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Abstract We give a criterion for blow up in finite time of the system of semilinear

partial differential equations ∂ui(t,x)
∂t

= 1
2

∂2ui (t,x)

∂x2 + ϕ′
i (x)

ϕi (x)
∂ui (t,x)

∂x
+u

1+βi

j (t, x), t > 0,
x ∈ R, with initial values of the form ui (0, x) = hi (x)/ϕi (x), where 0 < ϕi ∈
L2 (R, dx)∩C2 (R), 0 ≤ hi ∈ L2 (R, dx), βi > 0 and i = 1, 2, j = 3−i. Moreover,
we find an upper bound T ∗ for the blowup time of such system which depends both
on the initial values f1, f2, and the measures μi(dx) = ϕ2

i (x) dx, i = 1, 2.
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1 Introduction

Consider the semilinear partial differential equation

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2 + ϕ′ (x)

ϕ (x)

∂u(t, x)

∂x
+u1+β (t, x) , t > 0, x ∈ R, (1)

where β > 0, ϕ ∈ C2(R) is a square-integrable, strictly positive function, and the
initial value is of the form u(0, x) = h(x)/ϕ(x) with h ∈ L2(R, dx) and ϕŠ(x) =
dϕ(x)/dx. Setting ϕ(x) = e−x2/2 in (1) it becomes

∂u(t, x)

∂t
= Lϕu(t, x) + u1+β (t, x) , t > 0, x ∈ R,
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where Lϕ := 1
2

∂2

∂x2 − x ∂
∂x

is the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup {Tt , t ≥ 0}. Using essentially Jensen’s inequality and the fact that the
measure μ(dx) = ϕ2(x) dx is invariant for {Tt , t ≥ 0}, in [8] we were able to prove
that Eq. (1) exhibits blow up in finite time for any nontrivial initial value of the form
u(0, x) = h(x)/ϕ(x), x ∈ R.

Motivated by this example, in this note we provide a criterion for explosion in
finite time of positive mild solutions of the 1-dimensional semilinear system

∂u1(t, x)

∂t
= 1

2

∂2u1(t, x)

∂x2
+ ϕ′

1 (x)

ϕ1 (x)

∂u1(t, x)

∂x
+ u

1+β1
2 (t, x) , t > 0, x ∈ R,

∂u2(t, x)

∂t
= 1

2

∂2u2(t, x)

∂x2
+ ϕ′

2 (x)

ϕ2 (x)

∂u2(t, x)

∂x
+ u

1+β2
1 (t, x) , t > 0, x ∈ R, (2)

ui(0, x) = fi(x), x ∈ R, i = 1, 2,

where β1, β2 > 0 are constants, f1, f2 are nonnegative functions and ϕ1, ϕ2 ∈
C2(R) ∩ L2(R, dx) are strictly positive. Semilinear systems of this type have
been investigated intensively in last years, starting with the pioneering work of
Galaktionov et al. [4] (see also [2, 3, 5, 7, 9] and the review papers [1, 6]). This kind
of systems arise as simplified models of the process of diffusion of heat and burning
in a two-component continuous media, where u1 and u2 represent the temperatures
of the two reactant components.

Recall that a pair (u1, u2) of measurable functions is termed mild solution of
system (2) if it solves the system of integral equations

ui(t, x) = T i
t (fi(x)) +

∫ t

0
T i

t−s

(
u

1+βi

j (s, x)
)

ds, t ≥ 0, x ∈ R, (3)

where i = 1, 2, j = 3 − i and {T i
t , t ≥ 0} is the semigroup of continuous linear

operators on L∞(R, dx) having infinitesimal generator

Lϕi = 1

2

∂2

∂x2 + ϕ′
i

ϕi

∂

∂x
; i = 1, 2.

