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Abstract In this note, we study a class of stochastic control problems where the
optimal strategies are described by two parameters. These include a subset of
singular control, impulse control, and two-player stochastic games. The parameters
are first chosen by the two continuous/smooth fit conditions, and then the optimality
of the corresponding strategy is shown by verification arguments. Under the setting
driven by a spectrally one-sided Lévy process, these procedures can be efficiently
performed owing to the recent developments of scale functions. In this note, we
illustrate these techniques using several examples where the optimal strategy and
the value function can be concisely expressed via scale functions.
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1 Introduction

In stochastic control, the objective is to optimally control a stochastic process to
minimize or maximize the expected value of a given payoff, which is determined
by the paths of the control and/or controlled processes. In other words, we want
to identify an optimal strategy that attains the minimal or maximal expected
value, which is referred to the (optimal) value function. Essentially, all real-life
phenomena contain uncertainty. Consequently the problem of stochastic control
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arises everywhere. It is well studied in, among other fields, finance (e.g., portfolio
optimization, asset pricing, and risk management), economics (e.g., search, real
options, and games), insurance, inventory management, and queues.

Because stochastic control has a wide range of applications and is studied in a
variety of fields, there are many different possible modeling approaches. A model
can be categorized based on (1) a discrete/continuous time, (2) a discrete/continuous
state, and (3) a finite/infinite horizon.

In this note, we focus on a relatively simple class of stochastic control problems
where analytical solutions can be obtained.We assume the continuous-time, infinite-
horizon case with the state space given by R or its subset. In addition, we assume
randomness to be modeled by a one-dimensional spectrally one-sided Lévy process,
or a Lévy process with only one-sided jumps that does not have a monotone path
almost surely (a.s.). As the title of this note suggests, we are particularly interested
in cases where two parameters are sufficient to describe the optimal strategy. While
one-parameter optimal strategies are ubiquitous, to the best of our knowledge the
study of two-parameter strategies is rather rare.

1.1 One-Parameter Strategies

In most stochastic control problems that admit analytical solutions, an optimal
strategy can typically be described by one parameter.

In the continuous-time, infinite-horizon optimal stopping driven by a one-
dimensional Markov process, the stopping and waiting regions are separated by
free boundaries, and, in many cases, the boundary is a single point. In the
American/Russian perpetual (vanilla) options driven by a Lévy process, it is known,
as in [3] and [37], that it is optimal to exercise when the process itself or its
reflected process goes above or below a certain barrier for the first time. In the
quickest detection of a Wiener process [45] where we want to promptly detect the
unobservable sudden change of the drift of the process, it is optimal to stop when
the posterior probability process exceeds some level for the first time. There are a
number of other examples for which the first crossing time of a boundary is optimal.
See [17, 31, 33] and also the book by Peskir and Shiryaev [41].

In singular control, again, the controlling and waiting regions are typically
separated by a single point. Well-studied examples include de Finetti’s dividend
problem, in which we want to maximize the total expected dividends accumulated
until ruin [or the first time the (controlled) surplus process goes below zero]. A
majority of the existing literature focuses on the optimality of the barrier strategy
that pays dividends so that the surplus process is reflected at the barrier. In the
spectrally negative Lévy model, it has been shown by Loeffen [34] that a barrier
strategy is optimal on the condition that the Lévy measure has a completely mono-
tone density. On the other hand, for the spectrally positive Lévy case, optimality is
guaranteed as shown in [8]. Recently, these results have been extended to cases in
which a strategy is assumed to be absolutely continuouswith respect to the Lebesgue
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measure: the optimal strategy can again be described by a single threshold, and the
so-called refraction strategy is optimal; see [32] and [50].

In the continuous-time inventory model (with the assumption that backorders
are allowed), one wants to find an optimal replenishment strategy that minimizes
the sum of the inventory and controlling costs. In the spectrally negative Lévy
case, under e.g. the convexity assumption regarding the inventory cost and with
the absence of a fixed cost, it has been shown to be optimal to replenish the item so
that the inventory does not drop below a certain level (see Section 7 of [49]). The
absolutely continuous case has been studied by Hernández-Hernández et al. [27], in
which they showed the optimality of a refraction strategy.

1.2 Two-Parameter Strategies

In view of the above examples of one-parameter strategies, it is not difficult to see
that by a simple modification to the problem setting, more parameters are needed to
describe the optimal strategy. Here, we list several examples where one additional
parameter is also needed.

1.2.1 Two-Sided Singular Control

In the above examples of singular control, we assumed control to be one-sided: we
can only decrease or increase the underlying process. However, there are versions
in which it is two-sided and we can both decrease and increase the process.

In the extension of de Finetti’s problem with capital injections, the surplus
process can also be increased by injecting capital. Typically, the problem requires
that capital be injected so that the surplus process never goes below zero. In
inventory control, we can think of a version in which the item can be replenished
and also sold so as to avoid a shortage or excess of an inventory, respectively.

1.2.2 Impulse Control

We can consider another extension from singular control by adding a fixed cost.
Namely, in addition to the cost (or reward) that is proportional to the amount of
modification, a fixed cost is incurred each time it is modified. In this case, it is clear
that one parameter is no longer sufficient to describe the optimal strategy. Instead,
we can expect that the (s, S)-strategy (more commonly called the (s, S)-policy) is a
reasonable candidate. In other words, given two threshold levels s and S, whenever
the process goes above (or below) s, it is pushed down (or up) to S. The optimality
of an (s, S)-strategy is often a primary objective in the impulse control literature.
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1.2.3 Zero-Sum Games Between Two Players

In a (stochastic) game, multiple players aim to maximize their own expected
payoffs. However, the payoff depends not only on the actions of one player but also
on those of the others. The primary objective of game theory is to identify, if any,
a Nash equilibrium (saddle point), which is a set of strategies such that no player
can increase her expected payoff by solely changing her strategy, unless the other
players also change their strategies.

Consider a case with two players in which a common payoff is maximized by one
player and is minimized by the other. Under settings similar to those described in
Sect. 1.1 above, each player’s strategy is described by one parameter. Consequently,
the equilibrium is described by two parameters.

1.3 Fluctuation Theory of Spectrally One-Sided Lévy Processes

In this note, we assume throughout that the underlying (uncontrolled) process is a
spectrally negative Lévy process. The spectrally positive Lévy process is its dual
and hence the case driven by this process is also covered. While spectrally one-
sided Lévy processes are not necessarily desirable for realistic models, at least
analytically, it has a great advantage to work with these sets of processes.

Over the last decade, significant developments in the fluctuation theory of
spectrally one-sided Lévy processes have been presented (see, e.g., the textbooks
by Bertoin [13], Doney [16], and Kyprianou [30]). Various fluctuation identities are
known to be written using the so-called scale functions, and these include essentially
all the expectations needed to compute the net present values (NPVs) of the payoffs
under the one- and two-parameter strategies described above.

The scale function is defined by its Laplace transform written in terms of the
Laplace exponent of the process. We see in this note that, despite its concise
characterization, it still contains sufficient information to solve the problem.

1.4 Solution Procedures

Using the expected NPVs of payoffs under each two-parameter strategy, written
explicitly in terms of the scale function, the classical “guess and verify” approach
can be performed in a straightforward manner. Here, we briefly illustrate each step
below.
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1.4.1 Selection of the Two Parameters

As the form of the candidate strategy is already conjectured, the guessing part
essentially is to decide on the values of the two parameters. Because we need to
identify two values, naturally, we need two equations.

Before discussing the two-parameter case, we start with the one-parameter case
to gain some intuition. As reviewed above in Sect. 1.1, the parameter usually
corresponds to the value of a barrier. Here, we temporarily use ua(x) for the
expected NPV when the parameter/barrier is a and the starting value of the process
is x.

In this case, the most intuitive and straightforward approach is to use the first-
order condition. Namely, we first obtain the parameter, say a∗, that minimizes or
maximizes a �→ ua(x). Naturally, we expect (given that the barrier is in the interior
of the state space) the derivative ∂ua(x)/∂a|a=a∗ to vanish. This can be easily
accomplished because ua(x) is written using the scale function, whose smoothness
has been well studied (see Remark 2.1 below).

Alternatively, we can apply what is known as continuous/smooth fit, which
basically chooses the barrier a∗ so that the degree of smoothness of ua(·) at a

increases by one by setting a = a∗. The smoothness at the barrier is in general
dependent on the regularity (see Sect. 2.1 below for its definition). In optimal
stopping and impulse control, we expect the value function to be continuous (resp.
continuously differentiable) at the barrier when it is irregular (resp. regular) for the
controlling/stopping region. On the other hand, for singular control, we expect it to
be continuously differentiable (resp. twice continuously differentiable) at the barrier
when it is irregular (resp. regular).

At least for the Lévy case, these two methods tend to lead to the same condition,
i.e., some function, say a �→ g(a), of the barrier level a (and not x) vanishes; see
Fig. 1. In addition, under a suitable assumption, it is typically a strictly monotone
function. Hence, the candidate barrier can be defined as its unique root. Detailed
discussion of the equivalence of these two methods for optimal stopping problems
is presented in [18].

We now discuss the two-parameter case. Let us temporarily use va,b(x) for the
expected NPV under the strategy parametrized by (a, b) when the starting value of
the process is x.

Again, the first approach is to use the first-order condition. This time, we apply
it with respect to the two parameters (a, b), or equivalently, we compute the partial
derivatives ∂va,b(x)/∂a and ∂va,b(x)/∂b and choose parameters so that both vanish
simultaneously. The second approach is to use continuous/smooth fit at the barriers
(with an additional condition for the case of impulse control). Again, we end up
having the same two equations, e.g., �(a, b) = 0 and λ(a, b) = 0.

The difficulty here is that this time we need to show the existence of solutions
to the two equations, which are typically nonlinear functions. However, the two
equations tend to be related in that one is the partial derivative of the other, i.e.,
λ(a, b) = ∂�(a, b)/∂b. In other words, we want to obtain the curve b �→ �(a∗, b)

that touches and becomes tangent to the x-axis at b∗ (see Fig. 2).
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Fig. 1 (One-parameter case) Typical function a �→ g(a) obtained when the first-order or
continuous/smooth fit condition is applied. The desired parameter becomes its unique root

Fig. 2 (Two-parameter case) Typical function obtained when the first-order or continuous/smooth
fit condition is applied. The plot is the curve b �→ �(a, b) on [a,∞) for different values of a.
Typically the desired values (a∗, b∗) become those for which λ(a∗, b∗) = ∂�(a∗, b)/∂b|b=b∗ = 0.
In other words, we must determine the starting point a∗ such that the curve becomes tangent to the
x-axis at b∗, as in the solid curve in the plot
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1.4.2 Verification of Optimality

After we select the values of the two parameters, say (a∗, b∗), we must verify the
optimality of the corresponding strategy. The so-called verification lemma gives a
sufficient condition for optimality that commonly requires:

(1) the smoothness of va∗,b∗ ,
(2) that va∗,b∗ solves the variational inequalities.

The imposed conditionsmust be sufficient so that the discounted process of va∗,b∗(·)
(killed upon exiting the state space), driven by any controlled process, is a local
sub/super-martingale. In general, the forms of the variational inequalities are well
known (see e.g. [39]). However, its technical details must be customized, and, in
particular, we need to take care of the tails of va∗,b∗ and the Lévy measure. Because
of the localizing arguments needed to apply Itô’s formula, at the end, we must take
a limit and interchange it over integrals.

Regarding condition (1), we choose the values of (a∗, b∗) at the guessing step so
that va∗,b∗ is “sufficiently smooth,” although the smoothness at the boundary may
not be sufficient to apply the usual version of Itô’s formula (so we may need the
Meyer-Itô version). For stochastic calculus for Lévy processes, see [44] and [1].

Showing (2) is usually the hardest part and sometimes it fails. The variational
inequalities must hold at each point in the state space, which is separated into the
waiting and controlling regions. In our examples when the state space is R, except
for the impulse control case, the waiting region is given by (a∗, b∗), whereas the
controlling region is (−∞, a∗) ∪ (b∗,∞). At a point in the waiting region (a∗, b∗),
the proof is normally simple because the discounted process of va∗,b∗(·) driven by
the underlying process is a martingale (see Sect. 2.7.3). On the other hand, the proof
for the point in (b∗,∞) (resp. (−∞, a∗)) tends to be difficult for the spectrally
negative (resp. positive) Lévy case. Intuitively, this is because the process can jump
from one region to the other, where the form of va∗,b∗ changes.

1.5 Comparison with Other Approaches

The classical approach to the stochastic control of Lévy processes involves integro-
differential equations (IDEs).

First, we identify the candidate value function as the solution to an IDE with
its boundary conditions given by the desired continuity/smoothness at the barriers.
Except for special cases, this cannot be solved analytically, and hence verification
arguments must be made using this implicit representation of the candidate value
function. This is especially difficult when the Lévy measure is infinite.

A clear advantage of using the fluctuation theory approach described above is
that, if the function va∗,b∗ can be computed using the scale function, computation
is much more direct and simple. While the scale function in general does not admit
analytically closed expression, solution methods do not require details of its form.



58 K. Yamazaki

Typically, the selection of parameters can be performed by its asymptotic property at
zero (see Sect. 2.3 below) and, for verification, we can use some general properties
of the scale function.

Another advantage is that it can deal with cases with jumps of infinite activ-
ity/variation without any additional work. The IDE approach must often assume
that the jump part of the underlying process is a compound Poisson process.
However, there are a number of important examples with infinite Lévy measures,
such as variance gamma, CGMY, and normal inverse Gaussian processes, as well as
classical ones, such as the gamma process and a subset of stable processes.

1.6 Computation

Using these approaches, the value function and the selected parameters are written in
terms of the scale function. Hence, their computation is essentially equivalent to that
of the scale function. Because the scale function is defined by its Laplace transform
written in terms of the Laplace exponent, it must be inverted either analytically or
numerically.

Some classes of Lévy processes have rational forms of Laplace exponents. For
these processes, analytical forms of scale functions can be easily obtained by
partial fraction decomposition. Among them, the case with i.i.d. phase-type jumps
[2] is particularly important, because at least in principle it can approximate any
Lévy process. This means that any scale function can be approximated by the
scale function of this process. Egami and Yamazaki [19] conducted a sequence of
numerical experiments to confirm the accuracy of this approximation.

Alternatively, the scale function can always be directly computed via numerical
Laplace inversion. As discussed in [29], the scale function can be written as the
difference between an exponential function (whose parameter is defined by �(q) in
the current note) and the resolvent (potential) term (see the third equation in (2.8)
below). Hence, the computation is reduced to that of the resolvent term. This is
a bounded function that asymptotically converges to zero, and hence, numerical
Laplace inversion can be quickly and accurately conducted. For more details, we
refer readers to Section 5 of [29].

