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Abstract We study the largest block size of Beta n-coalescents at small times
as n tends to infinity, using the paintbox construction of Beta-coalescents and the
link between continuous-state branching processes and Beta-coalescents established
in Birkner et al. (Electron J Probab 10(9):303–325, 2005) and Berestycki et al.
(Ann Inst H Poincaré Probab Stat 44(2):214–238, 2008). As a corollary, a limit
result on the largest block size at the coalescence time of the individual/block {1} is
provided.
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1 Introduction and Main Results

Beta n-coalescents form a class of partition-valued coagulatingMarkov chains. This
family was introduced by Schweinsberg [20] following pioneer works of Pitman
[17], Sagitov [18] and Möhle and Sagitov [16]. Formally, a Beta n-coalescent
(�(n)(t), t ≥ 0) is a continuous-time Markov chain with values in partitions of
[n] := {1, 2, . . . , n} starting at �(n)(0) = {{1}, {2}, . . . , {n}}. As n-coalescents can
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be used as models for the genealogy of a sample of n individuals, we refer to [n]
as the set of (labels of) individuals. Its dynamics are determined by a parameter
α ∈ (0, 2): when �(n) has b blocks, any k-tuple of them merges into one block at
rate

λb,k := β(k − α, b − k + α)

β(α, 2 − α)
(1)

where β(a, b) = �(a)�(b)/�(a+b) is the Beta function. In this paper, we are only
interested in the case α ∈ (1, 2).

Equation (1) induces exchangeability and consistency of these processes.
Exchangeability means that if we permute the labels of individuals, the law of
�(n) stays unchanged. Consistency refers to that for any couple of integers n < m,
the projection of �(m) on [n] has the same law as �(n). By Kolmogorov’s extension
theorem [17], we can construct the so-called Beta-coalescent process (�(t), t ≥ 0)
taking values in partitions of N such that the projection of � on [n] is equal in
distribution to �(n). When α ∈ (1, 2) the Beta-coalescent has proper frequency
(i.e., almost surely for any t > 0, � has no singletons, see [17]) and comes down
from infinity (i.e., almost surely for any t > 0, � has a finite number of blocks,
see [19]).

Berestycki et al. [2] provided many results on the behaviour of functionals
of �(t) as t tends to 0, such as the number of blocks, the ranked sequence of
asymptotic frequencies of those blocks and the asymptotic frequency of the largest
block. For the latter, they establish the following result in Proposition 1.6:

Proposition 1.1 Let X(t) be the asymptotic frequency of the largest block of � at
time t , then

(α�(α)�(2 − α))
1
α t−

1
α X(t)

d→ X, as t goes to 0 (2)

where X is a Fréchet random variable with parameter α, i.e., P(X ≤ x) = e−x−α
,

for any x ≥ 0, and “
d→” stands for the convergence in law.

This is a result in the infinite coalescent for t → 0. Often, especially when
used as a genealogy model, we are actually more interested in the n-coalescents
and their asymptotic behaviour, since we can then interpret results in terms of the
finite models (as in [7–9, 12, 13, 15, 21, 22]). Proposition 1.1 would in this sense
be first taking n → ∞, then t → 0, while we would like a simultaneous limit
(tn, n) → (0,∞). In this case, we could look at specific, interpretable/interesting
small times tn.

Such time is the external branch length of individual 1 (studied in [9], and with
further extensions given recently in [22] and [24]), denoted by T

(n)
1 and defined by

T
(n)
1 := sup{t, {1} ∈ �(n)(t)}.
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This can be seen as seeing the coalescent from the eyes of individual 1 and
measuring its “distance” to the rest of the sample or its genetic uniqueness [6].
Here individual 1 represents a randomly chosen individual of the sample thanks to
exchangeability. Observe that, since the Beta-coalescent has proper frequency when
α ∈ (1, 2), this variable vanishes as we let n tend to infinity.We are now curious how
the block structure of the coalescent looks like at this specific time (asymptotically).