If there exists T ∈ (0,∞) such that ‖u1 (t, ·)‖L∞(R,dx) = ∞ or ‖u2 (t, ·)‖L∞(R,dx) =
∞ for all t ≥ T , then it is said that (u1, u2) blows up (or explodes) in finite time,
and in this case the infimum of such T ’s is called the blow up time (or the explosion
time) of (u1, u2).
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Notice that for any g ∈ L∞(R, dx) and i = 1, 2,

T i
t (g(x)) = E

[
g

(
X

x,i
t

)]
, t ≥ 0, x ∈ R,

where {Xx,i
t , t ≥ 0} is the unique strong solution of the stochastic differential

equation

Yt = x + Bt +
∫ t

0

ϕ′
i

ϕi
(Ys) ds, t ≥ 0, x ∈ R;

here {Bt , t ≥ 0} is a standard 1-dimensional Brownian motion. It turns out that
under our assumptions both processes {Xx,i

t , t ≥ 0}, i = 1, 2, are recurrent and,
moreover, possess corresponding invariant measures

μi(dx) = ϕ2
i (x) dx, i = 1, 2. (4)

The intuitive explanation of the blow up phenomenon in non-linear heat equa-
tions of the archetype

∂u

∂t
= Au + u1+β; u(0) = f ≥ 0,

where β > 0 andA is the generator of a strong Markov process on a locally compact
space, is that if the initial value f is “small” then the tendency of the solution to
blow up (which it would do if u1+β were the only term in the left-hand side of the
equation) can be inhibited by the dissipative effect of the migration with generator
A; see e.g. [6, 9] or [10]. In view of the ergodicity of the processes {Xx,i

t , t ≥ 0},
i = 1, 2, the mild solution of (2) should therefore blow up in finite time, at least for
certain non-trivial positive initial values fi , i = 1, 2.

In this work we give conditions which imply blow up in finite time of system (2)
under the assumption that ϕ1/ϕ2 is a strictly positive bounded function such that
inf
x∈R{ϕ1 (x) /ϕ2 (x)} > 0, and the initial values are of the form fi = hi/ϕi , where

hi ∈ L2 (R, dx), i = 1, 2. We distinguish two cases: if β1 = β2 we show that any
non-trivial positive mild solution of (2) blows up in finite time. If β1 
= β2 we prove
that a condition on the “sizes” of f1 and f2 and on the measures μ1, μ2 of the form

∫
f1 dμ1 +

∫
f2 dμ2 > c0,

(where the constant c0 > 0 is determined by the system parameters) already implies
finite time explosion of (2); see Theorem 2 below. Moreover, we find an upper bound
T ∗ for the blowup time of system (2) which depends both on the initial values f1, f2,
and the invariant measures (4). Our setting allows us to consider a wide range of
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choices for ϕ1 and ϕ2, for instance

ϕ1 (x) = (sin (x) + 2) ϕ2 (x) with ϕ2 (x) = e−x2/2,

or else

ϕ1 (x) =
(
e−x2/2 + 1

)
ϕ2 (x) with ϕ2 (x) = 1/(1 + x2).

In these two cases the functions hi , i = 1, 2, can be chosen of the form
hi (x) = Pi (|x|)/Qi (|x|), where Pi,Qi are polynomial functions with non-
negative coefficients such that their degrees satisfy 2 ≤ deg (Qi) − deg (Pi), and
Qi (0) > 0.

In the next section we prove existence and uniqueness of local mild solutions
of (2) using the classical fixed-point argument, adapted to our context. Our main
result, Theorem 2, is stated and proved in Sect. 3.

2 Local Existence and Uniqueness of Mild Solutions

Our proof of existence, uniqueness and positiveness of mild solutions of system (2)
is based on [14, Theorem 2.1], (see also [12, Theorem 2.1], [15, Theorem 3], [7,
Theorem 2] or [11, Theorem 1]).

For each τ ∈ (0,∞) we define the set

Eτ := {
(u1, u2) |u1, u2 : [0, τ ] → L∞ (R, dx) , |||(u1, u2)||| < ∞}

,

where

|||(u1, u2)||| := sup
t∈[0,τ ]

{‖u1 (t, ·)‖L∞(R,dx) + ‖u2 (t, ·)‖L∞(R,dx)

}
.

Then (Eτ , |||·|||) is a Banach space and the sets

Pτ := {(u1, u2) ∈ Eτ : u1 ≥ 0, u2 ≥ 0} and

BR := {(u1, u2) ∈ Eτ : |||(u1, u2)||| ≤ R}

are closed subsets of Eτ for any R ∈ (0,∞). Therefore (Pτ ∩ BR, |||·|||) is a
Banach space for all τ, R ∈ (0,∞).

