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Abstract Advanced-type equilibria for a general class of zero-sum stochastic
differential games have been studied in part by Escobedo-Trujillo et al. (J Optim
Theory Appl 153:662–687, 2012), in which a comprehensive study of the so-
named bias and overtaking equilibria was provided. On the other hand, a complete
analysis of advanced optimality criteria in the context of optimal control theory
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independently by Jasso-Fuentes and Hernández-Lerma (Appl Math Optim 57:349–
369, 2008; J Appl Probab 46:372–391, 2009; Stoch Anal Appl 27:363–385, 2009).
In this work we try to fill out the gap between the aforementioned references.
Namely, the aim is to analyze Blackwell-Nash equilibria for a general class of zero-
sum stochastic differential games. Our approach is based on the use of dynamic
programming, the Laurent series and the study of sensitive discount optimality.
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1 Introduction

Among the most common payoff functions existing in the literature in the general
theory of dynamic games we can mention the (finite-horizon) Bolza-type payoff and
the well-known (infinite-horizon) discounted and average payoffs. The key features
of these two last criteria is that, whereas the discounted payoff only focuses on
earlier revenues, the average reward ignores these and pays attention only to the
asymptotic behavior of the utilities. A drawback of these points of view is that
they do not consider what happens in the mid-run. For example, there can be N-
tuples of strategies (N represents the number of players in the game) that might
be “optimal” for all the players in the infinite-horizon average criterion, but in turn,
they provide low profits (and/or high costs) to the players at any finite period of time.
From another angle, there exist several applications in which the (infinite-horizon)
discounted payoff criterion is used to model the real or present value (at the current
time) of a company; the key ingredient is the use of a discount factor. However, in
some other situations, this criterion might be used for some other purposes; one of
them is to regard it as an estimate of criteria without discount.

To fix ideas, suppose we have a game such that π̄ = (π1 · · · , πN) represents
an N-tuple associated to some choices of the players (i.e., πi corresponds to the
strategy of player i), and denote by ri the associated payoff rate function of player
i (for illustrative purposes let us assume for the moment that all players have the
same reward rate; i.e., ri = r for all i = 1, · · · N). The expected undiscounted and
discounted payoffs of π̄ for each player are defined, respectively, as

V (π̄) = E

∫ ∞

0
r(xπ̄ (t))dt, and Vα(π̄) = E

∫ ∞

0
e−αt r(xπ̄ (t))dt,

where xπ̄ (t) represents the state of the process under the policy π̄ at time t , and
α > 0 is a given constant. A very important property of Vα is that, under mild
assumptions, it is finite-valued; whereas the former requires very strong hypotheses
to possess this feature. In this sense, if one is interested in studying optimality under
the criterion V , one may regard such criterion as the limit of some sequence of Vα

in the following sense:

Vαn(π̄) → V (π̄) as {αn}n ↓ 0. (1.1)

However, even when one can provide optimality results (Nash equilibria) to Vα for
some fixed and of course positive and even small α, it turns out that this Vα , regarded
as an estimate of V , is acceptable at early periods of times, but it is very imprecise
in the long run.

An alternative approach that lies in the same direction of the limit (1.1) is the use
of Blackwell-Nash equilibria. This consists essentially in seeking Nash equilibria
that remain optimal for all the discounted payoffs Vα, 0 < α < α∗, for some fixed
α∗ > 0 (see Definition 8.1). Due to the nature of this class of equilibria, they turn
out to be good “optimizers”, when the payoff criterion under study is of type V .



Blackwell-Nash Equilibria in Stochastic Differential Games 171

The purpose of this work is to analyze Blackwell-Nash equilibria for a general
class of zero-sum stochastic differential games; namely, we provide sufficient
conditions for ensuring the existence and characterizations of these equilibria.
This study is based on the analysis of the so-named sensitive discount equilibria
introduced in Definition 8.2. It is worth noting that Blackwell-Nash equilibria have
the property of being bias and overtaking equilibria too. In this sense, our present
analysis is more general than [5], because we use the same set of assumptions.
Finally, it is important to say that, due to the fact that our work studies only the
zero-sum case, here and in the sequel, we consider only to the case N = 2 players.

Another interesting application concerning Blackwell games goes in the spirit
of the so-named priority mean-payoff games, which are regarded as the limit of
special multi-discounted games. In this type of games, Blackwell equilibria play
an important role because of their stability property under small perturbations of
the discount factor—see [7–9]. The study of Blackwell-Nash equilibria in zero-sum
stochastic differential games also permits the extension to the theory of priority
mean-payoff games in the stochastic differential games setting.

Bias and overtaking criteria have been studied in the context of zero-sum
stochastic differential games; see, for example, [5, 17]. Nevertheless, to the best
of our knowledge, the only works dealing with sensitive discount and Blackwell
optimality, but in the context of controlled diffusions (i.e., the case of one player
only) are [12, 13] and [22]. It is worth mentioning, however, that there are
some works that are close to the present proposal. For instance, Arapostathis et
al. [3] study a zero-sum stochastic differential game under a slightly different
ergodicity assumption than ours. It states a parabolic Hamilton-Jacobi-Bellman
(HJB) equation, and finds risk-sensitive optimal selectors, in the sense that the
payoff form is “sensitive to higher moments of the running cost, and not merely
its mean”. This represents an alternative approach to ours, because while they deal
with the concept of risk-sensitivity (as introduced in [25]), we rather choose the
notion of sensitive discount in a Laurent series, as presented in [12] and [21]. Other
works that are related to the selective criteria we study for stochastic diffusions are
[5, 11–13, 17] and the references therein.

The rest of our work comprises eight short sections. In the next section we
introduce the notation that we use, our game model, the main hypotheses, and
the basic type of strategies we will deal with along our developments. Section 3
presents the long-run average optimality criterion, and a very well-known result
on the existence of the corresponding Nash equilibria. Section 4 is devoted to the
so called bias criterion. This is a first refinement of the criterion introduced in
Sect. 3, and we profit from it by quoting the concepts introduced in that part in
further sections. In Sect. 5 we extend the results from [21, Section 3] to the zero-sum
case. There, we use an exponential ergodicity condition to characterize a discounted
payoff in terms of a Laurent series. Sections 6–8 are extensions of the results from
[12] and represent the main contribution of this paper. In Sect. 6 we define the so-
called Poisson system and model its solution in terms of the criterion presented
before in Sect. 3. Section 7 shows a connection between the Poisson system and
the dynamic programming principle. There, we lay out the concept of canonical
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equilibria and represent it as the strategies for which certain HJB equations are met.
In Sect. 8 we exhibit Blackwell-Nash and sensitive discount equilibria and relate
them in some appropriated sense. We draw our conclusions in Sect. 9.

