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Preface

The calculus of variations has its roots in the first problems of optimality studied in
classical antiquity by Archimedes (ca. 287–212 BC in Syracuse, Magna Graecia)
and Zenodorus (ca. 200–140 BC). The beginning of the field as a branch of modern
mathematics can be traced back to June 1696, when Johann Bernoulli published a
description of the brachistochrone problem (see Fig. 1.1 on p. 5) and Leonhard
Euler’s eponymous 1766 treatise Elementa calculi variationum.

The field has seen a sweeping revolution since the formulation of David Hilbert’s
19th, 20th, and 23rd problems in 1900, which anticipated the modern treatment of
minimization problems. This is particularly true for the theory of so-called multiple
integrals, that is, integral functionals defined on spaces of vector-valued maps in
several variables. Minimization problems for such functionals have been system-
atically investigated from the 1950s onward, most notably in the works of Charles B.
Morrey Jr., Ennio De Giorgi, and John M. Ball. These developments were further
fueled by the adaptation of sophisticated mathematical techniques from measure
theory, geometric analysis, and the theory of nonlinear PDEs.

On the application side, the discovery of powerful variational principles to
investigate questions of material science, in particular in the theories of nonlinear
elasticity and microstructure, was (and is) a rich source of challenging problems,
which have shaped the field into its modern form. The methods of the modern
calculus of variations are now among the most powerful to study highly nonlinear
problems in applications from physics, technology, and economics.

The intent of this book is to give an introduction to the classical and modern
calculus of variations with a focus on the theory of integral functionals defined on
spaces of vector-valued maps in several variables. It leads the reader from the most
fundamental results to topics at the forefront of current research. Almost all of the
results presented here are not original, but I have reorganized much of the material
and also improved some proofs with ideas that were not known when the original
arguments were conceived.
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This is not an encyclopedic work. While I do aim to show the big picture, many
interesting and important results are omitted and often I only present a special case
of a more general theorem. Naturally, the choice of topics that I treat in detail is
biased by my own personal preferences.

The presentation of the material in this book is based on a few principles:

• Modern techniques are used whenever this leads to a clearer exposition. Most
prominently, Young measures are introduced early in the book since they
provide a unified and convenient framework to understand a variety of topics.

• I try to use reasonable assumptions, not the most general ones.
• When presented with a choice of how to prove a result, I have usually chosen

what is in my opinion the most conceptually clear approach over more ele-
mentary ones.

• This book considers minimization problems over vector-valued maps right from
the start since this situation has many applications and, in fact, much of the
advanced theory was specifically developed for this case.

• Occasionally, I refer to recent theorems without giving a proof. The rationale
here is that I want the reader to see the frontier of research without compro-
mising the coherence of the text.

• I include some pointers to the literature and a few (incomplete) historical
comments at the end of every chapter.

• The 120 problems are an integral part of the book and I encourage the reader to
attempt as many as possible.

This book has two parts: The first seven chapters form the Basic Course and are
intended to be read in order. They can form the basis of a 30-hour or 40-hour
lecture course for an advanced undergraduate or graduate audience (with some
selection on the part of the lecturer of what material to cover in detail). In fact, this
part is based on lecture notes for the MA4G6 course on the calculus of variations
that I lectured at the University of Warwick in 2015 and 2017 (with Richard
Gratwick in 2015 and Kamil Kosiba in 2017).

Part II of the book on Advanced Topics contains further material that is suitable
for a topics course, a reading seminar, or self-study. Here, three themes with only
minimal interdependence are covered: rigidity and microstructure in Chapters 8 and 9;
linear growth functionals, singularities in measures, and generalized Young mea-
sures in Chapters 10–12; and C-convergence for sharp-interface limits and
homogenization in Chapter 13. Some results presented in these chapters have so far
only been accessible in the research literature, and I hope that even seasoned pro-
fessionals will find something of interest there.

The prerequisites for this book are a good knowledge of functional analysis,
measure theory, and some Sobolev space theory. Most of the results that are
required throughout the book are recalled in the appendix.

This book is strongly influenced by several previous works. I note in particular
the lecture notes on microstructure by Müller [203], Dacorogna’s treatise on the
calculus of variations [76], Kirchheim’s advanced lecture notes on differential
inclusions [160], the monograph on Young measures by Pedregal [222], Giusti’s
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introduction to the calculus of variations [137], Dolzmann’s book on microstructure
in materials [100], as well as lecture notes on several related courses by Jan
Kristensen and Alexander Mielke.

I am grateful for any comments, corrections, and suggestions. They can be sent
via the book’s website, where a list of corrections will also be maintained:

http://www.calculusofvariations.com

comment@calculusofvariations.com

I would like to thank in particular my mathematical teachers Jan Kristensen and
Alexander Mielke. Through their generosity and enthusiasm in sharing their
knowledge, they have provided me with the foundation of my study and research.
I am also immensely grateful to the following people for many helpful discussions
and comments on preliminary versions of the manuscript: Adolfo Arroyo-Rabasa,
Lisa Beck, Filippo Cagnetti, Guido De Philippis, Francesco Ghiraldin, Richard
Gratwick, Martin Jesenko, Kamil Kosiba, Konstantinos Koumatos, Jan Kristensen,
Rajnath Laud, Stefan Müller, Harald Rindler, Angkana Rüland, Bernd Schmidt,
Sebastian Schwarzacher, Hanuš Seiner, Giles Shaw, Parth Soneji, Vladimir Švérak,
Florian Theil, Jack Thomas, Günter von Häfen. I would also like to thank the
production team at Springer and the anonymous referees for their very helpful
comments and suggestions. I am hugely indebted to my wife Laura, my daughter
Alice, my mother Karin, and my wider family for all their love and support
throughout the process of writing this book. I am grateful to Kaye and Prakash for
their constant encouragement. Finally, I would like to acknowledge the support
from an EPSRC Research Fellowship on “Singularities in Nonlinear PDEs”
(EP/L018934/1) and from the University of Warwick.

Coventry, UK Filip Rindler
December 2017
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Chapter 1
Introduction

In the quest to formulate useful mathematical models of aspects of the world, it turns
out on surprisingly many occasions that the model becomes clearer, more compact,
or more tractable if one introduces some form of variational principle. This means
that one can find a quantity, such as energy or entropy, which obeys a minimization,
maximization or saddle-point law.

How much we perceive a variational quantity as “fundamental” or “artificial”
depends on the situation at hand. For example, in classical mechanics, one calls
forces conservative if they are path-independent and hence originate from changing
an energy potential. It turns out that many forces in physics are conservative, which
seems to imply that the concept of energy should be considered “fundamental”. On
the other hand, the entropy as ameasure ofmissing information has amore “artificial”
flavor.

Our approach to variational quantities here is a pragmatic one: We think of them
as providing structure to a problem, which enables us to use powerful variational
methods. For instance, in elasticity theory it is usually unrealistic to assume that a
body will attain a global energy-minimizing shape by itself, but this does not mean
that a minimum principle cannot be useful in practice. If we wait long enough, the
inherent noise in a realistic physical systemwill move the system’s state around until
it iswith high probability close to a state that has globally minimal energy. The reader
interested in the more philosophical aspects of the effectiveness of mathematics in
the description of the natural world, and the calculus of variations in particular,
is directed to Wigner’s very well-known essay “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” [279] and the book “Mathematics and Optimal
Form” by Hildebrandt & Tromba [150] as places to start.

In this book we focus on minimization problems for integral functionals defined
on maps from an open and bounded set Ω ⊂ R

d and with values in R
m (d, m ∈ N).

Thus, we aim to minimize

© Springer International Publishing AG, part of Springer Nature 2018
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4 1 Introduction

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u : Ω → R
m,

usually under conditions on the boundary values of u and possibly under further side
constraints. These problems form the original core of the calculus of variations and
are as relevant today as they have always been.

From the 1950s onwards, the main research focus has been on variational princi-
ples in the vectorial case (d, m > 1), which exhibit many mathematical difficulties.
In particular, it turned out that new forms of (generalized) convexity had to be intro-
duced, most notably Charles B. Morrey Jr.’s quasiconvexity [195] and JohnM. Ball’s
polyconvexity [25]. Another strong driving force of the development in the calcu-
lus of variations during the second half of the 20th century was the Italian School,
which has produced many important discoveries, for instance in regularity theory,
geometric problems, and variational convergence (most notably Ennio De Giorgi’s
�-convergence). Some further history of the calculus of variations can be found
in [68, 129, 150].

We start by looking at a parade of examples, which we treat at varying levels
of detail. The purpose of these examples is to place the mathematical theory in its
applied context and to motivate the themes that have guided the development of the
field. We will return to all of these examples once we have developed the necessary
mathematical tools.

As some examples treat problems from other scientific disciplines, the reader is
asked to take some statements on trust and to simply ignore the sections that are of
no interest. No knowledge of the following examples is required to understand the
exposition of the mathematical theory starting in the next chapter.

1.1 The Brachistochrone Problem

In June 1696 Johann Bernoulli published the description of a mathematical problem
in the journal Acta Eruditorum, see Figure 1.1. Bernoulli also sent a letter containing
the problem toLeibniz on 9 June 1696,who returned his solution only a few days later
on 16 June, and commented that the problem tempted him “like the apple tempted
Eve”. Newton also published a solution (after the problem had reached him) without
giving his identity, but Bernoulli identified him “ex ungue leonem” (from Latin, “by
the lion’s claw”).

The problem that the great minds of the time found so irresistible was formulated
as follows:

Given two points A and B in a vertical [meaning “not horizontal”] plane, one shall find a
curve AM B for a movable point M, on which it travels from the point A to the other point
B in the shortest time, only driven by its own weight.

The resulting curve is called the brachistochrone (from Ancient Greek, “shortest
time”) curve.
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Fig. 1.1 The birth certificate of the calculus of variations [40] (source:Hathi Trust Digital Library)

Amore precise formulation of the brachistochrone problem is as follows:We look
for the curve connecting the origin (0, 0) to the point (x̄, ȳ), where x̄ > 0, ȳ < 0,
such that under the gravitational acceleration (in the negative y-direction) a point
mass m > 0 slides from rest at (0, 0) to (x̄, ȳ) quickest among all such curves, see
Figure 1.2. We parametrize a point (x, y) on the curve by the time t ≥ 0 that the
mass takes to reach it. The sliding point mass has kinetic and potential energies

Ekin = m

2

[(
dx

dt

)2

+
(
dy

dt

)2]
= m

2

(
dx

dt

)2[
1 +

(
dy

dx

)2]
,

Epot = mgy,

where g ≈ 9.81m/s2 is the gravitational acceleration on Earth. The total energy
Ekin + Epot is zero at the beginning and conserved along the path. Hence,

m

2

(
dx

dt

)2[
1 +

(
dy

dx

)2]
= −mgy.

We can solve this for dt/dx (where t = t (x) is the inverse of the x-parameterization)
to get

dt

dx
=

√
1 + (y′)2

−2gy

(
dt

dx
≥ 0

)
,

where we wrote y′ = dy
dx . Integrating over the whole x-length along the curve from

0 to x̄ , we get for the total slide duration T [y] that
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Fig. 1.2 Several slide curves
from the origin to (x̄, ȳ)

T [y] = 1√
2g

∫ x̄

0

√
1 + (y′(x))2

−y(x)
dx .

We may drop the constant in front of the integral since it does not influence the
minimization problem, and set x̄ = 1 by a reparameterization, to arrive at the problem

⎧⎪⎨
⎪⎩
Minimize F [y] :=

∫ 1

0

√
1 + (y′(x))2

−y(x)
dx

subject to y(0) = 0, y(1) = ȳ < 0.

Notice that the integrand is convex in y′(x), which will be important for the solution
theory. We will come back to this problem in Example 3.25.

1.2 The Isoperimetric Problem

This problem, which dates back to antiquity and is among the oldest questions in
the calculus of variations, asks to enclose a given area with the shortest possible
circumference. We pose it in the following version: Given α, β > 0, find a map
u : [0, 1] → R such that

F [u] :=
∫ 1

0

√
1 + (u(s)′)2 ds

is minimal among all such u with u(0) = α, u(1) = β, and

∫ 1

0
u(s) ds = A,
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Fig. 1.3 A candidate curve
for the isoperimetric problem

where A > 0 is the prescribed area under the curve, see Figure 1.3. Note that F [u]
is the length of the curve γ (s) := (s, u(s))T . We refer to [45] for more information
on the history of this question and the research it inspired.

The difficultywith this problemarises as follows: The integrand f (a) := √
1 + a2

behaves like |a| for large values of |a|, so it seems possible that solutions have vertical
pieces. Thus, it is not clear what kind of candidate functions we should allow in
the minimization. We will address this question in Chapter 11, see in particular
Example 11.20.

1.3 Electrostatics

Consider an electric charge density ρ : R
3 → R (in units of C/m3) in a three-

dimensional vacuum. Let E : R
3 → R

3 (in V/m) and B : R
3 → R

3 (in T = Vs/m2)
be the electric and magnetic fields, respectively, which we assume to be constant in
time (hence electrostatics). The Gauss law for electricity reads

∇ · E = div E = ρ

ε0
,

where ε0 ≈ 8.854 · 10−12 C/(Vm) is the vacuum permittivity (electric constant).
Moreover, we have the Faraday law of induction

∇ × E = curl E = dB

dt
= 0,

where t denotes time. Thus, since E is curl-free, there exists an electric potential
φ : R

3 → R (in V) such that
E = −∇φ.

Combining this with the Gauss law, we arrive at the Poisson equation,
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φ = ∇ · [∇φ] = − ρ

ε0
. (1.1)

We can also look at electrostatics in a variational way:With the norming condition
φ(0) = 0, the electric potential energy UE (x; q) of a point charge q (in C) at the
point x ∈ R

3 in the electric field E is given by the path integral

UE (x; q) = −
∫ x

0
q E · ds = −

∫ 1

0
q E(hx) · x dh = qφ(x),

which does not depend on the path chosen since E is a gradient. Hence, the total
electric energy of our charge distribution ρ in its own electrical field is

UE := 1

2

∫
R3

ρφ dx = ε0

2

∫
R3

(∇ · E)φ dx,

which has units of CV = J (the factor 1/2 is necessary to count mutual reaction
forces correctly). Using the identity

(∇ · E)φ = ∇ · (Eφ) − E · (∇φ),

the Gauss–Green theorem, and the natural assumption that φ vanishes at infinity, we
get

UE = ε0

2

∫
R3

∇ · (Eφ) − E · (∇φ) dx = −ε0

2

∫
R3

E · (∇φ) dx = ε0

2

∫
R3

|∇φ|2 dx .

The integral ∫
Ω

1

2
|∇φ(x)|2 dx

is called the Dirichlet functional or the Dirichlet integral.
InExample 3.4wewill see that the solutionsφ of (1.1) are precisely theminimizers

of the variational problem

Minimize φ 
→ UE −
∫
R3

ρ(x)φ(x) dx =
∫
R3

ε0

2
|∇φ(x)|2 − ρ(x)φ(x) dx .

The second term can be interpreted as the interaction energy between the electric
field and the charge density ρ. The existence and regularity of solutions to this
minimization problem will be established in Examples 2.8 and 3.15.
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1.4 Stationary States in Quantum Mechanics

The non-relativistic evolution of a quantum mechanical system with N degrees
of freedom in an electric field is described completely through its wave function
Ψ : R

N × R → C that satisfies the Schrödinger equation

i�
d

dt
Ψ (x, t) =

[−�
2

2μ

 + V (x, t)

]
Ψ (x, t), (x, t) ∈ R

N × [0,∞),

where � ≈ 1.05 · 10−34 Js is the reduced Planck constant, μ is the reduced mass
(in kg), and V = V (x, t) ∈ R is the potential energy (in J). The operator H :=
−(2μ)−1

�
2
 + V is called the Hamiltonian of the system.

The value of the wave function itself at a given point in spacetime has no obvi-
ous physical meaning, but according to the Copenhagen interpretation of quantum
mechanics, x 
→ |Ψ (x, t)|2 is the probability density of finding a particle at the point
x in a measurement at time t . In order for |Ψ ( �, t)|2 to be a probability density, we
need to impose the side constraint

‖Ψ ( �, t)‖2L2(RN ) =
∫
RN

|Ψ (x, t)|2 dx = 1 for all t ∈ [0,∞).

In particular, |Ψ (x, t)| has to decay as |x | → ∞.
Of special interest are the so-called stationary states, that is, solutions of the

stationary Schrödinger equation

[−�
2

2μ

 + V (x)

]
Ψ (x) = EΨ (x), x ∈ R

N ,

where E > 0 is an energy level. If we are just interested in the lowest-energy state,
the so-called ground state, we can instead find minimizers of the energy functional

E [Ψ ] :=
∫
RN

�
2

4μ
|∇Ψ (x)|2 + 1

2
V (x)|Ψ (x)|2 dx,

again under the side constraint
‖Ψ ‖2L2 = 1.

The two parts of the integral above correspond to kinetic and potential energy, respec-
tively. We will continue this investigation in Example 3.22.
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1.5 Optimal Saving and Consumption

Consider a capitalist worker earning a (constant) wage w per year, which the worker
can either spend on consumption or save. Denote by S(t) the accumulated savings
at time t , where t ∈ [0, T ] is in years, with t = 0 denoting the start of employment
and t = T retirement. Let C(t) ≥ 0 be the consumption rate (consumption per time)
at time t . On the saved capital, the worker earns interest, say with gross-continuous
rate ρ > 0, meaning that a capital amount m > 0 grows as exp(ρt)m. If we were
given an effective APR ρ1 > 0 instead of ρ, then ρ = ln(1+ρ1). We further assume
that the salary is paid continuously, not in intervals, for simplicity. So, w is really the
rate of pay, given in money per time. Then, the worker’s savings evolve according
to the differential equation

Ṡ(t) = w + ρS(t) − C(t). (1.2)

We now make the (totally unreasonable) assumption that the worker’s happiness
only depends on his consumption rate. Suppose that our worker wants to optimize
total life happiness by finding the optimal amount of consumption at any given
time. So, if we denote by U (C) the marginal utility function, that is, the marginal
“happiness” due to the consumption rateC , our worker wants to find C : [0, T ] → R

such that

H [C] :=
∫ T

0
U (C(t)) dt

is maximized. The choice ofU depends on our worker’s personality, but it is sensible
to assume that there is a law of diminishing returns, i.e., for twice as much consump-
tion, our worker is happier, but not twice as happy. So, let us assume U ′ > 0 and
U ′(C) → 0 as C → ∞. Also, we should have U (0) = 0 (starvation). Moreover, it
is realistic for U to be concave, which in particular implies that there are no local
maxima. One function that satisfies all of these requirements is

U (C) = ln(1 + C), C > 0.

Let us also assume that the worker starts with no savings, S(0) = 0, and wants
to retire with savings S(T ) = ST ≥ 0. Rearranging (1.2) for C(t) and plugging this
into the formula forH , we therefore want to solve the optimal saving problem

⎧⎪⎨
⎪⎩
Minimize F [S] :=

∫ T

0
− ln(1 + w + ρS(t) − Ṡ(t)) dt

subject to S(0) = 0, S(T ) = ST ≥ 0, C(t) := w + ρS(t) − Ṡ(t) ≥ 0.

This will be solved in Example 3.7.
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Fig. 1.4 Sailing against the wind in a channel

1.6 Sailing Against the Wind

Every sailor knows how to sail against the wind by “beating”: One has to sail at an
angle of approximately 45◦ to the wind (in real boats, the maximum might be at a
lower angle, i.e., “closer to the wind”), then tack (turn the bow through the wind)
and finally, after the sail has caught the wind on the other side, continue again at
approximately 45◦ to the wind. Repeating this procedure makes the boat follow a
zig-zagmotion, which gives a netmovement directly against thewind, see Figure 1.4.
A mathematically inclined sailor might ask the question of “how often to tack”. In
an idealized model we can assume that the wind has the same speed and direction
everywhere, tacking costs no time, and the forward sailing speed vs of the boat
depends on the angle α to the wind as follows (at least qualitatively):

vs(α) = vmax · 1 − cos(4α)

2
,

where vmax is the maximum speed of the boat at the current wind speed, which we
assume to be constant. Then, vs(α) is non-negative and has maxima at α = ±45◦.

Assume furthermore that our sailor is sailing along a straight riverwith the current.
Now, the current is fastest in the middle of the river and disappears at the banks. In
fact, a good approximation for the flow speed is given by the formula of Poiseuille
(channel) flow, which can be derived from the flow equations of fluids: At distance
r from the center of the river the current’s flow speed is approximately

vc(r) := vflow

(
1 − r2

R2

)
,

where R > 0 is half the width of the river.
If we denote by r(t) the distance of the boat from themiddle of the channel at time

t ∈ [0, T ], then the total speed (called the “velocity made good” in sailing parlance)
is
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Fig. 1.5 The double-well
potential in the sailing
example

v(t) := vs(arctan r ′(t)) + vc(r(t))

= vmax · 1 − cos(4 arctan r ′(t))
2

+ vflow

(
1 − r(t)2

R2

)
.

The key to understanding this problem is the observation that the function given by
a 
→ (cos(4 arctan a) − 1)/2 has precisely two minima, namely at a = ±1. We say
that this function is a double-well potential, see Figure 1.5.

The total forward distance traveled over the time interval [0, T ] is
∫ T

0
v(t) dt =

∫ T

0
vmax · 1 − cos(4 arctan r ′(t))

2
+ vflow

(
1 − r(t)2

R2

)
dt.

If we also require the initial and terminal conditions r(0) = r(T ) = 0, we arrive at
the optimal beating problem

⎧⎪⎨
⎪⎩
Minimize F [r ] :=

∫ T

0
vmax · cos(4 arctan r ′(t)) − 1

2
+ vflow

(
r(t)2

R2
− 1

)
dt

subject to r(0) = r(T ) = 0, |r(t)| ≤ R.

Our intuition tells us that in this idealized model, where tacking costs no time, we
should be tacking “infinitely fast” in order to stay in the middle of the river. Later,
once we have advanced tools at our disposal, we will make this idea precise, see
Example 7.13.

1.7 Hyperelasticity

Elasticity theory is one of the most important theories of continuum mechanics,
that is, the study of the mechanics of (idealized) continuous media. We will not
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Fig. 1.6 A deformed body

go into much detail about elasticity modeling here and refer to [64] for a thorough
introduction.

Consider a body of mass occupying a bounded and connected domain Ω ⊂ R
3

such that ∂Ω is a Lipschitz manifold (the union of finitely many Lipschitz graphs).
We call Ω the reference configuration. If we deform the body, any material point
x ∈ Ω is mapped to a spatial point y(x) ∈ R

3 and we call y(Ω) the deformed
configuration, see Figure 1.6. We also require that y : Ω → y(Ω) is a differentiable
bijection and that it is orientation-preserving, i.e.,

det∇ y(x) > 0, x ∈ Ω.

For convenience let us also introduce the displacement

u(x) := y(x) − x .

Next, we need ameasure of local “stretching”, called a strain tensor, which should
serve as the argument for a local energy density. On physical grounds, rigid body
motions, that is, deformations of the form u(x) = Rx + u0 with a rotation R ∈ R

3×3

(RT = R−1, det R = 1) and u0 ∈ R
3, should not cause strain. In this sense, strain

measures the deviation of the deformation from a rigid body motion. One common
choice is the Green–St. Venant strain tensor

G := 1

2

(∇u + ∇uT + ∇uT ∇u
)
. (1.3)

We first consider fully nonlinear (“finite strain”) elasticity. For our purposes we
simply postulate the existence of a stored-energy density W : R

3×3 → [0,∞] and
an external body force field b : Ω → R

3 (e.g. gravity) such that

F [y] :=
∫

Ω

W (∇ y(x)) − b(x) · y(x) dx

represents the total elastic energy stored in the system. If the elastic energy can be
written in this way as ∫

Ω

W (∇ y(x)) dx,
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we call thematerial hyperelastic. In applications, W is sometimes given as depending
on the Green–St. Venant strain tensor G instead of ∇ y, but for the mathematical
theory the above form is more convenient. We require several properties of W :

(i) Norming: W (Id) = 0 (the undeformed state costs no energy).
(ii) Frame-indifference: W (Q A) = W (A) for all Q ∈ SO(3), A ∈ R

3×3.
(iii) Infinite compression costs infinite energy: W (A) → +∞ as det A ↓ 0.
(iv) Infinite stretching costs infinite energy: W (A) → +∞ as |A| → ∞.

The fundamental task of nonlinear hyperelasticity is to minimize F as above
over all y : Ω → R

3 with given boundary values. Of course, it is not a priori clear
in which space we should look for a solution. Indeed, this depends on the growth
properties of W . For example, for the prototypical choice

W (A) := dist(A,SO(3))2, where dist(A, K ) := inf
B∈K

|A − B|,

wewould look for square-integrable functions. However, this W does not satisfy (iii)
from our list of requirements. More realistic in applications are the Mooney–Rivlin
materials, where W is of the form

W (A) :=
{

a|A|2 + b| cof A|2 + �(det A) if det A > 0,

+∞ if det A ≤ 0,

with a, b > 0 and �(d) = αd2−β log d for α, β > 0. If b = 0, the material is called
neo-Hookean. An even larger class is given by the Ogden materials, for which

W (A) :=
M∑

i=1

ai tr
[
(AT A)γi /2

] +
N∑

j=1

b j tr cof
[
(AT A)δ j /2

] + �(det A),

where M, N ∈ N, ai > 0, γi ≥ 1, b j > 0, δ j ≥ 1, and � : R → R ∪ {+∞} is
a convex function with �(d) → +∞ as d ↓ 0, �(d) = +∞ for d ≤ 0. These
materials occur in a wide range of applications. We will consider such problems in
Example 6.8.

In the setting of linearized elasticity, we make the “small strain” assumption that
y is an orientation-preserving bijection with∇u “small” such that the quadratic term
in (1.3) can be neglected. In this case, we work with the linearized strain tensor

E u := 1

2

(∇u + ∇uT
)
.

Now, the displacements that do not create strain are precisely the skew-affine maps
u(x) = W x + u0 with W T = −W and u0 ∈ R. This becomes more meaningful
if we consider a bit more algebra: The Lie group SO(3) of rotations has as its Lie
algebra Lie(SO(3)) = so(3), the space of all skew-symmetric matrices, which then
can be seen as “infinitesimal rotations”.



1.7 Hyperelasticity 15

For linearized elasticity we consider an energy of the special quadratic form

W [u] :=
∫

Ω

1

2
E u(x) : C(x)E u(x) dx,

whereC(x) = Cik
jl(x) (x ∈ Ω) is a symmetric, positive definite (A : C(x)A ≥ c|A|2

for some c > 0) fourth-order tensor, called the elasticity tensor.
For homogeneous, isotropic media, C does not depend on x or the direction of

strain, which translates into the additional condition

(AQ) : C(AQ) = A : CA for all A ∈ R
3×3, Q ∈ SO(3).

In this case, it can be shown that W simplifies to

W [u] =
∫

Ω

μ|E u(x)|2 + 1

2

(
κ − 2

3
μ

)
| tr E u(x)|2 dx

for μ > 0 the shear modulus and κ > 0 the bulk modulus, which are material
constants. For example, for cold-rolled steel μ ≈ 75 GPa and κ ≈ 160 GPa. As in
the nonlinear setting, we then consider the minimization problem for the total energy

F [u] :=
∫

Ω

μ|E u(x)|2 + 1

2

(
κ − 2

3
μ

)
| tr E u(x)|2 − b(x) · u(x) dx,

where b : Ω → R
3 is the external body force (now with respect to u). We will

consider this functional further in Examples 2.12 and 3.16.

1.8 Microstructure in Crystals

In a single crystal of a metal like iron or an alloy like CuAlNi (Copper–Aluminium–
Nickel), the atoms are arranged in a regular lattice. Assume that such a material
specimen occupies an open, bounded, and connected reference domainΩ ⊂ R

3. We
then want to determine the resulting deformed shape subject to external forces.

It turns out that on a microscopic scale the deformation of a single crystal (subject
to given boundary conditions) often exhibits very fine locally periodic oscillations
in the deformation, that is, the crystal exhibits microstructure, see Figure 1.7. This
behavior has profound implications for the macroscopic behavior of the material.

The fundamental Cauchy–Born hypothesis postulates that for small linear dis-
placements the crystal lattice atoms will follow this displacement (this assumption
is often made, but is not always justified, see [70, 105, 108, 128]). Assuming that
the microstructure does not reach down to atomic length scales, we can then model
the crystal as a continuum and assign the energy density W (F) ≥ 0 to the linear
deformation x 
→ Fx . The crucial point here is that, thanks to the Cauchy–Born
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Fig. 1.7 CuAlNimicrostructure undergoing a transition from cubic austenite (left) to orthorhombic
martensite (right), see [241] for more details on this particular microstructure (source: original
micrograph by Hanuš Seiner, reproduced with kind permission)

hypothesis, W depends only on F and no other “microscopic structure” of the crys-
tal, at least for small to moderate crystal deformations. In this approach, the total
energy of a deformation y : Ω → R

3 is given as

F [y] :=
∫

Ω

W (∇ y(x)) dx, y : Ω → R
3.

Here, on W : R
3×3 → [0,∞) we make the following assumptions:

(i) Norming: W (Id) = 0 (the undeformed state costs no energy).
(ii) Frame-indifference: W (Q A) = W (A) for all Q ∈ SO(3), A ∈ R

3×3.
(iii) Symmetry-invariance: W (AS) = W (S) for all S ∈ S and all A ∈ R

3×3, where
S ⊂ SO(3) is the compact (symmetry) point group of the crystal.

The basic variational postulate is that the observed macroscopic deformation is a
minimizer ofF under the given boundary conditions. In fact, it is often experimen-
tally observed that the deformation y : Ω → R

3 is close to a pointwise minimizer of
the integrand, at least in a very large portion of Ω . Thus, we are led to consider the
differential inclusion

∇ y(x) ∈ K := W −1(0) = {
A ∈ R

3×3 : W (A) = min W
}
, x ∈ Ω.

The set K is compact in the study of crystals, but other applications also lead to
differential inclusions with non-compact K .
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In concrete applications, one usually has the following (idealized) situation:
Above a critical temperature, K is simply SO(3), which is the simplest possible
set that is compatible with the frame-indifference (ii). This is called the austenite
phase. Below the critical temperature, however, the material undergoes a solid–solid
phase transition to the martensite phase, where K is the union of several wells, that
is,

K = SO(3)U1 ∪ · · · ∪ SO(3)UN

for distinct matrices U1, . . . , UN ∈ R
3×3 with detUi > 0 (i = 1, . . . , N ). By

the polar decomposition of matrices with positive determinants into a product of a
rotation and a symmetric positive definite matrix, we can assume that all the Ui are
symmetric and positive definite.

If N ≥ 2 and other compatibility conditions between the matricesUi are satisfied,
microstructure can indeed be observed. It should be noted that while our model as
formulated above may imply “infinitely fast” oscillations in the microstructure, in
reality other (atomistic) effects limit the length scales that are observed.

As a concrete example, the NiAl (Nickel–Aluminium) alloy undergoes a cubic-
to-tetragonal phase transition and below the critical temperature we have

K = SO(3)U1 ∪ SO(3)U2 ∪ SO(3)U3

with

U1 =
⎛
⎝β

α

α

⎞
⎠ , U2 =

⎛
⎝α

β

α

⎞
⎠ , U3 =

⎛
⎝α

α

β

⎞
⎠ ,

for α ≈ 0.9392, β ≈ 1.1302, see [41, 107].
As another example, the CuAlNi alloy undergoes a cubic-to-orthorhombic phase

transition and below the critical temperature we have

K = SO(3)U1 ∪ · · · ∪ SO(3)U6

with

U1 =
⎛
⎝ξ 0 η

0 β 0
η 0 ξ

⎞
⎠ , U2 =

⎛
⎝ ξ 0 −η

0 β 0
−η 0 ξ

⎞
⎠ , U3 =

⎛
⎝ξ η 0

η ξ 0
0 0 β

⎞
⎠ ,

U4 =
⎛
⎝ ξ −η 0

−η ξ 0
0 0 β

⎞
⎠ , U5 =

⎛
⎝β 0 0
0 ξ η

0 η ξ

⎞
⎠ , U6 =

⎛
⎝β 0 0
0 ξ −η

0 −η ξ

⎞
⎠ ,

where
ξ = α + γ

2
, η = α − γ

2

for α ≈ 1.0619, β ≈ 0.9178, γ ≈ 1.0230, see [41, 104].
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A first mathematical question that can be asked about such microstructures con-
cerns their effective representation:What are the salient features of the oscillations in
the material and how can they be captured mathematically? Moreover, which defor-
mations with linear boundary values x 
→ Fx have almost zero energy? It turns out
that by relying on very high-frequency oscillations, the set of these F can actually be
much larger than K and defines a certain “hull” of K . This hull explains the observed
microstructure, as we will see in Chapter 9.

In engineering applications, one striking property of NiAl and CuAlNi is the
shape-memory effect, where a material specimen “remembers” the shape it had when
it was hotter than the critical temperature. After cooling, the specimen can be freely
deformed, but when it is again heated above the critical temperature, it “snaps back”
into its original shape. This effect is directly related to the formation of microstruc-
ture (below the critical temperature), which accommodates the deformations through
microstructure changes, but without changing the structure of the crystal lattice itself.
Upon heating the specimen above the critical temperature, all microstructure disap-
pears and the original shape (which is determined by the crystal lattice in the cubic
phase) reappears. Note that all the matrices U1, U2, . . . for both NiAl and CuAlNi
have determinant very close to 1, which is a common feature of shape-memory
alloys, because it is necessary for the self-accommodation effect, where upon cool-
ing through the critical temperature the microstructure arranges itself in a such way
that the macroscopic shape does not change. See [41] for a detailed study of the
shape-memory effect.

In Chapters 8, 9 we will consider the basic principles underlying this problem,
see Examples 8.10, 9.17. Concrete applications are left to more specialized treatises
like [41, 100].

1.9 Phase Transitions

Consider a (bounded, open, connected) container Ω ⊂ R
d (d ∈ {2, 3} are the

physically interesting cases) containing two mixed fluids. We let ρ : Ω → [0, 1]
model the density of the first fluid and prescribe the relative amounts of the two
fluids by requiring that ∫

Ω

ρ(x) dx = γ̃ ∈ (0, |Ω|). (1.4)

The Gibbs free energy of the mixture is given as

G [ρ] :=
∫

Ω

W0(ρ(x)) dx, ρ : Ω → [0, 1],

where W0 : R → [0,∞). Often, the energy density W0 has precisely two minima
α, β ∈ [0, 1]with α < β and thus W0 is a double-well potential. In the simplest case,
the fluids do not mix well (e.g. water and oil), and the two local minima of W0 are
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Fig. 1.8 A phase transition

located atα = 0 (all oil) andβ = 1 (allwater), see Figure 1.8. It is a classical problem,
first considered by Cahn–Hilliard and Gurtin (see [54, 146, 147]), to determine the
equilibrium mixture, i.e., to find a minimizer of G . In order for the problem to be
interesting, we assume that

γ̃ ∈ (α|Ω|, β|Ω|).

However, in the above form this problem is not well-posed: We can just choose
any ρ : Ω → [0, 1] with ρ(x) ∈ {α, β} for all x ∈ Ω such that (1.4) holds. This will
be a minimizer of F0, but this formulation is unsatisfactory: The shape of the two
phases

Eα := {
x ∈ Ω : ρ(x) = α

}
, Eβ := {

x ∈ Ω : ρ(x) = β
}
,

is clearly not uniquely determined and no regularity can be assumed on the phase
boundary ∂ Eα∩Ω = ∂ Eβ∩Ω . The remedy to this problemcomes fromphysics in the
form of the additional assumption that the interface between Eα and Eβ should have
the minimal surface area among all competitors. We can incorporate this minimum
principle in two different ways. First, we can penalize changes in the function ρ by
adding a (quadratic) gradient term and set

F̃ε[ρ] :=
∫

Ω

W0(ρ(x)) + ε2|∇ρ(x)|2 dx,

where ε > 0 is a (small) parameter. For purely mathematical reasons it turns out to
be beneficial to transform this functional into

Fε[u] :=
∫

Ω

1

ε
W (u(x)) + ε|∇u(x)|2 dx, u : Ω → [−1, 1],

where W : R → [0,∞) is given as (see, for instance, Figure 7.1 for an illustration
of such a double-well potential)
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W (s) := W0

(
α + s + 1

2
(β − α)

)
− W0(α) · 1 − s

2
− W0(β) · s − 1

2
,

so that W (±1) = 0 are the two global minima of W . From (1.4) it can be verified
easily that each ρ minimizing F̃ε corresponds to precisely one u minimizingFε via
the transformation

ρ(x) = α + u(x) + 1

2
(β − α),

whereby one can compute that for such pairs (u, ρ),

F̃ε[ρ] = ε(β − α)

2
Fε(β−α)/2[u]

and ∫
Ω

u(x) dx = γ := 2(γ̃ − α|Ω|)
β − α

− |Ω| ∈ (−|Ω|, |Ω|).

We remark that the balancing of the ε-terms turns out to be necessary if we want to
consider the limit as ε ↓ 0. Notice also that a minimizer of Fε will have a square-
integrable gradient and so, besides the pure phases

E±1 := {
x ∈ Ω : u(x) = ±1

}
,

there will also be a non-empty transition region

Δ := {
x ∈ Ω : u(x) ∈ (−1, 1)

}
.

Intuitively, Δ will shrink to a phase interface surface as ε ↓ 0 since the regularizing
effect of the gradient term inFε gets weaker as ε ↓ 0.

An alternative way to model the physical situation is to prescribe that u : Ω →
{−1, 1} splits the domain into the two phases E±1 = E±1(u) and the transition
region is empty. In this case, we could consider those u minimizing the surface
tension between the phases,

F0[u] := σPerΩ(E−1(u)),

to be the physically relevant solutions. Here, the perimeter PerΩ(E−1(u)) should be
understood as the surface area of ∂ E−1(u) ∩ Ω , at least if ∂ E−1(u) ∩ Ω is a smooth
manifold (with boundary). In more general situations the definition of this quantity
will have to be suitably extended. The constant σ > 0 takes the role of a surface
tension. Notice that forF0 as defined above to make sense, the set ∂ E−1(u)∩Ω has
to have some regularity, so that F0[u] < ∞.

An important question about the above functionals is the following: As ε ↓ 0,
does Fε “converge” to F0 in a sense that entails the convergence of minimizers
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and minimum values (for a suitably chosen σ )? We will return to this question in
Chapter 13, in particular in Example 13.10.

1.10 Composite Elastic Materials

Assume we are given a linearly elastic material specimen (like in Section 1.7) occu-
pying the domain Ω ⊂ R

3, whose stored energy for a displacement u : Ω → R
3

is

W [u] :=
∫

Ω

1

2
E u(x) : C(x)E u(x) dx,

where, as in Section 1.7, C(x) = Cik
jl(x) (x ∈ Ω) is a symmetric, positive definite

fourth-order elasticity tensor. Here we suppose in addition thatC depends on x in an
ε-periodic manner for a small ε > 0. For instance, we could imagine our specimen to
be a composite consisting of thin alternatingmaterial layers of two different types, see
Figure 1.9.We denote the elasticity tensors of these layers byC1 andC2, respectively,
and assume that the layers alternate in the first coordinate direction with thicknesses
θε and (1−θ)ε, respectively, where θ ∈ (0, 1). Then, the elastic energy has the form

Wε[u] :=
∫

Ω

1

2
E u(x) : C

( x

ε

)
E u(x) dx,

where
C(x) = C1 + (C2 − C1)h(x1), x ∈ R

3,

and

h(t) :=
{
0 if t − �t� ≤ θ,

1 if t − �t� > θ.

Here, �t� denotes the largest integer less than or equal to t ∈ R. The total energy to
be minimized is

Fε[u] :=
∫

Ω

fε
( x

ε
,∇u(x)

)
− b(x) · u(x) dx

:=
∫

Ω

1

2
E u(x) : C

( x

ε

)
E u(x) − b(x) · u(x) dx,

where b : Ω → R
3 is the external body force.

In many applications, one is predominantly interested in the homogenized behav-
ior of the specimen, that is, its large-scale, averaged properties. Mathematically, this
corresponds to a form of “variational limit” of theFε, which entails the convergence
of minimizers and minimum values. Ideally, we want to compute a homogenized
density fhom : R

3×3 → R (not x-dependent), such thatFε “variationally converges”
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Fig. 1.9 A deformed
composite material body

to a limitF0 of the form

F0[u] =
∫

Ω

fhom(∇u(x)) − b(x) · u(x) dx .

The following questions are of importance:

• Does an F0 as above exist and can it be written as an integral functional?
• Does fhom (if it exists) have the same quadratic structure as the fε, that is, is
there a symmetric, positive definite fourth-order tensor Chom such that fhom(A) =
1
2 Asym : Chom Asym (here, Asym is the symmetric part of A)?

• In the special case when C1 = α I, C2 = β I for α, β > 0 (here, I denotes the
tensor such that A : IB = A : B, so Iik

jl = δikδ jl ), is Chom (if it exists) also of the
form Chom = γ I for some γ > 0?

We will investigate these questions in Example 13.25.



Chapter 2
Convexity

In this chapterwe start to develop themathematical theory thatwill allowus to analyze
the problems presented in the introduction, and many more. The basic minimization
problem that we are considering is the following:

⎧
⎨

⎩

Minimize F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx

over all u ∈ W1,p(Ω;Rm) with u|∂Ω = g.

Here, and throughout the text if not stated otherwise, we will make the standard
assumption that Ω ⊂ R

d is a bounded Lipschitz domain, that is, Ω is open,
bounded, connected, and has a boundary that is the union of finitely many Lipschitz
manifolds. The function

f : Ω × R
m × R

m×d → R

is required to be measurable in the first and (jointly) continuous in the second and
third arguments, whichmakes f a so-calledCarathéodory integrand. Furthermore,
in this chapter we (usually) let p ∈ (1,∞) and for the prescribed boundary values g
we assume

g ∈ W1−1/p,p(∂Ω;Rm).

In this context recall that W1−1/p,p(∂Ω;Rm) is the space of traces of Sobolev maps
in W1,p(Ω;Rm), see Appendix A.5 for some background on Sobolev spaces.

Below, we will investigate the solvability of the above minimization problem
(under additional technical assumptions). We first present the main ideas of the so-
called Direct Method of the calculus of variations in an abstract setting, namely for
(nonlinear) functionals on Banach spaces. Then we will begin our study of inte-
gral functionals, where we will in particular take a close look at the way in which
convexity properties of f in its gradient (third) argument determine whether F is

© Springer International Publishing AG, part of Springer Nature 2018
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lower semicontinuous. We also consider the question of which function space should
be chosen for the candidate functions. Finally, we explain basic aspects of general
convex analysis, in particular the Legendre–Fenchel duality.

2.1 The Direct Method

Fundamental to all of the existence theorems in this book is the conceptually simple,
yet powerful, Direct Method of the calculus of variations. It is called “direct” since
we prove the existence of solutions to minimization problems without the detour
through a differential equation.

Let X be a complete metric space (e.g. a Banach space with the norm topology
or a closed and convex subset of a reflexive Banach space with the weak topology).
Let F : X → R ∪ {+∞} be our objective functional that we require to satisfy the
following two assumptions:

(H1) Coercivity: For all Λ ∈ R, the sublevel set

{
u ∈ X : F [u] ≤ Λ

}
is sequentially precompact,

that is, if F [u j ] ≤ Λ for a sequence (u j ) ⊂ X and some Λ ∈ R, then (u j )

has a converging subsequence in X .
(H2) Lower semicontinuity: For all sequences (u j ) ⊂ X with u j → u in X it holds

that
F [u] ≤ lim inf

j→∞ F [u j ].

Note that here and in all of the followingweuse the sequential notions of compactness
and lower semicontinuity, which are better suited to our needs than the corresponding
topological concepts. For more on this point see the notes section at the end of this
chapter.

The Direct Method for the abstract problem

Minimize F [u] over all u ∈ X (2.1)

is encapsulated in the following simple result.

Theorem 2.1. Assume thatF is both coercive and lower semicontinuous. Then, the
abstract minimization problem (2.1) has at least one solution, that is, there exists a
u∗ ∈ X withF [u∗] = min{F [u] : u ∈ X }.
Proof. Let us assume that there exists at least one u ∈ X such that F [u] < +∞;
otherwise, any u ∈ X is a “solution” to the (degenerate) minimization problem.

To construct a minimizer we take a minimizing sequence (u j ) ⊂ X such that

lim
j→∞F [u j ] → α := inf

{
F [u] : u ∈ X

}
< +∞.
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Then, there exists a Λ ∈ R such that F [u j ] ≤ Λ for all j ∈ N. Hence, by the
coercivity, we may select a subsequence, which we do not make explicit in our
notation, such that

u j → u∗ ∈ X.

By the lower semicontinuity we immediately conclude that

α ≤ F [u∗] ≤ lim inf
j→∞ F [u j ] = α.

Thus, F [u∗] = α and u∗ is the sought minimizer. �

Example 2.2. Using the Direct Method, one can easily see that the lower semicon-
tinuous function

h(t) :=
{
1 − t if t < 0,

t if t ≥ 0,

has the minimizer t = 0.

Despite its nearly trivial proof, the Direct Method is very useful and flexible
in applications. Indeed, it pushes the difficulty in proving the existence of a mini-
mizer into establishing coercivity and lower semicontinuity. This, however, is a big
advantage, since we have many tools at our disposal to establish these two hypothe-
ses separately. In particular, for integral functionals, lower semicontinuity is tightly
linked to convexity properties of the integrand, as we will see throughout this book.

At this point it is crucial to observe how coercivity and lower semicontinuity
interact with the topology on X : If we choose a stronger topology, i.e., one for
which there are fewer converging sequences, then it is easier for F to be lower
semicontinuous, but harder forF to be coercive. The opposite holds if we choose a
weaker topology. In the mathematical treatment of a problem from applications, we
are most likely in a situation whereF and the set X are given. We then need to find a
suitable topology inwhichwe can establish both coercivity and lower semicontinuity.
It is remarkable that the topology that turns out to be mathematically convenient is
often also physically relevant.

In this book, X will always be an infinite-dimensional Banach space (or a subset
thereof) and we have a real choice between using the strong or weak convergence.
Usually, it turns out that coercivitywith respect to the strong convergence is false since
strongly compact sets in infinite-dimensional spaces are very restricted, whereas
coercivitywith respect to theweak convergence is true under reasonable assumptions.
On the other hand, while strong lower semicontinuity poses few challenges, lower
semicontinuitywith respect toweakly converging sequences is amore delicatematter
and we will spend considerable time on this topic.

As a result of this discussion, we will almost always use the Direct Method in the
following version:
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Theorem 2.3. Let X be a reflexive Banach space or a closed affine subset of a
reflexive Banach space and letF : X → R ∪ {+∞}. Assume the following:
(WH1) Weak coercivity: For all Λ ∈ R the sublevel set

{
u ∈ X : F [u] ≤ Λ

}
is sequentially weakly precompact,

that is, if F [u j ] ≤ Λ for a sequence (u j ) ⊂ X and some Λ ∈ R, then (u j )

has a weakly converging subsequence.
(WH2) Weak lower semicontinuity: For all sequences (u j ) ⊂ X with u j ⇀ u in X

(weak convergence) it holds that

F [u] ≤ lim inf
j→∞ F [u j ].

Then, the problem
MinimizeF [u] over all u ∈ X

has at least one solution.

The proof of this theorem is analogous to the proof of Theorem 2.1, also taking
into account the fact that all (strongly) closed affine subsets of a Banach space are
weakly closed.

2.2 Functionals with Convex Integrands

As a first instance of the theory of integral functionals to be developed in this book,
we now consider the minimization problem for

F [u] :=
∫

Ω

f (x,∇u(x)) dx

over all u ∈ W1,p(Ω;Rm), where Ω ⊂ R
d is a bounded Lipschitz domain and

p ∈ (1,∞) will be chosen later (depending on growth properties of f ). The reader
is referred to Appendix A.5 for an overview of Sobolev spaces.

The following lemma shows that the integrand is measurable if f is a so-called
Carathéodory integrand, which from now on we assume.

Lemma 2.4. Let f : Ω × R
N → R be a Carathéodory integrand, that is,

(i) x �→ f (x, A) is Lebesgue-measurable for every fixed A ∈ R
N ;

(ii) A �→ f (x, A) is continuous for (Lebesgue-)almost every fixed x ∈ Ω .

Then, for anyBorel-measurablemap V : Ω → R
N the composition x �→ f (x, V (x))

is Lebesgue-measurable.
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Proof. Assume first that V is a simple function,

V =
m∑

k=1

vk1Ek ,

where the sets Ek ⊂ Ω are Borel-measurable (k ∈ {1, . . . ,m}), ⋃m
k=1 Ek = Ω , and

vk ∈ R
N . For t ∈ R we have

{
x ∈ Ω : f (x, V (x)) > t

} =
m⋃

k=1

{
x ∈ Ek : f (x, vk) > t

}
,

which is a Lebesgue-measurable set by assumption. Hence, x �→ f (x, V (x)) is
Lebesgue-measurable.

Turning to the general case, every Borel-measurable function V can be approxi-
mated by simple functions Vk with

f (x, Vk(x)) → f (x, V (x)) for all x ∈ Ω as k → ∞,

see Lemma A.5. We conclude that the right-hand side is Lebesgue-measurable as the
pointwise limit of Lebesgue-measurable functions. �

It is possible that the (compound) integrand in F is measurable, but that the
integral is not well-defined. These pathological cases can, for example, be avoided
if f ≥ 0 or if one imposes the p-growth bound

| f (x, A)| ≤ M(1 + |A|p), (x, A) ∈ Ω × R
m×d ,

for some M > 0, which implies the finiteness ofF [u] for all u ∈ W1,p(Ω;Rm). In
this chapter, however, this bound is not otherwise needed.

We next investigate the coercivity of F . If p ∈ (1,∞), then the most basic
assumption to guarantee coercivity, and the only one we consider here, is the p-
coercivity bound

μ|A|p ≤ f (x, A), (x, A) ∈ Ω × R
m×d , (2.2)

for someμ > 0. This coercivity also determines the exponent p for the Sobolev space
wherewe look for solutions.Note that in the literature sometimes the coercivity bound
is given as the seemingly more general μ|A|p − C ≤ f (x, A) for some μ,C > 0.
This, however, does not increase generality since we may pass from the integrand
f (x, A) to the integrand f̃ (x, A) := f (x, A)+C , which now satisfies (2.2), without
changing the minimization problem (recall that Ω is assumed bounded throughout
this book).



28 2 Convexity

Proposition 2.5. If the Carathéodory integrand f : Ω × R
m×d → [0,∞) satisfies

the p-coercivity bound (2.2) with p ∈ (1,∞), then F is weakly coercive on the
space

W1,p
g (Ω;Rm) = {

u ∈ W1,p(Ω;Rm) : u|∂Ω = g
}
,

where g ∈ W1−1/p,p(∂Ω;Rm).

Proof. We need to show that any sequence (u j ) ⊂ W1,p
g (Ω;Rm) with

sup
j∈N

F [u j ] < ∞

is weakly precompact. From (2.2) we get

μ · sup
j∈N

∫

Ω

|∇u j |p dx ≤ sup
j∈N

F [u j ] < ∞,

whereby sup j ‖∇u j‖Lp < ∞. Fixu0 ∈ W1,p
g (Ω;Rm). Then,u j−u0 ∈ W1,p

0 (Ω;Rm)

and sup j ‖∇(u j −u0)‖Lp < ∞. From the Poincaré inequality, see Theorem A.26 (i),
we therefore get

sup j ‖u j‖W1,p ≤ sup j ‖u j − u0‖W1,p + ‖u0‖W1,p < ∞.

This finishes the proof since bounded sets in separable and reflexive Banach
spaces, like W1,p(Ω;Rm) for p ∈ (1,∞), are sequentially weakly precompact by
Theorem A.2. �

Having settled the question of weak coercivity, we can now investigate the weak
lower semicontinuity. The following pivotal result (in the one-dimensional case) goes
back to the work of Leonida Tonelli in the early 20th century; the generalization to
higher dimensions is due to James Serrin.

Theorem 2.6 (Tonelli 1920 & Serrin 1961 [242, 276]). Let f : Ω × R
m×d →

[0,∞) be a Carathéodory integrand such that

f (x, �) is convex for almost every x ∈ Ω.

Then, F is weakly lower semicontinuous onW1,p(Ω;Rm) for any p ∈ (1,∞).

Proof. Step 1. We first establish that F is strongly lower semicontinuous, so let
u j → u in W1,p(Ω;Rm) and ∇u j → ∇u almost everywhere, which holds after
selecting a subsequence (not explicitly labeled), see Appendix A.3. By assumption
wehave that f (x,∇u j (x)) ≥ 0.ApplyingFatou’sLemma,we immediately conclude
that

F [u] =
∫

Ω

f (x,∇u(x)) dx ≤ lim inf
j→∞

∫

Ω

f (x,∇u j (x)) dx = lim inf
j→∞ F [u j ].

Since this holds for all subsequences, it also follows for our original sequence, see
Problem 2.1.
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Step2.Toprove the claimedweak lower semicontinuity take (u j ) ⊂ W1,p(Ω;Rm)

with u j ⇀ u in W1,p. We need to show that

F [u] ≤ lim inf
j→∞ F [u j ] =: α. (2.3)

Taking a subsequence (not explicitly labeled), we can in fact assume that F [u j ]
converges to α.

By the Mazur Lemma A.4 we may find convex combinations

v j =
N ( j)∑

n= j

θ( j)
n un, where θ( j)

n ∈ [0, 1] and
N ( j)∑

n= j

θ( j)
n = 1,

such that v j → u in W1,p. As f (x, �) is convex for almost every x ,

F [v j ] =
∫

Ω

f

⎛

⎝x,
N ( j)∑

n= j

θ( j)
n ∇un(x)

⎞

⎠ dx

≤
N ( j)∑

n= j

θ( j)
n F [un].

Since F [un] → α as n → ∞ and
∑N ( j)

n= j θ
( j)
n = 1, we arrive at

lim inf
j→∞ F [v j ] ≤ α.

On the other hand, from the first step and since v j → u strongly, we have F [u] ≤
lim inf j→∞ F [v j ]. Thus, (2.3) follows and the proof is finished. �

We can summarize our findings in the following existence theorem.

Theorem 2.7. Let f : Ω ×R
m×d → [0,∞) be a Carathéodory integrand such that

(i) f satisfies the p-coercivity bound (2.2) with p ∈ (1,∞);
(ii) f (x, �) is convex for almost every x ∈ Ω .

Then, the associated functional F has a minimizer over W1,p
g (Ω;Rm), where g ∈

W1−1/p,p(∂Ω;Rm).

Proof. This follows immediately from the Direct Method for the weak convergence,
Theorem 2.3 with X := W1,p

g (Ω;Rm) together with Proposition 2.5 and the Tonelli–
Serrin Theorem 2.6. �

Example 2.8. The Dirichlet functional (or Dirichlet integral) is

F [u] :=
∫

Ω

1

2
|∇u(x)|2 dx, u ∈ W1,2(Ω;Rm).
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Fig. 2.1 The function ϕ0

We already encountered this integral functional when considering electrostatics in
Section 1.3. It is easy to see that the Dirichlet functional satisfies all requirements
of Theorem 2.7 and so there exists a minimizer for any prescribed boundary values
g ∈ W1/2,2(∂Ω;Rm).

We next show the following converse to the Tonelli–Serrin Theorem 2.6:

Proposition 2.9. LetF : W1,p(Ω;Rm) → R, p ∈ [1,∞), be an integral functional
with continuous integrand f : Rm×d → R (not x-dependent). If F is weakly lower
semicontinuous on W1,p(Ω;Rm) and if either m = 1 or d = 1 (the scalar case and
the one-dimensional case, respectively), then f is convex.

Proof. We only consider the case m = 1 and d arbitrary; the other case is proved
in a similar manner. Assume that a, b ∈ R

d with a = b and θ ∈ (0, 1). Let v :=
θa + (1 − θ)b, n := b − a, and set

u j (x) := v · x + 1

j
ϕ0

(
j x · n − � j x · n�), x ∈ Ω,

where �s� denotes the largest integer less than or equal to s ∈ R, and

ϕ0(t) :=
{

−(1 − θ)t if t ∈ [0, θ),

θ t − θ if t ∈ [θ, 1),

see Figure 2.1. We have that

∇u j (x) =
{

θa + (1 − θ)b − (1 − θ)(b − a) = a if j x · n − � j x · n� ∈ [0, θ),

θa + (1 − θ)b + θ(b − a) = b if j x · n − � j x · n� ∈ [θ, 1).

Hence, (u j ) ⊂ W1,∞(Ω) and since the second term in the definition of u j converges
to zero uniformly, it holds that u j ⇀ v · x in W1,p (here and in the following,
“v · x” is a shorthand notation for the linear function x �→ v · x). By the weak lower
semicontinuity, we conclude that
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|Ω| f (v) = F [v · x] ≤ lim inf
j→∞ F [u j ] = |Ω| · (

θ f (a) + (1 − θ) f (b)
)
.

This proves the claim. �

In the vectorial case, i.e., m = 1 and d = 1, it turns out that convexity of
the integrand (in the gradient variable) is far from being necessary for weak lower
semicontinuity. In fact, there is indeed a weaker condition ensuring weak lower
semicontinuity; we will explore this in Chapter 5.

Finally, we prove the following result concerning the uniqueness of theminimizer.

Proposition 2.10. Let F : W1,p(Ω;Rm) → R, p ∈ [1,∞), be an integral func-
tional with Carathéodory integrand f : Ω ×R

m×d → R. If f is strictly convex, that
is,

f (x, θ A + (1 − θ)B) < θ f (x, A) + (1 − θ) f (x, B)

for all x ∈ Ω , A, B ∈ R
m×d with A = B, θ ∈ (0, 1), then the minimizer u∗ ∈

W1,p
g (Ω;Rm) (g ∈ W1−1/p,p(∂Ω;Rm)) of F , if it exists, is unique.

Proof. Assume there are two different minimizers u, v ∈ W1,p
g (Ω;Rm) ofF . Then

set

w := 1

2
u + 1

2
v ∈ W1,p

g (Ω;Rm)

and observe that

F [w] =
∫

Ω

f
(
x,

1

2
∇u(x) + 1

2
∇v(x)

)
<

1

2
F [u] + 1

2
F [v] = min

W1,p
g (Ω;Rm)

F ,

yielding an immediate contradiction. �

2.3 Integrands with u-Dependence

If we try to extend the results in the previous section to more general functionals

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx,

we discover that our proof strategy via the Mazur lemma runs into difficulties: We
cannot “pull out” the convex combination inside

∫

Ω

f

⎛

⎝x,
N ( j)∑

n= j

θ( j)
n un(x),

N ( j)∑

n= j

θ( j)
n ∇un(x)

⎞

⎠ dx
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any more. Nevertheless, a lower semicontinuity result analogous to the one for the
u-independent case turns out to be true:

Theorem 2.11. Let f : Ω × R
m × R

m×d → [0,∞) be a Carathéodory integrand,
which here means that

(i) x �→ f (x, v, A) is Lebesgue-measurable for every fixed (v, A) ∈ R
m × R

m×d ;
(ii) (v, A) �→ f (x, v, A) is continuous for (Lebesgue-)almost every fixed x ∈ Ω .

Assume also that

f (x, v, �) is convex for every (x, v) ∈ Ω × R
m .

Then, for p ∈ (1,∞), the functional

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u ∈ W1,p(Ω;Rm),

is weakly lower semicontinuous.

While it would be possible to give an elementary proof of this theorem here, we
postpone the detailed study of integral functionals with u-dependent integrands until
Section 5.6. There, using more advanced techniques, we will establish a much more
general lower semicontinuity result, albeit under an additional p-growth assumption
| f (x, v, A)| ≤ M(1+|v|p+|A|p). A proof of the above theoremwithout this growth
assumption can be found in Section 3.2.6 of [76].

Example 2.12. In the prototypical problem of linearized elasticity from Section 1.7
we are tasked to solve

⎧
⎨

⎩

Minimize F [u] := 1

2

∫

Ω

2μ|E u|2 +
(
κ − 2

3
μ

)
| tr E u|2 − b · u dx

over all u ∈ W1,2(Ω;R3) with u|∂Ω = g,

where μ, κ > 0, b ∈ L2(Ω;R3), and g ∈ W1/2,2(∂Ω;Rm). It is clear that F has
quadratic growth. We assume that κ − 2μ/3 ≥ 0 and g = 0 for simplicity. Then, we
first show that

‖∇u‖L2 ≤ √
2‖E u‖L2 (2.4)

for all u ∈ W1,2(Ω;R3) with u|∂Ω = 0. This can be seen as follows: An elementary
computation shows that for ϕ ∈ C∞

c (Ω;R3) it holds that

2(E ϕ : E ϕ) − ∇ϕ : ∇ϕ = div
[
(∇ϕ)ϕ − (div ϕ)ϕ

] + (div ϕ)2.

Thus, by the divergence theorem,
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2‖E ϕ‖2L2 − ‖∇ϕ‖2L2 =
∫

Ω

div
[
(∇ϕ)ϕ − (div ϕ)ϕ

]
dx +

∫

Ω

(div ϕ)2 dx

=
∫

Ω

(div ϕ)2 dx

≥ 0.

This is (2.4) for ϕ. The general case follows from the density of C∞
c (Ω;R3)

in W1,2
0 (Ω;R3). Then, using Young’s inequality and the Poincaré inequality (see

Theorem A.26 (i), we denote the L2-Poincaré constant by CP > 0), we get for any
δ > 0,

F [u] ≥ μ‖E u‖2L2 − ‖b‖L2‖u‖L2

≥ μ‖E u‖2L2 − 1

2δ
‖b‖2L2 − δ

2
‖u‖2L2

≥ μ

2
‖∇u‖2L2 − 1

2δ
‖b‖2L2 − C2

Pδ

2
‖∇u‖2L2 .

Choosing δ = μ/(2C2
P), we obtain the coercivity estimate

F [u] ≥ μ

4
‖∇u‖2L2 − C2

P

μ
‖b‖2L2 .

Hence, applying the Poincaré inequality again,F [u] controls ‖u‖W1,2 and our func-
tional is weakly coercive. Moreover, it is clear that the integrand is convex in the E u-
argument. Hence, Theorem 2.11 yields the existence of a solution u∗ ∈ W1,2(Ω;R3)

to our minimization problem of linearized elasticity. In fact, one could also argue
using the Tonelli–Serrin Theorem 2.6 and the elementary fact that the lower-order
term

∫

Ω
b(x) ·u(x) dx is weakly continuous onW1,2. More on the topic of linearized

elasticity can be found in Sections 6.2 and 6.3 of [64].

2.4 The Lavrentiev Gap Phenomenon

Wehave chosen the function space inwhichwe look for the solution of aminimization
problem from the scale of Sobolev spaces according to a coercivity assumption such
as (2.2). However, at first sight, classically differentiable functions may appear to
be more appealing. So the question arises whether the infimum value is actually the
samewhen considering different function spaces. Formally, given two linear or affine
spaces X ⊂ Y such that X is dense in Y , and a functional F : Y → R ∪ {+∞}, we
ask whether

inf
X
F = inf

Y
F .



34 2 Convexity

Note that even if the infima agree, it is a priori unlikely that this infimum is attained
in both spaces unless we have additional regularity of a minimizer (which we will
investigate in Section 3.2).

For X = C∞ and Y = W1,p the equality of infima turns out to be true under
suitable growth conditions:

Theorem 2.13. Let f : Ω × R
m × R

m×d → R be a Carathéodory integrand with
p-growth, i.e.,

| f (x, v, A)| ≤ M(1 + |v|p + |A|p), (x, v, A) ∈ Ω × R
m × R

m×d ,

for some M > 0, p ∈ [1,∞). Then, the functional

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u ∈ W1,p(Ω;Rm),

is strongly continuous. Consequently,

inf
W1,p(Ω;Rm)

F = inf
C∞(Ω;Rm)

F .

The same equality of infima also holds with fixed boundary values.

Proof. Let u j → u in W1,p(Ω;Rm) and additionally assume that u j → u, ∇u j →
∇u almost everywhere (which holds after selecting a subsequence). Then, from the
p-growth assumption we get

F [u j ] =
∫

Ω

f (x, u j ,∇u j ) dx ≤
∫

Ω

M(1 + |u j |p + |∇u j |p) dx

and via Pratt’s Theorem A.10 we infer that

F [u j ] → F [u].

Since this holds for a subsequence of any subsequence of the original sequence (u j ),
we have established the continuity of F with respect to the strong convergence in
W1,p(Ω;Rm).

The assertion about the equality of infima now follows readily since C∞(Ω;Rm)

is dense in W1,p(Ω;Rm). The equality of the infima under an additional boundary
value constraint follows from the continuity of the trace operator under the W1,p-
convergence, see Theorem A.24, and the fact that any map in W1,p(Ω;Rm) can
be approximated with smooth functions with the same boundary values, see Theo-
rem A.29. �

If we dispensewith the p-growth assumption, however, the infimumover different
spaces may indeed be different – this is called the Lavrentiev gap phenomenon,
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discovered in 1926 by Mikhail Lavrentiev. Here, we give an example between the
spaces W1,1 and W1,∞ (with boundary conditions):

Example 2.14 (Manià 1934 [178]). Consider the minimization problem

⎧
⎪⎨

⎪⎩

Minimize F [u] :=
∫ 1

0
(u(t)3 − t)2u̇(t)6 dt

subject to u(0) = 0, u(1) = 1

for u from either W1,1(0, 1) or W1,∞(0, 1). We claim that

inf
W1,1(0,1)

F < inf
W1,∞(0,1)

F ,

where here and in the following these infima are to be taken only over functions u
with boundary values u(0) = 0, u(1) = 1.

Clearly,F ≥ 0, and for u∗(t) := t1/3 ∈ (W1,1\W1,∞)(0, 1)we haveF [u∗] = 0.
Thus,

inf
W1,1(0,1)

F = 0.

On the other hand, every u ∈ W1,∞(0, 1) is Lipschitz continuous. Thus, also using
u(0) = 0, u(1) = 1, there exists a τ ∈ (0, 1) with

u(t) ≤ h(t) := t1/3

2
for all t ∈ [0, τ ] and u(τ ) = h(τ ).

Then, u(t)3 − t ≤ h(t)3 − t for t ∈ [0, τ ] and, since both of these terms are negative,

(u(t)3 − t)2 ≥ (h(t)3 − t)2 = 72

82
t2 for all t ∈ [0, τ ].

We then estimate

F [u] ≥
∫ τ

0
(u(t)3 − t)2 u̇(t)6 dt ≥ 72

82

∫ τ

0
t2 u̇(t)6 dt.

Further, by Hölder’s inequality,

∫ τ

0
u̇(t) dt =

∫ τ

0
t−1/3 · t1/3 u̇(t) dt

≤
(∫ τ

0
t−2/5 dt

)5/6

·
(∫ τ

0
t2 u̇(t)6 dt

)1/6

= 55/6

35/6
τ 1/2

(∫ τ

0
t2 u̇(t)6 dt

)1/6

.
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Since also ∫ τ

0
u̇(t) dt = u(τ ) − u(0) = h(τ ) = τ 1/3

2
,

we arrive at

F [u] ≥ 7235

825526τ
>

7235

825526
> 0.

Thus,
inf

W1,∞(0,1)
F > inf

W1,1(0,1)
F ,

and F can be seen to exhibit the Lavrentiev gap phenomenon.

In a more recent example, Ball & Mizel [34] showed that the problem

⎧
⎪⎨

⎪⎩

Minimize F [u] :=
∫ 1

−1
(t4 − u(t)6)2|u̇(t)|2m + εu̇(t)2 dt

subject to u(−1) = α, u(1) = β

also exhibits the Lavrentiev gap phenomenon between the spaces W1,2 and W1,∞ if
m ∈ N satisfiesm > 13, ε > 0 is sufficiently small, and −1 ≤ α < 0 < β ≤ 1. This
example is significant because the Ball–Mizel functional is coercive onW1,2(−1, 1)
thanks to the second term of the integrand.

We note that the Lavrentiev gap phenomenon is a major obstacle for the numerical
approximation of minimization problems. For instance, standard (piecewise affine)
finite element approximations are inW1,∞ andhence in the presence of theLavrentiev
gap phenomenon (betweenW1,p andW1,∞) we cannot approximate the true solution
with such finite elements. Thus, one is forced to work with non-conforming elements
and other advanced schemes. This issue does not only affect “academic” examples
such as the ones above, but is also of great concern in applied problems, such as
nonlinear elasticity theory.

2.5 Integral Side Constraints

In some minimization problems the class of candidate functions is restricted to
include one or more integral side constraints. To establish the existence of a mini-
mizer in these cases, we first need to extend the Direct Method to this scenario.

Theorem 2.15. Let X be a Banach space or a closed affine subset of a Banach space
and let F ,H : X → R ∪ {+∞}. Assume the following:
(WH1) Weak coercivity of F : For all Λ ∈ R the sublevel set

{
u ∈ X : F [u] ≤ Λ

}
is sequentially weakly precompact,
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that is, if F [u j ] ≤ Λ for a sequence (u j ) ⊂ X and some Λ ∈ R, then (u j )

has a weakly converging subsequence.
(WH2) Weak lower semicontinuity ofF : For all sequences (u j ) ⊂ X with u j ⇀ u

in X it holds that
F [u] ≤ lim inf

j→∞ F [u j ].

(WH3) Weak continuity of H : For all sequences (u j ) ⊂ X with u j ⇀ u in X it
holds that

H [u j ] → H [u].

Assume also that there exists at least one u0 ∈ X with H [u0] = 0. Then, the
minimization problem

MinimizeF [u] over all u ∈ X withH [u] = 0

has a solution.

Proof. The proof is almost exactly the same as the one for the standardDirectMethod
in Theorem 2.3. The only difference is that we need to select the u j for a minimizing
sequence with H [u j ] = 0. Then, by (WH3), this property also holds for any weak
limit u∗ of a subsequence of the u j ’s, which then is the sought minimizer. �

A large class of side constraints can be treated using the following simple result.

Lemma 2.16. Let h : Ω×R
m → R be aCarathéodory integrand and let p ∈ [1,∞)

such that there exists an M > 0 with

|h(x, v)| ≤ M(1 + |v|q), (x, v) ∈ Ω × R
m, (2.5)

for some q ∈ [1, dp/(d − p)) if p ≤ d, or no growth condition if p > d. Then, the
functional H : W1,p(Ω;Rm) → R defined through

H [u] :=
∫

Ω

h(x, u(x)) dx, u ∈ W1,p(Ω;Rm),

is weakly continuous.

Proof. Weonly prove the lemma in the case p ≤ d. The proof for p > d is analogous,
but easier.