Theorem 1 There exist τ, R ∈ (0,∞) such that system (2) has a unique positive
mild solution in Pτ ∩ BR .
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Proof We will prove that the operator � : Pτ ∩ BR → Pτ ∩ BR defined by

� ((u1 (t, x) , u2 (t, x))) =
(

T 1
t (f1 (x)) +

∫ t

0
T 1

t−s

(
u

1+β1
2 (s, x)

)
ds,

T 2
t (f2 (x)) +

∫ t

0
T 2

t−s

(
u

1+β2
1 (s, x)

)
ds

)
,

is a contraction for certain τ, R ∈ (0,∞). We start by verifying that � is in fact
an operator from Pτ ∩ BR onto Pτ ∩ BR for suitably chosen τ, R ∈ (0,∞). Let
τ0, R0 ∈ (0,∞) be such that

R0 >
(‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)

)
and

τ0 ≤ R0 − (‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)

)
R

1+β1
0 + R

1+β2
0

.

If (u1, u2) ∈ Pτ0 ∩ BR0 then � ((u1, u2)) has positive components due to the
definition of � and the fact that u1, u2 ≥ 0. Hence

|||� ((u1, u2))||| = sup
t∈[0,τ0]

{∥∥∥∥T 1
t (f1 (·)) +

∫ t

0
T 1

t−s

(
u

1+β1
2 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

+
∥∥∥∥T 2

t (f2 (·)) +
∫ t

0
T 2

t−s

(
u

1+β2
1 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

}

≤ ‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx) + τ0

(
R

1+β1
0 + R

1+β2
0

)
,

where we have used the contraction property of the operators T i
t , i = 1, 2, to obtain

the last inequality. It follows that |||� ((u1, u2))||| ≤ R0, i.e., � is an operator from
Pτ0 ∩ BR0 onto itself.

In order to prove the contraction property of � we choose τ0 as above in such a
way that

max
i∈{1,2}

{
(1 + βi) R

βi

0

}
τ0 ∈ (0, 1) . (5)

Let (u1, u2) ,
(
û1, û2

) ∈ Pτ0 ∩ BR0 . Using again the contraction property
of the operators T i

t , i = 1, 2, and the well-known inequality |ap − bp| ≤
p (a ∨ b)p−1 |a − b|, which holds for all a, b > 0 and p ≥ 1, we obtain

∣∣∣∣∣∣� ((u1, u2)) − �
((

û1, û2
))∣∣∣∣∣∣

= sup
t∈[0,τ0]

{∥∥∥∥
∫ t

0
T 1

t−s

(
u

1+β1
2 (s, ·) − û

1+β1
2 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)
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+
∥∥∥∥
∫ t

0
T 2

t−s

(
u

1+β2
1 (s, ·) − û

1+β2
1 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

}

≤ sup
t∈[0,τ0]

∫ t

0

∥∥∥u
1+β1
2 (s, ·) − û

1+β1
2 (s, ·)

∥∥∥
L∞(R,dx)

ds

+ sup
t∈[0,τ0]

∫ t

0

∥∥∥u
1+β2
1 (s, ·) − û

1+β2
1 (s, ·)

∥∥∥
L∞(R,dx)

ds

≤ (1 + β1)R
β1
0

∫ τ0

0

∥∥u2 (s, ·) − û2 (s, ·)∥∥
L∞(R,dx)

ds

+ (1 + β2) R
β2
0

∫ τ0

0

∥∥u1 (s, ·) − û1 (s, ·)∥∥
L∞(R,dx)

ds

≤ max
i∈{1,2}

{
(1 + βi) R

βi

0

}
τ0

∣∣∣∣∣∣(u1, u2) − (
û1, û2

)∣∣∣∣∣∣ .

From the last inequality we conclude, due to (5), that � is a contraction in Pτ0 ∩BR0 .
It follows from the Banach fixed-point theorem that � has a unique fixed point in
Pτ0 ∩ BR0 , which is the unique mild solution of system (2). �

3 A Condition for Blowup in Finite Time

Our main result is the following

Theorem 2 Let ϕi ∈ L2 (R, dx)∩C2 (R) be a strictly positive function and assume
that the initial value fi admits the representation

fi (x) := hi (x)

ϕi (x)
≥ 0, x ∈ R, (6)

for some positive nontrivial hi ∈ L2 (R, dx), i = 1, 2. Suppose in addition that
there exist strictly positive constants k1, k2 such that

k1 ≤ ϕ1 (x)

ϕ2 (x)
≤ k2, x ∈ R. (7)

1. Assume that β1 = β2. Then any non-trivial positive mild solution (u1, u2) of
system (2) blows up in finite time.
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2. Assume that β1 > β2. Let A0 :=
(

1+β2
1+β1

) 1+β2
β1−β2 β1−β2

1+β1
and suppose that

∫
R

f1 (x)μ1 (dx) +
∫
R

f2 (x)μ2 (dx) > 2
β2

1+β2 A

1
1+β2
0 . (8)

Then any mild solution (u1, u2) of system (2) blows up in finite time.

