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Abstract The minimality of the penalty function associated with a convex risk
measure is analyzed in this paper. First, in a general static framework, we provide
necessary and sufficient conditions for a penalty function defined in a convex and
closed subset of the absolutely continuous measures with respect to some reference
measure P to be minimal on this set. When the probability space supports a Lévy
process, we establish results that guarantee the minimality property of a penalty
function described in terms of the coefficients associated with the density processes.
These results are applied in the solution of the robust utility maximization problem
for a market model based on Lévy processes.
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1 Introduction

The definition of coherent risk measure was introduced by Artzner et al. in
their fundamental works [1, 2] for finite probability spaces, giving an axiomatic
characterization that was extended later by Delbaen [3] to general probability
spaces. In the papers mentioned above one of the fundamental axioms was the
positive homogeneity, and in further works it was removed, defining the concept of
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convex risk measure introduced by Föllmer and Schied [4, 5], Frittelli and Rosazza
Gianin [7, 8] and Heath [10].

This is a rich area that has received a lot of attention and much work has been
developed. There exists by now a well established theory in the static and dynamic
cases, but there are still many questions unanswered in the static framework that
need to be analyzed carefully. The one we focus on in this paper is the charac-
terization of the penalty functions that are minimal for the corresponding static
risk measure. Up to now, there are mainly two ways to deal with minimal penalty
functions, namely the definition or the biduality relation. With the results presented
in this paper we can start with a penalty function, which essentially discriminate
models within a convex closed subset of absolutely continuous probability measures
with respect to (w.r.t.) the market measure, and then guarantee that it corresponds
to the minimal penalty of the corresponding convex risk measure on this subset.
This property is, as we will see, closely related with the lower semicontinuity of
the penalty function, and the complications to prove this property depend on the
structure of the probability space.

We first provide a general framework, within a measurable space with a
reference probability measure P, and show necessary and sufficient conditions
for a penalty function defined in a convex and closed subset of the absolutely
continuous measures with respect to the reference measure to be minimal within
this subset. The characterization of the form of the penalty functions that are
minimal when the probability space supports a Lévy process is then studied.
This requires to characterize the set of absolutely continuous measures for this
space, and it is done using results that describe the density process for spaces
which support semimartingales with the weak predictable representation property.
Roughly speaking, using the weak representation property, every density process
splits in two parts, one is related with the continuous local martingale part of
the decomposition and the other with the corresponding discontinuous one. It is
shown some kind of continuity property for the quadratic variation of a sequence of
densities converging in L1. From this characterization of the densities, a family of
penalty functions is proposed, which turned out to be minimal for the risk measures
generated by duality.

The previous results are applied to the solution of the robust utility maximization
problem. The formulation of this problem, described formally in Sect. 6, is justified
by the axiomatic system proposed by Maccheroni et al. [17], which led to utility
functionals of the form

X −→ inf
Q∈Q′

{
EQ [U (X)] + ϑ (Q)

}
. (1.1)

The elements of this display will be described in detail in the last section. For
previous works on this direction we refer the interested reader to the works
of Quenez [18], Schied [19] and Hernández-Hernández and Schied [11], and
references therein.
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The paper is organized as follows. Section 2 contains the description of the
minimal penalty functions for a general probability space, providing necessary and
sufficient conditions, the last one restricted to a subset of equivalent probability
measures. Section 3 reports the structure of the densities for a probability space
that supports a Lévy processes and the convergence properties needed to prove the
lower semicontinuity of the set of penalty functions defined in Sect. 4. In this section
we show that these penalty functions are minimal. The description of the market
model is presented in Sect. 5, together with the characterization of the equivalent
martingale measures and, finally, in the last section we solve the robust utility
maximization problem using duality theory.

2 Minimal Penalty Function of Risk Measures
Concentrated in Q� (P)

Given a penalty function ψ , it is possible to induce a convex risk measure ρ, which
in turn has a representation by means of a minimal penalty function ψ∗

ρ . Starting
with a penalty functionψ , we give in this section necessary and sufficient conditions
in order to guarantee that it is the minimal penalty within the set of absolutely
continuous probability measures. We begin recalling briefly some known results
from the theory of static risk measures, and then a characterization for minimal
penalties is presented.

2.1 Preliminaries from Static Measures of Risk

Let X : � → R be a mapping from a set � of possible market scenarios,
representing the discounted net worth of the position. Uncertainty is represented
by the measurable space (�,F), and we denote by X the linear space of bounded
financial positions, including constant functions.

Definition 2.1

(i) The function ρ : X → R, quantifying the risk ofX, is amonetary risk measure
if it satisfies the following properties:

Monotonicity: If X ≤ Y then ρ (X) ≥ ρ (Y ) ∀X,Y ∈ X . (2.1)

Translation Invariance: ρ (X + a) = ρ (X) − a ∀a ∈ R ∀X ∈ X . (2.2)

(ii) When this function satisfies also the convexity property

ρ (λX + (1 − λ) Y ) ≤ λρ (X) + (1 − λ) ρ (Y ) ∀λ ∈ [0, 1] ∀X,Y ∈ X ,

(2.3)

it is said that ρ is a convex risk measure.
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(iii) The function ρ is called normalized if ρ (0) = 0, and sensitive, with respect
to a measure P, when for each X ∈ L∞+ (P) with P [X > 0] > 0 we have that
ρ (−X) > ρ (0) .

We say that a set function Q : F → [0, 1] is a probability content if it is finitely
additive and Q (�) = 1. The set of probability contents on this measurable space
is denoted by Qcont . From the general theory of static convex risk measures [6], we
know that any map ψ : Qcont → R ∪ {+∞}, with infQ∈Qcont

ψ(Q) ∈ R, induces a
static convex measure of risk as a mapping ρ : Mb → R given by

ρ(X) := supQ∈Qcont

{
EQ [−X] − ψ(Q)

}
. (2.4)

HereM denotes the class of measurable functions andMb the subclass of bounded
measurable functions. The functionψ will be referred as a penalty function. Föllmer
and Schied [5, Theorem 3.2] and Frittelli and Rosazza Gianin [7, Corollary 7]
proved that any convex risk measure is essentially of this form.

More precisely, a convex risk measure ρ on the space Mb (�,F) has the
representation

ρ(X) = sup
Q∈Qcont

{
EQ [−X] − ψ∗

ρ (Q)
}
, (2.5)

where

ψ∗
ρ (Q) := sup

X∈Aρ

EQ [−X] , (2.6)

andAρ := {X ∈ Mb : ρ(X) ≤ 0} is the acceptance set of ρ.

Remark 2.1 The penalty ψ∗
ρ is called the minimal penalty function associated to ρ

because, for any other penalty function ψ fulfilling (2.4) , ψ (Q) ≥ ψ∗
ρ (Q), for

all Q ∈ Qcont . Furthermore, for the minimal penalty function, the next biduality
relation is satisfied

ψ∗
ρ (Q) = sup

X∈Mb(�,F)

{
EQ [−X] − ρ (X)

}
, ∀Q ∈Qcont . (2.7)

Let Q (�,F) be the family of probability measures on the measurable space
(�,F) . Among the measures of risk, the class of them which representation
in (2.5) is concentrated on the set of probability measuresQ ⊂ Qcont are of special
interest. Recall that a function I : E ⊂ R

� → R is sequentially continuous
from below (above) when {Xn}n∈N ↑ X ⇒ limn→∞ I (Xn) = I (X) (respectively
{Xn}n∈N ↓ X ⇒ limn→∞ I (Xn) = I (X)). Föllmer and Schied [6] proved that
any sequentially continuous from below convex measure of risk is concentrated on
the set Q. Later, Krätschmer [15, Prop. 3 p. 601] established that the sequential
continuity from below is not only a sufficient but also a necessary condition in
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order to have a representation, by means of the minimal penalty function in terms
of probability measures.

We denote by Q�(P) the subclass of absolutely continuous probability measure
with respect to P and by Q≈ (P) the subclass of equivalent probability measure. Of
course,Q≈ (P) ⊂ Q�(P) ⊂ Q (�,F).

Remark 2.2 When a convex risk measures in X := L∞ (P) satisfies the property

ρ (X) = ρ (Y ) if X = Y P-a.s. (2.8)

and is represented by a penalty function ψ as in (2.4), we have that

Q ∈ Qcont \ Q�
cont �⇒ ψ (Q) = +∞, (2.9)

where Q�
cont is the set of contents absolutely continuous with respect to P; see [6,

Lemma 4.30 p. 172].

2.2 Minimal Penalty Functions

In the next sections we will show some of the difficulties that appear to prove the
minimality of the penalty function when the probability space (�,F ,P) supports a
Lévy process. We will also clarify the relevance of this property to get an optimal
solution to the robust utility maximization problem in Sect. 6.

In order to establish the results of this section we only need to fix a probability
space (�,F ,P). When we deal with a set of absolutely continuous probability
measures K ⊂ Q�(P) it is necessary to make reference to some topological
concepts, meaning that we are considering the corresponding set of densities and
the strong topology in L1 (P) . Recall that within a locally convex space, a convex
set K is weakly closed if and only if K is closed in the original topology [6, Thm
A.59].

Lemma 2.1 Let ψ : K ⊂ Q�(P) → R∪{+∞} be a function with infQ∈K ψ(Q) ∈
R, and define the extension ψ(Q) := ∞ for each Q ∈ Qcont \ K, with K a convex
closed set. Also, define the function � , with domain in L1(P), as

� (D) :=
{

ψ (Q) if D = dQ/dP for Q ∈ K
∞ otherwise.

