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Abstract We investigate a classical two-sided jumps risk process perturbed by a
spectrally negative α-stable process, in which the gain size distribution has a rational
Laplace transform. We consider three classes of light- and heavy-tailed claim size
distributions. We obtain the asymptotic behaviors of the ruin probability and of the
joint tail of the surplus prior to ruin and the severity of ruin, for large values of
the initial capital. We also show that our asymptotic results are sharp. This extends
our previous work (Kolkovska and Martín-González, Gerber-Shiu functionals for
classical risk processes perturbed by an α-stable motion. Insur Math Econ 66:22–
28, 2016).
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1 Introduction

For a given risk process X = {X(t), t ≥ 0}, the expected discounted penalty
function, named also the Gerber-Shiu functional, is defined by

φ(u) = E
[
e−δτ0ω (|X(τ0)|,X(τ0−)) 1{τ0<∞}

∣
∣X(0) = u

]
,
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where τ0 = inf{t ≥ 0 : X(t) < 0} is the ruin time, δ ≥ 0 is a constant representing
a discounting factor, and ω : R+ × R+ → R+ is a nonnegative penalty function.
The random variables |X(τ0)| and X(τ0−) are known respectively as the severity
of ruin and the surplus immediately before ruin. The functional φ was introduced
in [12] as a generalization of the concept of ruin probability, which is obtained as a
particular case when δ = 0 and ω ≡ 1, and has been investigated intensively since
then. Many other important risk measures arise as particular cases of the Gerber-
Shiu functional, including the distribution of the claim that causes the ruin given
that τ0 < ∞, the joint Laplace transform of the severity of ruin and the surplus prior
to ruin, the Laplace transform of the time to ruin and the joint tail distribution of the
severity of ruin and the surplus prior to ruin.

The classical two-sided jumps risk process is given by

X(t) = u + ct +
N1(t)∑

j=1

Yj1 −
N2(t)∑

j=1

Yj2 := u + ct + Z1(t) − Z2(t), (1.1)

where u ≥ 0 and c > 0 are constants representing, respectively, the initial capital of
the insurance company and the prime per unit time that the company receives, and
Z1 = {Z1(t), t ≥ 0}, Z2 = {Z2(t), t ≥ 0} are two independent compound Poisson
processes with respective intensities and jump distributions, λi and Fi, i = 1, 2,

where λi ≥ 0 for i = 1, 2. Here Z1(t) and Z2(t) model respectively the accumulated
random gains and random claims at time t . In the case when λ1 = 0 the resulting
process is called the classical risk process.

In a previous paper [15] we investigated a perturbed two-sided jumps classical
risk process Vα = {Vα(t), t ≥ 0}, given by

Vα(t) = X(t) − ηWα(t), η > 0, t ≥ 0, (1.2)

where X is the risk process defined in (1.1) and {Wα(t), t ≥ 0} is an independent
standard α-stable process with index of stability 1 < α < 2 and skewness parameter
β = 1. Moreover, F1 possesses a density f1 whose Laplace transform f̂1 is a rational
function of the form

f̂1(r) = Q(r)
∏N

i=1(qi + r)mi

, r ≥ 0, (1.3)

where N,mi ∈ N with m1 + m2 + · · · + mN = m, 0 < q1 < q2 <

· · · < qm and Q is a polynomial function of degree at most m − 1. The family
of distributions satisfying (1.3) is widely used in probability applications. This
is a wide class of light-tailed distributions which includes Coxian distributions,
combinations of exponential distribution, phase-type distributions, combinations of
Erlang distributions and many others. It is dense in the class of general nonnegative
distributions (see e.g. [7] and [16, Theorem 8.2.8].) and this property allows for
numerical approximations for φ in the case of general gain distributions. Under
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some additional assumptions on the claim size distribution function F2 and the
penalty function ω, in [15] we obtained a formula for the Laplace transform of
φ and an expression for φ as an infinite series of convolutions of given functions.
However, such infinite sums of convolutions are hard to work with in practice, and
therefore, it is of interest to study the asymptotic behavior of such expressions.

In this paper we investigate the same model as in [15], to which we refer the
reader for motivation and explanations about the meaning of the model parameters.
Based upon the results obtained in [15], here we obtain an asymptotic formula for
the ruin probability ψ(u) := P[τ0 < ∞|Vα(0) = u] as u → ∞, see Theorem 1
below. In Theorem 2 we obtain an asymptotic formula, as u → ∞, of the joint tail
distribution

ϒa,b(u) := P[|Vα(τ0)| > a,Vα(τ0−) > b, τ0 < ∞|V (0) = u], a > 0, b > 0.

(1.4)

In Theorem 3 we show that such asymptotic formula holds uniformly in the
parameters a and b. These results extend our previous work [14], where we
investigated similar behaviors for the classical risk process perturbed by Wα . Other
asymptotic results for the ruin probability and the asymptotic distribution of the
overshoot of the process about high levels are obtained by Klüppelberg et al. [13] in
the case when the Lévy risk process is spectrally positive or spectrally negative. In
Doney et al. [6] asymptotic results for the time of ruin, the surplus before the time
of ruin and the overshoot at ruin time are obtained for Lévy risk processes under the
assumptions that the positive part of the Lévy measure of the process is heavy tailed,
and the renewal measure of the descending ladder process is of regular variation. In
the case we study here the risk process Vα has two-sided jumps distribution, such
that the upward-jump distribution is light-tailed. Therefore, our results complement
the investigation in [13] and [6].

We remark that expressions for Gerber-Shiu functionals of a more general class
of Lévy risk processes than the one we treat here are given in Biffis and Morales
[2] in terms of infinite series of convolutions of integral functions. However,
the integrals involved in such convolution formula are not easy to calculate in
general, since they are integrals with respect to pure jumps measures and require
Laplace transform inversion techniques. In [1] the authors give an expression for a
generalized version of the Gerber-Shiu functional for spectrally negative Lévy risk
processes in terms of integrals of the associated scale functions of the processes.
However, in most cases the scale functions are difficult to obtain explicitly.

The paper is organized as follows: in Sect. 2 we give additional assumptions on
the process Vα that we need, as well as several definitions and preliminary results
that we use in the sequel. In Sect. 3 we obtain asymptotics for the ruin probability of
the process Vα, using Karamata’s theorem combined with certain results from [8].
The final Sect. 4 contains our main results, Theorems 2 and 3, and their proofs.
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2 Definitions and Preliminary Results

In what follows we consider the process Vα and denote by ψ the corresponding ruin
probability ψ(u) = P[τ0 < ∞|Vα(0) = u] starting with an initial capital u ≥ 0.
As above, we write ϒa,b(u) = P[|Vα(τ0)| > a,Vα(τ0−) > b, τ0 < ∞|V (0) = u],
u ≥ 0, for the joint tail of the severity of ruin and surplus prior to ruin, where a and
b are fixed positive numbers. These two functions ψ and ϒa,b are particular cases
of φ respectively, when ω(x, y) = 1 and when ω(x, y) = 1{x>a,y>b}. We recall that
the survival probability �(u) = 1 − ψ(u), u ∈ R, is a distribution function.