One possible tool for this study is the minimal clade size, studied in [22] for
α ∈ (1, 2) (see also [11] for α = 1 and [5] for α = 2). This is the size of the
block containing 1 at time T

(n)
1 . The size of the minimal clade gives the information

of how many individuals share the genealogy with individual 1 after he merges.
It was shown in [22] that the minimal clade size converges in law, without any
renormalization, to a heavy-tailed random variable of index (α − 1)2.

Now we would like to compare this minimal clade size to the size of the largest
block at time T

(n)
1 , denoted by W̃ (n). This comparison gives a first picture of the

inhomogeneity of the block structure of the Beta n-coalescent at small times. To
study W̃ (n), we first consider the size of the largest block at any time t , denoted by
W(n)(t). Hence, we have

W̃ (n) = W(n)(T
(n)
1 ).

We obtain an asymptotic result for W(n) at the n1−αt scale.

Theorem 1.2 For a Beta n-coalescent with 1 < α < 2, as n tends to infinity

(α�(α)�(2 − α))
1
α (nt)−

1
α W(n)(n1−αt)

d−→ X, (3)

where X is a Fréchet random variable with parameter α.

Rewriting (3) as

α�(α)�(2 − α))
1
α (n1−αt)−

1
α
W(n)(n1−αt)

n

d−→ X,

the reader can observe the similarity with (2).
To study the behaviour of W̃ (n), we shall consider the restriction of �(n) on

{2, . . . , n}, denoted by �(n,2) = (�(n,2)(t), t ≥ 0). By consistency, the latter is
equal in law to �(n−1) modulo notations of the labels of individuals. Then W̃ (n) is
actually the largest block size of �(n,2)(T

(n)
1 ) plus 1, if {1} coalesces with the largest

block of �(n,2)(T
(n)
1 ) or plus 0 otherwise.

It has been established in the proof of Theorem 5.2 of [9] that conditional on
�(n,2), nα−1T

(n)
1 converges in law to a random variable T . More precisely,

P(nα−1T
(n)
1 ≥ t|�(n,2))

d−→ P(T ≥ t) = (1 + t

α�(α)
)−

α
α−1 . (4)
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This shows that in the decomposition of W̃ (n) = W(n)(T
(n)
1 ), the terms

(W(n)(n1−αt), t ≥ 0) and nα−1T
(n)
1 are asymptotically independent. Combining (4)

together with Theorem 1.2, we can describe the limit of W̃ (n) as a mixture.

Corollary 1.3 As n tends to infinity,

W̃ (n)

n
1
α

d−→ W̃ , (5)

where W̃ is a positive random variable such that for any x ≥ 0,

P(W̃ ≤ x) =
∫ ∞

0

exp(−x−α t
α�(α)�(2−α)

)

(α − 1)�(α)
(1 + t

α�(α)
)−

2α−1
α−1 dt.

This note is organised as follows. In Sect. 2, we introduce the main tools such as
the construction of Beta-coalescents via continuous-state branching processes and
the paintbox construction of exchangeable coalescents. Section 3 is devoted to the
proofs of Theorem 1.2.

2 Preliminaries

2.1 Ranked Coalescent and Paintbox Construction

Assume all along the rest of the paper that 1 < α < 2. Let � = (�(t), t ≥ 0) be the
Beta-coalescent and denote by K = (K(t), t > 0) the block-counting process of �.
In words,K(t) stands for the number of blocks of�(t). It is known that� is coming
down from infinity: for any t > 0, K(t) is finite almost surely [19]. Also recall that
for any t ≥ 0, �(t) is an exchangeable random partition of N. This means that if
we permute finitely many integers in �(t), the law of �(t) is unchanged. Applying
Kingman’s paintbox theorem on exchangeable random partitions [14], almost surely
for every block B ∈ �(t), the following limit, called the asymptotic frequency of
B, exists:

lim
m→∞

1

m

m∑
i=1

1{i∈B}.

