States s1 s2 s3 s4

Preferences s1 >1 s3 �1 s2 ∼1 s4 for DM 1 and
s3 >2 s1 �2 s4 ∼2 s2 for DM 2.

The preference matrices for the DMs 1 and 2 are given by

P++
1 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

, P+,++
1 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

,

P++
2 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0

⎞

⎟

⎟

⎠

, and P+,++
2 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

.

Therefore, J+,++
i = Ji ◦ P+,++

i , P−−,−,=
i = E − I − P+,++

i , and P−−
i = (P++

i )T

for i = 1, 2.
The stabilitymatrices used by Theorems6.6–6.13 are included in Table6.9, which

are employed to calculate the general stabilities of Nash, GMR, SMR, and SEQ, as
well as the strong stabilities of SGMR, SSMR, and SSEQ for two-DM conflicts,
respectively.

The stable states and equilibria for the sustainable development conflict are sum-
marized in Table6.10, in which “

√
” for a given state means that this state is stable

for DM 1 or DM 2 and “Eq” is an equilibrium for an appropriate solution concept.
The results provided by Table6.10 show that state s1 is strong equilibrium for the

four basic stabilities. State s3 is strongly stable for GMR and SMR. Hence, s1 and s3
are better choices for decision makers.

6.5.3 Reachability Matrix Under Strength of Preference

An important matrix corresponding to the reachable list under three degrees of pref-
erence is now defined. Fix coalition H ⊆ N such that |H | ≥ 2, and let s ∈ S. In
order to construct the reachability matrix corresponding to R+,++

H (s) presented in
Definition6.9, the reachable list of H from s by legal sequences of MSUIs, the t-step
reachability matrix is defined as follows.
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Fig. 6.12 Graph model for
the extended sustainable
development conflict under
three-degree preference

1s 2s

4s3s

1s 2s

4s3s

1 1( , )G S A 2 2( , )G S A
1 1 3 1 2 1 4s s s s 3 2 1 2 4 2 2s s s s

Table 6.9 Stability matrices under three degrees of preference in two decision maker case

Category Stability matrices

General stabilities MNash
i = J+,++

i · E
MGGMR

i = J+,++
i · [E − sign

(

J j · (P−−,−,=
i )T

)

]
MGSMR

i = J+,++
i · [E − sign(F)] with

F = J j · [(P−−,−,=
i )T ◦

(

E − sign
(

Ji · (P+,++
i )T

))

]
MGSEQ

i = J+,++
i · [E − sign

(

J+,++
j · (P−−,−,=

i )T
)

]
Strong stabilities MSGMR

i = J+,++
i · [E − sign

(

J j · (P−−
i )T

)]
MSSMR

i = J+,++
i · [E − sign(J j · F)] with

F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)]
MSSEQ

i = J+,++
i · [E − sign

(

J+,++
j · (P−−

i )T
)

]
Weak stabilities SWGS

i = SGGS
i − SSGS

i

Definition 6.52 For i ∈ H , H ⊆ N , and t = 1, 2, 3, . . ., define the m × m matrix
M (H,t,+,++)

i with (s, q) entries as follows:

M (H,t,+,++)
i (s, q) =

⎧

⎨

⎩

1 if q ∈ S is reachable from s ∈ S in exactly
t legal MSUIs byH with last mover DM i,

0 otherwise.

Similar to Lemma5.1, one has

Lemma 6.1 For i ∈ H and H ⊆ N, the matrix M (H,t,+,++)
i satisfies that

f or t = 2, 3, . . . , M (H,t,+,++)
i = sign[(

∨

j∈H−{i}
M (H,t−1,+,++)

j ) · J+,++
i ].
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√
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√
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√
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with M (H,1,+,++)
i (s, q) = J+,++

i (s, q).

The proof of this lemma is similar to that of Lemma5.1.
The UM and UI reachability matrices are given in Definition4.19 in Chap.4. The

MSUI reachability matrix is now similarly defined for a graph model having three
degrees of preference.

Definition 6.53 For the graph model G, the MSUI reachability matrix for H is the
m × m matrix M+,++

H with (s, q) entry

M+,++
H (s, q) =

{

1 if q ∈ R+,++
H (s),

0 otherwise.