Then, for the convex measure of risk ρ(X) := sup
Q∈Qcont

{
EQ [−X] − ψ (Q)

}

associated with ψ the following assertions hold:

(a) If ρ has as minimal penaltyψ∗
ρ the functionψ (i.e.ψ = ψ∗

ρ ), then� is a proper

convex function and lower semicontinuous w.r.t. the (strong) L1-topology or
equivalently w.r.t. the weak topology σ

(
L1, L∞).
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(b) If � is convex and lower semicontinuous w.r.t. the (strong) L1-topology or
equivalently w.r.t. the weak topology σ

(
L1, L∞) , then

ψ1Q�(P) = ψ∗
ρ 1Q�(P). (2.10)

Proof

(a) Recall that σ
(
L1, L∞) is the coarsest topology on L1 (P) under which every

linear operator is continuous, and hence �X
0 (Z) := EP [Z (−X)], with Z ∈

L1, is a continuous function for each X ∈ Mb (�,F) fixed. For δ (K) :=
{Z : Z = dQ/dP with Q ∈ K} we have that

�X
1 (Z) := �X

0 (Z) 1δ(K) (Z) + ∞ × 1L1\δ(K) (Z)

is clearly lower semicontinuous on δ (K) . For Z′ ∈ L1 (P) \ δ (K) arbi-
trary fixed we have from Hahn-Banach’s Theorem that there is a contin-
uous lineal functional l (Z) with l

(
Z′) < infZ∈δ(K) l (Z). Taking ε :=

1
2

{
infZ∈δ(K) l (Z) − l

(
Z′)} we have that the weak open ball B

(
Z′, ε

) :={
Z ∈ L1 (P) : ∣∣l (Z′)− l (Z)

∣∣ < ε
}
satisfies B

(
Z′, ε

)∩ δ (K) = ∅. Therefore,
�X

1 (Z) is weak lower semicontinuous on L1 (P) , as well as �X
2 (Z) :=

�X
1 (Z) − ρ (X) . If

ψ (Q) = ψ∗
ρ (Q) = sup

X∈Mb(�,F)

{∫
Z (−X) dP − ρ (X)

}
,

where Z := dQ/dP, we have that � (Z) = supX∈Mb(�,F)

{
�X

2 (Z)
}
is the

supremum of a family of convex lower semicontinuous functions with respect
to the topology σ

(
L1, L∞), and � (Z) preserves both properties.

(b) For the Fenchel–Legendre transform (conjugate function)�∗ : L∞ (P) −→ R

for each U ∈ L∞ (P)

�∗ (U) = sup
Z∈δ(K)

{∫
ZUdP−� (Z)

}
= sup

Q∈Qcont

{
EQ [U ]−ψ (Q)

} ≡ ρ (−U) .

From the lower semicontinuity of � w.r.t. the weak topology σ
(
L1, L∞) that

� = �∗∗. Considering the weak∗-topology σ
(
L∞ (P) , L1 (P)

)
for Z =

dQ/dP we have that

ψ (Q) = � (Z) = �∗∗ (Z) = sup
U∈L∞(P)

{∫
Z (−U) dP−�∗ (−U)

}
= ψ∗

ρ (Q) .

��
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Remark 2.3

1. As it was pointed out in Remark 2.2, we have that

Q ∈ Qcont \ Q�
cont �⇒ ψ∗

ρ (Q) = +∞ = ψ (Q) .

Therefore, under the conditions of Lemma 2.1 (b) the penalty function ψ might
differ from ψ∗

ρ on Q�
cont \ Q�. For instance, the penalty function defined as

ψ (Q) := ∞ × 1Qcont\Q�(P) (Q) leads to the worst case risk measure ρ(X) :=
supQ∈Q�(P) EQ [−X], which has as minimal penalty the function

ψ∗
ρ (Q) = ∞ × 1Qcont\Q�

cont
(Q) .

2. Note that the total variation distance dT V

(
Q

1,Q2
) := supA∈F

∣∣Q1

[A] − Q
2 [A]

∣
∣, with Q

1, Q
2 ∈ Q�, fulfills that dT V

(
Q

1,Q2
) ≤∥

∥dQ1/dP − dQ2/dP
∥
∥

L1 . Therefore, the minimal penalty function is lower
semicontinuous in the total variation topology; see Remark 4.16 (b) p. 163
in [6].

3 Fundamentals of Lévy and Semimartingales Processes

Let (�,F ,P) be a probability space. We say that L := {Lt }t∈R+ is a Lévy process
for this probability space if it is an adapted càdlàg process with independent sta-
tionary increments starting at zero. The filtration considered is F := {FP

t (L)
}
t∈R+ ,

the completion of its natural filtration, i.e. FP
t (L) := σ {Ls : s ≤ t} ∨ N where

N is the σ -algebra generated by all P-null sets. The jump measure of L is denoted
by μ : � × (B (R+) ⊗ B (R0)) → N where R0 := R \ {0}. The dual predictable
projection of this measure, also known as its Lévy system, satisfies the relation
μP (dt, dx) = dt ×ν (dx), where ν (·) := E [μ ([0, 1] × ·)] is the intensity or Lévy
measure of L.

The Lévy-Itô decomposition of L is given by

Lt = bt + Wt +
∫

[0,t ]×{0<|x|≤1}
xd
{
μ − μP}+

∫

[0,t ]×{|x|>1}
xμ (ds, dx) . (3.1)

It implies that Lc = W is the Wiener process, and hence [Lc]t = t , where (·)c and
[ · ] denote the continuous martingale part and the process of quadratic variation of
any semimartingale, respectively. For the predictable quadratic variation we use the
notation 〈 · 〉.

Denote by V the set of càdlàg, adapted processes with finite variation, and let
V+ ⊂ V be the subset of non-decreasing processes in V starting at zero. LetA ⊂ V
be the class of processes with integrable variation, i.e. A ∈ A if and only if

∨∞
0 A ∈
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L1 (P), where
∨t

0 A denotes the variation of A over the finite interval [0, t]. The
subset A+ = A ∩ V+ represents those processes which are also increasing i.e.
with non-negative right-continuous increasing trajectories. Furthermore,Aloc (resp.
A+

loc) is the collection of adapted processes with locally integrable variation (resp.
adapted locally integrable increasing processes). For a càdlàg process X we denote
by X− := (Xt−) the left hand limit process, where X0− := X0 by convention, and
by �X = (�Xt) the jump process �Xt := Xt − Xt−.

Given an adapted càdlàg semimartingale U , the jump measure and its dual
predictable projection (or compensator) are denoted by μU ([0, t] × A) :=∑

s≤t 1A (�Us) and μP
U , respectively. Further, we denote by P ⊂ F ⊗ B (R+)

the predictable σ -algebra and by P̃ := P ⊗ B (R0) . With some abuse of notation,
we write θ1 ∈ P̃ when the function θ1 : � × R+ × R0 → R is P̃-measurable and
θ ∈ P for predictable processes.

Let

L (Uc) := {θ ∈ P : ∃ {τn}n∈N sequence of stopping times with τn ↑ ∞
and E

[
τn∫

0
θ2d [Uc]

]

< ∞ ∀n ∈ N

}

(3.2)

be the class of predictable processes θ ∈ P integrable with respect to Uc in the
sense of local martingale, and by

�
(
Uc
) :=

{∫
θ0dUc : θ0 ∈ L (Uc

)
}

the linear space of processes which admits a representation as the stochastic integral
with respect to Uc. For an integer valued random measure μ′ we denote by G (μ′)

the class of functions θ1 : � × R+ × R0 → R satisfying the following conditions:

(i) θ1 ∈ P̃,

(ii)
∫

R0

|θ1 (t, x)| (μ′)P ({t} , dx) < ∞ ∀t > 0,

(iii) The process

⎧
⎨

⎩

√√
√√∑

s≤t

{
∫

R0

θ1 (s, x) μ′ ({s} , dx) − ∫

R0

θ1 (s, x) (μ′)P ({s} , dx)

}2
⎫
⎬

⎭
t∈R+

∈ A+
loc.

The set G (μ′) represents the domain of the functional θ1 → ∫
θ1d

(
μ′ − (μ′)P

)
,

which assign to θ1 the unique purely discontinuous local martingale M with

�Mt =
∫

R0

θ1 (t, x) μ′ ({t} , dx) −
∫

R0

θ1 (t, x)
(
μ′)P ({t} , dx) .
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We use the notation
∫

θ1d
(
μ′ − (μ′)P

)
to write the value of this functional in

θ1. It is important to point out that this functional is not, in general, the integral with
respect to the difference of two measures. For a detailed exposition on these topics
see He et al. [9] or Jacod and Shiryaev [12], which are our basic references.

In particular, for the Lévy process L with jump measure μ,

G (μ) ≡

⎧
⎪⎨

⎪⎩
θ1 ∈ P̃ :

⎧
⎨

⎩

√∑

s≤t

{θ1 (s,�Ls)}2 1R0 (�Ls)

⎫
⎬

⎭
t∈R+

∈ A+
loc

⎫
⎪⎬

⎪⎭
, (3.3)

since μP ({t} × A) = 0, for any Borel set A of R0.
We say that the semimartingaleU has the weak property of predictable represen-

tation when

Mloc,0 = �
(
Uc
)+

{∫
θ1d

(
μU − μP

U

)
: θ1 ∈ G (μU)

}
, (3.4)

where the previous sum is the linear sum of the vector spaces, and Mloc,0 is the
linear space of local martingales starting at zero.