Furthermore, when t > 0, the sum of all asymptotic frequencies equals 1 since �

is of proper frequency [17]. Hence, one can reorder all the asymptotic frequencies
in a non-increasing way to define a sequence �(t) = {θ1(t), θ2(t), · · · , θK(t)(t)}
where θ1(t) ≥ θ2(t) ≥ · · · ≥ θK(t)(t) and

∑K(t)
i=1 θi(t) = 1. At time t = 0, every

block is a singleton and then has asymptotic frequency 0. Hence one can naturally
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set �(0) = {0, 0, . . .}. Then the process � = (�(t), t ≥ 0) is well defined. We call
it the ranked coalescent.

Given �(t) for some t > 0, one can recover the distribution of �(t) using again
Kingman’s paintbox theorem. Let us at first divide [0, 1] into K(t) subintervals
such that their lengths are equal one to one to the values of elements of �(t). Then
we throw individuals 1, 2, · · · uniformly and independently into [0, 1]. Finally, all
individuals within one interval form a block and this procedure provides a random
exchangeable partition which has the same law as �(t). Thanks to the consistency
property, the restricted partition �(n)(t) can be obtained using the same procedure
but throwing n particles instead of infinitely many.

2.2 Beta-Coalescents and Stable Continuous-State Branching
Processes

To prove Theorem 1.2, we will use classical relations between Beta-coalescents
and continuous-state branching processes (CSBPs) developed in [4] (see also
Section 2 of [2]). We give a short summary to provide a minimal set of tools. A
continuous-state branching process (Z(t), t ≥ 0) is a [0,∞]-valuedMarkov process
(in continuous time) whose transition semigroup pt (x, ·) satisfies the branching
property

pt(x + y, ·) = pt(x, ·) ∗ pt (y, ·), for all x, y ≥ 0.

For each t ≥ 0, there exists a function ut : [0,∞) → R such that

E[e−λZ(t)|Z(0) = a] = e−aut (λ). (6)

If, almost surely, the process has no instantaneous jump to infinity, the function ut

satisfies the following differential equation

∂ut (λ)

∂t
= −
(ut(λ)),

where 
 : [0,∞) −→ R is a function of the form


(u) = γ u + βu2 +
∫ ∞

0
(e−xu − 1 + xu1{x≤1})π(dx),

where γ ∈ R, β ≥ 0 and π is a Lévy measure on (0,∞) satisfying
∫ ∞
0 (1 ∧

x2)π(dx) < ∞. The function 
 is called the branching mechanism of the CSBP.
As explained in [3], a CSBP can be extended to a two-parameter random process

(Z(t, a), t ≥ 0, a ≥ 0) with Z(0, a) = a. For fixed t , (Z(t, a), a ≥ 0) turns out to
be a subordinator with Laplace exponent λ 	→ ut (λ) thanks to (6).
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There exists a measure-valued process (Mt , t ≥ 0) taking values in the set
of finite measures on [0, 1] which characterises (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1).
More precisely, (Mt ([0, a]), t ≥ 0, 0 ≤ a ≤ 1) has the same finite-dimensional
distributions as (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). Hence (Mt([0, a]), 0 ≤ a ≤ 1)
is a subordinator with Laplace exponent λ 	→ ut (λ) and Z(t, 1) = Mt([0, 1]) is
a CSBP with branching mechanism 
 started at M0([0, 1]) = 1. In particular, if
the branching mechanism is 
(λ) = λα , its Lévy measure is given by π(dx) =
α(α−1)
�(2−α)

x−1−αdx and, for all t > 0, Mt consists only of a finite number of atoms.
For the construction of (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1), we refer to [1, 4, 10].

A deep relation has been revealed in [4] between the Beta-coalescent and the
CSBP with branching mechanism 
(λ) = λα . It is described by the following two
lemmas which are respectively Lemma 2.1 and 2.2 of [2]. To save notations, from
now on, (Z(t), t ≥ 0) will always denote a continuous-state branching process
(Z(t, 1), t ≥ 0).

