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Preface

The theory and practice of key advances in the Graph Model for Conflict
Resolution (GMCR) are presented for strategically investigating real-world dis-
putes arising in any field in which conflict takes place. Since humans are inherently
competitive, GMCR can be utilized to ascertain what is the best a particular deci-
sion maker (DM) can achieve given the social constraints of a conflict in which the
DM dynamically interacts with others in terms of moves and countermoves as he or
she seeks to satisfy her goals or value system. When trying to negotiate a climate
change agreement, for example, each nation may act according to its own
self-interests in order to fare as well as possible in the short term, by reducing its
greenhouse gas emissions as little as possible. However, a country may then attempt
to find out whether it can do even better if it cooperates with other nations to reach
a fair climate change deal in which each nation cuts back very significantly in its
greenhouse gas emissions in order for the nations of the world to do much better in
the long run and thereby avoid the extreme consequences of climate change.
Accordingly, the rich range of GMCR methodologies presented in this book and
elsewhere can be employed in a highly competitive situation, in which all partic-
ipants are out to satisfy their own goals, to ones in which there is a high level of
cooperation when it is beneficial for DMs to form coalitions.

You, our valued reader, may wish to know if this book contains information that
will be useful to your understanding and capability for resolving tough disputes in
your domain of interest, which may range from personal disputes within a family to
international trading conflicts among corporations and nations. If you are a re-
searcher in multiple participant decision-making who wishes to refine and expand
basic GMCR methodologies or to employ the latest advances in conflict resolution
for tackling complex conflicts within a domain such as stakeholder satisfaction in
land use development and planning, then this book should be of high value to you.
If you are a teacher in operations research, systems engineering, or an applied field
of application in which conflict takes place, you may wish to use this book as a
course text at the upper undergraduate or graduate levels or else as a valuable
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informative reference in a course. If you are a mentor of students carrying out
research at the Ph.D. or Master’s level, or tackling tough problems involving
conflict in challenging projects, you will find this book to be highly attractive for
meeting your purposes. If you are a student studying conflict resolution and would
like to investigate how nations or regions can learn from their past mistakes in order
to discover how to avoid similar situations ever taking place again, such as a great
depression from an economical perspective or a devastating war with a rogue nation
from a military viewpoint, then the contents of this text constitute essential infor-
mative conflict resolution techniques to include in your tool kit. A doctoral student
may wish to expand the basic GMCR methodologies based on gaps that he finds
when systematically studying conflict in fields such as energy development, envi-
ronmental engineering, water resources, and legal studies. If you are a practitioner
or professional like a consulting engineer, urban planner, political advisor, manager,
lawyer, policy analyst, or military systems engineer, this book will be compelling
for you to use in resolving challenging practical problems within your professional
area of expertise. For instance, as climate change intensifies and regional wars
erupt, military analysts within operations research groups in defense departments
will find this book to be very useful for tackling the severe security issues involved
with the mass migration of affected populations, as is occurring and intensifying
right now in Europe where refugees are continually arriving in increasing numbers.
If you are a professional like a computer engineer or computer scientist, you may
wish to utilize the basic design for a flexible decision support system (DSS) for
conflict resolution put forward in this book for programming the next generation of
DSSs for employment by researchers, teachers, mentors, students, and practitioners
for applying the new GMCR techniques in this book to real-life situations.

To convince you, our reader, that GMCR can be actually utilized in practice for
addressing challenging real-world disputes, examples are provided throughout the
book to demonstrate how the various ideas can be applied. These applications
clearly demonstrate why “good theory means good practice” and vice versa. Hence,
in the very first chapter in the book, a highly controversial groundwater contami-
nation dispute which occurred in the town of Elmira, Ontario, Canada, is employed
to explain how the conflict can be modeled and analyzed using GMCR in order to
gain a better understanding and strategic insights. This same environmental conflict
along with others are utilized in the book to explain how various concepts are
designed and work in practice.

The basic theoretical structure of GMCR and its expansions were purposefully
designed to address conflicts which actually occur in reality. To accomplish this, the
underlying axioms of GMCR were formulated to reflect the key characteristics of
real-world conflict, thereby forming the solid foundations upon which the theo-
retical framework can be properly built and expanded. For example, in a conflict
situation, DMs often think like a chess player in terms of moves and countermoves.
If a particular DM is contemplating moving from the current situation to a more
preferred state, the DM may wish to know the consequences of this possible move.
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If, for instance, a car manufacturer decides to decrease the selling price of its cars
and thereby hopefully gain greater market share, will the company’s competitors
also decrease the cost of buying their cars and put the particular company in a worse
situation? If so, the company is better off not to lower its prices. In GMCR, different
ways in which people may behave under conflict can be captured mathematically
by what are called solution concepts or stability definitions. Furthermore, the
possible moves that a DM controls can be recorded using a graph in which the
scenarios or states that could occur form the vertices (nodes) while moves that the
DM can make in one step are drawn as the directed arcs connecting states. Another
key feature of GMCR is that only relative preference information is required
which means that you only have to know if a DM prefers one state over another or
if the states are equally preferred. Hence, if someone asks you if you would like to
have a cup of coffee or tea, you may respond by saying that I prefer to have coffee,
thank you, or it does not matter. You would certainly not give a quantitative
response by saying that for me coffee has a utility value of 6.912 while tea is worth
2.591. A key design feature of GMCR is that only relative preference information is
needed, which is fairly easy to obtain in practice and mimics the way people think
about their preferences.

The foregoing fashion of directly thinking about a conflict in terms of moves and
countermoves coupled with relative preferences is called the logical form of the
game. A person can intuitively understand how a conflict can evolve and be
resolved by logically explaining what can happen using moves and countermoves
as DMs attempt to do the best they can in a dispute. If, for instance, from a state all
of the ways in which a DM could unilaterally improve can be sanctioned by others,
then this state is said to be stable for that DM according to a certain type of
behavior. If it is not advantageous for any of the DMs to move, the state is a
possible resolution or equilibrium if it is reached during the evolution of the dispute
under study. For a specific conflict, providing a logical explanation of what can
happen is highly appealing. However, the information contained in a graph keeping
track of moves or preferences can be stored in a matrix for computational purposes.
In fact, the logical interpretation of GMCR both in terms of modeling and stability
calculations can be equivalently formulated using a matrix representation, which is
also called algebraic form. When programming the engine for calculating the sta-
bility results, the matrix form is much more efficient than its logical counterpart in
terms of the number of required calculations. Moreover, for theoretical purposes, it
is much easier to expand GMCR when the matrix form is utilized. Therefore,
throughout the book, both the logical and matrix representations of GMCR are
provided for all of the advancements that are presented, which makes this book
truly unique.

To appreciate the uniqueness and innate capabilities of GMCR, the connections
and differences of GMCR with respect to other game theory methods are discussed
in the second chapter. Moreover, the relationships of GMCR to other formal
decision-making techniques developed in the fields of Operations Research,
Systems Engineering and elsewhere are clearly explained. If a decision-making
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methodology like GMCR is programmed as a DSS so it can be readily applied to
actual disputes, the methodology becomes an operational decision technology. In
practice, one may use a toolbox of decision technologies for addressing a complex
problem like urban expansion for which GMCR could be used for investigating the
strategic and controversial aspects of the project.

In actuality, everything affects everything else within and among societal and
physical systems of systems. For instance, the utilization of fossil fuels in society’s
industrial, transportation and electricity generation systems in nations around the
world releases massive quantities of carbon dioxide into the atmosphere, which is
one of a number of deadly greenhouse gases causing average temperatures around
the globe to increase significantly over time. This, in turn, alters the earth’s climate
system, creates extreme weather conditions, shrinks the area and thickness of sea
ice, melts glaciers, makes ocean levels rise, and increases the acidity of oceans.
These and other negative consequences of climate change on the earth’s natural
systems can adversely impact societal systems such as agriculture, industry and the
economy as a whole, as well as the stakeholders who are part of these systems.
Accordingly, it is highly intuitive and informative to envision any problem from a
system of systems perspective. Within this vision of reality, a useful tool like
GMCR can be employed to investigate the myriads of conflicts that will arise
among affected parties, which for the case of climate change will surely increase in
number and intensity as the climate continues to deteriorate, perhaps irreversibly.

To responsibly handle complex problems connected to climate change, the
Elmira groundwater contamination problem, and other tough issues facing society,
an integrative and adaptive approach to management and governance can be
followed in a participatory fashion with stakeholders whose interests or values must
be taken into account in policy design and decision-making. In this way, solutions
to problems can be found which adhere to desirable systems characteristics like
sustainability, fairness, and robustness. A flexible tool like GMCR can be employed
to handle disputes that may arise for which the stakeholders value systems are
always considered.

After putting decision-making into perspective in Chap. 2 and explaining the
vital role that GMCR has to play, various conflict models are defined in Chap. 3. As
explained in Chap. 3, what is called the option form of the game is particularly
powerful as a notation for keeping track of the options or courses of actions
available to each DM in a dispute and recording the possible feasible states or
scenarios that could occur in the conflict. These states are then used in both the
logical form and matrix representation of GMCR presented in Sects. 3.2 and 3.3,
respectively. Because they reflect the underlying value system of a DM, a crucial
input to a conflict model is the relative preference of the DM among the feasible
states that could occur.

Subsequent to modeling a given conflict in terms of DMs, states, state transi-
tions, and relative preferences, a stability analysis is carried out in terms of
investigating moves and countermoves that could occur according to four solution
concepts reflecting human behavior under conflict when determining if a state is
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stable or not: Nash stability, general metarationality, symmetric metarationality, and
sequential stability. Depending on the type of preference information that is
available, these solution concepts are appropriately defined for both the logical and
matrix representations of GMCR. Hence, the next four chapters in the book provide
the stability definitions for the following types of preference information:

Chapter 4: Simple preference in which a given state can be more preferred,
equally preferred, or less preferred to another state by a DM.

Chapter 5: Unknown preference in which a DM does not know the preference
relationship for some pairs of states. This type of preference uncertainty is uniquely
defined for employment with GMCR since it does arise in practice. In the last
chapter in this book, it is mentioned that fuzzy sets, grey numbers, and probabilistic
approaches to preference uncertainty have also been developed for employment
with GMCR.

Chapter 6: In some situations, a DM may greatly prefer one state over another
such as when environmentalists greatly prefer that an industrialist does not allow
his company to significantly pollute the surrounding environment by releasing
untreated wastes. This is referred to as degree of preference for which the degree
can be taken to any level for specified pairs of states.

Chapter 7: Hybrid preference in which unknown and degree of preference can
occur as well as simple preference.

As mentioned earlier, in addition to determining how well a given DM may fare
when behaving independently, one should also determine if a DM can do even
better by cooperating with others. Hence, in Chap. 8 coalitional stabilities are
defined for the aforementioned four types of preference situations for both the
logical and matrix forms of GMCR. As an important type of follow-up analysis, the
possible evolution of a conflict from a specified starting or status quo state to a
particular final state is presented for both the logical and matrix representations of
GMCR in Chap. 9. In practice, one may wish to know whether a desirable state,
such as a win/win resolution, can actually be reached by DMs who have under their
control unilateral moves that they can select to levy.

The book concludes with the presentation of a universal design of future gen-
erations of DSSs for GMCR based on an internal matrix representation structure for
handling the current and future expansions of GMCR in Chap. 10. These future
opportunities include the capability of having systems engineering investigations in
which inverse engineering and behavioral engine specification can be fully studied.
Inverse engineering or inverse GMCR means ascertaining the preferences needed
by DMs for a desirable final state to be an equilibrium. The behavioral engine
problem is given the input and output to determine the type of behavior exhibited
by the DMs.

So, our cherished readers, we trust that you will enjoy the exciting journey
through our comprehensive book. But hang on to your hats: there will be a lot more
to come in the future both in terms of new operational methodologies for
expanding the capabilities of GMCR and also the wealth of pressing conflicts that
have to be properly addressed right now, as well as challenging conflicts that may

Preface xi



arise in the future as the earth becomes a smaller and smaller place for all of us to
live and prosper.

We warmly wish you, our readers, a most revealing and exciting journey through
our book.

Bon voyage!

Nanjing, China Haiyan Xu
Waterloo, Canada Keith W. Hipel
Waterloo, Canada D. Marc Kilgour
Toronto, Canada Liping Fang
March 2018
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Chapter 1
Conflict Resolution in Practice

1.1 The Pervasiveness of Conflict

Conflict occurs virtually everywhere in society. A powerful methodology called
the Graph Model for Conflict Resolution (GMCR) is put forward in this book for
addressing tough conflict situations. Hence, this book should prove to be especially
valuable for people who must deal with social conflict now.

The goal of this chapter is to stress the importance of being able to address conflict
in society and to emphasize that the GMCR methodology constitutes a powerful set
of tools which possesses the innate capabilities of being able to formally investigate
tough conflict situations. Therefore, this well-designed methodology should be of
wide interest to practitioners, teachers, researchers, mentors and students in any field
in which conflict takes place, which is virtually every area of human endeavour.
To clearly demonstrate that GMCR can be conveniently utilized for modeling and
analyzing real-world conflict, the procedure for formally studying an actual ground-
water contamination dispute that occurred in the town of Elmira, Ontario, Canada,
is presented in Sect. 1.2.

In the second last section of this chapter, Sect. 1.3, a road map is provided in terms
of a flow chart and table to explain how one can navigate through the book in order to
ultimately understand how to address actual disputes ranging from simple to highly
complex situations. Illustrative real-world applications are employed throughout the
book to demonstrate how valuable GMCR tools can be applied in practice. Although
modeling and calculations can be done by hand for simple disputes, Decision Support
Systems for implementing many GMCR ideas are available now for employment by
practitioners, teachers, researchers,mentors and students, as pointed out in Sect. 10.2.

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Conflict Resolution in Practice

1.1.1 Pressing Conflicts Facing Society

Conflict inevitably arises whenever human beings interact with one another. For
example, family members may have differences of opinion regarding the choice of a
restaurant at which to have dinner together. An employeemay disagreewith his or her
employer over how much her annual salary increase should be. Besides individuals,
conflict also occurs within and among organizations. In the highly competitive busi-
ness world, companies aggressively promote their products to increase their market
share in a given sector both within a particular nation and globally. Consider, for
instance, the intense competition for a greater share of car sales around the world
occurring among major players like General Motors, Toyota, Volkswagen, Honda,
BMW, Renault and many other large international producers of automobiles. Politi-
cal parties vie with one another to attract supporters by proposing different policies
ranging from infrastructure renewal to tax reductions. Internationally, ongoing nego-
tiations aim to find appropriate and effective measures for combating greenhouse
gas emissions and thereby mitigating climate change. Environmentalists, govern-
ment agencies and citizens may be in dispute with a chemical company on how to
clean up a “brownfield” caused by the release of chemical wastes which polluted an
underground aquifer. Air pollution in major cities in which intense industrialization
is taking place coupledwith amassive increase in the number of private vehicles, puts
citizens in direct conflict with government and industry. Regional wars in the Middle
East and terrorist attacks in Europe, the United States and China are illustrations of
lethal kinds of ongoing conflict. Indeed conflict appears to be an inherent charac-
teristic of human behavior as well as both private and public societal organizations
created by people.

Due to the ubiquity of conflicts, which range from personal disagreements to
international military campaigns, and which occur within practically every field of
study including trade, law, engineering and health care, there is great demand for
formal methodologies to assist decision makers (DMs) facing controversies, and to
discover and attain stable resolutions. As mentioned by Hipel et al. (2011), the afore-
mentioned “social” conflicts possess certain key inherent characteristics including
the presence of:

• two or more DMs, such as individuals, organizations, and nations, participating in
the dispute;

• different options or actions under the control of each of the DMs;
• a separate value system for each DMwhich has multiple dimensions or objectives,
many of which are in direct conflict with the values of other participants in a
conflict;

• relative preferences for a particular DM that reflect his or her value system with
respect to the conflict being investigated;

• possible moves and countermoves controlled by a given DMwhich can be brought
into play at any time or not at all;
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• strategic moves and countermoves among the DMs that could dynamically take
place at any time, in any order, as the conflict evolves from a starting point to an
intermediate or final outcome;

• a range of ways people may behave under conflict situations such as an insightful
DM who can perceive many potential moves and countermoves into the future
before deciding what to do, much like a clever chess player planning his or her
next move;

• participantswhomay act completely independently of one another or sometimes in
cooperation with others by forming a coalition in which members of the coalition
benefit from their cooperative actions;

• high uncertainty caused by, for instance, unknown relative preferences and many
DMs taking part in a conflict;

• psychological factors like attitudes, emotions and misunderstandings.

When designing a large structure like a building or dam, one must take into
account the local geophysical characteristics, such as the soil properties and possible
seismic occurrences, as well meteorological conditions including temperature, wind
and precipitation. In an analogous fashion,whendesigning amodel for systematically
studying social conflict, one must consider the aforesaid list of key characteristics.
The Graph Model for Conflict Resolution (Kilgour et al. 1987,Fang et al. 1993) and
its associated extensions (Hipel et al. 2011) were purposefully designed to handle
all of these and other traits of real-world conflict.

1.1.2 Objectives of This Book

The overall purpose of this book is to present in a highly informative and user-
friendly way the latest ideas of the GraphModel for Conflict Resolution (GMCR) for
systematically investigating actual conflict occurring in the real-world so that a reader
of this book will be in a position to readily study disputes that are of direct interest
to her or him. Consider the aforementioned metaphor of designing a structure. In
addition to the physical environment, a given building must be designed to provide
a range of purposes or services such as retail space for stores located at ground
level and offices for different kinds of organizations that will occupy higher floors.
Similarly, conflict models must be structured to not only take into account the key
characteristics of conflict but also to furnish desired uses or purposes. In particular,
the GMCR has incorporated into its basic design the capability to (Hipel et al. 2011):

• summarize in an organized way complex and often confusing information about a
conflict into a clear model structure. This process puts the conflict into perspective
by focusing on the essentials of the problem within a simple, yet revealing, model
framework;

• function when information or data are scarce or when one is drowning in an over-
abundance of information;
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• enhance the understanding of the dispute being investigated via this type of systems
thinking;

• facilitate meaningful communication using the structured “graphmodel language”
among stakeholders and interested parties;

• predict the strategic consequences of making potential choices under conflict in
order to select the best possible decision given the social and strategic constraints
existing in light of what others may do to advance their own positions. This will
reduce making misinformed decisions having potentially highly negative and per-
haps irreversible impacts;

• be cognizant of the strategic implications of other characteristics of the conflict
under study such as coalition formation, preference uncertainty and psychological
factors; and,

• make informed decisions based on the foregoing sensible modeling and analyses
which may lead to a win/win resolution in which all disputants benefit.

1.1.3 Audience

Conflict arises in all areas of human endeavour. Therefore, the contents of this timely
book on conflict resolution should be useful to people working within many disci-
plines or areas of study which include:

• Agriculture,
• Aquaculture,
• Business,
• Climate Science,
• Economics,
• Engineering,
• Environmental Science and Engineering,
• Food Systems,
• Law,
• Logistics and Supply Chain Management,
• Military Science,
• Political Science,
• Service Industry,
• Sociology, and
• Trade.

Within each of the above and other disciplines, the book should prove to be highly
useful to

• Practitioners,
• Teachers,
• Researchers,
• Mentors, and
• Students.
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The clear explanationof concepts, coupledwith illustrative examples and available
Decision Support Systems for implementation purposes, make the book especially
attractive for adoption by all of the above-mentioned users. Consultants, for example,
working in engineering or international business, can apply the GMCRmethodology
now to challenging problems in order to obtain sage strategic advice for their clients.
Because the book includes some of the latest ideas from GMCR, it should prove
to be highly useful for researchers. Problems furnished at the end of each chapter,
combined with other benefits, make the book ideal for employment in a course
dealingwith conflict resolution. This book contains themost recent approaches to the
theory and practice of conflict resolution currently available as a single informative
document.

1.2 Investigating Conflict

1.2.1 Key Ideas

When a person is confronted by a conflict problem that must somehow be resolved,
he or she must decide what to do. To reach a decision, the individual naturally thinks
in a way that captures the key characteristics of the conflict and simplifies it to a
level in which it can be more readily understood. A better comprehension of what is
taking place permits the person to imagine the consequences of his actions when he
makes different decisions. This type of “what-if” analytical thinking should assist
in leading to a more sound and beneficial decision not only for this individual but
hopefully all parties involved in this dispute.

The objective of a formal conflict model is to mimic the way a person thinks
under conflict in order to aid the individual in making a more informed decision.
To achieve this, the mathematical design and capabilities of the model must reflect
the key aspects of a conflict problem occurring in the real-world. Recall that in
Sect. 1.1.1, a list of key inherent properties or characteristics of actual conflict is
provided. Subsequently, in Sect. 1.1.2 a list of features is given that was purposefully
incorporated into the mathematical design of GMCR in order to make it realistic,
meaningful, operational and informative. In fact, GMCR is specifically constructed
tomirror the way in which a human being perceives and reacts to conflict in reality. In
turn, thismeans thatGMCRshouldbehelpful to a person for enhancinghis perception
and comprehension of the conflict and thereby providing guidance on how to wisely
interact with others in the best way possible within the social constraints on how
others may respond. GMCR can also act as a “book-keeping” technique by keeping
a systematic record of what is taking place and furnishing insightful resolutions that
the individual may have inadvertently overlooked because of stress, excitement or
carelessness.

What are themain components in a conflict that onemust incorporate into amodel
of it? For a start, there obviously must be at least two participants or decision makers
(DMs) who are in dispute over some issue. In the conflict under investigation, each
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DM must be in control of options or courses of action he or she has at his disposal.
Additionally, because each DM has his own value system which guides his behavior
in the social world, a given DM has his own particular preferences over the scenarios
or states that could occur. It is these differing value systems or preferences among
DMs over states that provide the basic fuel for igniting and driving conflict.

A given DM in a conflict or an interested third party studying the dispute must
decide what actions to take in order to fare as well as possible according to his value
system or preferences. Prior to reaching a decision about what to do, the person will
probably think like a chess player in termsof the potential consequences of howothers
may react when a particular course of action is chosen. If the conflict is at a particular
state and the DM can improve on his own to reach a better position by unilaterally
changing his option selections that he directly controls, he will certainly be tempted
to do so. However, if one or more of the other DMs can block his improvement by
invoking actions of their own that put the DM in a less preferred situation, the DM
may be better off to maintain his current position and not move. In other words, the
present situation is stable for that DM. It is this kind of “what-if” thinking that is
systematically investigated at what is called the stability analysis stage of a formal
conflict study. If, for instance, a given state is stable for all DMs according to a certain
type of potential human behavior under conflict, it is referred to as a resolution or
equilibrium. The purposes of stability analyses include determining what resolutions
are most likely to occur and can DMs do even better by forming coalitions. A key
advantage of carrying out a conflict study using a formal approach like GMCR is
that one can execute a range of what are called follow-up analyses such as how could
the conflict evolve from a status quo state to an eventual final equilibrium and what
are the strategic impacts of various kinds of sensitivity analyses. If, for example, the
preferences of a key DM were slightly different could this result in a much better
resolution taking place that may be a win/win equilibrium for all parties.

Figure1.1 provides a flowchart of the main steps involved when carrying out a
conflict study. As can be seen, the modeling stage is followed by an analysis stage
which includes stability and follow-up analyses. The theoretical and practical aspects
on how this is actually done are outlined in the next three subsections and presented
in detail in later chapters in this book. Additionally, the ways in which GMCR can
be utilized in practice are described in Sect. 1.2.5. To clarify the explanations given
in this section and make it more convincing, an actual groundwater contamination
dispute is utilized.

1.2.2 Modeling

1.2.2.1 Groundwater Contamination Dispute

Brownfields constitute a very serious type of pollution problem and are associated
with intense conflict facing all industrialized countries. A brownfield is land which
has been polluted by previous or current industrial activities and frequently involves
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Fig. 1.1 Main steps for applying GMCR to a specific conflict

the contamination of underground aquifers which serve as water supplies for com-
munities (USEPA 1997). Hence, brownfields often pose a high risk to adversely
affecting human health as well as other life forms. The terminology brownfield arose
in direct contrast to the label greenfield on which lush green vegetation grows since
the land is not polluted. A range of conflicts have arisen over the years regard-
ing the rehabilitation, sale and redevelopment of brownfield properties in former
industrial areas usually located in or near cities in industrialized nations. Because
brownfield redevelopment projects have social, economic and environmental impacts
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(Greenberg andLewis 2000,McCarthy 2002,DeSousa 2003), the associated disputes
tend to be highly controversial although good government policy can help to lessen
their occurrence and severity (Bernath Walker et al. 2010,Hipel and Bernath Walker
2012). Moreover, both land and water can also be severely polluted by agricultural
activities which include the applications of fertilizers and insecticides on a large
scale basis and intense irrigation practices. This in turn can create conflict among
stakeholders.

As an example of a real-world conflict over the pollution of an underground aquifer
by industry, an actual case study from Canada is considered. The three Canadian
authors of this book actually modeled and analyzed this highly publicized dispute
while it was ongoing based on information provided by an interested third party
who was a domain expert with respect to the history and evolution of this extremely
controversial dispute which receivedwidespread national and international attention.
In fact, the investigation team closely predicted what actually occurred just after its
study was completed and provided valuable strategic insights into why and how the
conflict was resolved. In Sect. 1.2.5, the types of situations in which GMCR may
be applied and how it can be used by consultants for advising clients are described.
The procedure explained now for the groundwater pollution dispute is close to the
way a consultant would use the valuable and informative decision technology. Addi-
tionally, because this kind of water pollution dispute is representative of a class of
environmental problems occurring or about to take place in many nations around the
globe, it provides insightful guidance as to how they may be better understood and
resolved. Finally, it demonstrates how cooperation via the formation of a coalition
can cause a reasonable resolution to be reached when independent behavior by each
DM cannot achieve this.

Canada’s industrial heartland is located in Southern Ontario for which three of
the Great Lakes - Huron, Erie and Ontario - form its border with the United States
and Canada’s largest city, Toronto, is located, as indicated on the map in Fig. 1.2. The
Regional Municipality of Waterloo, which is situated just over 100km to the west of
Toronto and marked by the darkened area in Fig. 1.2, contains fertile farmland and a
spectrum of industries. Elmira is a relatively small agricultural town of about 7500
people, situated about 15km north of the city of Waterloo, which is one of Canada’s
most renowned high technology centers. Although Elmira has some industries, it
is best known for its famous maple syrup festival, which takes places at the end
of the winter season every year. Because it is located about 100km away from any
of the Great Lakes, most communities in the Region of Waterloo, including Elmira
and the city of Waterloo, obtain their fresh water from underlying aquifers. When
carrying out chemical tests in 1989, the Ontario Ministry of the Environment (MoE)
discovered that the aquifer supplying water to Elmira was contaminated by N-nitroso
demethylamine (NDMA).Due to the fact thatNDMAis a carcinogenwhich can cause
cancer to form in humans, the citizens of Elmira were shocked and outraged to find
out that their drinking water was poisonous. Not surprisingly, this great risk to human
health and the environment made headline news across Canada and internationally
over a relatively long period of time.

Since NDMA is a by product of its production processes, Uniroyal Chemical Ltd.
(UR) was suspected as being the source of the pollution found in the aquifer. In
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Fig. 1.2 Location of the Elmira groundwater contamination dispute in Southern Ontario, Canada

accordance with Ontario’s environmental laws, what is called a Control Order was
issued by MoE which requested UR to take relatively expensive measures to cleanse
the aquifer, remove buried metal drums containing chemicals that were leaking, and
properly treat future wastes released into a local stream. As permitted under the
environmental law, UR immediately appealed the Control Order.

Because the Regional Municipality of Waterloo and the Township of Woolwich,
which falls within the Waterloo Region and is where Elmira is located, viewed the
pollution problem in the sameway, they are considered in this conflict as a single unit
called Local Government (LG). In fact, LG spent a considerable amount of financial
resources on legal costs to determine its possible role in resolving this conflict as
well as on engineering studies. Quite naturally, the elected officials representing
LG wanted its citizens to be protected from consuming contaminated water and it
sided with MoE which is overall in charge of addressing environmental problems
in the Province of Ontario. Costly bore holes had to be drilled and testing carried
out to ascertain how the plume of pollution from the pollution source had spread
underground via the groundwater.

A formal conflict study was executed when the conflict over UR appealing the
Control Order was ongoing during the summer of 1991. Hence, the investigation
was done in the way an interested party or consultant would tackle a current dispute.
A local environmentalist by the name of Dr. Murray Height who lived in Elmira at
that time acted as the Domain Expert to provide information to calibrate a conflict
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model of this serious dispute. As noted earlier, the three Canadian authors of this
book played the role of the Technical Experts for carrying out the formal modeling
and analysis of the conflict and the associated interpretation of the strategic findings.
The Domain Expert met with the three Technical Experts for two meetings lasting
two hours each in July of 1991. Because of the importance of this kind of conflict and
the fact that their investigation closely reflected what took place, the authors wrote
an article about their study which was published in a conference proceedings (Hipel
et al. 1993). Subsequently, researchers used this interesting case study in the testing
and development of advances in the GMCR methodology.

1.2.2.2 Decision Makers and Options

As indicated in the upper portion of Fig. 1.1, one must first determine the key DMs
participating in the dispute under study and the courses of action available to each
of them with respect to the conflict. After the Domain Expert gave an overview of
what happened and is currently taking place in the Elmira conflict as of the summer
of 1991, the Technical Experts first asked him who were the people or organizations
having real decision-making power in the conflict. He stated that because this was a
major environmental problem, theMoEhad to be involved. In addition, although there
was also a smaller chemical company located in Elmira, UR was clearly the prime
suspect in contaminating the aquifer. From the start, the Domain Expert thought that
the two levels of government consisting of the Regional Municipality of Waterloo at
the higher level and Township ofWoolwich at the lower level should be thought of as
a single DM which he called Local Government, since they were working together
to solve the problem and thereby protect the health of their joint citizens. Some
discussion arose overwhether or not local environmental groups should be considered
as additional DMs in the dispute. Since they held no direct power connected to
the negotiations taking place among the aforementioned three parties, the Domain
Expert thought that they should not be entertained as DMs in the study. There were,
of course, interested parties and stakeholders in what eventually happens who could
try to influence others, but they hold no specific actions that they could levy in the
actual negotiations. Hence, to keep the study as accurate and simple as possible, they
were not incorporated into the model. The left hand side of Table1.1 lists the three
DMs participating in the Elmira negotiations during the summer of 1991.

Comments about Decision Makers:

A range of labels have been used in the literature as an alternative to the words Deci-
sion Maker (DM). These names include player, actor, stakeholder and participant.
The advantage of employing the phrase DM is that the label directly implies that
only someone or organization having real decision-making power is considered in
the conflict model. Moreover, a specific DM may stand for a single person, an orga-
nization or even a nation. In practice, the authors have found that GMCR works well
for any combination of different types of DMs.
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Table 1.1 Decision makers and options in the Elmira conflict

Decision makers Option names Explanations

MoE (Ontario Ministry of the
Environment)

1. Modify Modify the initial Control
Order

UR (Uniroyal) 2. Delay Delay or lengthen negotiations
by “dragging its feet”

3. Accept Accept the current Control
Order

4. Abandon Abandon its Elmira plant by
closing it down

LG (Local government) 5. Insist Insist that the original Control
Order be implemented

Table 1.2 Feasible states for the Elmira conflict

MoE

1. Modify N Y N Y N Y N Y –

UR

2. Delay Y Y N N Y Y N N –

3. Accept N N Y Y N N Y Y –

4. Abandon N N N N N N N N Y

LG

5. Insist N N N N Y Y Y Y –

State number s1 s2 s3 s4 s5 s6 s7 s8 s9

After agreeing upon the DMs who should be included in the conflict model, the
Technical Experts asked the Domain Expert what are the specific options, courses of
action, or powers, each DM has in the Elmira dispute. About one hour of discussion
was required to come up with the list of options for which a summary label for each
option is given in the middle column of Table1.1 with an explanation provided in
the right column. Notice that MoE has the single option of modifying the Control
Order, UR possesses three options and LG has the single option of insisting that the
original Control Order be implemented by UR.

An option can be either selected or not chosen by a given DM. Table1.2 lists the
feasible states or scenarios that could occur in the Elmira dispute after the infeasible
ones are removed. In this table, each column stands for a state and for convenience of
explanation each state or column is assigned a state number as indicated at the bottom.
To interpretwhat each columnmeans, consider state s1 given as the left column,where
a Y opposite a specific option means “yes” the option is taken whereas N indicates
“no” the option is not selected. Hence, for state s1, notice that MoE is not modifying
the Control Order by not choosing the option numbered as 1, UR is delaying the
negotiations by selecting the option numbered as 2 in its list of three options but not
options 3 and 4, and LG is not insisting that the original Control Order is followed
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by not choosing option 5. This scenario is actually the situation that existed as the
status quo when the Elmira conflict was studied as a current dispute in July, 1991.

Because each option can be selected or not, there are 25 = 32 mathematically
possible states that could occur. However, states that cannot take place in the real-
world can be removed. Therefore, the three Technical Experts asked the Domain
Expert if there are option selections that could not occur, such as those which are
mutually exclusive. He thought that for UR options 2, 3 and 4 are mutually exclusive
and at most one of those three options can be chosen at the same time. Moreover, UR
would select at least one option. Notice that this is the case for the nine feasible states
given as columns in Table1.2. Finally, if UR decides to abandon its chemical plant
in Elmira, the conflict is essentially over no matter what other options are taken as
indicated by the dashes for state s9 where each dash (“–”) means N or Y. The process
followed to obtain s9 is referred to as state combination since the four dashes mean
that column s9 actually contains 24 = 16 states, which are in essence the same and
therefore can be interpreted as one state.

Comments about Options:

In practice, one can usually obtain the DMs and options in a conflict fairly expedi-
tiously. Additionally, infeasible situations can be easily identified. Keep in mind that
a user, or in this case the Domain Expert, does not have to write down the final list of
feasible states, since this can easily be done using a user-friendly computer package
referred to as a Decision Support System (DSS) (see Sect. 2.3.3 and Chap.10). For
the Elmira conflict, the size of the conflict was substantially reduced from thirty-two
to only nine states, which is usually the case for most conflicts. Theoretically, the
GMCR methodology can handle any finite number of DMs and options. Even if the
conflict has a large number of feasible states, it can easily be modeled and analyzed
using a DSS since the Domain Expert only has to supply the DMs, options, infea-
sible situations and relative preference information for each DM with respect to the
feasible states. This clever way of recording a conflict is referred to as Option Form
and was proposed by Nigel Howard (1971).

1.2.2.3 Relative Preferences

In the natural world, the laws of physics dictate how physical objects move and
interact with one another, as they move in space and time. In the social world,
value systems and related preferences drive human behavior and motivate human
beings to take actions. Differences in value systems and preferences among people
involved with a specific issue are what causes conflict and associated moves and
countermoves as they all jockey for better positions. Accordingly, the most crucial
input formodeling a conflict is the preference for eachDMwith respect to the feasible
states or outcomes that could occur.

In a social situation, a friend may ask you if you would like to have a cup of coffee
or tea.Youmay reply that you prefer to drink coffee over tea or it doesn’tmatter.When
you only have to indicate whether coffee is more preferred, equally preferred or less
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preferred than tea, this is referred to as relative preference information. If you were to
say to a friend that coffee isworth 9.623 tome and tea has a utility value of 2.529, your
friendmay respond that he does not have time after all to have a refreshmentwith you,
since your response is so weird. Hence, in social situations, including many kinds
of social conflicts ranging from sincere cooperation to warfare, one cannot usually
obtain cardinal numbers in a meaningful way to represent preference in disputes.

An inherent design feature of GMCR is that only relative preferences are needed
for each of the DMs among the feasible states. Notice from Table1.2 that for the case
of the Elmira conflict, there are only nine feasible states. Therefore, one can easily
rank the nine states from most to least preferred by simply rearranging the ordering
of the states until a sensible ranking is determined for a specific DM. This is what
the Technical Experts did in consultation with the Domain Expert for the case of the
Elmira dispute. During the second hour of their first meeting, a relative ranking of
states for each DM was determined. Table1.3 displays the ordering or ranking of
feasible states from most preferred on the left to least preferred on the right from
MoE’s viewpoint. Notice that eight states containing an N opposite the fourth option
of abandon are preferred over the situation, state 9, in which UR abandons its plant,
since MoE is part of the Ontario Government which does not want to see jobs lost in
Ontario due to a plant closing. Also, as attested by the Y opposite the third option in
which UR accepts the current Control Order, the four states on the left in Table1.3
are preferred over those for which UR does not accept it. As demonstrated by this
discussion, aDMnaturally thinks in terms of preference statements like the foregoing
two examples. Table1.4 shows the preference statements for MoE listed from most
important at the top to least important at the bottom. An algorithm is available under
the assumption of what is called transitive preferences (see comments on relative
preferences given below) for taking these preference statements and ordering the
states as given in Table1.3. By comparing the hierarchical preference statements
to the ranking of states in Table1.3, one can appreciate how they work. Since the
statements involve options, this procedure is referred to as Option Prioritization
(Hipel et al. 1997,Fang et al. 2003a), which constitutes a refinement of the preference

Table 1.3 Ranking of states for MoE in the Elmira conflict from most to least preferred

MoE

1. Modify N N Y Y N N Y Y –

UR

2. Delay N N N N Y Y Y Y –

3. Accept Y Y Y Y N N N N –

4. Abandon N N N N N N N N Y

LG

5. Insist Y N N Y Y N N Y –

MoE’s preference s7 s3 s4 s8 s5 s1 s2 s6 s9
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Table 1.4 Option prioritization for MoE in the Elmira conflict

Preference statements

MoE most prefers that Uniroyal not abandon its Elmira plant. Hence, it does not want to see UR
select option 4

Next, MoE would like Uniroyal to accept the current Control Order by choosing option 3

MoE then prefers that Uniroyal not delay the appeal process by UR not taking option 2

MoE would not like to modify the Control Order by selecting option 1 which it controls

MoE prefers that Local Government insists that the original Control Order be applied by taking
option 5, if and only if (iff) it does not modify the Control Order (does not take option 1)

Table 1.5 Ranking of states for the three decision makers in the Elmira conflict

Decision
maker

Ranking of states from most to least preferred

MoE s7 s3 s4 s8 s5 s1 s2 s6 s9
UR s1 s4 s8 s5 s9 s3 s7 s2 s6
LG s7 s3 s5 s1 s8 s6 s4 s2 s9

tree approach first put forward by Fraser and Hipel (1988). Option Prioritization is
embedded in three existing DSSs, which are discussed in Sect. 10.1.2.

Besides the ordering of states according to preference for MoE as ranked in
Table1.3, the Domain and Technical Experts separately ranked the states for UR and
LG. Table1.5 displays the ordering of the nine states for the three DMs in the Elmira
conflict, where the ranking of states for each DM is from most preferred on the left
to least preferred on the right. Of course, the ordering of states for MoE in Table1.3,
where option form is used, is the same as the ranking in Table1.5 where only the state
numbers are given. For an interpretation of what a state number means in actuality
in Table1.5 or elsewhere, one can refer to the option form presented in Table1.2 or
Table1.3.

Comments on Relative Preferences:

GMCR was purposefully designed to handle a rich range of preference types that
can occur in reality. To accomplish this, the deep foundations of GMCR rest upon
the bedrock of a very basic type of preference situation on which to build a very
solid theoretical structure. The most fundamental type of preference arises when one
compares two objects or ideas according to one’s preference. In the illustration given
earlier, a friend may ask you if you prefer to have coffee or tea to drink to which you
may respond that you prefer to have coffee, thank you.When a cardinal number, such
as a utility value, is not used to stand for preference, the preference information is said
to be relative or qualitative. Simple relative preference refers to the situation where
coffee is either more preferred, equally preferred or less preferred to tea. Although
one could dig deeper to ascertain how underlying values affect preference, this is
not necessary since usually it is fairly easy to directly obtain relative preference
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information. For instance, if you prefer coffee to tea, it would be difficult even for
you to explain how this preference is dictated by or connected to your underlying
system of values. However, it should be noted that what is called multiple criteria
decision analysis (MCDA) has been used to compare states in a conflict according
to criteria (see, for instance, Ke et al. (2012a, b) and Silva et al. (2017a, b)).

Now consider situations that can arise when comparing three objects, ideas or
states according to preference, such as three beverages from which your friend or
host allows you to choose. Suppose you must select either coffee, tea or coca cola
to drink. You may prefer coffee to tea because coffee smells better, tea to coke since
tea is healthier. If you also prefer coffee to coke since coffee is hot and the coke is
cold, then your preferences are said to be transitive as indicated in the diagram at
the top of Fig. 1.3. However, suppose that you actually prefer coke to coffee because
coke is cold. Then, you have the situation in the lower part of Fig. 1.3 which is
called intransitive preference. GMCR is designed to take care of both transitive and
intransitive preference information since both can arise in the real-world.

The ordering or ranking of states according to preference of a given DM in
Tables1.3 and 1.5 satisfy the assumption of transitivity. Hence, whenever states
or objects are ordered according to preference, for which ties or equal preference can
also be present, the ranking is automatically said to be transitive. Because a ranking
of states or objects according to cardinal numbers contains a ranking for which a
higher number means more preferred, cardinal numbers also satisfy the definition of
transitivity. Hence, GMCR can handle transitive preference information even if it is
expressed as cardinal numbers.

Sometimes, relative preferences may contain more information than just simple
preference in what is called degree or strength of preference. For example, you may

Fig. 1.3 An example of transitive and intransitive preferences
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greatly prefer to have tea over coffee because tea ismuch healthier. An environmental
agency may greatly prefer that a company clean up the pollution that it has caused.
Once again, GMCR can also accommodate this kind of important preference which
is the subject of Chap. 6 in this book.

Because preferences for DMs are often the most difficult information to obtain
when calibrating a conflict model, uncertain preferences are an important topic in
conflict resolution. A variety of formal approaches have been developed formodeling
uncertain preferences. In some cases, part of the preference information for a DM
may be simply “unknown”, which is the focus of Chap.5 in this book. As pointed
out in Sect. 10.3.1, uncertain preferences can also be modeled using fuzzy sets, grey
numbers and probability. Finally, different types of preference information can be
combined in what is called hybrid preference. In Chap.7, degrees of preference and
unknown preference are combined for simultaneous employment within the GMCR
methodology when modeling and analyzing a conflict when this is required.

A point to emphasize is that preferences for a specific DM depend not only
what that DM can do on his or her own, but also on what other DMs choose to
do. For instance, as indicated in Table1.4, the top three preference statements for
MoE depend on actions taken by UR and not itself. Moreover, by modeling the
preference of each DM according to the way that DM evaluates reality makes one
better appreciate the values, preferences and concerns of all parties involved in a
dispute.

1.2.3 Stability Analysis

In a conflict situation, people think strategically like a chess player. Before making
a specific move at any point in the game, the chess player thinks of the moves and
countermoves that could take place aftermaking his or hermove. If the player believes
that he will ultimately end up in a worse position and possibly lose the game, he will
consider other moves and the consequences thereof before deciding what to do.

In a conflict study, the stability analysis stage is similar to a chess game. One now
knows the DMs and their options, the feasible states which can occur, and the relative
preferences of each DM. The preferences for a DM provide the motivation for moves
that bring about possible improvement and those which can be used for sanctioning
possible moves by competing DMs. If the game is at a particular state, the question
arises as to whether or not it is advantageous for a DM to move unilaterally to a more
preferred state or remain where he is. For instance, if the DM can improve on his own
but the other DMs can move in a way that puts the DM in a less preferred position,
he is better off to stay where he is. If this is the case, the state is said to be stable
for that particular DM according to the type of human behavior under conflict that is
being considered. If it is individually stable for all of the DMs, the state constitutes
a possible resolution or equilibrium.

The characteristics of actual conflict and the dynamic behavior that can take place
in a dispute are listed in Sect. 1.1.1, while the way inwhichGMCRhas been designed
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to capture these features of actual conflict is mentioned in Sect. 1.1.2. Because peo-
ple may behave differently under conflict, a range of solution concepts, describing
potential behavior, have been defined. A specific solution concept, which is also
called a stability definition, is a mathematical definition using ideas from set theory,
logic and graph theory, which specifies how moves and countermoves take place to
create a stable state. As explained in Chaps. 4–7, these logical definitions of solution
concepts can also be written in what is called matrix form for different kinds of
preference situations.

Table1.6 lists the main solution concepts that are employed in Chaps. 4–8 in this
book while additional stability definitions are mentioned in Sect. 10.3.1. The column
on the left in this table provides the technical names of the solution concepts, the
associated acronyms and the original references. The mathematical definitions of
these solution concepts within the paradigm of GMCR and for different preference
structures are given in Chaps. 4–7 for both the logical and matrix forms. The four
columns on the right in Table1.6 furnish qualitative characterizations of the solu-
tion concepts according to the four criteria of foresight, knowledge of preferences,
disimprovement and strategic risk. More specifically, foresight reflects the number
of moves and countermoves that a DM can envision when deciding on the stability
of the state under consideration. Knowledge of preferences refers to the preferences
that are required when carrying out a stability analysis. Therefore, when calculat-
ing stability for the top three solution concepts in Table1.6, one only has to know
the preferences of the focal DM and not those of the sanctioning DMs. The crite-
rion labelled disimprovement reflects the tendency of a DM to put himself in a less
preferred state to block unilateral improvements by an opponent. The threat of the
particular DM ending up in a worse situation as a consequence of unilateral moves
by the sanctioning DMs is sufficient to cause stability even if it is not advantageous
for them. On the other hand, for sequential stability, the sanctioning DMs will only
levy sanctions which are unilateral improvements for themselves. The criterion in
the right column of Table1.6, strategic risk, refers to the attitude of a DM towards
strategic risk.

When carrying out a stability analysis for a given dispute, one analyzes every
state for stability from each DM’s viewpoint for all of the solution concepts listed
in Table1.6. For the case of simple preferences, the overall stability findings for the
Elmira groundwater contamination dispute are provided later in Table4.8, alongwith
examples on how to calculate stability by hand.

The stability analysis discussed thus far assumes that DMs are behaving inde-
pendently. This permits a DM to ascertain what is the best that he or she can hope
to achieve by acting noncooperatively. The next step in an analysis is to determine
if one can fare even better by cooperating with others by forming a coalition. To
answer this question, one can employ the coalitional or cooperative versions of the
solution concepts listed in Table1.6 which are defined in Chap.8 for different kinds
of preference structures.

As mentioned in Sect. 1.2.2, the Elmira groundwater contamination dispute was
modeled and analyzed using GMCR by the three Canadian authors of this book who
fulfilled the role of the Technical Experts for GMCR and a Domain Expert who



18 1 Conflict Resolution in Practice

Table 1.6 Solution concepts describing human behavior under conflict (based on Table1 in Hipel
et al. (1997))

Solution
concepts

Stability
descriptions

Foresight Knowledge of
preferences

Disimprovement Strategic risk

Nash
Stability (R)
(Nash 1950,
1951)

Focal DM
cannot move
unilaterally to
a preferred
state

Low Own Never Ignores risk

General
metarational-
ity (GMR)
(Howard
1971)

All focal
DM’s
unilateral
improve-
ments are
sanctioned by
subsequent
unilateral
moves by
others

Medium Own By opponents Avoids risk:
conservative

Symmetric
metarational-
ity (SMR)
(Howard
1971)

All focal
DM’s
unilateral
improve-
ments are
sanctioned,
even after
response by
the focal DM

Medium Own By opponents Avoids risk:
conservative

Sequential
stability
(SEQ) (Fraser
and Hipel
1979, 1984)

All focal
DM’s
unilateral
improve-
ments are
sanctioned by
subsequent
unilateral
improve-
ments by
others

Medium All Never Takes some
risks: satisfies

was extremely familiar with this serious pollution problem. Recall that in ongoing
negotiations during the summer and early fall of 1991, UR (Uniroyal Chemicals
Inc.) was appealing a Control Order issued by the MoE (Ontario Ministry of the
Environment) to cleanse the aquifer which it had polluted. LG (Local Government)
has the option of insisting that the original Control Order be implemented. The
three Technical Experts met with the Domain Expert on two occasions to study this
conflict. In the first two-hour session, they determined the DMs and their options (see
Table1.1), decided upon the feasible states (Table1.2) and the relative preferences of
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Table 1.7 Evolution of the Elmira conflict from the status quo to a transitional noncooperative
equilibrium and to a final cooperative coalition equilibrium

DMs Status quo Noncooperative
equilibrium

Cooperative
equilibrium

MoE

1. Modify N N −−−−−−−−−−→ Y

UR

2. Delay Y Y −−−−−−−−−−→ N

3. Accept N N −−−−−−−−−−→ Y

4. Abandon N N N

LG

5. Insist N −−−−−−−−−−→ Y Y

State s1 s5 s8

each of the DMs over the feasible states (Tables1.3 and 1.5). After the first meeting,
the three Technical Experts carried out a thorough stability analysis for the conflict
model they constructed based on guidance from the Domain Expert. At the second
two-hourmeetingwhich tookplace about twoweeks later, the threeTechnical Experts
showed their key strategic findings to the Domain Expert in order to get feedback
and possibly make further refinements.

Table1.7 provides an overview of the strategic insight gleaned from the stability
calculations. As can be seen on the left, the status quo state during July of 1991 is
state s1 in which MoE has not modified its Control Order (an N is placed opposite
its option called Modify), UR has selected its option to delay the negotiation (as
indicated by the Y opposite option number 2, Delay, which it controls), and LG is
not strongly insisting that the original Control Order be implemented (an N written
opposite option number 5). LG thus caused the conflict to move from state s1 to state
s5. This movement is referred to as a unilateral move by LG since only LG changes
its option selections while the other DMs’ option choices remain fixed. Moreover,
as can be seen in Table1.5, LG prefers state s5 to s1 since s5 is further to the left in
the ranking of states for LG. Because s5 is more preferred to s1 by LG, this move
is referred to as a Unilateral Improvement (UI) for LG. In fact, because a directed
graph is used to systematically keep track of the unilateral moves by each DM in
one step, the overall methodology is called Graph Model for Conflict Resolution
(GMCR). A directed graph can be drawn separately for each DM or the separate
directed graphs can be combined into a single overall integrated directed graph if
the conflict is not too large. Figure1.4 displays the integrated graph model for the
three DMs in the Elmira dispute, which is also shown as Fig. 3.5 in Sect. 3.2.3 and
Fig. 4.8 in Sect. 4.5. In this figure, each node stands for one of the nine feasible
states given in Tables1.2 and 1.3. An arc joining two states represents a move in one
step for the DM written on the arc. Hence, notice in the left position of the graph
there is an arc which joins state s1 and state s5 with LG written on it to show the
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Fig. 1.4 Integrated graph of the Elmira conflict

situation between the left two states in Table1.7. The double arrowheads indicate
that movement can take place in either direction. In Table1.7, only the movement
from s1 to s5 is indicated in the evolution of the dispute. As illustrated in Fig. 1.4,
movement in one direction, which means the move is irreversible, is depicted using
a single arrowhead. Therefore, the arc controlled by UR going from s1 to s9 only has
an arrowhead pointing towards s9 to indicate that closing down its chemical plant in
Elmira is essentially an irreversible move. Notice that below the integrated graph in
Fig. 1.4, the ranking of states frommost to least preferred is provided (where sk >i se
means state sk ismore preferred to state se byDM i). This is because a complete graph
model consists of the feasible states (which can be formed by option selections of the
DMs in the dispute), movements in one step for each DM, and relative preferences
for each DM. Keep in mind that given the DMs and options the resulting states and
the movements in one step for each DM among states can be determined using a
DSS and do not have to be supplied by the Domain Expert.

Returning to Table1.7, the three Technical Experts pointed out to the Domain
Expert in their second meeting that LG can unilaterally cause the conflict to change
from sate s1 to s5 as a result of its UI. However, once the conflict arrives at state s5,
it is not advantageous for any DM to unilaterally move away from it. As explained
in detail in Sect. 4.5, this state is individually stable for all three DMs and hence is
a noncooperative equilibrium. The conflict will remain at s5 unless DMs somehow
cooperate and act together as a coalition. Nonetheless, notice from the graph model
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in Fig. 1.4 as well as Table1.5, both MoE and UR prefer state s8 to s5. Therefore, if
they cooperate andmove together as shown for the two states on the right in Table1.7,
MoE and UR have a joint UI from state s8 to s5. Specifically, MoE can modify the
Control Order by changing option 1 from not selecting it in state s5 to choosing it as
indicated by the Y written for state s8 opposite option 1 as well as the arrow joining
the N and the Y for option 1 at the top right of Table1.7. The arrows joining state s5
and s8 opposite options 2 and 3 indicate that UR simultaneously stops delaying the
negotiations and accepts the modified Control Order.

Themodeling and analysis of the Elmira negotiation during the summer of 1991 as
a current ongoing dispute at that time reflect well what actually occurred. OnOctober
7, 1991,MoE and UR suddenly announced that they had reached an agreement. MoE
modified the Control Order and UR accepted the modification and thereby ceased
delaying the negotiations. Clearly, both parties recognized that forming a coalition
for this joint improvement to take place was mutually beneficial, as shown in the
joint UI from s5 to s8 in Table1.7. The dramatic announcement of an agreement was
a surprise to LG, which was angry over not being included in the secret agreement.
This is because LG had devoted significant effort, time and money to the negotiation
process aswell as the events and activities that tookplace from the time the carcinogen
was first discovered in Elmira’s water supply to October of 1991.

Comments about the History of the Elmira Contamination:

To supply the town of Elmira with fresh uncontaminated water, a 15km pipeline
was built from the City of Waterloo to Elmira. Even though only the wells in Elmira
located close to the UR chemical plant were contaminated, all of the wells in the
town were closed and, hence, all of Elmira’s water supply is from Waterloo, which
continues to be the case up until the present time. To stop the underground contami-
nated water plume from spreading and also for treating the polluted water, it is being
pumped to the surface, treated using a fairly simple process of exposing the water
to ultraviolet light and then releasing it into the nearby creek. Besides cleaning the
polluted part of the aquifer, all ongoing NDMA effluents are being treated.

As of early 2012, a private company called Chemtura was cleansing the water for
MoE by operating:

• a shallow aquifer containment and treatment system on the Uniroyal property to
prevent discharge of contaminated water from reaching the adjacent creek;

• amunicipal aquifer property boundary containment and treatment systemalong the
property boundary to stop the most contaminated water from leaving the property;
and

• an off-site containment and treatment system consisting of wells at four locations
to prevent further movement of the plume. One of the locations is the former
municipal supply wells at the south end of town.

This type of continuing treatment of contaminated water has already been in
operation for a quarter of a century and could continue for decades, if not centuries.
In fact, the Elmira dispute is expanding since residents and environmentalists are, as
of 2017, concerned about pollutants from the chemical plant deposited in the bed of
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the stream flowing through the site and elsewhere. Philpot et al. (2017) completed a
strategic study of this particular dispute using GMCR.

Elmira exemplifies the importance of appropriately treating effluent wastes when
a chemical process is first brought into operation and not storing it in unsafe facili-
ties for later treatment or discharging it directly into the environment. Once pollution
penetrates an aquifer, it could persist for thousands of years and continue to spread
outward from the source. As pointed out at the start of Sect. 1.2.2, brownfields, land
polluted by industrial and agricultural activities, will be a source of great contro-
versy around the globe for a long time to come. Accordingly, developing countries
would be wise to not follow the path of older industrial countries in Europe and
North America by knowingly polluting the landscape under the banner of economic
growth according to the assumption that the pollution can be cleansed later using
the profits of industrialization. This pathway leads to astronomical costs to just con-
tain the pollution and perhaps never being able to completely eliminate it and the
associated huge risks to human health. A connected problem is how to handle chem-
icals of emerging concern: new synthetic chemicals developed by humans for which
the health and environmental impacts are unknown. Sound scientific practices and
effective conflict resolution procedures will clearly play major roles. Other types of
challenging conflicts to which GMCR has already been applied are mentioned in
Sects. 1.2.5 and 2.4.

1.2.4 Follow-Up Analyses

As illustrated using the Elmira groundwater contamination dispute, individual and
coalitional stability analyses can be carried out to obtain strategic insights as an aid
for better understanding of the conflict and what actions can be taken to resolve the
dispute. Procedures for extending theGMCR techniques beyond those outlined in the
previous sections form part of what is referred to as Follow-up Analyses. Usually, the
characteristics of a given conflict being investigated suggest what type of Follow-up
Analyses to pursue. Two types of Follow-up Analysis, Evolution of a Conflict and
Sensitivity Analysis, are described in this section. In Sect. 10.3, ongoing and planned
expansions of the GMCR methodology are discussed. Many of these developments
could be classified under Follow-up Analyses.

1.2.4.1 Evolution of a Conflict

As mentioned in Sect. 1.2.3, in a stability analysis, each state is analyzed for stability
from each DM’s viewpoint according to a range of solution concepts describing
potential human behavior under conflict such as those listed in Table1.6. This can
be carried out for both individual competitive behavior and cooperative behavior
for which coalitions can form. Possible coalition formation is considered since one
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may wish to discover if DMs can do even better via cooperation and thereby reach a
win/win resolution at least for the coalition members. Recall that this is the case for
the groundwater contamination dispute analyzed in Sect. 1.2.3.

In many conflict situations one may wish to ascertain if a noncooperative or
cooperative resolution can be reached from a starting state which is often the current
situation, or status quo, for a conflict being formally studied. Therefore, finding
possible paths which can be followed to possibly reach a particular state is also
referred to as Status Quo Analysis. Because of the usefulness and importance of this
topic, it is the focus of Chap.9 in this book.

Table1.7 for the Elmira conflict was included in Sect. 1.2.3 in order to provide an
explanation of what happened in this groundwater contamination dispute as part of
the overall stability analysis discussion. In fact it is an informative example of how
a conflict can evolve over time from a starting status quo state to a final resolution.
As explained in Sect. 1.2.3, by selecting its option to insist that the initial Control
Order be implemented, LG causes the conflict to move from state s1 to s5, which was
calculated to be a noncooperative equilibrium. Via cooperation, MoE and UR can
make the conflict go from state s5 to state s8 which is the final cooperative resolution
to the dispute. Recall that state s8 is preferred to state s5 by both MoE and UR and,
therefore, this coordinated movement constitutes a joint unilateral improvement.

1.2.4.2 Sensitivity Analyses

In a sensitivity analysis, one wishes to determine how meaningful changes in certain
model parameters can influence the stability findings. As just pointed out, the types
of sensitivity analyses to pursue are dictated by the particular circumstances and
properties of the conflict being investigated. The kinds of sensitivity analyses to be
considered include:

• preference changes,
• uncertain preference,
• option modification or expansion,
• additional option to produce a desirable result,
• bringing other DMs into the game,
• consideration of other kinds of human behavior (solution concepts),
• misunderstandings (called hypergames), and
• entertainment of other modes to bargaining and negotiation.

As an example of one type of sensitivity analysis, consider preference changes.
In a particular conflict, the final resolution may depend heavily upon the preferences
of a key DM. Hence, one could alter part of the ranking of an important DM, such
as a company in a pollution dispute, to see if a better result can be obtained. If, for
instance, the equilibria do not essentially change as a result of a subsequent analysis
using the new preference information, then one can conclude that the findings are
robust to its alteration. When preferences are uncertain (see Chap.5 for unknown
preference), contain strength, degree or level (see Chap. 6), or are a combination of
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these two preference characteristics (see Chap.7 for hybrid preferences), one could
carry out analyses to determine how the strategic findings change.

1.2.5 Application Approaches

The Elmira groundwater contamination dispute described in Sect. 1.2.2 was a serious
environmental conflict which took place in Southern Ontario, Canada. This contro-
versial environmental conflict is utilized for explaining how one can formally model,
analyze and carry out follow-up analyses of an actual dispute in Sects. 1.2.2–1.2.4,
respectively, using a highly flexible methodology called the Graph Model for Con-
flict Resolution (GMCR) which is the focus of this book. Moreover, this dispute is
employed for illustration purposes in many sections in later chapters in this textbook.

Because the Elmira conflict was formally investigated using GMCR when it was
ongoing, it constitutes an insightful case study on how one can analyze a current
dispute. As listed below, in addition to an ongoing dispute, one may also wish to
study historical and hypothetical controversies for reasons mentioned:

• Current

– Need to make wise and informed decisions.

• Historical

– Appreciate why a Pareto-inferior solution took place.
– By understanding the past, avoid making similar mistakes in the future.

• Hypothetical

– Study strategic interactions in a generic conflict.
– Test new solution concepts and other theoretical developments.

An historian, for example, may wish to ascertain why a Pareto-inferior outcome
took place when a better outcome could have occurred, perhaps via better commu-
nication among the competitors. An outcome is called Pareto-inferior when there
exists another state which is not less preferred by any DM and more preferred by at
least one DM. A desirable outcome which is not Pareto-inferior can sometimes be
reached for a set of DMs when they have meaningful communication. As the maxim
goes, “by learning from one’s past one can make wiser decisions in the future.”

Quite often, a very simple conflict can be used to reflect the key characteristics of a
general class of disputes. For instance, Prisoner’s Dilemma is a generic conflict used
to represent situations in which one must decide if one should act independently
according to one’s short-term self-interest or cooperate with another party to fare
better in the longer term. The Sustainable Development Game first proposed by
Hipel (2001) mirrors a basic situation in which an environmental agency is in dispute
with a developer whose project could possibly harm the environment. This generic
conflict is employed for explaining ideas later in this book in Sect. 3.1. Sometimes it
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is informative to employ the format of what is called a 2×2 game which is explained
in Sect. 3.1. Finally, as noted above, hypothetical conflicts, as well as smaller actual
disputes, provide a convenient mechanism for checking and refining new theoretical
expansions to GMCR such as those presented in Chaps. 3–9 and other advancements
mentioned in Sect. 10.3.

The most convincing way for demonstrating the efficacy of a decision method-
ology is via real-world applications ranging from the simple to highly complicated
situations. The Elmira dispute constitutes an insightful application of GMCR to a
current conflict which provides useful strategic insights. Table1.8 lists a wide variety
of real-world conflicts to which GMCR has been applied in many different fields.
Table1.9 provides a listing of the applications used in this book for explaining many
key ideas inGMCR and demonstrating how these concepts can be applied in practice.
In fact, because GMCR realistically captures the key features or characteristics of a
conflict in its basic design, the GMCRmethodology is independent of the field or dis-
cipline of study and can be utilized for investigating virtually any types of “social”
conflict. GMCR is clearly a good “systems” approach to investigating conflict as
explained later in Sect. 2.3.2.

As emphasized in Sect. 1.1.1, as well as in the next chapter in Sects. 2.3 and 2.4,
there are a plethora of important conflicts to address in order to obtain meaningful
strategic insights for making informed decisions. For example, one of the greatest
dangers now facing society on a global scale is climate change and associated con-
troversies on how to fairly and effectively cut back on greenhouse gas releases, as
outlined in Sect. 2.4. In his book on “The Future: Six Drivers of Global Change”,
Gore (2013) describes six emergent revolutionary changes on a global basis, all of
which involve intense conflict. Certainly, in an over-crowded world fraught with
increasing disagreements, conflict will always be present and, hence, there is a great
need for access to realistic conflict methodologies like GMCR.

Hipel et al. (2001b) describe three main types of situations in which GMCR can
be used as listed below.

• Analysis and simulation tool for a DM in a conflict, or a DM’s agent. Moves
and countermoves following a DM’s possible actions can be analyzed, and the
potential consequences of certain actions assessed, in order to improve the DM’s
position. Preparations and assessments can be carried out at different times as the
conflict unfolds.

• Communication and analysis tool in mediation.GMCR can be utilized by a medi-
ator to assess the possible consequences of DMs’ various preferences, without
confirmation by the DMs as to which ones correctly describe their preference.
Options that are beneficial, detrimental, or irrelevant to all parties can be ascer-
tained by using this process.

• Analysis tool for a third-party analyst. Based on the observed outcome and evolu-
tion of a conflict, an analyst can estimate the DMs’ preferences. How the structure
of the conflict influenced the DMs’ behavior and better ways to structure a future
conflict can also be studied.
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Table 1.8 Application areas

Area Explanation References

Aquaculture Fish farming in the oceans, lakes,
rivers, and small ponds causes
controversy because of the fear
of the spread of disease to wild
fish stocks and pollution

Noakes et al. (2003,2005),
Hamouda et al. (2004,2005)

Brownfields The polluted land and aquifers by
former and existing industry are
called brownfields. This is a
massive problem in all
industrialized and developing
countries. In the Elmira conflict
(see Sects. 1.2.2, 1.2.3, 1.2.4 and
4.5), the waste from a chemical
factory caused a serious conflict
in Canada because the aquifer
was polluted by a carcinogen
(cancer causing agent)

Hu et al. (2009), Bernath Walker
et al. (2010), Hipel et al. (2010),
Yousefi et al. (2010c, 2011),
Hipel and Bernath Walker
(2012), Philpot et al. (2017)

Construction management Conflicts arise in construction
among the owner of a project, the
construction company building
the project for the owner and
labor over delays, shoddy
workmanship, unexpected costs,
strikes and other reasons.
Public-private partnerships for
building, operating and
maintaining infrastructure can be
controversial

Kassab et al. (2006,2010,2011),
Yousefi et al. (2010a, b)

Energy Energy conflicts can arise for
many reasons including
environmental concerns such as
greenhouse gas releases,
pollution of groundwater by
fracking, and potential radiation
leaks from nuclear plants. The
routing of electrical transmission
lines as well as oil pipelines
through different political
jurisdictions can create serious
conflicts

Armin et al. (2012), Matbouli et
al. (2015), Xiao et al. (2015),
Garcia et al. (2016), O’Brien and
Hipel (2016)

First Nations (Aboriginal
People)

In many countries, the honoring
of aboriginal rights can create
disputes when these rights are
abused or perceived to be ignored
in problems including
hydroelectric power
development, resource ownership
and fishing right. In Canada,
aboriginal people are referred to
as being First Nations

Ma et al. (2005), Obeidi et al.
(2006)
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Table 1.8 (continued)

Area Explanation References

Military and peace support Von Clausewitz said that
warfare is the extension of
politics by other means.
Negotiations can avoid war
such as the avoidance of
all-out nuclear war between
the Soviet Union and USA in
the Cuban Missile Crisis of
1962. Wars over water in the
Middle East have been avoided
in the past by Third Party
Mediation. Ongoing skrmishes
between Azerbaijan and
Armenia have erupted over the
control of Armenian enclave of
Nagorno-Karabakh in
Azerbaijan which is territory
now controlled by Armenia
since almost all of the people
living there are Christian
Armenians. Peace support in
areas such as Bosnia attempts
to stop fighting among
different cultural groups in a
region

Fraser et al. (1990), Kilgour et
al. (1998), Hipel (2011), Hipel
et al. (2014)

Softwood lumber
(international trade)

The conflict over the export of
softwood lumber from Canada
to the United States over what
American lumber companies
claim to be subsidized prices is
an example of an ongoing
international trade dispute

Hipel et al. (1990,2001b)

Sustainable development The conflict over maintaining a
stable environment in the face
of societal development
activities such as
industrialization and
agriculture arises within and
among countries around the
globe

Levy et al. (1995), Hipel and
Obeidi (2005), Ghanbarpour
and Hipel (2009)

Water exports and diversions The potential exportation of
water in bulk quantities from
Canada has caused intense
conflict to arise in Canada.
One form of water exportation
is diverting water such as in
China where it is being
diverted from the south to the
north

Obeidi et al. (2002), Hipel and
Obeidi (2005), Obeidi and
Hipel (2005)
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Table 1.8 (continued)

Area Explanation References

Water
resources
management

The utilization, management and
control of water among different
users within and across political
jurisdictions have caused serious
disputes to arise around the globe.
Because water is such a key
resource to society, the area of
water resources management and
governance is highly developed
(Hipel et al. (2008), see Sect. 2.4.2
in this book). Wolf (2002) claims
that water is a mechanism for
cooperation and peace rather than
war

Hipel et al. (1999,2001a, 2015,2016),
Gopalakrishnan et al. (2005), Nandala and
Hipel (2007), Ma et al. (2011,2013),
Madani and Hipel (2011), Chu et al.
(2015), Philpot et al. (2016), Garcia et al.
(2017)

Under the first category, a consultant may advise a company on how to interact
with its competitors to obtain a greater market share of a given product. At a com-
pany retreat, the company Vice Presidents could use GMCR in “role playing” by
pretending that a given Vice President represents a specific company. By putting
itself in the “shoes” of its competitors, the organization can better comprehend the
consequences of any actions it may take.

Under the second classification, a mediator, for instance, could employ GMCR in
negotiations between labor andmanagement over designing a new contract. Between
sessions, the mediator could use GMCR to determine how only small concessions
and minimum shifts in preferences by each side may result in a mutually beneficial
agreement. These valuable insights could be utilized by the mediator during the face-
to-face negotiations between the parties, or via behind-the-scenes communication,
to reach a final agreement.

Under the third category, an interested third-partymaywish to know how conflicts
may be resolved. For example, even though China is not a direct combatant in the
ongoing conflict in the Middle East, it is very interested in knowing what could
take place since this could affect its trade opportunity with countries in this region.
Although Canada is not directly involved in disputes over the control of islands
located in the South China Sea, it does want to have an understanding of the security
and economic consequences of those disputes over time.

In the Elmira dispute studied in Sects. 1.2.2–1.2.4, the three Canadian authors of
this book acted as Technical Experts for analyzing this conflict for which background
information was provided by a Domain Expert. Because the Domain Expert was not
taking part in the actual negotiations, but was rather an interested third party whowas
an environmentalist and property owner in Elmira, this conflict falls under the third
category in the above list. In fact, “consultants” could be used in all three categories
given in this list. Although, a consultant would mainly be hired by an organization to
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Table 1.9 Descriptions of the cases used in this book

Cases Description Locations

Sustainable development
conflict

Generic dispute between the
developer of a project and an
environmental agency who
would like to see the Developer
to act responsibly to minimize
environment damages

Sections3.1, 4.2, 5.2, 5.3, 6.3,
and6.5

Elmira groundwater
contamination dispute
(Elmira)

Negotiations among a
chemical company which
polluted the underground water
supply aquifer of the town of
Elmira located in Southern
Ontario, Canada, the Ontario
Ministry of the Environment,
and the Local Government
over cleaning the aquifer

Sections1.2, 4.5, 9.2, and 9.3

Lake Gisborne bulk water
export conflict (Gisborne)

Dispute among a company,
government and
environmentalists over the
proposed bulk export of water
from Lake Gisborne located in
the Canadian Atlantic province
of Newfoundland and
Labrador

Sections5.4, 7.5, 8.10, and 9.3

Garrison diversion unit (GDU)
conflict

Dispute among the proponents
of constructing a large scale
irrigation project in the
American State of North
Dakota, the Canadian
Government representing the
interests of Canadian whose
waters would be polluted
downstream, and the
International Joint
Commission (a neutral body
formed by the Boundary
Waters Treaty of 1909 between
Canada and the US to
investigate disputes over
water)

Sections6.6 and 9.3
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investigate a present conflict, they could be used to carry out tasks for a client related
to current, historical and hypothetical disputes mentioned in the first list given in this
subsection.

Below, a possible procedure is outlined on how a consultant in conflict resolution
may perform his or her duties for a client. In fact, this approach is close to that
used in Sects. 1.2.2–1.2.4 for formally studying the Elmira groundwater contamina-
tion dispute. Clearly, there are many advantages to using GMCR in practice as is
summarized in the next subsection.

• First Meeting

– Morning: In highly interactive discussions the client provides the consultant
with information about the decision makers and options in the conflict under
study.

– Afternoon: In-depth discussions take place to determine the preference state-
ments for each decision maker.

• Analytical Calculations

The consultant uses the model input data elicited from the client to calculate
analytical results anddiscover strategic insights employing theDSSGMCR(Graph
Model for Conflict Resolution) II. A preliminary report is written.

• Second Meeting

Consultant and client use the initial report as a basis to confirm insights anddiscover
new ones. Strategic advice for decision-making under conflict is proposed.

• Final Report

Consultant prepares the final report and sends it to the client.

1.2.6 Benefits

The Graph Model for Conflict Resolution (GMCR) possesses a solid mathemati-
cal design which makes it ideally suited for systematically investigating real-world
conflict. As pointed out in Sect. 1.1.1, actual conflict contains key inherent charac-
teristics such as the way decision makers (DMs) think and behave in terms of moves
and countermoves as they attempt to do the best they can both independently and
perhaps in cooperation with others. As emphasized in Sect. 1.1.2, these important
features of reality are purposely embedded into the axiomatic foundations of GMCR
in order to provide the underlying capability of GMCR to reflect reality via a range of
powerful functions like forecasting possible resolutions based upon different types
of behavior in diverse conflict situations. When implemented as a user-friendly pro-
gram as summarized in Sect. 2.3.3 and described in more detail in Chap.10, the
GMCR methodology can be readily utilized by both practitioners and researchers
to formally study conflict ranging from the simple to highly complicated ones in
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virtually any field where conflict arises. Moreover, when conflict studies are carried
out within an overall systems thinking approach to governance, the strategic insights
and guidance obtained can be fully appreciated, as explained in Sect. 2.4. The rich
range of applications of GMCR across many different fields mentioned in Sect. 1.2.5
and listed in Table1.8 confirms the ingrained capability of GMCR to address tough
conflicts occurring in the real-world. Finally, the realistic foundational design of
GMCR means that the basic methodology can be easily expanded to handle all of
the advancements presented in detail in this book as well as many others mentioned
in Sect. 10.3.

Because of the aforesaid and other reasons, it is not surprising that the utilization
of GMCR can provide a wide variety of benefits to users. These benefits, which
overlap with those already listed in Sect. 1.1.2 and elsewhere in the book, include:

• Provides a systematic structure of a conflict.
• Can be conveniently applied in practice.
• Handles any finite number of decision makers and options.
• Can take into account a rich range of preference structures.
• Keeps track of all feasible movements by DMs among states.
• Can model both reversible and irreversible moves, as well as common moves
explained in Sect. 3.2.

• Describes the ways in which people or organizations may behave under conflict.
• Generates states or possible scenarios.
• Forecasts compromise resolutions or equilibria.
• Determines most likely conflict resolutions.
• Performs extensive follow-up analyses, including tracing the evolution of a conflict
and sensitivity analyses.

• Points out where more useful information is needed.
• Can be easily expanded to take into account new developments such as unknown
preference (see Chap.5), degrees or strength of preferences (Chap. 6), and hybrid
preference which constitutes a combination of unknown and degrees of preference
(Chap. 7).

• Can be made available as a decision support system for convenient application
purposes.

• Permits easy and convenient communication.
• Allows systematic book-keeping.
• Provides valuable strategic insights.
• Suggests paths for optimal decision-making for a given decision maker.
• Can be easily expanded to handle a rich range of conflict characteristics or situa-
tions such as those given in this book and Chap.10.

1.3 Journeys Through the Book

You, the reader of our book, are about to embark on a fascinating journey through the
realm of informative conflict resolution using flexible methodologies for addressing
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Fig. 1.5 Flow of the contents provided in the book

challenging disputes that can arise in the real-world. As is the case for many inter-
esting ventures, there are a number of possible routes that can be followed through
this kingdom. Figure1.5 provides a road map on how you can navigate through
our book, depending upon your available time and particular interests. Additionally,
Table1.10 furnishes a brief description of the contents of each chapter along with the
applications that are used to illustrate how key ideas in the chapters can be utilized
in practice. An overview of each of the disputes is provided in Table1.9. With this
travel information in hand, let us discuss a number of pathways that you can consider
exploring.

A popular English expression is the “proof of the pudding is in the eating”. In
other words, try applying the Graph Model for Conflict Resolution (GMCR) to an
actual dispute of direct interest to you in order to convince yourself that it is useful for
systematically investigating a conflict of your choice and thereby become inspired
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Table 1.10 Key contents in the book

Chapter Title Contents Conflict examples

Chapter1 Conflict resolution in
practice

Objectives of the book.
Demonstrate how GMCR
can be applied to an actual
conflict

Elmira groundwater
contamination dispute

Chapter2 Decision-making in
perspective

An overview of conflict
resolution and formal
decision-making
techniques

Chapter3 Conflict models in graph
form

Three kinds of games are
introduced: normal form,
option form and the graph
model

1. Sustainable
development conflict;
2. Elmira groundwater
contamination dispute

Chapter4 Stability definitions:
simple preference

Logical and matrix
representations of the four
basic stabilities are
described

1. Sustainable
development conflict;
2. Elmira groundwater
contamination dispute

Chapter5 Stability definitions:
unknown preference

Unknown preference and
associated logical and
matrix representations of
the four stabilities are
described

1. Extended sustainable
development conflict;
2. Gisborne bulk water
export conflict

Chapter6 Stability definitions:
degrees of preference

Multiple degrees of
preferences and related
logical and matrix
representations of the four
stabilities are presented

1. Three-degree
sustainable development
conflict;
2. Garrison Diversion Unit
conflict

Chapter7 Stability definitions:
hybrid preference

Hybrid preferences and
associated logical and
matrix representations of
the four stabilities are put
forward

Extended Gisborne
conflict

Chapter8 Coalitional stabilities Logical and matrix
representations of four
coalitional stabilities for
various preference
structures are developed

Gisborne conflict

Chapter9 Follow-up analysis:
conflict evolution

The conflict evolutionary
paths from any status quo
to an equilibrium for
various preference
structures are described

1. Elmira conflict;
2. Gisborne conflict;
3. Garrison Diversion Unit
conflict

Chapter10 Design of a decision
support system for conflict
resolution

Existing decision support
systems (DSSs), a
universal design for a
graph model DSS and
future opportunities in
conflict resolution are
described
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to ultimately end up reading most of the book. Accordingly, if you would like to be
able to begin by modeling and analyzing an existing conflict as soon as possible, the
shortest path is as follows. As is illustrated in Sect. 1.2 for the Elmira groundwater
contamination conflict, an informative way to record a conflict is to employ option
form which provides a meaningful way or “language” to discuss it with others. By
reaching an improved understanding of what is taking place in the conflict, better
strategic insights can be obtained as an aid for enhancing decision-making.Whatever
the case, if you want to apply GMCR as expeditiously as possible first read about
option form described in Sect. 3.1.2 followed by the graph model in Sect. 3.2. As
can be seen in the middle part of Fig. 1.5, four approaches to modeling preferences
are available in this book with others mentioned in Sect. 10.3. For now, stay with
the simple preference described in Sect. 3.2.4 and in Chap.4 when employed at the
analysis stage inwhichmoves and countermoves are considered to determine stability
for a particular state from a given decision maker’s (DM’s) point of view as well as
the associated overall equilibria. Of the four key stability definitions, consisting of
Nash, general metarational (GMR), symmetric metarational (SMR) and sequential
stability (SEQ) given in Sects. 4.2.1 and 4.2.3 for the two-DM and n-DM (two or
more DM) cases, respectively, concentrate on employing Nash and SEQ in your
application. The concept of SEQ stability is realistic to employ in practice since
a DM will not do something that hurts himself or herself. Moreover, only look at
the logical representation of a conflict for now since a direct interpretation explains
how people think in terms of moves and countermoves in a conflict situation. You
can find out how stability calculations are actually carried out by reading Sect. 4.5
for the case of the Elmira dispute. If your conflict is not too large, you can first do
your calculations by hand to fully appreciate why this way of formally investigating
conflict reflects what takes place in reality. If you plan to analyze larger conflicts,
thereby making hand calculations too tedious, investigate many conflicts, or check
your manual calculations, you may wish to employ an existing decision support
system (DSS) (see Sect. 10.1.2) or write your own program (see Sect. 10.2 for a
universal design and for specifics about designing the input, engine and output for a
DSS).

For a fairly comprehensive tour through the book depicted in Fig. 1.5, again read
Sect. 3.1.2 on option form and Sect. 3.2 on the graph model. Next, pass through
Chap.4 dealing with simple preference only and stick to the sections in Chap.4 as
well as Chap. 8 (Coalitional Stabilities) and Chap.9 (Follow-up Analysis: Conflict
Evolution) that are concerned with the logical form of systematically studying a
dispute.

As can be seen in the central part of Fig. 1.5, there are four key types of preference
structures for consideration in each of these chapters as well as Chaps. 8 and 9. If, for
instance, you suspect that uncertain preferences are of import in the types of conflict
you wish to study, you could include Chap.5 regarding Unknown Preference as
part of the pathway you wish to follow. If levels or strength of preference are of
relevance, you may wish to incorporate Chap.6 into your travel plans. For example,
an environmentalist may greatly prefer that a planned industrial complex not pollute
the surrounding environment. This kind of “emotion” is reflected in the preference
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structure described in Chap.6 as well as relevant parts of Chaps. 8 and 9. Finally,
if you may deal with both unknown and levels of preferences in disputes that you
plan to address, you can read Chap.7 on Hybrid Preferences which simultaneously
takes into account both of these preferences within a single framework. Once again,
pertinent sections from Chaps. 8 and 9 can be utilized in combination with hybrid
preferences.

The logical form of a conflict, expressed in terms of moves and countermoves, is
a truly intuitive and natural way to think about conflict. On the other hand, the matrix
formulationofGMCRprovides a solid foundationuponwhich to theoretically expand
the basic paradigm of GMCR in many exciting and useful directions as described in
Sect. 10.3. As the saying goes, “good theory means good practice.” Accordingly, the
universal design of a DSS for allowing you to effectively study any kind of conflict
from the small to large and from the simple to complex depends heavily upon this
clever concept of the matrix form. This is especially true for the engine design of a
DSS in which massive calculations must be executed for large conflicts. Therefore,
besides the logical form, in order to be able to understand in great depth the GMCR
paradigm for both theoretical and practical purposes, you may wish to also include
in your trip itinerary the matrix representation of GMCR given in Sect. 3.3 as well
as relevant sections of all of the remaining chapters of the book. Depending on the
kinds of preferences you wish to study, you can include all or some of Chaps. 4–7 in
your travels through the GMCR countryside.

As can been seen in Table1.9 and in the right column of Table1.10, the illustrative
applications utilized in this book are environmental. These applicationswere selected
because of their particular conflict characteristics for simply explaining how to con-
veniently apply ideas in this book rather than their field of application. In fact, the
GMCRmethodology constitutes a truly general systems approach to conflict resolu-
tion (see Sects. 2.3.2 and 2.4.1) which is independent of the domain of application.
As listed in Table1.8 on application areas in which GMCR has been utilized in the
past, it has been successfully applied to conflicts in numerous domains ranging from
peaceful international trade to violent military confrontations. Hence, the roadmap
drawn in Fig. 1.5 can be used in the domain of application which is of direct con-
cern or importance to you. As mentioned in Sect. 1.1.3, the ideas in our book should
be of great relevance to practitioners, researchers, teachers and students working in
any particular field of study in which conflict may arise. Because conflict seems to
almost always arise when two or more humans are gathered together and interacting
with one another, our basic human nature over our conflicting value systems makes
conflict inevitable in virtually any field of study involving people. Moveover, it arises
among plants and animals as they are all competing for resources.

This book has been purposefully designed for use by both practitioners and
researchers. The authors and their colleagues and students have been engaged for
many decades in developing sound theoretical methodologies for tackling real con-
flict situations arising in the real-world. Problems are provided at the end of each
chapter for those who would like practice in using the ideas described in these chap-
ters. The book is designed for use by a consultant who may be part of an operations
research or systems engineering team in a large company or a person who owns his
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own law or engineering consulting firm in which he or she must deal with conflict.
As explained in Sect. 2.4, one may utilize these clearly powerful sets of techniques
for addressing tough disputes within an overall system of systems perspective and in
an integrative and adaptive fashion. Often the set of GMCR tools may be utilized in
combination with other game theory methods (Sect. 2.2) and other formal techniques
fromOperations Research (Sect. 2.3.1) and Systems Engineering (Sect. 2.3.2).When
implemented as a flexible DSS (see Sect. 2.3.3 and Chap.10), the GMCR methodol-
ogy can be readily applied to tough conflict problems of direct concern to you.

1.4 Problems

1.4.1 As a responsible citizen in the nation in which you reside, briefly discuss a
main challenge facing your country.Describe the key stakeholders or decisionmakers
involved in the issue. How do you think this problem can be resolved?

1.4.2 At the international level, which issue facing humanity around the globe is of
most concern to you? Briefly outline this problem, discuss the conflict underlying
it, mention the key decision makers and suggest how the dispute can be fairly and
appropriately resolved.

1.4.3 From your own perspective and personal experience in dealing with conflict,
explain why you think using a formal method to investigate conflict could be bene-
ficial to you.

1.4.4 Discuss how you think certain types of conflict can enhance society and how
other kinds of conflict can harm it.

1.4.5 In your field of study, employment or interest, make a list of the range of
conflicts which commonly arise. How do you think they can be solved?

1.4.6 Whenyou are personally involved in a conflict, why do you think it is important
to know the preferences or values of the other people with whom you are interacting?

1.4.7 Why is it important to think like a chess player in terms of moves and coun-
termoves, when investigating a conflict situation? Describe a dispute in the past in
which you were involved and how this idea of thinking about the consequences of
decisions that you could make naturally led you to think like a chess player when
deciding upon what course of action to take.

1.4.8 In Sect. 1.2.2.3, it is pointed out that in a social conflict often it is only possible
to obtain relative preference information for each involved decision maker. Do you
agree with this statement? Describe a situation for which you think it may be possible
and desirable to have cardinal preference information such as utility values or dollars.
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1.4.9 Find a dispute that is of direct interest to you on the internet or in the newspaper.
Using the option form given in Sect. 1.2.2, write down the decision makers (DMs),
each DM’s options or courses of action and the feasible states that could occur. By
utilizing the idea of preference statements given in Table1.4 for the Elmira conflict,
record what you think are the relative preferences for each of the key DMs.

1.4.10 As explained in Sect. 1.2.5, one can apply a conflict resolution methodology
such as the Graph Model for Conflict Resolution to a current, historical or generic
conflict. An important type of generic or underlying conflict is called Prisoner’s
Dilemma. Explain the basic idea underlying this general kind of conflict and why it
is of such great importance.

1.4.11 In Sect. 1.2.5, three general situations in which the Graph Model for Conflict
Resolution may be used are explained. Describe a specific real-world example of
each of these three situations.

1.4.12 Table1.8 provides a list of application areas, in which the Graph Model for
Conflict Resolution (GMCR) has been successfully applied to specific real-world
conflicts. Select one reference for a conflict formally studied using GMCR which is
of direct interest to you. Briefly describe the conflict and then explain the strategic
insights that were gained into resolving this conflict using GMCR.
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Chapter 2
Decision-Making in Perspective

2.1 Overview

The goal of this chapter is to put the field of conflict resolution and associated domain
of game theory into perspective so that a reader will be able to fully appreciate the
inherent value of utilizing GraphModel for Conflict Resolution (GMCR) as a highly
informative and operational means for studying actual social conflict that does take
place in reality. Within Sect. 1.2 of the previous chapter, some of the key ideas
underlying the formal investigation of conflict are discussed. Within this book, the
detailed explanation of how these concepts are defined and operationalized using
real-world examples are presented in subsequent chapters. In Sect. 2.2, the evolution
and development of a rich variety of game theory methods is put into perspective to
highlight the important and central role that GMCR plays for sensibly and flexibly
modeling and analyzing social conflict. An insightful classification of game theory
methods permits one to understand situations in which various approaches can be
employed, with GMCR being the key methodology for formally studying societal
conflict occurring in many different disciplines such as engineering, law andmilitary
science.

Two key fields in which a wide range of formal decision-making tools have been
developed since the late 1930s and 1940s are Operations Research (OR) and Systems
Engineering, respectively. The history and development of decision technologies
within these two dynamic fields of study are presented in Sects. 2.3.1 and 2.3.2 forOR
and Systems Engineering, respectively. To permit a given decision-making approach
to be applied to practical problems, a user-friendly set of programs and associated
databases should be made available in what are called Decision Support Systems
(DSSs) outlined in Sect. 2.3.3 and described in detail for GMCR in Chap.10. As
explained in Sect. 2.4.1, a System of Systems (SoS) interpretation of reality provides
a solid foundation on which an informative decision tool like GMCR can be utilized,
since DMs or agents compete and cooperate with one another within and among
systems. As discussed in Sect. 2.4.2, responsible governance can be achieved and
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key systems values like robustness, sustainability and fairness can be met, when this
is carried out using integrative and adaptive management concepts.

2.2 Game Theory Methods: Classifications

As explained in the next subsection, because conflict is so ubiquitous in soci-
ety, researchers and practitioners have developed a rich range of conflict analysis
approaches for investigating many different kinds of situations. In fact, to put con-
flict analysis methods into perspective, an insightful way for classifying conflict
analysis or game theory techniques is put forward in Sect. 2.2.2. By knowing the key
characteristics of a specific real-world dispute being studied, one can select an appro-
priate game theory method, or set of techniques, that has the structural capabilities
for modeling and analyzing it.

2.2.1 The Evolution of Game Theory Methods

Asvividly described in Sect. 1.1, conflict is an inherent characteristic of human nature
which dictates how individuals, groups of people, organizations and nations interact
with one another. For instance, warfare is recorded in the history of early civilizations
that existed in Mesopotamia, China and India, up until the present time when nasty
regional wars have been taking place in the Middle East for many decades. Inter-
national companies in the automobile industry, electronics, information technology
and many other fields are currently fiercely competing on a global basis to capture
larger market shares in each of these areas. On a personal level, people might still
disagree over how work should be fairly allocated when completing a given task as
mundane as cleaning the rooms in a house.

The fact that conflict is so prevalent attracted the attention of scholars in many
fields of study. Because conflict involves people, researchers in the social sciences
were among the first to explain and categorize conflict in fields such as sociology,
law and economics. Attempts to formalize the study of conflict by developing mathe-
matical models of disputes are more recent. The areas in which formal mathematical
models of conflict have been developed are often collectively referred to as game
theory. Early work in game theory can be traced back to the year 1654 when the
French mathematicians Pierre de Fermat and Blaise Pascal studied a specific kind of
parlor game and established the foundations for the theory of probability. Nonethe-
less, it was the groundbreaking work of von Neumann (1928) and, particularly, von
Neumann and Morgenstern (1944, 1953) that decisively brought game theory into
the modern era as a distinct domain of mathematical enquiry having a rich range of
conflict problems to tackle. Moreover, since conflict arises in virtually every field of
human endeavor, contributions to game theory have been made by experts working
in many areas. As is explained in Sect. 2.3, mathematicians, scientists and engi-
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neers working in the fields of Operations Research and Systems Engineering have
designed a wide range of formal decision-making methods including various game
theory techniques. Operations Research was started by the British military just prior
to the start ofWorldWar II (WWII) in Europewhile Systems Engineeringwas largely
initiated shortly afterwards. In addition, since the cessation of hostilities afterWWII,
there has been a great proliferation of research in game theory. As a matter of fact,
it is difficult to keep track of what has been accomplished in game theory across a
large number of fields and how to put the many contributions to game theory into
perspective.

2.2.2 Classifying Formal Game Theory Techniques

To permit researchers and practitioners to wisely select the most appropriate game
theory tools to utilize for addressing different kinds of conflict problems and for
deciding upon where there are needs for refining and extending game theory tools as
well as designingnewmethods, onemust be able to classify game theory techniques in
meaningfulways. In general, one requires useful criteria for categorizing game theory
methods. Some of these criteria include types of preference information, number of
decision makers, number of options or strategies, size of the conflict, kinds of human
behavior under conflict, types of available information, kinds of uncertainty, and
level of cooperation which can range from highly noncooperative competition to
increasing levels of cooperation ending at a universal coalition (Fang et al. 1993,
Sect. 1.4). By being aware of the criteria under which game theory techniques are
categorized as well as the key characteristics of an actual conflict being investigated,
one can choose an appropriate set of game theory tools that possess the theoretical
capability, as expressed by the criteria, to model the main characteristics of the
dispute. In other words, one makes a one-on-one linkage between model criteria and
problem characteristics to select the appropriate set of tools. Additionally, one can
discover a gap in the literature which indicates where more research is needed if
tools are not currently available to address certain problem characteristics.

As suggested by Hipel and Fang (2005), an especially informative way to classify
formal game theory methods is according to type of preference. Figure2.1 displays
a genealogy of game theory methods for categorizing game theory techniques with
respect to relative and cardinal preferences. As mentioned in Sect. 1.2.2, when a
person asks a friend whether she would like to have coffee or tea to drink, the
companion would probably respond that she would prefer to have a cup of coffee.
If having coffee or tea is equally preferred, the person may respond that it does not
matter which drink you serve me. This is what is called a relative preference and
it constitutes a nonquantitative way of expressing a preference. On the other hand,
if utility values conveyed as real numbers or benefits given as dollars are used to
indicate preference, these are called cardinal preferences. It does not make sense to
state that a cup of coffee is worth 6.2 utility units to a person and tea 2.8 in place of
simply stating that she prefers to drink coffee. However, when the profits made by a
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Fig. 2.1 Genealogy of formal multiple participant decision-making models

company in producing two different products are 100 and 35 dollars then it may be
meaningful to use cardinal numbers given as dollars to represent the preference of
the company tomanufacture more of the product which brings in higher profits. Even
though the qualitative methods listed in the left branch in Fig. 2.1 only depend upon
relative preference information, these techniques, like the ones in the right branch,
constitute formal mathematical game theory techniques. In fact, as explained in
upcoming chapters in the book the kinds of mathematical concepts used to build
the qualitative game theory methods come from set theory, logic, graph theory and
matrix algebra - the mathematics for expressing relationships.

The focus of this book is theGraphModel for Conflict Resolution (GMCR),which
is given under relative preferences in the left branch in Fig. 2.1. These game theory
methods listed in the left branch are especially useful formodeling and analyzing real-
world social conflicts such as environmental disputes, trading conflicts amongnations
and an argument between neighbors over where the fence between their properties
should be located. When reading from the top to the bottom of the left branch, the
earliest method created under this category is the pioneering technique of metagame
analysis which was developed by Howard (1971). Subsequently, Fraser and Hipel
(1979, 1984) expanded the scope of metagame analysis through the development of
a methodology called conflict analysis which was further significantly enhanced by
Kilgour et al. (1987) and Fang et al. (1993) in the construction of the comprehensive
approach labelled as GMCR. As indicated at the bottom of the left branch, GMCR
has been further improved by the design of a matrix form of this approach, which
is utilized throughout this book as well as by many other enhancements presented
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in Chaps. 3–9. Moreover, GMCR has been significantly broadened in scope by the
addition of many other developments presented in Chaps. 4–9 plus those mentioned
in Sect. 10.3. Over the years, summary papers describing the capabilities of the
GMCR methodology as well as opportunities for future development have been
written (see, for instance, Hipel et al. (2003) and Kilgour and Hipel (2005, 2010)).
The original logical form for logically explaining stability calculations in terms
of moves and countermoves has been further improved by the design of a matrix
form of this approach used extensively in this book and is especially important
in carrying out stability calculations in the engine of a DSS for GMCR described
in Chap.10. Additionally, as depicted in the left branch, metagame analysis was
expanded by Howard et al. (1992), Howard (1999) and Bryant (2003, 2015) through
their development of a procedure called drama theory for nonquantitativelymodeling
the dynamic aspects of conflict based on the metaphor of a drama.

In their book entitled “Theory of Games and Economic Behavior”, von Neumann
and Morgenstern (1944, 1953) mainly deal with quantitative game theory methods,
which are calibrated using cardinal preferences and often referred to as classical
game theory methods. Three popular kinds of techniques from classical game theory
are normal form, extensive form, and cooperative game theory which are listed in
the right branch drawn in Fig. 2.1. In classical normal form, one assumes that two or
more DMs interact one time only. The normal form of the game is defined in Sect. 3.1
in this book under the assumption of having relative preferences, rather than cardinal.
A convenient way to display the normal form is to use a matrix in which the row
player or DM controls the strategies represented by the rows while the column player
is in charge of the column strategies. Each cell in the matrix represents a possible
scenario or state. Within the extensive form, multiple interactions among DMs are
depicted using a tree-like structure that keeps track of all possible evolutions of the
game.

Cooperative methods are used to examine the interaction of DMs who must coop-
eratively decide how to fairly divide a “pie” or some resource in an equitable fashion.
These methods are often employed to analyze coalition formation, voting problems
or optimal resource allocation procedures. The Cooperative Water Allocation Model
(CWAM), for example, constitutes a large-scale optimization model based on ideas
from cooperative game theory, economics and hydrology to fairly allocate water
among competing users in a river basin (Wang et al. 2003, 2007, 2008a, b, Hipel et
al. 2013b). Based on a systems approach, CWAM considers not only the physical
systems consisting of hydrological and environmental factors but also the societal
system. Moreover, CWAM has been expanded to handle demand-side management
to promote water use efficiency (Xiao et al. 2016). Furthermore, CWAM has been
successfully applied to fair water allocation problems in the South Saskatchewan
River Basin located in the Canadian Province of Alberta (Wang et al. 2008a, b, Hipel
et al. 2013b) as well as the Aral Sea region (Wang et al. 2007).

As shown in the central part of Fig. 2.1, another approach in which cardinal pref-
erences are assumed is agent-based modeling. In this procedure, the actions and
interactions of agents are simulated in order to assess their impacts on the overall
system. Hence, this method can be employed to test whether or not a given policy
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will function according to expectations in practice. For example, one may wish to
determine if a cap and trade method will significantly reduce the amount of green-
house gases released by society into the atmosphere. Agent-based modeling can
be interpreted as a bottom-up approach to performance assessment since it deter-
mines if individual decision-making units, often referred to as autonomous agents,
interact in a way that causes the policy to meet its goals. As pointed out by Hipel
and Fang (2005), researchers in agent-based modeling often directly import con-
cepts from classical game theory for utilization in their formal analyses of rules
or protocol governing the high level behavior of interacting agents as is done by
Rosenschein and Zlotkin (1994). Therefore, Hipel and Fang (2005) recommended
that solution concepts describing possible moves and countermoves among DMs
within the GMCR paradigm be utilized in agent-based modeling for policy assess-
ment. This was accomplished for the first time by Bristow et al. (2014) when they
examined the responsible utilization of common pool resources such as water and
the atmosphere in order to avoid a Tragedy of the Commons (Hardin 1968, Ostrom
et al. 1994, 1999) in which a common resource is destroyed via entirely competitive
rather than cooperative behavior. A dotted line showing the connection of GMCR to
agent-based modeling is drawn in the central part of Fig. 2.1.

A number of books and papers have been written in which different approaches to
game theory have been described and compared. For instance, Hipel (2009a, b) and
Kilgour and Eden (2010) have produced edited books in which experts from many
fields have written papers on a range of conflict analysis methodologies in group
decision and negotiation for application inmany different areas. The chapters in these
handbooks largely concentrate on methodologies listed in the left branch of Fig. 2.1
but techniques coming under the right branch and elsewhere are also presented.
Hipel and Bernath Walker (2011) and Hipel et al. (2016) provide an overview of the
employment of conflict analysis methods in environmental management that span
both branches in Fig. 2.1.