2 The Game Model and Main Assumptions

The Dynamic System Let us consider an n-dimensional diffusion process x(·)
controlled by two players and evolving according to the stochastic differential
equation

dx(t) = b(x(t), u1(t), u2(t))dt + σ(x(t))dW(t), x(0) = x0, t ≥ 0, (2.1)

where b : Rn×U1×U2 → R
n and σ : Rn → R

n×d are given functions, and W(·) is
a d-dimensional standard Brownian motion. The sets U1 ⊂ R

m1 and U2 ⊂ R
m2 are

given (Borel) sets. Moreover, for i = 1, 2, ui(·) is a Ui-valued stochastic process
representing the strategy of player i at each time t ≥ 0.

Notation For vectors x and matrices A we consider the usual Euclidean norms

|x|2 :=
∑

k

x2
k and |A|2 := Tr(AA′) =

∑
i,j

A2
i,j ,

where A′ and Tr(·) denote the transpose and the trace of a matrix, respectively.

Assumption 2.1

(a) The action sets U1 and U2 are compact.
(b) b(x, u1, u2) is continuous on R

n × U1 × U2, and x 	→ b(x, u1, u2) satisfies
a Lipschitz condition uniformly in (u1, u2) ∈ U1 × U2; that is, there exists a
positive constant K1 such that

sup
(u1,u2)∈U1×U2

|b(x, u1, u2) − b(y, u1, u2)| ≤ K1|x − y| for all x, y ∈ R
n.

(c) There exists a positive constant K2 such that for all x, y ∈ R
n,

|σ(x) − σ(y)| ≤ K2|x − y|.

(d) (Uniform ellipticity.) The matrix a(x) := σ(x)σ ′(x) satisfies that, for some
constant K3 > 0,

x ′a(y)x ≥ K3|x|2 for all x, y ∈ R
n.
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For (u1, u2) ∈ U1 × U2, and ν in C2(Rn), p ≥ 1, let

Lu1,u2ν(x) :=
n∑

i=1

bi(x, u1, u2)∂iν(x) + 1

2

n∑
i,j=1

aij (x)∂2
ij ν(x), (2.2)

where bi is the i-th component of b, and aij is the (i, j)-component of the matrix
a(·) defined in Assumption 2.1(d).

2.1 Strategies

Throughout this work, we will be interested in finding saddle points (see The-
orem 3.5 below). To ensure that our search leads us to this result, we use the
theory of relaxed controls—see for instance, [19, 24, 26]. The use of this class of
controls, along with the semi-continuity properties of the cost/reward function (see
Assumption 2.8(c) below) will give us the convex structure needed to guarantee the
existence of non-cooperative Nash equilibria.

For each k = 1, 2, let P(Uk) be the space of probability measures on Uk endowed
with the topology of weak convergence, and denote by B(Uk) the Borel σ -algebra
of Uk .

Definition 2.2 A randomized strategy for player k is a family πk := {πk
t , t > 0} of

stochastic kernels on B(Uk) × R
n satisfying:

(a) for each t ≥ 0 and x ∈ R
n, πk

t (·|x) is a probability measure on Uk such that
πk

t (Uk|x) = 1, and for each D ∈ B(Uk), πk
t (D|·) is a Borel function on R

n;
and

(b) for each D ∈ B(Uk) and x ∈ R
n, the mapping t 	−→ πk

t (B|x) is Borel
measurable.

We now introduce the notion of stationary strategy.

Definition 2.3 For each k = 1, 2, we say that a randomized strategy is stationary
if and only if there is a probability measure πk(·|x) ∈ P(Uk) such that πk

t (·|x) =
πk(·|x) for all x ∈ R

n and t ≥ 0.

The set of randomized stationary strategies for player k = 1, 2 is denoted by �k .
It is important to state that we suppose the existence of a topology defined on �k ,
k = 1, 2, such that �k is compact—for more details see [14, Section 2].

For each pair of probability measures (φ,ψ) ∈ P(U1) × P(U2) we write the
drift coefficient b in (2.1) and the operator L in (2.2) in terms of these measures by
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means of the following expressions:

b(x, φ,ψ) :=
∫

U2

∫
U1

b(x, u1, u2)φ(du1)ψ(du2), (2.3)

Lφ,ψh(x) :=
∫

U2

∫
U1

Lu1,u2h(x)φ(du1)ψ(du2). (2.4)

The notation above is valid also when the strategies π1 ∈ �1 or/and π2 ∈ �2

in (2.3)–(2.4) are interpreted as probability measures for each fixed x ∈ R
n; that is,

πk(·|x) ∈ P(Uk). In this case, unless the context requires further clarification, we
shall simply write the “variable” πk in the left-hand side of (2.3)–(2.4), rather than
πk(·|x).

Remark 2.4 Assumption 2.1 ensures that, for each pair of strategies (π1, π2) ∈
�1 × �2 there exists an almost surely unique strong solution of (2.1) which is a
Markov-Feller process. Furthermore, for each pair of strategies (π1, π2) ∈ �1×�2,
the operatorLπ1,π2

ν in (2.4) becomes the infinitesimal generator of (2.1). (For more
details, see the arguments of [2, Theorem 2.2.12] or [6, Theorem 2.1].)

Sometimes we write x(·) as xπ1,π2
(·) to emphasize the dependence on (π1, π2) ∈

�1 ×�2. Also, we shall denote by P
π1,π2

(t, x, ·) the corresponding transition prob-
ability of the process xπ1,π2

(·), i.e., Pπ1,π2
(t, x, B) := P(xπ1,π2

(t) ∈ B|x(0) = x)

for every Borel set B ⊂ R
n and t ≥ 0. The symbol Eπ1,π2

x (·) stands for the
associated conditional expectation.

Remark 2.5 In later sections, we will restrict ourselves to the space of stationary
strategies within the class of randomized strategies. The reason is that the recurrence
and ergodicity properties of the state system (2.1) can be easily verified through the
use of such policies, but for a more general class of strategies (for instance, that of
the so-called non-anticipative strategies), the corresponding state system might be
time-inhomogeneous; which might present some technical difficulties. Thus even
when it is possible to work with non-anticipative policies, our hypotheses ensure
the existence of Nash equilibria in the class of stationary strategies for both players
(see, [2, 15, 16]).