In this note, we review these techniques, using several examples of two-sided
singular control, impulse control and games, as reviewed in Sect. 1.2 above. Our aim
is not to offer rigorous arguments. Instead, we present a guide on how we can apply
the existing results in the fluctuation theory and scale function to solve stochastic
control problems. For more technical details, we refer readers to the original works
we cite throughout the note.

The rest of this note is organized as follows:
In Sect. 2, we review the spectrally negative Lévy process and the scale function.

In particular, we review the fluctuation identities as well as some important
properties of the scale function that we use later in the note.
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In Sect. 3, we examine two-sided singular control, which we introduced in
Sect. 1.2.1. First, we give the formulation and review several examples. Then,
we discuss how to choose the two parameters via continuous/smooth fit and
demonstrate its optimality via verification arguments. In particular, we focus on
the problems considered in Bayraktar et al. [8] and Baurdoux and Yamazaki [6] and
illustrate how to follow these solution procedures.

In Sect. 4, we consider impulse control, as addressed in Sect. 1.2.2. While the
techniques used are similar to those used for singular control, there are several major
differences and new challenges in the solution. In particular, we use the case in
Yamazaki [49] to illustrate the steps necessary to solve the problem.

In Sect. 5, we discuss two-player optimal stopping games, as introduced in
Sect. 1.2.3, with a special focus on the problem studied by Egami et al. [20]. We
also make some remarks regarding other forms of two-player zero-sum games.

Throughout this study, we use f (x+) := limy↓x f (y) and f (x−) :=
limy↑x f (y) to indicate the right- and left-hand limits, respectively, for any function
f whenever they exist. We let �ξt := ξt − ξt−, for any process with left limits ξ .
Finally, for any interval I ⊂ R, let I := supI, I := inf I, and Io be the interior
of I.

2 Spectrally Negative Lévy Processes and Scale Functions

In this section, we review the spectrally negative Lévy process and its fluctuation
theory. We shall also review the scale function and list the fluctuation identities as
well as some important properties that are frequently used in stochastic control.
Note that the spectrally positive Lévy process is its dual, and the results introduced
here can be directly applied as well.

Defined on a probability space (�,F ,P), let X be a spectrally negative Lévy
process with its Laplace exponent X given by

ψ(s) := logE
[
esX1

]
= γ s + 1

2
σ 2s2 +

∫

(−∞,0)
(esz − 1 − sz1{z>−1})ν(dz), s ≥ 0,

(2.1)

where ν is a Lévy measure with the support (−∞, 0) that satisfies the integrability
condition

∫
(−∞,0)(1 ∧ |z|2)ν(dz) < ∞. For every x ∈ R, let Px be the conditional

probability under which X0 = x (in particular, we let P ≡ P0), and Ex and E be the
corresponding expectation operators. Let F be the filtration generated by X.

The path variation of the process is particularly important in stochastic control,
especially when we apply continuous/smooth fit as we shall see in later sections.
For the case of a Lévy process, it has paths of bounded variation a.s. or otherwise
it has paths of unbounded variation a.s. The former holds if and only if σ = 0 and
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∫
(−1,0) |z| ν(dz) < ∞; in this case, the expression (2.1) can be simplified to

ψ(s) = δs +
∫

(−∞,0)
(esz − 1)ν(dz), s ≥ 0,

with δ := γ − ∫
(−1,0) z ν(dz).

Throughout the note, we exclude the case in which X is the negative of a
subordinator (i.e.,X is monotonically decreasing a.s.). This assumption implies that
δ > 0 when X is of bounded variation.

2.1 Path Variations and Regularity

As defined in Definition 6.4 of [30], we call a point x regular for an open or closed
set B if Px{TB = 0} = 1 where

TB := inf{t > 0 : Xt ∈ B},

and irregular if Px{TB = 0} = 0; here and throughout the note, let inf∅ = ∞. By
Blumenthal’s zero-one law, the probability Px{TB = 0} is either 0 or 1, and hence
any point is either regular or irregular.

As summarized in Section 8 of [30], for any spectrally negative Lévy process X,
the point 0 is regular for (0,∞), meaning that, if the process starts at 0, it enters
(0,∞) immediately. On the other hand, 0 is regular for (−∞, 0) if and only if the
process has paths of unbounded variation.

We shall see in later sections that the smoothness of the value function at (free)
boundaries depends on their regularity.

2.2 Scale Functions

Fix q ≥ 0. For any spectrally negative Lévy process X, its q-scale function

W(q) : R → [0,∞)

is a function that is zero on (−∞, 0), continuous and strictly increasing on [0,∞),
and is characterized by the Laplace transform:

∫ ∞

0
e−sxW(q)(x)dx = 1

ψ(s) − q
, s > �(q), (2.2)
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where

�(q) := sup{λ ≥ 0 : ψ(λ) = q}.

Here, the Laplace exponent ψ in (2.1) is known to be zero at the origin and convex
on [0,∞). We also define, for x ∈ R,

W
(q)

(x) :=
∫ x

0
W(q)(y)dy,

Z(q)(x) := 1 + qW
(q)

(x),

Z
(q)

(x) :=
∫ x

0
Z(q)(z)dz = x + q

∫ x

0

∫ z

0
W(q)(w)dwdz.

Because W(q)(x) = 0 for −∞ < x < 0, we have

W
(q)

(x) = 0, Z(q)(x) = 1 and Z
(q)

(x) = x, x ≤ 0. (2.3)

We shall also define, when ψ ′(0+) > −∞,

R(q)(x) := Z
(q)

(x) + ψ ′(0+)

q
, x ∈ R.

In Fig. 3, we show sample plots of the scale function W(q) on [0,∞) for the
cases of bounded and unbounded variation. Its behaviors as x ↓ 0 and x ↑ ∞ are
reviewed later in this section.

2.3 Smoothness of Scale Functions

A particularly important property of the scale function, which is helpful in applying
continuous/smooth fit, is its behaviors around zero: as in Lemmas 3.1 and 3.2
of [29],

W(q)(0) =
{
0, if X is of unbounded variation,
1
δ
, if X is of bounded variation,

(2.4)

W(q)′(0+) := lim
x↓0 W(q)′(x) =

⎧
⎪⎨
⎪⎩

2
σ 2 , if σ > 0,
∞, if σ = 0 and ν(−∞, 0) = ∞,
q+ν(−∞,0)

δ2
, if σ = 0 and ν(−∞, 0) < ∞.

(2.5)

Note that these can be confirmed in Fig. 3.
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Fig. 3 Plots of the scale function W(q) on [0,∞). The solid red curve is for the case of bounded
variation; the dotted blue curve is for the case of unbounded variation (with σ > 0). As reviewed
in (2.4), its behaviors around zero depend on the path variation of the process. In addition, as
in (2.13), it increases exponentially as x → ∞

As we shall see in later sections, when considering continuity/smoothness at
the lower barrier, the difference between the right-hand and left-hand limits often
becomes the product of W(q)(0) and some function, say �(a, b), of the two
parameters (barriers) (a, b) to be selected: for these to match, the parameters (a, b)

must be chosen so that �(a, b) vanishes if W(a)(0) > 0.
When W(q)(0) = 0 (or equivalently X is of unbounded variation), then the value

function is expected to be smoother. Repeating the same procedure for its derivative,
one gets that the difference between the right-hand and left-hand limits becomes
the product of W(q)′(0+) and �(a, b); in this case, (a, b) must be chosen so that
�(a, b) = 0.

At the upper boundary, the smoothness tends to be the same for both bounded and
unbounded variation cases: this gives another equation λ(a, b) = 0 where λ(a, b) is
the partial derivative of �(a, b) with respect to b.

Regarding the smoothness of the scale function onR\{0}, we have the following;
see [15] for more comprehensive results. These smoothness results are important in
order to apply Itô’s formula where the (candidate) value function must be C2 (resp.
C1) for the case of unbounded (resp. bounded) variation.
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Remark 2.1 If X is of unbounded variation or the Lévy measure does not have an
atom, then it is known that W(q) is C1(R\{0}). Hence,
(1) Z(q) is C1(R\{0}) and C0(R) for the bounded variation case, while it is

C2(R\{0}) and C1(R) for the unbounded variation case,

(2) Z
(q)

is C2(R\{0}) and C1(R) for the bounded variation case, while it is
C3(R\{0}) and C2(R) for the unbounded variation case.

In addition, if σ > 0, then W(q) is C2(R\{0}).

2.4 Fluctuation Identities for Spectrally Negative Lévy
Processes

Here we shall list some fluctuation identities for the spectrally negative Lévy
process X.

2.4.1 Two-Sided Exit

The most well-known application of the scale function is as follows. Let us define
the first down- and up-crossing times, respectively, of X by

T −
b := inf {t > 0 : Xt < b} and T +

b := inf {t > 0 : Xt > b} , b ∈ R.

(2.6)

Then, for any b > 0 and x ≤ b,

Ex

[
e−qT +

b 1{T +
b <T −

0

}
]

= W(q)(x)

W(q)(b)
,

Ex

[
e−qT −

0 1{T +
b >T −

0

}
]

= Z(q)(x) − Z(q)(b)
W(q)(x)

W(q)(b)
,

Ex

[
e−qT −

0

]
= Z(q)(x) − q

�(q)
W(q)(x).

(2.7)

2.4.2 Resolvent Measures

The scale function can express concisely the q-resolvent (potential) measure. As
summarized in Theorem 8.7 and Corollaries 8.8 and 8.9 of [30] (see also Bertoin
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[14], Emery [22], and Suprun [46]), we have

Ex

[ ∫ T −
0 ∧T +

b

0
e−qt1{Xt∈dy}dt

]
=
[W(q)(x)W(q)(b − y)

W(q)(b)
− W(q)(x − y)

]
dy, b > 0, x ≤ b,

Ex

[ ∫ T −
0

0
e−qt1{Xt∈dy}dt

]
=
[
e−�(q)yW(q)(x) − W(q)(x − y)

]
dy, (2.8)

Ex

[ ∫ ∞

0
e−qt1{Xt∈dy}dt

]
=
[

e�(q)(x−y)

ψ ′(�(q))
− W(q)(x − y)

]
dy.

Now define, for any measurable function h and s ∈ R,

�(s; h) :=
∫ ∞

0
e−�(q)yh(y + s)dy =

∫ ∞

s

e−�(q)(y−s)h(y)dy,

ϕs(x; h) :=
∫ x

s

W(q)(x − y)h(y)dy, x ∈ R.

Here ϕs(x; h) = 0 for any x ≤ s because W(q) is uniformly zero on (−∞, 0). Then
it is clear that

Ex

[ ∫ T −
a ∧T +

b

0
e−qth(Xt )dt

]
= W(q)(x − a)

W(q)(b − a)
ϕa(b; h) − ϕa(x; h), b > a, x ≤ b,

Ex

[ ∫ T −
a

0
e−qth(Xt )dt

]
= �(a; h)W(q)(x − a) − ϕa(x; h), x, a ∈ R,

where we assume for the latter that �(a; h) is well-defined and finite.

2.5 Fluctuation Identities for the Infimum and Reflected
Processes

Let us define the running infimum and supremum processes

Xt := inf
0≤t ′≤t

Xt ′ and Xt := sup
0≤t ′≤t

Xt ′, t ≥ 0.

Then, the processes reflected from above at b and below at a are given, respectively,
by

Ȳ b
t := Xt − Db

t and Ya
t := Xt + Ua

t , t ≥ 0,
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where

Db
t := (Xt − b) ∨ 0 and Ua

t := (a − Xt) ∨ 0, t ≥ 0,

are the cumulative amounts of reflections that push the processes downward and
upward, respectively.

2.5.1 Fluctuation Identities for the Infimum Process

By Corollary 2.2 of [29],

E

[ ∫ ∞

0
e−qt1{−Xt∈dy}dt

]
= 1

�(q)
W(q)(dy) − W(q)(y)dy

= 1

�(q)
[�(q)(y)dy + W(q)(0)δ0(dy)],

where W(q)(dy) is the measure such that W(q)(y) = ∫
[0,y] W

(q)(dz) (see [30,
(8.20)]) and δ0 is the Dirac measure at zero. Here, for all y > 0,

�(q)(y) := W(q)′(y+) − �(q)W(q)(y) > 0. (2.9)

See another probabilistic interpretation of this function in Section 3.3 in [47]. This
function often appears in stochastic control. See in particular Sects. 4 and 5.1.1
below and also [47].

2.5.2 Fluctuation Identities for Ȳ b
t

Fix a < b. Define the first down-crossing time of Ȳ b
t as:

τa,b := inf{t > 0 : Ȳ b
t < a}.

First, the Laplace transform of τa,b is given, as in Proposition 2(ii) of [43], by

Ex [e−qτa,b ] = Z(q)(x − a) − qW(q)(b − a)
W(q)(x − a)

W(q)′((b − a)+)
, x ≤ b.

Second, using its resolvent given in Theorem 1(ii) of [43], we have, for x ≤ b,

Ex

[ ∫ τa,b

0
e−qth(Ȳ b

t )dt
]

= W(q)(x − a)

W(q)′((b − a)+)

[
W(q)(0)h(b) +

∫ b

a

h(y)W(q)′(b − y)dy

]
− ϕa(x; h).
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Finally, as in Proposition 1 of [4], the discounted cumulative amount of reflection
from above is given by

Ex

[ ∫

[0,τ a,b]
e−qtdDb

t

]
= W(q)(x − a)

W(q)′((b − a)+)
, x ≤ b.

2.5.3 Fluctuation Identities for Ya
t

Fix a < b. Define the first up-crossing time of Y a
t as:

τa,b := inf{t > 0 : Y a
t > b}.

First, as in page 228 of [30], its Laplace transform is concisely given by

Ex[e−qτa,b ] = Z(q)(x − a)

Z(q)(b − a)
, x ≤ b.

Second, by Theorem 1(i) of [43], for any x ≤ b,

Ex

[ ∫ τa,b

0
e−qth(Y a

t )dt
]

= Z(q)(x − a)

Z(q)(b − a)
ϕa(b; h) − ϕa(x; h).

Finally, as in the proof of Theorem 1 of [4], the discounted cumulative amount of
reflection from below, given ψ ′(0+) > −∞, is

Ex

[ ∫ τa,b

0
e−qtdUa

t

]
= −R(q)(x − a) + Z(q)(x − a)

R(q)(b − a)

Z(q)(b − a)
, x ≤ b.

