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Abstract
Interleukin-1 and other IL-1 family members 
are key players in immunity and inflam mation.

The activation of the IL-1 system is tightly 
regulated, through ligands with antagonistic 
or anti-inflammatory activity, or decoy and 
negative regulatory receptors. IL-1R2 and 
IL-1R8 (also known as SIGIRR) are members 
of the ILR family acting as negative regulators 
of the IL-1 system. IL-1R2 binds IL-1 and the 
accessory protein IL-1RAcP without activat-
ing signaling, thus modulating IL-1 availabil-
ity for the signaling receptor. IL-1R8 dampens 
IL-1 receptor- and Toll Like Receptor- 
mediated cell activation and is a component of 
the receptor complex recognizing the anti- 
inflammatory cytokine IL-37.

The deregulated activation of the IL-1 sys-
tem is the potential cause of detrimental local 
or systemic inflammatory reactions. Here, we 
summarize our current understanding of the 
function of IL-1R2 and IL-1R8, focusing on 

their role in pathological conditions, ranging 
from infectious and sterile inflammation, to 
cancer-related inflammation.
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1  Introduction

Innate and adaptive immunity cells are tightly 
regulated by a plethora of cytokines and recep-
tors. The Interleukin-1 system plays a crucial role 
in controlling immune responses and inflamma-
tory processes [1, 2]. IL-1 family ligands include 
7 molecules with agonist activity (IL-1α, IL-1β, 
IL-18, IL-33, IL-36α, β, and γ), three receptor 
antagonists (IL-1Ra, IL-36Ra and IL-38), and an 
anti-inflammatory cytokine (IL-37). The IL-1R 
family members include 11 molecules [IL-1R1, 
IL-1R2, IL-1R3 (IL-1RAcP), IL-1R4 (ST2), 
IL-1R5 (IL-18Rα), IL-1R6 (IL-1Rrp2, IL-36R), 
IL-1R7 (IL-18Rβ), IL-1R8 (TIR8, also known as 
SIGIRR), IL-1R9 (TIGIRR-2), IL-1R10 
(TIGIRR-1)] (Fig. 1) [2].

ILRs are characterized by an evolutionarily 
conserved structure which consists of Ig-like 
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extracellular domains and an intracellular 
Toll-IL-1 resistance (TIR) domain, that is shared 
with Toll-like receptors (TLRs) [3]. Ligand bind-
ing induces the dimerization through the TIR 
domain of the specific receptor with a second 
receptor molecule, acting as an accessory protein 
and establishing an intracellular signaling plat-
form, which recruits one of the adaptor proteins 
MyD88, MAL, TRIF, TRAM or SARM. In turn, 
these molecular complexes unleash protein 
kinases activation (e.g. Tumor necrosis factor 
receptor-associated factor 6 (TRAF6) and IL-1R 
associated kinases (IRAKs),) and trigger a cohort 
of downstream targets such as nuclear factor-κB 
(NFκB), activator protein-1 (AP-1), c-Jun 

N-terminal kinase (JNK), p38 mitogen- associated 
protein kinase, extracellular signal-regulated 
kinases (ERKs), mitogen-activated protein 
kinases (MAPKs), and interferon (IFN)-
regulatory factors (IRF) [4–6]. The modulation 
of multiple Transcriptional Factors (TFs) orches-
trates a robust pro-inflammatory reaction, enforc-
ing both the innate and adaptive immunity 
[7–9].

The fundamental role of ILR family in inflam-
mation is underlined by a broad spectrum of 
inflammatory, autoimmune and neoplastic dis-
eases correlated to deregulation of the IL-1 sys-
tem. For instance, several lines of evidence 
indicate that IL-1 and its regulation play a pivotal 
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Fig. 1 The IL-1 system Ligands of the IL-1 receptor 
(ILR) family are shown (IL-1α, IL-1β, IL-38, IL-33, 
IL-36α, IL-36β, IL-36γ and IL-18). IL-1R, IL-33R, 
IL-36R and IL-18R complexes activate signal transduc-
tion. IL-R2, sIL-1R2, IL-1Ra, IL-36Ra IL-18BP and 
IL-1R8 are negative regulators  acting with different 

mechanisms. IL-37 is an anti- inflammatory cytokine, sig-
naling upon the formation of a tripartite complex (IL-37/
IL-1R5/IL-1R8). IL-1R3 is an accessory protein for 
IL-R1, IL-1R2, IL-1R4 and IL-1R6. Ligands for IL-1R8, 
IL-1R9 and IL-1R10 are still partially defined
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role in cancer-related inflammation and progres-
sive tissue damages in chronic inflammatory con-
ditions. This link emphasizes the implications of 
ILR and cytokine targeting as therapeutic strat-
egy in several pathological conditions associated 
with acute and chronic inflammation, ranging 
from cardiovascular and autoimmune diseases to 
cancer [10–16].

The IL-1 system includes several extracellular 
and intracellular endogenous regulators, which 
tune ILR signaling and are necessary to restore 
homeostatic conditions. These “caretakers” are 
anti-inflammatory cytokines (IL-37, IL-38), 
receptor antagonists (IL-1Ra, IL-36Ra, and 
IL-38), scavengers and/or decoy or negative reg-
ulatory receptors (e.g. IL-1R2, IL-1R8 and 
IL-18BP), and miRNAs [17] that tune ILR sig-
naling at transcriptional and post-transcriptional 
level.

Here, we summarize our current understand-
ing of the structure and function of IL-1R2 and 
IL-1R8, two negative regulators of inflammation 
and immune responses, describing their rele-
vance in physiology and pathology.

2  The Decoy Receptor IL-1R2

2.1  IL-1R2 Protein and Function

Human IL-1R2 is a highly conserved gene local-
ized in chromosome 2, in a large cluster which 
includes several ILR members such as the recep-
tors for IL-33, IL-18 and IL-36 [18, 19].