2.3 Formal Decision-Making Techniques

As discussed in Sect. 2.2 and depicted in Fig. 2.1, game theory is comprised of a
rich range of mathematically-based techniques for formally investigating conflict.
Fortunately, a wide variety of formal decision-making tools have been developed for
investigating many different kinds of decision situations. Because decision-making
arises in many areas of human endeavor, from engineering design to international
trade, approaches to tackling decision problems have been put forward by researchers
and practitioners from many different disciplines. Two specific disciplines, or fields,
in which many different types of formal or mathematically-founded techniques have
been developed starting about the time of World War II (WWII) are Operations
Research and Systems Engineering. Accordingly, a brief history of these two disci-
plines along with an overview of the types of tools that have been developed within
them are put forward in the next two subsections, respectively. The reason why it is
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important to be aware of the existence of a valuable range of formal tools is because
when addressing tough systems problems, such as those arising in energy use and
climate change, usually a number of specific tools can be selected for assisting in
realistically addressing a particular problem. Moreover, due to their inherent math-
ematical design, most of these methods are readily available as decision support
systems containing comprehensive computer programs and databases for permitting
them to be conveniently applied to practical problems, as outlined in Sect. 2.3.3 and
explained inmore detail in Chap.10, including issues related to governance discussed
in Sect. 2.4.

2.3.1 Operations Research

Operations Research (OR) or Operational Research, as the British call OR, con-
stitutes a systematic approach for scientifically solving real-world problems. The
term “scientific” is used in the definition because only formal techniques that actu-
ally work in practice for enhancing decision-making are utilized, often in the face
of sparse information and high uncertainty (Kimball and Morse 1951, Hipel 1981,
Ravindran et al. 1987). ORwas originally conceived by the British as a response to a
potential military threat just before the outbreak ofWWII in Europe. As described by
Lardner (1979), the British military was concerned about how to defend the United
Kingdom against potential air attacks from Germany since German bombers could
reach the UK in a very short period of time. In fact, by the mid-1930s Germany
was the dominant economic and military power in continental Europe and it was
acting very aggressively against its neighbors in response to the unfair treatment
that it thought it received under the Treaty of Versailles signed in 1919 just after
WorldWar I (WWI). By 1935, radar was recognized by the British as a viable means
of detecting enemy aircraft before they reached the British Isles. Accordingly, the
British established a system of radar bases in the southern and eastern parts of Eng-
land. When the British tested their system of radar bases against mock air attacks
from their own air squadrons launched from air bases in France, the system failed
to work. There were, for instance, poor communication among radar stations and a
lack of systematic defensive strategies from fighter aircraft that took off from Royal
Air Force facilities in England to disrupt or stop the attack. As a consequence, in
July 1938, research into the operational aspects of radar systems was initiated. The
effectiveness of OR was confirmed by the successful air exercises carried out during
the summer of 1939.

The first major employment of OR in WWII actually saved the UK from defeat
by Germany. In particular, at the outbreak of WWII on September 1, 1939, the OR
Section was attached to the Headquarters of the Royal Air Force Fighter Command.
OnMay 10th, 1940,Winston Churchill replaced Neville Chamberlain as PrimeMin-
ister of theUK.On the same day, theGermans launched Fall Gelb (OperationYellow)
which led to the rout of the French army and British Expeditionary Forces by the
Wehrmacht (refer to Bennett and Dando (1977, 1979) for a history of the Battle
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of France and to Fraser and Hipel (1984), Sect. 4.2, for a conflict analysis of the
strategic surprise used in Fall Gelb when the main German forces unexpectedly
attacked through the Ardennes). Subsequently, from July 10th, 1940 to September
15th, 1940, theGermanLuftwaffe attempted to defeat theUKby aerial bombardment
during the Battle of Britain. Largely because of OR, Germany was not successful
in defeating the UK and in reality suffered massive losses of military aircraft and
personnel. OR scientists can be accredited with saving the Royal Air Force from
being obliterated during the Battle of France so it could survive to be victorious in
the Battle of Britain. A relatively small OR study demonstrated that based on current
losses and replacement rates at that time, the Germans would have destroyed the
entire Royal Air Force within two weeks. A graphical presentation of these find-
ings on May 15th, 1940, convinced Churchill not only to stop sending more fighter
squadrons to France but also to withdraw all of the British air squadrons which were
in France at that time.

In addition to the air force, the other UK armed services also employed OR teams
for solving specific large-scale military problems. A well-known naval illustration is
how allied shipping losses as a result of attacks by German submarines in the North
Atlantic against ships transporting supplies and personnel to the UK from Canada
and the United States were reduced by increasing the size of escorted convoys. After
the United States entered the war on December 7, 1941 as a direct result of the
unexpected Japanese aerial attack on Pearl Harbor by planes launched from aircraft
carriers, the American armed forces used OR in its military decision-making.

Besides their OR teams, both the British and American armed forces utilized the
talents of gifted mathematicians, scientists and engineers to break encoded messages
sent by the Germans and Japanese, respectively. In particular, at Bletchley Park
located 80 km northwest of London, the location of the UK’s Government Code and
Cypher School, mathematicians like Alan Turing andWilliam “Bill” Tutte helped to
break the German Enigma and Lorenz ciphers, respectively. What was called Ultra
intelligence at Bletchley Park may have shortened the war by as much as two to
four years (Aldrich 2010,Briggs 2011, Grey 2012). In the Pacific arena of the war,
personnel at theUnited States Navy’s Combat IntelligenceUnit were able to decipher
encoded messages sent by the Japanese Navy throughout the war and thereby knew
about Japanese navalmaneuvers before they took place (Winton 1993, Benson 1997).
Because of the deciphering of a message giving the flight plans of Admiral Isoroku
Yamamoto, Commander-in-Chief of the Combined Japanese Fleet, American pilots
in P-38 fighters killed Admiral Isoroku Yamamoto on April 18, 1943 by shooting
down the plane carrying him as it was about to land at Bougainville in the Solomon
Islands.

As explained by Fang et al. (1993, Sect. 1.4) and many other authors, OR is both
an art and a craft. The art is composed of a general approach to solving compli-
cated operational problems, whereas the craft component consists of a wide range of
mathematical methods for furnishing reasonable findings when properly applied
to specific problems. Methods that are commonly considered to be part of OR
include optimization techniques such as linear, nonlinear and integer programming;
probabilistic techniques like Markov Chains, queuing theory and certain kinds of
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Table 2.1 Classification of decision-making models

time-series models; and some game theory approaches. As is also the situation for
the game theory methods mentioned in Sect. 2.2.2 and summarized in Fig. 2.1, there
is a range of criteria that could be employed for categorizing OR techniques. In
Table2.1, OR techniques are classified with respect to two criteria: number of deci-
sion makers (DMs) and number of objectives. As indicated, many OR methods or
models represent the perspective of one DM having a single objective. For instance,
linear programming can be employed as an optimization tool by a company to mini-
mize its costs expressed as a linear algebraic objective function which is minimized
within a feasible region constrained by linear algebraic inequalities. Multiple criteria
decision analysis (MCDA)methods (see, for example,MacCrimmon (1973), Keeney
and Raiffa (1976), Saaty (1980), Hwang and Yoon (1981), Goicoechea et al. (1982),
Vincke (1992), Roy (1996), Rajabi et al. (1998), Hobbs and Meier (2000), Belton
and Stewart (2002), Chen et al. (2008), Chen et al. (2011), Hipel et al. (2009a),
Kuang et al. (2015)) are purposefully designed for discovering the set of more pre-
ferred alternative solutions to a problem when the discrete alternatives are evaluated
against criteria ranging from cost (a quantitative criterion) to aesthetics (a nonquan-
titative or qualitative criterion). The evaluations of the criteria for each alternative
are indications of the achievements of objectives or preferences of the DM. Because
many decisions in most fields ultimately involve making a discrete choice for a given
DM, such as deciding upon the specific type of car to purchase, MCDA techniques
have been applied to a diverse range of fields spanning from water resources (Hipel
1992) to energy problems (Hobbs and Meier 2000). This important set of tools is
given as an example of a decision model containing one DM having two or more
objectives as listed in the top right cell in Table2.1.

As indicated in the bottom left cell in Table2.1, team theory is an example of a
technique having two or more DMs but only one objective since each team partici-
pating in a sporting event has the single goal or objective of winning. In a card game
such as poker, each player possesses the single objective of winning the most money.

The focus of this book is the general decision-making situation in which there are
multiple DMs, each of whom can have more than one objective. As indicated in the
bottom right cell in Table2.1, the game theory methods outlined in Sect. 2.2.2 and
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Fig. 2.1 fall within this category. An example of a flexible game theory method is
GMCR which constitutes the theme of this book and is contained in the left branch
of Fig. 2.1. As explained in Sect. 2.2.2 and by authors such as Hipel (2009a, b) and
Kilgour andEden (2010), awide variety of game theorymethods havebeendeveloped
over the years for tackling different kinds of multiple participant-multiple objective
decision-making situations (Hipel et al. 1993). In fact, this is the category of OR
for which there is great demand for the development of decision techniques but
where OR researchers have devoted the least effort. Accordingly, a key goal of this
book is to significantly extend the field of conflict resolution such that researchers
and practitioners will possess more comprehensive tools for effectively addressing
complexproblems arising inmultiple participant-multiple objective decisionmaking.

The terminologies of normative and descriptive methods are often utilized for
characterizing OR methods. A normative technique stipulates what a DM should do
in order to reach a well-defined objective. For instance, the Cooperative Water Allo-
cation Model (CWAM) mentioned in Sect. 2.2.2, which is formulated as an overall
nonlinear programming model, can be optimized to specify how water can be fairly
allocated among competitors in a river basin. Since fairness ideas from coopera-
tive game theory are contained in CWAM, this model falls under the right branch
in Fig. 2.1. Alternatively, a descriptive model captures the main characteristics of a
problem in order to describe their relationships and a range of consequences that
could occur. For example, conflict analysis techniques contained in the left branch
of Fig. 2.1 can mainly be interpreted as being descriptive because they describe a
variety of possible compromise resolutions as well as the various social interactions
that can cause these equilibria to take place. Nevertheless, a conflict analysis method
like GMCR can also be thought of as containing a normative component. This is
because the findings of a GMCR investigation can be used to furnish a DM with
a better understanding of the conflict under study and strategic advice on how to
interact with his or her competitors in order to reach his most preferred equilibrium
within the social constraints of the conflict. When a specific equilibrium is recom-
mended for resolving a conflict, along with a particular path for reaching it, GMCR
can be interpreted as being used in a normative fashion. Finally, to make both the
descriptive and normative aspects of a conflict analysis study readily available, it
must be implemented as a DSS, as outlined in Sect. 2.3.3 and explained in more
detail in Chap. 10.

As pointed out earlier, OR was conceived and originally developed by the armed
forces just prior to and throughout WWII to tackle urgent operational military prob-
lems as they arose or were anticipated. During the first few decades after the war, OR
researchers and practitioners focused on designing highly mathematical and quan-
titative methods that are useful for addressing well-defined problems especially at
the tactical level of decision-making. For instance, within an industrial organiza-
tion, OR teams regularly employ mathematical programming techniques for solving
difficult technical problems in resource allocation at the tactical level. Nonetheless,
although some advances have been made more recently in developing formal tech-
niques for utilization at the strategic level of decision-making, where the information
base is often qualitative in nature, much work remains to be accomplished. Within
and among most organizations, strategic decision-making almost always involves
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Table 2.2 Two levels of decision-making

Tactical level Stratagic level References

Tactical Strategic Radford (1988, 1989),
Rosenhead (1989)

Regular problem Messes Ackoff (1981)

Technical Practical Ravetz (1971)

Tame Wicked Rittel and Webber (1973)

Hard systems Soft systems Checkland (1981)

High ground Swamp Schon (1987)

Components System or system of systems Hipel et al. (2009b)

multiple DMs, each of whom has multiple goals. Accordingly, a key goal of this
book is to assist in meeting this current need for extending the domain of OR.

Researchers and practitioners commonly refer to two major levels of decision-
making: tactical and strategic. Moreover, many authors highlight the need for con-
structing more procedures for addressing less structured problems occurring at the
strategic level. A range of labels that have been coined for describing these lower and
higher levels are provided in the first and second columns of Table2.2, respectively,
along with references in the third column.

OR is the most widely known field for producing formal decision-making meth-
ods. Many of the problems studied using OR tend to be large-scale and highly com-
plicated. Because of this, when investigating a specific problem often OR practi-
tioners and researchers have backgrounds in many different disciplines and work
as a team when addressing the various aspects of the overall problem using many
different techniques. The team must obtain reasonable solutions in a scientific and
expedient manner. Stated otherwise, the team must efficiently solve complicated
well-structured problems in order to meet specified objectives. Due to the great suc-
cess ofOR for systematically solving tough problems, afterWWIIORSocieties were
formed in many industrialized societies and associated OR journals were founded.
For example, the world’s oldest OR society was started in the UK as the Operational
Research Club in April, 1948, which later became the OR Society in 1953. Since
1950, this society has been publishing the Journal of the Operational Research Soci-
ety. In the USA, the Institute for Operations Research and the Management Sciences
(INFORMS) publishes many journals for which the flagship journals are Operations
Research and Management Science. The Group Decision and Negotiation Section
of INFORMS produces its own journal entitled Group Decision and Negotiation.
In Canada, the Canadian Operational Research Society publishes the journal called
Information Systems and Operational Research (INFOR).

Outside of the military sciences, one of the first fields to take an OR and
systems approach to problem solving was water resources. Hence, for instance,
many applications and developments in OR can be found in journals such as
Water Resources Research (published by the American Geophysical Union), Journal
of Water Resources Planning and Management (American Society of Civil
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Engineers) and the Canadian Water Resources Journal (sponsored by the Cana-
dianWater Resources Association). Other disciplines in which OR is widely utilized
and expanded include transportation, urban planning, systems design engineering,
systems analysis (Miser and Quade 1985, 1988), management sciences, systems
thinking (Checkland 1981), industrial engineering and business. Together the fore-
going disciplines are often referred to as the “Systems Sciences”. The comprehensive
encyclopedia on systems and control edited by Singh (1987) contains definitions
and explanations of decision-making techniques from the systems sciences, artificial
intelligence, and elsewhere. A discipline or field that utilizes ideas from OR but goes
well beyond that is Systems Engineering which is now described.

2.3.2 Systems Engineering

The key underlying philosophy of Systems Engineering is to tackle problems from
a holistic or overall viewpoint. One must first see the entire “forest” before trying
to solve a problem involving a specific “tree” which is, of course, a subset of the
forest. This concept of envisioning a complete system connected to a problem, which
is composed of interconnected components synergistically serving the overarching
goals of the system is natural and very pleasing to the mind. In Japan, one can
contemplate for hours while viewing a rock garden which consists of various sets of
rock formations situated at satisfying but perhaps surprising locations in a sea of sand
marked with intersecting flowing patterns. This is the way people like to view reality:
artistically, systems thinking is Eastern in derivation but technically more Western.
One of the first physical systems drawn in one of the most creative and insightful
phases of all human history - the Renaissance - was the Hydrological Cycle depicted
by the great Leonardo Da Vinci.

Among other authors, Hipel et al. (2009a) provided a comparison of OR and Sys-
temsEngineering. BecauseOR attempts to be scientific, it is founded upon reduction-
ist concepts. Hence, OR attempts to understand a phenomenon by comprehending
its components and their relationships. Since these relationships and interconnec-
tions are often complex, an OR approach may not capture the entire picture and
the emergent behavior which can arise as a result of complexity. Rather, the system
behavior is determined by precise cause-and-effect relationships (see, for instance,
Ackoff 1962 and Keys 1991). Therefore, OR techniques are quantitative in nature
and most applicable to well-defined problems at the tactical level shown on the left
in Table2.2.

Compared to OR, Systems Engineering is more qualitative and less analytical and
is designed for tackling unstructured and complex problems (Sage 1992, Warfield
2006, Haimes 2016). As explained by Hipel et al. (2009a), Systems Engineering
focuses on:

• quantitative and qualitative methods,
• strategic and tactical levels of decision-making,
• integration of technology, institutional perspective and value judgment,
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• entire system including the components and their synergistic connections,
• holistic viewpoint,
• unstructured and complex problems, and
• single and multiple decision makers.

As pointed out in Sect. 2.3.1, the terminology of OR was coined by the British
military who carried out “research” into the “operational” aspects of radar systems
in 1938, since having a reliable defensive system against potential German bombing
raids of the United Kingdom was of great concern to the British. The label Sys-
tems Engineering was first utilized in the Bell Telephone Laboratories in the 1940s
(Schlager 1956) and this flexible approach to creative problem solving and design
was quick to be adopted by many other organizations including NASA (National
Aeronautics and Space Administration) in the United States of America and indus-
try. The field of Systems Engineering continues to be developed at an expanding rate
by both practitioners and researchers. Leading research papers on Systems Engi-
neering can be found in journals such as the IEEE Transactions on Systems, Man,
and Cybernetics: Systems; IEEE Systems Journal; as well as the journal Systems
Engineering which is published by the International Council on Systems Engineer-
ing (INCOSE). In fact, INCOSE regularly releases reports on the latest advances in
Systems Engineering. Departments of Systems Engineering exist in many universi-
ties situated in many nations around the globe. Systems Engineering groups exist in
most large industrial organizations and many departments of Defence. Most profes-
sionals working in Systems Engineering and OR are fully aware of the developments
in both of these fields and do not hesitate to utilize any relevant available methods
from either area for addressing tough problems.

A classic book on SystemsEngineeringwaswritten by one of its greatest pioneers,
the late Andrew P. Sage, in 1992 (Sage 1992). Because Systems Engineering is such
a dynamic and exciting field, an encompassing and universally adopted definition
of Systems Engineering is difficult to find. In his highly innovative and informative
approach to risk assessment, Haimes (2016) carries out risk studies within a Systems
Engineering and multiple objective decision-making framework. A definition pro-
vided by K.W. Hipel is “Systems Engineering is an integrative and multidisciplinary
approach to creative problem solving which takes into account stakeholders’ value
systems and satisfies important societal, environmental, economic and other crite-
ria in order to enhance the decision-making process when designing, implementing,
operating and maintaining a system or system of systems to meet societal needs in a
fair, ethical and sustainable manner throughout the system’s life cycle” (Hipel et al.
2007, 2009b).

Because thinking in terms of systems for problem solving is so widely accepted,
publications regarding the systematic solving of challenging problems appear in
journals in many disciplines. Basic systems-type methodologies that are closely
related to Systems Engineering, and often thought of as being part of it, include
control theory (Clarke et al. 1998), complex adaptive systems (Lansing 2009) and
chaos theory (Thiétart and Forgues 1995).
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Hipel et al. (2007) discussed the future of Systems Engineering in terms of appli-
cation domains and research methods. As noted in the abstract of their paper “The
methods [Systems Engineering] must be refined and expanded to meet the changing
needs of the 21st century: from a system to a system-of-system; from a disciplinary
outlook to a multidisciplinary outlook; from a mass production to a mass customiza-
tion focus; from a steady state to a real-time perspective; and from an optimal to
an adaptive approach.” Accordingly, the important concepts of system of systems
and adaptive management are explained in Sects. 2.4.1 and 2.4.2, respectively, with
respect to their relevance to conflict resolution.

2.3.3 Decision Support Systems

A rich range of formal decision-making techniques have been developed in the fields
of OR and Systems Engineering, as explained in Sects. 2.3.1 and 2.3.2, respectively.
Moreover, a wide variety of game theory techniques are available for application
purposes as pointed out in Sect. 2.2.2 and summarized in Fig. 2.1. The focus of this
book is the GraphModel for Conflict Resolution (GMCR) for whichmany useful and
powerful techniques are presented in detail as summarized in Sect. 1.3 and listed in
the Table of Contents. Moreover, many extensions of GMCR are currently underway
while others are planned, as discussed in Sects. 10.3.1 and 10.3.2, respectively.

To permit practitioners and researchers to conveniently apply mathematically-
based techniques to physical-based, societal-founded, or combined systems prob-
lems, Decision Support Systems (DSSs) are needed. In this way, a user can focus on
the insights gained from a rigorous investigation rather than on spending a signifi-
cant amount of time programming an approach or a set of techniques, for solving the
problem. Previously, DSSs were simply referenced to as “user-friendly” programs.
As reflected in its title, the goal of a DSS is to aid or support decision-making by
making known methodologies and associated data sets immediately available to a
user, analyst or DM for applying to a problem of interest to him or her.

As emphasized byHipel et al. (2008a), a formalmodel constitutes a representation
of a system having a clearly defined mathematical structure. A properly designed
model captures the key characteristics of the system or part of the system being
studied to allow the system to be better understood so that informed decisions can
be made regarding it. The mathematical analysis of a realistic model of a system
can be highly effective in investigating the properties of the system and forecasting
or simulating system behavior. When carrying out sensitivity analyses, the impacts
of meaningful changes to one or more model parameters can be determined by
comparing strategic findings before and after sensitivity analyses. Accordingly, one
can obtain answers to “what-if” questions about the system. As noted above, a formal
model, or collection of models, can be employed to rigorously examine physical,
societal or hybrid systems.

A DSS is an easy-to-use computer package containing modeling and analytical
capabilities, for one or more formal mathematical techniques. The DSS allows
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Fig. 2.2 Model-based
decision support system for
conflict resolution

practitioners and researchers to expeditiously create, revise, refine and analyze a
model to support decisions. DSS technologies form one of the most important areas
in the field of Information Technology (IT) which encompasses the development and
application of computer software and hardware. In his landmark book on Decision
Support Systems Engineering, Sage (1991) describes the main components of a DSS
as being the Model-base Management System (MBMS) and Database Management
System (DBMS) which are connected to a user via a Dialog Generation and Man-
agement System (DGMS). In fact, because of the great import of DSS engineering,
in general, and in the field of conflict resolution, in particular, Chap. 10 is entirely
devoted to the design of a DSS for applying to real-world conflict situations. A gen-
eral discussion on DSSs is provided in Sect. 10.1.1 along with Fig. 10.1 depicting
Sage’s general design of DSS (Sage 1991). The rest of Chap.10 focuses on DSSs for
conflict resolution.

Figure2.2 displays a simplified version of a model-based DSS for conflict resolu-
tion when using GMCR or another similar conflict model. The key input information
required from the user via the interface (DGMS) is the decision makers (DMs), each
DM’s options or courses of actions and each DM’s relative preferences among the
feasible states or scenarios that could occur, as outlined in Sect. 1.2.2. What is par-
ticularly advantageous about GMCR is that a minimum amount of information is
required by the user to build or calibrate a conflict model. The “grunt” work can be
done by the DSS based on this information. The engine is used to carry out the sta-
bility calculations for each state from each DM’s viewpoint according to a range of
solution concepts describing potential human behaviors under conflict as discussed
in Sect. 1.2.3. When a state is stable for all DMs according to a particular solution
concept, it forms an equilibrium or potential resolution to the dispute under study.
The engine can also determine outcomes for situations where DMs may cooperate
with one another by forming coalitions. Follow-up analyses, such as the determina-
tion of the potential evolution of a conflict over time and various kinds of sensitivity
analyses, are also carried out by the engine. As explained in Sect. 10.2.3, a highly
efficient engine can be designed and constructed based on the matrix formulation
of GMCR. Finally, the output from the DSS in Fig. 2.2 contains important strategic
information calculated by the engine such as the potential resolutions and which
resolutions can be reached from the current status quo situation.
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A DSS furnishes a mechanism by which practitioners, researchers and society, in
general, can take full advantage of advances in research in a given field of interest.
From a researcher’s perspective, a DSS is the means by which he or she can more
directly contribute to the enhancements of society. Therefore, the final chapter of this
book is entirely devoted toDSSs in conflict resolution.Aperson,who is trying to learn
how moves and countermoves can take place in a conflict as DMs interact with one
another, is encouraged to do somecalculations byhand in order to fully understand the
process and appreciate why GMCR is such a realistic decision technology. Keeping
this inmind, aDSS is absolutely essential forGMCR to bewidely adopted for helping
to resolve conflicts ranging from the simple to the complex. Besides describing
existing DSSs for GMCR in Sect. 10.1.2, a universal design for a DSS for GMCR is
provided in Sect. 10.2. In this way, companies, government organizations, research
teams and others can readily construct their own DSSs if the existing DSSs do not
possess all of the capabilities that they require.Moreover, as pointed out in Sect. 10.3,
new GMCR developments can be easily added to a properly built DSS.

2.4 Conflict Resolution in Responsible Governance

As explained in Sects. 2.2 and 2.3, a rich range of formal game theory and systems
science tools, respectively, have been developed for providing advice to enhance the
decision-making process. As pointed out in Sects. 2.3.1 and 2.3.2, many of these
techniques were designed within the fields of Operations Research and Systems
Engineering, respectively. Moreover, a variety of approaches to decision-making,
such as value-focused thinking (Keeney 1992) and concentrating on the interests
of the stakeholder (Fisher and Ury 1981, Fisher et al. 1991), have been proposed.
Finally, general procedures for improving decision-making have been put forward
in fields such as business administration, law, political science and sociology. The
aforementioned and other procedures for making decisions can be employed within
the general governance procedure outlined in this section.

Because humans live in a highly interconnected world in which the actions of one
group of stakeholders can directly affect others, including the natural environment, a
truly innovative systems thinking approach to governing society in a highly realistic
and fair fashion is required. Accordingly, in the next section a System of Systems
frameworkwithinwhich governance systems can be based is proposed. In Sect. 2.4.2,
an integrative and adaptive paradigm for governance is described in which the value
systems of the key interest groups are taken into account in a participatory way
in order to reach desirable systems objectives such as resiliency, sustainability and
fairness. The flowchart in Fig. 2.3 summarizes this realistic approach to responsible
governance.
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Fig. 2.3 Systems thinking in
responsible governance

2.4.1 System of Systems

Multiple decision makers or participants, having their own objectives or value sys-
tems, inhabit the main sets of systems, existing on planet Earth (Hipel and Fang
2005). As depicted in Fig. 2.4, these key systems containing multiple stakeholders
can be categorized into four main kinds of systems: environmental, societal, intel-
ligent and integrated systems. Because each of these four groups contains many
systems, it is referred to as a System of Systems (SoS). Illustrations of environmen-
tal systems are the atmospheric, geological, hydrological, zoological, botanical, and
ecological systems. Examples of societal systems include agricultural, industrial,
economic, political, governmental, infrastructure and urban systems. Within societal
systems, creative people and organizations design, build and maintain intelligent
systems, such as robotic, mechatronic and automated production systems for sat-
isfying human demands and requirements. Integrated systems, such as individuals
and software agents bidding for products over the internet using eBay, are formed
by a combination of societal and intelligent systems. A modern commercial aircraft
like a Boeing B787 Dreamliner or an Airbus A380, the world’s largest passenger
airliner, is another example of an integrated system since these planes can be flown
automatically using specially designed intelligent systems or under the control of a
pilot.

By referring to Fig. 2.5, one can envision how societal SoS and environmental
SoS are interconnected (Hipel et al. 2009b). Notice on the left and right sides in
this figure that the societal and environmental SoSs, respectively, consist of many
systems. For instance, as can be seen on the right, the environmental SoS is com-
posed of complex interrelated atmospheric, water, land and biological systems. As
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Fig. 2.4 Kinds of multiple participant-multiple objective systems of systems

Fig. 2.5 Societal and environmental systems of systems

indicated by the arrow at the top linking these two sets of systems, societal SoS
extract resources from the environmental SoS in order to function. For instance, the
steel industry depends upon iron ore and energy sources from the environment to
be able to operate. Unfortunately, by products from the range of activities occurring
within the societal SoS are released into the environmental SoS. For example, car-
bon dioxide and other air pollutants are emitted from the smokestacks of steel plants
which contribute to global warming and climate change while other pollutants are
released into nearby bodies of water, thereby degrading water quality. As illustrated
by the arrows in the middle, humans can affect both environmental and societal SoS
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while the natural world has a direct influence over societal SoS. Due to the large-
scale release of greenhouse gases by many societal systems and associated land-use
changes, humans are causing climate change which in turn degrades societal systems
such as agriculture.

The concept of an SoS was developed to capture situations in which systems
cooperate and interact with one another under certain circumstances but can also
act as independent systems on other occasions. In their research, Sage and Biemer
(2007) define an SoS as “a large-scale, complex system, involving a combination
of technologies, humans, and organizations, and consisting of components that are
systems themselves, achieving a unique end-state by providing synergistic capability
from its component systems”. Research into the development of the idea of an SoS
include contributions by Maier (1998), Sage and Cuppan (2001), Hipel and Fang
(2005), Hipel et al. (2009b) and Jamshidi (2009). Based on earlier research by authors
such as Maier (1998) and Sage and Cuppan (2001), the authors Sage and Biemer
(2007) maintain that an SoS possesses a majority of the following characteristics: (1)
operational independence of the individual systems; (2) managerial independence
of the separate systems; (3) geographical distribution of the individual systems;
(4) emergent behavior in which the SoS performs functions not possible by any
of the individual systems on their own; (5) evolutionary development created by
continuous interoperability relationships among systems; (6) self-organization; and
(7) adaptation. By definition, an SoS constitutes a complex system, in which each
individual system is autonomous because it may be evolving independently from
other systems in the SoS.

Over the years, research has been carried out to model complex systems which
includes contributions in fields like complex adaptive systems (Lansing 2009), chaos
theory (Thiétart and Forgues 1995) and cybernetics (Wiener 1948). Contributions
have been made on the design of SoS architecture for addressing a class of problems
(see, for instance, Ge et al. (2013, 2014b)) including the employment of GMCR
within this type of design (Ge et al. 2014a). An SoS approach has also been utilized
for addressing quality control strategies for a complex product (Liu and Hipel 2012),
risk management of extreme events (Bristow et al. 2012), global food security (Hipel
et al. 2010), and water resources management (Hipel et al. 2011, 2013a). In order
to model the decision making and physical systems characteristics of systems, one
requires a broad range of flexible tools for utilization in these two realms, as explained
by Hipel et al. (2008a, b). Sections2.1 to 2.3 deal with formal decision-making tools
with a focus on methods for employment in multiple participant-multiple objective
decision-making. In fact, as mentioned in Sect. 1.1.2, the purpose of this text is
to present the latest ideas in conflict resolution in order to address the strategic
aspects of pressing real-world problems such as widespread pollution of the natural
environment, climate change, international trade and regional wars.

As an explanation of how one would employ both decision-making and physical
systems tools, consider the groundwater pollution problem described in Sect. 1.2. In
this real-life dispute, by products from a chemical plant located in Elmira, Ontario,
Canada, polluted the aquifer underlying this town with a carcinogen. The local gov-
ernment hired engineering consultants to determine the seriousness of the pollution
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and how far the plume containing the pollutant had spread. Bore holes were drilled
at many locations to obtain samples of the groundwater and physical systems models
expressed as differential equations were used to model the flow of the pollutant. In
addition, methods for cleansing the aquifer and preventing further pollution were
investigated. Within the societal aspects of this problem, the negotiations that took
place in 1991 among the local government, company and the Ministry of the Envi-
ronment in Ontario are formally modeled and analyzed in Sect. 4.5 to obtain strategic
insights into how this problem could be resolved. As of late 2017, one quarter of
a century after the carcinogen was discovered, the Elmira aquifer is continuing to
be cleansed by pumping water from the underground aquifer and treating it before
releasing it into a nearby stream, the company is treating its pollutants at the Elmira
plant before discharging them, and the town of Elmira is receiving all of its water via
a pipeline from the city ofWaterloo situated 15km to the south. This is clearly a very
serious and expensive situation which would be much worse if a strategic settlement
to rectify the situation had not been reached.

The Elmira groundwater contamination is an actual illustration of what is called
a brownfield: land and groundwater which are contaminated by industrial activities.
In reality, this is a widespread phenomenon in North America, Europe and the devel-
oping world. There are more than one-half million brownfields in the USA, 360,000
in Germany and 33,000 in Canada (NRTEE 2003, Hipel and BernathWalker 2011).
The rapid industrialization of Asian nations is creating brownfields on a massive
scale. Even though brownfields could be largely prevented by investing heavily in
pollution control equipment during industrialization, nations prefer to first obtain
wealth via industrialization in the quickest and cheapest way possible and to clean
up the brownfields later. This, of course, is muchmore expensive in the long term and
some of the damage may be irreversible. Enhanced decision-making methodologies
such as the game theory techniques presented in this bookmay assist in making more
informed decisions since they directly take into account both the long and short term
values of the various decision makers.

Today, the nations of theworld are knowingly dumpingmassive amounts of green-
house gases (GHG) into the “atmospheric commons” even though they are aware
that this short-term behavior is causing temperatures to significantly rise over time
with increasingly devastating consequences. In other words, the countries are playing
the self-interest version of Prisoner’s Dilemma, rather than the long-sighted version
in which the nations cooperate and thereby greatly reduce greenhouse gas releases
starting now so they will all benefit more in the long run. The main uncertainty
that currently remains is whether the climate system has already reached the point
of no-return in which global warming will be irreversible no matter what society
does. An important fact to mention is that the physical systems and other related
solutions to this global warming problem are already known. In particular, nuclear
power plants, renewable energy, energy efficiency and life-style changes are well
recognized solutions which can be expeditiously implemented to greatly reduce the
use of fossil fuels. Coal fired-plants for generating electricity can be quickly con-
verted to gas-fired plants to reduce carbon dioxide emissions by 50% in the short
term and subsequently close down in the medium term when they can be replaced by
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cleaner energy sources. Where society has failed up to the present time is to solve the
societal and strategic aspects of climate change, especially with respect to reaching
meaningful negotiated agreements at the international, national, provincial and local
levels to significantly cut back on greenhouse gas emissions.

Within Canada, Magna International Inc., a large car parts manufacturing corpo-
ration based in Ontario, commissioned the Council of Canadian Academies (CCA)
to put together an Expert Panel to investigate the latest evidence regarding energy use
and climate change and what can be done to reduce GHG emissions. Subsequently,
one year later, the Expert Panel on Energy Use and Climate Change, consisting of an
interdisciplinary group of eight people and co-chaired by Keith W. Hipel and Paul
R. Portney, completed its report entitled “Technology and Policy Options for a Low
Emission Energy System in Canada”, which was officially released by the CCA on
October 27, 2015 (CCA 2015). The three key findings of the Expert Panel based on
the existing evidence are:

• Technology options are available now to move to a low-emission energy system.
In fact, Canada could reduce its GHG emissions from 60% to 90% at manageable
cost.

• The electricity supply system should be decarbonized by replacing coal and gas-
fired electricity generation plants by non-GHG energy generation systems such as
renewable, nuclear and hydro.

• Economy-wide policies are needed to meet stringent GHG cutback requirements,
but flexible in the sense that different measures could be taken to accomplish this.
For instance, the Province of British Columbia already has a carbon tax which has
worked extremely well whereas Ontario and Quebec have elected to use a cap and
trade system.

Within Canada, negotiations involving the Federal Government, ten Canadian
Provinces and three Territories are needed to come up with a harmonized set of poli-
cies and associated physical systems solutions to significantly reduce GHG releases.
Moreover, since an agreement among the nations of the world reached in Paris on
December 11, 2015 has no mandatory or legal requirements for countries to greatly
reduce their GHG emissions, intense negotiations will still have to take place to
accomplish this. Fortunately, the countries did state that they would not like tem-
perature increases to go beyond 1.5 ◦C, which in turn means drastic GHG emission
cutbacks are necessary. All of this indicates that comprehensive negotiation tools
could prove to be extremely useful for reaching binding and lasting agreements.
However, the election of American President Donald Trump on November 8, 2016,
meant that the United States may weaken or withdraw its commitments to reducing
its GHG emissions put forward in Paris. In fact, in June 2017, the US announced
its intention to withdraw from the Paris Accord, for which the earliest effective date
of US withdrawal is November 2020. The game theoretic procedures presented in
this book are designed to assist with reaching agreements among stakeholders having
conflicting objectives in order to resolve tough SoS problems such as climate change,
as exemplified by Bernath Walker and Hipel (2017) and He et al. (2017).
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Conflict resolution tools mentioned in Sect. 2.2, economics, and ideas from the
social sciences can be employed within a responsible governance system to solve
climate change and many other tough decision problems facing society. A gover-
nance system includes policies, agreements, laws, regulations, compliance methods,
monitoring, institutions and management. The key aspects needed in governance
systems are discussed next and also noted in Fig. 2.3.

2.4.2 Integrative and Adaptive Management

Because water resources engineers and managers must deal with both the physical
aspects of water management as well as the societal components, they are global
leaders on how to design effective governance systems. Moreover, they were one
of the first groups of professionals outside of the military to adopt, enhance and
expand operations research and systems engineering tools for solving challenging
SoS problems. In addition, they have developed a range of decision support systems
(DSSs) for implementing both the physical and societal systems parts of SoS problem
solving to allow these tools to be utilized by both practitioners and researchers (Hipel
et al. 2008a, b).

Integrative and adaptive management constitute two key interrelated concepts
needed for achieving effective water governance within an SoS structure. As
explained in “A Handbook for Integrated Water Resources Management in Basins”
published in 2009 by the Global Water Partnership (GWP) and International Net-
work of Basin Organizations (INBO) (GWP and INBO 2009), “The integrated water
resources management approach helps to manage and develop water resources in a
sustainable and balanced way, taking account of social, economic and environmental
interests. It recognizes the many different and competing interest groups, the sectors
that use and abuse water, and the needs of the environment.” This systems thinking
approach to water resources management directly states that many interconnected
factors must be taken into account and that the value systems of competing stake-
holders and environmental requirements must be entertained. Additionally, because
of the physical reality that a watershed controls the flow of water, water management
practices must be implemented at the basin level in consonance with policy, laws and
regulations at the local, regional, provincial or state, national and international levels.
For instance, the International Joint Commission (IJC) (IJC 2009) recommends an
integrated approach to river basin management for basins that are intersected by the
Canada-US border. The IJC is an independent binational body having investigative,
regulatory and adjudicative roles for implementing the 1909 BoundaryWaters Treaty
between Canada and the USA for impartially addressing water and environmental
problems between the two nations.
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In addition to being integrative, water and other types of governancemust be adap-
tive to be capable of handling the largely unpredictable behavior of environmental
and societal SoSs caused by their intrinsic complexity, uncertainty and interconnect-
edness. As a result of this unpredictability, one does not know in advance how well
a given policy is going to function for appropriately tackling both anticipated and
unexpected events. Within the concept of passive adaptive management, one utilizes
new knowledge garnered by monitoring and experience to iteratively refine plans to
improve existing management approaches and related decision-making. When prac-
ticing active adaptive management, strategies are purposefully changed in order to
scientifically test new hypotheses, and thereby learn by experimentation to determine
the best management strategy. Therefore, adaptive management is popularly referred
to as “learning by doing”. The clever idea of adaptive management was originally
put forward by Holling (1978) and other scientists as a consequence of investigating
resiliency theories of ecological systems, and since that time a rich body of literature
has amassed such as contributions byWalters (1986), Gunderson andHolling (2002),
Noble (2004), NRC (2004), AWRA (2006, 2009), Gunderson and Light (2006), and
Williams and Jackson (2007).

In their research, Hipel et al. (2008b, 2009b) recommend that adaptive integra-
tive management be conducted within a SoS framework in combination with the
employment of formal decision-making tools, from operations research, systems
engineering and other systems science fields (see Sect. 2.3), as well as ideas from
the social sciences and humanities. Additionally, any policy or agreement should
reflect the value systems of the stakeholders it serves and contain a dispute reso-
lution mechanism that guides disputants in a positive direction towards a win/win
resolution. This can be strengthened in practice by adopting a participatory approach
to involving stakeholders in the practice of responsible governance and making the
various decision technologies available as DSSs.

Throughout this book, case studies involving actual disputes in a range of different
fields are employed to demonstrate how the various related conflict resolution meth-
ods can be conveniently applied in practice to better understand problems and gain
strategic insights for improving decision-making. However, the reader is encouraged
to keep in mind that conflict resolution is usually employed in conjunction with other
societal and physical systems tools within an integrative and adaptive approach to
governance embedded in an SoS framework.

2.5 Important Ideas

The decisions that you make determine your destiny. Therefore, you want to make
the most informed possible decision to help you reach your goals, keeping in mind
that in decisions involving interactions with others, you must understand their values
and the effects they can have upon you depending on which actions they select. In a
given conflict situation, you may wish to consider joining a coalition to ascertain if



66 2 Decision-Making in Perspective

you can do even better via meaningful cooperation with others to achieve a win/win
resolution.

The Graph Model for Conflict Resolution (GMCR) has a key role to play in tack-
ling tough decision problems involvingmultiple participants each ofwhompossesses
his or her own values, objectives or preferences. Among an array of available game
theoretical methods described in Sect. 2.2 and portrayed in Fig. 2.1, GMCR is espe-
cially effective in addressing actual complex conflicts in almost any field ranging
from very simple ones to large disputes. In fact, GMCR constitutes a unique and
relatively new formal decision-making method which nicely complements the rich
range of decision tools developed in fields such as Operations Research (Sect. 2.3.1),
Systems Engineering (Sect. 2.3.2) and elsewhere. When implemented as a Decision
Support System (Sect. 2.3.3 and Chap.10), GMCR constitutes a truly powerful deci-
sion technology for formally studying real-world conflicts. When utilized within a
system of systems engineering perspective (Sect. 2.4.1) to integrative and adaptive
management in a participatory fashion (Sect. 2.4.2), GMCR can be utilized as an
important and complementary methodology for effectively carrying out responsible
governance.

2.6 Problems

2.6.1 In Sect. 2.2.2 and Fig. 2.1, game theory methods are classified and put into
perspective. In the right branch in Fig. 2.1, agent-based models are listed as a set of
techniques. Find a journal paper or textbook on agent-based modeling and briefly
explain the basic idea underlying it and how it is used in practice. Outline how it
could be used in policy design and analysis.

2.6.2 A game theoretical method listed in the right branch in Fig. 2.1 is extensive
form. By referring to a journal paper or book, outline how extensive form works.
According to Chap.4 in the book by Fang et al. (1993) qualitatively explain how the
Graph Model for Conflict Resolution and extensive form are connected. What is a
key drawback of extensive form?

2.6.3 Drama Theory is listed in the left branch of Fig. 2.1. Locate a journal paper
or book dealing with Drama Theory to use as a basis for successfully outlining how
Drama Theory works.

2.6.4 The conflict analysis approach of Fraser and Hipel (1979, 1984) is part of the
left branch in Fig. 2.1. Describe three improvements to Conflict Analysis which are
embedded in the Graph Model for Conflict Resolution. Be sure to supply references
to the literature to support the enhancements that you mention.
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2.6.5 As noted in Sect. 2.3.1, Operations Research (OR) was founded by the British
military just prior to the outbreak of WWII in Europe. Many classified documents
regarding the development and employment of OR during the war were released
50 years after the war ended. Select an interesting paper describing the successful
utilization ofORduring thewar and outline the points in the paper that you personally
found to be of interest to you.

2.6.6 How did the American fleet in the Pacific Ocean during WWII use a “soft”
systems approach to encryption to communicate among their ships, especially their
lethal aircraft carriers. (Hint: Find a reference involving the famous “code talkers”.)

2.6.7 One of the most famous code breakers working at Bletchley Park northwest of
London during WWII to break the German codes was Dr. William Tutte. What great
feat did he accomplish and at which university did he help found a famous Faculty
of Mathematics after WWII?

2.6.8 Locate a paper in the IEEE Transactions on Systems, Man and Cybernetics:
Systems which deals with system of systems engineering. Outline the main contri-
butions in the paper and explain why a system of systems engineering approach was
useful and insightful in dealing with the problems addressed in the paper.

2.6.9 The International Council on Systems Engineering (INCOSE) is a strong
proponent of the system of system (SoS) engineering approach and publishes the
journal called Systems Engineering. Select an SoS engineering report published
by INCOSE or else a journal article dealing with this topic. Summarize the key
contributions of the article and explain why an SoS engineering approach was highly
effective for solving the problem studied in the article.

2.6.10 Why is the Graph Model for Conflict Resolution an indispensable approach
for using within a system of systems engineering approach to problem solving and
creative decision-making?

2.6.11 Select a reference on decision support systems (DSSs) that is of high interest
to you. Based on this reference, outline the basic design of a DSS and why DSSs are
essential for employment in real-world decision-making.

2.6.12 Most of the key ideas in integrative and adaptive management addressed in
Sect. 2.4.2 came from the field of water resources. Choose a key journal paper or
book from the water resources literature which deals with integrated and adaptive
water resources management in a participatory fashion. Outline the key contents of
this paper and explain why conflict resolution has a key role to play in this insightful
approach to management.
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Chapter 3
Conflict Models in Graph Form

As depicted in Fig. 2.1 in Sect. 2.2.2, manymodels are available for describing strate-
gic conflicts. For example, in the left branch of Fig. 2.1, metagame analysis employs
option form (Howard 1971) for recording a conflict, while in the right branch, normal
form is often written using a tabular or matrix format for the case of two decision
makers (DMs). For the Graph Model for Conflict Resolution (GMCR) listed at the
bottom of the left branch in Fig. 2.1, the movements in one step by a given DM are
captured within a directed graph for that DM. As mentioned in Sect. 2.2.2, the mod-
els for the approaches given on the left in Fig. 2.1 only require relative preference
information for each DM, while those in the right branch need cardinal preferences.

As explained in Sect. 1.2.2 and portrayed in Fig. 1.1, the key ingredients in any
conflict model are the DMs, states or scenarios that could take place, and the prefer-
ences of each DM. The main purpose of this chapter is to define in detail these main
modeling components with respect to GMCR. Because smaller conflicts are often
conveniently recorded using what is called normal form, this type of abstract game
model is described in Sect. 3.1.1. A very flexible format for writing down small,
medium, and large conflict is option form which is defined in Sect. 3.1.2. Moreover,
the exact linkages of the normal and option forms to the graphmodel are explained in
this chapter.A simple conflict over sustainable development is employed to showhow
these three forms are used in practice and the connections among them. Additionally,
a small conflict written in graph form is used in Sect. 3.2 to illustrate a situationwhich
cannot be captured by either the normal or option form. Finally, the graph model is
developed in a new direction, called matrix representation of the graph model, which
is given in Sect. 3.3 and constitutes an equivalent way to represent the graph model.
In fact, the matrix representation for GMCR is utilized throughout Chaps. 3–9 for
addressing a range of situations (Xu et al. 2007, 2009a, b, c, 2010a, b, c, d, 2011,
2013, 2014, Bernath Walker et al. 2013, Hou et al. 2015).
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3.1 Normal Form and Option Form

3.1.1 Normal Form

In game theory, normal form is away of describing a game using a list of strategies for
each DM, together with preference information. Its formal definition is as follows.

Definition 3.1 (Game in Normal Form) A gameG in normal form is usually written
as a triplet G = 〈N , {Ti}i∈N , {ui}i∈N 〉, where
• N = {1, 2, · · · , n} is a nonempty set of DMs;
• for each DM i ∈ N , Ti is the nonempty strategy set of DM i;
• for each DM i ∈ N , ui : T1 × T2 × · · · × Tn → R is the utility of DM i.

In the above definition, let tik be a specific strategy for DM i, where tik ∈ Ti
and mi = |Ti| denote the number of strategies for DM i in Ti. Then t =
(t1a, t2b, · · · , tir, · · · , tnw) is called a strategy profile, where t1a ∈ T1, t2b ∈
T2, · · · , tir ∈ Ti, · · · , and tnw ∈ Tn. The symbol “×” indicates the Cartesian prod-
uct for which T1 × T2 × · · · × Tn represents the set of all strategy profiles. Each
element or strategy profile in this Cartesian product set is formed by selecting one
element from each Tj and all possible combinations of these selections are used
to create the total set of strategy profiles. When comparing the normal form with
the graph form defined later, a strategy profile is also called a state so the state set
S = T = T1 × T2 × · · · × Tn. The “ui” denotes the von Newmann–Morgenstern
(1953) utility function for DM i. For a given DM, a utility function maps each state
to a real number for which a higher number means more preferred. In many disputes,
a DM is interested in whether a state is more preferred to another state but not by
how much. Therefore, one often employs s >i q to express that DM i prefers state s
to state q.

To calculate the stability of a state for a given DM according to the different types
of stability definitions presented in Chap.4, one must define the set of movements in
one step controlled separately by each DM in the conflict. Hence, one can expand the
definition of a game in normal form by explicitly defining movement among states
as is done in Sect. 3.2. When using s ∈ S to represent a strategy as is done in the next
definition, let s = (s1a, s2b, · · · , sir, · · · , snw) which indicates the strategy that each
DM controls to form state s. Equivalently, this means that s ∈ T1 × T2 × · · · × Tn.

Definition 3.2 (Unilateral Move in Normal Form) For a game in normal form, the
set of states to which DM i ∈ N can unilaterally cause the game to move from state
s ∈ S is defined as:

Ri(s) = {q ∈ S : qil �= sil for some 1 ≤ l ≤ mi and

qjk = sjk for any j ∈ N \ {i} and 1 ≤ k ≤ mj},

where sil, qil ∈ Ti, sjk , qjk ∈ Tj, and \ refers to “set subtraction”.
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In words, this definition means that for a state q to be a unilateral move by DM i
from state s (i.e. q ∈ Ri(s)), the strategy for DM i in state q is different from that in
state s (i.e. qil �= sil) and the strategies of the other DMs (i.e.N \{i}) in state q remain
the same as in state s (qjk = sjk for any j ∈ N \ {i}). When ascertaining stability,
as explained later in Chap. 4, one also must determine unilateral improvements by a
DM as now defined.

Definition 3.3 (Unilateral Improvement in Normal Form) For a game in normal
form, the set of unilateral improvements from state s ∈ S for DM i ∈ N is defined
as:

R+
i (s) = {q ∈ Ri(s) : ui(q) > ui(s)},

where ui is DM i’s utility.

A clear way to write down the normal form for a two-DM game is to use what is
called ‘matrix’ form, as displayed in Table3.1. As can be seen, DM 1, on the left,
controls the two strategies T1 = {t11, t12} depicted as rows while DM 2 is in charge
of the two strategies T2 = {t21, t22} given as columns. Each of the four cells in the
matrix is a state sk for which DM 1 and DM 2 have selected a strategy and contains
the utility values of the state for DM 1 and DM 2. As can be seen at the bottom of
Table3.1, a state can be written as a situation in which each DM selects a strategy.
Hence, state s3 = (t12, t21) and this state appears as the bottom left cell in Table3.1
for which the utility values for DMs 1 and 2 are u1(s3) and u2(s3), respectively.

As specified in Definition 3.2, when a given DM unilaterally causes the conflict
to move from one state to another, the strategies of the other DMs remain the same.
Referring to Table3.1, notice that if DM 2 remains fixed at strategy t21 in the left
column of the matrix, then DM 1 can cause the conflict to move from state s1 to s3
by changing his or her strategy from t11 to t12. Similarly, DM 1 can make the game
proceed from state s3 to s1 by changing his strategy from t12 in s3 = (t12, t21) to the
strategy t11 to form state s1 = (t11, t21). Moreover, if state s1 is more preferred by
DM 1 to state s3 (i.e. u1(s1) > u1(s3)), then the unilateral move from s3 to s1 is also

Table 3.1 2 × 2 game in normal form
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Table 3.2 Sustainable development game in normal form

a unilateral improvement according to Definition 3.3. Therefore, s1 ∈ R1(s3), s3 ∈
R1(s1), and s1 ∈ R+

1 (s3). Finally, when examining unilateral moves by DM 2, one
must fix the strategy on row, of DM 1. For instance, if DM 1 remains at strategy t11
on the first row in Table3.1, then DM 2 can unilaterally cause the conflict to move
from state s1 to s2 and back again. Therefore, s2 ∈ R2(s1) and s1 ∈ R2(s2). If DM 2
prefers state s1 more than s2 (i.e. u2(s1) > u2(s2)), then s1 ∈ R+

2 (s2).

Example 3.1 (Sustainable Development Conflict in Normal Form) A specific illus-
tration of the general 2×2gamedisplayed inTable3.1 is the sustainable development
game shown in Table3.2. This environmental dispute was proposed by Hipel (2001)
tomodel a basic conflictwhich could arise between an environmental agency (DM 1)
and a developer (DM 2).

Therefore, the set of DMs is given by

N = {DM 1, DM 2}.

DM 1 can be either proactive (P) in encouraging responsible behavior by the devel-
oper with respect to environmental issues or not proactive (NP). As can be seen in
Table3.2, DM 1, on the left, controls its two strategies depicted as rows, where the
strategy set for DM 1 is

T1 = {proactive (P), not proactive (NP)} = {P, NP}.

DM 2, the developer of the project under consideration, can practice sustainable
development (SD) or not adhere to sustainable development (NSD), which are dis-
played as columns in Table3.2. Thus, DM 2 controls the strategy set

T2 = {sustainable development (SD), not sustainable development (NSD)}

= {SD, NSD}.
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When each DM selects a strategy, a state is created. Each of the four cells in Table3.2
is a state for which DM 1 and DM 2 have selected a strategy. For instance, the cell
labeled as state s2 in Table3.2 is the situation for which DM 1 selects strategy P and
DM 2 chooses strategy NSD to produce state s2 = (P,NSD). Accordingly, the set
of states in the sustainable development conflict is

T = T1 × T2 = {P,NP} × {SD,NSD} = {(P, SD), (P,NSD), (NP, SD), (NP,NSD)}.

If s1 = (P, SD), s2 = (P,NSD), s3 = (NP, SD), and s4 = (NP,NSD), then

T = {s1, s2, s3, s4}.

The two numbers written in each cell of the matrix in Table3.2 represent the prefer-
ence or utility of DM 1 and DM 2, respectively, where a high number means more
preferred. Specifically, the utility values of DM 1 are

u1(s1) = 10, u1(s2) = 6, u1(s3) = 8, and u1(s4) = 1;

while the utility values of DM 2 are

u2(s1) = 5, u2(s2) = 2, u2(s3) = 7, and u2(s4) = 4.

The utility values for each of the two DMs can be used to order the states from most
to least preferred such that:

s1 >1 s3 >1 s2 >1 s4 for DM 1; and

s3 >2 s1 >2 s4 >2 s2 for DM 2.

Note that the most preferred state for DM 1 (the environmental agency) is state s1 for
which DM 1 is proactive (P) and DM 2 is practicing sustainable development (SD).
The least preferable state for DM 2 is state s2 for which DM 2 has a preference value
of 2. As explained for the example in Table3.1, to determine the unilateral moves for
DM 1, one first fixes DM 2 at a specified column. Hence, in Table3.2, suppose that
DM 2 has chosen strategy SD in the left column. Then DM 1 can cause the game to
move from state s1 to s3 by changing his strategy selection from P to NP. Therefore,
R1(s1) = {s3} and since DM 1 can change his strategy from NP to P in the same
column, R1(s3) = {s1}. Likewise, when DM 2 selects strategy NSD, DM 1 controls
the movement in the second column and, therefore, R1(s2) = {s4} and R1(s4) = {s2}.

As was also explained above for Table3.1, to ascertain the states to which DM 2
can unilaterally cause to the game to move, DM 1’s strategy must remain the same as
either the first or the second row in Table3.2. Accordingly, DM 2’s unilateral moves
are R2(s1) = {s2} and R2(s2) = {s1} when DM 1 remains at strategy P on the first
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row, and R2(s3) = {s4} and R2(s4) = {s3} when DM 1 is fixed at strategy NP in the
second row.

Similarly, the unilateral improvements of DM 1 from the four states, respectively,
are

R+
1 (s1) = ∅,R+

1 (s2) = ∅,R+
1 (s3) = {s1}, and R+

1 (s4) = {s2};

while the unilateral improvements of DM 2 from the four states are

R+
2 (s1) = ∅,R+

2 (s2) = {s1},R+
2 (s3) = ∅, and R+

2 (s4) = {s3}.

3.1.2 Option Form

In a strategic conflict, a DM usually controls various courses of actions which are
referred to as options. Let n be the number of DMs and Oi denote the option set of
DM i, where oij is DM i’s jth option. Then, the set of all options in a conflict model
is O = ⋃

i∈N
Oi in which index i indicates which DM controls the options. It may also

be expressed as O = {O1,O2, · · · ,Oi, · · · ,On}, where the number of options in Oi

is hi. When a given DM decides which of his or her options to select or not a specific
strategy is formed.

Definition 3.4 (Strategy in Option Form) Let Oi denote the option set of DM i for
i ∈ N for which oij ∈ Oi. A strategy for DM i is a mapping g : Oi → {0, 1}, such
that for j = 1, 2, · · · , hi

g(oij) =
{
1 if DM i selects option oij,
0 otherwise,

where oij is DM i’s jth option.

One can assign g(oij) a value of 1 to indicate that DM i will select option oij.
Similarly, g(oij) = 0 means that DM i will not choose this option. A state is formed
when each DM has selected a specific strategy. In other words, for each option the
DM controlling the option has decided whether or not he or she will choose it. The
formal definition for a state is as follows.

Definition 3.5 (State in Option Form) Let O = ⋃

i∈N
Oi be the set of all options in a

conflict for oij ∈ Oi, i = 1, 2, · · · , n. A state is a mapping f : O → {0, 1}, such that
for i = 1, 2, · · · , n,

f (oij) =
{
1 if DM i selects option oij,
0 otherwise.

(3.1)

Let h denote the total number of options available to the DMs. A state can be
treated as an h-dimensional column vector consisting of having an element of 0 or 1.



3.1 Normal Form and Option Form 81

Therefore fs is used to express the h-dimensional column vector to denote state s.
Hence, fs may be written as [(gs(O1))

T , · · · , (gs(Oi))
T , · · · , (gs(On))

T ]T in which
gs(Oi) denotes DM i’s strategy corresponding to state s for i = 1, 2, · · · , n and is an
hi-dimensional column vector whose elements are

gs(oij) =
{
1 if DM i selects option oij,
0 otherwise,

A concise way to represent the set of all possible states in a conflict is to use
the concept of a power set written as {0, 1}O, where O is the set of all options,
each of which can be not chosen or selected as indicated by 0 or 1, respectively.
Therefore, the set of all mathematically possible states in a conflict model is {0, 1}O.
In mathematics, given a set O, the power set of O, written as 2O, is the set of all
subsets of O. Then, the power set of O contains 2|O| = 2h elements. Every state
s can also be equivalently expressed as a subset of O, for which the mapping f is
defined by Eq.3.1. Although 2|O| = 2h states are mathematically possible, only a
part of them are feasible in practice due to various option constraints, as explained
in Sect. 3.2.2. The symbol S is used to designate the set of feasible states.

The option form is especially useful for practical applications because it can
readily handle conflicts having any finite numbers of DMs, each of whom controls
a finite number of option or courses of action. Consequently, as is done throughout
this book, often option form is employed for writing down a conflict as part of the
GMCR methodology. Because the number of states is typically much larger than
the number of options in a conflict, when option form is employed in practice, the
user only has to supply the relatively short list of options, for which the states can
be automatically generated using a computer program. The option form is formally
defined as follows.

Definition 3.6 (Game in Option Form) A game G in option form is usually written
as G = 〈N , {Oi}i∈N , S, {	i,∼i}i∈N 〉, where
• N = {1, 2, · · · , n} is a nonempty set of DMs;
• for each DM i ∈ N , Oi is the nonempty option set of DM i;
• S = {s1, s2, · · · , sm} is a nonempty set of feasible states;
• for each DM i ∈ N , {	i,∼i} represents i’s preference where sk 	i st means that
DM i prefers state sk to state st while sk ∼i st indicates that DM i has equal
preference for these two states or is indifferent between them.

Note that the precise mathematical properties of {	i,∼i} are given in Sect. 3.2.4.
Similarly, one can expand the definition of a game in option form by explicitly

defining unilateral moves and unilateral improvements among states as is done in
Sect. 3.1.1. Let hi = |Oi| denote the cardinality of DM i’s option set Oi and fs stand
for the mapping from options in the set O to state s.

Definition 3.7 (Unilateral Moves in Option Form) For a game in option form, the
set of unilateral moves of DM i ∈ N from state s ∈ S is defined as:
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Ri(s) = {q ∈ S : gq(oil) �= gs(oil) for some oil ∈ Oi and

gq(ojk) = gs(ojk) for any j ∈ N \ {i}},

where 1 ≤ l ≤ hi and 1 ≤ k ≤ hj.

One can define unilateral improvements by a DM for the option form based on
Definition 3.7.

Definition 3.8 (Unilateral Improvement in Option Form) For a game in option form,
the set of unilateral improvements from state s ∈ S for DM i ∈ N is defined as:

R+
i (s) = {q ∈ Ri(s) and q 	i s}.

Example 3.2 (Sustainable Development Conflict in Option Form) The sustainable
development game for Example 3.1 has two DMs:

N = {DM 1,DM 2}.

DM 1 has the single option

O1 = {o11} = {proactive (P)} while

DM 2 controls the option

O2 = {o21} = {sustainable development (SD)}.

When each DM decides upon which of his options to select or not, a state is
formed. Table3.3 presents the option form of the sustainable development game
introduced in Example 3.1. The left column in this table lists each of the two DMs
followed by the option which it controls. The four columns of Ys or Ns given on the
right in Table3.3 constitute the set of the four feasible states in this dispute where

S = {s1, s2, s3, s4}.

Table 3.3 Sustainable development game in option form

DM 1: Environmental agency

1. Proactive (P) Y Y N N

DM 2: Developer

2. Sustainable development (SD) Y N Y N

States s1 s2 s3 s4

Preferences s1 	1 s3 	1 s2 	1 s4 for DM 1 and
s3 	2 s1 	2 s4 	2 s2 for DM 2



3.1 Normal Form and Option Form 83

Rather than use 0 or 1 to indicate whether or not an option is taken as is done in
Definitions 3.4 and 3.5, aYorN is utilized, respectively, since these letter symbols are
easier to interpret. Specifically, a “Y” indicates that an option is selected by the DM
controlling itwhile an “N”means that the option is not chosen. Therefore,DM1’s two
strategies are being proactive (Y) or not (N) and DM 2’s two strategies are practicing
sustainable development (Y) or not (N). DM 1’s two strategies can also be expressed
by g(o11) = 1 and g(o11) = 0 according to Definition 3.4. Similarly, g(o21) = 1
and g(o21) = 0 represent DM 2’s two strategies. A state is any combination of Y’s
and N’s opposite all of these DMs’ options. Hence, a state is formed after each DM
selects a strategy, so there are four states in the sustainable development game, which
are written

s1 =
(
Y
Y

)

or s1 = (Y Y )T ,

s2 =
(
Y
N

)

or s2 = (Y N )T ,

s3 =
(
N
Y

)

or s3 = (N Y )T ,

and

s4 =
(
N
N

)

or s4 = (N N )T ,

where (Y N )T , for example, denotes DM 1 will select the proactive option and
DM 2 will not choose sustainable development. At the bottom of Table3.3, the
states are ranked or ordered by preference for each of the two DMs from most
preferred on the left to least preferred on the right. Because the states are ordered
according to preference, this type of preference is referred to as ordinal preference
(see Sect. 3.2.4). Moreover, since there are no equally preferred states for each of the
DMs, the preferences are said to be strict ordinal.

In the literature, the symbols 	i and ∼i are often not used when it is known that
the states are ranked frommost to least preferred for a given DM. Accordingly, when
employing option form, the ordering of states for each DM is as shown below:

⎛

⎝
Y N Y N
Y Y N N
s1 s3 s2 s4

⎞

⎠ and

⎛

⎝
N Y N Y
Y Y N N
s3 s1 s4 s2

⎞

⎠ .

Ordering of states for DM 1 Ranking of states for DM 2

To determine the unilateral move or moves for DM 1, one first fixes DM 2’s
strategy. Hence, in Table3.3, suppose that DM 2 has chosen strategy SD as indicated
by theY located opposite SD and directly above s1. Then,DM1can unilaterally cause
the game to move from state s1 to s3 by changing his strategy selection from Y to
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N . Therefore, since gs3(o11) �= gs1(o11) and gs3(o21) = gs1(o21), then R1(s1) = {s3}
according to Definition 3.7. Because DM 1 can also change his strategy fromN to Y ,
R1(s3) = {s1}. Likewise,whenDM2 selects strategyN , DM1controls themovement
from s2 to s4 or from s4 to s2.Accordingly,R1(s2) = {s4} andR1(s4) = {s2}. Similarly,
to ascertain the states to which DM 2 can unilaterally cause the game to move, DM
1’s strategy must be fixed. Hence, DM 2’s unilateral moves are R2(s1) = {s2} and
R2(s2) = {s1} when DM 1 remains at strategy gs(o11) = Y and R2(s3) = {s4} and
R2(s4) = {s3} when DM 1 is fixed at strategy gs(o11) = N .

In a similar fashion, the unilateral improvements of DM 1 from the four states,
respectively, are

R+
1 (s1) = ∅ and R+

1 (s3) = {s1} because s1 	1 s3,

as well as R+
1 (s2) = ∅ and R+

1 (s4) = {s2} since s2 	1 s4,

while the unilateral improvements of DM 2 from the four states are

R+
2 (s1) = ∅ and R+

2 (s2) = {s1} since s1 	2 s2,

as well as R+
2 (s3) = ∅ and R+

2 (s4) = {s3} because s3 	2 s4.

3.2 Graph Model

The normal form of Sect. 3.1.1 provides a means for easily determining the states
in a game, especially for the situation in which there are only two DMs. The option
form defined in Sect. 3.1.2 can be conveniently utilized for ascertaining the states
for both simple and complex games. In particular, when recording a conflict, as is
done in Table3.3 for the sustainable development conflict, one simply writes in the
left column of the table the name of each of the DMs followed by all of options that
the DM controls. The set of feasible states can then be written by hand on the right
side of the table using the Y-N notation, as is done in Table3.3. For a conflict having
a relatively large number of DMs and options, a computer program can be used to
generate the mathematically possible set of states, from which any infeasible states
can be easily removed, as explained later in Sect. 3.2.2. Whatever the case, one ends
up with the set of feasible states over which each DM has her or his own relative
preferences. The definition of the graph model starts with the assumption that the
set of feasible states are already known, and, for example, may have been generated
using option form.

Definition 3.9 (Graph Model) A graph model is a structure

G = 〈N , S, {Ai,�i, i ∈ N }〉,



3.2 Graph Model 85

where

• N is a nonempty, finite set, called the set of DMs.
• S is a nonempty, finite set, called the set of feasible states.
• For each DM i, Ai ⊆ S × S is DM i’s set of oriented arcs, which contains the
movements in one step controlled by DM i.

• Precise mathematical properties of the preference relation for DM i, �i, is pre-
sented in Sect. 3.2.4

Note that Gi = (S,Ai) is DM i’s directed graph in which S denotes the vertex
set and each oriented arc in Ai ⊆ S × S indicates that DM i can make a one-step
unilateralmove from the initial state of the arc to its terminal state. For simplemodels,
sometimes it is informative to combine all of the DMs’ directed graphs, {Gi : i ∈ N },
along with their preferences, to create what is called an integrated graph model.

Definition 3.10 The integrated graph of a graph model G is the structure IG =
〈S, {Ai, i ∈ N }〉.

In the above definition, an integrated graph IG, with vertex set S and arc set
A = {Ai : i ∈ N }, contains all of the DM’s individual graph {Gi : i ∈ N }. The arcs
in A that are associated with DM i are considered to be labeled by i, or colored with
color i. Thus, G may have multiple copies of an arc, but each copy has a different
color. A two-DM conflict model is used to illustrate the components comprising a
graph model.

Example 3.3 (Sustainable Development Conflict in Graph Form) The sustainable
development game is first presented in Example 3.1. The graph model of this conflict
is shown in Fig. 3.1, where the directed graph and relative preferences for DMs 1
and 2 are displayed on the left and right sides, respectively. For each DM, a given
arc represents the unilateral movement, in one step, under that DM’s control. Hence,
for instance, DM 1 controls movement from state s1 to state s3, and back again, as

Fig. 3.1 Graph model for
the sustainable development
conflict
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Fig. 3.2 Integrated graph
model for the sustainable
development conflict

indicated by the two arcs on the left in Fig. 3.1a, for which an arrow indicates the
direction of movement between the two states.

Specifically, the graph model of the sustainable development conflict presents

• the DM set, N = {1, 2};
• the state set, S = {s1, s2, s3, s4};
• the directed graphs for the two DMs, G1 = (S,A1) and G2 = (S,A2) depicted in
Fig. 3.1, where

A1 = {(s1, s3), (s3, s1), (s2, s4), (s4, s2)} and A2 = {(s1, s2), (s2, s1), (s3, s4), (s4, s3)}.

• the preference information for the two DMs, which consists of

s1 	1 s3 	1 s2 	1 s4 and s3 	2 s1 	2 s4 	2 s2;

The integrated graph IG, in combination with preference information, is called the
integrated graph model. Figure3.2 displays the integrated graph model for the sus-
tainable development conflict.

In summary, a graph model contains the DMs, feasible states, the movements
controlled by each DMwhich can be drawn as the set of separate directed graphs for
the DMs or as a single integrated graph, and preference information. Although the
normal form and option form can also represent the sustainable development game
(see Sect. 3.1), they have a number of drawbacks. Particularly, movements among
states in the normal and option formats are automatically restricted by their special
structures. Figure3.3 shows an example of a graph model that cannot be represented
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Fig. 3.3 A graph model

using the normal and option forms. Consider, for instance, Fig. 3.1a which is derived
from the normal and option forms in Tables3.2 and 3.3, respectively. Notice that in
Fig. 3.1a, DM 1 cannot move from s1 to s2 and s1 to s4, as he or she can in Fig. 3.3a.
Therefore, the states in Fig. 3.3 are derived in a way that permits this more general
type of movement. In addition to permitting more flexible types of movement, the
graph model possesses other advantages as discussed in Sects. 1.2 and 3.2.3 and
elsewhere in the book.

3.2.1 Decision Makers

A strategic conflict is a situation in which two or more DMs with different objectives
interact with one another. ADMmay be an individual or a group, such as an industrial
or governmental organization. For example, in a conflict in which family members
are arguing over where to spend their next vacation, each DM is a person. In a
trading conflict among car manufacturers which are trying to increase their shares of
the automobile market, each DM represents a large company having many directors,
shareholders, and employees. In previous research, a DM is also referred to as a
player, actor, stakeholder, or participant. The termdecisionmaker is used in this book,
because it can stand for individuals or groups of people who can make decisions that
affect a given conflict.

In the sustainable development conflict in Example 3.1, the environmental agency
is a DM consisting of many people whose role is to protect the local environment
from potential harm caused by the activities of a developer. Because the objective
of the developer, which could be a large company, is to maximize profits, this DM’s
goal is in conflict with the aim of the environmental agency.
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Any subset H of DMs in the set N is called a coalition. If |H | > 0, then the
coalition H is nonempty. If |H | > 1, then the coalition H is nontrivial.

3.2.2 States

As mentioned before, states can be defined using normal form (Sect. 3.1.1) or option
form (Sect. 3.1.2). Additionally, as shown by the types of movement in Fig. 3.3,
which cannot be captured by the normal and option forms, states can be specified
by other means. Nonetheless, option form is particularly useful for defining states
in a rich range of real-world conflicts that can be readily investigated within the
paradigm of the graph model. According to Definition 3.5, because each option can
be either chosen or not, a conflict with h options has 2h mathematically possible
states. However, only a portion of them may be feasible in practice due to various
option constraints. Additionally, each state can also be represented by a column
indicating which options are selected (denoted by “Y”) or not (indicated by “N”). As
an example of a real-world dispute, consider the groundwater contamination conflict
first mentioned in Sect. 1.2.2. In this dispute, Uniroyal Chemicals Ltd. (UR) polluted
the aquifer underlying the town of Elmira located in Southern Ontario, Canada,
from which the town previously obtained its water supplies. After the discovery of
the pollutant, which is a carcinogen, the Ministry of the Environment (MoE) for the
Province ofOntario, issued aControl Order inwhich it requestedUR to treat its liquid
discharges and cleanse the aquifer. Themodel in option form shown in Table3.4 is for
the negotiations that took place among the three DMswhen UR appealed the Control
Order which is a right it can exercise according to provincial law. Table3.4, which is
also given in Chap.1 as Table 1.1, provides an explanation of the options controlled
by the DMs. The feasible states for the negotiation are presented in Table3.5.

Because each state can be either taken or not, a conflict having a total of five options
as in Table3.5 contains 25 = 32 mathematically possible states. However, only the
feasible states that could take place in reality are listed in Table3.5 as columns.
For convenience of explanation, each column or state is assigned a state number.

Table 3.4 Options for the Elmira model

MoE (Ministry of the Environment)

1. Modify the Control Order to make it more acceptable to UR

UR (Uniroyal Chemicals Ltd.)

2. Delay the appeal process

3. Accept the current Control Order

4. Abandon its Elmira operation

LG (Local Government)

5. Insist that the original Control Order be applied
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Table 3.5 Feasible states for the Elmira model

MoE

1. Modify N Y N Y N Y N Y −
UR

2. Delay Y Y N N Y Y N N N

3. Accept N N Y Y N N Y Y N

4. Abandon N N N N N N N N Y

LG

5. Insist N N N N Y Y Y Y −
State number s1 s2 s3 s4 s5 s6 s7 s8 s9

For instance, state s5 is the scenario in which MoE is not modifying the Control
Order, UR is delaying the negotiations but is not accepting the current Control Order
and is not abandoning its factory in Elmira, and LG is insisting that the original
Control Order be accepted by UR. As can be appreciated, UR’s three options are
mutually exclusive and, hence, UR cannot select two or more options at the same
time. Therefore, any state in which UR chooses more than one of its three options is
removed from the conflict since it is infeasible. Moreover, because UR is expected
to do something, UR will choose at least one of its options. Finally, if UR abandons
its plant, it does not matter what other options are selected by the other two DMs.
Therefore, the set of resulting states are essentially the same and are represented as
the single state s9 in which a dash “−” indicates either Y or N .

3.2.3 State Transitions

One advantage of the graphmodel is its innate capability to systematically keep track
of state transitions. State transition is the process by which a conflict model moves
from one state to another. If a DM can cause a state transition on his or her own, then
this transition is called a unilateral move (UM) for that DM. Let Ri(s) denote DM i’s
reachable list from state s byUMs. This set contains all states towhichDM i canmove
from state s in one step, and, hence, Ri(s) = {q ∈ S : (s, q) ∈ Ai}, where S is the set
of feasible states and Ai is the set of arcs connecting two states which are controlled
by DM i. For instance, in the sustainable development conflict shown in Fig. 3.2,
Environment agency (DM 1) can move to state s3 and Developer (DM 2) can reach
state s2 by one step from state s1. Therefore, R1(s1) = s3 and R2(s1) = s2.Allowable
state transitions constitute an important modeling component, as they determine the
arc structure of a graph model and reflect the dynamic aspects of conflict in terms
of potential moves and countermoves DMs can interactively take as they attempt to
reach their goals.
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Fig. 3.4 Movements from state s1 to state s3 for the sustainable development conflict

In models based on option form, it is assumed that a DM has a UM from one state
to another if and only if the two states differ in one or more options selected by that
DM. In a graph model, moves controlled by each DM can be intuitively understood
and seen as moves within each DM’s directed graph or in combination within an
integrated graph. The evolution of a conflict can be viewed as starting from a status
quo (initial state) and then passing from one state to another, according to moves and
countermoves controlled by individual DMs, until it eventually stops at some state
such as an equilibrium or a compromise resolution. This interesting research topic
about status quo analysis is discussed in Chap. 9. For example, all possible moves
from state s1 to state s3 for the sustainable development conflict obtained from the
integrated graph in Fig. 3.2 are depicted in Fig. 3.4. Note that an important restriction
of a graph model is that no DM can move twice in succession along any path.

In the alternative normal form shown in Table3.2, DM 1 may change the current
position of the sustainable development conflict by changing the row but not the
column, and DM 2 may change the column but not the row. For example, DM 1 can
move from (P, SD) to (NP, SD), but not to (P, NSD) or (NP, NSD).

In option form, a DM can unilaterally cause the conflict to move from one state to
another by changing his option choices when the other DM does not alter his option
selections. For example, DM 1 can move unilaterally from (Y Y)T to (N Y)T , but
not to (Y N)T or (N N)T .

Figure3.5 shows the integrated graph for the Elmira model. By examining this
figure or using an appropriate algorithm from Chap.9, one can see that the following
six possible paths connect state s1 to s8 where the letters on an arc indicate the DM
controlling the movement between the two associated states for that arc.

s1 −→ s5 −→ s6 −→ s8,

s1 −→ s5 −→ s7 −→ s8,

s1 −→ s3 −→ s4 −→ s8,

s1 −→ s2 −→ s4 −→ s8,

s1 −→ s3 −→ s7 −→ s8,

s1 −→ s2 −→ s6 −→ s8.
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Fig. 3.5 Integrated graph for the Elmira model

If the name of each DM in an integrated graph is replaced by assigning a distinct
color to any arc controlled by that DM, this produces what is called a colored graph
(Xu et al. 2009b, 2013) (see Sect. 3.3.1).

3.2.4 Preferences

Obviously, preference information plays an important role in decision analysis. Each
DM has preferences among the possible states that can arise. One way to express
preferences is to use real numbers. For example, one object may have a monetary
value of $5 and another $10. However, $5 and $10 may be worth much more to a
poor person than a rich one. Therefore, the concept of utility theory was proposed to
reflect the worth or utility of an object. More specifically, cardinal utility refers to a
measurement scale for utility, often expressed as utils, that permits one to quantita-
tively compare the utility of objects. For the case of conflict resolution, utility values
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would reflect the preferences of a person or DM among the feasible states where a
higher number means more preferred. The graph model requires only relative prefer-
ence information for each DM, but can of course use cardinal information; moreover,
it can handle both intransitive and transitive preferences. The formal definition for
transitive preference is given below.

Definition 3.11 Let R denote any relation between two states. For any k, s, q ∈ S,
if k R s and s R q imply k R q, then R is transitive.

The most basic type of preference is when two objects or states are compared in
what is called a binary preference relationship. In the original graph model, simple
preference (Fang et al. 1993) of DM i is coded by a pair of relations {∼i,	i} on
S, where s 	i q indicates that DM i prefers s to q and s ∼i q means that DM i
is indifferent between s and q (or equally prefers s and q). Strict preference 	 is
transitive in many graph models, though in some cases it is intransitive. It is assumed
that the preference relations of each DM i ∈ N have the following properties:

(i) ∼i is reflexive and symmetric (i.e., ∀s, q ∈ S, s ∼i s, and if s ∼i q, then q ∼i s);
(ii) 	i is asymmetric (i.e., s 	i q and q 	i s cannot occur simultaneously);
(iii) {∼i,	i} is strongly complete.

Property (iii) implies that, for any s, t ∈ S, exactly one of the following statements
is true: s 	i t, t 	i s, or s ∼i t. The conventions that s �i q is equivalent to either
s 	i q or s ∼i q, and that s ≺i q is equivalent to q 	i s, are convenient.

If the definition for transitive preferences given in Definition 3.11 does not hold
then the preferences are said to be intransitive. In Sect. 1.2.2 and Fig. 1.3, an example
is provided for when a person, say DM i, compares three beverages according to
preference. For the case of transitivity: Coffee 	i Tea and Tea 	i Coke implies
Coffee 	i Coke; For the case of intransitivity, the above relationship does not hold.
Coffee	i Tea and Tea	i Coke but Coke	i Coffee. For the graph model, transitivity
of preferences is not required, and all results hold whether preferences are transitive
or intransitive.

The state set S can be divided into subsets based on preference relative to a
fixed state s ∈ S. These subsets are essential components in stability analysis. The
descriptions of these subsets for simple preference are presented as follows:

• �+
i (s) = {q : q 	i s} denotes states preferred to state s by DM i;

• �=
i (s) = {q : q ∼i s} denotes states equally preferred to state s by DM i;

• �−
i (s) = {q : s 	i q} denotes states less preferred than state s for DM i.

3.2.5 Directed Graph

A graph is a pair (V,E) of sets satisfying E ⊆ V × V . A directed graph G =
(V,A, ψ), which is also called a digraph (Dieste 1997), is a set of vertices (nodes)
V and a set of oriented edges (arcs) A with ψ : A → V × V . If a ∈ A satisfies
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Fig. 3.6 Directed graphs

ψ(a) = (u, v), then we say that a has initial vertex u and terminal vertex v. A
multidigraph is a digraph containing multiple edges, i.e., it may contain a, b ∈ A
such that a �= b andψ(a) = ψ(b), in which case a and b are said to be multiple arcs.
A digraph with nomultiple edges is called a simple digraph (Dieste 1997). Figure3.6
depicts a simple directed graph and a multidigraph. For the multidigraph, a and b
are multiple edges, i.e., ψ(a) = ψ(b) = (v1, v2). If there exists a ∈ A such that
ψ(a) = (u, v), then u is said to be adjacent to v and (u, v) is said to be incident from u
and incident to v. Hence, (u, v) is called in-incident to v and out-incident to u. When
G is drawn, it is common to represent the direction of an edge with an arrowhead.
One generally assumes loop-free graphs; i.e., for any a ∈ A, if ψ(a) = (u, v), then
u �= v.

3.3 Matrix Representation of a Graph Model

It is well-known that matrices can efficiently describe adjacency of vertices, and inci-
dence of arcs and vertices in a graph, thereby permitting tracking of paths between
any two vertices (Godsil and Royle 2001). Matrices possess various algebraic prop-
erties, which can be exploited to develop improved algorithms for solving a variety of
problems in a graph. As such, extensive research has been conducted to design effec-
tive algorithms and efficient search procedures by exploring relationships between
matrices and paths (Gondran and Minoux 1979, Shiny and Pujari 1998, Hoffman
and Schiebe 2001). Because a graph model consists of several interrelated graphs, it
is natural to use well-known results of Algebraic Graph Theory to help to analyze it.
The adjacency matrix can be applied to represent some directed graphs. However,
if a graph model contains multiple arcs between the same two states controlled by
different DMs, the adjacency matrix would be unable to track all aspects of conflict
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evolution from the status quo state. It is well known that the incidence matrix can
represent multidigraphs if all edges are labeled (Godsil and Royle 2001).

It is common to combine all DMs’ graphs, {Gi : i ∈ N }, into an integrated graph
G with vertex set S and arc set A = ∪{Ai : i ∈ N }. The arcs in A that are associated
with DM i are considered to be labeled by i, or colored with color i. ThusG may have
multiple copies of an arc, but each copy is a different color. A unique edge-labeling
rule for colored multidigraphs is proposed in the next subsection.

3.3.1 Definitions from Algebraic Graph Theory

Definition 3.12 For a digraph G = (V,A, ψ), edge a ∈ A and edge b ∈ A are
consecutive (in the order ab) iff ψ(a) = (u, v) and ψ(b) = (v, s), where u, v,

s ∈ V .

Definition 3.13 For a digraph G = (V,A, ψ), the line digraph L(G) = (A,LA) of
G is a simple digraph with vertex set A and edge set LA={d = (a, b) ∈ A × A : a
and b are consecutive (in the order ab)}.

An example is given in Fig. 3.7 with the directed graph and the line graph underneath
it.

Fig. 3.7 A directed graph
and its line graph
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Definition 3.14 For a digraph G = (V,A, ψ), a path from vertex u ∈ V to vertex
s ∈ V is a sequence of vertices in G starting with u and ending with s, such that
consecutive vertices are adjacent.

Note that in this book a path may contain the same vertex more than once (Buckley
and Harary 1990). The length of a path is the number of edges therein.

Definition 3.15 For two m×mmatricesM and Q, the Hadamard product for the
two matrices is the m × m matrix H = M ◦ Q with (s, q) entry

H (s, q) = M (s, q) · Q(s, q).

IfM =

⎛

⎜
⎜
⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞

⎟
⎟
⎠ and Q =

⎛

⎜
⎜
⎝

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

⎞

⎟
⎟
⎠ ,

then H =

⎛

⎜
⎜
⎝

m11 · q11 m12 · q12 m13 · q13 m14 · q14
m21 · q21 m22 · q22 m23 · q23 m24 · q24
m31 · q31 m32 · q32 m33 · q33 m34 · q34
m41 · q41 m42 · q42 m43 · q43 m44 · q44

⎞

⎟
⎟
⎠ .

Let “∨” denote the disjunction operator (“or”) on two matrices. Assuming that
H and G are two m×m matrices, the disjunction operation on matrices H and G is
defined by:

Definition 3.16 For two m×mmatrices H and G, disjunction matrix of H and G
is the m × m matrixM = H ∨ G with (u, v) entry

M (u, v) =
{
1 if H (u, v) + G(u, v) �= 0,
0 otherwise.

If H =

⎛

⎜
⎜
⎝

1 0 0 1
0 0 1 1
1 1 0 1
0 0 0 1

⎞

⎟
⎟
⎠ and G =

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 1
1 0 0 1
1 0 0 1

⎞

⎟
⎟
⎠ ,

then M = H ∨ G =

⎛

⎜
⎜
⎝

1 0 0 1
1 0 1 1
1 1 0 1
1 0 0 1

⎞

⎟
⎟
⎠ .

Definition 3.17 The sign function, sign(·), maps anm×mmatrix with (u, v) entry
M (u, v) to the m × m matrix



96 3 Conflict Models in Graph Form

sign[M (u, v)] =
⎧
⎨

⎩

1 M (u, v) > 0,
0 M (u, v) = 0,
−1 M (u, v) < 0.

IfM =

⎛

⎜
⎜
⎝

1.8 0 −9.7 1
0 −11.3 0 117.9

−1.4 12.3 0 89.5
0 −77.9 0 96.5

⎞

⎟
⎟
⎠ , then sign(M ) =

⎛

⎜
⎜
⎝

1 0 −1 1
0 −1 0 1

−1 1 0 1
0 −1 0 1

⎞

⎟
⎟
⎠ .

Important matrices associated with a digraph include the adjacency matrix and
the incidence matrix (Godsil and Royle 2001). Let m = |V | denote the number of
vertices and l = |A| be the number of edges of the directed graph G. Then,

Definition 3.18 For a multidigraph G = (V,A, ψ), the adjacency matrix is the
m × m matrix J with (u, v) entry

J (u, v) =
{
1 if (u, v) ∈ A,

0 otherwise,

where u, v ∈ V .

For the directed graph shown in Fig. 3.7, the adjacency matrix is expressed as

J =

⎛

⎜
⎜
⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞

⎟
⎟
⎠ .

The adjacencymatrix is extended to an edge consecutivematrix in the next definition.

Definition 3.19 For a multidigraph G = (V,A, ψ), the edge consecutive matrix is
the l × l matrix LJ with (a, b) entry

LJ (a, b) =
{
1 if edges a and b are consecutive in order ab in the graph G,

0 otherwise,
(3.2)

where a, b ∈ A.

By definitions of the adjacency matrix and the line graph, the edge consecutive
matrix is the adjacency matrix of the line graph of G. The directed graph shown in
Fig. 3.7 is used as an example to construct the edge consecutive matrix as follows.
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LJ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

Definition 3.20 For a multidigraph G = (V,A, ψ), the incidence matrix is the
m × l matrix B with (v, a) entry

B(v, a) =
⎧
⎨

⎩

−1 if a = (v, x) for some x ∈ V,

1 if a = (x, v) for some x ∈ V,

0 otherwise,

where v ∈ V and a ∈ A.

According to the signed entries, the incidence matrix can be separated into the
in-incidence matrix and the out-incidence matrix.

Definition 3.21 For a multidigraph G = (V,A, ψ), the in-incidence matrix Bin

and the out-incidence matrix Bout are the m × l matrices with (v, a) entries

Bin(v, a) =
{
1 if a = (x, v) for some x ∈ V,

0 otherwise,

and

Bout(v, a) =
{
1 if a = (v, x) for some x ∈ V,

0 otherwise,

where v ∈ V and a ∈ A.

It is obvious that Bin = (B+abs(B))/2 and Bout = (abs(B)−B)/2, where abs(B)

denotes thematrix in which each entry equals the absolute value of the corresponding
entry of B. For the directed graph shown in Fig. 3.7, the incidence matrix, the in-
incidence matrix, and the out-incidence matrix are respectively expressed by

B =

⎛

⎜
⎜
⎝

−1 0 1 0 −1 1 0 0
0 −1 0 1 1 −1 0 0
1 0 −1 0 0 0 −1 1
0 1 0 −1 0 0 1 −1

⎞

⎟
⎟
⎠ ,

Bin =

⎛

⎜
⎜
⎝

0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

⎞

⎟
⎟
⎠ , and Bout =

⎛

⎜
⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎠ .
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One finds that the incidence matrix depends on the label of each edge in a directed
graph. To effectively analyze the graph model for conflict resolution using matrix
representation, a unique rule of priority to label colored arcs is introduced in the next
subsection.

Definition 3.22 A colored multidigraph (V,A,N , ψ, c) is a multidigraph (V,A,

ψ) and a set of colors N , and a function c : A → N such that c(a) ∈ N is the color of
a ∈ A, provided that multiple edges of (V,A, ψ) are assigned different colors, i.e.,
if a �= b, but ψ(a) = ψ(b), then c(a) �= c(b).

If a ∈ A such that ψ(a) = (u, v) and c(a) = i for i ∈ N , then a can be written as
a = di(u, v). The line digraph ofG = (V,A,N , ψ, c), L(G), is a simple digraph and
each vertex in L(G) corresponds to an edge in the multidigraph G. Hence, coloring
edges in G is equivalent to assigning colors to vertices in L(G).

Definition 3.23 For a colored multidigraph (V,A,N , ψ, c), an edge colored path
is a path in the multidigraph (V,A, ψ) in which each constituent edge has different
colors.

If any two consecutive edges are restricted to having different colors in the edge
consecutive matrix, this matrix is called the edge colored consecutive matrix. Its
formal definition is as follows.

Definition 3.24 For a colored multidigraph G = (V,A,N , ψ, c), the edge colored
consecutive matrix LJc is the l × l matrix with (a, b) entry

LJc(a, b) =
⎧
⎨

⎩

1 if edges a and b are consecutive in order ab
and have different colors in the graph G,

0 otherwise.
(3.4)

From algebraic graph theory (Godsil and Royle 2001), the following Lemma 3.1
that describes the relation between the adjacency matrix and incidence matrix can
easily follow.

Lemma 3.1 For a colored multidigraph G = (V,A,N , ψ, c), the adjacency matrix
J is expressed as

J = sign[(Bout) · (Bin)
T ]. (3.5)

The following lemma that establishes the relation between the incidence matrix
and the edge consecutive matrix is obtained based on Definition 3.21, on the in-
incidence and out-incidence matrices Bin and Bout , and Definition 3.19, on the matrix
LJ .

Lemma 3.2 For a colored multidigraph G = (V,A,N , ψ, c), Bin and Bout are the
in-incidence matrix and out-incidence matrix of the graph G, respectively. Then, the
edge consecutive matrix LJ satisfies LJ = (Bin)

T · (Bout).
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Fig. 3.8 ak and ah are consecutive in order akah

Proof Let M = (Bin)
T · (Bout). Any (k, h) entry of matrix M can be expressed as

M (k, h) = eTk · M · eh = [(Bin) · ek ]T · [(Bout) · eh], where eTk denotes the transpose
of the kth standard basis vector of the l-dimensional Euclidean space.

Therefore, M (k, h) �= 0 iff Bin(q, ak) · Bout(q, ah) �= 0 for some q ∈ S such that
ψ(ak) = (s, q) and ψ(ah) = (q, u) for s, u ∈ S. This implies thatM (ak , ah) �= 0 iff
ak and ah are consecutive from ak to ah (See Fig. 3.8).

Hence, based on Definition 3.19,M (ak , ah) �= 0 iff LJ (ak , ah) �= 0. SinceM and
LJ are 0–1 matrices, then, LJ = (Bin)

T · (Bout) follows. �

3.3.2 A Rule of Priority to Label Colored Arcs

A colored multidigraph may contain several arcs with the same initial and terminal
vertices, but each arc in this case must be assigned a different color (Xu et al. 2009b,
2013). To work with the set of all arcs, they must be carefully labeled. Assume that
all colors and nodes are pre-numbered. Therefore, the vertex set V and the color set
N in G = (V,A,N , ψ, c) are numbered as V = {1, 2, · · ·,m} and N = {1, 2, · · ·, n},
respectively. Let ci denote the cardinality of arc set assigned color i, i.e., ci = |Ai|,
where Ai = {x ∈ A : c(x) = i} for each i ∈ N .

To label the arcs in a colored multidigraph G = (V,A,N , ψ, c), set ε0 = 0 and

εi =
i∑

j=1
cj for i ∈ N , and note that l = εn =

n∑

i=1
ci is the cardinality of A in G. The

arcs, a1, a2, . . . , al , will be labeled according to the color order; within each color,
according to the sequence of initial nodes; and within each color and initial node,
according to the sequence of terminal nodes. The ordering, referred to as the Rule of
Priority, has the following properties:

1. If εi−1 < k ≤ εi, then c(ak) = i, i.e., ak has color i;
2. For k < h, if ak and ah both have color i for some i ∈ N , and if ψ(ak) = (vx, vy)

and ψ(ah) = (vz, vw), then x ≤ z and, if x = z, then y < w.

If all arcs in a graph model have been labeled according to the Rule of Priority,
then the index of an arc uniquely determines the DM controlling it. Therefore, Ai =
{aεi−1+1, . . . , aεi }, where Ai denotes the set of arcs with color i.

Recall that ci denotes the cardinality of the arc set in color i and let Eci denote a
ci × ci matrix with each entry being set to 1 for i = 1, 2, · · · , n. Then, D is defined
as the following block diagonal matrix
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D =

⎛

⎜
⎜
⎜
⎝

Ec1 0 · · · 0
0 Ec2 · · · 0
...

...
. . .

...

0 0 · · · Ecn

⎞

⎟
⎟
⎟
⎠

. (3.6)

It is obvious that this matrix D encodes the color scheme in the graph G, where
the dimension of each diagonal block Eci depends on the number of edges in color

i. More specifically, recall that εi =
i∑

j=1
cj for 1 ≤ i ≤ n. According to the Rule of

Priority for labeling edges, for any ak ∈ A and εi−1 < k ≤ εi, the edge ak has color
i. Hence, for any ak , ah ∈ A, if there exists 1 ≤ i ≤ n such that k, h ∈ (εi−1, εi], then
edges ak and ah have the same color i, and D(k, h) = 1. Also, D(k, h) = 0 iff edges
ak and ah have different colors.

This matrix captures the adjacency relation between pairs of consecutive edges
without considering the color(s) of the consecutive edges. Another conversion func-
tion is thus presented next to transform the original problem of searching edge-
colored paths in a colored multidigraph to the standard problem of finding paths
in a simple digraph without color constraints. The conversion function can now be
obtained in matrix form by the following lemma.

Lemma 3.3 For a colored multidigraph G = (V,A,N , ψ, c), let El be the l × l
matrix with each entry equal to 1. Then the edge colored consecutive matrix LJc
satisfies LJc = LJ ◦ (El − D), where “◦” denotes the Hadamard product.

Proof Let LJ (k, h) and (El − D)(k, h) denote the (k, h) entries of matrices LJ and
El − D, respectively. Then, LJ (k, h) · (El − D)(k, h) �= 0 iff LJ (k, h) �= 0 and
D(k, h) = 0. Based on the definitions of matrices LJ and D, LJ (k, h) �= 0 iff
edges ak and ah are consecutive in order akah. D(k, h) = 0 iff edges ak and ah
have different colors. Obviously, based on the definition of matrix LJc, LJc = LJ ◦
(El − D). �

Lemmas 3.2 and 3.3 together present a conversion function F(B) such that

F(B) = [(Bin)
T · Bout] ◦ (El − D), (3.7)

whereBin = (B+abs(B))/2 andBout = (abs(B)−B)/2. Therefore,F(B) transforms
a problemof searching colored paths in an edge colored digraph to a standard problem
of finding paths in a simple digraph with no color constraints. Note that the incident
relations between vertices and edges of a graph can uniquely characterize the graph.
Therefore, the incidence matrix is treated as the original graph and used for computer
implementation.

Example 3.4 (Rule of Priority and Edge Colored Consecutive Matrix.) A sustain-
able development game to model a conflict between an environmental agency and
a developer was considered by Hipel (2001) and Li et al. (2004). The conflict is
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Fig. 3.9 The labels of edges

Fig. 3.10 Labeled graph
model for the sustainable
development conflict

modeled by two DMs: an environmental agency (DM 1) and a developer (DM 2).
The graph model G = (S,A, c) for the sustainable development conflict is depicted
in Fig. 3.2, where vertices designate states and arcs represent movement between
states. The number on a given arc indicates which DM controls the movement while
the arrowhead shows the direction of movement. According to the Rule of Priority,
label the edges of the graph model G = (S,A, c) and calculate its edge colored
consecutive matrix.

Assume that the DM set N = {1, 2} and state set S = {s1, s2, s3, s4}. The car-
dinalities of the arc sets A1 and A2 are 4, respectively. Then, according to the Rule
of Priority, the oriented arcs are numbered as in Fig. 3.9. The sustainable develop-
ment game is expressed as the labeled graph model presented in Fig. 3.10 in which
the full curves and dotted curves denote DM 1 and DM 2, respectively. Specifi-
cally, a1 = (s1, s3) and c(a1) = 1; a2 = (s2, s4) and c(a2) = 1; a3 = (s3, s1) and
c(a3) = 1; a4 = (s4, s2) and c(a4) = 1; a5 = (s1, s2) and c(a5) = 2; a6 = (s2, s1)
and c(a6) = 2; a7 = (s3, s4) and c(a7) = 2; and a8 = (s4, s3) and c(a8) = 2.
Therefore, A1 = {a1, a2, a3, a4} and A2 = {a5, a6, a7, a8}. Since,
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El − D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and LJ given in Eq.3.3, one can obtain

LJc = LJ ◦ (El − D) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.3.3 Adjacency Matrix and Reachable List

Important matrices associated with a digraph include the adjacency matrix and the
incidencematrix (Godsil andRoyle 2001). Letm = |V | denote the number of vertices
and l = |A| be the number of edges of the directed graph G. Then,

Definition 3.25 For a graph model G = (S,A), DM i’s adjacency matrix is the
m × m matrix Ji with (s, q) entry

Ji(s, q) =
{
1 if (s, q) ∈ Ai,

0 otherwise,

where s, q ∈ S.

Let i ∈ N and s ∈ S. Ri(s) denotes DM i′s reachable list from a state s, containing
all states to which DM i can move from state s in one step. Ri(s) represents DM i′s
unilateral moves (UMs). IfRi(s) is written as a 0–1 row vector, thenDM i’s adjacency
matrix Ji and reachable list from state s have the relation

Ri(s) = eTs · Ji,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space.
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For the graph model of the sustainable development game presented in Fig. 3.2,
the adjacency matrices for DM 1 and DM 2 are

J1 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ and J2 =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ .

3.3.4 Preference Matrices

Preference information plays an important role in a graph model. A set of preference
matrices can represent preference relations between any two states with different
requirements. Two m × m preference matrices for DM i in the graph model with
simple preference are defined as follows:

P+
i (s, q) =

{
1 if q 	i s,
0 otherwise,

(3.8)

and

P−,=
i (s, q) =

{
1 if s 	i q or (s ∼i q and s �= q),
0 otherwise.

(3.9)

The preference matrix P+
i may be used to represent more preferred relations and the

preference matrix P−,=
i can represent less preferred or equally preferred relations

between any two states. Since simple preference structure is complete, matrices P+
i

and P−,=
i have the relation P+

i = E − I − P−,=
i , where E is the m × m matrix with

each entry equal to 1 and I the m × m identity matrix. For example, the sustainable
development model provides the preference information for two DMs as follows:

s1 	1 s3 	1 s2 	1 s4 and s3 	2 s1 	2 s4 	2 s2.

Therefore, two DMs’ preference matrices are expressed by

P+
1 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞

⎟
⎟
⎠ ,P−,=

1 =

⎛

⎜
⎜
⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠ ,

P+
2 =

⎛

⎜
⎜
⎝

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟
⎟
⎠ , and P−,=

2 =

⎛

⎜
⎜
⎝

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

⎞

⎟
⎟
⎠ .
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Fig. 3.11 Different representations of a graph model

3.3.5 Incidence Matrix and Graph Model

The incidence matrix based on the Rule of Priority with preference matrices can
completely represent a graph model. Figure3.11 depicts a graph model and its edge
labeled graph. Although no DM is explicitly shown in the labeled graph, the index
number of an arc uniquely determines the DM who controls it when all arcs have
been numbered according to the Rule of Priority. Specifically, based on the number
of arcs in i’s graphGi for i = 1, 2, |A1| = 3, and |A2| = 3, arcs a1 to a3 are controlled
by DM 1, arcs a4 to a6 by DM 2.

The incidence matrix of the labeled graph

B =

⎛

⎜
⎜
⎝

−1 −1 −1 0 0 1
1 0 0 −1 0 0
0 1 0 1 −1 0
0 0 1 0 1 −1

⎞

⎟
⎟
⎠ ,

and the preference matrices base on DMs’ preference information

P+
1 =

⎛

⎜
⎜
⎝

0 1 1 0
0 0 0 0
0 1 0 0
1 1 1 0

⎞

⎟
⎟
⎠ , and P+

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 1
1 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ ,

can represent the graph model shown in Fig. 3.11.
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3.4 Important Ideas

Conflicts arise across awide range of scales and settings. Tomodel a strategic conflict,
the normal form, option form, graph model form and its matrix representation are
introduced in this chapter. Compared with the normal and option forms to represent
strategic conflicts, the graph model has several advantages, including its ability to

• handle irreversible moves,
• model common moves,
• provide a flexible framework for defining, comparing, and characterizing solution
concepts, and

• be easily applied to actual conflicts.

For small or generic conflicts, the normal formof the gameexplained inSect. 3.1.1 can
be a convenient notation to employ, as is shown in Table3.2 for the 2×2 sustainable
development game. In practice, the option form of the game defined in Sect. 3.1.2 and
illustrated in Table3.3 for the sustainable development conflict constitutes a flexible
format to use in practice for recording conflicts ranging from simple to complicated
ones. In fact, option form is utilized in the vast majority of cases for defining states
needed in the graph model formulation. After a graph model is converted to a labeled
digraph based on the proposed Rule of Priority, it can be represented by using a set of
matrices that can be utilized to analyze a graph model using algebraic graph theory.
In the next chapter, stability definitions (or solution concepts) are defined logically,
in terms of the underlying graphs, and formulated explicitly using matrices for the
case of what is called simple preference.

3.5 Problems

3.5.1 The normal form of the game is displayed in Table3.2 for the sustainable
development game. Because each of the two DMs controls two strategies, this is
called a 2× 2 game. These small 2× 2 games represent the simplest possible game
that could occur and can be highly informative for clearly explaining the strategic
interpretation of conflict situations that can arise in the real-world, such as the sustain-
able development game. A widely known 2 × 2 game is called Prisoner’s Dilemma
which is used to reflect the situation in which a DM must decide whether to act in
his or her own interest in the short term or to cooperate with another DM, in order
to reach a better result in the longer term. The 2 × 2 normal form of this conflict is
written as given in Table3.6.

In Prisoner’s Dilemma, notice that if the two decisionmakers labeled as DM1 and
DM 2 cooperate with one another, they both fare reasonable well (state s1) compared
to the situation in which they do not (state s4).

(a) By referring to a well known book or paper on 2 × 2 games, explain in English
what conflict is taking place between the two prisoners.
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Table 3.6 Prisoners Dilemma in normal form

Table 3.7 The game of Chicken in normal form

(b) Using a real-world example, explain how a situation involving labour and man-
agement could be reasonably modeled using Prisoner’s Dilemma.

(c) Describe how and why the conflict over climate change could be interpreted in
its simplest form using Prisoner’s Dilemma.

3.5.2 For the Prisoner’s Dilemma game mentioned in Problem3.5.1:

(a) Record the option form of this conflict.
(b) Show the graph model version of this dispute.

3.5.3 In repeated Prisoner’s Dilemma, the two competitors deal with each other on
a regular basis over time. By referring to the literature, explain the best strategy to
follow in repeated Prisoner’s Dilemma.

3.5.4 The famous game of Chicken is another well known 2 × 2 game which can
be written in normal form as shown in Table3.7.

In this high risk confrontation, two drivers, called DM 1 and DM 2, are driving
at high speed towards one another. The driver, who swerves off the road to avoid
a collision in which both drivers would be killed, loses the game and is called a
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chicken. Notice in the game of Chicken that the worst situation is when both drivers
do not swerve, which is state s1.

(a) Explain why the preferences for each DM in Chicken make sense.
(b) The Cuban Missile Crisis of 1962 is sometimes modeled as a game of Chicken.

By locating appropriate references, outline what happened in the Cuban Missile
Crisis.Write down theCubanMissileCrisis in normal formas a gameofChicken.

(c) Describe another situation involving the game of Chickenwhich could take place
in the real-world.

3.5.5 In Problem 3.5.4, it is mentioned that the Cuban Missile Crisis is sometimes
interpreted as a game of Chicken. Rather than using the game of Chicken, Fraser and
Hipel (1984, Chap.2) and also Hipel (2011) develop a much more realistic model of
the Cuban Missile Crisis in option form.

(a) Show the normal form of the Cuban Missile Crisis mentioned above.
(b) Write down the option form of the Cuban Missile Crisis.
(c) Show the graph model for the Cuban Missile Crisis.

3.5.6 Sometimes misunderstandings can arise in a conflict situation, which is
referred to as a hypergame as mentioned in Sect. 10.3.1. By referring to the liter-
ature, qualitatively explain what is meant by a hypergame. Explain why the Cuban
Missile Crisis would be best modeled as a hypergame.

3.5.7 Write down the matrix or algebraic form of the Prisoner’s Dilemma game
mentioned in Problem3.5.1.

3.5.8 Show the matrix or algebraic formulation of the game of Chicken mentioned
in Problem3.5.4.

3.5.9 For the graph model shown in Fig. 3.11,

(a) label the graphmodel (1) to present all processes according to theRule ofPriority;
(b) calculate its edge consecutive matrix and edge colored consecutive matrix.

3.5.10 A superpower nuclear confrontation (Fang et al. 1993) is modeled using
two DMs and six options. These options determine five feasible states as listed in
Table3.8. Note that state W represents a nuclear winter. The graph model is shown
in Fig. 3.12.

For the graph model shown in Fig. 3.12:

(a) label the graph model to present all processes according to the Rule of Priority;
(b) calculate its incidence matrix and edge colored consecutive matrix.
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Table 3.8 Decision makers, options and feasible states for the superpower nuclear confrontation
conflict

DM 1

1. Peace (P) Y Y N N N

2. Conventional attack (C) N N Y Y N

3. Full nuclear attack (W) N N N N Y

DM 2

1. Peace (P) Y N Y N N

2. Conventional attack (C) N Y N Y N

3. Full nuclear attack (W) N N N N Y

States PP PC CP CC W

Fig. 3.12 The graph model
of the superpower nuclear
confrontation conflict

PP

CP CC

W

CCCP

PP PCPC

W

(a) Graph model for DM 1 (b) Graph model for DM 2

DM 1: PP �1 CP �1 CC �1 PC �1 W
DM 2: PP �2 PC �2 CC �2 CP �2 W
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Chapter 4
Stability Definitions: Simple Preference

Strategic conflicts, or situations in which two or more decision makers (DMs) with
different objectives interact, occur often in the real-world. As discussed in Chap. 3,
many models are available to represent strategic conflicts, such as the normal-form
conflict model, the option-form conflict model, and the graph model. Conflict reso-
lution has been investigated within many disciplines (Hipel 2009) including interna-
tional relations, psychology, and law, as well as from mathematical and engineering
perspectives (Saaty and Alexander 1989, Howard et al. 1992, Fang et al. 1993, Ben-
nett 1995). Among the formal methodologies that handle strategic conflict, the graph
model (or Graph Model for Conflict Resolution (GMCR)) (Kilgour et al. 1987, Fang
et al. 1993) provides a remarkable combination of simplicity and flexibility.

The main goal of this chapter is to define stabilities in graph models with simple
preference structure, based on a strict preference and an indifference relation, to be
discussed in Sect. 4.1. As explained in Sect. 4.2, when determining the stability of
a state for a given DM, a logical structure is employed for tracking the moves and
countermoves that could take place if the DM decides to improve his or her situation.
If the DM perceives that he or she will end up in a less preferred situation as a result
of these potential interactions with others, the state is deemed to be stable. However,
these logical representations of stabilities often require complex calculations and
are difficult to code. In particular, the construction of reachable lists of a coalition
having two or more DMs is a complicated process. The restriction that no DM may
move twice consecutively does not constrain a coalition in the way that it limits an
individual DM. For example, if there are only two DMs in a model, then a response
to a unilateral improvement (UI) by one of them is necessarily a single move. But if
there are more than two DMs in the model, a response to one DM’s UI may consist
of a sequence of many moves, provided no specific DM moves twice consecutively.
The subset of DMs levying the moves under the control of group members is called
a coalition. The sequence of actions by members of a coalition may constitute an
action to sanction a UI by another DM or the coalition members may be moving to
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a state which is more preferred by all members of the coalition which is referred to
as a coalition improvement.

The foregoing types of situations led to the development of matrix representations
of a graph model and explicit matrix calculations to determine the stabilities intro-
duced in Sect. 4.3. Because the graph model consists of several interrelated graphs,
well-known results of graph theory can help to analyze a graph model. This analy-
sis involves searching paths in a graph, subject to the important restriction that no
DM can move twice in succession along any path. Therefore, a graph model must be
treated as an edge colored digraph in which each arc represents a unilateral move and
distinct colors refer to different DMs. An algebraic approach to searching colored
paths in a colored digraph is presented in Sect. 4.3. The computational complexity
of employing the matrix formulation of the graph model is investigated in Sect. 4.4.
The sustainable development conflict is used throughout this chapter to illustrate
how stability calculations are executed for both the logical and matrix formulations
of the graph model. In Sect. 4.5, the Elmira dispute is employed to demonstrate how
stability calculations are carried out using the matrix representation. Finally, part of
the presentation appearing in this chapter is based upon research published earlier
(Xu et al. 2007, 2009, 2010a, b, 2011, 2014).

4.1 Simple Preference

In the original form, a graph model could be calibrated using only a relative prefer-
ence relation, “� preferred”, and an “equality” relation, “∼ indifferent”, to represent
a DM’s preference for one state with respect to another. The features and properties
of this type of preference, called a simple preference structure, were discussed in
Sect. 3.2.4. Specifically, simple preference of DM i is represented by a pair of rela-
tions {�i ,∼i } on S, where s �i q indicates that DM i prefers s to q and s ∼i q
means that DM i is indifferent between s and q (or equally prefers s and q). Note that,
for each i , �i is assumed irreflexive and asymmetric, and ∼i is assumed reflexive
and symmetric. Also, it is assumed that, for any s, q ∈ S, either s �i q, s ∼i q, or
q �i s. The conventions that s �i q is equivalent to either s �i q or s ∼i q, and that
s ≺i q is equivalent to q �i s, are convenient. Based on such preference information,
DM i’s reachable lists from a status quo state along the arcs of the directed graph,
important components of stability analysis, can be defined for a graph model, as will
be accomplished next.

4.1.1 Reachable Lists of a Decision Maker

Let S and N denote the state set and the DM set. The state set S can be partitioned
into subsets based on preference relative to a fixed state s ∈ S. These subsets, which
are essential in stability analysis, are described as follows:
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• �+
i (s) = {q : q �i s}, the states preferred to state s by DM i ;

• �=
i (s) = {q : q ∼i s}, the states indifferent to state s by DM i ;

• �−
i (s) = {q : s �i q}, the states less preferred than state s for DM i .

Let i ∈ N and s ∈ S be arbitrary. Denote the intersection operation by ∩. Recall
that each arc of Ai ⊆ S × S indicates that DM i can make a unilateral move (in one
step) from the initial state to the terminal state of the arc. DM i’s reachable lists from
state s ∈ S for simple preference are defined as follows:

Definition 4.1 For a graph model G, Ai denotes the arcs controlled by DM i for
i ∈ N . DM i’s reachable lists from s ∈ S are subsets of S as follows:

(i) Ri (s) = {q ∈ S : (s, q) ∈ Ai } is DM i’s reachable list from s by unilateral
moves (UMs);

(ii) R+
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} is DM i’s reachable list from s by

unilateral improvements (UIs);
(iii) R=

i (s) = {q ∈ S : (s, q) ∈ Ai and q ∼i s} is DM i’s reachable list from s by
equally preferred moves; and

(iv) R−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} is DM i’s reachable list from s by

unilateral disimprovements.

From the above definitions, the relationships among the subsets of S and the
corresponding reachable lists from state s for DM i are depicted in Fig. 4.1. For ease
of use, some additional notation is defined by �

−,=
i (s) = �−

i (s) ∪ �=
i (s).

Example 4.1 A graph model with two DMs N = {1, 2} and four feasible states
S = {s1, s2, s3, s4} is depicted in Fig. 4.2. The labels on the arcs of the graph indicate
the DM who can make the move. Preference information about the states is given
below the directed graph. If s = s1 is selected as the status quo state, the subsets of
S separated by DM i , �+

i (s),�=
i (s) and �−

i (s), and DM i’s reachable lists from s,
Ri (s), R

+
i (s), R=

i (s) and R−
i (s) for i ∈ N , can be calculated easily.

Fig. 4.1 Relations among
the subsets of S and the
corresponding reachable lists
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Fig. 4.2 Graph model for a
two DM model

Note that the preference information

s2 �1 s3 �1 s1 �1 s4 and s1 �2 s4 �2 s3 �2 s2

in Fig. 4.2 implies that the preference relations �1 and �2 are transitive. According
to the descriptions of the subsets of S,

• �+
1 (s1) = {q : q �1 s1} = {s2, s3} and �+

2 (s1) = {q : q �2 s1} = ∅;
• �=

1 (s1) = {q : q ∼1 s1} = ∅ and �=
2 (s1) = {q : q ∼2 s1} = ∅; and

• �−
1 (s1) = {q : s1 �1 q} = {s4} and �−

2 (s1) = {q : s1 �2 q} = {s2, s3, s4}.
Clearly, DM 1’s arc set is A1 = {(s1, s2), (s1, s3), (s1, s4)} and DM 2’s arc set is

A2 = {(s2, s3), (s3, s4), (s4, s1)}. According to Definition 4.1, the DMs’ reachable
lists from s1 are

• R1(s1) = {q ∈ S : (s1, q) ∈ A1} = {s2, s3, s4} and R2(s1) = {q ∈ S : (s1, q) ∈
A2} = ∅;

• R+
1 (s1) = {q ∈ S : (s1, q) ∈ Ai and q �1 s1} = {s2, s3} and R+

2 (s1) = ∅;
• R=

1 (s1) = {q ∈ S : (s1, q) ∈ Ai and q ∼1 s1} = ∅ and R=
2 (s1) = ∅; and

• R−
1 (s1) = {q ∈ S : (s1, q) ∈ Ai and s1 �1 q} = {s4} and R−

2 (s1) = ∅.

As shown in Fig. 4.1 for Example 4.1, the relations among the subsets of the state
set and the reachable lists are

• R+
i (s) = Ri (s) ∩ �+

i (s);
• R=

i (s) = Ri (s) ∩ �=
i (s); and

• R−
i (s) = Ri (s) ∩ �−

i (s).

DM i’s oriented arcs Ai are related to reachable lists as follows:

• Ai = {(p, q) : q ∈ Ri (p)} is DM i’s UM arc set;
• if s ∈ S is fixed, then Ai (s) = {(s, q) ∈ Ai : q ∈ Ri (s)} are DM i’s UM arcs from
s.
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DM i’s UM arcs, Ai , can be partitioned as follows:

• A+
i = {(p, q) ∈ Ai : q �i p} is DM i’s UI arc set;

• A=
i = {(p, q) ∈ Ai : q ∼i p} is DM i’s equally preferred arc set; and

• A−
i = {(p, q) ∈ Ai : p �i q} is DM i’s less preferred arc set.

According to the completeness property of preference, Ai = A+
i ∪ A=

i ∪ A−
i . Now

fix s ∈ S. Then

• A+
i (s) = {(s, q) ∈ Ai : q ∈ R+

i (s)} are DM i’s UI arcs from s;
• A=

i (s) = {(s, q) ∈ Ai : q ∈ R=
i (s)} are DM i’s equally preferred arcs from s; and

• A−
i (s) = {(s, q) ∈ Ai : q ∈ R−

i (s)} are DM i’s less preferred arcs from s.

Note that Ai (s) is a subset of the arc set Ai while Ri (s) is a subset of the state set S.

4.2 Logical Representation of Stability Definitions

In a graphmodel, a stability definition (solution concept) is a procedure for determin-
ing whether a state is stable for a decision maker (DM), and identifying a situation
in which the DM would have no incentive to move away from the state unilaterally.
An equilibrium of a graph model, or a possible resolution of the conflict it repre-
sents, is a state that all DMs find stable under an appropriate stability definition.
Many solution concepts have been formulated to represent various decision styles
and contexts. In this book, four basic solution concepts—Nash stability (Nash 1950,
1951), general metarationality (GMR) (Howard 1971), symmetric metarationality
(SMR) (Howard 1971), and sequential stability (SEQ) (Fraser and Hipel 1979)—
are emphasized. Recently, Li et al. (2004) extended these four solution concepts to
models having preference uncertainty, which will be introduced in Chap. 5. As well,
Hamouda et al. (2004, 2006) proposed new stability definitions that take strength of
preference (strong or mild) into account, which will be discussed in Chap. 6.

The logical representations of Nash, GMR, SMR, and SEQ stabilities in the graph
model with simple preference are given below. The four stability definitions for two-
DM models are introduced first.

4.2.1 Two Decision Maker Case

Let N = {i, j} and s ∈ S in the following definitions.

Definition 4.2 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff R+

i (s) = ∅.
For Nash stability (Nash 1950, 1951), DM i expects that DM j will stay at any

state DM i moves to, and consequently that any state that i moves to will be final
state.
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Table 4.1 Nash stability of the sustainable development game with simple preferences

State R+
i (s) Nash stability Equilibrium

DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ s s Eq

s2 ∅ {s1} s u

s3 {s1} ∅ u s

s4 {s2} {s3} u u

Example 4.2 (Nash Stability for the Sustainable Development Model) The sustain-
able development game was presented in normal form, option form, and graph form
in Tables 3.2 and 3.3, and Fig. 3.2, respectively. The graph model of this model is
shown in Fig. 3.2with the state set S = {s1, s2, s3, s4} and theDMset N = {1, 2}. The
letter on a given arc indicates which DM controls the movement while the arrowhead
shows the direction ofmovement. The twoDMs’ preference information is presented
underneath the digraph.

State s1 is now analyzed to ascertain if it is Nash stable for DM i . From Fig. 3.2,
DM 1 has a unilateral move from s1 to s3. However, s1 �1 s3 based on the preference
information, so the move by DM 1 from s1 to s3 is not a unilateral improvement and,
therefore, state s1 is Nash stable for DM 1 according to Definition 4.2. Next, consider
the Nash stability of s1 for DM 2. Clearly, DM 2 has a unilateral move from s1 to s2.
Because s1 �2 s2, the move by DM 2 from s1 to s2 is not a unilateral improvement
and, therefore, state s1 is Nash stable for DM 2. Accordingly, s1 is an equilibrium in
the sense of Nash stability. Similarly, the other three states can be assessed for Nash
stability.

Nash stability results are listed in Table4.1 in which R+
i (s) denotes DM i’s UIs

from s ∈ S for i ∈ N . The letter “s” indicates that a state is Nash stable for a given
DM, whereas “u” denotes that the state is Nash unstable. The letter “Eq” means that
the state is an equilibrium, that is Nash stable for both DMs.

State s ∈ S is GMR for DM i iff, whenever DM i makes any UI from s, then i’s
opponent can move to sanction i (that is, hurt i) in response. (A “sanction” must be
an opponent’s move.) The formal definition is given next.

Definition 4.3 State s is GMR stable (or, simply, GMR) for DM i , denoted by
s ∈ SGMR

i , iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with

s2 ∈ �
−,=
i (s) (or s �i s2).

For GMR, DM i expects that its opponent j will respond by hurting i , so s is GMR
stable for i iff DM j can hurt i if i takes any UI.

Example 4.3 (GMR Stability for the Sustainable Development Model) From
Definitions 4.2 and 4.3, one can see that if R+

i (s) = ∅, then s is Nash stable and
GMR stable for DM i . Hence, for instance, s3 is GMR stable for DM 2 for the
sustainable development model. Let us assess whether s3 is GMR for DM 1. DM 1
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Table 4.2 GMR stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) GMR stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} s s Eq

s4 {s2} {s3} {s2} {s3} u u

has a unilateral improvement from s3 to s1 and DM 2 has a unilateral move from
s1 to s2. However, s2 is less preferred than s3 for DM 1, hence, s3 is GMR for DM
1 according to Definition 4.3. The stabilities of other three states for the two DMs
can be determined, similarly. GMR stability results are listed in Table4.2, where,
as usual, R+

i (s) denotes DM i’s UIs from s ∈ S, “s” indicates GMR stable, “u”
indicates GMR unstable, and “Eq” indicates a GMR equilibrium.

SMR is a similar butmore restrictive stability definition compared toGMR.Under
SMR, DM i expects to have a chance to counterrespond to its opponent’s response
to i’s original move.

Definition 4.4 State s is SMR stable for DM i , denoted by s ∈ SSMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=
i (s) (or s �i s2)

and s3 ∈ �
−,=
i (s) (or s �i s3) for every s3 ∈ Ri (s2).

Example 4.4 (SMR Stability for the Sustainable DevelopmentModel) By comparing
Definitions 4.2–4.4, one can see that if R+

i (s) = ∅, then s is Nash stable, GMR stable,
and SMR stable for DM i . Therefore, for instance, s3 is SMR stable for DM 2 for
the sustainable development model. Let us determine whether s3 is SMR stable for
DM 1. DM 1 has a unilateral improvement from s3 to s1 and DM 2 has a unilateral
move from s1 to s2, then DM 1 has only a unilateral move from s2 to s4. Because s2
and s4 are less preferred than s3 for DM 1 and, hence, s3 is SMR stable for DM 1 by
Definition 4.4. The stabilities of other three states for the two DMs can be assessed,
similarly. SMR stability results are obtained and listed in Table4.3, where, similarly,
“s” indicates SMR stable, “u” indicates SMR unstable, and “Eq” indicates a SMR
equilibrium.

SEQ is similar to GMR, but includes only sanctions that are “credible”. A credible
action is a unilateral improvement.

Definition 4.5 State s is SEQ stable for DM i , denoted by s ∈ SSEQ
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈ �
−,=
i (s) (or s �i s2).

Example 4.5 (SEQ Stability for the Sustainable Development Model) Similar to
GMR stability, if R+

i (s) = ∅, then s is SEQ stable for DM i . Therefore, for the
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Table 4.3 SMR stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) SMR stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} s s Eq

s4 {s2} {s3} {s2} {s3} u u

Table 4.4 SEQ stability of the sustainable development game with simple preferences

State R+
i (s) Ri (s) SEQ stability Equilibrium

DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

s1 ∅ ∅ {s3} {s2} s s Eq

s2 ∅ {s1} {s4} {s1} s u

s3 {s1} ∅ {s1} {s4} u s

s4 {s2} {s3} {s2} {s3} u u

sustainable development model, s3 is SEQ stable for DM 2. Let us analyze SEQ
stability of s3 for DM 1. DM 1 has a unilateral improvement from s3 to s1, but DM 2
has no any unilateral improvement from s1. Hence, s3 is GMR and SMR stable for
DM 1 rather than SEQ stable. Similarly, one can assess whether other three states
are SEQ stable for the two DMs by Definition 4.5. SEQ stability results are listed in
Table4.4 in which “s” indicates SEQ stable, “u” indicates SEQ unstable, and “Eq”
indicates a SEQ equilibrium.

4.2.2 Reachable Lists of a Coalition of Decision Makers

Any nonempty subset H of DMs, H ⊆ N and H �= ∅, is called a coalition. If
|H | = 1, then the coalition H is trivial; if |H | > 1, then the coalition H is non-
trivial. (Here, |H | denotes the cardinality of H .) Within an n-DMmodel (n ≥ 2), an
important coalition is the set of opponents of a fixed DM i , namely N\{i}, where \
refers to “set subtraction”. In order to analyze the stability of a state for DM i ∈ N , it
is necessary to take into account possible responses by all other DMs j ∈ N\{i}. The
essential inputs of stability analysis are reachable lists of group N\{i} from state s,
RN\{i}(s) and R+

N\{i}(s) for simple preference. For a two-DM model, DM i has only
an opponent, DM j , so i’s opponent’s reachable lists from s are the states reachable
by DM j’s moves. In an n-DM model (n > 2), the opponents of a DM constitute a
coalition of two or more DMs and the determination of their reachable lists is more
subtle. The definition of a legal sequence of UMs for a nontrivial coalition is given
first.
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A legal sequence of UMs for a coalition of DMs is a sequence of states linked by
unilateral moves by members of the coalition, in which a DM may move more than
once, but not twice consecutively. In general, a DM’s directed graph can be transitive
or intransitive within the GMCR paradigm. When, for example, a DM can move
from s1 to s2 and s2 to s3 in one step, moves are transitive if the DM can also move
in one step from s1 to s3. If this is not possible, the move is intransitive. Hence, the
restriction of non-successive-moves by the same DM means that GMCR can handle
intransitive moves, in addition to transitive moves. Let the coalition H ⊆ N satisfy
|H | ≥ 2 and let the status quo state be s ∈ S. Let RH (s) ⊆ S (defined formally
below) denote the set of states that can be reached by any legal sequence of UMs,
by some or all DMs in H , starting at state s. If s1 ∈ RH (s), then �H (s, s1) (also
defined formally below) denotes the set of all last DMs in legal sequences from s to
s1. The formal definition of RH (s) ⊆ S and �H (s, s1) ⊆ H for s1 ∈ RH (s) is given
as follows:

Definition 4.6 A unilateral move by H is a member of RH (s) ⊆ S, defined induc-
tively by

(1) assuming �H (s, s1) = ∅ for all s1 ∈ S;
(2) if j ∈ H and s1 ∈ R j (s), then s1 ∈ RH (s) and �H (s, s1) = �H (s, s1) ∪ { j};
(3) if s1 ∈ RH (s), j ∈ H , and s2 ∈ R j (s1), then, provided �H (s, s1) �= { j},

s2 ∈ RH (s) and �H (s, s2) = �H (s, s2) ∪ { j}.
Note that this definition is inductive: first, using (2), the states reachable from s

are identified and added to RH (s); then, using (3), all states reachable from those
states are identified and added to RH (s); then the process is repeated until no further
states can be added to RH (s) and there is no change in�H (s, s2) for any s2 ∈ RH (s).
Because RH (s) ⊆ S and S is finite, this limit must be reached in finitely many steps.

To interpret Definition 4.6, note that if s1 ∈ RH (s), then �H (s, s1) ⊆ H is the set
of all last DMs in legal sequences from s to s1. (If s1 /∈ RH (s), it can be assumed that
�H (s, s1) = ∅.) Suppose that �H (s, s1) contains only one DM, say j ∈ N . Then
any move from s1 to a subsequent state, say s2, must be made by a member of H
other than j ; otherwise DM j would have to move twice in succession. On the other
hand, if |�H (s, s1)| ≥ 2, any member of H who has a unilateral move from s1 to s2
may exercise it.

A legal sequence of UIs for a coalition can be defined similarly. Let R+
H (s) ⊆ S

(defined formally below) denote the set of states that can be reached by any legal
sequence of UIs, by some or all DMs in H , starting at state s. If s1 ∈ R+

H (s),
then �+

H (s, s1) (also defined formally below) denotes the set of all last DMs in
legal sequences from s to s1 by UIs. The formal definition of R+

H (s) ⊆ S and
�+

H (s, s1) ⊆ H for s1 ∈ R+
H (s) is given as follows:

Definition 4.7 Let s ∈ S, H ⊆ N , and H �= ∅. A unilateral improvement by H is
a member of R+

H (s) ⊆ S, defined inductively by

(1) assuming �+
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+
j (s), then s1 ∈ R+

H (s) and �+
H (s, s1) = �+

H (s, s1) ∪ { j};
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Fig. 4.3 Graph model with four DMs and six states

(3) if s1 ∈ R+
H (s), j ∈ H , and s2 ∈ R+

j (s1), then, provided �+
H (s, s1) �= { j},

s2 ∈ R+
H (s) and �+

H (s, s2) = �+
H (s, s2) ∪ { j}.

Definition 4.7 is identical to Definition 4.6 except that all moves are required to
be UIs, i.e. each move is to a state strictly preferred by the mover to the current state.
Similarly, �+

H (s, s1) includes all last movers in UIs by H from state s to state s1.
An example that shows the procedures to construct the reachable lists of a group is
presented as follows:

Example 4.6 (Constructing Reachable Lists of aCoalition) Figure4.3 shows a graph
model with DM set N = {1, 2, 3, 4} and state set S = {s1, s2, s3, s4, s5, s6}. The
labels on the arcs of the graph indicate the controlling DMs. Preference information
is given below the directed graph. If s = s1 is selected as the status quo state, then the
reachable lists of H = N from s, RN (s1) and R+

N (s1), can be constructed according
to Definitions 4.6 and 4.7.

Constructing RN (s1):

1. s2 can be reached by DM 1 from s1 by one step UM, so s2 ∈ RN (s1);
2. s3 cannot be attained by DM 1 from s2 since DM 1 cannot move twice consecu-

tively;
3. s3 can be reached by DM 2 from s2 by one step UM, so s3 ∈ RN (s1);
4. s6 cannot be attained by DM 2 from s3 since DM 2 cannot move twice consecu-

tively;
5. s4 can be reached by DM 3 from s3 by one step UM, so s4 ∈ RN (s1);
6. s5 cannot be attained by DM 3 from s4 since DM 3 cannot move twice consecu-

tively;
7. s2 is reachable again by DM 4 from s4 by one step UM, then s3 is reachable again

by DM 1 from s2, and s6 is finally reachable by DM 2 from s3, so s6 ∈ RN (s1).

Accordingly, RN (s1) = {s2, s3, s4, s6}.
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Constructing R+
N (s1):

From the preference information provided, A+
1 = {(s1, s2)}, A+

2 = {(s2, s3)}, A+
3 =

{(s3, s4), (s4, s5)}, and A+
4 = {(s4, s2)}.

1. s2 can be reached by DM 1 from s1 by a UI, so s2 ∈ R+
N (s1);

2. s3 can be reached by DM 2 from s2 by a UI, so s3 ∈ R+
N (s1);

3. s4 can be reached by DM 3 from s3 by a UI, so s4 ∈ R+
N (s1);

4. s5 cannot be attained by DM 3 from s4 since DM 3 cannot move twice consecu-
tively.

Therefore, R+
N (s1) = {s2, s3, s4}.

The four basic stabilities of Nash, GMR, SMR, and SEQ with simple preference
in two-DM models, described using logical representation in Sect. 4.2.1, can be
extended to models including more than two DMs, which is the objective of the next
subsection.

4.2.3 n-Decision Maker Case

In an n-DM model, where n > 2, the opponents of a DM can be thought of as the
coalition of all other DMs. To calculate the stability of a state for DM i ∈ N , it is
necessary to examine possible responses by this coalition, N \ {i} from the states in
RN\{i}(s) or R+

N\{i}(s). Let i ∈ N and s ∈ S in the following definitions.
Nash stability definition is identical for two-DM and n-DM models because this

formal stability does not consider the opponents’ responses.

Definition 4.8 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff R+

i (s) = ∅.
For GMR stability, DM i expects that its opponents, N \ {i}, will respond to any

unilateral improvement by i from s to s1 with a sequence of legal unilateral moves
to a state in RN\{i}(s1), so as to hurt i if possible. As before, i anticipates that the
conflict will end after the opponents have responded.

Definition 4.9 State s is GMR for DM i , denoted by s ∈ SGMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s �i s2.

As in the two-DM case, for SMR stability, DM i expects to have a chance to
counterrespond (s3) to its opponents’ response (s2) to i’s original move.

Definition 4.10 State s is SMR for DM i , denoted by s ∈ SSMR
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that s �i s2 and s �i s3 for

every s3 ∈ Ri (s2).

A state is SEQ stable for a given DM iff the DM can be deterred by subsequent
unilateral improvements by its opponents.
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Definition 4.11 State s is SEQ for DM i , denoted by s ∈ SSEQ
i , iff for every s1 ∈

R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s �i s2.

SEQ stability indicates that all UIs of the focal DM are sanctioned by a subsequent
group unilateral improvement by the DM’s opponents.

Definitions 4.8–4.11 cover Nash stability, GMR, SMR, and SEQ in the graph
model for multiple-decision-maker conflict models (or, simply, n-DM models) with
simple preference. These definitions retain the features of Definitions 4.2–4.5, in the
two-DM case, except that DM i’s opponents are a subset of N , instead of a single
opponent. When n = 2, the DM set N is {i, j}, so that the reachable list of coalition
N \ {i} from s1, RN\{i}(s1), reduces to DM j’s reachable list from s1, R j (s1).

4.2.4 Interrelationships Among Stability Definitions

Fang et al. (1989, 1993) established general relationships among Nash, GMR, SMR,
and SEQ solution concepts as shown in Fig. 4.4. The following theorem demonstrates
that the same relationships hold for these solution concepts in both two-DM and n-
DM models.

Theorem 4.1 Let i ∈ N , |N | = n, and n ≥ 2. Then the stable states under the four
basic stability definitions satisfy

SNash
i ⊆ SSMR

i ⊆ SGMR
i (4.1)

and
SNash
i ⊆ SSEQ

i ⊆ SGMR
i . (4.2)

Proof The inclusion relations presented in Eq.4.1 will be proven. The proof for
Eq.4.2 is similar.

If s ∈ SNash
i , then R+

i (s) = ∅, so using Definition 4.10, s ∈ SSMR
i . Hence,

SNash
i ⊆ SSMR

i .
For any s ∈ SSMR

i , if R+
i (s) = ∅, then s ∈ SGMR

i . Otherwise, for any s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) such that s �i s2 and s �i s3 for every

Fig. 4.4 Interrelationships
among the solution concepts



4.2 Logical Representation of Stability Definitions 123

Table 4.5 Summary of stability results for the sustainable development game with simple prefer-
ences

State number Nash GMR SMR SEQ

DM
1

DM
2

Eq DM
1

DM
2

Eq DM
1

DM
2

Eq DM
1

DM
2

Eq

s1 s s
√

s s
√

s s
√

s s
√

s2 s u s u s u s u

s3 u s s s
√

s s
√

u s

s4 u u u u u u u u

s3 ∈ Ri (s2), by Definition 4.10. Accordingly, for every s1 ∈ R+
i (s) there exists

s2 ∈ RN\{i}(s1), such that s �i s2. This implies that SSMR
i ⊆ SGMR

i . Therefore, the
inclusion relations SNash

i ⊆ SSMR
i ⊆ SGMR

i hold. �

There is no necessary inclusion relation between SSMR
i and SSEQ

i , i.e., it may be
true that SSMR

i ⊇ SSEQ
i , or that SSMR

i ⊆ SSEQ
i , or neither.

The sustainable development model is utilized to illustrate the interrelationships
among the four stabilities, Nash, GMR, SMR, and SEQ. Stability results for the four
solution concepts are summarized in Table4.5, where “Eq”means “equilibrium”, “s”
indicates stable, “u” indicates unstable, and “

√
” indicates an equilibrium for some

solution concept. In fact, one can also utilize Theorem 4.1 to help determine some
stabilities. For example, R+

i (s1) = ∅ for i = 1, 2, so s1 is Nash stable for the two
DMs. Therefore, s1 is GMR, SMR, and SEQ for the two DMs by Eqs. 4.1 and 4.2
in Theorem 4.1. Because s2 is GMR unstable for DM 2, then it is certain that s2 is
SMR unstable for DM 2 from the relation Eq.4.1 in Theorem 4.1. In this case, s3 is
SMR but not SEQ for DM 2.

Theorem 4.1 examines the relationships of individual stability definitions from a
single DM’s viewpoint. Recall that a possible resolution or equilibrium of a graph
model is a state that all DMsfind stable under appropriate stability definitions. Hence,
Theorem 4.1 implies that the same relationships hold for equilibria. Let SNash =⋂

i∈N
SNash
i , SGMR = ⋂

i∈N
SGMR
i , SSMR = ⋂

i∈N
SSMR
i , and SSEQ = ⋂

i∈N
SSEQ
i denote

the equilibrium sets under the four stability definitions, respectively. The following
theorem is immediate.

Theorem 4.2 Let i ∈ N , |N | = n, and n ≥ 2. Then the equilibria under the four
basic stability definitions satisfy

SNash ⊆ SSMR ⊆ SGMR (4.3)

and
SNash ⊆ SSEQ ⊆ SGMR . (4.4)



124 4 Stability Definitions: Simple Preference

4.3 Matrix Representation of Stability Definitions

Stability definitions in the graph model are traditionally defined logically, in terms
of the underlying graphs and preference relations, as in Sect. 4.2. However, as noted
in the development of the DSS GMCR II (Fang et al. 2003a, b), the nature of logical
representations makes coding difficult. The new preference structure proposed by Li
et al. (2004) to represent uncertainty in DMs’ preferences included some extensions
of the four stability definitions, and algorithms were outlined but they have not been
coded. The work of Hamouda et al. (2004, 2006) integrated strength of preference
information into these four solution concepts but, again, it proved difficult to code
and has not been integrated into GMCR II. Then, difficulties in coding, mainly
because of the logical formulation, were the primary motivation for the development
of explicit matrix representations of the graph model with simple preference. In the
following subsection, matrix expressions are used to capture the relative preferences
and reachable lists of a single DM, both by UMs and by UIs.

4.3.1 Preference Matrices and UM and UI Matrices

Let m = |S| denote the number of states. For a graph model, several matrices can
represent relative preference relations between two states.

Definition 4.12 For a graph model G, the preference matrix and the indifference
matrix for DM i are m × m matrices, P+

i and P=
i , with (s, q) entries

P+
i (s, q) =

{
1 if q �i s,
0 otherwise,

and

P=
i (s, q) =

{
1 if q ∼i s and q �= s,
0 otherwise.

A nonzero entry P+
i (s, q) = 1 in the preference matrix indicates that DM i prefers

state q to state s, while zero entry P+
i (s, q) = 0 indicates that DM i either prefers s

to q or is indifferent between s and q (by the property of preference completeness).
Similarly, P=

i (s, q) = 1 implies that DM i is indifferent between s and q while
P=
i (s, q) = 0 denotes that DM i prefers either s to q or q to s. It is convenient to

define

P−,=
i = E − I − P+

i ,

where E is the m ×m unit matrix (all entries 1) and I is the m ×m identity matrix.
Note that P−,=

i (s, q) = 1 means that DM i does not prefer state q to state s.
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For i ∈ N and s ∈ S, DM i’s unilateralmoves (UMs) and unilateral improvements
(UIs) can be represented as follows:

Definition 4.13 For a graph model G, DM i’s UM and UI matrices are the m × m
matrices, Ji and J+

i , with (s, q) entries

Ji (s, q) =
{
1 if (s, q) ∈ Ai ,

0 otherwise,

and

J+
i (s, q) =

{
1 if (s, q) ∈ Ai and q �i s,
0 otherwise.

Note that Ji (s, q) = 1 if and only if DM i can move from state s to state q (in one
step). In other words, (s, q) ∈ Ai . Also, J

+
i (s, q) = 1 iff Ji (s, q) = 1 and DM i

prefers q to s.
The set Ri (s) = {q ∈ S : Ji (s, q) = 1} is DM i’s reachable list from state s by

UMs. It contains all states to which DM i can make unilateral moves from state s in
one step. Similarly, R+

i (s) = {q ∈ S : J+
i (s, q) = 1} is DM i ′s reachable list from

s by UIs. Clearly, R+
i (s) is identical to Ri (s) except that all moves are required to

be UIs. Note that, if Ri (s) and R+
i (s) are written as 0–1 row vectors, then

Ri (s) = eTs · Ji and R+
i (s) = eTs · J+

i ,

where eTs denotes the transpose of the sth standard basis column vector of the m-
dimensional Euclidean space, RS .

The definitions of DM i’s UM matrix, Ji , UI matrix, J+
i , and preference matrix,

P+
i , imply that

J+
i = Ji ◦ P+

i , (4.5)

where “◦” denotes the Hadamard product.
The objective of the next subsection is to develop an explicit algebraic version of a

graph model, to facilitate stability calculations. The two-DM models are considered
first. One will see that matrix representation of solution concepts (MRSC) is feasible
for four graph model stability definitions in the two-DM graph model. Using explicit
matrix formulations instead of graphical or logical representations makes MRSC
more effective and convenient for calculating stabilities and identifying equilibria.

4.3.2 Two Decision Maker Case

The matrix representation of Nash, GMR, SMR, and SEQ stabilities in two-DM
conflict models with simple preference is developed in this subsection. The system,
called the MRSC method, incorporates a set of m × m matrices, MNash

i , MGMR
i ,
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MSMR
i , and MSEQ

i , to capture Nash, GMR, SMR, and SEQ for DM i ∈ N , where
m = |S|. For now, |N | = 2.

From Definition 4.2, state s is Nash stable for DM i iff DM i cannot move from s
to any state i prefers. DefineDM i’s Nashmatrix as them×mmatrixMNash

i = J+
i ·E

(“E” denotes them×m matrix with each entry being set to 1). The diagonal element
of MNash

i matrix at (s, s) is

MNash
i (s, s) = eTs · J+

i · e, (4.6)

for s ∈ S, and all off-diagonal entries zero. Here, e is them-dimensional unit column
vector (all elements 1). Then the following theorem shows how this matrix represents
Nash stability.

Theorem 4.3 State s ∈ S is Nash stable for DM i iff MNash
i (s, s) = 0.

Proof By Eq.4.6, MNash
i (s, s) = 0 holds iff

eTs · J+
i = 0T .

According to the definition of DM i’s UI matrix, MNash
i (s, s) = 0 iff R+

i (s) = ∅,
which is the definition of Nash stability for DM i given in Definition 4.2. �

Note that Theorem 4.3 provides a matrix method to assess whether state s is Nash
stable for DM i by identifying the Nash matrix’s diagonal entry MNash

i (s, s). If the
sth diagonal entry is zero, then s is Nash stable for DM i ; otherwise s is Nash unstable
for DM i . This matrix representation of Nash stability will be adapted to the other
basic stability definitions.

Example 4.7 (Matrix Representation of Nash Stability for the Sustainable Develop-
ment Model) The logical representation of Nash stability for the sustainable devel-
opment game was presented in Example 4.2. For the graph model of the sustainable
development conflict presented in Fig. 3.2, the UMmatrices for DM 1 and DM 2 are

J1 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ and J2 =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ . (4.7)

According to Definition 4.12, the preference matrices are

P+
1 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞

⎟
⎟
⎠ and P+

2 =

⎛

⎜
⎜
⎝

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟
⎟
⎠ . (4.8)
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Accordingly, one uses J+
i = Ji ◦ P+

i , for i = 1, 2, to obtain

J+
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ and J+

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠ . (4.9)

Then, from Eq.4.6, the Nash matrices are

MNash
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ and MNash

2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ .

Since MNash
1 (1, 1) = MNash

1 (2, 2) = 0 and MNash
1 (3, 3) = MNash

1 (4, 4) = 1,
then s1 and s2 are Nash stable, and s3 and s4 are Nash unstable for DM 1, accord-
ing to Theorem 4.3. Similarly, because MNash

2 (1, 1) = MNash
2 (3, 3) = 0 and

MNash
2 (2, 2) = MNash

2 (4, 4) = 1, s1 and s3 are Nash stable, and s2 and s4 are
Nash unstable, for DM 2. The results are identical to those in Example 4.2 obtained
by logical representation.

A state s ∈ S is general metarational for DM i iff whenever DM i makes any UI
from s, then its opponent can hurt i in response. DefineDM i’sm×m GMRmatrix as

MGMR
i = J+

i · [E − sign
(
Jj · (P−,=

i )T
)], (4.10)

where j ∈ N , j �= i . The following theorem establishes the matrix method to assess
whether state s is GMR stable for a DM.

Theorem 4.4 State s ∈ S is GMR for DM i iff MGMR
i (s, s) = 0.

Proof Since

MGMR
i (s, s) = (eTs · J+

i ) · [(E − sign
(
Jj · (P−,=

i )T
)) · es]

=
m∑

s1=1

J+
i (s, s1) · [1 − sign

(
(eTs1 · Jj ) · (eTs · P−,=

i )T
)],

then MGMR
i (s, s) = 0 holds iff

J+
i (s, s1) · [1 − sign

(
(eTs1 · Jj ) · (eTs · P−,=

i )T
)] = 0, (4.11)
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for every s1 ∈ S. It is clear that Eq. 4.11 is equivalent to

(eTs1 · Jj ) · (eTs · P−,=
i )T �= 0,

for every s1 ∈ R+
i (s). Therefore, for any s1 ∈ R+

i (s), there exists at least one
s2 ∈ R j (s1) with s �i s2. According to Definition 4.3, MGMR

i (s, s) = 0 implies that
s is GMR stable for DM i . �

Theorem 4.4 proves that this matrix method, called matrix representation of GMR
stability, is equivalent to the logical representation for two-DM GMR stability in
Definition 4.3. To analyze GMR stability at s for DM i , one only needs to identify
whether the diagonal entry MGMR

i (s, s) of i’s GMR matrix is zero. If so, s is GMR
stable for i ; otherwise, s is GMR unstable for DM i . Note that all information about
GMR stability is contained in the diagonal entries of the GMR matrix.

Example 4.8 (Matrix Representation of GMR Stability for the Sustainable Develop-
ment Model) The logical representation of GMR stability for the sustainable devel-
opment game was illustrated in Example 4.3. First, one uses P−,=

i = E − I − P+
i

for i = 1, 2, to obtain

P−,=
1 =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠ ,

(4.12)
and

P−,=
2 =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

⎞

⎟
⎟
⎠ .

(4.13)
From Eq.4.10, DM i’s GMR matrix is

MGMR
i = J+

i · (
E − sign

(
Jj · (P−,=

i )T
))

,

where i, j = 1, 2. Therefore,

MGMR
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ − sign

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠

T
⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ .
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Similarly, DM 2’s GMR matrix is calculated by

MGMR
2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ − sign

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

⎞

⎟
⎟
⎠

T
⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MGMR
1 (1, 1) = MGMR

1 (2, 2) = MGMR
1 (3, 3) = 0 and MGMR

1 (4, 4) �= 0,
then s1, s2, and s3 are GMR stable, while s4 is GMR unstable, for DM 1, accord-
ing to Theorem 4.4. Similarly, because MGMR

2 (1, 1) = MGMR
2 (3, 3) = 0 and

MGMR
2 (2, 2) = MGMR

2 (4, 4) = 1, s1 and s3 are GMR stable, and s2 and s4 are GMR
unstable, for DM 2. These results are identical to those in Example 4.3 obtained by
logical representation.

Symmetric metarationality is similar to general metarationality except that DM i
expects to have a chance to counterrespond to its opponent j’s response to i’s original
move. Define DM i’s SMR m × m matrix as

MSMR
i = J+

i · [E − sign(Q)]

in which

Q = Jj · [(P−,=
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))],

for j ∈ N , j �= i . The following theorem establishes the matrix method to determine
whether state s is SMR stable for a DM.

Theorem 4.5 State s ∈ S is SMR for DM i iff MSMR
i (s, s) = 0.

Proof Since

MSMR
i (s, s) = (eTs · J+

i ) · [(E − sign(Q)) · es]

=
m∑

s1=1

J+
i (s, s1)[1 − sign (Q(s1, s))]

with

Q(s1, s) =
m∑

s2=1

Jj (s1, s2) · W,
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and

W = P−,=
i (s, s2) ·

[

1 − sign

(
m∑

s3=1

(
Ji (s2, s3) · P+

i (s, s3)
)
)]

,

then MSMR
i (s, s) = 0 holds iff Q(s1, s) �= 0, for every s1 ∈ R+

i (s), which is
equivalent to the statement that, for every s1 ∈ R+

i (s), there exists s2 ∈ R j (s1) such
that

P−,=
i (s, s2) �= 0, (4.14)

and
m∑

s3=1

Ji (s2, s3) · P+
i (s, s3) = 0. (4.15)

Obviously, for every s1 ∈ R+
i (s), there exists s2 ∈ R j (s1) such that Eqs. 4.14 and

4.15 hold iff for every s1 ∈ R+
i (s) there exists s2 ∈ R j (s1) such that s �i s2 and

s �i s3 for all s3 ∈ Ri (s2). �
Theorem 4.5 proves that this matrix method, called matrix representation of SMR

stability, is equivalent to the logical representation for two-DM SMR stability in
Definition 4.4. To calculate SMR stability at s for DM i , one only needs to assess
whether the diagonal entry MSMR

i (s, s) of i’s SMR matrix is zero. If so, s is SMR
stable for i ; otherwise, s is SMR unstable for DM i .

Example 4.9 (Matrix Representation of SMR Stability for the Sustainable Develop-
ment Model) The logical representation of SMR stability for the sustainable devel-
opment game was described in Example 4.4. First, one uses Eq.4.7 for Ji , Eq. 4.8
for P+

i , Eq. 4.9 for J+
i , and Eqs. 4.12 and 4.13 for P−,=

i , for i = 1, 2. DM i’s SMR
matrix is

MSMR
i = J+

i · [E − sign(Q)]

in which

Q = Jj · [(P−,=
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))],

where i, j = 1, 2. Therefore,

MSMR
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ and MSMR

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MSMR
1 (1, 1) = MSMR

1 (2, 2) = MSMR
1 (3, 3) = 0 and MSMR

1 (4, 4) �= 0,
then s1, s2, and s3 are SMR stable, while s4 are SMR unstable, for DM 1,



4.3 Matrix Representation of Stability Definitions 131

according to Theorem 4.5. Similarly, because MSMR
2 (1, 1) = MSMR

2 (3, 3) = 0
and MSMR

2 (2, 2) = MSMR
2 (4, 4) = 1, s1 and s3 are SMR stable, and s2 and s4 are

SMR unstable, for DM2. These results are identical to those in Example 4.4 obtained
by logical representation.

Sequential stability is similar to general metarationality, but includes only those
sanctions that are “credible”. Define DM i’s SEQ m × m matrix as

MSEQ
i = J+

i · [E − sign
(
J+
j · (P−,=

i )T
)
],

for j ∈ N , j �= i . The following theorem provides the matrix method to analyze
whether state s is SEQ stable for a DM.

Theorem 4.6 State s ∈ S is SEQ for DM i iff MSEQ
i (s, s) = 0.

Proof Since

MSEQ
i (s, s) = (eTs J

+
i ) · [

(
E − sign(J+

j · (P−,=
i )T )

)
es]

=
|S|∑

s1=1

J+
i (s, s1)[1 − sign((eTs1 J

+
j ) · (

eTs P
−,=
i )T

)],

then MSEQ
i (s, s) = 0 holds iff

J+
i (s, s1)[1 − sign

(
(eTs1 J

+
j ) · (eTs P

−,=
i )T

)
] = 0,∀s1 ∈ S. (4.16)

It is clear that Eq.4.16 is equivalent to

(eTs1 J
+
j ) · (eTs P

−,=
i )T �= 0,∀s1 ∈ R+

i (s).

It implies that for any s1 ∈ R+
i (s), there exists at least one s2 ∈ R+

j (s1) with s �i s2.
�

Note that the SEQ matrix is identical to the GMR matrix except that DM j’s UM
matrix Jj is replaced by the UI matrix J+

j .
Theorem 4.6 proves that this matrix method, called matrix representation of SEQ

stability, is equivalent to the logical representation for two-DM SEQ stability in
Definition 4.5. To identify DM i’s SEQ stability at s for DM i , one only needs to
determine whether the diagonal entry MSEQ

i (s, s) of i’s SEQ matrix is zero. If so, s
is SEQ stable for i ; otherwise, s is SEQ unstable for DM i .
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Example 4.10 (Matrix Representation of SEQ Stability for the Sustainable Devel-
opment Model) The logical representation of SEQ stability for the sustainable devel-
opment game was presented in Example 4.5. First, one uses Eq.4.9 to obtain J+

i ,
and Eqs. 4.12 and 4.13 for P−,=

i , for i = 1, 2. DM i’s SEQ matrix is

J+
i · [E − sign

(
J+
j · (P−,=

i )T
)
],

where i, j = 1, 2. Therefore,

MSEQ
1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ and MSEQ

2 =

⎛

⎜
⎜
⎝

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

⎞

⎟
⎟
⎠ .

Since MSEQ
1 (1, 1) = MSEQ

1 (2, 2) = 0 and MSEQ
1 (3, 3) = MSEQ

1 (4, 4) = 1, then
s1 and s2 are SEQ stable, while s3 and s4 are SEQ unstable, for DM 1. Similarly,
because MSEQ

2 (1, 1) = MSEQ
2 (3, 3) = 0 and MSEQ

2 (2, 2) = MSEQ
2 (4, 4) = 1, s1

and s3 are SEQ stable, and s2 and s4 are SEQ unstable, for DM 2. These results are
identical to those in Example 4.5 obtained by logical representation.

4.3.3 Matrices to Construct Reachable Lists of a Coalition

The aim of a stability analysis is to find the states of a graph model that are stable
for all DMs, under appropriate stability definitions, or equilibria. As discussed in
Sect. 4.2.2, the reachable lists of coalition H by sequences of the legal UMs and the
legal UIs, RH (s) and R+

H (s), are essential ingredients for stability analysis and the
construction of these two sets is a complicated process. In this section, the reachability
matrices MH and M+

H are proposed to provide an algebraic method of constructing
RH (s) and R+

H (s) (Xu et al. 2010b).

4.3.3.1 Several Extended Definitions in the Graph Model

First, the adjacency matrix and the incidence matrix of a graph (Godsil and Royle
2001) are extended to a graph model. Let m = |S| and l = |A|.
Definition 4.14 For a graph model G, the UM adjacency matrix and the UI adja-
cency matrix for H ⊆ N and H �= ∅ are m × m matrices JH and J+

H with (s, q)

entries

JH (s, q) =
{
1 if di (s, q) ∈ A for some i ∈ H,

0 otherwise,
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and

J+
H (s, q) =

{
1 if di (s, q) ∈ A+ for some i ∈ H,

0 otherwise,

for s, q ∈ S in which di (s, q) denotes arc (s, q) controlled by some DM i .

The adjacencymatrix for any coalition H has been defined. For example, if H = i ,
then JH (s, q) reduces to Ji (s, q) that represents the adjacency relation between s
and q in DM i’s graph.

Definition 4.15 For the graph model, the UM incidence matrix and the UI inci-
dence matrix are m × l matrices B and B+, with (s, a) entries

B(s, a) =
⎧
⎨

⎩

−1 if a = di (s, x) ∈ A for some i ∈ N and some x ∈ S,

1 if a = di (x, s) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

and

B+(s, a) =
⎧
⎨

⎩

−1 if a = di (s, x) ∈ A+ for some i ∈ N and some x ∈ S,

1 if a = di (x, s) ∈ A+ for some i ∈ N and some x ∈ S,

0 otherwise,

where s ∈ S and a ∈ A.

The extension of incidence matrix has two versions, both including and excluding
preference information.

According to the signs of the entries, the UM incidence matrix can be separated
into the UM in-incidence and out-incidence matrices.

Definition 4.16 For a graph model G, the UM in-incidence matrix and the UM
out-incidence matrix are the m × l matrices Bin and Bout with (s, a) entries

Bin(s, a) =
{
1 if a = di (x, s) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

and

Bout (s, a) =
{
1 if a = di (s, x) ∈ A for some i ∈ N and some x ∈ S,

0 otherwise,

where s ∈ S and a ∈ A.

It is obvious that Bin = (B + |B|)/2 and Bout = (|B| − B)/2, where |B| denotes
the matrix in which each entry equals the absolute value of the corresponding entry
of B. The UI in-incidence matrix B+

in and the UI out-incidence matrix B+
out can

be defined similarly.
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The relationships among the UM, UI adjacency matrices and the UM, UI in-
incidence and out-incidence matrices are described as follows:

Theorem 4.7 In a graph model G, JH and J+
H denote the UM and the UI adjacency

matrices for H, Bin and Bout denote theUM in-incidence and out-incidencematrices,
and B+

in and B+
out indicate the UI in-incidence and out-incidence matrices. Then

JH = Bout · IH · (Bin)
T and J+

H = B+
out · IH · (B+

in)
T ,

where IH is the l × l diagonal matrix in which IH (k, k) = 1 if ak = di (s, q) and
i ∈ H, otherwise IH (k, k) = 0. Note that the diagonal matrix IH has 1’s as the
(k, k) entry if and only if the arc ak is controlled by DM i; otherwise all diagonal
entries, and, of course, all non-diagonal entries are zeros.

Fromalgebraic graph theory (Godsil andRoyle 2001), Theorem4.7 can follow easily.
Two important matrices to link conflict evolution that will be introduced in Chap. 9
and conflict resolution in the graph model are proposed as follows:

Definition 4.17 For the graph model G, the legal UM arc-incidence matrix L JH
and the legal UI arc-incidence matrix L J+

H for coalition H are the l × l matrices
with (a, b) entries

L JH (a, b) =
⎧
⎨

⎩

1 if edge a is incident on edge b in IG(G) for a, b ∈ A,

and a and b controlled by different DMs in H ,

0 otherwise,

and

L J+
H (a, b) =

⎧
⎨

⎩

1 if edge a is incident on edge b in IG(G) for a, b ∈ A+,

and a and b controlled by different DMs in H ,

0 otherwise.

Note that if H = N , then L JN and L J+
N are written as L J and L J+, respectively.

Let Di and D+
i denote the l × l diagonal matrices with (k, k) entries

Di (k, k) =
{
1 if ak = di (s, q) for s, q ∈ S and ak ∈ A,

0 otherwise,

and

D+
i (k, k) =

{
1 if ak = di (s, q) for s, q ∈ S and ak ∈ A+,

0 otherwise.

Based on Definitions 4.16 and 4.17, the legal UM and the legal UI arc-incidence
matrices can be obtained by the following theorem.
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Theorem 4.8 For the graph model G, let Bin and Bout be the UM in-incidence and
the UM out-incidence matrices, and B+

in and B+
out denote the UI in-incidence and the

UI out-incidence matrices. Then, the legal UM arc-incidence matrix L JH and the
legal UI arc-incidence matrix L J+

H for coalition H satisfy that

L JH =
∨

i, j∈H,i �= j

[(Bin · Di )
T · (Bout · Dj )],

and

L J+
H =

∨

i, j∈H,i �= j

[(B+
in · D+

i )T · (B+
out · D+

j )].

Proof LetM = ∨

i, j∈H,i �= j
[(Bin · Di )

T ·(Bout · Dj
)]. Thus, any entry (ak, ah) ofmatrix

M can be expressed as

M(ak, ah) = sign[
∑

i, j∈H,i �= j

m∑

q=1

(Bin(q, ak) · Di (k, k) · Bout (q, ah) · Dj (h, h))],

for ak, ah ∈ A and q ∈ S.
Hence, M(ak, ah) �= 0 iff Bin(q, ak) · Bout (q, ah) �= 0 for some q ∈ S such that

ak = di (s, q) and ah = d j (q, u) for s, u ∈ S, and i, j ∈ H and i �= j . This implies
that M(ak, ah) �= 0 iff edge ak is incident on edge ah in IG(G) and ak and ah are
controlled by different DMs in H (see Fig. 4.5). Therefore, based on the definition
of the matrix L J , M(ak, ah) �= 0 iff L JH (ak, ah) �= 0. Since M and L JH are 0–1
matrices, then, L JH = ∨

i, j∈H,i �= j
[(Bin · Di )

T · (Bout · Dj )] follows.
The proof of L J+

H = ∨

i, j∈H,i �= j
[(B+

in · D+
i )T · (B+

out · D+
j )] is similar. �

It is obvious that unilateral moves on the branches of paths will endwhen the same
arc appears twice. Generally, if there is no new appropriate arc produced, then the
corresponding joint moves will stop. Therefore, the following Lemma 4.1 is obvious.
Let l = |A|, l+ = |A+| in the following lemma.

Lemma 4.1 For the graphmodel G, let H ⊆ N. RH (s) and R+
H (s) are the reachable

lists of H by the legal sequences of UMs and UIs from s. The δ1 and δ2 symbols are
the numbers of iteration steps required to find RH (s) and R+

H (s), respectively. Then

δ1 ≤ l and δ2 ≤ l+.

Fig. 4.5 ak incident on ah in
IG(G)
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Lemma 4.2 For a graph model G, let t be a nonnegative integer, and fix a, b ∈ A.
Then, (L JH )t (a, b), the (a, b) entry of matrix (L JH )t equals the number of legal
UM arc-by-arc paths of length t in G for H, from edge a to edge b.

Proof This Lemma is proved using induction on t .

When t = 1, the result is obvious. Note that (L JH )1(a, b) equals the number of
arcs from a to b.

Assume that when t = r , the result holds. Then, when t = r + 1,

(L JH )r+1(ak, ah) =
l∑

w=1
[(L JH )r (ak, aw) · L JH (aw, ah)]. By the induction hypoth-

esis, (L JH )r (ak, aw) denotes the number of legal paths by UMs from ak to aw with
length r , and L JH (aw, ah) equals the number of legal paths by UMs from aw to
ah with length 1. Thus, (L JH )r (ak, aw) · L JH (aw, ah) denotes the number of legal

paths from ak to ah through aw with length r + 1. Therefore,
l∑

w=1
[(L JH )r (ak, aw) ·

L JH (aw, ah)] is the total number of legal paths from ak to ah by UMs with length
r + 1.

Therefore, (L JH )t (a, b) equals the number of legal UM arc-by-arc paths for H
from edge a to edge b with length t . �

Note that if a = di (u, s) and b = d j (q, v) for u, s, q, v ∈ S and i, j ∈ H , then
the number of legal UM state-by-state paths for H from state u to state v of length
t + 1 is at least (L JH )t (a, b). In fact, (L JH )t (a, b) is the number of legal paths of
length t from u to v with initial edge a and terminal edge b. Similarly, (L J+

H )t (a, b)
denotes the number of legal UI arc-by-arc paths for H in the G from edge a to edge
b with length t . For example, Fig. 4.6a depicts an arc-by-arc path from arc a1 to arc
a4 with length 5 in the graph model G presented in Fig. 4.3, where a1 = d1(s1, s2)
and a4 = d2(s3, s6). Figure4.6b presents the corresponding state-by-state path from
s1 to s6 with initial edge a1 and terminal edge a4, which is of length 6.

The UM incidence matrix B and the UI incidence matrix B+ depict unilateral
move and unilateral improvement in one-step. The legal UM arc-incidence matrix
L J and the legal UI arc-incidence matrix L J+ can trace all evolutionary paths of
length greater than 1 by UMs and UIs in a strategic conflict, respectively. The details
of the evolution of a conflict will be discussed in Chap. 9.

Fig. 4.6 The arc-by-arc and
the state-by-state UM paths

(b)

(a)
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Example 4.11 Determine the legal UM and the legal UI arc-incidence matrices for
the graph model G presented in Fig. 4.3 (Xu et al. 2010b).

Based on Fig. 4.3, the UM incidence matrix B is

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0 0 0
1 −1 −1 0 0 0 1
0 1 1 −1 −1 0 0
0 0 0 0 1 −1 −1
0 0 0 0 0 1 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,

Bin =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Bout =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then Theorem 4.8 implies that the legal UM arc-incidence and the legal UI arc-
incidence matrices are

L J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and LJ+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Searching the nonzero entries of matrix L J produces the UM arc-by-arc evolu-
tionary path from a1 to a4 as presented in Fig. 4.7. Since there are two nonzero entries
in the seventh row of matrix L J , as seen in Fig. 4.7, branches a2 and a3 appear fol-
lowing a7. However, arc a3 has been passed in the path, so the branch with a3 ends.
Similarly, the branch following arc a2 with arc a5 stops. However, because a4 is not
a UI arc, a4 cannot be reached by the legal UI paths so that s6 is not reachable by the
legal sequence of UIs from s1.

Fig. 4.7 The arc-by-arc
evolutionary paths from a1
to a4
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4.3.3.2 Reachability Matrices to Construct Reachable Lists
of a Coalition

Definition 4.18 For the graph model G, the t-UM reachability matrix and the
t-UI reachability matrix for H , where t = 1, 2, 3, · · · , are them×m matrices with
(s, q) entries

M (t)
H (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal UMs,
0 otherwise,

and

M (t,+)
H (s, q) =

{
1 if q ∈ S is reachable by H from s ∈ S in exactly t legal UIs,
0 otherwise.

Obviously, M (1)
H = JH and M (1,+)

H = J+
H . The t-UM and the t-UI reachability

matrices for coalition H can be constructed by the following lemma.

Lemma 4.3 For the graph model G, let Bin and Bout denote the in-incidence and
out-incidence matrices, respectively. L JH and L J+

H are the legal UM and the legal
UI arc-incidence matrices for H. Then, for t ≥ 2, the t-UM reachability and the
t-UI reachability matrices for H can be expressed as

M (t)
H = sign[Bout · (L JH )t−1 · BT

in] and M (t,+)
H = sign[B+

out · (L J+
H )t−1 · (B+

in)
T ].

Proof Based on Definition 4.18, M (t)
H (u, v) = 1 iff state v is reachable by coalition

H from state u in exactly t legal unilateral moves. Let (L JH )t−1 = Q and W =
sign[Bout · Q · BT

in]. Then W (u, v) �= 0 iff there exist Q(a, b) �= 0 such that
a, b ∈ A, a = di (u, s), and b = d j (q, v) for i, j ∈ H , where s, q, u, v ∈ S. Using
Lemma 4.2, Q(a, b) �= 0 implies that state v can be attained by H from state u in
exactly t legal UMs. Therefore, M (t)

H (u, v) = 1 iff W (u, v) �= 0. Since M (t)
H and W

are 0–1 matrices, M (t)
H = sign[Bout · (L J )t−1 · BT

in].
The proof of M (t,+)

H = sign[B+
out · (L J+

H )t−1 · (B+
in)

T ] is similar. �

Definition 4.19 For the graph model G, the UM reachability matrix and the UI
reachability matrix for H are the m × m matrices MH and M+

H with (s, q) entries

MH (s, q) =
{
1 if q ∈ RH (s),
0 otherwise,

and

M+
H (s, q) =

{
1 if q ∈ R+

H (s),
0 otherwise,

respectively.
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It is clear that RH (s) = {q : MH (s, q) = 1} and R+
H (s) = {q : M+

H (s, q) = 1}.
If RH (s) and R+

H (s) are written as 0–1 row vectors, then

RH (s) = eTs · MH and R+
H (s) = eTs · M+

H,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the reachability matrices for coalition H , MH and M+

H ,
can be used to construct the reachable lists of H from state s, RH (s) and R+

H (s).
The reachability matrices for coalition H can now be obtained by the following

lemma.

Lemma 4.4 For the graph model, let M (t)
H and M (t,+)

H be the t-UM and the t-UI
reachability matrices. Then, the UM and the UI reachability matrices for H satisfy
that

MH =
l∨

t=1

M (t)
H and M+

H =
l+∨

t=1

M (t,+)
H .

Proof Let C =
l∨

t=1
M (t)

H . Based on the definition of MH , MH (u, v) �= 0 iff v is

reachable by H from u with a sequence of legal UMs. By Lemma 4.1, l ≥ δ1.
Hence, MH (u, v) �= 0 iff there exists 1 ≤ t0 ≤ δ1 ≤ l such that v is reach-
able by H from u with t0 legal UMs. Based on Definition 4.18, this implies that
M (t0)

H (u, v) = 1. Therefore, MH (u, v) �= 0 iffC(u, v) �= 0. Since MH andC are 0–1

matrices, MH =
l∨

t=1
M (t)

H holds. The proof of M+
H =

l+∨

t=1
M (t,+)

H can be carried out

similarly. �

Lemma 4.5 For the graph model G, L JH and L J+
H denote the legal UM arc-

incidence matrix and the legal UI arc-incidence matrix for H, respectively. Then

(1) (L JH + I )n =
n∑

t=0
Ct
n · (L JH )t ,

(2) (L J+
H + I )n =

n∑

t=0
Ct
n · (L J+

H )t ,

where the constant Ct
n =

(
n
t

)

= n·(n−1)···(n−t+1)
t ! , (L JH )0 = (L J+

H )0 = IH , and I

is the identity matrix.

The above lemma is an obvious result of matrix theory. Based on the above dis-
cussions, the relations among the reachability matrices and the legal arc-incidence
matrices for coalition H can now be established by the following theorem.

Theorem 4.9 For the graph model G, L JH and L J+
H are the legal UM and the

legal UI arc-incidence matrices for H, respectively. The UM and UI reachability
matrices for H, MH and M+

H , can be obtained by
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MH = sign[Bout · (L JH + I )l−1 · BT
in] and M+

H = sign[B+
out · (L J+

H + I )l
+−1 · (B+

in)
T ],

where I is the identity matrix.

Proof Let Q = sign[Bout · (L JH + I )l−1 · BT
in]. By Lemma 4.5 and Ct

l−1 > 0, then

Q = sign[
l−1∑

t=0

Ct
l−1 · Bout · (L JH )t · BT

in] = (Bout · IH · BT
in)

∨
sign[

l−1∑

t=1

Bout · (L JH )t · BT
in].

Based on Lemma 4.3 and Theorem 4.7,

Q = JH
∨

(
l−1∨

t=1

M (t+1)
H

)

=
l∨

t=1

M (t)
H .

Based on Lemma 4.4, MH = sign[Bout · (L JH + I )l−1 · BT
in] follows.

The proof of M+
H = sign[B+

out · (L A+ + I )l
+−1 · (B+

in)
T ] is similar. �

The aim of a stability analysis is to find the equilibria of a graph model that
are stable for all DMs under appropriate stability definitions. The reachable lists
of coalition H by the sequences of the legal UMs and the legal UIs, RH (s) and
R+
H (s), are essential components for stability analysis and the construction of the

two state sets is a complicated process (Fang et al. 1993). An algebraic method for
constructing RH (s) and R+

H (s) using the reachability matrices MH and M+
H based

on the incidence matrix B is developed here. In Chap.5, another algebraic approach
based on the adjacency matrix J is presented in Theorem 5.20.

Example 4.12 Fig. 4.3 shows a graph model with DM set N = {1, 2, 3, 4} and state
set S = {s1, s2, s3, s4, s5, s6}. TheUMreachabilitymatrixMN is calculated according
to Theorem 4.9 by

MN = sign[Bout · (L J + I )l−1 · BT
in] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 1
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Bout , Bin and L J are provided by Example 4.11. Similarly, the UI reachability
matrix M+

N is obtained by

M+
N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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If s = s1 is selected as the status quo state, then the reachable lists of H = N
from s1, RN (s1) and R+

N (s1), can be constructed by RH (s1) = {q : MH (s1, q) = 1}
and R+

H (s1) = {q : M+
H (s1, q) = 1}. Therefore, RN (s1) = {s2, s3, s4, s6}. R+

N (s1) =
{s2, s3, s4}.

Theorem 4.9 provides an algebraic method to construct the reachable lists of a
coalition. Thematrix representation of stability definitions can be extended tomodels
including more than two DMs, which is the objective of the next subsection.

4.3.4 n-Decision Maker Case

Equivalent matrix representations of the logical definitions for Nash stability, GMR,
SMR, and SEQ can be determined directly by using the relationship that has been
established between matrix elements and the state set of a graph model, and by using
preference relation matrices among the states.

Let i ∈ N , |N | = n, and |S| = m in the following theorems. Nash stability in
n-DMmodels is identical to two-DM cases because Nash stability does not consider
opponents’ responses.

It should be pointed out that the following stability matrices for n-DMs use the
same notation as that presented in Sect. 4.3.2 for two-DMs. For general metarational-
ity, DM i will take into account the opponents’ possible responses, which are the
legal sequence of UMs by members of N\{i}. For i ∈ N , find DM i’s UI adjacency
matrix J+

i and the UM reachability matrix MN\{i} using Theorem 4.9 for which
H = N\{i}. Define the m × m matrix MGMR

i as

MGMR
i = J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)].

Theorem 4.10 State s ∈ S is GMR for DM i, denoted by s ∈ SGMR
i , iff MGMR

i
(s, s) = 0.

Proof Since the diagonal element of matrix MGMR
i

MGMR
i (s, s) = 〈(J+

i )T es,
(
E − sign

(
MN\{i} · (P−,=

i )T
))
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)],

then MGMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T es1 , (P
−,=
i )T es〉

)] = 0,∀s1 ∈ S.
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This implies that MGMR
i (s, s) = 0 iff

(eTs1MN\{i}) · (eTs P
−,=
i )T �= 0,∀s1 ∈ R+

i (s). (4.17)

Equation4.17 means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S such that the

m-dimensional row vector, eTs1 · MN\{i}, with s2th element 1 and the m-dimensional
column vector, (P−,=

i )T · es , with s2th element 1.
Therefore, MGMR

i (s, s) = 0 iff for any s1 ∈ R+
i (s), there exists at least one

s2 ∈ RN\{i}(s1) with s �i s2. �
For symmetric metarationality, the n-DMmodel is similar to the two-DMmodel.

The only modification is that responses come fromDM i’s opponents instead of from
a single DM. Let

G = (P−,=
i )T ◦ [E − sign

(
Ji · (P+

i )T
)],

then define the m × m matrix MSMR
i as

MSMR
i = J+

i · [E − sign(MN\{i} · G)].

Theorem4.11 States ∈ S isSMRforDMi,denotedbys ∈ SSMR
i , iff MSMR

i (s, s) = 0.

Proof Since the diagonal element of matrix MSMR
i

MSMR
i (s, s) = 〈(J+

i )T · es,
(
E − sign(MN\{i} · G)

)
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 ,G · es〉
)],

then MSMR
i (s, s) = 0 iff

J+
i (s, s1)[1 − sign

(〈(MN\{i})T · es1 ,G · es〉
)] = 0,∀s1 ∈ S.

This means that MSMR
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (G · es) �= 0,∀s1 ∈ R+
i (s). (4.18)

Let G(s2, s) denote the (s2, s) entry of matrix G. Since

(eTs1MN\{i}) · (G · es) =
m∑

s2=1

MN\{i}(s1, s2) · G(s2, s),

then Eq.4.18 holds iff for any s1 ∈ R+
i (s), there exists s2 ∈ RN\{i}(s1) such that

G(s2, s) �= 0.
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Because G(s2, s) = P−,=
i (s, s2)[1 − sign(

m∑

s3=1
Ji (s2, s3)P

+
i (s, s3))], then

G(s2, s) �= 0 implies that for s2 ∈ RN\{i}(s1),

P−,=
i (s, s2) �= 0 (4.19)

and
m∑

s3=1

Ji (s2, s3)P
+
i (s, s3) = 0. (4.20)

Equation4.19 is equivalent to the statement that, ∀s1 ∈ R+
i (s), ∃s2 ∈ RN\{i}(s1) such

that s �i s2. Equation4.20 is the same as the statement that, ∀s1 ∈ R+
i (s), ∃s2 ∈

RN\{i}(s1) such that P+
i (s, s3) = 0 for ∀s3 ∈ Ri (s2).Based on the definition ofm×m

matrix P+
i , one knows that P+

i (s, s3) = 0 ⇐⇒ s �i s3.
Therefore, the above discussion is concluded that MSMR

i (s, s) = 0 iff for any
s1 ∈ R+

i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and s �i s3 for all
s3 ∈ Ri (s2). �

Sequential stability examines the credibility of the sanctions byDM i’s opponents.
For i ∈ N , find theUI reachabilitymatrixM+

N\{i} usingTheorem4.9.Define them×m

matrix MSEQ
i as

MSEQ
i = J+

i · [E − sign
(
M+

N\{i} · (P−,=
i )T

)].

Theorem 4.12 State s ∈ S is SEQ for DM i, denoted by s ∈ SSEQ
i , iff MSEQ

i
(s, s) = 0.

Proof Since the diagonal element of matrix MSEQ
i

MSEQ
i (s, s) = 〈(J+

i )T · es,
(
E − sign

(
M+

N\{i} · (P−,=
i )T

))
es〉

=
m∑

s1=1

J+
i (s, s1)[1 − sign

(〈(M+
N\{i})

T · es1 , (P−,=
i )T · es〉

)],

then MSEQ
i (s, s) = 0 iff J+

i (s, s1)[1 − sign
(〈(M+

N\{i})T · es1 , (P−,=
i )T · es〉

)] =
0,∀s1 ∈ S. This implies that MSEQ

i (s, s) = 0 iff

(eTs1M
+
N\{i}) · (eTs · P−,=

i )T �= 0,∀s1 ∈ R+
i (s). (4.21)

Equation4.21 means that, for any s1 ∈ R+
i (s), there exists s2 ∈ S, such that the

m-dimensional row vector, eTs1 · M+
N\{i}, with s2th element 1 and the m-dimensional

column vector, (P−,=
i )T · es , with s2th element 1.
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Therefore, MSEQ
i (s, s) = 0 iff for any s1 ∈ R+

i (s), there exists at least one
s2 ∈ R+

N\{i}(s1) with s �i s2. �

When n = 2, the DM set N becomes to {i, j} in Theorems 4.10–4.12, and the
reachable lists for H = N \ {i}by legal sequences ofUMsandUIs from s1, RN\{i}(s1)
and R+

N\{i}(s1), degenerate to R j (s1) and R+
j (s1), DM j’s corresponding reachable

lists from s1. Thus, Theorems 4.10–4.12 are reduced to Theorems 4.4–4.6.

4.4 Computational Complexity

The proposed matrix method raises the question of computational complexity, which
is the number of steps or arithmetic operations required to solve a computational
problem. In this section, the computational complexities of MRSC and the graph
model stability definitions are compared using generalmetarationality as an example.

4.4.1 Two Decision Maker Case

Recall the logical representation of GMR stability. State s is GMR for DM i iff for
every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with s �i s2. Let m = |S|.
The following procedures are utilized to calculate DM i’s GMR stability.

• It takes at most m operations (or comparisons) to determine the state set R+
i (s);

• for every s1 ∈ R+
i (s), it takes at most m operations (comparisons) to find R j (s1);

• for s2 ∈ R j (s1), it makes at most m − 1 preference comparisons about states s
and s2.

Hence, using the logical definition to calculate DM i’s GMR stability for state s will
take at most m + (m − 1)(m + m − 1) = 2m2 − 2m + 1 comparisons.

Recall DM i’s matrix representation of GMR stability for state s. State s is GMR
for DM i iff MGMR

i (s, s) = 0, where MGMR
i = J+

i

(
E − sign

(
Jj · (P−,=

i )T
))

. By
the proof of Theorem 4.4, one knows that MGMR

i (s, s) = 0 iff

m∑

s1=1

J+
i (s, s1) · (

1 − sign((eTs1 · Jj ) · (eTs · P−,=
i )T )

) = 0. (4.22)

It is easy to see that Eq.4.22 takes 2m2 multiplication and addition operations. Com-
paring the computational complexities of these two methods to calculate GMR sta-
bility, one finds that their computational complexities are O(m2) at the same level.
Note that the computational complexity of GMR stability is considered for the worst
case. For logical representation of the GMR stability, the actual number of compar-
isons required is often smaller than 2m2 − 2m + 1. For matrix representation, the
standard multiplication of two m−dimensional vectors is used, so it requires O(m2)

arithmetic operations.
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4.4.2 n-Decision Maker Case

In n-DM models, GMR stability is also selected as an example for analysis of the
computational complexity of the proposed matrix method. According to Theorem
4.10,GMRstability definition is formulated usingmatrices as follows. State s isGMR
forDM i iffMGMR

i (s, s) = 0,whereMGMR
i = J+

i ·[E−sign
(
MN\{i}·(P−,=

i )T
)].By

Theorem 4.9, one can estimate the computational complexity of the UM reachability
matrix MN . It is less than δ · (n − 1) · O(m3), where δ is the number of iterations,
n = |N | is the number of DMs, and m is the number of states. Let l = | ⋃

i∈N
Ai |.

Then δ ≤ l using Lemma 4.1. Therefore, the computational complexity to calculate
DM i’s GMR stability for state s in n-DM models is less than

l · (n − 1) · O(m3) + O(m2) = l · (n − 1) · O(m3),

which presents a polynomial-time effective algorithm.
Many researchers are now attempting to develop faster algorithms for matrix

operations. For example, for the multiplication of two m ×m matrices, the standard
method requires O(m3) arithmetic operations, but the Strassen algorithm (Strassen
1969) requires only O(m2.807) operations. Coppersmith andWinograd’s work (1990)
shows that the computational complexity of matrix multiplication was decreased to
O(m2.376). In fact, some researchers believe that an optimal algorithm for multiply-
ingm×m matrices will reduce the complexity to O(m2) (Cohn et al. 2005). Table4.6
shows that the computational complexity ofMRSC can be reduced using the Strassen
or Coppersmith−Winograd algorithm. So far, the matrix representation of solution
concepts has been established in multiple decision maker graph models for simple
preference. As shown above, the matrix method for calculating the individual sta-
bility and equilibria is attractive from a computational point of view. Therefore, the
proposed matrix method not only is propitious for theoretical analysis, but also has
the potential to deal with large and complicated conflict problems.

In Sect. 4.3, matrix expressions are used to develop an explicit algebraic form con-
flict model that facilitates stability calculations. In following section, the efficiency
of the matrix approach is illustrated using the Elmira conflict.

Table 4.6 The computational complexity of GMR stability using MRSC

Input Output Algorithm Complexity

Ji , J
+
i , E, and P−,=

i MGMR
i (s, s) Standard matrix

multiplication
O(δ · n · m3)

Strassen algorithm O(δ · n · m2.807)

Coppersmith−Winograd
algorithm

O(δ · n · m2.376)
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4.5 Application: Elmira Conflict

As an introduction on how to formally investigate conflict taking place in the real-
world, the Elmira groundwater contamination dispute was utilized in Sects. 1.2.2
(Modeling), 1.2.3 (Stability Analysis) and 1.2.4 (Follow-up Analysis). Here, as well
as other sections in the book, this interesting dispute is utilized to explain and demon-
strate technical definitions and concepts.

Briefly, Elmira, a small agricultural town renowned for its annual maple syrup
festival, is located in southwestern Ontario, Canada. In 1989, the Ontario Ministry
of Environment (MoE) tested the underground aquifer supplying water to Elmira,
and determined that it was polluted by N-nitroso demethylamine (NDMA). A local
pesticide and rubber manufacturer, Uniroyal Chemical Ltd. (UR), was identified
as the prime suspect, since NDMA was a by product of its production process.
A Control Order was issued by MoE requiring UR to take expensive measures to
remedy the contamination. UR immediately appealed the control order. The Local
Government (LG), consisting of the Regional Municipality of Waterloo and the
Township of Woolwich, sided with MoE, but sought legal advice from independent
consultants on its possible role in resolving this conflict (see Hipel et al. (1993) and
Kilgour et al. (2001) for more details).

Hipel et al. (1993) established a graph model for this conflict, comprised of three
DMs and five options, as follows:

• Ministry of Environment (MoE): its only option is tomodify the Control Order to
make it more acceptable to UR;

• Uniroyal Chemical Ltd. (UR): its options are to delay the appeal process, accept
the Control Order in its current form, or abandon the Elmira operation; and

• Local Government (LG): its only option is to insist that the original Control Order
be applied.

Given the five options in the model, there are 32 mathematically possible states. But
many of them are infeasible for a variety of reasons; the nine feasible states are listed
in Table4.7 (where a “Y” indicates that an option is selected by the DM controlling
it, an “N” means that the option is not chosen, and a dash “−” denotes that the entry

Table 4.7 Options and feasible states for the Elmira model

MoE

1. Modify N Y N Y N Y N Y −
UR

2. Delay Y Y N N Y Y N N −
3. Accept N N Y Y N N Y Y −
4. Abandon N N N N N N N N Y

LG

5. Insist N N N N Y Y Y Y −
State number s1 s2 s3 s4 s5 s6 s7 s8 s9
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Fig. 4.8 Integrated graph model for the Elmira conflict

may be “Y” or “N”). The integrated graph model of the Elmira conflict is shown
in Fig. 4.8, in which labels on the arcs indicate the DM controlling the move and
preference information over the states is below the integrated graph.

4.5.1 Procedures for Calculating Stability

4.5.1.1 Finding Stable States from the Definitions

Let N = {1, 2, 3} be the set of DMs (1 = MoE, 2 = UR, and 3 = LG). As an exam-
ple, DM 3’s SMR stability for state s1 is analyzed using the logical representation
presented in Definition 4.10. The procedures are as follows:

1. DM 3’s reachable list from s1 by UIs is R+
3 (s1) = {s5};

2. The reachable list of coalition H = N \ {3} from s5 by UMs is RH (s5) =
{s6, s7, s8, s9};

3. s8 ∈ RH (s5) satisfies s1 �3 s8; also R3(s8) = {s4} and s1 �3 s4;
4. Therefore, s1 is SMR stable for DM 3 by Definition 4.10.

Other cases can be analyzed similarly. Since the Elmira conflict is modeled as a
standard graph model with simple preference, its stabilities can also be analyzed
using DSSGMCR II (Fang et al. 2003a, b). The stability results of the Elmira conflict
are presented in Table4.8 in which “

√
” denotes that this state is stable for DM 1 (or
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Fig. 4.9 The labeled graph for the Elmira conflict

MoE), DM 2 (or UR), or DM 3 (or LG) under the appropriate stability definitions,
and “Eq” means an equilibrium that is stable for the three DMs.

4.5.1.2 Finding Stable States from Matrix Representation

The labeled graph of the Elmira conflict, determined according to the Rule of Pri-
ority presented in Sect. 3.3.2, is depicted in Fig. 4.9. The procedures to calculate the
stabilities for the Elmira model using the matrix method are as follows:

1. For i = 1, 2, and 3, using Fig. 4.8, determine DM i’s adjacency matrix Ji and
preference matrix P+

i as presented in Tables4.9 and 4.10;
2. For i = 1, 2, and 3, using J+

i = Ji ◦ P+
i , calculate the UI adjacency matrices;

3. For i = 1, 2, and 3, using P−,=
i = E − I − P+

i , calculate the preference
matrices P−,=

i ;
4. Construct the UM in-incidence and out-incidence matrices Bin and Bout , and the

UI in-incidence and out-incidence matrices B+
in and B+

out , based on the labeled
graph in Fig. 4.9 and Definition 4.16;

5. Determine the UM arc-incidence and the UI arc-incidence matrices for H , L JH
and L J+

H using Theorem 4.8 by

L JH =
∨

i, j∈H,i �= j

[(Bin · Di )
T · (Bout · Dj )] and L J+

H =
∨

i, j∈H,i �= j

[(B+
in · D+

i )T · (B+
out · D+

j )];

6. Calculate the reachability matrices MH and M+
H using Theorem 4.9 by

MH = sign[Bout ·(L JH + I )l−1 ·BT
in] and M+

H = sign[B+
out ·(L J+

H + I )l
+−1 ·(B+

in)
T ]

for l = 24 and l+ = 10 as presented in Table4.11;
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Table 4.12 Stability matrices for the Elmira conflict

Stability matrices

MNash
i = J+

i · E
MGMR

i = J+
i · [E − sign

(
MN\{i} · (P−,=

i )T
)
]

MSMR
i = J+

i · [E − sign(MN\{i} · Q)] with
Q = (P−,=

i )T ◦ [E − sign
(
Ji · (P+

i )T
)]

MSEQ
i = J+

i · [E − sign
(
M+

N\{i} · (P−,=
i )T

)
]

Table 4.13 Diagonal entries of stability matrices for the Elmira conflict

State number Nash GMR SMR SEQ

MoE UR LG MoE UR LG MoE UR LG MoE UR LG

s1 0 0 1 0 0 0 0 0 0 0 0 1

s2 0 1 1 0 1 0 0 1 0 0 1 0

s3 0 1 1 0 1 0 0 1 0 0 1 0

s4 0 0 1 0 0 0 0 0 0 0 0 1

s5 0 0 0 0 0 0 0 0 0 0 0 0

s6 0 1 0 0 1 0 0 1 0 0 1 0

s7 0 1 0 0 1 0 0 1 0 0 1 0

s8 0 0 0 0 0 0 0 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0

7. Calculate the stability matrices using themathematical formulations in Table4.12
and present their diagonal entries in Table4.13; and

8. Analyze the stabilities of the conflict using Theorems 4.3 and 4.10–4.12 based
on the information in Table4.13.

The stability results using the matrix approach are identical to those obtained using
logical definitions and presented in Table4.8.

4.5.2 Analysis of Stability Results

The reachability matrices, MH and M+
H , are analyzed first. Using Table4.11 with

H = N \ {1}, one has:

eT4 · MH = (0, 0, 0, 0, 0, 0, 0, 1, 1).

This means that RH (s4) = {s8, s9}, i.e. states s8 and s9 can be reached from the status
quo s = s4 by legal sequences of UMs by DMs in H = {2, 3}. Similarly,

eT4 · M+
H = (0, 0, 0, 0, 0, 0, 0, 1, 0),



154 4 Stability Definitions: Simple Preference

which indicates that R+
H (s4) = {s8}, i.e. s8 can be reached from status quo s = s4 by

legal UI sequences for H = {2, 3}. It is obvious that if RH (s) and R+
H (s) are written

as 0–1 row vectors, respectively, then

RH (s) = eTs · MH and R+
H (s) = eTs · M+

H .

After the reachabilitymatrices have been determined, stability analysis can be carried
out using the stability matrices shown in Table4.12. For example, the diagonal vector
ofDM2’sGMRstabilitymatrix, diag(MGMR

2 ) = (0, 1, 1, 0, 0, 1, 1, 0, 0)T indicates
that states s1, s4, s5, s8, and s9 are GMR stable for DM 2.

4.6 Important Ideas

The Graph Model for Conflict Resolution is a powerful tool to model, analyze, and
understand strategic conflicts. In this chapter, logical and matrix representations of
four basic stability definitions for simple preference are introduced for two-DM and
multiple-DM conflicts. The graph model solution concepts discussed in Sect. 4.2
are expressed logically, making them difficult for computer implementation. But the
matrix representation of solution concepts discussed in Sect. 4.3 handles this problem
efficiently. In particular, the matrix method

• facilitates the development of improved algorithms to assess the stabilities of states,
• is ideally suited for the theoretical study of conflict problems,
• has the advantage of easy calculation and computer implementation, compared
with the logical representation of solution concepts,

• provides explicit algebraic expressions that may be adapted for new solution con-
cepts, and

• can be readily integrated into a decision support system asmentioned in Sect. 2.3.3
and explained in detail in Chap.10.

Because of the nature of its explicit expressions, the matrix representation is easy to
employwith different kinds of preference structures and associatedmodified solution
concepts. For example, it could be extended to represent models with preference
uncertainty or with multiple degrees of preference, and to determine stabilities in the
graph model with these preference structures. The details are discussed in Chaps. 5
and 6, respectively.

4.7 Problems

4.7.1 In the tourism industry, two airlines are competingwith each other by reducing
the price to obtain more market share. Each airline company can either reduce the
price (R) or do not reduce (D). The normal form of this conflict is as shown in
Table4.14.
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Table 4.14 The airline conflict in normal form

For this conflict, write the model in:

(a) Option form,
(b) Graph form, and
(c) Using logical form, calculate Nash, general metarational (GMR), symmetric

metarational (SMR), and sequential (SEQ) stability for each state and DM. Indi-
cate the equilibria and explain what they mean. Be sure to provide representative
examples of stability calculations in normal, option and graph forms.

4.7.2 For the airline conflict provided in Problem4.7.1, use the matrix formulation
to carry out the stability calculations for each state and each DM for Nash, GMR,
SMR, and SEQ stability. Determine the equilibria in this conflict and explain why
they make sense.

4.7.3 The normal form of the game for Prisoner’s Dilemma is given in Problem3.5.1
in the previous chapter. Determine Nash stability for each of the four states and each
of the two DMs. Does Nash stability predict a Nash equilibrium? What obvious
equilibrium was missed? Howard (1971) as well as Fraser and Hipel (1979, 1984)
refer to this as a breakdown of rationality. This breakdown provided the motivation
for Howard to develop the solution concepts of GMR and SMR, and for Fraser and
Hipel to propose the SEQ stability definition.

4.7.4 The normal form of the game of Chicken is presented in Problem3.5.4. Deter-
mine which states are Nash stable for each of the two DMs. Are there any Nash
equilibria? Which states do you think should be equilibria? The failure of not having
a Nash equilibrium is referred to by Howard (1971) and also Fraser and Hipel (1979,
1984) as an example of the breakdown of rationality.

4.7.5 Using the logical form of the stability definitions, determine the stability of
each of the four states and each of the two DMs in the game of Prisoner’s Dilemma
with respect to Nash, GMR, SMR, and SEQ stability. Which states are equilibria?
Use the normal form of the game to explain your calculations and show the equilibria.
How has the breakdown of rationality referred to in Problem4.7.3 been resolved?
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4.7.6 By employing the logical form of the four stability definitions given in this
chapter, ascertain the stability of each of the four states for each of the two DMs
in Prisoner’s Dilemma. Show your calculations using the option form of the game.
Point out which states are equilibria and explain why this is important.

4.7.7 Utilizing the logical form of the solution concepts consisting of Nash, GMR,
SMR and SEQ stability, determine the stable states for each stability definition, DM
and state for the game of Prisoner’s Dilemma. Employ the graph form of the conflict
to explain your calculations. Comment on the importance of the equilibria that you
find.

4.7.8 In their 1984 book, Fraser andHipel (1984) introduce Tableau Form to “graph-
ically and intuitively” carry out stability calculations, especially for the case of Nash
and SEQ stability. Recall that SEQ stability is especially well-designed because a
DM will not harm himself or herself when levying a sanction against another DM’s
unilateral improvement (UI), since the move for the sanctioning DMmust be a UI for
him. Refer to Chaps. 2 and 3 in Fraser and Hipel’s (1984) book to see how Tableau
Form is written for the case of two and more than two DMs, respectively. Write
Prisoner’s Dilemma in Tableau Form and then carry out a stability analysis for Nash
and SEQ stability. Notice the way the Tableau Form naturally portray how moves
and countermoves work. How can Tableau Form be expanded to handle GMR and
SMR stability?

4.7.9 CalculateNash, GMR, SMRand SEQ stability using thematrix representation
of GMCR for Prisoner’s Dilemma for each DM and each of the four states.

4.7.10 For the game of Chicken shown in Problem3.5.4, calculate Nash, GMR,
SMR and SEQ stability for each state and DM using the matrix foumulation of
GMCR. Which states are equilibria? Has the breakdown of rationality referred to in
Problem4.7.4 been overcome?

4.7.11 As is also described in Problem3.5.10, a superpower nuclear confrontation
(Fang et al. 1993) can bemodeled using twoDMsand six options shown inTable4.15.
These options determine the five feasible states as listed in Table4.15. Note that state
W represents a nuclear winter. The graph model for this dispute is displayed in
Fig. 4.10.

(a) Analyze stabilities for this model using the logical representation of stability
definitions;

(b) Analyze stabilities for thismodel employing thematrix representation of stability
definitions.

4.7.12 The Rafferty-Alameda dams, in the Souris River basin in southern
Saskatchewan, Canada, were planned for flood control, recreation and cooling the
Shand generating plant (Roberts 1990). The province of Saskatchewan wanted to
finish the project promptly, seeking a license from the Environment Minister of the
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Table 4.15 Decision makers, options and feasible states for the superpower nuclear confrontation
conflict

DM 1

1. Peace (P) Y Y N N N

2. Conventional attack (C) N N Y Y N

3. Full nuclear attack (W) N N N N Y

DM 2

1. Peace (P) Y N Y N N

2. Conventional attack (C) N Y N Y N

3. Full nuclear attack (W) N N N N Y

States PP PC CP CC W

PP

CP CC

W

CCCP

PP PCPC

W

(a) Graph model for DM 1 (b) Graph model for DM 2
DM1 : PP 1 CP 1 CC 1 PC 1 W
DM2 : PP 2 PC 2 CC 2 CP 2 W

Fig. 4.10 The graph model of the superpower nuclear confrontation conflict

Federal Government. An environmental group, the Canadian Wildlife Federation,
quickly petitioned against the license and argued that the provincial government had
not respected regulations. The federal court sided with the environment group and
ordered the suspension of the license, but later the license was reissued by a new
federal environment minister. The environmental group petitioned again, and this
time the federal court ordered the suspension of the license and the creation of a
review panel to evaluate the project. However, construction of the dams continued
during the review period, and the federal and provincial governments even reached
an agreement that the project would continue while ten million dollars are set aside
to alleviate any future environmental impacts. As the province had hoped, the project
moved ahead at full speed, and the review panel resigned in protest. (See Hipel et al.
(1991) for details.)
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This conflict is modeled using four DMs: DM 1, Federal (F); DM 2,
Saskatchewan (S); DM 3, Groups (G); and DM 4, Panel (P), each having some
options. The following is a summary of the four DMs and their options:

• Federal Government (Federal): its options are to seek a court order to halt the
project (Court Order) or to lift the license (Lift),

• Province of Saskatchewan (Saskatchewan): its option is to go ahead at full speed
(Full speed),

• Environmental Groups (Groups): its option is to threaten court action to halt the
project (Court action), and

• Federal Environmental Review Panel (Panel): its option is to resign (Resign).