Let M and M∞ denote the class of càdlàg and càdlàg uniformly integrable
martingale respectively. The following lemma is interesting by itself to understand
the continuity properties of the quadratic variation for a given convergent sequence
of uniformly integrable martingale . It will play a central role in the proof of the
lower semicontinuity of the penalization function introduced in Sect. 4. Observe
that the assertion of this lemma is valid in a general filtered probability space and
not only for the completed natural filtration of the Lévy process introduced above.

Lemma 3.1 For
{
M(n)

}
n∈N ⊂ M∞ and M ∈ M∞ the following implication

holds

M(n)∞
L1−→

n→∞ M∞ �⇒
[
M(n) − M

]

∞
P−→ 0.

Moreover,

M(n)∞
L1−→

n→∞ M∞ �⇒
[
M(n) − M

]

t

P−→
n→∞ 0 ∀t .

Proof From the L1 convergence of M
(n)∞ to M∞, we have that {M(n)∞ }n∈N∪{M∞} is

uniformly integrable, which is equivalent to the existence of a convex and increasing
function G : [0,+∞) → [0,+∞) such that

(i) lim
x→∞

G (x)

x
= ∞,
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and

(ii) sup
n∈N

E

[
G
(∣∣
∣M(n)∞

∣
∣
∣
)]

∨ E [G (|M∞|)] < ∞.

Now, define the stopping times

τn
k := inf

{
u > 0 : sup

t≤u

∣
∣
∣M(n)

t − Mt

∣
∣
∣ ≥ k

}
.

Observe that the estimation supn∈N E

[
G
(∣∣
∣M(n)

τn
k

∣
∣
∣
)]

≤ supn∈N E

[
G
(∣∣
∣M(n)∞

∣
∣
∣
)]

implies the uniformly integrability of
{
M

(n)

τn
k

}

n∈N for each k fixed. Since any uni-

formly integrable càdlàg martingale is of class D, follows the uniform integrability

of
{
Mτn

k

}

n∈N for all k ∈ N, and hence
{
supt≤τn

k

∣
∣
∣M(n)

t − Mt

∣
∣
∣
}

n∈N is uniformly

integrable. This and the maximal inequality for supermartingales

P

[

sup
t∈R+

∣
∣
∣M(n)

t − Mt

∣
∣
∣ ≥ ε

]

≤ 1

ε

{

sup
t∈R+

E

[∣∣
∣M(n)

t − Mt

∣
∣
∣
]
}

≤ 1

ε
E

[∣∣
∣M(n)∞ − M∞

∣
∣
∣
]

−→ 0,

yields the convergence of
{
supt≤τn

k

∣
∣
∣M(n)

t − Mt

∣
∣
∣
}

n∈N in L1 to 0. The second Davis’

inequality [9, Thm. 10.28] guarantees that, for some constant C,

E

[√[
M(n) − M

]
τn
k

]
≤ CE

[

sup
t≤τn

k

∣
∣
∣M(n)

t − Mt

∣
∣
∣

]

−→
n→∞ 0 ∀k ∈ N,

and hence
[
M(n) − M

]
τn
k

P−→
n→∞ 0 for all k ∈ N.

Finally, to prove that
[
M(n) − M

]
∞

P→ 0 we assume that it is not true, and then
[
M(n) − M

]
∞

P
� 0 implies that there exist ε > 0 and {nk}k∈N ⊂ N with

d
([

M(nk) − M
]

∞ , 0
)

≥ ε

for all k ∈ N,where d (X, Y ) := inf {ε > 0 : P [|X − Y | > ε] ≤ ε} is the Ky Fan
metric. We shall denote the subsequence as the original sequence, trying to keep the
notation as simple as possible. Using a diagonal argument, a subsequence {ni}i∈N ⊂
N can be chosen, with the property that d

([
M(ni) − M

]
τ

ni
k

, 0
)

< 1
k
for all i ≥ k.
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Since

lim
k→∞

[
M(ni) − M

]

τ
ni
k

=
[
M(ni) − M

]

∞ P − a.s.,

we can find some k (ni) ≥ i such that

d

(
[
M(ni) − M

]

τ
ni
k(ni )

,
[
M(ni) − M

]

∞

)

<
1

k
.

Then, using the estimation

P

[∣∣
∣
∣
∣

[
M(nk) − M

]

τ
nk
k(nk)

−
[
M(nk) − M

]

τ
nk
k

∣∣
∣
∣
∣
> ε

]

≤ P

[{

sup
t∈R+

∣∣
∣M(nk)

t − Mt

∣∣
∣ ≥ k

}]

,

it follows that

d

(
[
M(nk) − M

]

τ
nk
k(nk)

,
[
M(nk) − M

]

τ
nk
k

)

−→
k→∞ 0,

which yields a contradiction with ε ≤ d
([

M(nk) − M
]
∞ , 0

)
. Thus,

[
M(n) − M

]
∞

P→ 0. The last part of the this lemma follows immediately from the first
statement. ��

Using the Doob’s stopping theorem we can conclude that for M ∈ M∞ and
an stopping time τ , that Mτ ∈ M∞, and therefore it follows as a corollary the
following result.

Corollary 3.1 For
{
M(n)

}
n∈N ⊂ M∞, M ∈ M∞ and τ any stopping time holds

M(n)
τ

L1→ Mτ �⇒
[
M(n) − M

]

τ

P−→ 0.

Proof
[(

M(n)
)τ − Mτ

]

∞ = [M(n) − M
]τ
∞ = [M(n) − M

]
τ

P−→ 0. ��

3.1 Density Processes

Given an absolutely continuous probability measureQ � P in a filtered probability
space, where a semimartingale with the weak predictable representation property
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is defined, the structure of the density process has been studied extensively by
several authors; see Theorem 14.41 in He et al. [9] or Theorem III.5.19 in Jacod
and Shiryaev [12].

Denote by Dt := E

[
dQ
dP

∣
∣
∣Ft

]
the càdlàg version of the density process. For

the increasing sequence of stopping times τn := inf
{
t ≥ 0 : Dt < 1

n

}
n ≥ 1 and

τ0 := supn τn we have Dt (ω) = 0 ∀t ≥ τ0 (ω) and Dt (ω) > 0 ∀t < τ0 (ω) , i.e.

D = D1[[0,τ0[[, (3.5)

and the process

1

Ds−
1[[D−�=0]] is integrable w.r.t. D, (3.6)

where we abuse of the notation by setting [[D− �= 0]] := {(ω, t) ∈ � × R+ :
Dt− (ω) �= 0} . Both conditions (3.5) and (3.6) are necessary and sufficient in
order that a semimartingale to be an exponential semimartigale [9, Thm. 9.41], i.e.
D = E (Z) the Doléans-Dade exponential of another semimartingaleZ. In that case
we have

τ0 = inf {t > 0 : Dt− = 0 or Dt = 0} = inf {t > 0 : �Zt = −1} . (3.7)

It is well known that the Lévy-processes satisfy the weak property of predictable
representation [9], when the completed natural filtration is considered. In the
following lemma we present the characterization of the density processes for the
case of these processes.

Lemma 3.2 Given an absolutely continuous probability measure Q � P, there
exist coefficients θ0 ∈ L (W) and θ1 ∈ G (μ) such that

dQt

dPt

= dQt

dPt

1[[0,τ0[[ = E (Zθ
)
(t) , (3.8)

where Zθ
t ∈ Mloc is the local martingale given by

Zθ
t :=

∫

]0,t ]
θ0dW +

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx)) , (3.9)

and E represents the Doleans-Dade exponential of a semimartingale. The coeffi-
cients θ0 and θ1 are dt-a.s andμP

P (ds, dx)-a.s. unique on [[0, τ0]] and [[0, τ0]]×R0
respectively for P-almost all ω. Furthermore, the coefficients can be chosen with
θ0 = 0 on ]]τ0,∞[[ and θ1 = 0 on ]]τ0,∞[[×R .
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Proof We only address the uniqueness of the coefficients θ0 and θ1, because the
representation follows from (3.5) and (3.6). Let assume, that we have two possible
vectors θ := (θ0, θ1) and θ ′ := (θ ′

0, θ
′
1

)
satisfying the representation, i.e.

Du1[[0,τ0[[ = ∫ Dt−d{ ∫
]0,t ]

θ0 (s) dWs + ∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx))}
= ∫ Dt−d{ ∫

]0,t ]
θ ′
0 (s) dWs + ∫

]0,t ]×R0

θ ′
1 (s, x) (μ (ds, dx) − ds ν (dx))},

and thus

�Dt = Dt−�
⎛

⎜
⎝

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟
⎠

= Dt−�
⎛

⎜
⎝

∫

]0,t ]×R0

θ ′
1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟
⎠ .

Since Dt− > 0 on [[0, τ0[[, it follows that

�
⎛

⎜
⎝

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟
⎠ = �

⎛

⎜
⎝

∫

]0,t ]×R0

θ ′
1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟
⎠ .

Since two purely discontinuous local martingales with the same jumps are equal, it
follows

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx))

=
∫

]0,t ]×R0

θ̂1 (s, x) (μ (ds, dx) − ds ν (dx))

and thus
∫

Dt−d{
∫

]0,t ]
θ0 (s) dWs} =

∫
Dt−d{

∫

]0,t ]
θ ′
0 (s) dWs}.