Proof Let (u1, u2) be a mild solution of system (2). We denote

wi (t, x) := ϕi (x) ui (t, x) , t ≥ 0, x ∈ R.

Multiplying both sides of (3) by ϕi yields

wi (t, x) = ϕi (x) T i
t

(
hi

ϕi
(x)

)
+

∫ t

0
ϕi (x) T i

t−s

(
w

1+βi

3−i (s, x) ϕ
−(1+βi)
3−i (x)

)
ds.

(9)

Since the function gi (x) := ϕ2
i (x) satisfies the differential equation

1

2

∂2

∂x2 gi (x) − ∂

∂x

(
gi (x)

ϕ′
i (x)

ϕi (x)

)
= 0, x ∈ R,

it follows that μi (dx) = ϕ2
i (x) dx is invariant for the semigroup

{
T i

t , t ≥ 0
}
. Let

us write E
i [f ] := ∫

R
f (x) ϕi (x) dx. Due to (9) this implies that

E
i [wi (t, ·)] = E

i [hi (·)] +
∫ t

0
E

i
[
w

1+βi

3−i (s, ·) ϕi (·) ϕ
−(1+βi)
3−i (·)

]
ds. (10)

Define a := min

{
k2

1,
1

k2
2

}
. From assumption (7) we get

ϕ2
i (x)

ϕ2
3−i (x)

≥ a for all x ∈ R

and i = 1, 2. Therefore

E
i
[
w

1+βi

3−i (s, ·) ϕi (·) ϕ
−(1+βi)
3−i (·)

]

=
∫
R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi

ϕ2
i (x) dx

≥ a ‖ϕ3−i‖2
L2(R,dx)

∫
R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi ϕ2
3−i (x)

‖ϕ3−i‖2
L2(R,dx)

dx
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≥ a
‖ϕ3−i‖2

L2(R,dx)

‖ϕ3−i‖2+2βi

L2(R,dx)

(∫
R

w3−i (s, x)

ϕ3−i (x)
ϕ2

3−i (x) dx

)1+βi

= a ‖ϕ3−i‖−2βi

L2(R,dx)

(
E

3−i [w3−i (s, ·)]
)1+βi

, (11)

where we have used Jensen’s inequality to obtain the last inequality. Plugging (11)
into (10) renders

E
i [wi (t, ·)] ≥ E

i [hi (·)] + a ‖ϕ3−i‖−2βi

L2(R,dx)

∫ t

0

(
E

3−i [w3−i (s, ·)]
)1+βi

ds.

(12)
Let yi (t) be the solution of the system

y ′
i (t) = a ‖ϕ3−i‖−2βi

L2(R,dx)
y

1+βi

3−i (t) , t > 0,

yi (0) = E
i [hi (·)] , i = 1, 2.

Putting b := a min
{
‖ϕ1‖−2β2

L2(R,dx)
, ‖ϕ2‖−2β1

L2(R,dx)

}
we get the system of differential

inequalities

y ′
i (t) ≥ by

1+βi

3−i (t) , t > 0,

yi (0) = E
i [hi (·)] , i = 1, 2.

Let (z1 (t) , z2 (t)) be the solution of the system of ordinary differential equations

z′
i (t) = bz

1+βi

j (t) , t > 0,

zi (0) = E
i [hi (·)] , i = 1, 2, j = 3 − i.

By the Picard-Lindelöf theorem, this system with (z1 (0) , z2 (0)) = (0, 0) has a
unique local solution (w1 (t) , w2 (t)) ≡ (0, 0) for all t ∈ [0, τ ), for some τ ∈
(0,∞]. In our case E

i [hi (·)] ≥ 0. Therefore by a classical comparison theorem,
z1 (t) , z2 (t) ≥ 0 for all t ∈ [0, τ ).

Consider the new function

E (t) := z1 (t) + z2 (t) , t ≥ 0.