Five options and ten feasible states of this model are presented in Table4.16. The
graph model of the Rafferty-Alameda dams conflict is shown in Fig. 4.11.

Table 4.16 Feasible states for the Rafferty-Alameda dams conflict

Federal

1. Court order – N Y N Y N Y N Y N

2. Lift – N N N N N N N N Y

Saskatchewan

3. Full speed N Y Y Y Y Y Y Y Y –

Groups

4. Court action – N N Y Y N N Y Y –

Panel

5. Resign – N N N N Y Y Y Y –

State number s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Fig. 4.11 The graph model
of the Rafferty-Alameda
dams conflict
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The ordinal preferences for DMs 1, 2, 3, and 4 are

s1 �1 s3 �1 s5 �1 s2 �1 s4 �1 s7 �1 s9 �1 s6 �1 s8 �1 s10,

s2 �2 s4 �2 s6 �2 s8 �2 s3 �2 s5 �2 s7 �2 s9 �2 s10 �2 s1,

s10 �3 s1 �3 s7 �3 s3 �3 s6 �3 s2 �3 s9 �3 s5 �3 s8 �3 s4,

and
s1 �4 s9 �4 s7 �4 s8 �4 s6 �4 s10 �4 s5 �4 s3 �4 s4 �4 s2.

(a) Label the graph model in Fig. 4.11 according to the Rule of Priority and draw
its labeled graph;

(b) Calculate the stabilities ofNash,GMR, SMR, and SEQ for theRafferty-Alameda
dams conflict using the matrix method.
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Chapter 5
Stability Definitions: Unknown
Preference

Preferences play an important role in any type of decision model. Normally, for the
graphmodel only a relative preference relationship is needed to represent a particular
DM’s preference for one statewith respect to another, in terms of beingmore, equal or
less preferred. This type of preference relation, called a simple preference structure,
is discussed in Chap.4, in which four stability definitions are provided for employ-
ment with simple preference. However, it is sometimes difficult to obtain accurate
preference information. As pointed out by Fischer et al. (2000a, b), conflicts among
the attributes or factors which may underlie the reasons for simple preference can
create preference uncertainty. In other situations, there may be a scarcity of informa-
tion or knowledge regarding preferences for one or more DMs involved in a dispute.
Whatever the reason, uncertainty about preference may exist in a given conflict sit-
uation. To incorporate preference uncertainty into the graph model methodology,
Li et al. (2004) proposed a new preference structure in which a DM’s preferences
include unknown preference. The main properties of this kind of preference struc-
ture are introduced in the next section. Additionally, in this chapter, the four basic
stability definitions are extended to graph models with unknown preference includ-
ing matrix representations of the four kinds of stabilities (Xu et al. 2007a, b, 2009a,
2011). Other approaches to taking into account preference uncertainty within the
graph model structure are fuzzy (Hipel et al. 2011, Bashar et al. 2012, 2014, 2015,
2016, 2018), grey (Kuang et al. 2015, Zhao and Xu 2017), and probabilistic (Rego
and dos Santos 2015) procedures.

5.1 Unknown Preference and Reachable Lists

To incorporate preference uncertainty into the graph model methodology, Li et al.
(2004) proposed a new preference structure in which DM i’s preferences are
expressed by a triple of relations {�i ,∼i ,Ui } on S, where s �i q indicates strict
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preference, s ∼i q indicates indifference, and s Ui q means DM i may prefer state
s to state q, may prefer q to s, or may be indifferent between s and q.

In a graph model with uncertain preferences, the preferences of DM i over the set
of states S can be expressed by a triple of relations {�i ,∼i ,Ui } on S. It is assumed
that the preference relations of each DM i ∈ N have the following properties:

(i) �i is asymmetric.
(ii) ∼i is reflexive and symmetric.
(iii) Ui is symmetric.
(iv) {�i ,∼i ,Ui } is strongly complete.

Property (iv) implies that, for any s, t ∈ S, exactly one of the following statements
is true: s �i t , t �i s, s ∼i t , or s Ui t .

If for any relation R and any states k, s, and q, k R s and s R q imply k R q,
then R is transitive. For example, strict preference � is transitive in many graph
models. In the graph model, transitivity of preferences is not required, and all results
hold whether preferences are transitive or intransitive. For example, the uncertain
preference relation,U , is often intransitive. It means that although s Ui q and q Ui k,
DM i’s preference between s and k may be certain.

5.1.1 Reachable Lists of a Decision Maker

Let S and N denote the state set and the DM set. The state set S can be partitioned
into three subsets based on simple preference relative to a fixed state s ∈ S, which
are �+

i (s), �=
i (s), and �−

i (s) (see Chap.4 for details). After uncertain preference is
incorporated into the graph model, the state set S can be partitioned into four subsets,
�+

i (s), �=
i (s), �−

i (s), and �U
i (s). The subset including preference uncertainty is

described as follows:

Definition 5.1 For a graph modelG, the subset of the state set S including uncertain
preference relative to a fixed state s ∈ S is

�U
i (s) = {q : q Ui s},

which contains the states uncertainly preferred to state s by DM i .

Therefore, S = �+
i (s) ∪ �=

i (s) ∪ �−
i (s) ∪ �U

i (s).
DM i’s reachable lists from state s ∈ S for simple preference including Ri (s),

R+
i (s), R=

i (s), and R−
i (s), are defined in Sect. 4.1.1. For a graph model with prefer-

ence uncertainty, the set RU
i (s) = {q : q ∈ Ri (s) and q Ui s} is the subset of DM i’s

unilateral moves from state s that result in a target state for which DM i’s preference
relative to s is uncertain. Similarly, RU

i (s) is called DM i’s reachable list by uncertain
unilateral moves (UUMs) from s. Therefore, DM i’s unilateral moves from s in the
graph model with uncertain preference is expressed as follows:
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Fig. 5.1 Relations among subsets of S and reachable lists including preference uncertainty

Ri (s) = R+
i (s) ∪ R=

i (s) ∪ R−
i (s) ∪ RU

i (s).

From the above definitions, the relations among the subsets of S and the corre-
sponding reachable lists from state s for DM i in the graph model with preference
uncertainty are depicted in Fig. 5.1, where the notation ∩ denotes the intersection
operation.

DM i’s oriented arcs Ai in the graphmodel with uncertain preference consist of UI
arcs, A+

i , equally preferred arcs, A
=
i , less preferred arcs, A

−
i , and unilateral uncertain

move (UUM) arcs, AU
i , where AU

i = {(p, q) ∈ Ai : p Ui q} is called the UUM arc
set.DM i’sUUMarcs from s ∈ S are defined by AU

i (s) = {(s, q) ∈ Ai : q ∈ RU
i (s)}.

It is convenient to define

�
−,=,U
i (s) = �−

i (s) ∪ �=
i (s) ∪ �U

i (s),

R+,U
i (s) = R+

i (s) ∪ RU
i (s), and

A+,U
i (s) = A+

i (s) ∪ AU
i (s).

Note that q ∈ �
−,=,U
i (s) means that DM i does not prefer state q to state s or

q is uncertainly preferred to s by DM i . DM i’s reachable list R+,U
i (s) contains

all states reachable from s by DM i by unilateral improvements in one step or
uncertain unilateral moves in one step, so R+,U

i (s) is also called DM i’s unilateral
improvements or unilateral uncertain moves, denoted by unilateral improvements or
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uncertain moves (UIUMs), from s. The arc set A+,U
i (s) from s contains DM i’s UI

arcs and UUM arcs from s. Next, logical representation of stabilities is defined in
the graph model with preference uncertainty.

5.2 Logical Representation of Stability Definitions Under
Unknown Preference

The four basic solution concepts including Nash, GMR, SMR, and SEQ stabilities
in the graph model with simple preference are discussed in Chap.4. Li et al. (2004)
extended these four solution concepts tomodels having preference uncertainty. Based
on the extended preference structure (including uncertainty), they defined Nash,
GMR, SMR, and SEQ stabilities to capture a DM’s incentives to leave the status quo
state and sensitivity to sanctions. Four types of stability definition were proposed,
indexed a, b, c, and d, according to whether the DMwould move to a state of uncer-
tain preference and whether the DM would be sanctioned by a responding move to
a state of uncertain preference, relative to the status quo. This range of extensions is
needed, according to the work of Li et al. (2004), to address the diversity of possible
risk profiles in face of uncertainty. A DM may be conservative or aggressive, avoid-
ing or accepting states of uncertain preference, depending on the level of satisfaction
with the current position.

Like all previous stability definitions in the graph model with simple preference,
the four extensions were first defined logically, in terms of the underlying graphs.
The four extended stability definitions are first introduced for two-DM models with
preference uncertainty.

5.2.1 Two Decision Maker Case

5.2.1.1 Logical Representation of Stabilities Indexed a

In the definitions indexed a, DM i has an incentive to move to states with uncertain
preferences relative to the status quo, but, when assessing possible sanctions, will
not consider states with uncertain preferences (Li et al. 2004). Let N = {i, j}, i ∈ N ,
and s ∈ S in the following definitions based on the research of Li et al. (2004).

State s is Nash indexed a stable (or, simply, Nasha) for DM i if and only if the
focal DM has no unilateral improvements or uncertain moves (UIUMs) from the
status quo. Its formal definition is given as follows:

Definition 5.2 State s is Nasha stable for DM i , denoted by s ∈ SNasha
i , iff

R+,U
i (s) = ∅.
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Definition 5.2 implies that Nasha stability is identical for both two-DM and n-
DMmodels because Nasha stability does not consider opponents’ responses. Below,
Nasha stability definition for n-DM models is not presented.

State s ∈ S is GMR indexed a stable (or, simply, GMRa) for DM i iff, whenever
DM i makes any UIUM from s, then i’s opponent can move to sanction i (that is,
hurt i) in response.

Definition 5.3 State s isGMRa stable for DM i , denoted by s ∈ SGMRa
i , iff for every

s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈ �

−,=
i (s) (or s �i s2).

SMR indexed a stability (or, simply, SMRa) is similar to GMRa , but the focal
DM considers not only the responses from opponents but also the DM’s own coun-
terresponses.

Definition 5.4 State s is SMRa stable for DM i , denoted by s ∈ SSMRa
i , iff for every

s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=
i (s) (or s �i s2)

and s3 ∈ �
−,=
i (s) (or s �i s3) for every s3 ∈ Ri (s2).

SEQ indexed a stability (or, simply, SEQa) indicates that any UIUM of the focal
DM is sanctioned by subsequent unilateral improvements or uncertain moves by
opponents.

Definition 5.5 State s is SEQa stable for DM i , denoted by s ∈ SSEQa
i , iff for every

s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R+,U

j (s1) with s2 ∈ �
−,=
i (s) (or s �i s2).

Example 5.1 (Stabilities indexed a for the Extended Sustainable Development
Model) Li et al. (2004) extended the sustainable development model discussed in
Chap.3 to include uncertain preference. Specifically, the conflict consists of two
DMs: an environmental agency (DM 1: E) and a developer (DM 2: D); and a total
of four options: DM 1 controls the two options of being proactive (labeled P) and
being reactive (labeled R) in monitoring the developer’s activities and their impacts
on the environment, and DM 2 has the two options of practicing sustainable develop-
ment (labeled S) and practicing unsustainable development (labeled U) for properly
treating the environment. These options are combined to form four feasible states: s1:
PS, s2: PU, s3: RS, and s4: RU. The four feasible states are listed in Table5.1, where
a “Y” indicates that an option is selected by the DM controlling it and an “N” means
that the option is not chosen. The extended sustainable development model with
preference uncertainty is used to illustrate how to determine the stabilities indexed
a using Definitions 5.2–5.5.

The graph model of the conflict is shown in Fig. 5.2 in which DMs’ preference
information is below the two directed graphs G1 and G2. Consider analyzing Nasha
stability of s1 for DM 1. From Fig. 5.2, DM 1 has a unilateral move from s1 to s3.
However, s1 �1 s3 based on the preference information, so the move by DM 1 from
s1 to s3 is not a unilateral improvement or a uncertain unilateral move. Therefore,
state s1 is Nasha stable for DM 1 according to Definition 5.2. Next, consider Nasha
stability of s1 for DM 2. Clearly, DM 2 has a unilateral move from s1 to s2. Because
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Table 5.1 Options and feasible states for the extended sustainable development conflict

E: Environmental agency

1. Proactive (labeled P) Y Y N N

2. Reactive (labeled R) N N Y Y

D: Developer

3. Sustainable development (labeled S) Y N Y N

4. Unsustainable development (labeled U) N Y N Y

States s1 s2 s3 s4

Fig. 5.2 Graph model for
the extended sustainable
development conflict

s1 U2 s2, the move by DM 2 from s1 to s2 is not a UI but a UUM. Hence, state s1
is Nasha unstable for DM 2. Similarly, the other three states can be assessed for
Nasha stability.

By Definitions 5.2 and 5.3, one can see that if R+,U
i (s) = ∅, then s is Nasha

stable and GMRa stable for DM i . Hence, for instance, s1 is GMRa stable for DM
1. One can assess whether s3 is GMRa stable for DM 1. DM 1 has a unilateral
improvement from s3 to s1 and DM 2 has a unilateral move from s1 to s2. However,
s2 is less preferred than s3 for DM 1, hence, s3 isGMRa stable for DM 1 according to
Definition 5.3. The stabilities of other three states for the twoDMs can be determined
similarly.

By comparing Definitions 5.2–5.4, one can see that if R+,U
i (s) = ∅, then s is

Nasha stable, GMRa stable, and SMRa stable for DM i . Therefore, for instance, s1
is SMRa stable for DM 1. Next, considering analyzing SMRa stability of s3 for DM
1 using Definition 5.4. DM 1 has a UI from s3 to s1 and DM 2 has a UM from s1 to
s2, then DM 1 has only a UM from s2 to s4. Because s2 and s4 are less preferred to
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Table 5.2 Stabilities indexed a of the extended sustainable development game with uncertain
preference

State Nasha GMRa SMRa SEQa

1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq

s1
√ √ √ √

s2
√ √ √ √

s3
√ √ √

s4

s3 by DM 1, so s3 is SMRa stable for DM 1. Using Definition 5.4, SMRa stabilities
for other states can be similarly determined.

Similar to GMRa stability, if R+,U
i (s) = ∅, then s is SEQa stable for DM i .

Therefore, s1 is SEQa stable for DM 1. Consider analyzing SEQa stability of s3 for
DM 1. DM 1 has a UI from s3 to s1. Although DM 2 has no UI from s1, it can make
a UUM from s1 to s2. However, s2 is less preferred than s3 for DM 1, hence, s3 is
SEQa stable for DM 1.

The results of the stabilities indexed a for the extended sustainable development
model with uncertain preference are listed in Table5.2, where “1” and “2” respec-
tively denotes DM1 andDM2. “

√
” indicates a stable state for some solution concept

and “Eq” means an equilibrium under some stability definition. From the above dis-
cussion, states s1 and s2 are stable for Nasha , GMRa , SMRa , and SEQa for the
extended sustainable development game with uncertain preference. Moreover, state
s3 is stable under GMRa , SMRa , and SEQa .

5.2.1.2 Logical Representation of Stabilities Indexed b

For the following definitions indexed b, DM i considers to leave a state or assesses
sanctions, excluding uncertain preferences (Li et al. 2004). However, the definitions
are different from those including simple preference only (presented inChap.4), since
the current definitions are utilized to analyze conflict models including preference
uncertainty.

Definition 5.6 State s is Nashb stable for DM i , denoted by s ∈ SNashb
i , iff

R+
i (s) = ∅.

Definition 5.7 State s isGMRb stable for DM i , denoted by s ∈ SGMRb
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈ �

−,=
i (s) (or s �i s2).

Definition 5.8 State s is SMRb stable for DM i , denoted by s ∈ SSMRb
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=
i (s) (or s �i s2)

and s3 ∈ �
−,=
i (s) (or s �i s3) for every s3 ∈ Ri (s2).
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Definition 5.9 State s is SEQb stable for DM i , denoted by s ∈ SSEQb
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+,U

j (s1) with s2 ∈ �
−,=
i (s) (or s �i s2).

Comparing stabilities indexed with a to those with b, the focal DM’s attitudes
to move from a starting state are different, because uncertain preference is allowed
for a but is not permitted for b. In addition, their attitudes are identical for sanctions
excluding uncertain preference.

5.2.1.3 Logical Representation of Stabilities Indexed c

For the extended definitions indexed c, DM i considers to leave a status quo state or
evaluates sanctions including uncertain preference.

Definition 5.10 State s is Nashc stable for DM i , denoted by s ∈ SNashc
i , iff

R+,U
i (s) = ∅.

Definition 5.11 State s is GMRc stable for DM i , denoted by s ∈ SGMRc
i , iff for

every s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈ �

−,=,U
i (s) (or

s �i s2 or s Ui s2).

Definition 5.12 State s is SMRc stable for DM i , denoted by s ∈ SSMRc
i , iff for

every s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=,U
i (s) (or

s �i s2 or s Ui s2) and s3 ∈ �
−,=,U
i (s) (or s �i s3 or s Ui s3) for every s3 ∈ Ri (s2).

Definition 5.13 State s is SEQc stable for DM i , denoted by s ∈ SSEQc
i , iff for every

s1 ∈ R+,U
i (s) there exists at least one s2 ∈ R+,U

j (s1) with s2 ∈ �
−,=,U
i (s) (or s �i s2

or s Ui s2).

5.2.1.4 Logical Representation of Stabilities Indexed d

For the following definitions, indexed d, DM i would move only to preferred states
from a status quo, but would be deterred by responses that result in states of uncertain
preference.

Definition 5.14 State s is Nashd stable for DM i , denoted by s ∈ SNashd
i , iff

R+
i (s) = ∅.

Definition 5.15 State s is GMRd stable for DM i , denoted by s ∈ SGMRd
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1)with s2 ∈ �

−,=,U
i (s) (or s �i s2

or s Ui s2).

Definition 5.16 State s is SMRd stable for DM i , denoted by s ∈ SSMRd
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈ �

−,=,U
i (s) (or

s �i s2 or s Ui s2) and s3 ∈ �
−,=,U
i (s) (or s �i s3 or s Ui s3) for every s3 ∈ Ri (s2).
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Definition 5.17 State s is SEQd stable for DM i , denoted by s ∈ SSEQd
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+,U

j (s1) with s2 ∈ �
−,=,U
i (s) (or

s �i s2 or s Ui s2).

Next the above definitions will be used to analyze stabilities for the extended
sustainable development model with preference uncertainty.

Example 5.2 (Stabilities for the Extended Sustainable Development Model with
Preference Uncertainty) The extended sustainable development model with pref-
erence uncertainty was described in Example 5.1. The graph model of this conflict
is shown in Fig. 5.2 with the state set S = {s1, s2, s3, s4} and the DM set N = {1, 2}.
The stabilities indexed a were discussed in Example 5.1. In this example, it will
be assessed whether the four states are stable for the stabilities indexed b, c, and d.
Here, for instance, the following stabilities will be analyzed: s1’s Nashb stability
and s2’s GMRc and SEQc stabilities for DM 2; and s3’s SMRd stability for DM 1.
The analysis for the remaining cases is left as an exercise.

Since R2(s1) = {s2} and s1 U2 s2, then R+
2 (s1) = ∅. Accordingly, s1 is Nashb

stable, GMRb stable, SMRb stable, and SEQb stable for DM 2. One can assess
whether s2 is GMRc or SEQc stable for DM 2. Due to R2(s2) = {s1} and s1 U2 s2,
then R+,U

2 (s2) = {s1}. Since R1(s1) = {s3} and s3 U2 s2, then s2 is GMRc stable
for DM 2 according to Definition 5.11. Similarly, for s1 ∈ R+,U

2 (s2), R
+,U
1 (s1) =

∅, so s2 is SEQc unstable for DM 2 according to Definition 5.13. Finally, it is
determined whether s3 is SMRd stability for DM 1. Clearly, from Fig. 5.2, R+

1 (s3) =
{s1}, R2(s1) = {s2}, and R1(s2) = {s4}. Since s3 �1 s2 and s3 �1 s4, then s3 is SMRd

stable for DM 1 based on Definition 5.16.
Stability results of the extended sustainable development game with uncertain

preference are listed in Table5.3, where, as usual, “1” and “2” respectively denotes
DM 1 and DM 2, “

√
” indicates a state stable for some stability definition, and “Eq”

indicates an equilibrium under some stability definition.

Table5.3 provides the stability results for the extended sustainable development
game determined by logical representations for two-DM situations. Obviously, states
s1 and s2 are equilibria for the four stabilities indexed b and indexed d in the extended
sustainable development conflict, whichmeans that theymay be potential resolutions
to solve this conflict.

5.2.2 Reachable Lists of a Coalition

To calculate the stability of a state for DM i ∈ N , it is necessary to examine possible
responses by all other DMs j ∈ N − {i}, which may include sequential responses.
To extend the graph model stability definitions to n-DM models with preference
uncertainty, the definitions of a legal sequence of moves for simple preference must
first be extended to take preference uncertainty into account. In order to achieve this,
legal sequences of coalitional UIUMs must be defined first. Recall that a coalition is
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Table 5.3 Stability results of the extended sustainable development gamewith uncertain preference

State Nash GMR SMR SEQ

1 2 Eq 1 2 Eq 1 2 Eq 1 2 Eq

a s1
√ √ √ √

s2
√ √ √ √

s3
√ √ √

s4
b s1

√ √ √ √ √ √ √ √ √ √ √ √
s2

√ √ √ √ √ √ √ √ √ √ √ √
s3

√ √ √ √ √ √ √ √ √ √
s4

√ √ √ √
c s1

√ √ √ √ √ √
s2

√ √ √ √ √ √
s3

√ √ √ √ √ √ √ √ √
s4

√ √ √
d s1

√ √ √ √ √ √ √ √ √ √ √ √
s2

√ √ √ √ √ √ √ √ √ √ √ √
s3

√ √ √ √ √ √ √ √ √ √
s4

√ √ √ √

a nonempty subset of DMs, i.e., H ⊆ N and H �= ∅. A legal sequence of UIUMs is
a sequence of allowable unilateral improvements or uncertain moves by a coalition,
with the usual restriction that a member of the coalition may move more than once,
but not twice consecutively. Let the coalition H ⊆ N satisfy |H | ≥ 2 and let the
status quo state be s ∈ S. Let R+,U

H (s) ⊆ S (defined formally below) denote the set
of states that can be reached by any legal sequence of UIUMs, by some or all DMs
in H , starting at state s. If s1 ∈ R+,U

H (s), then �
+,U
H (s, s1) (also defined formally

below) denotes the set of all last DMs in legal sequences from s to s1 by UIUMs.
The formal definitions of R+,U

H (s) ⊆ S and �
+,U
H (s, s1) ⊆ H for s1 ∈ R+,U

H (s) are
given as follows:

Definition 5.18 A unilateral improvement or uncertain move (UIUM) by H is a
member of R+,U

H (s) ⊆ S, defined inductively by

(1) assuming �
+,U
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+,U
j (s), then s1 ∈ R+,U

H (s) and�
+,U
H (s, s1) = �

+,U
H (s, s1) ∪

{ j};
(3) if s1 ∈ R+,U

H (s), j ∈ H , and s2 ∈ R+,U
j (s1), then, provided �

+,U
H (s, s1) �= { j},

s2 ∈ R+,U
H (s) and �

+,U
H (s, s2) = �

+,U
H (s, s2) ∪ { j}.

Note that if s1 ∈ R+,U
H (s), then �

+,U
H (s, s1) ⊆ H is the set of all last DMs in legal

sequences of UIUMs from s to s1. (If s1 /∈ R+,U
H (s), it is assumed that �+,U

H (s, s1) =
∅.) Suppose that �

+,U
H (s, s1) contains only one DM, say j ∈ N . Then any move
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(a)

(b)

Fig. 5.3 Graph model for Example 5.3

from s1 to a subsequent state, say s2, must be made by a member of H other than
j ; otherwise DM j would have to move twice in succession. On the other hand, if
|�+,U

H (s, s1)| ≥ 2, anymember of H who has a unilateral improvement or a unilateral
uncertain move from s1 to s2 may exercise it.

Example 5.3 (Constructing Reachable Lists of a Coalition by UIUMs) Figure5.3a
showsagraphmodelwithDMset N = {1, 2, 3} and state set S = {s1, s2, s3, s4, s5, s6,
s7, s8} (Xu et al. 2009b). The labels on the arcs of the graph indicate the con-
trolling DMs. If DM i’s oriented arcs are coded in color i , then, according to the
Rule of Priority introduced in Sect. 3.3.2, Fig. 5.3a is converted to an edge labeled
digraph as shown in Fig. 5.3b (The labeling process is left as an exercise). Preference
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Table 5.4 Preference information for the graph model shown in Fig. 5.3

Colors DMs Certain preferences

Red 1 s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Blue 2 s3 � s7, s4 � s8, s1 � s5, s2 � s6, only

Green 3 s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

Fig. 5.4 Colored paths from
s1 by coalition N \ {1}

information is provided in Table5.4. If s = s1 is selected as the status quo state, then
the reachable lists of H = N \ {1} from s by unilateral improvements or uncertain
moves (UIUMs), R+,U

H (s1), can be obtained by searching all colored paths controlled
by DMs 2 or 3 from s1 by UIUMs (see Fig. 5.4. The details on how to determine all
colored paths will be presented in Chap. 9). Here, the reachable list R+,U

H (s1) can be
constructed according to Definition 5.18 as follows:

1. Determine R+,U
2 (s1) = {s3} and R+,U

3 (s1) = {s5};
2. Obtain �

+,U
H (s1, s3) = {2} and �

+,U
H (s1, s5) = {3};

3. Calculate R+,U
2 (s5) = {s7} and R+,U

3 (s7) = {s3};
4. Construct R+,U

H (s1) = {s3, s5, s7}.
The state set R+,U

H (s1) = {s3, s5, s7}means that states s3, s5, and s7 can be reached
by DMs 2 and 3 by the legal UIUMs from state s1.

5.2.3 Multiple Decision Maker Case

In an n-DM model, where n > 2, the opponents of a DM can be thought of as a
coalitionof twoormoreDMs.Thedefinitions ofNash,GMR,SMR, andSEQstability
in the graph model for multiple decision maker models with preference uncertainty
were given by Li et al. (2004). They retain most features of the stability definitions
in the 2-DM case, except that DM i’s opponents are a subset of N , N − {i}, instead
of a single opponent, j . Consequently, logical representation of solution concepts
with preference uncertainty for 2-DM cases can be easily extended to that for n-DM
situations.
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5.2.3.1 Logical Representation of Stabilities Indexed a

First, extend the definitions indexed a for a two-DM case to an n-DM situation. Let
i ∈ N and |N | = n in the following definitions.

Definition 5.19 State s is Nasha stable for DM i iff R+,U
i (s) = ∅.

Definition 5.20 State s is GMRa stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ RN\{i}(s1) with s �i s2.

Definition 5.21 State s is SMRa stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ RN\{i}(s1), such that s �i s2 and s �i s3 for any s3 ∈ Ri (s2).

Definition 5.22 State s is SEQa stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2.

5.2.3.2 Logical Representation of Stabilities Indexed b

For stabilities indexed b, DM i would move only to preferred states from a status quo
and would be sanctioned only by less preferred or equally preferred states relative to
the status quo.

Definition 5.23 State s is Nashb stable for DM i iff R+
i (s) = ∅.

Definition 5.24 State s is GMRb stable for DM i iff for every s1 ∈ R+
i (s) there

exists at least one s2 ∈ RN\{i}(s1) with s �i s2.

Definition 5.25 State s is SMRb stable for DM i iff for every s1 ∈ R+
i (s) there

exists at least one s2 ∈ RN\{i}(s1), such that s �i s2 and s �i s3 for any s3 ∈ Ri (s2).

Definition 5.26 State s is SEQb stable for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2.

5.2.3.3 Logical Representation of Stabilities Indexed c

For definitions indexed c, DM i would move to preferred states and states having
uncertain preference relative to the starting state. With respect to sanctions, DM i
does not want to end up at states that are less preferred or equally preferred relative
to state s, and states having uncertain preference relative to state s.

Definition 5.27 State s is Nashc stable for DM i iff R+,U
i (s) = ∅.

Definition 5.28 State s is GMRc stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ RN\{i}(s1) with s �i s2 or s Ui s2.
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Definition 5.29 State s is SMRc stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ RN\{i}(s1), such that s �i s2 or s Ui s2 and s �i s3 or s Ui s3
for any s3 ∈ Ri (s2).

Definition 5.30 State s is SEQc stable for DM i iff for every s1 ∈ R+,U
i (s) there

exists at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2 or s Ui s2.

5.2.3.4 Logical Representation of Stabilities Indexed d

For the last set of stabilities, indexed by d, a DM is not willing to move to a state
with uncertain preference relative to the status quo, but is deterred by sanctions to
states that have uncertain preference relative to the status quo.

Definition 5.31 State s is Nashd stable for DM i iff R+
i (s) = ∅.

Definition 5.32 State s is GMRd stable for DM i iff for every s1 ∈ R+
i (s) there

exists at least one s2 ∈ RN\{i}(s1) with s �i s2 or s Ui s2.

Definition 5.33 State s is SMRd stable for DM i iff for every s1 ∈ R+
i (s) there

exists at least one s2 ∈ RN\{i}(s1), such that s �i s2 or s Ui s2 and s �i s3 or s Ui s3
for any s3 ∈ Ri (s2).

Definition 5.34 State s is SEQd stable for DM i iff for every s1 ∈ R+
i (s) there exists

at least one s2 ∈ R+,U
N\{i}(s1) with s �i s2 or s Ui s2.

Whenn = 2, theDMset N reduces to {i, j} inDefinitions 5.19–5.34. For example,
the reachable list R+,U

N\{i}(s1) of N\{i} from s1 by the legal sequences of UIUMs

reduces to the reachable list R+,U
j (s1) of j from s1 by one step UIUMs.

From the solution concepts indexed a, b, c, and d presented above, it can be seen
that a solution concept indexed a represents the stability for the most aggressive
DMs. Firstly, the DM is aggressive in deciding whether to move from the status
quo, thus being willing to accept the risk associated with moves to states of uncer-
tain preference. In addition, when evaluating possible moves, the DM is deterred
only by sanctions to states that are less preferred than the status quo and does not
see states of uncertain preference (relative to the status quo) as sanctions. For the
definitions indexed b, uncertainty in preferences is not considered by a DM. The def-
initions indexed c incorporate a mixed attitude toward the risk associated with states
of uncertain preference. Specifically, the DM is aggressive in deciding whether to
move from the status quo, but is conservative when evaluating possible moves, being
deterred by sanctions to states that are less preferred or have uncertain preference
relative to the status quo. Finally, the definition indexed d represents stability for the
most conservative DMs, who would move only to preferred states from a status quo,
but would be deterred by responses that result in states of uncertain preference (Li
et al. 2004).
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Fig. 5.5 Relationships
among four stabilities
indexed l

5.2.4 Relationships Among Stabilities in the Graph Model
with Preference Uncertainty

Fang et al. (1993) determined relationships among Nash, GMR, SMR, and SEQ
stabilities for the simple preference structure. Following this research direction, Li
et al. (2004) established relationships among stability definitions with preference
uncertainty.

Let l denote one of the four extensions indexed by a, b, c, and d, i.e., l = a, b, c,
or d. In the following theorems, the symbol GS denotes a graph model stability,
GMR, SMR, or SEQ. Then GSl refers to the GS solution concept indexed l. The
symbol s ∈ SGSl

i denotes that s ∈ S is stable for DM i according to stability GS
indexed l. The relationships among the four stabilities of Nash, GMR, SMR, and
SEQ, indexed l in the graph model with preference uncertainty are given next.

Theorem 5.1 Let l = a, b, c, or d and i ∈ N. The relationships among the four
stabilities indexed l are

SNashl
i ⊆ SSMRl

i ⊆ SGMRl
i ,

SNashl
i ⊆ SSEQl

i ⊆ SGMRl
i .

The proof of Theorem 5.1 easily follows from Definitions 5.19–5.34. Note that there
is no necessary inclusion relationship between SSMRl

i and SSEQl
i , i.e., it may or may

not be true that SSMRl
i ⊇ SSEQl

i , or that SSMRl
i ⊆ SSEQl

i . Then, the above inclusion
relationships among the four stabilities indexed l are shown in Fig. 5.5.

Theorem 5.2 The relationships among Nash stabilities indexed a, b, c, and d for
DM i are

SNasha
i = SNashc

i , SNashb
i = SNashd

i ,

and
SNasha
i ⊆ SNashb

i .
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This result is obvious from the above Nash stability definitions.

Theorem 5.3 Let i ∈ N. The relationships among stabilities GS indexed a, b, c,
and d are

SGSa
i ⊆ SGSb

i ⊆ SGSd
i , SGSa

i ⊆ SGSc
i ⊆ SGSd

i .

Proof The inclusion relations SSMRa
i ⊆ SSMRc

i ⊆ SSMRd
i are proven first. If state s ∈

SSMRa
i , this implies that if s1 ∈ R+,U

i (s), then there exists at least one s2 ∈ RN\{i}(s1),
such that s2 ∈ �

−,=
i (s) and s3 ∈ �

−,=
i (s) for every s3 ∈ Ri (s2). Since �

−,=
i (s) ⊆

�
−,=,U
i (s), then s2 ∈ �

−,=,U
i (s) and s3 ∈ �

−,=,U
i (s) for every s3 ∈ Ri (s2). There-

fore, if state s ∈ SSMRa
i , then state s ∈ SSMRc

i .
If state s ∈ SSMRc

i , this implies that if s1 ∈ R+,U
i (s), then there exists at least one

s2 ∈ RN\{i}(s1), such that s2 ∈ �
−,=,U
i (s) and s3 ∈ �

−,=,U
i (s) for every s3 ∈ Ri (s2).

Since R+
i (s) ⊆ R+,U

i (s), then s ∈ SSMRc
i implies that if s1 ∈ R+

i (s), then there exists
at least one s2 ∈ RN\{i}(s1), such that s2 ∈ �

−,=,U
i (s) and s3 ∈ �

−,=,U
i (s) for every

s3 ∈ Ri (s2). Therefore, S
SMRc
i ⊆ SSMRd

i .
The inclusion relation SSMRa

i ⊆ SSMRc
i ⊆ SSMRd

i is proved. Other inclusion rela-
tions about GMR and SEQ can be proved similarly. So

SGSa
i ⊆ SGSc

i ⊆ SGSd
i .

The proof of the inclusion relations

SGSa
i ⊆ SGSb

i ⊆ SGSd
i

can be similarly carried out. �

The above relationships among stabilities indexed a, b, c and d are shown in
Fig. 5.6.

Fig. 5.6 Relationships
among stabilities indexed
a, b, c and d
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5.3 Matrix Representation of Stability Definitions Under
Unknown Preference

In this section, the matrix representation of solution concepts (MRSC) introduced in
Sect. 4.3 is extended to conflicts with preference uncertainty. Below, procedures that
define the four basic graph model stability definitions are applied to graph models
with preference uncertainty using explicit matrix calculations. Matrix expressions
are extended to define the reachable list of a DM, or a coalition, from a state by
unilateral improvements or uncertain moves (UIUMs). These matrix expressions are
used to develop an explicit algebraic form conflict model that facilitates stability
calculations in both two-DM and n-DM (n > 2) models with preference uncertainty.

5.3.1 Preference Matrices Including Uncertainty

DM i’s preference matrix P+
i and indifference matrix P=

i have been defined in
Sect. 4.3.1.

Definition 5.35 For a graph model G, the uncertain preference matrix for DM i is

the m × m matrix, PU
i , with (s, q) entry PU

i (s, q) =
{
1 if s Ui q,

0 otherwise.

Then define matrices P−,=
i , P+,U

i , and P−,=,U
i as

P−,=
i = P−

i ∨ P=
i , P+,U

i (s, q) = E − I − P−,=
i , and P−,=,U

i (s, q) = E − I − P+
i .

The adjacency matrix is extended to a graph model with uncertain preference.

Definition 5.36 For a graph model G, DM i’s UUM adjacency matrix is them × m
matrix, JUi , with (s, q) entries

JUi (s, q) =
{
1 if (s, q) ∈ Ai and q Ui s,
0 otherwise.

Note that JUi (s, q) = 1 if and only if DM i can move from state s to state q by
unilateral uncertain moves (in one step). It is convenient to define

J+,U
i (s) = J+

i

∨
JUi .

It follows that the UM adjacency matrix, UI adjacency matrix, UIUM adjacency
matrix, and the preference matrices including uncertainty, satisfy the following rela-
tions:

J+
i = Ji ◦ P+

i , and J+,U
i = Ji ◦ P+,U

i .
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As has been observed previously, procedures to identify stable states based on
logical representation definitions are difficult to code because of the nature of the
logical representations. To overcome this limitation, the four stability definitions
in two decision maker graph models with preference uncertainty are formulated
explicitly in terms of matrices in the next subsection.

5.3.2 Two Decision Maker Case

Matrix representation of the four extensions of Nash, GMR, SMR, and SEQ stability
definitionswith preference uncertainty (MRSCU) in 2-DMconflict models is defined
as follows. The system, called the MRSCU method, incorporates a set of m × m
matrices,MNashl

i ,MGMRl
i ,MSMRl

i , andMSEQl
i , for l ∈ {a, b, c, d}, to capture Nashl ,

GMRl , SMRl , and SEQl stabilities for DM i ∈ N , where |N | = 2, m = |S|, and
DMs’ preferences may include uncertainty.

5.3.2.1 Matrix Representation of Stabilities Indexed a

Define DM i’s m × m Nasha stability matrix as

MNasha
i = J+,U

i · E .

The following theorem establishes the matrix method to assess whether state s is
Nasha stable for a DM.

Theorem 5.4 State s ∈ S is Nasha stable for DM i iff MNasha
i (s, s) = 0.

Proof It is obvious that R+,U
i (s) = ∅ iff eTs · J+,U

i = −→
0 T . eTs · J+,U

i = −→
0 T is equiv-

alent to MNasha
i (s, s) = 0. �

Define DM i’s m × m GMRa stability matrix as

MGMRa
i = J+,U

i · [E − sign
(
Jj · (P−,=

i )T
)].

The following theoremprovides amatrixmethod to calculateDM i’sGMRa stability.

Theorem 5.5 State s is GMRa stable for DM i iff

MGMRa
i (s, s) = 0. (5.1)

Proof Equation5.1 is equivalent to

(eTs J
+,U
i ) · ((

E − sign
(
Jj · (P−,=

i )T
))
es

) = 0.
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Since
(eTs J

+,U
i ) · ((

E − sign
(
Jj · (P−,=

i )T
))
es

)

=
m∑

s1=1

J+,U
i (s, s1)

(
1 − sign

(
(eTs1 Jj ) · (eTs P

−,=
i )T

))
,

then Eq.5.1 holds iff

J+,U
i (s, s1)[1 − sign

(
(eTs1 Jj ) · (eTs P

−,=
i )T

)] = 0,∀s1 ∈ S. (5.2)

It is clear that Eq.5.2 is equivalent to

(eTs1 Jj ) · (eTs P
−,=
i )T �= 0,∀s1 ∈ R+,U

i (s),

which implies that, for any s1 ∈ R+,U
i (s), there exists at least one s2 ∈ R j (s1) with

s �i s2. �

Define the m × m SMRa stability matrix as

MSMRa
i = J+,U

i · [E − sign(Q)],

with
Q = Jj · [(P−,=

i )T ◦
(
E − sign

(
Ji · (P+,U

i )T
))

], for j �= i.

Theorem 5.6 State s is SMRa stable for DM i iff

MSMRa
i (s, s) = 0. (5.3)

Proof Since
MSMRa

i (s, s) = (eTs J
+,U
i ) · [(E − sign(Q)) es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign (Q(s1, s))]

with

Q(s1, s) =
m∑

s2=1

Jj (s1, s2) · W,

and

W = P−,=
i (s, s2)[1 − sign

(
m∑

s3=1

(
Ji (s2, s3)P

+,U
i (s, s3)

))
],
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then Eq.5.3 holds iff Q(s1, s) �= 0, ∀s1 ∈ R+,U
i (s), which is equivalent to the state-

ment that, ∀s1 ∈ R+,U
i (s), ∃s2 ∈ R j (s1) such that

P−,=
i (s, s2) �= 0, (5.4)

and
m∑

s3=1

(
Ji (s2, s3)P

+,U
i (s, s3)

)
= 0. (5.5)

Obviously, ∀s1 ∈ R+,U
i (s), ∃s2 ∈ R j (s1) such that Eqs. 5.4 and 5.5 hold iff for

every s1 ∈ R+,U
i (s) there exists s2 ∈ R j (s1) such that s �i s2 and s �i s3 for all

s3 ∈ Ri (s2). �

Define the m × m SEQa stability matrix as

MSEQa
i = J+,U

i · [E − sign
(
J+,U
j · (P−,=

i )T
)
].

Theorem 5.7 State s ∈ S is SEQa stable for DM i iff

MSEQa
i (s, s) = 0. (5.6)

Proof Equation5.6 is equivalent to

(eTs J
+,U
i ) · [

(
E − sign

(
J+,U
j · (P−,=

i )T
))

es] = 0.

Since
(eTs J

+,U
i ) · [

(
E − sign

(
J+,U
j · (P−,=

i )T
))

es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign

(
(eTs1 J

+,U
j ) · (eTs P

−,=
i )T

)
],

then Eq.5.6 holds iff

J+,U
i (s, s1)[1 − sign

(
(eTs1 J

+,U
j ) · (eTs P

−,=
i )T

)
] = 0,∀s1 ∈ S. (5.7)

It is clear that Eq.5.7 is equivalent to

(eTs1 J
+,U
j ) · (eTs P

−,=
i )T �= 0,∀s1 ∈ R+,U

i (s).

It implies that for any s1 ∈ R+,U
i (s), there exists at least one s2 ∈ R+,U

j (s1) with
s �i s2. �
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5.3.2.2 Matrix Representation of Stabilities Indexed b

For the next definitions indexed using b for an uncertain situation, DM i considers
to leave a state or assesses sanctions, excluding uncertain preferences.

Define the m × m Nashb stability matrix as

MNashb
i = J+

i · E .

Theorem 5.8 State s ∈ S is Nashb stable for DM i iff MNashb
i (s, s) = 0.

Define DM i’s m × m GMRb stability matrix as

MGMRb
i = J+

i · [E − sign
(
Jj · (P−,=

i )T
)].

Theorem 5.9 State s ∈ S is GMRb stable for DM i iff MGMRb
i (s, s) = 0.

Define DM i’s m × m SMRb stability matrix as

MSMRb
i = J+

i · [E − sign(Q)],

with
Q = Jj · [(P−,=

i )T ◦
(
E − sign

(
Ji · (P+,U

i )T
))

], for j �= i.

Theorem 5.10 State s is SMRb stable for DM i iff MSMRb
i (s, s) = 0.

Define DM i’s m × m SEQb matrix as

MSEQb
i = J+

i · [E − sign
(
J+,U
j · (P−,=

i )T
)
].

Theorem 5.11 State s ∈ S is SEQb stable for DM i iff MSEQb
i (s, s) = 0.

The proofs of Theorems 5.8–5.11 are similar to those for theorems presented in
Sect. 5.3.2.1, so they are left as an exercise. For the extended definitions indexed c,
DM i has an incentive to move to states with uncertain preferences relative to the
status quo, and will consider a move to a state with uncertain preference to be a
sanction.

5.3.2.3 Matrix Representation of Stabilities Indexed c

Define DM i’s m × m Nashc stability matrix as
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MNashc
i = J+,U

i · E .

Theorem 5.12 State s ∈ S is Nashc stable for DM i iff MNashc
i (s, s) = 0.

Define DM i’s m × m GMRc stability matrix as

MGMRc
i = J+,U

i · [E − sign
(
Jj · (P−,=,U

i )T
)
].

Theorem 5.13 State s is GMRc stable for DM i iff MGMRc
i (s, s) = 0.

Define DM i’s m × m SMRc stability matrix as

MSMRc
i = J+,U

i · [E − sign(Q)],

in which

Q = Jj · [(P−,=,U
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))], for j �= i.

Theorem 5.14 State s is SMRc stable for DM i iff MSMRc
i (s, s) = 0.

Define DM i’s m × m SEQc stability matrix as

MSEQc
i = J+,U

i · [E − sign
(
J+,U
j · (P−,=,U

i )T
)
].

Theorem 5.15 State s is SEQc stable for DM i iff MSEQc
i (s, s) = 0.

5.3.2.4 Matrix Representation of Stabilities Indexed d

For the last definitions indexed d, DM i considers to leave a state, excluding prefer-
ence uncertainty, but will consider a move to a state with uncertain preference to be
a sanction.

Define DM i’s m × m Nashd stability matrix as

MNashd
i = J+

i · E .

Theorem 5.16 State s is Nashd stable for DM i iff MNashd
i (s, s) = 0.

Define DM i’s m × m GMRd stability matrix as
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MGMRd
i = J+

i · [E − sign
(
Jj · (P−,=,U

i )T
)
].

Theorem 5.17 State s is GMRd stable for DM i iff MGMRd
i (s, s) = 0.

Define DM i’s m × m SMRd stability matrix as

MSMRd
i = J+

i · [E − sign(Q)],

in which

Q = Jj · [(P−,=,U
i )T ◦ (

E − sign
(
Ji · (P+

i )T
))], for j �= i.

Theorem 5.18 State s is SMRd stable for DM i iff MSMRd
i (s, s) = 0.

Define DM i’s m × m SEQd stability matrix as

MSEQd
i = J+

i · [E − sign
(
J+,U
j · (P−,=,U

i )T
)
].

Theorem 5.19 State s is SEQd stable for DM i iff MSEQd
i (s, s) = 0.

Example 5.4 (Matrix Representation for the Extended Sustainable Development
Model with Preference Uncertainty) The extended sustainable development model
with preference uncertainty was described in Examples 5.1 and 5.2. The graphmodel
of this conflict is shown in Fig. 5.2 with the state set S = {s1, s2, s3, s4} and the DM
set N = {1, 2}. In this example, it will be assessed whether the four states are stable
for the stabilities indexed a, b, c, and d using the proposed matrix method. The sta-
bility matrices are summarized in Table5.5. The procedures to calculate stabilities
for the extended sustainable development model with preference uncertainty using
the proposed matrix method are as follows:

1. Using Fig. 5.2, the UM adjacency matrices for DM 1 and DM 2 are obtained by

J1 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ and J2 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

2. Using preference information provided by the graph model in Fig. 5.2, preference
matrices for DM 1 and DM 2 respectively are

P+
1 =

⎛
⎜⎜⎝
0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

⎞
⎟⎟⎠, P−

1 =

⎛
⎜⎜⎝
0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0

⎞
⎟⎟⎠, PU

1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, and
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Table 5.5 Stability matrices for two-DM conflicts with preference uncertainty

Preference Sets of
definitions

Stability matrices

Including
uncertainty

a MNasha
i = J+,U

i · E

MGMRa
i = J+,U

i · [E − sign
(
J j · (P−,=

i )T
)
]

MSMRa
i = J+,U

i · [E − sign(J j · Q)], with
Q = (P−,=

i )T ◦ [E − sign
(
Ji · (P+,U

i )T
)]

MSEQa
i = J+,U

i · [E − sign
(
J+,U
j · (P−,=

i )T
)
]

b MNashb
i = J+

i · E
MGMRb

i = J+
i · [E − sign

(
J j · (P−,=

i )T
)
]

MSMRb
i = J+

i · [E − sign(J j · Q)], with
Q = (P−,=

i )T ◦ [E − sign
(
Ji · (P+,U

i )T
)]

MSEQb
i = J+

i · [E − sign
(
J+,U
j · (P−,=

i )T
)
]

c MNashc
i = J+,U

i · E
MGMRc

i = J+,U
i · [E − sign

(
J j · (P−,=,U

i )T
)
]

MSMRc
i = J+,U

i · [E − sign(J j · Q)], with
Q = (P−,=,U

i )T ◦ [E − sign
(
Ji · (P+

i )T
)]

MSEQc
i = J+,U

i · [E − sign
(
J+,U
j · (P−,=,U

i )T
)
]

d MNashd
i = J+

i · E
MGMRd

i = J+
i · [E − sign

(
J j · (P−,=,U

i )T
)
]

MSMRd
i = J+

i · [E − sign(J j · Q)], with
Q = (P−,=,U

i )T ◦ [E − sign
(
Ji · (P+

i )T
)]

MSEQd
i = J+

i · [E − sign
(
J+,U
j · (P−,=,U

i )T
)
]

P+
2 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, P−

2 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠, PU

2 =

⎛
⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ .

3. Other preference matrices are calculated using P+,U
i = P+

i

∨
PU
i , P−,=

i = E −
I − P+,U

i , and P−,=,U
i = E − I − P+

i for i = 1, 2.
4. Using the mathematical formulation of stability matrices presented in Table5.5,

all diagonal entries of these stabilitymatrices are calculated and given inTable5.6.

Note that in the second columnofTable5.6, 1, 2, 3, and 4 denote state numbers and
in the second row 1 and 2 indicate DM 1 and DM 2. The column vector (0, 0, 1, 1)T

corresponding to the extension a and Nash stability for DM 1 is the diagonal vec-
tor of DM 1’s Nasha stability matrix MNasha

1 , i.e., diag(MNasha
1 ) = (0, 0, 1, 1)T .
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Table 5.6 Diagonal entries of stability matrices for the extended sustainable development game
with uncertain preference

State Nash GMR SMR SEQ

1 2 1 2 1 2 1 2

a 1 0 1 0 1 0 1 0 1

2 0 1 0 1 0 1 0 1

3 1 1 0 1 0 1 0 1

4 1 1 1 1 1 1 1 1

b 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

4 1 0 1 0 1 0 1 0

c 1 0 1 0 0 0 1 0 1

2 0 1 0 0 0 1 0 1

3 1 1 0 0 0 0 0 0

4 1 1 1 0 1 0 1 0

d 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

4 1 0 1 0 1 0 1 0

Based on Theorem 5.4, since MNasha
1 (s1, s1) = MNasha

1 (s2, s2) = 0, then s1 and
s2 are Nasha stable for DM 1. The column vector (1, 1, 0, 0)T corresponding
to the extension c and SMR stability for DM 2 is the diagonal vector of DM
2’s SMRc stability matrix MSMRc

2 , i.e., diag(MSMRc
2 ) = (1, 1, 0, 0)T . Therefore,

MSMRc
1 (s3, s3) = MSMRc

2 (s4, s4) = 0, which imply that s3 and s4 are SMRc stable
for DM 2 by Theorem 5.14. Other stabilities can be similarly analyzed. It is easy
to see that the results of the stabilities are precisely the same as those presented in
Table5.3 which is obtained using the logical method.

Theorems 5.4–5.19 prove that the proposed matrix representation of solution
concepts are equivalent to the solution concepts for two-DM conflicts defined in
Sect. 5.2.1. The matrix representation can be extended to models including more
than two DMs, which is the objective of the next subsection.

5.3.3 Reachability Matrices for a Coalition

Fix H ⊆ N such that |H | ≥ 2, and let s ∈ S. Now it is demonstrated how to find
matrices corresponding to RH (s), the reachable list of H from s by legal sequences
of UMs, R+

H (s), the reachable list of H from s by legal sequences of UIs, and R+,U
H ,

the reachable list of H from s by legal sequences of UIUMs.
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Definition 5.37 For i ∈ H , H ⊆ N , and t = 1, 2, 3, . . ., define them × m matrices
M (t)

i , M (t,+)
i , and M (t,+,U )

i with (s, q) entries as follows:

M (t)
i (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly
t legal UMs by H with last mover DM i,

0 otherwise,

M (t,+)
i (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly
t legal UIs by H with last mover DM i,

0 otherwise.

and

M (t,+,U )
i (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly
t legal UIUMs by H with last mover DM i,

0 otherwise.

Based on Definition 5.37, one has:

Lemma 5.1 For i ∈ N and H ⊆ N, the three matrices M (t)
i , M (t,+)

i and M (t,+,U )
i

satisfy

M (1)
i (s, q) = Ji (s, q) and, f or t = 2, 3, . . . , M (t)

i = sign[(
∨

j∈H−{i}
M (t−1)

j ) · Ji ], (5.8)

M (1,+)
i (s, q) = J+

i (s, q) and, f or t = 2, 3, . . . , M (t,+)
i = sign[(

∨
j∈H−{i}

M (t−1,+)
j ) · J+

i ], (5.9)

M (1,+,U )
i (s, q) = J+,U

i (s, q) and, f or t = 2, 3, . . . , M (t,+,U )
i = sign[(

∨
j∈H−{i}

M (t−1,+,U )
j ) · J+,U

i ].

(5.10)

Proof The verification of Eqs. 5.8 and 5.9 is similar to Eq.5.10. Here, Eq. 5.10 is
verified. For t = 2, the definition of matrix multiplication shows that G(s, q), the
(s, q) entry of thematrixG = (

∨
j∈H−{i}

J+,U
j ) · J+,U

i , is nonzero iff stateq is reachable

from state s in exactly twoUIUMs, with last mover DM i . The condition j ∈ H − {i}
implies that DM i does not make two moves consecutively. Hence, G(s, q) �= 0 iff
state q is reachable from state s in exactly two legal UIUMs. Then

sign[(
∨

j∈H−{i}
J+,U
j ) · J+,U

i ] = sign[(
∨

j∈H−{i}
M (1,+,U )

j ) · J+,U
i ] = M (2,+,U )

i .

Now suppose that t > 2. Since

M (t−1,+,U )
j (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly t − 1

legal UIUMs by H with last mover DM j,
0 otherwise,
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usingmatrixmultiplication, matrix B = sign[( ∨
j∈H−{i}

M (t−1,+,U )
j ) · J+,U

i ] has (s, q)

entry

B(s, q) =
⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly t

legal UIUMs by H with last mover DM i,
0 otherwise,

which confirms Eq.5.10. �
The UM and UI reachability matrices have been defined by Definition 4.19 in

Chap.4. The two matrices are extended to the graph model including uncertain pref-
erence.

Definition 5.38 For the graph model G, the UIUM reachability matrix for H is the
m × m matrix M+,U

H with (s, q) entry

M+,U
H (s, q) =

{
1 if q ∈ R+,U

H (s),
0 otherwise.

Obviously, R+,U
H (s) = {q : M+,U

H (s, q) = 1}. If R+,U
H (s) is written as a 0–1 row

vector, then
R+,U
H (s) = eTs · M+,U

H ,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the UIUM reachability matrix for coalition H , MH , can
be used to construct the reachable lists of H from state s by the legal sequence of
UIUMs, R+,U

H (s).
Recall that Ai is DM i’s arc set in a graph model. Let A+

i and A+,U
i denote i’s

UI arc set and UIUM arc set, respectively. For s ∈ S, let Ai (s), A
+
i (s), and A+,U

i (s)
denote the respective subsets of these three sets with initial state s. Therefore, these
arc sets are related by Ai = ⋃

s∈S
Ai (s), A

+
i = ⋃

s∈S
A+
i (s), and A+,U

i = ⋃
s∈S

A+,U
i (s).

It is obvious that unilateral moves on the branches of paths will end when the
same arc appears twice. Generally, if there is no new appropriate arc produced, then
the corresponding joint moves will stop. Therefore, Lemma 5.1 can be extended to
the following cases. Let l3 = |A+,U

H | in the following lemma.

Lemma 5.2 For a graph model G, let H ⊆ N. R+,U
H (s) is the reachable list of H

by the legal sequences of UIUMs from s. δ3 is the number of iteration steps required
to find R+,U

H (s). Then δ3 ≤ l3.

Then the following theorem can be derived using Lemmas 5.1 and 5.2.

Theorem 5.20 Let s ∈ S, H ⊆ N, and H �= ∅. The reachability matrices
MH , M+

H and M+,U
H by H can be respectively expressed by

MH =
l1∨
t=1

∨
i∈H

M (t)
i , (5.11)
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M+
H =

l2∨
t=1

∨
i∈H

M (t,+)
i , (5.12)

and

M+,U
H =

l3∨
t=1

∨
i∈H

M (t,+,U )
i . (5.13)

Proof The proofs of Eqs. 5.11 and 5.12 are left as exercises. Here, only Eq.5.13 is

proven. Assume that C =
l3∨
t=1

∨
i∈H

M (t,+,U )
i . Using the definition for matrix M+,U

H ,

M+,U
H (s, q) = 1 iff q ∈ R+,U

H (s). Since l3 = | ⋃
i∈N

A+,U
i |, then, by Lemma 5.2, l3 ≥

δ3. Therefore, by Definition 5.37, q ∈ R+,U
H (s) implies that there exists 1 ≤ t0 ≤ δ3

and i0 ∈ H such that M (t0,+,U )
i0

(s, q) = 1. This implies that matrix C has (s, q) entry

1. Therefore, M+,U
H (s, q) = 1 iff C(s, q) = 1. Since M+,U

H and C are 0–1 matrices,
it follows that M+,U

H = C . �

Compared to the approach presented in Theorem 4.9 based on the incidence matrix,
the algebraic method founded on the adjacency matrix developed here is easier for
calculation purposes.However, the incidencematrix-basedmethod can tracemultiple
edges.

5.3.4 Multiple Decision Maker Case

The logical definitions of Nash, GMR, SMR, and SEQ stabilities in the graph model
formultiple decisionmaker conflictmodelswith preference uncertainty are described
in Sect. 5.2.3. They retain most features of the stability definitions in the 2-DM case,
except that DM i’s opponents are a subset of N , N − {i}, instead of a single opponent,
j . It is obvious that in the n-DM case, the algebraic characterizations of stabilities
are similar to those presented in Sect. 5.3.2. Consequently, matrix representation of
solution concepts with preference uncertainty for 2-DM cases can be easily extended
to that for n-DM situations. Let i ∈ N and |N | = n in the following theorems.

5.3.4.1 Matrix Representation of Stabilities Indexed a for Preference
with Uncertainty

In the definitions indexed a, DM i has an incentive to move to states with uncertain
preferences relative to the status quo, but, when assessing possible sanctions, will
not consider states with uncertain preferences (Li et al. 2004).
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Theorem 5.21 State s ∈ S is Nasha stable for DM i iff (es)T · J+,U
i · e = 0.

Theorem 5.21 implies that Nash stability definitions are identical for both 2-DM and
n-DM models with preference uncertainty because Nash stability does not consider
opponents’ responses.

For GMR, DM i considers the opponents’ responses, which are reachable states
RN\{i} of coalition H = N\{i} by the legal UM sequences. First, the matrix MN\{i}
using Theorem 5.20 can be constructed for H = N \ {i}. Define the m × m GMRa

stability matrix as

MGMRa
i = J+,U

i · [E − sign
(
MN\{i} · (P−,=

i )T
)].

Then the following theorem provides a matrix method to calculate GMRa stability.

Theorem 5.22 State s ∈ S is GMRa stable for DM i, denoted by s ∈ SGMRa
i , iff

MGMRa
i (s, s) = 0.

Proof Since the diagonal entry of matrix MGMRa
i

MGMRa
i (s, s) = (eTs · J+,U

i ) · [(E − sign
(
MN\{i} · (P−,=

i )T
)) · es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign

(
(eTs1 · MN\{i}) · (eTs · P−,=

i )T
)],

then MGMRa
i (s, s) = 0 iff J+,U

i (s, s1)[1 − sign
(
(eTs1 · MN\{i}) · (eTs · P−,=

i )T
)] = 0

for any s1 ∈ S. This implies that MGMRa
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (eTs · P−,=
i )T �= 0 for any s1 ∈ R+,U

i (s). (5.14)

By Eq.5.14, for any s1 ∈ R+,U
i (s), there exists s2 ∈ S, such that the m-dimensional

row vector, eTs1 · MN\{i}, has the s2th element 1 and them-dimensional column vector,
(P−,=

i )T · es , has the s2th element 1.
Therefore, MGMRa

i (s, s) = 0 iff for any the s1 ∈ R+,U
i (s), there exists at least one

the s2 ∈ RN\{i}(s1) with s �i s2. �

Symmetric metarationality in the n-DM model is similar to in the 2-DM model.
The onlymodification is that responses are fromDM i’s opponents instead of a single

DM. Let D = (P−,=
i )T ◦ [E − sign

(
Ji · (P+,U

i )T
)
], then define the m × m SMRa

stability matrix as

MSMRa
i = J+,U

i · [E − sign(MN\{i} · D)].

Thus, the following theorem provides a matrix method to calculate SMRa stability.
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Theorem 5.23 State s ∈ S is SMRa stable for DM i, denoted by s ∈ SSMRa
i , iff

MSMRa
i (s, s) = 0.

Proof Let G = MN\{i} · D. Since the diagonal element of matrix MSMRa
i

MSMRa
i (s, s) = (eTs · J+,U

i ) · [(E − sign(G)) · es]

=
m∑

s1=1

J+,U
i (s, s1)[1 − sign (G(s1, s))]

with

G(s1, s) =
m∑

s2=1

MN\{i}(s1, s2) · P−,=
i (s, s2)[1 − sign

⎛
⎝ m∑
s3=1

(
Ji (s2, s3)P

+,U
i (s, s3)

)⎞
⎠],

thus, MSMRa
i (s, s) = 0 holds iff G(s1, s) �= 0 for any s1 ∈ R+,U

i (s), which is equiv-
alent to the statement that, for any s1 ∈ R+,U

i (s) there exists s2 ∈ RN\{i}(s1) such
that

P−,=
i (s, s2) �= 0, and

m∑
s3=1

(
Ji (s2, s3)P

+,U
i (s, s3)

)
= 0. (5.15)

Obviously, for any s1 ∈ R+,U
i (s) there exists s2 ∈ RN\{i}(s1) such that Eq. 5.15 holds

iff for every s1 ∈ R+,U
i (s) there exists s2 ∈ RN\{i}(s1) such that s �i s2 and s �i s3

for all s3 ∈ Ri (s2). �

SEQ is similar to GMR, but includes only those sanctions that are “credible”
(unilaterally improved) or uncertain moves, i.e., SEQ examines the credibility and
uncertainty of the sanctions by DM i’s opponents. First, the matrix M+,U

N\{i} using
Theorem 5.20 can be built. Define the m × m SEQa stability matrix MSEQa

i as

MSEQa
i = J+,U

i · [E − sign
(
M+,U

N\{i} · (P−,=
i )T

)
].

Thus the following theorem provides a matrix method to calculate SEQa stability.

Theorem 5.24 State s ∈ S is SEQa stable for DM i, denoted by s ∈ SSEQa
i , iff

MSEQa
i (s, s) = 0.

Proof Since the diagonal element of matrix MSEQa
i

MSEQa
i (s, s) = (eTs · J+,U

i ) · [
(
E − sign

(
M+,U

N\{i} · (P−,=
i )T

))
· es]
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=
m∑

s1=1

J+,U
i (s, s1)[1 − sign

(
(eTs1 · M+,U

N\{i}) · (eTs · P−,=
i )T

)
],

then MSEQa
i (s, s) = 0 iff J+,U

i (s, s1)[1 − sign
(
(eTs1 · M+,U

N\{i}) · (eTs · P−,=
i )T

)
] = 0

for any s1 ∈ S. This implies that MSEQa
i (s, s) = 0 iff

(eTs1 · M+,U
N\{i}) · (eTs · P−,=

i )T �= 0 for any s1 ∈ R+,U
i (s). (5.16)

By Eq.5.16, for any s1 ∈ R+,U
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eTs1 · M+,U
N\{i}, has the s2th element 1 and them-dimensional column vector,

(P−,=
i )T · es , has the s2th element 1.
Therefore, MSEQa

i (s, s) = 0 iff for any s1 ∈ R+,U
i (s), there exists at least one

s2 ∈ R+,U
N\{i}(s1) with s �i s2. �

Nasha stability means that the focal DM has no unilateral improvements or
uncertain moves (UIUMs). GMRa denotes that the UIUMs of the focal DM are
sanctioned by subsequent unilateral moves by the opponents of the focal DM. SMRa

is similar to GMRa , but the focal DM considers not only the responses from his
opponents but also his own counterresponses. SEQa indicates that UIUMs of the
focal DM are sanctioned by subsequent unilateral improvements or uncertain moves
by the opponents of the focal DM.

For the next set of definitions indexed b, DM i considers to leave a state or assesses
sanctions, excluding uncertain preferences (Li et al. 2004). However, the definitions
are different from those including simple preference only (Fang et al. 1993), since
the current definitions are utilized to analyze conflict models including preference
uncertainty. Following theorems can be similarly verified as the above theorems.

5.3.4.2 Matrix Representation of Stabilities Indexed b for Preference
with Uncertainty

Theorem 5.25 State s ∈ S is Nashb stable for DM i iff (es)T · J+
i · e = 0.

Define the m × m stability matrix MGMRb
i as

MGMRb
i = J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)].

Theorem 5.26 State s ∈ S is GMRb stable for DM i iff MGMRb
i (s, s) = 0.

Define the m × m stability matrix MSMRb
i = J+

i · [E − sign(G)], with

G = MN\{i} · [(P−,=
i )T ◦

(
E − sign

(
Ji · (P+,U

i )T
))

].
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Theorem 5.27 State s ∈ S is SMRb stable for DM i iff MSMRb
i (s, s) = 0.

Define the m × m stability matrix MSEQb
i as

MSEQb
i = J+

i · [E − sign
(
M+,U

N\{i} · (P−,=
i )T

)
].

Theorem 5.28 State s ∈ S is SEQb stable for DM i iff MSEQb
i (s, s) = 0.

5.3.4.3 Matrix Representation of Stabilities Indexed c for Preference
with Uncertainty

For the extended definitions indexed c, DM i considers moving from a status quo
state or evaluating sanctions including uncertain preferences.

Theorem 5.29 State s ∈ S is Nashc stable for DM i iff (es)T · J+,U
i · e = 0.

Define the m × m stability matrix MGMRc
i as

MGMRc
i = J+,U

i · [E − sign
(
MN\{i} · (P−,=,U

i )T
)
].

Theorem 5.30 State s ∈ S is GMRc stable for DM i iff MGMRc
i (s, s) = 0.

Define the m × m stability matrix MSMRc
i as

MSMRc
i = J+,U

i · [E − sign(MN\{i} · D)],

in which
D = (P−,=,U

i )T ◦ [E − sign
(
Ji · (P+

i )T
)].

Theorem 5.31 State s ∈ S is SMRc stable for DM i iff MSMRc
i (s, s) = 0.

Define the m × m stability matrix MSEQc
i as

MSEQc
i = J+,U

i · [E − sign
(
M+,U

N\{i} · (P−,=,U
i )T

)
].

Theorem 5.32 State s ∈ S is SEQc stable for DM i iff MSEQc
i (s, s) = 0.
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5.3.4.4 Matrix Representation of Stabilities Indexed d for Preference
with Uncertainty

For the last definitions, indexed d, a DM is not motivated to leave the status quo
to move to states with uncertain preference, but will consider moving to states with
uncertain preference to be a sanction.

Theorem 5.33 State s ∈ S is Nashd stable for DM i iff (es)T · J+
i · e = 0.

Define the m × m stability matrix as

MGMRd
i = J+

i · [E − sign
(
MN\{i} · (P−,=,U

i )T
)
].

Theorem 5.34 State s ∈ S is GMRd stable for DM i iff MGMRd
i (s, s) = 0.

Define the m × m stability matrix MSMRd
i = J+

i · [E − sign(MN\{i} · D)], in
which D = (P−,=,U

i )T ◦ [E − sign
(
Ji · (P+

i )T
)].

Theorem 5.35 State s ∈ S is SMRd stable for DM i iff MSMRd
i (s, s) = 0.

Define the m × m stability matrix MSEQd
i = J+

i · [E − sign
(
M+,U

N\{i} ·
(P−,=,U

i )T
)].

Theorem 5.36 State s ∈ S is SEQd stable for DM i iff MSEQd
i (s, s) = 0.

When n = 2, the DM set N becomes {i, j} and Theorems 5.21–5.36 are reduced
to Theorems 5.4–5.19.

5.3.5 Computational Complexity

A graph model structure can handle any finite number of states and DMs, each
of whom controls any finite number of options. As pointed out by Fang et al.
(2003a, b), an available decision support system (DSS) for stability analysis of
a graph model for simple preference works well. In Sect. 4.4, the computational
complexities of the matrix method and the graph model stability definitions for
2-DM models are compared, using GMR stability as an example. Both meth-
ods have complexity of O(m2), where m is the number of states. Now compare
the GMR stability matrix J+

i · [E − sign
(
Jj · (P−,=

i )T
)] and the GMRa stabil-

ity matrix J+,U
i · [E − sign

(
Jj · (P−,=

i )T
)] in the two-DM graph model for simple

preference and for preference with uncertainty. Since J+,U
i = J+

i ∨ JUi , then in two-
DM conflicts, MRSC andMRSCU have the same level of computational complexity.

In n-DMmodels,GMRstabilitywas also selected as an example for analysis of the
computational complexity of MRSC (see Sect. 4.4). The computational complexity
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of GMR stability for state s in n-DM models is less than l · (n − 1) · O(m3) +
O(m2) = l · (n − 1) · O(m3), where l = | ⋃

i∈N
Ai |. This observation implies that the

MRSC method is a polynomial-time effective algorithm. By comparing the GMR
stability matrix J+

i · [E − sign
(
MN\{i} · (P−,=

i )T
)] for simple preference with the

GMRa stability matrix J+,U
i · [E − sign

(
MN\{i} · (P−,=

i )T
)] for preference with

uncertainty, it is not difficult to determine that the MRSCU method possesses a
similar property.

5.4 Application: Lake Gisborne Conflict

In this section, the matrix method is demonstrated by using a practical problem.
Lake Gisborne is located near the south coast of the Canadian Atlantic province of
Newfoundland and Labrador. In June 1995, a project to export bulk water from Lake
Gisborne to foreign markets was proposed by a division of the McCurdy Group of
Companies, Canada Wet Incorporated. On December 5, 1996, the government of
Newfoundland and Labrador approved this project because of its potential economic
benefits. However, due to the risk of harmful impacts on local environment, a wide
variety of lobby groups opposed the proposal. The Federal Government of Canada
supported the opponents and introduced a policy to forbid bulk water export from
major drainage basins in Canada. In response to this pressure, the government of
Newfoundland and Labrador introduced a new bill to ban bulk water export from the
province, forcing Canada Wet to abandon the Gisborne Water Export project (see
details in Fang et al. (2002) and Li et al. (2004)).

Since several groups supported the project, an economical-oriented provincial
government might have considered supporting it because of the urgent need for cash.
However, an environmental-oriented provincial government might have opposed it
because of the possibility of devastating environmental consequences. In 1999, it was
unclear which of these two different attitudes described the provincial government’s
thinking, resulting in uncertainty in preferences in the Gisborne conflict. The details
can be found inLi et al. (2004).Amodel of this conflict featuring uncertain preference
uses three DMs: DM 1, Federal (Fe), DM 2, Provincial (Pr), and DM 3, Support
(Su), and a total of three options, which are presented in Table5.7. The following is
a summary of the three DMs and their options (Li et al. 2004):

• Federal government of Canada (Federal): its only option is to continue a Canada
wide accord on the prohibition of bulk water exports (Continue), or not,

• Provincial government of Newfoundland and Labrador (Provincial): its only
option is to lift the ban on bulk water exports (Lift), or not, and

• Support groups (Support): its only option is to appeal for continuation of the
Gisborne project (Appeal), or not.

In the Lake Gisborne model, the three options are combined to form eight feasible
states listed in Table5.7, where a “Y” indicates that an option is selected by the DM
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Table 5.7 Options and feasible states for the Gisborne conflict

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8

Fig. 5.7 Graph model for the Gisborne conflict

Table 5.8 Certain preference information for the Gisborne model

DMs Certain preferences

Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Provincial s3 � s7, s4 � s8, s1 � s5, s2 � s6, only

Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

controlling it and an “N” means that the option is not chosen. The graph model of the
LakeGisborne conflict is shown inFig. 5.7. The labels on the arcs of the graph indicate
theDMwho canmake themove. The certain preferences over states ofDMs are given
in Table5.8, where � denotes the strict preference and is transitive. Consequently,
the preference information of DM Federal and DM Support is certain, but DM
Provincial only knows that it prefers state s3 to s7, state s4 to s8, state s1 to s5,
and state s2 to s6. The preference of DM Provincial is uncertain between other pair
of states such as states s3 and s6. It is obvious that DM Provincial’s preference
information includes uncertainty.
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5.4.1 Procedures for Calculating Stability with Unknown
Preference

The labeled graphof theGisbornemodel, determined according to theRule of Priority
presented in Sect. 3.3.2, is depicted in Fig. 5.3b. To use the Gisborne model as an
example to demonstrate how the matrix representation of the four basic solution
concepts with preference uncertainty works, one can adhere to the following steps:

• Construct matrices, Ji , J
+
i , J+,U

i , P+
i , and P−,=

i , for i = 1, 2, and 3, using infor-
mation provided by Fig. 5.7 and Table5.8;

• Calculate the UM, UI, and UIUM reachability matrices by H = N − {i} for i =
1, 2, and 3, using inductive formulations provided by Theorem 5.20; and

• Analyze the stabilities of the model using Theorems 5.21–5.36.

At the first step, one constructs DM i’s UM matrix, Ji , UI matrix, J+
i , UIUM

matrix, J+,U
i , and preference matrices, P+

i and P−,=
i , for i = 1, 2, and 3 (Xu et al.

2007a, b). This and the previous chapters provide details on how to construct these
matrices.

5.4.2 Reachability Matrices of a Coalition in the Gisborne
Model

In multiple decision maker graph models, the UM reachability matrix, the UI reach-
ability matrix, and the UIUM reachability matrix by a coalition are essential com-
ponents for the MRSCU method. Using the Gisborne model as an example, the
construction of the reachability matrices is shown and their results are analyzed
next.

Let N = {1, 2, 3} and H = N − {i}, i = 1, 2, and 3. Let L1 = | ⋃
i∈N

Ai | = 24,

L2 = | ⋃
i∈N

A+
i | = 8, and L3 = | ⋃

i∈N
A+,U
i | = 16. Thus, the reachability matrices by

N − {i}, MN−{i}, M+
N−{i}, and M+,U

N−{i}, are calculated using the following inductive
formulations:

M (1)
i = Ji , M (1,+)

i = J+
i , and M (1,+,U )

i = J+,U
i for i ∈ N ;

M (t)
j = sign[(

∨
p∈N−{i, j}

M (t−1)
p ) · Jj ],

M (t,+)
j = sign[(

∨
p∈N−{i, j}

M (t−1,+)
p ) · J+

j ], and
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M (t,+,U )
j = sign[(

∨
p∈N−{i, j}

M (t−1,+,U )
p ) · J+,U

j ] for j ∈ N − {i}.

Finally,

MN−{i} =
L1∨
t=1

∨
j∈N−{i}

M (t)
j ,

M+
N−{i} =

L2∨
t=1

∨
j∈N−{i}

M (t,+)
j , and

M+,U
N−{i} =

L3∨
t=1

∨
j∈N−{i}

M (t,+,U )
j for i = 1, 2, 3.

Let the state set S = {s1, s2, s3, s4, s5, s6, s7, s8}. Tables5.9, 5.10 and 5.11 show
the results for the construction of the reachability matrices. It is clear that if RH (s),
R+
H (s), and R+,U

H (s) are written as 0-1 row vectors, then

RH (s) = eTs · MH , R+
H (s) = eTs · M+

H , and R+,U
H (s) = eTs · M+,U

H for any s ∈ S.

For example, using Table5.11, one has:

eT2 · M+,U
N−{1} = (0, 0, 0, 1, 0, 1, 0, 1),

which indicates that the reachable list of N − {1} by the legal UIUMs from state
s2, R

+,U
N−{1}(s2) = {s4, s6, s8}, i.e., states s4, s6, and s8 can be reached by any legal

UIUM sequence, by DM Provincial and DM Support, from the status quo s = s2.
Consequently, the construction of the reachability matrices provides an algebraic
method for constructing RH (s), R+

H (s), and R+,U
H (s), the reachable lists of H by the

legal sequences of UMs, UIs, and UIUMs, for any s ∈ S.

5.4.3 Analysis of Stability Results for the Gisborne Model

For analyzing the stabilities of the Gisborne conflict, one can utilize either the logical
representation or the matrix approach. Let N = {1, 2, 3} be the set of DMs (1 =
Federal (or Fe), 2 = Provincial (or Pr), and 3 = Support (or Su)).

As an example, DM 1’s SEQc stability for state s1 can be analyzed using the
logical representation presented in Definition 5.30. The procedures are as follows:

1. DM 1’s reachable list from s1 by UIs is R+
1 (s1) = {s2};

2. the reachable list of coalition H = N − {1} from s2 by UIUMs is R+,U
H (s2) =

{s4, s6, s8};
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Table 5.9 UM reachability matrices for the Gisborne model

Matrix MN−{1} MN−{2} MN−{3}
State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

3 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0

4 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0

5 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1

7 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1

8 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0

Table 5.10 UI reachability matrices for the Gisborne model

Matrix M+
N−{1} M+

N−{2} M+
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

3. s4 ∈ R+,U
H (s2) satisfies s1 �1 s4;

4. therefore, s1 is SEQc stable for DM 1 by Definition 5.30.

Other cases can be analyzed similarly (see details in Li et al. (2004)). Furthermore,
the matrix representations in Theorems 5.21–5.36 can also be employed to calculate
the stabilities of the Gisborne conflict.

The stable states and equilibria under the four sets of definitions (indexed a, b, c,
and d) for the four basic solution concepts, Nash, GMR, SMR and SEQ, are sum-
marized in Table5.12, in which “

√
” indicates stable for a DM—Fe, Pr, or Su—and

“Eq” indicates an equilibrium. For instance, states s4 and s6 are equilibria for all b
and d solution concepts. If the provincial government is economical-oriented and
has complete preference information (s3 � s7 � s4 � s8 � s1 � s5 � s2 � s6), then
this is a standard graph model, and the likely resolution is state s4, as can be demon-
strated using DSS GMCR II (Fang et al. 2003a, b). Similarly, an environmental-
oriented provincial government, with preferences s2 � s6 � s1 � s5 � s4 � s8 �
s3 � s7, state s6 is the likely resolution. From the above discussions and Table5.7,
it is known that the outcome of the conflict depends on the provincial government’s
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Table 5.11 UIUM reachability matrices for the Gisborne model

Matrix M+,U
N−{1} M+,U

N−{2} M+,U
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

3 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0

4 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

5 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1

8 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

attitude. If the support group convinces the provincial government of the urgent need
for cash, state s4 is selected as a resolution for the Gisborne conflict, which means
that the economical-oriented provincial government will lift the ban on bulk water
export. On the other hand, for the environmental-oriented provincial government,
the resolution for the Gisborne conflict is likely to be state s6, which means that the
provincial government will not lift the ban.

5.5 Important Ideas

In this chapter, the logical and matrix representations of four basic solution con-
cepts for simple preference for two-DM and multiple-DM conflicts from Chap. 4 are
expanded to handle preference uncertainty. Although the graph model solution con-
cepts are extended to models with preference uncertainty in Sect. 5.2, procedures to
identify stable states based on these solution concepts are not easy to code because
of the nature of their logical representations, which may explain why implemen-
tation algorithms for these solution concepts have not been developed. The matrix
representation of solution concepts in the graph model with preference uncertainty
in Sect. 5.3 handles this problem efficiently, and, therefore, facilitates the develop-
ment of improved algorithms to assess the stabilities of states within a well-designed
decision support system as explained in Sect. 10.2.More specifically, usingGMRsta-
bility as an example, Table5.13 shows how the procedures for matrix representation
is extended from 2-DM models to n-DM models, as well as how matrix formula-
tion is expanded for addressing uncertainty. Consequently, a key advantage of this
matrix method is that it can be easily adapted to new solution concepts because of
the nature of explicit matrix expressions. Hence, unknown preference can be readily
operationalized by embedding it within a well-designed decision support system for
GMCR.
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Table 5.12 Stability analysis of the Gisborne model

State Nash GMR SMR SEQ

Fe Pr Su Eq Fe Pr Su Eq Fe Pr Su Eq Fe Pr Su Eq

s1 a

b
√ √ √ √

c
√ √ √

d
√ √ √ √

s2 a
√ √ √ √

b
√ √ √ √ √ √ √ √

c
√ √ √ √ √ √

d
√ √ √ √ √ √ √ √

s3 a
√ √ √ √

b
√ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √

s4 a
√ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s5 a
√ √ √ √

b
√ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √

s6 a
√ √ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

s7 a
√ √ √

b
√ √ √ √ √ √ √

c
√ √ √ √ √ √

d
√ √ √ √ √ √ √

s8 a
√ √ √ √ √ √ √

b
√ √ √ √ √ √ √ √ √ √ √ √ √ √

c
√ √ √ √ √ √ √ √ √ √ √

d
√ √ √ √ √ √ √ √ √ √ √ √ √ √

5.6 Problems

5.6.1 In your own words, explain three reasons why you think uncertainty over
preferences may occur in a conflict situation.
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5.6.2 Based on a real-world conflict which is of direct interest to you, explain
why uncertainty of preference for one or more DMs may arise. For background
information to your conflict, you may wish to refer to a newspaper, magazine or
journal article.

5.6.3 Outline how the fuzzy approach to capturing preference uncertainty works
within GMCR by referring to the articles by Hipel et al. (2011) and Bashar et al.
(2012). Qualitatively, compare the kind of preference uncertainties reflected in the
unknown preference approach of this chapter to that of the fuzzy preference proce-
dure.

5.6.4 Briefly explain how the grey preference method proposed by Kuang et al.
(2015) works. In a qualitative sense, compare the type of preference uncertainty
modeled by grey preference to that of unknown preference.

5.6.5 Succinctly describe how the probabilistic preference method of Rego and dos
Santos (2015) works. Explain how their probabilistic technique mimics the key steps
that Bashar et al. (2012) employ in their fuzzy preference technique.

5.6.6 For the Prisoner’s Dilemma game put forward in Problem 3.5.1, introduce
unknown preference into this conflict in a reasonable way. Using the logical stability
definitions given in Sect. 5.2, carry out a stability analysis for both Nash and sequen-
tial stability. Comment upon any insights that you gained from your investigation.

5.6.7 Using the Prisoner’s Dilemma dispute explained in Problem 3.5.1, describe
howunknown preference could arisewithin this dispute. Employing thematrix repre-
sentation of unknown preference, execute a stability analysis to determine individual
stability for each state with respect to Nash and sequential stability for each of the
DMs, as well as the equilibrium results. If you already completed Problem 5.6.6, you
may wish to assume the same unknown preference that you did in Problem 5.6.6.

5.6.8 With respect to the Game of Chicken explained in Problem 3.5.4, make a
reasonable assumption as to how unknown preference may arise. Using either the
logical approach of Sect. 5.2 or the matrix procedure of Sect. 5.3, carry out a stability
analysis of the Chicken game for Nash, GMR, SMR, and SEQ stability. Comment
upon any interesting strategic insights that you find.

5.6.9 The Sustainable Development Conflict is displayed in normal form in Table
3.2. Explain why and how unknown preference could occur in this conflict. Carry out
a stability analysis of the Sustainable Development game for this situation for Nash,
GMR, SMR, and SEQ stability. Comment upon any strategic insights you may find.

5.6.10 The Elmira groundwater contamination dispute is modeled in option form
in Sect. 1.2.2 and Tables 1.2 and 3.5. A stability analysis under simple preference is
presented in Sect. 4.5. Explain why and how unknown preference could be present in
this dispute. Show detailed calculations for carrying out a stability analysis for Nash
and SEQ stability for the Elmira conflict. Point out any interesting strategic insights
you find.
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Fig. 5.8 Graph model for the BC salmon aquaculture conflict

5.6.11 In Sect. 5.4, the Lake Gisborne conflict over proposed bulk water exports
is used as an example for carrying out stability calculations for unknown prefer-
ence using a matrix formulation. Based on the logical interpretation of unknown
preference, execute a stability analysis for Nash and sequential stability.

5.6.12 In the past decades, the salmon farming industry expanded rapidly in the
province of British Columbia (BC) in Canada to satisfy the demand for high quality
fish products. However, several groups, such as the fishing industry, First Nations,
and others, strongly opposed the increased farming of salmon in order to protect
wild salmon. In 1995, the BC government imposed a temporary moratorium on the
expansion of salmon farming and required the BC Environmental Assessment Office
to evaluate the potential negative impacts of salmon aquaculture on the environment.
In August 1997, after discussions with a number of interest groups and evaluation
of the environmental and socioeconomic aspects of the industry, the BC Environ-
mental Assessment Office released its Salmon Aquaculture Review (SAR). This
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Table 5.14 DMs and options of the BC salmon aquaculture conflict

DMs and options Status quo

Provincial government of BC (BC)

1. Adopt: Adopt the recommendations N

2. Lift: Lift the moratorium N

3. Partial: Partially lift the moratorium N

Federal government (Federal)

4. Unilateral: Unilateral implementation of the recommendations within
Federal jurisdiction

N

First Nations (First)

5. Legal: Legal action under the Fisheries Act and Canadian Constitution N

Aquaculture opposition (Opposition)

6. Legal: Legal action under the Fisheries Act and political pressure N

Aquaculture support (Support)

7. Implement: Implement some of the recommendations voluntarily N

report provided 49 recommendations to improve the environmental performance of
salmon farming. However, until October 1999, the BC government took no steps
to implement the recommendations, and the moratorium on salmon farming expan-
sion continued in force. This situation caused a conflict (see Li et al. (2005) for
more details). Noakes et al. (2003) established the graph model shown in Fig. 5.8
for this conflict, which contains five decision makers and seven options presented
in Table5.14. The seven options are combined to form 24 feasible states listed in
Table5.15. The preference relations of the DMs over the feasible states are listed in
Table5.16, where � denotes strict preference and is transitive. Preference informa-
tion for DM Federal, DM First, DM Opposition, and DM Support is certain, but
some of DM BC’s preferences are certain, and others are uncertain.

1. Label the graph model according to the Rule of Priority;
2. Calculate the stabilities of Nash, GMR, SMR, and SEQwith a, b, c, andd for the

BC salmon aquaculture conflict using the MRSCU method.

5.6.13 Theorem 4.9 in Chap.4 provides a method to construct the UM and the UI
reachability matrices by

MH = sign[Bout · (L JH + I )l−1 · BT
in] andM+

H = sign[B+
out · (L J+

H + I )l
+−1 · (B+

in)
T ].

Theorem 5.20 provides another method to calculate the two matrices by

MH =
l1∨
t=1

∨
i∈H

M (t)
i and M+

H =
l2∨
t=1

∨
i∈H

M (t,+)
i .
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Table 5.16 Relative preference for DMs in the BC salmon aquaculture conflict

DM Preference

BC [3 � 13 � 8 � 18], [4 � 14 � 9 � 19], [21 � 23 � 22 � 24], [5 � 15 � 10 �
20], [2 � 12 � 7 � 17], [1 � 11 � 6 � 16]

Federal 21 � 23 � 22 � 24 � 20 � 10 � 15 � 5 � 16 � 6 � 11 � 1 � 18 � 8 � 13 �
3 � 19 � 9 � 14 � 4 � 17 � 7 � 12 � 2

First 17 � 7 � 2 � 12 � 21 � 23 � 24 � 22 � 20 � 10 � 5 � 15 � 16 � 6 � 1 �
11 � 19 � 9 � 4 � 14 � 18 � 8 � 3 � 13

Opposition 17 � 12 � 24 � 20 � 16 � 23 � 15 � 11 � 7 � 2 � 22 � 10 � 6 � 21 � 5 �
1 � 19 � 14 � 9 � 4 � 18 � 13 � 8 � 3

Support 3 � 13 � 8 � 18 � 4 � 14 � 9 � 19 � 21 � 23 � 22 � 24 � 5 � 15 � 10 �
20 � 2 � 12 � 7 � 17 � 1 � 11 � 6 � 16

1. Prove the two methods are equivalent;
2. Compare the advantages and disadvantages of the two methods.
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Chapter 6
Stability Definitions: Degrees
of Preference

In a water quality dispute, an environmental agency may greatly prefer that an indus-
trial enterprise does not seriously pollute a nearby river into which it discharges
wastes. The purpose of this chapter is to present a formal methodology that can
handle this type of “degree”, “strength”, or “level” of preference, which often arises
in practice, in order to determine its strategic consequences. More specifically, a
multiple-degree preference structure is developed within the paradigm of the Graph
Model for Conflict Resolution (GMCR) in conjunction with associated stability defi-
nitions for determining individual stability of each state fromagivendecisionmaker’s
(DM’s) viewpoint as well as the overall equilibria (Hamouda et al. 2004, 2006, Xu
et al. 2009, 2010, 2011). Within this structure, a DM may have multiple degrees of
preference when comparing pairs of states. For example, if state a is preferred to state
b, it may be mildly preferred at degree 1 (d = 1), more strongly preferred at degree
2 (d = 2), . . ., or maximally preferred at degree r (d = r ), where r > 0 is a fixed
parameter. The number of degrees, r , is unrestricted in this system, thereby extending
the earlier simple preference structure having two types of preferences consisting of
equally preferred (degree zero) and more preferred (degree one) in Chap. 4 and the
special case of three kinds of preferences (equally preferred, mildly preferred, and
greatly more preferred) discussed in detail in this chapter.

Themain properties of the preference structure according to degree are introduced
in Sect. 6.1 in this chapter. Because DMsmake moves and countermoves when inter-
acting with one another under conflict, reachable lists are defined in Sect. 6.2 to keep
track of the possible unilateral movements in one step from a given state for a par-
ticular DM with respect to multiple types of preference. When considering stability
definitions for more than two DMs, coalition moves are defined since two or more
DMs can participate in blocking a unilateral improvement by another DM. Sub-
sequently, multiple-degree versions of four stability definitions consisting of Nash
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stability, general metarationality, symmetric metarationality, and sequential stabil-
ity, are defined for the graph model with this extended preference structure and the
relationships among them are investigated. Additionally, in this chapter, matrix rep-
resentations of the four stabilities are presented for graphmodels having a preference
structure of up to degree 3.

6.1 Multiple Degrees of Preference

The simple preference structure discussed in Chaps. 3 and 4 contains two types of
preferences: indifference, in which a DM is indifferent between, or equally prefers,
two states, and strict preference, in which a DM prefers one state more than another.
The third kind of preference can be added by allowing a DM to greatly prefer one
state over another. Hence, an expanded preference structure for a given DM can
have two states being equally preferred (called preference of degree zero, or simply
d = 0), one state being more or mildly preferred over another (degree d = 1), or one
state being greatly more preferred than another (d = 2). In fact, one can extend two
degrees of preference to an unlimited number. Below, preference structures having
preferences of up to two degrees and the general case of having any number of
degrees are discussed in Sects. 6.1.1 and 6.1.2, respectively.

6.1.1 Three Types of Preference

A triplet relation on S that expresses strength of preference according to indifferent,
mild, or strong preference, was developed by Hamouda et al. (2004, 2006). For
states s, q ∈ S, the preference relation s ∼i q indicates that DM i is indifferent
between states s and q, the relation s >i q means that DM i mildly prefers s to q,
and s �i q denotes that DM i strongly prefers s to q. Similar to the properties for
simple preference given in Sect. 3.2.4, the characteristics of the preference structure,
{∼i ,>i ,�i }, containing three kinds of preference for eachDM i ∈ N , are as follows:

(i) ∼i is reflexive and symmetric;
(ii) >i and �i are asymmetric; and
(iii) {∼i ,>i ,�i } is strongly complete.

Note that {∼i ,>i ,�i } is strongly complete. Hence, if s, q ∈ S, then exactly one of
the following relations holds: s ∼i q, s >i q, s �i q, q >i s, or q �i s. Also, it is
assumed that, for any s, q ∈ S, s >i q is equivalent to q <i s. The preference type
“�i” has similar properties to “>i”.
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Table 6.1 Subsets of S with respect to three degrees of preference for DM i

Subsets of S Descriptions

�++
i (s) = {q : q �i s} States strongly preferred to state s by DM i

�
+m
i (s) = {q : q >i s} States mildly preferred to state s by DM i

�=
i (s) = {q : q ∼i s} States equally preferred to state s by DM i

�
−m
i (s) = {q : s >i q} States mildly less preferred than state s for DM i

�−−
i (s) = {q : s �i q} States strongly less preferred to state s by DM i

The set of feasible states, S, can be partitioned or divided into a set of non-
overlapping or disjoint subsets based on the types of preference relative to a specific
state s ∈ S. These categorizations of preferences are needed for carrying out stability
analyses according to different kinds of human behavior under conflict as explicitly
defined in Sect. 6.3. For example, a DM may be tempted to unilaterally move to a
mildly preferred state which can be blocked by another DMmoving to a state which
is greatly less preferred by the original DM. The descriptions of these different
classifications of preferences are presented in Table6.1.

Let s ∈ S and i ∈ N . Based on different structures of preferences, DM i can
identify different subsets of S. For simple preference, DM i can identify three subsets
of S with respect to a state s: the set of states more preferred by DM i than state s
(denoted by�+

i (s)); the set of states equally preferred to state s byDM i (�=
i (s)); and

the set of states less preferred byDM i to state s (�−
i (s)) (see Sect. 4.1 for details). For

the three types of preference, DM i can identify five subsets of S: �++
i (s), �+m

i (s),
�=

i (s), �
−m
i (s), and �−−

i (s), which are explained in Table6.1. Notice that in this
table that the set of states mildly preferred to state s by DM i , given by �

+m
i (s), have

an “m” in the superscript in order to distinguish this set from �+
i (s) for the case of

a simple preference structure in which �++
i (s) does not exist. Therefore, all states

that are more preferred to state s by DM i would be included in �+
i (s) for a simple

preference structure. Similar comments hold for the set �−m
i (s) in Table6.1.

In Sect. 6.3, a given DM can levy a sanction against a unilateral improvement by
DM i from state s if the sanctioning DM can put DM i in either a less preferred
or equally preferred state relative to state s. Therefore, the set of states given by
�

−−,−,=
i (s) = �−−

i (s) ∪ �
−m
i (s) ∪ �=

i (s), where ∪ denotes the union operation, is
important in various stability definitions. Note that in the graph model with strength
of preference, s �i q iff either s >i q or s �i q. Hence, the three types of preference
structure expand simple preference.

The simple preference structure having the set of binary relations given as {∼,�},
and the expanded preference structure with strength of preference, which has the set
of binary relations {∼,>,�}, are referred to as having two types of preferences
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Table 6.2 Degree of relative preference

Degree of strength Description Notation

d = r Preferred at degree r

r
︷ ︸︸ ︷

> · · · >

· · · · · · · · · · · · · · · · · ·
d = 3 Very strongly preferred ≫
d = 2 Strongly preferred �
d = 1 Moderately preferred >

d = 0 Equally preferred ∼

and three kinds of preferences, respectively. The existing two preference structures
in the graph model are extended to the general case of multiple types of preference
structures with any specified degree in the next section (Xu et al. 2009).

6.1.2 Multiple Degrees of Preference

A set of new and more general binary relations
d

︷ ︸︸ ︷

> · · · > for d = 1, 2, . . . , r , as
listed in Table6.2, are introduced in this section to represent DM i’s preference at
each degree d. With the introduction of these new binary relations, the three types
of preference structures in the graph model are extended from a triplet of relations,
to an r + 1 types of preference relations for DM i over the set of states, which is

expressed as {∼i ,>i ,�i , . . . ,
r�i } on S, where

r�i denotes
r

︷ ︸︸ ︷

> · · · >i , i.e., DM i has
preference at degree r for comparing states with respect to preference. For instance,
s ≫i q means that DM i very strongly prefers state s to state q. Similar to the case
for simple preference as described in Sect. 3.2.4, it is assumed that the preference
relations of each DM i ∈ N have the following properties:

(i) ∼i is reflexive and symmetric (i.e., ∀s, q ∈ S, s ∼i s, and if s ∼i q, then
q ∼i s);

(ii)
d�i for d = 1, 2, . . . , r , is asymmetric (i.e., s

r�i q and q
r�i s cannot occur

simultaneously); and

(iii) {∼i ,>i ,�i , . . . ,
r�i } is strongly complete (i.e. if s, q ∈ S, then exactly one of

the following relations holds: s ∼i q, s
d�i q, or q

d�i s for d = 1, 2, . . . , r ).

Preference information can be either transitive or intransitive. For states k, s, q ∈ S,

if k
d�i s and s

d�i q imply k
d�i q, then the preference

d�i is transitive. Otherwise, the
preferences are called intransitive. Note that the assumption of transitivity of pref-
erences is not required in the following definitions so that the results in this chapter
hold for both transitive and intransitive preferences. When all of the preferences for
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Table 6.3 Subsets of S for DM i with respect to multiple degrees of preference

Degree of strength Subsets of S Description

d = r �
+(r)
i (s) = {q : q

r
︷ ︸︸ ︷

> · · · >i s} States preferred to state s at degree
r by DM i

�
−(r)
i (s) = {q : s

r
︷ ︸︸ ︷

> · · · >i q} States less preferred to state s at
degree r by DM i

.

.

.

.

.

.

d = 3 �
+(3)
i (s) = {q : q ≫i s} States very strongly preferred to

state s by DM i

�
−(3)
i (s) = {q : s ≫i q} States very strongly less preferred to

state s by DM i

d = 2 �
+(2)
i (s) = {q : q �i s} States strongly preferred to state s

by DM i

�
−(2)
i (s) = {q : s �i q} States strongly less preferred to

state s by DM i

d = 1 �
+(1)
i (s) = {q : q >i s} States moderately preferred to state

s by DM i

�
−(1)
i (s) = {q : s >i q} States moderately less preferred to

state s by DM i

d = 0 �
(0)
i (s) = �=

i (s) = {q : q ∼i s} States equally preferred to state s by
DM i

a given DM i are transitive, the preferences are said to be ordinal and, hence, the
states in a conflict can be ordered or ranked from most to least preferred, where ties
are allowed. Sometimes this ranking of states according to preference is referred to
as a “preference ranking”.