Then,

0 =
[∫

Ds−d

{∫

]0,s]
(
θ ′
0 (u) − θ0 (u)

)
dWu

}]

t

=
∫

]0,t ]
(Ds−)2

{
θ ′
0 (s) − θ0 (s)

}2
ds

and thus θ ′
0 = θ0 dt-a.s on [[0, τ0]] for P-almost all ω.
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On the other hand,

0 =
〈∫ {

θ ′
1 (s, x) − θ1 (s, x)

}
(μ (ds, dx) − ds ν (dx))

〉

t

=
∫

]0,t ]×R0

{
θ ′
1 (s, x) − θ1 (s, x)

}2
ν (dx) ds,

implies that θ1 (s, x) = θ ′
1 (s, x) μP

P (ds, dx)-a.s. on [[0, τ0]] × R0 for P-almost
all ω. ��

For Q � P the function θ1 (ω, t, x) described in Lemma 3.2 determines the den-
sity of the predictable projection μP

Q (dt, dx) with respect to μP
P (dt, dx) (see He

et al. [9] or Jacod and Shiryaev [12]). More precisely, for B ∈ (B (R+) ⊗ B (R0))

we have

μP
Q (ω,B) =

∫

B

(1 + θ1 (ω, t, x))μP
P (dt, dx) . (3.10)

In what follows we restrict ourself to the time interval [0, T ] , for some T >

0 fixed, and we take F = FT . The corresponding classes of density processes
associated to Q�(P) and Q≈ (P) are denoted by D� (P) and D≈ (P), respectively.
For instance, in the former case

D� (P) :=
{

D = {Dt }t∈[0,T ] : ∃Q ∈ Q� (P) with Dt = dQ

dP

∣
∣
∣
∣Ft

}

, (3.11)

and the processes in this set are of the form

Dt = exp

{
∫

]0,t ]
θ0dW + ∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ν (dx) ds)

− 1
2

∫

]0,t ]
(θ0)

2 ds

}

×

× exp

{
∫

]0,t ]×R0

{ln (1 + θ1 (s, x)) − θ1 (s, x)} μ (ds, dx)

}
(3.12)

for θ0 ∈ L (W) and θ1 ∈ G (μ).
The set D� (P) is characterized as follow.

Corollary 3.2 The processD belongs toD� (P) if and only if there are θ0 ∈ L (W)

and θ1 ∈ G (μ) with θ1 ≥ −1 such that Dt = E (Zθ
)
(t) P-a.s. ∀t ∈ [0, T ] and

EP

[E (Zθ
)
(t)
] = 1 ∀t ≥ 0, where Zθ (t) is defined by (3.9) .
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Proof The necessity follows from Lemma 3.2. Conversely, let θ0 ∈ L (W) and θ1 ∈
G (μ) be arbitrarily chosen. Since Dt = ∫

Ds−dZθ
s ∈ Mloc is a nonnegative local

martingale, it is a supermartingale, with constant expectation from our assumptions.
Therefore, it is a martingale, and hence the density process of an absolutely
continuous probability measure. ��

Since density processes are essentially uniformly integrable martingales, using
Lemma 3.1 and Corollary 3.1 the following proposition follows immediately.

Proposition 3.1 Let
{
Q

(n)
}
n∈N be a sequence in Q�(P), with D

(n)
T := dQ(n)

dP

∣
∣
∣FT

converging to DT := dQ
dP

∣
∣
∣FT

in L1 (P). For the corresponding density processes

D
(n)
t := EP

[
D

(n)
T |Ft

]
and Dt := EP [DT |Ft ], for t ∈ [0, T ], we have

[
D(n) − D

]

T

P→ 0.

4 Penalty Functions for Densities

Now, we shall introduce a family of penalty functions for the density processes
described in Sect. 3.1, for the absolutely continuous measures Q ∈ Q� (P).

Let h : R+→ R+ and h0, h1 : R → R+ be convex functions with 0 = h (0) =
h0 (0) = h1 (0). Define the penalty function, with τ0 as in (3.7), by

ϑ (Q) := EQ

[
T ∧τ0∫

0
h
(
h0 (θ0 (t)) + ∫

R0
δ (t, x) h1 (θ1 (t, x)) ν (dx)

)
dt

]

1Q� (Q)

+∞ × 1Qcont\Q� (Q) ,

(4.1)

where θ0, θ1 are the processes associated to Q from Lemma 3.2 and δ (t, x) : R+ ×
R0 → R+ is an arbitrary fixed nonnegative function δ (t, x) ∈ G (μ). Since θ0 ≡ 0
on [[τ0,∞[[ and θ1 ≡ 0 on [[τ0,∞[[×R0 we have from the conditions imposed to
h, h0, and h1

ϑ (Q) = EQ

[
T∫

0
h
(
h0 (θ0 (t)) + ∫

R0
δ (t, x) h1 (θ1 (t, x)) ν (dx)

)
dt

]

1Q� (Q)

+∞ × 1Qcont\Q� (Q) .

(4.2)

Further, define the convex measure of risk

ρ (X) := sup
Q∈Q�(P)

{
EQ [−X] − ϑ (Q)

}
. (4.3)
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Notice that ρ is a normalized and sensitive measure of risk. For each class of
probability measures introduced so far, the subclass of those measures with a
finite penalization is considered. We will denote by Qϑ , Qϑ�(P) and Qϑ≈(P) the
corresponding subclasses, i.e.

Qϑ := {Q ∈ Q : ϑ (Q) < ∞} , Qϑ�(P) := Qϑ ∩ Q�(P) and

Qϑ≈(P) := Qϑ ∩ Q≈(P). (4.4)

Notice thatQϑ≈(P) �= ∅.

Next theorem establishes the minimality on Q� (P) of the penalty function
introduced above for the risk measure ρ, its proof is based on the sufficient
conditions given in Theorem 2.1. This result is relevant to obtain one of the main
results of this paper, namely Theorem 6.1.

Theorem 4.1 The penalty function ϑ defined in (4.2) is equal to the minimal
penalty function of the convex risk measure ρ, given by (4.3), on Q� (P), i.e.

ϑ1Q�(P) = ψ∗
ρ 1Q�(P).

Proof From Lemma 2.1 (b), we need to show that the penalization ϑ is proper,
convex and that the corresponding identification, defined as � (Z) := ϑ (Q) if
Z∈δ

(Q� (P)
) := {Z ∈ L1 (P) : Z = dQ/dP with Q ∈ Q� (P)

}
and� (Z) := ∞

on L1 \ δ
(Q� (P)

)
, is lower semicontinuous with respect to the strong topology.

First, observe that the function ϑ is proper, since ϑ (P) = 0. To verify the
convexity of ϑ , chooseQ, Q̃ ∈ Qϑ� and defineQλ := λQ+(1 − λ) Q̃, for λ ∈ [0, 1].

Notice that the corresponding density process can be written as Dλ := dQλ

dP
=

λD + (1 − λ) D̃ P-a.s. .
Now, from Lemma 3.2, let (θ0, θ1) and (θ̃0, θ̃1) be the processes associated to Q

and Q̃, respectively, and observe that from

Dt = 1 +
∫

[0,t ]

Ds−θ0 (s) dWs +
∫

[0,t ]×R0

Ds−θ1 (s, x) d (μ (ds, dx) − dsν (dx)))

and the corresponding expression for D̃ we have for τλ
n := inf

{
t ≥ 0 : Dλ

t ≤ 1
n

}

t∧τλ
n∫

0

(
Dλ

s−
)−1

dDλ
s =

t∧τλ
n∫

0

λDs−θ0(s)+(1−λ)D̃s− θ̃0(s)

(λDs−+(1−λ)D̃s−)
dWs +

∫

[0,t∧τλ
n ]×R0

λDs−θ1(s,x)+(1−λ)D̃s− θ̃1(s,x)

(λDs−+(1−λ)D̃s−)
d
(
μ − μP

P

)
.
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The weak predictable representation property of the local martingale
∫ t∧τλ

n

0

(
Dλ

s−
)−1

dDλ
s , yield on the other hand

t∧τλ
n∫

0

(
Dλ

s−
)−1

dDλ
s =

t∧τλ
n∫

0

θλ
0 (s) dWs +

∫

[0,t∧τλ
n ]×R0

θλ
1 (s, x) d

(
μ − μP

P

)
,

where identification

θλ
0 (s) = λDs−θ0 (s) + (1 − λ) D̃s−θ̃0 (s)

(
λDs− + (1 − λ) D̃s−

) ,

and

θλ
1 (s, x) = λDs−θ1 (s, x) + (1 − λ) D̃s−θ̃1 (s, x)

(
λDs− + (1 − λ) D̃s−

) .

