
Chapter 4
Stability Definitions: Simple Preference

Strategic conflicts, or situations in which two or more decision makers (DMs) with
different objectives interact, occur often in the real-world. As discussed in Chap. 3,
many models are available to represent strategic conflicts, such as the normal-form
conflict model, the option-form conflict model, and the graph model. Conflict reso-
lution has been investigated within many disciplines (Hipel 2009) including interna-
tional relations, psychology, and law, as well as from mathematical and engineering
perspectives (Saaty and Alexander 1989, Howard et al. 1992, Fang et al. 1993, Ben-
nett 1995). Among the formal methodologies that handle strategic conflict, the graph
model (or Graph Model for Conflict Resolution (GMCR)) (Kilgour et al. 1987, Fang
et al. 1993) provides a remarkable combination of simplicity and flexibility.

The main goal of this chapter is to define stabilities in graph models with simple
preference structure, based on a strict preference and an indifference relation, to be
discussed in Sect. 4.1. As explained in Sect. 4.2, when determining the stability of
a state for a given DM, a logical structure is employed for tracking the moves and
countermoves that could take place if the DM decides to improve his or her situation.
If the DM perceives that he or she will end up in a less preferred situation as a result
of these potential interactions with others, the state is deemed to be stable. However,
these logical representations of stabilities often require complex calculations and
are difficult to code. In particular, the construction of reachable lists of a coalition
having two or more DMs is a complicated process. The restriction that no DM may
move twice consecutively does not constrain a coalition in the way that it limits an
individual DM. For example, if there are only two DMs in a model, then a response
to a unilateral improvement (UI) by one of them is necessarily a single move. But if
there are more than two DMs in the model, a response to one DM’s UI may consist
of a sequence of many moves, provided no specific DM moves twice consecutively.
The subset of DMs levying the moves under the control of group members is called
a coalition. The sequence of actions by members of a coalition may constitute an
action to sanction a UI by another DM or the coalition members may be moving to
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a state which is more preferred by all members of the coalition which is referred to
as a coalition improvement.

The foregoing types of situations led to the development of matrix representations
of a graph model and explicit matrix calculations to determine the stabilities intro-
duced in Sect. 4.3. Because the graph model consists of several interrelated graphs,
well-known results of graph theory can help to analyze a graph model. This analy-
sis involves searching paths in a graph, subject to the important restriction that no
DM can move twice in succession along any path. Therefore, a graph model must be
treated as an edge colored digraph in which each arc represents a unilateral move and
distinct colors refer to different DMs. An algebraic approach to searching colored
paths in a colored digraph is presented in Sect. 4.3. The computational complexity
of employing the matrix formulation of the graph model is investigated in Sect. 4.4.
The sustainable development conflict is used throughout this chapter to illustrate
how stability calculations are executed for both the logical and matrix formulations
of the graph model. In Sect. 4.5, the Elmira dispute is employed to demonstrate how
stability calculations are carried out using the matrix representation. Finally, part of
the presentation appearing in this chapter is based upon research published earlier
(Xu et al. 2007, 2009, 2010a, b, 2011, 2014).

4.1 Simple Preference

In the original form, a graph model could be calibrated using only a relative prefer-
ence relation, “� preferred”, and an “equality” relation, “∼ indifferent”, to represent
a DM’s preference for one state with respect to another. The features and properties
of this type of preference, called a simple preference structure, were discussed in
Sect. 3.2.4. Specifically, simple preference of DM i is represented by a pair of rela-
tions {�i ,∼i } on S, where s �i q indicates that DM i prefers s to q and s ∼i q
means that DM i is indifferent between s and q (or equally prefers s and q). Note that,
for each i , �i is assumed irreflexive and asymmetric, and ∼i is assumed reflexive
and symmetric. Also, it is assumed that, for any s, q ∈ S, either s �i q, s ∼i q, or
q �i s. The conventions that s �i q is equivalent to either s �i q or s ∼i q, and that
s ≺i q is equivalent to q �i s, are convenient. Based on such preference information,
DM i’s reachable lists from a status quo state along the arcs of the directed graph,
important components of stability analysis, can be defined for a graph model, as will
be accomplished next.

4.1.1 Reachable Lists of a Decision Maker

Let S and N denote the state set and the DM set. The state set S can be partitioned
into subsets based on preference relative to a fixed state s ∈ S. These subsets, which
are essential in stability analysis, are described as follows:
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• �+
i (s) = {q : q �i s}, the states preferred to state s by DM i ;

• �=
i (s) = {q : q ∼i s}, the states indifferent to state s by DM i ;

• �−
i (s) = {q : s �i q}, the states less preferred than state s for DM i .

Let i ∈ N and s ∈ S be arbitrary. Denote the intersection operation by ∩. Recall
that each arc of Ai ⊆ S × S indicates that DM i can make a unilateral move (in one
step) from the initial state to the terminal state of the arc. DM i’s reachable lists from
state s ∈ S for simple preference are defined as follows:

Definition 4.1 For a graph model G, Ai denotes the arcs controlled by DM i for
i ∈ N . DM i’s reachable lists from s ∈ S are subsets of S as follows:

(i) Ri (s) = {q ∈ S : (s, q) ∈ Ai } is DM i’s reachable list from s by unilateral
moves (UMs);

(ii) R+
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} is DM i’s reachable list from s by

unilateral improvements (UIs);
(iii) R=

i (s) = {q ∈ S : (s, q) ∈ Ai and q ∼i s} is DM i’s reachable list from s by
equally preferred moves; and

(iv) R−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} is DM i’s reachable list from s by

unilateral disimprovements.

From the above definitions, the relationships among the subsets of S and the
corresponding reachable lists from state s for DM i are depicted in Fig. 4.1. For ease
of use, some additional notation is defined by �

−,=
i (s) = �−

i (s) ∪ �=
i (s).

Example 4.1 A graph model with two DMs N = {1, 2} and four feasible states
S = {s1, s2, s3, s4} is depicted in Fig. 4.2. The labels on the arcs of the graph indicate
the DM who can make the move. Preference information about the states is given
below the directed graph. If s = s1 is selected as the status quo state, the subsets of
S separated by DM i , �+

i (s),�=
i (s) and �−

i (s), and DM i’s reachable lists from s,
Ri (s), R

+
i (s), R=

i (s) and R−
i (s) for i ∈ N , can be calculated easily.

Fig. 4.1 Relations among
the subsets of S and the
corresponding reachable lists
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Fig. 4.2 Graph model for a
two DM model

Note that the preference information

s2 �1 s3 �1 s1 �1 s4 and s1 �2 s4 �2 s3 �2 s2

in Fig. 4.2 implies that the preference relations �1 and �2 are transitive. According
to the descriptions of the subsets of S,

• �+
1 (s1) = {q : q �1 s1} = {s2, s3} and �+

2 (s1) = {q : q �2 s1} = ∅;
• �=

1 (s1) = {q : q ∼1 s1} = ∅ and �=
2 (s1) = {q : q ∼2 s1} = ∅; and

• �−
1 (s1) = {q : s1 �1 q} = {s4} and �−

2 (s1) = {q : s1 �2 q} = {s2, s3, s4}.
Clearly, DM 1’s arc set is A1 = {(s1, s2), (s1, s3), (s1, s4)} and DM 2’s arc set is

A2 = {(s2, s3), (s3, s4), (s4, s1)}. According to Definition 4.1, the DMs’ reachable
lists from s1 are

• R1(s1) = {q ∈ S : (s1, q) ∈ A1} = {s2, s3, s4} and R2(s1) = {q ∈ S : (s1, q) ∈
A2} = ∅;

• R+
1 (s1) = {q ∈ S : (s1, q) ∈ Ai and q �1 s1} = {s2, s3} and R+

2 (s1) = ∅;
• R=

1 (s1) = {q ∈ S : (s1, q) ∈ Ai and q ∼1 s1} = ∅ and R=
2 (s1) = ∅; and

• R−
1 (s1) = {q ∈ S : (s1, q) ∈ Ai and s1 �1 q} = {s4} and R−

2 (s1) = ∅.

As shown in Fig. 4.1 for Example 4.1, the relations among the subsets of the state
set and the reachable lists are

• R+
i (s) = Ri (s) ∩ �+

i (s);
• R=

i (s) = Ri (s) ∩ �=
i (s); and

• R−
i (s) = Ri (s) ∩ �−

i (s).

DM i’s oriented arcs Ai are related to reachable lists as follows:

• Ai = {(p, q) : q ∈ Ri (p)} is DM i’s UM arc set;
• if s ∈ S is fixed, then Ai (s) = {(s, q) ∈ Ai : q ∈ Ri (s)} are DM i’s UM arcs from
s.
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DM i’s UM arcs, Ai , can be partitioned as follows:

• A+
i = {(p, q) ∈ Ai : q �i p} is DM i’s UI arc set;

• A=
i = {(p, q) ∈ Ai : q ∼i p} is DM i’s equally preferred arc set; and

• A−
i = {(p, q) ∈ Ai : p �i q} is DM i’s less preferred arc set.

According to the completeness property of preference, Ai = A+
i ∪ A=

i ∪ A−
i . Now

fix s ∈ S. Then

• A+
i (s) = {(s, q) ∈ Ai : q ∈ R+

i (s)} are DM i’s UI arcs from s;
• A=

i (s) = {(s, q) ∈ Ai : q ∈ R=
i (s)} are DM i’s equally preferred arcs from s; and

• A−
i (s) = {(s, q) ∈ Ai : q ∈ R−

i (s)} are DM i’s less preferred arcs from s.

Note that Ai (s) is a subset of the arc set Ai while Ri (s) is a subset of the state set S.

4.2 Logical Representation of Stability Definitions

In a graphmodel, a stability definition (solution concept) is a procedure for determin-
ing whether a state is stable for a decision maker (DM), and identifying a situation
in which the DM would have no incentive to move away from the state unilaterally.
An equilibrium of a graph model, or a possible resolution of the conflict it repre-
sents, is a state that all DMs find stable under an appropriate stability definition.
Many solution concepts have been formulated to represent various decision styles
and contexts. In this book, four basic solution concepts—Nash stability (Nash 1950,
1951), general metarationality (GMR) (Howard 1971), symmetric metarationality
(SMR) (Howard 1971), and sequential stability (SEQ) (Fraser and Hipel 1979)—
are emphasized. Recently, Li et al. (2004) extended these four solution concepts to
models having preference uncertainty, which will be introduced in Chap. 5. As well,
Hamouda et al. (2004, 2006) proposed new stability definitions that take strength of
preference (strong or mild) into account, which will be discussed in Chap. 6.

The logical representations of Nash, GMR, SMR, and SEQ stabilities in the graph
model with simple preference are given below. The four stability definitions for two-
DM models are introduced first.

4.2.1 Two Decision Maker Case

Let N = {i, j} and s ∈ S in the following definitions.

Definition 4.2 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff R+

i (s) = ∅.
For Nash stability (Nash 1950, 1951), DM i expects that DM j will stay at any

state DM i moves to, and consequently that any state that i moves to will be final
state.
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Table 4.1 Nash stability of the sustainable development game with simple preferences

State R+
i (s) Nash stability Equilibrium

DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ s s Eq

s2 ∅ {s1} s u

s3 {s1} ∅ u s

s4 {s2} {s3} u u

Example 4.2 (Nash Stability for the Sustainable Development Model) The sustain-
able development game was presented in normal form, option form, and graph form
in Tables 3.2 and 3.3, and Fig. 3.2, respectively. The graph model of this model is
shown in Fig. 3.2with the state set S = {s1, s2, s3, s4} and theDMset N = {1, 2}. The
letter on a given arc indicates which DM controls the movement while the arrowhead
shows the direction ofmovement. The twoDMs’ preference information is presented
underneath the digraph.