A list and associated descriptions for the range of subsets of S with respect to
multiple types of preference are presented in Table6.3. Starting at the bottom of the
table at degree 0, the notation for the states equally preferred to state s by DM i
is given as �

(0)
i (s) or �=

i (s). Notice that for degree of strength d = 1, . . . , r, two
subsets of states are given for each degree as �

+(d)
i (s) and �

−(d)
i (s), to indicate

subsets of states preferred to state s at degree d by DM i , and states less preferred
to state s at degree d by DM i , respectively. Hence, overall there is a total of 2r + 1
subsets of S when considering multiple degrees of preference. A diagram displaying
these degrees of preference for DM i is furnished later in Sect. 6.2.2 as the left side
of Fig. 6.1.
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Fig. 6.1 Relationships
among subsets of S and
reachable lists from s
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6.2 Reachable Lists of a Decision Maker

In addition to preference, one must be aware of the moves DMs control when ascer-
taining stability. Accordingly, in this section, moves unilaterally controlled by a DM
in one step are defined as reachable lists for the cases of three types and multiple
kinds of preferences in Sects. 6.2.1 and 6.2.2, respectively. Potential moves by a DM
in the face of simple preference are defined using reachable lists in Sect. 4.1.1. In
the upcoming two subsections, let i ∈ N , s ∈ S, and m = |S| be the number of the
states in S. The notation given by ∩ denotes the intersection operation while ∪ is the
union operation. Recall that each arc of Ai ⊆ S × S indicates that DM i can make a
unilateral move (in one step) from the initial state to the terminal state of the arc.

6.2.1 Reachable Lists for Three Degrees of Preference

The reachable lists of a DM for three types of preference are defined as follows:

(i) R++
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} stands for DM i’s reachable list

from state s by a strong unilateral improvement. This set contains all states q
which are strongly preferred by DM i to state s and can be reached in one step
from s;
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Table 6.4 Unilateral movements for DM i in the three types of preference structure

Type of movements Description

R++
i (s) = Ri (s) ∩ �++

i (s) All strong unilateral improvements from state s
for DM i

R+m
i (s) = Ri (s) ∩ �

+m
i (s) All mild unilateral improvements from state s

for DM i

R=
i (s) = Ri (s) ∩ �=

i (s) All equally preferred states reachable from
state s by DM i

R−m
i (s) = Ri (s) ∩ �

−m
i (s) All mild unilateral disimprovements from state

s for DM i

R−−
i (s) = Ri (s) ∩ �−−

i (s) All strong unilateral disimprovements from
state s for DM i

(ii) R+m
i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s} denotes DM i’s reachable list from

state s by a mild unilateral improvement;
(iii) R−m

i (s) = {q ∈ S : (s, q) ∈ Ai and s >i q} denotes DM i’s reachable list from
state s by a mild unilateral disimprovement;

(iv) R−−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} is DM i’s reachable list from state

s by a strong unilateral disimprovement;
(v) R+,++

i (s) = R+m
i (s) ∪ R++

i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s or q �i s}
denotes DM i’s reachable list from state s by a mild unilateral move or strong
unilateral move.

From the above definitions, these reachable lists from state s by DM i can be
summarized as presented in Table6.4. As discussed in Sect. 4.1.1, DM i’s reachable
list from state s, Ri (s), representsDM i ′s unilateralmoves (UMs). Ri (s) is partitioned
according to the three kinds of preference structure as Ri (s) = R++

i (s) ∪ R+m
i (s) ∪

R=
i (s) ∪ R−m

i (s) ∪ R−−
i (s).

6.2.2 Reachable Lists for Multiple Degrees of Preference

The set Ri (s) denotes the unilateral moves (UMs) of DM i from s ∈ S, and is
also called i’s reachable list from s. It contains all states to which DM i can move,
unilaterally and in one step, from state s. Similarly, the set R+

i (s) = {q ∈ S : q ∈
Ri (s) and q

d�i s for d = 1, 2, . . . , r} contains DM i’s unilateral improvements
(UIs) from state s for all degrees of preference. Note that although the same notation
“R+

i (s)” is used in Sect. 4.1.1 to represent DM i’s unilateral improvements from
state s at degree 1, the meaning of R+

i (s) here differs from that: there, it denotes all
unilateral improvements, which can only be of degree 1 from s by DM i , whereas
here, it includes all unilateral improvements, no matter what degree. All reachable
lists from state s at each degree of preference for DM i are expressed by R+(r)

i (s), . . .,
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Table 6.5 Reachable lists of DM i at some degree of preference

Type of movement Description

R+(d)
i (s) = Ri (s) ∩ �

+(d)
i (s)

(d = 1, 2, . . . , r )
All unilateral improvements of degree
d from state s for DM i

R(0)
i (s) = R=

i (s) = Ri (s) ∩ �=
i (s)

(d = 0)
All equally preferred states reachable
from state s by DM i

Ri (s)−(d) (s) = Ri (s) ∩ �
−(d)
i (s)

(d = 1, 2, . . . , r )
All unilateral disimprovements of degree
d from state s for DM i

R+(1)
i (s), R(0)

i (s), R−(1)
i (s), . . ., and R−(r)

i (s). Let Ri (s) =
r
⋃

d=0
(R−(d)

i (s)∪ R+(d)
i (s))

and R+
i (s) =

r
⋃

d=1
R+(d)
i (s), where R+(d)

i (s) and R−(d)
i (s) for d = 0, 1, . . . , r, are

described in Table6.5. Additionally, the relations among the subsets of S, �+(d)
i (s)

and �
−(d)
i (s) for d = 0, 1, . . . , r, and the corresponding reachable lists from state s

for DM i , R+(d)
i (s) and R−(d)

i (s) for d = 0, 1, . . . , r, are depicted in Fig. 6.1.
Incorporating these extended multiple kinds of preference into the Graph Model

for Conflict Resolution results in multi-degree versions of the four basic solution
concepts presented in Sect. 6.4. The stability definitions for three types of preference
are presented in next section.

6.3 Logical Representation of Stabilities for Three Types
of Preference

Three types of preference including strength of preference are integrated into the
Graph Model for Conflict Resolution to extend the four basic solution concepts in
order to ascertain their strategic impacts. Recall that the three types of preference
are equally preferred (∼), mildly preferred (>), and strongly preferred (�) which
together form the preference structure denoted as {∼,>,�}. The four stability def-
initions given in the next subsection recognize two cases in which the degree of
strength in the three kinds of preference are distinguished. Firstly, general stabilities
are defined, and then the two subclasses, strong and weak, are determined. Stabili-
ties of the first kind are referred to as general because they are in essence the same
as the stability definitions using simple preference, as defined in Sect. 4.2. Stabil-
ity definitions are called strong or weak stabilities in order to reflect the additional
preference information contained in the strength of the preference relation. These
more sophisticated definitions furnish expanded strategic insights into a conflict
model that handles strength of preference. Sections6.3.1 and 6.3.3 furnish the above
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stability definitions for 2-DM and n-DM (n ≥ 2), respectively, while Sect. 6.3.2
presents definitions for reachable lists of a coalition of DMs required in the n-DM
stability definitions.

6.3.1 Two Decision Maker Case

In order to calculate the stability of a state for a given DM i ∈ N , it is necessary to
examine possible responses by all other DMs j ∈ N \ {i}. In a two-DM model, the
only opponent of DM i is the remaining DM j . For all of the definitions given in
next section, assume that N = {i, j} and s ∈ S.

6.3.1.1 Logical Representation of General Stabilities

Four general solution concepts are given below in which strength of preference is not
considered in sanctioning. However, the general stabilities are different from those
defined in Sect. 4.2 for simple preference, because the stability definitions for simple
preference do not directly take into account degree or strength of preference.

Definition 6.1 State s isNash stable forDM i , denoted by s ∈ SNash
i , iff R+,++

i (s) =
∅.
Definition 6.2 State s is general GMR (GGMR) for DM i , denoted by s ∈ SGGMR

i ,
iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈
�

−−,−,=
i (s).

Definition 6.3 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1), such that s2 ∈

�
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri (s2).

Definition 6.4 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

j (s1) such that

s2 ∈ �
−−,−,=
i (s).

6.3.1.2 Logical Representation of Strong and Weak Stabilities

When strength of preference is introduced into the graph model, stability definitions
can be strong or weak, according to the degree of sanctioning. For three kinds of
preference, stabilities are divided into strongly and weakly stable with respect to the
strength of possible sanctions. Hence, if a particular state s is general stable, then s
is either strongly stable or weakly stable. Strong and weak stabilities only include
GMR, SMR, and SEQ because Nash stability does not involve sanctions.
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Definition 6.5 State s is strongly GMR (SGMR) for DM i , denoted by s ∈ SSGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1) such that s2 ∈

�−−
i (s).

Definition 6.6 State s is strongly SMR (SSMR) for DM i , denoted by s ∈ SSSMR
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R j (s1), such that s2 ∈ �−−

i (s)
and s3 ∈ �−−

i (s) for all s3 ∈ Ri (s2).

Definition 6.7 State s is strongly SEQ (SSEQ) for DM i , denoted by s ∈ SSSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

j (s1) such that
s2 ∈ �−−

i (s).

Definition 6.8 Let s ∈ S and i ∈ N . State s is weakly stable for DM i iff s is general
stable, but not strongly stable for some stability definition.

Example 6.1 (Stabilities for the Extended Sustainable Development Model under
Three-degree Preference) The sustainable development conflict is introduced in
Example 3.1. Here, this conflict is expanded to include three degrees of preference
for the two-DM case. Specifically, the conflict consists of two DMs: an environmen-
tal agency (DM 1: E) and a developer (DM 2: D); and two options: DM 1 controls
the option of being proactive (labeled P) and DM 2 has the option of practicing sus-
tainable development (labeled SD) for properly treating the environment. The two
options are combined to form four feasible states: s1, s2, s3, and s4. These results
are listed in Table6.6, where a “Y” indicates that an option is selected by the DM
controlling it and an “N” means that the option is not chosen.

The preference information for each DM among the four states is provided at the
bottom of Table6.6. As can be seen for the case of DM 1, this DM prefers s1 over
s3, greatly prefers s3 to s2, which is equally preferred to s4. Notice that DM 2 greatly
prefers s1 to s4. The graph model for the extended sustainable development conflict
is presented in Fig. 6.2. One can see, for instance from DM 1’s directed graph on the
left side of Fig. 6.2, that this DM controls the movement between states s1 and s3 as
well as s2 and s4.

The extended sustainable development model with three degrees of preference
is used to illustrate how to determine general and strong stabilities under the
three-degree version using Definitions6.1–6.8. In particular, first consider analyzing

Table 6.6 Extended sustainable development game in option form under three-degree preference

DM 1: Environmental agency

1. Proactive (P) Y Y N N

DM 2: Developer

2. Sustainable development (SD) Y N Y N

States s1 s2 s3 s4

Preferences s1 >1 s3 �1 s2 ∼1 s4 for DM 1 and
s3 >2 s1 �2 s4 ∼2 s2 for DM 2
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Fig. 6.2 Graph model for
the extended sustainable
development conflict under
three-degree preference
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state s1 with respect to general Nash stability for DM 1. From Fig. 6.2, DM 1 has
a unilateral move (UM) from s1 to s3. However, s1 is mildly more preferred to s3
by DM 1 because the move from s1 to s3 does not fall into the category of a mild
or strong unilateral improvement. Therefore, state s1 is general Nash stable for DM
1 according to Definition6.1. Moreover, s1 is also general GMR, SMR, and SEQ
stable for DM 1.

Next, one can assess whether s3 is general GMR stable for DM 1. From Fig. 6.2,
DM 1 has a mild unilateral improvement from s3 to s1 and DM 2 has a unilateral
move from s1 to s2. However, since s2 is strongly less preferred than s3 for DM 1,
state s3 is general GMR stable for DM 1 according to Definition6.2. The stabilities
of the other three states for the two DMs can be determined in a similar fashion.

Now, consider analyzing state s3 fromDM1’s viewpoint for GSMR stability using
Definition6.3. As can be seen from DM 1’s directed graph in Fig. 6.2a, DM 1 has a
mild UI from s3 to s1 and DM 2 has a UM from s1 to s2, from which DM 1 has only a
UM from s2 to s4. Because DM 1 is indifferent between s2 and s4, which are greatly
less preferred to state s3, s3 is GSMR stable for DM 1 using Definition6.3. General
SMR stability for other states can be calculated in a similar way.

To explain how general SEQ stability is calculated, consider state s3 from DM 1’s
perspective. Because DM 2’s possible countermove from s1 to s2 is, in fact, a move
to a greatly less preferred state, this DM has no credible sanction to stop DM 1 from
taking advantage of its UI from s3 to s1. Accordingly, state s3 is not general SEQ
stable for DM 1.

One could also provide an explanation for determining strong or weak stabilities
using Definitions6.5–6.8 for the extended sustainable development conflict. The
discussion would be quite similar to the general stabilities.

The stable states and equilibria for the extended sustainable development conflict
under three-degree preference are summarized in Table6.7, in which “

√
” for a given

state means that this state is general, strong, or weak stable for DM 1 or DM 2 and
“Eq” is an equilibrium for an appropriate solution concept. The results provided by
Table6.7 show that state s1 is a strong equilibrium for the four basic stabilities. State
s3 is strongly stable for GMR and SMR for all DMs. Hence, s1 and s3 are better
choices for decision makers.
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6.3.2 Reachable Lists of a Coalition of Decision Makers

To extend the definitions of the reachable lists for a coalition to take three kinds of
preference (∼,>,�) into account, a legal sequence of coalitional mild or strong
unilateral improvements (MSUIs) must be defined first. The reachable lists of coali-
tion H from state s by the legal sequences of UMs and UIs are defined in Sect. 4.2.2
for simple preference. The reachable lists of coalition H are expanded to three kinds
of preference in this section. A legal sequence of MSUIs is a sequence of allowable
mild unilateral improvements or strong unilateral improvements by a coalition, with
the same restriction that any member in the coalition may move more than once, but
not twice consecutively. The formal definition for reachable lists of coalition H by
the legal sequence of MSUIs is presented as follows.

Definition 6.9 Let s ∈ S, H ⊆ N , and H �= ∅. A mild or strong unilateral improve-
ment (MSUI) by H is a member of R+,++

H (s) ⊆ S, defined inductively by

(1) assuming �
+,++
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+,++
j (s), then s1 ∈ R+,++

H (s) and

�
+,++
H (s, s1) = �

+,++
H (s, s1) ∪ { j};

(3) if s1 ∈ R+,++
H (s), j ∈ H , and s2 ∈ R+,++

j (s1), then, provided �
+,++
H (s, s1) �=

{ j}, s2 ∈ R+,++
H (s) and �

+,++
H (s, s2) = �

+,++
H (s, s2) ∪ { j}.

Definition6.9 is similar to Definition4.7 for simple preference in Sect. 4.2.2 and
Definition5.18 for unknownpreference inSect. 5.2.2. It is also an inductive definition.
By (2) in Definition6.9, the states reachable from s are identified and added to the
set R+,++

H (s); then, using (3), all states reachable from those states are identified and
added to R+,++

H (s); afterwards the process is repeated in finitely many steps until no
further states are added to the coalitional reachable list by legal sequences of mild or
strong unilateral improvements, R+,++

H (s). For �
+,++
H (s, s1), if s1 ∈ R+,++

H (s), then
�

+,++
H (s, s1) ⊆ H is the set of all last DMs in legal MSUI sequences from s to s1.

Suppose that �+,++
H (s, s1) contains only one DM j ∈ N . Then any move from s1 to

a subsequent state s2 must be made by a member of H other than j ; otherwise DM
j would have to move twice in succession.

6.3.3 n-Decision Maker Case

Within an n-DM model (n ≥ 2) for three degrees of preference structure, DM i’s
opponents, N \ {i}, consist of a group of one or more DMs. In order to analyze
the stability of a state for DM i ∈ N , it is necessary to take into account possible
responses by all other DMs j ∈ N \ {i}. The key components in stability definitions
for three degrees of preference are reachable lists of coalition N \ {i} from state s,
RN\{i}(s) and R+,++

N\{i} (s), discussed above. The stability definitions for two DM cases
presented in Sect. 6.3.1 are extended to general n-DM models next.
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6.3.3.1 Logical Representation of General Stabilities

Four standard solution concepts are given below in which strength of preference
is not considered in sanctioning. However, the general stabilities are different from
those defined in Sect. 4.2.3 for simple preference, because stability definitions for
simple preference cannot analyze conflict models having strength of preference. Let
i ∈ N and s ∈ S for the following definitions.

Definition 6.10 State s is Nash stable for DM i , denoted by s ∈ SNash
i , iff

R+,++
i (s) = ∅.
Nash stability definitions are identical for both the 2-DM and the n-DM models

because Nash stability does not consider opponents’ responses.

Definition 6.11 State s is general GMR (GGMR) for DM i , denoted by s ∈ SGGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �
−−,−,=
i (s).

Definition 6.12 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri (s2).

Definition 6.13 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i} (s1) such that

s2 ∈ �
−−,−,=
i (s).

Similar to 2-DM case, general stabilities for n-DM models are partitioned into
strong or weak stabilities according to the level of sanctioning. Strong and weak
stabilities only includeGMR, SMR, and SEQbecauseNash stability does not involve
sanctions.

6.3.3.2 Logical Representation of Strong and Weak Stabilities

Definition 6.14 State s is strongly GMR (SGMR) for DM i , denoted by s ∈ SSGMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �−−
i (s).

Definition 6.15 State s is strongly SMR (SSMR) for DM i , denoted by s ∈ SSSMR
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri (s2).

Definition 6.16 State s is strongly SEQ (SSEQ) for DM i , denoted by s ∈ SSSEQ
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++

N\{i} (s1) such that
s2 ∈ �−−

i (s).

The important components, RN\{i}(s1) and R+,++
N\{i} (s1), in Definitions6.14–6.16

are defined in Sects. 4.2.2 and 6.3.2, respectively, for H = N\{i}. The definition of
weak stability is presented next.

Definition 6.17 Let s ∈ S and i ∈ N . State s is weakly stable for DM i iff s is
general stable, but not strongly stable for some stability definition.
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6.4 Logical Representation of Stabilities for Multiple
Degrees of Preferences

The following stability definitions for multiple kinds of preference are analogous to
the concepts for three types of preference presented in Sect. 6.3. The multiple-degree
preference is included into the Graph Model for Conflict Resolution resulting in
multilevel versions of the four basic solution concepts, Nashk , GMRk , SMRk , and
SEQk for k = 0, 1, . . . , r. The stability definitions in a 2-DM conflict model are
presented next.

6.4.1 Two Decision Maker Case

6.4.1.1 Logical Representation of General Stabilities

Definition 6.18 State s is general Nash stable (GNash) for DM i , denoted by
s ∈ SGNash

i , iff R+
i (s) = ∅.

Definition 6.19 State s isgeneralGMR (GGMR) forDM i , denoted by s ∈ SGGMR
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s).

Definition 6.20 State s is general SMR (GSMR) for DM i , denoted by s ∈ SGSMR
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2).

Definition 6.21 State s is general SEQ (GSEQ) for DM i , denoted by s ∈ SGSEQ
i ,

iff for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s).

Note that in this section the meaning of R+
i (s) differs from that in Sect. 4.1.1 to

representDM i’sUI fromstate s for simple preference; there, it denotes all one-degree
unilateral improvements from s by DM i , whereas here, it includes all unilateral
improvements, no matter how many degrees of preference. For three degrees of
preference discussed above, general stabilities are divided into strongly and weakly
stable according to the strength of the possible sanction, i.e., if a particular state s
is general stable, then s is either strongly stable or weakly stable. Within multiple
degrees of preference, the general stabilities are constituted by stabilities at each
level of preference.
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Fig. 6.3 Nash stability at
degree k for DM i
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6.4.1.2 Logical Representation of Stabilities at Degree k

Firstly, definitions are nowgiven for different strengths ofNash stability. Even though
unilateral improvements do not exist under Nash stability, the idea of strength of sta-
bility can still be captured using the degree of preference for the most preferred states
to which the DM could unilaterally move. All these states must be less preferred than
the initial state. A special definition is required for the case inwhich nomovements of
any type exist for the DM. In particular, if DM i has no unilateral move at all degrees
of preference from state s, state s is extremely stable. The stability is proposed next.

Definition 6.22 If Ri (s) = ∅, then state s is super stable for DM i at any degree of
preference, denoted by s ∈ SSuper

i .

Definition 6.23 State s is Nash stable (Nash0) at degree 0 for DM i , denoted by
s ∈ SNash0

i , iff R+
i (s) = ∅ and R(0)

i (s) �= ∅.

Notice in the definition of Nash0 that no unilateral improvements by DM i from
state s exist but an equally preferred state must be present.

Definition 6.24 For 1 ≤ k ≤ r , state s is Nash stable (Nashk) at degree k for DM

i , denoted by s ∈ SNashk
i , iff R+

i (s) ∪ (
k−1
⋃

d=0
R−(d)
i (s)) = ∅ and R−(k)

i (s) �= ∅.

For Nashk stability, the most preferred state to which DM i can unilaterally move
from s is located at degree −k (below degree 0). The kth degree Nash stability is
depicted in Fig. 6.3. The super stability is referred to as Nash stability at the highest
degree, because no unilateral moves exist for DM i from s.

When multiple-degree preference is incorporated into the graph model, GMR,
SMR, and SEQ stabilities at different degrees can be distinguished according to the
strength of the sanctions.
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Fig. 6.4 GMR stability at
degree k for DM i
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Definition 6.25 State s is general metarational (GMR0) at degree 0 for DM i ,
denoted by s ∈ SGMR0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

(0)
i (s) and

R j (s ′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Based on Definition6.25, when DM i has no UIs from state s and it is Nash0
stable, as in Definition6.24, then state s is also GMR stable at degree 0.

Definition 6.26 For 1 ≤ k ≤ r − 1, state s is general metarational (GMRk) at

degree k for DM i , denoted by s ∈ SGMRk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R j (s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

−(k)
i (s) and R j (s ′

1)
⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

Figure6.4 contains a specific example to explain the meaning of Definition6.26.
Notice that DM i has UIs from state s to states s1 and s ′

1, each of which can be at
any degree from 1 to r . From state s1, DM j , who is DM i’s opponent, has one
unilateral move to state s2 (labeled R j (s1)), which is as shown on the degree axis to
be of degree −q, where q can range from k to r relative to s. With respect to state
s ′
1, DM j can move to state s ′

2, which is only located at degree −k relative to state s.
Therefore, state s for DM i possesses general meterational stability at degree k for
which 0 < k < r according to Definition6.26.
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If all of DM i’s UIs from a state are sanctioned at the highest degree r (exactly
r levels below the state), then the state is called general metarational at degree r . Its
formal definition is given below.

Definition 6.27 State s is general metarational (GMRr ) at degree r for DM i ,

denoted by s ∈ SGMRr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or

R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with
s2 ∈ �

−(r)
i (s).

For DM i , if a UI from a state is sanctioned at degree k below the state and all
other UIs from the particular state are sanctioned at a degree of at least k below the
state, and these corresponding sanctions cannot be avoided by any counterresponse,
then the state is called SMR stable at degree k. Its formal definition is given below.

Definition 6.28 State s is symmetric metarational (SMR0) at degree 0 for DM i ,
denoted by s ∈ SSMR0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

(0)
i (s) and

R j (s ′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅, as well as s3 ∈

r
⋃

d=0
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪

Ri (s ′
2).

Symmetric metarationality at degree k (0 < k ≤ r ) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 6.29 For 1 ≤ k ≤ r − 1, state s is symmetric metarational (SMRk+)

at degree k for DM i , denoted by s ∈ S
SMRk+
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅
and R−(k)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one

s2 ∈ R j (s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R j (s ′

1) such that s ′
2 ∈ �

−(k)
i (s) and R j (s ′

1)
⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅, as well as

s3 ∈
r
⋃

d=k
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪ Ri (s ′

2).

Figure6.5 vividly illustrates the SMR stability at k+ for DM i . Stability SMRk−

is defined by S
SMRk−
i = SGSMR

i ∩ SGMRk
i − S

SMRk+
i . Equivalently,

Definition 6.30 For 1 ≤ k ≤ r − 1, state s is symmetric metarational (SMRk−)

at degree k for DM i , denoted by s ∈ S
SMRk−
i , iff s ∈ SGMRk

i and R+
i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ R j (s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well as there exists s ′

1 ∈ R+
i (s) and
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Fig. 6.5 SMR stability at
degree k+ for DM i
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Definition 6.31 State s is symmetric metarational (SMRr+) at degree r for DM

i , denoted by s ∈ SSMRr+
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅,

or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R j (s1) with
s2 ∈ �

−(r)
i (s) and s3 ∈ �

−(r)
i (s) for any s3 ∈ Ri (s2).

Definition 6.32 State s is symmetric metarational (SMRr−) at degree r for DM i ,
denoted by s ∈ SSMRr−

i , iff R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least

one s2 ∈ R j (s1)with s2 ∈ �
−(r)
i (s) and s3 ∈

r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well

as there exists s ′
1 ∈ R+

i (s) and for every s ′
2 ∈ R j (s1)∩�

−(r)
i (s), Ri (s ′

2)∩�
(−d)
i (s) �= ∅

for at least one d ∈ {0, . . . , (r − 1)}.
Sequential stability at degree k is similar to the stability of GMR at the same

degree. The only modification is that all DM i’s UIs are subject to credible sanctions
by DM i’s opponent. Its formal definition is given below.

Definition 6.33 State s is sequentially stable (SEQ0) at degree 0 forDM i , denoted
by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

j (s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R+

j (s ′
1) such that s ′

2 ∈ �
(0)
i (s) and

R+
j (s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.
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Fig. 6.6 SEQ stability at
degree k for DM i
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Definition 6.34 For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

degree k for DM i , denoted by s ∈ SSEQk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
j (s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R+

j (s ′
1) such that s ′

2 ∈ �
−(k)
i (s) and R+

j (s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

Figure6.6 can be used to explain the meaning of Definition6.34. In fact, Defini-
tion6.34 is similar to Definition6.29. The only difference is that DM j , who is DM
i’s opponent, has one unilateral improvement to state s2 at a degree ranged from k
to r relative to s. With respect to state s ′

1, DM j has a unilateral improvement s ′
2,

which is only located at degree −k relative to state s. Therefore, state s for DM i is
sequentially stable at degree k for which 0 < k < r according to Definition6.34.

Definition 6.35 State s is sequentially stable (SEQr ) at degree r for DM i , denoted

by s ∈ SSEQr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
j (s1) with s2 ∈ �

−(r)
i (s).

In an n-DM model, where n ≥ 2, the opponents of a DM can be thought of
as a coalition of one or more DMs. To extend the graph model stability definitions
to stability definitions in n-DM models with multiple degrees of preference, the
definitions of a legal sequence of moves for three degrees of preference presented in
Sect. 6.3.2 must first be extended to take multiple degrees of preference into account.
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6.4.2 Reachable Lists of a Coalition of Decision Makers

A legal sequence of UMs in a graph model with multiple degrees of preference for
a coalition of DMs is a sequence of states linked by unilateral moves controlled by
members of the coalition, in which a DM may move more than once, but not twice
in succession. As explained in Sect. 4.2.2 before Definition4.6, this rule allows the
GMCR methodology to handle intransitive moves, in addition to transitive moves.
When H = {i}, a legal sequence of UMs for the coalition H reduces to a unilateral
move of DM i .

Let the coalition H ⊆ N satisfy |H | ≥ 2 and let the status quo state be s ∈ S.
Define RH (s) ⊆ S, the reachable list of coalition H from state s by a legal sequence of
UMs in a graphmodel with multiple degrees of preference. The following definitions
are adapted from Fang et al. (1993) and Hamouda et al. (2006):

Definition 6.36 Let s ∈ S, H ⊆ N , and H �= ∅. Here, R j (s) =
r
⋃

d=0
(R−(d)

j (s) ∪
R+(d)

j (s)) for any j ∈ H . A unilateral move by H is a member of RH (s) ⊆ S, defined
inductively by:

(1) if j ∈ H and s1 ∈ R j (s), then s1 ∈ RH (s) and �H (s, s1) = �H (s, s1) ∪ { j};
(2) if s1 ∈ RH (s), j ∈ H and s2 ∈ R j (s1), then, provided �H (s, s1) �= { j},

s2 ∈ RH (s) and �H (s, s2) = �H (s, s2) ∪ { j}.
Note that Definition6.36 is analogous toDefinition4.6, but, here, unilateral moves

include the states that are reachable from state s by multiple degrees of preference
(may have more than three degrees) listed in Table6.5.

In a graph model with multiple degrees of preference, a legal sequence of UIs
for coalition H is a sequence of states linked by unilateral improvements including
each-degree UIs controlled by members of the coalition H with the usual restriction
that amember of the coalitionmaymovemore than once, but not twice consecutively.
The formal definition is given below.

Definition 6.37 Let R+
j (s) =

r
⋃

d=1
R+(d)

j (s) for any j ∈ H . A unilateral improvement

by H is a member of R+
H (s) ⊆ S, defined inductively by:

(1) if j ∈ H and s1 ∈
r
⋃

d=1
R+(d)

j (s), then s1 ∈ R+
H (s) and �+

H (s)(s, s1) =
�+

H (s)(s, s1) ∪ { j};
(2) if s1 ∈ R+

H (s), j ∈ H and s2 ∈
r
⋃

d=1
R+(d)

j (s1), then, provided�+
H (s)(s, s1) �= { j},

s2 ∈ R+
H (s) and �+

H (s, s2) = �+
H (s, s2) ∪ { j}.

Definition6.37 is identical to Definition6.36 except that each move is to a state
strictly preferred with some degree of preference by the mover to the current state.
Similarly, �+

H (s, s1) includes all last movers in a legal sequence of UIs by coalition
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H from state s to state s1. Specifically, this definition is inductive: first, using (1),
the states reachable by a single DM in H from s by one step UIs in multiple levels
of preference are identified and added to R+

H (s); then, using (2), all states reachable
from those states are identified and added to R+

H (s); afterwards the process is repeated
until no further states are added to R+

H (s) by repeating (2). Because R+
H (s) ⊆ S, and

S is finite, this limit must be reached in finitely many steps.

6.4.3 n-Decision Maker Case

6.4.3.1 Logical Representation of General Stabilities

Super stability and Nash stability definitions are identical for both the 2-DM and the
n-DM models because these stabilities do not consider the opponents’ responses.
Let i ∈ N and s ∈ S for the following definitions.

Definition 6.38 State s ∈ S is GGMR for DM i , denoted by s ∈ SGGMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s).

Definition 6.39 State s ∈ S is GSMR for DM i , denoted by s ∈ SGSMR
i , iff for

every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=0
�

−(d)
i (s) and

s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2).

Definition 6.40 State s ∈ S is GSEQ for DM i , denoted by s ∈ SGSEQ
i , iff for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s).

6.4.3.2 Logical Representation of Stabilities at k Degree

Similar to 2-DM conflicts, solution concepts for n-DM conflicts can be defined
as different-degree stabilities, according to degrees of preference. Nash stability
definitions in multiple DM conflicts are the same as those in 2-DM cases. Therefore,
only the extended GMR, SMR, and SEQ are defined here. For DM i , if a UI from
state s is sanctioned by the legal sequence of UMs of i’s opponents in exactly k
degrees below s and all other UIs from state s are sanctioned in at least k degrees
below s, then the status quo s is called general metarational at degree k. The process
is portrayed in Fig. 6.7 and the formal definition is given below.

Definition 6.41 State s is GMR0 for DM i , denoted by s ∈ SGMR0
i , iff either

R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists
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Fig. 6.7 General
metarationality at degree k
for DM i
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at least one s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and there exists at least one s ′

1 ∈

R+
i (s)ands ′

2 ∈ RN\{i}(s ′
1)suchthats

′
2 ∈ �

(0)
i (s)andRN\{i}(s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Definition 6.42 For 1 ≤ k ≤ r − 1, state s is GMRk for DM i , denoted by s ∈
SGMRk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(k)
i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.

If all of DM i’s UIs from a state are sanctioned at exactly r degrees below the
state, then the state is called general metarational at degree r . Its formal definition is
given below.

Definition 6.43 State s is GMRr for DM i , denoted by s ∈ SGMRr
i , iff either

r−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s).

For DM i , if a UI from a state is sanctioned by the legal sequence of UMs of DM
i’s opponents at degree k and all other UIs from the particular state are sanctioned
at degree at least k, and these corresponding sanctions cannot be avoided by any
counterresponse, then the state is called symmetric metarational at degree k. The
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Fig. 6.8 Symmetric
metarationality at degree k+
for DM i
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stability of SMR at degree k is portrayed in Fig. 6.8 and the formal definition is given
below.

Definition 6.44 State s is SMR0 forDM i , denoted by s ∈ SSMR0
i , iff either R+

i (s) =
∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every s1 ∈ R+

i (s) there exists at least one

s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

(0)
i (s) and RN\{i}(s ′

1)
⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅, as well

as s3 ∈
r
⋃

d=0
�

−(d)
i (s) for any s3 ∈ Ri (s2) ∪ Ri (s ′

2).

Symmetric metarationality at degree k (0 < k ≤ r ) for DM i consists of SMRk+

and SMRk− that are defined next.

Definition 6.45 For 1 ≤ k ≤ r − 1, state s is SMRk+ for DM i , denoted by

s ∈ S
SMRk+
i , iff either

k−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and

for every s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s)

and there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(k)
i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅, as well as s3 ∈

r
⋃

d=k
�

−(d)
i (s) for any s3 ∈

Ri (s2) ∪ Ri (s ′
2).
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Stability SMRk− is defined by SSMRk−
i = SGSMR

i ∩ SGMRk
i − SSMRk

i . Equivalently,

Definition 6.46 For 1 ≤ k ≤ r − 1, state s is SMRk− for DM i , denoted by s ∈
S
SMRk−
i , iff s ∈ SGMRk

i and R+
i (s) �= ∅, and for every s1 ∈ R+

i (s) there exists at least

one s2 ∈ RN\{i}(s1) with s2 ∈
r
⋃

d=k
�

−(d)
i (s) and s3 ∈

r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2),

as well as there exists s ′
1 ∈ R+

i (s) and for every s ′
2 ∈ RN\{i}(s ′

1) ∩ (
r
⋃

d=k
�

−(d)
i (s)),

Ri (s ′
2) ∩ �

(−d)
i (s) �= ∅ for at least one d ∈ {0, . . . , (k − 1)}.

Definition 6.47 State s is SMRr+ for DM i , denoted by s ∈ SSMRr+
i , iff either

r−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s)

there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s) and s3 ∈ �

−(r)
i (s) for any

s3 ∈ Ri (s2).

Definition 6.48 State s is SMRr− for DM i , denoted by s ∈ SSMRr−
i , iff R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �
−(r)
i (s)

and s3 ∈
r
⋃

d=0
�

−(d)
i (s) for all s3 ∈ Ri (s2), as well as there exists s ′

1 ∈ R+
i (s)

and for every s ′
2 ∈ RN\{i}(s1) ∩ �

−(r)
i (s), Ri (s ′

2) ∩ �
(−d)
i (s) �= ∅ for at least one

d ∈ {0, . . . , (r − 1)}.
The onlymodification betweenGMRk and SEQk is that allDM i’sUIs are subject

to credible sanctions by the legal sequence of UIs of DM i’s opponents. Figure6.9
depicts sequential stability at degree k. Its formal definition is given below.

Definition 6.49 State s is sequentially stable (SEQ0) at level 0 for DM i , denoted
by s ∈ SSEQ0

i , iff either R+
i (s) = ∅ and R(0)

i (s) �= ∅, or R+
i (s) �= ∅ and for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ R+

N\{i}(s1) with s2 ∈
r
⋃

d=0
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ R+

N\{i}(s
′
1) such that s ′

2 ∈ �
(0)
i (s) and

R+
N\{i}(s

′
1)

⋂

(
r
⋃

d=1
�

−(d)
i (s)) = ∅.

Definition 6.50 For 1 ≤ k ≤ r − 1, state s is sequentially stable (SEQk) at

level k for DM i , denoted by s ∈ SSEQk
i , iff either

k−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and

R−(k)
i (s) �= ∅, or R+

i (s) �= ∅ and for every s1 ∈ R+
i (s) there exists at least one

s2 ∈ R+
N\{i}(s1) with s2 ∈

r
⋃

d=k
�

−(d)
i (s) and there exists at least one s ′

1 ∈ R+
i (s) and

s ′
2 ∈ R+

N\{i}(s
′
1) such that s ′

2 ∈ �
−(k)
i (s) and R+

N\{i}(s
′
1)

⋂

(
r
⋃

d=k+1
�

−(d)
i (s)) = ∅.
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Fig. 6.9 Sequential stability
at degree k for DM i
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Definition 6.51 State s is sequentially stable (SEQr ) at level r for DM i , denoted

by s ∈ SSEQr
i , iff either

r−1
⋃

d=0
R−(d)
i (s) ∪ R+

i (s) = ∅ and R−(r)
i (s) �= ∅, or R+

i (s) �= ∅
and for every s1 ∈ R+

i (s) there exists at least one s2 ∈ R+
N\{i}(s1) with s2 ∈ �

−(r)
i (s).

When n = 2, the DM set N becomes {i, j} in Definitions 6.41–6.51, and the
reachable lists for H = N \ {i}by legal sequences ofUMsandUIs from s1, RN\{i}(s1)
and R+

N\{i}(s1), degenerate to R j (s1) and R+
j (s1), DM j’s corresponding reachable

lists from s1. Obviously, Definitions6.25–6.35 are special cases of Definitions6.41–
6.51, so the same notation is used for two DM cases and n-DM situations.

6.4.4 Interrelationship Among Stability Definitions
for Multiple Degrees of Preference

In Sect. 4.2.4, relationships among the four basic stabilities consisting of Nash,
GMR, SMR, and SEQ are presented for two types of preference (or simple pref-
erence). Within Sect. 6.3.3, stabilities under three kinds of preference are defined. In
Sect. 6.4.1.2, the four stability definitions at degree k are formally defined. In the fol-
lowing five theorems, a range of theoretical relationships among and within stability
definitions for different degrees of preference are proven.

Theorem 6.1 The interrelationships among the four basic stabilities at degree k are

SNashk
i ⊆ S

SMRk+
i ⊆ SGMRk

i , S
SMRk−
i ⊆ SGMRk

i , and SNashk
i ⊆ SSEQk

i ⊆ SGMRk
i ,
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Fig. 6.10 Interrelationships
among four stabilities at
level k

for 0 ≤ k ≤ r .

Proof When k = 0, the results are obvious, since there are no unilateral improve-
ments by DM i relative to state s, but there exist equally preferred states. Assume

that 0 < k ≤ r . If s ∈ SNashk
i , then

k−1
⋃

d=0
R−(d)
i (s)∪R+

i (s) = ∅ and R−(k)
i (s) �= ∅. This

implies that state s ∈ S
SMRk+
i using Definitions6.45 and 6.47. Hence, if s ∈ SNashk

i

for 0 ≤ k ≤ r , then s ∈ S
SMRk+
i , which implies SNashk

i ⊆ S
SMRk+
i .

Using Definitions6.41–6.47, if s ∈ S
SMRk+
i , it is obvious that s ∈ SGMRk

i for

0 ≤ k ≤ r . Therefore, the inclusion relations SNashk
i ⊆ S

SMRk+
i ⊆ SGMRk

i now
follow.

Based on Definitions6.46 and 6.48, the relation S
SMRk−
i ⊆ SGMRk

i is obvious.
Relations SNashk

i ⊆ SSEQk
i ⊆ SGMRk

i can be similarly verified. �

Let 0 ≤ k ≤ r . The inclusion relationships presented by Theorem6.1 are depicted
in Fig. 6.10. One should keep in mind that these relationships among stabilities are
valid for the situations in which all stabilities being compared have the same degree.
As can be clearly seen in this diagram, for example, if a state is Nashk , it is also
GMRk , SMRk+ , and SEQk , which is similar to the finding in Fig. 4.4 for the case
of simple preference.

The next theorem confirms the relationship that exists for a specific stability
definition at two different degrees. In particular, for each of the stability definitions,
there are no common stable states when the preferences are different degrees.

Theorem 6.2 Let 0 ≤ h, q ≤ r . When h �= q, the relationships between stabilities
at h degree and at q degree are

SNashh
i ∩ S

Nashq
i = ∅, (6.1)

SGMRh
i ∩ S

GMRq

i = ∅, (6.2)

S
SMRh+
i ∩ S

SMRq+
i = ∅, S

SMRh−
i ∩ S

SMRq−
i = ∅, S

SMRh+
i ∩ S

SMRh−
i = ∅, and (6.3)

SSEQh
i ∩ S

SEQq

i = ∅. (6.4)
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Proof First, Eq. 6.1 is proven. Assume that h > q. If there exists s ∈ SNashh
i ∩

S
Nashq
i , then s ∈ SNashh

i and s ∈ S
Nashq
i . Therefore, R+

i (s) ∪ (
h−1
⋃

d=0
R−(d)
i (s)) = ∅ and

R−(h)
i (s) �= ∅ as s is Nashh stable. Since h − 1 ≥ q, R−(q)

i (s) = ∅. This contradicts
the hypothesis that s is Nashq stable. Therefore, Eq. 6.1 holds.

Now, Eq.6.2 is verified. If s ∈ (SNashh
i ∪ S

Nashq
i ), Eq. 6.2 is obvious. Assume

that h > q and s /∈ (SNashh
i ∪ S

Nashq
i ). If there exists s ∈ SGMRh

i ∩ S
GMRq

i , then

s ∈ SGMRh
i and s ∈ S

GMRq

i . Because s is GMRq stable, R+
i (s) �= ∅ and for every

s1 ∈ R+
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈

r
⋃

d=q
�

−(d)
i (s) and

there exists at least one s ′
1 ∈ R+

i (s) and s ′
2 ∈ RN\{i}(s ′

1) such that s ′
2 ∈ �

−(q)

i (s)

and RN\{i}(s ′
1)

⋂

(
r
⋃

d=q+1
�

−(d)
i (s)) = ∅. This implies that for all s ′

2 ∈ RN\{i}(s ′
1),

s ′
2 ∈

q
⋃

d=0
�

−(d)
i (s) which means s ′

2 /∈
r
⋃

d=h
�

−(d)
i (s) as h > q. This contradicts with

the hypothesis that s is GMRh stable. Therefore, Eq. 6.2 follows.
Finally, the verification of Eqs. 6.3 and 6.4 can be similarly carried out using

contradiction. �

The interrelationships among general stabilities, super stability, and stabilities at
each degree are presented in the following theorem. Specifically, for each of the
stability definitions, the set of stable states over the general stabilities is the same as
the union of all of the stable states over all of the degrees of preference plus the super
stable states.

Theorem 6.3 The interrelationships among general stabilities, super stability, and
stabilities at each level are

SGNash
i = (SSuper

i ) ∪
(

r
⋃

d=0

SNashd
i

)

, (6.5)

SGGMR
i = (SSuper

i ) ∪
(

r
⋃

d=0

SGMRd
i

)

, (6.6)

SGSMR
i = (SSuper

i ) ∪
(

r
⋃

d=0

(S
SMRd+
i ∪ S

SMRd−
i )

)

, and (6.7)

SGSEQ
i = (SSuper

i ) ∪
(

r
⋃

d=0

SSEQd
i

)

. (6.8)

Proof Equation6.5 is derived directly from Definitions6.22–6.24. Now consider

the proof for Eq.6.6. The inclusion relation SGGMR
i ⊇ (SSuper

i ) ∪ (
r
⋃

d=0
SGMRd
i ) is
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Fig. 6.11 The legal
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obvious from Definitions6.41–6.43. It will be proved that the inclusion relation

SGGMR
i ⊆ (SSuper

i ) ∪ (
r
⋃

d=0
SGMRd
i ) holds. The two cases will be respectively proved

when s ∈ (SSuper
i ∪ SGNash

i ) and s /∈ (SSuper
i ∪ SGNash

i ). For any s ∈ SGGMR
i , based

on Definition6.38, if s ∈ (SSuper
i ∪ SGNash

i ), then the above inclusion relation must
be true.

Next, assume that s /∈ (SSuper
i ∪ SGNash

i ). Let |R+
i (s)| = l denote the cardinality

of R+
i (s). Then, for any s ∈ SGGMR

i , R+
i (s) �= ∅ and for every sk ∈ R+

i (s) (k =
1, . . . , l), there exists at least one s ′

k ∈ RN\{i}(sk) with s ′
k ∈

r
⋃

d=0
�

−(d)
i (s). Let Qk =

{q : q ∈ RN\{i}(sk) ∩
r
⋃

d=0
�

−(d)
i (s)}. It is obvious that s ′

k ∈ Qk . Hence, Qk �= ∅. Let

z ∈ Qk and be DM i’s least preferred in the state set Qk . Since z ∈ RN\{i}(sk) ∩
(

r
⋃

d=0
�

−(d)
i (s)), there exists 0 ≤ rk ≤ r such that z ∈ �

−(rk )
i (s) for k = 1, . . . , l.

Therefore, either rk = r or RN\{i}(sk) ∩ (
r
⋃

d=rk+1
�

−(d)
i (s)) = ∅. This process is

portrayed in Fig. 6.11.
Let rm = min{rk : k = 1, . . . , l}. Then, 0 ≤ rm ≤ r . It is easy to follow that if

s ∈ SGGMR
i and R+

i (s) �= ∅, then s ∈ S
GMRrm
i . In fact, for every sk ∈ R+

i (s), there
exists at least one s ′

k ∈ RN\{i}(sk) with s ′
k ∈ �

−(rk )
i (s). Since 0 ≤ rm ≤ rk , then

s ′
k ∈

r
⋃

d=rm

�
−(d)
i (s), and s ′

m ∈ RN\{i}(sm) with s ′
m ∈ �

−(rm )
i (s). Based on the rule of

selecting rm , either rm = r so that s ∈ SGMRr
i , or RN\{i}(sm)∩ (

r
⋃

d=rm+1
�

−(d)
i (s)) = ∅

so that s ∈ S
GMRrm
i . From the above discussion, Eq. 6.6 is proven.

Equations6.7 and 6.8 can be proven in a fashion similar to that just presented for
Eq.6.6. �
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Let SNash
i , SGMR

i , SSMR
i , and SSEQ

i denote the set of stable states for DM i for
Nash, GMR, SMR, and SEQ stability, respectively, in the graph model for simple
preference presented in Sect. 4.2.3. When r = 1, stabilities having multiple-degree
preference degenerate to the stabilities presented in Sect. 4.2.3, which includes two
types of preference. Specifically,

Theorem 6.4 For the multiple levels of preference, when r = 1, SSuper
i ∪ SNash0

i ∪
SNash1
i = SNash

i , SSuper
i ∪ SGMR0

i ∪ SGMR1
i = SGMR

i , SSuper
i ∪ SSMR0

i ∪ SSMR1+
i ∪

SSMR1−
i = SSMR

i , and SSuper
i ∪ SSEQ0

i ∪ SSEQ1
i = SSEQ

i .

Stability calculations for the preference structure for r = 2 in the graph model
for multiple degrees of preference produces the same stability findings as found for
the three types of preference or strength of preference framework. More specifically,
let SSGMR

i , SSSMR
i , and SSSEQ

i denote the set of strong stable states for strongly
GMR, SMR, and SEQ stability, respectively, presented in Sect. 6.3.3.2. The stabilities
at degree 2 in the graph model with three kinds of preference degenerate to the
corresponding strong stabilities presented in Sect. 6.3.3.2, except for the states that
are Nash stable, because Nash stable states are not considered in strong GMR, SMR,
and SEQ stability in Sect. 6.3.3.2. Formally, this is expressed in the next theorem.

Theorem 6.5 For the multiple degrees of preference, when r = 2, SGMR2
i \SNash2

i =
SSGMR
i , SSMR2+

i \SNash2
i = SSSMR

i , and SSEQ2
i \SNash2

i = SSSEQ
i .

The previous two theorems can be easily proven using the appropriate stability
definitions.

6.5 Matrix Representation of Stability Definitions
for Three Degrees of Preference

Thematrix representations for conflict resolution for simple preference and unknown
preference are presented in Sects. 4.3 and 5.3, respectively. It is natural to extend the
logical form for conflict resolution under the three types of preference presented in
Sect. 6.3 to the matrix representation. Following definitions for preference matrices
and a reachability matrix in Sect. 6.5.1, matrix representation for various stability
definitions for the two DM and n-DM cases for both general and strong stabilities
are presented in Sects. 6.5.2 and 6.5.4, respectively, for three degrees of preference.

6.5.1 Preference Matrices Including Strength of Preference

Preference information is an important component in the Graph Model for Conflict
Resolution under the three types of preference. Preference matrices corresponding
to the preference information are constructed now.
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Let m = |S| denote the number of states. For DM i , a mild or strong unilateral
improvement matrix (MSUI matrix) J+,++

i is an m × m matrix defined by

J+,++
i (s, q) =

{

1 if q ∈ R+,++
i (s),

0 otherwise,
(6.9)

where R+,++
i (s) stands for DM i’s reachable list from states s by a MSUI as defined

at the start of Sect. 6.2.1. Because the elements of the vector es are assigned a value
of zero except for the element connected to state s where a value of 1 is given,
R+,++
i (s) = eTs · J+,++

i , if R+,++
i (s) is written as a 0-1 row vector, where a “1”

at the j th element indicates DM i has a MSUI from s to s j . The MSUI matrix
J+,++
i depicts DM i’s mild or strong unilateral improvements in one step. To carry

out a stability analysis, a set of matrices corresponding to strength of preference is
constructed next. Specifically,

P++
i (s, q) =

{

1 if q �i s,
0 otherwise,

and

P−−
i (s, q) =

{

1 if s �i q,

0 otherwise.

Therefore, (P++
i )T = P−−

i , where T denotes the transpose of a matrix.

P−−,−,=
i (s, q) =

{

1 if q �i s, q <i s, or (q ∼i s and q �= s),
0 otherwise.

and

P+,++
i (s, q) =

{

1 if q >i s or q �i s,
0 otherwise.

For three-degree preference, P−−,−,=
i (s, q) = 1 − P+,++

i (s, q) for s, q ∈ S and
s �= q.

Based on the aforementioned definitions, for DM i , a set of adjacency matrices,
Ji and J+,++

i , and preference matrix P+,++
i have the following relationship between

them:

J+,++
i = Ji ◦ P+,++

i ,

where “◦” denotes the Hadamard product given in Definition3.15.
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6.5.2 Two Decision Maker Case

6.5.2.1 Matrix Representation of General Stabilities

Equivalent matrix representations of the aforementioned logical definitions for Nash
stability, GGMR, GSMR, and GSEQ in a two-DM graph model can be determined
directly by using the matrices containing information regarding possible moves such
as J+,++

i and those keeping track of preferences. Let i ∈ N , |N | = 2, and m = |S|.
Let E denote anm×m matrix with each entry equal to 1. Define them×m Nash

matrix MNash
i as

MNash
i = J+,++

i · E .

Theorem 6.6 State s ∈ S is Nash stable for DM i iff MNash
i (s, s) = 0.

Note that Theorem6.6 provides a matrix method to assess whether state s is Nash
stable for DM i by identifying the Nash matrix’s diagonal entry MNash

i (s, s).
For the case of general GMR stability, define the m × m matrix MGGMR

i as

MGGMR
i = J+,++

i · [E − sign
(

Jj · (P−−,−,=
i )T

)],

where E is an m × m matrix with each entry having a value of 1.

Theorem 6.7 State s is general GMR (GGMR) for DM i iff MGGMR
i (s, s) = 0.

Proof Since MGGMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign
(

Jj · (P−−,−,=
i )T

)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T

)],

thenMGGMR
i (s, s) = 0 iff J+,++

i (s, s1)[1−sign
(

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T

)] = 0,
for ∀s1 ∈ S. This implies that MGGMR

i (s, s) = 0 iff

(eTs1 · Jj ) · (eTs · P−−,−,=
i )T �= 0,∀s1 ∈ R+,++

i (s). (6.10)

From Eq.6.10, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-

dimensional row vector eTs1 · Jj has a value of 1 for the s2th element and the m-
dimensional column vector (P−−,−,=

i )T · es has an entry of 1 for the s2th element.
Therefore, MGGMR

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R j (s1) with s2 ∈ �
−−,−,=
i (s). �

In order to consider the general SMR stability, define the m × m matrix MGSMR
i

as MGSMR
i = J+,++

i · [E − sign(F)], with
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F = Jj · [(P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))].

Theorem 6.8 State s is general SMR (GSMR) for DM i iff MGSMR
i (s, s) = 0.

Proof Let G = (P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))

.

Since MGSMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign(F)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m

∑

s2=1

Jj (s1, s2) · G(s2, s),

and G(s2, s) = P−−,−,=
i (s, s2)[1 − sign

(

m
∑

s3=1

(

Ji (s2, s3)P
+,+
i (s, s3)

)

)

], thus,

MGSMR
i (s, s) = 0 holds iff F(s1, s) �= 0, ∀s1 ∈ R+,++

i (s), which is equivalent
to the statement that, ∀s1 ∈ R+,++

i (s), ∃s2 ∈ R j (s1) such that

P−−,−,=
i (s, s2) �= 0, (6.11)

and
m

∑

s3=1

(

Ji (s2, s3)P
+,++
i (s, s3)

) = 0. (6.12)

Obviously, for ∀s1 ∈ R+,++
i (s), ∃s2 ∈ R j (s1), Eq. 6.11 holds iff s2 ∈ �

−−,−,=
i (s).

For ∀s1 ∈ R+,++
i (s), ∃s2 ∈ R j (s1), Eq. 6.12 holds iff for all s3 ∈ Ri (s2),

P+,++
i (s, s3) = 0 which implies s3 ∈ �

−−,−,=
i (s).

Therefore, MGSMR
i = 0 iff for every s1 ∈ R+,++

i (s) there exists s2 ∈ R j (s1) such
that s2 ∈ �

−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for all s3 ∈ Ri (s2). �

In order to analyze general SEQ stability using matrix approach, define them×m
matrix MGSEQ

i as

MGSEQ
i = J+,++

i · [E − sign
(

J+,++
j · (P−−,−,=

i )T
)

].

Theorem 6.9 State s is general SEQ (GSEQ) for DM i iff MGSEQ
i (s, s) = 0.

Proof Since MGSEQ
i (s, s) = (eTs · J+,++

i ) · [
(

E − sign
(

J+,++
j · (P−−,−,=

i )T
))

·es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T
)

],
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then MGSEQ
i (s, s) = 0 iff for any s1 ∈ S,

J+,++
i (s, s1)[1 − sign

(

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T
)

] = 0.

This implies that MGSEQ
i (s, s) = 0 iff

(eTs1 · J+,++
j ) · (eTs · P−−,−,=

i )T �= 0,∀s1 ∈ R+,++
i (s). (6.13)

By Eq.6.13, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector eTs1 · J+,++
j has the s2th element 1 and the m-dimensional column vector

(P−−,−,=
i )T · es has the s2th element 1.
Therefore, MGSEQ

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R+,++
j (s1) with s2 ∈ �

−−,−,=
i (s). �

6.5.2.2 Matrix Representation of Strong Stabilities

Corresponding to the logical representation of strong stabilities for three degrees
of preference, matrix representation of strong GMR, SMR, and SEQ stabilities are
presented below according to the degree of sanctioning. For three kinds of preference,
these stabilities are divided into strongly andweakly stablewith respect to the strength
of possible sanctions. Hence, if a particular state s is general stable, then s is either
strongly stable or weakly stable. Strong and weak stabilities only include GMR,
SMR, and SEQ because Nash stability does not involve sanctions.

In the upcoming theorems, let i ∈ N , |N | = 2, and m = |S|. To consider strong
GMR stability, define the m × m matrix MSGMR

i as

MSGMR
i = J+,++

i · [E − sign
(

Jj · (P−−
i )T

)].

Theorem 6.10 State s ∈ S is strong general metarational (SGMR) for DM i iff
MSGMR

i (s, s) = 0.

In order to analyze strong SMR stability, define the m × m matrix MSSMR
i as

MSSMR
i = J+,++

i · [E − sign(Jj · F)],

with

F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)].

Theorem 6.11 State s ∈ S is strong symmetric metarational (SSMR) for DM i iff
MSSMR

i (s, s) = 0.
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In order to calculate strong SEQ, define the m × m matrix MSSEQ
i as

MSSEQ
i = J+,++

i · [E − sign
(

J+,++
j · (P−−

i )T
)

].

Theorem 6.12 State s ∈ S is strong sequentially stable (SSEQ) for DM i iff
MSSEQ

i (s, s) = 0.

The proofs of Theorems6.10–6.12 are similar to those of the three general stabil-
ities presented in Theorems6.7–6.9, respectively, in Sect. 6.5.2.1.

Let GS denote a graph model stability, GMR, SMR, or SEQ. The symbols GGS,
SGS, andWGS respectively represent a general stability, GGMR, GSMR, or GSEQ,
the strong stability, SGMR, SSMR, or SSEQ, and the weak stability, WGMR,
WSMR, or WSEQ, under three degrees of preference. MGGS

i and MSGS
i denote

DM i’s general stability matrix, MGGMR
i , MGSMR

i , or MGSEQ
i , and DM i’s strong

stability matrix, MSGMR
i , MSSMR

i , or MSSEQ
i , respectively. Based on the notation,

one has the following theorem.

Theorem 6.13 State s ∈ S is weak stable (WGS) for DM i iff MGGS
i (s, s) = 0, but

MSGS
i (s, s) �= 0.

Theorem6.13 means that if s is general stable, but not strong stable for a GS
stability, then s is weak stable for the GS stability.

Example 6.2 (Stabilities for the Extended Sustainable Development Model under
Three-degree Preference by using Matrix Representation) The sustainable develop-
ment conflict is explained in Example 3.1. In this illustration, this conflict is expended
to include three degrees of preference for the two-DM case. Specifically, the conflict
consists of two DMs: an environmental agency (DM 1: E) and a developer (DM 2:
D); and two options: DM 1 controls the option of being proactive (labeled P) and
DM 2 has the option of practicing sustainable development (labeled SD) for properly
treating the environment. The two options are combined to form four feasible states:
s1, s2, s3, and s4. These results are listed in Table6.8, where a “Y” indicates that an
option is selected by the DM controlling it and an “N” means that the option is not
chosen.

From Table6.8, DM 1 and DM 2’s preference information includes strength.
The graph model for the extended sustainable development conflict is presented in
Fig. 6.12.

From the graph model, the UM adjacency matrices for each DM are constructed
by

J1 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

and J2 =

⎛

⎜

⎜

⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

.
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Table 6.8 Extended sustainable development game in option form

DM 1: Environmental agency

1. Proactive (P) Y Y N N

DM 2: Developer

2. Sustainable development (SD) Y N Y N

States s1 s2 s3 s4

Preferences s1 >1 s3 �1 s2 ∼1 s4 for DM 1 and
s3 >2 s1 �2 s4 ∼2 s2 for DM 2.

The preference matrices for the DMs 1 and 2 are given by

P++
1 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

, P+,++
1 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 0
1 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

,

P++
2 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0

⎞

⎟

⎟

⎠

, and P+,++
2 =

⎛

⎜

⎜

⎝

0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 0

⎞

⎟

⎟

⎠

.

Therefore, J+,++
i = Ji ◦ P+,++

i , P−−,−,=
i = E − I − P+,++

i , and P−−
i = (P++

i )T

for i = 1, 2.
The stabilitymatrices used by Theorems6.6–6.13 are included in Table6.9, which

are employed to calculate the general stabilities of Nash, GMR, SMR, and SEQ, as
well as the strong stabilities of SGMR, SSMR, and SSEQ for two-DM conflicts,
respectively.

The stable states and equilibria for the sustainable development conflict are sum-
marized in Table6.10, in which “

√
” for a given state means that this state is stable

for DM 1 or DM 2 and “Eq” is an equilibrium for an appropriate solution concept.
The results provided by Table6.10 show that state s1 is strong equilibrium for the

four basic stabilities. State s3 is strongly stable for GMR and SMR. Hence, s1 and s3
are better choices for decision makers.

6.5.3 Reachability Matrix Under Strength of Preference

An important matrix corresponding to the reachable list under three degrees of pref-
erence is now defined. Fix coalition H ⊆ N such that |H | ≥ 2, and let s ∈ S. In
order to construct the reachability matrix corresponding to R+,++

H (s) presented in
Definition6.9, the reachable list of H from s by legal sequences of MSUIs, the t-step
reachability matrix is defined as follows.
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Fig. 6.12 Graph model for
the extended sustainable
development conflict under
three-degree preference

1s 2s

4s3s

1s 2s

4s3s

1 1( , )G S A 2 2( , )G S A
1 1 3 1 2 1 4s s s s 3 2 1 2 4 2 2s s s s

Table 6.9 Stability matrices under three degrees of preference in two decision maker case

Category Stability matrices

General stabilities MNash
i = J+,++

i · E
MGGMR

i = J+,++
i · [E − sign

(

J j · (P−−,−,=
i )T

)

]
MGSMR

i = J+,++
i · [E − sign(F)] with

F = J j · [(P−−,−,=
i )T ◦

(

E − sign
(

Ji · (P+,++
i )T

))

]
MGSEQ

i = J+,++
i · [E − sign

(

J+,++
j · (P−−,−,=

i )T
)

]
Strong stabilities MSGMR

i = J+,++
i · [E − sign

(

J j · (P−−
i )T

)]
MSSMR

i = J+,++
i · [E − sign(J j · F)] with

F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)]
MSSEQ

i = J+,++
i · [E − sign

(

J+,++
j · (P−−

i )T
)

]
Weak stabilities SWGS

i = SGGS
i − SSGS

i

Definition 6.52 For i ∈ H , H ⊆ N , and t = 1, 2, 3, . . ., define the m × m matrix
M (H,t,+,++)

i with (s, q) entries as follows:

M (H,t,+,++)
i (s, q) =

⎧

⎨

⎩

1 if q ∈ S is reachable from s ∈ S in exactly
t legal MSUIs byH with last mover DM i,

0 otherwise.

Similar to Lemma5.1, one has

Lemma 6.1 For i ∈ H and H ⊆ N, the matrix M (H,t,+,++)
i satisfies that

f or t = 2, 3, . . . , M (H,t,+,++)
i = sign[(

∨

j∈H−{i}
M (H,t−1,+,++)

j ) · J+,++
i ].
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with M (H,1,+,++)
i (s, q) = J+,++

i (s, q).

The proof of this lemma is similar to that of Lemma5.1.
The UM and UI reachability matrices are given in Definition4.19 in Chap.4. The

MSUI reachability matrix is now similarly defined for a graph model having three
degrees of preference.

Definition 6.53 For the graph model G, the MSUI reachability matrix for H is the
m × m matrix M+,++

H with (s, q) entry

M+,++
H (s, q) =

{

1 if q ∈ R+,++
H (s),

0 otherwise.

Obviously, R+,++
H (s) = {q : M+,++

H (s, q) = 1}. If R+,++
H (s) is written as a 0-1

row vector, then

R+,++
H (s) = eTs · M+,++

H ,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the MSUI reachability matrix for coalition H , M+,++

H ,
can be used to calculate the reachable lists of H from state s by the legal sequence
of MSUIs, R+,++

H (s).
Let L4 = | ⋃

i∈H
A+,++
i |, where A+,++

i is DM i’s MSUI oriented arcs, representing

mild or strong unilateral improvements by DM i in coalition H . Then the following
theorem can be derived using Lemma6.1.

Theorem 6.14 Let L4 = | ⋃

i∈N
A+,++
i |, s ∈ S, H ⊆ N , and H �= ∅. The MSUI

reachability matrix M+,++
H by H can be expressed as

M+,++
H =

L4
∨

t=1

∨

i∈H
M (H,t,+,++)

i . (6.14)

Proof To prove Eq.6.14, assume that C =
L4∨

t=1

∨

i∈H
M (H,t,+,++)

i . Using the defini-

tion for matrix M+,++
H , M+,++

H (s, q) = 1 iff q ∈ R+,++
H (s). Using Definition6.9,

q ∈ R+,++
H (s) implies that there exists 1 ≤ t0 ≤ L4 and i0 ∈ H such that

M (H,t0,+,++)
i0

(s, q) = 1. This implies that matrix C has (s, q) entry 1. Therefore,
M+,++

H (s, q) = 1 iff C(s, q) = 1. Since M+,++
H and C are 0-1 matrices, it follows

that M+,++
H = C . �
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6.5.4 n-Decision Maker Case

6.5.4.1 Matrix Representation of General Stabilities

Matrix representations of solution concepts with three degrees of preference for
2-DM cases presented in Sect. 6.5.2 are now extended to n-DM situations. Nash
stability definitions are identical for both the 2-DM and the n-DM models, because
Nash stability does not consider opponents’ responses. In this subsection, let i ∈ N
and |N | = n.

In order to consider general GMR stability for n-DMs, define the m ×m general
GMR matrix MGGMR

i as

MGGMR
i = J+,++

i · [E − sign
(

MN\{i} · (P−−,−,=
i )T

)].

In order to avoid using a complex notation, the symbol used for the general GMR
matrix representation for the n-DM situation is the same as that employed for the
2-DM case in Sect. 6.5.2.1. The context in which the definition is being utilized will
clearly indicate whether it is for the 2-DM or n-DM situation. The same comments
hold for the other definitions given in this section as well as Sect. 6.5.4.2. Because the
proofs of the next three theorems are similar to the GMR, SMR, and SEQ stabilities
presented in Sect. 6.5.2.2 for 2-DM models, the proofs are not given for the n-DM
case.

Theorem 6.15 State s is general GMR for DM i iff MGGMR
i (s, s) = 0.

The above matrix method, called matrix representation of general GMR stability,
is equivalent to the logical representation for general GMR stability given in Defini-
tion6.11. To analyze general GMR stability of state s for DM i , one only needs to
check if the entry, MGMR

i (s, s), in the GMR matrix is zero. If so, state s is general
GMR stable for i ; otherwise, s is general GMR unstable for DM i . Note that all
information about general GMR stability is contained in the diagonal entries of the
general GMR matrix.

To analyze general SMR stability, define them×m general SMRmatrix MGSMR
i

as MGSMR
i = J+,++

i · [E − sign(Q)], with

Q = MN\{i} · [(P−−,−,=
i )T ◦ (

E − sign
(

Ji · (P+,++
i )T

))].

Theorem 6.16 State s is general SMR for DM i iff MGSMR
i (s, s) = 0.

Theorem6.16 indicates that the matrix representation of general SMR stability
is equivalent to the logical representation for general SMR stability presented in
Definition6.12. To calculate general SMR stability of state s for DM i , one only has
to assess whether the diagonal entry, MGSMR

i (s, s), of DM i’s general SMRmatrix is
zero. If so, state s is general SMR stable for i ; otherwise, s is general SMR unstable
for DM i .
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General sequential stability is similar to general GMR stability, but includes only
those sanctions that are “credible”. Define the m × m general SEQ matrix MGSEQ

i
as

MGSEQ
i = J+,++

i · [E − sign
(

M+,++
N\{i} · (P−−,−,=

i )T
)

].

Theorem 6.17 State s is general SEQ for DM i iff MGSEQ
i (s, s) = 0.

Similar to the previous two theorems, the matrix representation of SEQ stability
is equivalent to the logical version given in Definition6.13. When the diagonal entry
at (s, s) is zero, the state s under consideration is SEQ stable for DM i .

6.5.4.2 Matrix Representation of Strong Stabilities

Similar to the two-DM case, matrix representations of general stabilities under the
three degrees of preference for n-DMs include matrix versions of strong or weak
stability. First, construct matrices Ji and J+,++

i using Definition4.13 and Eq.6.9.
The matrices MH and M+,++

H are calculated utilizing Theorems4.9 and 7.5, for
which H = N\{i}. For convenience, the same notation employed for the two-DM
situation in Sect. 6.5.2.2 is used for the n-DM case.

Define the m × m strong GMR matrix MSGMR
i for DM i as

MSGMR
i = J+,++

i · [E − sign
(

MN\{i} · (P−−
i )T

)].

Theorem 6.18 State s ∈ S is strongGMR (SGMR) forDM i, denoted by s ∈ SSGMR
i ,

iff MSGMR
i (s, s) = 0.

Proof Since MSGMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign
(

MN\{i} · (P−−
i )T

)) · es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

(eTs1 · MN\{i}) · (eTs · P−−
i )T

)],

then

MSGMR
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1 − sign
(

(eTs1 · MN\{i}) · (eTs · P−−
i )T

)

] = 0,∀s1 ∈ S.

This implies that MSSGM
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (eTs · P−−
i )T �= 0,∀s1 ∈ R+,++

i (s). (6.15)

By Eq.6.15, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eTs1 ·MN\{i}, has the s2th element 1 and them-dimensional column vector,
(P−−

i )T · es , has the s2th element 1.
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Therefore, MSGMR
i (s, s) = 0 iff for any s1 ∈ R+,++

i (s), there exists at least one
s2 ∈ RN\{i}(s1) with s �i s2. �

For strong SMR, the n-DMmodel is similar to the two-DM case. The only modi-
fication is that responses to block improvements by DM i can come from more than
one of DM i’s opponents instead of from a single DM.

If F = (P++
i ) ◦ [E − sign

(

Ji · (E − P++
i )

)], then one can define the m × m
strong SMR matrix MSSMR

i for DM i as

MSSMR
i = J+,++

i · [E − sign(MN\{i} · F)].

Theorem 6.19 State s ∈ S is strong SMR (SSMR) for DM i, denoted by s ∈ SSSMR
i ,

iff MSSMR
i (s, s) = 0.

Proof Let Q = MN\{i} · F . Since MSSMR
i (s, s) = (eTs · J+,++

i ) · [(E − sign(Q)) ·es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign(Q(s1, s))]

then MSSMR
i (s, s) = 0 iff J+,++

i (s, s1)[1 − sign(Q(s1, s))] = 0, for any s1 ∈ S.

This means that MSSMR
i (s, s) = 0 iff

(eTs1 · MN\{i}) · (F · es) �= 0,∀s1 ∈ R+,++
i (s). (6.16)

Since (eTs1 · MN\{i}) · (F · es) =
m
∑

s2=1
MN\{i}(s1, s2) · F(s2, s), then Eq.6.16 holds iff

for any s1 ∈ R+,++
i (s), there exists s2 ∈ RN\{i}(s1) such that F(s2, s) �= 0.

Because F(s2, s) = P++
i (s2, s) · [1 − sign(

m
∑

s3=1
Ji (s2, s3)(1 − P++

i (s3, s)))],
F(s2, s) �= 0 implies that for s2 ∈ RN\{i}(s1),

P++
i (s2, s) �= 0 (6.17)

and
m

∑

s3=1

Ji (s2, s3)(1 − P++
i (s3, s)) = 0. (6.18)

Equation6.17 is equivalent to the statement that, ∀s1 ∈ R+,++
i (s), ∃s2 ∈ RN\{i}(s1)

such that s �i s2. Equation6.18 is the sameas the statement that,∀s1 ∈ R+,++
i (s), ∃s2

∈ RN\{i}(s1) such that P++
i (s3, s) �= 0, for ∀s3 ∈ Ri (s2). Based on the definition of

the m × m preference matrix P++
i , one knows that P++

i (s3, s) �= 0 ⇔ s �i s3.
Therefore, one can conclude from the above discussion that MSMR

i (s, s) = 0 iff
for any s1 ∈ R+,++

i (s), there exists at least one s2 ∈ RN\{i}(s1) with s �i s2 and
s �i s3 for all s3 ∈ Ri (s2). �



6.5 Matrix Representation of Stability Definitions for Three Degrees of Preference 251

Strong sequential stability examines the credibility of the sanctions by DM i’s
opponents, in the sense that opponents will not move to less preferred situations to
block improvements by DM i .

First, find matrix M+,++
N\{i} using Theorem7.5 for H = N\{i}. Define the m × m

strong SEQ matrix MSSEQ
i for DM i as

MSSEQ
i = J+,++

i · [E − sign
(

M+,++
N\{i} · (P−−

i )T
)].

Theorem 6.20 State s ∈ S is strong SEQ (SSEQ) for DM i, denoted by s ∈ SSSEQ
i ,

iff MSSEQ
i (s, s) = 0.

Proof Since MSSEQ
i (s, s) = (eTs · J+,++

i ) · [
(

E − sign
(

M+,++
N\{i} · (P−−

i )T
))

· es]

=
m

∑

s1=1

J+,++
i (s, s1)[1 − sign

(

eTs1 · M+,++
N\{i} · (eTs · P−−

i )T
)

],

then

MSSEQ
i (s, s) = 0 ⇔ J+,++

i (s, s1)[1 − sign
(

(eTs1 · M+,++
N\{i} ) · (eTs · P−−

i )T
)

] = 0,∀s1 ∈ S.

This implies that MSSEQ
i (s, s) = 0 iff

(eTs1 · M+,++
N\{i} ) · (eTs · P−−

i )T �= 0,∀s1 ∈ R+,++
i (s). (6.19)

By Eq.6.19, for any s1 ∈ R+,++
i (s), there exists s2 ∈ S such that the m-dimensional

row vector, eTs1 ·M+,++
N\{i} , has the s2th element 1 and them-dimensional column vector,

(P−−
i )T · es , has the s2th element 1.
Therefore, MSSEQ

i (s, s) = 0 iff for any s1 ∈ R+,++
i (s), there exists at least one

s2 ∈ R+,++
N\{i} (s1) with s �i s2. �

Theorems6.18–6.20 indicate that thematrix representation of strong solution con-
cepts are equivalent to the strong stability definitions in the logical forms presented
in Sect. 6.3.3.2. When n = 2, Theorems6.18–6.20 are reduced to those theorems
presented in Sect. 6.5.2.2.

6.6 Application: The Garrison Diversion Unit (GDU)
Conflict

In this section, the four-degree version of stability definitions presented in Sect. 6.4 is
applied to the Garrison Diversion Unit (GDU) conflict to illustrate how the procedure
works. For combinationwith a brief overview of this international environmental dis-
pute between Canada and United States, a conflict model in terms of DMs, options,
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Fig. 6.13 Garrison Diversion Unit (GDU)

and preferences is constructed in the next subsection. Subsequently, a stability anal-
ysis is executed for four degrees of preference utilizing the calibrated model and
insights regarding the stability results are discussed.

6.6.1 Model of the GDU Conflict

The history of the GDU conflict dates back to the nineteenth century. In order to
irrigate land in the northeastern region of the American State of North Dakota,
an irrigation project was proposed by the United States Support (USS) regarding
construction of the McClusky Canal to transfer an immense amount of water from
the Missouri River Basin to the Hudson Bay Basin as depicted in Fig. 6.13, which
originally appeared in Fraser and Hipel (1984). From the Lonetree Reservoir, water
can be conveyed to the planned irrigation areas marked on the map. Eventually,
the irrigation runoff would flow into the Canadian province of Manitoba via the
Red and Souris rivers. This irrigation initiative is called the Garrison Diversion Unit
project. Among other problems, biologists were concerned that foreign biota from
theMissouri River Basin could adversely affect biological species in the Hudson Bay
Drainage Basin and could, for example, decimate fish species in Lake Winnipeg and
thereby destroy the fishing industry. The GDU conflict was strategically analyzed
using metagame analysis, conflict analysis and the graph model by Hipel and Fraser
(1980), Fraser and Hipel (1984), and Fang et al. (1993) using two-degree preference.
Later, Hamouda et al. (2006) examined a simplified version of the GDU dispute
for three degrees of preference. In this simpler conflict, the Canadian Opposition
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Table 6.11 Feasible states for the GDU model

USS

1. Proceed Y Y N Y N Y N Y N

2. Modify N N Y N Y N Y N Y

CDO

3. Legal N N N Y Y N N Y Y

IJC

4. Completion N Y Y Y Y N N N N

5. Modification N N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8 s9

(CDO)was considering whether or not to oppose the project because of the potential
negative environmental impacts that Canada would suffer. Based on the Boundary
Water Treaty of 1909 between Canada and the United States, the International Joint
Commission (IJC) consisting of representatives from the governments of the USA
and Canada was called upon by both nations to carry out unbiased studies and make
recommendations regarding the proposed GDU project.

The graph model for the simplified GDU conflict is comprised of three DMs: 1.
USS, 2. CDO, and 3. IJC; and five options: 1. Proceed−Proceed with the project
regardless of Canada’s concerns; 2. Modify−Modify the project to reduce impacts
on Canada; 3.Legal−Legal action by CDO based on the BoundaryWaters Treaty; 4.
Completion−IJC recommends completion of the project as originally planned; and
5.Modification−IJC stipulates modification of the project to reduce environmental
impacts on Canada. Each of these three DMs followed by the option or options under
its control are listed as the left column in Table6.11. As explained in Sect. 3.1.2, when
using the option form, a state is defined as a selection of options for each DM. Since
there are five options in the GDU dispute, a total of 25 = 32 states is mathematically
possible. However, some states can be removed because they cannot possibly occur
in reality. For instance, because options 4 and 5 are mutually exclusive, these two
options cannot be selected together. Likewise, options 1 and 2 are mutually exclusive
for USS. Moreover, it is assumed that the USS will do something and thereby choose
one of its options. After all of the infeasible states are eliminated, only nine states are
identified as being feasible. The feasible states are designated as columns of Ys and
Ns on the right side of Table6.11 in which a “Y” indicates that an option is selected
by the DM controlling it and an “N” means that the option is not chosen.

The integrated graph model of the GDU conflict is shown in Fig. 6.14, in which
a label on an arc indicates the DM who controls the move. Notice, for instance, that
USS controls movement between states s2 and s3. From Table6.11, one can see that
for states s2 and s3 the option selections for USS change while the option choices
by the other DMs, consisting of CDO and IJC, remain the same. All that is still
required for a graph model is knowledge of each DM’s preferences over the feasible
states for the situation of four-degree preference in the GDU conflict. The preference



254 6 Stability Definitions: Degrees of Preference

Fig. 6.14 The integrated
graph model for movement
in the GDU conflict

Table 6.12 Four-degree preferences for DMs in the GDU conflict

DM Preference

USS s2 > s4 > s3 > s5 > s1 > s6 > s9 > s7 ≫ s8
CDO {s3 ∼ s7} > {s5 ∼ s9} > {s4 ∼ s8} ≫ {s1 ∼ s2 ∼ s6}
IJC {s2 ∼ s3 ∼ s4 ∼ s5 ∼ s6 ∼ s7 ∼ s8 ∼ s9} � s1

information for this conflict over the feasible states is given in Table6.12, where >,
�, and ≫ mean more preferred, strongly preferred, and very strongly preferred,
respectively, and equally preferred states are given in brackets and connected using
the symbol ∼. The fact that states are ranked from most preferred on the left to
least preferred on the right, where ties are allowed, indicates that the preferences are
transitive for this application. One can see that state s8 is very strongly less preferred
to all other states for USS, because at state s8 the USS is proceeding to construct the
full project while IJC recommends amodified version and CDO is taking legal action
based on the BoundaryWaters Treaty. The DMCDO considers states s1, s2, and s6 to
be equally preferred and very strongly less preferred relative to all other states. Note
that this representation of preference information presented in Table6.12 implies
that the preferred relations, >, �, and ≫ are transitive. For instance, since s9 > s7
and s7 ≫ s8, then s9 ≫ s8 for USS. However, in general, the preference structure
presented in this book does not require the transitivity of preference relations, and
hence can handle intransitive preferences.

6.6.2 Stability Analysis Under Four-Degree Preference

Formally, in a stability analysis, one determines the stability of each state for each
DM for various solution concepts. Here, four-degree versions of five stability def-
initions consisting of super stability; Nash stability, Nashk ; general metarational-
ity, GMRk ; symmetric metarationality, SMRk ; and sequential stability, SEQk , for
k = 0, 1, 2, and 3, are employed to obtain stability results for the GDU conflict. An
equilibrium for degree k for a specific solution concept represents a likely resolution
to the conflict, since it is stable for every DM according to the stability definition
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under consideration. Note that the super stable states are treated as Nash stable at
the highest level when determining an equilibrium in the graph model with multiple
degrees of preference.

To explain how a stability calculation is carried out, consider SMRk stability for
state s5 fromDM2’s viewpoint for k = 0, 1, 2, and 3.Using the definition of a reach-
able list presented in Sect. 6.3.2 and Table6.12, R+

2 (s5) = {s3} and RN\2(s3) = {s2}
with s5 ≫2 s2 and s5 >2 s4 for R2(s2) = {s4}. Therefore, according to Defini-
tion6.48 state s5 is stable for SMR3− . Other cases can be analyzed similarly. The
stability results for the GDU conflict are summarized in Table6.13, in which “

√
”

for a given state under a DM means that this state is stable at a given degree for
the particular DM; “

√k+
” and “

√k−
” for a given state under a DM means that this

state is SMRk+ or SMRk− stable for the specified DM; and “
√k” for a state under

“Eq” signifies that this state is an equilibrium for a corresponding solution concept
at degree k. Note that U, C, and I displayed in Table6.13 denote the three DMs, USS,
CDO, and IJC, respectively.

A state that is not an equilibrium has no long-term stability because there is at
least one individual DM who has an incentive to move to a more preferred state and
thereby not permit an equilibrium to form. Table6.14 provides stability results for
different versions of preference. In particular, when stabilities are analyzed using
two degrees of preference introduced in Sect. 4.2, states s4, s7, and s9 are equilibria;
if preference information is provided using three degrees of preference, then states
s7 and s9 are equilibria using stability definitions presented in Sect. 6.3; there is only
one equilibrium state s9 for four degrees of preference. If state s4 were the resolution
for the GDU conflict, this would mean that IJC recommends to complete the GDU
project regardless of Canada’s concerns, so USS proceeds with this project. It is
obvious that this resolution cannot settle this conflict in the long term. State s7 means
that theUSS follows the IJC recommendation tomodify this project, but Canada does
not take legal action based on the Boundary Waters Treaty. State s9 is the same as
state s7 except that Canada chooses legal procedures. When comparing states s7 and
s9, equilibrium s9 is a more reasonable resolution for solving this conflict. Therefore,
a multiple-degree version of a stability analysis provides new insights and valuable
guidance for decision analysts.

Although the example of the GDU conflict shown in Table6.11 and Fig. 6.14 is
a relatively small model having three DMs, five options, and nine feasible states, a
graphmodel structure can handle any finite number of states and DMs, each of whom
can control any finite number of options. As pointed out by Fang et al. (2003a, b), an
available decision support system (DSS) for stability analysis of a graph model with
two degrees of preference can work well. Theorem6.4 reveals the relationship of sta-
bilities between two degrees of preference presented in Chap. 4 and multiple degrees
of preference. This theorem indicates the possibility of developing an effective algo-
rithm to implement the multilevel versions of the four stabilities within a DSS, which
would be essential if the proposed stability analysis were applied to larger practical
problems. In fact, a DSS based on the matrix version will be designed in Chap.10.
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Table 6.13 Stability results of the GDU conflict for the graph model with four levels of preference
State Super Level(k) Nash GMR SMR SEQ

U C I Eq U C I Eq U C I Eq U C I Eq U C I Eq

s1
√ √

0

1

2

3
√ √ √ √ √3+ √3+ √ √

s2
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s3
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s4
√

0

1
√ √ √1+ √

2

3
√ √ √ √ √3+ √3+ √ √

s5
√

0

1

2

3
√ √ √ √3− √3+ √ √

s6
√

0

1
√ √ √1+ √

2

3
√ √ √3+ √

s7
√

0

1
√ √ √1+ √

2

3
√ √ √ √3+ √ √

s8
√

0

1

2

3
√ √ √ √ √3+ √3+ √ √

s9
√

0

1

2

3
√ √ √ √ √ √3 √3+ √3− √3+ √ √ √ √3

Table 6.14 The comparison of stability results for three versions of preference

Version of preference Equilibria Analysis method

Two degrees of preference s4, s7, s9 See Sect. 4.2

Three degrees of preference s7, s9 See Sect. 6.3

Four degrees of preference s9 See Sect. 6.4.3.2
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6.7 Important Ideas

In this chapter, a multiple-degree preference framework is developed for the graph
model methodology to handle multiple degrees of preference, which lie between
relative and cardinal preferences in terms of information content. Multilevel versions
of the four solution concepts consisting of Nash, GMR, SMR, and SEQ are defined
in the graphmodel for multiple degrees of preference. Specifically, solution concepts
at degree k are defined for Nashk , GMRk , SMRk , and SEQk for k = 1, 2, . . . , r ,
where r is the maximum number of degrees of preference between two states. The
proposed stability definitions extend existing definitions based on two degrees and
three degrees of preference, so that more practical and complicated problems can be
analyzed at greater depth.

The algebraic system to ease the coding of logically-defined stability definitions
proposed in Chaps. 4 and 5 for simple preference and unknown preference, respec-
tively, is extended in this chapter in a similar way to handle three degrees of pref-
erence. The algebraic method is developed to represent general, strong, and weak
graphmodel stability definitions based on strength of preference using explicitmatrix
formulations instead of graphical or logical representations. These explicit algebraic
formulations allow algorithms to assess rapidly the stabilities of states, and to be
applied to large and complicated conflict models, using an advanced decision sup-
port system (DSS) like the one designed in Chap.10. Because of the flexible nature of
these explicit expressions, thematrix representations introduced here can be used as a
solid framework for incorporating new solution concepts reflecting human behavior
and novel theoretical constructs for handling different kinds of conflict situations,
into the basic GMCR paradigm.

6.8 Problems

6.8.1 The concept of degree of preference constitutes a procedure for internalizing
the psychological phenomenon of emotion. For instance, an environmentalist greatly
prefers that a company not pollute the surrounding environment via discharges of
gas, liquid and solid wastes. Describe two types of real-world disputes in which
emotions are present and hence must be taken into account.

6.8.2 Attitudes can play a role in how people may behave in a conflict situation.
Based on the research of Inohara et al. (2007) and Bernath Walker et al. (2009,
2012a), outline how attitude is operationalized within GMCR. Qualitatively, what
connections do you see between degrees of preference and attitudes? Do you think
they could be combined?
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6.8.3 The concept of dominating attitudes within GMCR is put forward by
Bernath Walker et al. (2012b). Briefly explain how this approach works and dis-
cuss its links to degrees of preference.

6.8.4 In the Prisoner’s Dilemma conflict described in Problem3.5.1, suppose that
both DMs greatly prefer state s1, in which they both cooperate, over state s4, in which
they do not cooperate with one another. Carry out a complete stability analysis
following a logical interpretation using the four solution concepts utilized in this
chapter as well as other chapters in the text. Did you gain additional strategic insights
using this approach over the situation in which degree of preference is not present?
Justify your response.

6.8.5 For the question involving Prisoner’s Dilemma in Problem6.8.4, execute the
stability analysis using the matrix or algebraic formulation rather than the logical
form.

6.8.6 For the game of Chicken in Problem3.5.4, in which both drivers who are
driving at high speed towards one another in their cars, carry out a stability analysis
in which both drivers greatly prefer not to have a head-on crash over all of the
other scenarios. Use the logical form of the four stability definitions for calculating
individual stability and the associated equilibria. Explain why your findings make
sense.

6.8.7 For the game of Chicken in Problem3.5.4, in which both drivers are racing
towards each other at high speed, execute a stability analysis for which one of the
two drivers greatly prefers the situation in which they do not crash over all of the
others states. Comment about the strategic meaning of your stability results.

6.8.8 For the Elmira conflict described andmodeled in option form in Sect. 1.2.2 and
analyzed for the case of simple preference in Sect. 4.5, suggest a reasonable model
containing strength of preference such as when the Ministry of the Environment
greatly prefers that Uniroyal not close down its chemical plant over situations in
which it does terminates its operations. Carry out a complete stability analysis in
which the DMs behave according to Nash or SEQ stability. Explain whether or not
your findings make strategic sense.

6.8.9 Three degrees of preference often occur in practice. However, four degrees
of preference may not take place as often. Explain a conflict situation in which it
makes sense to entertain four degrees of preference in a conflict investigation. Provide
references to support your claim.

6.8.10 TheGisborne conflict arising over the export of fresh water in bulk quantities
is studied in Sect. 5.4. Provide a version of this conflictmodel inwhich it is reasonable
to consider three degrees of preference for at least one of the DMs. Carry out a
stability analysis of this conflict model for the case of Nash and SEQ stability.
Discuss interesting stability results that you found.
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Chapter 7
Stability Definitions: Hybrid Preference

In the previous three chapters, different types of preference structures are presented
and integrated into the GraphModel for Conflict Resolution (GMCR): simple prefer-
ence inChap.4, unknown preference inChap.5, and degrees of preference inChap.6.
A hybrid preference framework is proposed in this chapter for strategic conflict anal-
ysis to incorporate both unknown preference and three degrees of preference into
the paradigm of GMCR under multiple decision makers (DMs). This structure offers
DMs and analysts a more flexible mechanism for preference expression, which can
include a strong or mild relative preference of one state over another, equally pre-
ferred states, and unknown preference between two states (Li et al. 2004, Hamouda
et al. 2006, Xu et al. 2008, 2010a, b, c, 2011, 2013).

The main properties of hybrid preference structure, as well as the reachable lists
of a DM to keep track of the DM’s moves and countermoves, are introduced in
Sect. 7.1 in this chapter. When considering stability definitions for more than two
DMs, coalition moves are defined since two or more DMs can participate in blocking
a unilateral improvement by anotherDM.Subsequently, the logical representations of
four stability definitions consisting of Nash stability, general metarationality (GMR),
symmetric metarationality (SMR), and sequential stability (SEQ), are defined for the
graph model with hybrid preference in Sect. 7.2 while the relationships among them
are investigated in Sect. 7.2.4. Additionally, in this chapter, matrix representations
of hybrid preference and the four stabilities with hybrid preference are presented in
Sects. 7.3 and 7.4, respectively. A case study is described in Sect. 7.5 to demonstrate
how the stability definitions work under hybrid preference. Specifically, the water
export conflict discussed in Sect. 5.4 is utilized to show how this methodology works
for the situations in which two or more than two DMs are present.
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7.1 Hybrid Preference and Reachable Lists

The hybrid preference is defined using a quadruple relation {∼i,�i,>i,Ui} in a
graph model for DM i. The hybrid structure is complete, i.e. if s, q ∈ S, then exactly
one of the following relations holds: s ∼i q, s �i q, q �i s, s >i q, q >i s, and sUi q.
For hybrid preference, DM i can control six corresponding reachable lists from state
s which are R++

i (s), R+
i (s), RU

i (s), R=
i (s), R−

i (s), and R−−
i (s). Ai indicates that DM i

can make a unilateral move (in one step) from the initial state to the terminal state of
the arc. The reachable lists of DM i under hybrid preference are defined as follows:

(i) R++
i (s) = {q ∈ S : (s, q) ∈ Ai and q �i s} stands for DM i’s reachable list

from state s by a strong unilateral improvement. This set contains all states q
which are strongly preferred by DM i to state s and can be reached in one step
from s;

(ii) R+
i (s) = {q ∈ S : (s, q) ∈ Ai and q >i s} denotes DM i’s reachable list from

state s by a mild unilateral improvement;
(iii) RU

i (s) = {q ∈ S : (s, q) ∈ Ai and q Ui s} denotes DM i’s reachable list from
state s by an uncertain move;

(iv) R=
i (s) = {q ∈ S : (s, q) ∈ Ai and q ∼i s} denotes DM i’s reachable list from

state s by an equally unilateral move;
(v) R−

i (s) = {q ∈ S : (s, q) ∈ Ai and s >i q} denotes DM i’s reachable list from
state s by a mild unilateral disimprovement; and

(vi) R−−
i (s) = {q ∈ S : (s, q) ∈ Ai and s �i q} is DM i’s reachable list from state s

by a strong unilateral disimprovement.

DM i’s reachable list from state s, Ri(s), represents DM i’s unilateral moves
(UMs). Let ∪ denote the union operation. Hence, Ri(s) is partitioned according to
hybrid preference structure as

Ri(s) = R++
i (s) ∪ R+

i (s) ∪ RU
i (s) ∪ R=

i (s) ∪ R−
i (s) ∪ R−−

i (s).

The relationships among the subsets of S and the reachable lists of DM i from state
s in the graph model having hybrid preference are shown in Fig. 7.1.

For ease of use, the notation with respect to UMs and subsets of the state set S
for hybrid preference is presented as follows:

• R+,++,U
i (s) = R+

i (s) ∪ R++
i (s) ∪ RU

i (s) stands for mild unilateral improvements,
strong unilateral improvements, or unilateral uncertainmoves calledmild or strong
unilateral improvements or uncertain moves (MSUIUMs) from state s for DM i;

• �
−−,U
i (s) = �−−

i (s) ∪ �U
i (s); and

• �
−−,−,=,U
i (s) = �−−

i (s) ∪ �−
i (s) ∪ �=

i (s) ∪ �U
i (s).
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Fig. 7.1 Relations among
subsets of S and reachable
lists including hybrid
preference

7.2 Logical Representation of Stability Definitions Under
Hybrid Preference

The four stability definitions given in this section recognize two cases in which the
degree of strength in hybrid preference is distinguished. Firstly, general stabilities
are defined, and then the two subclasses, strong and weak, are determined. Stabilities
of the first kind are referred to as general because they are in essence the same as the
stability definitions using simple preference defined in Chap.4. Stability definitions
are called strong or weak stabilities in order to reflect the additional preference infor-
mation contained in the strength of the preference relation. These more sophisticated
definitions furnish expanded strategic insights into a conflict model that handles
strength of preference.

In order to represent the following stabilities, appropriate notation is now defined.
Four types of stability definitions in logical forms are proposed, with index a, b, c,
and d , according to whether the DM would move to a state of uncertain preference
andwhether theDMwould be sanctioned by a respondingmove to a state of uncertain
preference, relative to the status quo (Li et al. 2004). Let l denote one of the four
extensions indexed a, b, c, and d , i.e., l = a, b, c, or d . In the following theorems,
the symbol GS denotes a graph model stability, GMR, SMR, or SEQ. Then GSl
refers to the GS solution concept, GMR, SMR, or SEQ, indexed l in the graph model
for unknown preference. The symbols GGS, SGS, and WGS respectively denote
a general stability, GGMR, GSMR, or GSEQ, the strong stability, SGMR, SSMR,
or SSEQ, and the weak stability, WGMR, WSMR, or WSEQ, under strength of
preference. Then GGSl refers to the GGS solution concept indexed l, SGSl refers
to the strong solution concept SGS indexed l, and WGSl refers to the weak solution
concept WGS indexed l (defined below) in the graph model for hybrid preference.
The symbol s ∈ SGGSl

i denotes that s ∈ S is stable for DM i according to general
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stability GGS indexed l. Similarly, s ∈ SSGSl
i denotes that s ∈ S is strongly stable

for DM i according to strong stability SGS indexed l.

7.2.1 Two Decision Maker Case

The stability definitions in the graph model for two-DM conflicts with hybrid pref-
erence are presented first. Let l ∈ {a, b, c, d}.

7.2.1.1 General Stabilities Indexed l for Hybrid Preference

(1) General Stabilities Indexed a

For stabilities indexed a, DM i is willing to move to states that are mildly preferred
or strongly preferred, as well as states having uncertain preference relative to the
status quo but does not wish to be sanctioned by a strongly less preferred, mildly less
preferred, or equally preferred state relative to the status quo. The definitions given
below assume that s ∈ S and i ∈ N .

Definition 7.1 State s is general Nasha for DM i, denoted by s ∈ SNasha
i , iff

R+,++,U
i (s) = ∅.
Nash stability does not involve sanctions so only general Nash stability is defined

within hybrid preference. One uses Nash to denote GNash in the following defini-
tions.

Definition 7.2 State s is general GMRa for DM i, denoted by s ∈ SGGMRa
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈ �

−−,−,=
i (s).

Definition 7.3 State s is general SMRa for DM i, denoted by s ∈ SGSMRa
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1), such that s2 ∈ �

−−,−,=
i (s) and

s3 ∈ �
−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 7.4 State s is general SEQa for DM i, denoted by s ∈ SGSEQa
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

j (s1) with s2 ∈ �
−−,−,=
i (s).

(2) General Stabilities Indexed b

For stabilities indexed b, DM i will move only to mildly or strongly preferred states
from a status quo, but does not want to be sanctioned by a strongly less preferred,
mildly less preferred, or equally preferred state relative to the status quo.

Definition 7.5 State s is general Nashb for DM i, denoted by s ∈ SNashb
i , iff

R+,++
i (s) = ∅.
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Definition 7.6 State s is general GMRb for DM i, denoted by s ∈ SGGMRb
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈ �

−−,−,=
i (s).

Definition 7.7 State s is general SMRb for DM i, denoted by s ∈ SGSMRb
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1), such that s2 ∈ �

−−,−,=
i (s)

and s3 ∈ �
−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 7.8 State s is general SEQb for DM i, denoted by s ∈ SGSEQb
i , iff for every

s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

j (s1) with s2 ∈ �
−−,−,=
i (s).

The above definitions indexed b which exclude uncertainty in preference are
different from those discussed in Sect. 6.3.1.1, since current definitions are utilized
to analyze conflict models under combining preference uncertainty and strength of
preference.

(3) General Stabilities Indexed c

For definitions indexed c, DM i can move to mildly preferred, strongly preferred
states, as well as states having uncertain preference relative to the starting state.
With respect to sanctioning, DM i does not want to end up at states that are mildly
less preferred, strongly less preferred, or equally preferred, as well as states having
uncertain preference relative to state s.

Definition 7.9 State s is general Nashc for DM i, denoted by s ∈ SNashc
i , iff

R+,++,U
i (s) = ∅.

Definition 7.10 State s is general GMRc for DM i, denoted by s ∈ SGGMRc
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈ �

−−,−,=,U
i (s).

Definition 7.11 State s is general SMRc for DM i, denoted by s ∈ SGSMRc
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1), such that

s2 ∈ �
−−,−,=,U
i (s) and s3 ∈ �

−−,−,=,U
i (s) for any s3 ∈ Ri(s2).

Definition 7.12 State s is general SEQc forDM i, denoted by s ∈ SGSEQc
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

j (s1) with s2 ∈ �
−−,−,=,U
i (s).

(4) General Stabilities Indexed d

For the last set of stabilities, indexed d , a DM is not willing to move to a state with
uncertain preference relative to the status quo, but is deterred by sanctions to states
that have uncertain preference relative to the status quo.

Definition 7.13 State s is general Nashd for DM i, denoted by s ∈ SNashd
i , iff

R+,++
i (s) = ∅.

Definition 7.14 State s is general GMRd for DM i, denoted by s ∈ SGGMRd
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1) with s2 ∈ �

−−,−,=,U
i (s).
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Definition 7.15 State s is general SMRd for DM i, denoted by s ∈ SGSMRd
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1), such that s2 ∈ �

−−,−,=,U
i (s)

and s3 ∈ �
−−,−,=,U
i (s) for any s3 ∈ Ri(s2).

Definition 7.16 State s is general SEQd for DM i, denoted by s ∈ SGSEQd
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

j (s1) with s2 ∈
�

−−,−,=,U
i (s).

If the binary relation � denotes > or � in this chapter, i.e., s � q iff either s > q
or s � q, then Definitions7.1–7.16 are identical to Definitions5.2–5.17 in Chap.5.
On the other hand, when each DM does not consider including uncertain preference
in stability analysis, the above definitions reduce to the general stability definitions
from Definitions6.1–6.4 in Chap.6.