Lemma 2.1 Assume that (Z(t), t ≥ 0) is a CSBP with branching mechanism

(λ) = λα and let (Mt , t ≥ 0) be its associated measure-valued process. If
(�(t), t ≥ 0) is a Beta-coalescent and (�(t), t ≥ 0) is the associated ranked
coalescent, then for all t > 0, the distribution of �(t) is the same as the distribution

of the sizes of the atoms of the measure
M

R−1(t)

Z(R−1(t))
, ranked in decreasing order. Here

R(t) = (α − 1)α�(α)
∫ t

0 Z(s)1−αds and R−1(t) = inf{s : R(s) > t}.
Let μ denote the Slack’s probability distribution on [0,∞) (see [23]) charac-

terised by its Laplace transform

Lμ(λ) =
∫ ∞

0
e−λxμ(dx) = 1 − (1 + λ1−α)−

1
α−1 , λ ≥ 0. (7)

Lemma 2.2 Assume 
(λ) = λα . For any t ≥ 0, let D(t) be the number of atoms of
Mt , and let J (t) = (J1(t), · · · , JD(t)(t)) be the sizes of the atoms of Mt , ranked

in decreasing order. Then D(t) is Poisson with mean γ (t) = ((α − 1)t)−
1

α−1 .
Moreover, conditional on D(t) = k, the distribution of J (t) is the same as
the distribution of (γ (t)−1X1, · · · , γ (t)−1Xk) where X1, · · · ,Xk are obtained by
picking k i.i.d. random variables with distribution μ and then ranking them in
decreasing order.

Remark 2.1 From the relation between (Mt , t ≥ 0) and (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1)
and also the fact that for all t > 0, Mt has a finite number of atoms D(t), we
can deduce that for a given t > 0, there exist 0 ≤ a1, · · · , aD(t) ≤ 1 such that
{Z(t, a1) − Z(t, a1−), · · · , Z(t, aD(t)) − Z(t, aD(t)−)} are exactly the sizes of the
atoms of Mt . Markov property of (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1) implies that for s ≥ t ,
discontinuity points of the subordinator (Z(s, a), 0 ≤ a ≤ 1) must be part (or all)
of the points a1, · · · , aD(t). Therefore, t 	→ D(t) is almost surely non-increasing.
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3 Proofs

In this section, we aim to prove Theorem 1.2 and Corollary 1.3. From now on,
we will use the notations tn = n1−αt and t ′n = tn

(α−1)α�(α)
. Lemma 2.1 entails

that �(tn) has the same law as
M

R−1(tn)

Z(R−1(tn))
. Moreover, Lemma 4.2 of [2] states that

R−1(tn)
t ′n

P→ 1, as n goes to ∞. From this arises the idea of approximating the block
sizes of the coalescent at time tn by the atoms of the renormalized measure-valued
process at time t ′n. The advantage of this approximation is that the time is no longer
random. This idea will be executed through three steps. First, we will study the size
of the largest atom of the rescaled measure M/Z at deterministic time t ′n, using
tools of the theory of CSBPs. Second we show that the paintbox construction of an
exchangeable partition can also be provided by using a different paintbox and by
modifying it according to the differences between the paintboxes. In the third step,
we use this construction to approximate the partition �(n) at time tn from partitions
built from the rescaled atoms of M/Z at time (1 ± ε)t ′n for small ε.

3.1 The Largest Atom Size ofM/Z at a Fixed Time

We start with a technical lemma associated to the measure μ. We write an ∼ bn if
limn→∞ an

bn
= 1. Recall from Equation (33) of [2] that

μ([x,∞)) ∼ x−α

�(2 − α)
(8)

when x goes to ∞.

Lemma 3.1 Let k > 0 and X be a random variable distributed according to μ.
Define X such that conditional on X, X is a Poisson variable with parameter X

k
.

Then for any x > 0,

lim
n→∞ nP(X ≥ xn

1
α ) = (kx)−α

�(2 − α)
.