State s1 is now analyzed to ascertain if it is Nash stable for DM i . From Fig. 3.2,
DM 1 has a unilateral move from s1 to s3. However, s1 �1 s3 based on the preference
information, so the move by DM 1 from s1 to s3 is not a unilateral improvement and,
therefore, state s1 is Nash stable for DM 1 according to Definition 4.2. Next, consider
the Nash stability of s1 for DM 2. Clearly, DM 2 has a unilateral move from s1 to s2.
Because s1 �2 s2, the move by DM 2 from s1 to s2 is not a unilateral improvement
and, therefore, state s1 is Nash stable for DM 2. Accordingly, s1 is an equilibrium in
the sense of Nash stability. Similarly, the other three states can be assessed for Nash
stability.

Nash stability results are listed in Table4.1 in which R+
i (s) denotes DM i’s UIs

from s ∈ S for i ∈ N . The letter “s” indicates that a state is Nash stable for a given
DM, whereas “u” denotes that the state is Nash unstable. The letter “Eq” means that
the state is an equilibrium, that is Nash stable for both DMs.

State s ∈ S is GMR for DM i iff, whenever DM i makes any UI from s, then i’s
opponent can move to sanction i (that is, hurt i) in response. (A “sanction” must be
an opponent’s move.) The formal definition is given next.

Definition 4.3 State s is GMR stable (or, simply, GMR) for DM i , denoted by
s ∈ SGMR

i , iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with

s2 ∈ �
−,=
i (s) (or s �i s2).

For GMR, DM i expects that its opponent j will respond by hurting i , so s is GMR
stable for i iff DM j can hurt i if i takes any UI.

Example 4.3 (GMR Stability for the Sustainable Development Model) From
Definitions 4.2 and 4.3, one can see that if R+

i (s) = ∅, then s is Nash stable and
GMR stable for DM i . Hence, for instance, s3 is GMR stable for DM 2 for the
sustainable development model. Let us assess whether s3 is GMR for DM 1. DM 1
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Table 4.2 GMR stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) GMR stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} s s Eq

s4 {s2} {s3} {s2} {s3} u u

has a unilateral improvement from s3 to s1 and DM 2 has a unilateral move from
s1 to s2. However, s2 is less preferred than s3 for DM 1, hence, s3 is GMR for DM
1 according to Definition 4.3. The stabilities of other three states for the two DMs
can be determined, similarly. GMR stability results are listed in Table4.2, where,
as usual, R+

i (s) denotes DM i’s UIs from s ∈ S, “s” indicates GMR stable, “u”
indicates GMR unstable, and “Eq” indicates a GMR equilibrium.

SMR is a similar butmore restrictive stability definition compared toGMR.Under
SMR, DM i expects to have a chance to counterrespond to its opponent’s response
to i’s original move.

Definition 4.4 State s is SMR stable for DM i , denoted by s ∈ SSMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=
i (s) (or s �i s2)

and s3 ∈ �
−,=
i (s) (or s �i s3) for every s3 ∈ Ri (s2).

Example 4.4 (SMR Stability for the Sustainable DevelopmentModel) By comparing
Definitions 4.2–4.4, one can see that if R+

i (s) = ∅, then s is Nash stable, GMR stable,
and SMR stable for DM i . Therefore, for instance, s3 is SMR stable for DM 2 for
the sustainable development model. Let us determine whether s3 is SMR stable for
DM 1. DM 1 has a unilateral improvement from s3 to s1 and DM 2 has a unilateral
move from s1 to s2, then DM 1 has only a unilateral move from s2 to s4. Because s2
and s4 are less preferred than s3 for DM 1 and, hence, s3 is SMR stable for DM 1 by
Definition 4.4. The stabilities of other three states for the two DMs can be assessed,
similarly. SMR stability results are obtained and listed in Table4.3, where, similarly,
“s” indicates SMR stable, “u” indicates SMR unstable, and “Eq” indicates a SMR
equilibrium.

SEQ is similar to GMR, but includes only sanctions that are “credible”. A credible
action is a unilateral improvement.

Definition 4.5 State s is SEQ stable for DM i , denoted by s ∈ SSEQ
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈ �
−,=
i (s) (or s �i s2).

Example 4.5 (SEQ Stability for the Sustainable Development Model) Similar to
GMR stability, if R+

i (s) = ∅, then s is SEQ stable for DM i . Therefore, for the
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Table 4.3 SMR stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) SMR stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} s s Eq

s4 {s2} {s3} {s2} {s3} u u

Table 4.4 SEQ stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) SEQ stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} u s

s4 {s2} {s3} {s2} {s3} u u

sustainable development model, s3 is SEQ stable for DM 2. Let us analyze SEQ
stability of s3 for DM 1. DM 1 has a unilateral improvement from s3 to s1, but DM 2
has no any unilateral improvement from s1. Hence, s3 is GMR and SMR stable for
DM 1 rather than SEQ stable. Similarly, one can assess whether other three states
are SEQ stable for the two DMs by Definition 4.5. SEQ stability results are listed in
Table4.4 in which “s” indicates SEQ stable, “u” indicates SEQ unstable, and “Eq”
indicates a SEQ equilibrium.

4.2.2 Reachable Lists of a Coalition of Decision Makers

Any nonempty subset H of DMs, H ⊆ N and H �= ∅, is called a coalition. If
|H | = 1, then the coalition H is trivial; if |H | > 1, then the coalition H is non-
trivial. (Here, |H | denotes the cardinality of H .) Within an n-DMmodel (n ≥ 2), an
important coalition is the set of opponents of a fixed DM i , namely N\{i}, where \
refers to “set subtraction”. In order to analyze the stability of a state for DM i ∈ N , it
is necessary to take into account possible responses by all other DMs j ∈ N\{i}. The
essential inputs of stability analysis are reachable lists of group N\{i} from state s,
RN\{i}(s) and R+

N\{i}(s) for simple preference. For a two-DM model, DM i has only
an opponent, DM j , so i’s opponent’s reachable lists from s are the states reachable
by DM j’s moves. In an n-DM model (n > 2), the opponents of a DM constitute a
coalition of two or more DMs and the determination of their reachable lists is more
subtle. The definition of a legal sequence of UMs for a nontrivial coalition is given
first.
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A legal sequence of UMs for a coalition of DMs is a sequence of states linked by
unilateral moves by members of the coalition, in which a DM may move more than
once, but not twice consecutively. In general, a DM’s directed graph can be transitive
or intransitive within the GMCR paradigm. When, for example, a DM can move
from s1 to s2 and s2 to s3 in one step, moves are transitive if the DM can also move
in one step from s1 to s3. If this is not possible, the move is intransitive. Hence, the
restriction of non-successive-moves by the same DM means that GMCR can handle
intransitive moves, in addition to transitive moves. Let the coalition H ⊆ N satisfy
|H | ≥ 2 and let the status quo state be s ∈ S. Let RH (s) ⊆ S (defined formally
below) denote the set of states that can be reached by any legal sequence of UMs,
by some or all DMs in H , starting at state s. If s1 ∈ RH (s), then �H (s, s1) (also
defined formally below) denotes the set of all last DMs in legal sequences from s to
s1. The formal definition of RH (s) ⊆ S and �H (s, s1) ⊆ H for s1 ∈ RH (s) is given
as follows:

Definition 4.6 A unilateral move by H is a member of RH (s) ⊆ S, defined induc-
tively by

(1) assuming �H (s, s1) = ∅ for all s1 ∈ S;
(2) if j ∈ H and s1 ∈ R j (s), then s1 ∈ RH (s) and �H (s, s1) = �H (s, s1) ∪ { j};
(3) if s1 ∈ RH (s), j ∈ H , and s2 ∈ R j (s1), then, provided �H (s, s1) �= { j},

s2 ∈ RH (s) and �H (s, s2) = �H (s, s2) ∪ { j}.
Note that this definition is inductive: first, using (2), the states reachable from s

are identified and added to RH (s); then, using (3), all states reachable from those
states are identified and added to RH (s); then the process is repeated until no further
states can be added to RH (s) and there is no change in�H (s, s2) for any s2 ∈ RH (s).
Because RH (s) ⊆ S and S is finite, this limit must be reached in finitely many steps.

To interpret Definition 4.6, note that if s1 ∈ RH (s), then �H (s, s1) ⊆ H is the set
of all last DMs in legal sequences from s to s1. (If s1 /∈ RH (s), it can be assumed that
�H (s, s1) = ∅.) Suppose that �H (s, s1) contains only one DM, say j ∈ N . Then
any move from s1 to a subsequent state, say s2, must be made by a member of H
other than j ; otherwise DM j would have to move twice in succession. On the other
hand, if |�H (s, s1)| ≥ 2, any member of H who has a unilateral move from s1 to s2
may exercise it.

A legal sequence of UIs for a coalition can be defined similarly. Let R+
H (s) ⊆ S

(defined formally below) denote the set of states that can be reached by any legal
sequence of UIs, by some or all DMs in H , starting at state s. If s1 ∈ R+

H (s),
then �+

H (s, s1) (also defined formally below) denotes the set of all last DMs in
legal sequences from s to s1 by UIs. The formal definition of R+

H (s) ⊆ S and
�+

H (s, s1) ⊆ H for s1 ∈ R+
H (s) is given as follows:

Definition 4.7 Let s ∈ S, H ⊆ N , and H �= ∅. A unilateral improvement by H is
a member of R+

H (s) ⊆ S, defined inductively by

(1) assuming �+
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+
j (s), then s1 ∈ R+

H (s) and �+
H (s, s1) = �+

H (s, s1) ∪ { j};
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Fig. 4.3 Graph model with four DMs and six states

(3) if s1 ∈ R+
H (s), j ∈ H , and s2 ∈ R+

j (s1), then, provided �+
H (s, s1) �= { j},

s2 ∈ R+
H (s) and �+

H (s, s2) = �+
H (s, s2) ∪ { j}.

Definition 4.7 is identical to Definition 4.6 except that all moves are required to
be UIs, i.e. each move is to a state strictly preferred by the mover to the current state.
Similarly, �+

H (s, s1) includes all last movers in UIs by H from state s to state s1.
An example that shows the procedures to construct the reachable lists of a group is
presented as follows:

Example 4.6 (Constructing Reachable Lists of aCoalition) Figure4.3 shows a graph
model with DM set N = {1, 2, 3, 4} and state set S = {s1, s2, s3, s4, s5, s6}. The
labels on the arcs of the graph indicate the controlling DMs. Preference information
is given below the directed graph. If s = s1 is selected as the status quo state, then the
reachable lists of H = N from s, RN (s1) and R+

N (s1), can be constructed according
to Definitions 4.6 and 4.7.

Constructing RN (s1):

1. s2 can be reached by DM 1 from s1 by one step UM, so s2 ∈ RN (s1);
2. s3 cannot be attained by DM 1 from s2 since DM 1 cannot move twice consecu-

tively;
3. s3 can be reached by DM 2 from s2 by one step UM, so s3 ∈ RN (s1);
4. s6 cannot be attained by DM 2 from s3 since DM 2 cannot move twice consecu-

tively;
5. s4 can be reached by DM 3 from s3 by one step UM, so s4 ∈ RN (s1);
6. s5 cannot be attained by DM 3 from s4 since DM 3 cannot move twice consecu-

tively;
7. s2 is reachable again by DM 4 from s4 by one step UM, then s3 is reachable again

by DM 1 from s2, and s6 is finally reachable by DM 2 from s3, so s6 ∈ RN (s1).

