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Abstract In this note we present a criterion under which a functional defined
on vectors of non-decreasing functions is the Γ -limit of a functional defined on
vectors of continuous non-decreasing functions. To this end, we present a separation
principle in which a weakly converging sequence of continuous non-decreasing
functions is decomposed in two parts, one converging to a non-decreasing function
with a finite number of jumps and the other to the complementary jumps.
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1 Introduction

For T > 0 fixed, we denote by C the class of right-continuous with left-limits
functions defined on the interval [0,T], which are non-negative and non-decreasing.
We denote by Cf inite the elements of C with a finite number of jumps and by C0

the elements of C with no jumps. For c ∈ C, the jump at time t ∈ [0,T] is denoted
by �c(t) and is defined as the difference c(t)−c(t−). If c(0) > 0 then we consider
a jump of size c(0) at time t = 0. Thus �c(0) := c(0). An element of C defines
a unique positive measure in the interval [0,T] and we will consider the topology
of weak convergence on C. Recall that a sequence of measures {μn}n∈N converges
weakly to a measure μ if for each continuous bounded function f : [0,T] → R
we have limn→∞

∫
f dμn = ∫

f dμ. An equivalent property to weak convergence
is formulated in terms of the elements of C (which can be seen as “distribution
functions”). A sequence {c(n)}n∈N ⊂ C converges pointwise to an element c ∈ C
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for each continuity point of c if and only if the corresponding measures converges
weakly. By a slight abuse of language we will say that the sequence {c(n)}n∈N
converges weakly to c.

An important property of weak convergence is that it is metrizable on separable
spaces. Indeed, the well-known Prokhorov distance is a metric which on separable
spaces characterizes weak convergence; see e.g., Ethier and Kurtz [6, Section 3.1].
This property will be crucial for our results here.

Now consider a functional J : C0 × C0 → R and suppose we are required
to consider the functional in all of the space C × C. One reason why we might
need the functional in an enlarged space is related to the problem of minimizing the
functional. Indeed, a minimizer may fail to exist in the class of continuous elements
and we might need to consider an enlarged space. A classical method to construct
a functional in an enlarged space is by density and approximation. In this method,
we take a point (c1, c2) ∈ C × C and a sequence {(c1(n), c2(n))}n∈N ⊂ C0 × C0

which componentwise converges weakly. We might define a functional J∗ in the
point (c1, c2) by the limit:

J∗(c1, c2) = lim
n→∞ J(c1(n), c2(n)).

The method requires that the limit always exists and to be independent of the partic-
ular sequence. However, we will illustrate in Sect. 3 that for weak convergence,with
a very simple functional one gets different limits and even oscillatory behaviors.
Note also that even for elements of C0 × C0 the functionals J∗ and J does not
necessarily coincide and J∗ is not necessarily an extension of J. Thus, the method
does not work in general and we might need to consider “envelopes” instead of
extensions. A convenient solution still keeping in mind problems of minimization
is that of �-convergence. The concept was introduced in the study of variational
problems by De Giorgi [5]. It is systematically presented by Dal Maso [4] and its
relevance in optimal control, which is our main motivation here, is presented by e.g.,
Buttazzo and Dal Maso [3]. The �-convergence is a far reaching concept providing
a powerful framework covering a wide range of applications; see e.g., Braides [2]
and its references. In Sect. 2 below, we give more detail on this concept for our
specific setting. Let us at this point formulate on the relevance of �-convergence in
optimal control. Consider two topological spaces U (the space of controls) and Y

(the space of state variables), and a function J : U × Y → [0,+∞]. Given a set of
“admissible control-states”A ⊂ U × Y , consider the minimization problem:

min
(u,y)∈A

J(u, y).

This general problem may be difficult to study directly and instead, it might be
convenient to study related problems formulated with other sets Ah ⊂ U × Y and
other functions Jh for h ∈ N. In principle, the minimization problem formulated
in terms of the pair (Ah, Jh) should be easier and provide information about
the original minimization problem formulated in terms of A and J. A way in
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which the sequence of auxiliary minimization problems help to understand the
original problem is that of convergence of minimal values and convergence of
optimal controls for the auxiliary problems, possibly along a subsequence, to an
optimal control of the original problem. This is one of the main properties of �-
Convergence; see e.g., Buttazzo and Dal Maso [3, Theorem 2.1].