Proof Let M = �xn
1
α . We start the proof with two claims. First, using Stirling’s

formula for M! and a change of variable, we get that for any 0 < β < 1,

∫ Mβ

0
e−t tM

M!dt =
∫ Mβ

0
eM−t

(
t

M

)M

(2πM)−
1
2 (1 + O(M−1))dt

=
∫ β

0
eM(1−t+ln t )(

M

2π
)
1
2 (1 + O(M−1))dt

= O(eM(1−β+lnβ)M
1
2 ). (9)
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The last equality is due to the fact that 1 − t + ln t is negative and increasing for
t ∈ (0, 1). Second, if β > 1, then

∫ ∞

Mβ

e−t tM

M!dt =
∫ ∞

β

eM(1−t+ln t )(
M

2π
)
1
2 (1 + O(M−1))dt.

Notice that 1 − t + ln t is strictly decreasing and concave over [β,∞]. Then there
exists a positive number ε such that 1 − t + ln t ≤ −εt for any t ≥ β. Therefore,

∫ ∞

Mβ

e−t tM

M!dt ≤
∫ ∞

β

e−εMt (
M

2π
)1/2(1 + O(M−1))dt = O(e−εMβM−1/2).

(10)

Now we can turn to X . Thanks to successive integrations by parts,

P(X ≥ M + 1) = E[
∫ X

k

0
e−t tM

M!dt]. (11)

Let 0 < β1 < 1 and β2 > 1, then we have

P(X ≥ M + 1) = I1 + I2 + I3,

where

I1 = E[
∫ X

k

0
e−t tM

M!dt1{X<kMβ1}],

I2 = E[
∫ X

k

0
e−t tM

M!dt1{kMβ1≤X≤kMβ2}],

I3 = E[
∫ X

k

0
e−t tM

M!dt1{X>kMβ2}].

Now let n tend to infinity. By (9), we get

0 ≤ nI1 ≤ nP(X < kMβ1)

∫ Mβ1

0
e−t tM

M!dt −→ 0, n → ∞. (12)

It is easy to verify that
∫ ∞
0 e−t tM

M!dt = 1 for any integer M ≥ 0. Then using
together (8) and (10), we obtain

lim
n→∞ nI3 = lim

n→∞ nP(X > kMβ2) = (kxβ2)
−α

�(2 − α)
. (13)



A Note on the Small-Time Behaviour of the Largest Block Size of Beta n-Coalescents 227

In the same way, we have

0 ≤ nI2 ≤ nP(kMβ1 ≤ X ≤ kMβ2) −→ (kxβ1)
−α

�(2 − α)
− (kxβ2)

−α

�(2 − α)
, n → ∞.

(14)

If β1 and β2 are close enough to 1, nI2 can be bounded by an arbitrarily small
positive number for n large enough. The proof is finished by combining (12), (13)
and (14). ��

Fix t > 0. If D(t) �= 0, let J̄i (t) = Ji(t)
Z(t)

for 1 ≤ i ≤ D(t). Let
{d1(t), · · · , dD(t)(t)} be an interval partition of [0, 1] such that the Lebesgue
measure of di(t) is J̄i (t). Build a partition of [n] thanks to a paintbox associated
with {d1(t), · · · , dD(t)(t)}. Let Ni(t) be the number of integers in the i-th interval
and N(t) = max{Ni(t) : 1 ≤ i ≤ D(t)}. This random variable stands for the size of
the largest block of a partition of [n] obtained by a paintbox construction from the
atoms of M/Z at time t .

Lemma 3.2 Let x > 0. Then

1)

lim
n→∞P(N(t ′n) ≤ xn

1
α ) = exp(− tx−α

α�(α)�(2 − α)
).

2) Let 0 < y < x. Then

lim
n→∞P(∃i : Ji(t

′
n) < n

1−α
α y,Ni(t

′
n) ≥ xn

1
α ) = 0. (15)

Proof

1) Let us throw a Poisson number of integers on [0, 1] with parameter nZ(t ′n) .
Then, conditional on {Ji(t

′
n) : 1 ≤ i ≤ D(t ′n)}, the number of integers falling

in di(t
′
n), denoted by Ni , is a Poisson variable with parameter nJi(t

′
n) and {Ni :

1 ≤ i ≤ D(t ′n)} forms a family of (conditional) independent random variables.
LetN be the maximum of all Ni’s. Then, using Lemmas 3.1 and 2.2, as n tends
to infinity,

P(N ≤ xn
1
α ) = E[�D(t ′n)

i=1 P(Ni ≤ xn
1
α )]

−→ exp(−γ (
t

(α − 1)α�(α)
)1−α x−α

�(2 − α)
)

= exp(− tx−α

α�(α)�(2 − α)
).
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Lemma 2.2 implies that Z(t ′n) tends in probability to 1 as n goes to infinity.
Hence N andN are close in the limit and standard comparison techniques allow
to conclude.