Obviously, R+,++
H (s) = {q : M+,++

H (s, q) = 1}. If R+,++
H (s) is written as a 0-1

row vector, then

R+,++
H (s) = eTs · M+,++

H ,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the MSUI reachability matrix for coalition H , M+,++

H ,
can be used to calculate the reachable lists of H from state s by the legal sequence
of MSUIs, R+,++

H (s).
Let L4 = | ⋃

i∈H
A+,++
i |, where A+,++

i is DM i’s MSUI oriented arcs, representing

mild or strong unilateral improvements by DM i in coalition H . Then the following
theorem can be derived using Lemma6.1.

Theorem 6.14 Let L4 = | ⋃

i∈N
A+,++
i |, s ∈ S, H ⊆ N , and H �= ∅. The MSUI

reachability matrix M+,++
H by H can be expressed as

M+,++
H =

L4
∨

t=1

∨

i∈H
M (H,t,+,++)

i . (6.14)

Proof To prove Eq.6.14, assume that C =
L4∨

t=1

∨

i∈H
M (H,t,+,++)

i . Using the defini-

tion for matrix M+,++
H , M+,++

H (s, q) = 1 iff q ∈ R+,++
H (s). Using Definition6.9,

q ∈ R+,++
H (s) implies that there exists 1 ≤ t0 ≤ L4 and i0 ∈ H such that

M (H,t0,+,++)
i0

(s, q) = 1. This implies that matrix C has (s, q) entry 1. Therefore,
M+,++

H (s, q) = 1 iff C(s, q) = 1. Since M+,++
H and C are 0-1 matrices, it follows

that M+,++
H = C . �
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6.5.4 n-Decision Maker Case

6.5.4.1 Matrix Representation of General Stabilities

Matrix representations of solution concepts with three degrees of preference for
2-DM cases presented in Sect. 6.5.2 are now extended to n-DM situations. Nash
stability definitions are identical for both the 2-DM and the n-DM models, because
Nash stability does not consider opponents’ responses. In this subsection, let i ∈ N
and |N | = n.

In order to consider general GMR stability for n-DMs, define the m ×m general
GMR matrix MGGMR

i as

MGGMR
i = J+,++

i · [E − sign
(

MN\{i} · (P−−,−,=
i )T

)].

In order to avoid using a complex notation, the symbol used for the general GMR
matrix representation for the n-DM situation is the same as that employed for the
2-DM case in Sect. 6.5.2.1. The context in which the definition is being utilized will
clearly indicate whether it is for the 2-DM or n-DM situation. The same comments
hold for the other definitions given in this section as well as Sect. 6.5.4.2. Because the
proofs of the next three theorems are similar to the GMR, SMR, and SEQ stabilities
presented in Sect. 6.5.2.2 for 2-DM models, the proofs are not given for the n-DM
case.

Theorem 6.15 State s is general GMR for DM i iff MGGMR
i (s, s) = 0.

The above matrix method, called matrix representation of general GMR stability,
is equivalent to the logical representation for general GMR stability given in Defini-
tion6.11. To analyze general GMR stability of state s for DM i , one only needs to
check if the entry, MGMR

i (s, s), in the GMR matrix is zero. If so, state s is general
GMR stable for i ; otherwise, s is general GMR unstable for DM i . Note that all
information about general GMR stability is contained in the diagonal entries of the
general GMR matrix.

To analyze general SMR stability, define them×m general SMRmatrix MGSMR
i

as MGSMR
i = J+,++

i · [E − sign(Q)], with

Q = MN\{i} · [(P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))].

Theorem 6.16 State s is general SMR for DM i iff MGSMR
i (s, s) = 0.

Theorem6.16 indicates that the matrix representation of general SMR stability
is equivalent to the logical representation for general SMR stability presented in
Definition6.12. To calculate general SMR stability of state s for DM i , one only has
to assess whether the diagonal entry, MGSMR

i (s, s), of DM i’s general SMRmatrix is
zero. If so, state s is general SMR stable for i ; otherwise, s is general SMR unstable
for DM i .
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General sequential stability is similar to general GMR stability, but includes only
those sanctions that are “credible”. Define the m × m general SEQ matrix MGSEQ

i
as

MGSEQ
i = J+,++

i · [E − sign
(

M+,++
N\{i} · (P−−,−,=

i )T
)

].