The construction of �-limits is a highly non trivial task and in this paper we
obtain a substantial reduction based on an assumption of monotonicity.

Definition 1.1 A functional J is monotone if for each c1, c2 ∈ C0 and ν1, ν2 ∈ C0

we have

J(c1 + ν1, c2 + ν2) ≥ J(c1, c2). (1.1)

In this note, we prove the �-convergence in C × C for monotone functionals as a
consequence of the property for elements of Cf inite × Cf inite which have a finite
number of atoms. This is a non trivial reduction that makes use of Skorokhod’s
representation of weak convergence and depends strongly on the property of
monotonicity of the functional.

After this introduction, the note is organized as follows. In Sect. 2, we elaborate
on the concept of �-convergence in our specific setting. In Sect. 3, we illustrate the
phenomenon of oscillatory behavior. In Sect. 4 we prove a separation principle for
sequences of continuous distributions by making use of Skorokhod’s representation
of weak convergence. In Sect. 5 we prove the sufficient condition for�-convergence.

2 �-Convergence

The next definition can be seen as a special case of the concept systematically
presented by Dal Maso [4].

Definition 2.1 For a functional J : C0 × C0 → R we say that the functional J∗ :
C × C → R is the �-limit of J if the following conditions are satisfied:

1. for each point (c1, c2) ∈ C × C and sequence {(c1(n), c2(n))}n∈N ⊂ C0 × C0

which componentwise weakly-converges to (c1, c2) we have:

J∗(c1, c2) ≤ lim inf
n→∞ J(c1(n), c2(n)),

2. there exists a sequence {(c1∗(n), c2∗(n))}n∈N ⊂ C0 × C0 which weakly-
converges component by component to (c1, c2) with the property

J∗(c1, c2) = lim
n→∞ J(c1∗(n), c2∗(n)).
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3 An Example of Oscillatory Behavior

In this section we illustrate the phenomenon of oscillatory behavior with the very
simple functional J defined by

J(c1, c2) :=
∫

T

0
dc2s

∫ s

0
dc1z.

In particular this example illustrates the convenience of considering the concept of
�-convergence.

For τ ∈ (0,T), let

c2t := c1t := 1[τ,T](t). (3.1)

Now we define continuous approximations. Take ε > 0 with τ + ε < T and for
α ∈ (0, 1) let ε′ := αε. Let

u1t (ε, α) :=
∫ t∧(τ+ε)

0
m1

ε1[τ,τ+ε](s)ds

u2t (ε, α) :=
∫ t∧(τ+ε)

0
m2

ε,α1[τ+ε′,τ+ε](s)ds. (3.2)

where

m1
ε := c1τ+ε − c1τ−

ε
= 1

ε

m2
ε,α := c2τ+ε − c2τ−

ε − ε′ = 1

(1 − α)ε
.

The functions u1 and u2 are illustrated in Fig. 1.

Proposition 3.1 The functions u1(ε, α) and u2(ε, α) defined in (3.2) converge
weakly as ε ↘ 0 to c1 and c2 respectively, and

J(u1(ε, α), u2(ε, α)) = 1 + α

2
.

Proof Note that u1(ε, α), u2(ε, α) converge pointwise as ε ↘ 0 in [0,T]/{τ } to
c1, c2, respectively, and therefore converge weakly. For the second part of the
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Approximating controls

τ τ + ε′ τ + ε

Fig. 1 The two functions u1 and u2, defined in Eq. (3.2)

proposition, we have

∫
T

0
du2s (ε, α)

∫ s

0
du1z(ε, α) =

∫ τ+ε

τ+ε′
m2

ε,α1[τ+ε′,τ+ε](s)ds

∫ s

0
m1

ε1[τ,τ+ε](z)dz

= m1
εm

2
ε,α

∫ τ+ε

τ+ε′
ds

∫ s

τ

dz

= m1
εm

2
ε,α

∫ τ+ε

τ+ε′
(s − τ )ds

= m1
εm

2
ε,α

1

2
ε2(1 − α2)

= 1 + α

2
.