Let u j ⇀ u inW1,p(Ω;Rm), whereby after selecting a subsequence and employ-
ing the Rellich–Kondrachov Theorem A.28 and Lemma A.8, u j → u in Lq and
almost everywhere. By assumption we have

±h(x, v) + M(1 + |v|q) ≥ 0.

Thus, applying Fatou’s lemma separately to these two integrands, we get
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lim inf
j→∞

(

±H [u j ] +
∫

Ω

M(1 + |u j |q) dx
)

≥ ±H [u] +
∫

Ω

M(1 + |u|q) dx .

Since ‖u j‖Lq → ‖u‖Lq , we can combine these two assertions to get H [u j ] →
H [u]. This holds for a subsequence of any subsequence of (u j ), hence it also holds
for our original sequence. �

Combining this lemma with Theorems 2.7 and 2.15 and also the Rellich–
Kondrachov Theorem A.28, we immediately get the following existence result.

Theorem 2.17. Let f : Ω×R
m×d → [0,∞)and h : Ω×R

m → RbeCarathéodory
integrands such that

(i) f satisfies the p-coercivity bound (2.2), where p ∈ (1,∞);
(ii) f (x, �) is convex for all x ∈ Ω;
(iii) h satisfies the q-growth condition (2.5) for some q ∈ [1, dp/(d − p)) if p ≤ d,

or no growth condition if p > d.

Then, there exists a minimizer u∗ ∈ W1,p
g (Ω;Rm), where g ∈ W1−1/p,p(∂Ω;Rm),

of the functional

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u ∈ W1,p
g (Ω;Rm),

under the side constraint

H [u] :=
∫

Ω

h(x, u(x)) dx = 0.

2.6 The General Theory of Convex Functions and Duality

We finish this chapter by briefly considering the general theory of convex functions.
In all of the following let X be a (real) reflexive Banach space (finite or infinite-

dimensional) with dual space X∗, see Appendix A.2. We denote by 〈x, x∗〉 = x∗(x)
the duality product between x ∈ X and x∗ ∈ X∗. For a set A ⊂ X we write co A,
co A for its convex hull and closed convex hull, respectively. These hulls are defined
to be the smallest (closed) convex set containing A, or, equivalently, the intersection
of all (closed) convex sets containing A. For A ⊂ X we furthermore define the
characteristic function χA : X → R ∪ {+∞} as

χA(x) := 1

1A(x)
− 1 =

{
0 if x ∈ A,

+∞ if x /∈ A.

Let F : X → R ∪ {+∞}. The function F is called proper if it is not identically
+∞. We define the effective domain dom F ⊂ X and the epigraph epi F ⊂ X×R
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of F as follows:

dom F := {
x ∈ X : F(x) < +∞ }

,

epi F := {
(x, α) ∈ X × R : α ≥ F(x)

}
.

It can be shown (see Problems 2.6, 2.7) that F is convex if and only if epi F is
convex (as a set), and that f is (sequentially) lower semicontinuous if and only if
epi F is (sequentially) closed; this holds with respect to both the strong and the weak
convergence.

Lemma 2.18. If dim X < ∞, then every convex function F : X → R ∪ {+∞} is
locally bounded on the interior of its effective domain.

Proof. If x ∈ X is in the interior of the effective domain of F , then x lies in the convex
hull co {x1, . . . , xn+1} of n + 1 affinely independent points xk (i.e.,

∑
αk xk = 0

for some αk ∈ R with
∑

k αk = 0 implies α1 = α2 = · · · = αn+1 = 0) with
F(xk) < +∞, where n = dim X . Thus, there exists an open ball around x inside
co {x1, . . . , xn+1} on which F is bounded by sup {F(x1), . . . , F(xn+1)}. �
Lemma 2.19. Let A be a non-empty family of continuous affine functions a(x) =
〈x, x∗〉 + α for some x∗ ∈ X∗, α ∈ R. Then, F : X → R ∪ {+∞} defined through

F(x) := sup
a∈A

a(x)

is convex and lower semicontinuous. Conversely, every convex and lower semicon-
tinuous function can be written in this form.

Proof. The convexity of F is clear since all the affine functions a ∈ A are in partic-
ular convex. For the lower semicontinuity we just need to realize that the pointwise
supremum of continuous functions is always lower semicontinuous. Indeed, for a
sequence x j → x in X we have for all ã ∈ A that

ã(x) = lim
j→∞ ã(x j ) ≤ lim inf

j→∞ sup
a∈A

a(x j ) = lim inf
j→∞ F(x j ).

Taking the supremum over all ã ∈ A , the lower semicontinuity follows.
For the converse, we may assume that F is proper; otherwise the result is trivial.

Let x ∈ X with F(x) < +∞. The epigraph epi F of F is closed and convex by
assumption. Hence, by the Hahn–Banach Separation Theorem A.1, for every x ∈ X
and every β < F(x) we can find an affine function ax,β : X → R whose graph
separates the point (x, β) from epi F . In particular, β < ax,β(x) < F(x) and ax,β
lies everywhere below the graph of F . Letting β ↑ F(x), we arrive at

F(x) = sup
{
ax,β(x) : (x, β) ∈ X × R with β < F(x)

}
.

A similar argument also applies if F(x) = +∞. Collecting all these ax,β for (x, β) ∈
X × R with β < F(x) into the set A , the conclusion follows. �
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Fig. 2.2 The convex
conjugate

Proposition 2.20. Every proper convex function is continuous on the interior of its
effective domain.

We will prove this in more generality later, see Lemma 5.6 in conjunction with
Lemma 2.18.

One important object in the general theory of convex functions is the (convex)
conjugate, or Legendre–Fenchel transform, F∗ : X∗ → R ∪ {+∞} of a proper
function F : X → R∪ {+∞} (not necessarily convex), which is defined as follows:

F∗(x∗) := sup
x∈X

[〈x, x∗〉 − F(x)
]
, x∗ ∈ X∗.

Of course, we may restrict to x ∈ dom F in the supremum. The intuition here is that
for a given x∗ we may consider all affine hyperplanes with normal x∗ (recall that
all hyperplane normals are elements of X∗) that lie below epi F . Then, −F∗(x∗)
is the supremum of the heights at which these hyperplanes intersect the (vertical)
(R∪{+∞})-axis, see Figure 2.2. Indeed, let α ∈ R be such that F(x) ≥ 〈x, x∗〉−α

for all x ∈ X . Then, α ≥ 〈x, x∗〉 − F(x) for all x ∈ X , so the highest supporting
hyperplane with normal x∗ is x �→ 〈x, x∗〉 − F∗(x∗), which intersects the vertical
axis in −F∗(x∗).

The following Fenchel inequality is immediate from the definition:

〈x, x∗〉 ≤ F(x) + F∗(x∗), for all x ∈ X, x∗ ∈ X∗. (2.6)

We next collect some properties of the conjugate function:

Proposition 2.21. Let F,G : X → R ∪ {+∞} be proper and F∗,G∗ : X∗ → R ∪
{+∞} be their conjugates.
(i) F∗ is convex and lower semicontinuous.
(ii) F∗(0) = − inf F.
(iii) If F ≤ G, then G∗ ≤ F∗.
(iv) If for λ > 0 we denote by Fλ the scaled function Fλ(x) := F(λx), then

F∗
λ (x∗) = F∗(x∗/λ).

(v) (λF)∗(x∗) = λF∗(x∗/λ) for all λ > 0.
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(vi) (F + γ )∗ = F∗ − γ for all γ ∈ R.
(vii) If for a ∈ X we denote by Fa the translated function Fa(x) := F(x − a), then

F∗
a (x∗) = F∗(x∗) + 〈a, x∗〉.

Proof. Thefirst assertion follows fromLemma2.19, all the others are straightforward
calculations, see Problem 2.8. �

We now consider a few canonical examples of convex functions.

Example 2.22 (Support function). Let χA be the characteristic function of A ⊂ X .
Then, for the conjugate function we get

σA(x
∗) := χ∗

A(x
∗) = sup

x∈A
〈x, x∗〉, x∗ ∈ X∗,

which is called the support function of A. It is always convex, lower semicontinuous,
and positively 1-homogeneous, i.e., σA(αx∗) = ασA(x∗) for all x∗ ∈ X∗ and α ≥ 0,
see Problem 2.9.

Example 2.23. Let p, q ∈ (1,∞) with 1/p + 1/q = 1, that is, p, q are conjugate
exponents. Then,

ϕ(t) := 1

p
|t |p and ϕ∗(t) := 1

q
|t |q , t ∈ R,

are conjugate. From the Fenchel inequality (2.6) we recover the Young inequality

xy ≤ x p

p
+ yq

q
for all x, y ≥ 0.

Example 2.24. For the absolute value function ϕ(t) := |t | we get

ϕ∗(t) = χ[−1,1](t) =
{
0 if |t | ≤ 1,

+∞ if |t | > 1,
t ∈ R. (2.7)

Example 2.25. The conjugate of the exponential function is

exp∗(t) =

⎧
⎪⎨

⎪⎩

+∞ if t < 0,

0 if t = 0,

t ln t − t if t > 0,

t ∈ R.

In this case, (2.6) gives the inequality

xy ≤ exp(x) + y ln y − y for all x, y > 0.
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Example 2.26. Let ϕ : R → R ∪ {+∞} be proper, convex, and lower semicontinu-
ous, and let ‖ �‖, ‖ �‖∗ be the norms on X and on X∗, respectively. Then the functions

G(x) := ϕ(‖x‖) and G∗(x∗) := ϕ∗(‖x∗‖∗), x ∈ X, x∗ ∈ X∗,

are conjugate. In particular, ‖ �‖p/p and ‖ �‖q/q for 1/p + 1/q = 1 are conjugate.
The verification of these statements is the task of Problem 2.10.

Example 2.27. Let X = R
n and let S ∈ R

n×n be a symmetric, positive definite
matrix. Then,

F(x) := 1

2
xT Sx and F∗(y) := 1

2
yT S−1y, x, y ∈ R

n,

are conjugate.

Iterating the construction of the conjugate, we denote by F∗∗ : X → R ∪ {+∞}
the biconjugate of F , that is, the function

F∗∗(x) := sup
x∗∈X∗

[〈x, x∗〉 − F∗(x∗)
]
, x ∈ X.

Proposition 2.28. The biconjugate F∗∗ is the convex, lower semicontinuous enve-
lope of F, that is, the greatest convex, lower semicontinuous function below F.
Moreover, F∗∗∗ = F∗.

Proof. For the moment denote the convex lower semicontinuous envelope of F by
Fclsc,

Fclsc(x) := sup
{
H(x) : H ≤ F convex, lower semicontinuous

}
, x ∈ X.

Also define
G(x) := sup

{
a(x) : a ≤ F affine

}
, x ∈ X.

Since G ≤ F is convex and lower semicontinuous by Lemma 2.19, G ≤ Fclsc. On
the other hand, for every convex and lower semicontinuous H from the definition
of Fclsc, we have H(x) = supb∈A b(x) for a collection of affine functions b ≤ H ,
again by the said lemma. However, b ≤ F for all b ∈ A and thus b is included in the
collection in the definition of G. Hence, H ≤ G, whereby Fclsc ≤ G. In conclusion,
Fclsc = G.

Every affine a ≤ F has the form a(x) = 〈x, x∗〉 − α for some x∗ ∈ X∗ and
α ∈ R. We can restrict ourselves to such a with α minimal while still preserving
the property a ≤ F . We see first that a ≤ F if and only if α ≥ 〈y, x∗〉 − F(y) for
all y ∈ X . According to the definition of the conjugate function, this condition is
nothing else than

α ≥ F∗(x∗).
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Thus, α is minimal when α = F∗(x∗) and we get

Fclsc(x) = G(x) = sup
x∗∈X∗

[〈x, x∗〉 − F∗(x∗)
] = F∗∗(x), x ∈ X.

For the second assertion it suffices to observe that F∗ is convex and lower semi-
continuous by Proposition 2.21 (i) and to apply the first assertion. �

As a particular consequence of the preceding result, we see that conjugation facil-
itates a bijection between the proper, convex, and lower semicontinuous functions
on X and those on X∗, which is self-inverse in the sense above.

Corollary 2.29. epi F∗∗ = co epi F.

Proof. The process of taking the convex lower semicontinuous envelope of F
amounts to finding the closed convex hull of the epigraph. �

Example 2.30. For the characteristic function χA of A ⊂ X we get

χ∗∗
A = σ ∗

A = χco A.

In particular, A and co A have the same support function.

Notes and Historical Remarks

The basic ideas concerning the DirectMethod as well as lower semicontinuity and its
connection to convexity are due to Leonida Tonelli and were established in a series
of articles in the early 20th century [275–277]. In the 1960s James Serrin generalized
the results to higher dimensions [242].

Most of the material in this chapter is very classical and can be found in a variety
of books on the calculus of variations, we refer in particular to [76, 77, 137]. We
note that a very general lower semicontinuity theorem for convex integrands can be
found in Theorem 3.23 of [76].

All of our abstract results on the Direct Method are formulated using sequences
and not using general topology tools like nets. This is justified since the weak topol-
ogy on a separable, reflexive Banach space and the weak*-topology on a dual space
with a separable predual are metrizable on norm-bounded sets. Thus, if the function-
als under investigation satisfy suitable coerciveness assumptions, one can work with
sequences. The only case where one has to be careful is when one uses the weak
topology on a non-reflexive Banach space with a non-separable dual space because
then the weak topology might not be metrizable. For instance, in the sequence space
l1 (with non-separable dual space l∞), weak convergence of sequences is equivalent
to strong convergence, but the weak and strong topologies still differ (see Chapter V
in [74] for more details on such considerations). For us more relevant is the observa-
tion that norm-bounded sets in L1(Ω) are not weakly precompact, either sequentially
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or topologically (these notions turn out to be equivalent by the Eberlein–Šmulian the-
orem). This corresponds to functionals with linear growth, which indeed require a
more involved analysis in the space of functions of bounded variation (BV). We will
come back to this topic in Chapters 10–12.

For the u-dependent variational integrals the growth in the u-variable can be
improved up to q-growth, where q ∈ [1, p/(p− d)) by the Sobolev embedding the-
orem. Moreover, we can work with the more general growth bounds | f (x, v, A)| ≤
M(h(x)+|v|q +|A|p), with h ∈ L1(Ω; [0,∞)) and q ∈ [1, p/(p−d)). For reasons
of simplicity, we have omitted these generalizations here.

The Lavrentiev gap phenomenon was discovered in [175], our Example 2.14 is
due toManià; we follow the description in [117]. Tonelli’s Regularity Theorem [118,
275] gives regularity and hence the absence of the Lavrentiev gap phenomenon, for
some integral functionals with superlinear growth; also see [49, 140–143] for some
recent developments in this direction.

Much of the theory of general convex functions was developed by Jean-Jacques
Moreau and R. Tyrrell Rockafellar in the 1960s. The books [106, 232] and the more
advanced monographs [192, 193, 233] develop these topics in great detail.

Problems

2.1. Let F : X → R, where X is a complete metric space. Show that if every
subsequence of the sequence (u j ) ⊂ X with u j → u in X has a further subsequence
(u j (k))k such that

F [u] ≤ lim inf
k→∞ F [u j (k)],

then also
F [u] ≤ lim inf

j→∞ F [u j ].

2.2. Let Ω ⊂ R
d be a bounded Lipschitz domain. Define

V :=
{

u ∈ W1,2(Ω) :
∫

Ω

u(x) dx = 0

}

.

Assume furthermore that f : Ω × R
d → R is continuously differentiable with

μ|A|2 ≤ f (x, A) for some μ > 0 and all (x, A) ∈ Ω × R
d ,

|DA f (x, A)| ≤ M(1 + |A|2) for some M > 0 and all (x, A) ∈ Ω × R
d ,

and that A �→ f (x, A) is convex for all x ∈ Ω . Finally, let g ∈ L2(Ω). Consider the
following minimization problem:
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⎧
⎨

⎩

Minimize F [u] :=
∫

Ω

f (x,∇u(x)) − g(x)u(x) dx

over all u ∈ V .

(i) Show that F is coercive on V , that is, there exists a μ > 0 such that

F [u] ≥ μ‖u‖2W1,2 − μ−1 for all u ∈ V .

(ii) Show that F is also weakly lower semicontinuous on V (weak convergence in
W1,2) and hence there exists a minimizer u∗ ∈ V ofF (minimized over V ).

This problem is continued in Problem 3.9 in the next chapter.

2.3. Show that the function f : R2 → R given by f (x, y) = xy is separately
convex, that is, x �→ f (x, y) is convex for fixed y ∈ R and y �→ f (x, y) is convex
for fixed x ∈ R, but f is not convex.

2.4. Let f : Rd → [0,∞) be twice continuously differentiable and assume that
there are constants μ, M > 0 with

μ|b|2 ≤ D2 f (a)[b, b] ≤ M |b|2 for all a, b ∈ R
d ,

where

D2 f (a)[b, b] := d2

dt2
f (a + tb)

∣
∣
∣
∣
t=0

for all a, b ∈ R
d .

Show that f is convex and that | f (v)| ≤ C(1+|v|2) for some C > 0 and all v ∈ R
d .

2.5. Let f : Rd → R be convex and fix x0 ∈ R
d . Set

M := max
i=1,...,d

(| f (x0 + ei ) − f (x0)|, | f (x0 − ei ) − f (x0)|
)
.

Prove that if y ∈ R
d satisfies |y|1 := |y1|+· · ·+|yd | ≤ 1, then f (x0 + y) − f (x0) ≤ M .

2.6. Show that F : X → R ∪ {+∞} is convex if and only if epi F is convex (as a
set).

2.7. Show that F : X → R ∪ {+∞} is (sequentially) lower semicontinuous if and
only if epi F is (sequentially) closed.

2.8. Prove the statements of Proposition 2.21.

2.9. Verify the statements in Example 2.22 about the support function.

2.10. Prove the assertion in Example 2.26.



Chapter 3
Variations

In this chapter we discuss variations of functionals. The idea is the following: Let
F : W1,p

g (Ω; R
m) → R be a functional with minimizer u∗ ∈ W1,p

g (Ω; R
m). Take a

path t �→ ut ∈ W1,p
g (Ω; R

m) (t ∈ R) with u0 = u∗ and consider the behavior of the
map

t �→ F [ut ]

around t = 0. If t �→ F [ut ] is differentiable at t = 0, then its derivative at t = 0must
vanish because of theminimization property. This is analogous to the elementary fact
that if g ∈ C1((0, T )) takes its minimum at a point t∗ ∈ (0, T ), then g′(t∗) = 0.

The first variation δF [u] of F at u ∈ W1,p
g (Ω; R

m) is the linear map

δF [u] : C∞
c (Ω; R

m) → R

defined as

δF [u][ψ] := lim
h↓0

F [u + hψ] − F [u]
h

, ψ ∈ C∞
c (Ω; R

m), (3.1)

assuming that this limit exists. By the argument above,

δF [u∗] = 0

at every minimizer u∗. This yields a partial differential equation, called the Euler–
Lagrange equation, which minimizers necessarily satisfy in the weak sense. Under
an additional convexity assumption onF , the Euler–Lagrange equation turns out to
be sufficient for a map to be a minimizer as well. Thus, at least for convex problems,
we can find aminimizer by solving theEuler–Lagrange equation. These “calculations
with variations” gave the field its name.

© Springer International Publishing AG, part of Springer Nature 2018
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A related topic, which we only touch upon in this chapter, is the regularity theory
ofminimizers. It turns out that for so-called regular variational integrals, minimizers
are always smooth. This is the famous solution to David Hilbert’s 19th problem by
Ennio De Giorgi and John F. Nash, which we briefly outline (without proving the
more technical aspects).

If we assume a side constraint as in Section 2.5, the paths t �→ ut above have to
take into account this side constraint as well, which leads to the statement that the
minimizer satisfies a generalization of the Euler–Lagrange equation, which involves
a so-called Lagrange multiplier.

Finally, we discuss invariances of the integral functional, that is, nontrivial paths
t �→ ut along which F [ut ] is constant. This leads to a famous theorem by Emmy
Noether, which exposes “hidden” conservation laws in minimization problems.

3.1 The Euler–Lagrange Equation

Let the directional derivative DA f (x, v, A) ∈ R
m×d of f (x, v, �) at A in direction

B be defined via

DA f (x, v, A) : B := lim
h↓0

f (x, v, A + h B) − f (x, v, A)

h
, A, B ∈ R

m×d .

We remark that when we require f to be “differentiable in A”, then this entails that
the derivative DA f of f in A is linear in the direction B and hence the directional
derivative can be represented via the Frobenius product “:” (see Appendix A.1)
between DA f (x, v, A) and B. A similar remark applies to the directional derivative
Dv f (x, v, A) of f (x, �, A), where we now use the usual scalar product to pair a
location vector with a direction vector. In fact, the matrix DA f (x, v, A) and the
vector Dv f (x, v, A) are given as

DA f (x, v, A) := (
∂A j

k
f (x, v, A)

) j

k , Dv f (x, v, A) := (
∂v j f (x, v, A)

) j
.

The following theorem furnishes the connection between the calculus of variations
and PDE theory. It is very useful if we want to actually compute minimizers, either
by hand or numerically.

Theorem 3.1. Let f : Ω × R
m × R

m×d → R be a Carathéodory integrand that is
continuously differentiable in the second and third arguments and that satisfies the
growth bounds

|Dv f (x, v, A)|, |DA f (x, v, A)| ≤ C(1 + |v|p + |A|p),

for (x, v, A) ∈ Ω × R
m × R

m×d , a constant C > 0, and p ∈ [1,∞).
If u∗ ∈ W1,p

g (Ω; R
m), where g ∈ W1−1/p,p(∂Ω; R

m), minimizes the functional
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F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u ∈ W1,p
g (Ω; R

m),

then u∗ is a weak solution of the Euler–Lagrange equation

{
− div

[
DA f (x, u,∇u)

] + Dv f (x, u,∇u) = 0 in Ω,

u = g on ∂Ω.
(3.2)

Here, u∗ ∈ W1,p(Ω; R
m) is called a weak solution of (3.2) if

∫

Ω

DA f (x, u∗,∇u∗) : ∇ψ + Dv f (x, u∗,∇u∗) · ψ dx = 0 (3.3)

for all ψ ∈ C∞
c (Ω; R

m). Note that the Euler–Lagrange “equation” is actually a
system of PDEs (or, more precisely, a boundary value problem for this system).
We also used the common convention to omit the x-arguments whenever this does
not cause any confusion in order to curtail the proliferation of x’s, for example in
f (x, u,∇u) = f (x, u(x),∇u(x)). The boundary condition u = g on ∂Ω in (3.2)
is to be understood in the sense of trace, as usual.

Proof. For all ψ ∈ C∞
c (Ω; R

m) and all h > 0 we have

F [u∗] ≤ F [u∗ + hψ]

since u∗ + hψ ∈ W1,p
g (Ω; R

m) is admissible in the minimization. Thus,

0 ≤
∫

Ω

f (x, u∗ + hψ,∇u∗ + h∇ψ) − f (x, u∗,∇u∗)
h

dx

=
∫

Ω

∫ 1

0

1

h

d

dt

[
f (x, u∗ + thψ,∇u∗ + th∇ψ)

]
dt dx

=
∫

Ω

∫ 1

0
DA f (x, u∗ + thψ,∇u∗ + th∇ψ) : ∇ψ

+ Dv f (x, u∗ + thψ,∇u∗ + th∇ψ) · ψ dt dx .

By the growth bounds on the derivative, the integrand can be seen to have an h-
uniform majorant, namely C(1+|u∗|p +|ψ |p +|∇u∗|p +|∇ψ |p) if we additionally
assume h ≤ 1, and so we may apply the Lebesgue dominated convergence theorem
to let h ↓ 0 under the double integral. This yields

0 ≤
∫

Ω

DA f (x, u∗,∇u∗) : ∇ψ + Dv f (x, u∗,∇u∗) · ψ dx

and we conclude (3.3) by taking ψ and −ψ in this inequality. �
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Remark 3.2. If we want to allow ψ ∈ W1,p
0 (Ω; R

m) in the weak formulation (3.3),
then we need to assume the stronger growth conditions

|Dv f (x, v, A)|, |DA f (x, v, A)| ≤ C(1 + |v|p−1 + |A|p−1) (3.4)

for some C > 0 and p ∈ [1,∞) in order for (3.3) to be well-defined and finite
(by Hölder’s inequality). The extension to test functions ψ ∈ W1,p

0 (Ω; R
m) then

follows by a density argument. Indeed, (3.3) and (3.4) imply that the linear functional
T ∈ W1,p

0 (Ω; R
m)∗ defined for ψ ∈ W1,p

0 (Ω; R
m) as

〈
T, ψ

〉 :=
∫

Ω

DA f (x, u∗,∇u∗) : ∇ψ + Dv f (x, u∗,∇u∗) · ψ dx

satisfies 〈
T, ψ

〉 = 0 for all ψ ∈ C∞
c (Ω; R

m)

and, by Hölder’s inequality,

∣∣〈T, ψ
〉∣∣ ≤ C

∫

Ω

(
1 + |u∗|p−1 + |∇u∗|p−1

)(|ψ | + |∇ψ |) dx

≤ C
(
1 + ‖u∗‖p−1

Lp + ‖∇u∗‖p−1
Lp

)‖ψ‖W1,p .

For ψ ∈ W1,p
0 (Ω; R

m) take (ψ j ) ⊂ C∞
c (Ω; R

m) such that ψ j → ψ in W1,p (such a
sequence always exists by the definition of W1,p

0 (Ω; R
m)). Then, as T is continuous

on W1,p
0 (Ω; R

m) by the above estimate,

〈
T, ψ

〉 = lim
j→∞

〈
T, ψ j

〉 = 0

and (3.3) follows.

Using the notion of first variation, see (3.1), the assertion of Theorem 3.1 can be
written as

δF [u∗] = 0 if u∗ minimizes F over W1,p
g (Ω; R

m).

Of course, this condition is onlynecessary foru to be aminimizer. In fact, any solution
of the Euler–Lagrange equation is called a critical point of F , which could be a
minimizer, a maximizer, or a saddle point. However, under a convexity assumption,
the solution to the Euler–Lagrange equation is always a minimizer:

Proposition 3.3. In the situation of Theorem 3.1, assume furthermore that
the stronger growth conditions in (3.4) hold and that (v, A) �→ f (x, v, A) is (jointly)
convex for all x ∈ Ω . If u∗ ∈ W1,p

g (Ω; R
m) solves (3.2), then u∗ is a minimizer

of F .
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Proof. Let v ∈ W1,p
g (Ω; R

m) and set ψ := v − u∗ ∈ W1,p
0 (Ω; R

m). Consider the
function

g(t) := F [u∗ + tψ], t ∈ R,

which inherits convexity from F . By the same arguments as in the proof of Theo-
rem 3.1, g is differentiable. Since u∗ solves the Euler–Lagrange equation, we have

d

dt
g(t)

∣∣
∣∣
t=0

= 0.

Then, from the convexity,

g(t) ≥ g(0) + tg′(0) = g(0) = F [u∗], t ≥ 0.

Setting t = 1, we get F [v] ≥ F [u∗]. As v ∈ W1,p
g (Ω; R

m) was arbitrary, u∗ must
be a minimizer. �

Example 3.4. Returning to the Dirichlet functional from Example 2.8, we see that
the associated Euler–Lagrange equation is the Laplace equation

−�u = 0 in Ω,

where
� := ∂2

1 + · · · + ∂2
d

is the Laplace operator. Solutions u to −�u = 0 are called harmonic maps
(they are always strong solutions by Example 3.15 below, so there is no distinction
between weak and strong harmonic maps). Since the Dirichlet functional is convex,
by Proposition 3.3 all solutions of the Laplace equation are in fact minimizers of the
Dirichlet functional. Furthermore, by Proposition 2.10, it can be seen that solutions
of the Laplace equation are unique for given boundary values. The same assertions
also apply to the functional

F [u] :=
∫

Ω

1

2
|∇u(x)|2 − h(x) · u(x) dx, u ∈ W1,2(Ω; R

m),

where h ∈ L2(Ω; R
m). Here, the Euler–Lagrange equation is the Poisson equation

−�u = h in Ω.

Example 3.5. In the linearized elasticity problem from Example 2.12, we may com-
pute the Euler–Lagrange equation to be



52 3 Variations

⎧
⎪⎨

⎪⎩

− div

[
2μE u +

(
κ − 2

3
μ

)
(tr E u)Id

]
= b in Ω,

u = g on ∂Ω.

One crucial consequence of Theorem 3.1 is that we can use all available PDE
methods to study minimizers. Immediately, one can ask about the type of PDE we
are dealing with. In this respect we have the following prototypical result.

Proposition 3.6. In the situation of Theorem 3.1, assume furthermore that f does
not depend on v and is quadratic in A, i.e.,

f (x, v, A) = 1

2
A : S(x)A, (x, v, A) ∈ Ω × R

m × R
m×d ,

for a fourth-order symmetric tensor S(x) = Sik
jl(x) (x ∈ Ω). Then, the Euler–

Lagrange equation is the linear PDE

{
− div[S∇u] = 0 in Ω,

u = g on ∂Ω.

Moreover,

B : S(x)B = D2
A f (x, v, A)[B, B] := d2

dt2
f (x, v, A + t B)

∣
∣∣∣
t=0

for all x ∈ Ω , v ∈ R
m, and A, B ∈ R

m×d . Consequently, S is positively semidefinite
if and only if f (x, v, �) is convex. In this case, the above PDE is (possibly degenerate)
elliptic.

The proof is immediate from Theorem 3.1 and the relevant definitions.
We now use the Euler–Lagrange equation to find concrete solutions of variational

problems.

Example 3.7. Recall the optimal saving problem from Section 1.5,

⎧
⎪⎨

⎪⎩

Minimize F [S] :=
∫ T

0
− ln(1 + w + ρS(t) − Ṡ(t)) dt

subject to S(0) = 0, S(T ) = ST ≥ 0, C(t) := w + ρS(t) − Ṡ(t) ≥ 0.

Since a �→ − ln(β − a) is strictly convex for any β > 0, we know from Propo-
sition 2.10 that if a solution exists, then it is unique. The Euler–Lagrange equation
is

− d

dt

[
1

1 + w + ρS(t) − Ṡ(t)

]
= ρ

1 + w + ρS(t) − Ṡ(t)
. (3.5)
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Fig. 3.1 The solution to the
optimal saving problem

Technically, Theorem 3.1 is not applicable since the validity of the growth-bounds is
a priori unclear. However, around the solution that will be computed below, they are
in fact satisfied and so we can a posteriori justify 3.5. By Proposition 3.3 (again, a
posteriori justified), we get that this solution of the Euler–Lagrange equation is also
a minimizer of our functional.

In order to solve (3.5), we rearrange it into

ρ Ṡ(t) − S̈(t)

1 + w + ρS(t) − Ṡ(t)
= ρ.

With the modified consumption rate C∗(t) := 1 + C(t) = 1 + w + ρS(t) − Ṡ(t),
this is equivalent to

Ċ∗(t)
C∗(t)

= ρ,

and so, if C(0) = C0 (to be determined later),

1 + w + ρS(t) − Ṡ(t) = C∗(t) = eρt C∗(0) = eρt (1 + C0).

This ordinary differential equation for S(t) can be solved, for example via the
Duhamel principle, which yields

S(t) = eρt · 0 +
∫ t

0
eρ(t−s)(1 + w − eρs − eρsC0) ds

= eρt − 1

ρ
(1 + w) − teρt (1 + C0),

and C0 can now be chosen to satisfy the terminal condition S(T ) = ST , in fact,
C0 = (1 − e−ρT )(1 + w)/(ρT ) − e−ρT ST /T − 1.

In Figure 3.1 we see the optimal saving strategy for a worker earning a (constant)
continuously-paid salary of w = £30, 000 per year and having a savings goal of
ST = £100, 000. The effective APR for savings is set at 2% per year (ρ = 0.0198).
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The worker has to save for approximately 27 years, reaching savings of just over
£168, 000, and then starts withdrawing his savings (Ṡ(t) < 0) for the last 13 years.
The worker’s consumption C(t) = eρt (1+ C0) − 1 goes up continuously during the
whole working life.

Example 3.8. For functions u = u(t, x) : R × R
d → R consider the functional

F [u] :=
∫

R

∫

Rd

1

2

(−|∂t u|2 + |∇x u|2) dx dt,

where ∇x u is the gradient of u with respect to x ∈ R
d . This functional should be

interpreted as the usual Dirichlet functional with respect to the Lorentz metric. Then,
the Euler–Lagrange equation is the wave equation

∂2
t u − �u = 0 in R × R

d .

Notice that the integrand of F is not convex and the wave equation is hyperbolic.

It is an important question whether a weak solution of the Euler–Lagrange equa-
tion (3.2) is also a strong solution, that is, whether u ∈ W2,2(Ω; R

m) and

{
− div

[
DA f (x, u(x),∇u(x))

] + Dv f (x, u(x),∇u(x)) = 0 for a.e. x ∈ Ω,

u = g on ∂Ω.

(3.6)
If u ∈ C2(Ω; R

m) ∩ C(Ω; R
m) satisfies this PDE for every x ∈ Ω , then we call

u a classical solution.
Multiplying (3.6) by a test function ψ ∈ C∞

c (Ω; R
m), integrating over Ω , and

using the Gauss–Green theorem, it follows that any solution of (3.6) also solves (3.2)
in the weak sense, i.e., (3.3) holds. The converse is true whenever u is sufficiently
regular:

Proposition 3.9. Let the integrand f be twice continuously differentiable and let
u ∈ W2,2(Ω; R

m) be a weak solution of the Euler–Lagrange equation (3.2). Then,
u solves the Euler–Lagrange equation (3.6) in the strong sense.

Proof. If u ∈ W2,2(Ω; R
m) is a weak solution, then

∫

Ω

DA f (x, u,∇u) : ∇ψ + Dv f (x, u,∇u) · ψ dx = 0

for all ψ ∈ C∞
c (Ω; R

m). Integration by parts (more precisely, the Gauss–Green
theorem) gives

∫

Ω

(− div
[
DA f (x, u,∇u)

] + Dv f (x, u,∇u)
) · ψ dx = 0

for all ψ as before. We conclude using the following so-called Fundamental Lemma
of the calculus of variations. �
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Lemma 3.10. Let Ω ⊂ R
d be open. If g ∈ L1(Ω) satisfies

∫

Ω

gψ dx = 0 for all ψ ∈ C∞
c (Ω),

then g = 0 almost everywhere.

Proof. We can assume that Ω is bounded by considering subdomains if necessary.
Also, let g be extended by zero to all of R

d . Fix ε > 0 and let (ηδ)δ>0 be a family
of mollifiers, see Appendix A.5. Then, since ηδ � g → g in L1, there is a function
h ∈ C∞

c (Rd) with the properties

‖g − h‖L1 ≤ ε

4
and ‖h‖∞ < ∞.

Set φ(x) := h(x)/|h(x)| for h(x) �= 0 and φ(x) := 0 for h(x) = 0, so that hφ = |h|.
Then define ψ := ηδ � φ ∈ C∞

c (Rd) for some δ > 0 such that

‖φ − ψ‖L1 ≤ ε

2(1 + ‖h‖∞)
.

Since |ψ | ≤ 1 (this follows from the definition of the convolution),

‖g‖L1 ≤ ‖g − h‖L1 +
∫

hφ dx

= ‖g − h‖L1 +
∫

h(φ − ψ) + (h − g)ψ + gψ dx

≤ 2‖g − h‖L1 + ‖h‖∞ · ‖φ − ψ‖L1 + 0

≤ ε.

We conclude by letting ε ↓ 0. �

3.2 Regularity of Minimizers

We saw at the end of the last section that if a weak solution of the Euler–Lagrange
equation has higher regularity (differentiability), then it is also a strong or even a
classical solution. More generally, one would like to know how much regularity we
can expect from solutions of a variational problem. Such a question was the content
of Hilbert’s 19th problem [149]:

Does every Lagrangian partial differential equation of a regular variational problem have
the property of exclusively admitting analytic integrals?1

1The German original asks “ob jede Lagrangesche partielle Differentialgleichung eines regulären
Variationsproblems die Eigenschaft hat, daß sie nur analytische Integrale zuläßt.”
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In modern language, Hilbert asked whether “regular” variational problems (defined
below) admit only analytic solutions, i.e., solutions that have a local power series
representation.

In this section, we will prove some basic regularity assertions, but we will only
sketch the solution of Hilbert’s 19th problem as the techniques needed are quite
involved. We remark at the outset that many regularity results are very sensitive to
the dimensions of the domain and the target space. In particular, the behavior of the
scalar case (m = 1) and the vector case (m > 1) is fundamentally different.

In the spirit of Hilbert’s 19th problem, call

F [u] :=
∫

Ω

f (∇u(x)) dx, u ∈ W1,2(Ω; R
m),

a regular variational integral if f : R
m×d → R is twice continuously differentiable

and there are constants μ, M > 0 with

μ|B|2 ≤ D2 f (A)[B, B] ≤ M |B|2, A, B ∈ R
m×d , (3.7)

where

D2 f (A)[B, B] := d2

dt2
f (A + t B)

∣∣∣∣
t=0

.

Clearly, regular variational problems are convex. In fact, integrands f that satisfy
the lower bound in (3.7) are called strongly convex. For example, the Dirichlet
functional from Example 2.8 is a regular variational integral.

Since f is twice continuously differentiable,

D2 f (A)[B1, B2] = d

dt

d

ds
f (A + s B1 + t B2)

∣∣∣∣
s,t=0

, A, B1, B2 ∈ R
m×d ,

is a symmetric bilinear form in B1, B2. One checks that for B1 = B2 = B this agrees
with D2 f (A)[B, B] as defined above. It can be shown from (3.7) using basic linear
algebra that ∣∣D2 f (A)[B1, B2]

∣∣ ≤ M |B1||B2|. (3.8)

Then, by the mean value theorem, we also get that D f is Lipschitz continuous, that
is,

|D f (A1) − D f (A2)| ≤ M |A1 − A2|, A1, A2 ∈ R
m×d , (3.9)

and in particular (for a different M > 0)

|D f (A)| ≤ M(1 + |A|), A ∈ R
m×d .

The fundamental W2,2
loc -regularity theorem is the following.
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Theorem 3.11. Let F be a regular variational integral. Then, for any minimizer
u∗ ∈ W1,2(Ω; R

m) of F it holds that

u∗ ∈ W2,2
loc (Ω; R

m).

Moreover, for any ball B(x0, 3r) ⊂ Ω (x0 ∈ Ω , r > 0) the Caccioppoli inequality

∫

B(x0,r)

|∇2u∗(x)|2 dx ≤
(
2M

μ

)2 ∫

B(x0,3r)

|∇u∗(x) − [∇u∗]B(x0,3r)|2
r2

dx (3.10)

holds, where [∇u∗]B(x0,3r) := −
∫

B(x0,3r)
∇u∗ dx. Consequently, the Euler–Lagrange

equation is satisfied strongly,

− divD f (∇u∗) = 0 a.e. in Ω.

Here, we recall that, as usual, −
∫

B(x0,r)
:= ω−1

d r−d
∫

B(x0,r)
, where ωd := |B(0, 1)|

is the volume of the d-dimensional unit ball.
Before we come to the formal proof, let us explain the idea by establishing the

Caccioppoli inequality (3.10) assuming that u∗ ∈ C∞(Ω; R
m). In this case, for

any ball B(x0, 3r) ⊂ Ω (x0 ∈ Ω , r > 0) take a Lipschitz cut-off function ρ ∈
W1,∞

0 (Ω; [0, 1]) such that

1B(x0,r) ≤ ρ ≤ 1B(x0,2r) and |∇ρ| ≤ 1

r
.

Then test the (weak) Euler–Lagrange equation (3.3) with ψ := ∂k[ρ2∂k(u∗ − a)]
for some to be determined affine map a : R

d → R
m and any k ∈ {1, . . . , d}. Using

integration by parts,

0 = −
∫

Ω

D f (∇u∗) : ∇(
∂k[ρ2∂k(u∗ − a)]) dx

=
∫

Ω

∂k(D f (∇u∗)) : [
ρ2∂k∇u∗ + ∂k(u∗ − a) ⊗ ∇(ρ2)

]
dx

=
∫

Ω

ρ2D2 f (∇u∗)[∂k∇u∗, ∂k∇u∗] dx

+
∫

Ω

∂k(D f (∇u∗)) : [∂k(u∗ − a) ⊗ ∇(ρ2)] dx .

Here we remark that the tensor product “⊗” is technically incorrect since we are
multiplying a column vector with a row vector, but we include it here and in the
following to signify that the result is a matrix. Then, using the bounds (3.7), (3.8) on
D2 f and Young’s inequality,
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μ

∫

Ω

ρ2|∂k∇u∗|2 dx ≤
∫

Ω

ρ2D2 f (∇u∗)[∂k∇u∗, ∂k∇u∗] dx

= −
∫

Ω

∂k(D f (∇u∗)) : [∂k(u∗ − a) ⊗ ∇(ρ2)] dx

= −
∫

Ω

D2 f (∇u∗) : [∂k(u∗ − a) ⊗ ∇(ρ2), ∂k∇u∗] dx

≤ 2M
∫

Ω

ρ|∂k∇u∗| · |∂k(u∗ − a)| · |∇ρ| dx

≤ μ

2

∫

Ω

ρ2|∂k∇u∗|2 dx + 2M2

μ

∫

Ω

|∂k(u∗ − a)|2 · |∇ρ|2 dx .

We absorb the first term on the right-hand side into the left-hand side and use the
properties of ρ to infer that

μ

2

∫

B(x0,r)

|∂k∇u∗|2 dx ≤ 2M2

μ

∫

B(x0,3r)

|∂k(u∗ − a)|2
r2

dx .

Multiplying by 2/μ, summing over k, and choosing a with ∇a = [∇u∗]B(x0,3r),
we arrive at (3.10). This shows that for minimizers that are assumed smooth, the
first-order derivatives control the second order derivatives.

For the rigorous proof we will employ the difference quotient method, which
is fundamental in regularity theory. For u : Ω → R

m , define the k’th difference
quotient, k ∈ {1, . . . , d}, of u at x ∈ Ω with height h ∈ R \ {0} to be

Dh
k u(x) := u(x + hek) − u(x)

h
,

where {e1, . . . , ed} is the standard basis of R
d . We also set

Dhu := (Dh
1u, . . . ,Dh

du).

Thekey to the difference quotientmethod is the following characterization of Sobolev
spaces.

Lemma 3.12. Let D � Ω ⊂ R
d be open sets, p ∈ (1,∞), and u ∈ Lp(Ω; R

m).

(i) If u ∈ W1,p(Ω; R
m), then

‖Dh
k u‖Lp(D) ≤ ‖∂ku‖Lp(Ω) for all k ∈ 1, . . . , d, |h| < dist(D, ∂Ω).

(ii) If for some 0 < δ < dist(D, ∂Ω) it holds that

‖Dh
k u‖Lp(D) ≤ C for all k ∈ {1, . . . , d} and all |h| < δ,

then u ∈ W1,p(D; R
m) and ‖∂ku‖Lp(D) ≤ C for all k ∈ {1, . . . , d}.
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Proof. For (i) assume first that u ∈ (Lp ∩ C1)(Ω; R
m). In this case, by the funda-

mental theorem of calculus, at x ∈ Ω it holds that

Dh
k u(x) = 1

h

∫ 1

0

d

dt
u(x + thek) dt =

∫ 1

0
∂ku(x + thek) dt.

Thus, by Jensen’s inequality (see Lemma A.18),

∫

D
|Dh

k u|p dx ≤
∫

D

∫ 1

0
|∂ku(x + thek)|p dt dx ≤

∫

Ω

|∂ku|p dx,

from which the assertion is clear. The general case follows from the density of
(Lp ∩ C1)(Ω; R

m) in Lp(Ω; R
m).

For (ii), we observe that for fixed k ∈ {1, . . . , d} by assumption (Dh
k u)0<h<δ is

uniformly norm-bounded in Lp(D; R
m). Thus, for an arbitrary fixed sequence of h’s

tending to zero, there exists a subsequence h j ↓ 0 with

D
h j

k u ⇀ vk in Lp

for some vk ∈ Lp(D; R
m). Let ψ ∈ C∞

c (D; R
m). Using an “integration-by-parts”

rule for difference quotients, which is elementary to check, we get

∫

D
vk ·ψ dx = lim

j→∞

∫

Ω

D
h j

k u ·ψ dx = − lim
j→∞

∫

Ω

u ·D−h j

k ψ dx = −
∫

D
u ·∂kψ dx .

Thus, u ∈ W1,p(D; R
m) and vk = ∂ku. The norm estimate follows from the

lower semicontinuity of the norm under weak convergence (which is well-known
in functional analysis, but can also be proved using the Tonelli–Serrin
Theorem 2.6). �

Proof of Theorem 3.11. The idea is to emulate the a priori non-existent second
derivatives using difference quotients and to derive estimates which allow one to
conclude that these difference quotients are uniformly (in the height) bounded in L2.
Then we can conclude by the preceding lemma.

Let u∗ ∈ W1,2(Ω; R
m) be aminimizer ofF . By Theorem (3.1) and Remark (3.2),

0 =
∫

Ω

D f (∇u∗) : ∇ψ dx for all ψ ∈ W1,2
0 (Ω; R

m). (3.11)

Fix a ball B(x0, 3r) ⊂ Ω and take aLipschitz cut-off functionρ∈W1,∞
0 (Ω; [0, 1])

such that

1B(x0,r) ≤ ρ ≤ 1B(x0,2r) and |∇ρ| ≤ 1

r
.

Then, for any k = 1, . . . , d and |h| < r we let
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ψ := D−h
k

[
ρ2Dh

k (u∗ − a)
] ∈ W1,2

0 (Ω; R
m),

where a : R
d → R

m is an affine function to be chosen later. We may plug this ψ

into (3.11) to get

0 =
∫

Ω

Dh
k (D f (∇u∗)) : [

ρ2Dh
k ∇u∗ + Dh

k (u∗ − a) ⊗ ∇(ρ2)
]
dx . (3.12)

Here, we again used the “integration-by-parts” formula for difference quotients from
the proof of Lemma (3.12).

Next, we estimate, using the assumptions on f ,

μ|Dh
k ∇u∗|2 ≤

∫ 1

0
D2 f (∇u∗ + thDh

k ∇u∗)[Dh
k ∇u∗,Dh

k ∇u∗] dt

= 1

h
D f (∇u∗ + thDh

k ∇u∗) : Dh
k ∇u∗

∣∣∣∣

1

t=0

= Dh
k (D f (∇u∗)) : Dh

k ∇u∗,

where for the last line we note that

Dh
k (D f (∇u∗))(x) = D f (∇u∗(x + hek)) − D f (∇u∗(x))

h

= D f (∇u∗(x) + hDh
k ∇u∗(x)) − D f (∇u∗(x))

h
.

On the other hand, using the Cauchy–Schwarz and Young inequalities,

∣∣Dh
k (D f (∇u∗)) : [

Dh
k (u∗ − a) ⊗ ∇(ρ2)

]∣∣

≤ 2ρ|Dh
k (D f (∇u∗))| · |Dh

k (u∗ − a)| · |∇ρ|
≤ μ

2M2
ρ2|Dh

k (D f (∇u∗))|2 + 2M2

μ
|Dh

k (u∗ − a)|2 · |∇ρ|2.

From the last two estimates and (3.12) we get

μ

∫

Ω

|Dh
k ∇u∗|2ρ2 dx

≤
∫

Ω

Dh
k (D f (∇u∗)) : [ρ2Dh

k ∇u∗] dx

= −
∫

Ω

Dh
k (D f (∇u∗)) : [

Dh
k (u∗ − a) ⊗ ∇(ρ2)

]
dx

≤
∫

Ω

μ

2M2
ρ2|Dh

k (D f (∇u∗))|2 + 2M2

μ
|Dh

k (u∗ − a)|2 · |∇ρ|2 dx
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≤
∫

Ω

μ

2
ρ2|Dh

k ∇u∗|2 + 2M2

μ
|Dh

k (u∗ − a)|2 · |∇ρ|2 dx, (3.13)

where in the last line we used the Lipschitz continuity (3.9) of D f to estimate

∣∣Dh
k (D f (∇u∗))(x)

∣∣ =
∣∣∣
∣
D f (∇u∗(x + hek)) − D f (∇u∗(x))

h

∣∣∣
∣

=
∣∣∣∣
D f (∇u∗(x) + hDh

k ∇u∗(x)) − D f (∇u∗(x))

h

∣∣∣∣

≤ M
|∇u∗(x + hek) − ∇u∗(x)|

h
= M |Dh

k ∇u∗(x)|.

Absorbing the first term on the right-hand side of (3.13) into the left-hand side and
using the properties of ρ, we arrive at

∫

B(x0,r)

|Dh
k ∇u∗|2 dx ≤

(
2M

μ

)2 ∫

B(x0,2r)

|Dh
k (u∗ − a)|2

r2
dx .

Now invoke the difference-quotient lemma, part (i), to deduce that

∫

B(x0,r)

|Dh
k ∇u∗|2 dx ≤

(
2M

μ

)2 ∫

B(x0,3r)

|∂k(u∗ − a)|2
r2

dx .

Applying the difference-quotient lemma again, this time part (ii), we get u∗ ∈
W2,2(B(x0, r); R

m). The Caccioppoli inequality (3.10) follows once we take a with
∇a := [∇u∗]B(x0,3r). �

The W2,2
loc -regularity of solutions can be extended up to and including the bound-

ary if the boundary is smooth enough, yielding a full W2,2-regularity theorem, see
Section 6.3.2 in [111] and also [137].

In the special case when f is quadratic, say D2 f (x, v, A) = S for a symmetric
fourth-order tensor S, we can iterate, or bootstrap, the regularity arguments to con-
clude the smoothness of a minimizer. Indeed, with theW2,2

loc -regularity result at hand,
we may use ψ = ∂kψ̃ for ψ̃ ∈ C∞

c (Ω; R
m), k = 1, . . . , d, as test function in the

weak formulation of the Euler–Lagrange equation− div[D f (∇u∗)] = 0 to conclude
that

− div
[
S∇(∂ku∗)

] = 0 in Ω (3.14)

holds in the weak sense, i.e.,

0 = −
∫

Ω

D f (∇u∗) : ∇(∂kψ̃) dx =
∫

Ω

[
S∇(∂ku∗)

] : ∇ψ̃ dx
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for all ψ̃ ∈ C∞
c (Ω; R

m). However, this PDE is itself the Euler–Lagrange equation
for the integral functional

F (k)[u] :=
∫

Ω

1

2
∇(∂ku(x)) : S∇(∂ku(x)) dx, u ∈ W2,2(Ω; R

m).

Applying Theorem 3.11, we get that ∂ku ∈ W2,2
loc (Ω; R

m). Iterating this procedure,
we obtain the following higher-regularity result.

Corollary 3.13. Let F be a quadratic regular variational integral. Then, for any
minimizer u∗ ∈ W1,2(Ω; R

m) of F it holds that u∗ ∈ Wk,2
loc (Ω; R

m) for all k ∈ N,
hence also u∗ ∈ C∞(Ω; R

m).

We also state a regularity result for integral functionals with a lower-order term:

Theorem 3.14. Let f : R
m×d → R satisfy the same assumptions as in Theorem 3.11

and let h ∈ L2(Ω; R
m). Then, minimizers u∗ ∈ W1,2(Ω; R

m) of the functional

F [u] :=
∫

Ω

f (∇u(x)) − h(x) · u(x) dx, u ∈ W1,2(Ω; R
m),

lie in W2,2
loc (Ω; R

m) and satisfy the strong Euler–Lagrange equation

− divD f (∇u∗) = h a.e. in Ω.

If f is quadratic and h ∈ C∞(Ω; R
m), then u∗ ∈ C∞(Ω; R

m).

The proof is the task of Problem 3.4 and an extension is in Problem 3.5.

Example 3.15. For a minimizer u∗ ∈ W1,2(Ω; R
m) of the Dirichlet functional as in

Example 2.8, the theory presented so far immediately gives u∗ ∈ C∞(Ω; R
m). By

Theorem 3.14, the same applies to the functional

F [u] :=
∫

Ω

1

2
|∇u(x)|2 − h(x) · u(x) dx, u ∈ W1,2(Ω; R

m),

wherewe assume h ∈ C∞(Ω; R
m). Thus, solutions u ∈ W1,2(Ω; R

m) of the Laplace
equation

−�u = 0 in Ω

or the Poisson equation
−�u = h in Ω

with h ∈ C∞(Ω; R
m), are smooth.

Example 3.16. Similarly, for minimizers u∗ ∈ W1,2(Ω; R
3) of the problem of lin-

earized elasticity from Section 1.7 and Example 2.12, we also get u∗ ∈ C∞(Ω; R
3).
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The reasoning has to be slightly adjusted, however, to take care of the fact that we
are dealing with the symmetric gradient E u instead of ∇u.

In the general case of regular variational integrals the Euler–Lagrange equation is
nonlinear and the bootstrapping procedure fails. Thus, for Hilbert’s 19th problem,
different methods had to be developed. Full solutions were given, in the scalar case
m = 1, byEnnioDeGiorgi in 1957 [87] and, using differentmethods, by JohnF.Nash
in 1958 [213]. After the proof was improved by Jürgen Moser in 1960/1961 [197,
198], the results are now collectively referred to as De Giorgi–Nash–Moser theory.

The standard solution (following De Giorgi’s approach) is based on the De Giorgi
regularity theorem and the classical Schauder estimates, which establish Hölder
regularity of weak solutions of a PDE.

Theorem 3.17 (De Giorgi 1957 [87]). Let S : Ω → R
d×d be measurable, symmet-

ric, (S(x) = S(x)T for x ∈ Ω), and satisfy the ellipticity and boundedness estimates

μ|v|2 ≤ vT S(x)v ≤ M |v|2, (x, v) ∈ Ω × R
d , (3.15)

for constants μ, M > 0. If u ∈ W1,2(Ω) is a weak solution of

− div[S∇u] = 0, (3.16)

then u ∈ C0,α0
loc (Ω), that is, u is α0-Hölder continuous, for some α0 = α0(d, M/μ) ∈

(0, 1).

Theorem 3.18 (Schauder 1934/1937 [237, 238]). Let S : Ω → R
d×d be as above

but in addition assumed to be of Hölder class Cn−1,α for some n ∈ N and α ∈ (0, 1).
If u ∈ W1,2(Ω) is a weak solution of

− div[S∇u] = 0,

then u ∈ Cn,α
loc (Ω).

We remark that the Schauder estimates also hold for systems of PDEs (m > 1),
but the De Giorgi regularity theorem does not. The proofs of these results are a
bit involved (see the notes section at the end of this chapter for some pointers to
the literature), but we at least establish one of their most important consequences,
namely the solution of Hilbert’s 19th problem in the scalar case (with smoothness
instead of analyticity, however):

Theorem 3.19 (De Giorgi 1957 & Nash 1958 & Moser 1960 [87, 197, 213]).
Let F be a regular variational integral with an integrand f : R

d×d → R that is n
times continuously differentiable, where n ∈ {2, 3, . . .}. If u∗ ∈ W1,2(Ω) minimizes
F , then u∗ ∈ Cn−1,α

loc (Ω) for some α ∈ (0, 1). In particular, if f is smooth, then
u∗ ∈ C∞(Ω).
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Proof We saw in (3.14) that the partial derivatives ∂ku∗, k = 1, . . . , d, of aminimizer
u∗ ∈ W1,2(Ω) of F satisfy (3.16) for

S(x) := D2 f (∇u∗(x)), x ∈ Ω.

From general properties of the Hessian we conclude that S(x) is symmetric and
the upper and lower estimates (3.15) on S follow from the respective properties of
D2 f . However, we cannot conclude (yet) any regularity of S beyond measurability.
Nevertheless, wemay apply theDeGiorgi Regularity Theorem 3.17, whereby ∂ku∗ ∈
C0,α0
loc (Ω) for some α0 ∈ (0, 1) and all k = 1, . . . , d. Hence u∗ ∈ C1,α0

loc (Ω). This is
the assertion for n = 2.

If n = 3, our arguments so far in conjunction with the regularity assumptions on
f imply S(x) = D2 f (∇u∗(x)) ∈ C0,α0

loc (Ω). Indeed, D2 f is locally Lipschitz and
∇u∗ is locally α0-Hölder continuous, hence the composite function is also locally
α0-Hölder continuous. Consequently, the Schauder estimates from Theorem 3.18
apply and yield ∂ku∗ ∈ C1,α0

loc (Ω), whereby u∗ ∈ C2,α0
loc (Ω) = Cn−1,α0

loc (Ω).
For higher n, this procedure can be iterated until we run out of f -derivatives and

u∗ ∈ Cn−1,α0
loc (Ω). �

A slight refinement of the above argument also yields analyticity of u∗ if f is
analytic. Another refinement shows that in the situation of the De Giorgi–Nash–
Moser Theorem, we even have u∗ ∈ Cn−1,α

loc (Ω) for all α ∈ (0, 1). Here one needs
the additional Schauder–type result that weak solutions u to − div[S∇u] = 0 for
S = S(x) continuous have C0,α

loc -regularity for all α ∈ (0, 1). In the above proof we
can apply this result at stage n = 2 since S(x) = D2 f (∇u∗(x)) is continuous by the
DeGiorgi regularity theorem. Thus, u∗ ∈ C1,α

loc (Ω) for any α ∈ (0, 1). The other parts
of the proof are adapted accordingly. See [244] for details and other refinements.

We close this section by considering the vectorial case m > 1. It was shown again
by De Giorgi that if d = m > 2, then his regularity theorem does not hold:

Example 3.20 (De Giorgi 1968 [88]). Let d = m > 2 and define

u∗(x) := x

|x |γ , γ := d

2

(
1 − 1

√
(2d − 2)2 + 1

)
, x ∈ B(0, 1).

Note that 1 < γ < d/2 and so u∗ ∈ W1,2(B(0, 1); R
d) but u∗ /∈ L∞

loc(B(0, 1); R
d).

It can be checked, though, that u∗ solves (3.16) for

ATS(x)A := |A|2+
[(

(d − 2)Id + d · x ⊗ x

|x |2
)

: A

]2

, A ∈ R
d×d ,

which satisfies all assumptions of (a vector-analogue of) the De Giorgi Regularity
Theorem 3.17. Furthermore, u∗ is a weak solution to the system of PDEs

− div[S∇u∗] = 0.
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In fact, u∗ is a minimizer of the quadratic variational integral

FDG[u] :=
∫

B(0,1)
∇u(x)TS(x)∇u(x) dx, u ∈ W1,2(B(0, 1); R

2).

However, this is not a regular variational integral because the integrand depends
(non-smoothly) on x .

In principle, this still leaves the possibility that the vectorial analogue of Hilbert’s
19th problem has a positive solution, just that its proof would have to proceed along
a different route than via the De Giorgi theorem. However, Nečas in 1975 [214]
gave a (complicated) example of a regular variational integral for d ≥ 5 that has a
minimizer that is non-C1 (but still Lipschitz).

For d = 2, minimizers to regular variational problems are always as regular as
the data allows (as in Theorem 3.19), this is the Morrey regularity theorem from
1938, see [194, 196]. If we confine ourselves to Sobolev-regularity, then using
the difference quotient technique, one can prove W2,2+δ

loc -regularity for minimiz-
ers of regular variational problems for some dimension-dependent δ > 0. This
result is originally due to Campanato [55]. By the Sobolev embedding theorem
this yields C0,α-regularity for some α ∈ (0, 1) when d ≤ 4. In 2008 Kristensen and
Melcher [166] established W2,2+δ

loc -regularity for a dimension-independent δ > 0 (in
fact, δ = μ/(50M)). We will discuss further regularity results for the vector case in
Section 5.7.

On the negative side, the following results are known: Šverák and Yan proved
in 2000–2002 [255, 256] that there exist regular variational integrals (with smooth
integrands) with the following properties:

• d ≥ 3, m ≥ 5 or d ≥ 4, m ≥ 3: The minimizer is non-Lipschitz.
• d ≥ 5, m ≥ 14: The minimizer is unbounded.

In 2016 Mooney and Savin [191] were finally able to give a striking example that
there exists a regular variational integral in dimensions d ≥ 3, m ≥ 2 that has a
non-Lipschitz minimizer.

3.3 Lagrange Multipliers

We now continue the study of integral side constraints from Section 2.5.

Theorem 3.21 Let f : Ω × R
m × R

m×d → R, h : Ω × R
m → R be Carathéodory

integrands that are continuously differentiable in v, A and that satisfy the growth
bounds
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| f (x, v, A)| ≤ M(1 + |v|p + |A|p),

|h(x, v)| ≤ M(1 + |v|p),

|Dvh(x, v)| ≤ M(1 + |v|p−1), (x, v, A) ∈ Ω × R
m × R

m×d ,

for some M > 0, p ∈ [1,∞). Suppose that the map u∗ ∈ W1,p
g (Ω; R

m), where
g ∈ W1−1/p,p(∂Ω; R

m), minimizes the functional

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx, u ∈ W1,p
g (Ω; R

m),

under the side constraint

H [u] :=
∫

Ω

h(x, u(x)) dx = 0.

Assume furthermore that the consistency condition

δH [u∗][w] :=
∫

Ω

Dvh(x, u∗(x)) · w(x) dx �= 0 (3.17)

holds for at least one w ∈ W1,p
0 (Ω; R

m). Then, there exists a Lagrange multiplier
λ ∈ R such that u∗ is a weak solution of the system of PDEs

{
− div

[
DA f (x, u,∇u)

] + Dv f (x, u,∇u) = λDvh(x, u) in Ω,

u = g on ∂Ω.
(3.18)

Proof Let u∗ ∈ W1,p
g (Ω; R

m) be a minimizer of F under the side constraint
H [u∗] = 0. From the consistency condition (3.17) we infer that there exists a
w ∈ W1,p

0 (Ω; R
m) such that

δH [u∗][w] =
∫

Ω

Dvh(x, u∗) · w dx = 1.

Now fix any v ∈ W1,p
0 (Ω; R

m) and define for s, t ∈ R,

H(s, t) := H [u∗ + sv + tw].

It is not difficult to see that H is continuously differentiable in both s and t (this uses
the strong continuity of H , see Theorem 2.13) and

∂s H(s, t) = δH [u∗ + sv + tw][v],
∂t H(s, t) = δH [u∗ + sv + tw][w].
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Thus, from the definition of w we infer that

H(0, 0) = 0 and ∂t H(0, 0) = 1.

By the implicit function theorem there exists a continuously differentiable function
τ : R → R such that τ(0) = 0 and

H(s, τ (s)) = 0 for small |s|.

The chain rule yields for such s,

0 = ∂s[H(s, τ (s))] = ∂s H(s, τ (s)) + ∂t H(s, τ (s))τ ′(s),

whereby

τ ′(0) = −∂s H(0, 0) = −
∫

Ω

Dvh(x, u∗) · v dx . (3.19)

Now define for small |s| as above,

J (s) := F [u∗ + sv + τ(s)w].

We have
H [u∗ + sv + τ(s)w] = H(s, τ (s)) = 0,

and the continuously differentiable function J has a minimum at s = 0 by
the minimization property of u∗. Thus, with the shorthand notations DA f :=
DA f (x, u∗,∇u∗) and Dv f := Dv f (x, u∗,∇u∗),

0 = J ′(0) =
∫

Ω

DA f : (∇v + τ ′(0)∇w) + Dv f · (v + τ ′(0)w) dx .

Rearranging and using (3.19), we get

∫

Ω

DA f : ∇v + Dv f · v dx = −τ ′(0)
∫

Ω

DA f : ∇w + Dv f · w dx

= λ

∫

Ω

Dvh(x, u∗) · v dx, (3.20)

where we have defined

λ :=
∫

Ω

DA f : ∇w + Dv f · w dx .

Since (3.20) shows that u∗ is a weak solution of (3.18), the proof is finished. �
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Example 3.22 (Stationary Schrödinger equation). When looking for ground states
in quantum mechanics as in Section 1.4, we have to minimize

E [Ψ ] :=
∫

RN

�
2

4μ
|∇Ψ |2 + 1

2
V (x)|Ψ |2 dx

over all Ψ ∈ W1,2(RN ; C) under the side constraint

‖Ψ ‖2L2 =
∫

RN

|Ψ |2 dx = 1.

From Theorem 2.15 in conjunction with Lemma 2.16 (extended to also apply in the
whole space Ω = R

N ) we see that this problem always has at least one solution
Ψ∗ ∈ W1,2(RN ; C). Theorem 3.21 (likewise extended to the whole space and for
side constraints H [u] = α ∈ R) yields that this Ψ∗ satisfies (in the weak sense)

[−�
2

2μ
� + V (x)

]
Ψ∗(x) = EΨ∗(x), x ∈ Ω,

for some E ∈ R (the Lagrange multiplier is E/2), which is precisely the stationary
Schrödinger equation. One can also show that E > 0 is the smallest eigenvalue of the
operator Ψ �→ [−�

2

2μ � + V (x)]Ψ ; the proof of this fact is the task of Problem 3.10.

3.4 Invariances and Noether’s Theorem

In physics and other applications of the calculus of variations, we are often interested
in the symmetries of minimizers or, more generally, critical points. These symmetries
manifest themselves in other differential or pointwise relations that are automatically
satisfied for any minimizer (critical point). They can be used to identify concrete
solutions or are interesting in their own right. In this section we only consider W2,2

loc -
minimizers (critical points), which is the natural level of regularity by Theorem 3.11.

As a first concrete example of a symmetry, consider the Dirichlet functional

F [u] :=
∫

Ω

1

2
|∇u(x)|2 dx, u ∈ W1,2(Ω),

which was introduced in Example 2.8. First, we notice that F is invariant under
translations in space: Let u ∈ (W1,2 ∩ W2,2

loc )(Ω), τ ∈ R, k ∈ {1, . . . , d}, and set

xτ := x + τek, uτ (x) := u(x + τek).

Then, for any open set D ⊂ R
d with Dτ := D + τek ⊂ Ω , we have the invariance

relation
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∫

D

1

2
|∇uτ (x)|2 dx =

∫

Dτ

1

2
|∇u(xτ )|2 dxτ . (3.21)

TheDirichlet functional also exhibits an invariancewith respect to scaling: For λ > 0
set

xλ := λx, uλ(x) := λ(d−2)/2u(λx), Dλ := λD. (3.22)

Then it is not hard to see that (3.21) again holds if we set λ = eτ (to allow τ ∈ R as
before).

The main result of this section, Noether’s theorem, roughly says that “differen-
tiable invariances of a functional give rise to conservation laws”.More concretely, the
two invariances of the Dirichlet functional presented above will yield two additional
PDEs that any minimizer of the Dirichlet functional must satisfy.

To make this statement precise in the general case, we need a bit of notation: Let
u∗ ∈ (W1,2 ∩ W2,2

loc )(Ω; R
m) be a minimizer (or, more generally, a critical point) of

the functional

F [u] :=
∫

Ω

f (x, u(x),∇u(x)) dx,

where f : Ω × R
m × R

m×d → R is assumed to be continuously differentiable in the
second and third arguments. Then, u∗ satisfies the strong Euler–Lagrange equation

− div
[
DA f (x, u∗,∇u∗)

] + Dv f (x, u∗,∇u∗) = 0 a.e. in Ω,

see Proposition 3.9. We consider u∗ to be extended to all of R
d (it will not matter

below how we extend u∗).
The invariance is specified throughmaps g : R

d×R → R
d and H : R

d×R → R
m ,

which will depend on u∗ above, with

g(x, 0) = x and H(x, 0) = u∗(x), x ∈ R
d .

We also require that g, H are continuously differentiable in their second argument
for almost every x ∈ Ω . Then set for x ∈ R

d , τ ∈ R and any open set D � R
d ,

xτ := g(x, τ ), uτ (x) := H(x, τ ), Dτ := g(D, τ ).

One can think of the transformation (g, H) as a form of homotopy. We call F
invariant under the transformation defined by (g, H) if

∫

D
f (x, uτ (x),∇uτ (x)) dx =

∫

Dτ

f (x ′, u∗(x ′),∇u∗(x ′)) dx ′ (3.23)

for all Lipschitz subdomains D ⊂ R
d and for all τ ∈ R sufficiently small such that

Dτ � Ω .
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The following result goes back to EmmyNoether and is considered to be one of the
most important mathematical theorems ever proved. Its pivotal idea of systematically
generating conservation laws from invariances has shown itself to be immensely
influential in modern physics.

Theorem 3.23 (Noether 1918 [217]). Let f : Ω × R
m × R

m×d → R be twice
continuously differentiable in v, A and satisfy the growth bounds

|Dv f (x, v, A)|, |DA f (x, v, A)| ≤ C(1 + |v|p + |A|p), (x, v, A) ∈ Ω × R
m × R

m×d ,

for some C > 0, p ∈ [1,∞). Further, let the associated functional F be invariant
under the transformation defined by (g, H) as above, and assume that there exists a
majorant h ∈ Lp(Ω) such that

|∂τ H(x, τ )|, |∂τ g(x, τ )| ≤ h(x) for a.e. x ∈ Ω and all τ ∈ R. (3.24)

Then, for any minimizer or critical point u∗ ∈ (W1,2∩W2,2
loc )(Ω; R

m) of the functional
F , the conservation law

div
[
μTDA f (x, u∗,∇u∗) − ν f (x, u∗,∇u∗)

] = 0 a.e. in Ω (3.25)

holds, where

μ(x) := ∂τ H(x, 0) ∈ R
m and ν(x) := ∂τ g(x, 0) ∈ R

d , x ∈ Ω,

are the Noether multipliers.

Corollary 3.24. If f = f (v, A) : R × R
d → R does not depend on x, then every

minimizer (or critical point) u∗ ∈ (W1,2 ∩W2,2
loc )(Ω) of the corresponding functional

F satisfies

d∑

i=1

∂i
[
(∂ku) · ∂Ak f (u∗,∇u∗) − δik f (u∗,∇u∗)

] = 0 a.e. in Ω (3.26)

for all k = 1, . . . , d.

Here,

δik :=
{
1 if i = k,

0 otherwise,

is the Kronecker delta.

Proof of Theorem 3.23 and Corollary 3.24. We will differentiate (3.23) at the min-
imizer (critical point) u∗ with respect to τ . To be able to differentiate the left-
hand side under the integral, we use the growth assumptions on the derivatives
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Dv f (x, v, A),DA f (x, v, A) and (3.24) to get a uniform (in τ )majorant,which allows
us to move the differentiation under the integral sign. For the right-hand side, we
need to employ the formula for the differentiation of an integral with respect to a
moving domain (this is a special case of the Reynolds transport theorem), namely

d

dτ

∫

Dτ

f (x, u∗,∇u∗) dx = −
∫

∂ Dτ

f (x, u∗,∇u∗)∂τ g(x, τ ) · n dH d−1,

where n is the unit inner normal on ∂ Dτ and H d−1 is the (d − 1)-dimensional
surface (Hausdorff) measure on ∂ Dτ ; this formula can be checked in an elementary
way using the transformation formula for integrals under coordinate changes.