IL-1R2 gene encodes an extensively glycosyl-
ated 68  kDa protein composed of 386 amino 
acids. The IL-1R2 extracellular domain has the 
canonical ILR Ig-like-structure, and shares 28% 
amino acid homology with IL-1R1. In contrast, 
the IL-1R2 intracellular domain is peculiar for 
the absence of a functional TIR domain, which is 
substituted by a short 29 amino acid-long cyto-
plasmic tail [20, 21]. Several enzymes, in particu-
lar the metalloproteinase ADAM17, cleave the 
full-length receptor to generate an IL-1R2 solu-
ble form with decoy activity [22–24]. Pro- 
inflammatory molecules (LPS, TNFα, leukotriene 
B4, or fMLF) trigger the enzymatic cleavage and 

the release of soluble IL-1R2 [25–28], which can 
be also generated by an alternative splicing iso-
form of the IL-1R2 transcript [29].

IL-1R2 exerts its decoy activity through dif-
ferent mechanisms. First, IL-1R2 sequesters 
IL-1R3 to generate a dominant negative receptor 
complex [30], which competes with IL-1R1 for 
the formation of a signaling receptor complex 
[31–33]. Second, the IL-1R2/IL-1R3 complex 
binds IL-1α and IL-1β, without activating the 
pro-inflammatory signaling cascade [20, 34]. In 
addition, the soluble form participates in reduc-
ing IL-1 availability for the signaling receptor, 
since soluble IL-1R2 and IL-1R3 are found at 
high concentration (in the order of ng/ml) in the 
blood, and their physical interaction increases the 
affinity for IL-1α and IL-1β [34, 35]. Finally, 
IL-1R2 is present in the cytoplasm and interacts 
with pro-IL-1α preventing cleavage and activa-
tion by different enzymes (calpain, granzyme B, 
chymase, and elastase) during necrosis [34–37].

2.2  IL-1R2 Expression 
and Regulation

IL-1R2 is the predominant IL-1 receptor in the 
myeloid compartment, in particular monocytes, 
macrophages and neutrophils, and it is overex-
pressed in M2 macrophages [20, 34, 38, 39]. In 
the lymphoid compartment, IL-1R2 shows a 
high expression level in B cells and in T regula-
tory cells (Treg) and it is up-regulated upon 
TCR stimulation [20, 34, 38, 39]. In colorectal 
and non-small-cell lung cancers, Treg express 
higher levels of IL-1R2 compared to Th1 and 
Th17 tumor infiltrating lymphocytes [40]. 
Similarly, breast cancer infiltrating Tregs 
express higher IL-1R2 levels compared to 
healthy breast resident Tregs and circulating 
Tregs [41]. The functional activity of IL-1R2 in 
tumor infiltrating Tregs and the molecular 
mechanisms regulating its expression are still 
unknown. Interestingly, IL-1β inhibition signifi-
cantly reduced the risk of incident lung cancer 
and lung cancer mortality in a large cohort of 
atherosclerosis patients, suggesting the rele-
vance of IL-1 regulation in cancer [16].

Regulation of Immunity and Disease by the IL-1 Receptor Family Members IL-1R2 and IL-1R8
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In the mouse, Il1r2 is widely expressed in 
innate and adaptive immune cells of myeloid and 
lymphoid origin [25, 42–50], it is up-regulated by 
several anti-inflammatory stimuli (e.g. IL-4, 
IL-13, IL-27, IL-10, glucocorticoid hormones 
and prostaglandins) [20, 38, 51–56], and down- 
regulated by pro-inflammatory and chemotactic 
molecules (e.g. LPS, IFNγ, TNFα, reactive oxy-
gen intermediates and phorbol myristate acetate) 
[22, 27, 28, 54, 57].

The regulation of IL-1R2 expression on the 
myeloid compartment has been associated with 
the pathogenesis of several inflammatory dis-
eases. Atherosclerosis is associated with vessel 
wall inflammation and IL-1 has long been known 
to drive atherosclerosis and its complications. 
Interestingly, reduced expression of IL-1R2 was 
observed in atherosclerosis vascular lesions, 
which suggests defective tuning of IL-1 activity 
[48]. Based on the role of IL-1  in the patho-
genesis of cardiovascular diseases, a large pro-
spective study was conducted using anti-IL-1β 
(Canakinumab) in high-risk atherosclerosis 
patients, which showed that treatment led to a 
significantly lower rate of recurrent cardiovascu-
lar events [15].

Up-regulation of IL-1R2  in microglia repre-
sents a protective mechanism of the central ner-
vous system suppressing IL-1β-mediated brain 
inflammation and neurotoxicity [45, 46, 58]. 
IL-1R2 down-regulation has been associated 
with type II osteoarthritis [59] and correlated to 
bone resorption upon IL-1 stimulation [47].

The relevance of decoy receptors as funda-
mental brakes of the immune response is dem-
onstrated by their exploitation by viruses and 
bacteria as pathogen evasion strategies. For 
instance, double strand DNA viruses (Pox-
viruses and Herpesviruses) have acquired 
decoy receptor genes through genetic recom-
bination with the host genome [60]. In lethal 
Listeria monocytogenes infection, IL-1R2 
expression is up- regulated in monocytes [42], 
and protein A of Staphylococcus aureus was 
shown to induce soluble IL-1R2 by stimulat-
ing ADAM17-mediated cleavage, resulting in 
IL-1β sequestration and decreased bacterial 
eradication [61].

2.3  IL-1R2 Functional Role In Vivo

Several studies have demonstrated the anti- 
inflammatory role of IL-1R2 in vivo. IL-1R2 
deficiency exacerbates endometriosis [62], auto-
immune myocarditis [63] and skin inflammation 
[64], through the inhibition of IL-1 signaling and 
therefore Th17 cell activation [65].