This is possible thanks to the uniqueness of the representation in Lemma 3.2. The
convexity follows now from the convexity of h, h0 and h1, using the fact that any
convex function is continuous in the interior of its domain. More specifically,

ϑ
(
Q

λ
) ≤ EQλ

[
∫

[0,T ]

λDs

(λDs+(1−λ)D̃s)
h

(

h0 (θ0 (s))

+ ∫
R0

δ (s, x) h1 (θ1 (s, x)) ν (dx)

)

ds

]

+EQλ

[
∫

[0,T ]

(1−λ)D̃s

(λDs+(1−λ)D̃s)
h

(

h0
(
θ̃0 (s)

)

+ ∫
R0

δ (s, x) h1(θ̃1 (s, x))ν (dx)

)

ds

]

= ∫

[0,T ]

∫

�

λDs(
λDs + (1 − λ) D̃s

)h

(

h0 (θ0 (s))

+ ∫
R0

δ (s, x) h1 (θ1 (s, x)) ν (dx)

)

× (λDs + (1 − λ) D̃s

)
1{λDs+(1−λ)D̃s>0}dPds

+ ∫

[0,T ]

∫

�

(1 − λ) D̃s(
λDs + (1 − λ) D̃s

)h

(

h0
(
θ̃0 (s)

)
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+ ∫
R0

δ (s, x) h1(θ̃1 (s, x))ν (dx)

)

× (λDs + (1 − λ) D̃s

)
1{λDs+(1−λ)D̃s>0}dPds

= λϑ (Q) + (1 − λ) ϑ
(
Q̃
)
,

where we used that
{∫

R0

δ (t, x) h1 (θ1 (t, x)) ν (dx)

}

t∈R+
and

{∫

R0

δ (t, x) h1(θ̃1 (t, x))ν (dx)

}

t∈R+

are predictable processes.
It remains to prove the lower semicontinuity of �. As pointed out earlier, it is

enough to consider a sequence of densities Z(n) := dQ(n)

dP
∈ δ
(Q� (P)

)
converging

in L1 (P) to Z := dQ
dP

. Denote the corresponding density processes by D(n) and D,
respectively. In Proposition 3.1 it was verified the convergence in probability to zero
of the quadratic variation process

[
D(n) − D

]

T
=

T∫

0

{
D

(n)
s−θ

(n)
0 (s) − Ds−θ0 (s)

}2
ds

+
∫

[0,T ]×R0

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2
μ (ds, dx) .

This implies that

∫ T

0

{
D

(n)
s− θ

(n)
0 (s) − Ds−θ0 (s)

}2
ds

P→ 0,

and
∫

[0,T ]×R0

{
D

(n)
s− θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2
μ (ds, dx)

P→ 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.5)

Then, for an arbitrary but fixed subsequence, there exists a sub-subsequence such
that P-a.s.

{
D

(n)
s−θ

(n)
0 (s) − Ds−θ0 (s)

}2 L1(λ)−→ 0

and

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2 L1(μ)−→ 0,
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where for simplicity we have denoted the sub-subsequence as the original sequence.
Now, we claim that for the former sub-subsequence it also holds that

⎧
⎪⎨

⎪⎩

D
(n)
s−θ

(n)
0 (s)

λ×P-a.s.−→ Ds−θ0 (s) ,

D
(n)
s−θ

(n)
1 (s, x)

μ×P-a.s.−→ Ds−θ1 (s, x) .

(4.6)

We present first the arguments for the proof of the second assertion in (4.6).
Assuming the opposite, there existsC ∈ B ([0, T ])⊗B (R0)⊗FT , with μ×P [C] >

0, and such that for each (s, x, ω) ∈ C

lim
n→∞

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2 = c �= 0,

or the limit does not exist.
Let C (ω) := {(t, x) ∈ [0, T ] × R0 : (t, x, ω) ∈ C} be the ω-section of C.

Observe that B := {ω ∈ � : μ [C (ω)] > 0} has positive probability: P [B] > 0.
From (4.5), any arbitrary but fixed subsequence has a sub-subsequence converg-

ing P-a.s. Denoting such a sub-subsequence simply by n, we can fix ω ∈ B with

∫

C(ω)

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2
dμ (s, x)

≤
∫

[0,T ]×R0

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2
dμ (s, x) −→

n→∞ 0,

and hence
{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2
converges in μ-measure to 0 on

C (ω) . Again, for any subsequence there is a sub-subsequence converging μ-a.s.
to 0. Furthermore, for an arbitrary but fixed (s, x) ∈ C (ω), when the limit does not
exist

a := lim inf
n→∞

{
D

(n)
s− θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2

�= lim sup
n→∞

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2 =: b,

and we can choose converging subsequences n (i) and n (j) with

lim
i→∞

{
D

n(i)
s− θ

n(i)
1 (s, x) − Ds−θ1 (s, x)

}2 = a

lim
j→∞

{
D

n(j)
s− θ

n(j)

1 (s, x) − Ds−θ1 (s, x)

}2 = b.
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From the above argument, there are sub-subsequences n (i (k)) and n (j (k)) such
that

a = lim
k→∞

{
D

n(i(k))
s− θ

n(i(k))
1 (s, x) − Ds−θ1 (s, x)

}2 = 0

b = lim
k→∞

{
D

n(j(k))
s− θ

n(j(k))

1 (s, x) − Ds−θ1 (s, x)

}2 = 0,

which is clearly a contradiction.
For the case when

lim
n→∞

{
D

(n)
s−θ

(n)
1 (s, x) − Ds−θ1 (s, x)

}2 = c �= 0,

the same argument can be used, and get a subsequence converging to 0, having a
contradiction again. Therefore, the second part of our claim in (4.6) holds.

Since D
(n)
s−θ

(n)
1 (s, x) , Ds−θ1 (s, x) ∈ G (μ), we have, in particular, that

D
(n)
s−θ

(n)
1 (s, x) ∈ P̃ and Ds−θ1 (s, x) ∈ P̃ and hence C ∈ P̃ . From the definition of

the predictable projection it follows that

0 = μ × P [C]=
∫

�

∫

[0,T ]×R0

1C (s, ω) dμdP =
∫

�

∫

[0,T ]×R0

1C (s, ω) dμP
P dP

=
∫

�

∫

R0

∫

[0,T ]

1C (s, ω) dsdνdP =λ × ν × P [C] ,

and thus

D
(n)
s−θ

(n)
1 (s, x)

λ×ν×P-a.s.−→ Ds−θ1 (s, x) .

Since
∫

�×[0,T ]

∣∣
∣D(n)

t− − Dt−
∣∣
∣ dP × dt=

∫

�×[0,T ]

∣∣
∣D(n)

t − Dt

∣∣
∣ dP × dt −→ 0,

we have that

{
D

(n)
t−
}

t∈[0,T ]

L1(λ×P)−→ {Dt−}t∈[0,T ] and
{
D

(n)
t

}

t∈[0,T ]

L1(λ×P)−→ {Dt }t∈[0,T ] .
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Then, for an arbitrary but fixed subsequence {nk}k∈N ⊂ N, there is a sub-
subsequence

{
nki

}
i∈N ⊂ N such that

D

(
nki

)

t− θ

(
nki

)

1 (t, x)
λ×ν×P-a.s.−→ Dt−θ1 (t, x) ,

D

(
nki

)

t−
λ×P-a.s.−→ Dt−,

D

(
nki

)

t

λ×P-a.s.−→ Dt .

Furthermore,Q � P implies that λ × ν × Q � λ × ν × P, and then

D

(
nki

)

t− θ

(
nki

)

1 (t, x)
λ×ν×Q-a.s.−→ Dt−θ1 (t, x) ,

D

(
nki

)

t−
λ×ν×Q-a.s.−→ Dt−,

and

D

(
nki

)

t

λ×ν×Q-a.s.−→ Dt. (4.7)

Finally, noting that infDt > 0 Q-a.s.

θ

(
nki

)

1 (t, x)
λ×ν×Q-a.s.−→ θ1 (t, x) . (4.8)

The first assertion in (4.6) can be proved using essentially the same kind of ideas
used above for the proof of the second part, concluding that for an arbitrary but fixed
subsequence {nk}k∈N ⊂ N, there is a sub-subsequence

{
nki

}
i∈N ⊂ N such that

{
D

(
nki

)

t

}

t∈[0,T ]

λ×Q-a.s.−→ {Dt }t∈[0,T ] (4.9)

and
{
θ

(
nki

)

0 (t)

}

t∈[0,T ]

λ×Q-a.s.−→ {θ0 (t)}t∈[0,T ] . (4.10)

We are now ready to finish the proof of the theorem, observing that

lim inf
n→∞ ϑ

(
Q

(n)
)

= lim inf
n→∞

∫

�×[0,T ]

{
h

(
h0

(
θ

(n)
0 (t)

)
+
∫

R0

δ (t, x)

×h1

(
θ

(n)
1 (t, x)

)
ν (dx)

)} D
(n)
t

Dt

d (λ × Q) .
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Let {nk}k∈N ⊂ N be a subsequence for which the limit inferior is realized.
Using (4.7)–(4.10) we can pass to a sub-subsequence

{
nki

}
i∈N ⊂ N and, from the

continuity of h, h0 andh1, it follows

lim inf
n→∞ ϑ

(
Q

(n)
)

≥
∫

�×[0,T ]

lim inf
i→∞

⎛

⎜
⎝

⎧
⎪⎨

⎪⎩
h

⎛

⎜
⎝h0

(
θ

(
nki

)

0 (t)

)
+
∫

R0

δ (t, x) h1

(
θ

(
nki

)

1 (t, x)

)
ν (dx)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
D

(
nki

)

t

Dt

⎞

⎟
⎠ d (λ × Q)

≥
∫

�×[0,T ]

h

(
h0 (θ0 (t)) +

∫

R0

h1 (θ1 (t, x)) ν (dx)

)
d (λ × Q)

= ϑ (Q) . ��

5 The Market Model: General Description and Martingale
Measures

Let us now consider the stochastic process Yt with dynamics given by

Yt :=
∫

]0,t ]
αsds+

∫

]0,t ]
βsdWs +

∫

]0,t ]×R0

γ (s, x) (μ (ds, dx) − ν (dx) ds) , (5.1)

where α is an adapted process with left continuous paths (càg), β is càdlàg with
β ∈ L (W) , and γ ∈ G (μ). Throughout we assume that the coefficients α, β and γ

fulfill the following conditions:

(A 1) 0 < c ≤ |βt | ∀t ∈ R+ P-a.s. .