2.6 Fluctuation Identities for Doubly Reflected Lévy Processes

Fix a < b. As a variant of the reflected processes addressed above, the doubly
reflected Lévy process is given by

Y
a,b
t := Xt + U

a,b
t − D

a,b
t , t ≥ 0. (2.10)

This process is reflected at the two barriers a and b so as to stay on the interval
[a, b]; see page 165 of [4] for the construction of the processes Ua,b, Da,b, and
Y a,b. To put it simply, Ua,b is activated whenever Y a,b attempts to downcross a so
that Y a,b stays at or above a; similarly, Da,b is activated so that Y a,b stays at or
below b.
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First, as in Theorem 1 of [4], for x ≤ b,

Ex

[∫

[0,∞)

e−qtdDa,b
t

]
= Z(q)(x − a)

qW(q)(b − a)
,

Ex

[∫

[0,∞)

e−qtdUa,b
t

]
= −R(q)(x − a) + Z(q)(b − a)

qW(q)(b − a)
Z(q)(x − a),

(2.11)

where we assume ψ ′(0+) > −∞ for the latter.
Second, using the q-resolvent density of Y a,b given in Theorem 1 of [42], we

have, for x ≤ b,

Ex

[∫

[0,∞)

e−qth(Y
a,b
t )dt

]
=
∫ b

a

h(y)

[
Z(q)(x − a)W(q)′(b − y)

qW(q)(b − a)
− W(q)(x − y)

]
dy

+ h(b)
[
Z(q)(x − a)

W(q)(0)

qW(q)(b − a)

]
. (2.12)

2.7 Other Properties of the Scale Function

Here we list some other properties of the scale function that are often useful in
solving stochastic control problems.

2.7.1 Asymptotics as x → ∞

Suppose q > 0. It is known that the scale function W(q) increases exponentially:
we have

W(q)(x)/e�(q)x x→∞−−−→ ψ ′(�(q))−1. (2.13)

By this, the following limits are also immediate:

lim
x→∞

W(q)′(x+)

W(q)(x)
= �(q), lim

x→∞
Z(q)(x)

W(q)(x)
= q

�(q)
and lim

x→∞
Z

(q)
(x)

W(q)(x)
= q

�2(q)
.

Note also that, for s ∈ R and any measurable function h such that �(s; h) is well-
defined,

lim
x→∞

ϕs(x; h)

W(q)(x − s)
= �(s; h). (2.14)
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2.7.2 Log-Concavity

The scale function W(q) is known to be log-concave: as in (8.18) and Lemma 8.2 of
[30],

W(q)′(y+)

W(q)(y)
≤ W(q)′(x+)

W(q)(x)
, y > x > 0.

In addition, W(q)′(x−) ≥ W(q)′(x+) for all x > 0. These properties are sometimes
needed for the monotonicity of related functions; see Sects. 4.3.2 and 5.2.1 below.

2.7.3 Martingale Properties

Let L be the infinitesimal generator associated with the process X applied to a
sufficiently smooth function h (i.e. C1 [resp. C2] for the case X is of bounded [resp.
unbounded] variation): for x ∈ R,

Lh(x) := γ h′(x) + 1

2
σ 2h′′(x)

+
∫

(−∞,0)

[
h(x + z) − h(x) − h′(x)z1{−1<z<0}

]
ν(dz),

(resp. Lh(x) := δh′(x) +
∫

(−∞,0)
[h(x + z) − h(x)] ν(dz)).

(2.15)

The variational inequalities are written using this generator with h replaced with
the candidate value function. Typically, it makes sense (except at the selected
boundaries), thanks to its smoothness that can be confirmed by that of the scale
function as in Remark 2.1. At the boundaries, for optimal stopping and impulse
control, the function may not be smooth enough and hence (2.15) is not well-
defined, although its right and left limits normally exist and are finite. In such cases,
the Meyer-Itô formula (see, e.g., Theorem 71 of Protter [44]) is used in the proof of
verification lemma.

One useful known fact regarding the generator (2.15) is as follows. By Proposi-
tion 2 of [4] and as in the proof of Theorem 8.10 of [30], the processes

e−q(t∧T −
0 ∧T +

B )Z(q)(Xt∧T −
0 ∧T +

B
) and e−q(t∧T −

0 ∧T +
B )R(q)(Xt∧T −

0 ∧T +
B

), t ≥ 0,

for any B > 0 are martingales, where we assume ψ ′(0+) > −∞ for the latter.

Thanks to the smoothness of Z(q) and Z
(q)

on (0,∞) as in Remark 2.1, we obtain

(L − q)Z(q)(y) = (L − q)R(q)(y) = 0, y > 0. (2.16)
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The same result holds for W(q) and

(L − q)W(q)(y) = 0, y > 0, (2.17)

on condition that it is sufficiently smooth.
Another useful known fact is that, as in the proof of Lemma 4.5 of [17], if h is

continuous,

(L − q)ϕs(x; h) = h(x), x > s. (2.18)

These properties are often sufficient to prove that the candidate value function is
harmonic in the waiting (non-controlling) region.

2.8 Some Further Notations

Before closing this section, we shall define, if they exist, the following threshold
levels.

Definition 2.1 Given a closed interval I ⊂ R and a measurable function h, let
a = a(h) ∈ I be such that h(x) < 0 for x ∈ (−∞, a) ∩ I, and h(x) > 0 for
x ∈ (a,∞) ∩ I, if such a value exists. If h(x) < 0 for all x ∈ I, then we set
a = a(h) = I . If h(x) > 0 for x ∈ I, then we set a = a(h) = I.
Definition 2.2 Given a closed interval I ⊂ R and a measurable function h such
that �(x; h) is well-defined and finite for all x ∈ I, let a = a(h) ∈ I be such
that �(x; h) < 0 for x ∈ (−∞, a) ∩ I, and �(x; h) > 0 for x ∈ (a,∞) ∩ I, if
such a value exists. If �(x; h) < 0 for all x ∈ I, then we set a = a(h) = I . If
�(x; h) > 0 for x ∈ I, then we set a = a(h) = I.

These values for a suitably chosen (often monotone) function h give us particu-
larly important information. Typically, as in the examples shown in later sections,
the values of a and a can act as upper or lower bounds of the two parameters (a∗, b∗)
to be chosen. See, in particular, Sects. 3.3.3, 4.2.1 and 5.1.1 and also Tables 1, 2,
and 3.

In addition, the value a can be understood as the optimal parameter a∗ when the
other parameter is b∗ = ∞. We will also see that the value a is important in the
verification step; see Lemmas 3.1(2), 4.1(2), and 5.2(2).

3 Two-Sided Singular Control

In this section, we consider the singular control problem where one can
increase and also decrease the underlying process. An admissible strategy
π := {

(Uπ
t ,Dπ

t ); t ≥ 0
}
is given by a pair of nondecreasing, right-continuous,
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and F-adapted processes with Uπ
0− = Dπ

0− = 0 such that the controlled process

Yπ
t := Xt + Uπ

t − Dπ
t , t ≥ 0,

stays in some given closed interval I uniformly in time. Let � be the set of all
admissible strategies.

We consider the sum of the running and controlling costs; its expected NPV is
given by

vπ (x) := Ex

[ ∫ ∞

0
e−qtf (Y π

t )dt +
∫

[0,∞)

e−qt
(
CUdUπ

t + CDdDπ
t

) ]
, x ∈ R,

for q > 0, some continuous and piecewise continuously differentiable function f

on I and fixed constants CU,CD ∈ R satisfying

CU + CD > 0. (3.1)

Here, if x < I (resp. x > I), thenUπ
0 = �Uπ

0 = I−x (resp.Dπ
0 = �Dπ

0 = x−I)
so that Yπ

0 ∈ I.
The problem is to compute the value function given by

v(x) := inf
π∈�

vπ (x), x ∈ R,

and the optimal strategy that attains it, if such a strategy exists.
Throughout this and next sections, let us also use the slope-changed version of f

given by

f̃ (x) := f (x) + CUqx, x ∈ R. (3.2)

The roles and significance of this function will be clear shortly. We also assume the
following so that the expected NPV associated with Uπ

t is finite.

Assumption 3.1 We assume EX1 = ψ ′(0+) > −∞.

Example 3.1 In the optimal dividend problem with capital injections driven by
a spectrally negative Lévy process, it is required that the controlled risk process
stay nonnegative uniformly in time (i.e. I = [0,∞)). One wants to maximize the
expected NPV of dividends minus that for capital injections. This is a maximization
problem with Uπ

t and Dπ
t being, respectively, the cumulative amounts of capital

injections and dividends until t ≥ 0. We can formulate this as a minimization
problem as above by setting CD = −1 and CU = β where β > 1 is the unit
cost of capital injection. Here f is assumed to be uniformly zero. This problem has
been solved by Avram et al. [4] for a general spectrally negative Lévy process.
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Example 3.2 In the dual model of Example 3.1, it is assumed that the underlying
process is a spectrally positive Lévy process. By flipping the processes with respect
to the origin, it is easy to see that the problem is equivalent to the above formulation
driven by a spectrally negative Lévy process with I = (−∞, 0], CD = β and CU =
−1. This problem has been solved by Bayraktar et al. [8] for a general spectrally
positive Lévy process.

Example 3.3 A version of continuous-time inventory control considers the case
where inventory can be increased (replenished) and decreased (sold). With the
absence of fixed costs and if backorders are allowed, the problem can be formulated
as above with I = R. Currency rate control (see, e.g., [28, 38]), where a central
bank controls the currency rate so as to prevent it from going too high or too low,
can also be modeled in the same way. The classical Brownianmotion and continuous
diffusion models have been solved by Harrison and Taksar [24] and Matomäki
[36], respectively. In Baurdoux and Yamazaki [6], it has been solved for a general
spectrally negative Lévy process. In this note, we assume that f is convex for this
example.

3.1 The Double Reflection Strategy

In all the examples above, the optimal strategy is shown to be a double barrier
strategy πa,b := {Ua,b,Da,b} with the resulting controlled process being the doubly
reflected Lévy process given in (2.10).

By (2.11) and (2.12), we can directly compute, for a < b,

va,b(x) := Ex

[ ∫ ∞

0
e−qtf (Y

a,b
t )dt +

∫

[0,∞)

e−qt (CUdU
a,b
t + CDdD

a,b
t )

]
, x ∈ R.

For x ≤ b, it is given by

va,b(x) = �(a, b)

qW(q)(b − a)
Z(q)(x − a) − CUR(q)(x − a)

+ f (a)

q
Z(q)(x − a) − ϕa(x; f ) (3.3)

where

�(a, b) := CD + CU + ϕa(b; f̃ ′), b ≥ a. (3.4)

For x > b, we have va,b(x) = va,b(b) + CD(x − b).
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Remark 3.1 In particular, when f ≡ 0 (as in Examples 3.1 and 3.2 above), for
a < b,

�(a, b) = CD + CUZ(q)(b − a),

va,b(x) = CD + CUZ(q)(b − a)

qW(q)(b − a)
Z(q)(x − a) − CU R(q)(x − a), x ≤ b;

see [4] and [8].

3.2 Smoothness of the Value Function

Focusing on the set of double barrier strategies, the first step is to narrow down
to a candidate optimal strategy by deciding on the threshold values, say a∗ and
b∗. Because the spectrally negative Lévy process can reach any point with positive
probability, we must have that [a∗, b∗] ⊂ I.

As we have discussed in Sect. 1.4.1, the two parameters can be identified by
the first-order condition or the smooth fit condition. The first approach uses the
first-order conditions at a∗ and b∗; because a∗ and b∗ must minimize va,b over a

and b, partial derivatives ∂va,b(x)/∂a|a=a∗,b=b∗ and ∂va,b(x)/∂b|a=a∗,b=b∗ must
vanish, at least when the minimizers are in the interior of I. The second approach
uses the condition that the value function is smooth. Here, we focus on the second
smoothness approach because the computation is slightly easier, and we need to
confirm the smoothness of va∗,b∗ after all when we verify its optimality.

In singular control, the value function normally admits twice continuous differ-
entiability (resp. continuous differentiability) at each interior point in I when it
is regular (resp. irregular). Thanks to the smoothness of the scale function as in
Remark 2.1, the only points of va∗,b∗ we need to pay attention are a∗ and b∗ where
the functions are pasted together. Due to the asymmetry of the spectrally negative
Lévy process, what we observe at these two points will be different. Here, recall
the definition of regularity and its relation with the path variation of the process as
reviewed in Sect. 2.1.

Regarding the smoothness of the value function at the lower barrier a∗,

(1) if a∗ is regular for (−∞, a∗) (or equivalentlyX is of unbounded variation), then
the twice continuous differentiability at a∗ is expected;

(2) if a∗ is irregular for (−∞, a∗) (or equivalently X is of bounded variation), then
the continuous differentiability at a∗ is expected.

Regarding the smoothness at the upper barrier b∗, because it is always regular for
(b∗,∞), twice-differentiability is expected at b∗ regardless of the path variation
of X.

These procedures can be carried out in a straightforward fashion by using the
expression (3.3) in terms of the scale function. By taking derivatives in (3.3) and
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using (3.2),

v′
a,b(x) = �(a, b)

W(q)(b − a)
W(q)(x − a) − CU − ϕa(x; f̃ ′), a < x < b,

v′′
a,b(x+) = �(a, b)

W(q)(b − a)
W(q)′((x − a)+)

−
∫ x

a

W(q)′(x − y)f̃ ′(y)dy − f̃ ′(x+)W(q)(0), a < x < b.

(3.5)

In view of the former of (3.5), by (3.4),

v′
a,b(b−) = CD = v′

a,b(b+),

v′
a,b(a+) = �(a, b)

W(q)(b − a)
W(q)(0) − CU = �(a, b)

W(q)(b − a)
W(q)(0) + v′

a,b(a−).

(3.6)

In other words, the continuous differentiability of va,b holds at b regardless of the
path variation. On the other hand, in view of (2.5), while the differentiability at a

holds for the case of unbounded variation, it only holds if

Ca : �(a, b)

W(q)(b − a)
= 0 (3.7)

for the case of bounded variation. Here, the case b = ∞ is understood as
limb→∞ �(a, b)/W(q)(b − a) = 0 where by (2.14) we can show that

lim
b→∞

�(a, b)

W(q)(b − a)
= �(a; f̃ ′). (3.8)

In view of the latter of (3.5),

v′′
a,b(b−) = �(a, b)

W(q)(b − a)
W(q)′((b − a)−) − λ(a, b),

v′′
a,b(a+) = �(a, b)

W(q)(b − a)
W(q)′(0+) − f̃ ′(a+)W(q)(0),

where

λ(a, b) := ∂

∂b
�(a, b−) =

∫ b

a

W(q)′(b − y)f̃ ′(y)dy + f̃ ′(b−)W(q)(0), b > a.