�
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Remark 3.2 Note that it is possible to select a sequence {αm}m∈N in such a way that
the sequence

{
J(u1(ε, αm), u2(ε, αm))

}
m∈N generates a dense subset of the interval

[ 12 , 1], due to Proposition 3.1.

4 A Separation Principle of Sequences

We start this section with Skorokhod’s representation of weak convergence in the
following form. Let {μn}n∈N be a sequence of probability measures in the interval
[0,T] converging weakly to the measure μ. Then, there exists a probability space
(	,F ,P), a random variable Y and a sequence of random variables {Yn}n∈N defined
in this common space, such that Yn has distribution μn and Y has distribution μ and
the sequence converges to Y everywhere in 	. See e.g., Billingsley [1, Theorem
25.6] for the proof.

Lemma 4.1 Let {Fm}m∈N be a sequence of elements of C0. Assume the sequence
converges weakly to an element F of C. Thus, the sequence converges pointwise to
F except, possibly, for the points {τk}∞k=0 where F jumps.

Then, for k0 ∈ N fixed, there exist sequences of non-negative, non-decreasing
continuous functions {Gm}m∈N and {Hm}m∈N such that

1. Fm = Gm + Hm for m ∈ N.
2. The sequence {Hm}m∈N converges pointwise to the function

H(t) :=
∞∑

k=k0+1

�F(τk)1{τk≤t}, (4.1)

for t ∈ [0,T].
3. The sequence {Gm}m∈N converges pointwise to the function

G(t) := F(t) − H(t), (4.2)

for t ∈ [0,T].
Proof We will do the proof only in the case that Fm(T) = F(T) = 1, the general
case following by normalization.

There exist a probability space (	,F , P ) and a sequence of random variables
{Xn}n∈N converging to a random variable X, with Xn ∼ Fn and X ∼ F , due to
Skorokhod’s representation theorem; see e.g., Billingsley [1, Theorem 25.6].
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Let

A := X−1([0,T]/{τk0+1, τk0+2 . . .}),
B := X−1(τk0+1, τk0+2 . . .).

Let us verify that the function G satisfies

G(t) = P [{X ≤ t} ∩ A] . (4.3)

Note that

F(t) − P [{X ≤ t} ∩ A] = P [{X ≤ t}] − P [{X ≤ t} ∩ A]

= P [{X ≤ t} ∩ B]

=
∞∑

k=k0+1

P
[
{X ≤ t} ∩ X−1(τk)

]

=
∞∑

k=k0+1

�F(τk)1{τk≤t}

= H(t),

and the equality (4.3) follows. Let

Gm(t) := P [{Xm ≤ t} ∩ A] , for t ∈ [0,T] and m ∈ N.

The function Gm has the following properties:

1. The function is clearly non-negative and non-decreasing.
2. Gm is a continuous function. Suppose by way of contradiction that Gm has a

jump in t0 ∈ [0,T]. Take ε > 0 smaller than the size of the jump

0 < ε ≤ �Gm(t0).

Then

ε ≤ P [{Xm = t0} ∩ A] ≤ P [{Xm = t0}] ,

a contradiction with the fact that the function Fm is continuous. Thus, it was false
to assume that Gm has a jump.

3. For t ∈ [0,T] we claim

lim
m→∞ Gm(t) = G(t). (4.4)
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Indeed, we have

lim
m→∞ P [{Xm ≤ t} ∩ A] = lim

m→∞ EP

[
1(−∞,t ](Xm)1A

]

= EP

[
1(−∞,t ](X)1A

]

= P [{X ≤ t} ∩ A]

= G(t),

where the second equality holds true due to Lebesgue dominated convergence
and the last equality is just (4.3).

Let

Hm := P [{Xm ≤ t} ∩ B] .

Analogously to the sequence {Gm}m∈N we can prove that Hm

1. is a non-decreasing non-negative function,
2. is a continuous function
3. and limm→∞ Hm(t) = H(t), for t ∈ [0,T].

The proof concludes with the equalities

Gm(t) + Hm(t) = P [{Xm ≤ t} ∩ A] + P [{Xm ≤ t} ∩ B]

= P [{Xm ≤ t}]
= Fm(t).