(A 2)
∫ T

0

(
αu

βu

)2
du ∈ Mb i.e. bounded.

(A 3) γ (t,�Lt ) × 1R0 (�Lt) ≥ −1 ∀t ∈ R+ P-a.s. .

(A 4)
{
γ (t,�Lt ) 1R0 (�Lt )

}
t∈R+ is a locally bounded process.

(5.2)

The market model consists of two assets, one of them is the numéraire, having
a strictly positive price. The dynamics of the other risky asset will be modeled as a
function of the process Yt defined above. More specifically, since we are interested
in the analysis of problem of robust utility maximization, presented in the next
section, the discounted capital process can be written in terms of the wealth invested
in this asset, and hence the problem can be written using only the dynamics of the
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discounted price of this asset. For this reason, throughout we will be concentrated
in the dynamics of this price.

The dynamic of the discounted price process S is determined by the process Y as
its Doleans-Dade exponential

St = S0E (Yt ) , (5.3)

where E represents the Doleans-Dade exponential of a semimartingale; condition
(A 3) ensures that the price process is non-negative. This process is an exponential
semimartingale if and only if the following two conditions are fulfilled:

(i) S = S1[[0,τ [[, for τ := inf {t > 0 : St = 0 or St− = 0} ,

(ii) 1
St− 1[[S−�=0]] is integrable w.r.t. S,

(5.4)

where [[S− �= 0]] := {(ω, t) ∈ � × R+ : St− (ω) �= 0} . The first property in (5.4)
is conceptually very appropriate when we are interested in modelling the dynamics
of a price process. Recall that a stochastically continuous semimartingale has
independent increments if and only if its predictable triplet is non-random. There-
fore, in general, the price process S is not a Lévy exponential model, because
[Y c]t = ∫ t

0 (βu)
2 du does not need to be deterministic. However, observe that the

price dynamics (5.3) includes Lévy exponential models, for Lévy processes with
|�Lt | ≤ 1.

For the model (5.3) the price process can be written explicitly as

St = S0 exp

{
∫

]0,t ]
αsds + ∫

]0,t ]
βsdWs + ∫

]0,t ]×R0

γ (s, x) (μ (ds, dx) − ν (dx) ds)

− 1
2

∫

]0,t ]
(βs)

2 ds

}

× exp

{
∫

]0,t ]×R0

{ln (1 + γ (s, x)) − γ (s, x)}μ (ds, dx)

}

.

(5.5)

The predictable cádlág process {πt }t∈R+ , satisfying the integrability condition
∫ t

0 (πs)
2 ds < ∞ P-a.s. for all t ∈ R+, shall denote the proportion of wealth at time

t invested in the risky asset S. For an initial capital x, the discounted wealth X
x,π
t

associated with a self-financing investment strategy (x, π) fulfills the equation

X
x,π
t = x +

∫ t

0

X
x,π
u− πu

Su−
1[[S−�=0]]dSu. (5.6)

We say that a self-financing strategy (x, π) is admissible if the wealth process
X

x,π
t > 0 for all t > 0. The class of admissible wealth processes with initial wealth
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less than or equal to x is denoted by X (x) . In what follows we restrict ourself to
the time interval [0, T ] , for some T > 0 fixed, and take F = FT .

Let us recall briefly the notation introduced in Sect. 3.1. Denote by Q�(P) the
subclass of absolutely continuous probability measures with respect to P and by
Q≈ (P) the subclass of equivalent probability measures. The corresponding classes
of density processes associated to Q�(P) and Q≈ (P) are denoted by D� (P) and
D≈ (P), respectively. The processes in the class D� (P) are of the form

Dt = exp

{
∫

]0,t ]
θ0dW + ∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ν (dx) ds)

− 1
2

∫
]0,t ] (θ0)

2 ds
}

×

× exp

{
∫

]0,t ]×R0

{ln (1 + θ1 (s, x)) − θ1 (s, x)} μ (ds, dx)

}

,

(5.7)

for θ0 ∈ L (W) and θ1 ∈ G (μ). If
∫

θ1 (s, x) μ (ds, dx) ∈ Aloc (P) the previous
formula can be written as

Dt = exp

⎧
⎪⎨

⎪⎩

∫

]0,t ]
θ0dW − 1

2

∫

]0,t ]
(θ0 (s))2 ds (5.8)

+
∫

]0,t ]×R0

ln (1 + θ1 (s, x)) μ (ds, dx) −
∫

]0,t ]×R0

θ1 (s, x) ν (dx) ds

⎫
⎪⎬

⎪⎭
.

Next result characterizes the class of equivalent local martingale measures
defined as

Qelmm ≡ {Q ∈ Q≈(P) : X (1) ⊂ Mloc (Q)} = {Q ∈ Q≈(P) : S ∈ Mloc (Q)}.
(5.9)

Observe that (A 4) is a necessary and sufficient condition for S to be a locally
bounded process. This property is crucial in order to obtain the former equality
in (5.9). The class of density processes associated with Qelmm is denoted by
Delmm (P) . Kunita [16] gave conditions on the parameters (θ0, θ1) of a measure
Q ∈ Q≈ in order that it is a local martingale measure for a Lévy exponential model
i.e. when S = E (L). Observe that in this case Qelmm (S) = Qelmm (L) . Next
proposition extends this result, giving conditions on the parameters (θ0, θ1) under
which an equivalent measure is a local martingale measure for the price model (5.3).

Proposition 5.1 Given Q ∈ Q≈, let θ0 ∈ L (W) and θ1 ∈ G (μ) be the
corresponding processes describing the density processes found in Lemma 3.2.
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Then, the following equivalence holds:

Q ∈ Qelmm ⇐⇒ αt + βtθ0 (t) +
∫

R0

γ (t, x) θ1 (t, x) ν (dx) = 0 ∀t ≥ 0 P-a.s.

(5.10)

6 Robust Utility Maximization

The goal of the economic agent, with an initial capital x > 0, will be now to
maximize the penalized expected utility from a terminal wealth in the worst case
model. Given a penalty function ϑ , this means that the agent seeks to solve the
associated robust expected utility problem with value function

u (x) := sup
X∈X (x)

inf
Q∈Qϑ�(P)

{
EQ [U (XT )] + ϑ (Q)

}
, (6.1)

where Qϑ� := {Q � P : ϑ (Q) < ∞} for a fixed reference measure P; see (4.2).
A utility function U : (0,∞) −→ R will be hereafter a strictly increasing,
strictly concave, continuously differentiable real function, which satisfies the Inada
conditions, namely U ′ (0+) = +∞ and U ′ (∞−) = 0.

The Fenchel-Legendre transformation of the function −U (−x) is defined by

V (y) = sup
x>0

{U (x) − xy} , y > 0. (6.2)

This function V is continuously differentiable, decreasing, and strictly convex,
satisfying: V ′ (0+) = −∞, V ′ (∞) = 0, V (0+) = U (∞) , V (∞) = U (0+).
Further, the biconjugate of U is again U itself, i.e.

U (x) = inf
y>0

{V (y) + xy} , x > 0.

For a fixed prior measure Q, in Kramkov and Schachermayer [13] the dual problem
was formulated in terms of the value function

vQ (y) := inf
Y∈YQ(y)

{
EQ [V (YT )]

}
, (6.3)

where

YQ (y) := {Y ≥ 0 : Y0 = y, YX Q-supermartingale ∀X ∈ X (1)} . (6.4)

A similar problem was studied in [11] for diffusion processes and the logarithmic
utility function.
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Remark 6.1 To guarantee that theQ-expectations in (6.1) and (6.3) are well defined,
we extend the operator EQ [U (·)] to L0, as in Schied [19, p. 111], in the following
way

EQ [X] := sup
n∈N

EQ [X ∧ n] = lim
n→∞EQ [X ∧ n] X ∈ L0 (�,F) . (6.5)

The corresponding dual value function, in the robust setting, is defined by

v (y) := inf
Q∈Qϑ�

{
vQ (y) + ϑ (Q)

}
. (6.6)

In the rest of this section the connection between the penalty functions (4.1) and
the existence of solutions to the penalized robust expected utility problem (6.1) is
established. The first step in this direction is to notice that given Theorem 4.1, where
the minimality of the penalty function was proved, it is possible to write the primal
problem (6.1) as

u (x) = inf
Q∈Qϑ�(P)

sup
X∈X (x)

{
EQ [U (XT )] + ϑ (Q)

}
.

See Schied [19, Theorem 2.3]. Then, based on the duality theory for solving the
classical optimal investment problem, the dual problem (6.6) is solved using the
analogous sufficient conditions introduced by Kramkov and Schachermayer [13].
More precisely, for the class of utility functions described at the beginning of this
section, when

vQ (y) < ∞ for all Q ∈Qϑ≈ and y > 0, (6.7)

where Qϑ≈ := {Q ≈ P : ϑ (Q) < ∞} and ϑ is the minimal penalty function of the
associated convex measure of risk, we are able to conclude that there exists an
optimal solution to the dual problem (6.6), from which we can obtain an optimal
solution to (6.1), using Schied [19, Theorems 2.3 and 2.5]. For the proof of the
main result of this section, namely Theorem 6.1, we shall verify that these sufficient
conditions are satisfied.