We consider the Generalized Lundberg equation

L(r) := cr + ηαrα + λ1F̂1(−r) + λ2F̂2(r) − (λ1 + λ2) = 0.

In [15, Proposition 3.6] it is proved that L has exactly m + 1 roots in the right-
half complex plane C+ = {z ∈ C : Re(z) ≥ 0}, and when δ = 0, 0 is a root of the
above equation with multiplicity 1. We denote the roots of L by ρ1, . . . , ρm+1, with
ρ1 = 0 when δ = 0. We assume that the following conditions hold.

(a) The upward distribution F1 has a density f1, whose Laplace transform has the
form (1.3).

(b) The Net Profit Condition E[Vα(1) − u] = c + λ1μ1 − λ2μ2 > 0 holds, where
μj = E[X1j ] < ∞, j = 1, 2.

(c) The roots ρ1, . . . , ρm+1, are all different.

Notice that assumption (b) implies that limt→∞ Vα(t) = +∞ with probability 1.
For a > 0 we denote by zα,a the density of the extremal stable distribution ζα,a ;
see e.g. [15, page 376] for the definition of ζα,a . It is known [11, Lemma 1] that the
Laplace transform of zα,a exists for all r ≥ 0 and is given by ẑα,a(r) = a

a+rα−1 . We

set E(ρj ) =
∏N

l=1(ql−ρj )ml
∏

l �=j (ρl−ρj )
and denote by Tr the Dickson-Hipp operator introduced

in [5], which is defined by Trf (x) = ∫∞
x e−r(y−x)f (y) dy for any x ≥ 0, all

complex number r = r1 + ir2 with r1 ≥ 0, and all integrable nonnegative functions
f. We define the function

g0(x) = λ2

m+1∑

j=1

E(ρj )Tρj f2(x), x > 0,

and for α < 2 and u > 0 we denote lα(u) = (α−1)u−α

�(2−α)
and fα(u) =

∑m+1
j=2 E(ρj )ρjTρj lα(u). It is easily shown that f̂α(r) = ∑m+1

j=2 E(ρj )ρj
ρα−1

j −rα−1

ρj −r
.

From [15, Lemma 5.3] it follows that fα and g0 are real valued functions. In the
sequel we will assume that these two functions are nonnegative. This assumption
holds at least in the case when F2 is a convex sum of exponential distribution
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functions with positive coefficients, since in this case it follows similarly as in
[4] that the roots ρj , j = 1, . . . ,m + 1, of the Lundberg equation L(r) = 0 are
nonnegative real numbers. This implies, due to the definition of E(ρj ), that also
E(ρj ) are nonnegative numbers.

Now we define the distribution functions

Fα(x) = 1

CF

x∫

0+
fα(y)dy, G0(x) = 1

CG

x∫

0+
g0(y)dy,

Uα(x) = 1

CU

x∫

0+
να(y)dy, x > 0, (2.1)

and F2,I (x) = 1
μ2

∫ x

0 F 2(y) dy, x ≥ 0. Here CF = ∫∞
0+ fα(x) dx, CG =

∫∞
0+ g0(x) dx and CU = ∫∞

0+ να(x) dx. The functions ν : R+ → R+ and Wα :
R+ → R+ are defined by their Laplace transforms

ν̂α(r)

(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= ẑα,θ (r), (2.2)

where θ = c/ηα + κ and κ = 1
ηα ĝ0(0) + f̂α(0), and

Ŵα(r) =
1

ηαθ
ν̂α(r)

1 − 1
θ

[
κν̂α(r) + 1

ηα ĝ0(r)̂να(r)
] . (2.3)

In [15, Proposition 5.6] we give representations of ν and Wα as series of convolu-
tions of given functions.

We recall [15, Proposition 5.4 b)] that the Laplace transform of the ruin
probability ψ satisfies the equality

ψ̂(r) = 1

r
− (c + λ1μ1 − λ2μ2)

r

∏N
j=1 q

mj

j
∏m+1

j=2 ρj

Ŵα(r), r > 0. (2.4)

Notice that the roots of Lundberg’s equation appear in conjugate pairs because the

equation coefficients are real, hence
∏N

j=1 q
mj
j∏m+1

j=2 ρj

> 0.

We also recall the following definitions: Let F be a distribution function such that
F(0) = 0 with tail F = 1 − F. If there exist numbers c1, c2 > 0 such that F(x) ≤
c1e

−c2x for all x > 0, then F is called light-tailed distribution function. Otherwise
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F is a heavy-tailed distribution function and in such a case we write F ∈ H. In case
that limx→∞ F ∗2(x)/F (x) = 2 we say that F belongs to the class of subexponential
distributions and write F ∈ S. The distribution function F belongs to the class L if
for any y ≥ 0 there holds limx→∞ F(x − y)/F (x) = 1. Finally, F belongs to the
class Rc for c ≥ 0 if F has a density f such that limx→∞ f (x)/F (x) = c. We say
that f : R+ → R+ is a regularly varying function of x at ∞, with order a ∈ R,
if limx→∞ f (xt)/f (x) = ta for t > 0, and write f ∈ RVa . In the particular case
when a = 0, we say that f is a slowly varying function of x at ∞. If f is regularly
varying of order a, then it can be written as f (x) = xaL(x), where L is a slowly
varying function. We define f ∼ g if limx→∞ f (x)/g(x) = 1. We write F ∈ RV a

if F is such that F(x) ∼ xaL(x). The following inclusions hold (see [9]):

RV a ⊂ S ⊂ L ⊂ H and R0 ⊂ L. (2.5)

Lemma 1 Let F1, F2 be two distribution functions such that Fi(0) = 0, i = 1, 2,
and let H = F1 ∗ F2 be their convolution.

a) If F2 ∈ S and F 1(x) = o(F 2(x)) as x → ∞, then H ∈ S. Moreover, H(x) ∼
F 2(x).

b) If F i(x) ∼ x−δLi(x) for i = 1, 2, where L1 and L2 are slowly varying
functions, then H(x) ∼ x−δ (L1(x) + L2(x)) as x → ∞.

c) If F 2(x) ∼ cF 1(x) for some c ∈ (0,∞), then F1 ∈ S if and only if F2 ∈ S and
H ∼ (1 + c)F 2(x).

d) If β ∈ (0, 1) and K(x) = (1 − β)
∑∞

n=0 βnF ∗n
1 (x) then the following three

conditions are equivalent:

K ∈ S, F1 ∈ S, K(x) ∼ β
1−β

F 1(x).

Proof For a) and d) see, respectively, [8, Proposition 1a) and Theorem 3]. For b)
see [10, page 278]. The proof of c) is given in [16, lemmas 2.5.2 and 2.5.4].