Definition 2.6 Let O ⊂ R
n be an open set. We denote by Bw(O) the Banach space

of real-valued measurable functions v on O with finite w-norm defined as follows:

‖v‖w := sup
x∈O

|v(x)|
w(x)

.
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2.2 Recurrence and Ergodicity

Assumption 2.7 There exists a function w ∈ C2(Rn), with w ≥ 1, and constants
d ≥ c > 0 such that

(i) lim|x|→∞ w(x) = +∞, and

(ii) Lπ1,π2
w(x) ≤ −cw(x) + d for each (π1, π2) ∈ �1 × �2 and x ∈ R

n.

Assumption 2.7 ensures the existence of a unique invariant probability measure
μπ1,π2 for the Markov process xπ1,π2

(·), such that

μπ1,π2(w) :=
∫
Rn

w(x) μπ1,π2(dx) < ∞ for all (π1, π2) ∈ �1 × �2. (2.5)

(See [2, 18] for details.) Moreover, for every (π1, π2) ∈ �1 × �2, x ∈ R
n, and

t ≥ 0, an application of Dynkin’s formula to the function v(t, x) := ectw(x), and
Assumption 2.7(ii) yield

E
π1,π2

x w(x(t)) ≤ e−ctw(x) + d

c
(1 − e−ct ). (2.6)

Hence, integrating both sides of (2.6) with respect to the invariant measure μπ1,π2

leads to

μπ1,π2(w) ≤ d

c
. (2.7)

Assumption 2.8 The process xπ1,π2
(·) in (2.1) is uniformly w-exponentially

ergodic; that is, there exist constants C > 0 and δ > 0 such that

sup
(π1,π2)∈�1×�2

|Eπ1,π2

x [g(x(t))] − μπ1,π2(g)| ≤ Ce−δt ‖ g ‖w w(x) (2.8)

for all x ∈ R
n, t ≥ 0, and g ∈ Bw(Rn). In this case, μπ1,π1(g) equals the integral

in (2.5) with g rather than w.

Sufficient conditions for ensuring the w-exponential ergodicity of process xπ1,π2
(·)

are given in [11, Theorem 2.7].

2.3 The Payoff Rate

Let r : R
n × U1 × U2 → R be a measurable function, so-named the payoff (or

reward/cost) rate, which satisfies the following conditions:



176 B. A. Escobedo-Trujillo et al.

Assumption 2.9

(a) The function r(x, u1, u2) is continuous on Rn × U1 × U2 and locally Lipschitz
in x uniformly with respect to (u1, u2) ∈ U1 ×U2; that is, for eachR > 0, there
exists a constant K(R) > 0 such that

sup
(u1,u2)∈U1×U2

|r(x, u1, u2)− r(y, u1, u2)| ≤ K(R)|x −y| for all |x|, |y| ≤ R.

(b) r(·, u1, u2) is in Bw(Rn) uniformly in (u1, u2); that is, there exists M > 0 such
that for all x ∈ R

n

sup
(u1,u2)∈U1×U2

|r(x, u1, u2)| ≤ Mw(x).

(c) r(x, u1, u2) is upper semicontinuous (u.s.c.) and concave in u1 ∈ U1 for every
(x, u2) ∈ R

n × U2, and lower semicontinuous (l.s.c.) and convex in u2 ∈ U2
for every (x, u1) ∈ R

n × U1.

Similar to (2.3)–(2.4), for each (φ,ψ) ∈ P(U1) × P(U2) we write

r(x, φ,ψ) :=
∫

U2

∫
U1

r(x, u1, u2)φ(du1)ψ(du2), x ∈ R
n. (2.9)

Note that this definition remains valid when the strategies π1 ∈ �1 or/and π2 ∈ �2

are applied in (2.9) as they are interpreted as probability measures, for each fixed
x ∈ R

n; that is, πk(·|x) ∈ P(Uk). As was agreed earlier, we shall simply write the
“variable” πk in the left-hand side of (2.9) rather than πk(·|x).

Remark 2.10 Under Assumptions 2.1 and 2.9, the payoff rate r(·, φ,ψ) and the
infinitesimal generator Lφ,ψh(·) (with h ∈ C2(Rn)

⋂
Bw(Rn)) are u.s.c. in φ ∈

P(U1) and l.s.c. in ψ ∈ P(U2). For further details see [5, Lemma 3.1].

3 Average Equilibria

We devote this section to the introduction of the basic optimality criterion we will
use—and refine—along this study. We present the material in the spirit of [5, 11, 12,
17], and [20].

Definition 3.1 The long-run average payoff (also known as the ergodic payoff )
when the players use the pair of strategies (π1, π2) ∈ �1 × �2 given the initial
state x is

J (x, π1, π2) := lim sup
T →∞

1

T
E

π1,π2

x

[ ∫ T

0
r(x(t), π1, π2)dt

]
. (3.1)
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Given (π1, π2) ∈ �1 × �2, let us define the constant

J (π1, π2) := μπ1,π2(r(·, π1, π2)) =
∫
Rn

r(x, π1, π2)μπ1,π2(dx). (3.2)

with μπ1,π2 as in (2.5). Under our set of assumptions, it follows from (2.8)
and (3.2) that the average payoff (3.1) coincides with the constant J (π1, π2) for
every (π1, π2) ∈ �1 × �2—see [5, p. 669]. Moreover, by the definition (3.2) of
J (π1, π2), together with Assumption 2.9(b) and (2.7)

|J (π1, π2)| ≤
∫
Rn

| r(x, (π1, π2) | μπ1,π2(dx) ≤ M · d

c
∀(π1, π2) ∈ �1 × �2,

(3.3)

so that the constant J (π1, π2) is uniformly bounded on �1 × �2.

Value of the Game Let

L := sup
π1∈�1

inf
π2∈�2

J (π1, π2) and U := inf
π2∈�2

sup
π1∈�1

J (π1, π2)

The function L is said to be the game’s lower value whereas U is better known as
the game’s upper value. Clearly, we have L ≤ U. If the upper and lower values
coincide, then the game is said to have a value, which we will denote by V ; in other
words,

V = L = U. (3.4)

As a consequence of (3.3), L and U are finite; and hence, so is V if the second
equality in (3.4) holds.

Definition 3.2 We say that a pair of stationary strategies (π∗1, π∗2) ∈ �1 × �2 is
an average Nash equilibrium (also known as an average saddle point) if

J (π1, π∗2) ≤ J (π∗1, π∗2) ≤ J (π∗1, π2) for every (π1, π2) ∈ �1 × �2.

The set of average saddle points pairs is denoted by (�1 × �2)ao.

Remark 3.3 Note that if (π∗1, π∗2) ∈ �1 × �2 is an average Nash equilibrium
(in case it does exist), then the game has a value J (π∗1, π∗2) =: V—see, for
instance, [10, Proposition 4.2]. However, the converse is not necessarily true.