(3.9)
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For the unbounded variation case where the continuous differentiability at a

automatically holds, again by (2.5), its twice continuous differentiability holds on
condition that Ca holds. Now, for both the bounded and unbounded variation cases,
the twice continuous differentiability at b holds if

Cb : �(a, b)

W(q)(b − a)
W(q)′((b − a)−) − λ(a, b) = 0. (3.10)

In particular, on condition that Ca holds, the condition Cb can be simplified to

C′
b : λ(a, b) = 0. (3.11)

Remark 3.2 When f ≡ 0, the conditions Ca and Cb, respectively, are simplified to

C0
a : CD + CUZ(q)(b − a)

W(q)(b − a)
= 0, (3.12)

C0
b : CD + CUZ(q)(b − a)

W(q)(b − a)
W(q)′((b − a)−) − qCUW(q)(b − a) = 0. (3.13)

These conditions on a and b can be used to identify the pairs (a∗, b∗). However,
these do not necessarily hold unless a∗, b∗ ∈ Io. Here, we give examples where a∗
and/or b∗ become boundaries of I.
Remark 3.3

(1) In Example 3.1, it is expected, because β > 1 (the unit cost of capital injection
is higher than the unit reward of dividend), that capital is injected only when it
is necessary to make the company alive, and hence a∗ = 0.

(2) Similarly, under the formulation with the underlying spectrally negative Lévy
process described in Example 3.2, it is expected that b∗ = 0.

(3) In Example 3.3, if the increment of f as |x| → ∞ is at most linear and small in
comparison to the unit controlling costs CU and CD , it may not be desirable to
activate at all the processes Uπ and/or Dπ . Hence, a∗ = −∞ and/or b∗ = ∞.

3.3 Existence of (a∗, b∗)

The first challenge is to show the existence of such (a∗, b∗). Here, we assume the
following.

Assumption 3.2 We assume that a ≡ a(f̃ ′) (see Definition 2.1) exists and is finite,
where f̃ ′ is understood as its right-hand derivative if not differentiable.

We shall see that a is a point such that a∗ lies on the left of a and b∗ lies on its
right; see Table 1.
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Table 1 Summary of the key functions and parameters in Examples 3.2 and 3.3

Example 3.2

�(a, b) := CD + CUZ(q)(b − a)

f̃ ′(b) := CUq

a∗ := a of (a, 0) such that C0
a holds

< a := 0 = a(f̃ ′)
= b∗ := 0 = I
Example 3.3

�(a, b) := CD + CU + ϕa(b; f̃ ′)
f̃ ′(b) := f ′(b) + CUq

a := a(f̃ ′)
≤ a∗ := a of (a, b) such that Ca and Cb hold simultaneously

< a := a(f̃ ′)
< b∗ := b of (a, b) such that Ca and Cb hold simultaneously

For Example 3.3, when b∗ = ∞, a∗ = a

3.3.1 The Case of Example 3.1

It is clear that Assumption 3.2 is satisfied with a = 0. As in Remark 3.3(1), a∗ =
0 = a = I . Therefore, the condition C0

a has no effect and we only require C0
b which

reduces to

CD + CUZ(q)(b)

W(q)(b)
W(q)′(b−) − qCUW(q)(b) = 0. (3.14)

Hence, b∗ > 0 = a = I can be chosen as the smallest value of b such that (3.14)
holds. This matches the condition given in (5.6) of [4].

3.3.2 The Case of Example 3.2

Again, Assumption 3.2 is satisfied with a = 0. Because CD = β and CU = −1,
there is a unique a∗ < 0 = a that satisfies C0

a or equivalently that

CD + CUZ(q)(−a∗) = 0. (3.15)

Hence, the candidate optimal strategy is given by a∗ = −(Z(q))−1(−CD/CU) =
−(Z(q))−1(β) and b∗ = 0. This matches the result in [8].
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3.3.3 The Case of Example 3.3

For Example 3.3, we want a pair (a∗, b∗) such that (3.7) and (3.10) hold simultane-
ously. Equivalently, we want (a∗, b∗) such that the function b �→ �(a∗, b) attains a
(local) minimum 0 at b∗ (if b∗ < ∞). Note that, for any a ∈ R, b �→ �(a, b) starts
at �(a, a) = CD + CU > 0.

In this case, a always exists by the assumption that f is convex. In addition,
Assumption 3.2 requires that it is finite. Recall now Definition 2.2. The convexity
assumption and Assumption 3.2 guarantee that a = a(f̃ ′) also exists and is finite
(with the understanding that f̃ ′ is the right-hand derivative if it is not differentiable).
Note that necessarily a < a.

Figure 4 shows some sample plots of b �→ �(a, b) and b �→ λ(a, b). As
observed in these plots, we shall show that a∗ must lie on [a, a).

To see this, when a ≥ a, then �(a, ·) is uniformly positive because λ(a, b) ≥ 0
for b > a in view of (3.9). In addition, by the convergence (3.8) and how a is chosen,
limb→∞ �(a, b) = ∞ if a > a, limb→∞ �(a, b) = −∞ if a < a, and (3.8)
becomes zero if a = a. On the other hand, for any a < a and a < b,

∂

∂a
�(a+, b) = −f̃ ′(a+)W(q)(b − a) > 0. (3.16)

This implies that the infimum a �→ infb>a �(a, b) is monotonically increasing.
Hence, the desired a∗ such that �(a∗, ·) touches the x-axis, if it exists, must lie on
(a, a).

Fig. 4 Existence of (a∗, b∗) for Example 3.3. Plots of b �→ �(a, b) on [a,∞) for the starting
values a = a, (a + a∗)/2, a∗, (a∗ + a)/2, a are shown. The solid curve in red corresponds to the
one for a = a∗; the point at which �(a∗, ·) is tangent to the x-axis (or λ(a∗, ·) vanishes) becomes
b∗. The function �(a, ·) is monotonically decreasing while �(a, ·) is monotonically increasing.
Equivalently, λ(a, ·) is uniformly negative while λ(a, ·) is uniformly positive
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By these observations, one can attempt to decrease the value of a starting at a

until we arrive at (1) a point a∗ such that infb>a∗ �(a∗, b) = 0 or (2) the point a,
whichever comes first. For each case, we set (a∗, b∗) as follows.

(1) We set (a∗, b∗) such that 0 = infb>a∗ �(a∗, b) = �(a∗, b∗). Hence, Ca holds.
If in addition, b �→ λ(a∗, b) is continuous at b∗, then C′

b also holds as well.
(2) We set a∗ = a and b∗ = ∞. By (3.8), limb→∞ �(a∗, b)/W(q)(b − a∗) = 0, or

equivalently Ca holds.

Remark 3.4 In Examples 3.2 and 3.3, by construction, �(a∗, x) ≥ 0 for x ∈
[a∗, b∗].

3.4 Variational Inequalities and Verification

Below, we shall focus on the case a∗ ∈ Io and hence Ca is satisfied (this excludes
Example 3.1): the value function becomes, by (3.3), for all x ≤ b∗,

va∗,b∗(x) = −CUR(q)(x − a∗) + f (a∗)
q

Z(q)(x − a∗) − ϕa∗(x; f )

= −CU

(ψ ′(0+)

q
+ x

)
+ f̃ (a∗)

q
Z(q)(x − a∗) − ϕa∗(x; f̃ ).

(3.17)

By (3.4) and (3.5),

v′
a∗,b∗(x) = −�(a∗, x) + CD, a∗ ≤ x ≤ b∗. (3.18)

The verification of optimality asks that our candidate value function va∗,b∗ solves
the variational inequalities:

(L − q)va∗,b∗(x) + f (x) ≥ 0, x ∈ Io,

min(v′
a∗,b∗(x) + CU,CD − v′

a∗,b∗(x)) ≥ 0, x ∈ (−∞,I],
[(L − q)va∗,b∗(x) + f (x)]min(v′

a∗,b∗(x) + CU ,CD − v′
a∗,b∗(x)) = 0, x ∈ Io.

(3.19)

Notice that, when I > −∞, the middle condition is required to hold for the
extended set (−∞,I] because X can jump instantaneously to the region (−∞,I)

(and then immediately pushed up to I). Here, the generator Lva∗,b∗ makes sense
due to the smoothness obtained above of va∗,b∗ and because va∗,b∗ is linear below
a∗ and Assumption 3.1 is given.

In order to show that these are sufficient conditions for optimality, in general
we need additional assumptions on the tail property of f and the Lévy measure.
This is necessary because verification arguments first localize in order to use Itô’s
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Fig. 5 A sample plot of the value function for Example 3.3 when X is of unbounded variation.
The up-pointing and down-pointing triangles show the points at a∗ and b∗, respectively. It can be
confirmed that it is twice differentiable at a∗ and b∗

formula. After the localization arguments, one needs to interchange the limits over
expectations. To this end, it is typically required that |f | only increases moderately
and/or the Lévy measure does not have a heavy tail.

Showing (3.19) is the main challenge and the proof needs to be customized for
each problem. However, some inequalities of (3.19) are easily shown without strong
assumptions on the function f (Fig. 5).

Lemma 3.1 Suppose Ca holds.

(1) We have (L − q)va∗,b∗(x) + f (x) = 0 for a∗ < x < b∗.
(2) If Assumption 3.2 holds with a∗ ≤ a, then (L − q)va∗,b∗(x) + f (x) ≥ 0 on

(−∞, a∗).
(3) If �(a∗, x) ≥ 0 for x ∈ [a∗, b∗], then v′

a∗,b∗(x) ≤ CD on (−∞,I].
Proof

(1) This is immediate by the results summarized in Sect. 2.7.3 in view of the first
equality of (3.17).

(2) By the second equality of (3.17), va∗,b∗(x) = [−CUψ ′(0+)+ f̃ (a∗)]/q−CUx,
for x < a∗, and hence (L−q)va∗,b∗(x)+f (x) = f̃ (x)−f̃ (a∗). This is positive
by x ≤ a∗ < a and by how a is chosen.
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(3) In view of (3.18), this inequality holds for x ∈ [a∗, b∗]. For x ∈ (−∞, a∗),
we have v′

a∗,b∗(x) = −CU , which is smaller than CD by (3.1). Finally, for
x ∈ (b∗,∞) ∩ I, we have v′

a∗,b∗(x) = CD . ��
For Examples 3.2 and 3.3, by the fact that a∗ < a as discussed in Sects. 3.3.1

and 3.3.2, and also by Remark 3.4, the conditions in Lemma 3.1 hold. Hence, the
only pieces left to show in (3.19) are

(1’) −CU ≤ v′
a∗,b∗(x) for all x ∈ (a∗, b∗),

(2’) (L − q)va∗,b∗(x) + f (x) ≥ 0 for x ∈ (b∗,∞) ∩ Io.

These conditions unfortunately do not hold generally and must be checked individ-
ually. Here we give brief illustrations on how these hold for Examples 3.2 and 3.3.

In Example 3.2, (1’) holds immediately because, with CU = −1 < 0,

v′
a∗,b∗(x) = −CUZ(q)(x − a∗) ≥ −CU .

In addition, (2’) holds trivially because (b∗,∞) ∩ Io = ∅.
In Example 3.3, thanks to the assumption that f is convex, x �→ �(a∗, x) is first

decreasing and decreasing (see Fig. 4). This together with (3.18) and the smoothness
at a∗ and b∗, the function va∗,b∗ is convex on R and hence (1’) holds.

The hardest part for Example 3.3 is to show (2’); the difficulty comes from the
fact that the process can jump from (b∗,∞) to the regions (−∞, a∗) and (a∗, b∗)
where the form of va∗,b∗ changes. In [6] under the convexity assumption, they use
contradiction arguments similar to [25, 34], where they show, for x > b∗,

(L − q)(va∗,b∗ − va(x),x)(x−) := lim
y↑x

(L − q)(va∗,b∗ − va(x),x)(y) ≥ 0, (3.20)

where a(x) is the unique value of a such that�(a, x) = 0. This implies (2’) because
if both (3.20) and (L − q)va∗,b∗(x) + f (x) < 0 hold simultaneously, then

0 > (L − q)va∗,b∗(x) + f (x) ≥ (L − q)va(x),x(x−) + f (x),

which contradicts with (L− q)va(x),x(x−) + f (x) = 0 that can be shown similarly
to Lemma 3.1(1). The proof depends heavily on the convexity of f , with which the
function y �→ �(x, y) is first decreasing and then increasing. We refer the reader to
[6] for more careful analysis.

We conclude this section with a summary of the functions and parameters that
played key roles in Examples 3.2 and 3.3. Some similarities and differences with
the problems to be considered in later sections can be seen by comparing this with
Tables 2 and 3 below.
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Table 2 Summary of the key functions and parameters in Example 4.3

�(a, b) := �(q)�(s; f̃ )W
(q)

(S − s) + K − ϕs(S; f̃ )

f̃ ′(b) := f ′(b) + CUq

s∗ := s of (s, S) such that Cs and CS hold simultaneously

< a := a(f̃ ′)
< S∗ := S of (s, S) such that Cs and CS hold simultaneously

It can be shown that s∗, S∗ → a as K ↓ 0

4 Impulse Control

In impulse control, a strategy π := {
Uπ

t ; t ≥ 0
}
is given by Uπ

t = ∑
i:T π

i ≤t uπ
i ,

t ≥ 0, where {T π
i ; i ≥ 1} is an increasing sequence of F-stopping times and uπ

i ,
for i ≥ 1, is an FT π

i
-measurable random variable such that uπ

i ∈ A, i ≥ 1, a.s. for
some A ⊂ R.

The corresponding controlled process is given by Yπ = {Yπ
t ; t ≥ 0} where

Yπ
0− = 0 and

Yπ
t := Xt + Uπ

t , t ≥ 0.

The time horizon is given by T π
Ic := inf{t > 0 : Yπ

t /∈ I} for some given closed
interval I and Uπ must be such that

Yπ
t ∈ I, 0 ≤ t ≤ T π

Ic at which �Uπ
t > 0 a.s. (4.1)

Let � be the set of all admissible strategies.
With f , some continuous and piecewise continuously differentiable function on

I, and q > 0, the problem is to compute the value function

v(x) := inf
π∈�

vπ (x)

where

vπ (x) := Ex

[ ∫ T π
Ic

0
e−qtf (Y π

t )dt +
∑

0≤t≤T π
Ic

e−qt [CU |�Uπ
t | + K]1{|�Uπ

t |>0}
]
, x ∈ R,

and to obtain an admissible strategy that minimizes it, if such a strategy exists. The
constant CU is the proportional cost, which is not necessarily restricted to be a
positive value. On the other hand, K is the fixed cost and must be strictly positive.
Again in this section, we assume Assumption 3.1 (note that this is not necessarily
needed for Example 4.1 below).