Abbreviating for readability

F := f (x, u∗(x),∇u∗(x)),

DA F := DA f (x, u∗(x),∇u∗(x)),

Dv F := Dv f (x, u∗(x),∇u∗(x)),

we get as the result of the differentiation of (3.23) with respect to τ and then setting
τ = 0 that ∫

D
DA F : ∇μ + Dv F · μ dx = −

∫

∂ D
Fν · n dH d−1.

Next, we apply the Gauss–Green theorem to obtain

∫

D

[− divDA F + Dv F
] · μ dx =

∫

∂ D

[
μTDA F − νF

] · n dH d−1

= −
∫

D
div

[
μTDA F − νF

]
dx .

The Euler–Lagrange equation − divDA F + Dv F = 0, which holds strongly for
minimizers and critical points of regularity W1,2 ∩ W2,2

loc (see Proposition 3.9), then
yields ∫

D
div

[
μTDA F − νF

]
dx = 0,

and varying D we conclude that (3.25) holds.
The corollary follows by considering the invariance

xτ := x + τek, uτ (x) := u∗(x + τek)

for k = 1, . . . , d, and a computation. �

Example 3.25. In the brachistochrone problem presented in Section 1.1, we were
tasked to minimize the functional
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Fig. 3.2 The brachistochrone curve (here, x̄ = 1)

F [y] :=
∫ 1

0

√
1 + (y′)2

−y
dx

over all curves y : [0, 1] → R with y(0) = 0, y(1) = ȳ < 0. The integrand
f (v, a) = √−(1 + a2)/v is independent of x , hence from (3.26) we get

y′ · Da f (y, y′) − f (y, y′) = const = − 1√
2r

for some r > 0 (positive constants lead to inadmissible y). So,

(y′)2
√
1 + (y′)2 · √−y

−
√
1 + (y′)2√−y

= − 1√
2r

,

which we transform into

(y′)2 = −2r

y
− 1.

The solution of this differential equation is called an inverted cycloid with radius
r > 0. It is the curve traced out by a fixed point on a circle of radius r that touches
the y-axis at the beginning and then rolls to the right on the bottom of the x-axis, see
Figure 3.2. It can be written in parametric form as

x(t) = r(t − sin t),

y(t) = −r(1 − cos t),
t ∈ R.

The radius r > 0 has to be chosen to satisfy the two boundary conditions on one
cycloid segment.

Of course, we have not properly shown that this is the (unique) solution of the
brachistochrone problem for technical reasons (e.g. growth conditions), but this can
indeed be proved rigorously.
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Example 3.26. We return to our canonical example, the Dirichlet functional, see
Example 2.8. We know from Example 3.15 that minimizers u∗ are smooth. At the
beginning of this section we remarked that the Dirichlet functional is invariant under
the scaling transformation (3.22) with λ = eτ . By Noether’s theorem, this yields the
(non-obvious) conservation law

div
[
(2∇u∗(x) · x + (d − 2)u)∇u∗(x) − |∇u∗|2x

] = 0.

Integrating this over B(x0, r) ⊂ Ω , r > 0, and using the Gauss–Green theorem, we
get

(d − 2)
∫

B(x0,r)

|∇u∗(x)|2 dx = r
∫

∂ B(x0,r)

|∇u∗(x)|2 − 2

(
∇u∗(x) · x

|x |
)2

dH d−1

and then, after some computations,

d

dr

(
1

rd−2

∫

B(x0,r)

|∇u∗(x)|2 dx

)
= 2

rd−2

∫

∂ B(x0,r)

(
∇u∗(x) · x

|x |
)2

dH d−1 ≥ 0.

This monotonicity formula implies that

1

rd−2

∫

B(x0,r)

|∇u∗(x)|2 dx is increasing in r > 0.

Any harmonic map (−�u = 0) that is defined on all ofR
d satisfies this monotonicity

formula. For example, this allows us to draw the conclusion that if d ≥ 3, then u∗
cannot be compactly supported. The formula also shows that the growth around a
singularity has to behave “more smoothly” than |x |−2 (in fact, we already know that
solutions are smooth). While these are not particularly strong remarks (in fact, it
can be shown that r �→ r−d

∫
B(x0,r)

|∇u∗(x)|2 dx is also increasing), they serve to
illustrate how Noether’s theorem restricts the candidates for solutions. Problem 3.8
exploits another invariance of the Dirichlet integral.

The last examples exhibited conservation laws that were not obvious from the
Euler–Lagrange equation. While in principle they could have been derived directly,
Noether’s theorem gave us a systematic way to find these conservation laws from
invariances.

3.5 Subdifferentials

Common to all the results presented in this chapter so far was that they needed
some form of differentiability assumption on the functional. For convex functionals
one can relax these differentiability assumptions by replacing differentials by affine
functions that support the functional’s graph.
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Fig. 3.3 The subdifferential

The fundamental definition is the following: Let X be a reflexive Banach space.
The subdifferential of a proper function F : X → R ∪ {+∞} at x ∈ X is the
set-valued map ∂ F : X ⇒ X∗, i.e., ∂ F(x) ⊂ X∗ for all x ∈ X , defined by

∂ F(x) := {
x∗ ∈ X∗ : F(x) + 〈y − x, x∗〉 ≤ F(y) for all y ∈ X

}
, x ∈ X.

Any element x∗ of ∂ F(x) is called a subgradient of F at x . The geometric intuition
is that for all x∗ ∈ ∂ F(x) the graph of the affine function y �→ F(x) + 〈y − x, x∗〉
lies everywhere below the interior of epi F and touches the graph of F at (x, F(x)),
see Figure 3.3.

Example 3.27. Let F(t) := |t |, t ∈ R, which is not differentiable at t = 0. Then,

∂ F(t) = Sgn(t) =

⎧
⎪⎨

⎪⎩

{−1} if t < 0,

[−1, 1] if t = 0,

{+1} if t > 0,

t ∈ R.

The function Sgn is called the (multi-valued) signum function.

Example 3.28. For the characteristic function χK of a compact convex set K ⊂ R
d

we get

∂χK (x) = NK (x) =

⎧
⎪⎨

⎪⎩

{0} if x ∈ K \ ∂K ,
{

x∗ ∈ R
d : 〈y − x, x∗〉 ≤ 0 for y ∈ K

}
if x ∈ ∂K ,

∅ if x /∈ K .

The set-valued function NK is called the normal cone to K at x . One can verify its
geometric meaning from the definition.

We first collect several properties of the subdifferential.
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Proposition 3.29. Let F : X → R ∪ {+∞} be proper and convex and let x ∈ X.

(i) ∂ F(x) is convex and closed.
(ii) ∂ F(x) �= ∅ if F is finite and continuous at x.

(iii) If F is Gâteaux-differentiable at x, that is, there exists an F ′(x) ∈ X∗ such
that

lim
h↓0

F(x + hv) − F(x)

h
= 〈v, F ′(x)〉 for all v ∈ X,

then ∂ F(x) = {F ′(x)}.
(iv) If ∂ F(x) �= ∅, then F(x) = F∗∗(x).
(v) If F(x) = F∗∗(x), then ∂ F(x) = ∂ F∗∗(x).

Proof. Ad (i): We will show in the proof of Theorem 3.32 below that

∂ F(x) = {
x∗ ∈ X∗ : F∗(x∗) − 〈x, x∗〉 ≤ −F(x)

}
.

The assertion then follows from the fact that the left-hand side of the inequality is
convex and lower semicontinuous in x∗, see Proposition 2.21 (i).

Ad (ii): If F is finite and continuous at any point, then the interior of epi F is
non-empty. By the Hahn–Banach Separation Theorem A.1, we can therefore find a
supporting hyperplane to the interior of epi F at x , which is the graph of an affine
function

a(y) = 〈y − x, x∗〉 + F(x)

for some x∗ ∈ X∗. In particular, a ≤ F and thus x∗ ∈ ∂ F(x).
Ad (iii): We know from (ii) that there exists an x∗ ∈ X∗ such that

F(x) + 〈y − x, x∗〉 ≤ F(y) for all y ∈ X.

Using y = x + hv with v ∈ X , h > 0 yields

F(x + hv) − F(x)

h
≥ 〈v, x∗〉.

Letting h ↓ 0 and using theGâteaux-differentiability, 〈v, F ′(x)〉 ≥ 〈v, x∗〉. Applying
this argument with ±v, we therefore arrive at x∗ = F ′(x).

Ad (iv), (v): These are just computations. �

The subdifferential behaves analogously to the classical differential in minimiza-
tion problems:

Theorem 3.30. Let F : X → R ∪ {+∞} be proper and convex. Then, x ∈ X is a
minimizer for F if and only if 0 ∈ ∂ F(x).

Proof. By the definition of the subdifferential, 0 ∈ ∂ F(x) is equivalent to F(y) ≥
F(x) for all y ∈ X . �
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Example 3.31. The preceding proposition allows us to find a replacement for the
Euler–Lagrange equation in the non-differentiable case. Consider the functional

F [u] :=
∫

B(0,1)

1

4

(|∇u(x)|2 − 1
)2 + |u(x)| dx, u ∈ W1,4(B(0, 1)).

Then, we get that u∗ ∈ W1,4(B(0, 1)) minimizes F (under some boundary condi-
tions) if and only if

− div
[
(|∇u∗|2 − 1)∇u∗

] + Sgn(u∗) � 0

holds in a suitable weak sense, namely as the (weak) variational inequality

∫

B(0,1)
|u∗| dx ≤

∫

B(0,1)
|u∗ + ψ(x)| + [

(|∇u∗|2 − 1)∇u∗
] · ∇ψ dx

for allψ ∈ W1,4
0 (B(0, 1)). To see this, one can proceed as in the proof of Theorem 3.1

and additionally use the convexity estimate

|u∗(x) + ψ(x)| − |u∗(x)| ≤ |u∗(x) + hψ(x)| − |u∗(x)|
h

for all h ∈ (0, 1].

A key property of the subdifferential is that it interacts well with the Legendre–
Fenchel conjugate. In particular, equality in the Fenchel inequality (2.6) characterizes
subgradients.

Theorem 3.32. Let F : X → R ∪ {+∞} be proper, lower semicontinuous, and
convex, and let F∗ : X∗ → R ∪ {+∞} be its conjugate. Then, the following are
equivalent for x ∈ X, x∗ ∈ X∗:

(i) x∗ ∈ ∂ F(x).
(ii) x ∈ ∂ F∗(x∗).

(iii) 〈x, x∗〉 = F(x) + F∗(x∗).

Proof. (i) ⇔ (iii): We already know “≤” in (iii), this is the Fenchel inequality (2.6).
Thus, we only need to show the equivalence of (i) with the direction “≥” of (iii). By
definition, x∗ ∈ ∂ F(x) is equivalent to

〈x, x∗〉 − F(x) ≥ 〈y, x∗〉 − F(y) for all y ∈ X.

Taking the supremum over all y ∈ X on the right-hand side, we get that this is further
equivalent to

〈x, x∗〉 − F(x) ≥ F∗(x∗),

but this is the inequality “≥” in (iii).
(ii) ⇔ (iii): This follows in the same way once we recognize that F = F∗∗ by

Proposition 2.28 as F is convex and lower semicontinuous. �
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Example 3.33. Using this theorem, the differential inclusion (here understood point-
wise)

div
[
(|∇u∗(x)|2 − 1)∇u∗(x)

] ∈ Sgn(u∗(x)) a.e. in B(0, 1)

from Example 3.31 can now equivalently be written in the dual form

u∗(x) ∈ ∂χ[−1,1]
(
div

[
(|∇u∗(x)|2 − 1)∇u∗(x)

])
a.e. in B(0, 1),

where | �|∗ = χ[−1,1] is as in (2.7) from Example 2.23.

Notes and Historical Remarks

Difference quotients were already considered by Newton. Their application to reg-
ularity theory is due to work by Nirenberg in the 1940s and 1950s. Many of the
fundamental results of regularity theory (albeit in a non-variational context) can be
found in [136]. The books by Giusti [137] and Giaquinta–Martinazzi [133] contain
theory relevant for variational questions, whereas [177] treatsmany questions of “fine
regularity” (e.g. pointwise properties of solutions). A recent, very accessible intro-
duction to regularity theory for PDEs is [36], also see the survey [188], which focuses
on the calculus of variations. A nice framework for Schauder estimates is [244].

The Fundamental Lemma 3.10 of the calculus of variations is due to Paul Du
Bois-Reymond and is sometimes named after him.

Noether’s theorem has many ramifications and can be put into a very general
form in Hamiltonian systems and Lie group theory. The idea is to study groups of
symmetries and their actions. For an introduction to this diverse field, see [218] and
also [278]. Example 3.26 about the monotonicity formula is from [111]. For more
on Lagrange multipliers and Noether’s theorem, see [131, 132].

Subdifferentials were introduced in the general work of Jean-JacquesMoreau and
R. Tyrrell Rockafellar on convex analysis. There are also extended subdifferentials
for non-convex functions; see the monographs [233] and [192, 193] for more on this.

Problems

3.1. Let Ω ⊂ R
d be a bounded Lipschitz domain.

(i) Compute the Euler–Lagrange equation, in weak form, for a minimizer u ∈
W1,2(Ω) of the functional

F [u] :=
∫

Ω

1

2
∇u(x)S(x)∇u(x)T − g(x)u(x) dx,
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where S : Ω → R
d×d , g : Ω → R are continuous and S(x) = S(x)T for all

x ∈ Ω .
(ii) Assume now that additionally S(x) is continuously differentiable in x and that

u ∈ W2,2(Ω) is a minimizer of F as above. State the strong Euler–Lagrange
equation for u and prove that it follows from the weak version.

3.2. Let Ω ⊂ R
2 and let u ∈ W1,2(Ω; R

2). In the three cases

(i) f (A) = Ai
j for some i, j ∈ {1, 2},

(ii) f (A) = det A,
(iii) f (A) = (cof A)i

j for some i, j ∈ {1, 2}
show through a direct calculation that

− div[DA f (∇u)] = 0 (3.27)

for all u ∈ C2(Ω; R
2). This shows that these f are null-Lagrangians, i.e., the Euler–

Lagrange equation holds for all u.

3.3. Show that also for d ≥ 3 the above Euler–Lagrange equation (3.27) continues
to hold for all (r × r)-minors f (A) = M(A), that is, M(A) is the determinant of a
selection of r rows and r columns of A. Hint: You can assume that you select the
first r rows and columns, thus considering only the principal minors.

3.4. Prove Theorem 3.14, namely that for functionals of the form

F [u] :=
∫

Ω

f (∇u(x)) − h(x) · u(x) dx, u ∈ W1,2(Ω; R
m),

where f satisfies the same assumptions as in Theorem 3.11 and h ∈ L2(Ω; R
m), the

minimizer u∗ has W2,2
loc -regularity. Show furthermore that if f is quadratic and h is

smooth, then u∗ ∈ C∞(Ω; R
m).

3.5. Prove an analogue of Theorem 3.11 for functionals of the form

F [u] :=
∫

Ω

f (∇u(x)) − H(u(x)) dx, u ∈ W1,2(Ω),

where f satisfies the same assumptions as in Theorem 3.11 and H : R
m → R is

continuously differentiable with |DH(v)| ≤ C(1 + |v|) for some C > 0 and all
v ∈ R

m . Is it possible to also allow the weaker growth bound |DH(v)| ≤ C(1+|v|r )
for some r > 1?

3.6. Consider the minimization problem for the problem of linearized elasticity on
Ω ⊂ R

3,

⎧
⎨

⎩
Minimize F [u] :=

∫

Ω

μ|E u(x)|2 + 1

2

(
κ − 2

3
μ

)
| tr E u(x)|2 − b(x) · u(x) dx

over all u ∈ W1,2(Ω; R
3) with u|∂Ω = g,
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whereμ, κ > 0 are such that κ− 2
3μ ≥ 0, f ∈ L∞(Ω; R

3), g ∈ W1/2,2(∂Ω; R
3), and

E u(x) := (∇u(x) + ∇u(x)T )/2. Prove that the Euler–Lagrange equation (satisfied
by a minimizer in a weak sense) is

⎧
⎪⎨

⎪⎩

− div

[
2μE u +

(
κ − 2

3
μ

)
(tr E u)I

]
= b in Ω,

u = g on ∂Ω.

3.7. In the situation of the previous problem, assume κ − 2
3μ = 0, b = 0, and that

u ∈ (W1,2 ∩ W2,2
loc )(Ω; R

3) is a minimizer of F as above. Show, using a suitable
Noether symmetry, that for all skew-symmetric W ∈ R

3×3 (W T = −W ) it holds
that

div[xT W TE u(x)] = 0 for a.e. x ∈ Ω.

3.8. Set for a skew-symmetric W ∈ R
d×d

xτ = g(x, τ ) := exp(τW )x, uτ = H(x, τ ) := u(exp(τW )x), τ ∈ R.

Show that the Dirichlet functional is invariant under the rotational transformation
defined by (g, H) and conclude that any minimizer u∗ ∈ (W1,2 ∩ W2,2

loc )(Ω; R
m) of

the Dirichlet functional (for given boundary values) satisfies the conservation law

div
[
xT W |∇u∗(x)|2] = 0.

3.9. In the situation of Exercise 2.2, derive theweakEuler–Lagrange equation.Hint:
Think about the class of “test variations” ψ that you need to allow.

3.10. In the situation of Example 3.22, show that E > 0 is the smallest eigenvalue
of the operator Ψ �→ [−�

2

2μ � + V (x)]Ψ .



Chapter 4
Young Measures

Beforewe continue our studyof integral functionals,wefirst introduce an abstract, yet
very versatile, tool, the Young measure, named after its inventor Laurence C. Young.
Youngmeasures pervade much of the modern theory of the calculus of variations and
will be used throughout the remainder of the book. In the next chapter, we will see
their first use in the proof of the lower semicontinuity theorem for integral functionals
with quasiconvex integrands.

Let us motivate this device through the following fundamental question: Assume
that we are given a weakly converging sequence v j ⇀ v in L2(Ω), where Ω ⊂ R

d

is a bounded Lipschitz domain, and an integral functional

F [w] :=
∫

Ω

f (x, w(x)) dx, w ∈ L2(Ω),

with f : Ω ×R → R continuous and bounded (for simplicity). Then, (F [v j ]) j is a
bounded sequence and up to a (non-renumbered) subsequence we may assume that
F [v j ] converges to some limit as j → ∞. The question then arises: how can we
compute this limit for every integrand f as above?

Equivalently, we could ask for the weak* limit in L∞(Ω) of the sequence of
compound functions Fj (x) := f (x, v j (x)). It is easy to see that this weak* limit
in general is not equal to f (x, v(x)). For example, in Ω = (0, 1), consider the
oscillating sequence

v j (x) :=
{

a if j x − � j x� ∈ [0, θ),

b if j x − � j x� ∈ [θ, 1),
x ∈ (0, 1),

where a, b ∈ Rwith a �= b, θ ∈ (0, 1). Then, if f (x, a) = α ∈ R, f (x, b) = β ∈ R,

and f is smooth and bounded, we see immediately that v j
∗

⇀ θa + (1 − θ)b and

© Springer International Publishing AG, part of Springer Nature 2018
F. Rindler, Calculus of Variations, Universitext,
https://doi.org/10.1007/978-3-319-77637-8_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77637-8_4&domain=pdf


82 4 Young Measures

f (x, v j )
∗

⇀ θα + (1 − θ)β =: F(x).

Of course, the right-hand side is in general not equal to f (x, θa+(1−θ)b). However,
we can write

F(x) = 〈
f (x, �), νx

〉 =
∫

f (x, v) dνx (v)

with an x-parametrized family of probability measures νx ∈ M 1(R) (see Appen-
dices A.3, A.4 for some basic facts of measure theory), namely

νx = θδa + (1 − θ)δb, x ∈ (0, 1).

This family (νx )x∈Ω reflects the asymptotic distribution of values in the sequence
(v j ) and will be called the Young measure generated by the sequence (v j ).

After laying the groundwork for the theory of Young measures, in this chapter we
will in particular focus on the properties of gradient Young measures, that is, those
Young measures where the generating sequence (the (v j ) above) consists entirely
of gradients. This class of Young measures is the most relevant for the calculus of
variations.

4.1 The Fundamental Theorem

We start with a result that nowadays is widely known as the Fundamental Theorem
of Young measure theory:

Theorem 4.1 (Young 1937–1942 [280–282]). Let (Vj ) ⊂ Lp(Ω;RN ) be a norm-
bounded sequence, where p ∈ [1,∞]. Then, there exists a subsequence (not explicitly
labeled) and a family of probability measures,

(νx )x∈Ω ⊂ M 1(RN ),

called the (Lp -)Young measure generated by the (sub)sequence (Vj ), such that the
following assertions are true:

(i) The family (νx )x isweakly*measurable, that is, for all Carathéodory integrands
f : Ω × R

N → R, the compound function

x 
→ 〈
f (x, �), νx

〉 :=
∫

f (x, A) dνx (A), x ∈ Ω,

is Lebesgue-measurable.
(ii) If p ∈ [1,∞), it holds that

∫
Ω

∫
|A|p dνx (A) dx < ∞,
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or, if p = ∞, there exists a compact set K ⊂ R
N such that

supp νx ⊂ K for a.e. x ∈ Ω.

(iii) For all Carathéodory integrands f : Ω × R
N → R with the property that the

family ( f (x, Vj )) j is uniformly L1-bounded and equiintegrable, it holds that

f (x, Vj ) ⇀

(
x 
→

∫
f (x, A) dνx (A)

)
in L1. (4.1)

For parametrized measures ν = (νx )x∈Ω that satisfy (i) and (ii) above, we write
ν = (νx )x ∈ Yp(Ω;RN ). If for the target dimension we have N = 1, then we
simply write Yp(Ω) instead of Yp(Ω;R). See Problem 4.3 for the reason why in
the definition of Yp(Ω;RN ) we do not need to include (iii).

The generation of a Young measure ν by a sequence (Vj ), i.e., the validity of (iii)
for this sequence (Vj ), will be written symbolically as

Vj
Y→ ν.

We refer to the explanation after Vitali’s Convergence Theorem A.11 for several
equivalent ways to express equiintegrability. Additionally, recall from the Dunford–
Pettis Theorem A.12 that ( f (x, Vj )) j is equiintegrable if and only if it is weakly
precompact in L1(Ω). Absorbing a test function for weak convergence into f , the
convergence (4.1) can equivalently be expressed as

∫
Ω

f (x, Vj (x)) dx →
∫

Ω

∫
f (x, A) dνx (A) dx =

∫
Ω

〈
f (x, �), νx

〉
dx =: 〈〈

f, ν
〉〉

for all Carathéodory integrands f : Ω × R
N → R such that the family ( f (x, Vj )) j

is uniformly L1-bounded and equiintegrable. We call 〈〈 f, ν〉〉 the duality pairing
between f and ν.

For ν = (νx )x ∈ Yp(Ω;RN ) the barycenter [ν] ∈ Lp(Ω;RN ) of ν is defined
via

[ν](x) := [νx ] := 〈
id, νx

〉 =
∫

A dνx (A), x ∈ Ω.

Remark 4.2. The boundedness assumption on the generating sequence (Vj ) in the
Fundamental Theorem can be weakened: For the existence of a Young measure we
only need to require the tightness condition

lim
h↑∞ sup

j∈N
|{|Vj | ≥ h}| = 0,

which, for example, follows from sup j

∫
Ω

|Vj |r dx < ∞ for some r > 0. Of course,
in this case, statement (ii) needs to be suitably adapted. The proof of the statements
in this remark is the task of Problem 4.2.
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For the proof of the Fundamental Theorem, we first associate with each Vj an
elementary Young measure δ[Vj ] = (δ[Vj ]x )x∈Ω ∈ Yp(Ω;RN ) via

δ[Vj ]x := δVj (x), x ∈ Ω, (4.2)

where δv denotes the Dirac mass at v ∈ R
N , that is δv(B) = 1 if and only if v ∈ B

for any Borel set B ⊂ Ω . Clearly, δ[Vj ]x is only defined up to a L d -negligible set
of x’s. In fact, we will (implicitly) consider all Young measures to be defined only
up toL d -negligible sets.

On our road to proving the Fundamental Theorem,wewill first show the following
Young measure compactness principle.

Lemma 4.3. Let p ∈ [1,∞] and let (ν( j)) j ⊂ Yp(Ω;RN ) be a sequence of Lp-
Young measures. If p ∈ [1,∞), assume

sup
j∈N

〈〈| �|p, ν( j)
〉〉 = sup

j∈N

∫
Ω

∫
|A|p dν( j)

x (A) dx < ∞ (4.3)

or, if p = ∞, assume that there exists a compact set K ⊂ R
m×d such that

supp ν( j)
x ⊂ K for a.e. x ∈ Ω and all j ∈ N. (4.4)

Then, there exists a subsequence of (ν j ) (not explicitly labeled) and ν ∈ Yp(Ω;RN )

such that 〈〈
f, ν( j)

〉〉 → 〈〈
f, ν

〉〉
as j → ∞ (4.5)

for all Carathéodory integrands f : Ω×R
N → R for which the sequence of functions

x 
→ 〈 f (x, �), ν
( j)
x 〉 is uniformly L1-bounded and the equiintegrability condition

sup
j∈N

〈〈| f (x, A)|1{| f (x,A)|≥h}, ν( j)
〉〉 → 0 as h → ∞ (4.6)

holds. Moreover, if p < ∞,

〈〈| �|p, ν
〉〉 ≤ lim inf

j→∞
〈〈| �|p, ν( j)

〉〉
(4.7)

or, if p = ∞,
supp νx ⊂ K for a.e. x ∈ Ω. (4.8)

We say that ν( j) converges weakly* to ν, in symbols “ν( j) ∗
⇀ ν”, if

〈〈
f, ν( j)

〉〉 → 〈〈
f, ν

〉〉
as j → ∞ (4.9)

for all f ∈ C0(Ω × R
N ). This is in particular implied by (4.5).
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Proof. Define the measures

μ( j) := L d
x Ω ⊗ ν( j)

x ,

which is just a shorthand notation for the Radon measures μ( j) ∈ M (Ω × R
N ) ∼=

C0(Ω × R
N )∗ defined through their action

〈
f, μ( j)

〉 =
∫

Ω

∫
f (x, A) dν( j)

x (A) dx for all f ∈ C0(Ω × R
N ).

For instance, if ν( j) = δ[Vj ] with the elementary Young measure δ[Vj ] defined
in (4.2), we recover

〈
f, μ( j)

〉 =
∫

Ω

f (x, Vj (x)) dx for all f ∈ C0(Ω × R
N ).

Clearly, every so-defined μ( j) is a positive measure and

∣∣〈 f, μ( j)
〉∣∣ ≤ |Ω| · ‖ f ‖∞,

whereby the (μ( j)) constitute a uniformlybounded sequence in the dual spaceC0(Ω×
R

N )∗. Thus, by the Sequential Banach–Alaoglu Theorem A.3, we can select a (not
explicitly labeled) subsequence such that there exists a μ ∈ C0(Ω × R

N )∗ with
〈
f, μ( j)

〉 → 〈
f, μ

〉
for all f ∈ C0(Ω × R

N ). (4.10)

Next, we will show that μ can again be written in the form μ = L d
x Ω ⊗ νx

for a weakly* measurable parametrized family ν = (νx )x∈Ω ⊂ M 1(RN ) of proba-
bility measures. For this we will use the following measure-theoretic disintegration
theorem, which is proved below.

Theorem 4.4. Let Ω ⊂ R
d be open and let μ ∈ M+(Ω ×R

N ) be a positive Radon
measure. Then, there exists a weakly* measurable family (νx )x∈Ω ⊂ M 1(RN ) of
probability measures such that with the measure κ ∈ M+(Ω) defined via

κ(B) := μ(B × R
N ) for any Borel set B ⊂ Ω,

it holds that
μ = κ(dx) ⊗ νx ,

that is,

∫
f dμ =

∫
Ω

∫
f (x, A) dνx (A) dκ(x) for all f ∈ C0(Ω × R

N ). (4.11)
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Furthermore, the family (νx )x∈Ω ⊂ M 1(RN ) is κ-essentially unique, that is, if
(ν ′

x )x∈Ω ⊂ M 1(RN ) has the properties above, then νx = ν ′
x for κ-almost every

x ∈ Ω .

With this theorem at hand, we first observe that (4.10) together with Lemma A.19
implies that for every open set U ⊂ Ω it holds that

μ(U × R
N ) ≤ lim inf

j→∞ μ( j)(U × R
N ) = |U |. (4.12)

On the other hand, employing the same lemma again, we get for every compact set
K ⊂ Ω and any R > 0 that

μ(K × B(0, R)) ≥ lim sup
j→∞

μ( j)(K × B(0, R))

= lim sup
j→∞

∫
K

∫
{|A|≤R}

1 dν( j)
x (A) dx

≥ |K | − 1

R p
sup
j∈N

〈〈| �|p, ν( j)
〉〉
.

Letting R → ∞ and employing (4.3) as well as the inner regularity of Radon
measures, see Appendix A.3, we arrive at

μ(K × R
N ) ≥ |K |.

Together with (4.12), we thus get from the disintegration theorem that

μ = L d
x Ω ⊗ νx ,

where (νx )x is a weakly*-measurable family of probability measures. Thus, for f ∈
C0(Ω × R

N ),

lim
j→∞

〈〈
f, ν( j)

〉〉 = lim
j→∞

〈
f, μ( j)

〉 = 〈
f, μ

〉 = 〈〈
f, ν

〉〉
,

which is (4.5) for such integrands f .
Next, we show (4.5) in the case when f is Carathéodory and bounded and such

that there exists a compact set K ⊂ R
N with supp f ⊂ Ω × K , so that for almost

every fixed x ∈ Ω the function f (x, �) is uniformly continuous. We will need the
following theorem, which is proved below.

Theorem 4.5 (Scorza Dragoni 1948 [240]). Suppose that f : Ω × R
N → R is a

Carathéodory integrand such that for almost every fixed x ∈ Ω the function f (x, �)

is uniformly continuous. Then, there exists an increasing sequence of compact sets
Sk ⊂ Ω (k ∈ N) with |Ω \ Sk | ↓ 0 such that f |Sk×RN is continuous.
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So, let the sets Sk � Ω (k ∈ N) with |Ω \ Sk | ↓ 0 be such that f |Sk×RN is
continuous for our Carathéodory integrand f . Let furthermore fk ∈ C0(Ω × R

N )

be an extension of f |Sk×RN to all of Ω × R
N and assume that the fk are uniformly

(in k) bounded; this uses the Tietze Extension Theorem A.33, a cut-off construction,
and a truncation (we omit the details as they are straightforward).

Since fk ∈ C0(Ω × R
N ), the sequence (〈 fk(x, �), ν

( j)
x 〉) j is weakly precompact

in L1(Ω). Thus, (4.10) implies

〈
fk(x, �), ν( j)

x

〉
⇀

〈
fk(x, �), νx

〉
in L1(Ω) as j → ∞.

In particular,

〈
f (x, �), ν( j)

x

〉
⇀

〈
f (x, �), νx

〉
in L1(Sk) as j → ∞.

On the other hand,

∫
Ω

∣∣〈 f (x, �), ν( j)
x

〉 − 1Sk

〈
f (x, �), ν( j)

x

〉∣∣ dx ≤
∫

Ω\Sk

∣∣〈 f (x, �), ν( j)
x

〉∣∣ dx

and this converges to zero as k → ∞, uniformly in j , by the boundedness of f . The
same estimate holds with ν in place of ν( j). Therefore, we may conclude that

〈
f (x, �), ν( j)

x

〉
⇀

〈
f (x, �), νx

〉
in L1(Ω) as j → ∞,

which directly yields (4.5) for bounded Carathéodory integrands f with supp f ⊂
Ω × K .

Finally, to remove the restriction of boundedness and compact support in A,
we remark that it suffices to show (4.5) under the additional constraint f ≥ 0
by considering the positive and negative parts separately (the resulting functions
are still Carathéodory integrands). Choose for any h ∈ N a cut-off function ρh ∈
C∞

c (R; [0, 1]) with ρh = 1 on B(0, h) and supp ρh ⊂ B(0, 2h). Set

f h(x, A) := ρh(|A|p/2)ρh( f (x, A)) f (x, A).

Then,

E j,h :=
∫

Ω

∫
| f (x, �) − f h(x, �)| dν( j)

x dx

≤
∫

Ω

∫ [
1 − ρh(|A|p/2)ρh( f (x, A))

]| f (x, A)| dν( j)
x (A) dx

≤
∫∫

{ (x,A)∈Ω×RN : |A|p/2≥h or | f (x,A)|≥h }
| f (x, A)| dν( j)

x (A) dx
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≤
∫

Ω

∫
{ A∈RN : |A|p/2≥h and | f (x,A)|<h }

h dν( j)
x (A) dx

+
∫∫

{ (x,A)∈Ω×RN : | f (x,A)|≥h }
| f (x, A)| dν( j)

x (A) dx

= 1

h

∫
Ω

∫
{ A∈RN : |A|p/2≥h }

h2 dν( j)
x (A) dx

+
∫∫

{ (x,A)∈Ω×RN : | f (x,A)|≥h }
| f (x, A)| dν( j)

x (A) dx

≤ 1

h
sup
j∈N

〈〈|A|p, ν( j)
〉〉 + sup

j∈N

〈〈| f (x, A)|1{| f (x,A)|≥h}, ν( j)
〉〉
.

Both of these terms converge to zero as h → ∞ by the assumptions from the
compactness principle, in particular (4.3) and the equiintegrability condition (4.6).
Consequently, for fixed h ∈ N,

lim
j→∞

∣∣〈〈 f, ν( j)
〉〉 − 〈〈

f, ν
〉〉∣∣

≤ lim sup
j→∞

(∣∣〈〈 f − f h, ν( j)
〉〉∣∣ + ∣∣〈〈 f h, ν( j)

〉〉 − 〈〈
f h, ν

〉〉∣∣ + ∣∣〈〈 f h − f, ν
〉〉∣∣)

≤ sup
j∈N

E j,h + lim sup
j→∞

∣∣〈〈 f h − f, ν
〉〉∣∣,

where we used the previous step, namely that the Young measure convergence holds
for f h , to see that the middle upper limit vanishes. Now, the first term vanishes as
h → ∞ by the preceding estimate and the second term tends to zero by the pointwise
bounded convergence of f h to f and f ≥ 0. Thus, (4.5) follows also in this case.

The last assertion to be shown in the compactness principle is (4.7) if p ∈ [1,∞)

and (4.8) if p = ∞. For (4.7) let h ∈ N and define |A|h := min{|A|, h}. Then,

lim inf
j→∞

〈〈| �|p, ν( j)
〉〉 ≥ lim

j→∞
〈〈| �|p

h , ν( j)
〉〉 = 〈〈| �|p

h , ν
〉〉

for all h ∈ N.

We conclude by letting h → ∞ and using the monotone convergence theorem.
For (4.8) take any ϕ ∈ C0(Ω), ψ ∈ C0(R

N ) with suppψ ∩ K = ∅. Then,
〈〈
ϕ ⊗ ψ, ν

〉〉 = lim
j→∞

〈〈
ϕ ⊗ ψ, ν( j)

〉〉 = 0.

Varying ϕ and ψ , the assertion supp νx ⊂ K for almost every x ∈ Ω follows. �
Proof of Theorem 4.4. Forψ ∈ C0(R

N )we define the (signed)measureμψ ∈ M (Ω)

via

μψ(B) :=
∫

B×RN

ψ(A) dμ(x, A)

for any Borel set B ⊂ Ω . We have
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μψ(B) ≤ ‖ψ‖∞μ(B × R
N ) = ‖ψ‖∞κ(B).

Thus, by the Besicovitch Differentiation Theorem A.23 there exists a κ-measurable
function hψ : Ω → R with |hψ | ≤ ‖ψ‖∞ such that μψ = hψκ . This construction is
linear in ψ , that is,

μαψ1+βψ2 = αμψ1 + βμψ2 = αhψ1κ + βhψ2κ = (hαψ1+βψ2)κ

for all ψ1, ψ2 ∈ C0(R
N ) and α, β ∈ R.

Fix a countable dense family of functions D ⊂ C0(R
N ). Then, we can find a

κ-negligible set N ⊂ Ω such that

hψ1(x) + hψ2(x) = hψ1+ψ2(x) for all x ∈ Ω\N and allψ1, ψ2 ∈ D .

Setting Tx [ψ] := hψ(x) for x ∈ Ω \ N and ψ ∈ D , we see that |Tx [ψ]| ≤ ‖ψ‖∞
and thus Tx can be extended to a linear bounded operator on C0(R

N ). Hence, the
Riesz Representation Theorem A.21 shows that for every x ∈ Ω \ N there exists a
measure νx ∈ M (RN ) with |νx |(RN ) ≤ 1 such that

Tx [ψ] =
∫
RN

ψ(A) dνx (A), ψ ∈ C0(R
N ).

Further setting νx := δ0 at points x ∈ N , we note that for allψ ∈ D the function x 
→
〈ψ, νx 〉 = Tx [ψ] = hψ(x) is κ-measurable by definition. Thus, the κ-measurability
also holds for ψ ∈ C0(R

N ) by approximation. By a further approximation, the
details of which we omit (see Problem 4.1), this implies the weak* measurability of
the family (νx )x∈Ω .

For a Borel set B ⊂ Ω and ψ ∈ D , we have

∫
Ω×RN

1B(x)ψ(A) dμ(x, A) = μψ(B)

=
∫

B
hψ(x) dκ(x)

=
∫

B

∫
RN

ψ(A) dνx (A) dκ(x)

=
∫

Ω

∫
RN

1B(x)ψ(A) dνx (A) dκ(x).

This is (4.11) for f := 1B ⊗ ψ . By a (multi-stage) approximation, (4.11) then also
holds for all f ∈ C0(Ω ×R

N ) and also for all f := 1B×RN for any Borel set B ⊂ Ω .
To see that the νx are indeed probability measures, it suffices to observe

μ(B × R
N ) =

∫
B

νx (R
N ) dκ(x) ≤

∫
B
1 dκ(x) = μ(B × R

N )
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for all Borel set B ⊂ Ω . Hence, νx (R
N ) = 1 for κ-almost every x ∈ Ω , which

together with |νx |(RN ) ≤ 1 implies that νx is a probability measure.
The κ-essential uniqueness follows directly by applying (4.11) to all f := ϕ ⊗ψ

with ϕ ∈ C0(Ω), ψ ∈ C0(R
N ). �

Proof of Theorem 4.5. For j ∈ N consider the functions

g j (x) := sup
{ | f (x, A) − f (x, B)| : A, B ∈ R

N , |A − B| ≤ 1/j
}
, x ∈ Ω.

Since f is Carathéodory and for almost every x ∈ Ω the function f (x, �) is uniformly
continuous, we have g j → 0 pointwise almost everywhere as j → ∞.

Let n ∈ N. By Egorov’s Theorem A.13, there exists a compact set K0 ⊂ Ω

with |Ω \ K0| ≤ 1/(2n) and g j → 0 uniformly on K0. Let {Ai }i∈N ⊂ R
N be

dense in RN . By Lusin’s Theorem A.16 there are compact sets Ki (i ∈ N) such that
|Ω \ Ki | ≤ 1/(2i+1n) and f ( �, Ai ) is continuous in Ki . For

Sn := K0 ∩
∞⋂

i=1

Ki

we estimate

|Ω \ Sn| ≤ 1

2n

(
1 +

∞∑
i=1

1

2i

)
= 1

n
.

Consequently, |Ω \ Sn| → 0 as n → ∞.
Let ε > 0 and choose δ > 0 such that |A − B| ≤ 2δ for A, B ∈ R

N implies
| f (x, A)− f (x, B)| ≤ ε for all x ∈ Sn ⊂ K0 (the existence of such a δ follows from
the uniform convergence g j → 0 on Sn).

For any (x̄, Ā) ∈ Sn × R
N pick Ai from the dense collection {Ai } such that

| Ā − Ai | ≤ δ. For this Ai there exists an η > 0 such that for all y ∈ Sn ⊂ Ki with
|x̄ − y| ≤ η it holds that | f (x̄, Ai ) − f (y, Ai )| ≤ ε. So, for (x, A) ∈ Sn ×R

N with

|x̄ − x | ≤ η and | Ā − A| ≤ δ,

we have |Ai − A| ≤ |Ai − Ā| + | Ā − A| ≤ 2δ, and so,

| f (x̄, Ā) − f (x, A)| ≤ | f (x̄, Ā) − f (x̄, Ai )| + | f (x̄, Ai ) − f (x, Ai )|
+ | f (x, Ai ) − f (x, A)|

≤ 3ε.

Hence, f |Sn×RN is continuous at any (x̄, Ā) ∈ Sn × R
N . �

Proof of the Fundamental Theorem 4.1. We apply the compactness principle to the
sequence (δ[Vj ]) j of elementary Young measures defined in (4.2). The boundedness
conditions (4.3), (4.4) are directly implied by the Lp-boundedness assumption on
(Vj ). For (δ[Vj ]) j the assumption (4.6) expresses precisely the equiintegrability of
( f (x, Vj )) j . Thus, (i)–(iii) follow from the compactness principle. �
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The Fundamental Theorem 4.1 can also be proved in a more functional analytic
way as follows: Let L∞

w∗(Ω;M (RN )) be the set of essentially bounded weakly*
measurable functions defined on Ω with values in the Radon measures M (RN ).
It turns out (see, for example, [27] or [96, 97]) that L∞

w∗(Ω;M (RN )) is the dual
space to L1(Ω;C0(R

N )). One can show that the maps ν( j) = (x 
→ ν
( j)
x ) j form a

uniformly bounded set in L∞
w∗(Ω;M (RN )) and by the sequential Banach–Alaoglu

Theorem A.3 we can again conclude the existence of a weak* limit point ν of the
ν( j)’s, which also inherits the property of being a collection of probability measures.
The extended representation of limits for Carathéodory integrands f follows as
before.

Finally, we show a “lower semicontinuity result” for the duality pairing between
a Young measure and a positive integrand for which we do not have equiintegrability
of the compound functions.

Proposition 4.6. Let (Vj ) ⊂ Lp(Ω;RN ), p ∈ [1,∞], be a norm-bounded sequence
generating the Young measure ν ∈ Yp(Ω;RN ) and let f : Ω × R

N → [0,∞) be
a Carathéodory integrand (not necessarily satisfying the equiintegrability property
in (iii) of the Fundamental Theorem). Then,

lim inf
j→∞

∫
Ω

f (x, Vj (x)) dx = lim inf
j→∞

〈〈
f, δ[Vj ]

〉〉 ≥ 〈〈
f, ν

〉〉
.

Proof. For h ∈ N define fh(x, A) := min{ f (x, A), h}. Then, (iii) from the Funda-
mental Theorem is applicable for the integrand fh and we get

∫
Ω

fh(x, Vj (x)) dx → 〈〈
fh, ν

〉〉 =
∫

Ω

∫
fh(x, A) dνx (A) dx .

Since f ≥ fh , we have

lim inf
j→∞

∫
Ω

f (x, Vj (x)) dx ≥ 〈〈
fh, ν

〉〉
.

We conclude by letting h → ∞ and using the monotone convergence theorem. �

4.2 Examples

Wewill now consider a few examples of Youngmeasures. Most of these ν = (νx )x ∈
Yp(Ω;RN ) will in fact be homogeneous, that is, νx is almost everywhere constant
in x ∈ Ω; we then simply write ν in place of νx .

In order to identify the Youngmeasure generated by some sequence, the following
simple result often turns out to be useful.



92 4 Young Measures

Fig. 4.1 An oscillating sequence

Lemma 4.7. There exists a countable family {ϕk ⊗ hk}k∈N ⊂ C0(Ω) × C0(R
N )

with the following property: If (Vj ) ⊂ Lp(Ω;RN ) is uniformly norm-bounded and
ν ∈ Yp(Ω;RN ) is such that

lim
j→∞

∫
Ω

ϕk(x)hk(Vj (x)) dx =
∫

Ω

ϕk(x)
〈
hk, νx

〉
dx for all k ∈ N,

then Vj
Y→ ν.

Proof. Let {ϕk}k and {hl}l be countable dense subsets of C0(Ω) and C0(R
N ), respec-

tively. The assertion of the lemma is immediate (with a numbering ofN×N) once we
recall the basic fact from functional analysis that the set of linear combinations of the
functions fk,l := ϕk ⊗hl (that is, fk,l(x, A) := ϕk(x)hl(A)) is dense in C0(Ω ×R

N )

and testing with such functions determines Young measure convergence, as we have
seen in the proof of the Fundamental Theorem 4.1. �

Example 4.8. In Ω := (0, 1) define u := 1(0,1/2) − 1(1/2,1) and extend this function
periodically to all ofR. Then, the functions u j (x) := u( j x) for j ∈ N (see Figure 4.1)
generate the homogeneous Young measure ν ∈ Y∞((0, 1)) with

ν = 1

2
δ−1 + 1

2
δ+1.

Indeed, for ϕ ∈ C0((0, 1)), h ∈ C0(R) we have that ϕ is uniformly continuous, say
|ϕ(x)−ϕ(y)| ≤ ω(|x −y|)with amodulus of continuityω : [0,∞) → [0,∞), that
is, ω is continuous, increasing, and ω(0) = 0. Then, since h is uniformly bounded,
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Fig. 4.2 Another oscillating sequence

lim
j→∞

∫ 1

0
ϕ(x)h(u j (x)) dx

= lim
j→∞

j−1∑
k=0

[∫ (k+1)/j

k/j
ϕ

(
k

j

)
h(u j (x)) dx + 1

j
O

(
ω(1/j)

)]

= lim
j→∞

j−1∑
k=0

1

j
ϕ

(
k

j

)∫ 1

0
h(u(y)) dy

=
∫ 1

0
ϕ(x) dx ·

(
1

2
h(−1) + 1

2
h(+1)

)
.

For the last equality we used that the Riemann sums converge to the integral of ϕ.
By Lemma 4.7, this identifies ν as claimed.

Example 4.9. Take Ω := (0, 1) again and let u j (x) := sin(2π j x) for j ∈ N

(see Figure 4.2). The sequence (u j ) generates the homogeneous Young measure
ν ∈ Y∞((0, 1)) with

ν = 1

π
√
1 − y2

L 1
y (−1, 1).

This should be plausible from looking at the oscillating sequence; a formal proof is
the task of Problem 4.4.

Example 4.10. Take a bounded Lipschitz domain Ω ⊂ R
2 and assume that A, B ∈

R
2×2 are rank-one connected, that is, B − A = a ⊗ n for some a, n ∈ R

2 (this is
equivalent to rank(A − B) ≤ 1). For θ ∈ (0, 1) define

u(x) := Ax +
( ∫ x ·n

0
χ(t) dt

)
a, x ∈ R

2,

where
χ := 1⋃

z∈Z[z,z+1−θ).
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If we let u j (x) := u( j x)/j , x ∈ Ω , then the sequence (∇u j ) (restricted to (0, 1)2)
generates the homogeneous Young measure ν ∈ Y∞((0, 1)2;R2×2) with

ν = θδA + (1 − θ)δB .

4.3 Young Measures and Notions of Convergence

Next, we investigate how Young measure generation interacts with various notions
of convergence.

Lemma 4.11. Let (Vj ) ⊂ Lp(Ω;RN ), p ∈ (1,∞], be a sequence generating the
Young measure ν ∈ Yp(Ω;RN ). Then, setting V (x) := [ν](x) = [νx ] (the barycen-
ter of ν), it holds that

Vj ⇀ V inLp if p ∈ (1,∞) or Vj
∗

⇀ V in L∞ if p = ∞.

Proof. Bounded sequences in Lp(Ω;RN ) with p > 1 are weakly precompact
and thus it suffices to identify the limit of any weakly(*) converging subsequence.
From the Dunford–Pettis Theorem A.12 it follows that any such (sub)sequence is
in fact (L1-)equiintegrable. Now simply apply assertion (iii) of the Fundamental
Theorem for the integrand f (x, A) := A (or, more pedantically, fi (A) := Ai for
i = 1, . . . , N ). �

The preceding lemma does not hold for p = 1. A counterexample is given by
Vj := j1(0,1/j), which concentrates.

Another important feature of Young measures is that they allow one to read off
whether or not the generating sequence converges in measure:

Lemma 4.12. Let ν ∈ Yp(Ω;RN ), p ∈ [1,∞], be the Young measure generated by
a norm-bounded sequence (Vj ) ⊂ Lp(Ω;RN ) and let K ⊂ R

N be compact. Then,

dist(Vj , K ) → 0 in measure ⇐⇒ supp νx ⊂ K for a.e. x ∈ Ω.

Moreover, for V ∈ Lp(Ω;RN ),

Vj → V in measure ⇐⇒ νx = δV (x) for a.e. x ∈ Ω.

Proof. For any bounded, positive Carathéodory integrand f : Ω ×R
N → [0, 1] and

all δ ∈ (0, 1) the Markov inequality and the Fundamental Theorem 4.1 imply

lim sup
j→∞

∣∣{ x ∈ Ω : f (x, Vj (x)) ≥ δ
}∣∣ ≤ lim

j→∞
1

δ

∫
Ω

f (x, Vj (x)) dx

= 1

δ

∫
Ω

∫
f (x, �) dνx dx .
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On the other hand,

∫
Ω

∫
f (x, �) dνx dx = lim

j→∞

∫
Ω

f (x, Vj (x)) dx

≤ δ|Ω| + lim sup
j→∞

∣∣{ x ∈ Ω : f (x, Vj (x)) ≥ δ
}∣∣.

The preceding estimates show that f (x, Vj (x)) converges to zero in measure if and
only if 〈 f (x, �), νx 〉 = 0 forL d -almost every x ∈ Ω .

For the first assertion set

f (x, A) := dist(A, K )

1 + dist(A, K )
, (x, A) ∈ Ω × R

N .

In this case, f (x, Vj (x)) converges to zero in measure if and only if dist(Vj , K ) → 0
in measure, and 〈 f (x, �), νx 〉 = 0 if and only if supp νx ⊂ K .

For the second assertion we choose

f (x, A) := |A − V (x)|
1 + |A − V (x)| , (x, A) ∈ Ω × R

N .

Then, f (x, Vj (x)) converges to zero in measure if and only if Vj converges to V in
measure, and 〈 f (x, �), νx 〉 = 0 if and only if νx = δV (x). �

4.4 Gradient Young Measures

The most important Young measures for our purposes are those that can be gener-
ated by a sequence of gradients. Let ν ∈ Yp(Ω;Rm×d) (use RN = R

m×d ∼= R
md

in the theory of the last section). We say that ν is a W1,p-gradient Young measure,
where p ∈ [1,∞], in symbols ν ∈ GYp(Ω;Rm×d), if there exists a norm-bounded

sequence (u j ) ⊂ W1,p(Ω;Rm) such that ∇u j
Y→ ν, i.e., the sequence (∇u j ) gen-

erates ν. Note that it is not required, and in fact never true, that every sequence
that generates ν is a sequence of gradients. We have already considered examples of
gradient Youngmeasures in the previous section, we note in particular Example 4.10.

We first prove the following technical, but immensely useful, result about gradient
Young measures.

Lemma 4.13. Let ν ∈ GYp(Ω;Rm×d), p ∈ (1,∞], and let u ∈ W1,p(Ω;Rm)

be an underlying deformation of ν, that is, [ν] = ∇u. Then, there exists a norm-
bounded sequence (u j ) ⊂ W1,p(Ω;Rm) such that

supp(u j − u) � Ω and ∇u j
Y→ ν.

Furthermore, if p ∈ (1,∞), we can in addition require that the sequence (∇u j ) is
Lp-equiintegrable.
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Proof. Step 1. Since Ω has a Lipschitz boundary, we can extend a generating
sequence (∇v j ) for ν to all of Rd (see Theorem A.25), so from now on we assume
(v j ) ⊂ W1,p(Rd;Rm) with sup j ‖v j‖W1,p < ∞.

In the following we need the maximal function M f : Rd → R ∪ {+∞} of
f : Rd → R∪{+∞}, seeAppendixA.6.With this tool at hand, consider the sequence

Vj := M
(|v j | + |∇v j |

)
, j ∈ N.

By Theorem A.36, (Vj ) is uniformly bounded in Lp(Ω) and we may select a
subsequence (not explicitly labeled) such that (Vj ) generates a Young measure
μ ∈ Yp(Ω;Rm×d).

Step 2. For p ∈ (1,∞) we first show the claim concerning equiintegrability.
Define for h ∈ N the (nonlinear) truncation τh ,

τhs :=
{

s if |s| ≤ h,

h s
|s| if |s| > h,

s ∈ R.

For fixed h ∈ N the sequence (τh Vj ) j is uniformly bounded in L∞(Ω) and so, by
the Young measure representation of limits, we have for every ϕ ∈ L∞(Ω) that

lim
h→∞ lim

j→∞

∫
Ω

ϕ(x)|τh Vj (x)|p dx = lim
h→∞

∫
Ω

ϕ(x)

∫
|τhs|p dμx (s) dx

= 〈〈
ϕ ⊗ | �|p, μ

〉〉
, (4.13)

where in the last step we used the monotone convergence theorem. Now choose for
every k ∈ N a natural number j (k) > j (k − 1), where j (0) := 0, such that

∣∣∣∣ limj→∞

∫
Ω

|τk Vj (x)|p dx −
∫

Ω

|τk Vn(x)|p dx

∣∣∣∣ ≤ 1

k
(4.14)

for all n ≥ j (k). Let ψ ∈ L∞(Ω). We may also estimate for l ≤ k,

∫
Ω

ψ(x)|τk Vj (k)(x)|p dx ≤ ‖ψ‖L∞ ·
∫

Ω

|τk Vj (k)(x)|p dx

−
∫

Ω

(‖ψ‖L∞ − ψ(x)
)|τl Vj (k)|p dx .

Thus, using (4.13) for ϕ := 1Ω , (4.14), and also the Young measure representation
of limits,

lim sup
k→∞

∫
Ω

ψ(x)|τk Vj (k)(x)|p dx ≤ ‖ψ‖L∞ · 〈〈
1 ⊗ | �|p, μ

〉〉

−
∫

Ω

(‖ψ‖L∞ − ψ(x)
) ∫

|τl s|p dμx (s) dx .



4.4 Gradient Young Measures 97

Letting l → ∞, we get by the monotone convergence theorem

lim sup
k→∞

∫
Ω

ψ(x)|τk Vj (k)(x)|p dx ≤ 〈〈
ψ ⊗ | �|p, μ

〉〉
.

Repeating the same argument for −ψ , we conclude that

|τk Vj (k)| ⇀
(
x 
→ 〈| �|p, μx

〉)
in L1.

Thus, by the Dunford–Pettis Theorem A.12 the functions Wk := τk Vj (k) (k ∈ N) are
uniformly Lp-bounded and Lp-equiintegrable.

Theorem A.36 implies that v j (k) is Lipschitz continuous with Lipschitz constant
at most Ck on the set

Sk := {
x ∈ Ω : Vj (k)(x) ≤ k

}

and by the Kirszbraun Theorem A.34, we may extend each vk to a function
wk : Rd → R

m that is globally Lipschitz continuous with Lipschitz constant at most
Ck. Since wk = v j (k) in Sk , for the gradients ∇wk (which exist almost everywhere
by Rademacher’s Theorem A.30) we have

|∇wk | = |∇v j (k)| ≤ Vj (k) = Wk a.e. in Sk,

|∇wk | ≤ Ck = CWk a.e. in Ω \ Sk .

Consequently, |∇wk | ≤ CWk almost everywhere in Ω and thus {∇wk}k inherits the
Lp-equiintegrability from {Wk}k . Moreover, by the Markov inequality,

|Ω \ Sk | ≤ ‖Vk‖p
Lp

k p
→ 0 as k → ∞.

Therefore, for all ϕ ∈ C0(Ω) and all h ∈ C0(R
m),

∫
Ω

|ϕ(x)h(∇wk(x)) − ϕ(x)h(∇vk(x))| dx ≤ ‖ϕ‖∞ · ‖h‖∞ · |Ω \ Sk | → 0.

Since all such ϕ, h determine the Young measure (see the proof of the Fundamental
Theorem 4.1), we have shown that the Lp-equiintegrable sequence (∇wk) generates
the same Young measure ν as (∇v j ).

Step 3. It remains to perform the boundary adjustment. Since W1,p(Ω;Rm)

embeds compactly into the space Lp(Ω;Rm) by the Rellich–Kondrachov Theo-
rem A.28, we have wk → u in Lp. Let (ρ j ) ⊂ C∞

c (Ω; [0, 1]) be a sequence of
cut-off functions with the property that for the sets G j := { x ∈ Ω : ρ j (x) = 1 } it
holds that |Ω \ G j | → 0 as j → ∞. For

u j,k := ρ j wk + (1 − ρ j )u ∈ W1,p
u (Ω;Rm)
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we observe
∇u j,k = ρ j∇wk + (1 − ρ j )∇u + (wk − u) ⊗ ∇ρ j .

For all ϕ ∈ C0(Ω) and h ∈ C0(R
m), we have

∫
Ω

|ϕ(x)h(∇wk(x)) − ϕ(x)h(∇u j,k(x))| dx ≤ |Ω \ G j | · ‖ϕ‖∞ · ‖h‖∞ → 0

as j → ∞, uniformly in k. As we have remarked before, these ϕ, h determine the
Young measure, so we can now select a diagonal sequence u j = u j,k( j) such that
(∇u j ) generates ν and satisfies all requirements from the statement of the lemma. It
is easy to see that the equiintegrability is not affected by the cut-off procedure. �

It is the task of Problem 4.9 to show that the preceding lemma cannot hold in the
case p = 1.

4.5 Homogeneous Gradient Young Measures

We next discuss some properties of homogeneous gradient Young measures ν ∈
GYp(B(0, 1);Rm×d), for which νx is almost everywhere constant in x . We simply
write ν for any νx and [ν] = [νx ].

It is a particular consequence of the following averaging principle that the domain
in the definition of homogeneous gradient Young measures can be chosen to be any
bounded Lipschitz domain D ⊂ R

d .

Lemma 4.14. Let ν ∈ GYp(Ω;Rm×d), where p ∈ [1,∞], such that [ν] = ∇u
for some u ∈ W1,p(Ω;Rm) with linear boundary values. Then, for any bounded
Lipschitz domain D ⊂ R

d there exists a homogeneous gradient Young measure
ν ∈ GYp(D;Rm×d) such that

∫
h dν = −

∫
Ω

∫
h dνx dx (4.15)

for all continuous h : Rm×d → R with p-growth if p < ∞ (no growth condition
if p = ∞). This result remains valid if Ω = (−1/2, 1/2)d , the d-dimensional unit
cube, and u has periodic boundary values.

Proof. We only treat the case p ∈ [1,∞), the case p = ∞ is in fact easier.
Let (u j ) ⊂ W1,p(Ω;Rm) with u j |∂Ω = Fx (in the sense of trace) for a fixed

matrix F ∈ R
m×d and such that ∇u j

Y→ ν. This sequence exists by Lemma 4.13 and
the fact that u|∂Ω = Fx for some F ∈ R

m×d (we denote by “Fx” the linear map
x 
→ Fx). In particular, sup j ‖∇u j‖Lp < ∞. For every j ∈ N choose a Vitali cover
of D consisting of rescaled disjoint copies of Ω , see Theorem A.15, i.e.,
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D = Z ( j) ∪
∞⋃

k=1

Ω(a( j)
k , r ( j)

k ), |Z ( j)| = 0,

with a( j)
k ∈ D, 0 < r ( j)

k ≤ 1/j (k ∈ N), and Ω(a, r) := a + rΩ . Then define

v j (y) := r ( j)
k u j

(
y − a( j)

k

r ( j)
k

)
+ Fa( j)

k if y ∈ Ω(a( j)
k , r ( j)

k ) (k ∈ N).

We have v j ∈ W1,p(D;Rm) (it is easy to see that there are no jumps over the gluing
boundaries) and

∇v j (y) = ∇u j

(
y − a( j)

k

r ( j)
k

)
if y ∈ Ω(a( j)

k , r ( j)
k ) (k ∈ N).

Wecan thenuse a changeof variables to compute for allϕ ∈ C0(D) and all continuous
h : Rm×d → R with p-growth that

∫
D

ϕ(y)h(∇v j (y)) dy =
∞∑

k=1

∫
Ω(a( j)

k ,r ( j)
k )

ϕ(y) h

(
∇u j

(
y − a( j)

k

r ( j)
k

))
dy

=
∞∑

k=1

(r ( j)
k )dϕ(a( j)

k )

∫
Ω

h(∇u j (x)) dx + O

(
1

j

)
|D|,

where we also used that ϕ is uniformly continuous. Letting j → ∞ and using that
the Riemann sums converge to the integral,

lim
j→∞

∞∑
k=1

(r ( j)
k )dϕ(a( j)

k ) = 1

|Ω|
∫

D
ϕ(x) dx,

we arrive at

lim
j→∞

∫
D

ϕ(y)h(∇v j (y)) dy =
∫

D
ϕ(x) dx · −

∫
Ω

∫
h(A) dνx dx . (4.16)

For ϕ = 1 and h(A) := |A|p, this gives

sup
j∈N

‖∇v j‖p
Lp = sup

j∈N
‖∇u j‖p

Lp < ∞.

Thus, there exists a ν ∈ GYp(D;Rm) such that ∇v j
Y→ ν (up to selecting a subse-

quence). Using Lemma 4.13 we may moreover assume that (∇u j ), and hence also
(∇v j ), is Lp-equiintegrable. Then, (4.16) implies
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∫
D

∫
ϕ(y)h(A) dν y(A) dy =

∫
D

ϕ(x) dx · −
∫

Ω

∫
h(A) dνx (A) dx

for all ϕ, h as above. This implies in particular that (ν y) = ν is homogeneous. For
ϕ = 1, we get (4.15).

The additional claim about Ω = (−1/2, 1/2)d and an underlying deforma-
tion u with periodic boundary values follows analogously, since in this case we
can “glue” generating functions via a staircase construction; this is the task of
Problem 4.10. �

Applying the preceding averaging principle to an elementary gradient Young
measure, we get the following result, often called the Riemann–Lebesgue lemma.

Lemma 4.15. Let u ∈ W1,p(Ω;Rm), p ∈ [1,∞], have linear boundary values.
Then, there exists a homogeneous gradient Young measure δ[∇u] ∈ GYp(Ω;Rm×d)

such that ∫
h dδ[∇u] = −

∫
Ω

h(∇u(x)) dx (4.17)

for all continuous h : Rm×d → R with p-growth if p < ∞ (no growth condition
if p = ∞). This result remains valid if Ω = (−1/2, 1/2)d and u has periodic
boundary values.

Notes and Historical Remarks

Laurence Chisholm Young originally introduced the objects that are now called
Young measures as “generalized curves/surfaces” in the late 1930s and early 1940s,
see [280–282], to treat problems in the calculus of variations and optimal control
theory that could not be solved using classical methods. His book [283] explains
these objects and their applications in great detail (in particular, the “sailing against
the wind” example from Section 1.6 is adapted from there). The theory of Young
measures is now very mature and there are several monographs [57, 222, 235] that
give overviews of the theory from different points of view.

In Chapter 7 we will consider relaxation problems formulated using Young mea-
sures. Further, as we will see in Chapters 8 and 9, Young measures provide a
convenient framework to describe fine phase mixtures in the theory of microstruc-
ture. A second avenue of development—somewhat different from Young’s original
intention—is to use Young measures as a technical tool only. This approach is in
fact quite old and was probably first adopted in a series of articles by McShane
from the 1940s [184–186]. There, the author first finds a Young measure solution to
a variational problem, then proves additional properties of the obtained minimizing
Youngmeasure, and finally concludes that these properties entail that the generalized
solution is in fact classical.
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Several people contributed to Young measure theory from the 1970s onward,
including Berliocchi & Lasry [39], Balder [24], Ball [27] and Kristensen [164],
among many others. An important breakthrough in this respect was the characteriza-
tion of the class of Young measures generated by sequences of gradients in the early
1990s byKinderlehrer andPedregal [157, 158], seeTheorem7.15. Their result places
gradient Young measures in duality with quasiconvex functions (to be defined in the
next chapter) via Jensen-type inequalities; another work in this direction is Sychev’s
article [259]. Young measures can also be used to show regularity, see the recent
work by Dolzmann & Kristensen [102]. Carstensen & Roubíček [56] considered
numerical approximations.

Young measure theory was opened up to many new applications in the late 1970s
and early 1980s, when Tartar [267, 268, 270] and Murat [209–211] developed the
theory of compensated compactness and were able to settle many open problems
in the theory of hyperbolic conservation laws; another important contributor here
was DiPerna, see, for example, [98]. A key point of this strategy is to use the good
compactness properties of Young measures to pass to limits in nonlinear quantities
and then to deduce from pointwise and differential constraints on the generating
sequences that the Young measure collapses to a point mass, corresponding to a
classical function (so no oscillation phenomena occurred).Moreover, in this situation
weak convergence improves to convergence in measure (or even in norm), hence the
name compensated compactness. We discuss compensated compactness theory in
Section 8.8.

The disintegration result from Theorem 4.4 is essentially contained in the result
from probability theory that regular conditional probabilities exist, see, for instance,
Theorem 89.1 in [234]. The result as stated also holds for vector-measures, see
Theorem 2.28 of [15]. A stronger version of the Scorza Dragoni Theorem 4.5 can
be found in Theorem 6.35 of [122]. Lemma 4.13 is a version of the well-known
decomposition lemma from [125], another version is in [163].

In the case p = 1 the theory of (classical) Young measures is not very satisfactory
and some important results such as Lemma 4.11 and Lemma 4.13 do not hold (see
Problem 4.9 for a counterexample to Lemma 4.13 in the case p = 1). The fundamen-
tal reason for this deficiency is that in L1 norm-bounded sequences are not weakly
precompact. A partial remedy can be found by weakening the notion of convergence
to be employed in L1. Then, one can use Chacon’s biting lemma:

Lemma 4.16 (Chacon 1980 [53]). Let (Vj ) ⊂ L1(Ω;RN ) be a norm-bounded
sequence generating the Young measure ν ∈ Y1(Ω;RN ). Define V (x) := [νx ].
Then, there exists an increasing sequence Ωk ⊂ Ω with |Ωk | ↑ |Ω| such that
Vj ⇀ V in L1(Ωk;RN ) for all k; this is called biting convergence.

More information on this topic can be found in [35] and Chapter 6 of [222].
We will return to the topic of Young measures generated by merely L1-bounded
sequences and develop a much more satisfying theory in Chapter 12.
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Problems

4.1. Show that the family (νx )x∈Ω constructed in the proof of Theorem 4.4 is
weakly* measurable. Hint: Use the Scorza Dragoni Theorem 4.5.

4.2. Prove that a sequence of measurable maps Vj : Ω → R
N satisfying only the

tightness condition
lim
h↑∞ sup

j∈N
|{|Vj | ≥ h}| = 0

also generates a Young measure (in a suitable sense).

4.3. Show that for every p ∈ [1,∞) anyweakly*measurable parametrizedmeasure
(νx )x∈Ω ⊂ M 1(RN ) with 〈| �|p, νx 〉 ∈ Lp(Ω) (as a function of x) can be generated
by a sequence (Vj ) ⊂ Lp(Ω;RN ). Hint: Approximate a general measure by linear
combinations of Dirac masses and use a gluing argument.

4.4. TakeΩ := (0, 1) and let u j (x) = sin(2π j x) for j ∈ N. Show that the sequence
(u j ) generates the homogeneous Young measure ν ∈ Y∞((0, 1)) with

νx = 1

π
√
1 − y2

L 1
y (−1, 1) for a.e. x ∈ (0, 1).

4.5. Let a, b ∈ R
m with a �= b and let θ ∈ (0, 1).

(i) Set Ω := (0, 1). Let ν = (νx )x∈Ω ⊂ M 1(Rm) be the Young measure with

νx = θδa + (1 − θ)δb for a.e. x ∈ Ω.

Construct a generating sequence (Vj ) ⊂ L∞(Ω;Rm) of ν.
(ii) Let Q := (0, 1)d and define

A := a ⊗ e1, B := b ⊗ e1 ∈ R
m×d .

Construct (u j ) ⊂ W1,∞(Q;Rm), based on Vj from the previous problem, such
that the sequence (∇u j ) generates the gradient Young measure μ = (μy)y∈Q ∈
Y∞(Q;Rm×d) given as

μy = θδA + (1 − θ)δB for a.e. y ∈ Q.

4.6. Assume for the sequence from the previous problem, part (ii), that u j
∗

⇀ a in
W1,∞ for a(y) := Fy with F := θ A+(1−θ)B. Based on this, construct a sequence
(v j ) ⊂ W1,∞(Q;Rm) such that v j ∈ C(Q) for all j ∈ N, (∇v j ) generates μ, and
v j |∂ Q = Fx .
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4.7. Let A, B, C ∈ R
m×d such that for some b, c ∈ R

m ,

B − A = b ⊗ e1 and C − A = c ⊗ e1.

Let θA, θB, θC ∈ (0, 1) be such that θA + θB + θC = 1. Show that ν = (νx )x∈Ω

(Ω ⊂ R
d a bounded Lipschitz domain that you can choose as you like) with

νx := θAδA + θBδB + θCδC for a.e. x ∈ Ω

is a (homogenous) W1,∞-gradient Young measure with barycenter [ν] = θA A +
θB B + θC C .

4.8. Let ν ∈ Yp(Ω;RN ) be a Young measure with generating sequence (Vj ) ⊂
Lp(Ω;RN ). Show that for every closed set E ⊂ R

N it holds that νx (E) is the
asymptotic fraction of values of v j in E , that is,

νx (E) = lim
r↓0 lim

j→∞
|{ x ∈ B(x, r) : v j (x) ∈ E }|

ωdrd
,

where ωd = |B(0, 1)|. Also show that this formula fails in general when E is not
closed.

4.9. Show that in Ω := (0, 2)2 for the map V : Ω → R
2 given as

V (x) :=
{
0 if x ∈ (0, 1)2,

e1 if x ∈ (0, 2)2 \ (0, 1)2,

there cannot exist a u ∈ W1,1((0, 2)2) such that ∇u = V . However, prove that the
Young measure ν ∈ Y1((0, 2)2;R2) defined by

νx := 1(0,1)2(x)δ0 + 1(0,2)2\(0,1)2(x)δe1 , x ∈ (0, 2)2,

is inGY1((0, 2)2;R2) by exhibiting a norm-bounded sequence (u j ) ⊂ W1,1((0, 2)2)

with ∇u j
Y→ ν. Conclude that Lemma 4.13 cannot be extended to cover the case

p = 1.