3 Asymptotic Behavior of the Ruin Probability

In what follows we will use the elementary identities

F̂ (r) = f̂ (r)

r
and F̂ (r) = 1 − f̂ (r)

r
, r > 0, (3.1)

valid for any distribution function F with F(0) = 0 and having density f . First we
state the following auxiliary result.
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Proposition 1 The following asymptotics hold:

a) lim
x→∞

Fα(x)

x1−α

�(2−α)

= 1

CF

(

1 −
∏N

i=1 q
mi

i∏m+1
j=2 ρj

)

, hence Fα ∈ S.

b) If F2 ∈ R0, then lim
x→∞

G0(x)

F 2,I (x)
= λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

. If in addition F2,I ∈ S, then
G0 ∈ S.

c) If F 2(x) = o(x−α), then G0(x) = o(x1−α).

d) lim
x→∞

Uα(x)

ζα,θ (x)
= CU

∏N
i=1 q

mi

i∏m+1
j=2 ρj

, hence Uα ∈ S.

Proof

a) Let us define F ∗(u) = ∫ u

0 Fα(x)dx. From (3.1) we obtain F̂ ∗(r) =
(1 − 1

CF
f̂α(r))/r2, hence lim

r↓0

rF̂ ∗(r)
rα−2 = lim

r↓0

1 − 1
CF

f̂α(r)

rα−1 . From the definition

of CF it follows that 1 − 1
CF

f̂α(0) = 0. Using L’Hospital’s rule gives

lim
r↓0

1 − 1
CF

f̂α(r)

rα−1
= lim

r↓0

1 + 1

CF

∑m+1
j=2 E(ρj )ρj

ρα−1
j − rα−1

ρj − r

rα−1

= lim
r↓0

1

CF

∑m+1
j=2 E(ρj )ρj

(
ρα−1

j − rα−1

(ρj − r)2
− (α − 1)rα−2

ρj − r

)

(α − 1)rα−2

= − 1

CF

m+1∑

j=2

E(ρj ) = 1

CF

(

1 −
∏N

i=1 q
mi

i∏m+1
j=2 ρj

)

, (3.2)

where the last equality follows by [15, Lemma 5.3]. From [10, Theorem 1, page
443] we obtain the limit in part a), which implies that Fα is regularly varying.
Using (2.5) we also obtain that Fα ∈ S.

b) Notice that

lim
x→∞

∣
∣
∣
∣
∣

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣
∣
∣
∣
∣

≤ lim
x→∞

∫∞
x

∫∞
y e−Re(ρj )(z−y)f2(z)dzdy

F 2,I (x)
, j = 2, 3, . . . ,m + 1. (3.3)
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Taking limits when x → ∞ in the right-hand side of (3.3) yields

lim
x→∞

∫∞
x

eRe(ρj )y
∫∞
y

e−Re(ρj )zf2(z)dzdy

F 2,I (x)
= lim

x→∞

∫∞
x

e−Re(ρj )zf2(z)dzdy

e−Re(ρj )xF 2(x)

= lim
x→∞

e−Re(ρj )xf2(x)

Re(ρj )e
−Re(ρj )xF 2(x) + e−Re(ρj )xf2(x)

= lim
x→∞

f2(x)

F 2(x)

Re(ρj ) + f2(x)

F 2(x)

,

(3.4)

where the first and second equalities follow by L’Hospital’s rule. Using the
assumption that F2 ∈ R0, we obtain from (3.4) and (3.3) that

lim
x→∞

∣
∣
∣
∣∣

∫∞
x Tρj f2(y) dy

F 2,I (x)

∣
∣
∣
∣∣
= 0. (3.5)

Since
∫∞
x g0(y)dy = λ2

∏N
i=1 q

mi
i∏m+1

j=2 ρj

μ2F 2,I (x)−λ2
∑m+1

j=2 E(ρj )
∫∞
x Tρj f2(y), the

triangle inequality yields

λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

−
∣
∣∣
∣
∣

− λ2CG

∑m+1
j=2 E(ρj )

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣
∣∣
∣
∣
≤
∣
∣∣
∣
∣

G0(x)

F 2,I (x)

∣
∣∣
∣
∣
,

(3.6)

and

∣∣
∣
∣
∣

G0(x)

F 2,I (x)

∣∣
∣
∣
∣
≤ λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

+
∣∣
∣
∣
∣

− λ2CG

∑m+1
j=2 E(ρj )

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣∣
∣
∣
∣
.

(3.7)

The limit in part b) follows from letting x → ∞ in (3.6) and (3.7) and using (3.5).
Assuming that F2,I ∈ S, the relation G0 ∈ S follows from part c) of Lemma 1.

c) Let us assume that F 2(x) = o(x−α), hence L’Hospital’s rule implies that

lim
x→∞

F 2,I (x)

x1−α
= 0. (3.8)

This yields

lim
x→∞

∫∞
x

∫∞
y e−Re(ρj )(z−y)f2(z)dzdy

x1−α
≤ lim

x→∞

∫∞
x

∫∞
y f2(z)dzdy

x1−α

= μ2 lim
x→∞

F 2,I (x)

x1−α
= 0,
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and from (3.8) we obtain

lim
x→∞

∣
∣∣
∣
∣

∫∞
x

Tρj f2(y)dy

x1−α

∣
∣∣
∣
∣
= 0. (3.9)

Using (3.6) and (3.7) we obtain the inequalities

μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x)

x1−α
−
∣
∣
∣
∣
∣

− 1
CG

∑m+1
j=2 E(ρj )

∫∞
x

Tρj f2(y)dy

x1−α

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
G0(x)

x1−α

∣
∣
∣
∣
∣

(3.10)

and

∣
∣
∣
∣
∣
G0(x)

x1−α

∣
∣
∣
∣
∣
≤ μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x)

x1−α
+
∣
∣
∣
∣
∣

− 1
CG

∑m+1
j=2 E(ρj )

∫∞
x

Tρj f2(y)dy

x1−α

∣
∣
∣
∣
∣
.

(3.11)

The result now follows by letting x → ∞ in (3.10) and (3.11), and using (3.8)
and (3.9).

d) Putting r = 0 in (2.2) gives CU = (1 + CF

θ
)−1. Dividing both sides of (2.2) by

CU yields
ν̂α(r)

CU

(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= ẑα,θ (r)

CU

, hence:

(
1 − ν̂α(r)

CU

)(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= 1 + 1

θ
f̂α(r)̂zα,θ (r) − ẑα,θ (r)

CU

= 1 + 1

θ
f̂α(r)̂zα,θ (r) −

(
1 + CF

θ

)
ẑα,θ (r)

= 1 − ẑα,θ (r) − CF

θ
ẑα,θ (r)

(
1 − 1

CF

f̂α(r)

)
.