Example 4.1 In the optimal dividend problemwith fixed costs driven by a spectrally
negative Lévy process, each time dividend is paid, a fixed cost K is incurred. In
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addition, the problem is terminated at ruin (i.e. I = [0,∞)). The condition (4.1)
means that one cannot pay more than the remaining surplus.

The objective is to maximize the total expected discounted dividends minus that
for fixed costs. We can formulate this as a minimization problem as above by setting
CU = −1, Uπ

t being the negative of the cumulative amount of dividends until
t ≥ 0, and A = (−∞, 0). Here, f is assumed to be zero. This problem has been
solved by Loeffen [35] for a spectrally negative Lévy process under a log-convexity
assumption on the Lévy density.

Example 4.2 In the dual model of Example 4.1, it is assumed that the underlying
process is a spectrally positive Lévy process. By flipping the processes with respect
to the origin, it is easy to see that it is equivalent to the above formulation driven by
a spectrally negative Lévy process with A = (0,∞), I = (−∞, 0] and CU = −1.
This problem has been solved by Bayraktar et al. [9] for a general spectrally positive
Lévy process.

Example 4.3 Continuous-time inventory control often uses this model. Here, the
function f corresponds to the cost of holding and shortage when x > 0 and
x < 0, respectively. With the assumption that backorders are allowed, the problem
is infinite-horizon (I = R). Bensoussan et al. [10, 12] considered the case of a
spectrally negative compound Poisson process perturbed by a Brownian motion
with A = (0,∞). It has been generalized by Yamazaki [49] to a general spectrally
negative Lévy model. As in Example 3.3, we assume that f is convex. Assume also
that ψ ′(0+) > −∞.

4.1 The (s, S)-Strategy

With the fixed cost K > 0 incurred each time the control Uπ is activated, it is
clear that the reflection strategy is no longer feasible; instead one needs to solve the
tradeoff between controlling the process and minimizing the number of activation of
Uπ . In this sense, the (s, S)-strategy is a natural candidate for an optimal strategy:
whenever the process goes below (resp. above) a level s, it pushes the process up
(resp. down) to S when s < S (resp. S < s).

Suppose πs,S := {Us,S
t ; t ≥ 0} is the (s, S)-strategy, and Y s,S and T

s,S
Ic are

the corresponding controlled process and the termination time, respectively. By
using the results summarized in Sect. 2.4, it is a simple exercise to compute the
corresponding expected NPV of costs:

vs,S(x) := Ex

[∫ T
s,S

Ic

0
e−qtf (Y

s,S
t )dt

+
∑

0≤t≤T
s,S

Ic

e−qt [CU |�U
s,S
t | + K]1{|�U

s,S
t |>0}

⎤
⎥⎦ , x ∈ R. (4.2)
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To see this, for the case s < S, it is noted (from the construction of the process Y s,S)
that Px-a.s., Y

s,S
t = Xt for 0 ≤ t < T −

s and �U
s,S

T −
s

= S − XT −
s
on {T −

s < T
s,S
Ic }.

By these and the strong Markov property of Y s,S, the expectation (4.2) must satisfy,
for every x > s,

vs,S (x) = Ex

[ ∫ T −
s ∧T

s,S

Ic

0
e−qtf (Xt )dt

]
+ Ex

[
e−qT −

s (CU (S − XT −
s

) + K)1{T −
s <T

s,S

Ic }
]

+ Ex

[
e−qT −

s 1{T −
s <T

s,S

Ic }
]
vs,S (S). (4.3)

Here the expectations on the right hand side can be computed by the identities
given in Sect. 2. By setting x = S on both sides, we can solve for vs,S(S);
substituting this back in, we obtain vs,S(x) for x ∈ R. In particular, for the
computation when I = R, see (4.13) below.

The case s > S is even simpler because then there is no overshoot at the time it
reaches s: we have, for x < s,

vs,S(x) = Ex

[ ∫ T +
s ∧T

s,S
Ic

0
e−qtf (Xt)dt

]

+ Ex

[
e−qT +

s 1{T +
s <T

s,S

Ic }
]
[vs,S(S) + CU(s − S) + K].

We can similarly obtain first vs,S(S) and then, by substituting this back in, vs,S(x),
for x ∈ R. See, e.g., [35] for explicit expressions when f ≡ 0.

Remark 4.1 The same technique can be used to compute also the two-sided
extension (i.e. A = R\{0}) of the (s, S)-strategy: in this case, the strategy is
specified by four parameters, say, (d,D,U, u). The controller pushes the process
up to D as soon as it goes below d and pushes down to U as soon as it goes above
u, while he does not intervene whenever it is within the set (d, u). See [48] for the
fluctuation identities.

4.2 Smoothness of the Value Function

Focusing on the set of (s, S)-strategies, the first step again is to narrow down to
a candidate optimal strategy by deciding on the values of s and S, which we call
s∗ and S∗. Again, as there are two values to be identified, naturally we need two
equations to identify these.

(1) As is clear from what we have seen in the previous section, the value function is
expected to satisfy some continuity/smoothness at the point s∗. In comparison
to the case of singular control, the degree of smoothness is decreased by one in
the case of impulse control. This can be summarized as follows:
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When s∗ < S∗ (where vs∗,S∗ is linear below s∗ and hence v′
s∗,S∗(s∗−) =

−CU ),

(a) if s∗ is regular for (−∞, s∗) (or equivalently X is of unbounded variation),
then the continuous differentiability at s∗ is expected;

(b) if s∗ is irregular for (−∞, s∗) (or equivalently X is of bounded variation),
then the continuity at s∗ is expected.

When s∗ > S∗ (where vs∗,S∗ is linear above s∗ and hence v′
s∗,S∗(s∗+) =

CU ), because s∗ is regular for (s∗,∞) for any spectrally negative Lévy process,
the continuous differentiability at s∗ is expected.

It is noted that alternatively one can use the first-order condition on s∗ so
that ∂vs,S/∂s|s=s∗,S=S∗ vanishes: we typically arrive at the same equation.

(2) The other equation can be obtained by what we postulate at the point S∗. This is
less intuitive than (1). However, if we consider the first-order condition at S∗ so
that ∂vs,S/∂S|s=s∗,S=S∗ vanishes, easy computation derives that it tends to be
equivalent to the condition v′

s∗,S∗(S∗) = −CU (resp. v′
s∗,S∗(S∗) = CU ) when

s∗ < S∗ (resp. s∗ > S∗).

From the above discussions, when s∗ < S∗, except for the case X is of bounded
variation, we arrive at the function that satisfies

v′
s∗,S∗(s∗) = v′

s∗,S∗(S∗) = −CU .

Due to this fact, it is often easier if we deal with a modified function

ṽs,S(x) := vs,S(x) + CUx; (4.4)

by this, some terms tend to disappear and computation gets simplified. When S∗ <

s∗, then the sign of the coefficient of CU is flipped.
In impulse control, while the two equations that identify the two unknown

parameters (s∗, S∗) are slightly different from the singular control case for (a∗, b∗)
as in Sect. 3.2, we shall see that these two equations possess a similar relation to
those obtained for (a∗, b∗). Namely, the desired pair (s∗, S∗) is such that a function
of two variables and its partial derivativewith respect to one of the parameters vanish
simultaneously.

4.2.1 The Case of Example 4.3

For Example 4.3, we shall see that the desired (s∗, S∗) are those (s, S) such that

Cs : �(s, S)

�
(q)

(S − s)
= 0, (4.5)

CS : �(q)(S − s)

�
(q)

(S − s)
�(s, S) − λ(s, S) = 0, (4.6)
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where �(q) is as defined in (2.9) with its antiderivative �
(q)

given by

�
(q)

(x) := W(q)(x) − �(q)W
(q)

(x) > 0,

and

�(s, x) := �(q)�(s; f̃ )W
(q)

(x − s) + K − ϕs(x; f̃ ), x, s ∈ R, (4.7)

λ(s, x) := ∂

∂x
�(s, x), x > s. (4.8)

Here, we shall confirm briefly how this is so. Note that when Cs is satisfied, then
CS is equivalent to the condition:

C′
S : λ(s, S) = 0. (4.9)

Remark 4.2 We note the similarity between Cs and CS (or C′
S) with the conditions

Ca and Cb (or C′
b) as in (3.7), (3.10) (or (3.11)) in the two-sided singular control

case.

First, by using the technique (using Eq. (4.3)) discussed above, we can com-
pute (4.4): for all s < S,

ṽs,S(S) = �(q)

q�
(q)

(S − s)

[
�

(q)
(S − s)

[
�(s; f̃ ) − q

�(q)

(
K + CUψ ′(0+)

q

)]
+ �(s, S)

]
,

ṽs,S(x) =
⎧⎨
⎩

− �
(q)

(x−s)

�
(q)

(S−s)
�(s, S) + �(s, x) + ṽs,S(S), x ≥ s,

K + ṽs,S(S), x < s.

(4.10)

Differentiating (4.10),

ṽ′
s,S(x) = −�(q)(x − s)

�
(q)

(S − s)
�(s, S) + λ(s, x), s < x < S. (4.11)

From these expressions, we shall see that the conditions Cs and CS as in (4.5)
and (4.6) guarantee the desired smoothness/slope conditions described above:
namely,

(1) ṽs∗,S∗(·) is continuous (resp. differentiable) at s∗ when X is of bounded (resp.
unbounded) variation,

(2) ṽ′
s∗,S∗(S∗) = 0.
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(1) Regarding the continuity at s, by (4.10),

ṽs,S(s+) = − �
(q)

(0)

�
(q)

(S − s)
�(s, S) + K + ṽs,S(S)

= − �
(q)

(0)

�
(q)

(S − s)
�(s, S) + ṽs,S(s−),

where �
(q)

(0) = 0 if and only if X is of unbounded variation in view of (2.4).
Hence, the continuity at x = s holds if and only if Cs holds for the case of
bounded variation. On the other hand, it holds automatically for the unbounded
variation case.

For the case of unbounded variation, we further pursue the differentiability

at x = s. Equation (4.11) gives ṽ′
s,S(s+) = − �(q)(0)

�
(q)

(S−s)
�(s, S), and hence Cs

leads to the differentiability at s.

(2) Regarding the slope condition at S, we have ṽ′
s,S(S) = −�(q)(S−s)

�
(q)

(S−s)
�(s, S) +

λ(s, S). Hence, given Cs , the condition CS guarantees ṽ′
s,S(S) = 0 as desired.

Existence of (s∗, S∗) We now illustrate how the existence of (s∗, S∗) guar-
anteeing Cs and CS can be shown. Here, as in Example 3.3, we shall assume
Assumption 3.2: then,

a ≡ a(f̃ ′) and a ≡ a(f̃ ′)

are well-defined and finite as in the discussion given in Sect. 3.3.3.
We shall see that the desired s∗ lies on the left of a while S∗ lies on its

right. As K decreases, the distance between s∗ and S∗ is expected to shrink and
converge to a, which is the optimal barrier in Example 3.3 for the case b∗ = ∞.

To show the existence of (s∗, S∗), we shall first write

�(s, S) =
∫ S

s

�(y; f̃ ′)�(q)
(S − y)dy + K, s, S ∈ R,

λ(s, S) = �(S; f̃ ′)W(q)(0) +
∫ S

s

�(y; f̃ ′)�(q)(S − y)dy, S > s.

(4.12)

In Fig. 6, we show sample plots of the functions S �→ �(s, S) and S �→ λ(s, S)

for several values of starting points s, including a and a∗.

As can be confirmed in the figure and also clear from (4.12), by how a is chosen,
we have the following properties:

(1) When s > a, λ(s, S) > 0 for S > s and hence S �→ �(s, S) is monotonically
increasing on [s,∞).
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Fig. 6 Existence of (s∗, S∗) for Example 4.3. Plots of S �→ �(s, S) and S �→ λ(s, S) on [s,∞)

for five values of s are shown. The line in red corresponds to the one for s = s∗; the point at which
�(s∗, ·) is tangent to the x-axis becomes S∗. The rightmost curve corresponds to the one with
s = a; it is confirmed that �(a, ·) is monotonically increasing and λ(a, ·) is uniformly positive

(2) When s < a, ∂�(s, S)/∂s = −�(s; f̃ ′)�(q)
(S − s) ≥ 0 by how a is chosen.

(3) For every fixed s ∈ R, limS↑∞ �(s, S) = ∞.
(4) For every fixed S ∈ R, lims↓−∞ �(s, S) = −∞.
(5) For any s ∈ R, �(s, s) = K > 0.

It is now clear how to obtain the desired (s∗, S∗). Similarly to Example 3.3,
starting at s = a, we decrease the value of s until we arrive at s∗ such that
infS>s∗ �(s∗, S) = 0. This exists because the function s �→ infS>s �(s, S), s < a,
is increasing by the property (2) above and goes to −∞ as s ↓ −∞ by the property
(4). Note that, because (4.12) implies λ(s∗, S) < 0 for S ∈ (s∗, a), we must have
S∗ > a. Because infS>s∗ �(s∗, S) = 0 attains a local minimum at S = S∗, we must
have λ(s∗, S∗) = �(s∗, S∗) = 0, as desired.

4.2.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

In [35] and [9], they use the first-order conditions to obtain (s∗, S∗) in Examples 4.1
and 4.2, respectively. To this end, they used the argument that the surface (s, S) �→
vs,S(x) has a global minimum (if formulated as a minimization problem).

The difficulty in their case is that because I has a boundary 0, it can happen that
S∗ (or both s∗ and S∗) is zero. This means that the (s∗, S∗)-strategy, once activated,
moves the controlled process to the default boundary. In Example 4.2 where 0 is
regular for Ic = (0,∞), ruin then occurs immediately. On the other hand, in
Example 4.1, it is regular for Ic = (−∞, 0) if and only if X is of unbounded
variation. Hence, while ruin occurs immediately for the unbounded variation case,
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it stays above 0 for a positive amount of time a.s. This suggests one difficulty in
solving the spectrally negative Lévy case.

If S∗ �= 0, the slope condition v′
s∗,S∗(S∗) = −CU = 1 (resp. v′

s∗,S∗(S∗) = CU =
−1) is satisfied for Example 4.2 (resp. Example 4.1). Similarly, if s∗ �= 0, then the
smoothness condition v′

s∗,S∗(s∗) = −CU = 1 (resp. v′
s∗,S∗(s∗) = CU = −1) is

satisfied for Example 4.2 (resp. Example 4.1).