2) As Z(t ′n) converges to 1, it is easy to show that (15) is equivalent to

lim
n→∞P(∃i : Ji(t

′
n) < n

1−α
α y,Ni ≥ xn

1
α ) = 0.

Let Ñ = max{Ni : Ji(t
′
n) < n

1−α
α y}. It is necessary and sufficient to show

that lim
n→∞P(Ñ ≥ xn

1
α ) = 0. Notice that conditional on Ji(t

′
n), Ni is a Poisson

variable with parameter nJi(t
′
n). Let {P1(yn

1
α ), P2(yn

1
α ), · · · } be a sequence of

i.i.d. Poisson variables with parameter yn
1
α and also independent ofD(t ′n). Then

P(Ñ ≥ xn
1
α ) ≤ P

(
max{Pi(yn

1
α ) : 1 ≤ i ≤ D(t ′n)} ≥ xn

1
α

)

= 1 − E[(P(P1(yn
1
α ) < xn

1
α ))D(t ′n)].

Using (11) and (9), one gets

P(P1(yn
1
α ) < xn

1
α ) = 1 − o(

1

n
).

Meanwhile, Lemma 2.2 tells that D(t ′n)
n

converges in probability to γ ( t
((α−1)α�(α)

)

as n goes to infinity. Hence the proof is finished.
��

Remark 3.1 The key points to prove (15) is that Z(t ′n) converges to 1 in probability
and D(t ′n)

n
is asymptotically bounded by a positive value from above. The distribution

of {Ji(t
′
n)}1≤i≤D(t ′n) is not necessary to know. Actually (15) remains true if t ′n is

random and conditions on Z(t ′n) and D(t ′n) are still satisfied. This fact will be used
in the proof of Theorem 1.2.

3.2 Alternative Paintbox Construction

Let (A1, · · · , Ak) and (B1, · · · , Bk) be two partitions of [0, 1]with k ≥ 1.We throw
n particles uniformly and independently on [0, 1] and group those within the same
intervals of (B1, · · · , Bk), which gives a sequence of k numbers (NB1 , · · · , NBk )

such that NBi is the number of particles located in Bi . We can obtain the law of
this sequence in another way using (A1, · · · , Ak). Throw n particles uniformly and
independently on [0, 1]. Let I := {i : 1 ≤ i ≤ n, l(Ai) ≤ l(Bi )}, where l(·) denotes
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the Lebesgue measure. If a particle falls in Ai with i ∈ I , then move this particle to
Bi . If a particle falls in Ai with i ∈ I c, then associate to this particle an independent
Bernoulli variable with parameter l(Bi)

l(Ai)
. If the Bernoulli variable gives 1, then the

particle is put into Bi . Otherwise, this particle will be put into Bj for j ∈ I with
probability

l(Bj ) − l(Aj )∑
h∈I (l(Bh) − l(Ah))

. (16)

We denote by NA
Bi

the new amount of particles in Bi . We have the following result.

Lemma 3.3 The following identity in law holds.

(NA
B1

, · · · , NA
Bk

)
(d)= (NB1, · · · , NBk ).