6.1 Penalties and Solvability

Let us now introduce the class

C :=
⎧
⎨

⎩
E (Zξ

) :
ξ := (ξ(0), ξ (1)

)
, ξ (0) ∈ L (W) , ξ(1) ∈ G (μ) , with

αt + βt ξ
(0)
t + ∫

R0

γ (t, x) ξ(1) (t, x) ν (dx) = 0 Lebesgue ∀t

⎫
⎬

⎭
,

(6.8)
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where

Z
ξ
t :=

∫

]0,t ]
ξ(0)dW +

∫

]0,t ]×R0

ξ(1) (s, x) (μ (ds, dx) − ds ν (dx)) .

Observe that Delmm (P) ⊂ C ⊂ YP (1); see (6.4) for the definition of YP (1). This
relation between these three sets plays a crucial role in the formulation of the dual
problem, even in the non-robust case.

Theorem 6.1 For q ∈ (−∞, 1) \ {0}, let U (x) := 1
q
xq be the power utility

function, and consider the functions h, h0 and h1 as in Sect. 4, satisfying the
following conditions:

h (x) ≥ exp
(
κ1x

2
)− 1 where κ1 := 1 ∨ 2

(
2p2 + p

)
T and p := q

1−q
,

h0 (x) ≥ |x| ,
h1 (x) ≥ |x|

c
, for c as in assumption (A 1) .

Then, for the penalty function

ϑxq (Q) := EQ

⎡

⎣
T∫

0

h

(
h0 (θ0 (t)) +

∫

R0

|γ (t, x)| h1 (θ1 (t, x)) ν (dx)

)
dt

⎤

⎦ ,

the penalized robust utility maximization problem (6.1) has a solution.

Proof The penalty function ϑxq is bounded from below, and by Theorem 4.1
equals on Q�(P) the minimal penalty function of the normalized and sensitive
convex measure of risk defined in (4.3). Therefore, we only need to prove that
condition (6.7) holds. In order to prove that, fix an arbitrary probability measure
Q ∈ Qϑxq

≈ = {Q ≈ P : ϑxq (Q) < ∞} and let θ = (θ0, θ1) be the corresponding
coefficients obtained in Lemma 3.2.

(1) In Lemma 4.2, Schied [19] establishes that even for Q ∈ Q�, with density
process D, the next equivalence holds

Y ∈ YQ (y) ⇔ YD ∈ YP (y) .

Therefore, for Q ∈ Qϑxq

� , with coefficient θ = (θ0, θ1), it follows that

vQ (y) = inf
Y∈YP(1)

{

EQ

[

V

(

y
YT

D
Q
T

)]}

≤ inf
ξ∈C

{

EQ

[

V

(

y
E (Zξ

)
T

E (Zθ
)
T

)]}

.
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(2) Define

εt := αt + βtθ0 (t) +
∫

R0

γ (t, x) θ1 (t, x) ν (dx) ,

the process involved in the definition of the class C in (6.8).
When εt is identically zero for all t > 0, Proposition 5.1 implies that

Q ∈ Qelmm. However, for Q ∈ Qelmm the constant process Y ≡ y belongs
to YQ (y), and it follows that vQ (y) < ∞, for all y > 0. In this case the proof
is concluded.

If ε is not identically zero, consider ξ
(0)
t := θ0 (t) − εt

βt
and ξ(1) := θ1. Since

{
1

βt

∫

R0

γ (t, x) θ1 (t, x) ν (dx)

}

t∈[0,T ]

∈ P

and

∞ > ϑxq (Q) ≥ EQ

⎡

⎣
T∫

0

(
1

βt

∫

R0

γ (t, x) θ1 (t, x) ν (dx)

)2

dt

⎤

⎦− T ,

it follows that
{

1
βt

∫
R0

γ (t, x) θ1 (t, x) ν (dx)
}

t∈[0,T ]
∈ L (W ′) for W ′ a Q-

Wiener process and thus also ξ(0) ∈ L (W ′) . Moreover, for ξ = (ξ(0), ξ (1)
)
we

have that E (Zξ
) ∈ C.

Using Girsanov’s theorem, we obtain further

E (Zξ
)
t

E (Zθ
)
t

= exp

{∫

]0,t ]

(
− εu

βu

)
dW ′

u − 1

2

∫

]0,t ]

(
εu

βu

)2

du

}

.

(3) The Cauchy-Bunyakovsky-Schwarz inequality yields

EQ

[
V

(
y
E(Zξ

)
T

E(Zθ)T

)]

= 1
p
y−p

EQ

[

exp

{

p
∫

]0,T ]

(
εt

βt

)
dW ′ + p

2

∫

]0,T ]

(
εt

βt

)2
dt

}]

≤ 1
p
y−p

EQ

[

exp

{

2p
∫

]0,T ]

(
εt

βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt

βt

)2
dt

}] 1
2

×EQ

[

exp

{
(
4p2

2 + p
) ∫

]0,T ]

(
εt

βt

)2
dt

}] 1
2

.

(6.9)
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On the other hand, the process

exp

⎧
⎪⎨

⎪⎩
2p

∫

]0,T ]

(
εt

βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt

βt

)2

dt

⎫
⎪⎬

⎪⎭
∈ Mloc (Q)

is a local Q-martingale and, since it is positive, is a supermartingale. Hence,

EQ

⎡

⎢
⎣exp

⎧
⎪⎨

⎪⎩
2p

∫

]0,T ]

(
εt

βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt

βt

)2

dt

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ ≤ 1.

Therefore we need only to take care about EQ

[
exp

{(
4p2

2 + p
) ∫

]0,T ]
(

εt

βt

)2

dt

}]
in order to have the desired integrability. From assumption (A 2)we have

EQ

[
exp

{(
2p2 + p

)
2
∫

]0,T ]

(∣∣
∣αt

βt

∣
∣
∣
)2

dt

}]
< C,

and thus

EQ

[
exp

{(
4p2

2 + p
) ∫

]0,T ]

(
εt

βt

)2
dt

}]
≤ CEQ

[
exp

{
2
(
2p2 + p

)

×
T∫

0

(
|θ0 (t)| + 1

|βt |
∣
∣
∣
∣

∫

R0

γ (t, x) θ1 (t, x) ν (dx)

∣
∣
∣
∣

)2

dt

⎫
⎬

⎭

⎤

⎦ .

Finally, observe that for Q ∈ Qϑxq

≈ , using that it has finite penalization
ϑxq (Q) < ∞ and Jensen’s inequality, we have

∞ > EQ

⎡

⎢
⎣exp

⎧
⎪⎨

⎪⎩

κ1

T

T∫

0

⎛

⎜
⎝h0 (θ0 (t)) +

∫

R0

|γ (t, x)| h1 (θ1 (t, x)) ν (dx)

⎞

⎟
⎠

2

dt

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

≥ EQ

⎡

⎣exp

⎧
⎨

⎩
2
(
2p2 + p

) T∫

0

(
|θ0 (t)| + 1

|βt |
∣
∣
∣
∣

∫

R0

γ (t, x)

θ1 (t, x) ν (dx)|)2 dt
}]

.
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From the last two displays it follows that the r.h.s. of (6.9) is finite and the
theorem follows. ��

Next theorem establishes a sufficient condition for the existence of solution to
the robust utility maximization problem (6.1) for an arbitrary utility function.

Theorem 6.2 Suppose that the utility function Ũ is bounded above by a power
utility U , with penalty function ϑxq associated to U as in Theorem 6.1. Then, the
robust utility maximization problem (6.1) for Ũ with penalty ϑxq has an optimal
solution.

Proof Since U (x) := 1
q
x−q ≥ Ũ (x) for all x > 0, for some q ∈ (−∞, 1) \ {0} the

corresponding convex conjugate functions satisfy V (y) ≥ Ṽ (y) for each y > 0.As
it was pointed out in Remark 6.2, we can restrict ourself to the positive part Ṽ + (y) .

From Proposition 6.1, we can fix some Y ∈ YQ (y) such that EQ [V (YT )] < ∞ for

any Q ∈Qϑxq

≈ and y > 0, arbitrary, but fixed. Furthermore, the inequality V (y) ≥
Ṽ (y) implies that their inverse functions satisfy

(
V +)(−1)

(n) ≥ (
Ṽ +)(−1)

(n) for
all n ∈ N, and hence

∞∑

n=1

Q

[
YT ≤ (Ṽ +)(−1)

(n)

]
≤

∞∑

n=1

Q

[
YT ≤ (V +)(−1)

(n)

]
< ∞.

The Moments Lemma (EQ [|X|] < ∞ ⇔ ∑∞
n=1 Q [|X| ≥ n] < ∞) yields

EQ

[
Ṽ + (YT )

]
< ∞, and the assertion follows. ��

From the proof of Theorem 6.2 it is clear that the behavior of the convex
conjugate function in a neighborhood of zero is fundamental. From this observation
we conclude the following.

Corollary 6.1 Let U be a utility function with convex conjugate V , and ϑ a
penalization function such that the robust utility maximization problem (6.1) has
a solution. For a utility function Ũ such that their convex conjugate function
Ṽ is majorized in an ε-neighborhood of zero by V , the corresponding utility
maximization problem (6.1) has a solution.

Remark 6.2 When the conjugate convex function V is bounded from above it
follows immediately that the penalized robust utility maximization problem (6.1)
has a solution for any proper penalty function ϑ . This is the case, for instance, of the
power utility function U (x) := 1

q
xq , for q ∈ (−∞, 0), where the convex conjugate

function V (x) = 1
p
x−p ≤ 0, with p := q

1−q
.