(3.12)

We define the function U∗
α(x) = ∫ x

0 Uα(y)dy, x > 0. From (3.1) we get

Û∗
α(r) = Ûα(r)

r
= 1 − ν̂α(r)

CU

r2
. (3.13)

It follows from (3.12) that

rÛ∗
α(r)

rα−2 =
1 − ẑα,θ (r)

rα−1 − CF

θ

ẑα,θ (r)
(

1 − 1
CF

f̂α(r)
)

rα−1

1 + 1
θ
f̂α(r)̂zα,θ (r)

. (3.14)
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Since ẑα,θ (r) = θ
θ+rα−1 we obtain lim

r↓0

1 − ẑα,θ (r)

rα−1 = 1

θ
. Using this equality

together with (3.2) and letting r ↓ 0 in (3.14), we obtain

lim
r↓0

rÛ∗
α(r)

rα−2 =
1
θ

− 1
θ

+ 1
θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

1 + CF

θ

= CU

θ

∏N
i=1 q

mi

i∏m+1
j=2 ρj

, (3.15)

where in the last equality we used that CU = (1 + CF

θ
)−1. Since U∗

α has the
monotone density Uα, Theorem 1 (page 443) in [10] gives the limit in part d).
This implies that the tail of Uα is asymptotically regularly varying with index
1 − α, hence from (2.5) we conclude that Uα ∈ S.

Now we are ready to obtain the main result in this section.

Theorem 1 Consider the following three cases for the claim size distribution F2.
As x → ∞,

Case 1 : F 2(x) = o(x−α),

Case 2 : F 2(x) ∼ κx−α for some κ > 0,

Case 3 : F2,I ∈ S, F2 ∈ R0 and x−α = o
(
F 2(x)

)
.

(3.16)

Then, as u → ∞, we have:

a) In case 1:

ψ(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
u1−α, (3.17)

b) In case 2:

ψ(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
u1−α, (3.18)

c) In case 3:

ψ(u) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u), (3.19)

and in all cases � ∈ S.
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Proof

Case 1. We define the function G∗
0(x) = ∫ x

0 G0(y)dy, x > 0. Due to (3.1) we have

Ĝ∗
0(r) = 1−ĝ0(r)

r2 . From Proposition 1 c) and the assumption that F 2(x) =
o(x−α) we obtain G0(x) = o

(
x1−α

)
, hence Theorem 1 (page 443) in [10]

and the equality Ĝ∗
0(r) = 1−ĝ0(r)

r2 imply

0 = lim
r↓0

rĜ∗
α(r)

rα−2 = lim
r↓0

1 − ĝ0(r)C−1
G

rα−1 . (3.20)

Using that 0 = ψ(∞) = lim
u→∞ ψ(u), the final value theorem for

Laplace transforms ψ(∞) = lim
r↓0

rψ̂(r) and (2.4) we obtain Ŵα(0) =
(

(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi
i

)−1

. Setting r = 0 in (2.3) yields

1

(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi
i

=
1

ηαθ
ν̂α(0)

1 − 1
θ

[
κν̂α(0) + 1

ηα ĝ0(0)̂να(0)
]

=
1

ηαθ
CU

1 − 1
θ

[
κCU + 1

ηα CGCU

] ,

or equivalently

(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi

i

=
1 − 1

θ

[
κCU + 1

ηα CGCU

]

1
ηαθ

CU

. (3.21)

Now we set ψ∗(u) = ∫ u

0 ψ(y)dy. Due to (3.1), (2.4), (2.3) and (3.21) we
have

ψ̂∗(r) =
1 −

[
1− 1

θ

[
κCU + 1

ηα CGCU

]

1
ηαθ

CU

]
1

ηαθ
ν̂α(r)

1− 1
θ

[
κν̂α(r)+ 1

ηα ĝ0(r )̂να(r)
]

r2

=
1 − 1

θ

[
κν̂α(r) + 1

ηα ĝ0(r)̂να(r)
]

−
[

1− 1
θ

[
κCU + 1

ηα CGCU

]

CU

]

ν̂α(r)

r2
(

1 − 1
θ

[
κν̂α(r) + 1

ηα ĝ0(r)̂να(r)
]) .
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It follows that

lim
r↓0

rψ̂∗(r)
rα−2 = lim

r↓0

1

rα−1

⎛

⎜⎜
⎝

1 − ν̂α(r)

CU

+ CG

ηαθ

[
1 − ĝ0(r)

CG

]
ν̂α(r)

1 − 1
θ

[
κν̂α(r) + η−αĝ0(r)̂να(r)

]

⎞

⎟⎟
⎠

=
1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

1 − 1
θ

[
κCU + η−αCGCU

] , (3.22)

where the last equality follows from (3.13), (3.15) and (3.20). From (3.21)
we obtain

1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

c + λ1μ1 − λ2μ2

ηαθ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

= ηα

c + λ1μ1 − λ2
,

hence from (3.22), lim
r↓0

rψ̂∗(r)
rα−2 = ηα

c + λ1μ1 − λ2
. The asymptotic for-

mula (3.17) now follows from [10, Theorem 1, page 443]. Since (3.17)
implies that � has a regularly varying tail, from (2.5) we conclude � ∈ S.

Case 2. We work again with the functions ψ∗ and G∗
0 defined before. Due to

F2 ∈ RV −α and F2 ∈ R0, from part b) of Proposition 1 we obtain

G0(x) ∼ λ2μ2

CG

∏N
i=1 q

mi
i∏m+1

j=2 ρj

F 2,I (x). Since F 2(x) ∼ κx−α, an application

of L’ Hospital’s rule to lim
x→∞

F 2,I (x)

x1−α yields F 2,I (x) ∼ κ x1−α

(α−1)μ2
. Hence

G0(x) ∼ λ2κ

CG(α − 1)

∏N
i=1 q

mi
i∏m+1

j=2 ρj

x1−α. Applying [10, Theorem 1, page 443]

to G∗
0(x) gives

λ2μ2κ

CG(α − 1)

∏N
i=1 q

mi

i∏m+1
j=2 ρj

= lim
r↓0

rĜ∗
α(r)

rα−2 = lim
r↓0

1 − ĝ0(r)C−1
G

rα−1 . (3.23)

From the last equality we see, as in case 1, that the limit (3.22) remains
valid also in this case. Therefore

lim
r↓0

rψ̂∗(r)
rα−2

= lim
r↓0

1

rα−1

⎛

⎜
⎜
⎝

1 − ν̂α(r)

CU

+ CG

ηαθ

[
1 − ĝ0(r)

CG

]
ν̂α(r)

1 − 1
θ

[
κν̂α(r) + η−αĝ0(r)̂να(r)

]

⎞

⎟
⎟
⎠ ,
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hence, substituting (3.13), (3.15) and (3.23) in the above equality gives

lim
r↓0

rψ̂∗(r)
rα−2 =

1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

1 − 1
θ

[
κCU + η−αCGCU

]
[

1 + λ2κ�(2 − α)

ηα(α − 1)

]

= ηα(α − 1) + λ2κ�(2 − α)

(c + λ1μ1 − λ2μ2)(α − 1)
.

The asymptotic formula (3.18) follows from [10, Theorem 1, page 443].
Since the right-hand side of (3.18) is a regularly varying function, it follows
that � has a regularly varying tail. This finishes the proof of case 2.