IL-1R2 deficient mice were also more suscep-
tible to arthritis. In collagen-induced arthritis, 
IL-1R2-deficient macrophages increased their 
responsiveness to IL-1 and governed the pro- 
inflammatory response [59, 66, 67]. In contrast, 
in the K/BxN serum transfer-induced arthritis, 
increased joint degeneration has been attributed 
to neutrophils, through a not cell autonomous 
mechanism [68]. IL-1R2-deficiency on neutro-
phils increased the IL-1-induced response of 
fibroblasts, suggesting that IL-1R2 acts in trans, 
as soluble form shed upon IL-1β treatment. 
However, IL-1R2-deficiency did not affect the 
acute inflammation induced by systemic admin-
istration of IL-1β or LPS [64, 68], in contrast 
with pleiotropic effects of IL-1Ra-deficiency [69, 
70].

Recently, it was shown that IL-1R2 was 
expressed together with the IL-1 receptor antago-
nist IL-1Ra, by follicular regulatory T (Tfr) cells, 
which are responsible for the modulation of fol-
licular helper T (Tfh) cell effector functions and 
therefore B cell activation in the germinal center. 
IL-1 treatment induced IL-21 and IL-4 produc-
tion by Tfh cells and this effect was inhibited in 
the presence of Tfr cells, possibly because of 
IL-1 capture by IL-1R2 [71].

2.4  IL-1R2 Like Prognostic 
and Diagnostic Marker

IL-1R2 shedding in pathological conditions has 
encouraged the studies of IL-1R2 soluble form as 
diagnostic and prognostic marker. IL-1R2 is 
released in plasma in physiological conditions 
(5–10  ng/ml), but its levels are proportionally 
increased upon infections (acute meningococcal 
infection, experimental endotoxemia, trauma, 
necrotizing enterocolitis, acute respiratory 
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 distress syndrome, sepsis) [72]. IL-1R2 soluble 
form was suggested as biomarker in multiple 
sclerosis [73] and in Alzheimer’s disease [74], 
whereas in the synovial fluid and plasma of rheu-
matoid arthritis patients IL-1R2 was correlated 
with symptom amelioration [75, 76]. Soluble 
IL-1R2 has been suggested as good prognostic 
biomarker in pancreas islet transplantation [77] 
and in inflammatory bowel disease [78] and as 
biomarker to monitor the clinical outcome of 
TNFα blockade with Etanercept [79] and in ste-
roid treatment response [80].

Finally, IL-1R2 over-expression has been also 
observed in psoriatic patients [81] and in several 
solid tumors such as prostatic cancer, ductal ade-
nocarcinoma [82], benign prostatic hyperplasia 
[83] and ovarian cancer [84], but the functional 
implication of IL-1R2 in neoplastic transforma-
tion is unknown. In ulcerative colitis, IL-1R2 
expression was correlated to remission [78, 85] 
and to steroid response [80].

3  IL-1R8 (TIR8/SIGIRR)

3.1  IL-1R8 Gene and Protein

IL-1R8 is an antisense gene on human chromo-
some 11 [86], with three main isoforms that share 
a common coding DNA sequence. The murine 
locus is on chromosome 7. The gene is well con-
served among vertebrates, and the human IL-1R8 
protein has a primary sequence of 414 amino- 
acid with a high identity score (82%) between 
human and mouse species [87]. Despite the par-
tial identity with IL-1R1 protein (23%), IL-1R8 
has relevant structural differences: the extracel-
lular region of IL-1R8 has only a single Ig domain 
and the intracellular TIR domain has a long tail of 
95 residues. Compared to “canonical” TIR 
domains, IL-1R8 has two aminoacid substitu-
tions in Ser447 and Tyr536 (switched to Cys222 
and Leu305) and the lack of phosphorylation on 
these two residues influences IL-1R8 signaling 
activity.

Similarly to IL-1R2, IL-1R8 is N- and 
O-glycosylated on the extracellular domain, and 
these post-transcriptional modifications have been 

described as functionally relevant in a study per-
formed in colon cancer patients (see below) [88].

IL-1R8 is expressed in the majority of epithe-
lial tissues and it is particularly enriched in liver, 
in kidney and in lymphoid organs. The expres-
sion in leukocytes is ubiquitous, showing a higher 
expression level in NK cells and T lymphocytes, 
and it is also expressed in platelets [86, 89–91] 
(Fig. 2).

IL-1R8 was shown to be downregulated upon 
bacterial infections by Pseudomonas aeruginosa 
[92], or Toxoplasma gondii [93], in pyelonephri-
tis induced by E. coli [94] and in necrotizing 
enterocolitis [95]. A reduced expression of IL- 
1R8 was also observed in acute inflammation, in 
psoriatic arthritis, in asymptomatic bacteriuria 
[96, 97], in colitis, and after stimulation with fla-
gellin and LPS in vivo and in vitro [91, 98–100]. 
Treatment with LPS was shown to downregulate 
IL-1R8  in monocytes and neutrophils [98] 
through the inhibition of SP1 binding on IL-1R8 
promoter [98, 101]. However, an increased 
expression of IL-1R8 was observed in monocytes 
in sepsis and sterile inflammation and this corre-
lated with a tolerogenic phenotype after LPS and 
Pam3CysSK4 stimulation [102]. Moreover, amy-
loid β treatment has been proposed to down- 
regulate IL-1R8  in microglia and hippocampal 
tissue through the transcription factor peroxi-
some proliferator-activated receptor (PPAR)γ 
[103]. Other stimuli involved in tuning IL-1R8 
are the neuropeptide vasoactive intestinal peptide 
(VIP), Lactobacillus jensenii [104], and bacterial 
immunogenic molecules [105], which mainly 
affect myeloid derived cells (macrophages, DC, 
Langerhans cells).

The deregulation of IL-1R8 has been associ-
ated with malignant transformation. In chronic 
lymphocytic leukemia (CLL), neoplastic B cells 
showed lower expression of IL-1R8 compared to 
B cells from healthy donors [106]. Several genes 
are downregulated through DNA 
 hypermethylation in CLL, but no difference was 
observed in IL-1R8 methylation. However, treat-
ment with the hypomethylating drug 
5-Azacytidine led to IL-1R8 overexpression, 
suggesting an indirect regulation of IL-1R8 
mediated by 5-Azacytidine [106]. IL-1R8 loss of 
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function has been described in colon tumorigen-
esis, which has been explained with the existence 
of a dominant negative isoform of IL-1R8, a trun-
cated protein that was shown to trap the main 
IL-1R8 protein isoform in the endoplasmic retic-
ulum [88]. Finally, RNAseq data and experiments 
on tumor cell lines showed that IL-1R8 was 
upregulated in breast cancer [107].