Theorem 6.17 State s is general SEQ for DM i iff MGSEQ
i (s, s) = 0.

Similar to the previous two theorems, the matrix representation of SEQ stability
is equivalent to the logical version given in Definition6.13. When the diagonal entry
at (s, s) is zero, the state s under consideration is SEQ stable for DM i .

6.5.4.2 Matrix Representation of Strong Stabilities

Similar to the two-DM case, matrix representations of general stabilities under the
three degrees of preference for n-DMs include matrix versions of strong or weak
stability. First, construct matrices Ji and J+,++

i using Definition4.13 and Eq.6.9.
The matrices MH and M+,++

H are calculated utilizing Theorems4.9 and 7.5, for
which H = N\{i}. For convenience, the same notation employed for the two-DM
situation in Sect. 6.5.2.2 is used for the n-DM case.

Define the m × m strong GMR matrix MSGMR
i for DM i as

MSGMR
i = J+,++

i · [E − sign
(

MN\{i} · (P−−
i )T

)].

Theorem 6.18 State s ∈ S is strongGMR (SGMR) forDM i, denoted by s ∈ SSGMR
i ,

iff MSGMR
i (s, s) = 0.

Proof Since MSGMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign
(

MN\{i} · (P−−
i )T

)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · MN\{i}) · (eTs · P−−
i )T

)],

then

MSGMR
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1 − sign
(

(eTs1 · MN\{i}) · (eTs · P−−
i )T

)

] = 0,∀s1 ∈ S.

This implies that MSSGM
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (eTs · P−−
i )T �= 0,∀s1 ∈ R+,++

i (s). (6.15)

By Eq.6.15, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eTs1 ·MN\{i}, has the s2th element 1 and them-dimensional column vector,
(P−−

i )T · es , has the s2th element 1.
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Therefore, MSGMR
i (s, s) = 0 iff for any s1 ∈ R+,++

i (s), there exists at least one
s2 ∈ RN\{i}(s1) with s �i s2. �

For strong SMR, the n-DMmodel is similar to the two-DM case. The only modi-
fication is that responses to block improvements by DM i can come from more than
one of DM i’s opponents instead of from a single DM.

If F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)], then one can define the m × m
strong SMR matrix MSSMR

i for DM i as

MSSMR
i = J+,++

i · [E − sign(MN\{i} · F)].

Theorem 6.19 State s ∈ S is strong SMR (SSMR) for DM i, denoted by s ∈ SSSMR
i ,

iff MSSMR
i (s, s) = 0.

Proof Let Q = MN\{i} · F . Since MSSMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign(Q)) ·es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign(Q(s1, s))]

then MSSMR
i (s, s) = 0 iff J+,++

i (s, s1)[1 − sign(Q(s1, s))] = 0, for any s1 ∈ S.

This means that MSSMR
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (F · es) �= 0,∀s1 ∈ R+,++
i (s). (6.16)

Since (eTs1 · MN\{i}) · (F · es) =
m
∑

s2=1
MN\{i}(s1, s2) · F(s2, s), then Eq.6.16 holds iff

for any s1 ∈ R+,++
i (s), there exists s2 ∈ RN\{i}(s1) such that F(s2, s) �= 0.

Because F(s2, s) = P++
i (s2, s) · [1 − sign(

m
∑

s3=1
Ji (s2, s3)(1 − P++

i (s3, s)))],
F(s2, s) �= 0 implies that for s2 ∈ RN\{i}(s1),

P++
i (s2, s) �= 0 (6.17)

and
m

∑

s3=1

Ji (s2, s3)(1 − P++
i (s3, s)) = 0. (6.18)

Equation6.17 is equivalent to the statement that, ∀s1 ∈ R+,++
i (s), ∃s2 ∈ RN\{i}(s1)

such that s �i s2. Equation6.18 is the sameas the statement that,∀s1 ∈ R+,++
i (s), ∃s2

∈ RN\{i}(s1) such that P++
i (s3, s) �= 0, for ∀s3 ∈ Ri (s2). Based on the definition of

the m × m preference matrix P++
i , one knows that P++

i (s3, s) �= 0 ⇔ s �i s3.
Therefore, one can conclude from the above discussion that MSMR

i (s, s) = 0 iff
for any s1 ∈ R+,++

i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and
s �i s3 for all s3 ∈ Ri (s2). �
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Strong sequential stability examines the credibility of the sanctions by DM i’s
opponents, in the sense that opponents will not move to less preferred situations to
block improvements by DM i .