4.10. ProveLemma4.14 in the caseΩ = (−1/2, 1/2)d and underlying deformation
u with periodic boundary values.



Chapter 5
Quasiconvexity

We saw in the Tonelli–Serrin Theorem 2.6 that convexity of the integrand (in the
gradient variable) implies the weak lower semicontinuity of the corresponding inte-
gral functional. Moreover, we proved in Proposition 2.9 that if d = 1 orm = 1, then
convexity of the integrand is also necessary for weak lower semicontinuity. In the
vectorial case (d,m > 1), however, it turns out that one can find weakly lower semi-
continuous integral functionals whose integrands are non-convex. The following is
the most fundamental one: Let Ω ⊂ R

d be a bounded Lipschitz domain as usual and
with p ∈ [d,∞) define

F [u] :=
∫

Ω

det∇u(x) dx, u ∈ W1,p
0 (Ω;Rd).

Then, one can argue using the wedge product and Stokes’ theorem that

F [u] =
∫

Ω

du1 ∧ · · · ∧ dud =
∫

∂Ω

u1 ∧ du2 ∧ · · · ∧ dud = 0,

because u ∈ W1,d
0 (Ω;Rd) is zero on the boundary ∂Ω (this can also be computed

in a more elementary way, see Lemma 5.8 below). Thus, F is in fact constant on
W1,p

0 (Ω;Rd), hence trivially weakly lower semicontinuous. Using slightly more
sophisticated arguments (to be made precise in this chapter), we will also show that
F is weakly continuous on the whole space W1,p(Ω;Rd) if p ∈ [d,∞).

However, the determinant function is far from being convex if d ≥ 2; for instance,
we can easily write a matrix with positive determinant as the convex combination of
two singular matrices. We can also find examples not involving singular matrices:
For

A :=
(−1 −2

2 1

)
, B :=

(
1 −2
2 −1

)
,

1

2
A + 1

2
B =

(
0 −2
2 0

)
,

we have det A = det B = 3, but det(A/2 + B/2) = 4.
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Furthermore, convexity of the integrand is not compatible with one of the most
fundamental principles of continuum mechanics: Assume that our integrand f =
f (A) is frame-indifferent, that is,

f (QA) = f (A) for all Q ∈ SO(d), A ∈ R
d×d ,

where SO(d) is the set of (d × d)-orthogonal matrices with determinant 1 (rotations
if d = 2 or d = 3). Furthermore, suppose that every purely compressive or purely
expansive deformation costs energy, i.e.,

f (α Id) > f (Id) for all α �= 1, (5.1)

which is very reasonable in applications. Then, f cannot be convex: Let us for
simplicity assume d = 2. Set, for a fixed γ ∈ (0, 2π),

Q :=
(
cos γ − sin γ

sin γ cos γ

)
∈ SO(2).

Then, if f was convex, we would get

f ((cos γ ) Id) ≤ 1

2

(
f (Q) + f (QT )

) = f (Id),

contradicting (5.1). Sharper arguments are available, but the essential conclusion is
the same: convexity is not suitable for many variational problems originating from
continuum mechanics.

This chapter introduces Charles B. Morrey Jr.’s concept of quasiconvexity, which
remedies the above shortcomings of convexity for vector-valued variational prob-
lems. After exploring some basic properties of quasiconvex functions, we show how
this concept neatly combines with the Young measure theory from the previous
chapter to yield an essentially optimal lower semicontinuity theorem if we assume
standard growth bounds. We also take a brief look at some regularity results for
quasiconvex variational problems.

5.1 Quasiconvexity

Since it was introduced by Morrey in the 1950s, the following notion has become
one of the cornerstones of the modern calculus of variations: A locally bounded
Borel-measurable function h : Rm×d → R is called quasiconvex if

h(A) ≤ −
∫
B(0,1)

h(A + ∇ψ(z)) dz (5.2)

for all A ∈ R
m×d and all ψ ∈ W1,∞

0 (B(0, 1);Rm).
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Before we come to the mathematical analysis, let us give a physical interpretation
of quasiconvexity: For d = m = 3 suppose that

F [y] :=
∫
B(0,1)

h(∇ y(x)) dx, y ∈ W1,∞(B(0, 1);R3),

models the physical energy of an elastically deformed body, whose deformation
from the reference configuration Ω := B(0, 1) is given as y : B(0, 1) → R

3 (see
Section 1.7 for more details on this model). A special class of deformations are the
affine ones, a(x) = y0 + Ax for some y0 ∈ R

3, A ∈ R
3×3. Then, quasiconvexity of

f entails that

F [a] =
∫
B(0,1)

h(A) dx ≤
∫
B(0,1)

h(A + ∇ψ(x)) dx = F [a + ψ]

for all ψ ∈ W1,∞
0 (B(0, 1);R3). This means that the affine deformation a is always

energetically favorable over the internally distorted deformation a + ψ , which is
very often a reasonable assumption for real materials. This interpretation also holds
for any other bounded Lipschitz domain Ω by Lemma 5.2 below.

To justify the name, we also need to convince ourselves that quasiconvexity is
indeed a notion of convexity: For A ∈ R

m×d and V ∈ L1(B(0, 1);Rm×d) with∫
B(0,1) V (x) dx = 0 define the probability measure μ ∈ M 1(Rm×d) via its action

as follows (recall that M (Rm×d) ∼= C0(R
m×d)∗ by the Riesz Representation Theo-

rem A.21):

〈
h, μ

〉 := −
∫
B(0,1)

h(A + V (x)) dx for h ∈ C0(R
m×d).

This μ is easily seen to be an element of the dual space to C0(R
m×d) and in fact μ is

a probability measure: For the boundedness we observe |〈h, μ〉| ≤ ‖h‖∞, whereas
the positivity 〈h, μ〉 ≥ 0 for h ≥ 0 and the normalization 〈1, μ〉 = 1 are clear. The
barycenter [μ] of μ is

[μ] = 〈
id, μ

〉 = A + −
∫
B(0,1)

V (x) dx = A.

Therefore, if h is convex, we get from Jensen’s inequality (see Lemma A.18),

h(A) = h([μ]) ≤ 〈
h, μ

〉 = −
∫
B(0,1)

h(A + V (x)) dx .

In particular, (5.2) holds if we set V (x) := ∇ψ(x) for any ψ ∈ W1,∞
0 (B(0, 1);Rm).

Thus, we have shown:
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Proposition 5.1. All convex functions h : Rm×d → R are quasiconvex.

Two basic properties of quasiconvexity are collected in the following lemma.

Lemma 5.2. The following statements are true:

(i) In the definition of quasiconvexity we can replace the domain B(0, 1) by any
bounded Lipschitz domain Ω ⊂ R

d .
(ii) If h has p-growth, i.e.,

|h(A)| ≤ M(1 + |A|p), A ∈ R
m×d ,

for some p ∈ [1,∞), M > 0, then in the definition (5.2) of quasiconvexity
we can replace testing with all ψ ∈ W1,∞

0 (Ω;Rm) by testing with all ψ ∈
W1,p

0 (Ω;Rm).

Proof. Ad (i). To see the first statement, we will prove the following claim: Let
Ω̃ be a bounded Lipschitz domain. If ψ ∈ W1,p

0 (Ω;Rm) then there exists a map
ψ̃ ∈ W1,p

0 (Ω̃;Rm) such that for all A ∈ R
m×d it holds that

−
∫

Ω

h(A + ∇ψ) dx = −
∫

Ω̃

h(A + ∇ψ̃) dy (5.3)

for all measurable h : Rm×d → R, if one of these integrals exists and is finite. Clearly,
for Ω̃ := B(0, 1) this will imply that the definition of quasiconvexity is independent
of the domain.

To see (5.3), take a Vitali cover of Ω̃ with rescaled disjoint copies of Ω , see
Theorem A.15, i.e.,

Ω̃ = Z ∪
∞⋃
k=1

Ω(ak, rk), |Z | = 0,

with ak ∈ Ω , rk > 0, Ω(ak, rk) := ak + rkΩ (k ∈ N). Then define

ψ̃(y) := rkψ

(
y − ak
rk

)
if y ∈ Ω(ak, rk) (k ∈ N).

We compute for any measurable h : Rm×d → R,

∫
Ω̃

h(A + ∇ψ̃) dy =
∞∑
k=1

∫
Ω(ak ,rk )

h

(
A + ∇ψ

(
y − ak
rk

))
dy

=
∞∑
k=1

rdk

∫
Ω

h(A + ∇ψ) dx

= |Ω̃|
|Ω|

∫
Ω

h(A + ∇ψ) dx
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since
∑

k r
d
k |Ω| = |Ω̃|. This shows (5.3). In particular, ψ̃ ∈ W1,p

0 (Ω̃;Rm).
Ad (ii). The second assertion follows since W1,∞

0 (B(0, 1);Rm) is dense in the
space W1,p

0 (B(0, 1);Rm) and under a p-growth assumption for all A ∈ R
m×d the

integral functional

ψ �→ −
∫

Ω

h(A + ∇ψ) dx, ψ ∈ W1,p
0 (B(0, 1);Rm),

is well-defined andW1,p-continuous by Pratt’s Theorem A.10 (see the proof of The-
orem 2.13 for a similar argument). �

An even weaker notion of convexity than quasiconvexity is the following one:
A locally bounded Borel-measurable function h : Rm×d → R is called rank-one
convex if it is convex along any rank-one line, that is,

h(θ A + (1 − θ)B) ≤ θh(A) + (1 − θ)h(B) (5.4)

for all A, B ∈ R
m×d with rank(A− B) ≤ 1 and all θ ∈ (0, 1). In this context, recall

that a matrix F ∈ R
m×d has rank one if and only if F = a ⊗ b = abT for some

a ∈ R
m \ {0}, b ∈ R

d \ {0}. We remark that the local boundedness of h is in fact
automatic if (5.4) holds, see, for instance, the proof of Lemma 2.3 in [162].

Proposition 5.3. If h : Rm×d → R is quasiconvex, then it is rank-one convex.

Proof. Let A, B ∈ R
m×d with B − A = a ⊗ n for a ∈ R

m \ {0} and n ∈ S
d−1,

the unit sphere in R
d . Denote by Qn a unit-volume cube (|Qn| = 1) centered at the

origin and with two faces orthogonal to n. We also let θ ∈ (0, 1).
Step 1. Set F := θ A + (1 − θ)B and define the sequence of test functions

u j ∈ W1,∞
0 (Qn;Rm) as follows:

u j (x) := Fx + 1

j
ϕ0
(
j x · n − � j x · n�)a, x ∈ Qn

and

ϕ0(t) :=
{

−(1 − θ)t if t ∈ [0, θ ],
θ t − θ if t ∈ (θ, 1],

see Figure 2.1 (on p. 30) for ϕ0 and Figure 5.1 for u j . The sequence (u j ) is called a
laminate in direction n.

We calculate

∇u j (x) =
{
F − (1 − θ)a ⊗ n = A if j x · n − � j x · n� ∈ (0, θ),

F + θa ⊗ n = B if j x · n − � j x · n� ∈ (θ, 1).
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Fig. 5.1 The laminate u j

Thus,

lim
j→∞ −

∫
Qn

h(∇u j (x)) dx = θh(A) + (1 − θ)h(B).

Also notice that u j
∗

⇀ Fx in W1,∞ since ϕ0 is uniformly bounded. We will show
below that wemay replace the sequence (u j )with a sequence (v j ) ⊂ W1,∞

Fx (Qn;Rm)

(i.e., with the additional property that v j |∂Q = Fx), but such that still

lim
j→∞ −

∫
Qn

h(∇v j (x)) dx = θh(A) + (1 − θ)h(B).

By quasiconvexity (also see Lemma 5.2), for all j ∈ N it holds that

h(F) ≤ −
∫
Qn

h(∇v j (z)) dz.

Thus, we may conclude that

h(θ A + (1 − θ)B) ≤ θh(A) + (1 − θ)h(B)

and h is indeed rank-one convex.
Step 2. It remains to construct the sequence (v j ), for which we employ a standard

cut-off construction: Take a sequence (ρ j ) ⊂ C∞
c (Qn; [0, 1]) of cut-off functions

such that with G j := { x ∈ Ω : ρ j (x) = 1 } it holds that |Qn \G j | → 0 as j → ∞.
Set

v j,k(x) := ρ j (x)uk(x) + (1 − ρ j (x))Fx, x ∈ Ω,

which lies in W1,∞(Qn;Rm) and satisfies v j,k(x) = Fx near ∂Qn . Also,

∇v j,k(x) = ρ j (x)∇uk(x) + (1 − ρ j (x))F + (uk(x) − Fx) ⊗ ∇ρ j (x).
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Since the space W1,∞(Qn;Rm) embeds compactly into the space L∞(Qn;Rm) by
the Rellich–Kondrachov Theorem A.28 (or the classical Arzéla–Ascoli theorem),
we have uk → Fx uniformly. Thus, for fixed j ,

lim sup
k→∞

‖∇v j,k‖L∞ ≤ ‖∇uk‖L∞ + |F | < ∞

because the ∇uk are uniformly L∞-bounded. Therefore, we can for every j ∈ N

choose k( j) ∈ N such that ‖∇v j,k( j)‖L∞ is bounded by a constant that is independent
of j . As h is assumed to be locally bounded, this implies that there exists a constant
C > 0 (again independent of j) with

‖h(∇uk( j))‖L∞ + ‖h(∇v j,k( j))‖L∞ ≤ C.

Hence, for v j := v j,k( j), we may estimate

lim
j→∞

∫
Qn

|h(∇v j ) − h(∇uk( j))| dx ≤ lim
j→∞

∫
Qn\G j

|h(∇uk( j))| + |h(∇v j,k( j))| dx

≤ lim
j→∞C |Qn \ G j |

= 0.

This shows that in Step 1 we may indeed replace (u j ) by (v j ). �

Since for d = 1 orm = 1 rank-one convexity obviously is equivalent to convexity,
the same holds true for quasiconvexity. However, quasiconvexity is weaker than
classical convexity if d,m ≥ 2. The determinant function and, more generally,
minors are quasiconvex, as will be proved in the next section, but these minors
(except for (1×1)-minors) are not convex. The following is a standard example. We
will see further non-trivial examples in the following chapters.

Example 5.4. (Alibert–Dacorogna–Marcellini 1988 [7, 78]) For d = m = 2 and
γ ∈ R define

hγ (A) := |A|2(|A|2 − 2γ det A
)
, A ∈ R

2×2.

For this function it is known that

• hγ is convex if and only if |γ | ≤ 2
√
2

3
≈ 0.94,

• hγ is rank-one convex if and only if |γ | ≤ 2√
3

≈ 1.15,

• hγ is quasiconvex if and only if |γ | ≤ γQC for some γQC ∈
(
1,

2√
3

]
.

It is currently unknown whether γQC = 2/
√
3. We do not prove these statements

here, see Section 5.3.8 in [76] for the details.
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Later, we will see in Example 7.10 that rank-one convexity in general does not
imply quasiconvexity. However, for quadratic forms rank-one convexity and quasi-
convexity are equivalent, see Problem 5.7.

We end this section with the following observations concerning the growth and
continuity properties of rank-one convex (or quasiconvex) functions.

Lemma 5.5. If h : Rm×d → R is rank-one convex and there are M > 0, p ∈ [1,∞)

such that
h(A) ≤ M(1 + |A|p), A ∈ R

m×d ,

then h has p-growth.

Proof. Let R > 0 and choose F1 ∈ R
m×d such that h(F1) = inf |A|≤R h(A). Let

F1, . . . , F2md be the matrices that are obtained from F1 by flipping the sign of any
number of entries (they do not all have to be distinct). The two matrices of the
collection that only differ in the flipped sign at position (i, j) lie on the rank-one line
R(ei ⊗ e j ) and average to the zero matrix. Thus, applying the rank-one convexity
md times, we have

h(0) ≤ 1

2md

2md∑
k=1

h(Fk).

Then,
2mdh(0) ≤ (2md − 1) sup

|A|≤R
h(A) + inf|A|≤R

h(A),

from which we conclude that

−h(A) ≤ M(2md − 1)(1 + Rp) − 2mdh(0) if |A| ≤ R.

Hence,
−h(A) ≤ M̃(1 + |A|p), A ∈ R

m×d ,

for some M̃ > 0, and h has been shown to have p-growth. �

Lemma 5.6. If h : Rm×d → R is rank-one convex, then it is locally Lipschitz con-
tinuous. If additionally h has p-growth with growth constant M > 0, then

|h(A) − h(B)| ≤ CM(1 + |A|p−1 + |B|p−1)|A − B|, A, B ∈ R
m×d , (5.5)

where C = C(d,m) > 0 is a dimensional constant. In particular, a rank-one convex
h with linear growth (p = 1) is (globally) Lipschitz continuous.

Proof. For any F ∈ R
m×d and r > 0, we will prove the quantitative bound

lip(h; B(F, r)) ≤ √
min{d,m} · osc(h; B(F, 6r))

3r
, (5.6)
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where

lip(h; B(F, r)) := sup
A,B∈B(F,r)

A �=B

|h(A) − h(B)|
|A − B|

is the Lipschitz constant of h on the ball B(F, r) ⊂ R
m×d , and

osc(h; B(F, r)) := sup
A,B∈B(F,r)

A �=B

|h(A) − h(B)|

is called the oscillation of h on B(F, r). By the local boundedness of h, which is
part of our definition of rank-one convexity, the oscillation is bounded on every ball.
Thus the Lipschitz constant is locally finite.

To show (5.6), let A, B ∈ B(F, r) and assume first that rank(A− B) ≤ 1. Define
M ∈ R

m×d as the intersection of ∂B(F, 2r) with the ray starting at B and going
through A. Then, because h is convex along this ray,

|h(A) − h(B)|
|A − B| ≤ |h(M) − h(B)|

|M − B| ≤ osc(h; B(F, 2r))

r
=: α(2r). (5.7)

For general A, B ∈ B(F, r), use the (real) singular value decomposition (see
Appendix A.1) to write

B − A =
min{d,m}∑

i=1

σi P(ei ⊗ ei )Q
T ,

where σi ≥ 0 is the i’th singular value, and P ∈ R
m×m , Q ∈ R

d×d are orthogonal
matrices. Set

Ak := A +
k−1∑
i=1

σi P(ei ⊗ ei )Q
T , k = 1, . . . ,min{d,m} + 1,

for which we have A1 = A and Amin{d,m}+1 = B. We obtain (recall that we are
employing the Frobenius norm |M | = √∑

i σi (M)2)

|Ak − F | ≤ |A − F | +
√√√√k−1∑

i=1

σ 2
i ≤ |A − F | + |B − A| < 3r

and
min{d,m}∑

k=1

|Ak − Ak+1|2 =
min{d,m}∑

k=1

σ 2
k = |A − B|2.
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Applying (5.7) to Ak, Ak+1 ∈ B(F, 3r), k = 1, . . . ,min{d,m}, we get

|h(A) − h(B)| ≤
min{d,m}∑

k=1

|h(Ak) − h(Ak+1)|

≤ α(6r)
min{d,m}∑

k=1

|Ak − Ak+1|

≤ α(6r)
√
min{d,m} ·

[
min{d,m}∑

k=1

|Ak − Ak+1|2
]1/2

= α(6r)
√
min{d,m} · |A − B|.

This is (5.6).
If we additionally assume that h has p-growth, then

osc(h; B(0, R)) ≤ M(1 + Rp), R > 0,

and so, with F := 0, r := max{|A|, |B|} the estimate (5.5) follows from (5.6). �

Remark 5.7. An improved argument (see Lemma 2.2 in [33]), where one orders the
singular values in a favorable way, allows one to establish the better estimate

lip(h; B(F, r)) ≤ √
min{d,m} · osc(h; B(F, 2r))

r
.

5.2 Null-Lagrangians

The determinant is quasiconvex, but it is only one representative of a larger class
of canonical examples of quasiconvex, but not convex, functions: In this section,
we will investigate the properties of minors (subdeterminants) as integrands. Let for
r ∈ {1, 2, . . . ,min{d,m}},

I ∈ P(m, r) := {
(i1, i2, . . . , ir ) ∈ {1, . . . ,m}r : i1 < i2 < · · · < ir

}

and J ∈ P(d, r) be ordered multi-indices. Then, a (r × r)-minor M : Rm×d → R

is a function of the form

M(A) = MI
J (A) := det

(
AI
J

)
,

where AI
J is the (r × r)-matrix consisting of the I -rows and J -columns of A; the

number r is called the rank of the minor M .
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The first result of this section shows that all minors are null-Lagrangians, which
by definition is the class of integrands h : Rm×d → R such that

∫
Ω
h(∇u) dx only

depends on the boundary values of u.

Lemma 5.8. Let M : Rm×d → R be an (r × r)-minor, r ∈ {1, . . . ,min{d,m}}. If
u, v ∈ W1,p(Ω;Rm), p ∈ [r,∞], with u − v ∈ W1,p

0 (Ω;Rm), then

∫
Ω

M(∇u(x)) dx =
∫

Ω

M(∇v(x)) dx .

Proof. In all of the following we will assume that u, v are smooth and supp(u−v) �
Ω , which can be achieved by approximation and a cut-off procedure, see Theo-
rem A.29. We also need the fact that taking the minor M of the gradient commutes
with strong convergence, i.e., the strong continuity of u �→ M(∇u) in W1,p for
p ≥ r ; this follows by Hadamard’s inequality |M(A)| ≤ |A|r and Pratt’s Theo-
rem A.10 (see the proof of Lemma 2.16 for a similar argument).

All minors of rank one are just the entries of the matrix and the result follows
from the Gauss–Green theorem,

∫
Ω

∇u dx = −
∫

∂Ω

u · n dH d−1 = −
∫

∂Ω

v · n dH d−1 =
∫

Ω

∇v dx

since supp(u−v) � Ω . Here,H d−1 is the (d−1)-dimensional surface (Hausdorff)
measure on ∂Ω and n is the unit inner normal on ∂Ω .

For higher-rank minors, the crucial observation is that minors of gradients
can be written as divergences, which we will establish below. So, if M(∇u) =
div G(u,∇u), then, since supp(u − v) � Ω ,

∫
Ω

M(∇u) dx = −
∫

∂Ω

G(u,∇u) · n dH d−1

= −
∫

∂Ω

G(v,∇v) · n dH d−1

=
∫

Ω

M(∇v) dx

and the result follows.
We first consider the physically most relevant cases d = m ∈ {2, 3}.
For d = m = 2 and u = (u1, u2)T , the only second-order minor is the Jacobian

determinant and we easily see from the fact that second derivatives of smooth maps
commute that

det∇u = ∂1u
1∂2u

2 − ∂2u
1∂1u

2

= ∂1(u
1∂2u

2) − ∂2(u
1∂1u

2)

= div
(
u1∂2u

2,−u1∂1u
2).
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For d = m = 3, consider a second-order minor M¬k
¬l (A), i.e., the determinant of

A after deleting the k’th row and l’th column. Then, analogously to the situation in
two dimensions, we get, using cyclic indices k, l ∈ {1, 2, 3},

M¬k
¬l (∇u) = ∂l+1u

k+1∂l+2u
k+2 − ∂l+2u

k+1∂l+1u
k+2

= ∂l+1(u
k+1∂l+2u

k+2) − ∂l+2(u
k+1∂l+1u

k+2). (5.8)

For the three-dimensional Jacobian determinant, we will show

det∇u =
3∑

l=1

∂lu
1 · (cof ∇u)1l =

3∑
l=1

∂l
(
u1(cof ∇u)1l

)
, (5.9)

wherewe recall that (cof A)kl = (−1)k+l M¬k
¬l (A). To see this, use theCramer formula

(det A)I = A(cof A)T , which holds for any square matrix A, to get

det∇u =
3∑

l=1

∂lu
1 · (cof ∇u)1l .

Then, (5.9) follows from the Piola identity

div cof ∇u = 0, (5.10)

which can be verified directly from the expression (5.8) for M¬k
¬l (∇u).

For general dimensions d,m we use the notation of differential forms to tame the
multilinear algebra involved in the proof (this is not absolutely necessary, one can
also argue in an elementary way by induction, but this is quite cumbersome). So,
let M be an (r × r)-minor. Reordering x1, . . . , xd and u1, . . . , um , we can assume
without loss of generality that M is a principal minor, i.e., M is the determinant of
the top-left (r × r)-submatrix. Then,

M(∇u) dx1 ∧ · · · ∧ dxd = du1 ∧ · · · ∧ dur ∧ dxr+1 ∧ · · · ∧ dxd

= d(u1 ∧ du2 ∧ · · · ∧ dur ∧ dxr+1 ∧ · · · ∧ dxd).

Thus, the general Stokes theorem gives

∫
Ω

M(∇u) dx1 ∧ · · · ∧ dxd =
∫

Ω

d(u1 ∧ du2 ∧ · · · ∧ dur ∧ dxr+1 ∧ · · · ∧ dxd)

=
∫

∂Ω

u1 ∧ du2 ∧ · · · ∧ dur ∧ dxr+1 ∧ · · · ∧ dxd .

Therefore,
∫
Ω
M(∇u) dx1 ∧ · · · ∧ dxd only depends on the values of u around

∂Ω . �
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As an immediate consequence, we have:

Corollary 5.9. All (r × r)-minors M : Rm×d → R are quasiaffine, that is, both M
and −M are quasiconvex.

Proof. Let F ∈ R
m×d and let ψ ∈ W1,∞

0 (B(0, 1);Rm). Then, by the preceding
lemma,

M(F) = −
∫
B(0,1)

M(F + ∇ψ(z)) dz.

This already implies the claim. �

Minors also enjoy a surprising weak continuity property:

Lemma 5.10. Let M : Rm×d → R be an (r × r)-minor, r ∈ {1, . . . ,min{d,m}},
and let (u j ) ⊂ W1,p(Ω;Rm), where p ∈ (r,∞]. If

u j ⇀ u inW1,p(
∗

⇀ in L∞ if p = ∞),

then
M(∇u j ) ⇀ M(∇u) in Lp/r (

∗
⇀ if p = ∞).

Proof. We will only prove this lemma in the case p < ∞, d = m ∈ {2, 3}, where
we employ the special structure of minors as divergences, as exhibited in the proof
of Lemma 5.8.

Let M¬k
¬l be a (2 × 2)-minor in three dimensions; in two dimensions there is

only one (2× 2)-minor, the determinant, but we still use the same notation. We rely
on (5.8) to observe that with cyclic indices k, l ∈ {1, 2, 3},

∫
Ω

M¬k
¬l (∇u j )ψ dx = −

∫
Ω

(uk+1
j ∂l+2u

k+2
j )∂l+1ψ − (uk+1

j ∂l+1u
k+2
j )∂l+2ψ dx

for all ψ ∈ C∞
c (Ω) and then by density also for all ψ ∈ Lp/2(Ω)∗ ∼= Lp/(p−2)(Ω).

Since u j ⇀ u in W1,p, we have u j → u in Lp. The above expressions under
the integral consists of products of one Lp-strongly and one Lp-weakly continuous
factor as well as a fixed Lp/(p−2)-function. Hence by Hölder’s inequality, the integral
converges as j → ∞ to ∫

Ω

M¬k
¬l (∇u)ψ dx .

For d = m = 3, we additionally need to consider the determinant. However, as a
consequence of the above argument in two dimensions, cof ∇u j ⇀ cof ∇u in Lp/2.
Then, (5.9) implies

∫
Ω

det∇u j ψ dx = −
3∑

l=1

∫
Ω

[
u1j (cof ∇u j )

1
l

]
∂lψ dx
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for all ψ ∈ Lp/3(Ω)∗ ∼= Lp/(p−3)(Ω). By a similar reasoning as before this expres-
sion converges to

−
3∑

l=1

∫
Ω

[
u1(cof ∇u)1l

]
∂lψ dx =

∫
Ω

det∇u ψ dx .

In the general case, one proceeds by induction, see Problem 5.8. �

It can also be shown that any quasiaffine function can be written as an affine
function of all the minors. This characterization of quasiaffine functions is due to
Ball [25], a different proof (also including further characterizing statements) can be
found in Theorem 5.20 of [76].

5.3 A Jensen-Type Inequality for Gradient YoungMeasures

The connection between Young measure theory and quasiconvexity is furnished by
the following Jensen-type inequality:

Lemma 5.11. Let ν ∈ GYp(B(0, 1);Rm×d), where p ∈ (1,∞], be a homogeneous
gradient Young measure. Then, for all quasiconvex functions h : Rm×d → R with
p-growth (no growth condition if p = ∞) it holds that

h([ν]) ≤
∫

h dν. (5.11)

Notice that if h is convex the conclusion of this lemma is trivially true by the
classical Jensen inequality (and also holds for general Young measures, not just the
gradient Young measures).

Proof. Set F := [ν] and let (u j ) ⊂ W1,p
Fx (B(0, 1);Rm) with ∇u j

Y→ ν and (∇u j )

Lp-equiintegrable (if p < ∞), the latter two conditions being realizable by
Lemma 4.13. Then, from the definition of quasiconvexity, we get

h(F) ≤ −
∫

Ω

h(∇u j (x)) dx

for every j ∈ N. Passing to the Young measure limit as j → ∞ on the right-hand
side, for which we note that the family {h(∇u j )} j is equiintegrable by the growth
assumption on h, we arrive at

h(F) ≤ −
∫

Ω

∫
h dν dx =

∫
h dν,

which is the sought inequality. �
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This result will be of crucial importance in proving weak lower semicontinuity in
Section 5.5. It is remarkable that the converse also holds, i.e., the validity of (5.11) for
all quasiconvex h with p-growth (no growth condition if p = ∞) characterizes the
class of homogeneous gradient Lp-Young measures in the class of all homogeneous
Lp-Young measures. This assertion and its extension to non-homogeneous Young
measures is the content of the Kinderlehrer–Pedregal Theorem 7.15.

Corollary 5.12. Let p ∈ (1,∞] and let ν ∈ GYp(Ω;Rm×d) be a homogeneous
gradient Young measure. Then, for all quasiaffine functions h : Rm×d → R with
p-growth it holds that

h([ν]) =
∫

h dν.

In particular, the preceding corollary applies to the determinant and, more gener-
ally, minors, see Corollary 5.9.

5.4 Rigidity for Gradients

Is every Young measure also a gradient Young measure? For inhomogeneous Young
measures the answer is clearly negative since the barycenter of a gradient Young
measure must be a gradient (i.e., curl-free), so the elementary Young measure δ[V ]
for V with curl V �≡ 0 provides an immediate counterexample.

The question of whether all homogeneous Young measures are gradient Young
measures is more intricate since then the barycenter is constant and hence trivially a
gradient. Still, there are homogeneous Young measures that are not gradient Young
measures, but proving that no generating sequence of gradients can be found is often
not straightforward. One possibility is to show that there is a quasiconvex function
such that the Jensen-type inequality of Lemma 5.11 fails. This strategy is used to
good effect in Chapters 8, 9.

Here we consider a more elementary argument: Let A, B ∈ R
m×d with A �= B

and θ ∈ (0, 1). Consider the homogeneous Young measure

ν := θδA + (1 − θ)δB ∈ Y∞(B(0, 1);Rm×d). (5.12)

We know from Example 4.10 that for rank(A − B) ≤ 1, ν is a gradient Young
measure. The case rank(A − B) ≥ 2 can be investigated via the following rigidity
result.

Theorem 5.13 (Ball–James 1987 [30]). Let Ω ⊂ R
d be open, bounded, and con-

nected. Suppose also that A, B ∈ R
m×d .

(i) Suppose that u ∈ W1,∞(Ω;Rm) satisfies the exact two-gradient inclusion

∇u ∈ {A, B} a.e. in Ω.
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(a) If rank(A − B) ≥ 2, then ∇u = A a.e. or ∇u = B a.e.
(b) If B − A = a ⊗ n for a ∈ R

m, n ∈ S
d−1 and Ω additionally is assumed to

be convex, then there exists a Lipschitz function h : R → R with h′ ∈ {0, 1}
almost everywhere and a constant vector v0 ∈ R

m such that

u(x) = v0 + Ax + h(x · n)a.

(ii) Assume rank(A− B) ≥ 2 and suppose that the sequence (u j ) ⊂ W1,∞(Ω;Rm)

satisfies the approximate two-gradient inclusion,

dist (∇u j , {A, B}) → 0 in measure,

that is, for every ε > 0,

|{x ∈ Ω : dist (∇u j (x), {A, B} > ε}| → 0 as j → ∞,

and that (u j ) converges weakly* to a limit u ∈ W1,∞(Ω;Rm). Then,

∇u j → ∇u = A in measure or ∇u j → ∇u = B in measure.

Proof Ad (i) (a). Assume after a translation that B = 0 and thus rank A ≥ 2. Then,
∇u = Ag for a scalar function g : Ω → R. Mollifying u (see Appendix A.5), we
may assume that g ∈ C∞(Ω).

The idea of the proof is that the curl of ∇u vanishes, expressed as follows: for all
i, j = 1, . . . , d and k = 1, . . . ,m, it holds that

∂i [∇u]kj = ∂i∂ j u
k = ∂ j∂i u

k = ∂ j [∇u]ki .

For our special ∇u = Ag, this reads as

Ak
j∂i g = Ak

i ∂ j g. (5.13)

Under the assumption of (i) (a), we claim that∇g = 0. If otherwise ξ(x) := ∇g(x) �=
0 for some x ∈ Ω , then set ak(x) := Ak

j/ξ j (x) (k = 1, . . . ,m) for any j such that
ξ j (x) �= 0, which is well-defined by the relation (5.13). We have

Ak
j = ak(x)ξ j (x), i.e., A = a(x) ⊗ ξ(x).

This, however, is impossible if rank A ≥ 2.Hence,∇g = 0 and u is an affine function
since Ω is connected; this property is also stable under mollification.

Ad (i) (b). As in (i) (a) we assume ∇u = Ag (B = 0), where now A = a ⊗ n.
Pick any v ∈ R

n that is orthogonal to n. Then,

d

dt
u(x + tv)

∣∣∣∣
t=0

= ∇u(x)v = [anT v]g(x) = 0.
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This implies that u is constant in direction v. As v was an arbitrary vector orthogonal
to n andΩ is assumed convex, u(x) can only depend on x ·n. This implies the claim.

Ad (ii). Assume once more that B = 0 and that there exists a (2 × 2)-minor M
with M(A) �= 0. By assumption, for the sets

Dj :=
{
x ∈ Ω : |∇u j (x) − A| <

|A|
2

}
,

we have
∇u j − A1Dj → 0 in measure.

Let us also assume that we have selected a subsequence such that

1Dj

∗
⇀ χ in L∞.

In the following we use that for uniformly L∞-bounded sequences convergence
in measure implies weak* convergence in L∞. Indeed, for any w ∈ L1(Ω) and any
ε > 0 we have

∫
Ω

(∇u j − A1Dj )w dx ≤ ‖∇u j − A1Dj ‖L∞

∫
{|∇u j−A1D j |>ε}

w dx + ε‖w‖L1

→ 0 + ε‖w‖L1 as j → ∞.

Since ε > 0 was arbitrary, we obtain ∇u j − A1Dj

∗
⇀ 0 in L∞. Thus,

∇u j
∗

⇀ ∇u = Aχ in L∞.

Then, by the weak* continuity of minors proved in Lemma 5.10,

w*-lim j→∞ M(∇u j ) = M(Aχ) = M(A)χ2.

On the other hand, by a similar reasoning as above, we also have M(∇u j ) −
M(A)1Dj

∗
⇀ 0 in L∞ and thus

w*-lim j→∞ M(∇u j ) = M(A) · w*-lim j→∞ 1Dj = M(A)χ.

Since M(A) �= 0, we conclude that χ = χ2 and hence that there exists a set D ⊂ Ω

such that χ = 1D and ∇u = A1D . Since ‖1Dj ‖L2 → ‖1D‖L2 (this follows from

1Dj

∗
⇀ 1D in L∞), the Radon–Riesz Theorem A.14 implies that 1Dj → 1D in L2

and then also in measure. Thus, combining the above convergence assertions, we
arrive at

∇u j → A1D = ∇u in measure.
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Part (i) (a) of the present theorem then implies that ∇u = A or ∇u = 0 = B almost
everywhere in Ω . As we assumed weak* convergence of our original sequence (u j ),
the limit of the selected subsequence is unique and the result holds. �

With this result at hand it is easy to see that our example (5.12) cannot be a
gradient Young measure if rank(A − B) ≥ 2: Assume that there is a sequence

(u j ) ⊂ W1,∞(B(0, 1);Rm) with ∇u j
Y→ ν. By Lemma 4.12 it follows that

dist (∇u j , {A, B}) → 0 in measure.

Then, however, from statement (ii) of the Ball–James rigidity theoremwe get∇u j →
A or ∇u j → B in measure, either one of which yields a contradiction (again by
Lemma 4.12).

5.5 Lower Semicontinuity

We now turn to the central subject of this chapter, namely to minimization problems
of the form ⎧⎨

⎩
Minimize F [u] :=

∫
Ω

f (x,∇u(x)) dx

over all u ∈ W1,p(Ω;Rm) with u|∂Ω = g,

where Ω ⊂ R
d is a bounded Lipschitz domain, p ∈ (1,∞), the Carathéodory

integrand f : Ω × R
m×d → R has p-growth, i.e.,

| f (x, A)| ≤ M(1 + |A|p), (x, A) ∈ Ω × R
m×d ,

for some M > 0, and g ∈ W1−1/p,p(∂Ω;Rm) specifies the boundary values. In
Chapter 2 we solved this problem in the convex case via the Direct Method, a coer-
civity result, and, crucially, Tonelli’s Lower Semicontinuity Theorem 2.6. In this
section, we recycle the Direct Method and the coercivity result, but extend lower
semicontinuity to quasiconvex integrands; some motivation for this was given at the
beginning of the chapter.

Let us first consider how we could approach the proof of lower semicontinuity
(it should be clear that the proof via Mazur’s lemma that we used for the convex
lower semicontinuity theorem, does not extend). Suppose that we have a sequence
(u j ) ⊂ W1,p(Ω;Rm) with u j ⇀ u in W1,p. We want to show the weak lower
semicontinuity of our functionalF . If we assume that the (norm-bounded) sequence
(∇u j ) generates the gradient Young measure ν ∈ GYp(Ω;Rm×d), which is true up
to selecting a subsequence, and that the sequence of integrands ( f (x,∇u j (x))) j is
equiintegrable, then we have a limit:
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F [u j ] →
∫

Ω

∫
f (x, A) dνx (A) dx as j → ∞.

This is useful, because it now suffices to show the Jensen-type inequality

∫
f (x, A) dνx (A) ≥ f (x,∇u(x))

for almost every x ∈ Ω , which we have already seen for homogeneous gradient
Young measures in Lemma 5.11. The only issue is that here we need to “localize” in
x ∈ Ω and make νx a gradient Young measure in its own right. This is accomplished
via the fundamental blow-up technique (also called the localization technique):

Proposition 5.14 Let ν = (νx )x ∈ GYp(Ω;Rm×d), where p ∈ [1,∞), be a gradi-
ent Young measure. Then, for almost every x0 ∈ Ω the probability measure νx0 is a
homogeneous gradient Young measure in its own right, νx0 ∈ GYp(B(0, 1);Rm×d).

Proof Take a countable collection {ϕk ⊗ hk}k∈N as in Lemma 4.7. Let x0 ∈ Ω be a
Lebesgue point of all the functions x �→ 〈hk, νx 〉, k ∈ N, that is,

lim
r↓0

∫
B(0,1)

∣∣〈hk, νx0+ry
〉 − 〈

hk, νx0
〉∣∣ dy = 0.

By Theorem A.20, almost every point in Ω has this property. Then, at such a point
x0, set

v
(r)
j (y) := u j (x0 + r y) − [u j ]B(x0,r)

r
, y ∈ B(0, 1),

where [u]B(x0,r) := −
∫
B(x0,r)

u dx . We get

∫
B(0,1)

ϕk(y)hk(∇v
(r)
j (y)) dy =

∫
B(0,1)

ϕk(y)hk(∇u j (x0 + r y)) dy

= 1

rd

∫
B(x0,r)

ϕk

( x − x0
r

)
hk(∇u j (x)) dx

after a change of variables. Letting first j → ∞ and then r ↓ 0, we obtain

lim
r↓0 lim

j→∞

∫
B(0,1)

ϕk(y)hk(∇v
(r)
j (y)) dy = lim

r↓0
1

rd

∫
B(x0,r)

ϕk

( x − x0
r

)〈
hk, νx

〉
dx

= lim
r↓0

∫
B(0,1)

ϕk(y)
〈
hk, νx0+ry

〉
dx

=
∫
B(0,1)

ϕk(y)
〈
hk, νx0

〉
dy,

where the last convergence follows from theLebesguepoint property of x0.Moreover,
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∫
B(0,1)

|∇v
(r)
j |p dy =

∫
B(0,1)

|∇u j (x0 + r y)|p dy = 1

rd

∫
B(x0,r)

|∇u j (x)|p dx

and the last integral is uniformly bounded in j (for fixed r ). Denote by λ ∈ M+(Ω)

the weak* limit of the measures |∇u j |pL d Ω , which exists after taking a subse-
quence. If we require of x0 additionally that

lim sup
r↓0

λ(B(x0, r))

rd
< ∞,

which holds atL d -almost every x0 ∈ Ω (see the Besicovitch Differentiation Theo-
rem A.23), then

lim sup
r↓0

lim
j→∞

∫
B(0,1)

|∇v
(r)
j |p dy < ∞.

Since also [v(r)
j ]B(0,1) = 0, the Poincaré inequality from Theorem A.26 (ii) yields

that there exists a diagonal sequence wn := v
r(n)

j (n) (n ∈ N) that is uniformly bounded
in the space W1,p(B(0, 1);Rm) and that is such that for all k ∈ N,

lim
n→∞

∫
B(0,1)

ϕk(y)hk(∇wn(y)) dy =
∫
B(0,1)

ϕk(y)
〈
hk, νx0

〉
dy.

Therefore, ∇wn
Y→ νx0 by Lemma 4.7, where we understand νx0 as a homogeneous

(gradient) Young measure on B(0, 1). �

Remark 5.15 The preceding result also remains true for p = ∞, but this needs
Zhang’s Lemma 7.18, which we will prove in Chapter 7. The proof of this fact is the
task of Problem 7.9.

Ourmainweak lower semicontinuity theorem is then a straightforward application
of the theory developed so far. The first result of this type is due to Charles B. Mor-
rey, Jr. from 1952 (under additional technical assumptions), but our Young measure
approach allows us to prove a fairly general result, which was first established by
Acerbi & Fusco (using different methods).

Theorem 5.16 (Morrey 1952 & Acerbi–Fusco 1984 [1, 195]). Let p ∈ (1,∞)

and let f : Ω × R
m×d → [0,∞) be a Carathéodory integrand with p-growth and

such that
f (x, �) is quasiconvex for almost every x ∈ Ω.

Then, the functional F is weakly lower semicontinuous onW1,p(Ω;Rm).

Proof. Let (u j ) ⊂ W1,p(Ω;Rm)with u j ⇀ u inW1,p. Assume that (∇u j ) generates
the gradient Young measure ν = (νx )x ∈ GYp(Ω;Rm×d), for which it holds that
[ν] = ∇u. This is only true up to a (not explicitly labeled) subsequence, but if we
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can establish the lower semicontinuity for every such subsequence it follows that the
result also holds for the original sequence.

From Proposition 4.6 we get

lim inf
j→∞

∫
Ω

f (x,∇u j (x)) dx ≥ 〈〈
f, ν

〉〉 =
∫

Ω

∫
f (x, A) dνx (A) dx .

Now, for almost every x ∈ Ω we can consider νx as a homogeneous Young measure
in GYp(B(0, 1);Rm×d) by the blow-up technique from Proposition 5.14. Thus, the
Jensen-type inequality from Lemma 5.11 reads

∫
f (x, A) dνx (A) ≥ f (x,∇u(x)) for a.e. x ∈ Ω.

Combining, we arrive at
lim inf
j→∞ F [u j ] ≥ F [u],

which is what we wanted to show. �

Regarding the question of lower semicontinuity for non-positive integrands, see
Problem 5.6.

At this point it is worthwhile to reflect on the role of Young measures in the
proof of the preceding result, namely that they allowed us to split the argument
into two parts: First, we passed to the (lower) limit in the functional via the Young
measure. Second, we established a Jensen-type inequality, which then yielded the
lower semicontinuity inequality. It is remarkable that the Young measure preserves
exactly the right amount of information to serve as an intermediate object.

We can now sum up and prove the existence of a solution for our minimization
problem:

Theorem 5.17. Let f : Ω × R
m×d → [0,∞) be a Carathéodory integrand such

that

(i) f has p-growth, where p ∈ (1,∞);
(ii) f satisfies the p-coercivity estimate μ|A|p ≤ f (x, A) for some μ > 0;
(iii) f is quasiconvex in its second argument.

Then, the associated functional F has a minimizer over W1,p
g (Ω;Rm), where g ∈

W1−1/p,p(∂Ω;Rm).

Proof. This follows directly by combining the Direct Method from Theorem 2.3
with the coercivity result in Proposition 2.5 and Morrey’s Theorem 5.16. �
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The following result shows that quasiconvexity is also necessary for weak lower
semicontinuity; we only state and show this for x-independent integrands, but we
note that it also holds for x-dependent integrands by a localization argument.

Proposition 5.18. Let f : Rm×d → R be continuous and have p-growth. If the
associated functional

F [u] :=
∫

Ω

f (∇u(x)) dx, u ∈ W1,p(Ω;Rm),

is weakly lower semicontinuous with or without fixed boundary values, then f is
quasiconvex.

Proof. We may assume that B(0, 1) � Ω; otherwise we can translate and rescale
the domain. Let A ∈ R

m×d and ψ ∈ W1,∞
0 (B(0, 1);Rm). We need to show

f (A) ≤ −
∫
B(0,1)

f (A + ∇ψ(z)) dz.

Take for every j ∈ N a Vitali cover of B(0, 1) consisting of disjoint balls, see
Theorem A.15,

B(0, 1) = Z ( j) ∪
∞⋃
k=1

B(a( j)
k , r ( j)

k ), |Z ( j)| = 0,

with a( j)
k ∈ B(0, 1), 0 < r ( j)

k ≤ 1/j (k ∈ N). Also fix a smooth function h : Ω \
B(0, 1) → R

m with h(x) = Ax for x ∈ ∂B(0, 1) and h|∂Ω equal to the prescribed
boundary values if there are any. Define

u j (x) :=

⎧⎪⎨
⎪⎩
Ax + r ( j)

k ψ

(
x − a( j)

k

r ( j)
k

)
if x ∈ B(a( j)

k , r ( j)
k ) (k ∈ N),

h(x) if x ∈ Ω \ B(0, 1),

x ∈ Ω.

Then, since ψ is uniformly bounded, it is not hard to see that u j ⇀ u in W1,p for

u(x) =
{
Ax if x ∈ B(0, 1),

h(x) if x ∈ Ω \ B(0, 1),
x ∈ Ω.

Thus, the lower semicontinuity yields, after cancelling the constant part of the func-
tional on Ω \ B(0, 1),
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∫
B(0,1)

f (A) dx ≤ lim inf
j→∞

∫
B(0,1)

f (∇u j (x)) dx

= lim inf
j→∞

∞∑
k=1

∫
B(a( j)

k ,r ( j)
k )

f

(
A + ∇ψ

(
x − a( j)

k

r ( j)
k

))
dx

= lim inf
j→∞

∞∑
k=1

(r ( j)
k )d

∫
B(0,1)

f (A + ∇ψ(y)) dy

=
∫
B(0,1)

f (A + ∇ψ(y)) dy

since
∑

k(r
( j)
k )d = 1. This is nothing else than quasiconvexity. �

5.6 Integrands with u-Dependence

One very useful feature of our Young measure approach is that it allows us to derive
a lower semicontinuity result for u-dependent integrands with minimal additional
effort. So consider

⎧⎨
⎩
Minimize F [u] :=

∫
Ω

f (x, u(x),∇u(x)) dx

over all u ∈ W1,p(Ω;Rm) with u|∂Ω = g,

where Ω ⊂ R
d is a bounded Lipschitz domain, p ∈ (1,∞), and the Carathéodory

integrand f : Ω × R
m × R

m×d → R satisfies the p-growth bound

| f (x, v, A)| ≤ M(1 + |v|p + |A|p), (x, v, A) ∈ Ω × R
m × R

m×d , (5.14)

for some M > 0, and g ∈ W1−1/p,p(∂Ω;Rm).
The idea is to consider Young measures generated by the pairs (u j ,∇u j ) ∈

R
m+md .

Lemma 5.19. Let (u j ) ⊂ Lp(Ω;RM) and (Vj ) ⊂ Lp(Ω;RN ) be norm-bounded
sequences such that for some u ∈ Lp(Ω;RM), ν ∈ Yp(Ω;RN ) it holds that

u j → u pointwise a.e. and Vj
Y→ ν.

Then, (u j , Vj )
Y→ μ = (μx ) ∈ Yp(Ω;RM+N ) with

μx = δu(x) ⊗ νx for a.e. x ∈ Ω,
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that is, ∫
Ω

f (x, u j (x), Vj (x)) dx →
∫

Ω

〈
f (x, u(x), �), νx (A)

〉
dx (5.15)

for all Carathéodory integrands f : Ω × R
M × R

N → R satisfying the p-growth
bound (5.14).

Proof. By a similar density argument as in the proof of Proposition 5.14, it suffices
to show the convergence (5.15) for f (x, v, A) = ϕ(x)ψ(v)h(A), where ϕ ∈ C0(Ω),
ψ ∈ C0(R

M), h ∈ C0(R
N ). We already know from the assumptions that

h(Vj )
∗

⇀
(
x �→ 〈

h, νx
〉)

in L∞.

Furthermore, ψ(u j ) → ψ(u) almost everywhere and thus (strongly) in L1 since ψ

is bounded. Since the product of an L∞-weakly* converging sequence and an L1-
strongly converging sequence converges itself weakly* in the sense of measures, we
deduce that

∫
Ω

ϕ(x)ψ(u j (x))h(Vj (x)) dx →
∫

Ω

ϕ(x)ψ(u(x))
〈
h, νx

〉
dx,

which is (5.15) for our special f . This already finishes the proof. �

The trick of the preceding lemma is that in our situation, where Vj = ∇u j
Y→ ν ∈

GYp(Ω;Rm×d), it allows us to “freeze” u(x) in the integrand. Then,we can apply the
Jensen-type inequality from Lemma 5.11 just as we did in Morrey’s Theorem 5.16.

Theorem 5.20 (Acerbi–Fusco 1984 [1]). Let p ∈ (1,∞) and let f : Ω × R
m ×

R
m×d → R be a Carathéodory integrand with p-growth, i.e. (5.14) holds. Assume

furthermore that

f (x, v, �) is quasiconvex for every fixed (x, v) ∈ Ω × R
m .

Then, the functional F corresponding to f is weakly lower semicontinuous on
W1,p(Ω;Rm). If additionally f satisfies the p-coercivity estimate

μ|A|p ≤ f (x, v, A), (x, v, A) ∈ Ω × R
m × R

m×d ,

for some μ > 0, then there exists a minimizer of F over W1,p
g (Ω;Rm), where

g ∈ W1−1/p,p(∂Ω;Rm).

Remark 5.21 It is not difficult to extend the previous theorem to integrands f satis-
fying the more general upper growth condition

0 ≤ f (x, v, A) ≤ M(1 + |v|q + |A|p), (x, v, A) ∈ Ω × R
m × R

m×d ,
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for someM > 0 and q ∈ [1, p/(d− p)). By the Sobolev Embedding Theorem A.27,
u j → u in Lq for all such q and thus Lemma 5.19 and then Theorem 5.20 can be
suitably generalized. Also, we may only require quasiconvexity of f (x, v, �) for
(x, v) ∈ (Ω \ Z) × R

m , where |Z | ⊂ Ω is a negligible set.

5.7 Regularity of Minimizers

At the end of Section 3.2 we discussed the failure of regularity for minimizers of
vector-valued problems. Upon closer inspection, however, it turns out that in all
counterexamples the points where regularity fails form a relatively closed “small”
set. This is not a coincidence, as we will see momentarily.

Another issue was that all the regularity theorems discussed so far have required
(strong) convexity of the integrand.However, our discussion in this chapter has shown
that convexity is not a good notion for vector-valued problems. To remedy this, we
need a new notion, which will take over from strong convexity in regularity theory:
A locally bounded Borel-measurable function h : Rm×d → R is called strongly
quasiconvex if there exists a γ > 0 such that

A �→ h(A) − γ |A|2 is quasiconvex.

Equivalently, we may require that

γ

∫
B(0,1)

|∇ψ(z)|2 dz ≤
∫
B(0,1)

h(A + ∇ψ(z)) − h(A) dz

for all A ∈ R
m×d and all ψ ∈ W1,∞

0 (B(0, 1);Rm).
The most well-known regularity result in this situation is due to Evans (there is

significant overlap with work by Acerbi & Fusco [2]):

Theorem 5.22 (Evans 1986 [109]). Let f : Rm×d → R be twice continuously
differentiable, strongly quasiconvex, and assume that there exists an M > 0 such
that

D2 f (A)[B, B] ≤ M |B|2, A, B ∈ R
m×d .

Let u ∈ W1,2
g (Ω;Rm) be a minimizer of F over the set W1,2

g (Ω;Rm), where g ∈
W1/2,2(∂Ω;Rm). Then, there exists a relatively closed singular set �u ⊂ Ω with
|�u | = 0 such that

u ∈ C1,α
loc (Ω \ �u)

for all α ∈ (0, 1).

This theorem is called a partial regularity result because the regularity does not
hold everywhere. It should be noted that while the scalar regularity theory was essen-
tially a theory for PDEs, and hence applies to all solutions of the Euler–Lagrange
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equations, this is not the case for the present result: There is no regularity theory for
critical points of the Euler–Lagrange equation for a quasiconvex or even polyconvex
(see the next chapter) integral functional. This was shown by Müller & Švérak in
2003 [207] (for the quasiconvex case) and Székelyhidi Jr. in 2004 [264] (for the
polyconvex case); we quote the first result later in Theorem 9.15.

We finally remark that sometimes better estimates on the “smallness” of �u than
merely |�u | = 0 are available. In fact, for strongly convex integrands it can be shown
that the (Hausdorff-)dimension of the singular set is at most d − 2, see Chapter 2
of [137]. In the strongly quasiconvex case much less is known, but at least for
minimizers that happen to be W1,∞ it was established in 2007 by Kristensen &
Mingione that the dimension of the singular set is strictly less than d, see [167].
Many other questions are open.

Notes and Historical Remarks

The notion of quasiconvexity was first introduced in Morrey’s seminal paper [195].
Lemma 5.6 is originally due to Morrey [196]; we follow the presentation in [33].
The results about null-Lagrangians, in particular Lemmas 5.8 and 5.10, go back
to Morrey [196] and Ball [25]. The pivotal proof idea that certain combinations of
derivatives might have good convergence properties even if the individual derivatives
do not, is also the starting point for the theory of compensated compactness (see
Section 8.8). A more general result on why convexity is inadmissible for realistic
problems in nonlinear elasticity can be found in Section 4.8 of [64].

The convexity properties of quadratic forms have received considerable attention
because they correspond to linear Euler–Lagrange equations. In this case, quasicon-
vexity and rank-one convexity are the same, see Problem 5.7.Moreover, for quadratic
forms, even polyconvexity (see the next chapter) is equivalent to rank-one convexity
if d = 2 or m = 2, but this does not hold for d,m ≥ 3. These results together with
pointers to the literature can be found in Section 5.3.2 of [76].

The result that rank-one convex functions are locally Lipschitz continuous,
Lemma 5.6, is well-known for convex functions, see, for example, Corollary 2.4
in [106] and an adapted version for rank-one convex (even separately convex) func-
tions is in Theorem 2.31 of [76]. Our proof with a quantitative bound is from
Lemma 2.2 in [33]. A more general version of this statement can be found in
Lemma 2.3 of [162].

The Ball–James Rigidity Theorem 5.13 is from [30]. We will see much more
general rigidity results in Chapter 8.

It is possible to proveMorrey’s Theorem 5.16 without the use of Youngmeasures,
see, for instance, Chapter 8 in [76] for such an approach. However, many of the ideas
are essentially the same, they are just carried out directly without the Young measure
intermediary (which obscures them somewhat). More on lower semicontinuity and
Young measures can be found in the book [222].
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All results in this chapter are formulated for Carathéodory integrands, but many
continue to hold for f : Ω ×R

N → R that are Borel-measurable and lower semicon-
tinuous in the second argument, so called normal integrands, see [39] and [122].

An argument byKružík [170], whichwas refined byMüller, shows the curious fact
that for a quasiconvex h : Rm×d → R with m ≥ 3, d ≥ 2 the function A �→ h(AT )

may not be quasiconvex. The proof can be found in Section 4.7 of [203]; it is based
on Šverák’s example of a rank-one convex function that is not quasiconvex (for the
same dimensions as above), which we will present in Example 7.10 in Chapter 7.

For minimization problems where the integrand can take negative values one
needs to look carefully at the negative part of the integrand, see Problem 5.6. If the
integrand has critical negative growth, then lower semicontinuity only holds if the
boundary values are fixed along a sequence or if one imposes quasiconvexity at the
boundary, see [37] for a recent survey article discussing this topic.

Problems

5.1 For non-convex domains, statement (i) (b) of the Ball–James Rigidity Theo-
rem 5.13 is false. Construct a counterexample.

5.2 Define, with D := (0, 1)d ⊂ R
d ,

W1,∞
per (D;Rm) := {

u ∈ W1,∞(Rd;Rm) : u(x+ei ) = u(x), x ∈ R
d , i = 1, . . . , d

}
.

A locally bounded Borel-measurable function h : Rm×d → R is called periodic
quasiconvex if

h(A) ≤
∫
D
h(A + ∇ψ(z)) dz for all A ∈ R

m×d and all ψ ∈ W1,∞
per (D;Rm).

Show that periodic quasiconvexity and the usual quasiconvexity are equivalent.Hint:
Let ψ ∈ W1,∞

per (D;Rm) and define for k ∈ N the function ψk : Rd → R
m as

ψk(x) := 1

k
ψ(kx), x ∈ R

d .

Prove that
∫
D
h(A + ∇ψ(z)) dz =

∫
D
h(A + ∇ψk(z)) dz for all A ∈ R

m×d , k ∈ N,

and that ψk ∈ W1,∞
per (D;Rm). You will also need a cut-off argument close to the

boundary ∂D.
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5.3 Denote by B := B(0, 1) the closed unit ball in Rd .

(i) Let w : B → ∂B be smooth (a “retraction”). Use |w(x)|2 = 1 for every x ∈ B
to show that det∇w = 0 in B.

(ii) Use the fact that the determinant is a null-Lagrangian to conclude that there
exists at least one x ∈ ∂Ω with w(x) �= x . Hint: Use an argument by contra-
diction.

(iii) Derive a smooth version of the Brouwer fixed point theorem: Let u : B → B be
smooth. Then u has a fixed point x∗ ∈ B, that is, u(x∗) = x∗. Hint: Argue by
contradiction and consider the ray emanating from u(x) and passing through x
for all x ∈ Ω and reduce to (ii).

(iv) Extend the proof to also apply to merely continuous u.

5.4 Let f : Rm×d → R be Borel-measurable and strongly quasiconvex, that is, there
exists a γ > 0 such that A �→ f (A) − γ |A|2 is quasiconvex. Assume furthermore
that | f (A)| ≤ M(1 + |A|2) for some M > 0 and all A ∈ R

m×d . Show that the
functional

F [u] :=
∫

Ω

f (∇u(x)) dx

attains its minimum on W1,2
Fx (Ω;Rm) for any F ∈ R

m×d .

5.5 Show that for Ω := (−1, 1)2 ⊂ R
2 the functional

F [u] :=
∫

Ω

det(∇u j (x)) dx

is not weakly lower semicontinuous on W1,2(Ω;R2) by considering the sequence

u j (x, y) := (1 − |x2|) j√
j

(
sin( j x), cos( j x)

)
.

5.6 Show that we may extend Morrey’s Theorem 5.16 to Carathéodory integrands
f : Ω × R

m×d → R that take negative values as long as

−M−1|A|q − M ≤ f (A) ≤ M(1 + |A|p), A ∈ R
m×d ,

where q ∈ (0, p) and M > 0. Hint: Observe that the family of negative parts
{ f (∇u j )} j is equiintegrable.
5.7 Prove that every quadratic form q : Rm×d → R, that is, q(A) = b(A, A) for a
bilinear b : Rm×d × R

m×d → R, is quasiconvex if and only if it is rank-one convex.
Hint: Use Plancherel’s identity (A.4).

5.8 Complete the proof of Lemma 5.10 for higher dimensions.Hint:Use the multi-
linear algebra formulation with differential forms and an induction over the dimen-
sion.
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5.9 Show that a weaker version of Lemma 5.10 is true if r = p, where we only
have the convergence of the minors in the sense of distributions.

5.10 A locally bounded Borel-measurable function h : Rm×d → R is called
W1,p-closed-quasiconvex if

h(F) ≤ −
∫
B(0,1)

h(A) dν(A)

for all F ∈ R
m×d and for all homogeneous W1,p-gradient Young measures ν ∈

GYp(B(0, 1);Rm×d) with [ν] = F . Show that for all continuous h that satisfy the
p-growth condition |h(A)| ≤ M(1+|A|p),W1,p-closed-quasiconvexity is equivalent
to W1,p-quasiconvexity.



Chapter 6
Polyconvexity

At the beginning of the previous chapter we saw that convexity cannot hold concur-
rentlywith frame-indifference (and amild non-degeneracy condition). Thus,wewere
led to consider quasiconvex integrands. However, while quasiconvexity is of tremen-
dous importance in the theory of the calculus of variations, Morrey’s Theorem 5.16
has one major drawback: we needed to require the p-growth bound

| f (x, A)| ≤ M(1 + |A|p), (x, A) ∈ Ω × R
m×d ,

for some M > 0 and p ∈ (1,∞). Unfortunately, this is not a realistic assump-
tion for nonlinear elasticity theory because it ignores the requirement that infinite
compressions should cost infinite energy, as we saw in Section 1.7. Indeed, realistic
integrands for hyperelastic energy functionals have the property that

f (A) → +∞ as det A ↓ 0

and
f (A) = +∞ if det A ≤ 0.

For instance, the family of matrices

Aα :=
(
1 0
0 α

)
, α > 0,

satisfies det Aα ↓ 0 as α ↓ 0, but |Aα| remains uniformly bounded. Thus, the above
p-growth bound cannot hold.

The question of whether Morrey’s Theorem 5.16 for quasiconvex integrands can
be extended to integrands with the above growth is currently a major unsolved prob-
lem, see [28]. For the time being, we have to confine ourselves to a more restrictive
notion of convexity if we want to allow for the above “elastic” growth. This type of
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convexity was introduced by John M. Ball in [25] and is called polyconvexity. Ball’s
theorem for the first time made it possible to prove the existence of minimizers for
a realistic class of stored-energy functionals in nonlinear elasticity theory, including
the Mooney–Rivlin and Ogden materials.

We will focus on the three-dimensional theory because it is by far the most phys-
ically relevant. This restriction eases the notational burden considerably; however,
any number of dimensions can be treated in a similar way, for which we refer to the
comprehensive treatment in [76].

After proving Ball’s existence theorem, we also briefly discuss the question of
injectivity, which is very relevant for applications.

6.1 Polyconvexity

Afunction h : R3×3 → R∪{+∞} (nowweallow the value+∞) is called polyconvex
if it can be written in the form

h(A) = H(A, cof A, det A), A ∈ R
3×3,

where H : R3×3×R
3×3×R → R∪{+∞} is convex (as a function onR3×3×R

3×3×
R ∼= R

19). Here, cof A denotes the cofactor matrix as defined in Appendix A.1.
While convexity obviously implies polyconvexity, the converse is clearly false,

as the determinant function shows.

Proposition 6.1. A polyconvex function h : R3×3 → R (not taking the value +∞)
is quasiconvex.

Proof. Let h be as in the definition of polyconvexity. For A ∈ R
3×3 and w ∈

W1,∞
Ax (B(0, 1);R3) we get, using Jensen’s inequality (see Lemma A.18),

−
∫

B(0,1)
h(∇w) dx = −

∫
B(0,1)

H(∇w, cof ∇w, det∇w) dx

≥ H

(
−
∫

B(0,1)
∇w dx, −

∫
B(0,1)

cof ∇w dx, −
∫

B(0,1)
det∇w dx

)

= H(A, cof A, det A)

= h(A),

where for the penultimate equality we used the fact that minors are null-Lagrangians
as proved in Lemma 5.8. ��

We will later see in Example 7.7 that the converse of this proposition is not true.

Example 6.2 (Compressible neo-Hookean materials). Functions f : R3×3 → R of
the form
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f (A) := a|A|2 + Γ (det A)

with a > 0 and Γ : R → R ∪ {+∞} convex, are clearly polyconvex.

Example 6.3 (Compressible Mooney–Rivlin materials). Functions f : R3×3 → R

of the form
f (A) := a|A|2 + b| cof A|2 + Γ (det A)

with a, b > 0 and

Γ (d) =
{

αd2 − β log d if d > 0,

+∞. if d ≤ 0,

for some α, β > 0, are polyconvex. This is obvious once we realize that Γ is convex.
See [64, 65] for details.

Example 6.4 (Ogden materials). Functions f : R3×3 → R ∪ {+∞} of the form

f (A) :=
M∑

i=1

ai tr
[
(AT A)γi /2

]+
N∑

j=1

b j tr cof
[
(AT A)δ j /2

]+Γ (det A), A ∈ R
3×3,

where M, N ∈ N, ai > 0, γi ≥ 1, b j > 0, δ j ≥ 1, and Γ : R → R ∪ {+∞}
is a convex function with Γ (d) → +∞ as d ↓ 0 and Γ (d) = +∞ for d ≤ 0,
can be shown to be polyconvex, see Problem 6.6. These stored energy functionals
correspond to so-called Ogden materials and occur in a wide range of elasticity
applications, see [64] for details.

It can also be proved that in three dimensions convex functions of certain combi-
nations of the singular values of a matrix are polyconvex, see Problem 6.10.

6.2 Existence of Minimizers

Let Ω ⊂ R
3 be a bounded Lipschitz domain. In this section we will prove the

existence of a minimizer of the variational problem

⎧⎨
⎩
Minimize F [u] :=

∫
Ω

f (x,∇u(x)) − b(x) · u(x) dx

over all u ∈ W1,p(Ω;R3) with det∇u > 0 a.e. and u|∂Ω = g,

(6.1)

where f : Ω ×R
3×3 → R∪ {+∞} is a Carathéodory integrand (with extended-real

values, but the definition is analogous) and f (x, �) is polyconvex for almost every
x ∈ Ω . Thus,

f (x, A) = F(x, A, cof A, det A), (x, A) ∈ Ω × R
3×3,
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for F : Ω × R
3×3 × R

3×3 × R → R ∪ {+∞} with F(x, �, �, �) jointly convex and
continuous for almost every x ∈ Ω . As the only upper growth assumptions on f we
impose {

f (x, A) → +∞ as det A ↓ 0,

f (x, A) = +∞ if det A ≤ 0.

Furthermore, as usual we suppose that g ∈ W1−1/p,p(∂Ω;R3) and b ∈ Lq(Ω;R3),
where 1/p + 1/q = 1. The exponent p ∈ (1,∞) will remain unspecified for now.
Later, when we impose conditions on the coercivity of f , we will also specify p.

The first existence result is relatively straightforward:

Theorem 6.5. If in addition to the above assumptions it holds that

μ|A|p ≤ f (x, A), (x, A) ∈ Ω × R
3×3, (6.2)

for some μ > 0 and p ∈ (3,∞), then the minimization problem (6.1) has at least
one solution in the space

A := {
u ∈ W1,p(Ω;R3) : det∇u > 0 a.e. and u|∂Ω = g

}

whenever this set is non-empty.

Proof. We employ the usual Direct Method. For a minimizing sequence (u j ) ⊂ A
forF we first show that there exists a constant C > 0 such that

‖∇u j‖p
Lp ≥ 1

C
‖u j‖p

W1,p − C. (6.3)

For this, fix u0 ∈ W1,p(Ω;R3) with u0|∂Ω = g. Then, the Poincaré inequality
from Theorem A.26 (i) in conjunction with the elementary inequality (a + b)p ≤
2p−1(a p + bp) for a, b ≥ 0 implies (with a constant C = C(Ω, p, u0) > 0 that may
change from line to line)

‖∇u j‖p
Lp ≥ 1

C
‖∇(u j − u0)‖p

Lp − C

≥ 1

C
‖u j − u0‖p

W1,p − C

≥ 1

C
‖u j‖p

W1,p − C.

This is (6.3).
We then get from the coercivity estimate (6.2) and Young’s inequality that for any

δ > 0 it holds that
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∫
Ω

f (x,∇u j (x)) − b(x) · u j (x) dx

≥ μ‖∇u j‖p
Lp − ‖b‖Lq · ‖u j‖Lp

≥ μ

C
‖u j‖p

W1,p − C − 1

δqq
‖b‖q

Lq − δ p

p
‖u j‖p

W1,p .

Choosing δ = (pμ/(2C))1/p, one derives (for a different constant C > 0)

sup
j∈N

‖u j‖W1,p ≤ C
(
sup
j∈N

F [u j ] + 1
)
.

Thus, we may select a subsequence (not explicitly labeled) such that u j ⇀ u∗ in
W1,p.

By Lemma 5.10 and p > 3,

det∇u j ⇀ det∇u∗ in Lp/3 and

cof ∇u j ⇀ cof ∇u∗ in Lp/2.

Thus, an argument entirely analogous to the proof of the Tonelli–Serrin Theorem 2.6
yields that the main part of F ,

v �→
∫

Ω

f (x,∇v) dx =
∫

Ω

F(x,∇v, cof ∇v, det∇v) dx,

isweakly lower semicontinuous onW1,p(Ω;R3). Indeed, for v j ⇀ v inW1,p(Ω;R3)

set

Vj := (∇v j , cof ∇v j , det∇v j ),

V := (∇v, cof ∇v, det∇v),

for which it holds that Vj ⇀ V in Lp × Lp/2 × Lp/3. Then we may argue as in the
proof of the Tonelli–Serrin Theorem 2.6 via Mazur’s Lemma A.4 to see that

∫
Ω

F(x, V (x)) dx ≤ lim inf
j→∞

∫
Ω

F(x, Vj (x)) dx .

In this context we also note that F is continuous with values in [0,∞] by assumption.
Thus, also using that the second part of F is weakly continuous by Lemma 2.16,

F [u∗] ≤ lim inf
j→∞ F [u j ] = inf

A
F < ∞.