Other IL-1R8 isoforms are emerging, but 
their function is unknown. Recently a longer iso-
form called IL-1R8L1 was characterized in 
tumor epithelial cell lines (e.g. Hela, HT-29 and 
PC3), in a neuroblastoma cell line (SK-N-HS), 
in leukemic cell lines (e.g. Jurkat, MEC1, 
Ramos, Daudi, and THP1), and in human healthy 
tissues (e.g. hearth, small intestine, kidney, liver, 
lung, stomach, spleen, ovary, and testis) [108]. 
LPS stimulation was shown to downregulate 
IL-1R8L1 in THP1 cell lines, indicating a com-
mon regulatory mechanism shared by IL-1R8 
isoforms [108].

3.2  Functional Roles of IL-1R8

IL-1R8-deficient mice have demonstrated the 
role of IL-1R8 in reducing NFκB and JNK acti-
vation, inhibiting ILRs and TLRs (e.g. IL-1R1, 
IL-1R5/IL-18Rα, IL-1R4/ST2, TLR1, TLR2, 
TLR4, TLR7, TLR9, TLR3) downstream signal-
ing pathways [90, 91, 109–114].

IL-1R8 is recruited to the ligand-receptor 
complex, and the BB-loop structure of IL-1R8 
TIR domain inhibits the dimerization of MyD88 
[86, 89, 109, 111, 115, 116]. In silico studies of 
protein modeling have suggested a regulatory 
mechanism similar to IRAK-M, in which the 
Myddosome complex is retained on receptors 
and cannot drive the pro-inflammatory cascade 
[117]. Furthermore, IL-1R8 extracellular domain 
inhibits the reciprocal interaction between 
IL-1R1 and IL-1R3 [111]. The steric competition 
exerted by IL-1R8 has been also proposed to 
explain the IL-1R8-mediated regulation of TLR3 

IL-1R8
ILRs TLRs

•  Natural Killer cell 
   maturation and activation
•  ILC1 activation

•  T cell polarization 
   and activation

•  Monocyte, 
   Macrophage and DC 
   activation

•  Platelet activation

•  Epithelium activation

IL-18

IL-1
IL-33

LPS

LPS
IL-1

LPS
IL-1
…

Fig. 2 IL-1R8 functions in different cell types IL-1R8 
is widely express in both the hematopoietic and non-
hematopoietic compartment and governs cell differen-
tiation and activation. In particular, IL-1R8 modulates 
NK cell maturation and effector functions; ILC1 

 activation; T cell activation and polarization; monocyte, 
macrophage, DC, platelet and epithelium activation, 
through the negative regulation of IL-1 family members 
or microbial moieties acting on ILRs and TLRs, 
respectively
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signaling, in which IL-1R8 blocks TRAM 
homodimerization and TLR4-TRAM and TRIF- 
TRAM interactions [117–119].

The decoy activity of IL-1R8 is also involved 
in the regulation of JNK and mTOR pathways in 
lymphoid and not lymphoid cells (e.g. Th17, NK 
cells and intestinal epithelium) [90, 120, 121].

The deregulation of the IL-1 system is part of 
pathogen evasion strategies, as mentioned in case 
of IL-1R2 [122]. Indeed, several bacteria (e.g. 
Brucella melitensis, E. coli, Salmonella enterica, 
Pseudomonas denitrificans and P. aeruginosa) 
[122–125] have evolved TIR-containing proteins 
(Tcps) that dampen TIR-related pathway, sug-
gesting that Tcps might be evolutionary linked to 
IL-1R8.

3.3  IL-1R8 as a Coreceptor 
of IL-1R5/IL-18Rα for IL-37

In the last decade new anti-inflammatory inter-
leukins involved in controlling TLR pro- 
inflammatory pathways were identified. In this 
regard, IL-37 has emerged as a bioactive mole-
cule in leukocytes, in particular in macrophages, 
and epithelial cells, and IL-37-transgenic mice 
(IL-37tg mice) were reported to be refractory to 
inflammation [126]. Intriguingly, the formation 
of a tripartite complex composed by IL-37, IL- 
1R8 and IL-1R5 was demonstrated to be required 
for IL-37 signaling in human PBMCs and murine 
bone marrow-derived macrophages. This interac-
tion induced an immunosuppressive pathway, 
inhibiting MAPK, NFκB, mTOR, TAK1 and 
Fyn, and activating STAT3, Mer, PTEN and 
p62(dok) signaling [127, 128]. IL-37 mediated 
protection was abolished by IL-1R8-deficiency 
in LPS-induced endotoxemia, A. fumigatus pul-
monary infection [127, 129], and OVA-induced 
asthma [130].

IL-37 was also implicated in tuning metabo-
lism and in AMPK activation in adipocytes and 
macrophages [131], with a significant effects on 
obesity, insulin response and glucose tolerance. 
In this context, IL-37 and IL-1R5/IL-1R8 recep-
tor complex led to the inhibition of mTOR sig-
naling and activation of STAT6 and Foxo TF 

family [127], which triggered a pseudo- 
starvational state in macrophages and DCs. 
Furthermore, IL-37 was described as a regulatory 
molecule in muscle cells, orchestrating AMPK 
pathway and improving exercise performance 
[132]. At the cellular level, IL-37 potentiated oxi-
dative phosphorylation in mitochondria modulat-
ing redox state in the organelles [132]. Finally, 
recombinant human IL-37 increased muscular 
resistance in healthy mice and in models of sys-
temic inflammation (upon LPS administration), 
and IL-1R8-deficiency abrogated IL-37 effects 
on fatigue tolerance [132]. These lines of experi-
mental evidence support the potential targeting of 
IL-37/IL-1R8 axis in patients, in which chronic 
inflammation leaded muscle degeneration and 
impaired physical mobility [133].