7.2.1.2 Strong Stabilities Indexed l for Hybrid Preference

With the hybrid preference framework introduced into the graph model, stable states
can be classified into strongly stable or weakly stable according to strength of the
possible sanctions and indexed a, b, c, or d by a DM’s attitudes toward the risk
associatedwith uncertain preferences. Strong andweak stabilities include onlyGMR,
SMR, and SEQ because Nash stability does not involve sanctions.

(1) Strong Stabilities Indexed a

Definition 7.17 State s is strongly general metarational (SGMRa) for DM i, denoted
by s ∈ SSGMRa

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1) such

that s2 ∈ �−−
i (s).

Definition 7.18 State s is strongly symmetric metarational (SSMRa) for DM i,
denoted by s ∈ SSSMRa

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one

s2 ∈ Rj(s1), such that s2 ∈ �−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri(s2).

Definition 7.19 State s is strongly sequentially stable (SSEQa) for DM i, denoted
by s ∈ SSSEQa

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

j (s)
such that s2 ∈ �−−

i (s).

With the above definitions indexed a, DM iwould like to accept the risk associated
with the uncertain status when consideringwhether tomove away from the status quo
state, but DM i will not consider states with uncertain preferences, when assessing
sanctions.

(2) Strong Stabilities Indexed b

For the following definitions indexed b, DM i would move only to mildly or strongly
preferred states and be deterred by sanctions to strongly less preferred states relative
to the status quo.
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Definition 7.20 State s is strongly general metarational (SGMRb) for DM i, denoted
by s ∈ SSGMRb

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1) such

that s2 ∈ �−−
i (s).

Definition 7.21 State s is strongly symmetric metarational (SSMRb) for DM i,
denoted by s ∈ SSSMRb

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1),

such that s2 ∈ �−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri(s2).

Definition 7.22 State s is strongly sequentially stable (SSEQb) for DM i, denoted
by s ∈ SSSEQb

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

j (s)
such that s2 ∈ �−−

i (s).

(3) Strong Stabilities Indexed c

The definitions indexed c refer to a DM’s mixed attitudes toward the risk associated
with uncertain preferences. Specifically, DM i is aggressive in deciding whether
to move from the status quo, but is conservative when evaluating possible moves,
because DM i is deterred by sanctions to states that are strongly less preferred and
states that have uncertain preference relative to the status quo.

Definition 7.23 State s is strongly general metarational (SGMRc) for DM i, denoted
by s ∈ SSGMRc

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ Rj(s1) such

that s2 ∈ �
−−,U
i (s).

Definition 7.24 State s is strongly symmetric metarational (SSMRc) for DM i,
denoted by s ∈ SSSMRc

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one

s2 ∈ Rj(s1), such that s2 ∈ �
−−,U
i (s) and s3 ∈ �

−−,U
i (s) for all s3 ∈ Ri(s2).

Definition 7.25 State s is strongly sequentially stable (SSEQc) for DM i, denoted
by s ∈ SSSEQc

i , iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

j (s)

such that s2 ∈ �
−−,U
i (s).

(4) Strong Stabilities Indexed d

Definition 7.26 State s is strongly general metarational (SGMRd ) for DM i, denoted
by s ∈ SSGMRd

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1) such

that s2 ∈ �
−−,U
i (s).

Definition 7.27 State s is strongly symmetric metarational (SSMRd ) for DM i,
denoted by s ∈ SSSMRd

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ Rj(s1),

such that s2 ∈ �
−−,U
i (s) and s3 ∈ �

−−,U
i (s) for all s3 ∈ Ri(s2).

Definition 7.28 State s is strongly sequentially stable (SSEQd ) for DM i, denoted
by s ∈ SSSEQd

i , iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

j (s)

such that s2 ∈ �
−−,U
i (s).

The above definitions indexed d indicate that DM i would move only to mildly or
strongly preferred states, but is deterred by sanctions that couldmove i to strongly less
preferred states and states that have uncertain preference relative to the status quo.
Therefore, definitions indexed d represent strong stabilities for the most conservative
DMs.
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7.2.1.3 Weak Stabilities Indexed l for Hybrid Preference

Let l ∈ {a, b, c, d}. A state is weakly stable if it is general stable GMRl , SMRl , or
SEQl but not strongly stable. Specifically, weak stability concepts are defined next.

Definition 7.29 State s is weakly stable indexed as l, WGMRl , WSMRl , or WSEQl

for DM i, denoted by s ∈ SWGMRl
i , s ∈ SWSMRl

i , or s ∈ SWSEQl
i , iff s is general stable

but not strongly stable indexed as l.

7.2.2 Reachable List of a Coalition of Decision Makers
Under Hybrid Preference

Analysis of a graph model involves searching paths in a graph but an important
restriction of a graph model is that no DM can move twice in succession along any
path. As explained earlier in Sects. 4.2.2 and 6.4.2, this means the GMCR approach
takes into account intransitive as well as transitive moves. Any nonempty subsetH of
DMs, H ⊆ N and H 	= ∅, is called a coalition. A legal sequence of unilateral moves
(UMs) for a coalition of DMs is a sequence of states linked by unilateral moves by
members of the coalition, in which a DM may move more than once, but not twice
consecutively.

Within an n-DMmodel (n ≥ 2), DM i’s opponents, N \ {i}, where \ refers to “set
subtraction”, consist of a group of one or more DMs. In order to analyze the stability
of a state for DM i ∈ N , it is necessary to take into account possible responses by all
other DMs j ∈ N \ {i}. The essential inputs of stability analysis are reachable lists of
coalition N \{i} from state s, RN\{i}(s) and R+,++,U

N\{i} (s), for hybrid preference. Let the
coalition H ⊆ N satisfy |H | ≥ 2 and let the status quo state be s ∈ S. RH (s) ⊆ S,
the reachable list of coalition H from state s by a legal sequence of UMs, is defined
now.

Definition 7.30 A unilateral move by H is a member of RH (s) ⊆ S defined induc-
tively by

(1) assuming �H (s, s1) = ∅ for all s1 ∈ S;
(2) if j ∈ H and s1 ∈ Rj(s), then s1 ∈ RH (s) and �H (s, s1) = �H (s, s1) ∪ {j};
(3) if s1 ∈ RH (s), j ∈ H , and s2 ∈ Rj(s1), then, provided�H (s, s1) 	= {j}, s2 ∈ RH (s)

and �H (s, s2) = �H (s, s2) ∪ {j}.
Note that this definition is inductive: first, using (2), the states reachable from s are

identified and added to RH (s); then, using (3), all states reachable from those states
are identified and added to RH (s); afterwards the process is repeated until no further
states are added to RH (s) by repeating (3). Because RH (s) ⊆ S, and S is finite, this
limit must be reached in finitely many steps.

To extend the definitions of the reachable lists for a coalition to take hybrid prefer-
ence into account, a legal sequence of coalitional mild or strong unilateral improve-
ments or uncertain moves (MSUIUMs) must be defined first. A legal sequence of
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MSUIUMs is a sequence of allowable mild unilateral improvements, strong unilat-
eral improvements, or uncertain moves by a coalition, with the same restriction that
any member in the coalition may move more than once, but not twice consecutively.
The formal definition for reachable lists of coalition H by the legal sequence of
MSUIUMs is given as follows:

Definition 7.31 Let s ∈ S, H ⊆ N , and H 	= ∅. A mild or strong unilateral
improvement or uncertain move (MSUIUM) by H is a member of R+,++,U

H (s) ⊆ S,
defined inductively by

(1) assuming �
+,++,U
H (s, s1) = ∅ for all s1 ∈ S;

(2) if j ∈ H and s1 ∈ R+,++,U
j (s), then s1 ∈ R+,++,U

H (s) and �
+,++,U
H (s, s1) =

�
+,++,U
H (s, s1) ∪ {j};

(3) if s1 ∈ R+,++,U
H (s), j ∈ H , and s2 ∈ R+,++,U

j (s1), then, provided �
+,++,U
H (s,

s1) 	= {j}, s2 ∈ R+,++,U
H (s) and �

+,++,U
H (s, s2) = �

+,++,U
H (s, s2) ∪ {j}.

Like Definition7.30, Definition7.31 is an inductive definition. The roles and inter-
pretations of R+,++,U

H (s) and �
+,++,U
H (s, s1) are likewise analogous. To interpret

Definition7.31, note that if s1 ∈ R+,++,U
H (s), then �

+,++,U
H (s, s1) ⊆ H is the set of

all last DMs in legal sequences from s to s1. (If s1 /∈ R+,++,U
H (s), it can be assumed

that �
+,++,U
H (s, s1) = ∅.) Suppose that �

+,++,U
H (s, s1) contains only one DM, say

j ∈ N . Then any move from s1 to a subsequent state, say s2, must be made by a
member of H other than j; otherwise DM j would have to move twice in succession.
On the other hand, if |�+,++,U

H (s, s1)| ≥ 2, any member of H who has a unilateral
move from s1 to s2 may exercise it.

7.2.3 n-Decision Maker Case

The stability definitions in the graph model for two-DM conflicts with hybrid pref-
erence are special cases of the definitions for n-DM case (n ≥ 2) presented in this
subsection.

7.2.3.1 General Stabilities Indexed l for Hybrid Preference

(1) General Stabilities Indexed a

For stabilities indexed a, DM i is willing to move to states that are mildly preferred
or strongly preferred, as well as states having uncertain preference relative to the
status quo but does not wish to be sanctioned by a strongly less preferred, mildly less
preferred, or equally preferred state relative to the status quo. The definitions given
below assume that s ∈ S and i ∈ N .
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Definition 7.32 State s is general Nasha for DM i, denoted by s ∈ SNasha
i , iff

R+,++,U
i (s) = ∅.
Nash stability does not involve sanctions so n-DM case is identical with two-DM

case.

Definition 7.33 State s is general GMRa for DM i, denoted by s ∈ SGGMRa
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �

−−,−,=
i (s).

Definition 7.34 State s is general SMRa for DM i, denoted by s ∈ SGSMRa
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

�
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 7.35 State s is generalSEQa forDM i, denoted by s ∈ SGSEQa
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ �
−−,−,=
i (s).

It should be pointed out that the same notation for stabilities indexed a for prefer-
ence with uncertainty presented in Sect. 5.2.3 is used for hybrid preference. However,
they have different meanings, since current definitions can analyze conflict models
including hybrid preference. The following definitions are still presented using the
same notation as those including preference uncertainty.

(2) General Stabilities Indexed b

For stabilities indexed b, DM i will move only to mildly or strongly preferred states
from a status quo, but does not want to be sanctioned by a strongly less preferred,
mildly less preferred, or equally preferred state relative to the status quo.

Definition 7.36 State s is general Nashb for DM i, denoted by s ∈ SNashb
i , iff

R+,++
i (s) = ∅.

Definition 7.37 State s is general GMRb for DM i, denoted by s ∈ SGGMRb
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �

−−,−,=
i (s).

Definition 7.38 State s is general SMRb for DM i, denoted by s ∈ SGSMRb
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �
−−,−,=
i (s) and s3 ∈ �

−−,−,=
i (s) for any s3 ∈ Ri(s2).

Definition 7.39 State s is general SEQb for DM i, denoted by s ∈ SGSEQb
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1)with s2 ∈ �
−−,−,=
i (s).

The above definitions indexed b which exclude uncertainty in preference are
different from those discussed by Hamouda et al. (2006), since current definitions
are utilized to analyze conflict models under combining preference uncertainty and
strength of preference.
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(3) General Stabilities Indexed c

For definitions indexed c, DM i can move to mildly preferred, strongly preferred
states, as well as states having uncertain preference relative to the starting state.
With respect to sanctioning, DM i does not want to end up at states that are mildly
less preferred, strongly less preferred, or equally preferred, as well as states having
uncertain preference relative to state s.

Definition 7.40 State s is general Nashc for DM i, denoted by s ∈ SNashc
i , iff

R+,++,U
i (s) = ∅.

Definition 7.41 State s is general GMRc for DM i, denoted by s ∈ SGGMRc
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) with

s2 ∈ �
−−,−,=,U
i (s).

Definition 7.42 State s is general SMRc for DM i, denoted by s ∈ SGSMRc
i , iff for

every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

�
−−,−,=,U
i (s) and s3 ∈ �

−−,−,=,U
i (s) for any s3 ∈ Ri(s2).

Definition 7.43 State s is general SEQc forDM i, denoted by s ∈ SGSEQc
i , iff for every

s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈ �
−−,−,=,U
i (s).

(4) General Stabilities Indexed d

For the last set of stabilities, indexed d , a DM is not willing to move to a state with
uncertain preference relative to the status quo, but is deterred by sanctions to states
that have uncertain preference relative to the status quo.

Definition 7.44 State s is general Nashd for DM i, denoted by s ∈ SNashd
i , iff

R+,++
i (s) = ∅.

Definition 7.45 State s is general GMRd for DM i, denoted by s ∈ SGGMRd
i , iff for

every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) with s2 ∈ �

−−,−,=,U
i (s).

Definition 7.46 State s is general SMRd for DM i, denoted by s ∈ SGSMRd
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

�
−−,−,=,U
i (s) and s3 ∈ �

−−,−,=,U
i (s) for any s3 ∈ Ri(s2).

Definition 7.47 State s is general SEQd for DM i, denoted by s ∈ SGSEQd
i , iff

for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) with s2 ∈
�

−−,−,=,U
i (s).

When n = 2, the DM set N becomes {i, j} in Definitions7.32–7.47, and the
reachable lists for H = N \ {i} by legal sequences of UMs and MSUIUMs from s1,
RN\{i}(s1) and R+,++,U

N\{i} (s1), respectively, degenerate to Rj(s1) and R+,++,U
j (s1), DM

j’s corresponding reachable lists from s1.
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If the binary relation � denotes > or � in this chapter, i.e., s � q iff either s > q
or s � q, then Definitions7.32–7.47 are identical to Definitions5.19–5.34 in Chap.5
proposed by Li et al. (2004). On the other hand, when each DM does not consider
including uncertain preference in stability analysis, the above definitions reduce to
the general stability definitions from Definitions6.38–6.40 in Chap.6 developed by
Hamouda et al. (2006).

7.2.3.2 Strong Stabilities Indexed l for Hybrid Preference

(1) Strong Stabilities Indexed a

Definition 7.48 State s is stronglyGMRa (SGMRa) forDM i, denoted by s ∈ SSGMRa
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �−−
i (s).

Definition 7.49 State s is strongly SMRa (SSMRa) for DM i, denoted by s ∈ SSSMRa
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri(s2).

Definition 7.50 State s is strongly SEQa (SSEQa) for DM i, denoted by s ∈ SSSEQa
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) such that
s2 ∈ �−−

i (s).

(2) Strong Stabilities Indexed b

Definition 7.51 State s is stronglyGMRb (SGMRb) forDM i, denoted by s ∈ SSGMRb
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that s2 ∈

�−−
i (s).

Definition 7.52 State s is strongly SMRb (SSMRb) for DM i, denoted by s ∈ SSSMRb
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

�−−
i (s) and s3 ∈ �−−

i (s) for all s3 ∈ Ri(s2).

Definition 7.53 State s is strongly SEQb (SSEQb) for DM i, denoted by s ∈ SSSEQb
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) such that
s2 ∈ �−−

i (s).

(3) Strong Stabilities Indexed c

Definition 7.54 State s is stronglyGMRc (SGMRc) forDM i, denoted by s ∈ SSGMRc
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1) such that

s2 ∈ �
−−,U
i (s).

Definition 7.55 State s is strongly SMRc (SSMRc) for DM i, denoted by s ∈ SSSMRc
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that

s2 ∈ �
−−,U
i (s) and s3 ∈ �

−−,U
i (s) for all s3 ∈ Ri(s2).
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Definition 7.56 State s is strongly SEQc (SSEQc) for DM i, denoted by s ∈ SSSEQc
i ,

iff for every s1 ∈ R+,++,U
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) such that

s2 ∈ �
−−,U
i (s).

(4) Strong Stabilities Indexed d

Definition 7.57 State s is strongly GMRd (SGMRd ) for DM i, denoted by s ∈
SSGMRd
i , iff for every s1 ∈ R+,++

i (s) there exists at least one s2 ∈ RN\{i}(s1) such
that s2 ∈ �

−−,U
i (s).

Definition 7.58 State s is strongly SMRd (SSMRd ) for DM i, denoted by s ∈ SSSMRd
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ RN\{i}(s1), such that s2 ∈

�
−−,U
i (s) and s3 ∈ �

−−,U
i (s) for all s3 ∈ Ri(s2).

Definition 7.59 State s is strongly SEQd (SSEQd ) for DM i, denoted by s ∈ SSSEQd
i ,

iff for every s1 ∈ R+,++
i (s) there exists at least one s2 ∈ R+,++,U

N\{i} (s1) such that

s2 ∈ �
−−,U
i (s).

Note that Definitions7.48–7.59 will reduce to Definitions7.17–7.28 in Sect. 7.2.1
if n = 2.

7.2.3.3 Weak Stabilities Indexed l for Hybrid Preference

Definition 7.60 Let s ∈ S and i ∈ N . State s is weakly stable WGSl for DM i
according to stability WGS indexed l, denoted by s ∈ SWGSl

i , iff s ∈ SGGSl
i and

s /∈ SSGSl
i .

7.2.4 Interrelationships Among Stabilities Under Hybrid
Preference

Fang et al. (1993) established general relationships among Nash, GMR, SMR, and
SEQ solution concepts. The following interrelationships are similar to those devel-
oped by Fang et al. (1993) among the solution concepts with simple preference.
Let l ∈ {a, b, c, d}. The inclusion relationships among the four solution concepts
indexed as l with preference uncertainty are shown in Fig. 5.5. Within the new struc-
ture of preference, the interrelationships of three types of stabilities, which are with
preferences of general strength and uncertainty, with preferences of strong strength
and uncertainty, and with preferences of weak strength and uncertainty, are presented
as follows:

SGGMRl
i = SSGMRl

i ∪ SWGMRl
i ,

SGSMRl
i = SSSMRl

i ∪ SWSMRl
i ,
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and
SGSEQl
i = SSSEQl

i ∪ SWSEQl
i .

Based on the above definitions, the interrelationships among the solution concepts
with the new preference structure are concluded as follows:

Theorem 7.1 The interrelationships among the four solution concepts are

SNashl
i ⊆ SSSMRl

i ⊆ SGSMRl
i ⊆ SGGMRl

i

and
SNashl
i ⊆ SSSEQl

i ⊆ SGSEQl
i ⊆ SGGMRl

i .

Theorem 7.2 The interrelationships among the solution concepts are

SNashl
i ⊆ SLSMRl

i ⊆ SLGMRl
i

and
SNashl
i ⊆ SLSEQl

i ⊆ SLGMRl
i ,

where L denotes the two levels of general strength and strong strength.

The proof of Theorems7.1 and 7.2 can easily follow from the above definitions.
Note that there is no necessary inclusion relationship between SLSMRl

i and SLSEQl

i , i.e.,
it may or may not be true that SLSMRl

i ⊇ SLSEQl

i , or that SLSMRl
i ⊆ SLSEQl

i .

Theorem 7.3 The interrelationships among Nash stabilities for the two levels of
general strength and strong strength are

SNasha
i = SNashc

i ,

SNashb
i = SNashd

i ,

and
SNasha
i ⊆ SNashb

i .

This result holds obviously from the above stability definitions.

Theorem 7.4 The interrelationships among the solution concepts with preferences
of general strength and uncertainty are

SLGMRa
i ⊆ SLGMRb

i ⊆ SLGMRd
i ,

SLGMRa
i ⊆ SLGMRc

i ⊆ SLGMRd
i ,

SLSMRa
i ⊆ SLSMRb

i ⊆ SLSMRd
i ,
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Fig. 7.2 Interrelationships
among strong GMR
stabilities indexed as a, b, c
and d

Fig. 7.3 Interrelationships
among general GMR
stabilities indexed as a, b, c
and d

SLSMRa
i ⊆ SLSMRc

i ⊆ SLSMRd
i ,

SLSEQa

i ⊆ SLSEQb

i ⊆ SLSEQd

i

and
SLSEQa

i ⊆ SLSEQc

i ⊆ SLSEQd

i .

The proof of this theorem is similar to that presented by Li et al. (2005a, b). Fig-
ures7.2 and 7.3 show the interrelationships among strong GMR stabilities indexed
as a, b, c and d and among general GMR stabilities indexed as a, b, c and d , respec-
tively.

7.3 Some Important Matrices Under Hybrid Preference

7.3.1 Preference Matrices Including Uncertainty
and Strength

Letm denote the number of states. DM i’s preference matrices including uncertainty
and strength in the hybrid system are defined as follows.
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Definition 7.61 For a graph model G under hybrid preference, the appropriate pref-
erence matrices for DM i are a set of m × m matrices with (s, q) entries

PU
i (s, q) =

{
1 if s Ui q,

0 otherwise,
P=
i (s, q) =

{
1 if s ∼i q and s 	= q,

0 otherwise,

P+
i (s, q) =

{
1 if q >i s,

0 otherwise,
P−
i (s, q) =

{
1 if s >i q,

0 otherwise,

P++
i (s, q) =

{
1 if q �i s,

0 otherwise,
P−−
i (s, q) =

{
1 if s �i q,

0 otherwise.

Define W = M ◦ G to be the Hadamard product of two m × m matrices M and
G, i.e., if the (s, q) entries of M and G are M (s, q) and G(s, q), respectively, then
the m × m matrix W has (s, q) entry W (s, q) = M (s, q) · G(s, q). As well, define
the disjunction operator (“or”) “∨” on two matrices: B = M ∨ G to be the m × m
matrix with (s, q) entry

B(s, q) =
{
1 if M (s, q) + G(s, q) 	= 0,
0 otherwise.

The following m×m matrices are important in stability definitions under hybrid
preference. Let E denote the m×m matrix with each entry 1 and let I be the m×m
unit matrix. Then,

P−−,=
i = P−−

i ∨ P=
i ,P−−,U

i = P−−
i ∨ PU

i ,P−−,−,=
i = P−−,=

i ∨ P−
i ,

P+,++
i = P+

i ∨ P++
i ,P+,++,U

i = P+,++
i ∨ PU

i ,P−−,−,=,U
i = E − I − P+,++

i . (7.1)

It is well-known that matrices can efficiently describe adjacency of vertices, and
incidence of arcs and vertices, in a graph, thereby permitting tracking of paths
between any two vertices (Godsil and Royle 2001).Matrices possess useful algebraic
properties that can be exploited to produce improved algorithms for solving graph
problems. For instance, extensive research has been conducted to design effective
algorithms and efficient search procedures using relationships between matrices and
paths (Hoffman and Schiebe 2001). Here, the adjacencymatrix is extended to a graph
model with hybrid preference.

Definition 7.62 For a graph model G, DM i’s adjacency matrix is the m×mmatrix
Ji with (s, q) entries

Ji(s, q) =
{
1 if (s, q) ∈ Ai,

0 otherwise.

It follows the set of matrices that play important roles in matrix representation of
stabilities under hybrid preference. Let i ∈ N , then
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J+,++
i = Ji ◦ P+,++

i and J+,++,U
i = Ji ◦ P+,++,U

i . (7.2)

Note that the corresponding preference matrices in Eq.7.2 are defined in Eq.7.1.

7.3.2 Reachability Matrices Under Hybrid Preference

Preference matrices and reachability matrices are two important components of the
matrix representation of the graphmodel. Under hybrid preference, preferencematri-
ces are defined in Sect. 7.3.1 while reachability matrices are defined now.

Definition 7.63 For the graph model G, the UM reachability matrix and the
MSUIUM reachability matrix for H are the m × m matricesMH andM+,++,U

H with
(s, q) entries

MH (s, q) =
{
1 if q ∈ RH (s),
0 otherwise,

and

M+,++,U
H (s, q) =

{
1 if q ∈ R+,++,U

H (s),
0 otherwise,

respectively.

It is clear that RH (s) = {q : MH (s, q) = 1} and R+,++,U
H (s) = {q : M+,++,U

H (s,
q) = 1}. If RH (s) and R+,++,U

H (s) are written as 0–1 row vectors, then

RH (s) = eTs · MH and R+,++,U
H (s) = eTs · M+,++,U

H ,

where eTs denotes the transpose of the sth standard basis vector of them-dimensional
Euclidean space. Therefore, the reachability matrices for coalition H , MH and
M+,++,U

H , can be used to construct the reachable lists of H from state s, RH (s)
and R+,++,U

H (s).
Fix H ⊆ N such that |H | ≥ 2, and let s ∈ S. One now demonstrates how to find

matrices MH and M+,++,U
H corresponding to RH (s) and R+,++,U

H (s) which are the
reachable list of H from s by legal sequences of UMs and the reachable list of H
from s by legal sequences of MSUIUMs, respectively.

Definition 7.64 For i ∈ N , H ⊆ N , and t = 1, 2, 3, · · · , define the m × m matrices
M (t)

i and M (t,+,++,U )
i with (s, q) entries as follows:

M (t)
i (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly
t legal UMs by H with last mover DM i,

0 otherwise,
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and

M (t,+,++,U )
i (s, q) =

⎧⎨
⎩
1 if q ∈ S is reachable from s ∈ S in exactly
t legal MSUIUMs by H with last mover DM i,

0 otherwise.

Based on Definition7.64, one has:

Lemma 7.1 For i ∈ N and H ⊆ N, the two matrices M (t)
i and M (t,+,++,U )

i satisfy

M (1)
i = Ji and , for t = 2, 3, . . . ,M (t)

i = sign

⎡
⎣

⎛
⎝ ∨

j∈H\{i}
M (t−1)

j

⎞
⎠ · Ji

⎤
⎦ , (7.3)

M (1,+,++,U )
i = J+,++,U

i and , for t = 2, 3, . . . ,

M (t,+,++,U )
i = sign

⎡
⎣

⎛
⎝ ∨

j∈H\{i}
M (t−1,+,++,U )

j

⎞
⎠ · J+,++,U

i

⎤
⎦ . (7.4)

In Lemma7.1, the sign function maps an m × m matrix with (s, q) entryM (s, q)
to the m × m matrix

sign[M (s, q)] =
⎧⎨
⎩
1 M (s, q) > 0,
0 M (s, q) = 0,
−1 M (s, q) < 0.

Generally, if there is no new appropriate arc produced, then the corresponding
unilateral moves will stop. Therefore, the following Lemma7.2 is easy to prove. Let
L1 = | ⋃

i∈H
Ai| denote the number of UM arcs and L2 = | ⋃

i∈H
A+,++,U
i | be the number

of MSUIUM arcs in the following lemma and theorem.

Lemma 7.2 For the graph model G, let H ⊆ N. RH (s) and R+,++,U
H (s) are the

reachable lists of H by the legal sequences of UMs and MSUIUMs from s. δ1 and δ2
are the numbers of iteration steps required to findRH (s) andR+,++,U

H (s), respectively.
Then

δ1 ≤ L1 and δ2 ≤ L2.

The following theorem can be derived using Lemmas7.1 and 7.2.

Theorem 7.5 Let s ∈ S, H ⊆ N , and H 	= ∅. The reachability matrices
MH and M+,++,U

H by H can be respectively expressed by

MH =
L1∨
t=1

∨
i∈H

M (t)
i (7.5)
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and

M+,++,U
H =

L2∨
t=1

∨
i∈H

M (t,+,++,U )
i . (7.6)

Proof The proofs of Eqs. 7.5 and 7.6 are similar. To prove Eq.7.6, assume that Q =
L2∨
t=1

∨
i∈H

M (t,+,++,U )
i .Based onDefinition7.63,M+,++,U

H (s, q) = 1 iff q ∈ R+,++,U
H (s).

Since L2 = | ⋃
i∈H

A+,++,U
i |, then, using Lemma7.2, L2 ≥ δ2. Therefore, by Defini-

tion7.64, q ∈ R+,++,U
H (s) implies that there exists 1 ≤ t0 ≤ δ2 and i0 ∈ H such

that M (t0,+,++,U )
i0

(s, q) = 1. This implies that matrix Q has (s, q) entry 1. There-

fore, M+,++,U
H (s, q) = 1 iff Q(s, q) = 1. Since M+,++,U

H and Q are 0–1 matrices, it

follows that M+,++,U
H = Q =

L2∨
t=1

∨
i∈H

M (t,+,++,U )
i . �

7.4 Matrix Representation of Stabilities Under Hybrid
Preference

7.4.1 Matrix Representation of General Stabilities

In this section, let m = |S| be the number of the states in S, and let i ∈ N and s ∈ S.
The algebraic representation of general graph model stabilities (GGSs) under hybrid
preference is incorporated into the set of m × m matrices given in Table7.1, MGGSl

i
for l ∈ D = {a, b, c, d}, which captures GGSl stabilities for DM i ∈ N , where
GGSl representsGGMRl ,GSMRl , orGSEQl stability. Here, DMs’ preferences may
be hybrid. For example, the m × m matrix MGGMRa

i representing GGMRa stability
matrix shown in Table7.1 is

MGGMRa
i = J+,++,U

i · [E − sign
(
MN\{i} · (P−−,−,=

i )T
)],

where E denotes the m × m matrix with each entry 1 and MN\{i} is calculated using
Eq.7.5 when H = N \ {i}.

Define DM i’s m × m Nasha and Nashc stability matrices as

MNasha
i = MNashc

i = J+,++,U
i · E.

The following theorem establishes the algebraic method to assess whether state s is
Nasha or Nashc stable for a DM.

Theorem 7.6 State s ∈ S is Nasha or Nashc stable for DM i iff M Nasha
i (s, s) = 0.

Note that Nasha is equivalent to Nashc, which is proven by Xu et al. (2010a). Simi-
larly, define DM i’s m × m Nashb and Nashd stability matrices as
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MNashb
i = MNashd

i = J+,++
i · E,

then the following theorem holds.

Theorem 7.7 State s ∈ S is Nashb or Nashd stable for DM i iff M Nashb
i (s, s) = 0.

Based on the stability matrixMGGSl
i for l ∈ D = {a, b, c, d}, one has:

Theorem 7.8 State s ∈ S is GGSl stable for DM i iff M GGSl
i (s, s) = 0.

Theorem7.8 contains twelve matrix representations of general stabilities that are
GGMR, GSMR, and GSEQ with index a, b, c and d , respectively. The proofs of
these results are similar, so one of the matrix representations is proven as follows.
Note that the following proof applies to the case GGS = GSEQ, and l = a. In all
other cases, the proof is analogous. Define DM i’s m×m GSEQa stability matrix as

MGSEQa
i = J+,++,U

i · [E − sign
(
M+,++,U

N\{i} · (P−−,−,=
i )T

)
].

Corollary 7.1 State s ∈ S is GSEQa stable for DM i iff

M GSEQa
i (s, s) = 0. (7.7)

Proof Equation7.7 is equivalent to

(eTs · J+,++,U
i ) · [

(
E − sign

(
M+,++,U

N\{i} · (P−−,−,=
i )T

))
· es] = 0.

Since (eTs · J+,++,U
i ) · [

(
E − sign

(
M+,++,U

N\{i} · (P−−,−,=
i )T

))
· es]

=
m∑

s1=1

J+,++,U
i (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N\{i} ) · (eTs · P−−,−,=
i )T

)
],

then Eq.7.7 holds iff

J+,++,U
i (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N\{i} ) · (eTs · P−−,−,=
i )T

)
] = 0,∀s1 ∈ S. (7.8)

It is clear that Eq.7.8 is equivalent to

(eTs1 · M+,++,U
N\{i} ) · (eTs · P−−,−,=

i )T 	= 0,∀s1 ∈ R+,++,U
i (s). (7.9)

Based on Definitions7.61 and 7.63, Eq.7.9 implies that for any s1 ∈ R+,++,U
i (s),

there exists at least one s2 ∈ R+,++,U
N\{i} (s1) with s2 �i s, s2 <i s, or s2 ∼i s, which

is exactly the logical definition of general SEQ stability with index a presented in
Definition7.35 and by Xu et al. (2010a).
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Hence, state s is GSEQa stable for DM i iffMGSEQa
i (s, s) = 0. �

If the binary relation � denotes > or � in this chapter, i.e., s � q iff either s > q
or s � q, then Theorems7.6–7.8 are identical with the matrix representation of
stabilities with preference uncertainty (Xu et al. 2010a) and equivalent to the results
presented using logical representation under unknown preference (Li et al. 2004). On
the other hand, when each DM does not consider including uncertain preference in
stability analysis, Theorems7.6–7.8 reduce to the general stabilities described using
matrix representation (Xu et al. 2010a) and logical representation (Hamouda et al.
2006) under strength of preference. If a graph model contains neither strength nor
uncertainty of preference, Theorems7.6–7.8 reduce to the stabilities in matrix form
(Xu et al. 2010a) and in logical form (Fang et al. 1993) under simple preference.

With the hybrid preference structure introduced into the graph model, general
stable states can be classified into strongly stable or weakly stable according to
strength of the possible sanctions and indexed a, b, c, or d by a DM’s attitudes toward
the risk associatedwith uncertain preference. Strong andweak stabilities include only
GMR, SMR, and SEQ because Nash stability does not involve sanctions.

7.4.2 Matrix Representation of Strong and Weak Stabilities

If a particular state s is general stable, then s is either strongly stable or weakly
stable. The algebraic system to representmatrix representation of strong graphmodel
stabilities (SGSs) under hybrid preference is incorporated into the set of m × m
matrices shown in Table7.2. The set of matrices MSGSl

i for l ∈ D = {a, b, c, d}
captures SGSl stabilities for DM i ∈ N , where SGSl represents SGMRl , SSMRl , or
SSEQl stability, and DMs’ preference may include hybrid preference.

Based on the stability matrixMSGSl
i for l ∈ D = {a, b, c, d}, one has:

Theorem 7.9 State s ∈ S is SGSl stable for DM i iff M SGSl
i (s, s) = 0.

Theorem7.9 contains twelve matrix representations of strong stabilities that are
SGMR, SSMR, and SSEQ with index a, b, c and d , respectively. Note that the fol-
lowing corollary applies to the case SGS=SSMR and l = c. In all other cases, the
representation and the corresponding proof are analogous. Define DM i’s m × m
SSMRc stability matrix

MSSMRc
i = J+,++,U

i · [E − sign(MN\{i} · Q)], with

Q = (P−−,U
i )T ◦ [E − sign

(
Ji · (E − P++,U

i )
)
].

Corollary 7.2 State s ∈ S is SSMRc stable for DM i iff

M SSMRc
i (s, s) = 0. (7.10)
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Proof Since the diagonal element of matrixMSSMRc
i

M SSMRc
i (s, s) = (eTs · J+,++,U

i ) · [(E − sign(MN\{i} · Q)) · es]

=
m∑

s1=1

J+,++,U
i (s, s1)[1 − sign

(
(MN\{i} · Q)(s1, s)

)]
with

(MN\{i} · Q)(s1, s) =
m∑

s2=1

MN\{i}(s1, s2) · P−−,U
i (s, s2)[1 − sign

⎛
⎝ m∑

s3=1

(
Ji(s2, s3)(1 − P++,U

i (s3, s))
)⎞
⎠],

then, MSSMRc
i (s, s) = 0 iff (MN\{i} · Q)(s1, s) 	= 0 for any s1 ∈ R+,++,U

i (s), which is
equivalent to the equation that, for any s1 ∈ R+,++,U

i (s) there exists s2 ∈ RN\{i}(s1)
such that

P−−,U
i (s, s2) 	= 0, and

m∑
s3=1

(
Ji(s2, s3) · (1 − P++,U

i (s3, s)
)

= 0. (7.11)

Obviously, for any s1 ∈ R+,++,U
i (s) there exists s2 ∈ RN\{i}(s1) such that Eq. 7.11

holds iff for every s1 ∈ R+,++,U
i (s) there exists s2 ∈ RN\{i}(s1)with s �i s2 or s Ui s2

and s �i s3 or s Ui s3 for all s3 ∈ Ri(s2), which is exactly the logical definition for
strong SMR stability with index c presented in Xu et al. (2010a).

Therefore, state s is SSMRc stable for DM i iffMSSMRc
i (s, s) = 0. �

Under hybrid preference, the interrelationships of general stabilities, strong sta-
bilities, and weak stabilities are as follows:

Theorem 7.10 Let l = a, b, c, or d and i ∈ N. The interrelationships among
general stability (GGS), strong stability (SGS), and weak stability (WGS) with index
l for DM i are

SWGSl
i = SGGSl

i − SSGSl
i .

For n = 2, the above theorems degenerate to those theorems shown in Xu et al.
(2011).

From the matrix representation of general, strong, and weak stabilities, each of
which is indexed by a, b, c, and d , presented above, it can be seen that stability (strong
or weak) with index a constitutes strong or weak stability for the most aggressive
DMs. First, the DM is aggressive in deciding whether to move from the status quo, in
that he or she is willing to accept the risk associated with moves to states of unknown
preference. In addition, when evaluating possible moves, the DM is deterred only by
sanctions to states that are determinately less preferred than the status quo, and does
not consider states of uncertain preference (relative to the status quo) to be sanctions.
For the definitions indexed b, uncertainty in preferences is not considered by a DM.
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The definitions indexed c incorporate a mixed attitude toward the risk associated
with states of uncertain preference. Specifically, the DM is aggressive in deciding
whether to move from the status quo, but is conservative when evaluating possible
moves, being deterred by sanctions to states that are less preferred or have uncertain
preference relative to the status quo. Finally, the definition indexed d represents
stability for the most conservative DMs, who would move only to determinately
preferred states from a status quo, but would be deterred by responses that result in
states of uncertain preference.

7.5 Application

In this section, the algebraic approach developed in this chapter is applied to a prac-
tical problem—the Lake Gisborne conflict. As explained in Sect. 5.4, in 1995, a
company called Canada Wet Incorporated in Newfoundland proposed a project to
export bulk water from Lake Gisborne. The Provincial Government of Newfound-
land and Labrador approved this project because of its potential economic benefits.
Nonetheless, because of the risk of harmful impacts on local environment, a wide
range of lobby groups opposed the proposal. The Federal Government of Canada
supported the opposing groups and prohibited water exports. In view of the impov-
erished state, however, several groups supported the project, arguing to continue it.
Thus, the Lake Gisborne conflict arose among the Federal Government of Canada,
Provincial Government of Newfoundland and Labrador, and Support Groups. (See
details in Fang et al. (2002) and Li et al. (2004)).

This conflict is modeled using three DMs and a total of three options that are
shown as follows:

• Federal government of Canada (Federal): its only option is to continue a Canada
wide accord on the prohibition of bulk water exports (Continue), or not,

• Provincial government of Newfoundland and Labrador (Provincial): its only
option is to lift the ban on bulk water exports (Lift), or not, and

• Support groups (Support): its only option is to appeal for continuation of the
Gisborne project (Appeal), or not.

Because each option can either be selected (Y for yes) or not taken (N for no), there
is a total of 23 possible states, s1, s2, · · ·, s8, in the Lake Gisborne conflict. The results
are presented in Table7.3. One advantage of the graph model is its innate capability
to systematically keep track of state transitions. State transition is the process by
which a conflict moves from one state to another. If a DM can cause a state transition
on his or her own, then this transition is called a unilateral move (UM) for that DM.
Hence, the graph model of this conflict is depicted based on the eight feasible states
in Fig. 7.4, in which a label on an arc indicates whichDMcontrols themoves between
the two states connected by the arc.

Since several groups supported the project, an economical-oriented provincial
government might have considered supporting it because of the urgent need for cash.
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Table 7.3 Feasible states for the Lake Gisborne model

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

State number s1 s2 s3 s4 s5 s6 s7 s8

Fig. 7.4 Graph model for
the Gisborne conflict

1s 7s

6s

5s

2s

3s

4s 8s

Federal Federal Federal Federal

Provincial

Support

Support

Support

Support

Provincial Provincial

Provincial

However, an environmental-oriented provincial government might have opposed it
because of the possibility of devastating environmental consequences. In 1999, it was
unclear which of these two different attitudes described the provincial government’s
thinking, resulting in uncertainty in preferences in the Gisborne conflict. The details
can be found in Li et al. (2004). The graph model introduced by Li et al. (2004) is
extended to include hybrid preferences of uncertainty and strength in the Gisborne
dispute. The preference information for this conflict over the feasible states is given
in Table7.4. One assumes that state s7 is strongly less preferred to all other states
by the Federal Government, the Support Groups consider state s2 to be strongly less
preferred relative to all other states, and the Provincial Government strongly prefers
state s2 to state s6. Note that DM Provincial only knows that it mildly prefers state s3
to s7, state s4 to s8, state s1 to s5, and strongly prefers state s2 to s6. It is obvious thatDM
Provincial’s preference information includes combining uncertainty and strength.
Additionally, this representation of preference information presented in Table7.4

Table 7.4 Certain preference information for the Gisborne model

DMs Certain preferences

Federal s2 > s6 > s4 > s8 > s1 > s5 > s3 � s7
Provincial s3 > s7, s4 > s8, s1 > s5, s2 � s6, only

Support s3 > s4 > s7 > s8 > s5 > s6 > s1 � s2
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implies that the preferred relations, > and �, are transitive. For instance, since s5 >

s3 and s3 � s7, then s5 � s7, for DM Federal. However, in general, the preference
structure presented in this bookdoes not require the transitivity of preference relations
and, hence, the developed results can be used to handle intransitive preferences.

In multiple decision maker graph models, the reachability matrices, MH and
M+,++,U

H , are essential components of the matrix method for stability analysis under
hybrid preference. Here, using the Gisborne model as an example, the procedures of
constructing the reachability matrices are shown next.

Let N = {1, 2, 3} and H = N \ {i}, i = 1, 2, 3.

• Construct preference matrices, P+,++
i , P++,U

i , P+,++,U
i , P−−

i , and P−−,U
i , for i =

1, 2, and 3, using information provided in Table7.4, as well as P−−,−,= = E −
I − P+,++,U

i and P−−,−,=,U = E − I − P+,++
i ;

• Construct DM i’s adjacency matrix Ji and calculate matrices J+,++
i and J+,++,U

i
for i = 1, 2, and 3;

• Calculate matrices M (t)
i and M (t,+,++,U )

i using Lemma7.1;
• Calculate the UM reachability matrix and the MSUIUM reachability matrix byH ,

MH =
L1∨
t=1

∨
i∈H

M (t)
i

and

M+,++,U
H =

L2∨
t=1

∨
i∈H

M (t,+,++,U )
i ,

where L1 = | ⋃
i∈N

Ai| = 24 and L2 = | ⋃
i∈N

A+,++,U
i | = 16;

• Construct the general stability and strong stability matrices using Tables7.1
and 7.2;

• Analyze the general stabilities, Nashl , GGMRl , GSMRl , and GSEQl by Theorems
7.6–7.8, and calculate the strong stabilities, SGMRl , SSMRl , and SSEQl using
Theorem7.9, as well as calculate the weak stabilities using Theorem7.10;

• Present the stability results for the Gisborne conflict in Table7.5.

7.6 Important Ideas

The fundamental design of GMCR permits the methodology to handle a rich range of
preference structures for both transitive and intransitive preferences. In this chapter,
both unknown (Chap.5) and degree or strength of preference (Chap. 6) up to three
degrees are combined as a type of the hybrid preference within the graph model
paradigm. In this way, GMCR can simultaneously account for preference uncer-
tainty and strength or degree of preference. More specifically, the main properties of
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the preference structure and reachable lists are introduced in Sect. 7.1 in this chapter.
Because DMs make moves and countermoves when interacting with one another
under conflict, reachable lists are used to keep track of the possible unilateral move-
ments in one step from a given state for a particular DM with respect to hybrid
preference. When considering stability definitions for more than two DMs, coalition
moves are defined since two or more DMs can participate in blocking a unilateral
improvement by another DM. Subsequently, four stability definitions consisting of
Nash stability, general metarationality (GMR), symmetric metarationality (SMR),
and sequential stability (SEQ), are defined for the graph model with this extended
preference structure and relationships among them are investigated. Additionally,
in this chapter, matrix representations of the four stabilities are presented for graph
models having a preference structure of up to three degrees.

7.7 Problems

7.7.1 Describe a real-world application in which you believe one should simulta-
neously account for both unknown and degree or strength of preference.

7.7.2 A variety of approaches are available for modeling uncertain preferences
within GMCR in different but complementary fashions such as unknown (Chap.5),
fuzzy (Hipel et al. 2011, Bashar et al. 2012, 2015, 2016, 2018), grey (Kuang et al.
2015a, b, Zhao and Xu 2017), and probabilistic preferences (Rego and dos Santos
2015). Qualitatively describe the type of uncertainty that each of these four app-
roaches to preference uncertainty capture. Based on this, suggest meaningful com-
binations of uncertainty approaches for more comprehensively modeling uncertain
preferences with GMCR. Discuss difficulties that may arise when considering other
kinds of hybrid or combined preferences. Which combinations of uncertain prefer-
ences do you think could be meaningfully combined with degree of preference?

7.7.3 The normal form of Prisoner’s Dilemma is given in Problem3.5.1. Suggest a
model of this generic conflict which requires both unknown preference plus degree
of preference at level 3. Carry out a stability analysis using this hybrid preference
based on the stability definitions for Nash and SEQ stability following a logical
interpretation. Comment on any strategic insights that you detect in your stability
results.

7.7.4 Analyze the Prisoner’s Dilemma Problem specified in Problem7.7.3 using the
matrix interpretation of hybrid preferences.

7.7.5 The game of Chicken is presented in normal form in Problem3.5.4. Create
a version of this game which contains both unknown preference and three degrees
of preference. Model and analyze this conflict using the hybrid preference approach
furnished in this chapter using the logical definitions of stability for Nash and SEQ
stability.
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7.7.6 Model and analyze the game of Chicken mentioned in Problem7.7.5 for your
version of hybrid preference as it appears in Chicken using the matrix formulations
given in this chapter.

7.7.7 The Elmira groundwater contamination conflict is described in Sects. 1.2.2
and 3.2, as well as elsewhere in the book. Develop what you think is a reasonable
version of this conflict which contains hybrid preference consisting of unknown
preference and three degrees of preference. Use either the logical or matrix methods
of this chapter to carry out a full modeling and stability analysis. Discuss what you
learned strategically about this conflict when using hybrid preferences.

7.7.8 A large-scale environmental problem over potential pollution caused by a
proposed irrigation scheme called the Garrison Diversion Unit (GDU) is described
in Sect. 6.6. Suggest a sensible hybrid version of this dispute in which both unknown
preference and three degrees of preference are present. Use appropriate methods
from this chapter to carry out a full conflict modeling and analysis of this dispute
for the case of Nash and SEQ stability. Discuss interesting facts about your strategic
findings.

7.7.9 A potential nuclear war between the two superpowers consisting of the USA
and the USSR (Union of the Soviet Socialist Republics) is given in Problem3.5.10.
Develop a reasonable model in which the hybrid preference of this chapter is con-
tained in the model. Carry out a strategic study using the ideas furnished in this
chapter for the case of Nash and SEQ stability. Summarize and put into perspective
your key strategic findings.

7.7.10 Find a current conflict which is of interest to you and which you think can be
realistically modeled and analyzed using the hybrid preference ideas for modeling
and analysis given in this chapter. After summarizing the background to this conflict,
carry out a complete modeling and analysis of the dispute using the procedures from
this chapter. Discuss your strategic findings especially with respect to interesting
strategic insights.
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Chapter 8
Coalitional Stabilities

Stability definitions for simple preference, unknown preference, degrees of pref-
erence, and hybrid preference (unknown combined with degree of preference) are
presented in Chaps. 4–7, respectively. A typical stability analysis is built upon a
noncooperative framework, with the underlying assumption being that each DM acts
independently in its own self interest, after calculating moves and countermoves by
its opponents. On the other hand, a coalitional analysis takes place in a cooperative
framework, and assesses whether individual DMs can jointly improve their posi-
tions by forming a coalition (Kilgour et al. 2001, Inohara and Hipel 2008a, b, Xu
et al. 2010, 2011, 2014). In fact, as emphasized in this book, after determining how
well a DM can fare on his or her own by carrying out individual stability analyses,
one should ascertain if a DM can do even better by cooperating with others via
executing coalitional stability analyses, which is the focus of this chapter. Outside
of Chap.8, discussions regarding the importance of coalition investigations are put
forward in Sect. 1.2.3 and portrayed in Fig. 1.5. Moreover, coalition modeling and
analysis should be embedded as a key function of a decision support system for
GMCR as explained in Sect. 10.2 and depicted in Figs. 10.2 and 10.4.

Coalition formation and stability analysis have long been active research areas in
game theory (Aumann and Hart 1994, van Deeman 1997). The coalitional analysis
considered in this book is confined to the Graph Model for Conflict Resolution
(GMCR) paradigm. It assesses whether a subset of self-interested and independent
DMs can gain by forming a coalition and coordinating their choices. The rationale
is that a nonequilibrium state is not sustainable, because at least one DM can deviate
from it in its own interest. An equilibrium, on the other hand, is expected to be
sustainable, as no DM is motivated to depart from it. However, when a subset of
DMs forms a coalition, an equilibrium may be upset via a sequence of joint moves
by the coalition. In this case, the target state must also be an equilibrium, as any
nonequilibrium state is transient. In Kilgour et al. (2001), this process is referred to
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as an “equilibrium jump”. Understandably the target state of an equilibrium jump
should make all members in the coalition better off and cannot be achieved by any
DM acting individually. Coalition analysis, therefore, aims to alert the analyst that
such a coalition exists and, if so, which equilibria are vulnerable to equilibrium jumps
and how these jumps can be achieved by coalitional joint moves.

Coalition movements under various preference structures are introduced in
Sect. 8.1. Subsequently, the logical representations of the four coalitional stabil-
ity definitions, coalitional Nash stability, coalitional general metarationality, coali-
tional symmetric metarationality, and coalitional sequential stability, are defined in
Sects. 8.2–8.5 under simple preference, unknown preference, three-level preference,
and hybrid preference, respectively. Additionally, in this chapter, matrix represen-
tations of coalitional stabilities are presented in Sects. 8.6–8.9 for the four types of
preference structures.

8.1 Coalition Movement Definitions

To define coalitional stabilities, concepts of coalitional improvement under various
preferences must be introduced.

Definition 8.1 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a coalitional improvement for H under simple preference from s,
denoted by s1 ∈ CR+

H (s), iff s1 �i s for every i ∈ H .

It is worth noting that CR+
H (s) �= R+

H (s), as R+
H (s) denotes all states that are attain-

able by coalition H via legal sequences of UIs from s (see Definition4.7). Although
each individual move is a UI for the mover, there is no guarantee that the terminal
state is preferred to s by any DM in H . On the contrary, CR+

H (s) is the subset of the
terminal states preferred to s by all DMs in the coalition, although any individual
move in the sequence may not be a UI for the mover.

Xu et al. (2010) extend the definition of coalitional improvement to weak coali-
tional improvement by including uncertain preference in the definition. A weak
coalitional improvement for a coalition is a state that is the result of a sequence
of moves from the status quo by members of the coalition, where each move is a
coalition improvement or uncertain move (CIUM), defined as follows.

Definition 8.2 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a coalition improvement or uncertain move for H from s, denoted
by s1 ∈ CR+,U

H (s), iff s1 �i s or s1 Ui s for every i ∈ H .

Here, CR+,U
H (s) differs from R+,U

H (s) in Definition5.18 in that R+,U
H (s) reflects

the steps of the process without taking into account the final result, while CR+,U
H (s)

is the final result, instead of the process. In other words, R+,U
H (s) requires each move

in a legal sequence to be a UIUM for themover, but the relative preference of the final
state and the status quo is not a concern. On the contrary, CR+,U

H (s) ensures that all
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coalition members prefer the terminal state to the status quo, or are uncertain about
their preference between these two states, without examining the relative preference
for each individual move along the legal sequence.

Similarly, a coalitional improvement can be extended to include strength of
preference.

Definition 8.3 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a mild or strong coalitional improvement for H from s under the
three-degree preference, denoted by s1 ∈ CR+,++

H (s), iff s1 >i s or s1 �i s for
every i ∈ H .

This means that, under a model with three degrees of preference, a coalitional
improvement is a state mildly preferred or strongly preferred to s by any DM in H
and is reachable by the coalition H . As before, note that CR+,++

H (s) �= R+,++
H (s),

because R+,++
H (s) (Definition6.9) denotes the states attainable by coalition H via

legal sequences of mild or strong unilateral improvements (MSUIs) from s. But
there is no guarantee that every DM in H prefers the terminal state to state s. On the
other hand, CR+,++

H (s) ensures that the terminal state is always mildly or strongly
preferred to s by all DMs in H though any individual move in the sequence may not
be an MSUI for the mover. The following definition of coalitional movement is for
the combination of unknown preference with three degrees of preference.

Definition 8.4 For a status quo state s and a nonempty coalition H ⊆ N , a state
s1 ∈ RH (s) is a mild or strong or uncertain coalitional improvement for H from
s under hybrid preference, denoted by s1 ∈ CR+,++,U

H (s), iff s1 >i s, s1 �i s, or
s1 Ui s for every i ∈ H .

Now that the important concept of coalitional improvement or coalitional uncer-
tainty has been defined for various preference structures, the logical and matrix
representations of coalitional stabilities can be presented as follows.

8.2 Logical Representation of Coalitional Stabilities Under
Simple Preference

The logical representations of individual stabilities in the graph model for simple
preference, unknown preference, three degrees of preference and hybrid preference
are presented in Sects. 4.2, 5.2, 6.3 and7.2, respectively. In this section, logical rep-
resentations of coalitional stabilities are defined for the four kinds of preference
structure.

Firstly, coalitional stabilities under Nash, GMR, SMR, and SEQ with simple
preference are furnished.

Definition 8.5 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional Nash
stable for H , denoted by s ∈ SCNash

H , iff CR+
H (s) = ∅.
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From Definition8.1, CR+
H (s) honors the rule of no-successive-moves by the same

DM and, hence, this definition is applicable to both transitive and intransitive graph
models. As mentioned earlier, an empty coalition has no meaning, so it is assumed
hereafter that |H | > 0. If |H | = 1, then H = {i} and CR+

H (s) = R+
i (s). In this

special case, Definition8.5 reduces to individual Nash stability defined in Chap.4.
However, for a nontrivial coalition H ⊆ N , |H | ≥ 2, coalitional Nash stability
depends on the coalitional improvement listCR+

H (s), rather than coalition members’
individual UI lists, R+

i (s), for i ∈ H .
If state s ∈ S is Nash stable for every nonempty coalition H ⊆ N , it is called

universally coalitional Nash stable. The formal definition is described as follows.

Definition 8.6 State s ∈ S is universally coalitional Nash stable, denoted by
s ∈ SUCNash , iff s is coalitional stable for every nonempty coalition H ⊆ N .

Note that SCNash
H in Definition8.5 is different from SUCNash . SCNash

H is the set of
coalitional Nash stable states for some coalition H , whereas SUCNash contains all
coalitional Nash stable states.

For notational convenience, the notation to represent a preference relation in
coalition H is defined as follows.

Definition 8.7 For the graph model G, let H ⊆ N be a coalition. �	
H (s) = {t ∈ S :

s 
i t for at least one i ∈ H} in which s 
i t denotes s �i t or s ∼i t .

It is apparent that �	
H (s) considers only preference relative to state s without regard

to reachability from s.

Definition 8.8 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
general metarational (CGMR) for H , denoted by s ∈ SCGMR

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s).

If H = {i}, this definition reduces to individual GMR, defined in Sect. 4.2.3. If a
state is coalitional GMR for every coalition, it is called universally coalitional GMR
stable, formally defined as follows.

Definition 8.9 State s ∈ S is universally coalitional GMR stable, denoted by
s ∈ SUCGMR , iff s is coalitional GMR stable for every nonempty coalition H ⊆ N .

Definition 8.10 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
symmetric metarational (CSMR) for H , denoted by s ∈ SCSMR

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all

s3 ∈ RH (s2).

As usual, if H = {i}, Definition8.10 reduces to individual SMR, defined in
Sect. 4.2.3. If a state is coalitional SMR for every coalition, it is called universally
coalitional SMR stable, defined as follows.

Definition 8.11 State s ∈ S is universally coalitional SMR stable , denoted by
s ∈ SUCSMR , iff s is coalitional SMR stable for every nonempty coalition H ⊆ N .
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Normally, coalition H ’s opponents N − H may be treated as a coalition or as
individual DMs in the next two definitions.

Definition 8.12 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
sequentially stable (CSEQ1) for H , denoted by s ∈ SCSEQ1

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ CR+
N−H (s1) such that s2 ∈ �

	
H (s).

Definition 8.13 Let H ⊆ N be a nonempty coalition. State s ∈ S is coalitional
sequentially stable (CSEQ2) for H , denoted by s ∈ SCSEQ2

H , iff for every s1 ∈
CR+

H (s), there exists s2 ∈ R+
N−H (s1) such that s2 ∈ �

	
H (s).

Remark: By employing the subclass improvement list concept, the SEQ stability
definition for coalition H introduced by Inohara and Hipel (2008a, b) considers cred-
ible sanctions by subcoalitions of opponents. But their result assumes that the rule
of no consecutive moves by the same DM has been lifted for the sake of tractability.
The implication is that the definition is applicable only to transitive graph models,
so in this book, one retains this restriction for coalitional stabilities. Because the
number of subcoalitions increases exponentially with the number of DMs in the
opponents, making the calculation of subclass improvement lists prohibitively dif-
ficult, H’s opponents N − H are treated here as a coalition or individual DMs, as
shown in Definitions 8.12 and 8.13, respectively.

As usual, when H = {i}, coalitional SEQwould be reduced to individual SEQ sta-
bility. Similarly, if state is coalitional SEQ for every coalition, it is called universally
coalitional SEQ stable. Specifically,

Definition 8.14 State s ∈ S is universally coalitional SEQ1 stable, denoted by
s ∈ SUCSEQ1 , iff s is coalitional SEQ1 stable for every nonempty coalition H ⊆ N .

Definition 8.15 State s ∈ S is universally coalitional SEQ2 stable, denoted by
s ∈ SUCSEQ2 , iff s is coalitional SEQ2 stable for every nonempty coalition H ⊆ N .

From the discussions above, it is clear that coalitional stability analysis extends
individual stabilities under simple preference. Next, the coalitional stabilities are
extended to preference with uncertainty.

8.3 Logical Representation of Coalitional Stabilities Under
Unknown Preference

DMs may exhibit different attitudes toward preference uncertainty when making
choices. For instance, an optimistic DM tends to view uncertainty as a potential
opportunity, while a pessimistic DM may regard an uncertain outcome as a risk.
In addition, a DM’s attitude towards uncertainty may change with the status quo
state: a DMwho has little to lose is more likely to take an aggressive attitude towards
uncertainty and treat it as a potential gain. On the contrary, a DMwho has little to gain
is highly likely to regard uncertain outcomes as a risk and adopt a conservative stance.
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To accommodate different attitudes toward preference uncertainty, Li et al. (2004)
define individual Nash, GMR, SMR, and SEQ stabilities with preference uncertainty
under four forms, a, b, c, and d (see Chap.5). The purpose of these four extensions
is to characterize a focal DM with diverse attitudes toward preference uncertainty,
ranging from aggressive tomixed to conservative.When coalitional GMR, SMR, and
SEQ stability definitions are extended from graph models with simple preference,
as presented in Sect. 8.2, to those with unknown preference, these four extensions
apply, depending on the focal coalition’s attitude towards preference uncertainty.

First, the coalitional Nash, GMR, SMR, and SEQ stabilities with indices a, b, c,
and d for unknown preference are described as follows. Let l ∈ {a, b, c, d}.

8.3.1 Logical Representation of Coalitional Stabilities
Indexed l

(1) Logical Representation of Coalitional Stabilities Indexed a

Definition 8.16 State s ∈ S is coalitional Nasha stable for H ⊆ N , denoted by
s ∈ SCNasha

H , iff CR+,U
H (s) = ∅.

Definition 8.17 State s ∈ S is coalitional GMRa for H ⊆ N , denoted by
s ∈ SCGMRa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s).

Definition 8.18 State s ∈ S is coalitional SMRa for H ⊆ N , denoted by
s ∈ SCSMRa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2).

Definition 8.19 State s ∈ S is coalitional SEQa for H ⊆ N , denoted by
s ∈ SCSEQa

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	
H (s).

In extension a, the focal coalition members are conceived to be aggressive. They
are willing to deviate from the status quo state for uncertain outcomes in that uncer-
tainty is allowed at the incentive end for the focal coalition. Therefore, s ∈ SCNasha

H
is also said to be Nash stable for aggressive DMs in H . While assessing sanctions
by opponents, at least one coalition member must end up in a no-better-off position
in order to successfully block the focal coalition. Thus, uncertainty is not allowed at
the sanction end for the focal coalition.

(2) Logical Representation of Coalitional Stabilities Indexed b

Definition 8.20 State s ∈ S is coalitional Nashb stable for H ⊆ N , denoted by
s ∈ SCNashb

H , iff CR+
H (s) = ∅.

Definition 8.21 State s ∈ S is coalitional GMRb for H ⊆ N , denoted by s ∈
SCGMRb
H , iff for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1) such that s2 ∈ �
	
H (s).



8.3 Logical Representation of Coalitional Stabilities Under Unknown Preference 299

Definition 8.22 State s ∈ S is coalitional SMRb for H ⊆ N , denoted by
s ∈ SCSMRb

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2).

Definition 8.23 State s ∈ S is coalitional SEQb for H ⊆ N , denoted by
s ∈ SCSEQb

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	
H (s).

Compared to the stability definitions for a coalition in extension a, this extension
does not treat uncertain moves as sufficient incentive for the focal coalition to deviate
from the status quo. The focal coalition under this extension presumably exhibits
a mixed attitude towards preference uncertainty, conservative at the incentive end
but aggressive at the sanction end (Li et al. 2004). Although Definitions8.20–8.23,
respectively, look the same as Definitions8.5, 8.8, 8.10, and 8.13, they are in fact
different in the sense that Definitions 8.20–8.23 assume preference uncertainty but
uncertainmoves are neither strong enoughmotivation for the focal coalition to deviate
from the status quo nor allowed as valid sanctions to deter the focal coalition. On the
other hand, Definitions 8.5, 8.8, 8.10, and 8.13 assume graph models with simple
preference.

(3) Logical Representation of Coalitional Stabilities Indexed c

For convenience, let �
	,U
H (s) = {t ∈ S : s 
i t or s Ui t for at least one i ∈ H}.

As Nash stability does not examine countermoves by the opponents, similar to the
individual stability case in Chap. 5, SCNashc

H = SCNasha
H .

Definition 8.24 State s ∈ S is coalitional GMRc for H ⊆ N , denoted by
s ∈ SCGMRc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s).

Definition 8.25 State s ∈ S is coalitional SMRc for H ⊆ N , denoted by
s ∈ SCSMRc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2).

Definition 8.26 State s ∈ S is coalitional SEQc for H ⊆ N , denoted by
s ∈ SCSEQc

H , iff for every s1 ∈ CR+,U
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	,U
H (s).

Extension c assumes that uncertain moves are allowed as sufficient incentives and
sanctions for the focal coalition and is designed to characterize focal coalition mem-
bers with mixed attitude towards preference uncertainty: aggressive at the incentive
end but conservative at the sanction end.

(4) Logical Representation of Coalitional Stabilities Indexed d

Similar to the individual stability case, SCNashd
H = SCNashb

H .

Definition 8.27 State s ∈ S is coalitional GMRd for H ⊆ N , denoted by
s ∈ SCGMRd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s).
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Definition 8.28 State s ∈ S is coalitional SMRd for H ⊆ N , denoted by
s ∈ SCSMRd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2).

Definition 8.29 State s ∈ S is coalitional SEQd for H ⊆ N , denoted by
s ∈ SCSEQd

H , iff for every s1 ∈ CR+
H (s), there exists s2 ∈ R+,U

N−H (s1) such that
s2 ∈ �

	,U
H (s).

Coalitional stability definitions in extension d are devised for conservative focal
coalitions: When contemplating incentives, they do not envision uncertain moves as
opportunities (preference uncertainty is not allowed as incentives); while assessing
sanctions, these DMs would view uncertain moves as potential harm (preference
uncertainty is allowed as valid sanctions).

Let l ∈ {a, b, c, d}. As usual, if state s ∈ S is coalitional Nash, GMR, SMR,
or SEQ stable for each coalition H ⊆ N under a particular extension l, it is called
universally coalitional Nash, GMR, SMR, or SEQ stable indexed l, and denoted
by s ∈ SUCNashl , s ∈ SUCGMRl , s ∈ SUCSMRl , or s ∈ SUCSEQl . It is obvi-
ous that SUCGMRl = ∩H⊆N S

CGMRl
H , SUCSMRl = ∩H⊆N S

CSMRl
H , and SUCSEQl =

∩H⊆N S
CSEQl
H .

The logical representations of the coalitional stabilities for simple preference and
unknown preference have been described in Sects. 8.2 and 8.3. The logical repre-
sentation of coalitional stabilities when there are three degrees of preference are
presented next.

8.4 Logical Representation of Coalitional Stabilities Under
Three Degrees of Preference

Two-degree preference (simple preference) is often inadequate for modeling the
complex strategic conflicts that arise in practical applications, so it is natural to
explore how to expand coalitional stability from two-degree preference, presented
in Sect. 8.2, to the three-degree version. The coalitional stability definitions given
below for three degrees of preference recognize three distinct categories of stability
that are general coalitional stability, strong coalitional stability, and weak coalitional
stability. Coalitional stability definitions are called strong or weak to reflect the
additional preference information contained in the strength of preference relation.
General coalitional stabilities are defined first.

8.4.1 General Coalitional Stabilities

In order to analyze the coalitional stability of a state for a coalition H ⊆ N , it is nec-
essary to take into account possible responses from the opponents of H, j ∈ N − H .



8.4 Logical Representation of Coalitional Stabilities Under Three Degrees of Preference 301

The reachable lists of coalition H from state s, RH (s) and R+,++
H (s), defined in

Sects. 4.2.2 and6.3.2, respectively, are used in this subsection for coalitional stability
definitions for three degrees of preference . A mild or strong coalitional improve-
ment from s for H , CR+,++

H (s), is presented in Definition8.3. General coalitional
stabilities are defined next.

Definition 8.30 For H ⊆ N , state s ∈ S is general coalitional Nash stable for
coalition H , denoted by s ∈ SGCNash

H , iff CR+,++
H (s) = ∅.

State s is general coalitional Nash stable for coalition H iff H has no coalitional
improvements from state s. Nash stability takes no account of possible responses by
the opponents of H for any move by H away from s.

To develop the coalitional versions of GMR, SMR, and SEQ, it is necessary to
identify coalition H ’s UMs, RH (s), MSUIs, R+,++

H (s), and coalitional improve-
ments, CR+,++

H (s), from state s.

Definition 8.31 For H ⊆ N , state s is general coalitional GMR (GCGMR) for
coalition H , denoted by s ∈ SGCGMR

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ RN−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some DM i ∈ H .

Definition 8.32 State s is general coalitional SMR (GCSMR) stable for coalition H ,
denoted by s ∈ SGCSMR

H , iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1),

such that s �i s2, s >i s2, or s ∼i s2 for at least one i ∈ H and s �i s3, s >i s3, or
s ∼i s3 for all s3 ∈ RH (s2).

State s is general coalitional SMR stable for H iff, for every s1 that H can attain
from s, and that is mildly or strongly preferred to s by everyone in H , there exists
s2 that N − H can reach from s1 that someone in H finds no more preferable than
s, and, moreover, every s3 that H can attain from s2 is no more preferable than s for
some member of H . If the sanction imposed by the opponents on H ’s improvement
cannot be mitigated by coalition H ’s counterresponse, then coalition H is better off
staying at the original state. Coalitional SMR presumes one step more foresight than
coalitional GMR.

Coalitional SEQ stability examines the credibility of sanctions of coalition H ’s
improvements by its opponents. The legality of sequences of improvements by sub-
coalitions of N − H is another issue. Similar to Sect. 8.2, H ’s opponents N − H
may be treated as a coalition or as individual DMs in the next two definitions.

Definition 8.33 For H ⊆ N , state s is general coalitional SEQ1 (GCSEQ1) for
coalition H , denoted by s ∈ SGCSEQ1

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ CR+,++
N−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some i ∈ H .

The state s ∈ S is general coalitional SEQ1 stable for H iff, for every s1 that H can
reach from s which everyone in H mildly or strongly prefers to s, there exists s2 that
N − H can reach from s1 such that everyone in N − H mildly or strongly prefers
s2 to s1 and someone in H finds s2 no more preferable than s. (Note that s2 may be
reachable from s1 by unilateral moves rather than unilateral improvements.)
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This is the same as saying that, for every coalitional unilateral improvement by H
from s, there is a response that can be achieved by N−H such that at least one person
in H finds the coalitional improvement sanctioned. In this case, at least one person
in H would rather be at s than at s2. This person therefore refuses to contribute to
the move from s to s1. (Of course, if this person is not essential to making the move
from s to s1 in the first place, then he or she could be dropped from the coalition.)

Alternatively, H ’s opponents can be treated as individual DMs, producing the
general coalitional SEQ2 stability, defined as follows:

Definition 8.34 For H ⊆ N , state s is general coalitional SEQ2 (GCSEQ2) for
coalition H , denoted by s ∈ SGCSEQ2

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ R+,++
N−H (s1) such that s �i s2, s >i s2, or s ∼i s2 for some i ∈ H .

8.4.2 Strong or Weak Coalitional Stabilities

When degree of preference is introduced into the graph model, general coalitional
stability definitions can be strong or weak, according to the degree of sanctioning.
For a risk-averse coalition H , if all of coalition H ’s improvements from a particular
state are strongly sanctioned, then the status quo state possesses an extra degree of
stability, called strong stability. A coalitional improvement of a focal H is sanctioned
strongly if it could result in a greatly less preferred state relative to the initial state,
and this sanction cannot be avoided by an appropriate counterresponse.

Definition 8.35 For H ⊆ N , state s is strong coalitional GMR (SCGMR) for coali-
tion H , denoted by s ∈ SSCGMR

H , iff for every s1 ∈ CR+,++
H (s) there exists at least

one s2 ∈ RN−H (s1) such that s �i s2 for some DM i ∈ H .

Under strong coalitional GMR stability, all H ’s coalitional improvements can be
strongly sanctioned by the opponents.

Definition 8.36 State s is strong coalitional SMR (SCSMR) stable for coalition H ,
denoted by s ∈ SSCSMR

H , iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1),

such that s �i s2 for at least one i ∈ H and s �i s3 for all s3 ∈ RH (s2).

If the strong sanction imposed by the opponents on H ’s improvements cannot be
mitigated by coalition H’s counterresponse, then at least one member of the coalition
H is better off staying at the original state. Two following definitions are analogous
to Definitions8.33 and 8.34.

Definition 8.37 For H ⊆ N , state s is strong coalitional SEQ1 (SCSEQ1) for
coalition H , denoted by s ∈ SSCSEQ1

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ CR+,++
N−H (s1) such that s �i s2 for at least one i ∈ H .

Definition 8.38 For H ⊆ N , state s is strong coalitional SEQ2 (SCSEQ2) for
coalition H , denoted by s ∈ SSCSEQ2

H , iff for every s1 ∈ CR+,++
H (s) there exists at

least one s2 ∈ R+,++
N−H (s1) such that s �i s2 for at least one i ∈ H .
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For three-degree preference, general coalitional stabilities are classified as strong
and weak according to the strength of the possible sanctions. Let GCGS and SCGS
denote general coalitional graph model stability, GCNash, GCGMR, GCSMR,
GCSEQ1, or GCSEQ2, and strong coalitional graph model stability, SCGMR,
SCSMR, SCSEQ1, or SCSEQ2, respectively. Strong coalitional Nash stability is
excluded because CNash stability does not involve sanctions. The symbol WCGS
denotes weak coalitional graph model stability , WCGMR, WCSMR, or WCSEQ,
under three-degree preference. Weak coalitional stability is defined as follows:

Definition 8.39 For H ⊆ N , state s is weak coalitional stable for coalition H ,
denoted by s ∈ SWCGS

H , iff s ∈ SGCGS
H but s /∈ SSCGS

H .

A weak coalitional stable state means that it is general coalitional stable for some
stability, but not strong coalitional stable for the corresponding stability. Hence, if a
particular state s is general coalitional stable, then s is either strong coalitional stable
or weak coalitional stable.

8.5 Logical Representation of Coalitional Stability with
Hybrid Preference

The logical representations of coalitional stabilities under unknown preference and
three-level preference have been defined in Sects. 8.3 and 8.4, respectively. The two
types of preference are combined into the hybrid preference structure. The coalitional
stabilities under the hybrid preference are discussed in this section.

8.5.1 General Coalitional Stabilities with Hybrid Preference

The hybrid preference is to combine three-level preference and unknown preference
together. Therefore, general coalitional stabilities within hybrid preference expand
the general coalitional stabilities under simple preference, unknown preference, and
three-degree preference. Let l ∈ {a, b, c, d}.

8.5.1.1 General Coalitional Stabilities Indexed l

(1) General Coalitional Stabilities Indexed a

For coalitional stabilities indexed a, coalition H is willing to move to states that are
mildly preferred or strongly preferred, as well as states having uncertain preference
relative to the status quo but does not wish to be sanctioned by a strongly less
preferred, mildly less preferred, or equally preferred state relative to the status quo.
The definitions given below assume that s ∈ S and i ∈ N .
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Definition 8.40 For the graph model G, let H ⊆ N be a coalition. Define
�

,<,∼
H (s) = {t ∈ S : s �i t, s >i t, or s ∼i for at least one i ∈ H} and

�
,<,∼,U
H (s) = {t ∈ S : s �i t, s >i t, s ∼i t, or s Ui t for at least one i ∈ H}.

Note that �,<,∼
H (s) and �

,<,∼,U
H (s) do not consider the reachability from s.

Definition 8.41 State s ∈ S is general coalitional Nasha stable for coalition H ⊆
N , denoted by s ∈ SGCNasha

H , iff CR+,++,U
H (s) = ∅.

Definition 8.42 State s ∈ S is general coalitional GMRa for coalition H ⊆ N ,
denoted by s ∈ SGCGMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

RN−H (s1) such that s2 ∈ �
,<,∼
H (s).

Definition 8.43 State s ∈ S is general coalitional SMRa for coalition H ⊆ N ,
denoted by s ∈ SGCSMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) for all s3 ∈ RH (s2).

Definition 8.44 State s ∈ S is general coalitional SEQa for coalition H ⊆ N ,
denoted by s ∈ SGCSEQa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,<,∼
H (s).

(2) General Coalitional Stabilities Indexed b

Definition 8.45 State s ∈ S is general Nashb stable for coalition H ⊆ N , denoted
by s ∈ SGCNashb

H , iff CR+,++
H (s) = ∅.

Definition 8.46 State s ∈ S is general coalitional GMRb for coalition H ⊆ N ,
denoted by s ∈ SGCGMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s).

Definition 8.47 State s ∈ S is general coalitional SMRb for coalition H ⊆ N ,
denoted by s ∈ SGCSMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) for all s3 ∈ RH (s2).

Definition 8.48 State s ∈ S is general coalitional SEQb for coalition H ⊆ N ,
denoted by s ∈ SGCSEQb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)
such that s2 ∈ �

,<,∼
H (s).

(3) General Coalitional Stabilities Indexed c

Definition 8.49 State s ∈ S is general coalitional Nashc stable for coalition H ⊆ N ,
denoted by s ∈ SGCNashc

H , iff CR+,++,U
H (s) = ∅.

Definition 8.50 State s ∈ S is general coalitional GMRc for coalition H ⊆ N ,
denotedby s ∈ SGCGMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).
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Definition 8.51 State s ∈ S is general coalitional SMRc for coalition H ⊆ N ,
denoted by s ∈ SGCSMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) for all s3 ∈ RH (s2).

Definition 8.52 State s ∈ S is general coalitional SEQc for coalition H ⊆ N ,
denoted by s ∈ SGCSEQc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,<,∼,U
H (s).

(4) General Coalitional Stabilities Indexed d

Definition 8.53 State s ∈ S is general coalitional Nashd stable for coalition
H ⊆ N , denoted by s ∈ SGCNashd

H , iff CR+,++
H (s) = ∅.

Definition 8.54 State s ∈ S is general coalitional GMRd for coalition H ⊆ N ,
denoted by s ∈ SGCGMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).

Definition 8.55 State s ∈ S is general coalitional SMRd for coalition H ⊆ N ,
denoted by s ∈ SGCSMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) for all s3 ∈ RH (s2).

Definition 8.56 State s ∈ S is general coalitional SEQd for coalition H ⊆ N ,
denotedby s ∈ SGCSEQd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)

such that s2 ∈ �
,<,∼,U
H (s).

8.5.2 Strong Coalitional Stabilities with Hybrid Preference

The notation related to strong preference is defined within the hybrid preference
framework.

Definition 8.57 For the graph model G, let H ⊆ N be a coalition. �
H (s) = {t ∈

S : s �i t for at least one i ∈ H}.
Definition 8.58 Let l ∈ {a, b, c, d}. Strong coalitional Nashl stable for coalition
H ⊆ N is identical with general coalitional Nashl stable for coalition H ⊆ N . In
other words, SSCNashl

H = SGCNashl
H .

For example, when l = a, then SSCNasha
H = SGCNasha

H .

8.5.2.1 Strong Coalitional Stabilities Indexed l

(1) Strong Coalitional Stabilities Indexed a

Definition 8.59 State s ∈ S is strong coalitional GMRa for coalition H ⊆ N ,
denoted by s ∈ SSCGMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s).
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Definition 8.60 State s ∈ S is strong coalitional SMRa for coalition H ⊆ N ,
denoted by s ∈ SSCSMRa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s) and s3 ∈ �

H (s) for all s3 ∈ RH (s2).

Definition 8.61 State s ∈ S is strong coalitional SEQa for coalition H ⊆ N ,
denoted by s ∈ SSCSEQa

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

H (s).

(2) Strong Coalitional Stabilities Indexed b

Definition 8.62 State s ∈ S is strong coalitional GMRb for coalition H ⊆ N ,
denoted by s ∈ SSCGMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s).

Definition 8.63 State s ∈ S is strong coalitional SMRb for coalition H ⊆ N ,
denoted by s ∈ SSCSMRb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
H (s) and s3 ∈ �

H (s) for all s3 ∈ RH (s2).

Definition 8.64 State s ∈ S is strong coalitional SEQb for coalition H ⊆ N ,
denoted by s ∈ SSCSEQb

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)
such that s2 ∈ �

H (s).

(3) Strong Coalitional Stabilities Indexed c

Definition 8.65 State s ∈ S is strong coalitional GMRc for coalition H ⊆ N ,
denoted by s ∈ SSCGMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s).

Definition 8.66 State s ∈ S is strong coalitional SMRc for coalition H ⊆ N ,
denoted by s ∈ SSCSMRc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s), and s3 ∈ �

,U
H (s) for all s3 ∈ RH (s2).

Definition 8.67 State s ∈ S is strong coalitional SEQc for coalition H ⊆ N ,
denoted by s ∈ SSCSEQc

H , iff for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈

R+,++,U
N−H (s1) such that s2 ∈ �

,U
H (s).

(4) Strong Coalitional Stabilities Indexed d

Definition 8.68 State s ∈ S is strong coalitional GMRd for coalition H ⊆ N ,
denoted by s ∈ SSCGMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s).

Definition 8.69 State s ∈ S is strong coalitional SMRd for coalition H ⊆ N ,
denoted by s ∈ SSCSMRd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,U
H (s), and s3 ∈ �

,U
H (s) for all s3 ∈ RH (s2).

Definition 8.70 State s ∈ S is strong coalitional SEQd for coalition H ⊆ N ,
denoted by s ∈ SSCSEQd

H , iff for every s1 ∈ CR+,++
H (s), there exists s2 ∈ R+,++,U

N−H (s1)

such that s2 ∈ �
,U
H (s).
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8.6 Matrix Representation of Coalitional Stability Under
Simple Preference

Although the four basic coalitional stabilities are defined for simple preference in
Sect. 8.2, unknown preference in Sect. 8.3, three degree-preference in Sect. 8.4 and
hybrid preference in Sect. 8.5, they are represented logically, which make coding
difficult. In order to develop algorithms to implement these coalitional stabilities
more easily, matrix representation of coalitional stabilities under various preference
structures is introduced in the following sections. The matrix version of coalitional
stability under simple preference is presented first (Xu et al. 2014).

8.6.1 Coalitional Improvement Matrix

Letm = |S| denote the number of states, E be them×mmatrix with each entry equal
to 1, and es denote the sth standard basis vector of them-dimensionalEuclidean space,
R

S . Recall that the UM reachability matrix MH is constructed using two approaches
that are based on the incidence matrix B and the adjacency matrix J presented in
Chaps. 4 and 5, respectively.

Amatrix approach is proposed in this section to construct the coalitional improve-
ments from state s, CR+

H (s), given in Definition8.1 in logical form.

Definition 8.71 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is defined as the m × m matrix CM+

H with
(s, q) entry

CM+
H (s, q) =

{
1 if q ∈ CR+

H (s),
0 otherwise.

It is clear that CR+
H (s) = {q : CM+

H (s, q) = 1}. Then

CR+
H (s) = eTs · CM+

H ,

if CR+
H (s) is written as 0–1 row vectors, where a “1” at the j th element indicates

coalition H has a coalitional improvement from s to s j . Note that eTs denotes the
transpose of es , the sth standard basis vector of m-dimensional Euclidean space.
Therefore, the coalitional improvement matrix for coalition H , CM+

H , can be used
to construct the coalitional improvements of H from state s, CR+

H (s).
Using Definition8.1, the coalitional improvement matrix of H can be constructed

by the following theorem.Recall that P−,=
H = ∨

i∈H
P−,=
i (“

∨
” denotes the disjunction

operator described in Definition3.16).

Theorem 8.1 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is expressed as
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CM+
H = MH ◦ (E − P−,=

H ). (8.1)

Proof To prove Eq.8.1, assume that C = MH ◦ (E − P−,=
H ).Using the definition for

matrix MH given in Chaps. 4 and 5, C(s, q) = 1 iff MH (s, q) = 1 and P−,=
H (s, q) =

0, which together imply that there is q ∈ RH (s) such that P−,=
i (s, q) = 0 for every

DM i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s for every
i ∈ H , so that q ∈ CR+

H (s), according to Definition8.1. Thus, CM+
H (s, q) = 1

using Definition8.71. Hence, CM+
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H and C
are 0–1 matrices, it follows that CM+

H = MH ◦ (E − P−,=
H ). �

8.6.2 Matrix Representation of Coalitional Stabilities

For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth element
and 0 everywhere else and e be an m-dimensional vector with every entry 1. Let
(
−→
0 )T denote the transpose of

−→
0 .

Theorem 8.2 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional Nash stable for H, denoted by s ∈ SCNash

H , iff eTs ·CM+
H · e = 0.

Proof Since eTs · CM+
H · e = 0 iff eTs · CM+

H = (
−→
0 )T , then CR+

H (s) = ∅
using Definition8.71. Consequently, the proof of this theorem follows by
Definition8.5. �

Coalitional Nash stability extends individual Nash stability. For example, If
|H | = 1, Theorem8.2 reduces to the matrix representation of individual Nash sta-
bility presented in Theorem4.3. Specifically,

Corollary 8.1 For the graph model G, let i ∈ N. If eTs · CM+
{i} · e = 0, then s is

Nash stable for DM i.

From Corollary8.1, coalitional Nash stability is a generalization of individual Nash
stability.

Theorem 8.3 For the graph model G, state s ∈ S is universally coalitional Nash
stable for every H ⊆ N, denoted by s ∈ SUCNash, iff

∑
∀H⊆N

eTs · CM+
H · e = 0.

Proof Since
∑

∀H⊆N
eTs · CM+

H · e = 0 iff for any H ⊆ N , eTs · CM+
H · e = 0.

By Theorem8.2, eTs · CM+
H · e = 0 iff s ∈ S is coalitional Nash stable for H .

Consequently,
∑
H⊆N

eTs · CM+
H · e = 0 iff s ∈ S is coalitional Nash stable for every

coalition H ⊆ N . The proof is completed by Definition8.6. �

Theorem8.3 shows thematrix representation of universally coalitional Nash stability
equivalent to logical representation stated in Definition8.6.
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Similar to the individual GMR stability, define coalitional GMR stabilitymatrix as

MCGMR
H = CM+

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.2)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMR stable for H .

Theorem 8.4 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional GMR stable for H, denoted by s ∈ SCGMR

H , iff MCGMR
H (s, s) = 0.

Proof Since

MCGMR
H (s, s) = (eTs · CM+

H ) · [(E − sign
(
MN−H · (P−,=

H )T
)) · es]

=
m∑

s1=1

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)],

then MCGMR
H (s, s) = 0 holds iff

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)] = 0, (8.3)

for every s1 ∈ S − {s}. It is clear that Eq. 8.3 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=
H )T �= 0,

for every s1 ∈ CR+
H (s). Therefore, for a coalitional improvement from s, s1 ∈

CR+
H (s), there exists at least one s2 ∈ RN−H (s1) with P−,=

H (s, s2) = 1 that is equiv-
alent to s 
i s2 for some DM i ∈ H . According to Definition8.8, MCGMR

H (s, s) = 0
implies that s is coalitional GMR stable for H . �

Theorem8.4 shows that this matrix method, called matrix representation of coali-
tional GMR stability, is equivalent to the logical version of the same stability given in
Definition8.8. To analyze the coalitional GMR stability at s for coalition H , one only
needs to identify whether the diagonal entry MCGMR

H (s, s) of the coalitional GMR
matrix is zero. If so, s is coalitional GMR stable for H ; otherwise, s is coalitional
GMR unstable for H . Similar to individual GMR stability, all information about
coalitional GMR stability is contained in the diagonal entries of the coalitional GMR
stability matrix.

If |H | = 1, Theorem8.4 reduces to the matrix representation of individual GMR
stability presented in Theorem4.10. Specifically,

Corollary 8.2 For the graph model G, let i ∈ N. if MCGMR
{i} (s, s) = 0, then s is

GMR stable for DM i.



310 8 Coalitional Stabilities

Coalitional SMR is similar to coalitional GMR except that coalition H expects to
have a chance to counterrespond to its opponent (N − H)’s response to H ’s original
move. Define the coalitional SMR stability matrix as

MCSMR
H = CM+

H · [E − sign(F)]

in which

F = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMR stable for H .

Theorem 8.5 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMR for H, denoted by s ∈ SCSMR

H , iff MCSMR
H (s, s) = 0.

Proof Since

MCSMR
H (s, s) = (eTs · CM+

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=

H (s, s3))
))]

,

then MCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=
H (s, s2) �= 0, (8.4)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=
H (s, s3)) = 0. (8.5)

Equation8.4 means that s 
i s2 for at least one DM i ∈ H , i.e., s2 ∈ �
	
H (s) that

is given in Definition8.7. Equation8.5 is equivalent to

P−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.6)
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Obviously, for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that Eqs. 8.4

and 8.5 hold iff for every s1 ∈ CR+
H (s) there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2). Therefore, the proof of this

theorem follows using Definition8.10. �

Theorem8.5 displays this matrix method, called matrix representation of coali-
tional SMR stability, which is equivalent to the logical version given in Defini-
tion8.10. To calculate coalitional SMR stability at s for H , one only needs to assess
whether the diagonal entryMCSMR

H (s, s)of coalitional SMRstabilitymatrix is zero. If
so, s is coalitional SMR stable for H ; otherwise, s is coalitional SMR unstable for H .

Corollary 8.3 For the graph model G, let i ∈ N. if MCSMR
{i} (s, s) = 0, then s is

SMR stable for DM i.

Coalitional sequential stability is similar to coalitional GMR stability, but includes
only those sanctions that are “credible”. If H ’s opponents are treated as a coalition,
the coalitional SEQ1 stability matrix MCSEQ1

H is defined as

MCSEQ1
H = CM+

H · [E − sign
(
CM+

N−H · (P−,=
H )T

)].
The following theorem provides the matrix method to analyze whether state s is
coalitional SEQ1 stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.6 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQ1 stable for H, denoted by s ∈ SCSEQ1

H , iff MCSEQ1
H (s, s) = 0.

Proof Since

MCSEQ1
H (s, s) = (eTs CM+

H ) · [(E − sign(CM+
N−H · (P−,=

H )T )
)
es]

=
|S|∑
s1=1

CM+
H (s, s1)[1 − sign

(
(eTs1CM+

N−H ) · (eTs P
−,=
H )T

)],

then MCSEQ1
H (s, s) = 0 holds iff

CM+
H (s, s1)[1 − sign

(
(eTs1CM+

N−H ) · (eTs P
−,=
H )T

)] = 0,∀s1 ∈ S. (8.7)

It is clear that Eq.8.7 is equivalent to

(eTs1CM+
N−H ) · (eTs P

−,=
H )T �= 0 for any s1 ∈ CR+

H (s).

This implies that for any s1 ∈ CR+
H (s), there exists at least one s2 ∈ CR+

N−H (s1)
with s 
i s2 for some DM i ∈ H that satisfies s2 ∈ �

	
H (s). The proof of this theorem

follows using Definition8.12. �
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Note that the coalitional SEQ1 stability matrix is identical to the coalitional GMR
stability matrix except that the UM reachability matrix for H ’s opponents, MN−H ,
is replaced by the coalitional improvement matrix CM+

N−H .
Similar to the previous two theorems, thematrix representation of coalitional SEQ

stability is equivalent to the logical version given in Definition8.12. Once, when the
diagonal entry at (s, s) is zero, the state s under consideration is coalitional SEQ1

stable for H . The following theorem is equivalent to the coalitional SEQ2 stability
given in Definition8.13. Define the coalitional SEQ2 stability matrix MCSEQ2

H is
defined as

MCSEQ2
H = CM+

H · [E − sign
(
M+

N−H · (P−,=
H )T

)].
Theorem 8.7 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQ2 stable for H, denoted by s ∈ SCSEQ2

H , iff MCSEQ2
H (s, s) = 0.

Corollary 8.4 For the graph model G, let i ∈ N. Then, (1) MCSEQ1
{i} = MCSEQ2

{i} ;

(2) If MCSEQ1
{i} (s, s) = 0 or MCSEQ2

{i} (s, s) = 0, then s is SEQ stable for DM i.

8.7 Matrix Representation of Coalitional Stabilities Under
Unknown Preference

8.7.1 Matrix Representation of Coalitional Improvement or
Uncertain Move

Letm = |S| denote the number of states, E be them×mmatrix with each entry equal
to 1, and es denote the sth standard basis vector of them-dimensionalEuclidean space,
R

S . Recall that the UM reachability matrix MH is constructed using Theorem4.9.
Amatrix approach is presented in this section to construct the coalitional improve-

ments and coalitional improvements or uncertain moves from state s, CR+
H (s) and

CR+,U
H (s), given in Definitions8.1 and 8.2, respectively, in logical form.

Definition 8.72 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is defined as the m × m matrix CM+

H with
(s, q) entry

CM+
H (s, q) =

{
1 if q ∈ CR+

H (s),
0 otherwise.

Moreover, the coalitional improvement or uncertain move matrix for H is defined as
the m × m matrix CM+,U

H with (s, q) entry

CM+,U
H (s, q) =

{
1 if q ∈ CR+,U

H (s),
0 otherwise.
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It is clear that CR+
H (s) = {q : CM+

H (s, q) = 1} and CR+,U
H (s) = {q :

CM+,U
H (s, q) = 1}. Then

CR+
H (s) = eTs · CM+

H and CR+,U
H (s) = eTs · CM+,U

H ,

if CR+
H (s) and CR+,U

H (s) are written as 0–1 row vectors, where a “1” at the j th ele-
ment indicates coalition H has a coalitional improvement from s to s j and coalition
H has a coalitional improvement or uncertain move from s to s j , respectively. Note
that eTs denotes the transpose of es , the sth standard basis vector of m-dimensional
Euclidean space. Therefore, the coalitional improvement and coalitional improve-
ment or uncertain move matrices for coalition H , CM+

H and CM+,U
H , can be used to

construct the coalitional improvements and the coalitional improvements or uncertain
moves of H from state s, CR+

H (s) and CR+,U
H (s), respectively.

Theorem 8.8 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement matrix for H is expressed as

CM+
H = MH ◦ (E − P−,=,U

H ). (8.8)

Proof ToproveEq.8.8, assume thatC = MH ◦(E−P−,=,U
H ).Using the definition for

matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and P−,=,U
H (s, q) =

0, which together imply that there is q ∈ RH (s) such that P−,=,U
i (s, q) = 0 for every

DM i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s for every
i ∈ H , so that q ∈ CR+

H (s), according to Definition8.1. Thus, CM+
H (s, q) = 1

using Definition8.72. Hence, CM+
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H and C
are 0–1 matrices, it follows that CM+

H = MH ◦ (E − P−,=,U
H ). �

Note that CM+
H �= MH ◦ P+

H . Recall that matrix P+
H = ∨

i∈H
P+
i (“

∨
” denotes

the disjunction operator described in Definition3.16). (MH ◦ P+
H )(s, q) = 1 iff

MH (s, q) = 1 and P+
H (s, q) = 1, which means that there is q ∈ RH (s) such that

P+
i (s, q) = 1 for some DM i ∈ H . This is not consistent with the definition of

CM+
H .

It is worth to note that matrix CM+
H defined in Theorem 8.8 is different from

the matrix specified in Theorem8.1 that cannot be used to analyze conflict models
with preference uncertainty. The matrix defined in Theorem8.8 contains information
about uncertain preference. Using Definition8.2, the coalitional improvement or
uncertain move matrix of H can be constructed by the following theorem. Recall
that P−,=

H = ∨
i∈H

P−,=
i .

Theorem 8.9 For the graph model G, let H ⊆ N be a nonempty coalition. The
coalitional improvement or uncertain move matrix for H is expressed as

CM+,U
H = MH ◦ (E − P−,=

H ). (8.9)
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Proof To prove Eq.8.9, assume that C = MH ◦ (E − P−,=
H ).Using the definition for

matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and P−,=
H (s, q) = 0,

which together imply that there is q ∈ RH (s) such that P−,=
i (s, q) = 0 for every DM

i ∈ H . Therefore, C(s, q) = 1 iff there is q ∈ RH (s) with q �i s or q Ui s for every
i ∈ H , so that q ∈ CR+,U

H (s), according to Definition8.2. Thus, CM+,U
H (s, q) = 1

using Definition8.72. Hence, CM+,U
H (s, q) = 1 iff C(s, q) = 1. Since CM+,U

H and
C are 0–1 matrices, it follows that CM+,U

H = MH ◦ (E − P−,=
H ). �

Theorems8.8 and 8.9 provide a matrix approach to construct the coalitional
improvements from state s by H ,CR+

H (s), and coalitional improvements or uncertain
moves for state s by H ,CR+,U

H (s). After obtaining the two important components of
coalitional stability definitions with unknown preference, the matrix representation
of coalitional stabilities can be constructed as follows. Let l ∈ {a, b, c, d}.

8.7.2 Matrix Representation of Coalitional Stabilities
Indexed l

(1) Matrix Representation of Coalitional Stabilities Indexed a

For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth element
and 0 everywhere else and e be an m-dimensional vector with every entry 1. Let
(
−→
0 )T denote the transpose of

−→
0 .

Theorem 8.10 For the graph model G, let H ⊆ N be a nonempty coalition.
State s ∈ S is coalitional Nasha stable for H, denoted by s ∈ SCNasha

H , iff
eTs · CM+,U

H · e=0.

Proof Since eTs · CM+,U
H · e = 0 iff eTs · CM+,U

H = (
−→
0 )T , then CR+,U

H (s) = ∅
using Definition8.72. Consequently, the proof of the theorem follows by
Definition8.16. �

Define coalitional CGMRa stability matrix for coalition H as

MCGMRa
H = CM+,U

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.10)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRa stable for H .

Theorem 8.11 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional GMRa stable for H, denoted by s ∈ SCGMRa

H , iff MCGMRa
H

(s, s) = 0.

Proof Since

MCGMRa
H (s, s) = (eTs · CM+,U

H ) · [(E − sign
(
MN−H · (P−,=

H )T
)) · es]
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=
m∑

s1=1

CM+,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)],

then MCGMRa
H (s, s) = 0 holds iff

CM+,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=

H )T
)] = 0, (8.11)

for every s1 ∈ S − {s}. It is clear that Eq. 8.11 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=
H )T �= 0,

for every s1 ∈ CR+,U
H (s). Therefore, for a coalitional improvement or uncertainmove

from s, s1 ∈ CR+,U
H (s), there exists at least one s2 ∈ RN−H (s1)with P−,=

H (s, s2) = 1
that is equivalent to s 
i s2 for some DM i ∈ H . According to Definition8.17,
MCGMRa

H (s, s) = 0 implies that s is coalitional GMRa stable for H . �

Theorem8.11 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRa stability, is equivalent to the logical version of the same stability given
in Definition8.17.

Coalitional SMRa is similar to coalitionalGMRa except that coalition H expects
to have a chance to counterrespond to its opponent (N−H)’s response to H ’s original
move. Define the coalitional SMRa stability matrix as

MCSMRa
H = CM+,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theoremestablishes amatrixmethod to determinewhether
state s is coalitional SMR stable for H .

Theorem 8.12 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRa for H, denoted by s ∈ SCSMRa

H , iff MCSMRa
H (s, s) = 0.

Proof Since

MCSMRa
H (s, s) = (eTs · CM+,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,U
H (s, s1)[1 − sign (F(s1, s))]
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with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=

H (s, s3)
))]

,

then MCSMRa
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,U

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+,U

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=
H (s, s2) �= 0, (8.12)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=
H )(s, s3) = 0. (8.13)

Equation8.12 means that s 
i s2 for at least one DM i ∈ H . Equation8.13 is
equivalent to

P−,=
H (s, s3) �= 0 for any s3 ∈ RH (s2). (8.14)

Obviously, for every s1 ∈ CR+,U
H (s), there exists s2 ∈ RN−H (s1) such that s 
i s2

and Eq.8.13 hold iff for every s1 ∈ CR+,U
H (s) there exists s2 ∈ RN−H (s1) such that

s2 ∈ �
	
H (s) and s3 ∈ �

	
H (s) for all s3 ∈ RH (s2). Therefore, the proof of this theorem

follows using Definition8.18. �

Theorem8.12 displays that this matrix method, called matrix representation of
coalitional SMR stability, is equivalent to the logical version given in Definition8.18.
To calculate coalitional SMRa stability at s for H , one only needs to assess whether
the diagonal entry MCSMRa

H (s, s) of coalitional SMRa stability matrix is zero. If so,
s is coalitional SMRa stable for H ; otherwise, s is coalitional SMRa unstable for H .