The following definition is crucial for our developments.
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Definition 3.4 We say that a constant J ∈ R, a function h ∈ C2(Rn) ∩ Bw(Rn),
and a pair of strategies (π∗1, π∗2) ∈ �1 × �2 verify the average payoff optimality
equations if, for every x ∈ R

n,

J = r(x, π∗1, π∗2) + Lπ∗1,π∗2
h(x) (3.5)

= sup
φ∈P(U1)

{r(x, φ, π∗2) + Lφ,π∗2
h(x)} (3.6)

= inf
ψ∈P(U2)

{r(x, π∗1, ψ) + Lπ∗1,ψh(x)} for all x ∈ R
n. (3.7)

In this case, the pair of strategies (π∗1, π∗2) ∈ �1 × �2 that satisfies (3.5)–(3.7)
is called a pair of canonical strategies. We denote by (�1 × �2)ca the family of
canonical strategies.

Equation (3.5) is sometimes referred to as Poisson equation. This is the reason for
which we call Eqs. (6.1)–(6.3) below, Poisson system.

The following result ensures the existence of solutions of Eqs. (3.5)–(3.7).
It also states the existence of average saddle points, and provides us with their
characterization. For a proof see [3, 5].

Theorem 3.5 If Assumptions 2.1, 2.7, 2.8, and 2.9 hold, then:

(i) There exist solutions (J, h, (π∗1, π∗2)) to the average payoff equations (3.5)–
(3.7). Moreover, the constant J coincides with V defined in (3.4), and the
function h is unique up to additive constants; in fact, h is unique under the
additional condition that h(0) = 0.

(ii) A pair of strategies is an average saddle point if, and only if, it is canonical,
that is, (�1 × �2)ao = (�1 × �2)ca .

Remark 3.6 One important aspect in the proof of the last result is that Remark 2.10
ensures that the mapping φ :→ r(x, φ,ψ) + Lφ,ψh(x) is u.s.c. on the compact
set P(U1) , whereas ψ :→ r(x, φ,ψ) + Lφ,ψh(x) is l.s.c. on the compact set
P(U2). Therefore, the existence of a canonical pair (π∗1, π∗2) as in (3.5)–(3.7) can
be easily obtained from standard measurable selection theorems —see, for instance
[23, Theorem 12.1].

4 Bias Equilibria

The first refinement of Definition 3.4 and Theorem 3.5 is presented in this section.
Here, we will note that the set of bias equilibria is a subset of that of average
equilibria. However, this section can be regarded as a list of some results that we
have obtained in past works (see, for instance [5] and [17]).
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Definition 4.1 Let (π1, π2) ∈ �1 × �2 . The bias of (π1, π2) is the function
hπ1,π2 ∈ Bw(Rn) given by

hπ1,π2(x) :=
∫ ∞

0
[Eπ1,π2

x r(x(t), π1, π2) − J (π1, π2)]dt for all x ∈ R
n.

(4.1)

Remark 4.2

(i) The w-exponential ergodicity of the process xπ1,π2
(·) (see (2.8)) and the

Assumption 2.9(b) ensure that the bias hπ1,π2 is a finite-valued function and, in
fact, it is in Bw(Rn). Moreover, its w-norm is uniformly bounded in (π1, π2) ∈
�1 × �2.

(ii) By Escobedo-Trujillo et al. [5, Proposition 5.2] we can prove that if (π1, π2) ∈
�1 × �2 is average optimal, then its bias hπ1,π2 and any function h satisfying
the average optimality equations (3.5)–(3.7) coincide up to an additive constant;
that is, for all x ∈ R

n,

hπ1,π2(x) = h(x) − μπ1,π2(h).

Definition 4.3 (Bias Equilibrium) We say that an average saddle point
(π∗1, π∗2) ∈ (�1 × �2)ao is a bias saddle point if

hπ1,π∗2(x) ≤ hπ∗1,π∗2(x) ≤ hπ∗1,π2(x)

for every x ∈ R
n and every pair of strategies (π1, π2) ∈ �1 × �2. The function

hπ∗1,π∗2 is called the optimal bias function.

We denote by (�1 × �2)bias the set of bias saddle points. By Definition 4.3, (�1 ×
�2)bias ⊂ (�1 × �2)ao; that is,

Bias equilibrium �⇒ Average equilibrium.

Let (J, h) be a solution of the average payoff optimality equations (3.5)–(3.7). We
define for each x ∈ R

n the sets

�1
0(x) := {φ ∈ P(U1)| J = inf

ψ∈P(U2)
{r(x, φ,ψ) + Lφ,ψh(x)},

�2
0(x) := {ψ ∈ P(U2)| J = sup

φ∈P(U1)

{r(x, φ,ψ) + Lφ,ψh(x)}.

Definition 4.4 We say that the constant J ∈ R, the functions h, h̃ ∈ C2(Rn) ∩
Bw(Rn), and a pair (π∗1, π∗2) ∈ �1 × �2 verify the bias optimality equations if
and only if the triplet (J, h, (π∗1, π∗2)) satisfies the average optimality equations
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(3.5)–(3.7) together with the following equations

h(x) = Lπ∗1,π∗2
h̃(x) (4.2)

= sup
φ∈�1

0(x)

{Lφ,π∗2
h̃(x)} (4.3)

= inf
ψ∈�2

0(x)

{Lπ∗1,ψ h̃(x)}. (4.4)

The next result summarizes important results on the existence of bias equilibria. For
further details, see [5, Section 5] or [17, Theorem 7.7].

Proposition 4.5 Under Assumptions 2.1, 2.7, 2.8, and 2.9, the following holds:

(i) (�1 × �2)bias is nonempty.
(ii) �1

0(x) and �2
0(x) are convex compact sets.

(iii) The triplet (J, hπ∗1,π∗2, h̃) consisting of the constant J in Definition 3.4,
the optimal bias function hπ∗1,π∗2 in Definition 4.3 and some other function

h̃ ∈ C2(Rn
⋂

Bw(Rn), form the unique solution satisfying the bias optimality
equations (3.5)–(3.7) and (4.2)–(4.4).

(iv) (π1, π2) ∈ �1 × �2 is a bias saddle point if and only if it verifies the bias
optimality equations (4.2)–(4.4).

5 The Laurent Series

This section presents an extension of the results shown in [12, Section 3] or in [21,
Section 3] to the zero-sum case. Here, we use the exponential ergodicity condition
from Assumption 2.8 to characterize a discounted payoff in terms of a Laurent
series. This will be very useful in our later developments. This is the essence of
Theorem 5.5, which is the main result of this part.