3.4  IL-1R8 in Infections 
and Inflammation

IL-1R8-deficient mice exhibited an overwhelm-
ing local and systemic inflammation and tissue 
damage after infection with several pathogens 
(Fig.  3). In fungal infection models such as 
Candida albicans or Aspergillus fumigatus, the 
absence of IL-1R8 led to enhanced susceptibility 
to mucosal and disseminated or lung infection, 
respectively, with increased mortality and fungal 
burden, increased activation of IL-1 signaling 
and Th17 cell response and reduced Treg activa-
tion [134]. In Mycobacterium tuberculosis infec-
tion, IL-1R8-deficiency was associated with 
exacerbated inflammation, in terms of macro-
phage and neutrophil lung infiltration and 
increased systemic levels of inflammatory 
 cytokines. The higher mortality observed in 
IL-1R8- deficient mice was prevented by IL-1 and 
TNFα inhibition and was not dependent on the 
increased mycobacteria load [135]. In acute lung 
infections with P. aeruginosa, IL-1R8-deficient 
mice showed deregulation of IL-1 signaling, 
leading to higher mortality and bacterial load, 
and increased production of pro-inflammatory 
cytokines [92]. Moreover, in a model of keratitis 
induced by P. aeruginosa, IL-1R8 was involved 
in preventing tissue damage, through the negative 
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regulation of IL-1R1 and TLR4 signaling in Th1 
cells [136]. In humans, 3 SNPs (rs10902158, 
rs7105848, rs7111432) were identified in the 
IL-1R8 gene, which correlated with the develop-
ment of both pulmonary tuberculosis and tuber-
culous meningitis [137]. Increased susceptibility 
to LPS- induced mortality was described in 
IL-1R8-deficient mice on a BALB/c background 
[109], but not in a mixed C57BL/6  ×  129/Sv 
background [110].

In contrast, IL-1R8-deficiency was protective 
in a model of experimental urinary tract infection 
(UTI) induced by uropathogenic E. coli, causing 
reduced renal bacteria outgrowth and renal dys-
function. The initial recruitment of leukocytes in 
the kidney was increased, in line with increased 
production of TNFα and chemokines (CXCL1, 
CCL2 and CCL3) by tubular epithelial cells after 
stimulation with E. coli [94]. In line with this, in 
a human bladder epithelial cell line (BECs), 
IL-1R8 silencing was associated with increased 

JNK, p38 and ERK1/2 activation and IL-6 and 
IL-8 production, after stimulation with LPS 
[100]. Similarly, in Streptococcus pneumoniae 
pneumonia and sepsis, IL-1R8-deficiency caused 
reduced mortality, bacterial outgrowth and dis-
semination [138].

In Citrobacter rodentium infection in mice, 
that mimics intestinal infections by enteric bacte-
rial pathogens in humans, IL-1R8-deficiency was 
associated with microbiota depletion, due to 
enhanced IL-1R1 and MyD88-driven 
 inflammatory and anti-microbial response, and 
therefore causing exacerbated pathogen coloni-
zation [139].

Thus, depending on the effect of inflammatory 
responses in specific infections, IL-1R8 may play 
a protective or detrimental role in the innate resis-
tance to pathogens, emerging as a key player in 
the regulation of the complex and delicate bal-
ance between protective immune responses and 
inflammation and host tissue damage.
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Fig. 3 Roles of IL-1R8 in 
pathology IL-1R8 emerged 
as a crucial modulator of 
inflammation, and innate 
and adaptive immune res-
ponses in several pathologi-
cal contexts and it is also 
part of the tripartite com-
plex necessary for IL-37 
signaling. IL-1R8 plays a 
fundamental role in models 
of infections, autoimmu-
nity, allergy, renal inflam-
mation, platelet activation, 
brain inflammation and 
neuronal plasticity, intesti-
nal inflammation and can-
cer (colorectal cancer, CLL 
and breast cancer). IL-1R8 
acts as a checkpoint mole-
cule regulating NK cell 
antitumor and antiviral 
activity
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3.5  IL-1R8 in Autoimmunity 
and Allergy

IL-1 family and TLR signaling are involved in 
the pathogenesis of autoimmune diseases and 
allergy (Fig. 3). In two different models of arthri-
tis, IL-1R8-deficient mice displayed an higher 
susceptibility, associated with increased cellular 
infiltration into the affected joints [140]. In line 
with this study, IL-1R8 expression was reduced 
in the peripheral blood of patients with psoriatic 
arthritis, compared with healthy donors [96]. 
Moreover, IL-1R8-deficient mice showed 
enhanced susceptibility to psoriasis, increased 
infiltration and activation of γδ T cells, and IL-1- 
driven IL-17A expression by γδ T cells [141]. In 
experimental autoimmune encephalomyelitis 
(EAE) IL-1R8-deficient mice developed a more 
severe disease, due to an increased Th17 infiltrate 
in the central nervous system (CNS) and 
enhanced Th17 polarization and pathogenic 
functions. IL-1R8 was shown to regulate IL-1- 
dependent Th17 cell differentiation, expansion 
and effector functions, by controlling IL-1- 
induced mTOR pathway [120].