Accordingly, RN (s1) = {s2, s3, s4, s6}.
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Constructing R+
N (s1):

From the preference information provided, A+
1 = {(s1, s2)}, A+

2 = {(s2, s3)}, A+
3 =

{(s3, s4), (s4, s5)}, and A+
4 = {(s4, s2)}.

1. s2 can be reached by DM 1 from s1 by a UI, so s2 ∈ R+
N (s1);

2. s3 can be reached by DM 2 from s2 by a UI, so s3 ∈ R+
N (s1);

3. s4 can be reached by DM 3 from s3 by a UI, so s4 ∈ R+
N (s1);

4. s5 cannot be attained by DM 3 from s4 since DM 3 cannot move twice consecu-
tively.

Therefore, R+
N (s1) = {s2, s3, s4}.

The four basic stabilities of Nash, GMR, SMR, and SEQ with simple preference
in two-DM models, described using logical representation in Sect. 4.2.1, can be
extended to models including more than two DMs, which is the objective of the next
subsection.

4.2.3 n-Decision Maker Case

In an n-DM model, where n > 2, the opponents of a DM can be thought of as the
coalition of all other DMs. To calculate the stability of a state for DM i ∈ N , it is
necessary to examine possible responses by this coalition, N \ {i} from the states in
RN\{i}(s) or R+

N\{i}(s). Let i ∈ N and s ∈ S in the following definitions.
Nash stability definition is identical for two-DM and n-DM models because this

formal stability does not consider the opponents’ responses.

Definition 4.8 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff R+

i (s) = ∅.
For GMR stability, DM i expects that its opponents, N \ {i}, will respond to any

unilateral improvement by i from s to s1 with a sequence of legal unilateral moves
to a state in RN\{i}(s1), so as to hurt i if possible. As before, i anticipates that the
conflict will end after the opponents have responded.

Definition 4.9 State s is GMR for DM i , denoted by s ∈ SGMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s �i s2.

As in the two-DM case, for SMR stability, DM i expects to have a chance to
counterrespond (s3) to its opponents’ response (s2) to i’s original move.

Definition 4.10 State s is SMR for DM i , denoted by s ∈ SSMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that s �i s2 and s �i s3 for

every s3 ∈ Ri (s2).

A state is SEQ stable for a given DM iff the DM can be deterred by subsequent
unilateral improvements by its opponents.
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Definition 4.11 State s is SEQ for DM i , denoted by s ∈ SSEQ
i , iff for every s1 ∈

R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s �i s2.

SEQ stability indicates that all UIs of the focal DM are sanctioned by a subsequent
group unilateral improvement by the DM’s opponents.

Definitions 4.8–4.11 cover Nash stability, GMR, SMR, and SEQ in the graph
model for multiple-decision-maker conflict models (or, simply, n-DM models) with
simple preference. These definitions retain the features of Definitions 4.2–4.5, in the
two-DM case, except that DM i’s opponents are a subset of N , instead of a single
opponent. When n = 2, the DM set N is {i, j}, so that the reachable list of coalition
N \ {i} from s1, RN\{i}(s1), reduces to DM j’s reachable list from s1, R j (s1).

4.2.4 Interrelationships Among Stability Definitions

Fang et al. (1989, 1993) established general relationships among Nash, GMR, SMR,
and SEQ solution concepts as shown in Fig. 4.4. The following theorem demonstrates
that the same relationships hold for these solution concepts in both two-DM and n-
DM models.

Theorem 4.1 Let i ∈ N , |N | = n, and n ≥ 2. Then the stable states under the four
basic stability definitions satisfy

SNash
i ⊆ SSMR

i ⊆ SGMR
i (4.1)

and
SNash
i ⊆ SSEQ

i ⊆ SGMR
i . (4.2)

Proof The inclusion relations presented in Eq.4.1 will be proven. The proof for
Eq.4.2 is similar.

If s ∈ SNash
i , then R+

i (s) = ∅, so using Definition 4.10, s ∈ SSMR
i . Hence,

SNash
i ⊆ SSMR

i .
For any s ∈ SSMR

i , if R+
i (s) = ∅, then s ∈ SGMR

i . Otherwise, for any s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) such that s �i s2 and s �i s3 for every

Fig. 4.4 Interrelationships
among the solution concepts
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Table 4.5 Summary of stability results for the sustainable development game with simple prefer-
ences

State number Nash GMR SMR SEQ

DM
1

DM
2

Eq DM
1

DM
2

Eq DM
1

DM
2

Eq DM
1

DM
2

Eq

s1 s s
√

s s
√

s s
√

s s
√

s2 s u s u s u s u

s3 u s s s
√

s s
√

u s

s4 u u u u u u u u

s3 ∈ Ri (s2), by Definition 4.10. Accordingly, for every s1 ∈ R+
i (s) there exists

s2 ∈ RN\{i}(s1), such that s �i s2. This implies that SSMR
i ⊆ SGMR

i . Therefore, the
inclusion relations SNash

i ⊆ SSMR
i ⊆ SGMR

i hold. �

There is no necessary inclusion relation between SSMR
i and SSEQ

i , i.e., it may be
true that SSMR

i ⊇ SSEQ
i , or that SSMR

i ⊆ SSEQ
i , or neither.

The sustainable development model is utilized to illustrate the interrelationships
among the four stabilities, Nash, GMR, SMR, and SEQ. Stability results for the four
solution concepts are summarized in Table4.5, where “Eq”means “equilibrium”, “s”
indicates stable, “u” indicates unstable, and “

√
” indicates an equilibrium for some

solution concept. In fact, one can also utilize Theorem 4.1 to help determine some
stabilities. For example, R+

i (s1) = ∅ for i = 1, 2, so s1 is Nash stable for the two
DMs. Therefore, s1 is GMR, SMR, and SEQ for the two DMs by Eqs. 4.1 and 4.2
in Theorem 4.1. Because s2 is GMR unstable for DM 2, then it is certain that s2 is
SMR unstable for DM 2 from the relation Eq.4.1 in Theorem 4.1. In this case, s3 is
SMR but not SEQ for DM 2.

Theorem 4.1 examines the relationships of individual stability definitions from a
single DM’s viewpoint. Recall that a possible resolution or equilibrium of a graph
model is a state that all DMsfind stable under appropriate stability definitions. Hence,
Theorem 4.1 implies that the same relationships hold for equilibria. Let SNash =⋂

i∈N
SNash
i , SGMR = ⋂

i∈N
SGMR
i , SSMR = ⋂

i∈N
SSMR
i , and SSEQ = ⋂

i∈N
SSEQ
i denote

the equilibrium sets under the four stability definitions, respectively. The following
theorem is immediate.

Theorem 4.2 Let i ∈ N , |N | = n, and n ≥ 2. Then the equilibria under the four
basic stability definitions satisfy

SNash ⊆ SSMR ⊆ SGMR (4.3)

and
SNash ⊆ SSEQ ⊆ SGMR . (4.4)
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4.3 Matrix Representation of Stability Definitions

Stability definitions in the graph model are traditionally defined logically, in terms
of the underlying graphs and preference relations, as in Sect. 4.2. However, as noted
in the development of the DSS GMCR II (Fang et al. 2003a, b), the nature of logical
representations makes coding difficult. The new preference structure proposed by Li
et al. (2004) to represent uncertainty in DMs’ preferences included some extensions
of the four stability definitions, and algorithms were outlined but they have not been
coded. The work of Hamouda et al. (2004, 2006) integrated strength of preference
information into these four solution concepts but, again, it proved difficult to code
and has not been integrated into GMCR II. Then, difficulties in coding, mainly
because of the logical formulation, were the primary motivation for the development
of explicit matrix representations of the graph model with simple preference. In the
following subsection, matrix expressions are used to capture the relative preferences
and reachable lists of a single DM, both by UMs and by UIs.

4.3.1 Preference Matrices and UM and UI Matrices

Let m = |S| denote the number of states. For a graph model, several matrices can
represent relative preference relations between two states.

Definition 4.12 For a graph model G, the preference matrix and the indifference
matrix for DM i are m × m matrices, P+

i and P=
i , with (s, q) entries

P+
i (s, q) =

{
1 if q �i s,
0 otherwise,

and

P=
i (s, q) =

{
1 if q ∼i s and q �= s,
0 otherwise.

A nonzero entry P+
i (s, q) = 1 in the preference matrix indicates that DM i prefers

state q to state s, while zero entry P+
i (s, q) = 0 indicates that DM i either prefers s

to q or is indifferent between s and q (by the property of preference completeness).
Similarly, P=

i (s, q) = 1 implies that DM i is indifferent between s and q while
P=
i (s, q) = 0 denotes that DM i prefers either s to q or q to s. It is convenient to

define

P−,=
i = E − I − P+

i ,

where E is the m ×m unit matrix (all entries 1) and I is the m ×m identity matrix.
Note that P−,=

i (s, q) = 1 means that DM i does not prefer state q to state s.
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For i ∈ N and s ∈ S, DM i’s unilateralmoves (UMs) and unilateral improvements
(UIs) can be represented as follows:

Definition 4.13 For a graph model G, DM i’s UM and UI matrices are the m × m
matrices, Ji and J+

i , with (s, q) entries

Ji (s, q) =
{
1 if (s, q) ∈ Ai ,

0 otherwise,

and

J+
i (s, q) =

{
1 if (s, q) ∈ Ai and q �i s,
0 otherwise.

Note that Ji (s, q) = 1 if and only if DM i can move from state s to state q (in one
step). In other words, (s, q) ∈ Ai . Also, J

+
i (s, q) = 1 iff Ji (s, q) = 1 and DM i

prefers q to s.
The set Ri (s) = {q ∈ S : Ji (s, q) = 1} is DM i’s reachable list from state s by

UMs. It contains all states to which DM i can make unilateral moves from state s in
one step. Similarly, R+

i (s) = {q ∈ S : J+
i (s, q) = 1} is DM i ′s reachable list from

s by UIs. Clearly, R+
i (s) is identical to Ri (s) except that all moves are required to

be UIs. Note that, if Ri (s) and R+
i (s) are written as 0–1 row vectors, then

Ri (s) = eTs · Ji and R+
i (s) = eTs · J+

i ,

where eTs denotes the transpose of the sth standard basis column vector of the m-
dimensional Euclidean space, RS .

The definitions of DM i’s UM matrix, Ji , UI matrix, J+
i , and preference matrix,

P+
i , imply that

J+
i = Ji ◦ P+

i , (4.5)

where “◦” denotes the Hadamard product.
The objective of the next subsection is to develop an explicit algebraic version of a

graph model, to facilitate stability calculations. The two-DM models are considered
first. One will see that matrix representation of solution concepts (MRSC) is feasible
for four graph model stability definitions in the two-DM graph model. Using explicit
matrix formulations instead of graphical or logical representations makes MRSC
more effective and convenient for calculating stabilities and identifying equilibria.

4.3.2 Two Decision Maker Case

The matrix representation of Nash, GMR, SMR, and SEQ stabilities in two-DM
conflict models with simple preference is developed in this subsection. The system,
called the MRSC method, incorporates a set of m × m matrices, MNash

i , MGMR
i ,
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MSMR
i , and MSEQ

i , to capture Nash, GMR, SMR, and SEQ for DM i ∈ N , where
m = |S|. For now, |N | = 2.

From Definition 4.2, state s is Nash stable for DM i iff DM i cannot move from s
to any state i prefers. DefineDM i’s Nashmatrix as them×mmatrixMNash

i = J+
i ·E

(“E” denotes them×m matrix with each entry being set to 1). The diagonal element
of MNash

i matrix at (s, s) is

MNash
i (s, s) = eTs · J+

i · e, (4.6)

for s ∈ S, and all off-diagonal entries zero. Here, e is them-dimensional unit column
vector (all elements 1). Then the following theorem shows how this matrix represents
Nash stability.