Case 3. The equality Wα(x) = 1
ηαθ

να ∗ ∑∞
n=0

1
θn

[
κνα + 1

ηα g0 ∗ να

]∗n

(x) is

proved in [15, Proposition 5.6]. From (2.4) we note that (c + λ1μ1 − λ2μ2)∏m+1
j=2 ρj

∏N
i=1 q

mi
i

Wα is the density function of the probability of survival �, hence

using the above equality and the definitions of Uα and G0 in (2.1), it follows
that

�(x) = 1

ηαθ
(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi

i

CUUα

∗
∞∑

n=0

1

θn

(
κCUUα + 1

ηα
CGCUG0 ∗ Uα

)∗n

(x).

Now we define β = 1
θ

[
κCU + η−αCGCU

]
. Using (3.21), we obtain from

the last equality that

�(x) = (1 − β)Uα ∗
∞∑

n=0

βn

θn

[
1

β

(
κCUUα + 1

ηα
CGCUG0 ∗ Uα

)]∗n

(x)

= Uα ∗ K(x), (3.24)

where K(x) = (1 − β)
∑∞

n=0 βnK∗n
0 (x) with K0(x) =

(
1
θβ

[
κCUUα +

η−αCGCUG0∗Uα

])
(x), x > 0. Since Uα and G0 are distribution functions,

using the definition of β we see that K0 and K are distribution functions as
well, and � is the convolution of the distribution functions Uα and K . In
view of this, we need to study the asymptotic behaviour of K .

The assumption that x−α = o(F 2(x)), together with an application of
L’Hospital’s rule, imply that x1−α = o

(
F 2,I (x)

)
. Since by assumption

F2 ∈ R0, part b) of Proposition 1 yields G0(x) ∼ λ2μ2

CG

∏N
i=1 q

mi
i∏m+1

j=2 ρj

F 2,I (x),

hence x1−α = o
(
G0(x)

)
, and due to part d) of Proposition 1 we get
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Uα(x) = o
(
G0(x)

)
. It follows from the definition of K0 and Lemma 1

a) that 1 − K0(x) ∼ η−αCGCU

θβ
G0(x). Since by assumption F2,I ∈ S, from

part b) of Proposition 1 we obtain G0 ∈ S. It follows from Lemma 1 d)
that

K(x) ∼ β

1 − β

η−αCGCU

θβ
G0(x)

∼ λ2μ2

c + λ1μ1 − λ2μ2

ηαθ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

CU

ηαθ

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x),

which reduces to K(x) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (x) after simplifying the

coefficient in the right-hand side of the asymptotic expression above. From
here we obtain (3.19) using (3.24), Lemma 1 a) and the relation Uα(x) =
o(F 2,I (x)) as x → ∞. Hence � ∈ S.

Corollary 1 For the three cases in (3.16) the ruin probability ψ(u) admits the
asymptotic expression

ψ(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
u1−α + λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u) as u → ∞.

(3.25)

In particular, if F 2(u) ∼ L1(u)u−α for some slowly varying function L1 and F 2
belongs to any of the cases in (3.16), then

ψ(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2

α − 1
L1(u)

]
u1−α. (3.26)

Proof The estimate (3.25) follows directly from Theorem 1. To obtain (3.26) we
consider the three cases in (3.16).

Case 1. We have lim
u→∞

L1(u)u−α

u−α = lim
u→∞

F 2(u)
u−α

L1(u)u−α

F 2(u)
= 0. Hence

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1 L1(u)
]
u1−α

= lim
u→∞

ψ(u)

u1−α

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1
L1(u)u1−α

u1−α

] = 1,

where we used (3.17) to obtain the last equality.
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Case 2. We set C = 1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2κ

α−1

]
.

Using the equality lim
u→∞ L1(u) = κ and (3.18) we obtain that

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2

α−1L1(u)
]
u1−α

= lim
u→∞

ψ(u)

Cu1−α

1
C

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2

α−1
L1(u)u1−α

u1−α

] = 1.

Case 3. Notice that u−α = o
(
F 2(u)

)
implies u1−α = o

(
F 2,I (u)

)
. Using now

Karamata’s theorem (see e.g. [3, Proposition 1.5.10]) we obtain that

lim
u→∞

F 2,I (u)

L1(u)u1−α = α−1
μ2

. Hence

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1 L1(u)
]
u1−α

= lim
u→∞

ψ(u)
λ2μ2

c+λ1μ1−λ2μ2
F 2,I (u)

ηα

�(2−α)
u1−α

λ2μ2F 2,I (u)
+ 1

α−1
L1(u)u1−α

F 2,I (u)

= 1.

4 Asymptotic Behavior of the Joint Tail of the Severity of
Ruin and the Surplus Prior to Ruin

For fixed β > 0 and a ≥ 0, we define the function

B(x; β, a) :=
∫ ∞

x

e−β(y−x)

(
λ2F 2(y + a) + ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy, x ≥ 0.

(4.1)

In order to obtain asymptotic expressions for ϒa,b(u) as u → ∞ in such a way that
� := max{u, b} → ∞, we establish some preliminary lemmas.

Lemma 2

a) For all x ≥ 0 and β > 0, B(x; β, a) ≤ λ2μ2 + ηα

�(2−α)
a1−α for any a ≥ 0.

b) The asymptotic relation B(x; β, a) = o(ψ(x + a)) as x → ∞, holds in any of
the cases in (3.16).
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Proof

a) Since e−β(y−x) ≤ 1 when y ≥ x, and F 2(y + a) ≤ F 2(y), we have

B(x; β, a)

≤
∫ ∞

x

(
λ2F 2(y + a) + ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy

≤
∫ ∞

0

(
λ2F 2(y) + ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy,

which implies a).
b) Using that F 2(y + a) ≤ F 2(x + a) and (y + a)−α ≤ (x + a)−α for all y ≥ x,

we see that

B(x;β, a) ≤
∫ ∞

x

e−β(y−x)

(
λ2F 2(x + a) + ηα(α − 1)

�(2 − α)
(x + a)−α

)
dy

= 1

β

(
λ2F 2(x + a) + ηα(α − 1)

�(2 − α)
(x + a)−α

)
. (4.2)

For the first two cases in (3.16), the limit lim
x→∞

F 2(x)
x−α exists and is finite, hence

in any of these two cases we obtain

lim
x→∞

1
β

(
λ2F 2(x + a) + ηα(α−1)

�(2−α)
(x + a)−α

)

(x + a)1−α

= lim
x→∞

1
β

(

λ2
F 2(x + a)

(x + a)−α
+ ηα(α−1)

�(2−α)

)

x + a
= 0. (4.3)

Due to (3.17) and (3.18) we obtain, again in cases 1 and 2 of (3.16), that ψ(u) ∼
Au1−α for some constant A > 0. This and (4.3) imply

lim
x→∞

1
β

(
λ2F 2(x + a) + ηα(α−1)

�(2−α)
(x + a)−α

)

ψ(x + a)

= lim
x→∞

1
β

(
λ2F 2(x + a) + ηα(α−1)

�(2−α)
(x + a)−α

)

(x + a)1−α

ψ(x + a)

(x + a)1−α

= 0.