In a model of hydrocarbon oil-induced lupus, 
IL-1R8-deficiency was associated with enhanced 
TLR7-mediated activation of DCs and expansion 
of autoreactive lymphocyte clones [142]. In SLE 
patients, in particular those with nephritis, 
reduced frequency of IL-1R8+ CD4+ T cells was 
reported in [143]. The analysis of IL-1R8 gene 
allelic variants of a single missense SNP 
(rs3210908) in a large European population 
showed no correlation between IL-1R8 polymor-
phisms and SLE [144], whereas the genetic vari-
ants of SNP rs7396562 correlated with the 
susceptibility to SLE in a Chinese population 
[145]. In C57BL/6lpr/lpr mice, which develop 
delayed autoimmunity due to impaired Fas- 
induced apoptosis of autoreactive B and T cells, 
the absence of IL-1R8 determined a massive 
lymphoproliferative disorder, increased autoim-
mune lung disease, lupus nephritis and hyper-
gammaglobulinemia. The phenotype was 
associated with increased activation of DCs and 
B cells and production of proinflammatory cyto-
kines (CCL2, IL-6, and IL-12p40) and B cell 

antiapoptotic mediators (Baff/BlyS and Bcl-2) in 
response to RNA and DNA immune complexes 
or other TLR agonists [146].

In the context of IL-33-dependent allergic 
responses, IL-1R8-deficient mice showed 
increased lung inflammation, splenomegaly and 
serum levels of IL-5 and IL-13 and enhanced pro-
duction of type 2 cytokines in vitro [113]. In con-
trast, IL-1R8 alleles or haplotypes were not 
associated with asthma susceptibility or asthma- 
related conditions in a cohort of Japanese asthma 
patients [147].

3.6  IL-1R8 in Sterile Inflammation

IL-1R8 is expressed at high levels in the kidney, 
in particular in tubular epithelial cells, DCs and 
macrophages [112]. In a postischemic renal fail-
ure model, IL-1R8-deficient mice exhibit 
increased renal injury, caused by a massive acti-
vation of myeloid cells, increased intrarenal cyto-
kine and chemokine production and increased 
leukocyte recruitment [148]. In lupus nephritis, 
postischemic acute renal failure or kidney trans-
plantation, IL-1R8 expressed by hematopoietic 
cells was demonstrated to negatively modulate 
TLR activation by nucleosomes and DAMPs, 
released during cell necrosis associated with 
these conditions [142, 146, 148, 149]. In a model 
of fully mismatched kidney allotransplantation, 
IL-1R8-deficient grafts were less tolerated com-
pared with control grafts. This phenotype was 
associated with enhanced allostimulatory activity 
of DCs and consequently allogeneic adaptive 
immune responses and increased post transplant 
kidney inflammatory response, driven by ILR 
and TLR signaling [149].

3.7  IL-1R8 in the Brain

IL-1R8 is expressed in the brain by neurons, 
microglia and astrocytes [89, 150, 151] and it 
regulates LPS- or IL-1-induced neuro- 
inflammation (Fig.  3). IL-1R8-deficient mice 
exhibited a massive brain inflammation, in terms 
of CD40, ICAM, IL-6 and TNFα mRNA expres-
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sion in microglia and inflammatory cytokine pro-
duction in hippocampal tissue, upon treatment 
with LPS [152]. Even in the absence of external 
stimuli, cognitive and synaptic functions, such as 
novel object recognition, spatial reference mem-
ory, and long-term potentiation (LTP) were 
impaired. The phenotype was dependent on 
increased expression of IL-1α and high mobility 
group box 1 (HMGB1) and enhanced activation 
of IL-1R1 and TLR4 downstream signaling mol-
ecules (IRAK1, c-Jun, JNK and NFκB) [153]. 
Moreover, IL1R8 negatively regulated the anti- 
inflammatory activity of IL-36Ra in glial cells 
[150]. In addition, it was demonstrated that 
IL-1R8 regulated β-amyloid (Aβ) peptide- 
induced TLR2 signaling and inflammation in the 
brain, suggesting a potential role of IL-1R8  in 
Alzheimer’s disease (AD) and AD-associated 
neuroinflammation [103].

A recent study elucidated the molecular mech-
anisms underlying cognitive and synaptic func-
tion impairment in absence of IL-1R8 [114]. It 
was shown that IL-1R8-deficiency and the conse-
quent hyperactivation of the IL-1R pathway 
affected neuron synapse morphology, plasticity 
and function. Indeed, IL-1R8-deficient hippo-
campal neurons displayed an increased number 
of immature, thin spines and a decreased number 
of mature, mushroom spines along with a signifi-
cant reduction of spine width, and reduced ampli-
tude of miniature excitatory postsynaptic 
currents. Spine morphogenesis and plasticity 
impairment was caused by the IL-1R1-driven 
hyperactivation of the PI3K/AKT/mTOR path-
way in IL-1R8-deficient neurons, leading to and 
increased expression of methyl-CpG-binding 
protein 2 (MeCP2), a synaptopathy protein 
involved in neurological diseases, such as Rett 
syndrome and MeCP2 duplication syndrome 
[154]. Pharmacological inhibition of IL-1R1 
with IL-1Ra (Anakinra) or IL-1R1 genetic inacti-
vation normalized MeCP2 expression and cogni-
tive deficits in IL-1R8-deficient mice, revealing 
the key role of IL-1R8  in the fine tuning of 
IL-1R1 pathway, which is required for correct 
long-term potentiation [114]. Importantly, in 
cryopyrin-associated periodic syndrome (CAPS) 
patients, pharmacological inhibition of IL-1, 

reversed mental defects of the patients and 
reduced signs and symptoms of IL-1-dependent 
inflammation [155]. These results thus identify 
IL-1R8 as a key molecule involved in synaptopa-
thies through the modulation of IL-1 activity in 
neurons.

3.8  IL-1R8 in Intestinal 
Inflammation and Intestinal 
Cancer

IL-1R8-deficiency is associated with uncon-
trolled inflammation in the intestine, leading to a 
reduced survival, weight loss, intestinal bleeding 
and local tissue injury in the model of dextran 
sodium sulfate (DSS)-induced colitis [110, 156] 
(Fig.  3). The phenotype was associated with 
increased local leukocyte infiltration and higher 
level of proinflammatory cytokines (TNFα, IL-6, 
IL-1β, IL-12p40, IL-17), chemokines (CXCL1, 
CCL2) and prostaglandins [110, 156], and dem-
onstrated the regulatory function of IL-1R8  in 
epithelial cells.