Theorem 4.3 State s ∈ S is Nash stable for DM i iff MNash
i (s, s) = 0.

Proof By Eq.4.6, MNash
i (s, s) = 0 holds iff

eTs · J+
i = 0T .

According to the definition of DM i’s UI matrix, MNash
i (s, s) = 0 iff R+

i (s) = ∅,
which is the definition of Nash stability for DM i given in Definition 4.2. �

Note that Theorem 4.3 provides a matrix method to assess whether state s is Nash
stable for DM i by identifying the Nash matrix’s diagonal entry MNash

i (s, s). If the
sth diagonal entry is zero, then s is Nash stable for DM i ; otherwise s is Nash unstable
for DM i . This matrix representation of Nash stability will be adapted to the other
basic stability definitions.

Example 4.7 (Matrix Representation of Nash Stability for the Sustainable Develop-
ment Model) The logical representation of Nash stability for the sustainable devel-
opment game was presented in Example 4.2. For the graph model of the sustainable
development conflict presented in Fig. 3.2, the UMmatrices for DM 1 and DM 2 are

J1 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ and J2 =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ . (4.7)

According to Definition 4.12, the preference matrices are

P+
1 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞

⎟
⎟
⎠ and P+

2 =

⎛

⎜
⎜
⎝

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟
⎟
⎠ . (4.8)
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Accordingly, one uses J+
i = Ji ◦ P+

i , for i = 1, 2, to obtain

J+
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ and J+

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠ . (4.9)

Then, from Eq.4.6, the Nash matrices are

MNash
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ and MNash

2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ .

Since MNash
1 (1, 1) = MNash

1 (2, 2) = 0 and MNash
1 (3, 3) = MNash

1 (4, 4) = 1,
then s1 and s2 are Nash stable, and s3 and s4 are Nash unstable for DM 1, accord-
ing to Theorem 4.3. Similarly, because MNash

2 (1, 1) = MNash
2 (3, 3) = 0 and

MNash
2 (2, 2) = MNash

2 (4, 4) = 1, s1 and s3 are Nash stable, and s2 and s4 are
Nash unstable, for DM 2. The results are identical to those in Example 4.2 obtained
by logical representation.

A state s ∈ S is general metarational for DM i iff whenever DM i makes any UI
from s, then its opponent can hurt i in response. DefineDM i’sm×m GMRmatrix as

MGMR
i = J+

i · [E − sign
(
Jj · (P−,=

i )T
)], (4.10)

where j ∈ N , j �= i . The following theorem establishes the matrix method to assess
whether state s is GMR stable for a DM.

Theorem 4.4 State s ∈ S is GMR for DM i iff MGMR
i (s, s) = 0.

Proof Since

MGMR
i (s, s) = (eTs · J+

i ) · [(E − sign
(
Jj · (P−,=

i )T
)) · es]

=
m∑

s1=1

J+
i (s, s1) · [1 − sign

(
(eTs1 · Jj ) · (eTs · P−,=

i )T
)],

then MGMR
i (s, s) = 0 holds iff

J+
i (s, s1) · [1 − sign

(
(eTs1 · Jj ) · (eTs · P−,=

i )T
)] = 0, (4.11)



128 4 Stability Definitions: Simple Preference

for every s1 ∈ S. It is clear that Eq. 4.11 is equivalent to

(eTs1 · Jj ) · (eTs · P−,=
i )T �= 0,

for every s1 ∈ R+
i (s). Therefore, for any s1 ∈ R+

i (s), there exists at least one
s2 ∈ R j (s1) with s �i s2. According to Definition 4.3, MGMR

i (s, s) = 0 implies that
s is GMR stable for DM i . �

Theorem 4.4 proves that this matrix method, called matrix representation of GMR
stability, is equivalent to the logical representation for two-DM GMR stability in
Definition 4.3. To analyze GMR stability at s for DM i , one only needs to identify
whether the diagonal entry MGMR

i (s, s) of i’s GMR matrix is zero. If so, s is GMR
stable for i ; otherwise, s is GMR unstable for DM i . Note that all information about
GMR stability is contained in the diagonal entries of the GMR matrix.

Example 4.8 (Matrix Representation of GMR Stability for the Sustainable Develop-
ment Model) The logical representation of GMR stability for the sustainable devel-
opment game was illustrated in Example 4.3. First, one uses P−,=

i = E − I − P+
i

for i = 1, 2, to obtain

P−,=
1 =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠ ,

(4.12)
and

P−,=
2 =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

⎞

⎟
⎟
⎠ .

(4.13)
From Eq.4.10, DM i’s GMR matrix is

MGMR
i = J+

i · (
E − sign

(
Jj · (P−,=

i )T
))

,

where i, j = 1, 2. Therefore,

MGMR
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ − sign

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠

T
⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ .
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Similarly, DM 2’s GMR matrix is calculated by

MGMR
2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ − sign

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

⎞

⎟
⎟
⎠

T
⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MGMR
1 (1, 1) = MGMR

1 (2, 2) = MGMR
1 (3, 3) = 0 and MGMR

1 (4, 4) �= 0,
then s1, s2, and s3 are GMR stable, while s4 is GMR unstable, for DM 1, accord-
ing to Theorem 4.4. Similarly, because MGMR

2 (1, 1) = MGMR
2 (3, 3) = 0 and

MGMR
2 (2, 2) = MGMR

2 (4, 4) = 1, s1 and s3 are GMR stable, and s2 and s4 are GMR
unstable, for DM 2. These results are identical to those in Example 4.3 obtained by
logical representation.

Symmetric metarationality is similar to general metarationality except that DM i
expects to have a chance to counterrespond to its opponent j’s response to i’s original
move. Define DM i’s SMR m × m matrix as

MSMR
i = J+

i · [E − sign(Q)]

in which

Q = Jj · [(P−,=
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))],

for j ∈ N , j �= i . The following theorem establishes the matrix method to determine
whether state s is SMR stable for a DM.

Theorem 4.5 State s ∈ S is SMR for DM i iff MSMR
i (s, s) = 0.

Proof Since

MSMR
i (s, s) = (eTs · J+

i ) · [(E − sign(Q)) · es]

=
m∑

s1=1

J+
i (s, s1)[1 − sign (Q(s1, s))]

with

Q(s1, s) =
m∑

s2=1

Jj (s1, s2) · W,
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and

W = P−,=
i (s, s2) ·

[

1 − sign

(
m∑

s3=1

(
Ji (s2, s3) · P+

i (s, s3)
)
)]

,

then MSMR
i (s, s) = 0 holds iff Q(s1, s) �= 0, for every s1 ∈ R+

i (s), which is
equivalent to the statement that, for every s1 ∈ R+

i (s), there exists s2 ∈ R j (s1) such
that

P−,=
i (s, s2) �= 0, (4.14)

and
m∑

s3=1

Ji (s2, s3) · P+
i (s, s3) = 0. (4.15)

Obviously, for every s1 ∈ R+
i (s), there exists s2 ∈ R j (s1) such that Eqs. 4.14 and

4.15 hold iff for every s1 ∈ R+
i (s) there exists s2 ∈ R j (s1) such that s �i s2 and

s �i s3 for all s3 ∈ Ri (s2). �
Theorem 4.5 proves that this matrix method, called matrix representation of SMR

stability, is equivalent to the logical representation for two-DM SMR stability in
Definition 4.4. To calculate SMR stability at s for DM i , one only needs to assess
whether the diagonal entry MSMR

i (s, s) of i’s SMR matrix is zero. If so, s is SMR
stable for i ; otherwise, s is SMR unstable for DM i .

Example 4.9 (Matrix Representation of SMR Stability for the Sustainable Develop-
ment Model) The logical representation of SMR stability for the sustainable devel-
opment game was described in Example 4.4. First, one uses Eq.4.7 for Ji , Eq. 4.8
for P+

i , Eq. 4.9 for J+
i , and Eqs. 4.12 and 4.13 for P−,=

i , for i = 1, 2. DM i’s SMR
matrix is

MSMR
i = J+

i · [E − sign(Q)]

in which

Q = Jj · [(P−,=
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))],

where i, j = 1, 2. Therefore,

MSMR
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ and MSMR

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MSMR
1 (1, 1) = MSMR

1 (2, 2) = MSMR
1 (3, 3) = 0 and MSMR

1 (4, 4) �= 0,
then s1, s2, and s3 are SMR stable, while s4 are SMR unstable, for DM 1,
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according to Theorem 4.5. Similarly, because MSMR
2 (1, 1) = MSMR

2 (3, 3) = 0
and MSMR

2 (2, 2) = MSMR
2 (4, 4) = 1, s1 and s3 are SMR stable, and s2 and s4 are

SMR unstable, for DM2. These results are identical to those in Example 4.4 obtained
by logical representation.

Sequential stability is similar to general metarationality, but includes only those
sanctions that are “credible”. Define DM i’s SEQ m × m matrix as

MSEQ
i = J+

i · [E − sign
(
J+
j · (P−,=

i )T
)
],

for j ∈ N , j �= i . The following theorem provides the matrix method to analyze
whether state s is SEQ stable for a DM.

Theorem 4.6 State s ∈ S is SEQ for DM i iff MSEQ
i (s, s) = 0.

Proof Since

MSEQ
i (s, s) = (eTs J

+
i ) · [

(
E − sign(J+

j · (P−,=
i )T )

)
es]

=
|S|∑

s1=1

J+
i (s, s1)[1 − sign((eTs1 J

+
j ) · (

eTs P
−,=
i )T

)],

then MSEQ
i (s, s) = 0 holds iff

J+
i (s, s1)[1 − sign

(
(eTs1 J

+
j ) · (eTs P

−,=
i )T

)
] = 0,∀s1 ∈ S. (4.16)

It is clear that Eq.4.16 is equivalent to

(eTs1 J
+
j ) · (eTs P

−,=
i )T �= 0,∀s1 ∈ R+

i (s).

It implies that for any s1 ∈ R+
i (s), there exists at least one s2 ∈ R+

j (s1) with s �i s2.
�

Note that the SEQ matrix is identical to the GMR matrix except that DM j’s UM
matrix Jj is replaced by the UI matrix J+

j .
Theorem 4.6 proves that this matrix method, called matrix representation of SEQ

stability, is equivalent to the logical representation for two-DM SEQ stability in
Definition 4.5. To identify DM i’s SEQ stability at s for DM i , one only needs to
determine whether the diagonal entry MSEQ

i (s, s) of i’s SEQ matrix is zero. If so, s
is SEQ stable for i ; otherwise, s is SEQ unstable for DM i .
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Example 4.10 (Matrix Representation of SEQ Stability for the Sustainable Devel-
opment Model) The logical representation of SEQ stability for the sustainable devel-
opment game was presented in Example 4.5. First, one uses Eq.4.9 to obtain J+

i ,
and Eqs. 4.12 and 4.13 for P−,=

i , for i = 1, 2. DM i’s SEQ matrix is

J+
i · [E − sign

(
J+
j · (P−,=

i )T
)
],

where i, j = 1, 2. Therefore,

MSEQ
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ and MSEQ

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MSEQ
1 (1, 1) = MSEQ

1 (2, 2) = 0 and MSEQ
1 (3, 3) = MSEQ

1 (4, 4) = 1, then
s1 and s2 are SEQ stable, while s3 and s4 are SEQ unstable, for DM 1. Similarly,
because MSEQ

2 (1, 1) = MSEQ
2 (3, 3) = 0 and MSEQ

2 (2, 2) = MSEQ
2 (4, 4) = 1, s1

and s3 are SEQ stable, and s2 and s4 are SEQ unstable, for DM 2. These results are
identical to those in Example 4.5 obtained by logical representation.