Next we give an alternative representation of the robust dual value function,
introduced in (6.6), in terms of the family C of stochastic processes.
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Theorem 6.3 For a utility function U satisfying condition (6.7), the dual value
function can be written as

v (y) = inf
Q∈Qϑ≈

{
infξ∈C

{
EQ

[
V

(
y
E(Zξ

)
T

D
Q
T

)]}
+ ϑ (Q)

}

= inf
Q∈Q�

{
infξ∈C

{
EQ

[
V

(
y
E(Zξ

)
T

D
Q
T

)]}
+ ϑ (Q)

}
.

(6.10)

Proof Condition (6.7), together with Lemma 4.4 in [19] and Theorem 2 in [14] ,
imply the following identity

v (y) = inf
Q∈Qϑ≈

{
infQ̃∈Qelmm(Q)

{
EQ

[
V
(
ydQ̃/dQ

)]}+ ϑ (Q)

}
.

Since Delmm (P) ⊂ C, we get

v (y) ≥ inf
Q∈Qϑ≈

{
inf
ξ∈C

{
EQ

[
V

(
y
E(Zξ

)
T

D
Q
T

)]}
+ ϑ (Q)

}

≥ inf
Q∈Q�

{
infξ∈C

{
EQ

[
V

(
y
E(Zξ

)
T

D
Q
T

)]}
+ ϑ (Q)

}
.

(6.11)

Finally, from Lemma 4.2 in Schied [19] and C ⊂ YP (1) follows

vQ (y) ≤ inf
ξ∈C

{

EQ

[

V

(

y
E (Zξ

)
T

D
Q
T

)]}

,

and we have the inequalities (6.11) in the other direction, and the result follows. ��

6.2 The Logarithmic Utility Case

The existence of solution to the robust problem for the logarithmic utility function
U (x) = log (x) can be obtain using the relation between this utility function and
the relative entropy function. Let h, h0 and h1 be as in Sect. 4, satisfying also the
following growth conditions:

h (x) ≥ x,

h0 (x) ≥ 1

2
x2,

h1 (x) ≥ {|x| ∨ x ln (1 + x)} 1(−1,0) (x) + x (1 + x) 1R+ (x) .
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Now, define the penalization function

ϑlog (Q) := EQ

[
T∫

0
h
(
h0 (θ0 (t)) + ∫

R0
h1 (θ1 (t, x)) ν (dx)

)
dt

]

1Q� (Q)

+∞ × 1Qcont\Q� (Q) .

(6.12)

Remark 6.3 Notice that when Q ∈ Qϑlog
� (P) with coefficient θ = (θ0, θ1) has a

finite penalization, the followingQ-integrability properties hold:

(6.3.i)
∫

[0,T ]×R0

θ1 (t, x)μP
P (dt, dx) ∈ L1 (Q)

(6.3.ii)
∫

[0,T ]×R0

{1 + θ1 (t, x)} ln (1 + θ1 (t, x)) μP
P (dt, dx) ∈ L1 (Q)

(6.3.iii)
∫

[0,T ]×R0

ln (1 + θ1 (s, x))μ (ds, dx) ∈ L1 (Q)

(6.3.iv) EQ

[
∫

]0,T ]×R0

ln (1 + θ1) dμ

]

= EQ

[
∫

]0,T ]×R0

{ln (1 + θ1)} (1 + θ1) dμP
P

]

In addition, forQ ∈ Qϑlog
≈ (P) we have

(6.3.v)
∫

[0,T ]×R0

θ1 (s, x) μ (ds, dx) < ∞ P − a.s.

For Q ∈ Q�(P), the relative entropy function is defined as

H(Q|P) = E

[
D

Q
T log

(
D

Q
T

)]
.

Lemma 6.1 Given Q ∈Qϑlog
≈ (P), it follows that

H (Q |P ) ≤ ϑlog (Q) .

Proof For Q ∈Qϑlog
≈ (P) we have that θ0 is integrable w.r.t. W ′ a Q-Wiener process

as an square integrable martingale. Further Remark 6.3 implies that

H (Q |P) = EQ

⎡

⎢
⎣
1

2

∫ T

0
(θ0)

2 ds +
∫

]0,T ]×R0

ln (1 + θ1 (s, x)) μ (ds, dx)

−
T∫

0

∫

R0

θ1 (s, x) ν (dx) ds

⎤

⎥
⎦
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≤ EQ

⎡

⎢
⎣

T∫

0

⎧
⎪⎨

⎪⎩

1

2
(θ0)

2 ds +
∫

R0

{ln (1 + θ1 (s, x))} θ1 (s, x) ν (dx)

⎫
⎪⎬

⎪⎭
ds

⎤

⎥
⎦

≤ ϑlog (Q) .

��
Using the previous result, the existence of solution to the primal problem (6.1)

can be concluded.

Proposition 6.1 LetU (x) = log (x) and ϑlog be as in (6.12). Then the robust utility
maximization problem (6.1) has an optimal solution.

Proof Again, we only need to verify that condition (6.7) holds. Observe that, for

each Q ∈Qϑlog
≈ (P), we have that

vQ (y) ≤ inf
ξ∈C

{

E

[

D
Q
T log

(
D

Q
T

E (Zξ
)
T

)

− log (y) − 1

]}

.

Also, Proposition 5.1 and the Novikov condition yield for ξ̃ ∈ C, with ξ̃ (0) := −αs

βs

and ξ̃ (1) := 0, that Q̃ ∈ Qelmm, where dQ̃\dP = D
ξ̃
T := E

(
Zξ̃
)

T
. Further, from

Lemma 6.1 we conclude forQ ∈Qϑlog
≈ (P) that

E

[

D
Q
T log

(
D

Q
T

D
ξ̃
T

)]

= H (Q |P ) + EQ

⎡

⎣
T∫

0

αs

βs

θ(0)
s ds + 1

2

T∫

0

(
αs

βs

)2

ds

⎤

⎦ < ∞

and the claim follows. ��

References

1. P. Artzner, F. Delbaen, J.M. Eber, D. Heath, Thinking coherently. Risk Mag. 10, 68–71 (1997)
2. P. Artzner, F. Delbaen, J.M. Eber, D. Heath, Coherent measures of risk. Math. Finance 9, 203–

228 (1999)
3. F. Delbaen, Coherent risk measures on general probability spaces, in Advances in Finance and

Stochastics, Essays in Honor of Dieter Sondermann, ed. by K. Sandmann, Ph. Schönbucher
(Springer, Berlin, 2002), pp. 1–37

4. H. Föllmer, A. Schied, Convex measures of risk and trading constraints. Finance Stoch. 6,
429–447 (2002)

5. H. Föllmer, A. Schied, Robust preferences and convex risk measures, in Advances in Finance
and Stochastics, Essays in Honor of Dieter Sondermann (Springer, Berlin, 2002), pp. 39–56

6. H. Föllmer, A. Schied, Stochastic Finance. An Introduction in Discrete Time, 2nd edn. de
Gruyter Studies in Mathematics, vol. 27 (de Gruyter, Berlin, 2004)



168 D. Hernández-Hernández and L. Pérez-Hernández

7. M. Frittelli, E. Rosazza Gianin, Putting order in risk measures. J. Bank. Finance 26, 1473–1486
(2002)

8. M. Frittelli, E. Rosazza Gianin, Dynamic convex risk measures, in Risk Measures for the 21st
Century, ed. by G. Szegö (Wiley, New York, 2004), pp. 227–248

9. S.W. He, J.G. Wang, J.A. Yan, Semimartingale Theory and Stochastic Calculus (Science Press,
Beijing, 1992)

10. D. Heath, Back to the future. Plenary Lecture at the First World Congress of the Bachelier
Society, Paris (2000)

11. D. Hernández-Hernández, A. Schied, A control approach to robust utility maximization with
logarithmic utility and time consistent penalties. Stoch. Process. Appl. 117, 980–1000 (2007)

12. J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. (Springer, Berlin,
2003)

13. D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal
investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

14. D. Kramkov, W. Schachermayer, Necessary and sufficient conditions in the problem of optimal
investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003)

15. V. Krätschmer, Robust representation of convex risk measures by probability measures.
Finance Stoch. 9, 597–608 (2005)

16. H. Kunita, Representation of martingales with jumps and applications to mathematical finance,
in Stochastic Analysis and Related Topics in Kyoto, ed. by H. Kunita et al. (Mathematical
Society of Japan, Tokyo, 2004), pp. 209–232

17. F. Maccheroni, M. Marinacci, A. Rustichini, Ambiguity aversion, robustness and the varia-
tional representation of preferences. Econometrica 74, 1447–1498 (2006)

18. M.-C. Quenez, Optimal portfolio in a multiple-priors model, in Seminar on Stochastic Analysis,
Random Fields and Applications IV, ed. by R. Dalang, M. Dozzi, F. Russo. Progress in
Probability, vol. 58 (Birkhäuser, Basel, 2004), pp. 291–321

19. A. Schied, Optimal investments for risk- and ambiguity-averse preferences: a duality approach.
Finance Stoch. 11, 107–129 (2007)


	Characterization of the Minimal Penalty of a Convex Risk Measure with Applications to Robust Utility Maximization for Lévy Models
	1 Introduction
	2 Minimal Penalty Function of Risk Measures Concentrated in Q( P) 
	2.1 Preliminaries from Static Measures of Risk
	2.2 Minimal Penalty Functions

	3 Fundamentals of Lévy and Semimartingales Processes 
	3.1 Density Processes 

	4 Penalty Functions for Densities
	5 The Market Model: General Description and Martingale Measures 
	6 Robust Utility Maximization 
	6.1 Penalties and Solvability
	6.2 The Logarithmic Utility Case

	References