Coalitional sequential stability is similar to coalitional GMR stability, but includes
only those sanctions that are “credible”. The coalitional SEQa stability matrix
MCSEQa

H is defined as

MCSEQa
H = CM+,U

H · [E − sign
(
M+,U

N−H · (P−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQa stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.13 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQa stable for H, denoted by s ∈ SCSEQa

H , iff MCSEQa
H (s, s) = 0.
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Proof Since

MCSEQa
H (s, s) = (eTs CM+,U

H ) · [
(
E − sign(M+,U

N−H · (P−,=
H )T )

)
es]

=
|S|∑
s1=1

CM+,U
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=
H )T

)
],

then MSEQa
H (s, s) = 0 holds iff

CM+,U
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=
H )T

)
] = 0,∀s1 ∈ S. (8.15)

It is clear that Eq.8.15 is equivalent to

(eTs1M
+,U
N−H ) · (eTs P

−,=
H )T �= 0 for any s1 ∈ CR+,U

H (s).

It implies that for any s1 ∈ CR+,U
H (s), there exists at least one s2 ∈ R+,U

N−H (s1) with
s 
i s2 for some DM i ∈ H that satisfies s2 ∈ �

	
H (s). The proof of this theorem

follows using Definition 8.19. �

Note that the coalitional SEQa stability matrix is identical to the coalitional GMRa

stability matrix except that the UM reachability matrix for H ’s opponents, MN−H ,
is replaced by the coalitional improvement or uncertain move matrix CM+,U

N−H .

(2) Matrix Representation of Coalitional Stabilities Indexed b

The following theorems establish relationships between logical and matrix represen-
tations for coalitional stabilities indexed b under unknown preference. The extension
indexed b excludes uncertainty in preferences when the focal coalition H considers
incentives to leave a state and evaluates sanctions from its opponents. However, the
following coalitional definitions are different from the coalitional stability defini-
tions without preference uncertainty as discussed in Sect. 8.6, because the previous
definitions cannot be used to analyze coalitional stabilities with uncertain preference.

Theorem 8.14 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is coalitional Nashb stable for H, denoted by s ∈ SCNashb

H , iff eTs ·CM+
H ·e = 0.

Define coalitional CGMRb stability matrix for coalition H as

MCGMRb
H = CM+

H · [E − sign
(
MN−H · (P−,=

H )T
)], (8.16)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRb stable for H .

Theorem 8.15 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRb stable for H, denoted by s ∈ SCGMRb

H , iff MCGMRb
H (s, s)= 0.
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Theorem8.15 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRb stability, is equivalent to the logical version of the same coalitional
GMRb stability given in Definition8.21.

Define the coalitional SMRb stability matrix as

MCSMRb
H = CM+

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,=
H )T ◦ (

E − sign
(
MH · (E − P−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRb stable for H .

Theorem 8.16 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRb for H, denoted by s ∈ SCSMRb

H , iff MCSMRb
H (s, s) = 0.

The coalitional SEQb stability matrix MCSEQb
H is defined as

MCSEQb
H = CM+

H · [E − sign
(
M+,U

N−H · (P−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQb stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.17 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQb stable for H, denoted by s ∈ SCSEQb

H , iff MCSEQb
H (s, s) = 0.

The proofs of the above theorems on coalitional stabilities indexed b are similar to
the proofs for thematrix representation of coalitional stabilities indexed a. Therefore,
these proofs are left as exercises.

(3) Matrix Representation of Coalitional Stabilities Indexed c

Coalitional Nash stability similar to the individual stability case in Chap. 5 does not
examine countermoves by the opponents, so SNashc

H = SNasha
H .

Define coalitional CGMRc stability matrix for coalition H as

MCGMRc
H = CM+,U

H · [E − sign
(
MN−H · (P−,=,U

H )T
)
], (8.17)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRc stable for H .

Theorem 8.18 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRc stable for H, denoted by s ∈ SCGMRc

H , iff MCGMRc
H (s, s)= 0.

Theorem8.18 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRc stability, is equivalent to the logical version of the same coalitional
GMRc stability given in Definition8.24.
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Define the coalitional SMRc stability matrix as

MCSMRc
H = CM+,U

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRc stable for H .

Theorem 8.19 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRc for H, denoted by s ∈ SCSMRc

H , iff MCSMRc
H (s, s) = 0.

The coalitional SEQc stability matrix MCSEQc
H is defined as

MCSEQc
H = CM+,U

H · [E − sign
(
M+,U

N−H · (P−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQc stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.20 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQc stable for H, denoted by s ∈ SCSEQc

H , iff MCSEQc
H (s, s) = 0.

The proofs of the above theorems on coalitional stabilities indexed c are left as
exercises.

(4) Matrix Representation of Coalitional Stabilities Indexed d

As mentioned before, similar to the individual stability case in Chap. 5 coalitional
Nash stability does not examine countermoves by the opponents, so SNashd

H = SNashb
H .

Define coalitional CGMRd stability matrix for coalition H as

MCGMRd
H = CM+

H · [E − sign
(
MN−H · (P−,=,U

H )T
)
], (8.18)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is coalitional GMRd stable for H .

Theorem 8.21 For the graphmodelG, let H ⊆ N beanonempty coalition. State s ∈
S is coalitional GMRd stable for H, denoted by s ∈ SCGMRd

H , iff MCGMRd
H (s, s) = 0.

Proof Since

MCGMRd
H (s, s) = (eTs · CM+

H ) · [
(
E − sign

(
MN−H · (P−,=,U

H )T
))

· es]
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=
m∑

s1=1

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=,U

H )T
)
],

then MCGMRd
H (s, s) = 0 holds iff

CM+
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,=,U

H )T
)
] = 0, (8.19)

for every s1 ∈ S − {s}. It is clear that Eq. 8.19 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,=,U
H )T �= 0,

for every s1 ∈ CR+
H (s). Therefore, for a coalitional improvement from s, s1 ∈

CR+
H (s), there exists at least one s2 ∈ RN−H (s1) with P−,=,U

H (s, s2) = 1 that is
equivalent to s 
i s2 or s Ui s2 for some DM i ∈ H . According to Definition8.27,
MCGMRd

H (s, s) = 0 implies that s is coalitional GMRd stable for H . �

Theorem8.21 shows that thismatrixmethod, calledmatrix representation of coali-
tional GMRd stability, is equivalent to the logical version of the same coalitional
GMRd stability given in Definition8.27.

Define the coalitional SMRd stability matrix as

MCSMRd
H = CM+

H · [E − sign(F)]

in which

F = MN−H · [(P−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is coalitional SMRd stable for H .

Theorem 8.22 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SMRd for H, denoted by s ∈ SCSMRd

H , iff MCSMRd
H (s, s) = 0.

Proof Since

MCSMRd
H (s, s) = (eTs · CM+

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−,=,U
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−,=,U

H (s, s3)
))]

,

then MCSMRd
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+

H (s), which is
equivalent to the statement that, for every s1 ∈ CR+

H (s), there exists s2 ∈ RN−H (s1)
such that

P−,=,U
H (s, s2) �= 0, (8.20)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,=,U
H )(s, s3) = 0. (8.21)

Equation8.20 means that s 
i s2 or s Ui s2 for at least one DM i ∈ H . Equa-
tion8.21 is equivalent to

P−,=,U
H (s, s3) �= 0 for any s3 ∈ RH (s2). (8.22)

Obviously, for every s1 ∈ CR+
H (s), there exists s2 ∈ RN−H (s1) such that s 
i s2

or s Ui s2 and Eq.8.22 hold iff for every s1 ∈ CR+
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
	,U
H (s) and s3 ∈ �

	,U
H (s) for all s3 ∈ RH (s2). Therefore, the proof

of this theorem follows using Definition8.28. �
The coalitional SEQd stability matrix MCSEQd

H is defined as

MCSEQd
H = CM+

H · [E − sign
(
M+,U

N−H · (P−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
coalitional SEQd stable for H when H ’s opponents, N − H , are in a coalition.

Theorem 8.23 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
coalitional SEQd stable for H, denoted by s ∈ SCSEQd

H , iff MCSEQd
H (s, s) = 0.

Proof Since

MCSEQd
H (s, s) = (eTs CM+

H ) · [
(
E − sign(M+,U

N−H · (P−,=,U
H )T )

)
es]

=
|S|∑
s1=1

CM+
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=,U
H )T

)
],

then MSEQd
H (s, s) = 0 holds iff

CM+
H (s, s1)[1 − sign

(
(eTs1M

+,U
N−H ) · (eTs P

−,=,U
H )T

)
] = 0,∀s1 ∈ S. (8.23)
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It is clear that Eq.8.23 is equivalent to

(eTs1M
+,U
N−H ) · (eTs P

−,=,U
H )T �= 0 for any s1 ∈ CR+

H (s).

It implies that for any s1 ∈ CR+
H (s), there exists at least one s2 ∈ R+,U

N−H (s1) with
s 
i s2 or s Ui s2 for some DM i ∈ H that satisfies s2 ∈ �

	,U
H (s). The proof of this

theorem follows using Definition 8.29. �

8.8 Matrix Representation of Coalitional Stability with
Three Degrees of Preference

The logical representation of coalitional stabilities under three-degree preference is
discussed in Sect. 8.4. The matrix form of these coalitional stabilities is introduced
as follows.

8.8.1 Matrix Representation of Mild or Strong Coalitional
Improvement

Definition 8.73 For the graph model G, the mild or strong coalitional improvement
matrix for coalition H is an m × m matrix CM+,++

H with (s, q) entry

CM+,++
H (s, q) =

{
1 if q ∈ CR+,++

H (s),
0 otherwise.

The mild or strong coalitional improvement matrix is equivalent to the coalitional
reachable list, CR+,++

H (s), defined in Sect. 8.1. The matrix CM+,++
H can be con-

structed as follows.
To carry out coalitional stability analysis, recall a set of matrices corresponding

to three-level preference defined in Chap. 6.

P++
i (s, q) =

{
1 if q �i s,
0 otherwise,

P−−
i (s, q) =

{
1 if s �i q,

0 otherwise,

P+,++
i (s, q) =

{
1 if q >i s or q �i s,
0 otherwise,
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and

P−−,−,=
i (s, q) =

{
1 if s >i q, s �i q, or (s ∼i q and s �= q),

0 otherwise.

Based on the above definitions, the UM adjacency matrix Ji , mild or strong
unilateral improvement adjacency matrix J+,++

i , and preference matrix P+,++
i for

DM i have the relationship among them:

J+,++
i = Ji ◦ P+,++

i .

Theorem 8.24 For the graph model G, let H ⊆ N be a nonempty coalition. The
mild or strong coalitional improvement matrix for H is expressed as

CM+,++
H = MH ◦ (E − P−,−−,=

H ). (8.24)

Proof To prove Eq.8.24, assume that C = MH ◦ (E − P−,−−,=
H ). Using the def-

inition for matrix MH presented in Chap.4, C(s, q) = 1 iff MH (s, q) = 1 and
P−,−−,=
H (s, q) = 0, which together imply that there is q ∈ RH (s) such that

P−,−−,=
i (s, q) = 0 for every DM i ∈ H . Therefore, C(s, q) = 1 iff there is

q ∈ RH (s) with q >i s or q �i s for every i ∈ H , so that q ∈ CR+,++
H (s),

according to Definition8.3. Hence, CM+,++
H (s, q) = 1 iff C(s, q) = 1. Since CM+

H
and C are 0–1 matrices, it follows that CM+,++

H = MH ◦ (E − P−,−−,=
H ). �

Note that CM+,++
H �= MH ◦ P+,++

H . Recall that matrix P+,++
H = ∨

i∈H
P+,++
i (“

∨
”

denotes the disjunction operator described inDefinition3.16). (MH ◦P+,++
H )(s, q) =

1 iff MH (s, q) = 1 and P+,++
H (s, q) = 1, which means that there is q ∈ RH (s) such

that P+,++
i (s, q) = 1 for some DM i ∈ H . This is not consistent with the definition

of CM+,++
H .

8.8.2 Matrix Representation of General Coalitional
Stabilities

Let m = |S| denote the number of states and E be the m ×m matrix with each entry
equal to 1. For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth
element and 0 everywhere else and e be anm-dimensional vector with every entry 1.
Let (

−→
0 )T denote the transpose of

−→
0 . Recall that the UM reachability matrix MH

is constructed using Theorem4.9. General coalitional stabilities are presented using
matrix approach next.

Theorem 8.25 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nash stable for H, denoted by s ∈ SGCNash

H , iff eTs ·
CM+,++

H · e = 0.
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Proof Since eTs · CM+,++
H · e = 0 iff eTs · CM+,++

H = (
−→
0 )T , then CR+,++

H (s) = ∅.
Consequently, the proof of the theorem follows by Definition8.30. �

Similar to the individual general GMR stability for the three-degree preference,
define general coalitional GMR stability matrix as

MGCGMR
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.25)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMR stable for H .

Theorem 8.26 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMR stable for H, denoted by s ∈ SGCGMR

H , iff
MGCGMR

H (s, s) = 0.

Proof Since

MGCGMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign
(
MN−H · (P−,−−,=

H )T
)) · es]

=
m∑

s1=1

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)],

then MGCGMR
H (s, s) = 0 holds iff

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)] = 0, (8.26)

for every s1 ∈ S − s. It is clear that Eq. 8.26 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=
H )T �= 0,

for every s1 ∈ CR+,++
H (s). Therefore, for a coalitional mild or strong improve-

ment from s, s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ RN−H (s1) with

P−,−−,=
H (s, s2) = 1 that is equivalent to s >i s2, s �i s2 or s ∼i s2 for some

DM i ∈ H . According to Definition8.31, MGCGMR
H (s, s) = 0 implies that s is

general coalitional GMR stable for H . �

Theorem8.26 shows that this matrix method, called matrix representation of gen-
eral coalitional GMR stability, is equivalent to the logical version of the same stability
given in Definition8.31. To analyze the general coalitional GMR stability at s for
coalition H , one only needs to identify whether the diagonal entry MGCGMR

H (s, s)
is zero. If so, s is general coalitional GMR stable for H ; otherwise, s is general
coalitional GMR unstable for H .

General coalitional SMR stability is similar to general coalitional GMR except
that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMR stabilitymatrix as
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MGCSMR
H = CM+,++

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMR stable for H .

Theorem 8.27 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMR for H, denoted by s ∈ SGCSMR

H , iff MGCSMR
H (s, s) = 0.

Proof Since

MGCSMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,−−,=
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P+,++

H (s, s3))
))]

,

then MGCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++

H (s), which
is equivalent to the statement that, for every s1 ∈ CR+,++

H (s), there exists s2 ∈
RN−H (s1) such that

P−,−−,=
H (s, s2) �= 0, (8.27)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=
H (s, s3)) = 0. (8.28)

Equation8.27 means that s >i s2, s �i s2, or s ∼i s2 for at least one DM i ∈ H .
Equation8.28 is equivalent to

P−,−−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.29)
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Obviously, for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.27 and 8.28 hold iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1)

such that s >i s2, s �i s2, or s ∼i s2 and s >i s3, s �i s3, or s ∼i s3 for
some DM i with all s3 ∈ RH (s2). Therefore, the proof of this theorem follows using
Definition8.32. �

Theorem8.27 displays that this matrix method, called matrix representation of
general coalitional SMR stability, is equivalent to the logical version given in Defini-
tion8.32. To calculate general coalitional SMR stability at s for H , one only needs to
assess whether the diagonal entryMGCSMR

H (s, s) is zero. If so, s is general coalitional
SMR stable for H ; otherwise, s is general coalitional SMR unstable for H .

General coalitional sequential stability is similar to general coalitional GMR sta-
bility, but includes only those sanctions that are “credible”. If H ’s opponents are
treated as a coalition, the general coalitional SEQ1 stability matrix MGCSEQ1

H is
defined as

MGCSEQ1
H = CM+,++

H · [E − sign
(
CM+,++

N−H · (P−,−−,=
H )T

)].
The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQ1 stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.28 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQ1 stable for H, denotedby s ∈ SGCSEQ1

H , iff MGCSEQ1
H (s, s) = 0.

Proof Since

MGCSEQ1
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(CM+,++
N−H · (P−,−−,=

H )T )
)
es]

=
|S|∑
s1=1

CM+,++
H (s, s1)[1 − sign

(
(eTs1CM+,++

N−H ) · (eTs P
−,−−,=
H )T

)],

then MGCSEQ1
H (s, s) = 0 holds iff

CM+,++
H (s, s1)[1 − sign

(
(eTs1 · CM+,++

N−H ) · (eTs · P−,−−,=
H )T

)] = 0,∀s1 ∈ S.

(8.30)
It is clear that Eq.8.30 is equivalent to

(eTs1 · CM+,++
N−H ) · (eTs · P−,−−,=

H )T �= 0 for any s1 ∈ CR+,++
H (s).

It implies that for any s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ CR+,++

N−H (s1)
with s >i s2, s �i s2 or s ∼i s2 for some DM i ∈ H . The proof of this theorem
follows using Definition8.33. �
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Note that the general coalitional SEQ1 stability matrix is identical to the general
coalitional GMR stability matrix except that the UM reachability matrix for H ’s
opponents, MN−H , is replaced by the mild or strong coalitional improvement matrix
CM+,++

N−H .
Similar to the previous two theorems, the matrix representation of general coali-

tional SEQ1 stability is equivalent to the logical version given in Definition8.33.
When the diagonal entry at (s, s) is zero, the state s under consideration is general
coalitional SEQ1 stable for H . The following theorem is equivalent to the coalitional
SEQ2 stability presented in Definition8.34. Define the coalitional SEQ2 stability
matrix MGCSEQ2

H as

MGCSEQ2
H = CM+,++

H · [E − sign
(
M+,++

N−H · (P−,−−,=
H )T

)].
Theorem 8.29 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQ2 stable for H, denotedby s ∈ SGCSEQ2

H , iff MGCSEQ2
H (s, s) = 0.

The proof of this theorem is similar to the proof of Theorem8.28.

8.8.3 Matrix Representation of Strong Coalitional Stabilities

When three degrees of preference is introduced into the graph model, general coali-
tional stability definitions may be strong or weak, according to the strength of sanc-
tioning. The followingmatrix representations of strong or weak coalitional stabilities
are equivalent to the logical forms presented in Sect. 8.4.2.

Define the strong coalitional GMR stability matrix as

MSCGMR
H = CM+,++

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.31)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMR stable for H .

Theorem 8.30 For the graph model G, let H ⊆ N be a nonempty coalition.
State s ∈ S is strong coalitional GMR stable for H, denoted by s ∈ SSCGMR

H ,
iff MSCGMR

H (s, s) = 0.

Proof Since

MSCGMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign
(
MN−H · (P−−

H )T
)) · es]

=
m∑

s1=1

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−−

H )T
)],
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then MSCGMR
H (s, s) = 0 holds iff

CM+,++
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−−

H )T
)] = 0, (8.32)

for every s1 ∈ S − {s}. It is clear that Eq. 8.32 is equivalent to

(eTs1 · MN−H ) · (eTs · P−−
H )T �= 0,

for every s1 ∈ CR+,++
H (s). Therefore, for a mild or strong coalitional improvement

from s, s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ RN−H (s1)with P

−−
H (s, s2) = 1

that is equivalent to s �i s2 for some DM i ∈ H . According to Definition8.35,
MSCGMR

H (s, s) = 0 implies that s is strong coalitional GMR stable for H . �

Theorem8.30 shows that this matrix method, called matrix representation of
strong coalitional GMR stability, is equivalent to the logical version of the same
stability given in Definition8.35. To analyze the strong coalitional GMR stability at
s for coalition H , the diagonal entry (s, s) of matrix MSCGMR

H is identified whether
it is zero. If so, s is strong coalitional GMR stable for H .

Define the strong coalitional SMR stability matrix as

MSCSMR
H = CM+,++

H · [E − sign(F)]

in which

F = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMR stable for H .

Theorem 8.31 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMR for H, denoted by s ∈ SSCSMR

H , iff MSCSMR
H (s, s) = 0.

Proof Since

MSCSMR
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−−
H (s, s2) ·

[
1 − sign

(
m∑

s3=1

(
MH (s2, s3) · (1 − P−−

H (s, s3))
))]

,

then MSCSMR
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++

H (s), which
is equivalent to the statement that, for every s1 ∈ CR+,++

H (s), there exists s2 ∈
RN−H (s1) such that

P−−
H (s, s2) �= 0, (8.33)

and
m∑

s3=1

MH (s2, s3) · (1 − P−−
H (s, s3)) = 0. (8.34)

Equation8.33 means that s �i s2 for at least one DM i ∈ H . Equation8.34 is
equivalent to

P−−
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.35)

Obviously, for every s1 ∈ CR+,++
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.33 and 8.34 hold iff for every s1 ∈ CR+,++
H (s) there exists s2 ∈ RN−H (s1)

such that s �i s2 and s �i s3 for some DM i with all s3 ∈ RH (s2). Therefore, the
proof of this theorem follows using Definition 8.36. �

Theorem8.31 provides a matrix method, called matrix representation of strong
coalitional SMR stability, which is equivalent to the logical version given in Defi-
nition8.36. The following theorem displays the matrix method to identify whether
state s is strong coalitional SEQ1 stable for H when H ’s opponents, N − H , are in
a coalition. Let the strong coalitional SEQ1 stability matrix MSCSEQ1

H be defined as

MSCSEQ1
H = CM+,++

H · [E − sign
(
CM+,++

N−H · (P−−
H )T

)].
Theorem 8.32 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQ1 stable for H, denoted by s ∈ SSCSEQ1

H , iff MSCSEQ1
H (s, s)= 0.

Proof Since

MSCSEQ1
H (s, s) = (eTs · CM+,++

H ) · [(E − sign(CM+,++
N−H · (P−−

H )T )
)
es]

=
|S|∑
s1=1

CM+,++
H (s, s1)[1 − sign

(
(eTs1CM+,++

N−H ) · (eTs P
−−
H )T

)],

then MSCSEQ1
H (s, s) = 0 holds iff
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CM+,++
H (s, s1)[1 − sign

(
(eTs1 · CM+,++

N−H ) · (eTs · P−−
H )T

)] = 0,∀s1 ∈ S. (8.36)

It is clear that Eq.8.36 is equivalent to

(eTs1 · CM+,++
N−H ) · (eTs · P−−

H )T �= 0 for any s1 ∈ CR+,++
H (s).

It implies that for any s1 ∈ CR+,++
H (s), there exists at least one s2 ∈ CR+,++

N−H (s1)
with s �i s2 for some DM i ∈ H . The proof of this theorem follows using
Definition8.37. �

The following theorem is equivalent to the strong coalitional SEQ2 stability
presented in Definition8.38. The strong coalitional SEQ2 stability matrix MSCSEQ2

H
is defined as

MSCSEQ2
H = CM+,++

H · [E − sign
(
M+,++

N−H · (P−−
H )T

)].

Theorem 8.33 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQ2 stable for H, denotedby s ∈ SSCSEQ2

H , iff MSCSEQ2
H (s, s)= 0.

The proof of this theorem is left as an exercise.

8.9 Matrix Representation of Coalitional Stability
with Hybrid Preference

After discussing matrix representations of coalitional stabilities with unknown pref-
erence and with three degrees of preference, respectively, it is nature to construct the
matrix form of the coalitional stabilities under hybrid preference.

8.9.1 Matrix Representation of Coalitional Improvement
Under Hybrid Preference

Definition 8.74 For the graph model G, the mild or strong or uncertain coalitional
improvement matrix for coalition H is anm×m matrixCM+,++,U

H with (s, q) entry

CM+,++,U
H (s, q) =

{
1 if q ∈ CR+,++,U

H (s),
0 otherwise.
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The mild or strong or uncertain coalitional improvement matrix is equivalent
to the coalitional reachable list CR+,++,U

H (s) given in Definition8.4. The matrix
CM+,++,U

H can be constructed as follows. To carry out coalitional stability analysis,
recall a set of matrices corresponding to hybrid preference defined in Chap. 7.

The following m ×m matrices are important in stability definitions under hybrid
preference. Let E denote the m ×m matrix with each entry 1 and let I be the m ×m
unit matrix. Then, m × m preference matrix P+,++,U

i is defined as

P+,++,U
i (s, q) =

{
1 if q >i s, q �i s, or q Ui s,
0 otherwise.

For hybrid preference, P−−,−,=
i = E − I − P+,++,U

i .

Theorem 8.34 For the graph model G, let H ⊆ N be a nonempty coalition. The
mild or strong coalitional improvement matrix, CM+,++

H , and mild or strong or
uncertain coalitional improvement matrix, CM+,++,U

H , for H are expressed as

CM+,++
H = MH ◦ (E − P−,−−,=,U

H ), (8.37)

CM+,++,U
H = MH ◦ (E − P−,−−,=

H ), (8.38)

respectively.

Proof Equation8.37 is left as an exercise. To prove Eq.8.38, assume that C = MH ◦
(E − P−,−−,=

H ).Using the definition for matrix MH given in Chap.4, C(s, q) = 1 iff
MH (s, q) = 1 and P−,−−,=

H (s, q) = 0, which together imply that there is q ∈ RH (s)
such that P+,++,U

i (s, q) = 1 for every DM i ∈ H . Therefore, C(s, q) = 1 iff
there is q ∈ RH (s) with q >i s, q �i s or q Ui s for every i ∈ H , so that
q ∈ CR+,++,U

H (s), according to Definition8.74. Hence, CM+,++,U
H (s, q) = 1 iff

C(s, q) = 1. Since CM+,++,U
H and C are 0–1 matrices, it follows that CM+,++,U

H =
MH ◦ (E − P−,−−,=

H ). �

Note that CM+,++
H here is different from the matrix in Theorem8.24 which cannot

be used to analyze situations with uncertain preference. Furthermore, CM+,++,U
H �=

MH ◦ P+,++,U
H . Recall that matrix P+,++,U

H = ∨
i∈H

P+,++,U
i (“

∨
” denotes the

disjunction operator described in Definition3.16). (MH ◦ P+,++,U
H )(s, q) = 1 iff

MH (s, q) = 1 and P+,++,U
H (s, q) = 1, which means that there is q ∈ RH (s) such

that P+,++,U
i (s, q) = 1 for someDM i ∈ H . This is not consistent with the definition

of CM+,++,U
H .
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8.9.2 Matrix Representation of General Coalitional
Stabilities with Hybrid Preference

8.9.2.1 Matrix Representation of General Coalitional Stabilities
Indexed l

(1) Matrix Representation of General Coalitional Stabilities Indexed a

Let m = |S| denote the number of states and E be the m ×m matrix with each entry
equal to 1. For a fixed state s ∈ S, let es be an m-dimensional vector with 1 as its sth
element and 0 everywhere else and e be anm-dimensional vector with every entry 1.
Let (

−→
0 )T denote the transpose of

−→
0 . Recall that the UM reachability matrix MH

is constructed using Theorem4.9. General coalitional stabilities are presented using
matrix approach next.

Theorem 8.35 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nasha stable for H, denoted by s ∈ SGCNasha

H , iff
eTs · CM+,++,U

H · e = 0.

Proof Since eTs · CM+,++,U
H · e = 0 iff eTs · CM+,++,U

H = (
−→
0 )T , then CR+,++,U

H
(s) = ∅ using Definition8.74. Consequently, the proof of the theorem follows by
Definition8.41. �

Similar to the individual generalGMRa stability for the hybrid preference, define
general coalitional GMRa stability matrix as

MGCGMRa
H = CM+,++,U

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.39)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRa stable for H .

Theorem 8.36 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRa stable for H, denoted by s ∈ SGCGMRa

H , iff
MGCGMRa

H (s, s) = 0.

Proof Since

MGCGMRa
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign
(
MN−H · (P−,−−,=

H )T
)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)],

then MGCGMRa
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=

H )T
)] = 0, (8.40)



8.9 Matrix Representation of Coalitional Stability with Hybrid Preference 333

for every s1 ∈ S − {s}. It is clear that Eq. 8.40 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=
H )T �= 0,

for every s1 ∈ CR+,++,U
H (s). Therefore, for a coalitional mild, strong, or uncertain

improvement from s, s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ RN−H (s1)

with P−,−−,=
H (s, s2) = 1 that is equivalent to s2 ∈ �

,<,∼
H (s), i.e., s >i s2, s �i s2,

or s ∼i s2 for some DM i ∈ H . According to Definition8.42, MGCGMRa
H (s, s) = 0

implies that s is general coalitional GMRa stable for H . �

Theorem8.36 shows that the matrix representation of general coalitional GMRa

stability is equivalent to the logical version of the same stability given in Defini-
tion8.42. To analyze the general coalitionalGMRa stability at s for coalition H , one
only needs to identify whether the diagonal entry MGCGMRa

H (s, s) is zero.
General coalitional SMRa stability is similar to general coalitionalGMRa except

that coalition H expects to have a chance to counterrespond to its opponents’
(N − H) response to H ’s original move. Define the general coalitional SMRa sta-
bility matrix as

MGCSMRa
H = CM+,++,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRa stable for H .

Theorem 8.37 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRa for H, denoted by s ∈ SGCSMRa

H , iff MGCSMRa
H (s, s) = 0.

Proof Since

MGCSMRa
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),

and

W (s2, s) = P−,−−,=
H (s, s2) ·

⎡
⎣1 − sign

⎛
⎝ m∑
s3=1

(
MH (s2, s3) · (1 − P−,−−,=

H (s, s3))
)⎞
⎠

⎤
⎦ ,
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then MGCSMRa
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++,U

H (s),
which is equivalent to the statement that, for every s1 ∈ CR+,++,U

H (s), there exists
s2 ∈ RN−H (s1) such that

P−,−−,=
H (s, s2) �= 0, (8.41)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=
H (s, s3)) = 0. (8.42)

Equation8.41 means that s >i s2, s �i s2, or s ∼i s2 for at least one DM i ∈ H .
Equation8.42 is equivalent to

P−,−−,=
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.43)

Obviously, for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.41 and 8.42 hold iff for every s1 ∈ CR+,++,U
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼
H (s) and s3 ∈ �

,<,∼
H (s) with all s3 ∈ RH (s2). Therefore, the

proof of this theorem follows using Definition8.43. �

Theorem8.37 displays the matrix representation of general coalitional SMRa sta-
bility, which is equivalent to the logical version given in Definition8.43. To calculate
general coalitional SMRa stability at s for H , one only needs to assess whether the
diagonal entry MGCSMRa

H (s, s) is zero.
General coalitional sequential stability is similar to general coalitional GMR

stability, but includes only those sanctions that are “credible”. The logical representa-
tion of two types of coalitional SEQ stability under hybrid preference was discussed,
the matrix form is provided here for CSEQ2 only. If H ’s opponents are treated
as a coalition, the general coalitional SEQa stability matrix MGCSEQa

H is defined
as

MGCSEQa
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQa stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.38 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQa stable for H, denoted by s ∈ SGCSEQa

H , iff MGCSEQa
H (s, s)= 0.

Proof Since

MGCSEQa
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign(M+,++,U

N−H · (P−,−−,=
H )T )

)
es]
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=
|S|∑
s1=1

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1M

+,++,U
N−H ) · (eTs P

−,−−,=
H )T

)
],

then MGCSEQa
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N−H ) · (eTs · P−,−−,=
H )T

)
] = 0,∀s1 ∈ S.

(8.44)
It is clear that Eq.8.44 is equivalent to

(eTs1 · M+,++,U
N−H ) · (eTs · P−,−−,=

H )T �= 0 for any s1 ∈ CR+,++,U
H (s).

It implies that for any s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ R+,++,U

N−H (s1)
with s2 ∈ �

,<,∼
H (s). The proof of this theorem follows using Definition8.44. �

Note that the general coalitional SEQa stability matrix is identical to the general
coalitional GMRa stability matrix except that the UM reachability matrix for H ’s
opponents, MN−H , is replaced by the mild, strong or uncertain reachability improve-
ment matrix M+,++,U

N−H .

(2) Matrix Representation of General Coalitional Stabilities Indexed b

Theorem 8.39 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional Nashb stable for H, denoted by s ∈ SGCNashb

H , iff
eTs · CM+,++

H · e = 0.

This theorem is different from Theorem8.25 presented in Sect. 8.8.2 though their
representations are identical. Theorem8.39 can analyze Nash stability with hybrid
preference.

Define the general coalitional GMRb stability matrix as

MGCGMRb
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=

H )T
)], (8.45)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRb stable for H .

Theorem 8.40 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRb stable for H, denoted by s ∈ SGCGMRb

H , iff
MGCGMRb

H (s, s) = 0.

General coalitional SMRb stability is similar to general coalitionalGMRb except
that coalition H expects to have a chance to counterrespond to its opponents’
(N − H) response to H ’s original move. Define the general coalitional SMRb sta-
bility matrix as

MGCSMRb
H = CM+,++

H · [E − sign(Q)]
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in which

Q = MN−H · [(P−,−−,=
H )T ◦ (

E − sign
(
MH · (E − P−,−−,=

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRb stable for H .

Theorem 8.41 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRb for H, denoted by s ∈ SGCSMRb

H , iff MGCSMRb
H (s, s) = 0.

Although matrix representations ofGCNashb,GCGMRb andGCSMRb do not
include uncertain preference, they may be used to analyze situations with preference
uncertainty. If H ’s opponents are treated as a coalition, the general coalitional SEQb

stability matrix MGCSEQb
H is defined as

MGCSEQb
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQb stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.42 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQb stable for H, denoted by s ∈ SGCSEQb

H , iff MGCSEQb
H (s, s)= 0.

The proofs of the general coalitional stabilities indexed b are similar to the general
coalitional stabilities indexed a. The proofs are left for readers.

(3) Matrix Representation of General Coalitional Stabilities Indexed c

Theorem 8.43 For the graph model G, let H ⊆ N be a nonempty coalition.
SGCNashc
H = SGCNasha

H .

Let MGCGMRc
H denote the general coalitional GMRc matrix. It is defined by

MGCGMRc
H = CM+,++,U

H · [E − sign
(
MN−H · (P−,−−,=,U

H )T
)
], (8.46)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRc stable for H .

Theorem 8.44 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRc stable for H, denoted by s ∈ SGCGMRc

H , iff
MGCGMRc

H (s, s) = 0.

Proof Since

MGCGMRc
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign

(
MN−H · (P−,−−,=,U

H )T
))

· es]
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=
m∑

s1=1

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=,U

H )T
)
],

then MGCGMRc
H (s, s) = 0 holds iff

CM+,++,U
H (s, s1) · [1 − sign

(
(eTs1 · MN−H ) · (eTs · P−,−−,=,U

H )T
)
] = 0, (8.47)

for every s1 ∈ S − {s}. It is clear that Eq. 8.47 is equivalent to

(eTs1 · MN−H ) · (eTs · P−,−−,=,U
H )T �= 0,

for every s1 ∈ CR+,++,U
H (s). Therefore, for a coalitional mild, strong, or uncertain

improvement from s, s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ RN−H (s1)

with P−,−−,=,U
H (s, s2) = 1 that is equivalent to s2 ∈ �

,<,∼,U
H (s), i.e., s >i

s2, s �i s2, s ∼i s2, or s Ui s2 for some DM i ∈ H . According to Definition8.50,
MGCGMRc

H (s, s) = 0 implies that s is general coalitional GMRc stable for H . �
General coalitional SMRc stability is similar to general coalitional GMRc except

that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMRc stability matrix
as

MGCSMRc
H = CM+,++,U

H · [E − sign(F)]

in which

F = MN−H · [(P−,−−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,−−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRc stable for H .

Theorem 8.45 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRc for H, denoted by s ∈ SGCSMRc

H , iff MGCSMRc
H (s, s) = 0.

Proof Since

MGCSMRc
H (s, s) = (eTs · CM+,++,U

H ) · [(E − sign(F)) · es]

=
m∑

s1=1

CM+,++,U
H (s, s1)[1 − sign (F(s1, s))]

with

F(s1, s) =
m∑

s2=1

MN−H (s1, s2) · W (s2, s),
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and

W (s2, s) = P−,−−,=,U
H (s, s2) ·

⎡
⎣1 − sign

⎛
⎝ m∑

s3=1

(
MH (s2, s3) · (1 − P−,−−,=,U

H (s, s3))
)⎞
⎠

⎤
⎦ ,

then MGCSMRc
H (s, s) = 0 holds iff F(s1, s) �= 0, for every s1 ∈ CR+,++,U

H (s),
which is equivalent to the statement that, for every s1 ∈ CR+,++,U

H (s), there exists
s2 ∈ RN−H (s1) such that

P−,−−,=,U
H (s, s2) �= 0, (8.48)

and
m∑

s3=1

MH (s2, s3) · (1 − P−,−−,=,U
H (s, s3)) = 0. (8.49)

Equation8.48 means that s >i s2, s �i s2, s ∼i s2, or s Ui s2 for at least one DM
i ∈ H . Equation8.49 is equivalent to

P−,−−,=,U
H (s, s3) = 1 for any s3 ∈ RH (s2). (8.50)

Obviously, for every s1 ∈ CR+,++,U
H (s), there exists s2 ∈ RN−H (s1) such that

Eqs. 8.48 and 8.49 hold iff for every s1 ∈ CR+,++,U
H (s) there exists s2 ∈ RN−H (s1)

such that s2 ∈ �
,<,∼,U
H (s) and s3 ∈ �

,<,∼,U
H (s) with all s3 ∈ RH (s2). Therefore,

the proof of this theorem follows using Definition8.51. �

The general coalitional SEQc stability matrix MGCSEQc
H is defined as

MGCSEQc
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQc stable for H when H ’s opponents, N−H , are in a coalition.

Theorem 8.46 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQc stable for H, denoted by s ∈ SGCSEQc

H , iff MGCSEQc
H (s, s) = 0.

Proof Since

MGCSEQc
H (s, s) = (eTs · CM+,++,U

H ) · [
(
E − sign(M+,++,U

N−H · (P−,−−,=,U
H )T )

)
es]

=
|S|∑
s1=1

CM+,++,U
H (s, s1)[1 − sign

(
(eTs1M

+,++,U
N−H ) · (eTs P

−,−−,=,U
H )T

)
],

then MGCSEQc
H (s, s) = 0 holds iff
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CM+,++,U
H (s, s1)[1 − sign

(
(eTs1 · M+,++,U

N−H ) · (eTs · P−,−−,=,U
H )T

)
] = 0,∀s1 ∈ S.

(8.51)
It is clear that Eq.8.51 is equivalent to

(eTs1 · M+,++,U
N−H ) · (eTs · P−,−−,=,U

H )T �= 0 for any s1 ∈ CR+,++,U
H (s).

It implies that for any s1 ∈ CR+,++,U
H (s), there exists at least one s2 ∈ R+,++,U

N−H (s1)

with s2 ∈ �
,<,∼,U
H (s). The proof of this theorem follows using Definition 8.52. �

(4) Matrix Representation of General Coalitional Stabilities Indexed d

Theorem 8.47 For the graph model G, let H ⊆ N be a nonempty coalition.
SGCNashd
H = SGCNashb

H .

Define the general coalitional GMRd stability matrix as

MGCGMRd
H = CM+,++

H · [E − sign
(
MN−H · (P−,−−,=,U

H )T
)
], (8.52)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is general coalitional GMRd stable for H .

Theorem 8.48 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is general coalitional GMRd stable for H, denoted by s ∈ SGCGMRd

H , iff
MGCGMRd

H (s, s) = 0.

General coalitional SMRd stability is similar to general coalitionalGMRd except
that coalition H expects to have a chance to counterrespond to its opponents’ (N−H)

response to H ’s original move. Define the general coalitional SMRd stability matrix
as

MGCSMRd
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−,−−,=,U
H )T ◦

(
E − sign

(
MH · (E − P−,−−,=,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is general coalitional SMRd stable for H .

Theorem 8.49 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
general coalitional SMRd for H, denoted by s ∈ SGCSMRd

H , iff MGCSMRd
H (s, s) = 0.

The general coalitional SEQd stability matrix MGCSEQd
H is defined as

MGCSEQd
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−,−−,=,U
H )T

)
].

The following theorem provides the matrix method to analyze whether state s is
general coalitional SEQd stable for H when H ’s opponents, N−H , are in a coalition.
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Theorem 8.50 For the graphmodel G, let H ⊆ N be a coalition. State s ∈ S is gen-
eral coalitional SEQd stable for H, denoted by s ∈ SGCSEQd

H , iff MGCSEQd
H (s, s)= 0.

The proofs of the general coalitional stabilities indexed d are similar to the general
coalitional stabilities indexed a. The proofs are left for readers.

8.9.3 Matrix Representation of Strong Coalitional Stabilities
with Hybrid Preference

When hybrid preference is introduced into the graph model, general coalitional sta-
bility definitions indexed a, b, c or d may be strong or weak coalitional stability
definitions indexed a, b, c or d, according to the degree of sanctioning. The follow-
ing matrix representations of strong coalitional stabilities under hybrid preference
are equivalent to the logical forms presented in Sect. 8.5.2.

Theorem 8.51 For the graph model G, let H ⊆ N be a nonempty coalition and
l ∈ {a, b, c, d}. State s ∈ S is general or strong coalitional Nashl stable for H,

denoted by s ∈ SGNashl
H or s ∈ SSNashl

H , respectively. Then SSNashl
H = SGNashl

H .

8.9.3.1 Matrix Representation of Strong Coalitional Stabilities
Indexed l

(1) Matrix Representation of Strong Coalitional Stabilities Indexed a

The strong coalitional GMRa stability matrix is defined as

MSCGMRa
H = CM+,++,U

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.53)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRa stable for H .

Theorem 8.52 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRa stable for H, denoted by s ∈ SSCGMRa

H , iff
MSCGMRa

H (s, s) = 0.

Theorem8.52 shows that the matrix representation of strong coalitional GMRa

stability is equivalent to the logical version of the same stability given in Defini-
tion8.59. The diagonal entry (s, s) of matrix MSCGMRa

H is identified whether it is
zero. If so, s is strong coalitional GMRa stable for H .

Define the strong coalitional SMRa stability matrix as

MSCSMRa
H = CM+,++,U

H · [E − sign(Q)]
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in which

Q = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRa stable for H .

Theorem 8.53 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRa for H, denoted by s ∈ SSCSMRa

H , iff MSCSMRa
H (s, s) = 0.

Theorem8.53 provides a matrix method, which is equivalent to the logical ver-
sion given in Definition8.60. The following theorem displays the matrix method to
identify whether state s is strong coalitional SEQa stable. Let the strong coalitional
SEQa stability matrix MSCSEQa

H be defined as

MSCSEQa
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−−
H )T

)
].

Theorem 8.54 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQa stable for H, denotedby s ∈ SSCSEQa

H , iff MSCSEQa
H (s, s)= 0.

(2) Matrix Representation of Strong Coalitional Stabilities Indexed b

Define the strong coalitional GMRb stability matrix as

MSCGMRb
H = CM+,++

H · [E − sign
(
MN−H · (P−−

H )T
)], (8.54)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRb stable for H .

Theorem 8.55 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRb stable for H, denoted by s ∈ SSCGMRb

H , iff
MSCGMRb

H (s, s) = 0.

Define the strong coalitional SMRb stability matrix as

MSCSMRb
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−
H )T ◦ (

E − sign
(
MH · (E − P−−

H )T
))],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRb stable for H .

Theorem 8.56 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRb for H, denoted by s ∈ SSCSMRb

H , iff MSCSMRb
H (s, s) = 0.
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The following theorem displays the matrix method to identify whether state s
is strong coalitional SEQb stable. Let the strong coalitional SEQb stability matrix
MSCSEQb

H be defined as

MSCSEQb
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−−
H )T

)
].

Theorem 8.57 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQb stable for H, denotedby s ∈ SSCSEQb

H , iff MSCSEQb
H (s, s)= 0.

(3) Matrix Representation of Strong Coalitional Stabilities Indexed c

The strong coalitional GMRc stability matrix is defined as

MSCGMRc
H = CM+,++,U

H · [E − sign
(
MN−H · (P−−,U

H )T
)
], (8.55)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRc stable for H .

Theorem 8.58 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRc stable for H, denoted by s ∈ SSCGMRc

H , iff
MSCGMRc

H (s, s) = 0.

Theorem8.58 shows that the matrix representation of strong coalitional GMRc

stability is equivalent to the logical version of the same stability given in Defini-
tion8.65. The diagonal entry (s, s) of matrix MSCGMRc

H is identified whether it is
zero. If so, s is strong coalitional GMRc stable for H .

Define the strong coalitional SMRc stability matrix as

MSCSMRc
H = CM+,++,U

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−,U
H )T ◦

(
E − sign

(
MH · (E − P−−,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRc stable for H .

Theorem 8.59 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRc for H, denoted by s ∈ SSCSMRc

H , iff MSCSMRc
H (s, s) = 0.

Theorem8.59 provides a matrix method, which is equivalent to the logical ver-
sion given in Definition8.66. The following theorem displays the matrix method to
identify whether state s is strong coalitional SEQc stable. Let the strong coalitional

SEQc stability matrix MSCSEQc
H be defined as
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MSCSEQc
H = CM+,++,U

H · [E − sign
(
M+,++,U

N−H · (P−−,U
H )T

)
].

Theorem 8.60 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SEQc stable for H, denoted by s ∈ SSCSEQc

H , iff MSCSEQc
H (s, s)= 0.

(4) Matrix Representation of Strong Coalitional Stabilities Indexed d

Define the strong coalitional GMRd stability matrix as

MSCGMRd
H = CM+,++

H · [E − sign
(
MN−H · (P−−,U

H )T
)
], (8.56)

where H ⊆ N . The following theorem establishes the matrix method to assess
whether state s is strong coalitional GMRd stable for H .

Theorem 8.61 For the graph model G, let H ⊆ N be a nonempty coalition. State
s ∈ S is strong coalitional GMRd stable for H, denoted by s ∈ SSCGMRd

H , iff
MSCGMRd

H (s, s) = 0.

Theorem8.61 shows that the matrix representation of strong coalitional GMRd

stability is equivalent to the logical version of the same stability given in Defini-
tion8.68. The diagonal entry (s, s) of matrix MSCGMRd

H is identified whether it is
zero. If so, s is strong coalitional GMRd stable for H .

Define the strong coalitional SMRd stability matrix as

MSCSMRd
H = CM+,++

H · [E − sign(Q)]

in which

Q = MN−H · [(P−−,U
H )T ◦

(
E − sign

(
MH · (E − P−−,U

H )T
))

],

for H ⊆ N . The following theorem establishes the matrix method to determine
whether state s is strong coalitional SMRd stable for H .

Theorem 8.62 For the graph model G, let H ⊆ N be a coalition. State s ∈ S is
strong coalitional SMRd for H, denoted by s ∈ SSCSMRd

H , iff MSCSMRd
H (s, s) = 0.

Theorem8.62 provides amatrix method, which is equivalent to the logical version
given in Definition8.69. The following theorem displays the matrix method to iden-
tify whether state s is strong coalitional SEQd stable. Define the strong coalitional

SEQd stability matrix MSCSEQd
H as

MSCSEQd
H = CM+,++

H · [E − sign
(
M+,++,U

N−H · (P−−,U
H )T

)
].
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Table 8.1 Options and feasible states for the Lake Gisborne conflict

Federal

1. Continue N Y N Y N Y N Y

Provincial

2. Lift N N Y Y N N Y Y

Support

3. Appeal N N N N Y Y Y Y

States s1 s2 s3 s4 s5 s6 s7 s8

Theorem 8.63 For the graph model G, let H ⊆ N be a coalition. State s ∈ S
is strong coalitional SEQd stable for H, denoted by s ∈ SSCSEQd

H , iff MSCSEQd
H

(s, s) = 0.

The matrix representation of coalitional stabilities under hybrid preference pre-
sented in this section is identicalwith the logical formdiscussed inSect. 8.5.However,
the matrix form is more efficient for calculating coalitional stabilities than logical
representation.

8.10 Application: Coalition Analysis for Lake Gisborne
Conflict with Simple Preference

In this section, the matrix approach is used to analyze the coalitional stability for the
Lake Gisborne conflict with simple preference. Recall from Sects. 5.4 and 7.5 that
the graph model for the Lake Gisborne Conflict has the following DMs and options:

• Federal Government of Canada (Federal): its option is to continue a Canada-wide
accord on the prohibition of bulk water export (Continue) or not,

• Provincial Government of Newfoundland and Labrador (Provincial): its option is
to lift the ban on bulk water exports (Lift) or not, and

• Support groups (Support): their option is to appeal for continuing the Lake Gis-
borne project (Appeal) or not.

The three DMs and the options they control are listed on the left in Table8.1.
Together, the three options create eight possible states as listed on the right in
Table8.1, where a “Y” indicates that an option is selected by the DM controlling
it and an “N” means that the option is not chosen. Each state, shown as a column
of Ys and Ns in Table8.1, represents a possible scenario as to what could occur.
For instance, s4 means that the Federal Government will continue prohibiting bulk
water exports, the Provincial Government will lift the ban on bulk water exports,
and the Support Groups will not appeal for implementing this project. The graph
model capturing the possible moves by the three DMs in the Lake Gisborne conflict
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Fig. 8.1 Graph model of
moves for the Lake Gisborne
conflict 1s 7s

6s

5s

2s

3s

4s 8s

Federal Federal Federal Federal

Provincial

Support

Support

Support

Support

Provincial Provincial

Provincial

Table 8.2 Preference information for the Lake Gisborne model with low water price

DMs Certain preferences

Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Provincial s2 � s6 � s1 � s5 � s4 � s8 � s3 � s7
Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

Table 8.3 Preference information for the Lake Gisborne model with high water price

DMs Certain preferences

Federal s2 � s6 � s4 � s8 � s1 � s5 � s3 � s7
Provincial s3 � s7 � s4 � s8 � s1 � s5 � s2 � s6
Support s3 � s4 � s7 � s8 � s5 � s6 � s1 � s2

is shown in Fig. 8.1, where the labels on the arcs identify the DMs who control the
relevant moves.

Besides the DMs, states, and potential moves, the other key component of a
graph model is the relative preferences for each DM. Tables8.2 and 8.3 provide the
preferences for the situations inwhich the price of water is low and high, respectively.
Notice that only the preferences for the Provincial Government are different for these
two conflicts. In these tables, the symbol given by � means more preferred. When
the price of water is low, the Provincial most prefers state s2 from Table8.2. State s2
indicates that the Provincial sides with the Federal for protecting the environment.
With the increasing price of water, Table8.3 shows that state s3 is most preferred by
the Provincial. It means that the economical-oriented provincial government will lift
the ban on bulk water exports. Two attitudes of the Provincial will result in different
coalitions anddifferent coalitional stability resolutions.Due to themethods to analyze
the two models for the Lake Gisborne conflict are similar, the following discussions
will be based on the second case in which the Provincial sides with the Support
Groups. The reachability matrices for the Lake Gisborne model is constructed using
the algebraic approach next.
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Table 8.4 UM reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix MN−{1} MN−{2} MN−{3}
State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

3 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0

4 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0

5 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1

7 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1

8 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0

Table 8.5 UI reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix M+
N−{1} M+

N−{2} M+
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

2 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1

6 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8.10.1 Reachability Matrices in the Lake Gisborne Model

N = {1, 2, 3}={Federal, Provincial, Support} is the set of three DMs. Use the
Lake Gisborne model as an example to demonstrate how the algebraic approach
works for building UM, UI, and CI (Coalitional Improvement) reachability matrices
(Xu et al. 2014). One can adhere to the following steps:

• Construct matrices, Ji , J
+
i , P+

i , and P−,=
i , for i = 1, 2, and 3, using information

provided in Fig. 8.1 and Table8.3;
• Calculate the UM, UI, and CI reachability matrices, MH , M

+
H , and CM+

H by
H = N − {i} for i = 1, 2, and 3, respectively;

• Three reachability matrices are shown in Tables8.4, 8.5, and 8.6.

For example, using Table8.5, one has:
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Table 8.6 CI reachability matrices by N − {i} for i = 1, 2, and 3 for the Lake Gisborne model
with high water price

Matrix CM+
N−{1} CM+

N−{2} CM+
N−{3}

State 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

eT2 · M+
N−{1} = (0, 0, 0, 1, 0, 1, 0, 1),

which means that the reachable list of H = N − {1} by the legal UIs from state
s2, R

+
H (s2) = {s4, s6, s8}, i.e., states s4, s6, and s8 can be reached by any legal UI

sequence, by coalition H = {2, 3}, from the status quo s = s2. However, from
Table8.6,

eT2 · CM+
N−{1} = (0, 0, 0, 1, 0, 0, 0, 1),

which indicates that the coalitional improvements from s2 by coalition H = {2, 3} are
CR+

H = (0, 0, 0, 1, 0, 0, 0, 1). Asmentioned after Definition8.1, normally, R+
H (s) �=

CR+
H (s). It is clear from this example that R+

H (s2) �= CR+
H (s2) for H = {2, 3}. In

fact, although s6 ∈ R+
H (s2), s6 /∈ CR+

H (s2) for H = {2, 3}, since s2 �2 s6.

8.10.2 Coalitional Stability Results in the Lake Gisborne
Model

After obtaining three important components, UM, UI, and CI reachability matrices
(MH , M+

H , and CM+
H , respectively), coalitional stabilities, CNash, CGMR, CSMR,

CSEQ1, and CSEQ2, can be calculated using Theorems 8.2 and 8.4–8.7 and are
shown in Table8.7.

Both of the foregoing water export conflicts were thoroughly analyzed using the
algebraic methodology for coalitional analysis provided in this chapter. In the first
dispute for which the price of water is low, the only equilibrium according to both
noncooperative stability calculations and coalitional stability when the Federal and
Provincial Governments form a coalition (H = {1, 2}) is s6. From Table8.1, state



348 8 Coalitional Stabilities

Table 8.7 Coalitional stabilities of the Lake Gisborne model for various coalitions with high water
price

State Stability {1} {2} {3} {1, 2} {1, 3} {2, 3}
s1 CNash

CGMR

CSMR

CSEQ1

CSEQ2

s2 CNash
√ √ √

CGMR
√ √ √

CSMR
√ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √

s3 CNash
√ √ √ √ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √ √ √

CSEQ2
√ √ √ √ √

s4 CNash
√ √ √ √ √ √

CGMR
√ √ √ √ √ √

CSMR
√ √ √ √ √ √

CSEQ1
√ √ √ √ √ √

CSEQ2
√ √ √ √ √ √

s5 CNash
√ √

CGMR
√ √

CSMR
√ √

CSEQ1
√ √

CSEQ2
√ √

s6 CNash
√ √ √ √

CGMR
√ √ √ √

CSMR
√ √ √ √

CSEQ1
√ √ √ √

CSEQ2
√ √ √ √

s7 CNash
√ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √

s8 CNash
√ √

CGMR
√ √ √ √ √

CSMR
√ √ √ √ √

CSEQ1
√ √ √

CSEQ2
√ √ √
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s6 is the situation in which the Federal Government continues to promote a ban, the
Provincial Government does not lift the ban, and the Support Groups appeal. In this
case, the Provincial Government is environmentally oriented. For the second conflict,
in which the price of water is high, the noncooperative stability results are listed in
the 3, 4, and 5th columns of Table8.7. Obviously, state s4 is an equilibrium for all
individual noncooperative stability definitions consisting of Nash, GMR, SMR, and
SEQ; s8 is also an equilibrium for GMR and SMR individual stabilities. However,
notice from Table8.7 that when the Provincial Government and the Support Groups
form a coalition (H = {2, 3}), s8 is coalitionally unstable for CGMR and CSMR. As
can be seen from Table8.1, at s8, the Support Groups are appealing, which is not nec-
essary because the Provincial Government and the Support Groups are cooperating.
Therefore, state s8 is not long-term stable. For nontrivial coalitions, the cooperative
stabilities are listed in the three columns on the right of Table8.7. Observe that s4 is
universally CNash, CGMR, CSMR, CSEQ1, and CSEQ2 stable, which means that
at state s4, the Federal Government continues with the ban, the Provincial Govern-
ment lifts the ban and the Support Groups do not appeal. State s4 is a resolution of
the conflict when the price of water is high. In this case, the water export project will
proceed.

8.11 Important Ideas

Coalition analysis should form a key component of every formal conflict resolu-
tion investigation. After determining what a given DM can accomplish on his or
her own and in his own self-interest, one should determine if the DM can do even
better by cooperating with others. The coalition ideas presented in this chapter pro-
vide a solid mathematical foundation for coalition modeling and analysis, which can
be programmed into a decision support system (DSS) for GMCR, as explained in
Sect. 10.2. Hence, an encompassing coalition approach to formal conflict studies can
be fully operationalized for employment by researchers, teachers, students, and prac-
titioners working in many fields. The logical representation of coalitional stability
analyses for four key solution concepts are presented in this chapter for the four types
of preference structures given in Chaps. 4–7. Moreover, the matrix representation of
coalitional analysis under a range of preference framework given later in this chapter
means that coalitional analysis can be readily incorporated into the construction of
the engine for a DSS for GMCR, as explained in Sect. 10.2. Accordingly, coalitional
analysis is now a fully mature decision technology within the paradigm of GMCR,
which can be readily utilized as evidenced by the water export conflict application
presented in Sect. 8.10.
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8.12 Problems

8.12.1 Select a current conflict, such as an international trading dispute or negotiat-
ing a climate change agreement, which is of direct interest to you. Explain why you
think coalition modeling and analysis may or may not be an important tool for better
resolving this conflict.

8.12.2 In a coalition improvement given in Definition8.1, a state is a coalition
improvement for the members of a coalition with respect to another state if and only
if the state to which the DMs are jointly moving is more preferred by all of the
members of the coalition. For a conflict of your choice, provide an example of a
coalition improvement. Explain how this move could be carried out in practice via
appropriate communication among the coalition members.

8.12.3 The game of Prisoner’s Dilemma is presented in Problem 3.5.1. If both DMs
were to move together from state s4 to state s1 in this conflict, this constitutes an
example of a coalition improvement. Write a short discussion about interpreting
Prisoner’s Dilemma as some type of typical or generic real-world dispute, such as
a trading or environmental dispute. Explain sensible steps that could be taken in
practice to ensure that both DMs move together from state s4 to s1 and, hence,
no DM defects during this process. Why is the move from state s4 to s1 called an
equilibrium jump?

8.12.4 In the game of Chicken in Problem 3.5.4, both DMs or drivers moving
together from state s1 to state s4 is an example of a coalition improvement as presented
in Definition8.1. Furnish an example of a real-world interpretation of the game of
Chicken. Explain how the two DMs could improve together from state s1 to state s4
via taking appropriate measures.

8.12.5 If a conflict consists of only two DMs, these two DMs can still participate in
a coalition improvement as presented in Definition8.1. However, when there are only
two DMs in a conflict, there are no other DMs left in the conflict to block possible
coalition improvements. Explain why the definitions for coalitional stabilities given
in Sect. 8.2 for simple preference work when there are only two DMs. Why are these
coalitional stability definitions identical to the stability definitions given in Chap.4
for simple preference with no coalitions having two or more DMs?

8.12.6 The Lake Gisborne conflict over the proposed exportation of water is pre-
sented in Sect. 8.10. Apply the logical form of the coalitional stability definitions
given in Sect. 8.2 to the Lake Gisborne example to show by hand how you calculate
various coalitional stabilities. Be sure to present the special situation for which there
are no coalitions for each stability definition.

8.12.7 For the Elmira groundwater contamination dispute first presented in
Sect. 1.2.2 in the book, calculate by hand the coalitional stabilities for simple pref-
erence using the matrix formulation given in Sect. 8.6. Be sure to include sample
calculations and the stability results for the special situation in which there are no
coalitions.
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8.12.8 For the coalition investigation approach presented in this chapter, it is
assumed that DMs will form a coalition during a conflict when it is in their interest
to do so, as reflected by the way a coalition improvement is defined in Definition8.1.
However, other ways to study coalitions exist. In particular, in some situations, such
as a military alliance among nations during warfare, a coalition may last through-
out the duration of the dispute. Accordingly, researchers developed a procedure for
determining the preference of a coalition based on the preferences of the individual
coalition members (Kuhn et al. 1983, Hipel and Fraser 1991, Meister et al. 1992,
Hipel and Meister 1994). By referring to the research of these authors, outline how
coalition preferences are ascertained. Explain how these authors identify possible
coalition formation and how coalitional stability analyses are executed. Describe a
specific actual dispute forwhich you think this approach could be useful for obtaining
strategic insights.

8.12.9 Logical definitions of coalitional stabilities under unknown preference are
presented in Sect. 8.3. By employing a real-world application of your choice, explain
a situation in which you think this kind of coalitional analysis could prove to be
informative.

8.12.10 For the case of three degrees of preference, logical definitions for coalitional
stability are provided in Sect. 8.4. Describe an actual situation in which you think
this kind of coalitional stability analysis could provide insightful strategic findings.

8.12.11 Hybrid preference coalitional stability definitions, in which both unknown
preference and three degrees of preference are simultaneously taken into account,
are presented in Sect. 8.5. Based on an actual dispute which is of direct interest to
you, describe why you think this hybrid coalitional stability approach could provide
insightful strategic findings.

8.12.12 The matrix representations of coalitional stability under simple, unknown,
three degree, and hybrid preference are presented in Sects. 8.6–8.9, respectively. As
explained in Sect. 10.2, these matrix representations are needed for designing and
programming a flexible decision support system (DSS) especially for the analysis
engine. Using diagrams, outline how you would design a DSS which can handle
coalitional analyses.
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Chapter 9
Follow-Up Analysis: Conflict Evolution

Whenexecuting a comprehensive conflict resolution investigation, onefirst ascertains
how well each decision maker (DM) can fare on his or her own by utilizing the mod-
eling concepts in Chap.3 along with the stability definitions provided in Chaps. 4–7
under simple, unknown, degrees of preference, and hybrid preference, respectively.
As emphasized right at the beginning of the book in Fig. 1.1 in Sect. 1.2.1, as well
as in the design for a decision support system (DSS) in Sect. 10.2 in the last chapter,
one should also determine if one or more of the DMs can do even better via forming
coalitions, which is the focus of Chap.8. The analysis system of GMCR consists
of stability analysis and post-stability or follow-up analysis that includes coalition
analysis given in Chap.8 and status quo analysis in a graph model.

The purpose of this chapter is to present formal algorithms for tracing possible
evolutions of a conflict from a given selected starting state, which is often the status
quo situation, to any final desired state, such as an attractive win/win equilibrium. In
the original graphmodel, individual and coalitional stability analyseswere carried out
within the easily understandable logical structures described in the earlier sections
of Chaps. 4–8. Likewise, when algorithms for finding potential evolutionary path
of a conflict, initially called status quo analyses, were created by Li et al. (2004b,
2005a, b), logical structureswere retained and presented in pseudocode.Although the
logical approach to tracing specified types of paths between any two chosen states
is easy to comprehend, it is difficult to incorporate into an existing or new DSS,
as explained in Sect. 10.2. Accordingly, to overcome this challenge, an innovative
matrix system to determine the paths between two states within a graph model is
presented in this chapter (Xu et al. 2009a, b, 2010a, b).

A legal path in a graph model satisfies the usual restriction that no DMmay move
twice consecutively. It is shown that the fundamental problem of finding paths is
equivalent to a search of all colored paths from a given initial state to a desirable
state within an edge-colored multidigraph.

© Springer International Publishing AG, part of Springer Nature 2018
H. Xu et al., Conflict Resolution Using the Graph Model: Strategic Interactions
in Competition and Cooperation, Studies in Systems, Decision and Control 153,
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The key concepts underlying the tracing of the potential evolution paths of a con-
flict between any two states are presented inSect. 9.1 for logical representationswhere
the preferences can be simple, unknown, three-degree, and hybrid. Subsequently, two
algebraic approaches based on the adjacency matrix and incidence matrix for status
quo analysis for these kinds of preferences are presented in Sects. 9.2 and 9.3, respec-
tively. The Elmira groundwater contamination, Gisborne water export, and Garrison
Diversion Unit irrigation conflicts are utilized to demonstrate how these algorithms
work in practice.

9.1 Logical Representation of Conflict Evolution

When a conflict is modeled as a graph model, a point in time must be selected first;
the current (or initial) state of the conflict is then referred to as the status quo. Two
fundamental steps are involved in analyzing a graph model: stability analysis and
follow-up analysis (Kilgour and Hipel 2010).When the stability of a state is assessed
at the first stage, it is not a concern whether this state is actually achievable from
the status quo state. But as one form of a follow-up analysis, status quo analysis
aims to determine whether a particular equilibrium is reachable from the status quo
and, if so, how to reach it. Thus, in contrast to stability analysis, which identifies
states that would be stable if attained, status quo analysis provides a dynamic and
forward-looking perspective, identifying states that are attainable, and describing
how to reach them. Pseudocodes for status quo analysis under simple preference
are presented next (Li et al. 2004b, 2005a, b). As a follow-up analysis, status quo
analysis is designed to trace the evolution of a conflict from the status quo state to
any desirable outcome.

9.1.1 Simple Preference

Let i ∈ N and H ⊆ N and let k ≥ 1 be an integer. New notation is required, as
follows:

• SQ denotes the status quo state;
• The state sets, S(k)

i (s) and S(k,+)
i (s), denote the states reachable from SQ = s

in legal sequences of exactly k steps of unilateral moves (UMs) and unilateral
improvements (UIs), respectively, with last mover i ;

• The state sets, V (k)
i (s) and V (k,+)

i (s), denote the sets of states reachable from
SQ = s in legal sequences of at most k UMs and UIs, respectively, with last
mover i ;

• The state sets, V (k)
H (s) and V (k,+)

H (s), stand for the sets of states reachable from
SQ = s in legal sequences of at most k UMs and UIs, respectively, by H ; (If
H = N , then V (k)

H (s) = V (k)(s) and V (k,+)
H (s) = V (k,+)(s).)
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• The arc sets, A(k)
i (s) and A(k,+)

i (s), controlled by DM i , contain the final arcs in
legal sequences of at most k UMs and UIs, respectively, from SQ = s.

Recall that Ai is DM i’s arc set in a graph model. Let A+
i denote i’s UI arc set.

For s ∈ S, let Ai (s) and A+
i (s) stand for the respective subsets of these two arc

sets with initial state s. Therefore, these arc sets are expressed by Ai = ⋃

s∈S
Ai (s)

and A+
i = ⋃

s∈S
A+
i (s). Note that for all i ∈ N , s ∈ S, and all positive integers

k, A(k)
i (s) ⊆ Ai and A(k,+)

i (s) ⊆ A+
i . Similarly, S(k,+)

i (s) ⊆ S(k)
i (s) ⊆ S and

V (k,+)
i (s) ⊆ V (k)

i (s) ⊆ S.
The algorithm presented in Table9.1 allows for UMs as opposed toUIs under sim-

ple preference. If the algorithm stops at step k, the graph defined by (V (k)
H (SQ),

⋃

i∈H
A(k)
i (SQ)), is called the status quo diagram of permitted UMs. An algorithm that

permits only UIs can be found in Table9.2 and lead to a similar status quo diagram
for UIs. Two important components of stability analysis under simple preference, the
reachable list of UMs from status quo s by coalition H , RH (s), and the reachable list
of UIs from status quo s by coalition H , R+

H (s), can be constructed using Tables9.1
and 9.2, respectively.

Employing a status quo diagram of the evolution of a conflict, useful information
regarding the conflict under study can be garnered. In particular, if an equilibrium
appears in the diagram, at least one path from the status quo to the equilibrium
exists. By tracing this path in the status quo diagram, one can ascertain a viable
evolution path from the status quo state to this resolution. On the other hand, if a
predicted equilibrium does not appear in the status quo diagram, there is no way for
the conflict to settle at this equilibrium, as it cannot be reached from the status quo
(Li et al. 2005b).

The algorithms for status quo analysis in the graph model with simple preference
can be extended to models with unknown preference.

9.1.2 Unknown Preference

First, some additional notation for unknown preference is required, as follows:

• The set, S(k,+U )
i (s) ⊆ S, contains all states reachable from SQ = s in legal

sequences of exactly k unilateral improvements or uncertain moves (UIUMs) with
last mover i ;

• The set, V (k,+U )
i (s) ⊆ S, contains all states reachable from SQ = s in legal

sequences of at most k UIUMs with last mover i ;
• The set, V (k,+U )

H (s) ⊆ S, is comprised of all states reachable from SQ = s in legal
sequences of at most k UIUMs by H ; (if H = N , then V (k,+U )

H (s) = V (k,+U )(s).)
• The arc set, A(k,+U )

i (s) controlled byDM i , contains thefinal arcs in legal sequences
of at most k UIUMs from SQ = s.
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Table 9.1 Pseudocode for constructing UM set from status quo state s

Initialize //initialize the necessary parameters

H: nonempty subset of DMs;

n: number of DMs in H ;

m: the number of states;

s: status quo state;

δ1: maximum number of loop repetitions;

Ri (s): reachable list from state s for DM i , i = 1, · · · , n;

k = 1

S(k)
i (s) = Ri (s), i = 1, · · · , n

V (k)
i (s) = S(k)

i (s), i = 1, · · · , n

A(k)
i (s) = ⋃

q∈Ri (s)
(s, q), i = 1, · · · , n

loop 1

k = k + 1

loop 2 i from 1 to n // the last mover is DM i

S′ = ⋃

j∈H\{i}
S(k−1)
j (s)

S(k)
i (s) = ⋃

s′∈S′
Ri (s′)

V (k)
i (s) = V (k−1)

i (s)
⋃

S(k)
i (s)

A(k)
i (s) = A(k−1)

i (s)
⋃{(s1, s2) : s1 ∈ ⋃

j∈H\{i}
S(k−1)
j (s), and s2 ∈ Ri (s1)}

return to loop 2

V (k)
H (s) = ⋃

i∈H
V (k)
i (s)

return to loop 1 if
⋃

i∈H
A(k)
i (s) �= ⋃

i∈H
A(k−1)
i (s)

δ1 = k

RH (s) = V (δ1)
H (s).

Recall that R+,U
i (s) stands for DM i’s reachable list from s by UIUMs, which

contains all states DM i can reach in one step from s. The algorithm presented
in Table9.3 permits only UIUMs for unknown preference. Similarly, the graph

(V (k,+U )
H (SQ),

⋃

i∈H
A(k,+U )
i (SQ)) represents the status quo diagram, if only UIUMs

are permitted, when the above algorithm stops at iteration step k.
The algorithm for status quo analysis in the graph model with unknown prefer-

ence is described in Table9.3. The important component of stability analysis under
unknown preference, the reachable list of UIUMs from status quo s by coalition H ,
R+,U
H (s), may be obtained using the algorithm presented in Table9.3. Preferencewith

strength (three degrees of preference) is discussed in Chap.6. The status quo analysis
for graph models with this preference structure is presented in the next section.
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Table 9.2 Pseudocode for constructing UI set from status quo state s

Initialize //initialize the necessary parameters

H: nonempty subset of DMs;

n: the number of DMs in H ;

m: number of states;

s: status quo state;

δ2: maximum number of loop repetitions;

R+
i (s): UIs from state s for DM i , i = 1, · · · , n;

k = 1

S(k,+)
i (s) = R+

i (s), i = 1, · · · , n

V (k,+)
i (s) = S(k,+)

i (s), i = 1, · · · , n

A(k,+)
i (s) = ⋃

q∈R+
i (s)

(s, q), i = 1, · · · , n

loop 1

k = k + 1

loop 2 i from 1 to n // the last mover is DM i

S′ = ⋃

j∈H\{i}
S(k−1,+)
j (s)

S(k,+)
i (s) = ⋃

s′∈S′
R+
i (s′)

V (k,+)
i (s) = V (k−1,+)

i (s)
⋃

S(k,+)
i (s)

A(k,+)
i (s) = A(k−1,+)

i (s)
⋃{(s1, s2) : s1 ∈ ⋃

j∈H\{i}
S(k−1,+)
j (s), and s2 ∈ R+

i (s1)}
return to loop 2

V (k,+)
H (s) = ⋃

i∈H
V (k,+)
i (s)

return to loop 1 if
⋃

i∈H
A(k,+)
i (s) �= ⋃

i∈H
A(k−1,+)
i (s)

δ2 = k

R+
H (s) = V (δ2,+)

H (s).

9.1.3 Three Degrees of Preference

Some additional notation for the three types of preference (indifference “∼”, mild
preference “>”, and strong preference “�”), is required, as follows:

• S(k,+,++)
i (s) denotes the set of states reachable from SQ = s in legal sequences

of exactly k steps of mild or strong unilateral improvements (MSUIs) with last
mover i ;

• V (k,+,++)
i (s) denotes the set of all states reachable from SQ = s in legal sequences

of at most k MSUIs with last mover i ;
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Table 9.3 Pseudocode for constructing UIUM set from status quo state s

Initialize //initialize the necessary parameters

H: nonempty set of DMs;

n: number of DMs in H ;

m: number of states;

s: status quo state;

δ3: maximum number of loop repetitions;

R+,U
i (s): UIUMs from state s for DM i , i = 1, · · · , n;

k = 1

S(k,+U )
i (s) = R+,U

i (s), i = 1, · · · , n

V (k,+U )
i (s) = S(k,+U )

i (s), i = 1, · · · , n

A(k,+U )
i (s) = ⋃

q∈R+,U
i (s)

(s, q), i = 1, · · · , n

loop 1

k = k + 1

loop 2 i from 1 to n // the last mover is DM i

S′ = ⋃

j∈H\{i}
S(k−1,+U )
j (s)

S(k,+U )
i (s) = ⋃

s′∈S′
R+,U
i (s′)

V (k,+U )
i (s) = V (k−1,+U )

i (s)
⋃

S(k,+U )
i (s)

A(k,+U )
i (s) = A(k−1,+U )

i (s)
⋃{(s1, s2) : s1 ∈ ⋃

j∈H\{i}
S(k−1,+U )
j (s),

and s2 ∈ R+,U
i (s1)}

return to loop 2

V (k,+U )
H (s) = ⋃

i∈H
V (k,+U )
i (s)

return to loop 1 if
⋃

i∈H
A(k,+U )
i (s) �= ⋃

i∈H
A(k−1,+U )
i (s)

δ3 = k

R+,U
H (s) = V (δ3,+U )

H (s).

• V (k,+,++)
H (s) denotes the set of all states reachable from SQ = s in legal sequences

of at most k MSUIs by H ; (If H = N , then V (k,+,++)
H (s) = V (k,+,++)(s).)

• A(k,+,++)
i (s) is the set of all arcs controlled by DM i that contains the final arcs in

legal sequences of at most k MSUIs from SQ = s.

Recall that R+,++
i (s) contains all states reachable for DM i by MSUIs in one step

from s. The algorithm presented in Table9.4 allows onlyMSUIs for the three degrees
of preference. Similarly, the graph (V (k,+,++)

H (SQ),
⋃

i∈H
A(k,+,++)
i (SQ)) represents

the status quo diagram, if onlyMSUIs are allowed, when the above algorithm stops at
iteration step k. The important component of stability analysis under three degrees of
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Table 9.4 Pseudocode for constructing MSUI set from status quo state s

Initialize //initialize the necessary parameters

H: nonempty subset of DMs;

n: number of DMs in H ;

m: number of states;

s: status quo state;

δ4: maximum number of loop repetitions;

R+,++
i (s): MSUIs from state s for DM i , i = 1, · · · , n;

k = 1

S(k,+,++)
i (s) = R+,++

i (s), i = 1, · · · , n

V (k,+,++)
i (s) = S(k,+,++)

i (s), i = 1, · · · , n

A(k,+,++)
i (s) = ⋃

q∈R+,++
i (s)

(s, q), i = 1, · · · , n

loop 1

k = k + 1

loop 2 i from 1 to n // the last mover is DM i

S′ = ⋃

j∈H\{i}
S(k−1,+,++)
j (s)

S(k,+,++)
i (s) = ⋃

s′∈S′
R+,++
i (s′)

V (k,+,++)
i (s) = V (k−1,+,++)

i (s)
⋃

S(k,+,++)
i (s)

A(k,+,++)
i (s) = A(k−1,+,++)

i (s)
⋃{(s1, s2) : s1 ∈ ⋃

j∈H\{i}
S(k−1,+,++)
j (s), and s2 ∈

R+,++
i (s1)}
return to loop 2

V (k,+,++)
H (s) = ⋃

i∈H
V (k,+,++)
i (s)

return to loop 1 if
⋃

i∈H
A(k,+,++)
i (s) �= ⋃

i∈H
A(k−1,+,++)
i (s)

δ4 = k

R+,++
H (s) = V (δ4,+,++)

H (s).

preference, the reachable list of MSUIs by coalition H from status quo s, R+,++
H (s),

may be obtained using the algorithm presented in Table9.4. Status quo analysis
can provide guidance for DMs and analysts by identifying how to attain reachable
equilibria from a status quo state under appropriate preferences.

9.1.4 Hybrid Preference

The hybrid preference framework combines preference uncertainty and three degrees
of preference together into the paradigm of the GraphModel for Conflict Resolution.
The preference structure and stability analysis under hybrid preference are discussed



360 9 Follow-Up Analysis: Conflict Evolution

in Chap.7. The status quo analysis under hybrid preference is presented in this
subsection.

First, some additional notation for the hybrid preference is presented here:

• S(k,+,++,U )
i (s) ⊆ S contains all states reachable from SQ = s in legal sequences of

exactly k mild or strong unilateral improvements or uncertain moves (MSUIUMs)
with last mover i ;

• V (k,+,++,U )
i (s) ⊆ S contains all states reachable from SQ = s in at most k legal

MSUIUMs with last mover i ;
• V (k,+,++,U )

H (s) ⊆ S contains all states reachable from SQ = s in at most k legal
MSUIUMs by H ;

• A(k,+,++,U )
i (s) is the set of all arcs controlled by DM i that denotes the final arcs

in legal sequences of at most k MSUIUMs from SQ = s.

Note that Ai , A
+,++
i , and A+,++,U

i ⊆ S × S are three oriented arc sets that denote
that DM i can make one step UM, MSUI, and MSUIUM from the initial state
of the arc to its terminal state, respectively. Let Ai (s), A

+,++
i (s), and A+,++,U

i (s)
denote the sets of arcs associated with DM i in one step UM, MSUI, and MSUIUM
from state s, respectively. Therefore, Ai = ⋃

s∈S
Ai (s), A

+,++
i = ⋃

s∈S
A+,++
i (s), and

A+,++,U
i = ⋃

s∈S
A+,++,U
i (s).

The algorithm presented in Table9.5 permits only mild or strong unilateral
improvements or uncertain moves for the hybrid preference. Similarly, the graph
(V (k,+,++,U )

H (SQ),
⋃

i∈H
A(k,+,++,U )
i (SQ)) represents the status quo diagram in which

only MSUIUMs are permitted, when the above algorithm stops at iteration step k.
The important component of stability analysis under hybrid preference, the reachable
list of MSUIUMs by coalition H from status quo s, R+,++,U

H (s), may be constructed
using the algorithm presented in Table9.5.

Even though pseudocodes for status quo analyses have been presented for sim-
ple preference, unknown preference, three degrees of preference and hybrid pref-
erence, they are not yet implemented into a user-friendly decision support system
for employment in practical applications except simple preference. To gain these
additional insights, one has to rely on tedious manual computations. The approach
based on matrix formulation described in the next section provides a flexible and
easy-to-implement procedure for executing a status quo analysis. Analysts having
basic matrix operation knowledge will be able to take advantage of the procedure to
carry out a status quo analysis. An innovativematrix system to represent various pref-
erence structures and calculate corresponding stabilities in a graph model has been
presented in Chaps. 3–7. The matrix representation effectively converts the stability
analysis from a logical structure to an algebraic system. Because of the difficulty
in integrating status quo analysis into the DSS GMCR II (Fang et al. 2003a, b) and
the ease of implementing the matrix representation of stability analysis, one should
utilize the matrix approach to perform status quo analysis.
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Table 9.5 Pseudocode for constructing MSUIUM set from status quo state s

Initialize //initialize the necessary parameters

H: any set of DMs;

n: the number of DMs in H ;

m: the number of states;

s: the start state;

δ5: the max step one wants to calculate;

R+,++,U
i (s): MSUIUMs from state s by DM i , i = 1, · · · , n;

k = 1

S(k,+,++,U )
i (s) = R+,++,U

i (s), i = 1, · · · , n

V (k,+,++,U )
i (s) = S(k,+,++,U )

i (s), i = 1, · · · , n

A(k,+,++,U )
i (s) = ⋃

q∈R+,++,U
i (s)

(s, q), (s, q) is a MSUIUM arc from state s to state q, i =

1, · · · , n

loop 1

k = k + 1

loop 2 i from 1 to n // the last mover is DM i

S′ = ⋃

j∈H\{i}
S(k−1,+,++,U )
j (s)

S(k,+,++,U )
i (s) = ⋃

s′∈S′
R+,++,U
i (s′)

V (k,+,++,U )
i (s) = V (k−1,+,++,U )

i (s)
⋃

S(k,+,++,U )
i (s)

A(k,+,++,U )
i (s) = A(k−1,+,++,U )

i (s)
⋃

(s1, s2)

(s1, s2) : s1 ∈ ⋃

j∈H\{i}
S(k−1,+,++,U )
j (s), and s2 ∈ R+,++,U

i (s1)

return to loop 2

V (k,+,++,U )
H (s) = ⋃

i∈H
V (k,+,++,U )
i (s)

return to loop 1 if
⋃

i∈H
A(k,+,++,U )
i (s) �= ⋃

i∈H
A(k−1,+,++,U )
i (s)

δ5 = k

R+,++,U
H (s) = V (δ3,+,++,U )

H (s).

9.2 Matrix Representation of Conflict Evolution
Based on Adjacency Matrix

It is well-known that matrices can efficiently describe adjacency of vertices, and
incidence of arcs and vertices, in a graph, thereby permitting tracking of paths
between any two vertices (Godsil and Royle 2001).Matrices possess useful algebraic
properties that can be exploited to produce improved algorithms for solving graph
problems. For instance, extensive research has been conducted to design effective



362 9 Follow-Up Analysis: Conflict Evolution

algorithms and efficient search procedures using relationships between matrices and
paths (Gondran and Minoux 1979, Shiny and Pujari 1998, Hoffman and Schiebe
2001).

In a graph model of a conflict, status quo analysis is a form of follow-up analysis
designed to trace the evolution of the conflict from a status quo state to any stable
state. A legal path in the graphmodel has the usual restriction that any DMmaymove
more than once, but not twice consecutively. The fundamental problem of status quo
analysis is thus equivalent to a search of the colored paths from a given initial state
to a desirable state within an edge-colored multidigraph. The new approach to using
an adjacency matrix to track conflict evolution is presented next (Xu et al. 2009a).

9.2.1 t-Legal Unilateral Move Matrix Under Various
Preference Structures

One now demonstrates how to find matrices to trace conflict evolution by the legal
sequences of unilateral moves (UMs), unilateral improvements (UIs), unilateral
improvements or uncertain moves (UIUMs), mild or strong unilateral improvements
(MSUIs), ormild or strong unilateral improvements or uncertainmoves (MSUIUMs)
from a status quo s with the last mover i for simple preference, unknown preference,
three degrees of preference and hybrid preference, respectively. First, recall t-legal
unilateralmovematrices under the four kinds of preference,which arem×mmatrices
M (t)

i , M (t,+)
i , M (t,+,U )

i , M (t,+,++)
i , and M (t,+,++,U )

i presented in Chaps. 5–7, respec-
tively. The (s, q) entries of these matrices are summarized as follows:

Definition 9.1 In the graph model G = (S, A), let H ⊆ N and H �= ∅. For i ∈ H
and t = 1, 2, 3, · · · ,

M (t)
i (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
UMs with last mover i,

0 otherwise,

M (t,+)
i (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
UIs with last mover i,

0 otherwise,

M (t,+,U )
i (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
UIUMs with last mover i,

0 otherwise,

M (t,+,++)
i (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
MSUIs with last mover i,

0 otherwise,
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and

M (t,+,++,U )
i (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
MSUIUMs with last mover i,

0 otherwise.

In fact, all matrices of Definition 9.1 have been presented in Chaps. 5–7. Here, one
only summarizes them for four types of preference. Finally, in Definition 3.10 G is
referred to as the integrated graph model IG, but for simplicity here it is referred to
simply as the graph model G.

Lemma 9.1 In the graph model G = (S, A), let H ⊆ N and H �= ∅. Then the set of
m×m matrices under the respective preference structures are expressed inductively
as

M (1)
i (s, q) = Ji (s, q) and, f or t = 2, 3, . . . , M (t)

i = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (t−1)

j

⎞

⎠ · Ji
⎤

⎦ , (9.1)

M(1,+)
i (s, q) = J+

i (s, q) and, f or t = 2, 3, . . . , M(t,+)
i = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M(t−1,+)

j

⎞

⎠ · J+
i

⎤

⎦ ,

(9.2)

M (1,+,U )
i (s, q) = J+,U

i (s, q) and, f or t = 2, 3, . . . ,

M (t,+,U )
i = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (t−1,+,U )

j

⎞

⎠ · J+,U
i

⎤

⎦ , (9.3)

M (1,+,++)
i (s, q) = J+,++

i (s, q) and, f or t = 2, 3, . . . ,

M (t,+,++)
i = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (t−1,+,++)

j

⎞

⎠ · J+,++
i

⎤

⎦ , (9.4)

M (1,+,++,U )
i (s, q) = J+,++,U

i (s, q) and, f or t = 2, 3, . . . ,

M (t,+,++,U )
i = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (t−1,+,++,U )

j

⎞

⎠ · J+,++,U
i

⎤

⎦ . (9.5)

Proof The verifications of Eqs. 9.1–9.5 are similar. NowEq.9.2 is verified. For t = 2,
the definition of matrix multiplication shows that G(s, q), the (s, q) entry of the
matrix G = (

∨

j∈H\{i}
J+
j ) · J+

i , is nonzero iff state q is reachable from state s by H in

exactly two UIs, with last mover DM i . The condition j ∈ H\{i} implies that DM i
does not make two moves consecutively. Hence, G(s, q) �= 0 iff state q is reachable
by H from state s in exactly two legal UIs. Then
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sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
J+
j

⎞

⎠ · J+
i

⎤

⎦ = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (1,+)

j

⎞

⎠ · J+
i

⎤

⎦ = M (2,+)
i .

Now suppose that t > 2. Since

M (t−1,+)
j (s, q) =

⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t − 1 legal
UIs with last mover j,

0 otherwise,

the definition of matrix multiplication implies that the (s, q) entry of matrix

B = sign

⎡

⎣

⎛

⎝
∨

j∈H\{i}
M (t−1,+)

j

⎞

⎠ · J+
i

⎤

⎦

indicates

B(s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in exactly t legal
UIs with last mover i,

0 otherwise,

which confirms Eq.9.2. �

Based on Lemma 9.1, matrices are constructed to trace conflict evolution for various
preference structures.

9.2.2 Status Quo Matrices Under Various Preference
Structures

The status quo matrices MSQ(t)

i , MSQ(t,+)

i , MSQ(t,+,U )

i , MSQ(t,+,++)

i , and MSQ(t,+,++,U )

i are
defined for respective preference structures to trace conflict evolution from a status
quo to any equilibrium by the legal sequences of UMs, UIs, UIUMs, MSUIs, and
MSUIUMs, respectively.

Definition 9.2 In the graph model G = (S, A), let H ⊆ N . For i ∈ H and t =
1, 2, 3, · · · , theUM,UI, UIUM,MSUI, andMSUIUMstatus quomatrices arem×m
matrices with (s, q) entries

MSQ(t)

i (s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in at most t legal UMs
with last mover i,

0 otherwise,
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MSQ(t,+)

i (s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in at most t legal UIs
with last mover i,

0 otherwise,

MSQ(t,+,U )

i (s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in at most t legal
UIUMs with last mover i,

0 otherwise,

MSQ(t,+,++)

i (s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in at most t legal
MSUIs with last mover i,

0 otherwise,

MSQ(t,+,++,U )

i (s, q) =
⎧
⎨

⎩

1 if q ∈ S is reachable by H from s ∈ S in at most t legal
MSUIUMs with last mover i,

0 otherwise.

For example,MSQ(t)

i (s, q) = 1 andMSQ(t,+)

i (s, q) = 1 denote that state q is reachable
from status quo state s in at most t legal UMs and legal UIs by H , respectively, with
last mover i . Based on Definitions 9.1 and 9.2, Theorem 9.1 can be derived.

Theorem 9.1 In the graph model G = (S, A), let H ⊆ N, i ∈ H and k ≥ 1 be an
integer. Then status quo matrices within four types of preference satisfy that

MSQ(k)

i =
k∨

t=1

M (t)
i , (9.6)

MSQ(k,+)

i =
k∨

t=1

M (t,+)
i , (9.7)

MSQ(k,+,U )

i =
k∨

t=1

M (t,+,U )
i , (9.8)

MSQ(k,+,++)

i =
k∨

t=1

M (t,+,++)
i , (9.9)

and

MSQ(k,+,++,U )

i =
k∨

t=1

M (t,+,++,U )
i . (9.10)

Proof The proofs of Eqs. 9.6–9.10 are similar. Equation9.10 is proved here. Let

MSQ(k,+,++,U )

i (s, q) denote the (s, q) entry of the matrix MSQ(k,+,++,U )

i . Based on Def-
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inition 9.2, MSQ(k,+,++,U )

i (s, q) = 1 iff q is reachable by H from SQ = s in at most
k legal sequences of mild improvements, strong improvements, or uncertain moves,
with last mover i ∈ H .

Let (
k∨

t=1
M (t,+,++,U )

i )(s, q) denote the (s, q) entry of the matrix
k∨

t=1
M (t,+,++,U )

i .

By Definition 9.1, (
k∨

t=1
M (t,+,++,U )

i )(s, q) = 1 iff there exists 1 ≤ t ≤ k, such that

M (t,+,++,U )
i (s, q) = 1. Hence, q is reachable by H from SQ = s in exactly t legal

MSUIUMs, with last mover i . It means that q is reachable from SQ = s in at most

k legal MSUIUMs, with last mover i . Consequently, (
k∨

t=1
M (t,+,++,U )

i )(s, q) = 1

iff MSQ(k,+,++,U )

i (s, q) = 1. Since MSQ(k,+,++,U )

i and
k∨

t=1
M (t,+,++,U )

i are m × m 0-1

matrices, it follows that MSQ(k,+,++,U )

i =
k∨

t=1
M (t,+,++,U )

i . �

Any nonzero entry (s, q) of these status quo matrices shows that the desired
outcome state q is reachable from the status quo state s in at most t legal UMs, UIs,
UIUMs, MSUIs, or MSUIUMs, respectively, with last mover i .

9.2.3 Application: Status Quo Analysis for Elmira Conflict
Under Simple Preference

In this subsection, the matrix approach to status quo analysis is applied to the Elmira
conflict to illustrate how the procedure works. The Elmira conflict model, described
in Sect. 4.5, has three DMs: MoE, UR, and LG; and nine feasible states.

Let N = {1, 2, 3} be the set of three DMs (1 = MoE, 2 = UR, and 3 = LG). To
carry out status quo analysis for the Elmira model by using the matrix approach, the
following steps are required:

• Construct matrices Ji and P+
i for i = 1, 2, and 3, using information provided in

Fig. 4.8;
• Calculate the UI adjacency matrices J+

i = Ji ◦ P+
i for i = 1, 2, and 3;

• Determine the matrices M (t)
i and M (t,+)

i for i = 1, 2, and 3, using inductive
formulations provided by Lemma 9.1; and

• Calculate the status quo analysis matrices MSQ(k)

i and MSQ(k,+)

i for i = 1, 2, and 3,
using Theorem 9.1.

Status quo analysis is mainly concerned with the attainability of predicted equi-
libria. Therefore, stability analysis, which identifies equilibria, is usually conducted
first, often using the DSS GMCR II. To demonstrate the effectiveness of the matrix
approach, stability analyses are carried out using the matrix method developed in
Chap.4 for the four basic solution concepts, Nash, GMR, SMR, and SEQ, under
simple preference. The findings are summarized in Table9.6, in which “

√
” for a
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given state under a DM indicates that this state is stable for the DM; and “
√
” for a

state under “Eq” means that this state is an equilibrium according to the correspond-
ing solution concept. It is easy to verify that the stability results for the four solution
concepts are identical to the findings generated by GMCR II. Table9.6 identifies
three states, s5, s8, and s9 as major equilibria because they are stable for all DMs and
for all four solution concepts.

Matrix manipulations generate the status quo analysis matrices in Tables9.7 (with
all UMs) and 9.8 (with UIs only). As the status quo state is s1, one can assess the
attainability of any state from the status quo by examining its corresponding entry
in the first row for each DM, where a value of 1 indicates that the associated state is
reachable from s1 and a value of 0means that the corresponding state is not reachable.
Given the three matrices in Table9.7, it is obvious that the three major equilibria,

s5, s8, and s9, are all attainable. For instance, M
SQ(3)

MoE (s1, s8) = 1, MSQ(3)

UR (s1, s8) = 1,

and MSQ(3)

LG (s1, s8) = 1 demonstrate that the major equilibrium state s8 is reachable
from s1 in at most three UMs, with the last mover being any of the three DMs. Of the

three matrices, only MSQ(3)

LG (s1, s5) has a nonzero (1, 5) entry. Therefore, equilibrium
s5 can be reached from the status quo in at most three UMs, provided that LG is the
last mover. Similarly, the major equilibrium s9 is reachable from s1 in at most three
UMs, but the last mover must be UR.

When only UIs are allowed, as shown in Table9.8, only the major equilibrium s5
can be reached from state s1 in at most three UIs. The last mover must be LG, because
the unique nonzero entry in the first row of the three matrices is MSQ(3,+)

LG (s1, s5).
If a state other than s1 is chosen as the status quo state, a similar process can

be used. The elements of the corresponding row in the relevant status quo analysis
matrices can be investigated to evaluate the attainability from the new status quo of
any state that is of interest.

By using the inductive formulations in Theorem 9.1, the status quo analysis result
can also be presented in a tableau form as shown in Table9.9 in which 1, 2, and 3
denote DM 1, DM 2, and DM 3, respectively. As well, �(k) and �(k,+) are the sets
of all last DMs in legal sequences from some status quo of at most k UMs and UIs,
respectively. Note that in Table9.9, state s1 (

√
), and state s2 (

√
), are selected as the

status quo by the legal sequence of UMs and UIs, respectively. It is easy to verify
the equivalence of these results with those given by Li et al. (2005b), except for the
different way of recording the last mover. This table offers a wealth of information,
such as the specific DM(s) who can be last mover(s), and the shortest path(s) to reach
a state. For example, the shortest path to the major equilibrium s8 from s1 requires
three legal UMs, and any of the three DMs may be the last mover.

By carrying out status quo analysis, additional insights are revealed about the
attainability of a potential resolution and, if it is attainable, the dynamics of the
evolution from the status quo state. The results offered by Table9.9 are identical to
those obtained using the logical representation (leave as an exercise).

The novel matrix approach to status quo analysis discussed above is convenient
for computer implementation and easy to employ, as illustrated by its application
to a real-world case, the Elmira conflict. However, the proposed approach is based
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Table 9.7 UM status quo matrices for the Elmira conflict

Matrix MSQ(3)

MoE MSQ(3)

UR MSQ(3)

LG

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0

s3 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0

s4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

s5 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0

s6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0

s7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0

s8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9.8 UI status quo matrices for the Elmira conflict

Matrix MSQ(3,+)

MoE MSQ(3,+)

UR MSQ(3,+)

LG

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9 s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0

s3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

s4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

s5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

s7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

s8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

on the use of the adjacency matrix to search state-by-state paths. If a graph model
contains different arcs between the same two states, controlled by different DMs,
state-by-state paths will not track all aspects of the evolution of a conflict from the
status quo state, and an expanded model is needed to search arc-by-arc paths. This
expanded model is the subject of the next section.

9.3 Matrix Representation of Conflict Evolution Based
on Edge Consecutive Matrix

Analysis of a graph model involves searching paths in a graph but an important
restriction of a graph model is that no DM can move twice in succession along
any path. Therefore, a graph model must be treated as an edge-weighted, colored
multidigraph in which each arc represents a legal unilateral move and distinct colors
refer to differentDMs.Theweight of an arc could represent somepreference attribute.
Tracing the evolution of a conflict in status quo analysis is converted to searching all
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Table 9.9 The results of status quo analysis for the Elmira conflict

State �(0) �(1) �(2) �(3) �(4) State �(0,+) �(1,+) �(2,+) �(3,+) �(4,+)

s1
√

s2
√

s2 1 1 1, 3 1, 3 s4 2 2 2 2

s3 2 2 2, 3 2, 3 s6 3 3 3 3

s5 3 3 3 3 s9 2 2, 3 2, 3 2, 3

s9 2 2 2 2 s8 2 2 2

s4 1, 2 1, 2 1, 2 s1
s6 1, 3 1, 3 1, 3 s3
s7 2, 3 2, 3 2, 3 s5
s8 1, 2, 3 1, 2, 3 s7

colored paths from a status quo to a particular outcome in an edge-weighted, colored
multidigraph.

From the discussions above, an adjacency matrix can determine a simple digraph
and all state-by-state paths between any two vertices. However, if a graph model
contains multiple arcs between the same two states controlled by different DMs, the
adjacency matrix would be unable to track all aspects of conflict evolution from the
status quo. To bridge the gap, a conversion function using the matrix representation
is designed to transform the original problem of searching edge-weighted, colored
paths in a colored multidigraph to a standard problem of finding paths in a simple
digraphwith no color constraints. Aswell, several unexpected and useful links among
status quo analysis, stability analysis, and coalition analysis are revealed using the
conversion function.

9.3.1 Weighted Conversion Function for Finding
Colored Paths

9.3.1.1 Weighted Colored Multidigraph

The definitions of the colored multidigraph and the edge consecutive matrix are
presented in Sect. 3.3.1. One will extend the definitions to weighted colored multi-
digraphs in this section.

Definition 9.3 For a colored multidigraph G = (V, A, N , ψ, c), the reduced line
digraph Lr (G) = (A, L Ar ) of G is a simple vertex-colored digraph with vertex set
A and edge set L Ar = {d = (a, b) ∈ A × A : a and b are consecutive (in the order
ab) and c(a) �= c(b)}.

Recall that if a ∈ A such that ψ(a) = (u, v) and c(a) = i for i ∈ N , then a
can be written as a = di (u, v). The line digraph of G = (V, A, N , ψ, c), L(G), is a
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simple digraph and each vertex in L(G) corresponds to an edge in the multidigraph
G. Hence, coloring edges in G is equivalent to assigning colors to vertices in L(G).

Definition 9.4 A weighted colored multidigraph (V, A, N , ψ, c, w) is a colored
multidigraph (V, A, N , ψ, c) together with a map w : A → R

+
0 (the set of non-

negative real numbers).