First, find matrix M+,++
N\{i} using Theorem7.5 for H = N\{i}. Define the m × m

strong SEQ matrix MSSEQ
i for DM i as

MSSEQ
i = J+,++

i · [E − sign
(

M+,++
N\{i} · (P−−

i )T
)].

Theorem 6.20 State s ∈ S is strong SEQ (SSEQ) for DM i, denoted by s ∈ SSSEQ
i ,

iff MSSEQ
i (s, s) = 0.

Proof Since MSSEQ
i (s, s) = (eTs · J+,++

i ) · [
(

E − sign
(

M+,++
N\{i} · (P−−

i )T
))

· es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

eTs1 · M+,++
N\{i} · (eTs · P−−

i )T
)

],

then

MSSEQ
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1 − sign
(

(eTs1 · M+,++
N\{i} ) · (eTs · P−−

i )T
)

] = 0,∀s1 ∈ S.

This implies that MSSEQ
i (s, s) = 0 iff

(eTs1 · M+,++
N\{i} ) · (eTs · P−−

i )T �= 0,∀s1 ∈ R+,++
i (s). (6.19)

By Eq.6.19, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eTs1 ·M+,++
N\{i} , has the s2th element 1 and them-dimensional column vector,

(P−−
i )T · es , has the s2th element 1.
Therefore, MSSEQ

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R+,++
N\{i} (s1) with s �i s2. �

Theorems6.18–6.20 indicate that thematrix representation of strong solution con-
cepts are equivalent to the strong stability definitions in the logical forms presented
in Sect. 6.3.3.2. When n = 2, Theorems6.18–6.20 are reduced to those theorems
presented in Sect. 6.5.2.2.

6.6 Application: The Garrison Diversion Unit (GDU)
Conflict

In this section, the four-degree version of stability definitions presented in Sect. 6.4 is
applied to the Garrison Diversion Unit (GDU) conflict to illustrate how the procedure
works. For combinationwith a brief overview of this international environmental dis-
pute between Canada and United States, a conflict model in terms of DMs, options,
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Fig. 6.13 Garrison Diversion Unit (GDU)

and preferences is constructed in the next subsection. Subsequently, a stability anal-
ysis is executed for four degrees of preference utilizing the calibrated model and
insights regarding the stability results are discussed.

6.6.1 Model of the GDU Conflict

The history of the GDU conflict dates back to the nineteenth century. In order to
irrigate land in the northeastern region of the American State of North Dakota,
an irrigation project was proposed by the United States Support (USS) regarding
construction of the McClusky Canal to transfer an immense amount of water from
the Missouri River Basin to the Hudson Bay Basin as depicted in Fig. 6.13, which
originally appeared in Fraser and Hipel (1984). From the Lonetree Reservoir, water
can be conveyed to the planned irrigation areas marked on the map. Eventually,
the irrigation runoff would flow into the Canadian province of Manitoba via the
Red and Souris rivers. This irrigation initiative is called the Garrison Diversion Unit
project. Among other problems, biologists were concerned that foreign biota from
theMissouri River Basin could adversely affect biological species in the Hudson Bay
Drainage Basin and could, for example, decimate fish species in Lake Winnipeg and
thereby destroy the fishing industry. The GDU conflict was strategically analyzed
using metagame analysis, conflict analysis and the graph model by Hipel and Fraser
(1980), Fraser and Hipel (1984), and Fang et al. (1993) using two-degree preference.
Later, Hamouda et al. (2006) examined a simplified version of the GDU dispute
for three degrees of preference. In this simpler conflict, the Canadian Opposition
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Table 6.11 Feasible states for the GDU model

USS

1. Proceed Y Y N Y N Y N Y N

2. Modify N N Y N Y N Y N Y

CDO

3. Legal N N N Y Y N N Y Y

IJC

4. Completion N Y Y Y Y N N N N

5. Modification N N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8 s9

(CDO)was considering whether or not to oppose the project because of the potential
negative environmental impacts that Canada would suffer. Based on the Boundary
Water Treaty of 1909 between Canada and the United States, the International Joint
Commission (IJC) consisting of representatives from the governments of the USA
and Canada was called upon by both nations to carry out unbiased studies and make
recommendations regarding the proposed GDU project.