Hence we obtain the result in these two cases by dividing by ψ(x +a) both sides
of (4.2) and making x → ∞ afterwards.
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In the remaining case 3, the assumption that F2 ∈ R0 and L’Hospital’s rule
imply that F 2,I ∈ R0. From (3.19) we obtain that ψ(u) ∼ A2F 2,I (u) for some
constant A2 > 0. Moreover, from the proof of Theorem 1 c) we see that x1−α =
o(F 2,I (x)). Using these two results together with F 2,I ∈ R0, it follows that

lim
x→∞

1
β

(
λ2F 2(x + a) + ηα(α−1)

�(2−α)
(x + a)−α

)

ψ(x + a)

= lim
x→∞

1
β

(
λ2F 2(x + a) + ηα(α−1)

�(2−α)
(x + a)−α

)

F 2,I (x + a)

ψ(x + a)

F 2,I (x + a)

= 0.

Again, the result follows dividing both sides of (4.2) by ψ(x + a) and making
x → ∞.

Recall the definition of the joint tail distribution ϒa,b given in (1.4).

Lemma 3 The joint tail distribution admits the representation

ϒa,b(u) = hα ∗ Wα(u), u > 0, (4.4)

where

hα(u) =
∏N

i=1 q
mi

i∏m+1
j=2 ρj

∫ ∞

u

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b}dz + Ia,b(u),

and Ia,b(x) = ∑m+1
j=2 E(ρj )

∫∞
x

e−ρj (y−x)
(
λ2F 2(y + a) + ηα(α−1)

�(2−α)
(y + a)−α

)

1{y>b}dy. Moreover, if F2 belongs to any of the cases in (3.16), then for fixed
a, b > 0,

∫ u

0
Ia,b(u − y)�(dy) = o(ψ(u)) as u → ∞, (4.5)

and the following limit holds:

lim
u→∞

∫ u

0
Ia,b(u − y)�(dy) = 0, (4.6)

uniformly on the sets {a ≥ ξ, b ≥ η} for all fixed ξ, η > 0.
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Proof Formula (4.4) follows directly from [15, Corollary 5.1]. To prove (4.5) we
first note that

∣
∣Ia,b(x)

∣
∣

≤
m+1∑

j=2

|E(ρj )|
∫ ∞

x

e−Re(ρj )(y−x)

(
λ2F 2(y + a) + ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy,

which due to (4.1) is equivalent to

∣
∣Ia,b(x)

∣
∣ ≤

m+1∑

j=2

|E(ρj )|B
[
x; Re(ρj ), a

]
. (4.7)

Let ε > 0 be given. From Lemma 2 b) there exists u0 > 0 such that∑m+1
j=2 |E(ρj )|B

[
u; Re(ρj ), a

]
< εψ(u) for all u > u0. It follows from (4.7)

that
∣
∣∣∣
∣

∫ u

0 Ia,b(u − y)�(dy)

ψ(u)

∣
∣∣∣
∣
<

ε
∫ u−u0

0 (1 − �(u − y))�(dy)

ψ(u)
+
∫ u

u−u0
|Ia,b(u − y)|�(dy)

ψ(u)

≤
ε

u∫

0
(1 − �(u − y))�(dy)

ψ(u)
+

u∫

u−u0

|Ia,b(u − y)|�(dy)

ψ(u)

≤
m+1∑

j=2

|E(ρj )|
(

λ2μ2 + ηα

�(2 − α)
a1−α

)
:= c0,

where in the last equality we used Lemma 2 a). Hence

∣
∣
∣∣
∣

∫ u

0 Ia,b(u − y)�(dy)

ψ(u)

∣
∣
∣∣
∣
<

ε (�(u) − � ∗ �(u))

ψ(u)
+ c0

�(u) − �(u − u0)

ψ(u)

= ε (1 − � ∗ �(u)) − ψ(u))

ψ(u)
+ c0

ψ(u − u0) − ψ(u)

ψ(u)
.

The estimate in (4.5) follows from the last inequality and the fact that � ∈ S. Since
Ia,b is, by its definition, nonincreasing in a and b, it follows that

∫ u

0
Ia,b(u − y)�(dy) ≤

∫ u

0
Iξ,η(u − y)�(dy), (4.8)

for all a ≥ ξ and b ≥ η.



Asymptotic Results for the Severity and Surplus Before Ruin for a Class. . . 125

Since lim
u→∞ ψ(u) = 0, using (4.5) we obtain that limu→∞

∫ u

0 Ia,b(u −
y)�(dy) = 0. Hence the result follows from (4.8) by making u → ∞.

We now obtain the main results of this section.

Theorem 2 Let F2 belong to any of the three cases given in (3.16). Then, for fixed
a > 0, the joint tail of the severity of ruin and the surplus prior to ruin, ϒa,b,
admits the following asymptotic expressions as u → ∞ in such a way that � =
max{u, b} → ∞ :
a) in case 1, ϒa,b(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
(a + �)1−α,

b) in case 2, ϒa,b(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a + �)1−α,

c) in case 3, ϒa,b(u) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a + �).

Proof From (4.4) and [15, Corollary 5.5] it follows that

ϒa,b(u) = 1

c + λ1μ1 − λ2μ2

×
∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz �(dy)

+

∏N
i=1 q

mi
i∏m+1

j=2 ρj

c + λ1μ1 − λ2μ2

∫ u

0
Ia,b(u − y) �(dy). (4.9)

In view of (4.5) we need only to study the asymptotic behavior of

ϒ∗(u, a, b) := 1

c + λ1μ1 − λ2μ2

×
∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz �(dy)

as u → ∞ in such a way that � = max{u, b} → ∞. First we suppose that � = u

and define

ϒ0(u, a)

:= 1

c + λ1μ1 − λ2μ2

∫ u

0

[
λ2μ2F 2,I (a + u − y) + ηα

�(2 − α)
(a + u − y)1−α

]
�(dy).

(4.10)
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Therefore

ϒ∗(u, a, b)

≤ 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞
u−y

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
dz �(dy)

= ϒ0(u, a) (4.11)

and

ϒ∗(u, a, b)

≥ 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞
u

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
dz �(dy)

=
λ2μ2F 2,I (a + u) + ηα

�(2−α)
(a + u)1−α

c + λ1μ1 − λ2μ2
�(u). (4.12)

The above inequality and Corollary 1 imply that

lim inf
u→∞

ϒ∗(u, a, b)

ψ(u + a)
≥ 1 (4.13)

because lim
u→∞ �(u) = 1. To finish the proof it suffices to show that

lim
u→∞

ϒ0(u, a)

ψ(u + a)
= 1 (4.14)

for any of the claim size distributions in (3.16). Indeed, the asymptotics in the three
cases follow from (4.14) together with (4.11), (4.13), (4.9) and (4.5).