In particular, det∇u∗ > 0 almost everywhere and u∗|∂Ω = g by the weak continuity
of the trace. Hence, u∗ ∈ A and the proof is finished. ��
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The preceding theorem’s major drawback is that p > 3 has to be assumed. In
applications in elasticity theory, however, a more realistic form of f is

f (A) = λ

2
(tr E)2 + μ tr E2 + O(|E |2), E = 1

2
(AT A − I ), (6.4)

where λ,μ > 0 are the Lamé constants. Except for the last termO(|E |2), which van-
ishes as |E | ↓ 0, this energy corresponds to a so-called St. Venant–Kirchhoff material.
It was shown by Ciarlet & Geymonat [65] (also see Theorem 4.10-2 in [64]) that
for any such Lamé constants, there exists a polyconvex function f of compressible
Mooney–Rivlin form such that (6.4) holds, that is,

f (A) = a|A|2 + b| cof A|2 + Γ (det A) + c,

with

Γ (d) =
{

αd2 − β log d if d > 0,

+∞ if d ≤ 0,

where a, b, α, β > 0 and c ∈ R. Clearly, such f has only 2-growth in |A|. Thus, we
need an existence theorem for functions with these growth properties.

The core of a refined lower semicontinuity argument will be an improvement of
Lemma 5.10:

Lemma 6.6. Let p, q, r ∈ [1,∞) with

p ≥ 2,
1

p
+ 1

q
≤ 1, r ≥ 1

and assume that the sequence (u j ) ⊂ W1,p(Ω;R3) satisfies

⎧⎪⎨
⎪⎩

u j ⇀ u in W1,p,

cof ∇u j ⇀ H in Lq ,

det∇u j ⇀ d in Lr

for some H ∈ Lq(Ω;R3×3), d ∈ Lr (Ω). Then, H = cof ∇u and d = det∇u.

Proof. The idea is to use distributional versions of the cofactors and determinant
of a gradient and to show that they agree with the usual definitions for sufficiently
regular functions. To this end we will use the representation of minors as divergences
already employed in Lemmas 5.8, 5.10.

Step 1. From (5.8) we get that for all ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C1(Ω;R3),

(cof ∇ϕ)k
l = (−1)k+l

[
∂l+1(ϕ

k+1∂l+2ϕ
k+2) − ∂l+2(ϕ

k+1∂l+1ϕ
k+2)

]
,

where k, l ∈ {1, 2, 3} are cyclic indices. Thus, for all ψ ∈ C∞
c (Ω),
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∫
Ω

(cof ∇ϕ)k
l ψ dx

= −(−1)k+l
∫

Ω

(ϕk+1∂l+2ϕ
k+2)∂l+1ψ − (ϕk+1∂l+1ϕ

k+2)∂l+2ψ dx

=: 〈
(Cof ∇ϕ)k

l , ψ
〉
. (6.5)

We call the functional Cof ∇ϕ the distributional cofactors.
To investigate the continuity properties of Cof ∇ϕ, we consider

G [ϕ] :=
∫

Ω

(ϕk∂lϕ
m)∂nψ dx, ϕ ∈ W1,p(Ω;R3),

for some k, l, m, n ∈ {1, 2, 3} and fixed ψ ∈ C∞
c (Ω). We can estimate this using the

Hölder inequality as follows:

|G [ϕ]| ≤ ‖ϕ‖Ls ‖∇ϕ‖Lp ‖∇ψ‖∞

whenever
1

s
+ 1

p
≤ 1. (6.6)

In particular, this is true for s = p ≥ 2. Since C1(Ω;R3) is dense in W1,p(Ω;R3),
we have that (6.5) also holds for ϕ ∈ W1,p(Ω;R3).

Moreover, the above bound yields for any sequence (ϕ j ) ⊂ W1,p(Ω;R3) that

G [ϕ j ] → G [ϕ] if

{
ϕ j → ϕ in Ls,

∇ϕ j ⇀ ∇ϕ in Lp.

If ϕ j ⇀ ϕ in W1,p, then the first convergence on the right-hand side follows from
the Rellich–Kondrachov TheoremA.28 if

s <

{
3p
3−p if p < 3,

∞ if p ≥ 3.
(6.7)

We can always choose s such that it simultaneously satisfies (6.6) and (6.7), as a
quick calculation shows. Thus,

〈
Cof ∇ϕ j , ψ

〉 → 〈
Cof ∇ϕ,ψ

〉
if ϕ j ⇀ ϕ in W1,p. (6.8)

Step 2. If ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C2(Ω;R3), then we know from (5.9) that

det∇ϕ =
3∑

l=1

∂lϕ
1(cof ∇ϕ)1l =

3∑
l=1

∂l
(
ϕ1(cof ∇ϕ)1l

)
.
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Thus, we have for all ψ ∈ C∞
c (Ω) that

∫
Ω

(det∇ϕ)ψ dx =
3∑

l=1

∫
Ω

∂lϕ
1(cof ∇ϕ)1l ψ dx

= −
3∑

l=1

∫
Ω

(
ϕ1(cof ∇ϕ)1l

)
∂lψ dx . (6.9)

The key idea now is that by Hölder’s inequality the last integral is well-defined and
finite if only

ϕ ∈ Lp(Ω;R3) with cof ∇ϕ ∈ Lq(Ω;R3), where
1

p
+ 1

q
≤ 1.

Analogously to the argument for the cofactor matrix, this motivates us to define the
distributional determinant Det∇ϕ as the linear functional on C∞

c (Ω) given as

〈
Det∇ϕ,ψ

〉 := −
3∑

l=1

∫
Ω

(
ϕ1(cof ∇ϕ)1l

)
∂lψ dx, ψ ∈ C∞

c (Ω).

From (6.9) we see that if ϕ ∈ C1(Ω;R3), then “det = Det”, i.e.,

∫
Ω

(det∇ϕ)ψ dx =
3∑

l=1

∫
Ω

∂lϕ
1(cof ∇ϕ)1l ψ dx = 〈

Det∇ϕ,ψ
〉

(6.10)

for all ψ ∈ C∞
c (Ω). We want to show that this equality remains valid if merely

ϕ ∈ W1,p(Ω;R3) with cof ∇ϕ ∈ Lq(Ω;R3×3), where 1/p + 1/q ≤ 1.
For the moment fix ψ ∈ C∞

c (Ω). Define for ϕ ∈ C1(Ω;R3) and W ∈
C1(Ω;R3×3),

Z [ϕ, W ] :=
3∑

l=1

∫
Ω

∂lϕ
1W 1

l ψ + ϕ1W 1
l ∂lψ dx .

Observe that

Z [ϕ, W ] =
3∑

l=1

∫
Ω

W 1
l ∂l(ϕ

1ψ) dx . (6.11)

Hölder’s inequality furthermore implies

|Z [ϕ, W ]| ≤ C‖ϕ‖W1,p ‖W‖Lq ‖ψ‖W1,∞ whenever
1

p
+ 1

q
≤ 1.
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To establish (6.10) for ϕ ∈ W1,p(Ω;R3)with cof ∇ϕ ∈ Lq(Ω;R3×3), where 1/p +
1/q ≤ 1, we need to show Z [ϕ, cof ∇ϕ] = 0 for all such ϕ.

If v ∈ C1(Ω;R3), then we get from the Piola identity (5.10) that

div cof ∇v = 0.

Thus, using (6.11), we haveZ [ϕ, cof ∇v] = 0 for ϕ, v ∈ C1(Ω;R3). Moreover, the
map v �→ cof ∇v is continuous from W1,p(Ω;R3) to L1(Ω;R3×3) since | cof A| ≤
C |A|2 and p ≥ 2 (one can, for instance, argue using pointwise almost everywhere
convergence and Pratt’s Theorem). By the density of C1(Ω;R3) inW1,p(Ω;R3) this
continuity then yields

Z [ϕ, cof ∇v] = 0 for ϕ ∈ C1(Ω;R3) and v ∈ W1,p(Ω;R3).

On the other hand, Z [ �, W ] is continuous in the first argument with respect to
strong convergence in W1,p if W ∈ Lq(Ω;R3×3) and 1/p + 1/q ≤ 1. Thus, another
approximation yields that Z [ϕ, cof ∇v] = 0 for all ϕ ∈ W1,p(Ω;R3) and v ∈
W1,p(Ω;R3) with cof ∇v ∈ Lq(Ω;R3×3). In particular,

Z [ϕ, cof ∇ϕ] = 0 for ϕ ∈ W1,p(Ω;R3) with cof ∇ϕ ∈ Lq(Ω;R3×3).

Therefore, (6.10) (“det = Det”) holds for all such ϕ ∈ W1,p(Ω;R3).
We see from the definition of the distributional determinant that for a sequence

(ϕ j ) ⊂ W1,p(Ω;R3) we have

〈
Det∇ϕ j , ψ

〉 → 〈
Det∇ϕ,ψ

〉
if

{
ϕ j → ϕ in Ls,

cof ∇ϕ j ⇀ cof ∇ϕ in Lq

whenever
1

s
+ 1

q
≤ 1. (6.12)

For sequences ϕ j ⇀ ϕ in W1,p the first convergence on the right-hand side follows,
as before, from the Rellich–Kondrachov TheoremA.28 if

s <

{
3p
3−p if p < 3,

∞ if p ≥ 3.
(6.13)

However, since we assumed
1

p
+ 1

q
≤ 1,

we can always choose s such that it satisfies (6.12) and (6.13) simultaneously, as can
be seen by some elementary algebra. Thus,
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〈
Det∇ϕ j , ψ

〉 → 〈
Det∇ϕ,ψ

〉
if

{
ϕ j ⇀ ϕ in W1,p,

cof ∇ϕ j ⇀ cof ∇ϕ in Lq ,
(6.14)

where p, q satisfy the assumptions of the lemma.
Step 3. Assume that, as in the statement of the lemma, we are given a sequence

(u j ) ⊂ W1,p(Ω;R3) such that for H ∈ Lq(Ω;R3×3), d ∈ Lr (Ω) it holds that

⎧⎪⎨
⎪⎩

u j ⇀ u in W1,p,

cof ∇u j ⇀ H in Lq ,

det∇u j ⇀ d in Lr .

Then, (6.5), (6.10) imply that for all ψ ∈ C∞
c (Ω),

〈
Cof ∇u j , ψ

〉 → 〈
H, ψ

〉
and

〈
Det∇u j , ψ

〉 → 〈
d, ψ

〉
.

On the other hand, from (6.8) and (6.5) again,

〈
Cof ∇u j , ψ

〉 → 〈
Cof ∇u, ψ

〉 =
∫

Ω

(cof ∇u)ψ dx,

whereby ∫
Ω

(cof ∇u − H)ψ dx = 0

for all ψ ∈ C∞
c (Ω). The Fundamental Lemma 3.10 then gives immediately

cof ∇u = H ∈ Lq(Ω;R3×3).

Since we have just shown that cof ∇u j ⇀ cof ∇u in Lq , (6.10) and (6.14) imply

〈
Det∇u j , ψ

〉 → 〈
Det∇u, ψ

〉 =
∫

Ω

(det∇u)ψ dx .

Thus, by a similar argument as above,

det∇u = d ∈ Lr (Ω).

This finishes the proof. ��
With this tool at hand, we can now prove the main existence result for integral

functionals with polyconvex integrands:
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Theorem 6.7 (Ball 1977 [25]). Let p, q, r ∈ [1,∞) with

p ≥ 2,
1

p
+ 1

q
≤ 1, r > 1

such that in addition to the assumptions at the beginning of this section it holds that

f (x, A) ≥ μ
(|A|p + | cof A|q + | det A|r), (x, A) ∈ Ω × R

3×3, (6.15)

for some μ > 0. Then, the minimization problem (6.1) has at least one solution in
the space

A := {
u ∈ W1,p(Ω;R3) : cof ∇u ∈ Lq(Ω;R3×3), det∇u ∈ Lr (Ω),

det∇u > 0a.e., and u|∂Ω = g
}

whenever this set is non-empty.

Proof. This follows in a completely analogous way to the proof of Theorem 6.5,
but now we select a subsequence of a minimizing sequence (u j ) ⊂ A such that for
some u∗ ∈ W1,p(Ω;R3), H ∈ Lq(Ω;R3×3), d ∈ Lr (Ω) we have

⎧⎪⎨
⎪⎩

u j ⇀ u∗ in W1,p,

cof ∇u j ⇀ H in Lq ,

det∇u j ⇀ d in Lr ,

which is possible by the usual weak compactness results in conjunction with the
coercivity assumption (6.15). Lemma 6.6 yields

⎧⎪⎨
⎪⎩

u j ⇀ u∗ in W1,p,

cof ∇u j ⇀ cof ∇u∗ in Lq ,

det∇u j ⇀ det∇u∗ in Lr ,

and we may argue as in Theorem 6.5 to conclude that u∗ is a minimizer over A . ��
Example 6.8. For the example from Section 1.7 we can now show that a minimizer
exists for the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize F [y] :=
∫

Ω

W (∇ y(x)) − b(x) · y(x) dx

over all y ∈ W1,p(Ω;R3) with cof ∇ y ∈ Lq(Ω;R3×3), det∇ y ∈ Lr (Ω),

det∇ y > 0 a.e., and y|∂Ω = g,

if W is any one of the polyconvex integrands exhibited in Examples 6.2, 6.3, or 6.4,
b ∈ Ls(Ω;R3), and g ∈ W1−1/p,p(∂Ω;R3) with p, q, r, s ∈ [1,∞) such that
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p ≥ 2,
1

p
+ 1

q
≤ 1,

1

p
+ 1

s
≤ 1, r > 1.

This follows from Theorem 6.7 in conjunction with Lemma 2.16 (for the strong
continuity of the second part of F ).

6.3 Global Injectivity

For reasons of physical admissibility we often want to additionally prove that we can
find a minimizer that is injective almost everywhere, that is, u : Ω → R

3 is such
that

H 0(u−1(x ′)) = 1 for a.e. x ′ ∈ u(Ω),

where H 0 is the counting measure. Note that if the deformed configuration has
self-contact, then we cannot expect full injectivity.

There are several approaches to this delicate question, for example via the topo-
logical degree. Here, we present a classical argument by Ciarlet & Nečas [67]. It is
important to notice that it is only realistic to expect injectivity for p > d. For lower
exponents, complex effects such as cavitation and (microscopic) fracture have to be
considered. This is already indicated by the fact that Sobolev functions in W1,p for
p ≤ d are not necessarily continuous.

We will prove the following basic theorem:

Theorem 6.9. In the situation of Theorem 6.5, in particular p > 3, the minimization
problem (6.1) has at least one solution in the space

A := {
u ∈ W1,p(Ω;R3) : det∇u > 0 a.e., u is injective a.e., u|∂Ω = g

}

whenever this set is non-empty.

Proof. Let (u j ) ⊂ A be a minimizing sequence with u j ⇀ u∗ in W1,p(Ω;R3).
The existence proof is analogous to that of Theorem 6.5; we only need to show in
addition that u∗ is injective almost everywhere.

In the following we will use the fact that even if only v ∈ W1,p(Ω;R3) it holds
that ∫

Ω

| det∇v| dx =
∫

v(Ω)

H 0(v−1(x ′)) dx ′,

where we denote by H 0 the counting measure. See, for example, [180] or [46] for
a proof.

For our choice p > 3, the space W1,p(Ω;R3) embeds continuously into
C(Ω;R3), so we have that

u j → u∗ uniformly.
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Let U ⊂ R
3 be any precompact open set with u∗(Ω) � U (note that u∗(Ω) is

bounded). Then, u j (Ω) ⊂ U for j sufficiently large by the uniform convergence.
Hence, for such j ,

|u j (Ω)| ≤ |U |.

Since det∇u j converges weakly to det∇u∗ in Lp/3 by Lemma 5.10 and all u j

are injective almost everywhere by definition of the space A ,

∫
Ω

det∇u∗ dx = lim
j→∞

∫
Ω

det∇u j dx

= lim
j→∞

∫
u j (Ω)

H 0(u−1
j (x ′)) dx ′

= lim
j→∞ |u j (Ω)|

≤ |U |.

Letting |U | ↓ |u∗(Ω)| = |u∗(Ω)| (the last equality follows since |∂u∗(Ω)| = 0,
which again is proved in [180]), we get the Ciarlet–Nečas non-interpenetration
condition ∫

Ω

det∇u∗ dx ≤ |u∗(Ω)|.

Then, we have the estimate

|u∗(Ω)| ≤
∫

u∗(Ω)

H 0(u−1
∗ (x ′)) dx ′ =

∫
Ω

det∇u∗ dx ≤ |u∗(Ω)|,

where we used that det∇u∗ > 0 almost everywhere (which follows as in the proof
of Theorem 6.5). Thus,

H 0(u−1
∗ (x ′)) = 1 for a.e. x ′ ∈ u(Ω),

and we have shown the almost everywhere injectivity of u∗. ��
Unfortunately, injectivity almost everywhere does not exclude all unphysical

examples. For example, a countable dense set may be mapped into one point. Injec-
tivity everywhere is a harder problem. A well-known result in this direction is the
following:

Theorem 6.10 (Ball 1981 [26]). In the situation of Theorem 6.5, assume further-
more that

μ

(
|A|p + | cof A|p

(det A)p−1

)
≤ f (x, A), (x, A) ∈ Ω × R

3×3,
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for someμ > 0and p ∈ (3,∞), and that there exists an injective map u0 ∈ C(Ω;R3)

such that u0(Ω) is also a bounded Lipschitz domain. Then, the minimization prob-
lem (6.1) has at least one solution u∗ in the space

A := {
u ∈ W1,p(Ω;R3) : det∇u > 0 a.e. and u|∂Ω = u0|∂Ω

}

such that the following assertions hold:

(i) u∗ is a homeomorphism of Ω onto u∗(Ω);
(ii) u∗(Ω) = u0(Ω);

(iii) u−1∗ ∈ W1,p(u0(Ω);R3);
(iv) ∇u−1∗ (u∗(x)) = (∇u∗(x))−1 for almost every x ∈ Ω .

Notes and Historical Remarks

Theorem 6.7 is a refined version of Ball’s original result [25] due to Ball, Currie &
Olver [29]; also see [30, 31] for further reading. This theorem and its applications
to elasticity theory are described in great detail in [64].

Many questions about polyconvex integral functionals remain open to this day. In
particular, the regularity of solutions and the validity of the Euler–Lagrange equa-
tions are largely unknown in the general case. Note that the regularity theory from
the previous chapter is not in general applicable, at least if we do not assume the
upper p-growth. These questions are even open for the more restricted situation of
nonlinear elasticity theory. See [28] for a survey on the current state of the art and a
collection of challenging open problems. We note that since the publication of [28]
counterexamples to uniqueness have been found, see [245].

As for the almost injectivity (for p > 3), this is in fact sometimes automatic,
as shown by Ball [26], but the arguments do not apply to all situations. Tang [266]
extended this to p > 2, but since then one has to deal with non-continuous functions,
it is not even obvious how to define u(Ω).

Theorem 6.10 is from [26]. More general results can be found in [248]. The
questions of injectivity, invertibility, and regularity are intimately connected with
cavitation and fracture phenomena, see, for instance, [204] and the recent [148],
which also contains a large bibliography.

Finally, we mention in passing the alternative so-called intrinsic approach to elas-
ticity, as pioneered by Ciarlet, see [66].

Problems

6.1 Define h : R3×3 → R via

h(A) := (|A|6 + | cof A|6)1/2 + g(det A), A ∈ R
3×3,
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where g : R → [0,∞] is convex and continuous. Prove that h is polyconvex.

6.2 Show that the function

h(A) :=
⎧⎨
⎩

|A| ln(1 + |A|) + 1

det A
if det A > 0,

+∞ if det A ≤ 0,
A ∈ R

3×3,

is polyconvex.

6.3 Show that for u ∈ (W1,3 ∩ C2)(Ω;R3) it holds that

det∇u(x) =
3∑

l=1

∂l(u
1(cof ∇u(x))1l ), x ∈ Ω.

Hint: Use the Piola identity.

6.4 Let u j , u ∈ (W1,3 ∩ C2)(Ω;R3), j ∈ N, with

cof ∇u j , cof ∇u ∈ L3(Ω;R3×3).

Prove that if

u j ⇀ u in W1,3 and cof ∇u j ⇀ cof ∇u in L3,

then det∇u j , det∇u ∈ L3/2(Ω) and det∇u j ⇀ det∇u in L3/2.

6.5 In this problem we will construct a rank-one convex function that is not poly-
convex.

(i) Find A1, A2, A3 ∈ R
2×2 and θ1, θ2, θ3 ∈ (0, 1) such that simultaneously

(a) θ1 + θ2 + θ3 = 1;

(b)
3∑

k=1

θi det Ai = det

[
3∑

k=1

θi Ai

]
;

(c) det(A1 − A2) �= 0, det(A1 − A3) �= 0, det(A2 − A3) �= 0;

(d)
3∑

k=1

θi Ai /∈ {A1, A2, A3}.

(ii) Define with the A1, A2, A3 from (i) the function f : R2×2 → R ∪ {+∞} as

f (A) :=
{
0 if A ∈ {A1, A2, A3},
+∞ otherwise.

Show that f is rank-one convex (extending the definition of rank-one convexity
in a suitable way to (R ∪ {+∞})-valued functions).
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(iii) Show that f is not polyconvex, i.e., there exists no convex function F : R2×2 ×
R → R ∪ {+∞} such that

f (A) = F(A, det A), A ∈ R
2×2.

6.6 Show that the function f from Example 6.4 (Ogden materials) is polyconvex.
Hint: Use Cramer’s rule to see that cof(AB) = cof(A) cof(B).

6.7 Set

GL(d) := {
A ∈ R

d×d : det A �= 0
}

and

GL+(d) := {
A ∈ R

d×d : det A > 0
}
.

Prove that the convex hull GL+(3)∗∗ of GL+(3) is equal to GL(3).

6.8 With the notation from the previous problem, define

U := {
(A, cof A, det A) ∈ GL(3) × GL(3) × R : A ∈ GL+(3)

}

and show that
U ∗∗ = GL(3) × GL(3) × (0,∞).

Hint: Show first:

(i) (A, H, δ) ∈ U andG ∈ GL+(3) implies that (G A, (cof G)H, (det G)δ) ∈ U ∗∗;
(ii) (±Id, 0, δ) ∈ U and (0,±Id, δ) ∈ U ∗∗ for all δ > 0;
(iii) (A, 0, δ), (0, H, δ) ∈ U ∗∗ for all A, H ∈ GL(3) and all δ > 0 (see the previous

problem).

6.9 Let Φ : [0,∞)d → R be symmetric, jointly convex, and increasing (in every
variable).Denote byσ1(A), . . . , σd(A) ≥ 0 the singular values of amatrix A ∈ R

d×d .
Then, show that

g(A) := Φ(σ1(A), . . . , σd(A)), A ∈ R
d×d ,

is convex.

6.10 Let h : R3×3 → R ∪ {+∞} be of the form

h(A) :=
{

Θ
(
σ1, σ2, σ3, σ1σ2, σ2σ3, σ3σ1, σ1σ2σ3

)
if det A > 0,

+∞ if det A ≤ 0,
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where σ1, σ2, σ3 are the three singular values of A and the function Θ : [0,∞)7 ×
(0,∞) → R is jointly convex, increasing in the first six variables, and

Θ(x1, x2, x3, y1, y2, y3, z) = Θ(xγ (1), xγ (2), xγ (3), yη(1), yη(2), yη(3), z)

for all permutationsγ, η : {1, 2, 3} → {1, 2, 3} and all x1, x2, x3, y1, y2, y3 ∈ [0,∞),
z ∈ (0,∞). Show that h is polyconvex. Hint: Use the previous problem.



Chapter 7
Relaxation

Consider the functional

F [u] :=
∫ 1

0
|u(x)|2 + (|u′(x)|2 − 1

)2
dx, u ∈ W1,4

0 (0, 1).

The gradient part of the integrand, a �→ (a2 − 1)2, see Figure 7.1, has two distinct
minima, which makes it a double-well potential. Approximate minimizers ofF try
to satisfy u′ ∈ {−1, 1} as closely as possible, while at the same time staying close to
zero because of the first term. These contradicting requirements lead to minimizing
sequences that develop faster and faster oscillations similar to the ones shown in
Figure 5.1. It should be intuitively clear that no classical function can be a minimizer
of F .

In this situation, we have essentially two options, both of which we will consider
in this chapter: First, if we only care about the infimal value ofF , we can compute
the relaxation F∗ of F , which by definition is the largest lower semicontinuous
functional below F . It turns out that, under reasonable assumptions, F∗ is also an
integral functional and its integrand is the quasiconvex envelope of the integrand of
F . However, the minimizer ofF∗ may not say much about the minimizing sequence
of our originalF since all oscillations (and concentrations in some cases) have been
“averaged out”.

Second, we can focus on the minimizing sequences themselves and try to find
a generalized limit object to a minimizing sequence that encapsulates “interesting”
information. The natural candidates for such limit objects are (gradient) Young mea-
sures. In fact, applications to the relaxation of integral functionals were the original
motivation for introducing them. Youngmeasure theory allows one to replace amini-
mization problem over a Sobolev space by a generalized minimization problem over
(gradient) Young measures. This generalized minimization problem always has a
solution.

© Springer International Publishing AG, part of Springer Nature 2018
F. Rindler, Calculus of Variations, Universitext,
https://doi.org/10.1007/978-3-319-77637-8_7
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Fig. 7.1 A double-well
potential

When formulating minimization problems over a class of gradient Young mea-
sures, the question naturally arises whether one can characterize this subset of Young
measures. The Kinderlehrer–Pedregal theorem provides such a characterization by
placing gradient Young measures in duality with quasiconvex functions. This duality
also further emphasizes the central place of (gradient) Youngmeasures in themodern
calculus of variations.

In applications, the emerging oscillations in minimization sequences for non-
quasiconvex integral functionals correspond to microstructure, which is very impor-
tant, for instance, in material science. A finer investigation of these phenomena will
be carried out in Chapters 8 and 9.

7.1 Quasiconvex Envelopes

We have seen in Chapter 5 that integral functionals with quasiconvex integrands are
weakly lower semicontinuous in W1,p, where the exponent p ∈ (1,∞) is deter-
mined by growth properties of the integrand. If the integrand is not quasiconvex,
then we would like to compute the functional’s relaxation. Because of the close con-
nection between weak lower semicontinuity and quasiconvexity, we can expect that
the relaxation of an integral functional should also be an integral functional with a
quasiconvex integrand that is related to the integrand of the original functional.

In this spirit, we define the quasiconvex envelope Qh : R
m×d → R ∪ {−∞} of

a locally bounded Borel-function h : R
m×d → R as

Qh(A) := inf

{
−
∫

B(0,1)
h(A + ∇ψ(z)) dz : ψ ∈ W1,∞

0 (B(0, 1); R
m)

}
, (7.1)

where A ∈ R
m×d . Clearly, Qh ≤ h. By a similar covering argument as the one

employed in Lemma 5.2 one can see that in the above formula one may replace the
unit ball B(0, 1) by any bounded Lipschitz domain Ω ⊂ R

d . Furthermore, if h has
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p-growth, we may replace the space W1,∞
0 (B(0, 1); R

m) by W1,p
0 (B(0, 1); R

m) via
a density argument. Finally, arguing as in the proof of Proposition 5.18, we may
restrict the class of ψ in the above infimum to those satisfying ‖ψ‖L∞ ≤ ε for any
ε > 0.

Lemma 7.1. For continuous h : R
m×d → [0,∞) with p-growth, p ∈ [1,∞), the

quasiconvex envelope Qh is quasiconvex.

Proof. For any ψ ∈ W1,∞
0 (B(0, 1); R

m) and any F ∈ R
m×d we need to show

−
∫

B(0,1)
Qh(F + ∇ψ(z)) dz ≥ Qh(F). (7.2)

We first note that Qh has p-growth since 0 ≤ Qh(A) ≤ h(A) ≤ M(1 + |A|p).
We can then use an approximation argument in conjunction with Theorem 2.13
to see that it suffices to show the inequality (7.2) for countably piecewise affine
ψ ∈ W1,∞

0 (B(0, 1); R
m). Hereweuse theW1,p-density of countably piecewise affine

functions in W1,∞
0 (B(0, 1); R

m) under given boundary values (see Theorem A.29).
Suppose thatψ(x) = vk + Ak x (vk ∈ R

m , Ak ∈ R
m×d ) for x ∈ Dk from a disjoint col-

lection of Lipschitz subdomains Dk ⊂ B(0, 1) (k ∈ N) with |B(0, 1) \⋃k Dk | = 0.
Fix ε > 0. By the definition of Qh, for every k we can find φk ∈ W1,∞

0 (Dk; R
m)

such that

Qh(F + Ak) ≥ −
∫

Dk

h(F + Ak + ∇φk(z)) dz − ε.

Let φ ∈ W1,∞
0 (B(0, 1); R

m) be defined as

φ(x) := vk + Ak x + φk(x) if x ∈ Dk (k ∈ N).

Then,

∫
B(0,1)

Qh(F + ∇ψ(z)) dz =
∞∑

k=1

|Dk |Qh(F + Ak)

≥
∞∑

k=1

(∫
Dk

h(F + Ak + ∇φk(z)) dz − ε|Dk |
)

=
∫

B(0,1)
h(F + ∇φ(z)) dz − εωd

≥ ωd
(
Qh(F) − ε

)
,

where the last step follows from the definition of Qh. Now let ε ↓ 0 to conclude
that (7.2) holds. �
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Lemma 7.2. For continuous h : R
m×d → [0,∞) with p-growth it holds that

Qh(A) = sup
{
g(A) : g quasiconvex and g ≤ h

}
, A ∈ R

m×d . (7.3)

Proof. Denote the right-hand side of (7.3) by Q∗h. By the preceding lemmawe have
Qh ≤ Q∗h since Qh itself is quasiconvex. On the other hand, for every quasiconvex
g with g ≤ h it must hold for all A ∈ R

m×d that

g(A) ≤ inf

{
−
∫

D
g(A + ∇ψ(z)) dz : ψ ∈ W1,∞

0 (D; R
m)

}

≤ inf

{
−
∫

D
h(A + ∇ψ(z)) dz : ψ ∈ W1,∞

0 (D; R
m)

}

= Qh(A),

by (7.1). Thus, also Q∗h ≤ Qh. This finishes the proof. �
On a side note, we can use the notion of the quasiconvex envelope to introduce a

class of non-trivial quasiconvex functions.

Lemma 7.3. Let F ∈ R
m×d with rank F ≥ 2 and let p ∈ (1,∞). Define

h(A) := dist(A, {−F, F})p, A ∈ R
m×d .

Then, the quasiconvex envelope Qh of h is not convex (at zero). Moreover, Qh has
p-growth.

Remark 7.4. The result remains true for p = 1, see Problem 11.3.

Proof. We will show that Qh(0) > 0. Then, if Qh was convex at zero, we would
have

Qh(0) ≤ 1

2

(
Qh(−F) + Qh(F)

) ≤ 1

2

(
h(−F) + h(F)

) = 0,

a contradiction.
Assume to the contrary that Qh(0) = 0. Then, by (7.1) there would exist a

sequence (ψ j ) ⊂ W1,∞
0 (B(0, 1); R

m) with

−
∫

B(0,1)
h(∇ψ j ) dz → 0. (7.4)

Set L := span{F} and let P : R
m×d → L⊥ be the orthogonal projection onto the

orthogonal complement of L . It is straightforward to see that |P(A)|p ≤ h(A) for all
A ∈ R

m×d . Therefore,
P(∇ψ j ) → 0 in Lp. (7.5)

In the following we will employ the Fourier transform and Fourier multipliers as
recalled in Appendix A.6. We will prove below that we may “invert” P in the sense
that if
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P(∇̂w) = R̂ (7.6)

for some w ∈ W1,p(Rd; R
m), R ∈ Lp(Rd; L⊥), then

∇̂w(ξ) = M(ξ)R̂(ξ) = M(ξ)P(∇̂w(ξ)), ξ ∈ R
d \ {0}, (7.7)

for some family of linear operators M(ξ) : R
m×d → R

m×d that depends smoothly
and positively 0-homogeneously on ξ . Here, we identifiedPwith its complexification
(that is, P(A + iB) = P(A) + iP(B) for A, B ∈ R

m×d ).
For p = 2, Plancherel’s identity ‖g‖L2 = ‖ĝ‖L2 together with (7.5), (7.7) then

implies

‖∇ψ j‖L2 = ‖∇̂ψ j‖L2

= ‖M(ξ)P(∇̂ψ j (ξ))‖L2

≤ ‖M‖∞‖P(∇̂ψ j (ξ))‖L2

= ‖M‖∞‖P(∇ψ j )‖L2

→ 0.

But then h(∇ψ j ) → |F | in L1, contradicting (7.4). Thus, Qh(0) > 0.
For p ∈ (1,∞), we may apply the Mihlin Multiplier Theorem A.35 to get anal-

ogously that
‖∇ψ j‖Lp ≤ C‖M‖C�d/2�+1‖P(∇ψ j )‖Lp → 0,

which is again at odds with (7.4).
It remains to show (7.7).Notice thatP(a⊗ξ) �= 0 for anya ∈ C

m\{0}, ξ ∈ R
d\{0}

by the assumption that rank F ≥ 2 (whereby L does not contain a rank-one line).
Thus, for some constant C > 0 we have the ellipticity estimate

|a ⊗ ξ | ≤ C |P(a ⊗ ξ)| for all a ∈ C
m, ξ ∈ R

d .

The (complexified) projection P : C
m×d → C

m×d has kernel LC := spanC L (the
complex span of L), which in the following we also denote just by L . Hence, P
descends to the quotient

[P] : C
m×d/L → ranP,

and [P] is an invertible linear map. For ξ ∈ R
d \ {0} let

{
F, e1 ⊗ ξ, . . . , ed ⊗ ξ, Gd+1(ξ), . . . , Gmd−1(ξ)

}

be a C-basis of C
m×d with the property that the matrices Gd+1(ξ), . . . , Gmd−1(ξ)

depend smoothly on ξ and are positively 1-homogeneous in ξ , that is, Gd+1(αξ) =
αGd+1(ξ) for all α ≥ 0. Furthermore, for ξ ∈ R

d \ {0} denote by Q(ξ) : C
m×d →

C
m×d the (non-orthogonal) projection with
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kerQ(ξ) = L ,

ranQ(ξ) = span
{
e1 ⊗ ξ, . . . , ed ⊗ ξ, Gd+1(ξ), . . . , Gmd−k(ξ)

}
.

If we interpret e1 ⊗ ξ, . . . , ed ⊗ ξ, Gd+1(ξ), . . . , Gmd−1(ξ) as vectors in R
md and

collect them into the columns of the matrix X (ξ) ∈ R
md×(md−1), and if we further let

Y ∈ R
md×(md−1) be a matrix whose columns comprise an orthonormal basis of L⊥,

then, up to a change in sign for one of the Gl’s, there exists a constant c > 0 such
that

det(Y T X (ξ)) ≥ c > 0, for all ξ ∈ S
d−1.

Indeed, if det(Y T X (ξ))was not uniformly bounded away from zero for all ξ ∈ S
d−1,

then by compactness there would exist a ξ0 ∈ S
d−1 with det(Y T X (ξ0)) = 0, a

contradiction. We can then write Q(ξ) explicitly as

Q(ξ) = X (ξ)(Y T X (ξ))−1Y T .

This implies that Q(ξ) depends positively 0-homogeneously and smoothly on ξ ∈
R

d \ {0}. Also Q(ξ) descends to the quotient

[Q(ξ)] : C
m×d/L → ranQ(ξ),

which is now invertible. It is not difficult to see that ξ �→ [Q(ξ)] is still positively
0-homogeneous and smooth in ξ �= 0 (by utilizing the basis given above).

Since ŵ(ξ) ⊗ ξ ∈ ranQ(ξ), we have

[Q(ξ)]−1(ŵ(ξ) ⊗ ξ) = [ŵ(ξ) ⊗ ξ ],

where [ŵ(ξ)⊗ ξ ] designates the equivalence class of ŵ(ξ)⊗ ξ in C
m×d/L . This fact

in conjunction with ∇̂w(ξ) = (2π i) ŵ(ξ) ⊗ ξ allows us to rewrite (7.6) in the form

(2π i) [P][Q(ξ)]−1(ŵ(ξ) ⊗ ξ) = R̂(ξ),

or equivalently as

∇̂w(ξ) = (2π i) ŵ(ξ) ⊗ ξ = [Q(ξ)][P]−1 R̂(ξ).

The multiplier M(ξ) : R
m×d → R

m×d for ξ ∈ R
d \ {0} is thus given by

M(ξ) := [Q(ξ)][P]−1,

which is smooth and positively 0-homogeneous in ξ . Consequently, we have shown
the multiplier equation (7.7).
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For the last assertion in the statement of the lemma, it suffices to notice that h
has p-growth and is non-negative. Hence, Qh ≤ h also has p-growth and is non-
negative. �

7.2 Relaxation of Integral Functionals

We first consider the abstract principles of relaxation before moving on to more
concrete integral functionals. Consider a functional F : X → R, where X is a
reflexive Banach space. Its (weak) relaxationF∗ : X → R∪{−∞} is defined to be

F∗[u] := sup
{
H [u] : H ≤ F and H is weakly lower semicontinuous

}
,

where u ∈ X ; see Problem 7.5 for an alternative definition (also cf. Proposition 2.28
in the convex case).

Theorem 7.5. Let X be a reflexive Banach space and letF : X → R be a functional.
Assume furthermore:

(WH1) Weak coercivity: For all 
 > 0 the sublevel set

{
u ∈ X : F [u] ≤ 


}
is sequentially weakly precompact.

Then, the relaxation F∗ of F is weakly lower semicontinuous and

min
X

F∗ = inf
X
F .

Proof. The functional F∗ is weakly lower semicontinuous as the supremum of
weakly lower semicontinuous functionals. Indeed, if u j ⇀ u in X , then for all
weakly lower semicontinuous H : X → R withH ≤ F ,

H [u] ≤ lim inf
j→∞ H [u j ] ≤ lim inf

j→∞ F∗[u j ].

Taking the supremum over all such H , we see that F∗[u] ≤ lim inf j→∞ F∗[u j ].
By the Direct Method, see Theorem 2.3, F∗ attains its minimum. Since

inf
X
F ≤ F∗ ≤ F ,

the minimum of F∗ must agree with the infimum of F over X . �

As usual, we are most interested in the concrete case of an integral functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx, u ∈ W1,p(Ω; R
m),
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whereΩ ⊂ R
d is a bounded Lipschitz domain, p ∈ (1,∞), and f : Ω ×R

m×d → R

is a Carathéodory integrand satisfying the p-growth and coercivity assumption

μ|A|p ≤ f (x, A) ≤ M(1 + |A|p), (x, A) ∈ Ω × R
m×d , (7.8)

for some μ, M > 0. The main result of this section is the following relaxation
theorem:

Theorem 7.6. Let F be as above and assume furthermore that there exists a modu-
lus of continuity ω (i.e., ω : [0,∞) → [0,∞) continuous, increasing, and ω(0) = 0)
such that

| f (x, A) − f (y, A)| ≤ ω(|x − y|)(1 + |A|p), x, y ∈ Ω, A ∈ R
m×d . (7.9)

Then, the relaxation F∗ of F is

F∗[u] =
∫

Ω

Q f (x,∇u(x)) dx, u ∈ W1,p(Ω; R
m),

where Q f (x, �) denotes the quasiconvex envelope of f (x, �) for x ∈ Ω . The same
conclusion holds if we prescribe fixed boundary values.

Proof. We define

G [u] :=
∫

Ω

Q f (x,∇u(x)) dx, u ∈ W1,p(Ω; R
m).

As Q f (x, �) is quasiconvex for all x ∈ Ω by Lemma 7.1, it is continuous by
Lemma 5.6. We will moreover see below that Q f ( �, A) is continuous for all fixed
A ∈ R

m×d , hence in particular Q f is Carathéodory and G is well-defined.
We will show in the following that (a) G ≤ F∗ and (b) G ≥ F∗.
To see (a), it suffices to observe that G is weakly lower semicontinuous by Mor-

rey’s Theorem5.16 and thatG ≤ F . Thus, from the definition ofF∗ we immediately
get G ≤ F∗.

We will prove (b) in several steps.
Step 1. Let ε > 0 and fix A ∈ R

m×d . For x ∈ Ω let ψx ∈ W1,p
0 (B(0, 1); R

m) be
such that

−
∫

B(0,1)
f (x, A + ∇ψx (z)) dz ≤ Q f (x, A) + ε.

Then we use (7.8) to observe

μ−
∫

B(0,1)
|A + ∇ψx (z)|p dz ≤ Q f (x, A) + ε ≤ M(1 + |A|p) + ε.

Let now x, y ∈ Ω and estimate using (7.9) and the definition of Q f (x, �),
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Q f (y, A) − Q f (x, A) ≤ −
∫

B(0,1)

∣∣ f (y, A + ∇ψx (z)) − f (x, A + ∇ψx (z))
∣∣ dz + ε

≤ ω(|x − y|)−
∫

B(0,1)
1 + |A + ∇ψx (z)|p dz + ε

≤ Cω(|x − y|)(1 + |A|p) + ε,

where C = C(μ, M) is a constant. Letting ε ↓ 0 and also exchanging the roles of x
and y, we see that

∣∣Q f (x, A) − Q f (y, A)
∣∣ ≤ Cω(|x − y|)(1 + |A|p) (7.10)

for all x, y ∈ Ω and A ∈ R
m×d . In particular, Q f ( �, A) is continuous.

Step 2.Next,wewill show that it suffices to prove the claim (b) for countably piece-
wise affine u. If u ∈ W1,p(Ω; R

m), then there exists a sequence (v j ) ⊂ W1,p(Ω; R
m)

of countably piecewise affine functions such that v j → u in W1,p and we may also
require that v|∂Ω = u|∂Ω (see Theorem A.29). Since Q f is Carathéodory and has
p-growth (as 0 ≤ Q f ≤ f ), Theorem 2.13 shows that G [v j ] → G [u]. Thus, if (b)
holds for all countably piecewise affine u, we get using the lower semicontinuity of
F∗ that

G [u] = lim
j→∞G [v j ] ≥ lim inf

j→∞ F∗[v j ] ≥ F∗[u].

This proves (b) on all of W1,p(Ω; R
m).

Step 3. Fix ε > 0 and let u ∈ W1,p(Ω; R
m) be countably piecewise affine, say

u(x) = vk + Ak x (where vk ∈ R
m , Ak ∈ R

m×d ) on the set Dk from a disjoint
collection of open sets Dk ⊂ Ω (k ∈ N) such that |Ω \ ⋃

k Dk | = 0. For any
k ∈ N we may cover Dk up to a negligible set with countably many disjoint balls

B(k)
l := B(x (k)

l , r (k)
l ) ⊂ Dk , where x (k)

l ∈ Dk , 0 < r (k)
l < ε (l ∈ N) such that

∣∣∣∣−
∫

B(k)
l

Q f (x, Ak) dx − Q f (x (k)
l , Ak)

∣∣∣∣ ≤ Cω(ε)(1 + |Ak |p). (7.11)

This covering exists by the Vitali Covering TheoremA.15 in conjunction with (7.10).
From the definition of Q f and the remarks following it, in each ball B(k)

l , we can
find a map ψ

(k)
l ∈ W1,∞

0 (B(k)
l ; R

m) with ‖ψ(k)
l ‖L∞ ≤ ε and

∣∣∣∣Q f (x (k)
l , Ak) − −

∫
B(k)

l

f
(
x (k)

l , Ak + ∇ψ
(k)
l (z)

)
dz

∣∣∣∣ ≤ ε. (7.12)

Set
vε(x) := u(x) + ψ

(k)
l (x) if x ∈ B(k)

l (k, l ∈ N).

In a similar way to Step 1 we can show that
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μ−
∫

B(k)
l

|Ak + ∇ψ
(k)
l (z)|p dz ≤ M(1 + |Ak |p) + ε.

Thus,

∫
Ω

|∇vε|p dx =
∑
k,l

∫
B(k)

l

|Ak + ∇ψ
(k)
l (x)|p dx

≤ M

μ

∫
Ω

1 + |∇u(x)|p dx + ε
|Ω|
μ

< ∞.

So, by the Poincaré inequality, (vε)ε>0 ⊂ W1,p (Ω; R
m) is uniformly norm-bounded.

From the continuity assumption (7.9) we infer that

∣∣∣∣−
∫

B(k)
l

f (x (k)
l ,∇vε(x)) dx − −

∫
B(k)

l

f (x,∇vε(x)) dx

∣∣∣∣ ≤ ω(ε)−
∫

B(k)
l

1 + |∇vε(x)|p dx .

We can combine this with (7.11), (7.12) to get

∣∣∣∣−
∫

B(k)
l

Q f (x,∇u(x)) dx − −
∫

B(k)
l

f (x,∇vε(x)) dx

∣∣∣∣
≤ Cω(ε)−

∫
B(k)

l

2 + |Ak |p + |∇vε(x)|p dx + ε.

Multiplying both sides by |B(k)
l | and summing over all k, l, we arrive at

∣∣G [u] − F [vε]
∣∣ ≤ Cω(ε)

∫
Ω

2 + |∇u(x)|p + |∇vε(x)|p dx + ε|Ω|,

and this vanishes as ε ↓ 0. For u j := v1/j we have u j ⇀ u in W1,p since (u j ) is
weakly precompact in W1,p(Ω; R

m) and ‖u j − u‖L∞ ≤ 1/j → 0. Hence, by the
weak lower semicontinuity of F∗,

G [u] = lim
j→∞F [u j ] ≥ lim inf

j→∞ F∗[u j ] ≥ F∗[u],

which is (b) for countably piecewise affine u. �

7.3 Generalized Convexity Notions and Envelopes

The four major convexity conditions that play a role in the modern calculus of
variations satisfy the following implications:
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convexity =⇒ polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity,

where the second and third implications were established in Propositions 6.1 and 5.3,
respectively.

Define for continuous h : R
m×d → R the polyconvex envelope Ph : R

m×d →
R ∪ {−∞} and the rank-one convex envelope Rh : R

m×d → R ∪ {−∞} of h as

Ph(A) := sup
{

g(A) : g polyconvex and g ≤ h
}
,

Rh(A) := sup
{

g(A) : g rank-one convex and g ≤ h
}
,

A ∈ R
m×d .

In this context also recall that if h ≥ 0 (or bounded below) we showed an analogous
formula for the quasiconvex envelope in Lemma 7.2. As a consequence of the above
implications between the convexity notions, we have that

h∗∗ ≤ Ph ≤ Qh ≤ Rh ≤ h,

where we recall that h∗∗ denotes the convex envelope of h. In general, Qh is difficult
to compute, so Ph and Rh can give useful lower and upper bounds on Qh.

While in the scalar case (d = 1 orm = 1) all four generalized notions of convexity
are equivalent, this no longer holds in higher dimensions. Clearly, the determinant
function is polyconvex but not convex. We next exhibit an example of a quasiconvex,
but not polyconvex function (also see Problem 6.5):

Example 7.7. Let F ∈ R
3×3 with rank F ≥ 2 and let p ∈ (1, 2). Define

h(A) := dist(A, {−F, F})p, A ∈ R
3×3.

Then, the quasiconvex envelope Qh : R
3×3 → [0,∞) is quasiconvex by Lemma 7.1

and not convex (at zero) by Lemma 7.3. Since Qh has p-growth and we chose p < 2,
it can be shown without too much effort that Qh cannot be polyconvex (using the
fact that non-constant convex functions have at least linear growth in at least one
direction); see, for instance, Corollary 5.9 (i) in [76].

Example 7.8 (Alibert–Dacorogna–Marcellini 1988 [7, 78]). From Example 5.4 we
recall the Alibert–Dacorogna–Marcellini function

hγ (A) := |A|2(|A|2 − 2γ det A
)
, A ∈ R

2×2.

It can be shown that hγ is polyconvex if and only if |γ | ≤ 1. Since it is quasiconvex
if and only if |γ | ≤ γQC, where γQC > 1, this provides a further example of a
quasiconvex function that is not polyconvex. See again Section 5.3.8 in [76] for the
details.

When he introduced quasiconvexity, Morrey conjectured that rank-one convexity
was a strictly weaker notion. This was one of the major open problems in the field
for a long time:
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Conjecture 7.9 (Morrey 1952 [195]). Rank-one convexity does not imply quasicon-
vexity.

A verification of this conjecture proved elusive until Švérak’s 1992 counterexam-
ple, which proved the conjecture, at least for d ≥ 2, m ≥ 3, see below. The case
d = m = 2 is still a major unsolved problem, also because of its connection to other
branches of mathematics, see, for instance, [18]. A partial result for (2×2)-diagonal
matrices is in [201].

Example 7.10 (Švérak 1992 [252]). We will show the non-equivalence of quasi-
convexity and rank-one convexity for d = 2, m = 3 only. Higher dimensions can
be treated using an embedding of R

3×2 into R
m×d . We will construct a function

h : R
3×2 → R that is rank-one convex but not quasiconvex.

Define a linear subspace L of R
3×2 as

L :=
⎧⎨
⎩
⎛
⎝x 0
0 y
z z

⎞
⎠ : x, y, z ∈ R

⎫⎬
⎭

and denote by P : R
3×2 → L the linear projection onto L given as

P(A) :=
⎛
⎝ a 0

0 d
(e + f )/2 (e + f )/2

⎞
⎠ for A =

⎛
⎝a b

c d
e f

⎞
⎠ ∈ R

3×2.

Also let g : L → R be defined by

g

⎛
⎝x 0
0 y
z z

⎞
⎠ := −xyz.

For α, β > 0 we set hα,β : R
3×2 → R to be

hα,β(A) := g(P(A)) + α
(|A|2 + |A|4) + β|A − P(A)|2.

Below we will prove the following two properties of hα,β :

(i) For every α > 0 sufficiently small and all β > 0 the function hα,β is not
quasiconvex.

(ii) For every α > 0 there exists a β = β(α) > 0 such that hα,β is rank-one convex.

This implies the claim for suitable α, β.
Ad (i): For the periodic map φ ∈ W1,∞

per ((0, 1)2; R
3) given as

φ(x1, x2) := 1

2π

⎛
⎝ sin(2πx1)

sin(2πx2)
sin(2π(x1 + x2))

⎞
⎠ , x = (x1, x2) ∈ (0, 1)2,



7.3 Generalized Convexity Notions and Envelopes 165

we have ∇φ ∈ L and hence P(∇φ) = ∇φ. Thus, we may compute in an elementary
way

∫
(0,1)2

g(∇φ) dx = −
∫ 1

0

∫ 1

0
(cos 2πx1)

2(cos 2πx2)
2 dx1 dx2 = −1

4
< 0.

Then, for α > 0 sufficiently small and all β > 0,

∫
(0,1)2

hα,β(∇φ) dx < 0 = hα,β(0). (7.13)

It turns out that in the definition of quasiconvexity we may alternatively test with
functions that have periodic boundary values, see Problem 5.2. Hence, (i) follows.

Ad (ii): By Problem 7.6, the rank-one convexity of hα,β is equivalent to the
Legendre–Hadamard condition

D2hα,β(A)[B, B] := d2

dt2
hα,β(A + t B)

∣∣∣∣
t=0

≥ 0 (7.14)

for all A, B ∈ R
3×2 with rank B ≤ 1.

The function g is a homogeneous polynomial of degree 3, whereby we can find
c > 0 such that for all A, B ∈ R

3×2 with rank B ≤ 1,

G(A, B) := D2(g ◦ P)(A)[B, B] := d2

dt2
g(P(A + t B))

∣∣∣∣
t=0

≥ −c|A||B|2.

A computation then shows that

D2hα,β(A)[B, B] = G(A, B) + 2α|B|2 + 4α|A|2|B|2 + 8α(A : B)2

+ 2β|B − P(B)|2
≥ (−c + 4α|A|)|A||B|2

for some c > 0. Thus, for |A| ≥ c/(4α), the Legendre–Hadamard condition (and
hence the rank-one convexity) holds.

We still need to prove the Legendre–Hadamard condition for |A| < c/(4α). Since
D2hα,β(A)[B, B] is homogeneous of degree 2 in B, we only need to consider A, B
from the compact set

K :=
{

(A, B) ∈ R
3×2 × R

3×2 : |A| ≤ c

4α
, |B| = 1, rank B = 1

}
.

By the estimate

D2hα,β(A)[B, B] ≥ G(A, B) + 2α|B|2 + 2β|B − P(B)|2 =: κ(A, B, β)
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it suffices to show that there exists a β = β(α) > 0 such that κ(A, B, β) ≥ 0 for all
(A, B) ∈ K . Assume that this is not the case. Then there is a sequence β j → ∞ and
(A j , B j ) ∈ K with

0 > κ(A j , B j , β j ) = G(A j , B j ) + 2α + 2β j |B j − P(B j )|2.

As K is compact, we may assume (A j , B j ) → (A, B) ∈ K , for which

G(A, B) + 2α ≤ 0, P(B) = B, and rank B = 1.

However, since rank B = 1, we have g(P(A+ t B)) = 0 for all t ∈ R. This implies in
particular G(A, B) = D2(g ◦P)(A)[B, B] = 0, yielding 2α ≤ 0, which contradicts
our assumption α > 0.

Thus, in conclusion, we have shown that for a suitable choice of α, β > 0 it indeed
holds that hα,β is rank-one convex.

Based on Švérak’s example, it has been shown that quasiconvexity is not a local
condition, meaning that there is no pointwise condition involving only the function
and a finite number of its derivatives that is both necessary and sufficient for the
function to be quasiconvex (verifying a conjecture byMorrey [195]). More precisely,
let Q : C∞(Rm×d) → Xm×d be a nonlinear operator, where we denote by Xm×d the
space of functions fromR

m×d to [−∞,+∞]. CallQ local if h = g in a neighborhood
of A ∈ R

m×d implies that alsoQ[h] = Q[g] in a neighborhood of A.

Theorem 7.11 (Kristensen 1999 [165]). Let d ≥ 2 and m ≥ 3. Then, there exists
no local (nonlinear) operator Q : C∞(Rm×d) → Xm×d such that

Q[h] = 0 ⇐⇒ h is quasiconvex

for all h ∈ C∞(Rm×d).

This is in contrast to rank-one convexity, which is characterized by the local
operator

R[h](A) := inf
{
D2h(A)[a ⊗ b, a ⊗ b] : a ∈ R

m, b ∈ R
d
}
,

where h ∈ C∞(Rm×d) and A ∈ R
m×d .

7.4 Young Measure Relaxation

As discussed at the beginning of this chapter, the relaxation strategy of Section 7.2
has one serious drawback: While it allows us to find the infimal value, the relaxed
functional potentially says only very little about the “shape” ofminimizing sequences
(e.g. their oscillations). Often, however, this information is decisive. For example,
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in material science, oscillations in minimizing sequences correspond to crystalline
microstructure, which greatly influences the material properties, see Section 1.8 and
also Chapter 9. Therefore, in this section we implement the second strategy outlined
at the beginning of the chapter, that is, we extend the minimization problem to a
larger space and look for solutions there.

Let us first, in an abstract fashion, collect a few properties that our extension
should satisfy. Assume we are given a metric space X with a convergence “→”
and a functional F : X → R ∪ {+∞}. Then, we extend X to a complete metric
space X with convergence “�”. For this, we assume that there exists a (usually not
continuous) map

ι : X → X .

We then seek to extend F to a functional F : X → R ∪ {+∞}, which we call the
extension–relaxation of F , such that the following conditions are satisfied:

(i) Extension property: F ◦ ι = F .
(ii) Lower bound: If (u j ) ⊂ X is precompact, then, up to selecting a subsequence,

there exists a ν ∈ X such that ι(u j ) � ν in X and

F [ν] ≤ lim inf
j→∞ F [u j ].

(iii) Recovery sequence: For all ν ∈ X there exists a recovery sequence (u j ) ⊂ X
with ι(u j ) � ν in X and such that

lim
j→∞F [u j ] = F [ν].

Intuitively, these conditions entail that we can solve our minimization problem for
F by passing to the extended space X . In particular, if (u j ) is a minimizing and
precompact sequence in X , then (ii) tells us that any limit ν ∈ X as in (ii) should
be considered a generalized minimizer. On the other hand, (iii) ensures that the
minimization problems for F and for F are sufficiently related. In particular, it is
easy to see that the infima of F and F agree and, if we additionally assume some
coercivity, then F attains its minimum, so

min
X

F = inf
X
F .

Let us specialize this abstract approach to our prototypical integral functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx, u ∈ W1,p(Ω; R
m),

withΩ ⊂ R
d a boundedLipschitz domain, p ∈ (1,∞), and f : Ω×R

m×d → [0,∞)

a Carathéodory integrand satisfying the p-growth and coercivity assumption
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μ|A|p ≤ f (x, A) ≤ M(1 + |A|p), (x, A) ∈ Ω × R
m×d , (7.15)

for some μ, M > 0. Then, X is a norm-bounded subset of W1,p(Ω; R
m) with the

weak topology and we will use a space of gradient Young measures for X . For
ν = (νx )x ∈ GYp(Ω; R

m×d), we define the extension–relaxation

F : GYp(Ω; R
m×d) → R

as

F [ν] := 〈〈
f, ν

〉〉 =
∫

Ω

∫
f (x, A) dνx (A) dx .

Then, our relaxation result takes the following form.

Theorem 7.12. Let F ,F be as above.

(i) Extension property:For every u ∈ W1,p(Ω; R
m) the elementary Young measure

δ[∇u] = (δ∇u(x))x ∈ GYp(Ω; R
m×d) satisfies

F [u] = F [δ[∇u]].

(ii) Lower bound: If (u j ) ⊂ W1,p(Ω; R
m) is weakly precompact, then, up to select-

ing a subsequence, there exists a Young measure ν ∈ GYp(Ω; R
m×d) such that

∇u j
Y→ ν with [ν] = ∇u and

F [ν] ≤ lim inf
j→∞ F [u j ]. (7.16)

(iii) Recovery sequence:For all ν ∈ GYp(Ω; R
m×d) there exists a recovery sequence

(u j ) ⊂ W1,p(Ω; R
m) with ∇u j

Y→ ν and

lim
j→∞F [u j ] = F [ν]. (7.17)

(iv) Equality of minima: F attains its minimum and

min
GYp(Ω;Rm×d )

F = inf
W1,p(Ω;Rm )

F .

Furthermore, all these statements remain true if we prescribe boundary values. For
a Youngmeasure this refers to the underlying deformation (which is only determined
up to a translation, of course).

Proof. Ad (i). This follows directly from the definition of F .
Ad (ii).The existence of ν is a consequence of the Fundamental Theorem ofYoung

measure theory, Theorem 4.1. The lower bound (7.16) follows from Proposition 4.6.
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Ad (iii). Via Lemma 4.13 we may construct a sequence (u j ) ⊂ W1,p(Ω; R
m)

with

(a) u j |∂Ω = u|∂Ω , where u ∈ W1,p(Ω; R
m) is an underlying deformation of ν;

(b) the family {∇u j } j is Lp-equiintegrable;

(c) ∇u j
Y→ ν.

For this special generating sequence we can now use the statement about represen-
tation of limits of integral functionals from the Fundamental Theorem 4.1 (here we
need the p-equiintegrability) to get

F [u j ] → 〈〈
f, ν

〉〉 = F [ν],

which is nothing else than (7.17).
Ad (iv). This is not hard to see using (b), (c) and the coercivity assumption, that

is, the lower bound in (7.15). �

Example 7.13. In our sailing example fromSection 1.6, wewere taskedwith solving
the optimal beating problem

⎧⎪⎨
⎪⎩
Minimize F [r ] :=

∫ T

0
vmax · cos(4 arctan r ′(t)) − 1

2
+ vflow

(
r(t)2

R2
− 1

)
dt

subject to r(0) = r(T ) = 0, |r(t)| ≤ R.

Here, because of the additional constraints we can work in any Lp-space, even L∞.
Clearly, the integrand

f (r, a) := vmax · cos(4 arctan a) − 1

2
+ vflow

(
r2

R2
− 1

)
, (r, a) ∈ [−R, R] × R,

is not convex in a, see Figure 1.5 (on p. 12). Technically, the preceding theorem is
not applicable since f depends on r and a and p = ∞, but it is obvious that we can
simply extend it to consider Young measures

(δr(t) ⊗ νt )t∈(0,T ) ∈ Y∞((0, T ); R × R) with ν ∈ GY∞((0, T )), [ν] = r ′,

in a similar way to the strategy in Section 5.6. We collect all such product Young
measures in the set X , which we equip with the weak* convergence for Young
measures, see (4.9).

Then, the extended–relaxed variational problem is

⎧⎪⎨
⎪⎩
Minimize F [δr ⊗ ν] := 〈〈

f, δr ⊗ ν
〉〉 =

∫ T

0

∫
f (r(t), a) dνt (a) dt,

over all δr ⊗ ν = (δr(t) ⊗ νt )t ∈ X with r(0) = r(T ) = 0 and |r(t)| ≤ R.
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Fig. 7.2 The first few maps
in the minimizing sequence
for F

Let us also construct a sequence of approximate solutions that generates the opti-
mal Young measure solution. The first part of the integrand f , namely
vmax · (cos(4 arctan a) − 1)/2, has two minima with value −vmax at a = ±1, see
Figure 1.5 (on p. 12). The second part vflow(r2/R2 − 1) attains its minimum −vflow
for r = 0. Thus,

f ≥ −(vmax + vflow) =: fmin.

We let

h(s) :=

⎧⎪⎨
⎪⎩

s if s ∈ [0, 1],
2 − s if s ∈ (1, 3],
s − 4 if s ∈ (3, 4],

and consider h to be extended to all s ∈ R by periodicity. Then set

r j (t) := T

4 j
h

(
4 j

T
t

)
, t ∈ [0, T ],

see Figure 7.2. It is easy to see that r ′
j ∈ {−1, 1} and r j → 0 uniformly. Thus,

F [r j ] → T · fmin = infF .

By the Fundamental Theorem 4.1 on Young measures, we deduce that we may select
a subsequence of j’s (not explicitly labeled) such that (see Lemma 5.19)

(r j , r ′
j )

Y→ δr ⊗ ν = (δr(t) ⊗ νt )t ∈ X .

From the construction of r j we see that

δr ⊗ ν = δ0 ⊗
(
1

2
δ−1 + 1

2
δ+1

)
.
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Clearly, this δr ⊗ ν is minimizing forF . Since above we have constructed a W1,∞-
bounded generating sequence for this optimal δr ⊗ ν, we have also a posteriori
justified our choice to work with L∞-Young measures.

We close this section by showing how the two relaxation approaches are related.

Proposition 7.14. Let p ∈ (1,∞) and let h : R
m×d → [0,∞) be continuous and

satisfy the p-growth and coercivity assumption

μ|A|p ≤ h(A) ≤ M(1 + |A|p), A ∈ R
m×d ,

for some μ, M > 0. Then, for all F ∈ R
m×d there exists a homogeneous gradient

Young measure νF ∈ GYp(B(0, 1); R
m×d) with [νF ] = F and

Qh(F) =
∫

h dνF .

Proof. According to (7.1) and the remarks following it,

Qh(F) = inf

{
−
∫

B(0,1)
h(F + ∇ψ(z)) dz : ψ ∈ W1,p

0 (B(0, 1); R
m)

}
.

Let now (ψ j ) ⊂ W1,p
0 (B(0, 1); R

m) be a minimizing sequence in the above formula.
This minimization problem is admissible in Theorem 7.12, which yields a Young
measure minimizer ν ∈ GYp(B(0, 1); R

m) such that

Qh(F) = −
∫

B(0,1)

∫
h dνx dx .

It only remains to show that we can replace (νx )x by a homogeneous Young measure
νF . This, however, follows directly from the averaging principle for Youngmeasures,
Lemma 4.14. �

7.5 Characterization of Gradient Young Measures

In the previous section we replaced a minimization problem over a Sobolev space
by its extension–relaxation, defined on the space of gradient Young measures, which
is a strict subset of all Young measures, as we saw in Section 5.4. This subset of
the space of Young measures is so far specified only extrinsically, i.e., through the
existence of a generating sequence of gradients. The question arises whether there
is also an intrinsic characterization of gradient Young measures. Intuitively, trying
to understand gradient Young measures amounts to understanding the (asymptotic)
oscillations that can occur in sequences of gradients, and it should be clear by now
that this is a useful endeavor.
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Recall that in Lemma 5.11 we showed that a homogeneous gradient Young mea-
sure ν ∈ GYp(Ω; R

m×d) satisfies the Jensen-type inequality

h([ν]) ≤
∫

h dν

for all quasiconvex functions h : R
m×d → R with p-growth. There, we interpreted

this as an expression of the (generalized) convexity of h, in analogy with the classical
Jensen inequality.

However, we may also switch to a dual point of view and consider the validity of
the above Jensen-type inequality for quasiconvex functions as a property of gradient
Young measures. The following result shows that this dual point of view is indeed
valid and that the Jensen-type inequalities (essentially) characterize gradient Young
measures.

Theorem 7.15 (Kinderlehrer–Pedregal 1991/1994 [157, 158]). Assume that ν ∈
Yp(Ω; R

m×d), p ∈ (1,∞], is a Young measure with [ν] = ∇u for some underlying
deformation u ∈ W1,p(Ω; R

m). Then, ν ∈ GYp(Ω; R
m×d) if and only if for almost

every x ∈ Ω the Jensen-type inequality

h(∇u(x)) ≤
∫

h dνx (7.18)

holds for all quasiconvex h : R
m×d → R with p-growth if p ∈ (1,∞) (no growth

condition if p = ∞).

Remark 7.16. It will follow from the proof that we only need to verify (7.18) for all
quasiconvex h : R

m×d → R such that

lim|A|→∞
h(A)

1 + |A|p
exists (in R) (7.19)

if p ∈ (1,∞). Note that by Lemma 5.11, the condition (7.19) is not needed for the
Jensen-type inequality (7.18) to hold. For another strengthening of the Kinderlehrer–
Pedregal theorem, see Problem 7.8.

The idea of the proof is to reduce to the case of homogeneous Young measures
ν and to show that the set of homogeneous gradient Young measures is convex
and weakly* closed in the set of homogeneous Young measures. Then, the Jensen-
type inequalities express that ν cannot be separated from this set by an abstract
“hyperplane” represented by a suitable integrand. Thus, the geometric Hahn–Banach
theorem implies that ν actually lies in this set and hence must be a gradient Young
measure. Note that this is a non-constructive argument, which does not produce a
generating sequence.

For the functional analytic setup we define for p ∈ (1,∞) the following class of
integrands:
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Ip(Rm×d) :=
{

h ∈ C(Rm×d) : lim|A|→∞
h(A)

1 + |A|p
exists (inR)

}
, (7.20)

which is a separable Banach space when equipped with the norm

‖h‖Ip :=
∥∥∥∥ h

1 + | �|p

∥∥∥∥∞
, h ∈ Ip(Rm×d).

For the separability, see Problem 7.7. The set of homogeneous W1,p-gradient Young
measures with barycenter F ∈ R

m×d is defined as

GYp
hom(F) := {

μ ∈ M 1(Rm×d) : μ ∈ GYp(B(0, 1); R
m×d), [μ] = F

}
,

which can be considered a subset of the dual space Ip(Rm×d)∗.

Lemma 7.17. For any F ∈ R
m×d the set GYp

hom(F) is convex and weakly* closed
in Ip(Rm×d)∗.

Proof. Step 1: Convexity.Recall that homogeneous Youngmeasures have generating
sequences on any bounded Lipschitz domain, see Lemma 4.14; we will use this fact
several times in the sequel. Let μ1, μ2 ∈ GYp

hom(F) and θ ∈ (0, 1). Choose a
Lipschitz subdomain D1 ⊂ B(0, 1) with

|D1| = θωd ,

where we recall that ωd := |B(0, 1)|. We assume that μ1 is a Young measure on
D1 and μ2 is a Young measure on D2 := B(0, 1) \ D1 (see Lemma 4.14). Let

(u j ) ⊂ W1,p
Fx (D1; R

m), (v j ) ⊂ W1,p
Fx (D2; R

m) with ∇u j
Y→ μ1, ∇v j

Y→ μ2 and
{∇u j } j , {∇v j } j Lp-equiintegrable, which can be constructed using Lemma 4.13.
We define (w j ) ⊂ W1,p

Fx (B(0, 1); R
m) through

w j (x) :=
{

u j (x) if x ∈ D1,

v j (x) if x ∈ D2,

which is a norm-bounded sequence. Thus, up to selecting a subsequence, we may

assume that ∇w j
Y→ ν ∈ GYp(B(0, 1); R

m) and that {∇w j } j is Lp-equiintegrable.
For all continuous h : R

m×d → R with p-growth we find

−
∫

B(0,1)

∫
h dνx dx = 1

ωd
· lim

j→∞

[∫
D1

h(∇u j (x)) dx +
∫

D2

h(∇v j (y)) dy

]

= θ

∫
h dμ1 + (1 − θ)

∫
h dμ2.

Then use the averaging principle from Lemma 4.14 to get ν ∈ GYp
hom(F) with
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∫
h dν = −

∫
B(0,1)

∫
h dνx dx = θ

∫
h dμ1 + (1 − θ)

∫
h dμ2

and the convexity of GYp
hom(F) follows.

Step 2: Weak*-closedness. Note that we need to show weak* topological closed-
ness, not just sequential closedness.

If μ ∈ Ip(Rm×d)∗ lies in the topological closure of GYp
hom(F), then we observe

first thatμmust be a probability measure. Indeed, the weak* topology on C0(R
m×d)∗

is weaker than the weak* topology on Ip(Rm×d)∗, so μ is a positive measure. More-
over, 1 ∈ Ip(Rm×d), whereby μ ∈ M 1(Rm×d).

Take a countable collection {hk}k that is dense in the separable Banach space
Ip(Rm×d). Then, by the topological definition of closure for the weak* (locally
convex) topology on Ip(Rm×d)∗, for all j ∈ N there exists a μ j ∈ GYp

hom(F) with

∣∣∣∣
∫

hk d(μ j − μ)

∣∣∣∣ ≤ 1

j
for all k ≤ j.

For every μ j we find u j ∈ W1,p(Ω; R
m) with

∫
Ω

u j dx = 0 such that

∣∣∣∣
∫

B(0,1)
hk(∇u j ) dx −

∫
B(0,1)

∫
hk dμ j dx

∣∣∣∣ ≤ 1

j
for all k ≤ j.

Additionally,wemay assume, adding h0(A) := |A|p to our collection {hk}k andusing
the Poincaré inequality, that the sequence (u j ) is uniformly W1,p-bounded (see the
proof of Proposition 2.5 for a more precise argument). Hence, up to a subsequence,

∇u j
Y→ ν ∈ GYp(B(0, 1); R

m×d).
By the averaging principle, Lemma 4.14, we may furthermore assume that ν = ν

is homogeneous and that (u j ) is the averaged generating sequence from the proof of
the said lemma. Since the integrands hk are independent of x , this does not change
any of the above assertions. We have

∣∣∣∣
∫

B(0,1)
hk(∇u j ) dx −

∫
B(0,1)

∫
hk dμ dx

∣∣∣∣ ≤ 2

j
for all k ≤ j,

and so, letting j → ∞,

∫
hk dν =

∫
hk dμ for all k ∈ N.