�

5 The �-Limit Under Monotonicity

Theorem 5.1 Let J : C0 × C0 → R be a monotone functional. Assume J∗ : C ×
C → R is the �-limit of J for elements in Cf inite × Cf inite of distributions with a
finite number of jumps. Then, the �-limit of J in C × C is given as follows. For a
pair (c1, c2) ∈ C × C with a countable number of jumps {τ0, τ1, . . .} we have

J∗(c1, c2) = lim
k→∞ J∗(̃c1(k), c̃2(k)),

where

c̃i
t (k) := ĉi

t +
k∑

j=0

�ci
τj
1{τj ≤t}

and ĉi is the continuous part of ci , for i = 1, 2.
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Proof

1. Let {(s1(m), s2(m))}m∈N ⊂ C0 × C0 be a sequence componentwise weakly-
converging to (c1, c2) ∈ C × C. We first prove that

lim inf
m→∞ J(s1(m), s2(m)) ≥ lim

k→∞ J∗(̃c1(k), c̃2(k)). (5.1)

For k ∈ N fixed and arbitrary m ∈ N, take a decomposition si (m) = Gi(m) +
Hi(m) as in Lemma 4.1 with Gi(m) converging to c̃i (k) as m → ∞. The
functional J is monotone and therefore

J(s1(m), s2(m)) ≥ J(G1(m),G2(m)).

As a consequence

lim inf
m→∞ J(s1(m), s2(m)) ≥ lim inf

m→∞ J(G1(m),G2(m)) ≥ J∗(̃c1(k), c̃2(k)),

where the last inequality holds true since Gi(m) weakly converges to c̃i (k). The
sequence {J∗(̃c1(k), c̃2(k))}k∈N is non decreasing and we obtain the inequality
(5.1).

2. Now we construct a sequence where the inequality (5.1) is satisfied with equality.
Let {ki(k, j)}j∈N be a sequence of continuous functions weakly converging

to c̃i (k) for i = 1, 2 and

J∗(̃c1(k), c̃2(k)) = lim
j→∞ J(k1(k, j), k2(k, j)),

such a sequence exists since J∗ is the �-limit of J in Cf inite × Cf inite. Let ρ

denote the Prokhorov metric on the space of probability measures defined on the
interval [0,T]. Next, identify distributions with probability measures. For k ∈ N
let jk ∈ N be such that jk > jk−1 and for j ≥ jk and i = 1, 2

ρ(̃ci (k), ki (k, j)) <
1

2k

ρ(̃ci (k), ci ) <
1

2k
∣
∣
∣J∗(̃c1(k), c̃2(k)) − J(k1(k, j), k2(k, j))

∣
∣
∣ <

1

k
.
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Then, the sequence {(k1(k, jk), k2(k, jk))}k∈N satisfies (5.1) with equality, since
it has the properties

ρ(ci, ki (k, jk)) <
1

k
,

∣
∣
∣J∗(̃c1(k), c̃2(k)) − J(k1(k, jk), k2(k, jk))

∣
∣
∣ <

1

k
.

�
Let us give an application of Theorem 5.1. To this end, take a non-negativeRadon

measure η with support in the interval [0,T]. Consider a functional of the form

J(c1, c2) =
∫

[0,T]
f (t, c1t , c

2
t )dηt , for (c1, c2) ∈ C0 × C0,

where f is a normal integrand. That is, the correspondence

t ∈ [0,T] → {(c1, c2, α) ∈ R2+ × R | f (t, c1, c2) ≤ α},

is closed-valued and measurable. Recall that a set valued mapping (or correspon-
dence) S : � �→ R ∪ {∞} defined in a measurable space (�, σ) is measurable if
the inverse image S−1(O) := {ξ ∈ � | S(ξ) ∩ O �= ∅} of every open set O is
measurable. We will assume that f (t, ·, ·) is a continuous non decreasing function
for each t ∈ [0,T] and it is dominated by an η-integrable function. It is clear that J
is a monotone functional. The �-limit of J is given in the next result.