IL-1R8 was also shown to inhibit the prolif-
eration and survival signals for intestinal epithe-
lial cells in colon crypts, through the regulation 
of microflora-induced ILR and TLR activation. 
Indeed, IL-1R8-deficiency was associated with 
constitutive NFκB and JNK activation and 
increased expression of Cyclin D1 and Bcl-xL 
[156]. This phenotype in healthy mice was not 
confirmed by other studies [110, 157], probably 
because of animal house-dependent variation of 
the microflora.

In agreement with the contribution of inflam-
mation in increasing the risk of cancer, IL-1R8 
was shown to act as a negative regulator of cancer- 
related inflammation and therefore cancer devel-
opment and progression in different murine 
models of colon cancer. In a model induced by the 
procarcinogen Azoxymethane (AOM) followed 
by DSS, IL-1R8-deficiency was associated with 
increased susceptibility to cancer development, 
driven by exacerbated intestinal inflammation, as 
demonstrated by deregulated intestinal permea-
bility, increased in situ production of proinflam-
matory cytokines, chemokines and  prostaglandin 
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E2 and expression of NFκB-induced genes 
involved in cell survival and proliferation (Bcl-xL 
and Cyclin D1) [156, 157]. IL-1R8 overexpres-
sion in gut epithelial cells rescued the susceptibil-
ity of IL-1R8-deficient mice to colitis-associated 
cancer development, suggesting that the regula-
tory activity of IL-1R8 in intestinal epithelial cells 
plays a central role in this model [156].

In the genetic Apcmin/+ model, which mimics 
the Familial Adenomatous Polyposis syndrome 
[158], IL-1R8 deficiency caused increased sus-
ceptibility to cancer development, due to a more 
sustained activation of the Akt/mTOR pathway, 
which is involved in cell cycle progression and 
consequent genetic instability [121].

Interestingly, in human colorectal cancer 
specimens, IL-1R8 expression was shown to be 
impaired compared with healthy tissues [88]. 
Zhao et  al. identified a dominant negative iso-
form of IL-1R8 (IL-1R8ΔE8), derived from an 
alternative splicing causing the skipping of the 
exon 8. IL-1R8ΔE8 was retained in the cytoplasm, 
showed reduced N-linked glycosylation, and 
interacted with full-length IL-1R8, acting as an 
antagonist and suppressing its function. In agree-
ment, gut epithelium-specific IL-1R8 transgenic 
mice expressing a mutant form of IL-1R8 
(IL-1R8N85/101S) that resembles IL-1R8ΔE8 isoform 
showed increased susceptibility to colon cancer. 
This indicates that IL-1R8 full functionality in 
vivo requires proper post-transcriptional modifi-
cations and cell membrane localization [88].

3.9  IL-1R8 in Chronic Lymphocytic 
Leukemia

TLR and ILR signaling are involved CLL devel-
opment and progression, together with genetic 
defects and other microenvironmental contribu-
tions [159, 160]. IL-1R8-deficient mice exhibited 
an earlier and more severe appearance of mono-
clonal B cell expansion and an increased mortal-
ity, in the mouse model of CLL (TCL1), 
mimicking the aggressive variant of human CLL 
[161]. In line with these results, human malig-
nant B cells expressed lower levels of IL-1R8 
mRNA than normal B cells [160, 162, 163].

3.10  IL-1R8 in Platelets

In a recent study it was shown that both human 
and murine platelets and megakaryocytes 
expressed high levels of IL-1R8, which emerged 
as a key player in the regulation of platelet activa-
tion in inflammation and thromboembolism [91] 
(Fig.  3). Platelets express functional TLRs and 
IL-1 family receptors (e.g. IL-1R1 and IL-18Rα) 
[91, 164, 165] and interestingly, IL-1R8- 
deficiency caused increased platelet/neutrophil 
aggregate formation, induced by LPS, IL-1β or 
IL-18 in vitro and upon systemic treatment with 
LPS in vivo [91]. IL-1R8-deficient platelets dis-
played higher active α2bβ3 and P-selectin sur-
face expression in basal conditions, suggesting a 
hyperactivated phenotype. After in vitro stimula-
tion with pro-thrombotic stimuli, Il1r8−/− plate-
lets showed enhanced aggregation amplitude and 
higher expression of α2bβ3 [91]. Moreover, 
IL-1R8-deficient mice were more susceptible to 
ADP-induced pulmonary thromboembolism, as 
shown by enhanced occlusion of vessels by fibrin 
clots and systemic levels of soluble P-selectin. 
IL-1R8-mediated regulation of IL-1 signaling 
was shown to be responsible for the hyperactivity 
of platelets in the absence of IL-1R8, since the 
phenotype was abrogated in Il1r8−/−/Il1r1−/− 
mice, in line with the reported role of IL-1β in 
platelet activation [164]. In addition, commensal 
flora-derived TLR agonists were shown to be also 
involved in the phenotype, since microflora 
depletion abrogated the enhanced platelet activa-
tion in IL-1R8-deficient mice [91]. In agreement 
with these results in the mouse, in SIRS/sepsis 
patients, which exhibit platelet dysfunction 
[166], IL-1R8 surface expression was signifi-
cantly downregulated compared to healthy con-
trols and the downregulation correlated with the 
severity of the disease. Moreover, IL-1R8 expres-
sion was shown to be higher in microparticles 
released from LPS-stimulated platelets or col-
lected from the serum of septic patients com-
pared to controls, suggesting the shedding of the 
receptor in inflammatory conditions through mic-
roparticle release [91]. These results indicate that 
IL-1R8 contribute to the modulation of platelet 
activation, aggregation and hetero-aggregation, 
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both in physiological and pathological conditions 
in vitro and in vivo, and unveil a novel function of 
IL-1R8  in the regulation of thrombocyte 
function.