Thus, by the density of {hk}k , we conclude that μ = ν is a homogeneous gradient
Young measure. �
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Proof of Theorem 7.15. By Lemma 5.11 only the sufficiency of (7.18) remains to be
proved.

Step 1.Wefirst prove the result for homogeneousYoungmeasures and p ∈ (1,∞),
so let μ ∈ Yp(B(0, 1); R

m×d) ⊂ M 1(Rm×d) be homogeneous with

h(F) ≤
∫

h dμ, F := [μ], (7.21)

for all quasiconvex h : R
m×d → R with p-growth. Now, for any g ∈ Ip(Rm×d) set

gα := max{g, α}, α ∈ R. By Lemma 7.1 (slightly generalized to h with h ≥ α,
which is trivial) we know that Qgα is quasiconvex. Then, (7.21) implies

Qg(F) ≤ Qgα(F) ≤
∫

Qgα dμ ≤
∫

gα dμ.

Hence, by the monotone convergence theorem,

Qg(F) ≤
∫

g dμ (7.22)

since gα ↓ g as α ↓ −∞ (this also uses the p-growth of g).
Assume that μ is not a gradient Young measure. From the preceding lemma we

know that GYp
hom(F) is convex and weakly* closed in Ip(Rm×d)∗. Then, applying

the Hahn–Banach separation theorem in the version of Theorem A.1, there is a
g ∈ Ip(Rm×d) such that

∫
g dμ < inf

ν∈GYp
hom(F)

∫
g dν.

In particular, we may test this with all ν := δF+∇ψ for ψ ∈ W1,∞
0 (B(0, 1); R

m)

(i.e. the homogeneous Young measures originating from the Riemann–Lebesgue
Lemma 4.15) to see via (7.1) that

∫
g dμ < Qg(F).

However, this contradicts (7.22).
Step 2. We now treat the inhomogeneous case for p ∈ (1,∞), but assuming that

u = 0 almost everywhere. So let ν = (νx )x ∈ Yp(Ω; R
m×d) satisfy the Jensen-

type inequality (7.18) for all quasiconvex h : R
m×d → R with p-growth. Take a

countable collection {φk ⊗ hk}k∈N as in Lemma 4.7. By the first step we have that
νx ∈ GYp(B(0, 1); R

m×d) for almost every x ∈ Ω . Moreover, almost every x ∈ Ω

is a Lebesgue point of the functions

x �→ 〈
hk, νx

〉
(l ∈ N) and x �→ 〈| �|p, νx

〉
,

see Theorem A.20.
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Fix ε ∈ (0, 1) and coverΩ up to a negligible set with a countable Vitali collection
of disjoint balls B(an, rn), that is,

Ω = Z ∪
∞⋃

n=1

B(an, rn), |Z | = 0,

where an ∈ Ω , rn > 0 are such that (7.18) holds at x = an , and

∣∣∣∣−
∫

B(an ,rn)

〈
hk, νy

〉
dy − 〈

hk, νan

〉∣∣∣∣ ≤ ε for all k ∈ N, (7.23)

as well as ∣∣∣∣−
∫

B(an ,rn)

〈| �|p, νy
〉
dy − 〈| �|p, νan

〉∣∣∣∣ ≤ ε. (7.24)

These estimates can be achieved by the Lebesgue point property and the fact that in
the Vitali cover we may choose every radius rn > 0 to be arbitrarily small.

For each n ∈ N take a generating sequence (v(n)
j ) ⊂ W1,p

0 (B(0, 1); R
m) with

∇v(n)
j

Y→ νan , cf. Lemma 4.13. Define for j ∈ N,

wε
j (x) := rnv(n)

j

(
x − an

rn

)
if x ∈ B(an, rn) (n ∈ N).

We then estimate for all j ∈ N,

∫
Ω

|∇wε
j |p dx =

∞∑
n=1

∫
B(an ,rn)

∣∣∣∣∇v(n)
j

(
x − an

rn

)∣∣∣∣
p

dx

=
∞∑

n=1

rd
n

∫
B(0,1)

|∇v(n)
j |p dy

≤
∞∑

n=1

|B(an, rn)| · (〈| �|p, νan

〉 + 1
)

≤
∞∑

n=1

∫
B(an ,rn)

〈| �|p, νy
〉
dy + (1 + ε)|Ω|

< ∞,

where we discarded some leading elements of (v(n)
j ) j for every n ∈ N and also

used (7.24). By the Poincaré inequality from Theorem A.26 (i) we thus get that
(wε

j ) j is uniformly norm-bounded in W1,p(Ω; R
m) and so, selecting a subsequence,

we may assume that

∇wε
j

Y→ νε ∈ GYp(Ω; R
m×d).
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By a similar calculation as above, this time also using the uniform continuity of φk

and (7.23), we get for every k ∈ N,

〈〈
φk ⊗ hk, ν

ε
〉〉 = lim

j→∞

∫
Ω

φk(x)hk(∇wε
j (x)) dx

= lim
j→∞

∞∑
n=1

rd
n

[∫
B(0,1)

φk(an)hk(∇v(n)
j (y)) dy + E(ε)

]

=
∞∑

n=1

|B(an, rd)| · φk(an) · 〈hk, νan

〉 + E(ε)

=
∞∑

n=1

φk(an)

∫
B(an ,rn)

〈
hk, νy

〉
dy + E(ε)

=
∫

Ω

φk(y)
〈
hk, νy

〉
dy + E(ε)

= 〈〈
φk ⊗ hk, ν

〉〉 + E(ε).

Here, E(ε) is an error term that may change from line to line and vanishes as ε ↓ 0.
Thus, as ε ↓ 0 we get that

νε ∗
⇀ ν in Yp(Ω; R

m×d),

that is, 〈〈
f, νε

〉〉 → 〈〈
f, ν

〉〉
for all f ∈ C0(Ω × R

N ),

see (4.9). As all the νε are gradient Young measures with

sup
j∈N

〈〈| �|p, νε
〉〉
< ∞,

a diagonal argument (similar to Step 2 in the proof of Lemma 7.17) yields that ν is
also a gradient Young measure.

Step 3. Let now p ∈ (1,∞) and let u not be identically zero but, without loss of
generality, finite everywhere. Then define the shifted Young measure ν̂ = (̂νx )x ∈
Yp(Ω; R

m×d) by ν̂x := νx � δ−∇u(x), that is,

∫
h d̂νx =

∫
h(A − ∇u(x)) dνx for all h ∈ C0(R

m×d), a.e. x ∈ Ω.

We have [̂ν] = 0 and the Jensen-type inequalities still hold for ν̂x at almost every
x ∈ Ω: Let h : R

m×d → R be quasiconvex and have p-growth. Then, h̃(A) :=
h(A − ∇u(x)) is also quasiconvex with p-growth, and so,
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h([̂νx ]) = h([νx ] − ∇u(x)) ≤
∫

h(A − ∇u(x)) dνx (A) =
∫

h d̂νx .

Thus, the previous step applies to ν̂. Consequently, ν̂ ∈ GYp(Ω; R
m×d) and there

is a sequence (w j ) ⊂ W1,p(Ω; R
m) such that ∇w j

Y→ ν̂. Then, for the inversely
shifted maps

u j (x) := w j (x) + u(x)

we have ∇u j
Y→ ν̂ � δ∇u(x) = ν and thus ν ∈ GYp(Ω; R

m×d). This finishes the
proof for p ∈ (1,∞).

Step 4. For the sufficiency part of Theorem 7.15 in the case p = ∞, we
simply apply the previous steps for one exponent q ∈ (1,∞). This yields that
ν ∈ GYq(Ω; R

m×d). On the other hand, since ν ∈ Y∞(Ω; R
m×d), there exists

a compact set K ⊂ R
m×d with supp νx ⊂ K for almost every x ∈ Ω , see the

Fundamental Theorem 4.1. Zhang’s lemma below then implies that ν ∈ GY∞
(Ω; R

m×d). �
For the case p = ∞, we still have to prove the following truncation result.

Lemma 7.18 (Zhang 1992 [284]). Let ν ∈ GYp(Ω; R
m×d) for some p ∈ (1,∞)

and suppose that there exists a compact and convex convex set K ⊂ R
m×d with

supp νx ⊂ K for a.e. x ∈ Ω.

Then, ν ∈ GY∞(Ω; R
m×d), that is, there exists a sequence (u j ) ⊂ W1,∞(Ω; R

m)

with ∇u j
Y→ ν and

‖∇u j‖L∞ ≤ C |K |∞, where |K |∞ := sup
{|A| : A ∈ K

}
,

and C = C(d, m) > 0 is a dimensional constant.

Remark 7.19. Zhang’s result as stated here is far from being sharp. A refined version
shows that in fact the constant C can be chosen arbitrarily close to 1 and for the

sequence (u j ) ⊂ W1,∞(Ω; R
m) with ∇u j

Y→ ν one can achieve dist(∇u j , K ) → 0
in L∞. This is proved in [202].

Proof. Step 1. We suppose first that [ν] = 0 and thus that there is a sequence

(v j ) ⊂ W1,p(Rd; R
m) with v j ⇀ 0 in W1,p and ∇v j

Y→ ν. Define, using the
maximal function from Appendix A.6,

Vj := M
(|v j | + |∇v j |

)
, j ∈ N,

and
G j := {

x ∈ Ω : Vj (x) ≤ 8|K |∞
}
.
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Theorem A.36 implies that v j is Lipschitz continuous on G j with Lipschitz constant
C |K |∞ for some dimensional constant C = C(d, m) > 0. Hence, by the Kirszbraun
Theorem A.34, we may extend v j |G j to a Lipschitz function u j ∈ W1,∞(Ω; R

m)

without changing the Lipschitz constant. Consequently, ‖∇u j‖L∞ ≤ C |K |∞.
By the weak-type estimate on the maximal function, see Theorem A.36, we fur-

thermore get

|Ω \ G j | ≤ ∣∣{ x ∈ Ω : |Mv j (x)| ≥ 4|K |∞
}∣∣

+ ∣∣{ x ∈ Ω : |M(∇v j )(x)| ≥ 4|K |∞
}∣∣

≤ C

4|K |∞
∫

Ω

|v j | dx + C

4|K |∞
∫

{|∇v j |≥2|K |∞}
|∇v j | dx

≤ C
∫

Ω

|v j | dx + C
∫

Ω

g(|∇v j |) dx, (7.25)

where g : [0,∞) → [0,∞) is given as

g(s) :=

⎧⎪⎨
⎪⎩
0 if s < |K |∞,

2(s − |K |∞) if |K |∞ ≤ s < 2|K |∞,

s if s ≥ 2|K |∞.

The first term in (7.25) tends to zero since v j → 0 in L1 by the compact embedding
from W1,p into L1. By the Young measure representation (note that (g(|∇v j |)) j is
uniformly Lp-bounded, hence equiintegrable), the second term converges to

∫
Ω

∫
g(|A|) dνx (A) dx = 0

since supp νx ⊂ K for almost every x ∈ Ω . Therefore, for all φ ∈ C0(Ω) and
h ∈ C0(R

m),

∫
Ω

|φh(∇u j ) − φh(∇v j )| dx ≤ ‖φ‖∞ · ‖h‖∞ · |Ω \ G j | → 0,

and we may conclude that (∇u j ) generates ν, which therefore has been shown to lie
in GY∞(Ω; R

m×d).
Step 2. If [ν] = ∇u �= 0 for some u ∈ W1,∞(Ω; R

m) (since ∇u ∈ K almost
everywhere), we consider the shifted Young measure ν̂ = (̂νx )x ∈ Yp(Ω; R

m×d)

defined via ν̂x := νx � δ−∇u(x), that is,

∫
h d̂νx =

∫
h(A − ∇u(x)) dνx for all h ∈ C0(R

m×d).

Then, since ∇u ∈ K almost everywhere (as we assumed that K is convex) we have
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supp ν̂x ⊂ K − K := {
A − B : A, B ∈ K

} ⊂ B(0, 2|K |∞).

Thus, the first step applies to ν̂ and yields a sequence (̂u j ) ⊂ W1,∞(Ω; R
m) with

∇û j
Y→ ν̂ ∈ GY∞(Ω; R

m×d) and ‖∇û j‖L∞ ≤ 2C |K |∞. Setting

u j := û j + u,

weget ‖∇û j‖L∞ ≤ (2C+1)|K |∞ and∇u j
Y→ ν ∈ GY∞(Ω; R

m×d). This concludes
the proof. �

Notes and Historical Remarks

Classically, one often defines the quasiconvex envelope through (7.3) and not as we
have done through (7.1). In this case, (7.1) is usually called Dacorogna’s formula,
see Section 6.3 in [76] for further references.

The construction of Lemma7.3 andExample 7.7 are from [250], but our proof also
uses some ellipticity arguments similar to those in Lemma 2.7 of [203]. A different
proof of Lemma 7.3 can be found in Section 5.3.9 of [76]. We refer to [33] for some
regularity properties of quasiconvex envelopes.

Further relaxation formulas can be found in Chapter 11 of the textbook [19];
historically, Dacorogna’s lecture notes [75] were also influential.

The conditions (i)–(iii) at the beginning of Section 7.4 are modeled on the concept
of �-convergence (introduced by De Giorgi), see Chapter 13 for more on this topic.

The Kinderlehrer–Pedregal theorem is conceptually very important. In particular,
it entails that if we could understand the class of quasiconvex functions, then we
also could understand gradient Young measures and thus the asymptotic “shape”
of gradients. Unfortunately, our knowledge of quasiconvex functions, and hence of
gradient Young measures, is limited at present. There is some further discussion on
this point throughout [222].

The truncation argument used in Zhang’s Lemma 7.18 seems to be due originally
to Acerbi–Fusco [1, 3]. The book [177] makes use of this technique in regularity
theory and also contains several refinements.

Problems

7.1. Generalize Lemmas 7.1 and 7.2 to h : R
m×d → [0,∞) with p-growth that are

merely upper semicontinuous.

7.2. Let Ω ⊂ R
d be a bounded Lipschitz domain and F ∈ R

m×d with rank F = 1.
Consider the functional
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F [u] :=
∫

Ω

dist(∇u(x), {−F, F})2 dx, u ∈ W1,∞(Ω; R
m).

Construct a sequence (u j ) ⊂ W1,∞(Ω; R
m) with u j

∗
⇀ 0 in W1,∞ and F [u j ] = 0

for all j ∈ N. Conclude that F is not lower semicontinuous with respect to weak*
convergence in W1,∞(Ω; R

m).

7.3. Show that the integrand in the integral functional from the previous exercise is
not rank-one convex.

7.4. Let L be a linear subspace of R
m×d with rank(A − B) ≥ 2 for all A, B ∈ L ,

let K ⊂ L be compact, and let p ∈ (1,∞). Show that for

h(A) := dist(A, K )p, A ∈ R
m×d ,

it holds that Qh is not convex (at zero). Conclude that for p < 2 and K not convex,
Qh cannot be polyconvex.

7.5. Show that under the assumptions of Theorem 7.5 and assuming additionally
that X is separable, it holds that

F∗[u] = inf

{
lim inf

j→∞ F [u j ] : u j ⇀ u in X

}
, u ∈ X.

7.6. Let h : R
m×d → R be twice continuously differentiable. Show that then h is

rank-one convex if and only if h satisfies the Legendre–Hadamard condition, that is,

D2h(A)[a ⊗ b, a ⊗ b] = d2

dt2
h(A + ta ⊗ b)

∣∣∣∣
t=0

=
m∑

i,k=1

d∑
j,l=1

∂2h(A)

∂ Ai
j∂ Ak

l

ai b j akbl

≥ 0 (7.26)

for all A ∈ R
m×d and all a ∈ R

m , b ∈ R
d .

7.7. Show that Ip(Rm×d) (defined in (7.20)) is isomorphic to the (separable) space
C(αR

m×d), where αR
m×d is the Alexandrov (one-point) compactification of R

m×d ,
or, equivalently, Ip(Rm×d) is isometrically isomorphic to the set of all φ ∈ C(Bm×d)

with φ|∂Bm×d constant, where B
m×d denotes the open unit ball in R

m×d (with respect
to the Frobenius norm). Conclude that Ip(Rm×d) is separable.

7.8. Show that in the Kinderlehrer–Pedregal Theorem 7.15 in the case p ∈ (1,∞)

it suffices to verify (7.18) for all quasiconvex h : R
m×d → R that are bounded from

below and for which

lim|A|→∞
h(A)

1 + |A| exists (in R).
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7.9. Prove the claim of Remark 5.15.

7.10. Let K ⊂ R
m×d be compact and non-empty. Also assume there is a norm-

bounded sequence (u j ) ⊂ W1,p(Ω; R
m), p ∈ (1,∞) with dist(∇u j , K ) → 0 in

measure. Show that then there exists a sequence (v j ) ⊂ W1,∞(Ω; R
m) such that also

dist(∇v j , K ) → 0 in measure. Hint: Use Zhang’s Lemma 7.18.



Part II
Advanced Topics



Chapter 8
Rigidity

We noted in several places that oscillations may develop in minimizing sequences.
Now we will embark on a more detailed study of these oscillations. Inspired by
(but not limited to) the example on crystalline microstructure in Section 1.8, our
overarching philosophy is the following: Assume that we are trying to minimize the
functional

F [u] :=
∫

Ω

f (∇u(x)) dx,

where f : R
m×d → R (d,m ≥ 2) is continuous, over a (Sobolev) class of functions

u : Ω → R
m with prescribed boundary values. Here, as usual, we assume that

Ω ⊂ R
d is a bounded Lipschitz domain.We associate withF as above the pointwise

differential inclusion

∇u(x) ∈ K := {
A ∈ R

m×d : f (A) = min f
}
, x ∈ Ω,

where min f denotes the pointwise minimum of f that we assume to exist in R.
Under a mild coercivity assumption on f we have that K is compact.

If u : Ω → R
m (with the prescribed boundary values) exists with∇u ∈ K almost

everywhere, then such a u clearly is a minimizer of F . Of course, a minimizer u
of F usually does not satisfy ∇u ∈ K almost everywhere, in particular if K is
“small”. However, the differential inclusion “∇u ∈ K ” should hold at least in some
approximate sense and any deviation of the gradient from K may be considered a
perturbation. By analyzing solutions to the differential inclusion

{
u ∈ W1,∞(Ω; R

m),

∇u ∈ K in Ω
(8.1)
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for a non-empty compact set K ⊂ R
m×d , we can thus understand the “shape” of

minimizers or approximate minimizers. Obviously, if A ∈ K and v0 ∈ R
m , then

u(x) := v0 + Ax solves (8.1) exactly. The question is whether these trivial solutions
are the only solutions or whether there are other, non-affine ones. Here, we mostly
focus on the W1,∞-theory. By Zhang’s Lemma 7.18 this is no restriction as long as
K is compact, which is the most common case (see Problem 7.10).

There are two notions of solution for (8.1) that are relevant for our investigation:

• Amap u ∈ W1,∞(Ω; R
m) is an exact solution to (8.1) if the differential inclusion

holds pointwise almost everywhere, that is,

∇u(x) ∈ K for a.e. x ∈ Ω.

• A uniformly norm-bounded sequence (u j ) ⊂ W1,∞(Ω; R
m) is an approximate

solution to (8.1) if
dist(∇u j , K ) → 0 in measure,

that is, for every ε > 0,

∣∣{ x ∈ Ω : dist(∇u j (x), K ) > ε
}∣∣ → 0 as j → ∞.

There is no unified theory for (8.1) that is able to handle all possible sets K ,
but some techniques can be used repeatedly and we present a selection of them
in this and the next chapter. Whereas this chapter focuses on situations where we
have rigidity, that is, exact or approximate solutions to the differential inclusion
under investigation are necessarily affine, the next chapter treats the complementary
case where non-affine solutions do occur, which exhibit (usually very complex)
microstructure.

After having considered a selection of differential inclusions as above, we also
briefly touch on the related topic of compensated compactness.

8.1 Two-Gradient Inclusions

We start our investigation into differential inclusions with the smallest non-trivial set
K ⊂ R

m×d (d,m ≥ 2) and consider the two-gradient inclusion

{
u ∈ W1,∞(Ω; R

m), A, B ∈ R
m×d , A �= B,

∇u ∈ K := {A, B} in Ω.
(8.2)

By now it should come as no surprise that the behavior of (8.2) depends decisively
on whether A, B are rank-one connected, that is, whether rank(A − B) = 1.
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Fig. 8.1 The simple laminate u j : map, gradient schematic, and rank-one diagram

Let us first assume that these matrices are not rank-one connected, i.e. rank(A −
B) ≥ 2. Then, the Ball–James Rigidity Theorem 5.13 (i) (a) implies that any exact
solution u ∈ W1,∞(Ω; R

m) to (8.2) is in fact affine,

u(x) = v0 + Fx with v0 ∈ R
m and F = A or F = B.

Turning to approximate solutions, let us assume that (u j ) ⊂ W1,∞(Ω; R
m) is uni-

formly norm-bounded and

dist(∇u j , {A, B}) → 0 in measure.

Then, assertion (ii) of the Ball–James rigidity theorem yields that, up to a subse-
quence,

∇u j → A in measure or ∇u j → B in measure.

We now consider the case rank(A − B) ≤ 1, i.e., we assume that there exist
a ∈ R

m , n ∈ S
d−1 such that

B − A = a ⊗ n.

To see which solutions to (8.2) are now possible, recall the lamination construction
from the proof of Proposition 5.3. There, on the oriented unit-volume cube Qn

with two faces orthogonal to n, we constructed an exact solution of (8.2). In fact,
in the same way one can construct many solutions: For any θ ∈ (0, 1) let F :=
θ A + (1 − θ)B and define u j ∈ W1,∞(Qn; R

m), j ∈ N, as the map

u j (x) := Fx + 1

j
ψ( j x · n)a x ∈ Qn,

where

ψ(t) :=
{

−(1 − θ)t if t − �t� ∈ [0, θ),

θ t − θ if t − �t� ∈ (θ, 1),

see Figure 8.1. For the gradients we compute
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∇u j (x) =
{
F − (1 − θ)a ⊗ n = A if j x · n − � j x · n� ∈ [0, θ),

F − θa ⊗ n = B if j x · n − � j x · n� ∈ (θ, 1).

Clearly, any such u j solves (8.2) exactly.
We can further modify the sequence (u j ) to agree with Fx on ∂Qn , for which it

holds that u j
∗

⇀ Fx in W1,∞, but not u j → Fx in measure. Finally, we may embed
a rescaled copy of Qn in the given Lipschitz domain Ω and extend the u j by Fx to
see that non-trivial approximate solutions also exist in other domains.

These observations inspire the following general definitions:

• The differential inclusion (8.1) is called rigid for exact solutions if all of its exact
solutions are affine.

• The differential inclusion (8.1) is called rigid for approximate solutions if for
all approximate solutions (u j ) ⊂ W1,∞(Ω; R

m) with

u j
∗

⇀ u ∈ W1,∞(Ω; R
m) and u j |∂Ω = Fx for some F ∈ R

m×d ,

it holds that

∇u j → ∇u in measure and ∇u = const = F. (8.3)

• The differential inclusion (8.1) is called strongly rigid if in the situation of the
previous definition, (8.3) holds without any condition on the boundary values of
the u j .

Neither of the first two notions of rigidity implies the other, as we will see in
Theorem 8.16, Proposition 8.17, and Problem 8.6. Of course, strong rigidity implies
the other two rigidity notions.

With these definitions we can rephrase the Ball–James Rigidity Theorem 5.13 as
follows:

Theorem 8.1 (Ball–James 1987 [30]).

(i) If rank(A − B) ≥ 2, then the two-gradient inclusion (8.2) is strongly rigid; in
particular, it is rigid for exact and for approximate solutions.

(ii) If rank(A − B) = 1, then the two-gradient inclusion (8.2) is not rigid for exact
and not rigid for approximate solutions.

Note that in the definition of the rigidity for approximate solutions it is neces-
sary to assume the a priori weak* convergence of (∇u j ); otherwise there are trivial
counterexamples to the Ball–James rigidity theorem in the version above.
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8.2 Linear Inclusions

After the basic two-gradient inclusions, we next consider linear differential inclu-
sions, where the gradient of a W1,p(Ω; R

m)-map, p ∈ [1,∞], is restricted to lie in
a linear subspace of R

m×d . Thus, in a bounded Lipschitz domain Ω ⊂ R
d , we aim

to solve {
u ∈ W1,p(Ω; R

m), L ⊂ R
m×d a linear subspace,

∇u ∈ L in Ω.
(8.4)

Since L is not compact, it is natural to look for solutions also in spaces of maps with
unbounded gradients.

We first observe that if there is a nontrivial rank-one connection in L , that is,
there are A, B ∈ L with rank(A − B) = 1, then we can construct a laminate whose
gradient oscillates between A and B; this follows in the same fashion as in the
previous section. Hence, in this case, the differential inclusion is not rigid for both
exact and approximate solutions. We can even construct smooth solutions:

Example 8.2. Let P0 := a ⊗ n with a ∈ R
m , n ∈ S

d−1. Then, for all j ∈ N, the
maps

u j (x) := 1

j
sin( j x · n)a, x ∈ R

d ,

satisfy
∇u j (x) = cos( j x · n)(a ⊗ n) ∈ span{a ⊗ n} =: L .

Wenow prove a general result about (8.4).While necessarily falling short of rigid-
ity in the sense of the previous section, it still expresses ellipticity of the differential
inclusion, which can be interpreted as a weaker version of rigidity.

Theorem 8.3. Let L ⊂ R
m×d be a linear subspace that contains no rank-one line,

that is, for all A, B ∈ L with A �= B it holds that rank(A − B) ≥ 2.

(i) If u ∈ W1,p(Ω; R
m), p ∈ [1,∞], satisfies (8.4) exactly, then u is smooth.

(ii) If u j ⇀ u inW1,p(Ω; R
m) (u j

∗
⇀ u inW1,∞(Ω; R

m) if p = ∞) and

dist(∇u j , L) → 0 in measure,

then
∇u j → ∇u in measure and ∇u ∈ L a.e.

Moreover, u is smooth.
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Proof. The idea of the proof is that ∇u ∈ L can be written as the PDE

P(∇u) = 0, (8.5)

wherewe denote byP : R
m×d → R

m×d the orthogonal projection onto the orthogonal
complement L⊥ of L . It turns out that under the assumptions of the theorem this
PDE is elliptic and as such the usual higher-integrability estimates apply. However,
since the argument is based on the Fourier-transform, which only operates on the
whole space, we need to cut off suitably and this adds some complexity to the
implementation of this strategy.

We will only prove the statement for p ∈ (1,∞). The case p = ∞ can obviously
be reduced to the case p = 2 and for p = 1 the proof is the task of Problem 11.10.

Ad (i). For every smooth cut-off function ρ ∈ C∞
c (Ω; [0, 1]) with ρ ≡ 1 on an

open set U � Ω , the function w := ρu satisfies

∇w = ρ∇u + u ⊗ ∇ρ.

Combining this with (8.5), we get

P(∇w) = P(u ⊗ ∇ρ) =: R ∈ Lp(Rd; R
m×d). (8.6)

Hence, applying the Fourier transform to both sides of (8.6) and considering P to
be identified with its complexification (that is, P(A + iB) = P(A) + iP(B) for
A, B ∈ R

m×d ), we arrive at

P(∇̂w(ξ)) = (2π i) P(ŵ(ξ) ⊗ ξ) = R̂(ξ). (8.7)

Here we also used the fact that ∇̂w(ξ) = (2π i) ŵ(ξ) ⊗ ξ for ξ ∈ R
d .

By a similar argument to the one in the proof of Lemma 7.3 (where now L is
not necessarily one-dimensional, which, however, necessitates only minor modifica-
tions), we may rewrite (8.7) as the multiplier equation

∇̂w(ξ) = (2π i) ŵ(ξ) ⊗ ξ = M(ξ)R̂(ξ), (8.8)

where M(ξ) : R
m×d → R

m×d is smooth and positively 0-homogeneous in ξ ∈
R

d \ {0}. If p = 2 we may use Plancherel’s identity (A.4) to estimate

‖∇w‖L2 = ‖∇̂w‖L2 ≤ ‖M‖∞‖R̂‖L2 = ‖M‖∞‖R‖L2 ≤ C‖u‖L2

for some constant C > 0 that depends on L though the operator norm of P, and
on the choice of ρ. If p ∈ (1,∞), we likewise infer from the Mihlin Multiplier
Theorem A.35 that

‖∇w‖Lp ≤ C‖M‖C�d/2�+1‖R‖Lp ≤ C‖u‖Lp .
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So, also using ρ∇u = ∇w − u ⊗ ∇ρ, we get the estimate

‖∇u‖Lp(U ) ≤ ‖∇w‖Lp(Ω) + ‖u ⊗ ∇ρ‖Lp(Ω) ≤ C‖u‖Lp(Ω)

for some constant C > 0. Differentiating (8.5) in a weak sense (or using mollifica-
tion), applying the above argument to ∂ j u ( j = 1, . . . , d) and iterating (bootstrapping
as in the argument for Corollary 3.13), we conclude that u is smooth.

Ad (ii). The assumptions imply by the dominated convergence theorem that

u j ⇀ u in W1,p and P(∇u j ) → 0 in Lq for all q ∈ (1, p).

Indeed, for the second assertion, we observe by Vitali’s convergence theorem

∫
Ω

|P(∇u j )|q dx ≤
∫

Ω

dist(∇u j , L)q dx → 0

since the ∇u j are Lp-uniformly bounded, and hence Lq -equiintegrable by Markov’s
inequality. Moreover, by the weak continuity of the linear operator P, we get that

P(∇u) = 0 a.e. in Ω. (8.9)

Thus, for every smooth cut-off function ρ ∈ C∞
c (Ω; [0, 1]) we have

P
(∇(ρ(u j − u))

) = ρP(∇u j ) + P((u j − u) ⊗ ∇ρ) → 0 in Lq .

Consequently, by a similar estimate as before, the (Lq → Lq)-boundedness of the
Fourier multiplier operator corresponding to the multiplier M(ξ) from (8.8) implies
that also ∇(ρ(u j − u)) → 0 in Lq . Together with (8.9) this yields the assertions
of (ii). �

The preceding theorem has some immediate and interesting applications in the
theory of elliptic PDEs:

Example 8.4. Let

L := R
d×d
sym,dev := {

A ∈ R
d×d : AT = A, tr A = 0

}
.

This linear space does not contain any rank-one connections: Assume that rank
(A − B) ≤ 1 for A, B ∈ L . Then, A − B = a ⊗ b for some a, b ∈ R

d and since
a · b = tr(a ⊗ b) = tr(A − B) = 0, we must have that a is orthogonal to b. On the
other hand, b⊗ a = (A− B)T = A− B = a ⊗ b, so a is also parallel to b, yielding
A = B.

Any v ∈ W1,p(Ω; R
d), p ∈ [1,∞], that satisfies

∇v ∈ L a.e. in Ω
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is the gradient of a map u ∈ W2,p(Ω) satisfying

�u = 0 a.e. in Ω,

i.e., u is harmonic, and vice versa. Indeed, if∇v ∈ L almost everywhere, the symme-
try in the definition of L implies that ∇v is in fact a Hessian. Thus, a u ∈ W2,p(Ω)

exists with ∇u = v. Then, �u = div v = tr∇v = 0 almost everywhere. The
other direction is obvious. Thus, Theorem 8.3 (i) yields a well-known result, namely
that all (weakly) harmonic maps must be smooth; we already proved this in Exam-
ple 3.15. The conclusion (ii) of Theorem 8.3 is perhaps less well-known for harmonic
maps. Clearly, we can find examples of non-affine harmonic maps in W1,∞(Ω), so
Theorem 8.3 cannot in general be strengthened to yield the full rigidity for exact
solutions.

Another related example of a linear differential inclusion is the topic of
Problem 8.2.

A special case of the linear inclusion (8.4), which is often interesting, is the case
when L is one-dimensional, i.e., the polar differential inclusion

{
u ∈ W1,p(Ω; R

m), P0 ∈ R
m×d a fixed matrix,

∇u ∈ span{P0} = {
λP0 : λ ∈ R

}
in Ω.

(8.10)

Here, as before, p ∈ [1,∞]. Equivalently to (8.10), we could require that u satisfies

∇u(x) = P0g(x), x ∈ Ω,

for some scalar function g : Ω → R, which then is an additional unknown in the
problem. If we suppose (without loss of generality) that |P0| = 1, this formulation
explains the name “polar inclusion”. An example of (8.10) was already exhibited in
Example 8.2.

The reason why we are interested in such differential inclusions is that they occur
naturally in awide variety of variational problems as soon aswe blow-up (“magnify”)
around a point, see the proof of Proposition 5.14 for an example of this technique
and also Lemma 10.4.

For the polar inclusion, stronger results than for the general linear inclusion are
available, summarized in the following theorem (with the various notions of rigidity
suitably extended if p < ∞).

Theorem 8.5. Let Ω ⊂ R
d be open, bounded, and connected.

(i) If rank P0 ≥ 2, then (8.10) is strongly rigid.
(ii) If rank P0 = 1, then (8.10) is not rigid for exact solutions and not rigid for

approximate solutions. Moreover, if P0 = a ⊗ n (a ∈ R
m, n ∈ S

d−1), then u is
one-directional in direction n, i.e., there exist h ∈ W1,p(R), v0 ∈ R

m such that
u(x) = v0 + h(x · n)a, x ∈ Ω .

The proof of this theorem is the task of Problem 8.3.
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8.3 Relaxation and Quasiconvex Hulls of Sets

Before we can investigate more complicated differential inclusions, we need to
develop a more sophisticated approach to rigidity, which is built on the theory of
Young measures.

To motivate the basic strategy, we associate with our compact set K ⊂ R
m×d the

functional F K : W1,2(Ω; R
m) → R,

F K [u] :=
∫

Ω

dist(∇u(x), K )2 dx, u ∈ W1,2(Ω; R
m).

Then, just like in Chapter 7, we can ask about the relaxationF K∗ ofF K . Theorem 7.6
(trivially extended to the weaker coercivity assumption f (A) ≥ μ|A| − μ−1 for a
μ > 0) tells us that

F K
∗ [u] =

∫
Ω

Q dist(∇u(x), K )2 dx,

where Q dist(A, K )2 := Q[dist( �, K )2](A) is the quasiconvex envelope of the inte-
grand dist( �, K )2 evaluated at A ∈ R

m×d , see (7.1). If we apply this chapter’s over-
arching philosophy that the pointwise minimizer set for the integrand determines the
admissible microstructure, we can now define a relaxation K of K via

K := {
F ∈ R

m×d : Q dist(F, K )2 = 0
} ⊃ K .

According to Proposition 7.14, for all F ∈ R
m×d there exists a homogeneous gradient

Young measure μF ∈ GY2(B(0, 1); R
m×d) with [μF ] = F and

Q dist(F, K )2 =
∫

dist( �, K )2 dμF .

If Q dist(F, K )2 = 0, then μF is supported on K , that is, suppμF ⊂ K . By Zhang’s
Lemma 7.18, we may also assume that μF ∈ GY∞(B(0, 1); R

m×d).
On the other hand, for any μ ∈ GY2(B(0, 1); R

m×d) with [μ] = F ∈ R
m×d and

suppμ ⊂ K , there exists a sequence (ψ j ) ⊂ W1,∞
0 (B(0, 1); R

m) with ‖∇ψ j‖L∞

uniformly bounded and F + ∇ψ j
Y→ μ, see Lemmas 4.13, 7.18 (observe that the

truncation construction in Zhang’s Lemma 7.18 can be performed so that the bound-
ary values remain intact). By (7.1) we get

Q dist(F, K )2 ≤ lim
j→∞ −

∫
B(0,1)

dist(F + ∇ψ j (z), K )2 dz =
∫

dist( �, K )2 dμ = 0.
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Thus, we have shown that K consists precisely of all barycenters of homogeneous
W1,∞-gradient Young measures that are supported on K . This set K is called the
quasiconvex hull K qc of K ,

K qc := { [μ] : μ ∈ M qc(K )
}
,

where

M qc(K ) := {
μ ∈ GY∞(B(0, 1); R

m×d) : μ homogeneous, supp μ ⊂ K
}

is the set of homogeneous W1,∞-gradient Young measures supported on K , which
is a subset ofM 1(K ), the set of all probability measures supported on K . Note that
by the Kinderlehrer–Pedregal Theorem 7.15,

M qc(K ) =
{

μ ∈ M 1(K ) : h([μ]) ≤
∫

h dμ for all quasiconvex h ∈ C(Rm×d)

}
,

which explains the notation “M qc(K )”. It is the task of Problem 8.7 to show that for
a compact set K ⊂ R

m×d , K qc is also compact.

Example 8.6. Let K = {A, B} with rank(A − B) ≥ 2. Then, by Theorem 8.1,
K qc = K . Thus, in general K qc �= K ∗∗, the convexification of K .

The above discussion leads to the “Young measure approach” to (approximate)
rigidity of the differential inclusion

{
u ∈ W1,∞(Ω; R

m), K ⊂ R
m×d compact and non-empty,

∇u ∈ K in Ω,
(8.11)

as expressed in the following lemmas.

Lemma 8.7. Assume that every measure in M qc(K ) is a Dirac mass. Then:

(i) K qc = K.
(ii) If u ∈ W1,∞(Ω; R

m) satisfies

∇u ∈ K a.e. and u|∂Ω = Fx

for some F ∈ R
m×d , then ∇u = F almost everywhere.

Note that (ii) is not the same as rigidity for exact solutions since here we addi-
tionally assume linear boundary values.

Proof. Ad (i). For F ∈ K qc by definition there exists a μ ∈ M qc(K ) with [μ] = F .
By assumption, μ is the Dirac mass δF and, since suppμ ⊂ K , necessarily F ∈ K .
Thus, K qc ⊂ K ; the opposite inclusion is trivial.

Ad (ii). Thanks to the linear boundary values of u, we may apply the Riemann–
Lebesgue lemma for gradient Young measures, Lemma 4.15. This yields ν :=
δ[∇u] ∈ M qc(K ) with [ν] = F . By assumption, ν = δF . Hence, ∇u must be
constant (see (4.17)). �
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Lemma 8.8. The following statements are true:

(i) The differential inclusion (8.11) is rigid for approximate solutions if and only if
every measure inM qc(K ) is a Dirac mass.

(ii) The differential inclusion (8.11) is strongly rigid if and only if it is rigid for exact
solutions and every measure in M qc(K ) is a Dirac mass.

Proof. Ad (i). Assume first that (8.11) is rigid for approximate solutions. To see
the assertion concerning Young measures, let ν ∈ M qc(K ) with [ν] = F ∈
R

m×d . By Lemmas 4.13, 7.18 (the truncation in Zhang’s Lemma 7.18 can be
performed so that the boundary values remain intact) there exists a sequence
(ψ j ) ⊂ W1,∞

0 (B(0, 1); R
m) such that the norms ‖∇ψ j‖L∞ are uniformly bounded

and F + ∇ψ j
Y→ ν. Moreover,

ψ j
∗

⇀ 0 in W1,∞ and dist(F + ∇ψ j , K ) → 0 in measure

by Lemma 4.12. Thus, the rigidity for approximate solutions implies that

F + ∇ψ j → F in measure.

Another application of Lemma 4.12 then implies ν = δF .
For the converse implication, assume that every measure in M qc(K ) is a Dirac

mass and let (u j ) ⊂ W1,∞
Fx (Ω; R

m) for some F ∈ R
m×d such that

u j
∗

⇀ u ∈ W1,∞(Ω; R
m) and dist(∇u j , K ) → 0 in measure.

Up to selecting a subsequence, wemay further assume∇u j
Y→ ν ∈ GY∞(Ω; R

m×d)

with [νx ] = ∇u(x) and supp νx ⊂ K for almost every x ∈ Ω . Almost every νx is a
homogeneous gradient Youngmeasure in it own right, νx ∈ M qc(K ), by the blow-up
principle in Proposition 5.14. Then, by assumption, νx = δ∇u(x) and so, Lemma 4.12
implies that in fact ∇u j → ∇u in measure. Since u|∂Ω = Fx , part (ii) of the
preceding Lemma 8.7 immediately yields that ∇u is constant almost everywhere.
Thus, we have established that (8.11) is rigid for approximate solutions.

Ad (ii). The proof of the first direction is identical since rigidity for exact and
approximate solutions clearly follows from strong rigidity. For the other direction
we can no longer assume that u j |∂Ω = Fx for some F ∈ R

m×d . However, the only
place where we used this was when we proved that∇u is a constant (via Lemma 8.7)
and this now follows directly from the assumed rigidity for exact solutions. �

In assertion (ii) of the preceding lemma, the assumption of exact rigidity cannot
be dispensed with, see Problem 8.6.

Corollary 8.9. The differential inclusion (8.11) is strongly rigid if and only if it is
rigid for exact solutions and rigid for approximate solutions.
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It is sometimes possible, by “testing” with carefully selected quasiconvex func-
tions, to show that any Young measure supported on a set K necessarily must be a
Dirac mass. Together with exact rigidity, which is often elementary, this then implies
strong rigidity and K qc = K . We will see examples of this strategy in the following
sections.

Example 8.10. In the physical context of crystalline microstructure as described in
Section 1.8, the quasiconvex hull K qc of K contains the deformations with almost
zero energy. Indeed, from the above reasoningwe get that precisely for F ∈ K qc there
exists a sequence (ψ j ) ⊂ W1,∞

0 (B(0, 1); R
m) with ‖∇ψ j‖L∞ uniformly bounded,

and such that
∫
B(0,1)

dist(F + ∇ψ j (z), K )2 dz → 0 as j → ∞.

Consequently, if the potential elastic energy is measured by the above integral, at
least close to a pointwise minimizer, then the material can realize the linear bound-
ary values Fx with almost no expenditure of energy, but the internal structure of the
material may be very complicated. Thus, if we want to understand the macroscopic
behavior of a crystal that develops microstructure, then the quasiconvex hull of the
pointwise minimizer set of the integrand gives valuable information. For instance, if
K qc contains an open set, then we have very soft, fluid-like behavior since deforma-
tion gradients in this set cost almost no energy.

8.4 Multi-point Inclusions

We now investigate multi-point differential inclusions, where K has finitely many
elements. So, we are trying to solve

{
u ∈ W1,∞(Ω; R

m), A1, . . . , AN ∈ R
m×d ,

∇u ∈ K := {A1, . . . , AN } in Ω
(8.12)

for (small) N ∈ N. This is called the N -gradient problem. As discussed for the
two-gradient problem in Section 8.1, when there is a rank-one connection in K ,
i.e., if Ai − A j = a ⊗ n for some i, j ∈ {1, . . . , N }, a ∈ R

m \ {0}, n ∈ S
d−1,

then we can construct laminates whose gradients oscillate between Ai and A j . In
this case, the differential inclusion is always not rigid for exact and not rigid for
approximate solutions. Thus, in the following we focus on the situation where there
are no rank-one connections in K , that is, the following incompatibility relation
holds:

rank(Ai − A j ) ≥ 2 for all i, j ∈ {1, . . . , N } with i �= j. (8.13)
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For the three-gradient problem the situation is comparable to the two-gradient
problem, but the proof is much more involved.

Theorem 8.11 (Švérak 1991 [249]). Assume that K := {A1, A2, A3} ⊂ R
m×d

contains no rank-one connection. Then, the inclusion (8.12) is strongly rigid and
K qc = K.

We will prove the rigidity for exact solutions and the rigidity for approximate
solutions separately, which suffices for strong rigidity by Corollary 8.9. We start
with the rigidity for exact solutions, for which we first prove a dimension-reduction
lemma.

Lemma 8.12. Let K = {A1, . . . , AN } ⊂ R
m×d contain no rank-one connections.

If u ∈ W1,∞(Ω; R
m) is a non-affine map with ∇u ∈ K almost everywhere, then

there exists a set K̃ = { Ã1, . . . , ÃN } ⊂ R
2×2 without rank-one connections and a

non-affine map ũ ∈ W1,∞((0, 1)2; R
2) with ∇ũ ∈ K̃ almost everywhere.

Proof. As u is not affine, we may find y1, y2 ∈ B(x0, ε) ⊂ B(x0, 3ε) ⊂ Ω for a
sufficiently small ε > 0 and x0 ∈ Ω such that

u(y1 + y2 − x0) + u(x0) �= u(y1) + u(y2).

Now pick P0 ∈ R
d×2, Q0 ∈ R

2×m with

P0e1 = y1 − x0, P0e2 = y2 − x0,

and
Q0

[
u(y1 + y2 − x0) + u(x0) − u(y1) − u(y2)

] �= 0.

Since rank-two (invertible) matrices are dense in R
2×2 and K × K is a finite set, we

may find P ∈ R
d×2, Q ∈ R

2×m close to P0, Q0, respectively, such that, possibly
slightly lowering ε > 0, the following conditions hold:

(a) rank(Q(Ai − A j )P) = 2 for all i �= j ;
(b) Pz + x ∈ Ω for all z ∈ (0, 1)2, x ∈ B(x0, ε);
(c) the non-affinity condition

Q
[
u(Pe1 + Pe2 + x) + u(x) − u(Pe1 + x) − u(Pe2 + x)

] �= 0 (8.14)

holds for all x ∈ B(x0, ε).

For almost every x1 ∈ R
d and almost every z ∈ R

2 (the exceptional negligible
set may depend on x1) with Pz + x1 ∈ Ω we have

∇z[Qu(Pz + x1)] ∈ K̃ := {QA1P, . . . ,QANP} ⊂ R
2×2
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since otherwise ∇u ∈ K would be violated on a set of non-zero measure. Pick
x1 ∈ B(x0, ε) with this property and observe that the map ũ : (0, 1)2 → R

2 given as

ũ(z) := Qu(Pz + x1)

is not affine by (8.14). �
Proof of Theorem 8.11: Rigidity for exact solutions. Assume that there is a non-affine
u ∈ W1,∞(Ω; R

m)with∇u ∈ K almost everywhere. ByLemma8.12we can assume
that d = m = 2 and Ω = (0, 1)2.

We may suppose without loss of generality that A1 = 0 (this transforms u into
ũ(x) := u(x) − A1x), whereby det A2, det A3 �= 0 by the incompatibility rela-
tion (8.13), and that A2 = Id (this transforms ũ into û(x) := ũ(A−1

2 x)). Finally, by
a change of variables and utilizing the Jordan normal form, see Appendix A.1, we
may assume that A3 has one of the following two forms:

A3 =
(
a b
0 c

)
with a �= 0, c /∈ {0, 1},

or

A3 =
(

a b
−b a

)
with a2 + b2 �= 0.

Here, the additional conditions on the coefficients follow from the incompatibility
relation (8.13).

In the first case, for u = (u1, u2) we have ∂1u2 = 0 since all matrices A1, A2, A3

have a zero as their (2, 1)-element. Hence, with a slight abuse of notation, u2(x) =
u2(x2). Clearly, since c /∈ {0, 1}, the value of ∂2u2(x) = ∂2u2(x2) determines which
of the matrices A1, A2, A3 our gradient ∇u(x) takes at x . Thus, ∇u(x) depends only
on x2 and therefore

∂2
1u = ∂2∂1u = ∂1∂2u = 0 in the sense of distributions.

It follows that

∇u(x) =
(
a ∂2u1(x2)
0 ∂2u2(x2)

)
= (a, 0) ⊗ e1 + ∂2u(x2) ⊗ e2

for some a ∈ R. Hence, rank(∇u(x) − ∇u(y)) ≤ 1 for all x, y ∈ Ω . By our
incompatibility assumption, this is only possible if ∇u is constant.

In the second case, we see that ∇u ∈ L , where

L :=
{(

a b
−b a

)
: a, b ∈ R

}
⊂ R

2×2

once we observe that A1, A2, A3 ∈ L . As it can be easily shown that L does not
contain rank-one connections, Theorem 8.3 implies that u is smooth. As K is dis-
connected, however, ∇u must be constant. �
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The proof of rigidity for approximate solutions ismore involved.Wewill establish
this result by a dimension-reduction to (2×2)-matrices and then employ the separa-
tion method, which entails testing with special quasiconvex functions that vanish on
K . Only points where this test function is less than or equal to zero can potentially
lie in K qc, yielding an upper bound on K qc.

We start by proving a useful rigidity lemma.

Lemma 8.13. Let K ⊂ R
2×2 be compact and non-empty such that

det(A − B) > 0 for all A, B ∈ K with A �= B.

Then, K is rigid for approximate solutions.

Proof. By Lemma 8.8 (i) it suffices to check that all ν ∈ M qc(K ) are Dirac masses.
We will use the elementary formula

det(A + B) = det A + cof A : B + det B, A, B ∈ R
2×2. (8.15)

From the fact that 0 ≤ det(A − B) for all A, B ∈ supp ν in conjunction with (8.15)
and Corollary 5.12, we see that

0 ≤
∫ ∫

det(A − B) dν(A) dν(B)

=
∫ ∫

det A − cof A : B + det B dν(A) dν(B)

=
∫

det [ν] − cof [ν] : B + det B dν(B)

= det [ν] − cof [ν] : [ν] + det [ν]
= det([ν] − [ν])
= 0.

Thus, det(A− B) = 0 for (ν ⊗ν)-almost every (A, B) ∈ K ×K . On the other hand,
by assumption, det(A − B) > 0 for all such A, B with A �= B. Thus, ν must be a
Dirac mass. �

We will also need a special quasiconvex function on symmetric matrices:

Lemma 8.14. Define det++ : R
2×2
sym → [0,∞) by

det++(A) :=
{
det A if A is positive semidefinite,

0 otherwise,
A ∈ R

2×2
sym .
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Then, det++ is quasiconvex on symmetric matrices, that is,

det++(A) ≤ −
∫
B(0,1)

det++(A + ∇2ψ(z)) dz (8.16)

for all A ∈ R
2×2
sym and all ψ ∈ W2,2

c (B(0, 1)).

Here and in the following we set

W2,q
c (Ω; R

m) := {
u ∈ W2,q(Ω; R

m) : supp u � Ω
}

for Ω ⊂ R
d a bounded Lipschitz domain and q ∈ [1,∞].

Proof. Let A ∈ R
2×2
sym be positive definite (the assertion is trivial otherwise). We

will only show (8.16) for ψ ∈ C∞
c (B(0, 1)); the general case follows by approxi-

mation. Since we are dealing with symmetric matrices, which can be orthogonally
diagonalized, we may assume that A = Id via a coordinate transformation. Define

u(z) := 1

2
|z|2 + ψ(z), z ∈ B(0, 1),

and set
D := {

z ∈ B(0, 1) : ∇2u(z) positive semidefinite
}
.

We claim that B(0, 1) ⊂ ∇u(D). Indeed, let x0 ∈ B(0, 1) be arbitrary and take a
point z0 ∈ B(0, 1) such that z �→ u(z) − x0 · z attains its minimum at z0. Note that
such a minimizer z0 exists in B(0, 1) since z �→ 1

2 |z|2 − x0 · z attains its minimum in
B(0, 1) andψ has compact support. Differentiating, we get∇u(z0) = x0. Moreover,
∇2u(z0) is positive semidefinite. Thus, B(0, 1) ⊂ ∇u(D) and then

ωd ≤ |∇u(D)| ≤
∫
D
det∇2u(z) dz =

∫
B(0,1)

det++(Id + ∇2ψ(z)) dz.

Consequently, (8.16) holds for A = Id. �

Next, we prove the analogue of the Jensen-type inequality from Lemma 5.11 for
functions that are quasiconvex on symmetric matrices.

Lemma 8.15. Let K ⊂ R
d×d
sym and μ ∈ M qc(K ). Then, for all h : R

d×d
sym → R that

are quasiconvex on symmetric matrices and have p-growth for some p ∈ [1,∞),
the Jensen-type inequality

h([μ]) ≤
∫

h dμ

holds.

Proof. Wewill show that for every q ∈ (1,∞) there exists a norm-bounded sequence

(ψ j ) ⊂ (W1,2
0 ∩ W2,q)(B(0, 1)) such that F + ∇2ψ j

Y→ μ, where F := [μ]. Then,
if q > p,
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h(F) ≤ lim
j→∞ −

∫
B(0,1)

h(F + ∇2ψ j (z)) dz =
∫

h dμ,

where the inequality follows by a cut-off procedure as in Lemma 4.13 (Step 3 of the
proof) and the quasiconvexity on symmetric matrices. This implies the claim.

Assume without loss of generality that [μ] = F = 0 and let the sequence (v j ) ⊂
C∞
c (B(0, 1); R

d) be such that F + ∇v j
Y→ μ (see Lemmas 4.13 and 7.18). Define

ψ j ∈ (W1,2
0 ∩ W2,2)(B(0, 1)) as the (unique) solution of

{
�ψ j = div v j in B(0, 1),
ψ j = 0 on ∂B(0, 1).

By standard results (we proved this in Examples 3.4 and 3.15, also taking into account
Section 6.3.2 in [111] for the regularity up to the boundary), such a solutionψ j exists
in (W1,2

0 ∩ W2,2)(B(0, 1)) and ‖ψ j‖W2,2 ≤ C‖v j‖W1,2 . It is a well-known fact that
even

‖ψ j‖W2,q ≤ Cq‖v j‖W1,∞

for any q ∈ (1,∞) and a constant Cq > 0. This can be seen by the bootstrapping
procedure explained in Section 3.2 and the fact that Wk,2(B(0, 1)) embeds into
W2,q(B(0, 1)) for sufficiently large k, see Theorem A.27.

Forwj := v j −∇ψ j we have divwj = 0 (this gives the Helmholtz decomposition
of v j ). Thus, with the usual definition curlwj := ∇wj − (∇wj )

T , we may calculate,
using integration by parts,

∫
B(0,1)

| curlwj |2 dx

=
∫
B(0,1)

|∇wj − (∇wj )
T |2 + 2(divwj )

2 dx

=
∫
B(0,1)

|∇wj |2 − 2∇wj : (∇wj )
T + |(∇wj )

T |2 + 2∇wj : (∇wj )
T dx

=
∫
B(0,1)

2|∇wj |2 dx .

On the other hand, curlwj = curl v j and by Young measure representation,

∫
B(0,1)

| curlwj |2 dx =
∫
B(0,1)

|∇v j − (∇v j )
T |2 dx

→
∫
B(0,1)

∫
|A − AT |2 dμ(A) dx = 0

sinceμ is supported on symmetric matrices. Thus,∇wj → 0 in L2 and F +∇2ψ j =
F + ∇v j − ∇wj generates μ, as desired. �
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We can now complete the proof of Theorem 8.11.
Proof of Theorem 8.11: Rigidity for approximate solutions. We will show that
every Young measure in M qc(K ) is a Dirac mass, which implies the claim by
Lemma 8.8 (i).

We may assume that A3 = 0 (by an affine shift). Let L be the linear subspace of
R

m×d spanned by the matrices A1, A2. We distinguish three cases.
Case 1: L contains at most one rank-one direction. If there is a rank-one direction

in L , then let L0 ⊂ L be the rank-one line through the origin; otherwise set L0 := {0}.
Denote by P : R

m×d → L and Q : L → L0 the orthogonal projections onto L and
L0, respectively. With

g(A) := |A − Q(A)|2, A ∈ L ,

fε,k(A) := −g(P(A)) + ε|QP(A)|2 + k|A − P(A)|2, A ∈ R
m×d ,

we claim that for every ε > 0 there is a k ∈ N such that for all μ ∈ M qc(K ) with
F := [μ] the Jensen-type inequality

fε,k(F) ≤
∫

fε,k dμ (8.17)

holds. Then, since μ is supported in L , whereby also F ∈ L , we may let ε ↓ 0 to
conclude the reverse Jensen-type inequality for g, namely

g(F) ≥
∫

g dμ.

Since g is strictly convex, this implies that μ is a Dirac mass.
It remains to show (8.17). For this, we first note that for rank-one matrices A ∈

R
m×d with |A| = 1 and −g(P(A)) + ε|QP(A)|2 ≤ 0, it holds that |A − P(A)|2 ≥ c

for some constant c > 0 that does not depend on A. Indeed, |P(A) − QP(A)|2 =
g(P(A)) ≥ ε|QP(A)|2 implies that A has positive distance from L0. On the other
hand, the rank-one cone intersects L only in L0, so that we obtain that A has positive
distance from L , hence |A−P(A)|2 > 0. Thenwe canminimize over the compact set
of the A as above to obtain that |A− P(A)|2 ≥ c > 0 for all A as above. Thus, since
every term in the definition of fε,k is positively 2-homogeneous, for every ε > 0 we
can find k ∈ N such that fε,k is positive on the rank-one cone.

We now have two ways to conclude. As the first option, we may invoke Tartar’s
theorem from the theory of compensated compactness in the version ofCorollary 8.31
in Section 8.8 below, to see that

fε,k(F) ≤ lim inf
j→∞ −

∫
B(0,1)

fε,k(∇u j ) dx
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for a sequence (u j ) ⊂ W1,∞
Fx (B(0, 1); R

m) such that∇u j
Y→ μ (also useLemma4.13

and Zhang’s Lemma 7.18, keeping the boundary values intact). This directly implies
(8.17).

As the second option, the positivity of fε,k on the rank-one cone implies that fε,k
is rank-one convex (one can check the Legendre–Hadamard condition (7.14)), which
in turn implies that fε,k is also quasiconvex via Problem 5.7. Then, (8.17) follows
from the Jensen-type inequality for gradient Youngmeasures proved in Lemma 5.11.

Case 2: d = m = 2 and L contains the rank-one directions e1 ⊗ e1, e2 ⊗ e2.
We can assume that det A1, det A2 > 0 and A3 = 0. Indeed, at least two of the
three numbers det(Ai − A j ) for i, j ∈ {1, 2, 3} and i < j must have the same sign.
Multiplying the first row of the matrices by −1 (which corresponds to flipping the
sign of the first component of a generating sequence of μ) and exchanging indices,
we may thus assume that det(A1 − A3) > 0, det(A2 − A3) > 0. Then we shift all
matrices by −A3 to obtain Ã1 = A1 − A3, Ã2 = A2 − A3, Ã3 = 0, of which the
first two have positive determinant. In the following we drop the tildes.

We can further multiply the first and second components of generating sequences
for μ with scalars to reduce to the situation where K = {A1, A2, A3} with

A1 = Id, A2 =
(

α

β

)
, A3 = 0

for
α > β > 0 or 0 > α > β

since det A2 > 0. Note also that α = 1 or β = 1 is impossible since rank(A2−A1) =
2.

If α < 1, then also β < 1 and so all differences Ai − A j for i, j ∈ {1, 2, 3}
have positive determinant. Thus, Lemma 8.13 implies that any μ ∈ M qc(K ) is a
Dirac mass. If α > 1 and β > 1, a similar argument applies, again yielding that any
μ ∈ M qc(K ) is a Dirac mass.

It remains to investigate the situation where α > 1 and 0 < β < 1. First, for any
μ ∈ M qc(K ), Corollary 5.12 shows that det F = 〈det, μ〉, where F := [μ]. Writing

μ = θ1δA1 + θ2δA2 + θ3δA3

for θ1, θ2, θ3 ∈ [0, 1] with θ1 + θ2 + θ3 = 1, this implies the relation

(θ1 + θ2α)(θ1 + θ2β) = θ1 + θ2αβ. (8.18)

Second, from Lemma 8.14 we infer that the function h : R
2×2
sym → R given by

h(A) := det++(A − X), where X :=
(
1

β

)
,
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is quasiconvex on symmetric matrices. By the Jensen-type inequality proved in
Lemma 8.15 (applied to h), we thus get

det++(F − X) ≤
∫

det++(A − X) dμ(A) = 0,

where the last equality holds since the three matrices A1 − X , A2 − X , A3 − X are
not positive definite. Hence, also

F − X =
(

θ1 + θ2α − 1
θ1 + θ2β − β

)

cannot be positive definite, so at least one entry in this matrix needs to be nonpositive.
Combining this fact with (8.18) we get that either

θ1 + θ2αβ ≤ θ1 + θ2β or θ1 + θ2αβ ≤ θ1β + θ2αβ.

In the first case, α > 1 implies that θ2 = 0, which, however, by (8.18) immediately
gives θ2

1 = θ1, whereby μ must be a Dirac mass. In the second case, from β < 1 we
get θ1 = 0 and hence (8.18) implies θ2

2 = θ2, which again yields that μ is a Dirac
mass.

Case 3: d ≥ 2,m ≥ 2 and L contains at least two (different) rank-one directions.
We will reduce this case to the previous one via a dimension-reduction argument.
Let a1 ⊗b1 and a2 ⊗b2 be two rank-one matrices in L with a1, a2 and b1, b2 linearly
independent. By a change of variables we can assume that a1, b1 are the first unit
vector e1 (in R

m and R
d , respectively) and a2, b2 are the second unit vector e2. Then,

A1 and A2 are diagonal,

A1 =
(

γ1
γ2

)
, A2 =

(
η1

η2

)

with γ1, γ2, η1, η2 ∈ R \ {0}.
Let (u j ) ⊂ W1,∞((0, 1)d; R

m) be such that∇u j
Y→ μ. Then, for z = (z3, . . . , zd)

∈ (0, 1)d−2, we define v(z)
j ∈ W1,∞((0, 1)2; R

2) by

v(z)
j (x1, x2) :=

(
u1j (x1, x2, z)

u2j (x1, x2, z)

)
, (x1, x2) ∈ (0, 1)2.

For L d−2-almost every z ∈ (0, 1)d−2 it holds that ∇v(z)
j

Y→ ν(z) ∈ M qc(K̂ ) with

K̂ :=
{(

γ1
γ2

)
,

(
η1

η2

)
, 0

}
⊂ R

2×2.
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Then, Case 2 is applicable and we conclude that ν(z) is a Dirac mass. Since μ =
L d−2

z (0, 1)d−2 ⊗ ν(z) and we know that μ is homogeneous, we get that μ is also
a Dirac mass. �

For the four-gradient problem, rigidity for exact solutions obtains as well:

Theorem 8.16 (Chlebík–Kirchheim 2002 [63]). Assume that the four-element set
K := {A1, A2, A3, A4} ⊂ R

m×d contains no rank-one connection. Then, (8.12) is
rigid for exact solutions.

The proof is beyond the scope of this book. It uses a reduction to the Monge–
Ampère equation (like the original proof for the three-gradient problem in [249]),
where one has to distinguish the elliptic case det∇2u > 0 and the hyperbolic case
det∇2u < 0, see [63, 160] for the details.

Despite this result on rigidity for exact solutions, approximate solutions of the
four-gradient inclusion are not rigid:

Proposition 8.17 (T4-configuration). Let KT4 := {A1, A2, A3, A4} ⊂ R
2×2 for the

diagonal matrices

A1 :=
(
3
1

)
, A2 :=

(−1
3

)
, A3 := −A1, A4 := −A2,

which do not have rank-one connections. Then, (8.12) for K := KT4 is not rigid for
approximate solutions, that is, there exists a weakly* converging sequence (u j ) ⊂
W1,∞((0, 1)2; R

2) such that

dist(∇u j , KT4) → 0 in measure,

but (∇u j ) does not converge in measure. Moreover, K qc
T4 � KT4.

Proof We define the intermediate matrices

B1 :=
(−1

1

)
, B2 :=

(−1
−1

)
, B3 := −B1, B4 := −B2,

see Figure 8.2.
The idea of the proof is to build a laminate of infinite order supported on KT4 and

with barycenter B4. First write B4 as the rank-one convex combination between A1

and B1, which is possible since B4 = (A1 + B1)/2 (note that rank(A1 − B1) = 1).
We have A1 ∈ KT4 and we may write B1 = (A2 + B2)/2. Again, A2 ∈ KT4. We
iterate this procedure and construct the corresponding laminates to obtain a sequence
that satisfies the differential inclusion approximately.

To implement this strategy rigorously, we use the construction from the proof
of Proposition 5.3 for A, B ∈ R

2×2 with A − B = a ⊗ n, where a ∈ R
2 \ {0},

n ∈ S
d−1, and θ ∈ (0, 1). In this way, for any ε > 0 let v ∈ W1,∞

Fx (Dn; R
2),

where Dn ⊂ R
2 is any rectangular parallelepiped with two faces orthogonal to n and

F := θ A + (1 − θ)B, be a map such that the following conditions hold:
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Fig. 8.2 The rank-one
diagram of the
T4-configuration in the space
of diagonal matrices with
entries α, β (solid lines
signify rank-one
connections)

(a) ‖v‖W1,∞ ≤ C(1 + |A| + |B|) for some C > 0;

(b)

∣∣∣∣Dn \
( N⋃

i=1

E A
i ∪

N⋃
i=1

EB
i

)∣∣∣∣ ≤ ε, where E A
i , EB

i are rectangular parallelepipeds

with two faces orthogonal to n;
(c) ∇v = A almost everywhere in E A

i , ∇v = B almost everywhere in EB
i .

Fix δ > 0. Apply this construction with A := A1, B := B1, θ := 1/2 (hence
F = B4), and ε := δ/2 in Dn := (0, 1)2. This yields u(δ)

1 satisfying the above
properties. Then apply the construction again in every EB1

i , i = 1, . . . , N1, with
A := A2, B := B2, θ := 1/2 (hence F = B1), and ε := δ/(22N1) to get u(δ)

2

defined in
⋃N

i=1 E
Bi
i . Note that we may just replace u(δ)

1 with u(δ)
2 in EB1 since the

boundary values agree. We proceed with this construction, successively eliminating
more and more of the intermediate matrices B1, B2, B3, B4; in the k’th step we use
ε := δ2−k/Nk−1 on all the Nk−1 pieces with an intermediate matrix in it.

Thus, we have constructed a sequence (u(δ)
l )l ⊂ W1,∞((0, 1)2; R

2) that is uni-
formly bounded, u(δ)

l |∂(0,1)2 = B4x , and

∣∣{ x ∈ (0, 1)2 : ∇u(δ)
l (x) /∈ KT4

}∣∣ ≤
l∑

k=1

δ2−k + 2−l ≤ δ + 2−l .

Since (u(δ)
l )l is uniformly bounded in W1,∞, we may pass to a weakly* converging

subsequence with limit uδ ∈ W1,∞((0, 1)2; R
2). Then,
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u(δ)|∂Ω = B4x, ‖u(δ)‖W1,∞ ≤ C

with a δ-independent C > 0, and it also holds that

∣∣{ x ∈ (0, 1)2 : ∇u(δ)(x) /∈ KT4
}∣∣ ≤ δ.

Now set u j := u(1/j) ∈ W1,∞((0, 1)2; R
2), which is a uniformly bounded sequence

with u j |∂Ω = B4x and

dist(∇u j , KT4) → 0 in measure.

We can furthermore assume that (∇u j ) converges weakly* in W1,∞ and gener-
ates a homogeneous gradient Young measure μ ∈ M qc(KT4) with [μ] = B4 /∈ KT4.
This in fact holds for the above construction, but one may also invoke Lemma 4.14
to ensure the homogeneity. Then, μ cannot be a Dirac mass, K qc

T4 � KT4, and
Lemma 8.8 (i) immediately yields that the inclusion ∇u ∈ KT4 is not rigid for
approximate solutions.

For the last step, one can also argue by observing that if, up to selecting a subse-
quence, we had ∇u j → ∇u in measure as j → ∞ for some u ∈ W1,∞((0, 1)2; R

2),
then it would hold that ∇u ∈ KT4 almost everywhere and u|∂Ω = B4x , which is
impossible since ∇u ∈ KT4 is rigid for exact solutions by Problem 8.4. �

Proposition 8.17 provides a negative answer to the following question of historical
importance (as Tartar himself discovered in [271]).

Conjecture 8.18 (Tartar 1982 [268]). If a non-empty compact set K ⊂ R
2×2 does

not contain rank-one directions, then ∇u ∈ K is rigid for approximate solutions.

However, Tartar’s conjecture turns out to be true for connected sets, see Prob-
lem 8.8 (i). It is a remarkable result that (generalized) rank-one connections and
T4-configuration are in fact the only obstructions to rigidity for approximate solu-
tions, as was shown by Faraco and Székelyhidi Jr. in 2008 [114].

Finally, the five-gradient problem loses all rigidity:

Theorem 8.19 (Kirchheim–Preiss 2003 [160]). There are matrices A1, . . . , A5 ∈
R

2×2
sym without rank-one connections such that (8.12) is not rigid for exact solutions

and not rigid for approximate solutions. In particular, there exists a non-affine u ∈
W1,∞((0, 1)2; R

2) with

∇u(x) ∈ KKP := {A1, . . . , A5} f or a.e. x ∈ (0, 1)2.

Moreover, K qc
KP � KKP.
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It is remarkable that the matrices A1, . . . , A5 can be chosen to be symmetric.
The proof is very geometric, see Section 4.3 in [160] and also [223], where the
quasiconvex hull K qc

KP is identified explicitly.

8.5 The One-Well Inclusion

So far we have treated differential inclusions with linear and with discrete sets K .
However, despite their importance, none of these situations are applicable to the
problems of crystal microstructure described in Example 1.8, wherewe are interested
in differential inclusions of the form

{
u ∈ W1,∞(Ω; R

d),

∇u ∈ K := SO(d)U1 ∪ · · · ∪ SO(d)UN in Ω
(8.19)

for distinct matricesU1, . . . ,UN ∈ R
d×d . Every set SO(d)U forU ∈ R

d×d is called
a well. We will only consider the physically most relevant case where

detU1, detU2, . . . , detUN > 0.

In order to understand the microstructure that can form in such solids, we need to
investigate the rigidity properties of the inclusion (8.19).

By the polar decomposition of matrices (see Appendix A.1) we may write Ui =
QŨi with Q ∈ SO(d) and Ũi symmetric and positive definite. As we can absorb Q
into the SO(d)-factor in the well, we could assume in all of the following that theUi

are symmetric and positive definite to start with.
For the one-well problem, via a coordinate transformation wemay in fact suppose

that U1 = Id. We also observe that there are no rank-one connections in the well
SO(d). Indeed, assume that there were Q, R ∈ SO(d)with R = Q+a⊗b for some
a, b ∈ R

d \ {0} with |a| = 1 (without loss of generality). Then,

S := RQT = Id + a ⊗ (Qb) =: Id + a ⊗ b̂ ∈ SO(d).

Thus,

Id+a⊗ b̂+ b̂⊗a+|̂b|2a⊗a = SST = Id = ST S = Id+a⊗ b̂+ b̂⊗a+|a|2b̂⊗ b̂,

whereby b̂ = λa for some λ �= 0. Now take a rotation P ∈ SO(d) with Pa = e1.
Then,

det(PSPT ) = det(Id + λe1 ⊗ e1) = 1 + λ �= 1,
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contradicting the group property of SO(d). Hence, there are no rank-one connections
in SO(d). Consequently, we may hope that the one-well inclusion is rigid. This is
indeed true and in fact a classical result.

Theorem 8.20 (Reshetnyak 1967 [225]). For K := SO(d) the one-well inclu-
sion (8.19) is strongly rigid. In particular, K qc = K.