We deal separately with the two cases in the statement of the theorem:

1. Case β1 = β2. Using the fact that

x1+β1 + y1+β1 ≥ 2−β1 (x + y)1+β1 , x ≥ 0, y ≥ 0, (13)
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we get

E′ (t) = z′
1 (t) + z′

2 (t)

= b
(
z

1+β1
1 (t) + z

1+β1
2 (t)

)

≥ 2−β1bE1+β1 (t) , t > 0,

E (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

Let I (t) be the solution of the ordinary differential equation

I ′ (t) = 2−β1bI 1+β1 (t) , t > 0,

I (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

Since I is a subsolution of E (see [13], Lemma 1.2.) and I explodes at time

T ∗ = 2β1

bβ1
(
E1 [h1 (·)] + E2 [h2 (·)])β1

∈ (0,∞) ,

it follows that E explodes at some time tE ≤ T ∗, and therefore, by a classical
comparison theorem we get that

E
1 [w1 (t, ·)] = ‖u1 (t, ·)‖L1(R,μ1)

= ∞ or

E
2 [w2 (t, ·)] = ‖u2 (t, ·)‖L1(R,μ2)

= ∞

for all t ≥ T ∗. Since ‖ui (t, ·)‖L1(R,μi )
≤ ‖ui (t, ·)‖L∞(R,dx) ‖ϕi‖2

L2(R,dx)
for all

t ∈ [0,∞), i = 1, 2, we conclude that the mild solution (u1, u2) of system (2)
blows up in finite time.

2. Case β1 > β2. Recall that for all x, y ≥ 0, δ > 0 and p, q ∈ (1,∞) such that
p−1 + q−1 = 1 we have Young’s inequality

xy ≤ δ−pxp

p
+ δqyq

q
. (14)

From the definition of A0 it follows that

z
1+β1
2 (t) ≥ z

1+β2
2 (t) − A0, for all t ≥ 0.

In fact, it suffices to choose in (14)

x = 1, y = z
1+β2
2 (t) , δ =

(
1 + β1

1 + β2

) 1+β2
1+β1

and q = 1 + β1

1 + β2
.
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Therefore we have

E′ (t) ≥ b
(
z

1+β2
1 (t) + z

1+β2
2 (t) − A0

)
.

Using again inequality (13) we conclude that

z
1+β2
1 (t) + z

1+β2
2 (t) ≥ 2−β2E1+β2 (t) ,

hence

E′ (t) ≥ b
(

2−β2E1+β2 (t) − A0

)
.

Let I (t) solve the ordinary differential equation

I ′ (t) = b
(

2−β2I 1+β2 (t) − A0

)
, t > 0,

I (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

It follows from the same comparison theorem as above that I is a subsolution of
E. Using separation of variables we get, for t ∈ (0,∞),

t =
∫ I (t)

E(0)

dx

b
(
2−β2x1+β2 − A0

) ≤
∫ ∞

E(0)

dx

b
(
2−β2x1+β2 − A0

) =: T ∗. (15)

But the hypothesis (8) implies that T ∗ < ∞. Hence (15) cannot hold for
sufficiently large t , which yields that I explodes at a finite time T ∗∗ ∈ (0, T ∗].
Therefore E explodes no later than T ∗ as well. From here we proceed as in the
case β1 = β2 to conclude that the mild solution (u1, u2) of system (2) blows up
in finite time also in this case.

�
The following result is an immediate consequence of the previous theorem. Recall
that E (0) = ∫

R
f1 dμ1 + ∫

R
f2 dμ2 and

A0 =
(

1 + β2

1 + β1

) 1+β2
β1−β2 β1 − β2

1 + β1
, b = min

{
k2

1,
1

k2
2

}
min

i∈{1,2}

{
‖ϕi‖−2βi

L2(R,dx)

}
.

Corollary 3 Under the assumptions of Theorem 2, if β1 = β2 then the explosion
time of any non-trivial positive solution of (2) is bounded above by

T ∗ = 2β1

bβ1 (E (0))β1
.
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If β1 > β2 and (8) holds, then the time of explosion of (2) is bounded above by

T ∗ =
∫ ∞

E(0)

dx

b
(
2−β2x1+β2 − A0

) .

Remark Theorem 2 and Corollary 3 remain valid when β2 > β1, with the obvious
changes in the correspondent statements.
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