Proposition 5.2 For (c1, c2) ∈ C × C let D be the set of points where c1 or c2

jumps and let A be the set of atoms of the Radon measure η. Let (A ∩ D)c be the
complement of A ∩ D in the interval [0,T]. The �-limit of J in (c1, c2) is given by

J∗(c1, c2) =
∫

(A∩D)c
f (t, c1t , c

2
t )dηt +

∑

t∈A∩D
η({t})f (t, c1t−, c2t−). (5.2)

Proof Take (c1, c2) ∈ Cf inite × Cf inite. For i = 1, 2, take a sequence
{wi(n)}n∈N ⊂ C0 converging weakly to ci . We clearly have that

lim inf
n→∞

∫

[0,T]
f (t, w1

t (n),w2
t (n))dηt

=
∫

(A∩D)c
f (t, c1t , c

2
t )dηt + lim inf

n→∞

∫

A∩D
f (t, w1

t (n),w2
t (n))dηt ,

due to the weak convergence, since f is a continuous function.



A Note on �-Convergence of Monotone Functionals 205

Take t ∈ A ∩ D. We will do the proof for t ∈ (0,T), the other cases being more
simple. For ε > 0 and δ > 0 with t − δ, t + δ ∈ (0,T)/A ∪ D let N ∈ N be such
that

∣
∣wi

t−δ(n) − ci
t−δ

∣
∣ ≤ ε and

∣
∣wi

t+δ(n) − ci
t+δ

∣
∣ ≤ ε, for n ≥ N . Then

−ε + ci
t−δ ≤ wi

t (n) ≤ ε + ci
t+δ.

As a consequence

ci
t− ≤ lim inf

n→∞ wi
t (n) ≤ lim sup

n→∞
wi

t (n) ≤ ci
t .

The monotonicity and continuity of f implies now that

lim inf
n→∞

∫

A∩D
f (t, w1

t (n),w2
t (n))dηt ≥

∫

A∩D
f (t, c1t−, c2t−)dηt .

Thus, we have proved that J∗(c1, c2) ≤ lim infn→∞ J(w1(n),w1(n)).
Now we are going to construct a sequence {(v1(n), v2(n))}n∈N converging

weakly to (c1, c2) with J∗(c1, c2) = limn→∞ J(v1(n), v2(n)). For t ∈ D ∩ (0,T)

let Bt (δ) := (t, t + δ] where δ > 0 is small enough so that t + δ ∈ (0,T)/(A ∪ D)

and the sets Bt (δ) are pairwise disjoint. For i = 1, 2, let lit be the linear function
defined by

lit (z) = (z − t)
ci (t + δ) − ci (t−)

δ
+ ci (t−).

We define

vi
z(δ) :=

{
ci
z− for z /∈ ⋃

t∈D∩(0,T) Bt (δ),

lit (z) for z ∈ Bt (δ).

Let {δn}n∈N be a sequence with δn ≤ 1
n
and satisfying the requirements that

t + δn ∈ (0,T)/(A ∪ D) and the sets Bt (δn) are pairwise disjoint. It is clear
that the sequence {(v1(δn), v

2(δn))}n∈N converges weakly to (c1, c2). Indeed,
(v1(δn), v

2(δn)) = (c1, c2) outside the set
⋃

t∈D∩(0,T) Bt (δn). Moreover

∫

A∩D
f (t, v1t (δn), v

2
t (δn))dηt =

∫

A∩D
f (t, c1t−, c2t−)dηt ,

due to the definition of (v1t (δn), v
2
t (δn)).

We have proved that J∗ as defined in (5.2), is the �-limit of J for elements
in Cf inite × Cf inite of distributions with a finite number of jumps. Then, after
Theorem 5.1, the �-limit of J in C × C is given as follows. For a pair (c1, c2) ∈
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C × C with a countable number of jumps {τ0, τ1, . . .} we have

J∗(c1, c2) = lim
k→∞ J∗(̃c1(k), c̃2(k)),

with the notation of Theorem 5.1. Note that

J∗(̃c1(k), c̃2(k)) =
∫

[0,T]
f (t, c̃1t−(k), c̃2t−(k))dηt .

Moreover, limk→∞ c̃i
t−(k) = ci

t− uniformly in t ∈ [0,T] and i = 1, 2. As a
consequence

lim
k→∞ J∗(̃c1(k), c̃2(k)) =

∫

[0,T]
f (t, c1t−, c2t−)dηt ,

due to the continuity of the function f . The right-hand side of the last equation
coincides with the right-hand side of (5.2). This proves the proposition. �
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