4.3.3 Matrices to Construct Reachable Lists of a Coalition

The aim of a stability analysis is to find the states of a graph model that are stable
for all DMs, under appropriate stability definitions, or equilibria. As discussed in
Sect. 4.2.2, the reachable lists of coalition H by sequences of the legal UMs and the
legal UIs, RH (s) and R+

H (s), are essential ingredients for stability analysis and the
construction of these two sets is a complicated process. In this section, the reachability
matrices MH and M+

H are proposed to provide an algebraic method of constructing
RH (s) and R+

H (s) (Xu et al. 2010b).

4.3.3.1 Several Extended Definitions in the Graph Model

First, the adjacency matrix and the incidence matrix of a graph (Godsil and Royle
2001) are extended to a graph model. Let m = |S| and l = |A|.
Definition 4.14 For a graph model G, the UM adjacency matrix and the UI adja-
cency matrix for H ⊆ N and H �= ∅ are m × m matrices JH and J+

H with (s, q)

entries

JH (s, q) =
{
1 if di (s, q) ∈ A for some i ∈ H,

0 otherwise,
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and

J+
H (s, q) =

{
1 if di (s, q) ∈ A+ for some i ∈ H,

0 otherwise,

for s, q ∈ S in which di (s, q) denotes arc (s, q) controlled by some DM i .

The adjacencymatrix for any coalition H has been defined. For example, if H = i ,
then JH (s, q) reduces to Ji (s, q) that represents the adjacency relation between s
and q in DM i’s graph.

Definition 4.15 For the graph model, the UM incidence matrix and the UI inci-
dence matrix are m × l matrices B and B+, with (s, a) entries

B(s, a) =
⎧
⎨

⎩

−1 if a = di (s, x) ∈ A for some i ∈ N and some x ∈ S,

1 if a = di (x, s) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

and

B+(s, a) =
⎧
⎨

⎩

−1 if a = di (s, x) ∈ A+ for some i ∈ N and some x ∈ S,

1 if a = di (x, s) ∈ A+ for some i ∈ N and some x ∈ S,

0 otherwise,

where s ∈ S and a ∈ A.

The extension of incidence matrix has two versions, both including and excluding
preference information.

According to the signs of the entries, the UM incidence matrix can be separated
into the UM in-incidence and out-incidence matrices.

Definition 4.16 For a graph model G, the UM in-incidence matrix and the UM
out-incidence matrix are the m × l matrices Bin and Bout with (s, a) entries

Bin(s, a) =
{
1 if a = di (x, s) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

and

Bout (s, a) =
{
1 if a = di (s, x) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

where s ∈ S and a ∈ A.

It is obvious that Bin = (B + |B|)/2 and Bout = (|B| − B)/2, where |B| denotes
the matrix in which each entry equals the absolute value of the corresponding entry
of B. The UI in-incidence matrix B+

in and the UI out-incidence matrix B+
out can

be defined similarly.
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The relationships among the UM, UI adjacency matrices and the UM, UI in-
incidence and out-incidence matrices are described as follows:

Theorem 4.7 In a graph model G, JH and J+
H denote the UM and the UI adjacency

matrices for H, Bin and Bout denote theUM in-incidence and out-incidencematrices,
and B+

in and B+
out indicate the UI in-incidence and out-incidence matrices. Then

JH = Bout · IH · (Bin)
T and J+

H = B+
out · IH · (B+

in)
T ,

where IH is the l × l diagonal matrix in which IH (k, k) = 1 if ak = di (s, q) and
i ∈ H, otherwise IH (k, k) = 0. Note that the diagonal matrix IH has 1’s as the
(k, k) entry if and only if the arc ak is controlled by DM i; otherwise all diagonal
entries, and, of course, all non-diagonal entries are zeros.

Fromalgebraic graph theory (Godsil andRoyle 2001), Theorem4.7 can follow easily.
Two important matrices to link conflict evolution that will be introduced in Chap. 9
and conflict resolution in the graph model are proposed as follows:

Definition 4.17 For the graph model G, the legal UM arc-incidence matrix L JH
and the legal UI arc-incidence matrix L J+

H for coalition H are the l × l matrices
with (a, b) entries

L JH (a, b) =
⎧
⎨

⎩

1 if edge a is incident on edge b in IG(G) for a, b ∈ A,

and a and b controlled by different DMs in H ,

0 otherwise,

and

L J+
H (a, b) =

⎧
⎨

⎩

1 if edge a is incident on edge b in IG(G) for a, b ∈ A+,

and a and b controlled by different DMs in H ,

0 otherwise.

Note that if H = N , then L JN and L J+
N are written as L J and L J+, respectively.

Let Di and D+
i denote the l × l diagonal matrices with (k, k) entries

Di (k, k) =
{
1 if ak = di (s, q) for s, q ∈ S and ak ∈ A,

0 otherwise,

and

D+
i (k, k) =

{
1 if ak = di (s, q) for s, q ∈ S and ak ∈ A+,

0 otherwise.

Based on Definitions 4.16 and 4.17, the legal UM and the legal UI arc-incidence
matrices can be obtained by the following theorem.
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Theorem 4.8 For the graph model G, let Bin and Bout be the UM in-incidence and
the UM out-incidence matrices, and B+

in and B+
out denote the UI in-incidence and the

UI out-incidence matrices. Then, the legal UM arc-incidence matrix L JH and the
legal UI arc-incidence matrix L J+

H for coalition H satisfy that

L JH =
∨

i, j∈H,i �= j

[(Bin · Di )
T · (Bout · Dj )],

and

L J+
H =

∨

i, j∈H,i �= j

[(B+
in · D+

i )T · (B+
out · D+

j )].

Proof LetM = ∨

i, j∈H,i �= j
[(Bin · Di )

T ·(Bout · Dj
)]. Thus, any entry (ak, ah) ofmatrix

M can be expressed as

M(ak, ah) = sign[
∑

i, j∈H,i �= j

m∑

q=1

(Bin(q, ak) · Di (k, k) · Bout (q, ah) · Dj (h, h))],

for ak, ah ∈ A and q ∈ S.
Hence, M(ak, ah) �= 0 iff Bin(q, ak) · Bout (q, ah) �= 0 for some q ∈ S such that

ak = di (s, q) and ah = d j (q, u) for s, u ∈ S, and i, j ∈ H and i �= j . This implies
that M(ak, ah) �= 0 iff edge ak is incident on edge ah in IG(G) and ak and ah are
controlled by different DMs in H (see Fig. 4.5). Therefore, based on the definition
of the matrix L J , M(ak, ah) �= 0 iff L JH (ak, ah) �= 0. Since M and L JH are 0–1
matrices, then, L JH = ∨

i, j∈H,i �= j
[(Bin · Di )

T · (Bout · Dj )] follows.
The proof of L J+

H = ∨

i, j∈H,i �= j
[(B+

in · D+
i )T · (B+

out · D+
j )] is similar. �

It is obvious that unilateral moves on the branches of paths will endwhen the same
arc appears twice. Generally, if there is no new appropriate arc produced, then the
corresponding joint moves will stop. Therefore, the following Lemma 4.1 is obvious.
Let l = |A|, l+ = |A+| in the following lemma.

Lemma 4.1 For the graphmodel G, let H ⊆ N. RH (s) and R+
H (s) are the reachable

lists of H by the legal sequences of UMs and UIs from s. The δ1 and δ2 symbols are
the numbers of iteration steps required to find RH (s) and R+

H (s), respectively. Then

δ1 ≤ l and δ2 ≤ l+.

Fig. 4.5 ak incident on ah in
IG(G)
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Lemma 4.2 For a graph model G, let t be a nonnegative integer, and fix a, b ∈ A.
Then, (L JH )t (a, b), the (a, b) entry of matrix (L JH )t equals the number of legal
UM arc-by-arc paths of length t in G for H, from edge a to edge b.

Proof This Lemma is proved using induction on t .

When t = 1, the result is obvious. Note that (L JH )1(a, b) equals the number of
arcs from a to b.

Assume that when t = r , the result holds. Then, when t = r + 1,

(L JH )r+1(ak, ah) =
l∑

w=1
[(L JH )r (ak, aw) · L JH (aw, ah)]. By the induction hypoth-

esis, (L JH )r (ak, aw) denotes the number of legal paths by UMs from ak to aw with
length r , and L JH (aw, ah) equals the number of legal paths by UMs from aw to
ah with length 1. Thus, (L JH )r (ak, aw) · L JH (aw, ah) denotes the number of legal

paths from ak to ah through aw with length r + 1. Therefore,
l∑

w=1
[(L JH )r (ak, aw) ·

L JH (aw, ah)] is the total number of legal paths from ak to ah by UMs with length
r + 1.

Therefore, (L JH )t (a, b) equals the number of legal UM arc-by-arc paths for H
from edge a to edge b with length t . �

Note that if a = di (u, s) and b = d j (q, v) for u, s, q, v ∈ S and i, j ∈ H , then
the number of legal UM state-by-state paths for H from state u to state v of length
t + 1 is at least (L JH )t (a, b). In fact, (L JH )t (a, b) is the number of legal paths of
length t from u to v with initial edge a and terminal edge b. Similarly, (L J+

H )t (a, b)
denotes the number of legal UI arc-by-arc paths for H in the G from edge a to edge
b with length t . For example, Fig. 4.6a depicts an arc-by-arc path from arc a1 to arc
a4 with length 5 in the graph model G presented in Fig. 4.3, where a1 = d1(s1, s2)
and a4 = d2(s3, s6). Figure4.6b presents the corresponding state-by-state path from
s1 to s6 with initial edge a1 and terminal edge a4, which is of length 6.

The UM incidence matrix B and the UI incidence matrix B+ depict unilateral
move and unilateral improvement in one-step. The legal UM arc-incidence matrix
L J and the legal UI arc-incidence matrix L J+ can trace all evolutionary paths of
length greater than 1 by UMs and UIs in a strategic conflict, respectively. The details
of the evolution of a conflict will be discussed in Chap. 9.

Fig. 4.6 The arc-by-arc and
the state-by-state UM paths

(b)

(a)



4.3 Matrix Representation of Stability Definitions 137

Example 4.11 Determine the legal UM and the legal UI arc-incidence matrices for
the graph model G presented in Fig. 4.3 (Xu et al. 2010b).

Based on Fig. 4.3, the UM incidence matrix B is

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0 0 0
1 −1 −1 0 0 0 1
0 1 1 −1 −1 0 0
0 0 0 0 1 −1 −1
0 0 0 0 0 1 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,

Bin =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Bout =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then Theorem 4.8 implies that the legal UM arc-incidence and the legal UI arc-
incidence matrices are

L J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and LJ+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Searching the nonzero entries of matrix L J produces the UM arc-by-arc evolu-
tionary path from a1 to a4 as presented in Fig. 4.7. Since there are two nonzero entries
in the seventh row of matrix L J , as seen in Fig. 4.7, branches a2 and a3 appear fol-
lowing a7. However, arc a3 has been passed in the path, so the branch with a3 ends.
Similarly, the branch following arc a2 with arc a5 stops. However, because a4 is not
a UI arc, a4 cannot be reached by the legal UI paths so that s6 is not reachable by the
legal sequence of UIs from s1.