Remark 8.21. The same result holds if u ∈ W1,∞ is replaced with u ∈ W1,d(Ω; R
d)

in (8.19), as can be seen from the proof.

Proof. Step 1: Rigidity for exact solutions. Since cof Q = Q for all Q ∈ SO(d)

(see Appendix A.1) we have for every u ∈ W1,∞(Ω; R
d) with ∇u ∈ SO(d) almost

everywhere that
div cof ∇u = �u.

On the other hand, by the Piola identity (5.10), div cof ∇u = 0. Thus, our u is
harmonic and hence smooth (see Example 3.15 or Example 8.4). Recalling that | �|
for us always means the Frobenius norm, |∇u|2 = tr[(∇u)T∇u] = d and so

2|∇2u|2 = 2∇u · ∇�u + 2|∇2u|2 = �
[|∇u|2] = 0.

Thus, ∇u is constant.
Step 2: Strong rigidity. As a preparation define

g(A) := |A|d − dd/2 det A, A ∈ R
d×d ,

which satisfies g ≥ 0 and g(A) = 0 if and only if A = αQ for some Q ∈ SO(d) and
α ≥ 0. To see the first claim we assume det A > 0 and use the polar decomposition
to write A = QS with Q ∈ SO(d) and S symmetric and positive definite and then
diagonalize S as GT SG = D = diag(λ1, . . . , λd) with G ∈ R

d×d orthogonal and
λ1, . . . , λd ≥ 0. We compute

det A = λ1 · · · λd

≤
(

λ1 + · · · + λd

d

)d

≤ d−d/2
(
λ2
1 + · · · + λ2

d

)d/2

= d−d/2|D|d
= d−d/2|A|d ,

where we used the vector norm inequality | �|1 ≤ √
d| �|2 and the orthogonal invari-

ance of the Frobenius norm. For the second claim, the above inequalities are in fact
equalities, which is the case if and only if λ1 = · · · = λd =: α, that is, A = αQ.
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Now suppose that (u j ) ⊂ W1,∞(Ω; R
d) is an approximate solution of (8.19),

that is, (u j ) ⊂ W1,∞(Ω; R
d) with u j

∗
⇀ u for some map u ∈ W1,∞(Ω; R

d) and
dist(∇u j ,SO(d)) → 0 in measure. Then,

0 ≤
∫

Ω

g(∇u) dx

=
∫

Ω

|∇u|d − dd/2 det∇u dx

≤ lim inf
j→∞

∫
Ω

|∇u j |d − dd/2 det∇u j dx

= lim inf
j→∞

∫
Ω

g(∇u j ) dx

= 0,

where we used that the Ld -norm is weakly* lower semicontinuous and the deter-
minant is weakly* continuous by Lemma 5.10. Hence, all inequalities are in fact
equalities and we conclude that

g(∇u) = 0 a.e. and ‖∇u j‖Ld → ‖∇u j‖Ld .

This implies that ∇u j → ∇u in Ld by the Radon–Riesz Theorem A.14 and conse-
quently

∇u j → ∇u in measure.

Moreover, ∇u(x) = α(x)Q(x) with α(x) ≥ 0 and Q(x) ∈ SO(d) for almost every
x ∈ Ω . On the other hand, lim j→∞ |∇u j (x)|2 = d for almost every x ∈ Ω , whereby
also |∇u(x)|2 = d. Thus, α(x) = 1 almost everywhere and so u is an exact solution
to our differential inclusion ∇u(x) ∈ SO(d). Then, we may conclude that ∇u is
constant via the exact rigidity proved in Step 1. This establishes the strong rigidity.
The fact that K qc = K then follows from Lemmas 8.7 (i) and 8.8 (ii). �

We mention that there is also a quantitative one-well rigidity estimate:

Theorem 8.22 (Friesecke–James–Müller 2002 [127]). Let u ∈ W1,p(Ω; R
d), p ∈

(1,∞). Then,

inf
Q∈SO(d)

∫
Ω

|∇u − Q|p dx ≤ C
∫

Ω

dist(∇u,SO(d))p dx,

where C = C(Ω, p) > 0 is a constant that only depends on Ω and p.

This result can be seen as a nonlinear analogue of the Korn inequality

‖∇u‖L2 ≤ CK
(‖u‖2L2 + ‖E u‖2L2

)1/2
, (8.20)
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see Proposition I.1.1 in [273]. A proof of Theorem 8.22 can be found in the original
work [127] for p = 2 and in [73] for p ∈ (1,∞).

8.6 Multi-well Inclusions in 2D

On the topic of multi-well problems, we first consider the situation in two dimen-
sions. The reason that this case is easier than the corresponding problem in higher
dimensions is that for A, B ∈ R

2×2 we have the very useful equivalence

det(A − B) �= 0 ⇐⇒ rank(A − B) = 2,

which is of course false in higher dimensions.
The two-dimensional N -well problemwithout rank-one connections (and positive

determinants) can be completely analyzed as follows.

Theorem 8.23 (Švérak 1993 [253, 254]). Let

K := SO(2)U1 ∪ · · · ∪ SO(2)UN

for U1, . . . ,UN ∈ R
2×2 with detU1, detU2, . . . , detUN > 0. If K does not contain

any rank-one connections, then the multi-well inclusion (8.19) is strongly rigid.

For the proof we will need an elliptic regularity lemma.

Lemma 8.24. Let K ⊂ R
2×2 be compact and non-empty with the property that

det(A − B) ≥ β|A − B|2 for all A, B ∈ K and some β > 0. (8.21)

Then, for u ∈ W1,∞(Ω; R
2) satisfying ∇u ∈ K almost everywhere it holds that

u ∈ W2,2
loc (Ω; R

2).

Proof. Recall fromSection3.2 the definitionof the k’th differencequotient (k = 1, 2)
of u,

Dh
k u(x) := u(x + hek) − u(x)

h
, h ∈ R \ {0}.

Applying (8.21) to ρ(x)(∇u(x + hek) − ∇u(x)), where ρ ∈ C∞
c (Ω; [0, 1]) is a

cut-off function, and integrating, we get

β

∫
Ω

ρ2|Dh
k∇u|2 dx ≤

∫
Ω

det[ρDh
k∇u] dx . (8.22)

By the identity (8.15),
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∫
Ω

det[ρDh
k∇u] dx

=
∫

Ω

det
[∇(ρDh

k u) − Dh
k u ⊗ ∇ρ

]
dx

=
∫

Ω

det[∇(ρDh
k u)] − cof [∇(ρDh

k u)] : (Dh
k u ⊗ ∇ρ) + det[Dh

k u ⊗ ∇ρ] dx

≤ 0 + C
∫

Ω

|∇(ρDh
k u)| · |Dh

k u| · |∇ρ| + |Dh
k u|2 · |∇ρ|2 dx

≤ C
∫

Ω

ρ|Dh
k∇u| · |Dh

k u| · |∇ρ| dx + 2C
∫

Ω

|Dh
k u|2 · |∇ρ|2 dx

≤ β

2

∫
Ω

ρ2|Dh
k∇u|2 dx + C̃

∫
Ω

|Dh
k u|2 · |∇ρ|2 dx,

where we also used that the determinant is a null-Lagrangian, see Lemma 5.8, and
Young’s inequality (with δ := β/C). Combine this with (8.22) to get the estimate

∫
Ω

ρ2|Dh
k∇u|2 dx ≤ 2C̃

β

∫
Ω

|Dh
k u|2 · |∇ρ|2 dx,

where the term on the right-hand side is bounded uniformly in h by Lemma 3.12 (i).
By part (ii) of that lemma we then conclude that u ∈ W2,2

loc (Ω; R
2). �

Proof of Theorem 8.23. The idea is to reduce to the one-well inclusion.
Since there are no rank-one connections in K , we have for all i, j ∈ {1, . . . , N },

i �= j , and all Q, R ∈ SO(2) that

det(QUi − RUj ) �= 0.

It can be shown that this expressionmust be positive for all Q, R ∈ SO(d) or negative
for all Q, R ∈ SO(d) since SO(2) × SO(2) is connected, see Problem 8.8 (i). In the
following we only treat the case

det(A − B) > 0 for all A, B ∈ K with A �= B; (8.23)

the other case is analogous.
We first prove the quantitative estimate

det(A − B) ≥ β|A − B|2 for all A, B ∈ K and some β > 0. (8.24)

Set Ki := SO(2)Ui , i = 1, . . . , N , which are distinct, hence disjoint. If A ∈ Ki and
B ∈ K j for i �= j , then |A − B| > 0. The continuous and bounded function

(A, B) ∈ Ki × K j �→ g(A, B) := det(A − B)

|A − B|2



8.6 Multi-well Inclusions in 2D 213

is strictly positive by (8.23) on the compact and non-empty set Ki × K j , hence
bounded from below. Thus, for this choice of A, B, (8.24) holds.

For A, B ∈ Ki with a fixed i we assumeUi = Id, that is, A, B ∈ SO(2). Observe
that

det(A − B)

|A − B|2 = 1

2
· det(Id − AT B)

|Id − AT B|2 .

It is well known that the tangent space of SO(2) at the identity matrix consists of all
skew-symmetric matrices (this is really a restatement of the fact that the Lie algebra
of the Lie group SO(2) is so(2), the vector space of all skew-symmetric matrices).
In particular, if Q j := AT

j B j → Id for A j , Bj ∈ SO(2), then

Id − Q j

|Id − Q j | → W, where WT = −W, |W | = 1.

Thus,

lim
j→∞

det(Id − Q j )

|Id − Q j |2 = · lim
j→∞ det

(
Id − Q j

|Id − Q j |
)

= detW > 0.

Here we used that a non-zero skew-symmetric matrix W ∈ R
2×2 has two non-zero

eigenvalues of the form ±iα, α ∈ R and thus detW = α2 > 0. This implies
that the function g is continuous, strictly positive, and bounded on SO(2) × SO(2).
Thus, (8.24) also holds in that case.

The rigidity for exact solutions u ∈ W1,∞(Ω; R
2) with ∇u ∈ K almost every-

where now follows readily: By Lemma 8.24 we conclude that∇u ∈ W1,2(Ω; R
2×2).

Then, ∇u ∈ Ki almost everywhere for one i ∈ {1, . . . , N }; otherwise there would
be a jump in ∇u. Thus, Theorem 8.20 becomes applicable and we conclude that ∇u
is almost everywhere constant. This shows the rigidity for exact solutions.

With (8.23) already established, the rigidity for approximate solutions follows
directly fromLemma 8.13.We can hence conclude strong rigidity by invoking Corol-
lary 8.9. �

A special case of the preceding result concerns the two-well problem in two space
dimensions:
{
u ∈ W1,∞(Ω; R

2), U1,U2 ∈ R
2×2, U1 �= U2, detU1, detU2 > 0,

∇u ∈ K := SO(2)U1 ∪ SO(2)U2.
(8.25)

We can normalize U1,U2 to the case

U1 = Id =
(
1
1

)
�= U2 =

(
α

β

)
, 0 < α ≤ β, αβ ≥ 1.

Indeed, assume that detU2 ≥ detU1 > 0. Then, right-multiplying by U−1
1 (which

transforms u correspondingly), we can reduce to the case when U1 = Id and
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detU2 ≥ 1. Then, use the polar decomposition for matrices (see Appendix A.1)
and a diagonalization (of the resulting symmetric and positive definite matrices)
to further reduce to the case when U2 = diag(α, β) with 0 < α ≤ β. Because
detU2 ≥ 1, it necessarily also follows that αβ ≥ 1.

In this case, we can explicitly expose the rank-one connections in the set K :

Lemma 8.25. Let 0 < α ≤ β with αβ ≥ 1 and set

K := SO(2) ∪ SO(2)

(
α

β

)
.

Then:

(i) If α > 1, then there are no rank-one connections in K .
(ii) If α = 1, then every matrix in K is rank-one connected to exactly one other

matrix in K .
(iii) If α < 1, then every matrix in K is rank-one connected to exactly two other

matrices in K .

Proof. Recall that for A, B ∈ K with A �= B we have that rank(A − B) = 1 if and
only if det(A − B) = 0. We showed toward the beginning of Section 8.5 that the
only possible rank-one connections in K are between the wells. So, for Q ∈ SO(2),
we are trying to find all R ∈ SO(2) such that

0 = det

(
Q − R

(
α

β

))
= det

(
Id − QT R

(
α

β

))
.

Via the identification R ↔ QT R =: S ∈ SO(2) we are thus trying to find all

S =
(

a b
−b a

)
with a2 + b2 = 1

such that

0 = det

(
Id − S

(
α

β

))
= det

(
1 − αa −βb

αb 1 − βa

)
= 1 − (α + β)a + αβ. (8.26)

In this case, a = (1 + αβ)/(α + β) ∈ (0,∞).
Ad (i). For α > 1 we have (using β > 1, which always follows from the above

conditions) that 0 < (1− α)(1− β) = 1− α − β + αβ, whereby necessarily a > 1.
This, however, contradicts the condition a2 + b2 = 1. Thus, there is no S ∈ SO(2)
such that (8.26) holds and consequently, for all Q, R ∈ SO(2) we have that Q and
Rdiag(α, β) are not rank-one connected.

Ad (ii), (iii). By a similar argument as for (i), for α ≤ 1 we have a ≤ 1. So,
with b := ±√

1 − a2 we find the solutions S, ST ∈ SO(2) of (8.26). Thus, R1 :=
QS, R2 := QST ∈ SO(2) are rank-one connected to Q. If α = 1, then a = 1,
b = 0, S = ST , and R1 = R2. Hence, (ii) follows. Finally, if α < 1, we have a < 1,
S �= ST , whereby also R1 �= R2. Thus, (iii) is also established. �
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It follows from this discussion that if we are interested in rigidity for (8.25), it
suffices to consider the case

K = SO(2) ∪ SO(2)

(
α

β

)
, 1 < α ≤ β.

In this situation, the strong rigidity of the corresponding differential inclusion follows
immediately from Theorem 8.23.

8.7 Two-Well Inclusions in 3D

The study of the two-well problem in three (and higher) dimensions is still incomplete
and in particular the following is still open:

Conjecture 8.26 (Kinderlehrer 1988, reported in [101, 182]). If K := SO(3)U1 ∪
SO(3)U2, where U1,U2 ∈ R

3×3 with detU1, detU2 > 0, contains no rank-one con-
nections, then the differential inclusion ∇u ∈ K is rigid for approximate solutions.

By similar arguments as in the last section, it can be shown that we may reduce
to the case

K = SO(3) ∪ SO(3)U

with

U =
⎛
⎝α1

α2

α3

⎞
⎠ , α1 ≥ α2 ≥ α3 > 0. (8.27)

Moreover, a calculation shows that there are no rank-one connections in K if and
only if α2 �= 1, see [153].

All currently known rigidity results for the three-dimensional two-well problem
need some form of strong incompatibility between the wells. We will only survey
the available results here.

Theorem 8.27 (Matos 1992 [182]). Let K be as in (8.27) such that α2 �= 1. If, with
cyclic indices i ∈ {1, 2, 3}, it holds that

(1 − αi )(1 − αi−1αi+1) ≥ 0 for at least one i ∈ {1, 2, 3},

then the two-well inclusion (8.19) is strongly rigid.
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Another result is the following:

Theorem 8.28 (Dolzmann–Kirchheim–Müller–Šverák 2000 [101]). Let K be as
in (8.27) with α2 �= 1. If

α1 ≥ α2 > 1 > α3 ≥ 1

3
or 3 > α1 > 1 > α2 ≥ α3 > 0,

then the two-well inclusion (8.19) is rigid for approximate solutions.

Finally, we remark that for the two-well problem there is a quantitative rigidity
result, even for arbitrary dimensions. For this, call disjoint non-empty compact sets
K1, K2 ⊂ R

m×d strongly incompatible if for every gradient Young measure ν ∈
GY∞(Ω; R

m×d) (Ω ⊂ R
d any Lipschitz domain) it holds that if supp νx ⊂ K1∪K2

for almost every x ∈ Ω , then either supp νx ⊂ K1 for almost every x ∈ Ω or
supp νx ⊂ K2 for almost every x ∈ Ω .

Theorem 8.29 (Chaudhuri–Müller 2004 [61]). Let K1, K2 ⊂ R
m×d be disjoint,

non-empty, compact, and strongly incompatible sets and let p ∈ [1,∞). Then,

min

(∫
Ω

dist(∇u, K1)
p dx,

∫
Ω

dist(∇u, K2)
p dx

)
≤ C

∫
Ω

dist(∇u, K1∪K2)
p dx,

where C = C(Ω, p) > 0 is a constant.

Note that here, curiously, the case p = 1 is allowed in contrast to Theorem 8.22.
A result for more than two wells can be found in [62].

8.8 Compensated Compactness

We finish this chapter with a more abstract look at rigidity. One can view the strong
rigidity of a differential inclusion ∇u ∈ K , where K ⊂ R

m×d is compact, as the
following “weak-to-strong” convergence principle:

(Vj ) ⊂ L∞(Ω; R
m×d)

Vj
∗

⇀ V in L∞

curl Vj = 0 as distributions

dist(Vj , K ) → 0 in measure

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒
{
h(Vj ) → h(V ) in measure

for all bounded h ∈ C(Rm×d).

Here, curl V := (∂i V k
j − ∂ j V k

i )i, j,k (in the sense of distributions). This formulation
stresses that it is the interplay between the differential constraint curl Vj = 0 and the
nonlinear pointwise condition dist(Vj , K ) → 0 that ensures convergence inmeasure,
which is equivalent to the absence of oscillations. Exploring this interaction between
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pointwise and differential constraints systematically is the core idea of the theory of
compensated compactness.

Even in the absence of a general weak-to-strong convergence principle as above,
we have already seen situations where certain nonlinear expressions commute with
the operation of taking weak(*) limits. Most prominently, we showed the weak
continuity of minors in Lemma 5.10.

In order to set the stage for a general result, we letA be a homogeneous first-order
linear PDE operator with constant coefficients,

A :=
d∑

l=1

Al∂l , (8.28)

where Al ∈ R
M×N , l = 1, . . . , d (M, N ∈ N). The system of PDEs

A V = 0, V ∈ L2(Ω; R
N ),

in the following is to be interpreted in the W−1,2-sense, that is, we require

〈
V,A Tw

〉 =
〈
V,

d∑
l=1

AT
l ∂lw

〉
= 0 for all w ∈ W1,2(Ω; R

M).

We define the wave cone of A as

ΛA :=
⋃

ξ∈Sd−1

kerA(ξ), where A(ξ) := (2π i)
d∑

l=1

Alξl .

Here, A(ξ) is called the symbol of A . The wave cone contains all amplitudes for
whichA is not elliptic.As such, it plays a fundamental role in the study of oscillations
in sequences of functions (Vj ) ⊂ L2(Ω; R

N ) with Vj ⇀ V in L2 and A Vj → 0 in
W−1,2. Let us illustrate this with a purely formal, yet instructive, argument: For the
limit V we must have

A V = 0.

Fourier transforming this, we get

V̂ (ξ) ∈ kerA(ξ) ⊂ ΛA for all ξ ∈ R
d \ {0}.

Thus, intuitively, all mass of V̂ j (ξ) outside of kerA(ξ) has to disappear in the limit
and cannot contribute to oscillations in the sequence (Vj ).

This fact is rigorously expressed in the following fundamental result.



218 8 Rigidity

Theorem 8.30 (Tartar 1979 [267]). Assume that (Vj ) ⊂ L2(Ω; R
N ) with Vj ⇀ V

in L2 and that (A Vj ) j is (strongly) precompact inW
−1,2
loc (Ω; R

M). Suppose further-
more that q : R

N → R is a quadratic form with

q(A) ≥ 0 for all A ∈ ΛA . (8.29)

Then, if q(Vj )
∗

⇀ μ inM (Ω), it holds that

q(V ) ≤ μ as measures on Ω.

In particular, if q(A) = 0 for all A ∈ ΛA , then q(Vj )
∗

⇀ q(V ) inM (Ω).

Here and in the following we identify q(Vj )with the measure q(Vj )L d Ω . We
also note that condition (8.29) is equivalent to the convexity of q in the directions in
ΛA .

Proof Step 1. We first show that we may assume that V ≡ 0. Indeed, set

Ṽ j := Vj − V .

Then, Ṽ j ⇀ 0 in L2 and (A Ṽ j ) j is (strongly) precompact in W−1,2
loc (Ω; R

m). If
q(A) = AT SA (A ∈ R

N ) with a symmetric matrix S ∈ R
N×N
sym , we compute

q(Ṽ j ) = q(Vj ) − 2V T
j SV + q(V )

∗
⇀ μ − q(V ) =: μ̃ inM (Ω).

Thus, it remains to show that μ̃ ≥ 0. In the following we drop the tildes.
Step 2. Let φ ∈ C∞

c (Ω) and set Wj := φVj . Then,

A Wj = φA Vj +
d∑

l=1

AlVj∂lφ

and this sequence is (strongly) precompact in the space W−1,2(Ω; R
M) since the

second term is uniformly bounded in L2(Ω; R
M), which is compactly embedded in

W−1,2(Ω; R
M). Thus, we may assume that

A Wj → 0 in W−1,2. (8.30)

Here, the convergence to zero follows since 〈A Wj ,w〉 = −〈Wj ,A Tw〉 → 0 for all
w ∈ W1,2(Ω; R

M) and Wj ⇀ 0 in L2. Moreover,

q(Wj ) = φ2q(Vj )
∗

⇀ φ2μ inM (Ω).

Step 3. In the following we will show that

∫
Ω

φ2 dμ = lim
j→∞

∫
Ω

q(Wj ) dx ≥ 0 for all φ ∈ C∞
c (Ω), (8.31)
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which will prove the claim.We assume that q is extended toC
N as a Hermitian form,

that is, for q(A) = AT SA with S ∈ R
N×N set

q(Z) := Z∗SZ Z ∈ C
N .

If Z = A + iB ∈ ΛA + iΛA , we have

Re q(Z) = Re
[
q(A) + q(B) + i(A∗SB − B∗SA)

] = q(A) + q(B) ≥ 0. (8.32)

By the (vector-valued) Parseval relation (A.5),

∫
Ω

q(Wj ) dx =
∫

Ω

W ∗
j SWj dx =

∫
Ŵ ∗

j SŴ j dξ =
∫

q(Ŵ j ) dξ

=
∫

Re q(Ŵ j ) dξ,

where the last equality follows from the identity Ŵ j (ξ) = Ŵ j (−ξ) since W is
real-valued. Hence, to prove our claim (8.31), we will in the following establish

lim
j→∞

∫
Re q(Ŵ j ) dξ ≥ 0. (8.33)

In order to see this, we split the integral’s domain into B(0, 1) and R
d \ B(0, 1) and

prove (8.33) separately for these two parts.
On B(0, 1) this claim is straightforward: Since Wj ⇀ 0 in L2 and the Wj ’s have

uniformly bounded supports, it holds that

Ŵ j (ξ) =
∫

Wj (x)e
−2π ix ·ξ dx → 0 for all ξ ∈ R

d .

Moreover, |Ŵ j (ξ)| ≤ ‖Wj‖L1 ≤ C for all ξ ∈ R
d and a uniform constant C > 0.

Thus,
Ŵ j → 0 in L2

loc.

Consequently,

lim
j→∞

∫
B(0,1)

Re q(Ŵ j ) dξ = 0. (8.34)

Step 4. We next show that for all δ > 0 there exists a constant Cδ > 0 such that

Re q(Z) ≥ −δ|Z |2 − Cδ|A(η)Z |2 (8.35)

for all Z ∈ C
N and all η ∈ S

d−1. Indeed, if this was not the case there would exist
δ > 0 and sequences (Zm) ⊂ C

N with |Zm | = 1 and (ηm) ⊂ S
d−1 with the property

Re q(Zm) < −δ|Zm |2 − m|A(ηm)Zm |2.
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Without loss of generality we may assume that ηm → η and Zm → Z with |Z | = 1.
Then, there is a constant C > 0 such that

|A(ηm)Zm |2 ≤ C

m
,

and thus Z ∈ kerC A(η) ⊂ ΛA + iΛA . By (8.32), Re q(Z) ≥ 0. On the other hand,

Re q(Z) = lim
m→∞Re q(Zm) ≤ −δ,

a contradiction. Hence, (8.35) must hold.
Step 5. From (8.30) we get that (id−�)−1/2[A Wj ] → 0 in L2, whereby

1

(1 + 4π2|ξ |2)1/2 A(ξ)Ŵ j (ξ) → 0 in L2.

Thus, since (1 + 4π2|ξ |2)1/2 ∼ |ξ | for |ξ | ≥ 1, we have also

A

(
ξ

|ξ |
)
Ŵ j (ξ) = 1

|ξ |A(ξ)Ŵ j (ξ) → 0 in L2(Rd \ B(0, 1)). (8.36)

Applying (8.35) for Z := Ŵ j (ξ) and η := ξ/|ξ |, we get
∫
Rd\B(0,1)

Re q(Ŵ j (ξ)) dξ

≥ −
∫
Rd\B(0,1)

δ|Ŵ j (ξ)|2 dξ − Cδ

∫
Rd\B(0,1)

∣∣∣∣A
(

ξ

|ξ |
)
Ŵ j (ξ)

∣∣∣∣
2

dξ.

Combine this with (8.36) to deduce that

lim
j→∞

∫
Rd\B(0,1)

Re q(Ŵ j (ξ)) dξ ≥ −Cδ

for a constant C > 0, where we also used that the Ŵ j are uniformly norm-bounded
in L2(Rd). Thus, as δ > 0 was arbitrary,

lim
j→∞

∫
Rd\B(0,1)

Re q(Ŵ j (ξ)) dξ ≥ 0. (8.37)

From (8.34) and (8.37) we conclude (8.33), finishing the proof in the case q ≥ 0 on
ΛA .

If q ≡ 0 on ΛA , simply apply the first part of the theorem to q and to −q. �
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Corollary 8.31. Assume that (u j ) ⊂ W1,2(Ω; R
m) with u j ⇀ u ∈ W1,2(Ω; R

m).
Suppose furthermore that q : R

m×d → R is a quadratic form with

q(A) ≥ 0 for all A ∈ R
m×d with rank A ≤ 1.

Then, ∫
Ω

φq(∇u) dx ≤ lim inf
j→∞

∫
Ω

φq(∇u j ) dx

for all φ ∈ C0(Ω). Moreover, if ∇u ≡ F ∈ R
m×d is constant and u j |∂Ω = Fx, then

q(F) ≤ lim inf
j→∞ −

∫
Ω

q(∇u j ) dx . (8.38)

In particular, q is quasiconvex.

Proof. This is just a reformulation of Tartar’s Theorem 8.30 for (with an obvious
abuse of notation)

A V := curl V := (
∂ j V

k
i − ∂i V

k
j

)k=1,...,m
i, j=1,...,d .

To explain our particular choice of “curl”, we note that for any u ∈ C2(Rd; R
m) it

holds that

∂i [∇u]kj = ∂i∂ j u
k = ∂ j∂i u

k = ∂ j [∇u]ki for all i, j = 1, . . . , d; k = 1, . . . ,m.

It is a classical result that these integrability conditions in fact characterize gradients
on simply connected domains.

We can now easily compute that A ∈ kerA(ξ) for ξ ∈ S
d−1 if and only if

ξ j A
k
i = ξi A

k
j for all i, j = 1, . . . , d; k = 1, . . . ,m.

Thus, Ak
i = ξi Ak

j/ξ j for all j such that ξ j �= 0. This is only possible if A = a ⊗ ξ

for some a ∈ R
m . Hence,

Λcurl =
⋃

ξ∈Sd−1

kerA(ξ) = {
a ⊗ ξ ∈ R

m×d : a ∈ R
m, ξ ∈ S

d−1
}
.

The additional assertion (8.38) from the statement of the corollary follows by
extending all u j to a larger domain Ω ′ � Ω and applying Tartar’s theorem there.
The quasiconvexity of q is then a consequence of a construction like the one in the
proof of Proposition 5.18. �

As the most well-known compensated compactness result we have the following
div-curl lemma:
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Lemma 8.32 (Murat–Tartar 1974 [209]). Assume that the sequences (u j ), (v j ) ⊂
L2(Ω; R

d) are such that u j ⇀ u, v j ⇀ v in L2 and that

(div u j ) j , (curl v j ) j are precompact inW
−1,2
loc .

Then,
u j · v j ⇀ u · v in L1

loc.

Proof. We set Vj := (u j , v j ) and A := (div, curl). Then, we may compute (see
Problem 8.9)

ΛA = {
(a, b) ∈ R

d × R
d : a ⊥ b

}
.

Thus, for the quadratic function q(a, b) := a · b we have that q vanishes on ΛA and
the conclusion thus follows from Tartar’s theorem. �

Let us finally remark that one cannot generalize Tartar’s Theorem 8.30 to non-
quadratic functions h that are convex in the directions of ΛA .

Example 8.33. Take the rank-one convex but not quasiconvex function h from
Švérak’s Example 7.10 (which has 4-growth) and set A := curl (defined as in
the proof of Corollary 8.31 above). By Proposition 5.18, the functional

F [u] :=
∫

(0,1)2
h(∇u(x)) dx, u ∈ W1,4((0, 1)2; R

3),

is not weakly lower semicontinuous. Thus, there exists a sequence of maps (u j ) ⊂
W1,4((0, 1)2; R

3) with u j ⇀ u in W1,4 and such that

F [u] > lim inf
j→∞ F [u j ].

In particular, for this h (an L4-version of) Tartar’s Theorem 8.30 fails.

This can be explained as follows: In the case A = curl, the positivity of the
quadratic form q on the wave coneΛcurl = { a⊗b : a ∈ R

m, b ∈ R
d } (see the proof

of Corollary 8.31) implies the rank-one convexity of the quadratic form, as can be
easily verified. This rank-one convexity, however, is equivalent to the quasiconvexity
of the quadratic form by Problem 5.7. Thus, Tartar’s theorem in this case just says
that (a version of) lower semicontinuity holds, which is not surprising with all the
theory that we have available now. As we have seen before, Švérak’s (non-quadratic)
example precisely distinguishes between these two notions of convexity and thus
between the validity or non-validity of weak lower semicontinuity.



Notes and Historical Remarks 223

Notes and Historical Remarks

The origin of the rigidity theory as presented in this chapter lies in the Murat–
Tartar Div-Curl Lemma 8.32, first published in [209] (but established four years
before in 1974) and the Ball–James Rigidity Theorem 8.1 from [30]. The latter can
further be traced back toHadamard’s jump condition: For amatrix-valued function
V : R

d → R
m×d of the form

V (x) =
{
A if x · n ≤ 0,

B if x · n > 0,

where A, B ∈ R
m×d and n ∈ S

d−1, to be the gradient of a function u : R
d → R

m , it
is necessary and sufficient that

A − B = a ⊗ n for some a ∈ R
m .

Many related rigidity and compensated compactness theorems have been proved
since, of which we could only present a selection.

The term “rigidity” itself is unfortunately used in different ways by different
authors. In fact, any kind of restriction on the shape of a map is sometimes called
“rigidity”. Here, however, we reserve this term for the conclusion that a map is affine.
Our definitions of rigidity for exact and for approximate solutions followmost closely
those in Kirchheim’s influential lecture notes [160]. In particular, we require linear
boundary values along approximate solutions, but no boundary condition for exact
solutions. This is explained as follows: Many differential inclusions with a discrete
set K are trivially rigid when we impose affine boundary conditions, even if there
are rank-one connections in K . On the other hand, rigidity for approximate solutions
is most interesting when imposing linear (or affine) boundary conditions, see the
discussion in Section 8.3.

Theorem 8.3 is originally contained in a more general result of Tartar [268]. It is
called the “span restriction” in [43]. A special case of Theorem 8.5 (i) for d = m = 2
was shown in Lemma 1.4 of [90], also see the proof of Theorem 3.95 in [15]. The
“blow-up technique” mentioned in connection with the polar inclusion (8.10) is
systematically explained in great detail in [123, 124]. Theorem 8.11 was first estab-
lished in full in [249], which was never published. The rigidity for exact solutions
was known before, namely through more general results in [154] and an unpublished
manuscript by Zhang. The presented proof of rigidity for exact solutions, however, is
due to Kirchheim and reproduced in [203]. Our proof of approximate rigidity follows
an idea from [251] and also uses Lemma 8.13, which is from [253]. Another proof
is in [17] based on the theory of quasiregular mappings (which also mentions an
unpublished similar argument by Ball and James).

Constructions similar to the fundamental T4-configuration were probably first
employed by Scheffer [239], but its importance in the present context was only
realized after Tartar’s work, see [271], which refers to his work of 1983. Similar
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examples to Tartar’s were found in [21, 43, 215] (in particular, [43] adapted Tartar’s
original example to the present version with diagonal matrices).

The Young measure approach of Section 8.3 and the general compensated com-
pactness philosophy discussed at the beginning of Section 8.8 is again mostly due
to Tartar [267, 268, 270, 271]. This theory has also proved to be very fruitful in
the study of hyperbolic conservation laws, see Chapter XVI in [81] for an overview
and many references to the vast literature. Some recent investigations into various
notions of “incompatibility” between several sets K1, . . . , Kn , which generalizes our
notions of rigidity, can be found in [32] and the references cited therein.

The first part of Theorem 8.20 is (a version of) the classical Liouville theorem
(also see Problem 8.2 (ii)); the extension to Sobolev functions as well as part (ii) is
the work of Reshetnyak [225]. Our proof is due to Kinderlehrer [156].

The rigidity for the two-well problem in two dimensions and its extension to the
N -well problem are from [253, 254]. More general N -well problems for N ≥ 3 in
three dimensions were investigated by Kirchheim [159, 160].

A direct proof of the div-curl lemmausing elliptic regularity theory can be found in
Theorem 16.2.1 of [81]. In the context of such compensated compactness problems,
extensions of Young measure theory that allow one to pass to the limit in quadratic
expressions have been developed by Tartar [269] under the name “H-measures” and,
independently, by Gérard [130], who called them “micro-local defect measures”, cf.
the survey articles [126, 272].

Problems

8.1. Let A, B ∈ R
m×d with A − B = a ⊗ n (a ∈ R

m \ {0}, n ∈ S
d−1) and

let θ ∈ (0, 1). Set F := θ A + (1 − θ)B and prove that there exists a uniformly
W1,∞-bounded sequence (u j ) ⊂ W1,∞

Fx (Ω; R
m) that approximately solves the inclu-

sion ∇u ∈ {A, B} and ∇u j
∗

⇀ F in L∞ but not ∇u j → F in measure.

8.2. Consider a complex function f : C → C as a mapping f = (u, v) from R
2 to

itself (identify z = x + iy ∈ C with (x, y) ∈ R
2).

(i) Find a subspace L ⊂ R
2×2 such that ∇ f (x, y) ∈ L for all (x, y) ∈ R

2 is
equivalent to the (weak) Cauchy–Riemann equations:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= − ∂v

∂x
.

Thus prove that all (weakly) holomorphic functions are smooth.
(ii) Prove the following well-known theorem from complex analysis: Let f : C →

C be holomorphic with | f | = const. Then, f is constant.
(iii) ProveMontel’s theorem: A sequence of uniformly bounded holomorphic func-

tions f j : D → C on the unit disc D ⊂ C (or any other bounded open domain)
that converges to f : D → C pointwise or in measure converges in fact locally
uniformly and the limit f is itself holomorphic.
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8.3. Prove Theorem 8.5. Hint: Inspect the proof of the Ball–James Rigidity The-
orem 5.13 and also use Theorem 8.3 or prove the rigidity for exact solutions for
rank P0 ≥ 2 in the following alternative way: For u ∈ C1(Ω; R

m) satisfying
∇u(x) = P0g(x) with g ∈ C(Ω) first show the projection relation ∇g(x) =
(ξ · ∇g(x)T )ξ T and conclude from there.

8.4. Even before Theorem 8.16 was established, it was already known that the inclu-
sion ∇u ∈ KT4 with KT4 from Proposition 8.17 is rigid for exact inclusions. Prove
this in an elementary way. Hint: Inspect the proof of rigidity for exact solutions in
Theorem 8.11 for inspiration.

8.5. Prove that the sequence (u j ) ⊂ W1,∞((0, 1)2; R
m) that was constructed in

Proposition 8.17 generates the homogeneous Young measure

ν = 8

15
δA1 + 4

15
δA2 + 2

15
δA3 + 1

15
δA4 .

8.6. Find a non-empty compact set K ⊂ R
m×d such that ∇u ∈ K is not rigid for

exact solutions, but rigid for approximate solutions.

8.7. Show that if the set K ⊂ R
m×d is compact, then K qc is also compact.

8.8. Let K ⊂ R
2×2 be a compact, non-empty and connected set without rank-one

connections.

(i) Show that it either holds that det(A − B) > 0 for all A, B ∈ K with A �= B
or det(A − B) < 0 for all A, B ∈ K with A �= B. Conclude that K is rigid for
approximate solutions and K qc = K . This proves Tartar’s conjecture for sets
K as above and was established by Šverák in 1993. Hint: Adapt the arguments
from Section 8.6.

(ii) Show that if K is a closed connected smoothmanifold and elliptic in the sense that
for all A ∈ K the tangent space of K at A does not contain rank-one directions,
then either det(A−B) > c|A−B|2 for all A, B ∈ K or det(A−B) < −c|A−B|2
for all A, B ∈ K . Conclude that every u ∈ W1,∞(Ω; R

2) with ∇u ∈ K is in
W2,2

loc (Ω; R
2).

8.9. Let “A := (div, curl)”, which needs to be defined properly in the sense
of (8.28). Then compute that

kerΛA = {
(a, b) ∈ R

d × R
d : a ⊥ b

}
.

8.10. Assume that (u j ), (v j ) ⊂ L∞(Ω) with u j
∗

⇀ u and v j
∗

⇀ v in L∞ and such
that (∂1u j ), (∂2v j ) exist in the weak sense and are uniformly bounded in L∞. Show
that then

u j · v j ∗
⇀ u · v in L∞.

Hint: Use Tartar’s Theorem 8.30.



Chapter 9
Microstructure

Motivated by the example on crystal microstructure in Section 1.8 and the remarks in
Section 8.3 about the connection of the quasiconvex hull to the relaxation of integral
functionals, in this chapter we continue our analysis of the differential inclusion

{
u ∈ W1,∞(Ω; R

m), u|∂Ω = Fx,

∇u ∈ K inΩ.
(9.1)

Here, K ⊂ R
m×d (d,m ≥ 2) is assumed to be compact and non-empty, and

F ∈ K qc.

Unlike in the previous chapter, however, now we consider the complementary case
where K qc

� K and there is no approximate rigidity (see Lemma 8.8 (i)).
In the first part of this chapter we concern ourselves with approximate solutions

to (9.1) and various hulls of K . As we have seen before, the structure of the quasicon-
vex hull K qc of K is intimately related to the rank-one connections in K . However,
we already encountered sets without rank-one connections that are not rigid for
approximate solutions, most strikingly the T4-configuration KT4, for which

K qc
T4 � KT4

since at least the intermediate matrices B1, B2, B3, B4 have to lie in K qc
T4. To compute

the quasiconvex hull of KT4 and of other sets we will introduce lower and upper
bounds on K qc in the form of the lamination-convex hull, the rank-one convex hull
and the polyconvex hull of K . If the upper and lower bounds agree, then they must
be equal to the quasiconvex hull as well.

It is a surprising fact, which we will study in the second part of this chapter, that
in many interesting applications (9.1) can also be solved exactly, but that non-trivial
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exact solutions necessarily display highly complex oscillations. The technique to con-
struct these exact solutions is nowadays customarily called convex integration and
is based on iterative addition of high-frequency, low-amplitude oscillations. Starting
from ideas first employed by John F. Nash and Mikhail Gromov, this tool has now
led to many astonishing results. Here, we only discuss the applications to microstruc-
ture, but similar techniques also have profound implications in geometry and fluid
dynamics. There are several approaches to convex integration and we present two of
them: the classical convex integration scheme based on in-approximations as well
as the abstract and elegant Baire category method.

9.1 Laminates and Hulls of Sets

In this and the next section we will consider several ways to compute or at least
estimate quasiconvex hulls.

For a non-empty compact set K ⊂ R
m×d we define the setM lc(K ) of laminates

of finite order supported on K as

M lc(K ) :=
∞⋃
i=0

M lc,i (K ),

where

M lc,0(K ) := {
δA : A ∈ K

}
,

M lc,i+1(K ) := {
θμ1 + (1 − θ)μ2 : μ1, μ2 ∈ M lc,i (K ), rank([μ1] − [μ2]) ≤ 1,

θ ∈ [0, 1] }
.

We call an element ofM lc,i (K )\⋃i−1
j=0 M

lc, j (K ) a laminate of order i . Lemma 9.3
below will show that all elements of M lc(K ) are homogeneous gradient Young
measures. Problem 9.2 contains an alternative characterization of M lc(K ). The
lamination-convex hull of K is defined to be

K lc := { [μ] : μ ∈ M lc(K )
}
.

Thus, K lc is obtained from K by inductively adding rank-one lines. Indeed, we could
also write

K lc =
∞⋃
i=0

K lc,i ,
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Fig. 9.1 Laminates of order 0, 1, and 2 (only one element of the generating sequence and its
rank-one diagram as well as the gradient schematic are shown)

where

K lc,0 := K ,

K lc,i+1 := {
θ A + (1 − θ)B : A, B ∈ K lc,i , rank(A − B) ≤ 1, θ ∈ [0, 1] }

.

We illustrate laminates of different orders in Figure 9.1.

Example 9.1. Set for some a ∈ R
m , b ∈ R

d ,

K := {0, a ⊗ b} ⊂ R
m×d .

Then,
K lc = K qc = K ∗∗ = {

θa ⊗ b : θ ∈ [0, 1] }
,

as can be easily verified.

We will see in Lemma 9.3 below that the lamination-convex hull K lc is a lower
bound on the quasiconvex hull K qc in the sense that K lc ⊂ K qc. Unfortunately, K lc

is often strictly smaller than K qc, limiting its usefulness. For instance, since there
are no rank-one connections in the T4-configuration KT4, we get that K lc

T4 = KT4, so
we have not come nearer to bounding K qc

T4 from below. The reason for this is that the
procedure employed in the proof of Proposition 8.17 to construct non-trivial elements
of M qc(KT4) and thus of points in K qc

T4 \ KT4, needed infinitely many lamination
steps. Consequently, we define the set of laminates of infinite order (also called
rank-one convex measures) supported on a non-empty compact set K ⊂ R

m×d as

M rc(K ) := {
μ ∈ M 1(K ) : μ j

∗
⇀ μ for some (μ j ) ⊂ M lc(K )

}
.

The corresponding rank-one-convex hull of K is

K rc := { [μ] : μ ∈ M rc(K )
}
.
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Theorem 9.2 (Pedregal 1993 [221]). Let μ ∈ M 1(K ). Then, μ ∈ M rc(K ) if and
only if

h([μ]) ≤
∫

h dμ

for all rank-one convex functions h : R
m×d → R.

A proof of this fact can be found in [221]. Thus,

M rc(K ) =
{

μ ∈ M 1(K ) : h([μ]) ≤
∫

h dμ for all rank-one convex

functions h ∈ C(Rm×d)

}
.

We also define the set of polyconvex measures supported on K as

M pc(K ) := {
μ ∈ M 1(K ) : M([μ]) = 〈M, μ〉 for all minorsM

}
,

where the minors are defined as in Section 5.2. Recall that for m = d = 3, we can
equivalently choose M ∈ {id, cof, det}. Then, the polyconvex hull of a non-empty
compact set K ⊂ R

m×d is defined as

K pc := { [μ] : μ ∈ M pc(K )
}
.

Since the minors are precisely the quasiaffine functions, see Corollary 5.9, we get
immediately that

M pc(K ) =
{

μ ∈ M 1(K ) : h([μ]) ≤
∫

h dμ for all polyconvex h ∈ C(Rm×d)

}
.

There are further equivalent ways to define the various hulls, see Problem 9.3 and
Problem 9.4.

Lemma 9.3. For a compact set K ⊂ R
m×d it holds that

M lc(K ) ⊂ M rc(K ) ⊂ M qc(K ) ⊂ M pc(K )

and thus
K ⊂ K lc ⊂ K rc ⊂ K qc ⊂ K pc ⊂ K ∗∗.

Proof. The inclusionM lc(K ) ⊂ M rc(K ) is trivial.Moreover, it follows fromCorol-
lary 5.12 in conjunctionwith Corollary 5.9 that for any homogeneous gradient Young
measure μ ∈ M qc(K ) and any minor M we have M([μ]) = 〈M, μ〉, whereby
μ ∈ M pc(K ).

It remains to show M lc(K ) ⊂ M qc(K ), from which it follows that also
M rc(K ) ⊂ M qc(K ) by the weak*-closedness of M qc(K ), which can be seen by a
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diagonal argument similar to the one in the proof of Lemma 7.17. We proceed induc-
tively. For μ ∈ M lc,0(K ) there is nothing to show. For the inductive step assume
that μ ∈ M lc,i+1(K ) is of the form

μ = θμ1 + (1 − θ)μ2, θ ∈ [0, 1],

where μ1, μ2 ∈ M lc,i (K ) ⊂ M qc(K ). Set A1 := [μ1], A2 := [μ2] and F :=
θ A1 + (1 − θ)A2, such that A1 − A2 has rank at most one.

Apply the construction of the proof of Proposition 5.3 to get a sequence (v j ) ⊂
W1,∞

Fx (Q; R
m), where Q ⊂ R

d is a rotated unit-volume cube, with

∇v j
Y→ θδA1 + (1 − θ)δA2 .

Now, on each solid piece of Q where ∇v j is equal to A1, say R( j)
1 , . . . , R( j)

M ⊂ Q,
we re-define ∇v j to be equal to the n’th element of a generating sequence for μ1 (by
Lemma 4.14 we may choose the domain of definition freely and by Lemma 4.13 we
can ensure that the sequence has boundary values A1x). Similarly, if ∇v j is equal to
A2 on the solid pieces S

( j)
1 , . . . , S( j)

N ⊂ Q, then re-define ∇v j to be equal to the n’th
element of a generating sequence for μ2. This yields a map wj,n ∈ W1,∞

Fx (Q; R
m)

(n is the index of the “inner” sequences), which agrees with v j outside the sets
R( j) := ⋃

m R( j)
m and S( j) := ⋃

m S( j)
m .

Let {ϕk ⊗ hk}k∈N ⊂ C0(Q) ⊗ C0(R
m×d) be the countable set of integrands from

Lemma 4.7. Then we we may choose n = n( j) sufficiently large so that

∣∣∣∣
∫
R( j)∪S( j)

hk(∇wj,n( j)) dx − |R( j)| ·
∫

hk dμ1 − |S( j)| ·
∫

hk dμ2 dx

∣∣∣∣ ≤ 1

j

for all k ≤ j . Since we also have that |R( j)| → θ and |S( j)| → 1 − θ as well as

∣∣∣∣
∫
Q\(R( j)∪S( j))

ϕkhk(∇v j ) dx

∣∣∣∣ → 0 as j → ∞,

we infer via Lemma 4.7 that ∇wj,n( j)
Y→ ν ∈ GY∞(Q; R

m×d) with

∫
Q

∫
hk dνx dx = θ

∫
hk dμ1 + (1 − θ)

∫
hk dμ2 for all k ∈ N.

Finally, using the averaging principle of Lemma 4.14 (this additional averaging is in
fact not really necessary, as one can check through a closer inspection of the proof
of Proposition 5.3), we get a sequence (u j ) ⊂ W1,∞

Fx (Q; R
m) such that

∇u j
Y→ ν = θμ1 + (1 − θ)μ2 = μ.

Thus, μ ∈ M qc(K ) and the proof is finished. �
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Fig. 9.2 The quasiconvex
hull K qc

T4 of the
T4-configuration (hatched
area and solid lines) in the
space of diagonal matrices
with entries α, β

As a first application of the preceding lemma, we may now calculate the various
hulls of the T4-configuration.

Proposition 9.4. For KT4 = {A1, A2, A3, A4} from Proposition 8.17 we have (see
Figure 9.2)

KT4 = K lc
T4 � K rc

T4 = K qc
T4 = K pc

T4 = {B1, B2, B3, B4}∗∗ ∪
4⋃

i=1

{Ai , Bi }∗∗,

where

B1 :=
(−1

1

)
, B2 :=

(−1
−1

)
, B3 := −B1, B4 := −B2.

Here, {B1, B2, B3, B4}∗∗ and {Ai , Bi }∗∗ denote the closed square with vertices
B1, B2, B3, B4 and the (closed) line segment from Ai to Bi , respectively.

Proof. The fact that KT4 = K lc
T4 is clear since there are no rank-one connections in

KT4.
Step 1. We first compute K rc

T4 as a lower bound on K qc
T4 and K pc

T4; this technique
is sometimes called the lamination method. By (the proof of) Proposition 8.17 we
have that the four intermediate matrices B1, B2, B3, B4 lie in K rc

T4. Hence also the
rank-one lines between Bi and Bi+1 lie in K rc

T4, where i ∈ {1, 2, 3, 4} is a cyclic
index. Since its edges are rank-one lines, the closed square {B1, B2, B3, B4}∗∗ then
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lies in K rc
T4 as well. Clearly, the additional rank-one lines {Ai , Bi }∗∗ also lie in that

set. So, we have shown that

K̂ := {B1, B2, B3, B4}∗∗ ∪
4⋃

i=1

{Ai , Bi }∗∗ ⊂ K rc
T4 ⊂ K qc

T4.

Step 2. Next, we show that K qc
T4 ⊂ K̂ , for which we employ the separation

method, which we already used in the proof of Theorem 8.11. We first observe that
since K qc ⊂ K ∗∗ and all matrices in K are diagonal, the same must hold for K qc.

Let F ∈ K qc and μ ∈ M qc(K ) with F = [μ]. In Lemma 8.14 we saw that the
function

det++(A) :=
{
det A if A is positive semidefinite,

0 otherwise,
A ∈ R

2×2
sym ,

is quasiconvex on symmetric matrices, i.e.,

det++(A) ≤ −
∫
B(0,1)

det++(A + ∇2ψ(z)) dz

for all A ∈ R
2×2
sym and all ψ ∈ W2,2

c (B(0, 1)). Then, A �→ det++(A − B1) is
also quasiconvex on symmetric matrices. This corresponds to shifting the whole
T4-configuration so that B1 = 0.

Via the Jensen-type inequality from Lemma 8.15, we thus get

det++(F − B1) ≤
∫

det++(A − B1) dμ(A) = 0.

The last equality follows since det++(Ai − B1) = 0 for i = 1, 2, 3, 4. Therefore, we
also must have det++(F − B1) = 0, that is, F − B1 is not positive definite. Thus, F
cannot lie in the hatched region in Figure 9.3.

Repeating this argument after rotating the T4-configuration, we see that it must
hold that F ∈ K̂ , whereby K qc

T4 ⊂ K̂ . Together with Step 1 we have thus shown that
K rc

T4 = K qc
T4 = K̂ .

Step 3.We finally prove that K pc ⊂ K̂ . In fact, the proof of this is the same as the
previous step since

det++
((

α

β

))
= α+β+,

where s+ := max{s, 0} for s ∈ R. So, det++ equals a polyconvex function on the
subspace of diagonal matrices. �
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Fig. 9.3 One step in the
determination of an upper
bound for K qc

T4

9.2 Multi-well Inclusions

Returning to the two-well problem in two dimensions, we now investigate the non-
rigid case. Thus, consider (after normalization)

K := SO(2) ∪ SO(2)U, U :=
(

α

β

)
, 0 < α ≤ 1 ≤ β, αβ ≥ 1. (9.2)

By Lemma 8.25, for α = 1 the two wells are simply rank-one connected and for
α < 1 they are doubly rank-one connected. In order to describe the hulls of K
efficiently, it is convenient to introduce the so-called conformal coordinates: For
any A ∈ K ∗∗ we may write

A =
(
y1 −y2
y2 y1

)
+

(
z1 −z2
z2 z1

)
U =: (y, z),

where y, z ∈ R
2 with

|y|2 = y21 + y22 ≤ 1 and |z|2 = z21 + z22 ≤ 1,

see Problem 9.5.
The following result then completely describes all the hulls of K :
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Theorem 9.5 (Švérak 1993 [254]). Let K be as in (9.2).

(i) If α = 1 (simple rank-one connection between wells), then

K lc = K rc = K qc = K pc

=
{
QUs ∈ R

2×2 : Q ∈ SO(2),Us =
(
1
s

)
, s ∈ [1, β]

}
.

(ii) If α < 1 (double rank-one connection between wells) and detU = αβ = 1,
then

K lc = K rc = K qc = K pc = {
A = (y, z) ∈ K ∗∗ : |y|+|z| ≤ 1 and det A = 1

}
.

(iii) If α < 1 and detU = αβ > 1, then

K lc = K rc = K qc = K pc

=
{
A = (y, z) ∈ K ∗∗ : |y| ≤ detU−det A

detU−1 and |z| ≤ det A−1
detU−1

}
.

Proof. Ad (i). Let F ∈ K pc and take μ ∈ M pc(K ) with [μ] = F . We will show that
μ ∈ M lc,1(K ), which will allow us to conclude the assertion via Lemma 9.3. By the
structure of K , we may write

μ = θγ + (1 − θ)R(U )#η, where γ, η ∈ M 1(SO(2)), θ ∈ [0, 1].

Here, R(U )#η(B) := η(B ·U−1) for any Borel set B ⊂ R
2×2. Then, with G := [γ ],

H := [η], we have F = θG + (1− θ)HU and, since G, H ∈ SO(2)∗∗, it holds that
(see Appendix A.1)

G =
(
g1 −g2
g2 g1

)
, H =

(
h1 −h2
h2 h1

)

with g, h ∈ R
2 such that

det G = |g|2 = g21 + g22 ≤ 1 and det H = |h|2 = h21 + h22 ≤ 1.

Thus, we can compute, using Young’s inequality,

G : cof(HU ) =
(
g1 −g2
g2 g1

)
:

(
h1 −βh2
h2 βh1

)
= (1 + β)(g1h1 + g2h2)

≤ 1 + β

2
(|g|2 + |h|2)

≤ 1 + β
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and equality can only hold if G = H and detG = det H = 1. From the definition
of polyconvex measures we further have

det F = θ + (1 − θ)β.

Then, using (8.15) and the above considerations, we compute

det F = det(θG + (1 − θ)HU )

= θ2 det G + θ(1 − θ)G : cof(HU ) + (1 − θ)2 det H detU

≤ θ2 + θ(1 − θ)(1 + β) + (1 − θ)2β

= θ + (1 − θ)β

= det F.

Hence, the above inequality is in fact an equality, from which we infer
G : cof(HU ) = 1 + β, whereby G = H and detG = det H = 1. This implies
G = H ∈ SO(2) and

μ = θδG + (1 − θ)δGU ∈ M lc,1(K ) (9.3)

since any probability measure σ ∈ M 1(SO(2)∗∗) with [σ ] ∈ SO(2) is a Dirac mass.
Indeed, for

A =
(
a1 −a2
a2 a1

)
∈ SO(2)∗∗

we have det A = a21 + a22 ≤ 1 and so the determinant is a strictly convex function
on SO(2)∗∗. Thus, by Jensen’s inequality,

1 = det [σ ] ≤
∫

det A dσ(A) ≤ 1.

Consequently, σ is carried by SO(2), but it is elementary to see that any non-trivial
convex combination of matrices in SO(2) has determinant strictly less than 1. Hence,
supp σ must be a singleton.

Finally, from (9.3) it also follows that

[μ] = G(θ Id + (1 − θ)U ),

which immediately implies the claimed formula for K lc = K rc = K qc = K pc.
Ad (ii). From the definition of the polyconvex hull we have that μ ∈ M pc(K ) if

and only if μ ∈ M 1(R2×2) and

H([μ], det[μ]) ≤
∫

H(A, det A) dμ(A) for all convex H ∈ C(R2×2 × R).
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By Jensen’s inequality, we thus get

K pc = {
A ∈ R

2×2 : (A, det A) ∈ (MK )∗∗ }
, MK := {

(A, det A) : A ∈ K
}
,

also see Problem 9.4. Employing the conformal coordinates, we can thus represent
A ∈ K as the pair (y, z) ∈ R

2 × R
2, where either |y| = 1 and z = 0, or |z| = 1 and

y = 0. To determine K pc we then need to compute the convex hull G∗∗
κ of the set

Gκ := {
(y, 0, 1) ∈ R

2×R
2×R : |y| = 1

}∪{
(0, z, κ) ∈ R

2×R
2×R : |z| = 1

}
in the case κ = detU = 1. Since this set is invariant under rotations of the matrices
represented by y, z, it suffices to compute this convex hull with R

1 in place of R
2,

which is elementary. We get

G∗∗
1 = {

(y, z, 1) ∈ R
2 × R

2 × R : |y| + |z| ≤ 1
}
, (9.4)

whereby

K pc = {
A = (y, z) ∈ K ∗∗ : |y| + |z| ≤ 1 and det A = 1

}
.

By Lemma 9.3 it remains to show that K pc ⊂ K lc.
Let F ∈ K pc = K ∗∗ ∩ {det = 1}, where here and in the following we simply

write “{det = 1}” for the set { A ∈ R
2×2 : det A = 1 }. The equality follows by

considering G1 again. We distinguish two cases:

(a) If F = (ȳ, z̄) ∈ ∂K ∗∗ ∩ {det = 1}, then by (9.4) it holds that |ȳ| + |z̄| = 1. For
ȳ = 0 or z̄ = 0 we immediately get A ∈ K ⊂ K lc. If ȳ �= 0 and z̄ �= 0, we
define

q(t) := det

[
t

(
ȳ

|ȳ| , 0
)

+ (1 − t)

(
0,

z̄

|z̄|
)]

, t ∈ [0, 1].

Clearly, q is a quadratic function in t and q(|ȳ|) is the determinant of the matrix
with representation (ȳ, z̄), that is, our F . Thus, q(0) = q(1) = q(|ȳ|) = 1 and
hence q ≡ 1, whereby ȳ/|ȳ| and z̄/|z̄| are rank-one connected. We conclude that
F lies on the rank-one line between the matrices (ȳ/|ȳ|, 0) ∈ K and (0, z̄/|z̄|) ∈
K , that is, F ∈ K lc.

(b) Let now F ∈ (K ∗∗ \∂K ∗∗)∩{det = 1}. It is always possible to find a ∈ R
2 \{0},

n ∈ S
d−1 such that cof F : (a ⊗ n) = aT (cof F)n = 0. Then, by Jacobi’s

formula (see Appendix A.1),

t �→ det[F + t (a ⊗ n)] ≡ const,

whereby the determinant constraint is preserved along the rank-one line F +
R(a ⊗ n). This line intersects the set ∂(K ∗∗) ∩ {det = 1} for precisely two
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values of t . Since we have already shown that ∂(K ∗∗) ∩ {det = 1} ⊂ K lc, we
also get that F ∈ K lc.

Ad (iii). By a similar reasoning as at the beginning of Step (ii), we get

G∗∗
κ =

{
(y, z, s) ∈ R

2 × R
2 × R : |y| ≤ κ−s

κ−1 and |z| ≤ s−1
κ−1

}
,

where this time κ = detU > 1. Then, denoting by det(y, z) the determinant of the
matrix with conformal coordinates (y, z), we have

K pc =
{

(y, z) ∈ K ∗∗ : |y| ≤ detU−det(y,z)
detU−1 and |z| ≤ det(y,z)−1

detU−1

}
. (9.5)

In the following wewill show that ∂K pc ⊂ K lc. This suffices to prove the claim since
every rank-one line through an interior point of K pc intersects ∂K pc in precisely two
points.

So, let F = (ȳ, z̄) ∈ ∂K pc. Define

f (y, z) := (detU − 1)|y| − detU + det(y, z),

g(y, z) := (detU − 1)|z| + 1 − det(y, z).

Then, (9.5) can be rewritten as

K pc = {
(y, z) ∈ R

2×2 : f (y, z) ≤ 0 and g(y, z) ≤ 0
}
.

As F = (ȳ, z̄) ∈ ∂K pc, either f (ȳ, z̄) = 0 or g(ȳ, z̄) = 0. We distinguish three
cases:

(a) If f (ȳ, z̄) = 0 and g(ȳ, z̄) = 0, then a simple calculation shows that |ȳ|+|z̄| = 1.
Along the line

M(t) := t

(
ȳ

|ȳ| , 0
)

+ (1 − t)

(
0,

z̄

|z̄|
)

, t ∈ [0, 1],

the functions f, g are quadratic in t and have three zeros, at t = 0, 1, |ȳ|. Thus,
f, g are identically zero along the lineM(t). Since detU > 1, from the definition
of f or g we conclude that det(y, z) grows linearly in |t | and thus M(t) must be
a rank-one line. Consequently, F = M(|ȳ|) ∈ K lc.

(b) If f (ȳ, z̄) < 0 and g(ȳ, z̄) = 0, we first assume without loss of generality that
z̄2 = 0 by the SO(2)-symmetry of K , K pc. We also assume z̄1 > 0. The case
z̄1 < 0 is similar. In the three-dimensional space Y := {(y1, y2, z1, 0) ∈ R

4} the
equation



9.2 Multi-well Inclusions 239

0 = g(y1, y2, z1, 0)

= (detU − 1)z1 + 1 − det(y1, y2, z1, 0)

= (αβ − 1)z1 + 1 − (y1, y2, z1)

⎛
⎝ 1 α+β

2
1

α+β

2 αβ

⎞
⎠

⎛
⎝y1
y2
z1

⎞
⎠

defines a one-sheeted hyperboloid H since the matrix has two positive eigen-
values and one negative eigenvalue as well as αβ > 1. Since every one-sheeted
hyperboloid has the property that through every point on it there pass two lines
lying entirely inside it, we can thus find a line M(t) in H with M(0) = F . On
M(t), however, the determinant is affine by construction of H and thus M(t)
must be a rank-one line. Write M(t) = (y(t), z(t)). Then, choosing t0 ∈ R such
that z1(t0) = 0, we see that M(t0) = (y(t0), 0) ∈ K . We also observe

f (M(t)) = f (M(t)) + g(M(t)) = (det B − 1)(|y(t)| + |z(t)| − 1) → ∞

as |t | → ∞. Combining this with the fact that f (M(0)) = f (F) < 0, there
must be a t1 ∈ R with the property that f (M(t1)) = g(M(t1)) = 0 and thus
M(t1) ∈ K lc by (a). Consequently, since F lies on a rank-one line between
M(t0) ∈ K and M(t1) ∈ K lc, it holds that F = M(0) ∈ K lc.

(c) The case f (y0, z0) = 0 and g(y0, z0) < 0 is analogous to the previous one.

In all cases we have shown that F ∈ K lc and thus K pc ⊂ K lc, which implies the
claim. �

Formore general inclusions in two dimensions, including the N -well problem, we
quote the following result concerning the case of wells with the same determinant:

Theorem 9.6 (Bhattacharya–Dolzmann 2001 [42]). Let δ > 0 and assume that
the set

K ⊂ {
A ∈ R

2×2 : det A = δ
}

is compact and left SO(2)-invariant, i.e.,

K = SO(2)K = {
QA : Q ∈ SO(2), A ∈ K

}
.

Then,

K lc = K rc = K qc = K pc

=
{
A ∈ R

2×2 : det A = δ and |An|2 ≤ max
B∈K |Bn|2 for all n ∈ S

1
}
.

A proof can be found in Section 2.2 of [100] and in the original work [42].
For three dimensions, we only mention the following result.
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Theorem 9.7 (Dolzmann–Kirchheim–Müller–Šverák 2000 [101]). Let

K := SO(3) ∪ SO(3)U

with

U =
⎛
⎝α

β

1

⎞
⎠ , 0 < α ≤ 1 ≤ β, αβ ≥ 1.

Then,

K lc = K rc = K qc = K pc =
{
Q

(
Â
1

)
: Q ∈ SO(3), Â ∈ K̂ qc

}
,

where

K̂ = SO(2) ∪ SO(2)

(
α

β

)
,

and K̂ qc can be explicitly calculated via Theorem 9.5.

9.3 Convex Integration

The considerations in Section 8.3 revealed that for a non-empty compact set K ⊂
R

m×d the differential inclusion{
u ∈ W1,∞(Ω; R

m), u|∂Ω = Fx,

∇u ∈ K
(9.6)

has an approximate solution if and only if F ∈ K qc. Now we investigate the finer
question of which additional hypotheses are required to solve (9.6) exactly, that is,
whether there exists a map u ∈ W1,∞

Fx (Ω; R
m) with

∇u(x) ∈ K for a.e. x ∈ Ω.

We first illustrate why this question is quite delicate in general: Let KT4 be the T4-
configuration from Proposition 8.17. We showed in Proposition 9.4 that K qc

T4 � KT4.
On the other hand, we know from the Chlebík–Kirchheim Theorem 8.16 that (9.6)
is rigid for exact solutions. Hence, only for F ∈ KT4 can we solve (9.6) exactly and
then the solution is necessarily affine.

Let us also consider the non-rigid two-well inclusion in two dimensions,
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⎪⎩
u ∈ W1,∞(Ω; R

2), u|∂Ω = Fx, 0 < α < 1 < β, αβ ≥ 1,

∇u ∈ K := SO(2) ∪ SO(2)

(
α

β

)
.

(9.7)

By Theorem 9.5 in conjunction with Lemma 8.25 (iii) we again have K qc
� K . In

fact, by Lemma 8.25 (iii), for every Q ∈ SO(2) there are precisely two solutions
R1, R2 ∈ SO(2), i = 1, 2, of

rank

(
Q − R

(
α

β

))
≤ 1.

Consequently, two laminates are possible, but there seems to be no obvious way
to combine them. As every simple laminate with linear (or affine) boundary values
is trivial, at first sight it thus appears to be impossible to solve (9.6) exactly for
F ∈ K qc \ K .

This conjecture turns out to be false, but the resulting exact solutions are neces-
sarily highly irregular. The general approach to constructing such exact solutions is
called convex integration. Its basic idea is to start with a map satisfying the given
boundary conditions and to consecutively add oscillations with high frequency and
low amplitude in a controlled fashion to move the gradient toward K .

The property of K that will allow us to implement this idea is the following: We
say that the open and bounded set G ⊂ R

m×d can be piecewise affinely reduced to
a compact and non-empty set K ⊂ R

m×d if for all A ∈ G there exists a sequence
(ψ j ) ⊂ W1,∞

0 (B(0, 1); R
m) of countably piecewise affine maps such that

(i) A + ∇ψ j (x) ∈ G for almost every x ∈ B(0, 1) and all j ∈ N;

(ii)
∫
B(0,1)

dist(A + ∇ψ j (x), K ) dx → 0 as j → ∞.

Recall that a map ϕ : D → R
m is called countably piecewise affine if there exists a

disjoint partition of D into countably many open sets Dk up to a negligible set, i.e.,
D = Z ∪⋃

k∈N Dk , where |Z | = 0, such that ϕ|Dk is affine. Throughout this chapter,
“piecewise affine” will always mean “countably piecewise affine”.

It can be shown via a standard covering argument that in the above definition
the unit ball can be replaced by any bounded Lipschitz domain; see Lemma 5.2 for
a similar statement regarding the definition of quasiconvexity. Moreover, if G can
be piecewise-affinely reduced to K , then every A ∈ G must necessarily lie in K qc,
cf. the definition in Section 8.3.

Thenwe have the following (abstract) convex integration result, which in this form
is due to Sychev, but builds crucially on earlier works byGromov andMüller–Šverák.

Theorem 9.8 (Gromov 1986, Müller–Šverák 1996, Sychev 1998 [145, 205, 257]).
Let K ⊂ R

m×d be a non-empty compact set and assume that the open and
bounded set G ⊂ R

m×d can be piecewise affinely reduced to K . Suppose that either
v ∈ W1,∞(Ω; R

m) is piecewise affine or v ∈ C1(Ω; R
m), and that
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∇v ∈ G a.e.

Then, for every ε > 0 there exists a solution to the exact differential inclusion

{
u ∈ W1,∞(Ω; R

m), u|∂Ω = v|∂Ω,

∇u ∈ K a.e.
(9.8)

with ‖u − v‖L∞ ≤ ε.

Proof. Let ε > 0begiven. If v is alreadypiecewise affine, then set v1 := v. If v instead
has C1-regularity, then find a sequence of disjoint open polyhedral setsΩk � Ω such
that Ω = Z ∪ ⋃∞

k=1 Ωk , where |Z | = 0. In each Ωk we may approximate v on a fine
triangulationwith a (finitely) piecewise affinemap ṽk such that ‖v−ṽk‖L∞ ≤ ε2−(k+1)

and such that the ṽk agree where they meet over the boundaries of the Ωk . Since G is
open, we may also require ∇ ṽk ∈ G. Combining these maps into a single piecewise
affine map ṽ, which necessarily satisfies ṽ|∂Ω = v|∂Ω , we are again in the situation
of a piecewise affine v1 := ṽ. So, we may assume that v1 is piecewise affine and

∇v1 ∈ G a.e., v1|∂Ω = v|∂Ω, ‖v − v1‖L∞ ≤ ε

2
.

The idea of the proof is to use the piecewise affine reduction ofG to K in conjunction
with a “controlled” mollification to construct a sequence (v j ) that converges strongly
in W1,1 to the sought solution u of (9.8).

Let (ηδ)δ>0 be a family of mollifiers and choose δ1 > 0 such that

δ1 ≤ ε and ‖∇v1 − ηδ1 � ∇v1‖L1 ≤ 1

2
.

Now, assuming that we have already defined v j and δ j , we use the assumption
that G can be piecewise affinely reduced to K to find a piecewise affine map v j+1 ∈
W1,∞(Ω; R

m) with

∇v j+1 ∈ G a.e., v j+1|∂Ω = v|∂Ω, ‖v j+1 − v j‖L∞ ≤ δ j

2 j+1

and ∫
Ω

dist(∇v j+1(x), K ) dx ≤ 1

2 j+1
. (9.9)

Indeed, we can construct this map separately in each subdomain Dk of Ω from the
partition with respect to which v j is piecewise affine, say v j (x) = zk + Akx for
x ∈ Dk , where zk ∈ R

m , Ak ∈ R
m×d (k ∈ N). From the reduction property choose

ψ
(k)
j+1 ∈ W1,∞

0 (Dk; R
m) piecewise affine with ∇ψ

(k)
j+1 ∈ G almost everywhere and
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Dk

dist(Ak + ∇ψ
(k)
j+1(x), K ) dx ≤ 1

2 j+k+1
.

Moreover, by a procedure similar to the proof of the averaging principle for Young
measures, Lemma 4.14, we may assume that ‖ψ(k)

j+1‖L∞ ≤ 2−( j+1)δ j . Then,

v j+1(x) := zk + Akx + ψ
(k)
j+1(x) if x ∈ Dk (k ∈ N)

has the desired properties.
Also choose 0 < δ j+1 ≤ δ j such that

‖∇v j+1 − ηδ j+1 � ∇v j+1‖L1 ≤ 1

2 j+1
,

where we consider the map v j+1 to be continuously extended to all of R
d . For all

l ≥ j we get

‖vl − v j‖L∞ ≤
l−1∑
k= j

‖vk+1 − vk‖L∞ ≤
∞∑
k= j

δk

2k+1
≤ δ j

2 j
≤ ε

2 j
.