The graph model for the simplified GDU conflict is comprised of three DMs: 1.
USS, 2. CDO, and 3. IJC; and five options: 1. Proceed−Proceed with the project
regardless of Canada’s concerns; 2. Modify−Modify the project to reduce impacts
on Canada; 3.Legal−Legal action by CDO based on the BoundaryWaters Treaty; 4.
Completion−IJC recommends completion of the project as originally planned; and
5.Modification−IJC stipulates modification of the project to reduce environmental
impacts on Canada. Each of these three DMs followed by the option or options under
its control are listed as the left column in Table6.11. As explained in Sect. 3.1.2, when
using the option form, a state is defined as a selection of options for each DM. Since
there are five options in the GDU dispute, a total of 25 = 32 states is mathematically
possible. However, some states can be removed because they cannot possibly occur
in reality. For instance, because options 4 and 5 are mutually exclusive, these two
options cannot be selected together. Likewise, options 1 and 2 are mutually exclusive
for USS. Moreover, it is assumed that the USS will do something and thereby choose
one of its options. After all of the infeasible states are eliminated, only nine states are
identified as being feasible. The feasible states are designated as columns of Ys and
Ns on the right side of Table6.11 in which a “Y” indicates that an option is selected
by the DM controlling it and an “N” means that the option is not chosen.

The integrated graph model of the GDU conflict is shown in Fig. 6.14, in which
a label on an arc indicates the DM who controls the move. Notice, for instance, that
USS controls movement between states s2 and s3. From Table6.11, one can see that
for states s2 and s3 the option selections for USS change while the option choices
by the other DMs, consisting of CDO and IJC, remain the same. All that is still
required for a graph model is knowledge of each DM’s preferences over the feasible
states for the situation of four-degree preference in the GDU conflict. The preference
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Fig. 6.14 The integrated
graph model for movement
in the GDU conflict

Table 6.12 Four-degree preferences for DMs in the GDU conflict

DM Preference

USS s2 > s4 > s3 > s5 > s1 > s6 > s9 > s7 ≫ s8
CDO {s3 ∼ s7} > {s5 ∼ s9} > {s4 ∼ s8} ≫ {s1 ∼ s2 ∼ s6}
IJC {s2 ∼ s3 ∼ s4 ∼ s5 ∼ s6 ∼ s7 ∼ s8 ∼ s9} � s1

information for this conflict over the feasible states is given in Table6.12, where >,
�, and ≫ mean more preferred, strongly preferred, and very strongly preferred,
respectively, and equally preferred states are given in brackets and connected using
the symbol ∼. The fact that states are ranked from most preferred on the left to
least preferred on the right, where ties are allowed, indicates that the preferences are
transitive for this application. One can see that state s8 is very strongly less preferred
to all other states for USS, because at state s8 the USS is proceeding to construct the
full project while IJC recommends amodified version and CDO is taking legal action
based on the BoundaryWaters Treaty. The DMCDO considers states s1, s2, and s6 to
be equally preferred and very strongly less preferred relative to all other states. Note
that this representation of preference information presented in Table6.12 implies
that the preferred relations, >, �, and ≫ are transitive. For instance, since s9 > s7
and s7 ≫ s8, then s9 ≫ s8 for USS. However, in general, the preference structure
presented in this book does not require the transitivity of preference relations, and
hence can handle intransitive preferences.

6.6.2 Stability Analysis Under Four-Degree Preference

Formally, in a stability analysis, one determines the stability of each state for each
DM for various solution concepts. Here, four-degree versions of five stability def-
initions consisting of super stability; Nash stability, Nashk ; general metarational-
ity, GMRk ; symmetric metarationality, SMRk ; and sequential stability, SEQk , for
k = 0, 1, 2, and 3, are employed to obtain stability results for the GDU conflict. An
equilibrium for degree k for a specific solution concept represents a likely resolution
to the conflict, since it is stable for every DM according to the stability definition
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under consideration. Note that the super stable states are treated as Nash stable at
the highest level when determining an equilibrium in the graph model with multiple
degrees of preference.