Thus an arc a ∈ A, a = di (u, v), carries a weight w(a), representing some
attribute of the move from node u to node v along the arc a, which is assigned color
i . A network, for instance, is a multidigraph with weighted edges. Let H ⊆ N be
a subset of the color set N in the following definitions. An edge-weighted, colored
path is defined as follows:

Definition 9.5 LetH ⊆ N . For aweighted coloredmultidigraph (V, A, N , ψ, c, w),
an edge-weighted, colored path by H from vertex u ∈ V to vertex v ∈ V ,
PA(W )

H (u, v), is a path from u to v in the multidigraph (V, A, ψ) in which any two
consecutive edges have different colors and each edge a on the path carries a weight
w(a) ≥ 0 and c(a) = i ∈ H .

Definition 9.6 For a weighted colored multidigraph (V, A, N , ψ, c, w), the short-
est colored path between two vertices is the colored path that minimizes the sum
of the weights of its constituent edges.

Definition 9.7 LetH ⊆ N . For aweighted coloredmultidigraph (V, A, N , ψ, c, w),

theweighted arc set for H denotes A(W )
H = {a ∈ A : w(a) > 0 and c(a) = i ∈ H.}.

Note that a colored multidigraph (V, A, N , ψ, c) is a unit weighted colored multi-
digraph if w(u, v) = 1 for any a ∈ A such that ψ(a) = (u, v).

Let l = |A| denote the cardinality of A in G. The weight matrix of a weighted
colored multidigraph (V, A, N , ψ, c, w) is defined as follows:

Definition 9.8 For a weighted colored multidigraph (V, A, N , ψ, c, w), let H ⊆ N
andwk denote the weight of arc ak ∈ A. Theweightmatrix for H is an l×l diagonal
matrix WH with (k, k) entry

WH (k, k) =
{

wk if c(ak) = i ∈ H,

0 otherwise.

It should be pointed out that if H = N , then WN is expressed as W ; if H = {i},
thenWH = Wi . Aweighted line digraph L(W )(G) = (A, L A, w) is a set of vertices A
togetherwith a set of oriented edges L A, and amapw : A → R

+
0 . In traditional graph

coloring problems, such as vertex coloring and edge coloring, colors are assigned
to vertices or edges such that adjacent vertices or consecutive edges have different
colors, and the number of colors needed is minimized (Dieste 1997). In this chapter,
the edge-weighted, colored graph problem is not concerned with coloring edges,
but aims at searching edge-weighted, colored paths in a given weighted colored
multidigraph.
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Important matrices associated with a digraph include the adjacency matrix J and
the incidence matrix B (Godsil and Royle 2001). J and B can be extended to the
weighted adjacency and incidence matrices. Let m = |V | denote the cardinality of
V in G.

Definition 9.9 LetH ⊆ N . For aweighted coloredmultidigraph (V, A, N , ψ, c, w),

the weighted adjacency matrix for H is the m × m matrix J (W )
H with (s, q) entry

J (W )
H (s, q) =

{
1 if there exists a ∈ A(W )

H such that ψ(a) = (s, q) for s, q ∈ V,

0 otherwise.

Definition 9.10 For aweighted coloredmultidigraph (V, A, N , ψ, c, w),wa denotes
the weight of arc a ∈ A. The weighted incidence matrix for H is the m × l matrix
B(WH ) with (v, a) entry

B(WH )(v, a) =
⎧
⎨

⎩

−wa if a = (v, x) for some x ∈ V and c(a) = i ∈ H,

wa if a = (x, v) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

where v ∈ V .

According to the signed entries, the weighted incidence matrix can be separated
into the weighted in-incidence matrix and the weighted out-incidence matrix.

Definition 9.11 For a weighted colored multidigraph (V, A, N , ψ, c, w), let H ⊆
N and wa denote the weight of arc a ∈ A. The weighted in-incidence matrix for
H and the weighted out-incidence matrix for H are two m × l matrices B(WH )

in and
B(WH )
out with (v, a) entries

B(WH )
in (v, a) =

{
wa if a = (x, v) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

and

B(WH )
out (v, a) =

{
wa if a = (v, x) for some x ∈ V and c(a) = i ∈ H,

0 otherwise,

where v ∈ V .

It is obvious that

B(WH )
in = (B(WH ) + abs(B(WH )))/2 and B(WH )

out = (abs(B(WH )) − B(WH ))/2,

where abs(B(WH )) denotes the matrix in which each entry equals the absolute value
of the corresponding entry of B(WH ). Let I denote the identity matrix. If WH = I ,

then B(WH ) = B, B(WH )
in = Bin , and B(WH )

out = Bout .
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A weighted reachability matrix by H is used to describe the reachability by the
weighted colored paths for H . Its formal definition is given as follows.

Definition 9.12 Let H ⊆ N . For a weighted colored multidigraph (V, A, N , ψ,

c, w), the weighted reachability matrix by H is the m × m matrix M (W )
H with (s, q)

entry

M (W )
H (s, q) =

⎧
⎨

⎩

1 if q is reachable from vertex s by a weighted
colored path PA(W )

H (s, q), for s, q ∈ V,

0 otherwise.

Let l(W )
H = |A(W )

H | denote the number of arcs in A(W )
H . Since all arcs are distinct

on a path, the length of any path in PA(W )
H is less than l(W )

H .
For a weighted colored multidigraph G = (V, A, N , ψ, c, w), recall that the

adjacency matrix of the line graph of G is the l × l matrix L J with (a, b) entry

L J (a, b) =
{
1 if edges a and b are consecutive in order ab in the graph G,

0 otherwise.

In this section, L J matrix is called an edge consecutive matrix.

Definition 9.13 For a weighted colored multidigraph G = (V, A, N , ψ, c, w), let
H ⊆ N and wa and wb denote the weights of arcs a, b ∈ A. The weighted edge
consecutive matrix for H is the l × l matrix L J (WH )with (a, b) entry

L J (WH )(a, b) =
⎧
⎨

⎩

wa · wb if edges a and b are consecutive in order ab
and c(a) = i and c(b) = j for i, j ∈ H,

0 otherwise.

Definition 9.14 For a weighted colored multidigraph G = (V, A, N , ψ, c, w), the
reduced weighted edge consecutive matrix for H is the l × l matrix L J (WH )

r with
(a, b) entry

L J (WH )
r (a, b) =

⎧
⎨

⎩

wa · wb if edges a and b are consecutive in order ab and
c(a) = i and c(b) = j such that i, j ∈ H and i �= j,

0 otherwise.

Let ci denote the cardinality of the arc set in color i . Ici is defined as a ci × ci
identity matrix with each diagonal entry being set to 1 for i = 1, 2, · · · , n. Let Ii
denote an l × l diagonal matrix for which

Ii =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · · · · 0
...

. . .
...

0 · · · Ici · · · 0
...

. . .
...

0 · · · · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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For H ⊆ N , H �= ∅, and IH = ∨

i∈H
Ii , WH = W ◦ IH . (“◦” denotes the Hadamard

product.)

9.3.1.2 A Weighted Conversion Function

Lemma 9.2 For a weighted colored multidigraph (V, A, N , ψ, c, w), the weighted
incidence matrix B(WH ) for H and the incidence matrix B have the following relation

B(WH ) = B · WH = B · (W ◦ IH ).

Lemma 9.2 shows a conversion function to transform an original colored multi-
digraph in the color set N to a reduced weighted colored multidigraph in the color
set H ⊆ N .

Now let W be a weight matrix and let L(W )(G) denote the weighted line digraph
of G. The following theorem is obtained based on Definition 9.11, on the weighted
in-incidence and out-incidence matrices B(W )

in and B(W )
out , and Definition 9.13, on the

weighted edge consecutive matrix L J (W ) of the digraph L(W )(G).

Theorem 9.2 For a weighted colored multidigraph G = (V, A, N , ψ, c, w), W is
the weight matrix, B(W )

in is the weighted in-incidencematrix, and B(W )
out is the weighted

out-incidence matrix of the graph G. Then, the weighted edge consecutive matrix
L J (W ) satisfies L J (W ) = (B(W )

in )T · (B(W )
out ).

Obviously, when W is reduced to WH , L J (WH ) = (B(WH )
in )T · (B(WH )

out ).

Let T1(B(W )) = (B(W )
in )T ·(B(W )

out ) = L J (W ) denote a conversion function. The con-
version function, T1(B(W )), maps theweighted incidencematrix B(W ) to theweighted
edge consecutive matrix L J (W ) of the graphG. It shows that this conversion function
transforms the original edge-weighted, colored multidigraph G to a simple vertex-
weighted-colored line digraph L(G). When W = I, L J = (Bin)

T · (Bout ). This
matrix captures the adjacency relation between pairs of consecutive edges without
considering the color(s) of the consecutive edges. Another conversion function is thus
presented next to transform the original problem of searching edge-colored paths in
a colored multidigraph to the standard problem of finding paths in a simple digraph
without color constraints.

Recall that ci denotes the cardinality of the arc set in color i and let Eci denote a
ci × ci matrix with each entry being set to 1 for i = 1, 2, · · · , n. Then, D is defined
in Chap.3 as the following block diagonal matrix

D =

⎛

⎜
⎜
⎜
⎝

Ec1 0 · · · 0
0 Ec2 · · · 0
...

...
. . .

...

0 0 · · · Ecn

⎞

⎟
⎟
⎟
⎠

. (9.11)
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It is obvious that this matrix D encodes the color scheme in the graph G, where
the dimension of each diagonal block Eci depends on the number of edges in color

i . More specifically, recall that εi =
i∑

j=1
c j for 1 ≤ i ≤ n. According to the Rule of

Priority for labeling edges, for any ak ∈ A and εi−1 < k ≤ εi , the edge ak has color
i . Hence, for any ak, ah ∈ A, if there exists 1 ≤ i ≤ n such that k, h ∈ (εi−1, εi ],
then edges ak and ah have the same color i , and D(k, h) = 1. Also, D(k, h) = 0 iff
edges ak and ah have different colors.

The conversion function can now be obtained in matrix form by the following
theorem.

Theorem 9.3 For the weighted colored multidigraph G = (V, A, N , ψ, c, w), let
El be the l × l matrix with each entry equal to 1. Then the reduced matrix L J (W )

r
satisfies L J (W )

r = L J (W ) ◦ (El − D), where “◦” denotes the Hadamard product.

Obviously, when W is reduced to WH , L J (WH )
r = L J (WH ) ◦ (El − D) satisfies

that

L J (WH )
r (a, b) =

⎧
⎨

⎩

wa · wb if edges a and b are consecutive in order ab and
c(a) = i and c(b) = j such that i �= j for i, j ∈ H,

0 otherwise.
(9.12)

From Theorem 9.3, T2(L J (W )) = L J (W ) ◦ (El − D) = L J (W )
r . The conver-

sion function, T2(L J (W )), maps the weighted edge consecutive matrix L J (W ) of
the weighted line digraph L(W )(G) to its reduced matrix L J (W )

r . It reveals that this
conversion function T2 converts the simple vertex-weighted, colored line digraph
L(W )(G) to its reduced subgraph L(W )

r (G), called reduced weighted line digraph,
which is a simple digraph with no color constraints.

Theorems 9.2 and 9.3 together present a conversion function F(B(W )) such that

F(B(W )) = [(B(W )
in )T · B(W )

out ] ◦ (El − D), (9.13)

where B(W )
in = (B(W )+abs(B(W )))/2 and B(W )

out = (abs(B(W ))−B(W ))/2. Therefore,
F(B(W )) transforms a problem of searching weighted colored paths in an edge-
weighted, colored multidigraph to a standard problem of finding paths in a simple
digraph with no color constraints. Note that the incident relations between vertices
and edges of a graph can uniquely characterize the graph. Therefore, the incidence
matrix is treated as the original graph and used for computer implementation.

Example 9.1 Figure9.1 shows a colored multidigraph G = (V, A, N , ψ, c). If G is
associated with a map w : A → R

+
0 , then G = (V, A, N , ψ, c, w) is a weighted

coloredmultidigraph. Construct conversion functions to determine the vertex labeled
weighted line digraph L(W )(G) and its reduced line digraph L(W )

r (G).

The colored multidigraph is labeled using the Rule of Priority presented in
Sect. 3.3.2. Obviously, the colored graph shown in Fig. 9.1 is labeled in Fig. 9.2a.
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Fig. 9.1 The colored
multidigraph G

It is easy to obtain incident relations between vertices and edges from the graph.
Thus, matrices B(W )

in and B(W )
out are constructed by Definition 9.11 as follows:

B(W )
in =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
w1 0 0 0 0 0 w7

0 w2 w3 0 0 0 0
0 0 0 0 w5 0 0
0 0 0 0 0 w6 0
0 0 0 w4 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

B(W )
out =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1 0 0 0 0 0 0
0 w2 w3 0 0 0 0
0 0 0 w4 w5 0 0
0 0 0 0 0 w6 w7

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From Theorems 9.2 and 9.3, one obtains that

T1(B
(W )) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 w1w2 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 w3w4 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 w5w6 w5w7

0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

T2(L J
(W )) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 w1w3 0 0 0 0
0 0 0 w2w4 w2w5 0 0
0 0 0 0 w3w5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 w5w7

0 0 0 0 0 0 0
0 w7w2 w7w3 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Fig. 9.2 Transformed
graphs of G

The weight matrix designed here is convenient, since edge-weighted (0 or 1) can
be used to flexibly control any move between any two vertices in G. For instance, if
w4 = 0, then the original graph will be reduced to a new graph with no edge a4. If
W = I , then the conversion function T1 transforms the edge-labeled multidigraph
G portrayed in Fig. 9.2a to the vertex-labeled line digraph L(G) shown in Fig. 9.2b.
Then, the reduced line digraph Lr (G) presented in Fig. 9.2c for finding colored paths
is obtained by using the conversion function T2. The conversion process is illustrated
in Fig. 9.2.

9.3.2 Computer Implementation

Many well-known algorithms have been developed to solve the shortest path prob-
lems in digraphs. Some other algorithms are available for searching for all paths
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Table 9.10 Pseudocode for finding colored paths based on edge consecutive matrix

Step 0: Input the starting arc set AS , the ending arc set AE , and the reduced

weighted edge consecutive matrix L J (W )
r .

Step 1: For each arc as ∈ AS and each arc ae ∈ AE , set as as the starting arc

and ae as the ending arc. For each pair of as and ae, repeat the steps from

Step 2 to Step 5.

Step 2: Put as into Path-Recorder as the last arc al (1) of the first path.
Step 3: In Path-Recorder, for each path i , e.g., PA(W )(i), check its last arc al (i).

Obtain all the new arcs starting from al (i) based on matrix L J (W )
r .

Case 1: If there is no arc starting from al (i), path PA(W )(i) ends.

Eliminate PA(W )(i) from Path-Recorder;

Case 2: If a new arc has appeared in the path, which means that the path

forms a cycle, do not record the new path. If all the new arcs have

appeared, eliminate PA(W )(i) from Path-Recorder;

Case 3: If the new arc is the end arc ae, add ae to the path PA(W )(i) to form

a new path. Reserve the path into Path-Recorder and set an end-mark

at the end of the path;

Otherwise: Add each new arc to path PA(W )(i), respectively, to form

several new paths.

Reserve these paths into Path-Recorder, and eliminate the original path

PA(W )(i) from Path-Recorder.

Step 4: Repeat Step 3 until all the paths in Path-Recorder have the end-mark at the end.

Step 5: Output Path-Recorder, which records all paths starting from as and ending at ae.

in undirected graphs, such as the algorithm presented by Migliore et al. (1990).
Although finding path problems in general graph classes has been extensively inves-
tigated, searching colored paths in weighted colored multidigraphs is still a novel
topic.

Let AS = {a ∈ A : B(W )
out (s, a) �= 0} and AE = {b ∈ A : B(W )

in (q, b) �= 0} for
s, q ∈ V . Here, matrices W , B(W )

out , and B(W )
in have been introduced by Definitions

9.8 and 9.11. AS is the set of arcs starting from vertex s and AE is the arc set ending
at vertex q. The matrix L J (W )

r provided by Theorem 9.3 is used to search the edge-
weighted, colored paths between any two arcs in a weighted colored multidigraph.
Let PA(W )(a, b) for a, b ∈ A denote the weighted colored paths between two edges
a and b. The weighted colored paths between two vertices s and q for s, q ∈ V are
expressed as PA(W )(s, q). A vertex-by-vertex path between any two vertices in the
graph G can be obtained by tracing arc-by-arc paths between two appropriate arcs
in the line graph L(G). Specifically, the paths between s and q can be expressed as
PA(W )(s, q) = {PA(W )(a, b) : a ∈ AS, b ∈ AE }.

The algebraic method developed here is convenient for computer implementation.
A pseudocode for the proposed algorithm is presented in Table9.10.
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Because the algebraic expressions are explicitly given, the developed method
facilitates the development of improved algorithms to search colored paths and is
easy to adapt to new path searching problems. For instance, a transportation network
problem of finding the shortest path with specific constraints can be solved by using
the conversion function F(B(W )) = [(B(W )

in )T · B(W )
out ] ◦ M , where B(W ) denotes the

original network and matrix M is designed to capture constraint requirements, to
transform the original problem to a general shortest path searching problem without
the constraints.

9.3.2.1 Weight Matrix for GMCR with Simple Preference

In the original information, the preference of DM i is coded by a pair of relations
{�i ,∼i } on S. This preference structure is called simple preference.

Definition 9.8 presents a weight matrix WH for a weighted colored multidigraph
G = (V, A, N , ψ, c, w). In a graph model G = (S, A), let H ⊆ N . By the Rule
of Priority, the oriented arcs in the graph model are labeled according to the DM
order; within each DM, according to the sequence of initial states; and within each
DM and initial state, according to the sequence of terminal states. When an edge
ak = di (u, v) for u, v ∈ S and i ∈ H ⊆ N , then its weight wk can be defined by

wk =

⎧
⎪⎪⎨

⎪⎪⎩

Pw if v �i u and i ∈ H,

Ew if u ∼i v and i ∈ H,

Nw if u �i v and i ∈ H,

0 otherwise.

(9.14)

The weight matrix WH represents preference information of each edge in the graph
model for simple preference. Recall that notation UMs and UIs denote unilateral
moves and unilateral improvements, respectively. Based on Eq.9.14, the UMweight
matrix and the UI weight matrix for H are defined as follows.

Definition 9.15 For the graph model G = (S, A), let H ⊆ N .

• When Pw = Ew = Nw = 1, the weight matrixWH is called the UMweight matrix
by H , denoted by W (UM)

H ;
• When Pw = 1 and Ew = Nw = 0, the weight matrix WH is called the UI weight
matrix by H , denoted by W (U I )

H or W+
H .

Recall that each arc of Ai and A+
i denotes that DM i can make a UM and a UI (in

one step) from the initial state to the terminal state of the arc, respectively. Therefore,
AH = ⋃

i∈H
Ai and A+

H = ⋃

i∈H
A+
i denote the UM and the UI arcs associated with any

DM in H . Based on Definition 9.7, on the weighted arc set for H , the following
result relative to the UM arc set and the UI arc set is obvious for the graph model
with simple preference.

Corollary 9.1 For the graph model G = (S, A), let H ⊆ N.
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• If WH = W (UM)
H , then the arc set A(W )

H = AH;
• If WH = W+

H , the arc set A
(W )
H = A+

H .

Note that when H = N , AH and A+
H are denoted by A and A+, respectively.

In a weighted colored multidigraph, the edge-weighted, colored paths by H
between two vertices u and v are described in Definition 9.5 which can represent
conflict evolution by the legal UMs and the legal UIs in a graph model for simple
preference.

Corollary 9.2 For the graph model G = (S, A), let u, v ∈ S and H ⊆ N.

• If WH = W (UM)
H , the weighted colored paths between states u and v, P A(W )

H (u, v),
give all paths from u to v where all legal UMs are allowed. Then P A(W )

H (u, v) are
called legal UM paths from u to v by coalition H, denoted by P AH (u, v);

• If WH = W+
H , the weighted colored paths between states u and v, P A(W )

H (u, v),
give all paths from u to v where only legal UIs are allowed. Then P A(W )

H (u, v) are
called legal UI paths from u to v by coalition H, denoted by P A+

H (u, v).

The weighted colored paths PA(W )
H can be used to trace conflict evolution of status

quo analysis for simple preference. When u is selected as a status quo and v is an
equilibrium for some stability in a graph model, PAH (u, v) and PA+

H (u, v) trace
conflict evolution to confirm that the equilibrium is in fact reachable from the status
quo and reveal how to reach it.

Definition 9.16 In the graph model G = (S, A), the legal UM and the legal UI edge
consecutive matrices are two l × l matrices L J (UM)

r and L J+
r with (a, b) entries

L J (UM)
r (a, b) =

⎧
⎨

⎩

1 if edges a and b are consecutive in order ab and
are controlled by different DMs for a, b ∈ A,

0 otherwise,

L J+
r (a, b) =

⎧
⎨

⎩

1 if edges a and b are consecutive in order ab and
are controlled by different DMs for a, b ∈ A+,

0 otherwise.

Let L JHr and L J
+
Hr
denote the legalUMand the legalUI edge consecutivematrices

in the graph model (S, AH ). Based on Definition 9.14, on the reduced weighted edge
consecutive matrix by H , and Definition 9.16, the following result is obvious.

Corollary 9.3 For the graph model G = (S, A), let W (UM) and W+ denote the
UM and the UI weight matrices, and W (UM)

H and W+
H be the UM and the UI weight

matrices for H. Then

L J (W (UM))
r = L J (UM)

r = L Jr , L J (W+)
r = L J+

r ,

and
L J

(W (UM)
H )

r = L JHr , L J
(W+

H )
r = L J+

Hr
.



9.3 Matrix Representation of Conflict Evolution Based on Edge Consecutive Matrix 381

As the algorithm given in Table9.10 for searching weighted colored paths in a
weighted colored multidigraph, the legal UM and UI edge consecutive matrices
L JHr and L J+

Hr
are applied to find paths PAH and PA+

H between any two states for
status quo analysis in a graph model.

For simple preference, the key inputs of stability analysis, RH (s) and R+
H (s), are

the reachable lists by coalition H from state s ∈ S by the legal UMs and the legal UIs.
This section provides an algebraic approach to construct RH (s) and R+

H (s) using the
weighted reachability matrix M (W )

H shown by Definition 9.12.

9.3.2.2 Weight Matrix for GMCR with Unknown Preference

Preference information plays an important role in the decision analysis. To incor-
porate preference uncertainty into the graph model methodology, Li et al. (2004a)
proposed a new preference structure in which DM i’s preferences are expressed by a
triple of relations {�i ,∼i ,Ui } on S, where s �i q indicates strict preference, s ∼i q
indicates indifference, and s Ui q means DM i may prefer state s to state q, may
prefer q to s, or may be indifferent between s and q.

The weight matrixWH can be employed to represent preference with uncertainty.
When an edge ak = di (u, v) for u, v ∈ S and i ∈ H ⊆ N , then its weight wk can be
defined by

wk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pw if v �i u and i ∈ H,

Nw if u �i v and i ∈ H,

Ew if u ∼i v and i ∈ H,

Uw if u Ui v and i ∈ H,

0 otherwise.

(9.15)

Recall that notation UIUMs denotes unilateral improvements or uncertain moves.
Based on Eq.9.15, the UIUM weight matrix for H is defined as follows.

Definition 9.17 For the graph model G = (S, A), let H ⊆ N . When Pw = Uw = 1
and Ew = Nw = 0, the weight matrix WH is called the UIUM weight matrix for H ,
denoted by W (U IUM)

H or W+,U
H .

Each arc of arc set A+,U
i denotes that DM i canmake a UIUM from the initial state

to the terminal state of the arc. Therefore, A+,U
H = ⋃

i∈H
A+,U
i indicates the UIUM

arcs associated with any DM in H . By Definition 9.7 for the weighted arc set A(W )
H ,

the UIUM arc set is obtained for a graph model with unknown preference by the
following corollary.

Corollary 9.4 For the graph model G = (S, A), let H ⊆ N. If WH = W+,U
H , then

the arc set A(W )
H = A+,U

H .

Note that when H = N , A+,U
H is expressed by A+,U .

The weighted colored paths PA(W )
H can be applied to trace conflict evolution by

the legal UIUMs for the graph model with preference uncertainty.
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Corollary 9.5 For the graph model G = (S, A), let u, v ∈ S and H ⊆ N. If
WH = W+,U

H , the weighted colored paths between states u and v, P A(W )
H (u, v), give

all paths from u to v where only the legal UIUMs are allowed. Then P A(W )
H (u, v) are

called the legal UIUM paths from u to v by coalition H, denoted by P A+,U
H (u, v).

The conflict evolution by the legal UIUMs can be tracked using the reduced
weighted edge consecutive matrix. The legal UIUM edge consecutive matrix is
defined first.

Definition 9.18 In the graph model G = (S, A), the legal UIUM edge consecutive
matrix is an l × l matrix L J+,U

r with (a, b) entry

L J+,U
r (a, b) =

⎧
⎨

⎩

1 if edges a and b are consecutive in order ab and
are controlled by different DMs for a, b ∈ A+,U ,

0 otherwise.

Let L J+,U
Hr

denote the legal UIUM edge consecutive matrix for the graph model
(V, AH ). Based on Definitions 9.14 and 9.18, the following result is obtained.

Corollary 9.6 For the graph model G = (S, A), let W+,U denote the UIUM weight
matrix and W+,U

H be the UIUM weight matrix for H. Then

L J (W+,U )
r = L J+,U

r ,

and
L J

(W+,U
H )

r = L J+,U
Hr

.

The key input of stability analysis for the graphmodel with preference uncertainty
is the reachable list R+,U

H (s) of coalition H ⊆ N from state s ∈ S by the legal
UIUMs. The algebraic approach to searching weighted colored paths can also be
used to construct R+,U

H (s).

9.3.2.3 Weight Matrix for GMCR with Three Degrees of Preference

Another triplet relation {�i ,>i ,∼i } on S that expresses strength of preference
(strong or mild preference) is presented in Chap.6. For s, q ∈ S, s �i q denotes
DM i strongly prefers s to q, s >i q means DM i mildly prefers s to q, and s ∼i q
indicates that DM i is indifferent between states s and q. The weight matrix WH

can represent strength of preference. When an edge ak = di (u, v) for u, v ∈ S and
i ∈ H ⊆ N , then its weight wk is defined by

wk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ps if v �i u and i ∈ H,

Pm if v >i u and i ∈ H,

Ew if u ∼i v and i ∈ H,

Nw if u �i v or u >i v and i ∈ H,

0 otherwise.

(9.16)
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Recall that notationMSUIs denotesmild or strong unilateral improvements. Based
on Eq.9.16, the MSUI weight matrix for H is defined as follows.

Definition 9.19 For the graph model G = (S, A), let H ⊆ N . When Ps = Pm = 1
and Ew = Nw = 0, the weight matrix WH is called the MSUI weight matrix for H ,
denoted for W (MSU I )

H or W+,++
H .

Each arc of the arc set A+,++
i denotes that DM i can make a MSUI from the

initial state to the terminal state of the arc. Therefore, A+,++
H = ⋃

i∈H
A+,++
i denotes

the MSUI arcs associated with any DM in H . By Definition 9.7 for the weighted arc
set A(W )

H , the MSUI arc set is obtained for a graph model with strength of preference
by the following corollary.

Corollary 9.7 For the graph model G = (S, A), let H ⊆ N. If WH = W+,++
H , then

the arc set A(W )
H = A+,++

H .

Note that when H = N , A+,++
H is expressed by A+,++.

The weighted colored paths PA(W )
H can be applied to trace conflict evolution by

the legal MSUIs for the graph model with strength of preference.

Corollary 9.8 For the graph model G = (S, A), let u, v ∈ S and H ⊆ N. If
WH = W+,++

H , the weighted colored paths between states u and v, P A(W )
H (u, v),

give all paths from u to v where only the legal MSUIs are allowed. Then P A(W )
H (u, v)

are called the legalMSUI paths fromu to v by coalition H, denoted by P A+,++
H (u, v).

Definition 9.20 In the graph model G = (S, A), the legal MSUI edge consecutive
matrix is an l × l matrix L J+,++

r with (a, b) entry

L J+,++
r (a, b) =

⎧
⎨

⎩

1 if edges a and b are consecutive in order ab and
are controlled by different DMs for a, b ∈ A+,++,

0 otherwise.

Let L J+,++
Hr

denote the legal MSUI edge consecutive matrix for the graph model
(V, AH ). Based onDefinition 9.14, on the reducedweighted edge consecutivematrix
by H , and Definition 9.20, the following result can be easily obtained.

Corollary 9.9 For the graphmodel G = (S, A), let W+,++ denote theMSUI weight
matrix and W+,++

H be the MSUI weight matrix for H. Then

L J (W+,++)
r = L J+,++

r ,

and
L J

(W+,++
H )

r = L J+,++
Hr

.

The key input of stability analysis in the graph model with three degrees of pref-
erence is state set R+,++

H (s), the reachable list of coalition H ⊆ N from state s ∈ S
by the legal MSUIs. The algebraic approach provides a new method to construct
R+,++
H (s).
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9.3.2.4 Weight Matrix for GMCR with Hybrid Preference

A hybrid preference framework is presented in Chap.7 to combine preference uncer-
tainty and strength of preference using a quadruple relation {�i ,>i ,∼i ,Ui } in a
graph model for DM i . The weight matrixWH can also represent the combination of
preference uncertainty and strength of preference. When an edge ak = di (u, v) for
u, v ∈ S and i ∈ H ⊆ N , then its weight wk is defined by

wak =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ps if v �i u and i ∈ H,

Pm if v >i u and i ∈ H,

Ew if u ∼i v and i ∈ H,

Uw if u Ui v and i ∈ H,

Nw if u �i v or u >i v and i ∈ H,

0 otherwise.

(9.17)

Recall that notation MSUIUMs denotes mild or strong unilateral improvements
or uncertain moves. By Eq.9.17, the MSUIUM weight matrix for H is defined as
follows.

Definition 9.21 For the graph model G = (S, A), let H ⊆ N . When Ps = Pm =
Uw = 1 and Ew = Nw = 0, the weight matrix WH is called the MSUIUM weight

matrix for H , denoted by W (MSU IUM)
H or W+,++,U

H .

Each arc of the arc set A+,++,U
i denotes that DM i can make a MSUIUM from

the initial state to the terminal state of the arc. Therefore, A+,++,U
H = ⋃

i∈H
A+,++,U
i

denotes the MSUIUM arcs associated with any DM in H . By Definition 9.7 for the
weighted arc set, the MSUIUM arc set is obtained for a graph model with hybrid
preference by the following corollary.

Corollary 9.10 For the graph model G = (S, A), let H ⊆ N. If WH = W+,++,U
H ,

then the arc set A(W )
H = A+,++,U

H .

Note that when H = N , A+,++,U
H is expressed by A+,++,U .

The weighted colored paths PA(W )
H can be applied to trace conflict evolution by

the legal MSUIUMs for the graph model with hybrid preference.

Corollary 9.11 For the graph model G = (S, A), let u, v ∈ S and H ⊆ N. If
WH = W+,++,U

H , the weighted colored paths between states u and v, P A(W )
H (u, v),

give all paths from u to v where only the legal MSUIUMs are allowed. Then
P A(W )

H (u, v) are called the legal MSUIUM paths from u to v by coalition H, denoted
by P A+,++,U

H (u, v).

Definition 9.22 In the graph model G = (S, A), the legal MSUIUM edge consec-
utive matrix is an l × l matrix L J+,++,U

r with (a, b) entry

L J+,++,U
r (a, b) =

⎧
⎨

⎩

1 if edges a and b are consecutive in order ab and
are controlled by different DMs for a, b ∈ A+,++,U ,

0 otherwise.
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Let L J+,++,U
Hr

denote the legal MSUIUM edge consecutive matrix for the graph
model (V, AH ). Based on Definition 9.14, on the reduced weighted edge consecutive
matrix for H , and Definition 9.22, the following result is obtained.

Corollary 9.12 For the graphmodel G = (S, A), let W+,++,U denote theMSUIUM
weight matrix and W+,++,U

H be the MSUIUM weight matrix for H ⊆ N. Then

L J (W+,++,U )
r = L J+,++,U

r ,

and
L J

(W+,++,U
H )

r = L J+,++,U
Hr

.

9.3.3 Procedures of Employing the Algebraic Approach
Based on Edge Consecutive Matrix

The algebraic approach developed uses the results of Graph Theory to assist in
analyzing a graph model, and understanding evolution of a conflict, by carrying out
the following steps:

• If the state set S is treated as a vertex set V and DM i’s oriented arcs Ai ⊆ A
are coded in color i ∈ N , then a graph model (S, A) of a conflict is equivalent
to a colored multidigraph (V, A, N , ψ, c) with induced preference relations on V,
where ψ and c are functions with ψ : A → V × V such that ψ(a) = (u, v) for
a ∈ A and u, v ∈ V , and c : A → N such that c(a) ∈ N is the color of a ∈ A;

• By the proposed Rule of Priority, the oriented arcs in the colored multidigraph are
labeled according to the color order; within each color, according to the sequence
of initial nodes; and within each color and initial node, according to the sequence
of terminal nodes;

• The incidence matrix B represents the colored multidigraph after all edges are
labeled;

• Based on preference structures such as simple preference, unknown preference,
three degrees of preference and hybrid preference, a weight matrix W is designed
to represent preference information for some preference framework;

• A graph model is thus conveniently treated as an edge-weighted, colored multi-
digraph (V, A, N , ψ, c, w) in which each arc represents a legal unilateral move,
distinct colors refer to different DMs, and the weight along the arc identifies some
preference attribute;

• Tracing the evolution of a conflict in status quo analysis is converted to searching
all weighted colored paths between a status quo and a possible equilibrium for
some preference structure;

• Let the weighted incidence matrix B(W ) represent an original edge-weighted, col-
ored multidigraph (V, A, N , ψ, c, w). Then the conversion function
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F(B(W )) = [(B(W )
in )T · B(W )

out ] ◦ (El − D)

transforms the problem of searching edge-weighted, colored paths in a weighted
colored multidigraph to a standard problem of finding paths in a simple digraph
with no color constraints;

• Using existing algorithms or the proposed algorithm presented in Table9.10, the
paths between any two edges can be found in a simple digraph;

• If AS and AE are the two sets of arcs starting from vertex s and arcs ending at
vertex q with

AS = {a ∈ A : B(W )
out (s, a) �= 0} and AE = {b ∈ A : B(W )

in (q, b) �= 0},

then paths between any two vertices, PA(W )(s, q) for s, q ∈ V , can be obtained
by the paths between two appropriate arcs by

PA(W )(s, q) = {PA(W )(a, b) : a ∈ AS, b ∈ AE }.

According to the procedures, the proposed algebraic approach based on edge con-
secutive matrix may be employed in practice.

9.3.4 Applications: Analysis of Conflict Evolution Based on
Edge Consecutive Matrix

9.3.4.1 Analysis of Elmira Conflict Evolution with Simple Preference

The background of the Elmira conflict is introduced in Sect. 1.2.2 and the model is
analyzed in Sect. 4.5. If the state set S = {s1, s2, · · ·, s9} is treated as a vertex set
V = {v1, v2, · · ·, v9} and DM i’s oriented arcs are coded in colors blue, red, and
black for i = 1, 2, and 3, respectively, then the graph model of the Elmira conflict
shown in Figs. 3.5 and 4.8 with preference information is equivalent to a weighted
colored multidigraph given in Fig. 9.3, in which wk(u, v) denotes the weight of arc
ak = (u, v). Although no DM is explicitly shown in the labeled graph, the index
number of an arc uniquely determines theDMwho controls it when all arcs have been
numbered according to the Rule of Priority. Recall that ci denotes the cardinality of
arc set assigned color i , i.e., ci = |Ai |, where Ai = {x ∈ A : c(x) = i} for each
i ∈ N . Specifically, based on the number of arcs in i’s graph Gi for i = 1, 2, and 3,
c1 = |A1| = 4, c2 = |A2| = 12, and c3 = |A3| = 8 provided by Figs. 3.5 and 4.8
for the graph model of the Elmira conflict, arcs a1 to a4 are controlled by DM 1 or
MoE, arcs a5 to a16 by DM 2 or UR, and arcs a17 to a24 by DM 3 or LG. The weight
of each arc in Fig. 9.3 is assigned based on preference information

s7 �1 s3 �1 s4 �1 s8 �1 s5 �1 s1 �1 s2 �1 s6 �1 s9;
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Fig. 9.3 The weighted colored graph for the Elmira conflict

s1 �2 s4 �2 s8 �2 s5 �2 s9 �2 s3 �2 s7 �2 s2 �2 s6;

s7 �3 s3 �3 s5 �3 s1 �3 s8 �3 s6 �3 s4 �3 s2 �3 s9.

Therefore, the diagonal weight matrix, the UM weight matrix, and the UI weight
matrix of the Elmira conflict are constructed in Table9.11.

Let
F(B(W (UM))) = [(B(W (UM))

in )T · (B(W (UM))
out )] ◦ (El − D)

denote a conversion function. It transforms the labeled multidigraph by node-by-
node to the reduced weighted line digraph by arc-by-arc that is a simple digraph with
no color constraints to find all evolution paths of the Elmira conflict by allowing all
UMs. The conversion process is depicted in Fig. 9.4 in which each hexagon denotes
an arc. Status quo analysis is mainly concerned with the attainability of predicted
equilibria. Therefore, stability analysis is usually conducted first. Table9.6 provides
states s5, s8, and s9 are likely resolutions for the Elmira conflict. The three major
equilibria are reachable from status quo s = s1 by the legal UM paths PA(s1, s) for
s = s5, s8, and s9.

Let B =⇒ B(W+), then the labeled graph is converted to the reduced colored
multidigraph as shown in Fig. 9.5a including UI arcs only. Let

F(B(W+)) = [(B(W+)
in )T · (B(W+)

out )] ◦ (El − D).
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(a)

(b)

Fig. 9.4 Conversion graph for finding evolutionary UM paths for the Elmira conflict

The conversion function transforms the original problem of searching the legal UI
paths in an edge-colored graph with no repeated colors to the standard problem of
finding theUI paths on a graphwith no color constraints (See Fig. 9.5b). For example,
if status quo is selected as s2, then Fig. 9.6a shows the UI conflict evolution by arc-
by-arc from s2 for the Elmira conflict. Note that the single arc a8 does not appear in
Fig. 9.6a though it is a UI arc and states are denoted by their indices to make figures
clear. Figure9.6b depicts all possible UI paths from state s2 by state-by-state and
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(a)

(b)

Fig. 9.5 Graph conversion for finding evolutionary UI paths for the Elmira conflict

includes the paths of length 1. Obviously, the major equilibrium state s5 cannot be
reachable by UIs from status quo state s2.

9.3.4.2 Analysis of Gisborne Conflict Evolution with Unknown
Preference

In this subsection, the matrix method developed in this section is applied to a case
study— status quo analysis of the Gisborne conflict including preference uncertainty
(Xu et al. 2010b). The background, modeling and analysis of the Gisborne conflict
is presented in Sect. 5.4. The edge labeled multidigraph is portrayed in Fig. 9.7a
equivalent to the graph model shown in Fig. 8.1. The weight of each arc in Fig. 9.7a
is assigned based on preference information

s2 �1 s6 �1 s4 �1 s8 �1 s1 �1 s5 �1 s3 �1 s7;

s3 �2 s7, s4 �2 s8, s1 �2 s5, s2 �2 s6, only;
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Fig. 9.6 Evolutionary paths by UIs with status quo state s2

s3 �3 s4 �3 s7 �3 s8 �3 s5 �3 s6 �3 s1 �3 s2.

Therefore, the diagonal weight matrix, the diagonal UMweight matrix, the diagonal
UI weight matrix, and the diagonal UIUM weight matrix of the Gisborne conflict
are constructed in Table9.12.

Based on the extended preference structurewith uncertainty, Li et al. (2004a) rede-
fine Nash stability, general metarationality, symmetric metarationality, and sequen-
tial stability for graph models with preference uncertainty. According to whether
uncertain preferences are deemed as sufficient incentives to motivate the focal DM
leaving the current state and credible sanctions to deter the focal DM from doing
so, the aforesaid four types of stability are redefined in four different manners and
indexed a, b, c, and d. These four extensions are conceived to depict DMs with dis-
tinct risk profiles in face of uncertainty. Li et al. (2004a) identify states s4, s6 and s8
as equilibria under extensions b and d for the Gisborne conflict using logical stabil-
ity definitions and the same results are obtained by using matrix representation of
stabilities in Sect. 5.4. Note that for the stability definitions under extensions b and
d, the focal DM is conservative in deciding whether to move away from the current
state, since it would only move to preferred states (UIs). For details, one can refer to
Sect. 5.2.1. In parallel to extensions b and d that predict the three equilibria s4, s6,
and s8, one examines the evolution paths PA+ (allowing UIs only) from a status quo
to the three equilibria. Based on the UI weight matrixW+ constructed in Table9.12,
let

F(B(W+)) = [(B(W+)
in )T · (B(W+)

out )] ◦ (El − D)

denote a conversion function that transforms the labeled multidigraph in Fig. 9.7a to
the reduced line digraph in Fig. 9.7b including UI arcs only that is a simple digraph
with no color constraints. Therefore, finding coloredUIpaths inFig. 9.7a is equivalent
to searching paths in Fig. 9.7b without constraints. If the status quo is s1, it is obvious
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that the equilibria s4 and s8 cannot be reached by legalUIs and the equilibrium s6 is the
only equilibrium that is attainable from the status quo. Specifically, the evolutionary
paths PA+(s1, s6) can be described below:

a1 −→ a18 ⇐⇒ s1 −→ s2 −→ s6,

a17 −→ a5 ⇐⇒ s1 −→ s5 −→ s6.

However, if UIUMs are allowed, equilibrium s8 is attainable from the status quo
s1. The UIUMweight matrixW+,U is defined in Table9.12. Using conversion matrix
B(W+,U ), the labeled graph in Fig. 9.7a is reduced to Fig. 9.8a that illustrates the evolu-
tion of the graph model for the Gisborne conflict with allowing UIUMs only. By the
conversion function F(·), the colored multidigraph in Fig. 9.8a is transformed to the
reduced line digraph in Fig. 9.8b. Searching colored paths PA+,U (s1, s8) in Fig. 9.8a
is equivalent to finding paths PA+,U (a1, a14), PA+,U (a1, a7), PA+,U (a9, a14),
PA+,U (a9, a7), PA+,U (a17, a14), and PA+,U (a17, a7) in Fig. 9.8b. Therefore, the
evolution of the Gisborne conflict by the legal UIUMs from status quo state s1 to
equilibrium s8 is illustrated as follows:

a1 −→ a18 −→ a14,

Fig. 9.7 Conversion graph
for finding the evolutionary
UI paths for the Gisborne
conflict

(a)

(b)
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(a)

(b)

Fig. 9.8 Conversion graph for finding the evolutionary UIUM paths for the Gisborne conflict

a9 −→ a3 −→ a12 −→ a18 −→ a14,

a17 −→ a5 −→ a14,

a17 −→ a13 −→ a23 −→ a3 −→ a12 −→ a18 −→ a14,

a17 −→ a13 −→ a23 −→ a11 −→ a1 −→ a18 −→ a14,

a17 −→ a13 −→ a7.

After transforming a colored multidigraph to a simple digraph under conversion
functions, existing algorithms such as those reported in Migliore et al. (1990) and
Xia and Wang (2000) can be used to find all paths or search for the shortest path.

9.3.4.3 Analysis of GDU Conflict Evolution with Three Degrees
of Preference

As post-stability analysis, the status quo analysis aims at assessing whether predicted
equilibria are reachable from the status quo or any other initial state. The background
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(a)

(b)

Fig. 9.9 Transformation of the graph model for the GDU conflict

of the GDU conflict is given in Sect. 6.6. The graph model for the GDU conflict
displayed in Fig. 6.14 is equivalent to the labeled graph given in Fig. 9.9a. Based on
preference information of the GDU conflict

s2 >1 s4 >1 s3 >1 s5 >1 s1 >1 s6 >1 s9 >1 s7 �1 s8,

{s3 ∼2 s7} >2 {s5 ∼2 s9} >2 {s4 ∼2 s8} �2 {s1 ∼2 s2 ∼2 s6},

{s2 ∼3 s3 ∼3 s4 ∼3 s5 ∼3 s6 ∼3 s7 ∼3 s8 ∼3 s9} �3 s1,

the l×l diagonal weight matrix, the UMweight matrix, and theMSUI weight matrix
are constructed in Table9.13.

Table 9.13 Weight, UM weight, and MSUI weight matrices for the GDU conflict
Arc number a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

Weight
matrix W

Nw Pm Nw Pm Nw Pm Ps Nw Ps Nw Nw Pm Ps Nw Nw Pm Ps Ps

UM weight
matrix
W (UM)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSUI
weight
matrix
W+,++

0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1
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Fig. 9.10 The reduced
graph allowing MSUIs only
for the GDU conflict

Table 9.14 The GDU conflict evolution from the status quo s1 to state s9
DMs Status quo Transitional States Equilibrium

USS

1. Proceed Y Y Y −−−−−−−−−−→ N

2. Modify N N N −−−−−−−−−−→ Y

CDO

3. Legal N N −−−−−−→ Y Y

IJC

4. Completion N N N N

5. Modification N −−−−−−−−−−→ Y Y Y

State s1 s6 s8 s9

By taking status quo analysis into account, additional insights are revealed about
the attainability of any potential resolution. Given state s4 is a strong equilibrium for
Nash stability, GMR, SMR, and SEQ. When state s1 is selected as a status quo, all
possible UM evolutionary paths of the GDU conflict from s1 to the equilibrium s4
are obtained using the following steps:

• Using the UM weight matrix provided by Table9.13, construct the conversion
function

F(B(W (UM))) = [(B(W (UM))
in )T · (B(W (UM))

out )] ◦ (El − D);

• This conversion function transforms the labeled multidigraph in Fig. 9.9a to the
reduced line digraph in Fig. 9.9b including all UM arcs that is a simple digraph
with no color constraints;

• Searching the colored paths PA(s1, s4) between two vertices s1 and s4 in Fig. 9.9a
is equivalent to finding all paths PA(a, b) for a ∈ AS , and b ∈ AE in Fig. 9.9b,
where AS and AE are the two sets of arcs starting from vertex s1 and arcs ending
at vertex s4;

• AS = {a17, a18} and AE = {a4, a9};
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• Finding the legal UM paths PA(a17, a4), PA(a17, a9), PA(a18, a4), and
PA(a18, a9) in the simple digraph shown in Fig. 9.9b;

• PA(a17, a4) : a17 → a1 → a10 → a4; PA(a17, a9) : a17 → a9;
• Find paths between two vertices, s1 and s4, using the paths between corresponding
two arcs:

a17 → a1 → a10 → a4 ⇔ s1 → s2 → s3 → s5 → s4,

a17 → a9 ⇔ s1 → s2 → s4.

If a conversion function is designed by F(B) = B · W+,++, then the original
graph in Fig. 9.9a is reduced to the graph shown in Fig. 9.10 including MSUIs only.
Given state s9 is a strong equilibrium for GMR and SEQ. The dynamics of the GDU
conflict evolution from the status quo stateevolution from the status quo state s1
to the desirable equilibrium state s9 by the legal MSUIs is portrayed in Table9.14.
Specifically, the evolution path PA+,++(s1, s9) of the GDU conflict from state s1 to
state s9 is

s1 → s6 → s8 → s9.

9.4 Important Ideas

After carrying out individual and coalitional stability analyses, a valuable type of
follow-up analysis to perform is to ascertain possible paths that could be followed
from a specified initial or status quo state to a final desired state of interest. For
instance, one may wish to determine if a beneficial climate change equilibrium can
be reached between a government and its provinces within a nation starting from a
status quo state at which there is no legally binding arrangement to an equilibrium
having reasonable reductions in greenhouse gas emissions. Because the tracing of
paths between two states can be carried out with respect to four types of preference
situations (simple, unknown, degree and hybrid), the approach is indeed very flexible.
Moreover, a logical interpretation of path tracing permits one to easily understand
how it works. However, a matrix procedure effectively converts path finding from a
logical structure to a flexible algebraic system of finding paths in a simple digraph
with no color constrains. Consequently, the algebraic structure constitutes a versatile
and encompassing framework for realistically tracing paths ranging from small graph
models to very large and complicated ones.

Within Sect. 1.2.4 and in Fig. 1.1 near the start of the book, two important kinds
of follow-up analysis are mentioned:

• evolution of a conflict (Sect. 1.2.4.1)
• Sensitivity analyses (Sect. 1.2.4.2)

In a sensitivity analysis, one wishes to determine how making meaningful small
changes in a basic model input parameter, like the preferences of one or more DMs,
influences the stability findings.As explained inSect. 10.2.4 and depicted inFig. 10.5,



398 9 Follow-Up Analysis: Conflict Evolution

flexible sensitivity analysis procedures should be incorporated into the output subsys-
tem of a decision support system (DSS) for GMCR based on having amatrix stability
analysis engine. Besides having the capability to trace the possible evolutions of a
dispute in the output subsystem of a DSS, another type of informative follow-up
analysis is categorizing equilibria according to common features. For instance, in a
climate change negotiation dispute over percentage by which carbon dioxide emis-
sions should be lowered, one may be interested to categorize equilibria into one
classification for which the overall percentage reduction in emission is over 80%
within a 20-year period, and another category of equilibria for which reductions in
greenhouse gas emissions are not sufficient to maintain a sustainable climate.

9.5 Problems

9.5.1 Qualitatively explain what is meant by a stability analysis and what hap-
pens when tracing the possible evolutions of a dispute. Mention the key differences
between these two procedures.

9.5.2 The Elmira groundwater contamination dispute first mentioned in Sect. 1.2.2
is used in this chapter to explain how to calculate paths between two states using
a matrix representation. Employing a logical interpretation and assuming simple
preference, show by hand how the final cooperative equilibrium can be reached from
the status quo state using option form. In your diagram of the evolution of the dispute,
point out the assumptions underlying the moves from state to state.

9.5.3 The LakeGisbornewater export conflict is utilized in this chapter to show how
to determine the paths between two states when employing a matrix representation.
Assuming a logical interpretations of this path finding and simple preference, draw a
diagram in option form to portray how the final equilibrium can be reached. Explain
the assumptions underlying the moves that are allowed.

9.5.4 The Garrison Diversion Unit conflict is a large scale irrigation conflict used
as an illustration for path tracing in option form. Under the assumption of simple
preference and a logical representation, draw a graph based on option form show-
ing the evolution of the dispute from the status quo to the final equilibrium. What
assumptions are you making about the kinds of moves you permit from state to state.

9.5.5 In the path finding procedures of this chapter, four kinds of preferences are
entertained: simple, unknown, degree, and hybrid. Beyond simple preference, what
other kind of preference makes sense with respect to the Elmira conflict when tracing
paths from the status quo to the final resolution? Show the matrix formulations and
calculations for determining this path. Explain what is happening in the diagram that
you draw using option form to depict these moves.

9.5.6 Select a conflict which is of high interest to you. After building a conflict
model, carry out a stability analysis. Draw a diagram depicting the evolution of the
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dispute in option form from the status quo to the most desirable equilibrium that you
found. Explain what is happening in the diagram and show your calculations using
a matrix interpretation.

9.5.7 Allowing for different kinds of preferences can be interpreted as a kind of
sensitivity analysis. For the case of the Elmira dispute, explain where you think
preference may be unknown for one of the DMs. Determine how this affects your
stability findings as well as the evolution of the dispute from the status quo to a final
equilibrium.

9.5.8 For the case of the Lake Gisborne dispute, assume that part of the preferences
is different for one of the DMs. Show how this difference in preferences affects the
stability findings, if at all. Using a diagram, depict how the different preferences
influence the evolution of the dispute, if at all.

9.5.9 Present a conflict of your choice for which you think three degrees of prefer-
ence may be important to consider because of the basic nature of the dispute. Carry
out a stability analysis with and without three degrees of preference and comment
upon the differences in strategic results. Using diagrams, show how the three degrees
of preference influence or not the evolution of the dispute from the status quo state
to the final resolution.

9.5.10 Qualitatively explain what is meant by a sensitivity analysis. Make a list of
the kinds of sensitivity analyses you think are most important to consider in a GMCR
study.

9.5.11 In more detail than that given in Sect. 10.2.4 for the output subsystem for
GMCR, explain how you would incorporate follow-up analyses into the theoretical
design of a DSS for GMCR. Use examples of actual conflict situations to justify your
design.

9.5.12 Provide a general discussion on follow-up analyses and why you think they
are important. Beyond tracing paths, various kind of sensitivity analyses and classify-
ing equilibria according to commonalties, describe other kinds of follow-up analyses
that you think are important. How do you think designing creative solutions to better
resolving conflict could be incorporated into follow-up analyses?
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Chapter 10
Design of a Decision Support System
for Conflict Resolution

A rich range of basic concepts in conflict resolution are presented in Chaps. 3–9
in this book. These ideas were mathematically designed to reflect different types
of conflict situations that can arise in the real-world. Moreover, by having a basic
mathematical design and associated capabilities that mirror the key characteristics of
actual disputes, meaningful strategic advice can be discovered for resolving conflicts
in the best possible way. By suitably accounting for the value systems of the different
decisionmakers (DMs) involved in a specific conflict, one can determine the potential
resolutions for the dispute when DMs act according to their own individual interests
by behaving in a competitive and noncooperative way, or by cooperating with one
another via coalitions to see if they can do even better strategically. For instance, by
forming alliances, it may be possible to reach a win/win resolution.

Table10.1 provides a summary of the key ideas presented in earlier chapters in the
book as categorized according to types of preferences. Throughout these chapters,
the solution concepts consisting of Nash, general metarational, symmetric metara-
tional and sequential stabilities are utilized for both noncooperative and cooperative
behavior. The evolution of a conflict is also provided for the different kinds of pref-
erence situations. In order for researchers, practitioners, teachers and students to
be able to immediately employ these and other future developments in conflict res-
olution, a flexible decision support system (DSS) is required to permit extensive
analyses to be expeditiously executed. The objective of this chapter is to present a
general or universal design of a flexible DSS for GMCR that will capture all of the
progress made to date as well as permit easy expansion of the DSS as new theoreti-
cal and practical developments are achieved. As can be appreciated from Table10.1
which summarizes many recent ideas presented in this book, a really powerful set of
tools are available now for addressing conflicts ranging from simple to complex. For
instance, the matrix design of the graph model permits the construction of a truly
powerful analysis engine for efficiently producing strategic findings for all of the
ideas given in Table10.1 as well as for ongoing and future developments presented
in Sects. 10.3.1 and 10.3.2, respectively. One can envision this design as being similar
to using the Danish toy invention called “lego” in which lego building blocks are
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Table 10.1 Stability analysis and conflict evolution for different preference structures

Types of preferences Kinds of analyses Locations

Graph model with simple preference Individual stabilities Chap.4

Coalitional stabilities Chap.8

Conflict evolution Chap.9

Graph model with unknown preference Individual stabilities Chap.5

Coalitional stabilities Chap.8

Conflict evolution Chap.9

Graph model with degrees of preference Individual stabilities Chap.6

Coalitional stabilities Chap.8

Conflict evolution Chap.9

Graph model with hybrid preference Individual stabilities Chap.7

Coalitional stabilities Chap.8

Conflict evolution Chap.9

snapped together to build a structure such as a boat or a fortress in which one can
easily add extra features in the future as attachments are designed andmade available
to customers. Likewise, a well-designed DSS will not have to be completely repro-
grammed but rather easily extended as new features, such as attitudes, emotions and
misperceptions, as well as other expansions mentioned in Sect. 10.3 are added to the
DSS.

The overall philosophy of having a well-conceived mathematical design for the
graph model and its theoretical expansions, coupled with a continuously evolving
DSS provides users with an exceptional paradigm for resolving a wide variety of
complex conflicts. In the next section, an introduction to DSSs is provided along
with an overview of existing DSSs for implementing the graph model. Subsequently,
a universal design of a DSS consisting of the input, engine, and output systems is
unveiled which encompasses the concepts put forward in the earlier chapters in this
book, as well as other extensions of the graph model furnished in Sect. 10.3. Finally,
ongoing and potential expansions of the graph model are discussed in Sect. 10.3 in
conjunction with how they could be incorporated into the universal design of a DSS
for GMCR.

10.1 Decision Support Systems

10.1.1 Introduction

As pointed out by Sage (1991) in his classic book on decisions support systems,
“in very general terms, a decision support system (DSS) is a system that supports
technological and managerial decision-making by assisting in the organization of
knowledge about ill-structured, semi-structured issues.” More specifically, a gen-
eral DSS consists of four main components as shown in Fig. 10.1: the user inter-
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Fig. 10.1 The framework of a general DSS

face system, dialog generation and management system (DGMS), the model-base
management system (MBMS), and database management system (DBMS) (Sage
1991). While a variety of DSSs exists, the above four components can be found in
many DSS architectures and play an important role in their structure. In Fig. 10.1,
the user interacts with the DSS through the DGMS. As can be seen, the DGMS
communicates with the MBMS and DBMS in order to determine the appropriate
sets of models from the model-base and required data from the database to utilize
for investigating the problem under study.

As mentioned in Sect. 2.3.3, in most areas of study a rich range of models have
been developed over the years for addressing challenging problems. The important
field of water resources constitutes a key domain in which both physical and societal
systems models have been designed for tackling tough situations based on a systems
perspective in an integrative and adaptive fashion in which stakeholder values are
purposefully taken into account as explained in Sect. 2.4 and by authors such as Hipel
et al. (2008). For example, in the pollution of an underground aquifer, such as the
one underlying the town of Elmira, Ontario, Canada (see Sect. 1.2), physical systems
models based on stochastic partial differential equations are required to model the
pollution plume as it spreads underground from the source. Societal systems models,
such as various economic and conflict resolution models, are needed to model the
societal aspects of the problem. In fact, the Elmira conflict is analyzed using GMCR
at various locations in this book (see Sects. 4.5 and 9.2). Hipel et al. (2008) traced the
evolution of systems models and associated DSSs in water resources management.

When a DSS is specifically designed for employment in negotiation processes,
it is often referred to as a negotiation support system. Existing negotiation support
systems have been reviewed and compared by various authors such as Jelassi and For-
oughi (1989), Thiessen and Loucks (1992), and Kilgour et al. (1995) to explain and
compare their capabilities and effectiveness. Software packages based on metagame
analysis (Howard 1989), conflict analysis (Meister and Fraser 1994, DecisionMaker
1996), and decision systems analysis (Langlois 1994) were designed to assist in
modeling and analyzing interactive decision situations.
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10.1.2 Existing Decision Support Systems for the Graph
Model

Conflict resolution methodologies require implementation algorithms to facilitate
their practical application to real-world problems. To permit convenient and expedi-
tious use by practitioners, a methodology should be computerized as a DSS, which
includes all associated algorithms. In this way, the methodology is transformed into a
realizable decision technology. Because decision-making and negotiations constitute
common but important human activity, there is a great need for flexible DSSs that can
systematically investigate a wide range of real-world strategic conflicts. To achieve
this, a number of DSSs for implementing GMCR and various expansions thereof
have been developed over the years. Four particular systems are briefly described
with respect to their basic capabilities. Subsequently, in Sect. 10.2 an encompassing
universal design is put forward for constructing newDSSs or expanding current ones
for GMCR.

In combination with the publication of their 1993 book, Fang et al. (1993) pro-
vided a basic analysis engine called GMCR I for calculating stability. Specifically,
the GMCR I engine determines stability for a conflict having two or more DMs for
the solution concepts consisting of Nash stability, general meterationality (GMR),
symmetric meterationality (SMR), sequential stability (SEQ) and limited-move sta-
bility (for horizons h ≥ 2) (Zagare 1984, Kilgour 1985, Kilgour et al. 1987) and
non-myopic stability (Brams and Wittman 1981, Kilgour 1984, 1985, Kilgour et al.
1987). In addition, for the case of two DMs, Stackelberg equilibria (von Stackelberg
1934) can be ascertained. A user’s manual for GMCR I is provided in Appendix B of
their book along with a disk containing the program for GMCR I (Fang et al. 1993).

GMCR II is the next generation DSS for implementing the graph model which
was developed within a Windows environment. Some features of this system are
described by Hipel et al. (1997, 2001) while the detailed design and implementation
algorithms are presented by Fang et al. (2003a, b). In addition to having an engine
adapted from GMCR I, the DSS GMCR II contains user-friendly input and output
subsystems. Via a flexible user interface, a user can conveniently interact with the
input and output subsystems. More specifically, by employing the input subsystem
a user can construct a conflict model by utilizing option form defined in Sect. 3.1.2
and used with applications such as the Elmira groundwater dispute in Sects. 1.2 and
4.5, as well as elsewhere in this book. Given the DMs and options, GMCR II can
automatically generate themathematically possible states that could occur.Moreover,
GMCR II prompts the user to specify infeasible situations that could not occur and
are therefore removed from the overall conflict model. Circumstances or states that
are essentially the same can be coalesced by GMCR II into a single state. Finally,
a technique called option prioritization (see Sect. 1.2.2) can be utilized to obtain a
ranking of states for each DM under the assumption of having transitive preference
for the case of simple preference.

The GMCR II engine calculates stability for every state and each DM according
to the aforementioned solution concepts encoded within the GMCR I and II engines.
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These calculations are carried out using the logical definitions for the solution con-
cepts. The output subsystem displays the individual and equilibrium findings in a
number of informative fashions. For example, the equilibrium states can be displayed
according to preference for any selected DM. Additionally, the output points out sit-
uations, if they exist, in which DMs can cooperate to jointly reach a more preferred
equilibrium from another resolution under investigation.

Kinsara et al. (2015b, 2018) developed aDSS called GMCR+which can calculate
both individual and coalitional stability based on the solution concepts consisting of
Nash, GMR, SMR, and SEQ for two or more DMs. The stability calculations can
be executed using both the logical and matrix definitions for stability. GMCR+ also
contains an exhaustive search algorithm for determining the preferences required
by the DMs in a conflict to make a particular state an equilibrium with respect to
the solution concepts encoded in its engine. This procedure is referred to as the
inverse GMCR perspective as described in Sect. 10.3.2 and depicted in Fig. 10.6.
The input and output subsystems possess similar capabilities to GMCR II along with
graphical procedures to display movements among states, including an integrated
graphmodel like the ones displayed in Figs. 3.2 and 3.5 in this book for the sustainable
development and Elmira groundwater contamination disputes, respectively.

Jiang et al. (2015) provided a design for a DSS called thematrix representation for
conflict resolution (MRCR). ThisDSS is calledMRCRbecause the engine subsystem
employs the matrix representation for individual and coalition definitions of stability
to determine the stability findings for Nash, GMR, SMR and SEQ. A special feature
of this DSS is its capability to handle not only simple preference, but also other
preference structures such as three degrees of preference.

10.2 Universal Design of a Decision Support System
for the Graph Model

10.2.1 Overall Design

In Sect. 10.1.2, the capabilities of four DSSs are outlined for permitting the GMCR
methodology to be applied to actual disputes. Probably, other GMCR DSSs will be
constructed in the future by researchers working at different locations around the
globe. Accordingly, the objective of Sect. 10.2 is to present a universal design for a
DSS forGMCR.Byhaving a clever and effective design, aGMCRDSScan be readily
utilized for systematically investigating conflict in situations like those described in
Sect. 1.2.5. Moreover, the DSS can be easily expanded by simply adding new devel-
opments to its basic structure for tackling a broader variety of conflict problems.
As can be seen, the framework displayed in Fig. 10.2 consists of an Input Subsys-
tem, Analysis Engine and Output Subsystem, which are discussed in more detail
in Sects. 10.2.2–10.2.4, respectively. Moreover, the User Interface permits a user to
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Fig. 10.2 The overall structure of a graph model based DSS

utilize the DSS in a highly interactive and creative fashion when systematically and
intuitively investigating conflict ranging from simple to highly complex situations.

10.2.2 Input Subsystem

As indicated on the left in Fig. 10.2, the key inputs to a conflict model are the DMs,
states, movements among states in one step controlled by each DM, and the relative
preferences of the DMs among the feasible states. By far the most common and
useful way for a user to interactively develop a conflict model using the GMCRDSS
is to employ the option form defined in Sect. 3.1.2 and utilized in the groundwater
contamination dispute in Sects. 1.2 and 4.5 and elsewhere throughout the book with
this and other illustrative applications.

The left central part of Fig. 10.3 for the Input Subsystem portrays the entry of the
model in option formwhile the right branch indicatesmodel entry using another form
such as graphical. The main steps in modeling and analyzing a conflict using GMCR
are given in Fig. 1.1 in Chap.1. Notice in the third enclosure from the top in Fig. 10.3,
that for option form, the DSS requests the user to enter the DMs participating in the
dispute under study as well as the options or courses of actions available to each DM.
An explanation for this, as well as other steps in the modeling stage are provided in
Sect. 1.2.2 for the case of the Elmira groundwater contamination dispute.

Because some states cannot occur in the real-world, procedures have been devel-
oped for removing states that could not possibly occur in the real-world. The Input
Subsystem can provide suggestions to the user for eliciting situations that cannot
occur in terms of combinations of option selections or circumstances that must take
place. For instance, the most recent three existing DSSs mentioned in Sect. 10.1.2
prompt the user for the following information:
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Fig. 10.3 Input subsystem

(i) mutually exclusive options (In the Elmira conflict, for instance, in Sect. 1.2.2,
the company Uniroyal (UR) can only select at most one of its three options that
it controls.),

(ii) option selections that must take place (In the Elmira conflict, UR is expected
to do something, so it will choose one of its three mutually exclusive options.),

(iii) dependent options (A certain situation can only occur if something else is not
done first. For instance, an aircraft company can only sell its airplanes if it has
at least one firm order.), and

(iv) any impossible combination of option choices that could occur.

Through numerous applications of GMCR to actual conflicts, the authors have
found that the first two situations are most common. Whatever the case, subsequent
to considering the aforesaid methods, a final simplification technique is to coalesce
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states that are essentially the same. (In Table 1.2 for the Elmira conflict state s9 in
which UR closes down its factory contains 16 states which are essential the same
since it does not matter what other options in the conflict model are selected if the
plant is abandoned.)

Based on the aforesaid procedures, aswell as othermethods thatmay be developed
in the future, the Input Subsystem generates the feasible states for the conflict being
investigated. In practice, the authors have found that the number of mathematically
possible states in the conflict are greatly reduced especially for larger disputes. (For
the case of the Elmira conflict in Sect. 1.2.2, the number of states is reduced from
32 to only nine as displayed in Tables 1.2 and 1.3). Keep in mind, that the Input
Subsystem asks for a minimum amount of information from the user: the DMs, their
options and infeasible, necessary and common states (given as a coalesced single
column of essentially one state). The feasible states in the dispute are automatically
generated by the Input Subsystem.

Another component of the conflict that is automatically produced by the DSS are
the unilateral moves in one step under the control of each DM. These moves can
be shown using option form (see Table 1.7 for the Elmira dispute) or graphically
(see Fig. 3.5 for the Elmira conflict). The user can require the system to display the
directed graph of movement for each DM or as a single integrated graph as displayed
in Fig. 3.5. In fact both the Input and Output Subsystems should be flexibly designed
to take full advantage of the underlying graph theoretical design of GMCR to permit
the user to visualize a rich range of situations that could occur.

With respect to the Input Subsystem, the systemwill initially assume that possible
movements can take place in both directions. However, the user will be prompted to
see if he or she would like to specify possible irreversible moves expressed in terms
of option selections. (In the Elmira conflict an example of an irreversible move is
where UR closes down its plant as displayed in Fig. 3.5). A user should also consider
the type of situation that is being modeled. In the October 1962 Cuban Missile
Crisis (Fraser and Hipel 1984, Hipel 2011), the US can threaten to bomb the Soviet
missile sites that were being installed in Cuba. Of course, this threat can be removed.
However, once the bombing takes place, the move from not bombing to bombing
is irreversible. Users can interactively experiment with different combinations of
irreversible moves to ascertain how that would affect the overall strategic findings.

The final step in themodeling stage is determining the relative preferences of each
DMwith respect to the feasible states in the conflict as indicated at the top of Fig. 1.1,
left part of Fig. 10.2, and central section of Fig. 10.3. Three available techniques, in
addition to others that may be designed in the future, for employment with option
form are

(i) option prioritization,
(ii) option weighting, and
(iii) direct ranking on the computer screen.

The above methods assume that the preferences are transitive, which is usually
the case for conflicts that are underway and fairly well understood. However, as
mentioned in Sects. 1.2.2, 2.2.2, and 3.2.4, GMCR can handle both transitive and
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intransitive preferences.Accordingly, theDSS forGMCRshould be designed towork
for both types of preferences, even though transitive preferences are by far the most
common. In the aforesaid three preference elicitation methods, option prioritization
is an extremely user-friendly approach to capturing preference and was referred to
by one consultant “as the best thing since sliced bread”. Option prioritization was
developed by Hipel et al. (1997) and Fang et al. (2003a) as a refinement of the
preference tree approach first put forward by Fraser and Hipel (1988). In option
prioritization, preference statements, expressed in terms of option selections for a
given DM, are provided in hierarchical order frommost to least important (see Table
1.4 for the Ontario Minister of Environment (MoE) for the Elmira groundwater
pollution conflict). Assuming transitivity, a simple algorithm takes those preference
statements and ranks the states from most to least preferred, where ties are allowed,
for the DM being considered (see Tables 1.3 and 1.5 for the MoE in the Elmira
controversy).

A “quick and dirty” way to order states for a specific DM is to provide weights
for each option where a higher number for weight means more preferred when the
option in a state is selected.After summing theweights for each state, the states can be
ordered frommost to least preferred for which a higher summeansmore preferred. In
a survey reported by Hipel et al. (2008), users of the GMCR methodology preferred
option prioritization over option weighting. However, some users were attracted by
the simplicity of option weighting even though it possesses no theoretical basis like
option prioritization which was found to satisfy all the rules of first order logic.

A third way to order the feasible states according to preference for each state is to
drag the states on the screen to place the states from most to least preferred for the
DM under consideration where equal preference for a set of states can be indicated
by a common color. For a small conflict, this approach can work well such as for the
Sustainable Development Conflict in Sects. 3.1 and 3.2 which possesses only four
feasible states. Additionally, after sorting states using option prioritization or option
weighting for a particular DM, one can further adjust the ranking by simply dragging
the states and perhaps also ordering a set of states that was previously considered to
contain equally preferred states.

As indicated by the right branch in Fig. 10.3, one may employ another approach
other than option form to define feasible states. For instance, in a brain storming
session among officials for a company trying to figure out how to interact with
its competitors to gain more market share, a facilitator may simply use circles to
represent states with writing inside each circle to describe what this state means.
Arrows could be drawn to indicate movement controlled by each DM among states
and the circles could also be drawn frommost to least preferred for eachDM to reflect
preference. Direct graphical input to a DSS, among other potential approaches, can
be investigated in detail in future research.

Away to assist the option-form input for a graphmodel is to employwhat is called
a case-based reasoning expert system,which is a type of knowledge-based expert sys-
tem developed within the information technology field of artificial or machine intel-
ligence. In particular, conflicts arising within a particular application domain tend
to have similar types of DMs, options, feasible states and relative preferences. For
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example, in a conflict over the pollution of groundwater by effluents froman industrial
area, typical DMs include the government agency that is responsible for pollution
control, polluter, local government which represents the interests of the local resi-
dents and environmental groups. Notice that the model for the Elmira groundwater
contamination dispute developed in Sect. 1.2.2 contains the first three kinds of DMs
along with options for each DM, some of which may reflect those which are mod-
eled in a general situation. In addition, the general kinds of relative preferences for
each DM may roughly correspond to what happens in this kind of water pollution
controversy. The Input Subsystem could be equipped with a case-based reasoning
component which utilizes stored previous conflict studies to suggest an initial generic
model for a new user who wishes to investigate this kind of situation. Subsequently,
this suggested model could be refined by a user so it fits the conflict under study
before a reasonable model is sent to the Analysis Engine to calculate stability results
that can be examined in the Output Subsystem. Ross et al. (2002) put forward the
design of a system based upon studies complied over many years using GMCR.

10.2.3 Analysis Engine

Now that a conflict model is fully specified in terms of DMs, feasible states, move-
ment and relative preference, one can have the DSS immediately carry out an exhaus-
tive stability analysis as indicated in the lower portion of Fig. 1.1, central part of
Fig. 10.2 and also in Fig. 10.4. A major benefit of having the GMCR methodology
and an associated well-constructed DSS is that one can expeditiously determine the

Fig. 10.4 Analysis engine
of a graph model based DSS
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strategic consequences and implications of the specific model being considered. If
one is examining an ongoing dispute, for instance, one can determine in advance the
strategic impact of what could occur if DMs behave according to the model. If the
findings are not attractive one could examine other models and carry out additional
stability analyses to see if better results can be achieved in advance of decisions
actually being made. This means that one can readily experiment with a range of
conflict models and seek answers to “what-if” questions in order to provide sage
advice on how to enhance the decision-making process. This reflects what happens
in engineering and the physical sciences where, for example, one will use a basketful
of appropriate laws from physics, thermodynamics, fluid mechanics, and areas of
science and engineering to design an aircraft, followed by testing a model in a wind
tunnel prior to constructing a prototype and flying it. This kind of sensible approach to
modeling and analysis is what GMCR permits users and DMs to do prior to actually
making decisions which could end up being devastating to one or more parties if the
strategic consequences of decisions are not fully tested beforehand. Moreover, this
process should be carried out in an integrative and adaptive manner from a System
of Systems viewpoint which reflects the value systems of stakeholders as explained
in Sect. 2.4.

When using the metaphor of a chess player, as is done in Sect. 1.2.3, one wishes to
think in terms ofmoves, and countermoves in order to determine the strategic result of
selecting a certain strategy or combination of options. If one takes advantage of one or
more unilateralmoves, but could end up in a less preferred positionwith respect to the
state being examined for stability, one is better off not to move. In combination with
a rich range of solution concepts, the stability analysis stage produces the strategic
findings of what different kinds of defined moves and countermoves can create.
Additionally, one can use the DSS to precisely explain why a certain state is stable
for a given DM in terms of moves and countermoves.

As stressed in Sects. 1.2.5 and 2.4 and elsewhere in the book, in a conflict study
one wishes to first determine how well a DM can do on his or her own. Secondly,
one wishes to ascertain if the DM can do even better via cooperating with others,
which is often the case (In the Elmira groundwater contamination dispute the MoE
and UR cooperated to reach the more desirable equilibrium for them as shown in
Table 1.7 and explained in Sect. 1.2.3.). Notice that in the central part of Fig. 1.1,
under the Analysis Engine in the central part of Fig. 10.2 and just below the middle
of Fig. 10.4, both individual stability and coalitional stability analyses should always
be executed in any conflict study.

Because people may behave differently in conflict situations, a range of solution
concepts have been proposed. Four very useful concepts are Nash, GMR, SMR, and
SEQ which are qualitatively explained in Sect. 1.2.3 as to how they work according
to the four characteristics listed in the third to sixth columns from the left in Table
1.6. Precise mathematical definitions for different types of preference situations for
individual stability and coalitional stability are given in Chaps. 4 to 7 and Chap. 8,
respectively. At the top of Fig. 10.4, those four key solution concepts are listed but
it is noted that other solution concepts such as limited-move stability (Zagare 1984,
Kilgour 1985, Kilgour et al. 1987), Stackelberg equilibrium (von Stackelberg 1934),
and metarational tree stability definitions (Zeng et al. 2006, 2007) could also be
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incorporated into an analysis engine. One should keep in mind that because Nash,
GMR, SMR, and SEQ are defined in a way that only pairwise comparisons of pref-
erence of states are considered within the definitions, those solution concepts are
valid for employment with both transitive and intransitive preferences. However,
because of the backward induction process used with limited-move stability for log-
ically calculating stability, limited-move stability is only valid for use with transitive
preferences.

When determining stability for a specific state, the universal DSS exhaustively
calculates stability for eachDMfor each solution concept embedded in the engine and
for both individual and coalitional stability. If a state is stable for all DMs according
to a specific solution concept then it forms an overall equilibrium or resolution which
can be determined for both individual and coalitional stabilities.

A key breakthrough in the advancement of theGMCRmethodologywas the devel-
opment of the matrix representation of the graph model by Xu et al. (2007a, b). As
defined in depth in each chapter in this book from Chap.3 onwards, key information
such as state transitions and preferences are contained within matrices for each DM
and matrix or algebraic stability calculations are defined for the four main solution
concepts for both individual and coalitional stabilities. Within the Input Subsystem,
the movement and preference matrices for each DM can be determined as input
to the Analysis Engine as indicated by the larger arrow connecting the Input and
Analysis stages in the bottom two boxes in the left of Fig. 10.2. The central part of
Fig. 10.4 shows that a matrix representation is utilized to carry out all stability calcu-
lations. This matrix representation is central to the design of the Analysis Engine, as
well as its connections to the Input and Output Subsystems. Furthermore, it permits
this overall design of a universal DSS to be conveniently expanded in a “lego-like
fashion” as new advances are added.

Based on the calculation of various kinds of individual and coalitional stability
which can be utilized to explain the strategic impacts of decisions based on the
conflict model being considered, one may wish to trace the evolution of a conflict
from a specified state to another state of interest. For example, one may wish to
determine whether or not a desirable state can be reached from the status quo state by
following the research of Li et al. (2005a, b) (explained in Chap.9). One can program
the Analysis Engine to determine various situations for examining the evolution of a
dispute such as for only allowing DMs to invoke unilateral improvements. Moreover,
one could permit joint unilateral improvements which are entertained in coalition
analysis.

The matrix representation design of the powerful Analysis Engine permits it to
be readily expanded to handle preference uncertainty in combination with appropri-
ate information received from the Input Subsystem. In this book, theoretical matrix
representation results are provided for simple preferences (Chap.4), unknown prefer-
ences (Chap.5), degrees or strengths of preferences (Chap. 6) and hybrid preferences
(unknown combined with degrees of preferences) (Chap.7). Other kinds of uncertain
preferences that can be entertained include fuzzy (Hipel et al. 2011, Bashar et al.
2012; 2016), grey (Kuang et al. 2015a, Zhao and Xu 2017) and probabilistic (Rego
and dos Santos 2015). One could also program a DSS containing any meaningful
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Fig. 10.5 The output
subsystem of a graph model
based DSS

combination of the aforementioned approaches to modeling uncertainty. Demand
for a specific approach or combination of methods to model specific uncertain situ-
ations that arise in the real-world provide motivation as to where the DSS should be
expanded. Whatever the case, the matrix-based solver is more efficient than logical-
based definitions for determining stability because carrying out matrix calculations
is highly developed and more efficient than following long logical loops for ascer-
taining stability, as is done in the logical approach. For an explanation of what the
findings mean in actuality, it is more informative to use the logical interpretation, as
is done for many of the findings in the Output Subsystem discussed next. Finally,
all of the current and new approaches to conflict analysis discussed in Sect. 10.3 can
be also incorporated into the universal GMCR DSS when utilizing a matrix based
engine.

The overarching objective of the Output Subsystem is to furnish useful strategic
advice in a user-friendly way for enhancing the decision-making process. TheOutput
Subsystem takes findings produced by the Analysis Engine and translates them into
tables, graphs, and typed explanation following an insightful presentation format that
permits a user to fully understand the strategic consequences of the current model
of reality which is under consideration. As indicated in Fig. 10.5, this can be done
for both noncooperative and cooperative behavior so the user will be fully aware
when cooperation can be advantageous and perhaps this can be achieved via clearer
communication among participants.

10.2.4 Output Subsystem

The Analysis Engine calculates a large array of stability findings for both individual
and coalition behavior. The Output Subsystem can prompt the user as to how the
stability findings can be displayed both in writing and graphically. For example, a
list could be available from which the user can decide how to display individual and
equilibrium findings. As indicated in the bottom left box in Fig. 10.5, the user may
wish to see the equilibria listed for which specific options are taken or not. For larger
conflicts, many possible equilibria may be found and hence the user may want to



414 10 Design of a Decision Support System for Conflict Resolution

categorize them according to commonalities. When modeling potential war between
two groups of nations, for instances, one may wish to categorize equilibria according
to which ones are peaceful and those which involve going to war. One may also wish
to list equilibria according to the preferences of a specific DM from most to least
preferred. Flexibility in the presentation of results is crucial in the Output Subsystem.

In the Output Subsystem, one might also want to find out why a state is stable for
a specific DM according to moves and countermoves. This could be explained by the
DSS using a graph displaying themoves and countermoves. This type of “chess-like”
explanation constitutes a natural way to discuss stability in strategic situations.

As noted in themiddle box in Fig. 10.5 and also in the bottom right box in Fig. 10.2,
one can request the Output Subsystem to display a graph which traces the evolution
of the conflict from say a status quo state to a desirable equilibrium to see if the
equilibrium can be reached and how this can be achieved. Colors in the graphs can
be used to indicate which DM, or set of DMs, controls the movement between states.

Based on his or her knowledge of the conflict, a user can request the DSS to
execute appropriate kinds of sensitivity analyses as pointed out in the bottom right
box in Figs. 10.2 and 10.5. As explained in Sect. 1.2.4, in a sensitivity analysis, one
can determine how changes, usually small but not necessarily so, in the conflictmodel
alter the strategic findings. For instance, a user may want to know if a meaningful
change in a DM’s preferences can cause a better resolution to take place that may
be win/win for all parties in a conflict or only those who are members of a specific
coalition. If the key equilibria remain unchanged then one can conclude that these
equilibria are “robust” with respect to this preference change. The demand for a
particular sensitivity analysis within the Output Subsystem will automatically be
calculated by the Analysis Engine and the findings quickly displayed to the user.

10.3 Ongoing and Future Developments in the Graph
Model Methodology

As mentioned at the start of this chapter and summarized in Table10.1, significant
progress has been archived in advancing graph model methodologies which can be
implemented in practice using a DSS. In the next subsection, ongoing expansions
to the graph model beyond those covered in the book are outlined and put into
perspective. All of these advancements can be added like “lego” blocks to an existing
DSS when it is designed according to the principles of a universal DSS described
in Sect. 10.2. In Sect. 10.3.2, future developments of the graph model are explained
within the context of a systems investigation. The encompassing systems view of the
future of the graph model paradigm confirms that much remains to be accomplished
for realistically tackling a truly broad and rich range of systems problems.
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10.3.1 Ongoing Expansions of the Graph Model

Inspired by real-world situations in which complex conflicts must somehow be real-
istically resolved, a number of advances in the graph model approaches are ongoing
and, in some cases, substantial progress has already been made. Four moving fron-
tiers in extending the graph model are discussed in this subsection: different ways to
handling uncertain preferences, psychological factors, power, and human behavior.
One unique technique to account for unknown preferences is defined and explained in
Chaps. 5, 8 and 9, as shown in Table10.1. For the unknown preference, one assumes
a minimum amount of information: one simply acknowledges that certain preference
information is unknown which is then cleverly incorporated into individual (Chap. 5)
and coalitional (Chap.8) stability definitions. In Chap.9, it is even embedded into the
evolution of a conflict. Within Chap. 6, the degree of preference is formally defined.
An example of three degrees of preference is when one allows for strength of prefer-
ence in which, for instance, an environmental agency may state that it greatly prefers
situations in which industry properly treats its wastes over states where it does not.
For other pairwise comparison of states, one state may be simply more preferred,
equally preferred or less preferred with respect to another, when the environmental
agency compares them.

Table10.2 lists three specific ways in which uncertainty in preferences can be
captured. From the least to the most amount of information that is needed to calibrate

Table 10.2 Further extensions of uncertain preference in the graph model

Type Explanation

Unknown
preferences

See Chap.5

Fuzzy
preferences

Allowing preferences to be “fuzzy” is one way to model uncertain preference
in which, for example, a DM may more or less prefer one state over another.
Fuzzy preference information can be utilized to determine fuzzy stability for
both noncooperative and cooperative behavior (Al-Mutairi et al. 2008a, b,
Hipel et al. 2011, Bashar et al. 2012, 2014, 2015, 2016, 2018).

Grey
preferences

Permitting preferences to be “grey” is a means to capture uncertainty in
preferences consisting of either discrete real numbers, intervals of real
numbers, or combinations of them. Grey preference information can be
utilized to determine grey stability (Kuang et al. 2015a, b, c, Zhao and Xu
2017).

Probabilistic
preferences

Allowing preferences to include probability is another way to entertain
uncertainty which may involve risk in GMCR. Solution concepts containing
probability concerns are available (Rego and dos Santos 2015, Silva et al.
2017).

Combination of
preferences

Have any combination of the above preference structures, and other, such as
the hybrid preferences (unknown plus degree of preferences) presented in
Chap.7.
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Table 10.3 Psychological factors in the graph model

Type Explanation

Attitudes In a conflict, a given DM can have a positive, neutral or negative attitude
towards him or herself and others. One would expect that when all DMs in a
dispute possess positive attitudes towards themselves and others a better
resolution for everyone concerned can be reached. In practice, a win/win
resolution is a common occurrence (Inohara et al. 2007, Yousefi et al.
2010a, b, c, Bernath Walker and Hipel 2012, Bernath Walker et al. 2012,
2013).

Emotions Emotions often arise in conflict situations and can propel a given dispute
towards a range of final outcomes depending upon the mix of emotions that
are present (Obeidi and Hipel 2005, Obeidi et al. 2009a, b). Some emotions
can be expressed via strength of preference, which can be formerly modeled
within the Graph Model methodology.

Hypergames Hypergame analysis is a way for formally modeling misunderstandings and
determining their strategic consequences. Because a conflict may contain
misperceptions, based upon faulty interpretations of reality, hypergames
possess multiple levels of perception (Takahashi et al. 1984, Hipel et al. 1988,
Wang et al. 1988, 1989, Wang and Hipel 2009, Aljefri et al. 2014, 2016,
2018). The concept of a perceptual graph model can also capture
misperceptions (Obeidi et al. 2009a, b).

them, the ordering is grey, fuzzy, and probabilistic preferences. In fact, unknown
preferences require even less information than these three.

As can be seen in the bottom row of Table10.2, one can also consider any com-
bination of the aforementioned approach to preference uncertainty. For example,
as indicated in the lower row of Table10.1, one can consider hybrid preference in
which unknown preference is combined with degree or strength of preference (three
degrees) for employment in individual (Chap.7) and coalition (Chap.8) stability cal-
culations. In reality, one could have any sensible combination of unknown, grey,
fuzzy and probabilistic preference with degree of preference. Moreover, both logical
and matrix formulations of these combinations could be studied. Table10.1 provides
a summary of the key ideas presented in earlier chapters in the book, as well as other
concepts, such as attitude-base preferences (Inohara et al. 2007, BernathWalker et al.
2012) and misperceived preferences (Wang et al. 1989), which are not addressed in
this book. Significant gains have been made with continuing research being carried
outwith respect to attitudes, emotions andmispreceptions (hypergames) as explained
in Table10.3. Can positive, neutral or negative attitudes affect the evolution of a dis-
pute? The answer is a resounding yes and this idea has been operationalized within
the graph model. When combined with appropriate definitions for stability, one can
calculate what equilibria could occur according to the different attitudes of the DMs
involved in a dispute. In a given conflict, for instance, one may have DMs who are
positive, neutral or negative for which possible resolutions can be determined. When
all DMs have a positive attitude, as would be expected, often win/win resolution
can be achieved. One way to capture emotions is to use strength of preference as
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Table 10.4 Power in the graph model

Type Explanation

Hierarchical
structures

In a hierarchical conflict a common decision maker may be involved in two or
more conflicts, such as when a federal government interacts separately with
each province over an environmental issue (He et al. 2013, 2014, 2017a, b,
2018).

Power
asymmetry

A DM in a conflict can influence the preferences of other DMs by taking
advantage of additional options reflecting the particular DM’s more powerful
position (Yu et al. 2015).

explained in the right column of Table10.3. However, other means are being pursued
for operationalizing the concept of emotions. For instance, when one is extremely
angry one may not think creatively under this self-induced mentality and thereby
not envision obvious ways to resolve a dispute. This blocking of potential insightful
solutions can be captured bywhat is called a perceptual graph (Obeidi et al. 2009a, b).

Within a hypergame situation mentioned in the bottom row of Table10.3, one or
more DMs in a dispute have amisperception about what is taking place. For example,
in a military situation, one may falsely imagine that an opponent is stronger than
expected when this is not the case. In fact, a DM can have a misunderstanding about
preferences, options, states and even which DMs are participating in a conflict or
any combination of these misperceptions. Hypergame modeling and analysis have
been defined within the conflict analysis approach of Fraser and Hipel (1979, 1984)
and applied to a range of different kinds of conflicts. However, work is ongoing to
formalize the hypergame idea within the graph model paradigm (Aljefri et al. 2018)
and provide matrix definitions so it can be implemented as a part of a DSS.

One may naturally think that a more powerful DM should tend to steer a conflict
in a direction that will be more desirable for itself. Power, in reality, can be taken into
account in the existing version of the graphmodel. For instance, amore powerful DM
may have stronger options to invoke under conflict. In the Vietnam war, the United
States had the capability to support the South Vietnamese regime and to attack its
enemies whereas North Vietnam did not have the option of directly attacking the
US mainland. Scenarios in which the US directly invaded North Vietnam or bombed
military and industrial targets in the North would be greatly less preferred to the
North Vietnamese to those situations in which the US did not directly attack the
North.

Table10.4 describes two advances that have been made in directly expanding the
graph model to formally handle power: hierarchical conflicts and power asymmetry.
Countries like France, China and Russia which hold significant amounts of power
within their central governments can deal more effectively with different competing
regions in their countries as well as with external disputes such as negotiations
involving reductions in greenhouse gas releases to avert catastrophic climate change
from taking place. As indicated in the lower row of Table10.4, another way to
formally handle power in the graph model is via power asymmetry.
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Table 10.5 Further extensions of solution concepts in the graph model

Type Explanation

Limited-move
stability (LS)

Under LS at horizon h, a given DM can think h moves and countermoves into
the future when assessing stability. If the DM is better off to stay at the initial
state, this state is stable at horizon h (Zagare 1984, Kilgour 1985, Kilgour
et al. 1987).

Non-myopic
stability (NM)

Non-myopic stability is the limiting case of limited-move stability as the
horizon h increases without bound (Brams and Wittman 1981, Kilgour 1984,
Kilgour 1985, Kilgour et al. 1987).

Stackelberg
equilibrium
(ST)

For Stackelberg equilibrium, the DM who holds the more powerful position is
called the leader, and the other, who reacts to the leader, is called the follower
(von Stackelberg 1934).

Policy stability A policy is defined as a plan of actions for a DM that specifies the DM’s
intended action starting at every possible state in a graph model of a conflict
(Zeng et al. 2005, 2007).

Generalized
metarational
stability

A metarational tree is defined within GMCR, providing a general framework
within which rational behavior among DMs can be described for any number
of moves (Zeng et al. 2006, 2007).

As mentioned at the start of this chapter and indicated in Table10.1, the four types
of solution concepts for explaining human behavior under conflict for both compet-
itive and more collaborative human behavior and discussed in this book are Nash,
general metarational, symmetric metarational, and sequential stabilities. Table10.5
furnishes a summary of additional solution concepts which have been defined and
are being expanded for modeling potential human interactions in a conflict situa-
tion. As more kinds of human behavior in competitive situations are observed in the
future, one can mathematically define them along with devising appropriate logical
and matrix based algorithms to permit them to be incorporated into a flexible DSS.

Limited-move stability (LS) (Zagare 1984, Kilgour 1985, Kilgour et al. 1987),
non-myopic stability (NM) (Brams andWittman 1981, Kilgour 1984, 1985, Kilgour
et al. 1987), and Stackelberg equilibrium (ST) (von Stackelberg 1934) all assume that
the preferences of DMs are ordinal or transitive. On the other hand, Nash stability,
GMR, SMR, and SEQ, as well as the two stabilities given at the bottom of Table10.5
only require relative pairwise preference information, which could be intransitive or
transitive.

10.3.2 Expansions of Systems Investigations in Conflict
Resolution

A system of systems (SoS) engineering approach to sensibly addressing com-
plex problems is described in Sect. 2.4.1. In general, a paradigm for categorizing
approaches for solving complex SoS situations is according to forward investiga-



10.3 Ongoing and Future Developments in the Graph Model Methodology 419

Fig. 10.6 The perspective of future development in GMCR

tions, inverse engineering and “black box system” determination. Figure10.6 dis-
plays these three basic circumstances with respect to problem solving using the
GMCR methodology.

As can be seen, the top diagram displays how a forward investigation is carried
out. Given the input to a graph model in terms of DMs, options, preferences and
other related information, a GMCR engine executes stability calculations which
produce the output consistingof individual stabilityfindings for eachDMwith respect
to a range of solution concepts, equilibria, and insightful findings. This forward
investigation, which is the approach utilized in the earlier chapters in this book, is
incorporated into the three existing DSS, mentioned in Sect. 10.1.2. However, one
may also wish to employ the other two kinds of approaches shown as the middle and
lower graphs in Fig. 10.6.

In the inverse investigation, an analyst may wish to know what preferences are
required by DMs in order to reach a desired equilibrium such as a win/win res-
olution. In a conflict having three DMs, for instance, one may wish to ascertain
what preference structures by all three DMs may produce a desirable equilibrium
based on specified types of solution concepts. In practice, an analyst may wish to
not change the preferences of two out of three “reasonable” DMs but want to know
the preferences needed by an “unreasonable” third DM to create a better final equi-
librium. Moreover, for this DM, an analyst may “fix” part of the DM’s preference
and then want to determine how the remaining preferences over certain states need
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to change to create a final desirable resolution. The existing system called GMCR+
in Sect. 10.1.2 can handle certain aspects of inverse GMCR using an “exhaustive
enumeration” approach to carry out an inverse GMCR study. This type of decision
technology could be useful in what is called Third Party Intervention, in which a
facilitator tries to influence disputants participating in a negotiation to change their
preferences in a way that will bring about a win/win resolution (Hipel et al. 2016).
Research is needed to develop an analytical approach to the inverse problem in order
to design an efficient engine for employment in inverse GMCR. In related research,
Garcia and Hipel (2017) developed an algorithm to determine preferences of DMs
in a conflict based on the observed actions that they take.

In the third type of investigation depicted at the bottom of Fig. 10.6, one is address-
ing the problem inwhich the input and output are known and onewishes to determine
the behavior or “black box system” that caused this. Wang et al. (2018) designed
an analytical procedure based on a matrix formulation of GMCR (see Sect. 3.3) for
determining the behavior being practiced by the DMs in a conflict given the input and
output. A physical system model analogy for behavioral GMCR can be explained
in terms of ground penetrating radar to determine what is under the surface of the
land, such as the remains of an ancient civilization. A technician has radar equipment
for shooting known beams of ground penetrating radar into the ground as well as
equipment for receiving the signals which bounce back to the surface. Therefore,
given the known radar input and the measured radar output what is the “black box”
or system under the surface of the earth, as depicted in Fig. 10.7?

As can be appreciated from the discussion surrounding Fig. 10.6, a rich range of
research remains to be done in all three types of investigations. Section10.3.1 men-
tions ongoing and future studies for enhancing the forward investigation displayed
at the top of Fig. 10.6. In fact, very little research has been carried out in the inverse
investigation except for initial research by Sakakibara et al. (2002) and Kinsara et al.
(2015a). Accordingly, all of the developments made so far within a forward investi-
gation have to be “re-engineered” and expanded to handle the inverse investigation

Fig. 10.7 The “black box system” of ground penetrating radar
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and “black box” study displayed as the middle and lower graphs in Fig. 10.6, respec-
tively. Some of the new challenging methodological developments will certainly be
inspired by complex real-world problems that must be more realistically addressed.

10.4 Problems

10.4.1 Select three key references which define what constitutes a decision support
system. Summarize these definitions and explain which particular definition you
prefer and why.

10.4.2 Find a recent paper dealing with decision support systems which appeared
in a water resources journal such as Water Resources Research, Journal of Water
Resources Planning and Management, Journal of Hydrology, and Journal of the
American Water Resources Association. In not more than two pages, outline the
capabilities of the particular DSS developed in the paper with an emphasis on the
features that you particularly like. Describe some drawbacks of the DSS and explain
how you think they could be overcome.

10.4.3 The decision support system calledGMCR II for implementing various capa-
bilities of the Graph Model for Conflict Resolution (GMCR) methodology is men-
tioned in Sect. 10.1.2. By referring to the papers by Fang et al. (2003a, b) and Hipel
et al. (1997), explain in more detail than the overview given in Sect. 10.1.2 the main
capabilities of GMCR II. In which directions do you think it would be most worth-
while to expand GMCR II?

10.4.4 Table 1.8 in Sect. 1.2.5 in the book lists application areas to which theGMCR
methodology has been applied. Some of these applications involved the employment
of the decision support system GMCR II referred to in Sect. 10.1.2. Select a specific
application in which GMCR II has been utilized which is of direct interest to you.
Describe in not more than one page the strategic insights that the authors of the
paper which you selected discovered when they used GMCR II to formally study
their conflict.

10.4.5 GMCR+, which is mentioned in Sect. 10.1.2, is a decision support system for
applying the GMCR methodology to actual disputes. In more detail than provided
in Sect. 10.1.2, describe the main capabilities of GMCR+ by reading the papers of
Kinsara et al. (2015b, 2018). How would you like to see GMCR+ expanded and
enhanced?

10.4.6 Auniversal design of a decision support system for implementing theGMCR
methodology in practice is put forward in Sect. 10.2. What are the particular charac-
teristics of this basic design that you especially like and can you provide recommen-
dations on how it can be improved? What particular programming language or set
of programming languages would you recommend for coding this universal design?
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10.4.7 The components of the Output Subsystem for a universal design of a GMCR
decision support system are put forward in Sect. 10.2.4. In your opinion,what specific
features are themost important to include in theOutput Subsystem in order to enhance
the strategic insights that you can gain in a formal conflict investigation?

10.4.8 In Sect. 10.3.1, ongoing expansions of the GMCRmethodology are outlined.
If you were to prioritize enhancements that should be incorporated into a decision
support system, in what order would you rank them? Explain why you selected your
particular ordering.

10.4.9 Table10.2 and the first part of Sect. 10.3.2 provide an explanation as to how
the GMCRmethodology could be expanded from a systems thinking perspective. By
referring to the published paper by Wang et al. (2018), explain how the behavioral
GMCR procedure works. Why is this important in practical applications?

10.4.10 Using a physical systems explanation, explain how the forward, inverse and
behavioral (or engine) procedure in Fig. 10.6 would work. You may wish to do this
in terms of a specific physical systems problem.

10.4.11 Table10.5 furnishes a list of further extensions of solution concepts within
the GMCR paradigm and the associated implementation with a decision support sys-
tem. Which particular expansion would be of particular importance to you? Explain
why.

10.4.12 Beyondopportunitiesmentioned in Sect. 10.3, howwould you like to see the
GMCRmethodology enhanced and expanded? Explain the reasons for your opinion.
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