4.3 Quasi-Variational Inequalities and Verification

The verification of optimality asks that the candidate value function vs∗,S∗ satisfies
the QVI (quasi-variational inequalities):

(L − q)vs∗,S∗(x) + f (x) ≥ 0, x ∈ Io\{s∗},
vs∗,S∗(x) ≤ K + inf

u∈A,x+u∈I
[
CU |u| + vs∗,S∗(x + u)

]
, x ∈ (−∞,I],

[(L − q)vs∗,S∗(x) + f (x)][vs∗,S∗(x) − K − inf
u∈A,x+u∈I

[
CU |u| + vs∗,S∗(x + u)

] ] = 0,

x ∈ Io\{s∗}.
(4.13)

Here, in the middle equality, if it is assumed for the case {u : u ∈ A, x + u ∈ I} is
empty, the right hand side is ∞.

For its proof, see [11, 12]. Similarly to the singular control case, in general
we need additional assumptions on the tail growth of f and the Lévy measure.
In particular, in [12, 49], it is assumed that the growth of f in the tail is at most
polynomial.

4.3.1 The Case of Example 4.3

With (s∗, S∗) that satisfy Cs , the function (4.10) simplifies to, for x ∈ R,

ṽs∗,S∗(S∗) = �(q)

q
�(s∗; f̃ ) − K − CUψ ′(0+)

q
, (4.14)

ṽs∗,S∗(x) = �(s∗, x) + ṽs∗,S∗(S∗), (4.15)

or equivalently

vs∗,S∗(x) =
(

�(q)

q
�(s∗; f ) + CU

�(q)

)
Z(q)(x − s∗) − CUR(q)(x − s∗) − ϕs∗(x; f ).

(4.16)

See Fig. 7 for a sample plot of vs∗,S∗ .
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Fig. 7 A sample plot of the value function vs∗,S∗ for Example 4.3 when X is of unbounded
variation. The up-pointing and down-pointing triangles show the points at s∗ and S∗, respectively

Similarly to the singular control case (see Lemma 3.1), some inequalities
of (4.13) are easily shown with minor assumptions on the function f .

Lemma 4.1 Suppose Cs holds.

(1) We have (L − q)vs∗,S∗(x) + f (x) = 0 for x > s∗.
(2) If Assumption 3.2 holds and a is well-defined and finite with s∗ ≤ a < a, then

(L − q)vs∗,S∗(x) + f (x) ≥ 0 on (−∞, s∗).

Proof

(1) In view of (4.16), this is immediate by the results summarized in Sect. 2.7.3.
(2) Because ṽs∗,S∗(x) = K + ṽs∗,S∗(S∗) for x < s∗ and by (4.14),

(L − q)vs∗,S∗(x) + f (x) = −q(K + ṽs∗,S∗(S∗)) − CUψ ′(0+) + CUqx + f (x)

= f̃ (x) − f̃ (s∗) − �(s∗; f̃ ′).

This is positive by x < s∗ < a ≤ a and how a and a are chosen. ��
In view of Lemma 4.1, the remaining task is to show that

vs∗,S∗(x) = K + inf
u≥0

[
CUu + vs∗,S∗(x + u)

]
, x ≤ s∗,

vs∗,S∗(x) ≤ K + inf
u≥0

[
CUu + vs∗,S∗(x + u)

]
, x > s∗,

(4.17)
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or equivalently

ṽs∗,S∗(x) = K + inf
u≥0

ṽs∗,S∗(x + u), x ≤ s∗,

ṽs∗,S∗(x) ≤ K + inf
u≥0

ṽs∗,S∗(x + u), x > s∗.

These can be shown for x ≤ a easily as follows. For x ≤ s∗, in view of (4.15) and
because S∗ minimizes �(s∗, x) over x ∈ R, we must have

ṽs∗,S∗(S∗) = inf
x∈R

ṽs∗,S∗(x). (4.18)

Hence,

ṽs∗,S∗(x) = ṽs∗,S∗(s∗) = ṽs∗,S∗(S∗) + K = K + inf
u≥0

ṽs∗,S∗(x + u), x ≤ s∗.

(4.19)

The case s∗ ≤ x ≤ a also holds by (4.18) and because ṽ′
s∗,S∗(x) = λ(s∗, x) < 0 on

[s∗, a] in view of how a is chosen and (4.12).
Unfortunately, the proof of (4.17) for x > a is difficult and, we need a

nonstandard technique. As the fluctuation theory and scale function do not simplify
the proof to our best knowledge, it is out of scope of this note. We refer the reader
to the proof of Theorem 1(iii) of Benkherouf and Bensoussan [10].

Below, we summarize the functions and parameters that played important roles
in characterizing the optimal solution in Examples 4.3.

4.3.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

As in the singular control case, verification is in general harder for the spectrally
negative case than for the spectrally positive case.

For Example 4.2, the variational inequalities (4.13) can be shown without much
difficulty. Similarly to Example 4.3 above, the generator part of (4.13) holds
trivially; this is due to the fact that in this case the controlling region is (−∞, s∗)
and the waiting region is (s∗, 0]; the process does not jump from the former
to the latter and hence the results similar to Lemma 4.1 hold. The other parts
of (4.13) can be shown using the log-concavity of the scale function as in Sect. 2.7.2,
which essentially shows that −v′

s∗,S∗(x) < −CU if and only if x ∈ (s∗, S∗); see
Lemma 5.3 of [9].

On the other hand, the verification for Example 4.1 can only be done for a subset
of spectrally negative Lévy processes. This is again due to the fact, in this case, that
the controlling region is (s∗,∞) and the waiting region is [0, s∗); the process can
jump from the former to the latter, where the form of vs∗,S∗ changes.
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5 Zero-Sum Games Between Two-Players

In this section, we consider optimal stopping games between two players: the inf
player and the sup player, whose strategies are given by stopping times θ and τ ,
respectively. Here, a common expected payoff is minimized by the former and is
maximized by the latter. The problem is terminated at the time either of the two
players decides to stop or at the first exit time from some closed interval I:

TIc := inf{t > 0 : Xt /∈ I }.

Without loss of generality, these can be assumed to satisfy

θ, τ ≤ TIc , a.s. (5.1)

Let q > 0 be the discount factor and the terminal payoff be given by

(1) gI : when the inf player stops first,
(2) gS : when the sup player stops first,
(3) g: when both players stop simultaneously (including the case θ = τ = TIc ),

such that g(x) = 0 for x /∈ I. Then given any pair of strategies (θ, τ ), the expected
cost (resp. reward) for the inf (resp. sup) player is

v(x; θ, τ ) := Ex

[
1{θ<τ }e−qθ gI (Xθ ) + 1{τ<θ}e−qτ gS(Xτ ) + 1{τ=θ<∞}e−qτ g(Xτ )

]
.

(5.2)

The objective is to determine, if it exists, a pair of stopping times (θ∗, τ ∗) ⊂ S,
called the saddle point, that constitutes the Nash equilibrium:

v(x; θ∗, τ ) ≤ v(x; θ∗, τ ∗) ≤ v(x; θ, τ ∗), ∀ θ, τ ∈ S, (5.3)

where S is the set of stopping times satisfying (5.1).

Example 5.1 Egami et al. [20] considered several games in the setting of a
credit default swap (CDS) contract as extensions to the optimal stopping problem
considered in Leung and Yamazaki [33].

As in a usual perpetual CDS contract, the sup player (protection buyer) pays
premium continuously and whenever the default event {X < 0} happens, the sup
player receives from the inf player (seller) a fixed default payment 1, and the contract
is terminated.

In their cancellation game, they added a feature that the sup player and inf player
both have an option to cancel the contract before default for a fee, whoever cancels
first. Specifically,

(1) the sup player begins by paying premium at rate p over time for a notional
amount 1 to be paid at default;



Optimality of Two-Parameter Strategies in Stochastic Control 91

(2) prior to default, the sup player and the inf player can select a time to cancel the
contract;

(3) when the sup player cancels, he is incurred the fee γS to be paid to the inf player;
when the inf player cancels, he is incurred γI to be paid to the sup player;

(4) if the sup player and the inf player exercise simultaneously, then both pay the
fee upon exercise.

For the game to make sense, these parameters are assumed to satisfy

1 > γI ≥ 0, p > 0, γS + γI > 0. (5.4)

Namely, the inf player wants to minimize while the sup player wants to maximize
the common expectation:

V (x; θ, τ ) := Ex

[
−
∫ τ∧θ

0
e−qtp dt

+1{τ∧θ<∞}
(

e−qT(−∞,0)1{τ=θ=T(−∞,0)} + 1{τ∧θ<T(−∞,0)}e−q(τ∧θ)
(−γS1{τ≤θ} + γI1{τ≥θ}

) )]
,

(5.5)

by choosing stopping times θ and τ , respectively.
Let

C(x;p) := Ex

[
−
∫ T(−∞,0)

0
e−qtp dt + e−qT(−∞,0)

]
=
(

p

q
+ 1

)
ζ(x) − p

q
, x > 0,

(5.6)

where, by (2.6),

ζ(x) := Ex

[
e−qT(−∞,0)

]
= Z(q)(x) − q

�(q)
W(q)(x), x ∈ R.

Then, by the strong Markov property, (5.5) can be written

V (x; θ, τ ) = C(x; p) + v(x; θ, τ ), x > 0,

where

v(x; θ, τ) := Ex

[
e−q(τ∧θ)

(
gS(Xτ )1{τ<θ } + gI (Xθ )1{τ>θ } + g(Xτ )1{τ=θ }

)
1{τ∧θ<∞}

]
,

(5.7)

with, for x ∈ R,

gS(x) := 1{x>0}
[(p

q
− γS

)
−
(p

q
+ 1

)
ζ(x)

]
, (5.8)
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gI (x) := 1{x>0}
[(p

q
+ γI

)
−
(p

q
+ 1

)
ζ(x)

]
, (5.9)

g(x) := 1{x>0}
[(p

q
− γS + γI

)
−
(p

q
+ 1

)
ζ(x)

]
. (5.10)

In other words, the problem is to identify the pair of strategies (θ∗, τ ∗) such
that (5.3) holds.

5.1 Threshold Strategies

If the (common) payoff functions have some monotonicity with respect to the
position ofX as in the examples given in Sect. 1.1, it is expected that both implement
threshold strategies where one of them stops when X is sufficiently high while the
other stops when it is sufficiently low. Hence, it is a reasonable conjecture that the
equilibrium is characterized by two boundaries: α < β or β < α.

We shall now consider a pair of strategies (θα, τβ) such that

(1) if α < β, then θα := inf{t > 0 : Xt < α} and τβ := inf{t > 0 : Xt > β},
(2) if β < α, then θα := inf{t > 0 : Xt > α} and τβ := inf{t > 0 : Xt < β}.
In order to satisfy the condition (5.1), we must have I ≤ α < β ≤ I and I ≤ β <

α ≤ I for (1) and (2), respectively.
In this case, the players’ expected NPVs of reward/cost (5.2) becomes

vα,β(x) := Ex

[
1{θα<τβ }e−qθαgI (Xθα) + 1{τβ<θα}e−qτβ gS(Xτβ )

]
.

By the reviewed results in Sect. 2.4, this can be computed by the scale function and
the Lévy measure.

Focusing on the strategy pairs given by (θα, τβ), the first step again is to choose
a candidate barrier pair (α∗, β∗) using two equations. The expected degree of
smoothness is the same as the impulse control case (see Sect. 4.2) and is one less
than the singular control case (see Sect. 3.2). More precisely, we have the following
for the case α∗ < β∗ (the case β∗ < α∗ holds in the same way by swapping the
roles of α∗ and β∗):

(1) Regarding the smoothness of the value function at the lower barrier α∗,

(a) if α∗ is regular for (−∞, α∗) (or equivalentlyX is of unbounded variation),
then the continuous differentiability at α∗ is expected;

(b) if α∗ is irregular for (−∞, α∗) (or equivalently X is of bounded variation),
then the continuity at α∗ is expected.

(2) Regarding the smoothness at the upper barrier β∗, because it is always regular
for (β∗,∞), continuous differentiability is expected at β∗ regardless of the path
variation.
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5.1.1 The Case of Example 5.1

In the cancellation game, the sup player has an incentive to cancel the contract when
default is less likely, or equivalently when X is sufficiently high. On the other hand,
the inf player tends to cancel it when default is likely to occur, or equivalently when
X is sufficiently small. Because I = [0,∞), we can conjecture that the sup player
and the inf player choose the strategies τβ∗ and θα∗ for some values 0 ≤ α∗ <

β∗ ≤ ∞. Regarding the cases α∗ = 0 and β∗ = ∞, see the interpretations given in
Remark 5.2.

For 0 < α < x < β < ∞, it is straightforward to write

vα,β(x) − gS(x) = ϒ(x; α, β) − p

q
+ γS,

vα,β(x) − gI (x) = ϒ(x; α, β) − p

q
− γI ,

(5.11)

where

ϒ(x;α, β) := −γSEx

[
e−q(θα∧τβ )1{τβ<θα }

]
+ γIEx

[
e−q(θα∧τβ )1{τβ>θα or θα=τβ=T(−∞,0)}

]

− γIEx

[
e−q(θα∧τβ )1{θα=τβ=T(−∞,0)}

]
. (5.12)

By the results in Sect. 2.4 together with the compensation formula (see Theorem 4.4
of [30]), we can write

ϒ(x; α, β) = W(q)(x − α)
�(α, β)

W(q)(β − α)
− �(α, x) + p

q
− γS, β > x > α > 0,

(5.13)

where, for 0 < α < β < ∞,

�(α, β) := p

q
− γS −

(p

q
+ γI

)
Z(q)(β − α)

+ 1 − γI

q

∫

(−∞,−α)

(
Z(q)(β − α) − Z(q)(β + u)

)
ν(du). (5.14)

We also define the derivative of (5.14) as, for 0 < α < β < ∞,

λ(α, β) := ∂

∂β
�(α, β) = − (p + γI q)W(q)(β − α)

+ (1 − γI )

∫

(−∞,−α)

(
W(q)(β − α) − W(q)(β + u)

)
ν(du).
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We begin with establishing the continuous fit condition. First, by taking limits
in (5.11), we have, for 0 < α < β < ∞

vα,β(β−) − gS(β) = ϒ(β−; α, β) + γS = 0, (5.15)

vα,β(α+) − gI (α) = W(q)(0)
�(α, β)

W(q)(β − α)
. (5.16)

This means that continuous fit holds automatically at β. On the other hand, at α,
while continuous fit holds automatically for the case of unbounded variation, it holds
if and only if

Cα : �(α, β)

W(q)(β − α)
= 0 (5.17)

for the bounded variation case.
Now, by taking the derivative of (5.13), we obtain, for α < x < β,

v′
α,β(x+) − g′

S(x) = v′
α,β(x+) − g′

I (x)

= ϒ ′(x+; α, β) = W(q)′((x − α)+)
�(α, β)

W(q)(β − α)
− λ(α, x).