Recall the definition of w in Assumption 2.7 and let μπ1,π2 be the invariant
measure whose existence is ensured by Assumption 2.7.

Definition 5.1 Let Bw(Rn × U1 × U2) be the space of measurable functions v :
R

n × U1 × U2 → R such that

sup
(u1,u2)∈U1×U2

|v(x, u1, u2)| ≤ Mvw(x) ∀x ∈ R
n, (5.1)

where Mv is a positive constant depending of v.



Blackwell-Nash Equilibria in Stochastic Differential Games 181

As in (2.9) for v ∈ Bw(Rn × U1 × U2) and (φ,ψ) ∈ P(U1) × P(U2), we write

v(x, φ,ψ) :=
∫

U2

∫
U1

v(x, u1, u2)φ(du1)ψ(du2) ∀x ∈ R
n.

Now use (π1, π2) ∈ �1 × �2 in lieu of (φ,ψ) ∈ P(U1) × P(U2). Let us define

v(π1, π2) :=
∫
Rn

v(x, π1, π2)μπ1,π2(dx), and

Z
π1,π2

t v(x) := E
π1,π2

x v(x(t), π1, π2) − v(π1, π2).

With these ingredients, we define the v-bias operatorGπ1,π2 : Bw(Rn×U1×U2) →
Bw(Rn) as follows

Gπ1,π2v(x) :=
∫ ∞

0
[Eπ1,π2

x v(x(t), π1, π2) − v(π1, π2)]dt. (5.2)

Remark 5.2 Note that the w-exponential ergodicity of the process xπ1,π2
(·) estab-

lished in (2.8), and (5.1) yield that

|Zπ1,π2

t v(x)| ≤ CMve
−δtw(x),

and thus,

|Gπ1,π2v(x)| ≤ δ−1CMvw(x) or equivalently ‖Gπ1,π2v(x)‖w ≤ δ−1CMv.

(5.3)

The following result shows some properties of both, the operator Gπ1,π2 , and the
operators that result from its compositions with itself. Its proof delves into the
discussion that led from (3.10) to (3.11) in [12].

Lemma 5.3 For j ≥ 0, let G
j+1
π1,π2 be the j + 1-composition of Gπ1,π2 with itself.

Then

G
j+1
π1,π2v is in Bw(Rn), and μπ1,π2

(
G

j+1
π1,π2v

)
= 0.

Proof By (5.3), Gπ1,π2 is in Bw(Rn). Now, the fact that μπ1,π2(Gπ1,π2) = 0 is
straightforward from (3.2) and (5.2). The rest of the proof easily follows by applying
mathematical induction on j . ��
Definition 5.4 Given a discount factor α > 0. The expected α-discounted v-payoff
when the players use (π1, π2) ∈ �1 × �2, given the initial state x ∈ R

n, is

Vα(x, π1, π2, v) := E
π1,π2

x

[∫ ∞

0
e−αtv(x(t), π1, π2)dt

]
. (5.4)
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The following result provides a useful characterization of the α-discounted v-payoff
in terms of a Laurent series (see, for instance [4, Chapter 6]). The proof uses
essentially the same steps of the proof of Theorem 3.1 and Proposition 3.2 in [12],
so we shall omit it.

Theorem 5.5

(a) Let δ > 0 be the constant in Assumption 2.8. If (π1, π2) an arbitrary pair of
strategies in �1 × �2 and v is a function in Bw(Rn × U1 × U2), then, for
α ∈ (0, δ), the α-discounted v-payoff (5.4) can be written as

Vα(x, π1, π2, v) = 1

α
v(π1, π2) +

∞∑
j=0

(−α)jG
j+1
π1,π2v(x). (5.5)

Moreover the above series converges in w-norm.
(b) Let θ ∈ R be such that 0 < θ < δ, where δ is the constant in Assumption 2.8.

For each v ∈ Bw(Rn ×U1 ×U2), (π1, π2) ∈ �1 ×�2, and i = 0, 1, . . . define
the i-residual of the Laurent series (5.5) as

Ri(π
1, π2, v, α) :=

∞∑
j=i

(−α)jG
j+1
π1,π2v.

Then, for all |α| ≤ θ and i = 0, 1, . . .,

sup
(π1,π2)∈�1×�2

∣∣∣
∣∣∣Ri((π

1, π2), v, α)

∣∣∣
∣∣∣
w

≤ CMv

δi(δ − θ)
|α|k. (5.6)

For each v ∈ Bw(Rn × U1 × U2), (π1, π2) in �1 × �2, and i = 0, 1, . . . , define
hi

π1,π2v as

hi
π1,π2v(x) := (−1)iGi+1

π1,π2v(x) for all x ∈ R
n and i = 1, 2. (5.7)

It is obvious that, for each v ∈ Bw(Rn × U1 × U2), hi
π1,π2v belongs to Bw(Rn)

because Gi+1
π1,π2v does.

Notation For v = r, with r as in Assumption 2.9, we simply write the operator
in (5.7) as hi

π1,π2 ; that is,

hi
π1,π2r := hi

π1,π2 .

Note that for i = 0, h0
π1,π2 equals to the bias function defined in (4.1), i.e.,

h0
π1,π2(x) = Gπ1,π2r(x) = hπ1,π2(x) for all x ∈ R

n.
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Moreover,

h1
π1,π2 = −G2

π1,π2r(x) = Gπ1,π2(−h0
π1,π2),

is the bias of (π1, π2) when the payoff is −h0
π1,π2 . In general, using mathematical

induction, we can obtain that

hi
π1,π2 = Gπ1,π2(−hi−1

π1,π2) i = 1, 2, . . .

By Theorem 5.5(a) and the expression (5.2), the α-discounted payoff (5.4)—with r

in lieu v—can be written in terms of operator hi
π1,π2 as follows

Vα(x, π1, π2, r) = 1

α
J (π1, π2) +

∞∑
i=0

αihi
π1,π2(x), (5.8)

and, by Lemma 5.3,

μπ1,π2(hi
π1,π2) = 0 for all i = 0, 1, 2, . . . (5.9)

6 The Poisson System

We now define the so-called Poisson system and characterize its solution in terms of
the basic average optimality criterion, and the recursive operator Gπ1,π2 introduced
in Sect. 5.

For the following definition, recall that Eq. (3.5) is sometimes dubbed Poisson
equation.