Proof Notice that only the Lebesgue measure of each element of (A1, · · · , Ak) and
(B1, · · · , Bk) matters. So one can always assume that [0, 1] is divided in a way that
Ai is contained in Bi for i ∈ I and Bi is contained in Ai for i ∈ I c. Then if a particle
is located in Ai for i ∈ I , it is also located in Bi . But if a particle is located in Ai

for i ∈ I c, with probability l(Bi)
l(Ai)

it is located in Bi . Assume that this particle is not
located in Bi , then it must be in ∪h∈IBh\Ah. Using the uniformity of the throws,
this particle falls in Bj with probability (16). ��

3.3 Proof of Theorem 1.2

Let us first recall some technical results from [2]. Let ε > 0, t > 0 and recall
tn and t ′n. Let t− = (1 − ε)t ′n and t+ = (1 + ε)t ′n. Define the event B1,t :=
{t− ≤ R−1(tn) ≤ t+}. It can be found in Lemma 4.2 of [2] that there exists a constant
C17 such that

P(B1,t ) ≥ 1 − C17tnε
−α. (17)

Also from Lemma 5.1 of [2], there exists a constant C18 such that for all a > 0,
t > 0 and η > 0,

P( sup
0≤s≤t

|Z(s, a) − a| > η) ≤ C18(a + η)tη−α. (18)

Thus, if we define B2,t := {1−n
1−α
2α ≤ Z(s) ≤ 1+n

1−α
2α , ∀s ∈ [t−, t+]}, we obtain

that

P(B2,t ) ≥ 1 − C19t (1 + ε)(1 + n
1−α
2α )n

1−α
2 (19)

where C19 = C18/(α − 1)α�(α).
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Fix any s ≥ 0 and let π be the random partition of [n] obtained from a paintbox

associated with
M

R−1(s)

Z(R−1(s))
. Then π

d= �(n)(s). Observe that if R−1(s) ≥ t−, we can

as well at first build a partition from a paintbox associated with
Mt−
Z(t−)

and then use

Lemma 3.3 to obtain that associated with
M

R−1(s)

Z(R−1(s))
which has the same law as π .

By Markov and branching properties of CSBPs, for any s ≥ t−, we can consider
the CSBP as the sum of D(t−) independent CSBP’s which we denote by mi(s) =
Zi(s − t−, Ji(t−)). Notice that mi(s) can be 0 while Ji(t−) is always positive. Let
us then build a partition V (n)(s) = (V

(n)
1 (s), V

(n)
2 (s), . . . , V

(n)
D(t−)(s)) of [n] from

a paintbox associated with (mi(s)
Z(s)

, 1 ≤ i ≤ D(t−)). Let I
(n)
i (s) be the number of

particles in V
(n)
i (s). and I

(n)
+ (s) = sup{I (n)

i (s), 1 ≤ i ≤ D(t−)}. Fix x > 0 and

define B3,t = {∃k : I
(n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α , sup

t−≤s≤t+
|mk(s) − Jk(t−)| ≤

εJk(t−)}.
On the event B3,t , we have that I

(n)
+ (t−) ≥ xn

1
α . Conditional on B1,t we can

also build the partition V (n)(R−1(tn)) from a paintbox associated to the partition
Z(t−)−1(J1(t−), . . . , JD(t−)(t−)) and Lemma 3.3. Let B(m,p) be a binomial
variable with parameters m ≥ 2 and 0 ≤ p ≤ 1. Lemma 3.3 implies that

P

(
I

(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)

≥P

(
B

(
�xn

1
α �, mk(R

−1(tn))Z(t−)

Jk(t−)Z(R−1(tn))
∧ 1

)
≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)

≥P

(
B

(
�xn

1
α �, (1 − ε)

1 − n
1−α
2α

1 + n
1−α
2α

)
≥ (1 − 2ε)xn

1
α

)

=P

(
(xn

1
α )−1B

(
�xn

1
α �, (1 − ε)

1 − n
1−α
2α

1 + n
1−α
2α

)
≥ (1 − ε) − ε

)
.

A law of large numbers argument implies that

P

(
I

(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)
≥ 1 − ε (20)

for n large enough. Now observe from (18) that

P(B3,t ) = P(∃k : I
(n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

× P( sup
t−≤s≤t+

|mk(s) − Jk(t−)| ≤ εJk(t−)|∃k : I
(n)
k (t−) ≥ xn

1
α ,

Jk(t−) ≥ n
2(1−α)

α )
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≥ P(∃k : I
(n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

(1 − 2tC19n
(1−α)(2−α)

α (1 + ε)ε1−α).