To explain how a stability calculation is carried out, consider SMRk stability for
state s5 fromDM2’s viewpoint for k = 0, 1, 2, and 3.Using the definition of a reach-
able list presented in Sect. 6.3.2 and Table6.12, R+

2 (s5) = {s3} and RN\2(s3) = {s2}
with s5 ≫2 s2 and s5 >2 s4 for R2(s2) = {s4}. Therefore, according to Defini-
tion6.48 state s5 is stable for SMR3− . Other cases can be analyzed similarly. The
stability results for the GDU conflict are summarized in Table6.13, in which “

√
”

for a given state under a DM means that this state is stable at a given degree for
the particular DM; “

√k+
” and “

√k−
” for a given state under a DM means that this

state is SMRk+ or SMRk− stable for the specified DM; and “
√k” for a state under

“Eq” signifies that this state is an equilibrium for a corresponding solution concept
at degree k. Note that U, C, and I displayed in Table6.13 denote the three DMs, USS,
CDO, and IJC, respectively.

A state that is not an equilibrium has no long-term stability because there is at
least one individual DM who has an incentive to move to a more preferred state and
thereby not permit an equilibrium to form. Table6.14 provides stability results for
different versions of preference. In particular, when stabilities are analyzed using
two degrees of preference introduced in Sect. 4.2, states s4, s7, and s9 are equilibria;
if preference information is provided using three degrees of preference, then states
s7 and s9 are equilibria using stability definitions presented in Sect. 6.3; there is only
one equilibrium state s9 for four degrees of preference. If state s4 were the resolution
for the GDU conflict, this would mean that IJC recommends to complete the GDU
project regardless of Canada’s concerns, so USS proceeds with this project. It is
obvious that this resolution cannot settle this conflict in the long term. State s7 means
that theUSS follows the IJC recommendation tomodify this project, but Canada does
not take legal action based on the Boundary Waters Treaty. State s9 is the same as
state s7 except that Canada chooses legal procedures. When comparing states s7 and
s9, equilibrium s9 is a more reasonable resolution for solving this conflict. Therefore,
a multiple-degree version of a stability analysis provides new insights and valuable
guidance for decision analysts.

Although the example of the GDU conflict shown in Table6.11 and Fig. 6.14 is
a relatively small model having three DMs, five options, and nine feasible states, a
graphmodel structure can handle any finite number of states and DMs, each of whom
can control any finite number of options. As pointed out by Fang et al. (2003a, b), an
available decision support system (DSS) for stability analysis of a graph model with
two degrees of preference can work well. Theorem6.4 reveals the relationship of sta-
bilities between two degrees of preference presented in Chap. 4 and multiple degrees
of preference. This theorem indicates the possibility of developing an effective algo-
rithm to implement the multilevel versions of the four stabilities within a DSS, which
would be essential if the proposed stability analysis were applied to larger practical
problems. In fact, a DSS based on the matrix version will be designed in Chap.10.
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Table 6.13 Stability results of the GDU conflict for the graph model with four levels of preference
State Super Level(k) Nash GMR SMR SEQ

U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq

s1
√ √

0

1

2

3
√ √ √ √ √3+ √3+ √ √

s2
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s3
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s4
√

0

1
√ √ √1+ √

2

3
√ √ √ √ √3+ √3+ √ √

s5
√

0

1

2

3
√ √ √ √3− √3+ √ √

s6
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s7
√

0

1
√ √ √1+ √

2

3
√ √ √ √3+ √ √

s8
√

0

1

2

3
√ √ √ √ √3+ √3+ √ √

s9
√

0

1

2

3
√ √ √ √ √ √3 √3+ √3− √3+ √ √ √ √3

Table 6.14 The comparison of stability results for three versions of preference

Version of preference Equilibria Analysis method

Two degrees of preference s4, s7, s9 See Sect. 4.2

Three degrees of preference s7, s9 See Sect. 6.3

Four degrees of preference s9 See Sect. 6.4.3.2
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6.7 Important Ideas

In this chapter, a multiple-degree preference framework is developed for the graph
model methodology to handle multiple degrees of preference, which lie between
relative and cardinal preferences in terms of information content. Multilevel versions
of the four solution concepts consisting of Nash, GMR, SMR, and SEQ are defined
in the graphmodel for multiple degrees of preference. Specifically, solution concepts
at degree k are defined for Nashk , GMRk , SMRk , and SEQk for k = 1, 2, . . . , r ,
where r is the maximum number of degrees of preference between two states. The
proposed stability definitions extend existing definitions based on two degrees and
three degrees of preference, so that more practical and complicated problems can be
analyzed at greater depth.