Definition 6.1 Let (π1, π2) ∈ �1 × �2 fixed. We say that a constant J ∈ R and
the functions h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn) verify the Poisson system for
(π1, π2) ∈ �1 × �2 if

J = r(x, π1, π2) + Lπ1,π2
h0(x), (6.1)

h0(x) = Lπ1,π2
h1(x), (6.2)

. . .

hm(x) = Lπ1,π2
hm+1(x). (6.3)

Theorem 6.2 Let m ≥ −1 be fixed. The constant J ∈ R and the functions
h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn) are solutions to the Poisson system (6.1)–
(6.3) if and only if J = J (π1, π2), hi = hi

π1,π2 for 0 ≤ i ≤ m, and hm+1 =
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hm+1
π1,π2 + z for z ∈ R, where J and hi

π1,π2 , 0 ≤ i ≤ m + 1, are the functions in (3.2)
and (5.7), respectively.

Proof We will use mathematical induction over Eqs. (6.1)–(6.3).

1. Case m = −1 follows from Lemma 3.2 and Proposition 5.1 in [5].
2. Now, suppose the result is valid for some m ≥ −1.
3. Case m + 1:

The “if” part: Suppose that J = J (π1, π2), hi = hi
π1,π2 for 0 ≤ i ≤m,

and hm+1 = hm+1
π1,π2 + z for z ∈ R. Then, we need to prove that hm+1

π1,π2

verifies the (m + 1)-th Poisson equation. To this end, observe that hm+2
π1,π2 is the

bias function of (π1, π2) when we consider as reward rate −hm+1
π1,π2(x). It is

easy to verify through a mathematical induction procedure that −hm+1
π1,π2 satisfies

Assumption 2.9, then we can invoke Theorem 4.1 in [5], to ensure the existence
of a function hm+2 ∈ C2(Rn) ∩ Bw(Rn), a constant J and a pair of strategies
(π1, π2) that satisfy the average optimality equation

J = −hm+1(x) + Lπ1,π2
hm+2(x)

= sup
φ∈P(U1)

{−hm+1(x) + Lφ,π2
hm+2(x)},

= inf
ψ∈P(U2)

{−hm+1(x) + Lπ1,ψhm+2(x)},

with J = μπ1,π2(−hm+1) = μπ1,π2(−hm+1
π1,π2). Now, Proposition 5.1 in [5]

gives that the bias function with reward rate −hm+1(x) = −hm+1
π1,π2(x) satisfies

the following Poisson equation

μπ1,π2(−hm+1
π1,π2) = −hm+1

π1,π2(x) + Lπ1,π2
hm+2(x),

which implies that

hm+1
π1,π2(x) = Lπ1,π2

hm+2(x), (6.4)

since that (5.9) gives μπ1,π2(−hm+1
π1,π2) = 0. Thus, (6.4) implies that hm+1

π1,π2 ,
satisfies the (m + 1)-th Poisson equation.

The “only if” part: Suppose that J ∈ R and h0, h1, . . . , hm+1 ∈ C2(Rn) ∩
Bw(Rn) are solutions to (6.1)–(6.3). By the induction hypothesis the result holds
for some m ≥ 0, i.e.,

hm
π1,π2(x) = hm(x) = Lπ1,π2

hm+1(x). (6.5)
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Therefore, we only need to prove that hm+1 = hm+1
π1,π2 . Namely, the bias function

hm+1
π1,π2(x) when the payoff rate is −hm

π1,π2 , verifies the following Poisson
equation

μπ1,π2(−hm
π1,π2) = −hm

π1,π2(x) + Lπ1,π2
hm+1

π1,π2(x),

then, by (5.9) we obtain

hm
π1,π2(x) = Lπ1,π2

hm+1
π1,π2(x). (6.6)

Thus, subtracting equation (6.5) to (6.6) we obtain

0 = Lπ1,π2
(hm+1

π1,π2(x) − hm+1(x)).

Therefore, hm+1
π1,π2 − hm+1 is a harmonic function and as a consequence, Lemma

2.1 in [5], yields

hm+1
π1,π2(x) = hm+1(x) + μπ1,π2(hm+1). (6.7)

Since μπ1,π2 is an invariant probability measure, and hm+1 ∈ C2(Rn) ∩Bw(Rn)

satisfies the (m + 1)-th Poisson equation, we have

μπ1,π2(hm+1) =
∫
Rn

Lπ1,π2
hm+2(y)μπ1,π2(dy) = 0 for all

hm+2 ∈ C2(Rn) ∩ Bw(Rn), (6.8)

where the last equality follows from a well-known result of invariant probability
measures—see, for example [2]. Therefore, hm+1 = hm+1

π1,π2 follows from (6.7)
and (6.8).

��

7 The Average Payoff Optimality System

We devote this section to link the Poisson system (6.1)–(6.3) from Sect. 6 with
the optimization problem we are trying to solve (see Definitions 8.1 and 8.2
below). We do this by means of a system of average optimality equations, and
the characterization of their solutions as a sequence of canonical equilibria of a
collection of average payoff games. This is the purpose of the main result of this
part, namely, Theorem 7.4.
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Definition 7.1 We say that a constant J ∈ R and functions h0, h1, . . . , hm+1 ∈
C2(Rn)∩Bw(Rn) verify the −1-th, 0-th,. . . , m-th average payoff optimality system
for (π∗1, π∗2) ∈ �1 × �2 and x ∈ R if

J = r(x, π∗1, π∗2) + Lπ∗1,π∗2
h0(x), (7.1)

= sup
φ∈P(U1)

r(x, φ, π∗2) + Lφ,π∗2
h0(x), (7.2)

= inf
ψ∈P(U2)

r(x, π∗1, ψ) + Lπ∗1,ψh0(x) (7.3)

h0(x) = Lπ∗1,π∗2
h1(x) (7.4)

= sup
φ∈�1

0(x)

Lφ,π∗2
h1(x) (7.5)

= inf
ψ∈�2

0(x)

Lπ∗1,ψh1(x) (7.6)

. . .

hm(x) = Lπ∗1,π∗2
hm+1(x) (7.7)

= sup
φ∈�1

m(x)

Lφ,π∗2
hm+1(x) (7.8)

= inf
ψ∈�2

m(x)
Lπ∗1,ψhm+1(x) (7.9)

where letting �1−1(x) := P(U1) and �2−1(x) := P(U2) for all x ∈ R
n, then the sets

�k
j (x), for 0 ≤ j ≤ m and k = 1, 2, consist of probability measures φ ∈ �1

j−1(x)

and ψ ∈ �2
j−1(x) attaining the maximum and minimum in the (j − 1)-th average

payoff optimality equation, respectively; that is, for each x ∈ R
n,

�1
0(x) :=

{
φ ∈ P(U1) | J = inf

ψ∈P(U2)

[
r(x, φ,ψ) + Lφ,ψh0(x)

]}
,

�2
0(x) :=

{
ψ ∈ P(U2) | J = sup

φ∈P(U1)

[
r(x, φ,ψ) + Lφ,ψh0(x)

]}



Blackwell-Nash Equilibria in Stochastic Differential Games 187

and, for 1 ≤ j ≤ m,

�1
j (x) :=

{
φ ∈ �1

j−1(x) | hj−1(x) = inf
ψ∈�2

j−1(x)

Lφ,ψhj (x)

}
,

�2
j (x) :=

⎧⎨
⎩ψ ∈ �2

j−1(x) | hj−1(x) = sup
φ∈�1

j−1

Lφ,ψhj (x)

⎫⎬
⎭ .