Fig. 4.7 The arc-by-arc
evolutionary paths from a1
to a4
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4.3.3.2 Reachability Matrices to Construct Reachable Lists
of a Coalition

Definition 4.18 For the graph model G, the t-UM reachability matrix and the
t-UI reachability matrix for H , where t = 1, 2, 3, · · · , are them×m matrices with
(s, q) entries

M (t)
H (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal UMs,
0 otherwise,

and

M (t,+)
H (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal UIs,
0 otherwise.

Obviously, M (1)
H = JH and M (1,+)

H = J+
H . The t-UM and the t-UI reachability

matrices for coalition H can be constructed by the following lemma.

Lemma 4.3 For the graph model G, let Bin and Bout denote the in-incidence and
out-incidence matrices, respectively. L JH and L J+

H are the legal UM and the legal
UI arc-incidence matrices for H. Then, for t ≥ 2, the t-UM reachability and the
t-UI reachability matrices for H can be expressed as

M (t)
H = sign[Bout · (L JH )t−1 · BT

in] and M (t,+)
H = sign[B+

out · (L J+
H )t−1 · (B+

in)
T ].

Proof Based on Definition 4.18, M (t)
H (u, v) = 1 iff state v is reachable by coalition

H from state u in exactly t legal unilateral moves. Let (L JH )t−1 = Q and W =
sign[Bout · Q · BT

in]. Then W (u, v) �= 0 iff there exist Q(a, b) �= 0 such that
a, b ∈ A, a = di (u, s), and b = d j (q, v) for i, j ∈ H , where s, q, u, v ∈ S. Using
Lemma 4.2, Q(a, b) �= 0 implies that state v can be attained by H from state u in
exactly t legal UMs. Therefore, M (t)

H (u, v) = 1 iff W (u, v) �= 0. Since M (t)
H and W

are 0–1 matrices, M (t)
H = sign[Bout · (L J )t−1 · BT

in].
The proof of M (t,+)

H = sign[B+
out · (L J+

H )t−1 · (B+
in)

T ] is similar. �

Definition 4.19 For the graph model G, the UM reachability matrix and the UI
reachability matrix for H are the m × m matrices MH and M+

H with (s, q) entries

MH (s, q) =
{
1 if q ∈ RH (s),
0 otherwise,

and

M+
H (s, q) =

{
1 if q ∈ R+

H (s),
0 otherwise,

respectively.
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It is clear that RH (s) = {q : MH (s, q) = 1} and R+
H (s) = {q : M+

H (s, q) = 1}.
If RH (s) and R+

H (s) are written as 0–1 row vectors, then

RH (s) = eTs · MH and R+
H (s) = eTs · M+

H,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the reachability matrices for coalition H , MH and M+

H ,
can be used to construct the reachable lists of H from state s, RH (s) and R+

H (s).
The reachability matrices for coalition H can now be obtained by the following

lemma.

Lemma 4.4 For the graph model, let M (t)
H and M (t,+)

H be the t-UM and the t-UI
reachability matrices. Then, the UM and the UI reachability matrices for H satisfy
that

MH =
l∨

t=1

M (t)
H and M+

H =
l+∨

t=1

M (t,+)
H .

Proof Let C =
l∨

t=1
M (t)

H . Based on the definition of MH , MH (u, v) �= 0 iff v is

reachable by H from u with a sequence of legal UMs. By Lemma 4.1, l ≥ δ1.
Hence, MH (u, v) �= 0 iff there exists 1 ≤ t0 ≤ δ1 ≤ l such that v is reach-
able by H from u with t0 legal UMs. Based on Definition 4.18, this implies that
M (t0)

H (u, v) = 1. Therefore, MH (u, v) �= 0 iffC(u, v) �= 0. Since MH andC are 0–1

matrices, MH =
l∨

t=1
M (t)

H holds. The proof of M+
H =

l+∨

t=1
M (t,+)

H can be carried out

similarly. �

Lemma 4.5 For the graph model G, L JH and L J+
H denote the legal UM arc-

incidence matrix and the legal UI arc-incidence matrix for H, respectively. Then

(1) (L JH + I )n =
n∑

t=0
Ct
n · (L JH )t ,

(2) (L J+
H + I )n =

n∑

t=0
Ct
n · (L J+

H )t ,

where the constant Ct
n =

(
n
t

)

= n·(n−1)···(n−t+1)
t ! , (L JH )0 = (L J+

H )0 = IH , and I

is the identity matrix.

The above lemma is an obvious result of matrix theory. Based on the above dis-
cussions, the relations among the reachability matrices and the legal arc-incidence
matrices for coalition H can now be established by the following theorem.

Theorem 4.9 For the graph model G, L JH and L J+
H are the legal UM and the

legal UI arc-incidence matrices for H, respectively. The UM and UI reachability
matrices for H, MH and M+

H , can be obtained by
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MH = sign[Bout · (L JH + I )l−1 · BT
in] and M+

H = sign[B+
out · (L J+

H + I )l
+−1 · (B+

in)
T ],

where I is the identity matrix.

Proof Let Q = sign[Bout · (L JH + I )l−1 · BT
in]. By Lemma 4.5 and Ct

l−1 > 0, then

Q = sign[
l−1∑

t=0

Ct
l−1 · Bout · (L JH )t · BT

in] = (Bout · IH · BT
in)

∨
sign[

l−1∑

t=1

Bout · (L JH )t · BT
in].

Based on Lemma 4.3 and Theorem 4.7,

Q = JH
∨

(
l−1∨

t=1

M (t+1)
H

)

=
l∨

t=1

M (t)
H .

Based on Lemma 4.4, MH = sign[Bout · (L JH + I )l−1 · BT
in] follows.

The proof of M+
H = sign[B+

out · (L A+ + I )l
+−1 · (B+

in)
T ] is similar. �

The aim of a stability analysis is to find the equilibria of a graph model that
are stable for all DMs under appropriate stability definitions. The reachable lists
of coalition H by the sequences of the legal UMs and the legal UIs, RH (s) and
R+
H (s), are essential components for stability analysis and the construction of the

two state sets is a complicated process (Fang et al. 1993). An algebraic method for
constructing RH (s) and R+

H (s) using the reachability matrices MH and M+
H based

on the incidence matrix B is developed here. In Chap.5, another algebraic approach
based on the adjacency matrix J is presented in Theorem 5.20.

Example 4.12 Fig. 4.3 shows a graph model with DM set N = {1, 2, 3, 4} and state
set S = {s1, s2, s3, s4, s5, s6}. TheUMreachabilitymatrixMN is calculated according
to Theorem 4.9 by

MN = sign[Bout · (L J + I )l−1 · BT
in] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 1
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Bout , Bin and L J are provided by Example 4.11. Similarly, the UI reachability
matrix M+

N is obtained by

M+
N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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If s = s1 is selected as the status quo state, then the reachable lists of H = N
from s1, RN (s1) and R+

N (s1), can be constructed by RH (s1) = {q : MH (s1, q) = 1}
and R+

H (s1) = {q : M+
H (s1, q) = 1}. Therefore, RN (s1) = {s2, s3, s4, s6}. R+

N (s1) =
{s2, s3, s4}.

Theorem 4.9 provides an algebraic method to construct the reachable lists of a
coalition. Thematrix representation of stability definitions can be extended tomodels
including more than two DMs, which is the objective of the next subsection.

4.3.4 n-Decision Maker Case

Equivalent matrix representations of the logical definitions for Nash stability, GMR,
SMR, and SEQ can be determined directly by using the relationship that has been
established between matrix elements and the state set of a graph model, and by using
preference relation matrices among the states.

Let i ∈ N , |N | = n, and |S| = m in the following theorems. Nash stability in
n-DMmodels is identical to two-DM cases because Nash stability does not consider
opponents’ responses.

It should be pointed out that the following stability matrices for n-DMs use the
same notation as that presented in Sect. 4.3.2 for two-DMs. For general metarational-
ity, DM i will take into account the opponents’ possible responses, which are the
legal sequence of UMs by members of N\{i}. For i ∈ N , find DM i’s UI adjacency
matrix J+

i and the UM reachability matrix MN\{i} using Theorem 4.9 for which
H = N\{i}. Define the m × m matrix MGMR

i as

MGMR
i = J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)].

Theorem 4.10 State s ∈ S is GMR for DM i, denoted by s ∈ SGMR
i , iff MGMR

i
(s, s) = 0.

Proof Since the diagonal element of matrix MGMR
i

MGMR
i (s, s) = 〈(J+

i )T es,
(
E − sign

(
MN\{i} · (P−,=

i )T
))
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)],

then MGMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)] = 0,∀s1 ∈ S.
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This implies that MGMR
i (s, s) = 0 iff

(eTs1MN\{i}) · (eTs P
−,=
i )T �= 0,∀s1 ∈ R+

i (s). (4.17)

Equation4.17 means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S such that the

m-dimensional row vector, eTs1 · MN\{i}, with s2th element 1 and the m-dimensional
column vector, (P−,=

i )T · es , with s2th element 1.
Therefore, MGMR

i (s, s) = 0 iff for any s1 ∈ R+
i (s), there exists at least one

s2 ∈ RN\{i}(s1) with s �i s2. �
For symmetric metarationality, the n-DMmodel is similar to the two-DMmodel.

The only modification is that responses come fromDM i’s opponents instead of from
a single DM. Let

G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+

i )T
)],

then define the m × m matrix MSMR
i as

MSMR
i = J+

i · [E − sign(MN\{i} · G)].

Theorem4.11 States ∈ S isSMRforDMi,denotedbys ∈ SSMR
i , iff MSMR

i (s, s) = 0.

Proof Since the diagonal element of matrix MSMR
i

MSMR
i (s, s) = 〈(J+

i )T · es,
(
E − sign(MN\{i} · G)

)
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 ,G · es〉
)],

then MSMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 ,G · es〉
)] = 0,∀s1 ∈ S.

This means that MSMR
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (G · es) �= 0,∀s1 ∈ R+
i (s). (4.18)

Let G(s2, s) denote the (s2, s) entry of matrix G. Since

(eTs1MN\{i}) · (G · es) =
m∑

s2=1

MN\{i}(s1, s2) · G(s2, s),

then Eq.4.18 holds iff for any s1 ∈ R+
i (s), there exists s2 ∈ RN\{i}(s1) such that

G(s2, s) �= 0.
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Because G(s2, s) = P−,=
i (s, s2)[1 − sign(

m∑

s3=1
Ji (s2, s3)P

+
i (s, s3))], then

G(s2, s) �= 0 implies that for s2 ∈ RN\{i}(s1),

P−,=
i (s, s2) �= 0 (4.19)

and
m∑

s3=1

Ji (s2, s3)P
+
i (s, s3) = 0. (4.20)

Equation4.19 is equivalent to the statement that, ∀s1 ∈ R+
i (s), ∃s2 ∈ RN\{i}(s1) such

that s �i s2. Equation4.20 is the same as the statement that, ∀s1 ∈ R+
i (s), ∃s2 ∈

RN\{i}(s1) such that P+
i (s, s3) = 0 for ∀s3 ∈ Ri (s2).Based on the definition ofm×m

matrix P+
i , one knows that P+

i (s, s3) = 0 ⇐⇒ s �i s3.
Therefore, the above discussion is concluded that MSMR

i (s, s) = 0 iff for any
s1 ∈ R+

i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and s �i s3 for all
s3 ∈ Ri (s2). �

Sequential stability examines the credibility of the sanctions byDM i’s opponents.
For i ∈ N , find theUI reachabilitymatrixM+

N\{i} usingTheorem4.9.Define them×m

matrix MSEQ
i as

MSEQ
i = J+

i · [E − sign
(
M+

N\{i} · (P−,=
i )T

)].

Theorem 4.12 State s ∈ S is SEQ for DM i, denoted by s ∈ SSEQ
i , iff MSEQ

i
(s, s) = 0.