Hence, the smooth fit at β holds if and only if

Cβ : W(q)′((β − α)−)
�(α, β)

W(q)(β − α)
− λ(α, β) = 0.

Assuming that it has paths of unbounded variation (W(q)(0) = 0), then we obtain

v′
α,β(α+) − g′(α) = W(q)′(0+)

�(α, β)

W(q)(β − α)
, 0 < α < β.

Therefore, Cα is also a sufficient condition for smooth fit at α for the unbounded
variation case. In addition, if Cα holds, then Cβ simplifies to

C′
β : λ(α, β) = 0.

We conclude that

(1) if (α∗, β∗) satisfy Cα , then continuous fit at α∗ holds for the bounded variation
case and both continuous and smooth fit at α∗ holds for the unbounded variation
case;

(2) if (α∗, β∗) satisfy Cβ , then both continuous and smooth fit conditions at β∗ hold
for all cases.
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Remark 5.1 Note that, except that the form of � is different, the conditions Cα and
Cβ (or C′

β ) are the same as Ca and Cb (or C′
b) as in (3.7) and (3.10) (or (3.11)) in

the two-sided singular control case and are similar to Cs and CS (or C′
S) as in (4.5)

and (4.6) (or (4.9)) in the impulse control case.

In order to show the existence of a pair that satisfy Cα and Cβ , consider the
function, for 0 < α < β,

λ̂(α, β) := λ(α, β)

W(q)(β − α)
= − (p + qγI ) + (

1 − γI

) ∫

(−∞,−α)

(
1 − W(q)(β + u)

W(q)(β − α)

)
ν(du).

By using the log-concavity of the scale function as in Sect. 2.7.2, the following can
be easily derived.

Lemma 5.1

(1) For fixed 0 < β < ∞, α �→ λ̂(α, β) is decreasing on (0, β).
(2) For fixed α > 0, β �→ λ̂(α, β) is decreasing on (α,∞).

Using Lemma 5.1(2) and (2.13), for α > 0, we can extend λ̂(α, β) to the cases
β = α and β = ∞ with

λ̂(α) ≡ λ̂(α, α+) := lim
β↓α

λ̂(α, β) = − (p + qγI ) + (1 − γI )ν̄(α),

λ̂(α, ∞) := lim
β→∞ λ̂(α, β) = − (p + qγI ) + (1 − γI )�(q)�(α; ν̄) = �(q)�(α; λ̂),

where

ν̄(x) := ν(−∞,−x), x > 0.

We shall see that the function λ̂(·) plays the same role as f̃ ′(·) in Examples 3.3
and 4.3. Because λ̂(·) and �(·; λ̂) are monotonically decreasing, we can define α :=
a(−̂λ) and α := a(−̂λ) as in Definitions 2.1 and 2.2, respectively. These will serve
as bounds on α∗ and we will have α ≤ α∗ < α.

Egami et al. [20] show that there always exists a pair (α∗, β∗) belonging to one
of the following four cases:

case 1: 0 < α∗ < β∗ < ∞;
case 2: 0 < α∗ < β∗ = ∞;
case 3: 0 = α∗ < β∗ < ∞;
case 4: 0 = α∗ < β∗ = ∞;

which satisfy Cα when α∗ > 0 and Cβ when β∗ < ∞.
Here, we only give a brief sketch of the proof that if

α > 0 and sup
β>α

�(α, β) > 0, (5.18)
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then case 1 holds. (If these are violated, α∗ = 0 and/or β∗ = ∞; see Remark 5.2
below.) To this end, observe that

∂

∂α
�(α, β) = −W(q)(β − α)̂λ(α) (5.19)

is negative for every α ∈ (0, α) by how α is chosen as in Definition 2.1. Hence,
the function α �→ supβ>α �(α, β) is monotonically decreasing on (0, α). Thanks
to the continuity of �(α, β) and (5.18), if we can show that supβ>α �(α, β) < 0,
then there must exist α∗ ∈ (α, α) such that supβ>α∗ �(α∗, β) = 0 with its local
maximum attained at β∗. Indeed, by Lemma 5.1(2) and how α is chosen, λ̂(α, β) ≤
0 or equivalently λ(α, β) ≤ 0 for β ∈ (α,∞) and hence supβ>α �(α, β) =
�(α, α+) = −(γI + γS) < 0.

These properties of the shapes of λ and � can be confirmed by the numerical
plots given in Fig. 8.

Remark 5.2 While the details are omitted in this note, when (5.18) does not hold,
necessarily α∗ = 0 and/or β∗ = ∞. In the latter case, it can be shown that the sup
player never stops in the equilibrium.

In the case α∗ = 0, it may not yield the Nash equilibrium for the unbounded
variation case. To see this, we notice that a default happens as soon as X goes below
zero. Therefore, in the event that X continuously passes (creeps) through zero, the
inf player would optimally seek to exercise at a level as close to zero as possible.
Nevertheless, this timing strategy is not admissible, though it can be approximated
arbitrarily closely by admissible stopping times. It can be shown that α∗ = 0 is
possible only if the jump part Xd of X is of bounded variation.

Fig. 8 Existence of (α∗, β∗) for Example 5.1. Plots of β �→ �(α, β) on [α,∞) for the starting
values α = α, (α + α∗)/2, α∗, (α∗ + α)/2, α. The solid curve in red corresponds to the one
for α = α∗; the point at which �(α∗, ·) is tangent to the x-axis (or λ(α∗, ·) vanishes) becomes
β∗. The function �(α, ·) is monotonically increasing while �(α, ·) is monotonically decreasing.
Equivalently, λ(α, ·) is uniformly positive while λ(α, ·) is uniformly negative
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5.2 Variational Inequalities and Verification

The verification of optimality (for both players) require that, when α∗ < β∗,

gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ I,

(L − q)vα∗,β∗(x) ≥ 0, x ∈ (−∞, α∗) ∩ Io,

(L − q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗) ∩ Io,

(L − q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞) ∩ Io.

(5.20)

On the other hand, when α∗ > β∗, it requires that

gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ I,

(L − q)vα∗,β∗(x) ≤ 0, x ∈ (−∞, β∗) ∩ Io,

(L − q)vα∗,β∗(x) = 0, x ∈ (β∗, α∗) ∩ Io,

(L − q)vα∗,β∗(x) ≥ 0, x ∈ (α∗,∞) ∩ Io.

Suppose α∗ < β∗. From the inf player’s perspective, assuming that the sup
player’s strategy is given by τβ∗ (so that the state space for the inf player is
Iβ∗ := (−∞, β∗) ∩ I), the above variational inequalities satisfy those for the
minimization problem for the inf player that

vα∗,β∗(x) ≤ gI (x), x ∈ Iβ∗,

(L − q)vα∗,β∗(x) ≥ 0, x ∈ (−∞, α∗) ∩ Io
β∗,

(L − q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗).

Similarly, from the sup player’s perspective, assuming that the inf player’s strategy
is given by θα∗ (so that the state space of the sup player is Iα∗ := (α∗,∞) ∩ I),
the above variational inequalities satisfy those for the maximization problem for the
sup player that

vα∗,β∗(x) ≥ gS(x), x ∈ Iα∗,

(L − q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞) ∩ Io
α∗,

(L − q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗).

The case α∗ > β∗ is similar, and hence we omit the details.
This is a rough illustration on why these conditions are imposed for verification.

We refer the reader to [20] and also [21, 40] for more rigorous arguments. In
general, if vα∗,β∗ is unbounded or I has a finite boundary at which vα∗,β∗ fails
to be smooth/continuous, some localizing arguments are necessary.
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5.2.1 Verification for Example 5.1

Here we shall illustrate a proof technique on how the candidate value function vα∗,β∗
solves the variational inequalities, focusing on Example 5.1 in the case 0 < α∗ <

β∗ < ∞.
By (5.11), we can write

vα∗,β∗ (x) =

⎧⎪⎨
⎪⎩

gS(x), x ≥ β∗

gS(x) + (vα∗,β∗ (x) − gS(x)), α∗ < x < β∗

gI (x), x ≤ α∗

⎫⎪⎬
⎪⎭

= −
(p

q
+ 1

)
ζ(x) + J (x)

(5.21)

where

J (x) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p
q

− γS, x ≥ β∗,
ϒ(x; α∗, β∗), α∗ ≤ x < β∗,
p
q

+ γI , 0 ≤ x < α∗,
p
q

+ 1 x < 0.

(5.22)

Here, by (5.17),

ϒ(x; α∗, β∗) =
(p

q
+ γI

)
Z(q)(x − α∗)

− 1 − γI

q

∫

(−∞,−α∗)

(
Z(q)(x − α∗) − Z(q)(x + u)

)
ν(du). (5.23)

See Fig. 9 for a sample plot of the value function along with the stopping values.
Below, we show briefly that vα∗,β∗ solves (5.20) when 0 < α∗ < β∗ < ∞.

Lemma 5.2 Suppose W(q) is sufficiently smooth on (0,∞) (i.e. C1 when X is of
bounded variation and C2 when it is of unbounded variation). Then we have the
following:

(1) gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ [0,∞),
(2) (L − q)vα∗,β∗(x) ≥ 0, x ∈ (0, α∗),
(3) (L − q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗),
(4) (L − q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞).

Brief sketch of proof

(1) We show for x ∈ (α∗, β∗); the other cases are immediate.
The proof is relatively straightforward by the log-concavity of the scale

function as in Sect. 2.7.2 and the shapes of � and λ given by

�(α∗, β) ≤ 0 and λ(α∗, β) ≥ 0, α∗ < β < β∗. (5.24)
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Fig. 9 A sample plot of the value function vα∗,β∗ (solid red line) for Example 5.1 when X is of
unbounded variation. The up-pointing and down-pointing triangles show the points at α∗ and β∗,
respectively. The two dotted lines show the stopping values gS and gI

Here (5.24) holds because, by Lemma 5.1, β �→ �(α∗, β) increases on (α∗, β∗)
and decreases on (β∗,∞) with its peak given at �(α∗, β∗) = 0 (see Fig. 8).

Now, with the help of (5.19) and the log-concavity,

∂+
∂+α

(vα,β∗(x) − gI (x)) =
[ ∂+
∂+α

W(q)(x − α)

W(q)(β∗ − α)

]
�(α, β∗) > 0, α∗ < α < x < β∗.

Hence, by this, (5.16) and (5.24), 0 ≥ W(q)(0)�(x, β∗)/W(q)(β∗ − x) =
vx,β∗(x+) − gI (x) ≥ vα∗,β∗(x) − gI (x) for α∗ < x < β∗.

On the other hand, by (5.24),

∂+
∂+β

(vα∗,β(x) − gS(x)) = W(q)(x − α∗)
(W(q)(β − α∗))2

[
λ(α∗, β)W(q)(β − α∗)

−�(α∗, β)W(q)′((β − α∗)+)
]

> 0, α∗ < x < β < β∗.

Therefore, by this and (5.15), 0 = vα∗,x(x−) − gS(x) ≤ vα∗,β∗(x) − gS(x) for
α∗ < x < β∗.
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(2) By the assumption that W(q) is sufficiently smooth, the identity (2.17) holds,
and therefore

(L − q)ζ(x) = 0, x > 0. (5.25)

Hence,

(L − q)vα∗,β∗(x) = (1 − γI )ν̄(x) − (qγI + p) = λ̂(x). (5.26)

Because x < α∗ < α, this must be positive by how α is chosen.
(3) In view of (5.21), (5.22), and (5.23), it is immediate by (2.16) together

with (5.25).
(4) This is as usual the hardest part because the process can jump from the stopping

region of the sup player (β∗,∞) to the other two regions (−∞, α∗) and
(α∗, β∗), where the form of vα∗,β∗ changes. However, it is more straightforward
than the two-sided singular control case that we studied in Sect. 3.

In Egami et al. [20], they first show that (L − q)vα∗,β∗(β∗+) ≤ (L −
q)vα∗,β∗(β∗−) = 0 using how α∗ and β∗ are chosen so that vα∗,β∗ gets
smooth/continuous at β∗. It then remains to show that x �→ (L − q)vα∗,β∗(x)

is decreasing on (β∗,∞). In view of the decomposition (5.21) and also (5.25),
it is equivalent to showing that (L − q)J (x) is decreasing on (β∗,∞). Indeed,
because J ′ = J ′′ = 0 on x > β∗,

(L − q)J (x) =
∫

(−∞,β∗−x)

[
J (x + u) −

(p

q
− γS

)]
ν(du) − (p − qγS), x > β∗,

where the integrand is nonnegative and monotonically decreasing in x and the
set (−∞, β∗ − x) is decreasing in x as well. ��

In Table 3, we summarize the functions and parameters that played major roles
in the above analysis for Examples 5.1.

Table 3 Summary of the key functions and parameters in Example 5.1

�(α, β) := p
q
−γS−( p

q
+γI

)
Z(q)(β−α)+ 1−γI

q

∫
(−∞,−α)

[
Z(q)(β − α) − Z(q)(β + u)

]
ν(du)

λ̂(α) := −(p + qγI ) + (1 − γI )ν̄(α)

α := a(−λ̂)

≤ α∗ := α of (α, β) such that Cα and Cβ hold simultaneously

< α := a(−λ̂)

< β∗ := β of (α, β) such that Cα and Cβ hold simultaneously

It can be shown that α∗ = α when β∗ = ∞
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5.3 Other Optimal Stopping Games

There are many other existing games studied for a spectrally one-sided Lévy
process. The following problems can be formulated as (5.3). However, there are
clear differences with the problem considered above.

Example 5.2 The McKean optimal stopping game corresponds to the case I = R

with gS(x) = g(x) = (K − ex) ∨ 0 and gI = (K − ex) ∨ 0+ δ for some K, δ > 0.
In other words, this is an extension of the American put option where the seller
(inf player) can also exercise with an additional fee δ. This problem was solved by
Baurdoux and Kyprianou [5] for a spectrally negative Lévy process. It is required
that 0 ≤ ψ(1) ≤ q for the solution to be nontrivial.