The algebraic system to ease the coding of logically-defined stability definitions
proposed in Chaps. 4 and 5 for simple preference and unknown preference, respec-
tively, is extended in this chapter in a similar way to handle three degrees of pref-
erence. The algebraic method is developed to represent general, strong, and weak
graphmodel stability definitions based on strength of preference using explicitmatrix
formulations instead of graphical or logical representations. These explicit algebraic
formulations allow algorithms to assess rapidly the stabilities of states, and to be
applied to large and complicated conflict models, using an advanced decision sup-
port system (DSS) like the one designed in Chap.10. Because of the flexible nature of
these explicit expressions, thematrix representations introduced here can be used as a
solid framework for incorporating new solution concepts reflecting human behavior
and novel theoretical constructs for handling different kinds of conflict situations,
into the basic GMCR paradigm.

6.8 Problems

6.8.1 The concept of degree of preference constitutes a procedure for internalizing
the psychological phenomenon of emotion. For instance, an environmentalist greatly
prefers that a company not pollute the surrounding environment via discharges of
gas, liquid and solid wastes. Describe two types of real-world disputes in which
emotions are present and hence must be taken into account.

6.8.2 Attitudes can play a role in how people may behave in a conflict situation.
Based on the research of Inohara et al. (2007) and Bernath Walker et al. (2009,
2012a), outline how attitude is operationalized within GMCR. Qualitatively, what
connections do you see between degrees of preference and attitudes? Do you think
they could be combined?
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6.8.3 The concept of dominating attitudes within GMCR is put forward by
Bernath Walker et al. (2012b). Briefly explain how this approach works and dis-
cuss its links to degrees of preference.

6.8.4 In the Prisoner’s Dilemma conflict described in Problem3.5.1, suppose that
both DMs greatly prefer state s1, in which they both cooperate, over state s4, in which
they do not cooperate with one another. Carry out a complete stability analysis
following a logical interpretation using the four solution concepts utilized in this
chapter as well as other chapters in the text. Did you gain additional strategic insights
using this approach over the situation in which degree of preference is not present?
Justify your response.

6.8.5 For the question involving Prisoner’s Dilemma in Problem6.8.4, execute the
stability analysis using the matrix or algebraic formulation rather than the logical
form.

6.8.6 For the game of Chicken in Problem3.5.4, in which both drivers who are
driving at high speed towards one another in their cars, carry out a stability analysis
in which both drivers greatly prefer not to have a head-on crash over all of the
other scenarios. Use the logical form of the four stability definitions for calculating
individual stability and the associated equilibria. Explain why your findings make
sense.

6.8.7 For the game of Chicken in Problem3.5.4, in which both drivers are racing
towards each other at high speed, execute a stability analysis for which one of the
two drivers greatly prefers the situation in which they do not crash over all of the
others states. Comment about the strategic meaning of your stability results.

6.8.8 For the Elmira conflict described andmodeled in option form in Sect. 1.2.2 and
analyzed for the case of simple preference in Sect. 4.5, suggest a reasonable model
containing strength of preference such as when the Ministry of the Environment
greatly prefers that Uniroyal not close down its chemical plant over situations in
which it does terminates its operations. Carry out a complete stability analysis in
which the DMs behave according to Nash or SEQ stability. Explain whether or not
your findings make strategic sense.

6.8.9 Three degrees of preference often occur in practice. However, four degrees
of preference may not take place as often. Explain a conflict situation in which it
makes sense to entertain four degrees of preference in a conflict investigation. Provide
references to support your claim.

6.8.10 TheGisborne conflict arising over the export of fresh water in bulk quantities
is studied in Sect. 5.4. Provide a version of this conflictmodel inwhich it is reasonable
to consider three degrees of preference for at least one of the DMs. Carry out a
stability analysis of this conflict model for the case of Nash and SEQ stability.
Discuss interesting stability results that you found.
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