Proof Since the diagonal element of matrix MSEQ
i

MSEQ
i (s, s) = 〈(J+

i )T · es,
(
E − sign

(
M+

N\{i} · (P−,=
i )T

))
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(M+
N\{i})

T · es1 , (P−,=
i )T · es〉

)],

then MSEQ
i (s, s) = 0 iff J+

i (s, s1)[1 − sign
(〈(M+

N\{i})T · es1 , (P−,=
i )T · es〉

)] =
0,∀s1 ∈ S. This implies that MSEQ

i (s, s) = 0 iff

(eTs1M
+
N\{i}) · (eTs · P−,=

i )T �= 0,∀s1 ∈ R+
i (s). (4.21)

Equation4.21 means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S, such that the

m-dimensional row vector, eTs1 · M+
N\{i}, with s2th element 1 and the m-dimensional

column vector, (P−,=
i )T · es , with s2th element 1.
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Therefore, MSEQ
i (s, s) = 0 iff for any s1 ∈ R+

i (s), there exists at least one
s2 ∈ R+

N\{i}(s1) with s �i s2. �

When n = 2, the DM set N becomes to {i, j} in Theorems 4.10–4.12, and the
reachable lists for H = N \ {i}by legal sequences ofUMsandUIs from s1, RN\{i}(s1)
and R+

N\{i}(s1), degenerate to R j (s1) and R+
j (s1), DM j’s corresponding reachable

lists from s1. Thus, Theorems 4.10–4.12 are reduced to Theorems 4.4–4.6.

4.4 Computational Complexity

The proposed matrix method raises the question of computational complexity, which
is the number of steps or arithmetic operations required to solve a computational
problem. In this section, the computational complexities of MRSC and the graph
model stability definitions are compared using generalmetarationality as an example.

4.4.1 Two Decision Maker Case

Recall the logical representation of GMR stability. State s is GMR for DM i iff for
every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with s �i s2. Let m = |S|.
The following procedures are utilized to calculate DM i’s GMR stability.

• It takes at most m operations (or comparisons) to determine the state set R+
i (s);

• for every s1 ∈ R+
i (s), it takes at most m operations (comparisons) to find R j (s1);

• for s2 ∈ R j (s1), it makes at most m − 1 preference comparisons about states s
and s2.

Hence, using the logical definition to calculate DM i’s GMR stability for state s will
take at most m + (m − 1)(m + m − 1) = 2m2 − 2m + 1 comparisons.

Recall DM i’s matrix representation of GMR stability for state s. State s is GMR
for DM i iff MGMR

i (s, s) = 0, where MGMR
i = J+

i

(
E − sign

(
Jj · (P−,=

i )T
))

. By
the proof of Theorem 4.4, one knows that MGMR

i (s, s) = 0 iff

m∑

s1=1

J+
i (s, s1) · (

1 − sign((eTs1 · Jj ) · (eTs · P−,=
i )T )

) = 0. (4.22)

It is easy to see that Eq.4.22 takes 2m2 multiplication and addition operations. Com-
paring the computational complexities of these two methods to calculate GMR sta-
bility, one finds that their computational complexities are O(m2) at the same level.
Note that the computational complexity of GMR stability is considered for the worst
case. For logical representation of the GMR stability, the actual number of compar-
isons required is often smaller than 2m2 − 2m + 1. For matrix representation, the
standard multiplication of two m−dimensional vectors is used, so it requires O(m2)

arithmetic operations.
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4.4.2 n-Decision Maker Case

In n-DM models, GMR stability is also selected as an example for analysis of the
computational complexity of the proposed matrix method. According to Theorem
4.10,GMRstability definition is formulated usingmatrices as follows. State s isGMR
forDM i iffMGMR

i (s, s) = 0,whereMGMR
i = J+

i ·[E−sign
(
MN\{i}·(P−,=

i )T
)].By

Theorem 4.9, one can estimate the computational complexity of the UM reachability
matrix MN . It is less than δ · (n − 1) · O(m3), where δ is the number of iterations,
n = |N | is the number of DMs, and m is the number of states. Let l = | ⋃

i∈N
Ai |.

Then δ ≤ l using Lemma 4.1. Therefore, the computational complexity to calculate
DM i’s GMR stability for state s in n-DM models is less than

l · (n − 1) · O(m3) + O(m2) = l · (n − 1) · O(m3),

which presents a polynomial-time effective algorithm.
Many researchers are now attempting to develop faster algorithms for matrix

operations. For example, for the multiplication of two m ×m matrices, the standard
method requires O(m3) arithmetic operations, but the Strassen algorithm (Strassen
1969) requires only O(m2.807) operations. Coppersmith andWinograd’s work (1990)
shows that the computational complexity of matrix multiplication was decreased to
O(m2.376). In fact, some researchers believe that an optimal algorithm for multiply-
ingm×m matrices will reduce the complexity to O(m2) (Cohn et al. 2005). Table4.6
shows that the computational complexity ofMRSC can be reduced using the Strassen
or Coppersmith−Winograd algorithm. So far, the matrix representation of solution
concepts has been established in multiple decision maker graph models for simple
preference. As shown above, the matrix method for calculating the individual sta-
bility and equilibria is attractive from a computational point of view. Therefore, the
proposed matrix method not only is propitious for theoretical analysis, but also has
the potential to deal with large and complicated conflict problems.

In Sect. 4.3, matrix expressions are used to develop an explicit algebraic form con-
flict model that facilitates stability calculations. In following section, the efficiency
of the matrix approach is illustrated using the Elmira conflict.

Table 4.6 The computational complexity of GMR stability using MRSC

Input Output Algorithm Complexity

Ji , J
+
i , E, and P−,=

i MGMR
i (s, s) Standard matrix

multiplication
O(δ · n · m3)

Strassen algorithm O(δ · n · m2.807)

Coppersmith−Winograd
algorithm

O(δ · n · m2.376)
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4.5 Application: Elmira Conflict

As an introduction on how to formally investigate conflict taking place in the real-
world, the Elmira groundwater contamination dispute was utilized in Sects. 1.2.2
(Modeling), 1.2.3 (Stability Analysis) and 1.2.4 (Follow-up Analysis). Here, as well
as other sections in the book, this interesting dispute is utilized to explain and demon-
strate technical definitions and concepts.

Briefly, Elmira, a small agricultural town renowned for its annual maple syrup
festival, is located in southwestern Ontario, Canada. In 1989, the Ontario Ministry
of Environment (MoE) tested the underground aquifer supplying water to Elmira,
and determined that it was polluted by N-nitroso demethylamine (NDMA). A local
pesticide and rubber manufacturer, Uniroyal Chemical Ltd. (UR), was identified
as the prime suspect, since NDMA was a by product of its production process.
A Control Order was issued by MoE requiring UR to take expensive measures to
remedy the contamination. UR immediately appealed the control order. The Local
Government (LG), consisting of the Regional Municipality of Waterloo and the
Township of Woolwich, sided with MoE, but sought legal advice from independent
consultants on its possible role in resolving this conflict (see Hipel et al. (1993) and
Kilgour et al. (2001) for more details).

Hipel et al. (1993) established a graph model for this conflict, comprised of three
DMs and five options, as follows:

• Ministry of Environment (MoE): its only option is tomodify the Control Order to
make it more acceptable to UR;

• Uniroyal Chemical Ltd. (UR): its options are to delay the appeal process, accept
the Control Order in its current form, or abandon the Elmira operation; and

• Local Government (LG): its only option is to insist that the original Control Order
be applied.

Given the five options in the model, there are 32 mathematically possible states. But
many of them are infeasible for a variety of reasons; the nine feasible states are listed
in Table4.7 (where a “Y” indicates that an option is selected by the DM controlling
it, an “N” means that the option is not chosen, and a dash “−” denotes that the entry

Table 4.7 Options and feasible states for the Elmira model

MoE

1. Modify N Y N Y N Y N Y −
UR

2. Delay Y Y N N Y Y N N −
3. Accept N N Y Y N N Y Y −
4. Abandon N N N N N N N N Y

LG

5. Insist N N N N Y Y Y Y −
State number s1 s2 s3 s4 s5 s6 s7 s8 s9
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Fig. 4.8 Integrated graph model for the Elmira conflict

may be “Y” or “N”). The integrated graph model of the Elmira conflict is shown
in Fig. 4.8, in which labels on the arcs indicate the DM controlling the move and
preference information over the states is below the integrated graph.

4.5.1 Procedures for Calculating Stability

4.5.1.1 Finding Stable States from the Definitions

Let N = {1, 2, 3} be the set of DMs (1 = MoE, 2 = UR, and 3 = LG). As an exam-
ple, DM 3’s SMR stability for state s1 is analyzed using the logical representation
presented in Definition 4.10. The procedures are as follows:

1. DM 3’s reachable list from s1 by UIs is R+
3 (s1) = {s5};

2. The reachable list of coalition H = N \ {3} from s5 by UMs is RH (s5) =
{s6, s7, s8, s9};

3. s8 ∈ RH (s5) satisfies s1 �3 s8; also R3(s8) = {s4} and s1 �3 s4;
4. Therefore, s1 is SMR stable for DM 3 by Definition 4.10.

Other cases can be analyzed similarly. Since the Elmira conflict is modeled as a
standard graph model with simple preference, its stabilities can also be analyzed
using DSSGMCR II (Fang et al. 2003a, b). The stability results of the Elmira conflict
are presented in Table4.8 in which “

√
” denotes that this state is stable for DM 1 (or
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Fig. 4.9 The labeled graph for the Elmira conflict

MoE), DM 2 (or UR), or DM 3 (or LG) under the appropriate stability definitions,
and “Eq” means an equilibrium that is stable for the three DMs.

4.5.1.2 Finding Stable States from Matrix Representation

The labeled graph of the Elmira conflict, determined according to the Rule of Pri-
ority presented in Sect. 3.3.2, is depicted in Fig. 4.9. The procedures to calculate the
stabilities for the Elmira model using the matrix method are as follows:

1. For i = 1, 2, and 3, using Fig. 4.8, determine DM i’s adjacency matrix Ji and
preference matrix P+

i as presented in Tables4.9 and 4.10;
2. For i = 1, 2, and 3, using J+

i = Ji ◦ P+
i , calculate the UI adjacency matrices;

3. For i = 1, 2, and 3, using P−,=
i = E − I − P+

i , calculate the preference
matrices P−,=

i ;
4. Construct the UM in-incidence and out-incidence matrices Bin and Bout , and the

UI in-incidence and out-incidence matrices B+
in and B+

out , based on the labeled
graph in Fig. 4.9 and Definition 4.16;

5. Determine the UM arc-incidence and the UI arc-incidence matrices for H , L JH
and L J+

H using Theorem 4.8 by

L JH =
∨

i, j∈H,i �= j

[(Bin · Di )
T · (Bout · Dj )] and L J+

H =
∨

i, j∈H,i �= j

[(B+
in · D+

i )T · (B+
out · D+

j )];

6. Calculate the reachability matrices MH and M+
H using Theorem 4.9 by

MH = sign[Bout ·(L JH + I )l−1 ·BT
in] and M+

H = sign[B+
out ·(L J+

H + I )l
+−1 ·(B+

in)
T ]

for l = 24 and l+ = 10 as presented in Table4.11;
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Table 4.12 Stability matrices for the Elmira conflict

Stability matrices

MNash
i = J+

i · E
MGMR

i = J+
i · [E − sign

(
MN\{i} · (P−,=

i )T
)
]

MSMR
i = J+

i · [E − sign(MN\{i} · Q)] with
Q = (P−,=

i )T ◦ [E − sign
(
Ji · (P+

i )T
)]

MSEQ
i = J+

i · [E − sign
(
M+

N\{i} · (P−,=
i )T

)
]

Table 4.13 Diagonal entries of stability matrices for the Elmira conflict

State number Nash GMR SMR SEQ

MoE UR LG MoE UR LG MoE UR LG MoE UR LG

s1 0 0 1 0 0 0 0 0 0 0 0 1

s2 0 1 1 0 1 0 0 1 0 0 1 0

s3 0 1 1 0 1 0 0 1 0 0 1 0

s4 0 0 1 0 0 0 0 0 0 0 0 1

s5 0 0 0 0 0 0 0 0 0 0 0 0

s6 0 1 0 0 1 0 0 1 0 0 1 0

s7 0 1 0 0 1 0 0 1 0 0 1 0

s8 0 0 0 0 0 0 0 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0

7. Calculate the stability matrices using themathematical formulations in Table4.12
and present their diagonal entries in Table4.13; and

8. Analyze the stabilities of the conflict using Theorems 4.3 and 4.10–4.12 based
on the information in Table4.13.

The stability results using the matrix approach are identical to those obtained using
logical definitions and presented in Table4.8.