Proposition 7.2 For each k = 1, 2, and −1 ≤ j ≤ m, the sets {�k
j (x)}j≥0 are

convex compact sets.

Proof We use mathematical induction on j :

1. Case j = −1, 0. Since P(U1) and P(U2) are compact and convex sets (see, for
instance, [1, Theorem 15.11]), Lemma 5.1 in [5], gives that �1

0(x) and �2
0(x) are

also convex and compact sets.
2. Suppose now that for some 0 ≤ j ≤ m, �1

j (x) and �2
j (x), are convex compact

sets.
3. Let us prove the result for m = j + 1. To this end, note that

�1
j+1(x) :=

{
φ ∈ �1

j (x)| hj (x) = inf
ψ∈�2

j (x)

Lφ,ψhj+1(x)

}
,

and

�2
j+1(x) :=

⎧⎨
⎩ψ ∈ �2

j (x)| hj (x) = sup
φ∈�1

j (x)

Lφ,ψhj+1(x)

⎫⎬
⎭ ,

and by induction hypothesis �1
j (x) and �2

j (x) are convex compact sets. Then,

to verify if �1
j+1(x) and �2

j+1(x) are compact sets it is sufficient to prove that

they are closed, but this property follows due to the compactness of �1
j (x) and

�2
j (x) (induction hypothesis) and the u.s.c in φ (l.s.c. ψ) of Lφ,ψ established in

the Remark 2.10.
The proof that �1

j+1(x) and �2
j+1(x) are convex sets mimicks that of Lemma

4.6 in [20].
��

Since {�k
j (x)}j≥0, k = 1, 2, is a nonincreasing sequence of nonempty compact

sets, the set

�k∞(x) :=
⋂

m≥−1

�k
m(x) (7.10)

is nonempty and compact as well.
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The following definition concerns the pair of strategies (π1, π2) ∈ �1 ×�2 that
attain the maximum and minimum respectively in Eqs. (7.1)–(7.9).

Definition 7.3 We define

�1
m × �2

m :={(π1, π2) ∈ �1 × �2 | (π1(·|x), π2(·|x)) ∈ �1
m+1(x) × �2

m+1(x),

∀x ∈ R
n}.

A pair (π1, π2) ∈ �1
m × �2

m will be referred to as a canonical equilibrium for the
−1-th, 0-th, . . ., m-th average payoff optimality system (7.1)–(7.9).

From Definition 7.3, it is clear that �1
m+1 × �2

m+1 ⊆ �1
m × �2

m, for all m =
−1, 0, 1, · · · .

Theorem 7.4 The −1-th, 0-th,. . . , m-th average reward HJB system (7.1)–(7.9)
admits a unique solution J ∈ R, h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn), where
J, h0, h1, . . . , hm are unique, and hm+1 is unique up to an additive constant.
Moreover, the set �1

m × �2
m is nonempty.

Proof We will use mathematical induction on m.

1. Case m = 0. It follows from Theorems 4.1, 5.1 and 5.2 in [5].
2. Suppose that the result holds for some m = j .
3. Now, we prove that the result holds for m = j + 1.

The induction hypothesis ensures the existence of J ∈ R, h0, h1, . . . , hj ∈
C2(Rn)∩Bw(Rn) which are unique solutions of the −1-th, 0-th,. . . , j -th average
payoff optimality system and that that �1

j and �2
j are nonempty.

Let us consider now a new game, so-named j -bias game, consisting in:

• The dynamic system (2.1).

• The payoff function − hj . (7.11)

• The set of control actions �1
j (x) and �2

j (x).

It is easy to verify that this new game satisfies all of our hypotheses. Then,
Theorem 3.5(i)–(ii) ensures the existence of solutions (J , hj+1, (π∗1, π∗2)) to
the following average optimality equations

J = −hj (x) + Lπ∗1,π∗2
hj+1(x)

= sup
φ∈�1

j (x)

{−hj (x) + Lφ,π∗2
hj+1(x)}

= inf
ψ∈�2

j (x)

{−hj (x) + Lπ∗1,ψhj+1(x)}.
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The existence of a function hj+2 ∈ C2(Rn) ∩ Bw(Rn) satisfying

hj+1(x) = Lπ∗1,π∗2
hj+2(x)

= sup
φ∈�1

j (x)

Lφ,π∗2
hj+2(x)

= inf
ψ∈�2

j (x)

Lπ∗1,ψhj+2(x).

is ensured by Proposition 4.5, and the fact that J = μπ∗1,π∗2(−hj ). In this case
hj+1 is unique, and hj+2 is unique up to additive constants. Thus, hj+1 satisfies
the (j + 1)-th average reward HJB equations.

It remains to prove that �1
m × �2

m is nonempty. To this end, we proceed again
by mathematical induction on m. Namely, for the case m = 0, the result follows
by Theorems 5.1 and 5.2 in [5]. Now assume that �1

j × �2
j is nonempty for some

j = 0, 1, . . . ; that is, there is at least an element (π1
j , π2

j ) ∈ �1
j×�2

j or equivalently,

(π1
j+1(·|x), π2

j+1(·|x)) ∈ �1
j+1(x) × �2

j+1(x) for all x ∈ R
n. We want to prove that

�1
j+1×�2

j+1 is nonempty. For this, we consider again the j -bias game (7.11). Since
this game satisfies all of our hypotheses, we can invoke Proposition 4.5(i) to ensure
the existence of a bias equilibrium (π1, π2) associated to the j -bias game. Hence,
Proposition 4.5(iii) yields that, in fact, such equilibrium satisfies both, the j -th and
the (j + 1)-th average payoff equations. This completes the proof. ��
Remark 7.5 It is worth noting the relation of the pairs (π∗1, π∗2) ∈ �1

m ×�2
m with

the m-bias game in (7.11); namely, if we apply iteratively Proposition 4.5, we can
easily verify that (π∗1, π∗2) ∈ �1

m × �2
m if and only if such a pair is an average

Nash equilibrium for the j -bias game (7.11) for j = −1, · · · ,m.