Example 5.3 As a way to model a version of the convertible bond, Gapeev and
Kühn [23] and Baurdoux et al. [7] considered the problem where the cost (resp.
reward) for the inf (resp. sup) player is given by

V (x; θ, τ ) := Ex

[ ∫ τ∧θ

0
e−qt

(
C1 + C2e

Xt
)
dt + 1{θ≤τ }e−qθ (eXθ ∨ K) + 1{τ<θ }e−qτ+Xτ

]
,

for C1 ≥ 0 and C2,K > 0. This can be easily transformed to the formulation given
in the beginning of this section. Indeed, by the strongMarkov property, we can write
V (x; θ, τ ) = v(x; θ, τ ) + F(x) where

F(x) := Ex

[ ∫ ∞

0
e−rt (C1 + C2e

Xt )dt
]
,

v(x; θ, τ ) := Ex

[
1{θ≤τ }e−qθ

(
eXθ ∨ K − F(Xθ )

)+ 1{τ<θ}e−qτ (eXτ − F(Xτ ))
]
.

Hence, solving this is equivalent to solving (5.2) with gI (x) = g(x) = ex ∨ K −
F(x), gS(x) = ex − F(x), and I = R.

Gapeev and Kühn [23] considered the case of a Brownian motion plus i.i.d.
exponential jumps. Baurdoux et al. [7] studied for a spectrally positive Lévy process.

In these examples, while the fluctuation theory and scale function can be used as
main tools, the above techniques described in this section may not be directly used.

In Example 5.2, Baurdoux and Kyprianou [5] showed that the equilibrium is
given by either τ ∗ := inf{t > 0 : Xt < k∗} and σ ∗ = ∞, or τ ∗ := inf{t > 0 : Xt <

x∗} and σ ∗ := inf{t > 0 : Xt ∈ [logK, y∗]} for some thresholds k∗, x∗ and y∗.
While continuous/smooth fit can be used to identify these values, due to the critical
barrier logK , one does not observe the dependency between the two parameters that
we have seen in this section.

In Example 5.3, as shown in [23] and [7], the equilibrium is given by two up-
crossing times where at least one of them is the first time X goes above the critical
barrier logK . Therefore, again one does not observe the dependency between the
two parameters.
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5.4 When a Stopper Is Replaced with a Controller

One can naturally consider the case where the stopper(s) are replaced with singular
controller(s).

The game between a controller and a stopper has been studied by Hernández-
Hernández et al. [26] for the case driven by a diffusion process, where they
obtained general results on the verification lemma and gave some explicitly solvable
examples.

The case driven by a spectrally one-sided Lévy process is studied by Hernández-
Hernández and Yamazaki [25], where they considered the problem where a stopper
maximizes and a controller minimizes the expected value of some monotone payoff.
They considered both the spectrally negative and positive cases. Not surprisingly,
the solution procedures are similar to the ones illustrated in this note: the candidate
barriers (a∗, b∗), which separate the state space into the stopping, waiting, and
controlling regions, are chosen by continuous/smooth fit so that

(1) the value function at the boundary for the controller is continuously differen-
tiable (resp. twice continuously differentiable) if it is irregular (resp. regular)
for the controlling region;

(2) the value function at the boundary for the stopper is continuous (resp. continu-
ously differentiable) if it is irregular (resp. regular) for the stopping region.

The verification of optimality can be carried out by showing the verification lemma
as in the one given in Sect. 5.2. As we have seen, many parts of the verification
can be carried out without much effort. However, the difficulty is again to show
the sub/super harmonicity at the region where the process can jump instantaneously
to the other regions. To deal with this, Hernández-Hernández and Yamazaki [25]
applied similar techniques as the ones discussed in Sects. 3.4 and 5.2.1.

The game between two singular controllers is also of great interest. Under a
certain monotonicity assumption on the payoff function, it is expected that the
optimally controlled process becomes the doubly reflected Lévy process similarly
to the two-sided singular control case we studied in Sect. 3. Hence, the candidate
value function can be computed again using the scale function and is expected to
preserve the same smoothness as those observed in Sect. 3. Consequently, the two
boundaries can be chosen in essentially the same way. The verification lemma can
be easily obtained by modifying (3.19). It is expected that many of the techniques
used in Sect. 3 can be recycled.

Acknowledgements The author thanks the anonymous referee for constructive comments and
suggestions. K. Yamazaki is supported by MEXT KAKENHI Grant Number 26800092 and
17K05377.



Optimality of Two-Parameter Strategies in Stochastic Control 103

References

1. D. Applebaum, Lévy Processes and Stochastic Calculus (Cambridge University Press,
Cambridge, 2009)

2. S. Asmussen, F. Avram, M.R. Pistorius, Russian and American put options under exponential
phase-type Lévy models. Stoch. Process. Appl. 109(1), 79–111 (2004)

3. F. Avram, A.E. Kyprianou, M.R. Pistorius, Exit problems for spectrally negative Lévy
processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14(1), 215–
238 (2004)

4. F. Avram, Z. Palmowski, M.R. Pistorius, On the optimal dividend problem for a spectrally
negative Lévy process. Ann. Appl. Probab. 17(1), 156–180 (2007)

5. E. Baurdoux, A.E. Kyprianou, The McKean stochastic game driven by a spectrally negative
Lévy process. Electron. J. Probab. 13(8), 173–197 (2008)

6. E.J. Baurdoux, K. Yamazaki, Optimality of doubly reflected Lévy processes in singular control.
Stoch. Process. Appl. 125(7), 2727–2751 (2015)

7. E.J. Baurdoux, A.E. Kyprianou, J.C. Pardo, The Gapeev-Kühn stochastic game driven by a
spectrally positive Lévy process. Stoch. Process. Appl. 121(6), 1266–1289 (2008)

8. E. Bayraktar, A.E. Kyprianou, K. Yamazaki, On optimal dividends in the dual model. Astin
Bull. 43(3), 359–372 (2013)

9. E. Bayraktar, A.E. Kyprianou, K. Yamazaki, Optimal dividends in the dual model under
transaction costs. Insur. Math. Econom. 54, 133–143 (2014)

10. L. Benkherouf, A. Bensoussan, Optimality of an (s, S) policy with compound Poisson and
diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 48(2),
756–762 (2009)

11. A. Bensoussan, J.-L. Lions, Impulse Control and Quasi-Variational Inequalities (Wiley,
London, 1984)

12. A. Bensoussan, R.H. Liu, S.P. Sethi, Optimality of an (s, S) policy with compound Poisson and
diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 44(5),
1650–1676 (2005)

13. J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge University
Press, Cambridge, 1996)

14. J. Bertoin, Exponential decay and ergodicity of completely asymmetric Lévy processes in a
finite interval. Ann. Appl. Probab. 7(1), 156–169 (1997)

15. T. Chan, A.E. Kyprianou, M. Savov, Smoothness of scale functions for spectrally negative Lévy
processes. Probab. Theory Relat. Fields 150, 691–708 (2011)

16. R.A. Doney, Fluctuation Theory for Lévy Processes. Lecture Notes in Mathematics, vol. 1897
(Springer, Berlin, 2007)

17. M. Egami, K. Yamazaki, Precautional measures for credit risk management in jump models.
Stochastics 85(1), 111–143 (2013)

18. M. Egami, K. Yamazaki, On the continuous and smooth fit principle for optimal stopping
problems in spectrally negative Lévy models. Adv. Appl. Probab. 46(1), 139–167 (2014)

19. M. Egami, K. Yamazaki, Phase-type fitting of scale functions for spectrally negative Lévy
processes. J. Comput. Appl. Math. 264, 1–22 (2014)

20. M. Egami, T. Leung, K. Yamazaki, Default swap games driven by spectrally negative Lévy
processes. Stoch. Process. Appl. 123(2), 347–384 (2013)

21. E. Ekström, G. Peskir, Optimal stopping games for Markov processes. SIAM J. Control Optim.
47(2), 684–702 (2008)

22. D.J. Emery, Exit problem for a spectrally positive process. Adv. Appl. Probab. 5, 498–520
(1973)

23. P.V. Gapeev, C.Kühn, Perpetual convertible bonds in jump-diffusion models. Stat. Decis. 23(1),
15–31 (2005)

24. J.M. Harrison, M.I. Taksar, Instantaneous control of Brownian motion. Math. Oper. Res. 8(3),
439–453 (1983)



104 K. Yamazaki

25. D. Hernández-Hernández, K. Yamazaki, Games of singular control and stopping driven by
spectrally one-sided Lévy processes. Stoch. Process. Appl. 125(1), 1–38 (2015)

26. D. Hernández-Hernández, R.S. Simon, M. Zervos, A zero-sum game between a singular
stochastic controller and a discretionary stopper. Ann. Appl. Probab. 25(1), 46–80 (2015)

27. D. Hernández-Hernández, J.-L. Pérez, K. Yamazaki, Optimality of refraction strategies for
spectrally negative Lévy processes. SIAM J. Control Optim. 54(3), 1126–1156 (2016)

28. M. Jeanblanc-Picqué, Impulse control method and exchange rate. Math. Financ. 3(2), 161–177
(1993)

29. A. Kuznetsov, A. Kyprianou, V. Rivero, The Theory of Scale Functions for Spectrally Negative
Lévy Processes. Springer Lecture Notes in Mathematics, vol. 2061. (Springer, Berlin, 2013),
pp. 97–186

30. A.E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications
(Springer, Berlin, 2006)

31. A.E. Kyprianou, B.A. Surya, Principles of smooth and continuous fit in the determination of
endogenous bankruptcy levels. Financ. Stoch. 11(1), 131–152 (2007)

32. A.E. Kyprianou, R. Loeffen, J.-L. Pérez, et al., Optimal control with absolutely continuous
strategies for spectrally negative Lévy processes. J. Appl. Probab. 49(1), 150–166 (2012)

33. T. Leung, K. Yamazaki, American step-up and step-down credit default swaps under levy
models. Quant. Financ. 13(1), 137–157 (2013)

34. R.L. Loeffen, On optimality of the barrier strategy in de Finetti’s dividend problem for
spectrally negative Lévy processes. Ann. Appl. Probab. 18(5), 1669–1680 (2008)

35. R.L. Loeffen, An optimal dividends problem with transaction costs for spectrally negative Lévy
processes. Insur. Math. Econom. 45(1), 41–48 (2009)

36. P. Matomäki, On solvability of a two-sided singular control problem. Math. Method Oper. Res.
76(3), 239–271 (2012)

37. E. Mordecki, Optimal stopping and perpetual options for Lévy processes. Financ. Stoch. 6(4),
473–493 (2002)

38. G. Mundaca, B. Øksendal, Optimal stochastic intervention control with application to the
exchange rate. J. Math. Econ. 29(2), 225–243 (1998)

39. B. Øksendal, A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edn. (Springer,
Berlin, 2007)

40. G. Peskir, Optimal stopping games and Nash equilibrium. Theory Probab. Appl. 53(3), 558–
571 (2009)

41. G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems. Lectures in Mathe-
matics ETH Zürich (Birkhäuser, Basel, 2006)

42. M.R. Pistorius, On doubly reflected completely asymmetric Lévy processes. Stoch. Process.
Appl. 107(1), 131–143 (2003)

43. M.R. Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its
infimum. J. Theor. Probab. 17(1), 183–220 (2004)

44. P.E. Protter, Stochastic Integration and Differential Equations. Stochastic Modelling and
Applied Probability, vol. 21, 2nd edn. (Springer, Berlin, 2005). Version 2.1

45. A. Shiryaev, The problem of the most rapid detection of a disturbance in a stationary process.
Sov. Math. Dokl. 2, 795–799 (1961)

46. V. Suprun, Problem of destruction and resolvent of terminating process with independent
increments. Ukr. Math. J. 28, 39–45 (1976)

47. B.A. Surya, K. Yamazaki, Optimal capital structure with scale effects under spectrally negative
Lévy models. Int. J. Theor. Appl. Financ. 17(2), 1450013 (2014)

48. K. Yamazaki, Cash management and control band policies for spectrally one-sided levy
processes, in Recent Advances in Financial Engineering 2014, pp. 199–215 (2016)

49. K. Yamazaki, Inventory control for spectrally positive Lévy demand processes. Math. Oper.
Res. 42(1), 212–237 (2017).

50. C. Yin, Y. Wen, Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy
process. Astin Bull. 44(3), 635–651 (2014)


	Optimality of Two-Parameter Strategies in Stochastic Control
	1 Introduction
	1.1 One-Parameter Strategies
	1.2 Two-Parameter Strategies
	1.2.1 Two-Sided Singular Control
	1.2.2 Impulse Control
	1.2.3 Zero-Sum Games Between Two Players

	1.3 Fluctuation Theory of Spectrally One-Sided Lévy Processes
	1.4 Solution Procedures
	1.4.1 Selection of the Two Parameters
	1.4.2 Verification of Optimality

	1.5 Comparison with Other Approaches
	1.6 Computation

	2 Spectrally Negative Lévy Processes and Scale Functions
	2.1 Path Variations and Regularity
	2.2 Scale Functions
	2.3 Smoothness of Scale Functions
	2.4 Fluctuation Identities for Spectrally Negative Lévy Processes
	2.4.1 Two-Sided Exit
	2.4.2 Resolvent Measures

	2.5 Fluctuation Identities for the Infimum and Reflected Processes
	2.5.1 Fluctuation Identities for the Infimum Process
	2.5.2 Fluctuation Identities for tb
	2.5.3 Fluctuation Identities for Yta

	2.6 Fluctuation Identities for Doubly Reflected Lévy Processes
	2.7 Other Properties of the Scale Function
	2.7.1 Asymptotics as x →∞
	2.7.2 Log-Concavity
	2.7.3 Martingale Properties

	2.8 Some Further Notations

	3 Two-Sided Singular Control
	3.1 The Double Reflection Strategy
	3.2 Smoothness of the Value Function
	3.3 Existence of (a*, b*)
	3.3.1 The Case of Example 3.1
	3.3.2 The Case of Example 3.2
	3.3.3 The Case of Example 3.3

	3.4 Variational Inequalities and Verification

	4 Impulse Control
	4.1 The (s,S)-Strategy
	4.2 Smoothness of the Value Function
	4.2.1 The Case of Example 4.3
	4.2.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

	4.3 Quasi-Variational Inequalities and Verification
	4.3.1 The Case of Example 4.3
	4.3.2 Brief Remarks on the Cases of Examples 4.1 and 4.2


	5 Zero-Sum Games Between Two-Players
	5.1 Threshold Strategies
	5.1.1 The Case of Example 5.1 

	5.2 Variational Inequalities and Verification
	5.2.1 Verification for Example 5.1

	5.3 Other Optimal Stopping Games
	5.4 When a Stopper Is Replaced with a Controller

	References