We note that

ϒ0(u, a) = 1

c + λ1μ1 − λ2μ2

×
[

λ2μ2F 2,I (a)

∫ u

0

(
1 − Fa,I (u − y)

)
�(dy) + a1−αηα

�(2 − α)

∫ u

0

(
1 − Pa,α(u − y)

)
�(dy)

]

,
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where we define for a > 0 the functions Fa,I (u) = 1− F 2,I (u + a)

F 2,I (a)
and Pa,α(u) =

1 −
(

au

a + u

)α−1

u1−α, u ≥ 0. Hence,

ϒ0(u, a) = 1

c + λ1μ1 − λ2μ2

×
[

λ2μ2F 2,I (a)
(
�(u) − Fa,I ∗ �(u)

)+ a1−αηα

�(2 − α)

(
�(u) − Pa,α ∗ �(u)

)
]

= 1

c + λ1μ1 − λ2μ2

(
λ2μ2F 2,I (a)

[
�(u) − 1 + 1 − Fa,I ∗ �(u)

]

+ a1−αηα

�(2 − α)

[
�(u) − 1 + 1 − Pa,α ∗ �(u)

]
)

= 1

c + λ1μ1 − λ2μ2

× (
λ2μ2F 2,I (a)

[
1 − Fa,I ∗ �(u) − �(u)

]

+ a1−αηα

�(2 − α)

[
1 − Pa,α ∗ �(u) − �(u)

]
)

. (4.15)

Case 1. Due to Theorem 1 a) we have � ∈ S and ψ(u) ∼
ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
u1−α, hence Lemma 1 c) and the assumption

F 2,I (u) = o(u1−α) as u → ∞, imply

1 − Fa,I ∗ �(u) ∼ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
u1−α.

This shows that

λ2μ2F 2,I (a)

c + λ1μ1 − λ2μ2

[
1 − Fa,I ∗ �(u) − ψ(u)

] = o(u1−α) as u → ∞.

(4.16)

From Lemma 1 b), as u → ∞,

1−Pa,α ∗�(u) ∼
[(

au

a + u

)α−1

+ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)

]

u1−α,
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which due to (3.17) implies

1 − Pa,α ∗ �(u) − ψ(u) ∼
(

a

a + u

)α−1

. (4.17)

Using the expression for ϒ0(u, a) given in (4.15), together with (4.16)

and (4.17) we obtain ϒ0(u, a) ∼ 1

c + λ1μ1 − λ2μ2

[
λ2μ2F 2,I (a + �) +

ηα

�(2−α)
(a + �)1−α

]
, and (4.14) follows.

Case 2. Since by assumption F 2(u) ∼ κu1−α, L’Hospital’s rule gives F 2,I (u) ∼
κ

μ2(α−1)
u1−α. Hence Fa,I (u) ∼ κ

μ2(α−1)F2,I (a)
u1−α . From (3.18) we

have �(u) ∼ Cu1−α, where the constant C is given by C =
1

c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2κ

α−1

]
. Using this and Lemma 1 b) gives 1 − Fa,I ∗

�(u) ∼
[
C + κ

μ2(α−1)

]
u1−α . It follows that

1 − Fa,I ∗ �(u) − ψ(u) ∼ κ

μ2(α − 1)
u1−α ∼ κ

μ2(α − 1)
(a + u)1−α.

(4.18)

From Lemma 1 b) and (3.18),

1 − Pa,α ∗ �(u)

∼
[(

au

a + u

)α−1

+ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
+ λ2κ

c + λ1μ1 − λ2μ2

]

u1−α.

This together with (3.18) yields

1 − Pa,α ∗ �(u) − ψ(u) ∼
(

a

a + u

)α−1

. (4.19)

Now using (4.18) and (4.19), we obtain

ϒ0(u, a) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a + u)1−α.

Case 3. Using the assumption u−α = o
(
F 2(u)

)
and L’Hospital’s rule we

get u1−α = o
(
F 2,I (u)

)
. Since Pa,α(u) =

(
au

a+u

)α−1
u1−α and

lim
u→∞

(
auy

a+uy

)α−1

(
au

a+u

)α−1 = 1 for all y > 0, we have Pa,α(u) ∼ u1−α. Hence

P a,α(u) = o
(
F 2,I (u)

)
, and from Corollary 1 and (3.19) we obtain

1 − Pa,α ∗ �(u) ∼ λ2μ2
c+λ1μ1−λ2μ2

F 2,I (u). Using (3.19) again we conclude
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that 1 − Pa,α ∗ �(u) − ψ(u) = o(F 2,I (u)). Due to Lemma 1 b),

1 − Fa,I ∗ �(u) ∼
(

1

F 2,I (a)
+ λ2μ2

c + λ1μ1 − λ2μ2

)
F 2,I (a + u),

which implies 1 − Fa,I ∗ �(u) − ψ(u) ∼ F 2,I (u+a)

F 2,I (a)
. In this way we

obtain (4.14).

In the case of � = b we have

ϒ∗(u, a, b)

= 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z) + ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz �(dy)

= 1

c + λ1μ1 − λ2μ2

∫ u

0

[
λ2μ2F 2,I (a + b) + ηα

�(2 − α)
(a + b)1−α

]
�(dy)

= λ2μ2F 2,I (a + b) + ηα

�(2−α)
(a + b)1−α

c + λ1μ1 − λ2μ2
�(u).

The asymptotics for ϒa,b follow by dividing ϒa,b(u) by
λ2μ2F 2,I (a + b) + ηα

�(2−α)
(a + b)1−α

c + λ1μ1 − λ2μ2
, letting afterward u → ∞, and proceeding

as in the cases 1, 2 and 3 above with u replaced by b.

Corollary 2 For any of the cases in (3.16), the joint tail ϒa,b has the asymptotic
expression when u → ∞ and � = max{u, b} → ∞ :

ϒa,b(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
(a + �)1−α + λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a + �).

In particular, if F 2(u) ∼ L1(u)u−α for some slowly varying function L1, and F 2
satisfies any of the cases in (3.16), it follows

ϒa,b(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2

α − 1
L1(a + �)

]
(a + �)1−α.

We have the following sharper result, which shows that the asymptotics of ϒa,b

given in Theorem 2, hold uniformly on the parameters a and b.

Theorem 3 Let F2 belong to any of the three cases given in (3.16). The following
limits hold, when u → ∞, uniformly on the sets Aξ,η = {a ≥ ξ, b ≥ η}, for fixed
ξ, η > 0.
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1. In case 1:

lim
u→∞

∣
∣
∣∣ϒa,b(u) − ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
(a + u)1−α

∣
∣
∣∣ = 0.

2. In case 2:

lim
u→∞

∣
∣
∣
∣ϒa,b(u) − 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a + u)1−α

∣
∣
∣
∣ = 0.

3. In case 3:

lim
u→∞

∣
∣∣
∣ϒa,b(u) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a + u)

∣
∣∣
∣ = 0.

Proof By (4.9) and (4.6), we only need to study the uniform convergence

of ϒ∗(u, a, b) = 1

c + λ1μ1 − λ2μ2

u∫

0

∞∫
u−y

[
λ2F 2(a + z) + ηα(α−1)

�(2−α)
(a + z)−α

]

1{z>b}dz�(dy) on the sets Aξ,η.
Using (4.12) we obtain

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≥ ηα(a + u)1−α (�(u) − 1)

(c + λ1μ1 − λ2μ2)�(2 − α)

+λ2μ2F 2,I (a + u)�(u)

c + λ1μ1 − λ2μ2

≥ ηα(a + u)1−α (�(u) − 1)

(c + λ1μ1 − λ2μ2)�(2 − α)
.