We define

�1∞ × �2∞ :=
∞⋂

m=−1

(�1
m × �2

m). (7.12)

As a consequence of (7.10) and Theorem 7.4, we deduce the following result.

Corollary 7.6 There exists a strategy (π1, π2) ∈ �1 × �2 that satisfies the m-th
average reward HJB equation for all m = −1, 0, . . . . In other words, �1∞ × �2∞ is
nonempty.
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8 Blackwell-Nash Equilibria

In this section we present a zero-sum type of Nash equilibrium so-named Blackwell-
Nash equilibrium; we will also introduce a sensitive discount concept related to a
family of optimality criteria so-named m-discount equilibria, for m ≥ −1. We will
see that a Blackwell-Nash equilibrium becomes the limit, as m → ∞, of a sequence
of m-discount equilibria and prove the existence of each element of this sequence
based on the results given in previous sections. To begin with this analysis, we first
define the aforementioned concepts as follows.

Definition 8.1 (Blackwell-Nash Equilibrium) A pair (π∗1, π∗2) ∈ �1 × �2 is
called Blackwell-Nash equilibrium if for each (π1, π2) ∈ �1 × �2 and each state
x ∈ R

n, there exists a discount factor α∗ = α∗(x, π1, π2) such that

Vα(x, π1, π∗2) ≤ Vα(x, π∗1, π∗2) ≤ Vα(x, π∗1, π2) (8.1)

for all 0 < α < α∗.

Definition 8.2 (Sensitive Discount Equilibrium)

(a) Let m ≥ −1 be an integer. A pair (π∗1, π∗2) ∈ �1 ×�2 is called an m-discount
equilibrium if

lim inf
α→0

α−m[Vα(x, π∗1, π∗2) − Vα(x, π1, π∗2)] ≥ 0 for all π1 ∈ �1,

and

lim sup
α→0

α−m[Vα(x, π∗1, π∗2) − Vα(x, π∗1, π2)] ≤ 0 for all π2 ∈ �2.

(b) We call sensitive discount equilibria to the family {(π∗1
m , π∗2

m ) | m ≥ −1} of all
the m-discount equilibria (m ≥ −1).

We denote by �
1,d
m and �

2,d
m the sets of strategies m-discount optimal for player 1

and 2, respectively.

Theorem 8.3

(i) Let m ≥ −1 be an integer, then �1
m × �2

m ⊆ �
1,d
m × �

2,d
m .

(ii) If (π∗1, π∗2) ∈ �1∞ × �2∞, then it is a Blackwell-Nash equilibrium.
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Proof

(i) Consider the pair (π∗1, π∗2) ∈ �1
m × �2

m, and use the series (5.8) to deduce
the following

1

αm
[Vα(x, π∗1, π∗2) − Vα(x, π1, π∗2)]

= 1

α

[ 1

αm

(
J (π∗1, π∗2) − J (π1, π∗2)

)
+ 1

αm−1

(
h0
π∗1,π∗2(x) − h0

π1,π∗2(x)
)

+ · · · +
(
hm−1
π∗1,π∗2(x) − hm−1

π1,π∗2(x)
) ]

+
(
hm
π∗1,π∗2(x) − hm

π1,π∗2(x)
)

+

+ 1

αm

∞∑
i=m+1

αi
(
hi
π∗1,π∗2(x) − hi

π1,π∗2(x)
)

, (8.2)

for all π1 ∈ �1. By virtue of Remark 7.5, (π∗1, π∗2) is a Nash equilibrium for
the −1-th, 0-th, . . ., m-th bias game (7.11). Then, the first m + 2 elements in
equality (8.2) are greater or equal to zero. Finally, letting α → 0 in both sides
of (8.2) and using Theorem 5.5(b), we get

1

αm
[Vα(x, π∗1, π∗2) − Vα(x, π1, π∗2)] ≥ 0.

Similar arguments yield

1

αm
[Vα(x, π∗1, π∗2) − Vα(x, π∗1, π2)] ≤ 0 for all π2 ∈ �2.

Therefore, �1
m × �2

m ⊂ �
1,d
m × �

2,d
m , which proves (i).

(ii) Let π1 ∈ �1 and x ∈ R
n arbitrary and suppose that (π∗1, π∗2) ∈ �1∞ × �2∞,

then using again (5.8) we can write

Vα(x, π∗1, π∗2) − Vα(x, π1, π∗2) = 1

α
[J (π∗1, π∗2) − J (π1, π∗2)]

+
∞∑
i=0

αi [hi
π∗1,π∗2(x) − hi

π1,π∗2(x)]. (8.3)

By virtue of (7.12), (π∗1, π∗2) ∈ �1
m × �2

m for −1 ≤ m ≤ ∞. So, (π∗1, π∗2)

is a Nash equilibrium for the m-bias game (7.11) for all m = −1, 0, 1, · · · .
Therefore, the equality in (8.3) is nonnegative for every α > α∗, where α∗
depends on the residual term (5.6), which yields the first inequality in (8.1). We
can also mimic the same arguments but now for arbitrary π2 ∈ �2 and thus to
obtain the second inequality in (8.1), yielding that (π∗1, π∗2) is a Blackwell-
Nash equilibrium.

��
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We use Theorems 7.4, 8.3, and Corollary 7.6, to state our final claim.

Corollary 8.4 Under Assumptions 2.1, 2.7, 2.8, and 2.9,

(i) For each m ≥ −1, the set �
1,d
m × �

2,d
m of m-discount optimal strategies is

nonempty.
(ii) There exist Blackwell optimal strategies in �1 × �2.

9 Final Remarks

In this paper we have shown the existence and provide some characterizations of
the sensitive discount equilibria in a class of zero-sum stochastic differential games
with a uniform ellipticity assumption. This yields a Blackwell-Nash equilibrium in
the limit as m → ∞. To this end, we truncated the Laurent series of the expected
discounted reward/cost, and thus stated the so-called Poisson system, which allowed
us to characterize the equilibria as the collection of strategies that meet it.

It is worth pointing out the fact that Theorem 8.3 and Corollary 8.4 show that, for
a zero-sum stochastic differential game, an m-discount equilibrium is equivalent to
a Blackwell-Nash equilibrium only when m → ∞. This agrees with the controlled
diffusion scheme (see [12, 22]).

Some possible extensions of our work are, for example, to do this same analysis
but considering a more general dynamics type, such is the case of stochastic
differential equations with jumps (in the context of Lévy processes) or using the
same dynamic than ours but under weaker assumptions than those considered here,
such is the case of degenerate diffusions.
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