4.5.2 Analysis of Stability Results

The reachability matrices, MH and M+
H , are analyzed first. Using Table4.11 with

H = N \ {1}, one has:

eT4 · MH = (0, 0, 0, 0, 0, 0, 0, 1, 1).

This means that RH (s4) = {s8, s9}, i.e. states s8 and s9 can be reached from the status
quo s = s4 by legal sequences of UMs by DMs in H = {2, 3}. Similarly,

eT4 · M+
H = (0, 0, 0, 0, 0, 0, 0, 1, 0),
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which indicates that R+
H (s4) = {s8}, i.e. s8 can be reached from status quo s = s4 by

legal UI sequences for H = {2, 3}. It is obvious that if RH (s) and R+
H (s) are written

as 0–1 row vectors, respectively, then

RH (s) = eTs · MH and R+
H (s) = eTs · M+

H .

After the reachabilitymatrices have been determined, stability analysis can be carried
out using the stability matrices shown in Table4.12. For example, the diagonal vector
ofDM2’sGMRstabilitymatrix, diag(MGMR

2 ) = (0, 1, 1, 0, 0, 1, 1, 0, 0)T indicates
that states s1, s4, s5, s8, and s9 are GMR stable for DM 2.

4.6 Important Ideas

The Graph Model for Conflict Resolution is a powerful tool to model, analyze, and
understand strategic conflicts. In this chapter, logical and matrix representations of
four basic stability definitions for simple preference are introduced for two-DM and
multiple-DM conflicts. The graph model solution concepts discussed in Sect. 4.2
are expressed logically, making them difficult for computer implementation. But the
matrix representation of solution concepts discussed in Sect. 4.3 handles this problem
efficiently. In particular, the matrix method

• facilitates the development of improved algorithms to assess the stabilities of states,
• is ideally suited for the theoretical study of conflict problems,
• has the advantage of easy calculation and computer implementation, compared
with the logical representation of solution concepts,

• provides explicit algebraic expressions that may be adapted for new solution con-
cepts, and

• can be readily integrated into a decision support system asmentioned in Sect. 2.3.3
and explained in detail in Chap.10.

Because of the nature of its explicit expressions, the matrix representation is easy to
employwith different kinds of preference structures and associatedmodified solution
concepts. For example, it could be extended to represent models with preference
uncertainty or with multiple degrees of preference, and to determine stabilities in the
graph model with these preference structures. The details are discussed in Chaps. 5
and 6, respectively.

4.7 Problems

4.7.1 In the tourism industry, two airlines are competingwith each other by reducing
the price to obtain more market share. Each airline company can either reduce the
price (R) or do not reduce (D). The normal form of this conflict is as shown in
Table4.14.
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Table 4.14 The airline conflict in normal form

For this conflict, write the model in:

(a) Option form,
(b) Graph form, and
(c) Using logical form, calculate Nash, general metarational (GMR), symmetric

metarational (SMR), and sequential (SEQ) stability for each state and DM. Indi-
cate the equilibria and explain what they mean. Be sure to provide representative
examples of stability calculations in normal, option and graph forms.

4.7.2 For the airline conflict provided in Problem4.7.1, use the matrix formulation
to carry out the stability calculations for each state and each DM for Nash, GMR,
SMR, and SEQ stability. Determine the equilibria in this conflict and explain why
they make sense.

4.7.3 The normal form of the game for Prisoner’s Dilemma is given in Problem3.5.1
in the previous chapter. Determine Nash stability for each of the four states and each
of the two DMs. Does Nash stability predict a Nash equilibrium? What obvious
equilibrium was missed? Howard (1971) as well as Fraser and Hipel (1979, 1984)
refer to this as a breakdown of rationality. This breakdown provided the motivation
for Howard to develop the solution concepts of GMR and SMR, and for Fraser and
Hipel to propose the SEQ stability definition.

4.7.4 The normal form of the game of Chicken is presented in Problem3.5.4. Deter-
mine which states are Nash stable for each of the two DMs. Are there any Nash
equilibria? Which states do you think should be equilibria? The failure of not having
a Nash equilibrium is referred to by Howard (1971) and also Fraser and Hipel (1979,
1984) as an example of the breakdown of rationality.

4.7.5 Using the logical form of the stability definitions, determine the stability of
each of the four states and each of the two DMs in the game of Prisoner’s Dilemma
with respect to Nash, GMR, SMR, and SEQ stability. Which states are equilibria?
Use the normal form of the game to explain your calculations and show the equilibria.
How has the breakdown of rationality referred to in Problem4.7.3 been resolved?
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4.7.6 By employing the logical form of the four stability definitions given in this
chapter, ascertain the stability of each of the four states for each of the two DMs
in Prisoner’s Dilemma. Show your calculations using the option form of the game.
Point out which states are equilibria and explain why this is important.

4.7.7 Utilizing the logical form of the solution concepts consisting of Nash, GMR,
SMR and SEQ stability, determine the stable states for each stability definition, DM
and state for the game of Prisoner’s Dilemma. Employ the graph form of the conflict
to explain your calculations. Comment on the importance of the equilibria that you
find.

4.7.8 In their 1984 book, Fraser andHipel (1984) introduce Tableau Form to “graph-
ically and intuitively” carry out stability calculations, especially for the case of Nash
and SEQ stability. Recall that SEQ stability is especially well-designed because a
DM will not harm himself or herself when levying a sanction against another DM’s
unilateral improvement (UI), since the move for the sanctioning DMmust be a UI for
him. Refer to Chaps. 2 and 3 in Fraser and Hipel’s (1984) book to see how Tableau
Form is written for the case of two and more than two DMs, respectively. Write
Prisoner’s Dilemma in Tableau Form and then carry out a stability analysis for Nash
and SEQ stability. Notice the way the Tableau Form naturally portray how moves
and countermoves work. How can Tableau Form be expanded to handle GMR and
SMR stability?

4.7.9 CalculateNash, GMR, SMRand SEQ stability using thematrix representation
of GMCR for Prisoner’s Dilemma for each DM and each of the four states.

4.7.10 For the game of Chicken shown in Problem3.5.4, calculate Nash, GMR,
SMR and SEQ stability for each state and DM using the matrix foumulation of
GMCR. Which states are equilibria? Has the breakdown of rationality referred to in
Problem4.7.4 been overcome?

4.7.11 As is also described in Problem3.5.10, a superpower nuclear confrontation
(Fang et al. 1993) can bemodeled using twoDMsand six options shown inTable4.15.
These options determine the five feasible states as listed in Table4.15. Note that state
W represents a nuclear winter. The graph model for this dispute is displayed in
Fig. 4.10.

(a) Analyze stabilities for this model using the logical representation of stability
definitions;

(b) Analyze stabilities for thismodel employing thematrix representation of stability
definitions.

4.7.12 The Rafferty-Alameda dams, in the Souris River basin in southern
Saskatchewan, Canada, were planned for flood control, recreation and cooling the
Shand generating plant (Roberts 1990). The province of Saskatchewan wanted to
finish the project promptly, seeking a license from the Environment Minister of the
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Table 4.15 Decision makers, options and feasible states for the superpower nuclear confrontation
conflict

DM 1

1. Peace (P) Y Y N N N

2. Conventional attack (C) N N Y Y N

3. Full nuclear attack (W) N N N N Y

DM 2

1. Peace (P) Y N Y N N

2. Conventional attack (C) N Y N Y N

3. Full nuclear attack (W) N N N N Y

States PP PC CP CC W

PP

CP CC

W

CCCP

PP PCPC

W

(a) Graph model for DM 1 (b) Graph model for DM 2
DM1 : PP 1 CP 1 CC 1 PC 1 W
DM2 : PP 2 PC 2 CC 2 CP 2 W

Fig. 4.10 The graph model of the superpower nuclear confrontation conflict

Federal Government. An environmental group, the Canadian Wildlife Federation,
quickly petitioned against the license and argued that the provincial government had
not respected regulations. The federal court sided with the environment group and
ordered the suspension of the license, but later the license was reissued by a new
federal environment minister. The environmental group petitioned again, and this
time the federal court ordered the suspension of the license and the creation of a
review panel to evaluate the project. However, construction of the dams continued
during the review period, and the federal and provincial governments even reached
an agreement that the project would continue while ten million dollars are set aside
to alleviate any future environmental impacts. As the province had hoped, the project
moved ahead at full speed, and the review panel resigned in protest. (See Hipel et al.
(1991) for details.)
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This conflict is modeled using four DMs: DM 1, Federal (F); DM 2,
Saskatchewan (S); DM 3, Groups (G); and DM 4, Panel (P), each having some
options. The following is a summary of the four DMs and their options:

• Federal Government (Federal): its options are to seek a court order to halt the
project (Court Order) or to lift the license (Lift),

• Province of Saskatchewan (Saskatchewan): its option is to go ahead at full speed
(Full speed),

• Environmental Groups (Groups): its option is to threaten court action to halt the
project (Court action), and

• Federal Environmental Review Panel (Panel): its option is to resign (Resign).

Five options and ten feasible states of this model are presented in Table4.16. The
graph model of the Rafferty-Alameda dams conflict is shown in Fig. 4.11.

Table 4.16 Feasible states for the Rafferty-Alameda dams conflict

Federal

1. Court order – N Y N Y N Y N Y N

2. Lift – N N N N N N N N Y

Saskatchewan

3. Full speed N Y Y Y Y Y Y Y Y –

Groups

4. Court action – N N Y Y N N Y Y –

Panel

5. Resign – N N N N Y Y Y Y –

State number s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Fig. 4.11 The graph model
of the Rafferty-Alameda
dams conflict
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The ordinal preferences for DMs 1, 2, 3, and 4 are

s1 �1 s3 �1 s5 �1 s2 �1 s4 �1 s7 �1 s9 �1 s6 �1 s8 �1 s10,

s2 �2 s4 �2 s6 �2 s8 �2 s3 �2 s5 �2 s7 �2 s9 �2 s10 �2 s1,

s10 �3 s1 �3 s7 �3 s3 �3 s6 �3 s2 �3 s9 �3 s5 �3 s8 �3 s4,

and
s1 �4 s9 �4 s7 �4 s8 �4 s6 �4 s10 �4 s5 �4 s3 �4 s4 �4 s2.

(a) Label the graph model in Fig. 4.11 according to the Rule of Priority and draw
its labeled graph;

(b) Calculate the stabilities ofNash,GMR, SMR, and SEQ for theRafferty-Alameda
dams conflict using the matrix method.
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