3.11  IL-1R8 in Breast Tumors

Tumor recognition and eradication mediated by 
the immune system can be escaped through vari-
ous strategies developed by tumors [167]. 
Recently, we characterize IL-1R8 in breast can-
cer as a crucial immunomodulatory molecule. 
Transformed breast epithelial cells upregulated 
IL-1R8 expression, which was associated with 
impaired innate immune and T cell response 
[107] (Fig.  3). IL-1R8 upregulation in breast 
tumor cell lines led to the inhibition of IL-1- 
dependent NFκB activation and expression of 
pro-inflammatory molecules. In agreement, in a 
genetic model of breast cancer (MMTV-neu), 
IL-1R8-deficiency was associated with protec-
tion from the development of breast lesions and 
the number of lung metastasis was reduced. In 
vitro and in vivo evidences demonstrated that 
IL-1R8 in tumor cells was responsible for shap-
ing the tumor microenvironment and IL-1R8- 
deficiency was associated with higher frequency 
of DCs, NK cells and CD8+ T cells and lower 
frequency of TAMs [107]. Importantly, RNA 
sequencing in 1102 clinical samples of breast 
cancer patients showed that high IL-1R8 expres-
sion was associated with a non-T cell inflamed 
molecular signature, lower expression level of 
pro-inflammatory cytokines and chemokines, DC 
and NK cell metagenes, components of the 
peptide- presenting machinery, cytolytic enzymes 
and type I IFN-induced genes. Collectively, 
these data indicate that IL-1R8 emerges as a 
novel immunomodulatory molecule in breast 
tumors, affecting the mobilization and activation 
of immune cells and therefore tumor growth and 
metastatization [107]. These findings have impor-
tant therapeutic implications, since the inhibition 
of IL-1R8 in this context may represent a way to 
restore the innate immune response and T cell 
trafficking and activation in the tumor 
microenvironment.

3.12  IL-1R8 as a Novel Checkpoint 
in NK Cells

Our group has recently described that IL-1R8 is 
expressed at high levels in murine and human NK 
cells and that IL-1R8 expression level increased 
during NK cell maturation, both in terms of mRNA 
and protein [90]. IL-1R8-deficient mice displayed 
a higher frequency and absolute number of NK 
cells in peripheral blood, higher frequency of 
mature NK cells (CD11b+CD27− and KLRG1+) in 
blood, spleen, bone marrow and liver. Moreover, 
IL-1R8-deficient NK cells showed a more active 
phenotype, in terms of activating receptor expres-
sion (NKG2D, DNAM-1, Ly49H), interferon-γ 
(IFNγ) and granzyme B production, Fas ligand 
expression and degranulation [90]. Bone marrow 
chimeric mice and IL-18 depletion experiments 
demonstrated that IL-1R8 directly acts on NK cells 
regulating IL-18, which is a key cytokine involved 
in NK cell activation [168, 169]. RNASeq and pro-
tein phosphorylation analysis showed that IL-18 
responsiveness was dramatically different in 
IL-1R8-deficient NK cells, affecting pathways 
involved in NK cell activation, degranulation, cyto-
kine production and anti-viral response. Moreover, 
IL-18- dependent activation of mTOR and JNK 
pathways was enhanced in IL-1R8-deficient NK 
cells. In contrast, other candidate pathways (i.e. 
IL-1 and microflora-driven TLR activation) poten-
tially regulated by IL-1R8  in NK cells were not 
involved in the IL-1R8-deficient NK cell pheno-
type. In models of DEN-induced hepatocellular 
carcinoma, MCA-induced lung metastasis and 
colon cancer-derived liver metastasis, the disease 
severity and the number and dimension of metasta-
sis were significantly reduced in Il1r8−/− mice. The 
protection was dependent on IL-1R8- mediated 
regulation of IL-18 in NK cells, since depletion of 
NK cells or IL-18-deficiency totally abrogated the 
phenotype. Finally, in a model of MCMV infec-
tion, Il1r8−/− mice controlled the virus more effi-
ciently and the protection was dependent on 
enhanced NK cell degranulation and IFNγ produc-
tion. Importantly, the adoptive transfer of Il1r8−/− 
NK cells was protective in the metastasis and viral 
infection models, compared to the treatment with 
Il1r8+/+ NK cells. Partial silencing of the molecule 
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demonstrated that also in human IL-1R8 regulates 
NK cell activation, in terms of IFNγ production 
and CD69 expression [90].

NK cells are generally not credited to play a 
major role in the control of solid tumors, whereas 
evidences suggest that they are involved in the 
control of metastasis [170–172]. These results 
indicate that in addition to metastasis, NK cells 
have the potential to restrain solid tumors upon 
checkpoint blockade and in NK cell-enriched 
sites, such as the liver. Thus, IL-1R8 plays a non- 
redundant role in the regulation of NK cell devel-
opment and effector functions, by tuning IL-18 
signaling and emerges as a novel checkpoint 
molecule of NK cell antitumoral and antiviral 
potential [90] (Fig. 4).

4  Concluding Remarks

IL-1 family members are central mediators of the 
inflammatory process and play a key role in both 
homeostatic differentiation and activation of 
immune cells. ILR and TLR pathway activation is 
crucial for the immune surveillance against infec-
tious agents and sterile damages, but given its 
broad inflammatory potential it needs to be tightly 

regulated at different levels. Indeed, the balance 
of positive and negative regulators, accelerators 
and brakes is a fundamental concept that governs 
the delicate equilibrium between host defense 
and  detrimental inflammation leading to tissue 
damage.

IL-1R8 and IL-1R2 emerge as important regu-
lators in various physiological and pathological 
conditions and the impairment of their function is 
an escape mechanism developed by pathogens 
and tumors. Dissecting their cell-specific and 
context-specific role is essential for the develop-
ment and improvement of therapeutic strategies.
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Fig. 4 IL-1R8 as a novel checkpoint of NK cell anti- 
tumor and anti-viral activity IL-1R8 plays a key role in the 
regulation of NK cell maturation and effector functions, 

through the modulation of IL-18-induced signaling path-
way. IL-1R8 genetic blockade leads to enhanced NK cell 
anti-tumor, anti- metastatic and anti-viral activity
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