By Lemma 3.2, we obtain that

P(∃k : I
(n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

∼ P(∃k : I
(n)
k (t−) ≥ xn

1
α ) = P(I

(n)
+ (t−) ≥ xn

1
α )

∼ 1 − exp(−(1 − ε)
tx−α

α�(α)�(2 − α)
).

In consequence,

lim inf
n→∞ P(B3,t ) ≥ 1 − exp(−(1 − ε)

tx−α

α�(α)�(2 − α)
)

when n tends to ∞. Then, thanks to (17) and (19), we deduce that

lim inf
n→∞ P(B1,t ∩ B2,t ∩ B3,t ) ≥ 1 − exp(−(1 − ε)

tx−α

α�(α)�(2 − α)
).

Combining the latter with (20), we obtain

lim inf
n→∞ P

(
I

(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α

)
≥ 1 − exp(−(1 − ε)

tx−α

α�(α)�(2 − α)
).

(21)

Next, we seek to find an upper bound for P
(
I

(n)
+ (R−1(tn)) ≥ xn

1
α

)
. Conditional

on B1,t , we construct V (n)(t+) from V (n)(R−1(tn)) using the method in Lemma 3.3.
Let

B4,t = B1,t ∩ {∃k : I
(n)
k (R−1(tn)) ≥ xn

1
α ,mk(R

−1(tn)) ≥ n
2(1−α)

α ,

sup
R−1(tn)≤s≤t+

|mk(s) − mk(R
−1(tn))|

mk(R−1(tn))
≤ ε}.
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Similarly as for the lower bound,

P

(
I

(n)
+ (t+) ≥ (1 − 2ε)xn

1
α |B2,t ∩ B4,t

)

≥P

(
B

(
�xn

1
α �, Z(R−1(tn))mk(t+)

Z(t+)mk(R−1(tn))
∧ 1

)
≥ (1 − 2ε)xn

1
α |B2,t ∩ B4,t

)

≥P

(
B

(
�xn

1
α �, (1 − ε)

1 − n(1−α)/α

1 + n(1−α)/α

)
≥ (1 − 2ε)xn

1
α

)
−→ 1. (22)

Using the strong Markov property of the CSBP and (18), we have

P(B4,t ) = P(B1,t ∩ {∃k : I
(n)
k (R−1(tn)) ≥ xn

1
α ,mk(R

−1(tn)) ≥ n
2(1−α)

α }) (23)

× (1 − 2tC19n
(1−α)(2−α)

α (1 + ε)ε1−α) (24)

Notice that using (18), in the sense of convergence of probability

lim
n→∞ sup

t−≤s≤t+
Z(s) = lim

n→∞ inf
t−≤s≤t+

Z(s) = 1

Together with (17), we get the following convergence in probability

lim
n→∞ Z(R−1(tn)) = 1.

Recall Remark 2.1 where it is deduced that t 	→ D(t) is non-increasing. Thus, on
the event B1,t , we have D(t−) ≤ D(R−1(tn)) ≤ D(t+). It is then easy to see that
D(R−1(tn))

n
is asymptotically bounded from above by a certain positive number. Now

we can apply Remark 3.1 and get

P(B4,t ) = P(∃k : I
(n)
k (R−1(tn)) ≥ xn

1
α ) + o(1) = P(I

(n)
+ (R−1(tn)) ≥ xn

1
α ) + o(1).

(25)

Using (22), (19) and (25), we get that

lim sup
n−→∞

P(I
(n)
+ (R−1(tn)) ≥ xn

1
α )

≤ lim
n−→∞P(I

(n)
+ (t+) ≥ (1 − 2ε)xn

1
α )

=1 − exp(−(x(1 − 2ε))−α t (1 + ε)

α�(α)�(2 − α)
). (26)

Since ε can be arbitrarily small, (21) and (26) allow to conclude.
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