Since (a + u)1−α (�(u) − 1) is nonincreasing as a function of a, we have

(a + u)1−α (�(u) − 1) ≤ (ξ + u)1−α (�(u) − 1) ,

and since lim
u→∞(ξ + u)1−α (�(u) − 1) = 0, the convergence

lim
u→∞(a + u)1−α (�(u) − 1) = 0 (4.20)

is uniform on {a ≥ ξ}. Hence for all ε > 0 and ξ > 0 there exists A > 0 such that
for u ≥ A we have

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≥ −ε. (4.21)
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We will use that, by the definition (4.10) and the equivalent formula (4.15),

F 2,I (a)
(
1 − Fa,I ∗ �(u) − ψ(u)

) =
∫ u

0
F 2,I (a + u − y)�(dy)

and

a1−α
(
1 − Pa,α ∗ �(u) − ψ(u)

) =
∫ u

0
(a + u − y)1−α�(dy),

hence

F 2,I (a)
(
1 − Fa,I ∗ �(u) − ψ(u)

)
and

a1−α
(
1 − Pa,α ∗ �(u) − ψ(u)

)
are nonincreasing in a. (4.22)

Case 1: We have, by (4.12):

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≤ ϒ0(a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
.

Hence, from the definition of ϒ0(a, b) in (4.10) and the equality (4.15) we obtain:

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)

≤ 1

c + λ1μ1 − λ2μ2

[
λ2μ2F 2,I (a)

(
1 − Fa,I ∗ �(u) − ψ(u)

)

+ ηαa1−α

�(2 − α)

(

1 − Pa,α ∗ �(u) − ψ(u) −
(

a + u

a

)1−α
)]

. (4.23)

We know from (4.22) that 1 − Pa,α ∗ �(u) − ψ(u) nonincreasing in a. Since
(

a+u
a

)1−α =
(

1
1+u/a

)α−1
and 1+u/a is decreasing in a, it follows that − (

a+u
a

)1−α

is decreasing in a. Hence 1 − Pa,α ∗ �(u) − ψ(u) − (
a+u
a

)1−α is decreasing in a.
From this and (4.17) we obtain, similarly as in (4.20), that

lim
u→∞

a1−αηα

�(2 − α)

∣
∣
∣
∣
∣
1 − Pa,α ∗ �(u) − ψ(u) −

(
a + u

a

)1−α
∣
∣
∣
∣
∣
= 0, (4.24)

uniformly on {a ≥ ξ}.
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For the remaining term in (4.23), from (4.16) and (4.22) we obtain using the same
argument

lim
u→∞ λ2μ2F 2,I (a)

∣
∣1 − Fa,I ∗ �(u) − ψ(u)

∣
∣ = 0, (4.25)

uniformly on {a ≥ ξ}. Due to (4.23), (4.24) and (4.25) it follows that, for all ε >

0, ξ > 0 and η > 0 there exists A > 0 such that for all u > A and a > ξ, b > η we
have

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≤ ε. (4.26)

Hence, the result follows from (4.21) and (4.26).
Case 2: Similarly as in the previous case, we obtain from (4.22) and (4.19)

lim
u→∞

∣
∣∣
∣
∣

a1−αηα

�(2 − α)

(

1 − Pa,α ∗ �(u) − ψ(u) −
(

a + u

a

)1−α
)∣∣∣
∣
∣
= 0, (4.27)

uniformly in {a ≥ ξ}. It also follows from (4.18) that

lim
u→∞

∣
∣F 2(a)

(
1 − Fa,I ∗ �(u) − ψ(u)

)∣∣ = 0, (4.28)

uniformly in {a ≥ ξ}. Hence, for all ε, ξ, η > 0 there exists an A > 0 such that for
all u > A and a > ξ, b > η we have

ϒ∗(u, a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≤ ε. (4.29)

The result follows now from (4.21) and (4.29).
Case 3: By (4.12) it holds

ϒ∗(u, a, b) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u + a)

≥ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u + a) (�(u) − 1)

+ ηα

�(2 − α)
(a + u)1−α�(u).

As in the above cases we obtain that, for all ε, ξ, η > 0 there exists an A > 0 such
that for all u > A and a > ξ, b > η we have

ϒ∗(u, a, b) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u + a) ≥ −ε. (4.30)
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On the other hand,

ϒ∗(u, a, b) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u + a) ≤ ϒ0(u, a) − λ2μ2

c + λ1μ1 − λ2μ2
F 2(a + u)

= 1

c + λ1μ1 − λ2μ2

{
λ2μ2

[
F 2,I (a)

(
1 − Fa,I ∗ �(u) − ψ(u)

) − F 2,I (a + u)
]

+ a1−αηα

�(2 − α)

(
1 − Pa,α ∗ �(u) − ψ(u)

) }
. (4.31)

Since in this case we have lim
u→∞(1 − Pa,α ∗ �(u) − ψ(u)) = 0, using that 1 −

Pa,α ∗ �(u) is decreasing in a, it follows that

lim
u→∞

∣
∣
∣∣

a1−αηα

�(2 − α)

(
1 − Pa,α ∗ �(u) − ψ(u)

)
∣
∣
∣∣ = 0, (4.32)

uniformly on {a ≥ ξ}, for any ξ > 0. For the remaining term in (4.31), there holds

F 2,I (a)
(
1 − Fa,I ∗ �(u) − ψ(u)

)

= F 2,I (a)
[
�(u) − Fa,I ∗ �(u)

] = F 2,I (a)

∫ u

0

(
1 − Fa,I (u − y)

)
�(dy)

= F 2,I (a)

∫ u

0
Fa,I (u − y)�(dy) = F 2,I (a)

∫ u

0

F 2,I (a + u − y)

F 2,I (a)
�(dy)

= (F 2,I (a + ·) ∗ �)(u). (4.33)

Hence lim
u→∞

(
F 2,I (a + ·) ∗ �

)
(u) = 0 uniformly on {a ≥ ξ} for ξ > 0. Since

F 2,I (a)
∣
∣1 − Fa,I ∗ �(u) − ψ(u) − F 2,I (a + u)

∣
∣

≤ [
(F 2,I (a + ·) ∗ �)(u) + F 2,I (a)F 2,I (a + u)

]
,

and lim
u→∞

[
(F 2,I (a + ·) ∗ �)(u) + F 2,I (a)F 2,I (a + u)

] = 0 uniformly on {a ≥
ξ} for ξ > 0, we obtain that

lim
u→∞ F 2,I (a)

∣∣1 − Fa,I ∗ �(u) − ψ(u) − F 2,I (a + u)
∣∣ = 0, (4.34)

uniformly on {a ≥ ξ}, ξ > 0. Using (4.31), (4.32) and (4.34) we obtain that, for all
ε, ξ, η > 0 there exists A > 0 such that for all u > A and a > ξ, b > η, it follows

ϒ∗(u, a, b) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u + a) ≤ ε. (4.35)

The result follows now from (4.30) and (4.35).
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