In particular, (v j ) is an L∞-Cauchy sequence and hence v j → u in L∞ for some
u ∈ L∞(Ω; R

m) with

‖u − v1‖L∞ ≤ ε

2
and ‖u − v j‖L∞ ≤ δ j

2 j
.

Furthermore, also the gradients of the v j ’s converge strongly in L1: To this end we
observe that since ‖∇ηδ j ‖L1 ≤ C/δ j for some constant C > 0,

‖ηδ j � (∇u − ∇v j )‖L1 = ‖∇ηδ j � (u − v j )‖L1 ≤ C

δ j
· δ j

2 j
→ 0.

Then,

‖∇u − ∇v j‖L1 ≤ ‖∇u − ηδ j � ∇u‖L1 + ‖ηδ j � (∇u − ∇v j )‖L1

+ ‖ηδ j � ∇v j − ∇v j‖L1

→ 0.

Thus, v j → u in W1,1 and, selecting a subsequence, also ∇v j → ∇u almost every-
where. By (9.9), we arrive at the inclusion ∇u ∈ K almost everywhere. Moreover,
‖u−v‖L∞ ≤ ε and u|∂Ω = v|∂Ω , so u is indeed the sought solution to the differential
inclusion (9.8). �
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Nowwe come to Gromov’s original convex integration principle. For an open and
bounded set G ⊂ R

m×d define the lamination-convex hull just like for a compact
set, that is,

G lc :=
∞⋃
i=0

G lc,i ,

where

G lc,0 := G,

G lc,i+1 := {
θ A + (1 − θ)B : A, B ∈ G lc,i , rank(A − B) ≤ 1, θ ∈ [0, 1] }

.

Let K ⊂ R
m×d be compact and non-empty. Then, a sequence (Gk)k∈N of open,

uniformly bounded sets Gk ⊂ R
m×d is called an in-approximation for K if the

following two conditions hold:

(i) Gk ⊂ G lc
k+1 for all k ∈ N;

(ii) if Ak ∈ Gk and Ak → A as k → ∞, then A ∈ K .

Theorem 9.9 (Gromov 1986 [145]). Let K ⊂ R
m×d be a non-empty compact set

and assume that there exists an in-approximation (Gk)k∈N for K . Suppose that either
v ∈ W1,∞(Ω; R

m) is piecewise affine or v ∈ C1(Ω; R
m), and that

∇v ∈ G∞ :=
∞⋃
l=1

Gl a.e.

Then, for every ε > 0 there exist a solution to the exact differential inclusion

{
u ∈ W1,∞(Ω; R

m), u|∂Ω = v|∂Ω,

∇u ∈ K a.e.

with ‖u − v‖L∞ ≤ ε.

In order to apply the abstract Theorem 9.8, we need to show that, under the
assumptions of Gromov’s theorem, G∞ can be piecewise affinely reduced to K .
This will be accomplished by successive laminations.

Lemma 9.10. Let A, B ∈ R
m×d with rank(A− B) = 1, θ ∈ (0, 1) and let D ⊂ R

d

be a bounded Lipschitz domain. Then, for every ε > 0 there exists a piecewise affine
map u : D → R

m with u|∂D = Fx, where F := θ A + (1 − θ)B, and

sup
x∈D

[|u(x) − Fx | + dist(∇u(x), {A, B})] ≤ ε. (9.10)
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Fig. 9.4 The construction of
the domain V

Proof. Let ε > 0 be given.
Step 1. By a change of variables (which only results in an affine transformation

of the resulting u), we may assume that

A = −(1 − θ)a ⊗ ed , B = θa ⊗ ed , F = 0

for some a ∈ R
m \ {0}. We will first construct a special open and convex domain

V ⊂ R
d such that (9.10) holds for D = V . In the auxiliary domain

U := (−1, 1)d−1 × (−θδ, (1 − θ)δ),

where δ > 0 will be specified below, we define the functions g, h : U → R by

g(x) := −θ(1 − θ)δ +
{

−(1 − θ)xd if xd ≤ 0,

θxd if xd > 0.
,

h(x) := θ(1 − θ)δ

d−1∑
i=1

|xi |.

Then we let
V := {

x ∈ U : g(x) + h(x) < 0
}
,

which has the shape of a kite, see Figure 9.4. We will then show that the map

v(x) := (g(x) + h(x))a, x ∈ V,

has the desired properties (in V ). Indeed, by construction it is clear that v is piecewise
affine and vanishes on ∂V . Moreover, as ∇g ∈ {−(1 − θ)ed , θed} in U , we can
estimate

sup
x∈V

dist(∇v(x), {A, B}) ≤ Cδ,

where C > 0. Thus, choosing δ > 0 suitably, we can achieve (9.10) in D = V .
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Step 2. From Vitali’s Covering Theorem A.15 we find a covering

D = Z ∪
∞⋃
k=1

V (ak, rk),

where V (ak, rk) = ak +rkV ⊂ D for ak ∈ D, 0 < rk ≤ ε/(1+‖v‖L∞), and |Z | = 0.
Then set

u(x) := rkv

(
x − ak
rk

)
if x ∈ V (ak, rk) (k ∈ N),

and observe

∇u(x) = ∇v

(
x − ak
rk

)
if x ∈ V (ak, rk) (k ∈ N).

Thus, u is piecewise affine, satisfies u|∂D = 0, and (9.10) holds. �

Lemma 9.11. Let G ⊂ R
m×d be open and bounded and let v ∈ W1,∞(Ω; R

m) be
piecewise affine with

∇v ∈ G lc a.e.

Then, for every ε > 0 there exists a piecewise affine map u ∈ W1,∞(Ω; R
m) with

∇u ∈ G a.e., u|∂Ω = v|∂Ω,

and ‖u − v‖L∞ ≤ ε.

Proof. We assume that v is affine; otherwise we apply the following argument sep-
arately in every set of the decomposition of Ω , with respect to which v is piecewise
affine. Moreover, we may add a constant to v to normalize to the situation where
v(x) = Fx for some F ∈ R

m×d .
By assumption, F ∈ G lc and so, F ∈ G lc,i for some i ∈ N ∪ {0}. We proceed

by induction over i . For i = 0 there is nothing to show. If F ∈ G lc,i+1 \ G lc,i ,
then there are A, B ∈ G lc,i with rank(A − B) = 1 and θ ∈ (0, 1) such that F =
θ A + (1 − θ)B. By Lemma 9.10 there exists a piecewise affine map w : Ω → R

m

with w|∂Ω = Fx = v|∂Ω and

‖w − v‖L∞ <
ε

2
, sup

x∈Ω

dist(∇w(x), {A, B}) <
ε

2
.

Since G lc,i is open (which is easy to see), we may further assume that (potentially
reducing ε in the previous conditions)

∇w ∈ G lc,i a.e.
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Then, if Ω = Z ∪ ⋃∞
k=1 Dk , where |Z | = 0, is the decomposition of Ω with respect

to which w is piecewise affine, we apply the induction hypothesis in every Dk to get
piecewise affine maps uk ∈ W1,∞(Dk; R

m) with uk |∂Dk = w|∂Dk ,

‖uk − w‖L∞ <
ε

2
and ∇uk ∈ G a.e.

Setting
u(x) := uk(x) if x ∈ Dk (k ∈ N),

we see that u|∂Ω = v|∂Ω , ‖u − v‖L∞ ≤ ε, and ∇u ∈ G almost everywhere. We thus
conclude the proof of the inductive step and hence the proof of the lemma. �

Proof of Theorem 9.9. By Theorem 9.8 we only need to show that G∞ = ⋃∞
l=1 Gl

can be piecewise affinely reduced to K . Without loss of generality we assume A ∈
G1 ⊂ G lc

2 , where the inclusion holds by property (i) from the definition of an in-
approximation. The proof for A ∈ Gl is analogous.

Let n ∈ N. Lemma 9.11 allows us to construct a piecewise affine map ψ
(n)
2 ∈

W1,∞
0 (B(0, 1); R

m) with

A + ∇ψ
(n)
2 ∈ G2 ⊂ G lc

3 a.e. and ‖ψ(n)
2 ‖L∞ ≤ 1

22−1n
.

Since ψ
(n)
2 is piecewise affine, arguing separately in every piece, we may find ψ

(n)
3 ∈

W1,∞
0 (B(0, 1); R

m) with

A + ∇ψ
(n)
2 + ∇ψ

(n)
3 ∈ G3 ⊂ G lc

4 a.e. and ‖ψ(n)
3 ‖L∞ ≤ 1

23−1n
.

Continuing this procedure, we construct a sequence (ψ
(n)
k )k ⊂ W1,∞(B(0, 1); R

m)

of piecewise affine maps such that

A +
k∑

l=2

∇ψ
(n)
l ∈ Gk ⊂ G lc

k+1 a.e. and ‖ψ(n)
k ‖L∞ ≤ 1

2k−1n
.

For the piecewise affine map

ψ j :=
j∑

l=2

ψ
( j)
l ∈ W1,∞(B(0, 1); R

m),

we see that

A + ∇ψ j ∈ G j ⊂ G∞ a.e. and ‖ψ j‖L∞ ≤
j∑

k=2

1

2k−1 j
≤ 1

j
.
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It only remains to observe that

∫
B(0,1)

dist(A + ∇ψ j (x), K ) dx → 0 as j → ∞.

This follows immediately since the integrand is uniformly bounded (as the Gk are
uniformly bounded) and A + ∇ψ j (x) converges pointwise almost everywhere to
an element of K by property (ii) from the definition of an in-approximation. Thus,
we have shown that G1 can be affinely reduced to K and Theorem 9.8 yields the
conclusion. �

We now apply Gromov’s convex integration principle to the two-well problem in
two dimensions, see (9.7). We only consider the case detU > 1 (see [206] for the
case detU = 1). That is, we will find exact solutions to the differential inclusion⎧⎪⎨

⎪⎩
u ∈ W1,∞(Ω; R

2), u|∂Ω = Fx, 0 < α < 1 < β, αβ > 1,

∇u ∈ K := SO(2) ∪ SO(2)U, U =
(

α

β

)
.

(9.11)

Theorem 9.12 (Müller–Šverák 1993/1996 [205, 254]). Let

F ∈ int K lc =
{
A = (y, z) ∈ K ∗∗ : |y| < detU−det A

detU−1 and |z| < det A−1
detU−1

}
. (9.12)

Then, there exists an exact solution to (9.11).

We remark that similar results have also been established by Dacorogna and
Marcellini [79], see the notes at the end of this chapter.

Proof. Step 1. We first justify the formula for int K lc. From Theorem 9.5 (iii) we
know that

K lc =
{
A = (y, z) ∈ K ∗∗ : |y| ≤ detU−det A

detU−1 and |z| ≤ det A−1
detU−1

}
.

By Problem 9.5, the conformal coordinate map (y, z) �→ A is a diffeomorphism and
hence maps boundaries to boundaries. This immediately implies the formula (9.12).

Step 2. Define for any J, V ∈ R
2×2 with det J, det V > 1 the set

L(J, V ) :=
{
A = (y, z) ∈ K ∗∗ : |y| ≤ det V−det A

det V−det J and |z| ≤ det A−det J
det V−det J

}
.

Note that L(Id,U ) = K lc. The following continuity property holds: Let (Jj , Vj ) ⊂
R

2×2 × R
2×2 be a converging sequence such that (Jj , Vj ) → (J, V ) as well as

0 < det Jj < det Vj and λ∗(Vj J
−1
j ) < 1 < λ∗(Vj J

−1
j ),
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where λ∗(Vj J
−1
j ), λ∗(Vj J

−1
j ) are the smaller and the larger eigenvalue of Vj J

−1
j ,

respectively. Let P ⊂ int L(J, V ) be compact. Then, P ⊂ L(Jj , Vj ) for all suf-
ficiently large j . Indeed, this follows by Step 1 and the fact that the conformal
coordinates map is a diffeomorphism.

Step 3. We now prove the assertion of the theorem, for which we construct an
in-approximation, starting with a neighborhood G1 � K lc of F ∈ int K lc. Assume
that we have already constructed Gk � K lc. We will show that we can find Gk+1 �
K lc with Gk ⊂ G lc

k+1 and such that supH∈Gk+1
dist(H, K ) ≤ 1/k. Indeed, since

Gk � K lc = L(Id,U ), by the continuity property from the previous step we may
find Jk+1,Uk+1 ∈ int K lc such that

|Jk+1 − Id|, |Uk+1 −U | ≤ 1

2k

and
Gk ⊂ L(Jk+1,Uk+1) = (

SO(2)Jk+1 ∪ SO(2)Uk+1
)lc

.

Here, the last equality follows from Theorem 9.5 (iii) and we note that Id,U ∈ ∂K lc.
We have that

SO(2)Jk+1 ∪ SO(2)Uk+1 ⊂ int K lc

since Jk+1,Uk+1 ∈ int K lc = L(Id,U ) and the expression (9.12) for K lc shows that
this set is SO(2)-invariant. Now take Gk+1 to be an (at most) 1/(2k)-neighborhood
of SO(2)Jk+1 ∪ SO(2)Uk+1 that is compactly contained in int K lc, i.e., Gk+1 � K lc.
Then, Gk ⊂ G lc

k+1 and for all H ∈ Gk+1 we have

dist(H, K ) ≤ 1

2k
+ dist

(
SO(2)Jk+1 ∪ SO(2)Uk+1, K

) ≤ 1

k
.

This completes the induction.
The claim of the theorem then follows from Gromov’s Convex Integration Theo-

rem 9.9. �

We close this section by quoting the following result, which shows that exact
solutions to (9.11) are necessarily very complicated. For the statement of the theorem
we need a notion of boundary regularity: A set E ⊂ Ω is called a set of finite
perimeter in Ω if the distributional derivative of the indicator function 1E in Ω is
a finite Borel measure, i.e.,

PerΩ(E) := sup

{ ∫
E
div ϕ dx : ϕ ∈ C1

c(Ω; R
d), ‖ϕ‖L∞ ≤ 1

}
< ∞. (9.13)

For sets E with smooth boundarywe have PerΩ(E) = H d−1(E∩Ω), which follows
from the divergence theorem.
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Theorem 9.13 (Dolzmann–Müller 1995 [103]). Let u ∈ W1,∞(Ω; R
d) satisfy

∇u ∈ K := SO(d) ∪ SO(d)U

such that detU > 0 and every matrix in K is rank-one connected to precisely two
other matrices in K . Assume furthermore that

E := {
x ∈ Ω : ∇u(x) ∈ SO(d)

}
has finite perimeter in Ω . Then, u is locally a simple laminate and if u is affine on
the boundary ∂Ω , then u is an affine map.

9.4 Infinite-Order Laminates

In this section we quote an extension of the Gromov Convex Integration Theorem 9.9
that also works in situations where infinite-order laminates are necessary. For this,
let again K ⊂ R

m×d be compact and non-empty (closed sets are also possible if
property (ii) below holds in a stronger form). Then, a sequence (Gk)k∈N of open,
uniformly bounded sets Gk ⊂ R

m×d is called an RC-in-approximation for K if the
following two conditions hold:

(i) Gk ⊂ Grc
k+1 := ⋃{ Src : S ⊂ Gk+1 compact } for all k ∈ N ;

(ii) if Ak ∈ Gk and Ak → A as k → ∞, then A ∈ K .

Theorem 9.14 (Müller–Šverák 2003 [207]). Let K ⊂ R
m×d be a non-empty com-

pact set andassume that there exists anRC-in-approximation (Gk)k∈N for K . Suppose
that either v ∈ W1,∞(Ω; R

m) is piecewise affine or v ∈ C1(Ω; R
m), and that

∇v ∈ G∞ :=
∞⋃
l=1

Gl a.e.

Then, for every ε > 0 there exists a solution to the exact differential inclusion

{
u ∈ W1,∞(Ω; R

m), u|∂Ω = v|∂Ω,

∇u ∈ K a.e.

with ‖u − v‖L∞ ≤ ε.

The proof follows essentially the same strategy as Theorem 9.9, but there is an
additional step to approximate infinite-order laminates with finite-order laminates,
without changing the barycenter; see [207] for details.

Recall that the Evans Partial Regularity Theorem 5.22 established partial regular-
ity for minimizers: Let f : R

m×d → R be a smooth, strongly quasiconvex integrand
such that with some M > 0 it holds that
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D2 f (A)[B, B] ≤ M |B|2, A, B ∈ R
m×d . (9.14)

Then, for every solution u of

⎧⎨
⎩Minimize F [u] :=

∫
Ω

f (∇u(x)) dx

over all u ∈ W1,2(Ω; R
m)with u|∂Ω = g ∈ W1/2,2(∂Ω; R

m),

there exists a relatively closed singular set Σu ⊂ Ω with |Σu | = 0 such that u ∈
C1,α
loc (Ω \ Σu) for all α ∈ (0, 1).
It turns out that for weak solutions to the Euler–Lagrange equation that are not

minimizers, the corresponding statement is false. In fact, there are many such patho-
logical weak solutions. This statement can be proved using convex integration:

Theorem 9.15 (Müller–Šverák 2003 [207]). Let Ω ⊂ R
2 be a bounded Lipschitz

domain. There exists a smooth and strongly quasiconvex integrand fMS : R
2×2 → R

satisfying (9.14) such that the following property holds: For every v ∈ C1(Ω; R
2)

and every ε > 0 there exists a map u ∈ W1,∞(Ω; R
2) solving

− div[D fMS(∇u)] = 0 inΩ (weakly)

and ‖u − v‖L∞ ≤ ε, but u /∈ C1(U ; R
2) on any open subset U ⊂ Ω .

For the proof (whichmakes use of generalized T4-configurations) see [207]. There
is also a (strongly) polyconvex integrand with the same property as shown in [264].

9.5 Crystalline Microstructure in 3D

The construction of exact solutions tomulti-well differential inclusions in three space
dimensions is an active but largely unfinished area of research. We only quote the
following result.

Theorem 9.16 (Conti–Dolzmann–Kirchheim 2007 [69]). Let

K :=
6⋃

i=1

SO(3)Ui ,

where

U1 =
⎛
⎝α1

α2

α3

⎞
⎠ , 0 < α1 < α2 ≤ α3, α1α2α3 = 1,

and the other matrices U2, . . . ,U6 are given by permuting the three values on the
diagonal (if α2 = α3, the six-well problem reduces to a three-well problem). Then,
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there exists an R > 0 such that for all v ∈ C1,γ (Ω; R
3) for some γ ∈ (0, 1) that

satisfy
|∇v(x) − Id| < R, det∇v(x) = 1 for all x ∈ Ω,

the differential inclusion

{
u ∈ W1,∞(Ω; R

3), u|∂Ω = v|∂Ω,

∇u ∈ K

has at least one exact solution. Moreover, for any given ε > 0 this solution can be
chosen such that ‖u − v‖L∞ ≤ ε.

Example 9.17. With regard to the shape-memory effect observed in the NiAl alloy,
which is described in Section 1.8,we have discussed inExample 8.10 that thematerial
will try to satisfy the differential inclusion

{
u ∈ W1,∞(Ω; R

3), Ω ⊂ R
3,

∇u ∈ K inΩ

as closely as possible, where K is the pointwise minimizer set of the integrand in the
governing energy functional. We have

K =
{
SO(3) above the critical temperature,

SO(3)U1 ∪ SO(3)U2 ∪ SO(3)U3 below the critical temperature,

and thematricesU1, . . . ,U3 are given explicitly in Section 1.8. This symmetry break-
ing from the cubic to the tetragonal phase explains the shape-memory effect: Above
the critical temperature, the microstructure is rigid (see Reshetnyak’s Rigidity Theo-
rem 8.20) and so, plastic deformations are reflected in changes in the crystal lattice.
Once the material is cooled below the critical temperature, however, K turns out to
have many rank-one connections, K lc is large (but it is often unknown how large, see
Problem 16 in [28]), and the material can deform in some ways without changing the
crystalline structure. By a convex integration result like the one from Theorem 9.16
above (we remarked in Section 1.8 that detU1 = detU2 = detU3 ≈ 1, so the above
theorem is almost applicable) one could then show that for given (suitably con-
strained) boundary values many exact solutions to the above differential inclusion
exist. This is the mathematical manifestation of this flexibility. For the cubic-to-
orthorhombic phase transition (a six-well problem with non-diagonal U1, . . . ,U6)
of CuAlNi there is currently no applicable convex integration theorem.

We finally remark that it is currently unclear whether the convex integration solu-
tions are admissible in real-world problems frommaterial science. This admissibility
would entail that these exact solutions are in fact limits of approximate solutions, for
which the phases have finite perimeter. In view of Theorem 9.13, this is a non-trivial
question. We refer to [28] for open problems in this area.
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9.6 Stability of Gradient Distributions

The theory of convex integration as presented inSection9.3 is based on fairly concrete
constructions. One iteratively sums up very fast oscillations with small amplitudes
and shows that this yields a strongly converging sequence,whose limit has the desired
properties. There is also another, more abstract, approach to solving differential
inclusions, which is based on Baire category theory. This idea was first explored in
this context by Dacorogna and Marcellini [79, 80] and then put into its final form by
Kirchheim, who introduced the notion of “stability” for gradient distributions.

Let K ⊂ R
m×d be compact and non-empty. As before, we aim to find exact

solutions to {
u ∈ W1,∞(Ω; R

m), u|∂Ω = g,

∇u ∈ K ,
(9.15)

where g ∈ W1,1/2(∂Ω; R
m).

We say that K is (piecewise affinely) stable with respect to a bounded open set
G ⊂ R

m×d if for all η > 0 there exists a δη > 0 such that for all A ∈ G with
dist(A, K ) > η there is a (countably) piecewise affine mapψ ∈ W1,∞

0 (B(0, 1); R
m)

such that

(i) A + ∇ψ ∈ G for almost every x ∈ B(0, 1);

(ii) −
∫
B(0,1)

|∇ψ(x)| dx > δη.

From a standard covering argument we realize that in the above definition the unit
ball can be replaced by any bounded Lipschitz domain. The main difference to the
piecewise affine reduction property from Section 9.3 is that here one does not need
to show that it is possible to push the gradient arbitrarily close to K .

We define the set

X0 := {
u ∈ W1,2

g (Ω; R
m) : u piecewise affine and∇u ∈ G a.e.

}
and assume that it is non-empty (which is a condition on G). Let furthermore

X := w-closW1,2 X0, (9.16)

that is, X is the closure of X0 with respect to the weak topology inW1,2(Ω; R
m). The

set X so defined together with the weak W1,2-topology is a complete metric space
since the weak topology inW1,2 is metrizable on norm-bounded sets (G is bounded).

Then, a very general “convex integration” principle reads as follows:

Theorem 9.18 (Kirchheim 2003 [160]). Assume that K is (piecewise affinely)
stable with respect to G. Then, the set of exact solutions of (9.15) is dense in X.

In order to establish this theorem, we first recall the following fundamental result
from functional analysis, which we prove for the sake of completeness.
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Theorem 9.19 (Baire category theorem). Let X be a complete metric space.

(i) If the sets Uk ⊂ X, k ∈ N, are open and dense in X, then
⋂∞

k=1Uk is also dense
in X.

(ii) If f : X → R is a Baire-one function, that is, f is the pointwise limit of
continuous functions, then the set of continuity points of f is dense in X.

Proof. Ad (i). Let V ⊂ X be open. We need to show that there is a u ∈ V with
u ∈ ⋂∞

k=1Uk . Since U1 is dense in X it must intersect V . So, there is a ball

B(u1, r1) ⊂ V ∩U1 for some u1 ∈ U1 and r1 > 0.

We iterate this procedure to get u j ∈ X and r j ∈ (0, 1/j) such that

B(u j , r j ) ⊂ B(u j−1, r j−1) ∩Uj .

Since u j ∈ B(ui , ri ) if j > i , the sequence (u j ) is Cauchy and thus converges to
some u ∈ X . We have that u ∈ B(ui , ri ) ∩Ui for all i and thus u ∈ V ∩ ⋂∞

k=1Uk .
Ad (ii). Define for the function f and u ∈ X the quantity

ω(u) := lim
δ↓0

[
sup

v∈B(u,δ)

f (v) − inf
v∈B(u,δ)

f (v)

]
.

Let ε > 0 and assume that there is an open set V ⊂ X such that ω(u) > 4ε for all
u ∈ V . In the remainder of the proof we will lead this to a contradiction. Thus, ω

vanishes on a dense set in X , which is the set of points where f is continuous.
Suppose that f j → f pointwise in X and define

En :=
⋂
i, j≥n

{
u ∈ X : | fi (u) − f j (u)| ≤ ε

}
, n ∈ N,

which are closed, increasing sets with
⋃

n En = X since f j → f pointwise. Thus,

∞⋂
n=1

(V \ En) = ∅.

By (i) not all of the relatively open sets V \ En can be dense in the complete metric
space V . Hence, there exists an n ∈ N such that V ∩ En contains a non-empty open
set W . In particular, for all w ∈ W (letting i → ∞ and j := n),

| f (w) − fn(w)| ≤ ε.

Moreover, for any u0 ∈ W choose a ball B(u0, r) ⊂ W with the property that

| fn(w) − fn(u0)| ≤ ε for allw ∈ B(u0, r).
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This is possible by the continuity of fn . Then, for all u, v ∈ B(u0, r),

| f (u) − f (v)| ≤ | f (u) − fn(u)| + | fn(u) − fn(u0)| + | fn(u0) − fn(v)|
+ | fn(v) − f (v)|

≤ 4ε.

Thus, ω(u0) ≤ 4ε for all u0 ∈ W ⊂ V . This is the sought contradiction. �

Returning to X as defined in (9.16), we denote by S ⊂ X the set of (weak-to-
strong) stability points, i.e., those u ∈ X such that for any sequence (u j ) ⊂ X with
u j ⇀ u in W1,2 it automatically holds that also u j → u strongly in W1,2. A priori,
this appears to be a very strong requirement and it is not clear whether this set is
non-empty. However, we have the following result:

Lemma 9.20. The set S is dense in X.

Proof. Let (ηδ)δ>0 ⊂ C∞
c (Rd) be a family of mollifiers. We set

G [u] :=
∫

Ω

|∇u|2 dx, u ∈ W1,2
g (Ω; R

m),

and

Gn[u] :=
∫

Ω

|η1/n � ∇u|2 dx, u ∈ W1,2
g (Ω; R

m),

where we consider u to be extended by some fixed extension of g outside of Ω .
Then, all the Gn are continuous on X with respect to the weak convergence in W1,2.
Indeed, let (u j ) ⊂ X with u j ⇀ u in W1,2. Then, for all x ∈ Ω ,

(η1/n � ∇u j )(x) =
∫

η1/n(x − y)∇u j (y) dy

→
∫

η1/n(x − y)∇u(y) dy = (η1/n � ∇u)(x)

and, by Young’s inequality for convolutions, see Lemma A.32,

‖η1/n � ∇u j‖L4 ≤ ‖η1/n‖L4/3 · ‖∇u j‖L2 .

So, for fixed n, the family {η1/n � ∇u j } j is L2-equiintegrable and via Vitali’s Con-
vergence Theorem A.11 we may conclude that η1/n � ∇u j → η1/n � ∇u in L2 as
j → ∞ (with n held fixed). In particular, Gn[u j ] → Gn[u].

Next, observe that for all u ∈ W1,2(Ω; R
m) we have

Gn[u] → G [u] as n → ∞.

This means that G is the pointwise limit of X -continuous functionals, i.e., a Baire-
one functional. From the Baire Category Theorem 9.19 (ii) it follows that the set
of continuity points of G is dense in X . For such a continuity point u we have that
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u j ⇀ u in W1,2 implies ‖∇u j‖L2 → ‖∇u‖L2 , whereby u j → u strongly in W1,2

(see the Radon–Riesz Theorem A.14). Thus, the set of continuity points of G is
contained in S (in fact, these two sets are the same) and the claim follows. �

Proof of Theorem 9.18. Step 1. Let u ∈ S. We will show that ∇u ∈ K almost
everywhere, which will imply the claim by Lemma 9.20. Assume to the contrary
that

K [u] :=
∫

Ω

dist(∇u(x), K ) dx > 0

and take a sequence (v j ) ⊂ X0 with v j ⇀ u in W1,2. Then, since u ∈ S, it follows
that v j → u in W1,2. In particular, we may assume

inf
j∈N

K [v j ] > 0.

We will show below that for every v j we can find a sequence (v j,k)k ⊂ X0 with
v j,k ⇀ v j in W1,2 as k → ∞ and

‖∇v j − ∇v j,k‖L1 ≥ β > 0,

where β is independent of j and k. Since all gradients ∇v j,k are uniformly L2-norm-
bounded (because G is bounded), we may use the metrizability of the weak topology
on norm-bounded sets to select a diagonal subsequence (u j ) ⊂ X0 with u j ⇀ u in
W1,2 and

‖∇u j − ∇u‖L1 ≥ ‖∇u j − ∇v j‖L1 − ‖∇v j − ∇u‖L1 ≥ β

2
> 0

for j sufficiently large. However, using u ∈ S again, we must also have u j → u in
W1,2, a contradiction.

Step 2. It remains to show that for any v ∈ X0 with K [v] > 0 and for any given
ε > 0 we can find w ∈ X0 with ‖v − w‖L2 ≤ ε and

‖∇v − ∇w‖L1 ≥ β,

where β > 0 is a constant that does not depend on ε > 0 and that depends on v only
through K [v].

Since v ∈ X0 is piecewise affine, we can write

v(x) =
∞∑
l=1

(zl + Alx)1Dl (x)

for some zl ∈ R
m , Al ∈ G, and Lipschitz subdomains Dl ⊂ Ω that form a disjoint

partition of Ω up to a negligible set. For η > 0 set
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Eη := {
x ∈ Ω : dist(∇v(x), K ) > η

}
and estimate

K [v] =
∫
Eη

dist(∇v(x), K ) dx +
∫

Ω\Eη

dist(∇v(x), K ) dx

≤ (|G|∞ + |K |∞) · |Eη| + η|Ω|.

Here, |G|∞ := sup { |A| : A ∈ G } and likewise for |K |∞. Thus, choosing η :=
K [v]/(2|Ω|) > 0, we get

|Eη| ≥ K [v]
2(|G|∞ + |K |∞)

=: 2α > 0.

Refining the piecewise affine partition for v if necessary, we may assume that

∑
Dl⊂Eη

|Dl | ≥ α.

Then, use the (piecewise affine) stability of K with respect to G to find in each
Dl ⊂ Eη a piecewise affine map ψl ∈ W1,∞

0 (Dl; R
m) with

(a) Al + ∇ψl(x) ∈ G for almost every x ∈ Dl ;

(b)
∫
Dl

|∇ψl(x)| dx ≥ δη|Dl |, where δη > 0 is independent of l and ε;

(c) ‖ψl‖L2(Dl ) ≤ ε
|Dl |
|Ω| .

The last condition can be established via a “homogenization” argument as in
Lemma 4.14. For Dl �⊂ Eη set ψl := 0. Define

w(x) :=
∞∑
l=1

(zl + Alx + ψl(x))1Dl (x), x ∈ Ω.

Then, ‖v − w‖L2 ≤ ε and

‖∇v − ∇w‖L1 ≥
∑
Dl⊂Eη

∫
Dl

|ψl(x)| dx ≥ αδη =: β.

Since β is independent of ε and depends on v only through K [v], the claim of the
theorem follows. �

Applications of this approach, in particular to inhomogeneous differential inclu-
sions, can be found in Chapters 3 and 4 of [160].

The theory of convex integration via Baire category theory has several advantages.
First, checking stability can be easier than showing the existence of a piecewise affine
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reduction or in-approximations as in the previous sections. One only needs to show
that away from K one can perturb affine maps in a suitable way. Second, the analysis
of the differential inclusion ∇u ∈ K can be refined by introducing a suitable notion
of extremal points for K , see Chapter 3 of [160] for details. This in fact explains the
underlying workings of the whole Baire convex integration strategy: The functional
G can only be continuous at u ∈ X with respect to the weak convergence in W1,2

if ∇u is already “trapped” in the extreme points of K . Otherwise, the (piecewise
affine) stability property would imply that a perturbation is possible, violating the
continuity.

Finally, we remark that the approach presented in this section is in fact equivalent
to the strategy from Section 9.3, as was observed by Sychev [261, 262].

9.7 Non-laminate Microstructures

All homogeneous Young measures that we have explicitly constructed so far, like
the T4-configuration, have been laminates (perhaps infinite-order ones). So, a natural
question is whether there are microstructures that cannot be realized as laminates.
By the Kinderlehrer–Pedregal Theorem 7.15 and Pedregal’s characterization of lam-
inates in Theorem 9.2, this question is intimately tied to Morrey’s Conjecture 7.9.
Thanks to Švérak’s Example 7.10 of a rank-one convex, but not quasiconvex, func-
tion, we can also construct examples of gradient Young measures that are not lami-
nates:

Example 9.21. Let ϕ ∈ W1,∞
per ((0, 1)2; R

3) be the function constructed in Exam-

ple 7.10. Define the gradient Young measure δ[∇ϕ] ∈ GY∞((0, 1)2; R
3×2) via the

Riemann–Lebesgue Lemma 4.15 (ϕ has periodic boundary values), i.e.,

〈
h, δ[∇ϕ]〉 = −

∫
(0,1)2

h(∇ϕ(x)) dx, h ∈ C0(R
3×2).

However, δ[∇ϕ] is not a laminate: In Example 7.10 a function h̃ = hα,β : R
3×2 → R

was constructed that is rank-one convex, but not quasiconvex at [δ[∇ϕ]] = 0. More
precisely, we showed in (7.13) that

∫
(0,1)2

h̃(∇ϕ) dx < 0 = h̃(0) = h̃
([δ[∇ϕ]]).

Then, Pedregal’s Theorem 9.2 implies that δ[∇ϕ] cannot be a laminate.

Example 9.22 (James). The following is a more concrete example of a gradient
Young measure that is not a laminate; it is still based on a variant of Švérak’s con-
struction. Let ϕ : R → R be the periodic sawtooth function
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Fig. 9.5 James’ example of
a gradient Young measure
that is not a laminate

ϕ(t) :=

⎧⎪⎨
⎪⎩
t if t − �t� ∈ [0, 1/4),
1
2 − t if t − �t� ∈ [1/4, 3/4),
t − 1 if t − �t� ∈ [3/4, 1),

and define u ∈ W1,∞(R2; R
3) via

u(x1, x2) :=
⎛
⎝ ϕ(x1)

ϕ(x2)
ϕ(x1 + x2)

⎞
⎠ .

Then, for u j (x) := u( j x)/j , where x ∈ (0, 1)2, the gradients ∇u j take values in the
set

K :=
⎧⎨
⎩

⎛
⎝x 0
0 y
z z

⎞
⎠ ∈ R

3×2 : x, y, z ∈ {−1,+1}
⎫⎬
⎭ .

We refer to the eight elements of K by the signs of x, y, z; for instance, the matrix
corresponding to (x, y, z) = (+1,−1,+1) is simply denoted by “+ − +”. See

Figure 9.5 for an illustration of ∇u. We have that ∇u j
Y→ ν ∈ GY∞((0, 1)2; R

3×2)

and a simple counting argument gives

ν = 3

16

[
δ+++ + δ+−− + δ−+− + δ−−+

] + 1

16

[
δ++− + δ+−+ + δ−++ + δ−−−

]
.

It is also straightforward to compute that [ν] = 0. Notice that the matrices in the
first block all have positive parity, which for the matrix corresponding to the signs



260 9 Microstructure

x, y, z is given as xyz (i.e., the parity is positive if and only if the number of minuses
is even). All matrices in the second block have negative parity.

For all α > 0 there exists a β > 0 such that the function from Švérak’s Exam-
ple 7.10,

hα,β(A) := g(P(A)) + α
(|A|2 + |A|4) + β|A − P(A)|2,

where

g

⎛
⎝x 0
0 y
z z

⎞
⎠ := −xyz

and P : R
3×2 → L is a linear projection onto

L :=
⎧⎨
⎩

⎛
⎝x 0
0 y
z z

⎞
⎠ : x, y, z ∈ R

⎫⎬
⎭ ,

is rank-one convex. Thus, if ν was a laminate, Pedregal’s Theorem 9.2 would imply

0 = hα,β([ν]) ≤
∫

hα,β(A) dν(A).

As all matrices in L have the same (Frobenius) norm 2, we then however get

0 ≤
⎛
⎜⎝ ∑

A∈L with
parity+1

−ν(A) +
∑

A∈L with
parity−1

ν(A)

⎞
⎟⎠ + 20α

=
(

−12

16
+ 4

16

)
+ 20α

= −1

2
+ 20α.

Since for α sufficiently small the right-hand side is negative, this is a contradiction.
Hence, ν cannot be a laminate.

Unfortunately, while the preceding example shows that there exists a measure
ν ∈ M qc(K ) \ M rc(K ) it turns out that nevertheless K qc = K rc, see Problem 9.7.
Thus, it is reasonable to formulate a strong version of Morrey’s conjecture:

Conjecture 9.23. There exists a compact set K ⊂ R
m×d such that K rc �= K qc.

Only some special cases are known. Milton showed that there is a compact set
K ⊂ R

3×12 with K rc �= K qc based on a modification of James’ result, see [187].
There is also an argument of Švérak that shows that there is a compact set K ⊂ R

6×2

with K rc �= K qc, see Section 4.7 in [203].
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9.8 Unbounded Microstructure

In this final section of the chapter we will show how some lamination methods can be
extended to unbounded sets. In particular, we will show that the Friesecke–James–
Müller Theorem 8.22 and Korn’s inequality 8.20 do not hold in L1.

Theorem 9.24 (Conti–Faraco–Maggi 2005 [71]). For all N ∈ N there exists a
map u ∈ W1,∞(B(0, 1); R

d) with u|∂B(0,1) = x such that

inf
Q∈SO(d)

∫
B(0,1)

|∇u − Q| dx ≥ N
∫
B(0,1)

dist(∇u,SO(d)) dx .

Theproof is basedon the following explicit construction,where byM lc(Rm×d)we
denote the set of unbounded (finite-order) laminates, defined in complete analogy
toM lc(K ) for K compact, only without the restriction on the support.

Lemma 9.25. There exists a sequence of finite-order laminates (ν j ) ⊂ M lc(R2×2)

with

[ν j ] =
(
0 1
1 0

)
,

∫ ∣∣∣∣ A + AT

2

∣∣∣∣ dν j (A) = √
2,

and

lim
j→∞

∫
|A| dν j (A) = ∞.

Proof. Step 1. We first construct for every k ∈ N a laminate γk ∈ M lc(R2×2) such
that

[γk] =
(
0 k
k 0

)
,

∫ ∣∣∣∣ A + AT

2

∣∣∣∣ dγk(A) = √
2k,

∫
|A| dγk(A) = 5

√
2

3
k.

Let δα,β denote the Dirac mass at Mα,β := (
0 α
β 0

)
. For k ∈ N define

γ ′
k := 1

3
δk,−k + 2

3
δk,2k .

Then, [γ ′
k] = Mk,k and γ ′

k is a laminate sinceMk,−k andMk,2k are rank-one connected.
Next, we set

γ ′′
k := 1

4
δ−2k,2k + 3

4
δ2k,2k,

for which [γ ′′
k ] = Mk,2k . Again, γ ′′

k is a laminate. Replacing the δk,2k-term in the
definition of γ ′

k by γ ′′
k , we arrive at the second-order laminate

γk := 1

3
δk,−k + 1

6
δ−2k,2k + 1

2
δ2k,2k .
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It is easy to compute that γk has all the required properties.
Step 2. Let us now define ν j ∈ M lc(R2×2). We set ν1 := γ1. For j = 2, 3, . . .

the ν j are defined iteratively. By construction, ν1 contains the term 1
2δ2,2. We apply

the first step to this term and replace it by a laminate γ2, yielding ν2. Generally, ν j

contains a term of the form 2− jδ2 j ,2 j , and we may replace the mass δ2 j ,2 j via the
first step of the proof with a laminate γ2 j , giving ν j+1. Clearly, this iteration does
not change the barycenter of the ν j , so [ν j ] = M1,1. Moreover, for the absolute
symmetric first moment we get

∫ ∣∣∣∣ A + AT

2

∣∣∣∣ dν j (A) = |M1,1| = √
2

since replacing δ2 j ,2 j with γ2 j does not change the absolute symmetric first moment.
If we unwind the recursion, we get

ν j =
j∑

n=1

(
21−n

3
δ2n−1,−2n−1 + 21−n

6
δ−2n ,2n

)
+ 2−nδ2n ,2n .

Thus, we may estimate

∫
|A| dν j (A) ≥

j∑
n=1

21−n

3
|M2n−1,−2n−1 | = j

√
2

3
.

Consequently,

lim
j→∞

∫
|A| dν j (A) = ∞.

This finishes the proof. �

We next prove the following linearized version of Theorem 9.24, which is called
Ornstein’s non-inequality (or, more precisely, a special case of this quite general
statement, see [162, 220]). It shows that an analogue of Korn’s inequality (8.20) does
not hold in W1,1.

Theorem 9.26 (Ornstein 1962 [220]). For all N ∈ N there exists a map u ∈
W1,∞

0 (B(0, 1); R
d) such that

inf
F∈Rd×d

∫
B(0,1)

|∇u − F | dx ≥ N
∫
B(0,1)

∣∣∣∣∇u + ∇uT

2

∣∣∣∣ dx .
Proof. We only show the assertion for d = 2, the higher-dimensional cases follow
from a natural embedding.

Step 1. We first prove that there exists a map v ∈ W1,∞
0 (B(0, 1); R

2) with
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∫
B(0,1)

|∇v| dx ≥ N
∫
B(0,1)

∣∣∣∣∇v + ∇vT

2

∣∣∣∣ dx . (9.17)

By the preceding lemma, we may select a finite-order laminate ν ∈ M lc(R2×2) such
that ∫

|A| dν(A) ≥ 8
√
2N + √

2 and
∫ ∣∣∣∣ A + AT

2

∣∣∣∣ dν(A) = √
2.

Then, by Lemma 9.3, ν is a homogeneous gradient Young measure on the domain
B(0, 1) (the fact thatwemaychoose the domain B(0, 1) follows fromacovering argu-
ment as in Lemma 4.14). Thus, there exists a sequence (v j ) ⊂ W1,∞

M1,1x
(B(0, 1); R

2)

with ∇v j
Y→ ν; in fact, the proof of Lemma 9.3 constructs this sequence explicitly.

Setting v(x) := v j (x) − M1,1x for j large enough, we may assume

∫
B(0,1)

|∇v| dx ≥ 1

2

∫
|A − M1,1| dν(A)

and ∫ ∣∣∣∣ A + AT

2
− M1,1

∣∣∣∣ dν(A) ≥ 1

2

∫
B(0,1)

∣∣∣∣∇v + ∇vT

2

∣∣∣∣ dx .
Then, ∫

B(0,1)
|∇v| dx ≥ 1

2

∫
|A − M1,1| dν(A)

≥ 1

2

∫
|A| dν(A) −

√
2

2

≥ 4
√
2N

= 2N
∫ ∣∣∣∣ A + AT

2

∣∣∣∣ dν(A) + 2
√
2N

≥ 2N
∫ ∣∣∣∣ A + AT

2
− M1,1

∣∣∣∣ dν(A)

≥ N
∫
B(0,1)

∣∣∣∣∇v + ∇vT

2

∣∣∣∣ dx .
Thus, (9.17) follows.

Step 2. Let v ∈ W1,∞
0 (B(0, 1); R

2) satisfy (9.17). We now show Ornstein’s claim
by scaling. Set for 0 < r < 1,

vr (x) := rv

(
x

r

)
, x ∈ B(0, 1),
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where we consider v to be extended by zero to all of R
2. We calculate for r ≤ 2−1/d

that

inf
F∈R2×2

∫
B(0,1)

|∇vr − F | dx

≥ inf
F∈R2×2

(∫
B(0,r)

|∇vr | dx −
∫
B(0,r)

|F | dx +
∫
B(0,1)\B(0,r)

|F | dx
)

≥
∫
B(0,r)

|∇vr | dx + inf
F∈R2×2

(
ωd(1 − 2rd)|F |)

≥
∫
B(0,1)

|∇vr | dx .

Since (9.17) is invariant under the scaling, the assertion of the theorem follows with
u := vr . �

Proof of Theorem 9.24. Again, we only consider the case d = 2. Let u be the function
from Ornstein’s Theorem 9.26 for the constant 2N . Set

v(x) := x + εu(x), x ∈ B(0, 1),

for an ε > 0 to be determined later. We also observe, see (A.2), that

dist(Id + A,SO(2)) ≤ 1

2
|A + AT | + C |A|2.

Thus, since ∇v = Id + ε∇u,∫
B(0,1)

dist(∇v,SO(2)) dx ≤ ε

∫
B(0,1)

∣∣∣∣∇u + ∇uT

2

∣∣∣∣ dx
+ ε2C

∫
B(0,1)

|∇u|2 dx .

Now choose ε > 0 so small that the second term is less than or equal to the first.
Then,

N
∫
B(0,1)

dist(∇v,SO(2)) dx ≤ 2Nε

∫
B(0,1)

∣∣∣∣∇u + ∇uT

2

∣∣∣∣ dx
≤ ε inf

F∈R2×2

∫
B(0,1)

|∇u − F | dx

= inf
G∈R2×2

∫
B(0,1)

|∇v − G| dx

≤ inf
Q∈SO(2)

∫
B(0,1)

|∇v − Q| dx .

This proves the claim. �
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Notes and Historical Remarks

The task to compute quasiconvex hulls first arose in the theory of mathematical
material science, in particular in the work of Ball and James [30, 31]. However,
the explicit definitions and study of the rank-one convex hull and polyconvex hull
as lower and upper bounds, respectively, only seem to have appeared later (even
though the methods to compute them are older). Dacorogna contributed many results
investigating the properties of the various hulls, see [76] for an overview and pointers
to the literature. One can also define notions of quasiconvex, polyconvex, and rank-
one convex sets, not just envelopes as we have done, and develop a corresponding
theory, see Chapter 7 in [76].

For most of the material on the application to the two-well problems we fol-
low [203, 205]. The proof of Proposition 9.4 is based on ideas from [251]. Theo-
rem 9.5 is from [254].

The basic idea of convex integration dates back to the famous Nash–Kuiper The-
orem in differential geometry [173, 212]. These arguments were developed further
until they culminated inGromov’s “h-principle”,which is detailed in his treatise [145]
(also see [144]). There, the Lipschitz case, which is the one relevant to us, is also
briefly mentioned; in particular, the term “in-approximation” is due to Gromov. This
work was transferred by Müller and Šverák [205, 207] to the multi-well inclusions
that are of interest in material sciences. Simultaneously, Dacorogna and Marcellini
[79, 80] adapted Cellina’s Baire method [20, 58, 59] for ordinary differential inclu-
sions to partial differential inclusions. Sychev [257, 260, 262] developed the method
further to prove an existence theorem that only assumed the existence of what we
call a “piecewise affine reduction”. He also showed that the situation with an in-
approximation (or RC-in-approximation) can be reduced to this abstract result. We
remark that Sychev’s original result, Theorem 1.1 in [260], is in fact a bit more gen-
eral than our version. Finally, Kirchheim’s approach based on Baire-one functionals
unified the different strands of development, see [160], and further relates convex
integration to the Banach–Mazur game. Our presentation mostly follows [160], but
we also took some inspiration from [263]. We also remark that the term “convex
integration” sometimes only designates the approach via an (RI-)in-approximation.
Kirchheim speaks of “affine synthesis” in [160].

The technical Lemma 9.10 is from [207], which itself is a variant of Theorem 2.4
in [120], but the result is already mentioned in Gromov’s book [145]. While The-
orem 9.12 as stated is due to Müller and Šverák [205], at the same time the Baire
approach by Dacorogna and Marcellini [79] also resulted in similar results.

For convex integration in the inhomogeneous case, that is, where K = K (x),
we refer to [208]. We also mention [206], where additionally a uniform determinant
constraint is respected in the convex integration procedure. Convex integration has
also been applied to the Euler equation to show the existence of very irregular solu-
tions [91, 152, 239, 243]. One important and recurring theme in convex integration
theory is that the regularity we require of solutions determines whether we can find
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solutions at all. The task is then to precisely identify the threshold between rigidity
and non-rigidity.

Ornstein’s non-inequality is in fact a much more general result that shows that
many singular integral operators are not (L1 �→ L1)-bounded. An abstract approach
to these questions is in [162].

Another aspect of microstructure which was not touched upon in this chapter is
that of uniqueness and stability. Here, amicrostructure ν ∈ M qc(K ) is called unique
(in K ) if ν̂ ∈ M qc(K ) with [ν̂] = [ν] implies ν̂ = ν. Many ideas in this area go
back to Luskin; a nice modern exposition, which also incorporates some new ideas
with a view toward numerics is in Chapter 4 of [100].

Problems

9.1. Let K ⊂ R
m×d be a non-empty compact set. Show that K lc is the smallest set

M ⊂ R
m×d that is closed under laminations, i.e., if A, B ∈ M and rank(A− B) = 1,

then θ A + (1 − θ)B ∈ M for all θ ∈ (0, 1).

9.2. Let (tk, Ak)k=1,...,n ⊂ [0, 1] × R
m×d with

∑
k tk = 1. We define:

(i) If n = 2 we say that (tk, Ak)k satisfies the (H2)-condition if rank(A1− A2) ≤ 1.
(ii) If n > 2 we say that (tk, Ak)k satisfies the (Hn)-condition if possibly after a

permutation of indices,
rank(A1 − A2) ≤ 1

and with

s1 = t1 + t2, B1 = t1
s1

A1 + t2
s1

A2,

sk = tk+1, Bk = Ak+1 for k = 2, 3, . . . , n,

the collection (sk, Bk)k=1,...,n−1 satisfies the (Hn−1)-condition.

Prove that

M lc(K ) =
{

μ ∈ M 1(K ) : μ =
n∑

k=1

tkδAk , (tk, Ak)k satisfies the (Hn)-condition

for some n ∈ N

}
.

9.3. Show that for all non-empty compact sets K ⊂ R
m×d it holds that

K� = {
A ∈ R

m×d : h(A) ≤ infK h for all h : R
m×d → R such that h = h� }

,
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where � ∈ {rc, qc, pc, ∗∗}, and h� is the respective envelope of h (i.e., h = h�

means that h has the respective convexity property).

9.4. Show that for a compact set K ⊂ R
3×3 it holds that

K pc = {
A ∈ R

3×3 : (A, cof A, det A) ∈ (MK )∗∗ }
,

where
MK := {

(A, cof A, det A) : A ∈ K
}
.

What is the corresponding formula for general dimensions?

9.5. Let

K := SO(2) ∪ SO(2)U, U :=
(

α

β

)
, 0 < α ≤ 1 ≤ β, αβ ≥ 1.

Show that for every A ∈ K ∗∗ we can find unique y, z ∈ R
2 with

|y|2 = y21 + y22 ≤ 1 and |z|2 = z21 + z22 ≤ 1

such that

A =
(
y1 −y2
y2 y1

)
+

(
z1 −z2
z2 z1

)
U.

Show furthermore that the mapping (y, z) �→ A is a diffeomorphism.

9.6. Show that for all sufficiently small open sets U ⊃ KT4 there are no rank-one
connections in U .

9.7. Show that for the set

K :=
⎧⎨
⎩

⎛
⎝x 0
0 y
z z

⎞
⎠ : x, y, z ∈ {−1, 1}

⎫⎬
⎭

from Example 9.22 it holds that

K lc = K rc = K qc = K pc = K ∗∗ =
⎧⎨
⎩

⎛
⎝x 0
0 y
z z

⎞
⎠ : x, y, z ∈ [−1, 1]

⎫⎬
⎭ .

9.8. For an open set G ⊂ R
m×d we define

Gqc :=
⋃{

K qc : K ⊂ G compact
}
.

Assume that K ⊂ Gqc is compact. Show that there exists a subset G0 � G with
K ⊂ Gqc

0 .



268 9 Microstructure

9.9. Use a convex integration procedure to show that there are continuous, bounded
functions on the interval [0, 1] that are nowhere differentiable.
9.10. Show that if a compact set K ⊂ R

m×d has an in-approximation consisting of
open, uniformly bounded sets Gk ⊂ R

m×d then K is piecewise affinely stable with
respect to G∞ := ⋃∞

l=1 Gl .



Chapter 10
Singularities

All of the existence theorems for minimizers of integral functionals defined on
Sobolev spaces W1,p(Ω; R

m) that we have seen so far required that p > 1. Extend-
ing the existence theory to the linear-growth case p = 1 turns out to be quite intricate
and necessitates the development of new tools. In order to illustrate this, consider
the following minimization problem:

⎧
⎨

⎩

Minimize F [u] :=
∫

Ω

f (x,∇u(x)) dx

over all u ∈ W1,1(Ω; R
m) with u|∂Ω = g.

(10.1)

Here, f : Ω × R
m×d → R is a Carathéodory integrand and g ∈ L1(∂Ω; R

m), which
is the trace space for W1,1(Ω; R

m) (see Appendix A.5). Our hypothesis of linear
growth on f means that there exists a constant M > 0 such that

| f (x, A)| ≤ M(1 + |A|), (x, A) ∈ Ω × R
m×d .

If for the moment we also assume coercivity in the form

μ|A| ≤ f (x, A), (x, A) ∈ Ω × R
m×d ,

where μ > 0, then a minimizing sequence (u j ) ⊂ W1,1(Ω; R
m) satisfies

lim sup
j→∞

‖u j‖W1,1(Ω;Rm ) < ∞.

Here we also used the Poincaré inequality, see TheoremA.26 (i), in conjunction with
the fixed boundary values.

However, when trying to apply the Direct Method, it turns out that (10.1) is badly
behaved: It is a well-known observation that in W1,1(Ω; R

m) a uniform norm-bound
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F. Rindler, Calculus of Variations, Universitext,
https://doi.org/10.1007/978-3-319-77637-8_10

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77637-8_10&domain=pdf


270 10 Singularities

Fig. 10.1 A concentrating sequence

is not enough to deduce weak compactness, which is due to the non-reflexivity of
W1,1(Ω; R

m). For instance, take

u j (x) := j x1(0,1/j)(x) + 1(1/j,1)(x) ∈ W1,1(−1, 1)

and observe that the u j converge to u = 1(0,1) /∈ W1,1(−1, 1) pointwise and in
L1, see Figure 10.1. The decisive feature of the u j ’s is that the (weak) derivatives u′

j
concentrate, meaning that the family {u′

j } j is not equiintegrable. In fact, themeasures
u′

j L
d (−1, 1) converge weakly* (in the sense of measures) to a measure that is

not absolutely continuous with respect to Lebesgue measure, namely the Dirac mass
δ0.

We conclude that the space W1,1(Ω; R
m) is too small to serve as the set of can-

didate functions for our minimization problems (10.1). Clearly, we need a space
containing W1,1(Ω; R

m) such that a uniform norm-bound implies precompactness
for a suitable (weak) convergence. Moreover, in order to retain the connection to our
original problem, it is desirable that W1,1(Ω; R

m) is dense with respect to another
notion of convergence that is strong enough to make the above functionalF contin-
uous. All these requirements are fulfilled by the space BV(Ω; R

m) of functions of
bounded variation, as we will see in this and the next chapter.

Before we can delve into the theory of integral functionals defined on BV-maps in
the next chapter, and in particular consider how to extend (10.1) to this space, we first
need to study singularities in measures and BV-functions. This is the topic of this
chapter. After introducing the so-called strict convergence of measures, we define
tangent measures, which allow us to study the local shape of measures. Then, we
turn to an analysis of the structure of singularities in BV-maps, and, more generally,
in PDE-constrained measures. Finally, we present a surprising result about convexity
at singularities, which will become useful in Chapter 12.

10.1 Strict Convergence of Measures

In all of this and the next two chapters we will make constant use of the theory of
vector measures, which is recalled in Appendix A.4.

We say that a sequence of (vector) measures (μ j ) ⊂ M (Ω; R
N ) converges

strictly to μ ∈ M (Ω; R
N ), written as “μ j → μ strictly”, if
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μ j
∗

⇀ μ inM (Ω; R
N ) and |μ j |(Ω) → |μ|(Ω).

Here we recall that |μ| ∈ M+(Ω) denotes the total variation measure of the vector
measure μ, see Appendix A.4.

Lemma 10.1. Let λ j → λ strictly in M+(Rd). Then,

∫

g dλ j →
∫

g dλ (10.2)

for all continuous and bounded functions g : R
d → R. The same conclusion holds

if instead of strict convergence we only assume lim inf j→∞ λ j (U ) ≥ λ(U ) for all
open sets U ⊂ R

d , and λ j (R
d) → λ(Rd).

Proof. By considering α + βg for α, β ∈ R, we may without loss of generality
assume that g(x) ∈ [0, 1] for all x ∈ R

d . Let Et := { x ∈ R
d : g(x) > t } for

t ∈ [0, 1] and observe via Fubini’s theorem that

∫

g dλ =
∫ ∫ 1

0
1Et (x) dt dλ(x) =

∫ 1

0
λ(Et ) dt.

Since Et is open, λ j
∗

⇀ λ implies (via Lemma A.19)

lim inf
j→∞ λ j (Et ) ≥ λ(Et ) for all t ∈ [0, 1].

Thus, by Fatou’s lemma,

lim inf
j→∞

∫

g dλ j = lim inf
j→∞

∫ 1

0
λ j (Et ) dt ≥

∫ 1

0
λ(Et ) dt =

∫

g dλ.

Let

a j :=
∫

g dλ j , a :=
∫

g dλ, b j :=
∫

1 − g dλ j , b :=
∫

1 − g dλ.

Then, the arguments above yield

lim inf
j→∞ a j ≥ a, lim inf

j→∞ b j ≥ b.

Moreover, since λ j (R
d) → λ(Rd),

lim
j→∞ (a j + b j ) = a + b.

Thus, it follows by elementary means that a j → a, that is, (10.2).
The additional statement is clear since we only used that lim inf j→∞ λ j (U ) ≥

λ(U ) for open sets U ⊂ R
d and λ j (R

d) → λ(Rd). �
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Corollary 10.2. If μ j → μ strictly in M (Ω; R
N ), then also |μ j | → |μ| strictly.

Proof. We need to show that |μ j | ∗
⇀ |μ| inM+(Ω).

It holds that lim inf j→∞ |μ j |(U ) ≥ |μ|(U ) for all open sets U ⊂ R
d by the

weak* convergence μ j
∗

⇀ μ and the fact that the total variation for open sets can
be written as the supremum of weakly*-continuous functions, see (A.3), hence it
must be lower semicontinuous with respect to the weak* convergence. Since also
|μ j |(Rd) → |μ|(Rd) by assumption, we may apply the preceding lemma for λ j :=
|μ j |, λ := |μ|. Then, (10.2) for g ∈ C0(R

d) implies that indeed |μ j | ∗
⇀ |μ| in

M+(Ω). �

The most important result about strict convergence is the following Reshetnyak
continuity theorem. For this, denote by

P := dμ

d|μ| ∈ L1(Rd , |μ|; R
N )

the polar of μ, i.e., the Radon–Nikodým density of μ with respect to it own total
variation measure |μ| (see the Besicovitch Differentiation Theorem A.23), so that

μ = P|μ| and |P| = 1 |μ| -a.e.

Theorem 10.3 (Reshetnyak 1967 [225]). Let Ω ⊂ R
d be open and let g ∈ C(Ω ×

S
N−1). For any sequence (μ j ) ⊂ M (Ω; R

N ) with μ j → μ strictly it holds that

∫

g

(

x,
dμ j

d|μ j | (x)

)

d|μ j |(x) →
∫

g

(

x,
dμ

d|μ| (x)

)

d|μ|(x).

Proof. Define

λ j := |μ j |(dx) ⊗ δPj (x) ∈ M+(Ω × S
N−1), where Pj (x) := dμ j

d|μ j | (x),

that is, for f ∈ C0(Ω × S
N−1),

∫

Ω×SN−1
f (x, A) dλ j (x, A) =

∫

Ω

f

(

x,
dμ j

d|μ j | (x)

)

d|μ j |(x).

We have
sup
j∈N

|λ j |(Ω × S
N−1) = sup

j∈N
|μ j |(Ω) < ∞.

Thus, we may select a subsequence (not explicitly labeled) with the property that

λ j
∗

⇀ λ inM+(Ω × S
N−1).
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Let π : Ω × R
N → R

d be the projection onto the first argument, π(x, A) := x .

On the one hand, we get π#λ j
∗

⇀ π#λ, where π#λ := λ ◦ π−1 is the push-forward
of λ under π , see Appendix A.4. On the other hand, Corollary 10.2 implies

π#λ j = |μ j | ∗
⇀ |μ|.

Hence, π#λ = |μ| and by the Disintegration Theorem 4.4 there exists a weakly*
measurable family (νx )x∈Ω ⊂ M 1(SN−1) such that

λ = |μ|(dx) ⊗ νx .

Next, test the convergence λ j
∗

⇀ λ with functions of the form (x, A) �→ ψ(x)A,
where ψ ∈ C0(Ω) (note that these functions lie in C0(Ω × S

N−1)) to see that

∫

Ω

ψ(x)

∫

A dνx (A) d|μ|(x) =
∫

Ω×SN−1
ψ(x)A dλ(x, A)

= lim
j→∞

∫

Ω×SN−1
ψ(x)A dλ j (x, A)

= lim
j→∞

∫

Ω

ψ(x)
dμ j

d|μ j | (x) d|μ j |(x)

= lim
j→∞

∫

Ω

ψ(x) dμ j (x)

=
∫

Ω

ψ(x) dμ(x)

=
∫

Ω

ψ(x)
dμ

d|μ| (x) d|μ|(x).

Consequently, varying ψ , for the barycenter [νx ] of νx we get

[νx ] =
∫

A dνx (A) = dμ

d|μ| (x) for |μ|-a.e. x ∈ Ω.

Then, at |μ|-almost every x ∈ Ω , it holds that

1

2

∫

SN−1

∣
∣
∣
∣A − dμ

d|μ| (x)

∣
∣
∣
∣

2

dνx (A)

= 1

2

∫

SN−1
|A|2 − 2

dμ

d|μ| (x) · A +
∣
∣
∣
∣
dμ

d|μ| (x)

∣
∣
∣
∣

2

dνx (A)

= 1 − dμ

d|μ| (x) · [νx ]
= 0.
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Hence,

νx = δP(x) for |μ| -a.e. x ∈ Ω, where P(x) := dμ

d|μ| (x).

Finally, λ j → λ strictly since

|λ j |(Ω × S
N−1) = |μ j |(Ω) → |μ|(Ω) = |λ|(Ω × S

N−1).

By Lemma 10.1 we thus get for every g as in the statement of the theorem that

∫

g

(

x,
dμ j

d|μ j | (x)

)

d|μ j |(x) =
∫

g(x, A) dλ j (x, A)

→
∫

g(x, A) dλ(x, A)

=
∫

g

(

x,
dμ

d|μ| (x)

)

d|μ|(x)

as j → ∞. This yields the sought assertion since it identifies the limit for every
subsequence. �

10.2 Tangent Measures

We now introduce a tool to study the local structure of measures. For x0 ∈ R
d and

r > 0 define the rescaling map

T (x0,r)(x) := x − x0
r

, x ∈ R
d .

For a vector-valued (local) Radon measure μ ∈ Mloc(R
d; R

N ) and x0 ∈ R
d , a

tangent measure to μ at x0 is any (local) weak* limit in the space Mloc(R
d; R

N )

of the rescaled measures
cnT (x0,rn)

# μ

for some sequence rn ↓ 0 of radii and rescaling constants cn > 0. The definition of
the push-forward T (x0,r)

# μ (see Appendix A.4) here expands to

[T (x0,rn)
# μ](B) = μ(x0 + rn B) for any Borel set B ⊂ R

d .

The sequence (cnT (x0,rn)
# μ)n is called a blow-up sequence. We collect all tangent

measures to μ at a point x0 in the set Tan(μ, x0). Clearly, 0 ∈ Tan(μ, x0) for all
x0 ∈ R

d and Tan(μ, x0) = {0} for all x0 /∈ suppμ. We will see in Proposition 10.5
below that Tan(μ, x0) contains a non-zero measure for |μ|-almost every x0 ∈ R

d .
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For any non-zero τ ∈ Tan(μ, x0) it turns out that, up to taking subsequences, we

may always choose the rescaling constants cn in the blow-up sequence cnT (x0,rn)
# μ

∗
⇀

τ as
c̃n := c

[|μ|(x0 + rnU )
]−1

(10.3)

for any (fixed) bounded open setU ⊂ R
d containing the origin such that |τ |(U ) > 0,

and some constant c > 0 (which, of course, depends on τ and U ). Indeed,

0 < |τ |(U ) ≤ lim inf
n→∞ cn|μ|(x0 + rnU ) ≤ lim sup

n→∞
cn|μ|(x0 + rnU ) < ∞

by the (local) weak* convergence of cnT (x0,rn)
# |μ|. After the selection of a sub-

sequence (not relabeled) we may assume cn|μ|(x0 + rnU ) → c, and hence that

c̃nT (x0,rn)
# μ

∗
⇀ τ .

The first fact we prove about tangentmeasures is a very useful (measure-theoretic)
continuity property:

Lemma 10.4. Let μ ∈ Mloc(R
d; R

N ). At |μ|-almost every point x0 ∈ R
d and for

all blow-up sequences (cnT (x0,rn)
# μ)n, where rn ↓ 0, cn > 0, it holds that

τ = w∗-lim
n→∞ cnT (x0,rn)

# μ ⇐⇒ |τ | = w∗-lim
n→∞ cnT (x0,rn)

# |μ|.

In this case,

τ = P0|τ | with P0 = dμ

d|μ| (x0).

Thus, Tan(μ, x0) = dμ
d|μ| (x0) · Tan(|μ|, x0) for |μ|-almost every x0 ∈ R

d .

Proof. Let x0 ∈ R
d be a Lebesgue point of the polar P := dμ

d|μ| of μ with respect to
|μ|, that is,

−
∫

B(x0,rn R)

|P(x) − P0| d|μ|(x) → 0 as n → ∞.

By general measure theory results, |μ|-almost every x0 ∈ R
d has this property, see

Theorem A.20.
Let ϕ ∈ Cc(R

d). By (10.3) we may assume that cn = c[|μ|(B(x0, rn R))]−1 for
some c ≥ 0 and a large ball B(0, R) � suppϕ (R > 0). We have

∫

ϕ dT (x0,rn)
# |μ| −

∫

ϕ P0 · dT (x0,rn)
# μ

=
∫

ϕ(y)
[
1 − P0 · P(x0 + rn y)

]
dT (x0,rn)

# |μ|(y)

=
∫

ϕ
( x − x0

rn

)[
1 − P0 · P(x)

]
d|μ|(x).
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Since
|1 − P0 · P(x)| ≤ |P(x) − P0|,

the Lebesgue point property of x0 yields

cn

∣
∣
∣
∣

∫

ϕ dT (x0,rn)
# |μ| −

∫

ϕ P0 · dT (x0,rn)
# μ

∣
∣
∣
∣

≤ c‖ϕ‖∞ −
∫

B(x0,rn R)

|P(x) − P0| d|μ|(x)

→ 0 as n → ∞.

Therefore, if cnT (x0,rn)
# μ converges weakly* to τ ∈ Mloc(R

d; R
N ), then cnT (x0,rn)

# |μ|
converges weakly* to P0 · τ =: σ . If we write τ = G|τ | with the polar Radon–
Nikodým density G ∈ L1

loc(R
d , |τ |; S

d−1), then

|τ | ≤ w∗-lim
n→∞ cnT (x0,rn)

# |μ| = σ = P0 · τ = (P0 · G)|τ | ≤ |τ |,

whereby G = P0 almost everywhere with respect to |τ |, i.e., σ = |τ |.
On the other hand, if cnT (x0,rn)

# |μ| converges weakly* to ameasure σ ∈ M+
loc(R

d),
then we also get (selecting a subsequence if necessary) that

cnT (x0,rn)
# μ

∗
⇀ τ ∈ Mloc(R

d; R
N ).

Immediately, the previous argument applies and again yields σ = |τ |. �

The following result shows that |μ|-almost everywhere there exists a non-zero
tangent measure.

Proposition 10.5. Let μ ∈ Mloc(R
d; R

N ). At |μ|-almost every x0 ∈ R
d there exists

a non-zero tangent measure τ ∈ Tan(μ, x0). Moreover, τ can be chosen to have
polynomial growth of order d + 2, i.e., there exists a constant C > 0 (depending on
τ ) such that |τ |(B(0, r)) ≤ C(1 + rd+2) for all r > 0.

Proof. Restricting to a ball centered at the origin (tangent measures are local), we
may assumewithout loss of generality thatμ is finite. Further, by the previous lemma
we may suppose without loss of generality that μ is a positive measure.

Fix ε > 0 and set

βk := 2d(k + 1)dk2

ε
μ(Rd) for k = 2, 3, . . . .

Define for k = 2, 3, . . . and r > 0 the set

Ak,r := {
x ∈ R

d : μ(B(x, kr)) ≥ βkμ(B(x, r))
}
.
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Assume that for some ball B(x, r/2) ⊂ R
d it holds that B(x, r/2)∩ Ak,r �= ∅. Then,

take z ∈ B(x, r/2) ∩ Ak,r and estimate

βkμ(B(x, r/2)) ≤ βkμ(B(z, r)) ≤ μ(B(z, kr)) ≤ μ(B(x, (k + 1)r)).

Hence, using the formula

μ(B) = 1

ωdrd

∫

μ(B ∩ B(x, r)) dx for any Borel setB ⊂ R
d ,

which follows from Fubini’s theorem (recall that ωd := |B(0, 1)|), we get

μ(Ak,r ) = 1

ωd(r/2)d

∫

μ(Ak,r ∩ B(x, r/2)) dx

≤ 2d(k + 1)d

βk
· 1

ωd(k + 1)drd

∫

μ(B(x, (k + 1)r)) dx

= 2d(k + 1)d

βk
μ(Rd)

= ε

k2
.

Next, for

Br := {
x ∈ R

d : there exists a k ∈ {2, 3, . . .} such that x ∈ Ak,r
}

we have

μ(Br ) ≤
∞∑

k=2

ε

k2
≤ π2

6
ε.

Defining

B :=
∞⋃

n=1

∞⋂

l=n

B1/ l ,

we see from the continuity of μ from below that

μ(B) ≤ π2

6
ε.

Let x0 ∈ suppμ \ B. For all n ∈ N by definition there exists an ln ≥ n such that

μ(B(x0, k/ ln)) < βkμ(B(x0, 1/ ln)) for all k = 2, 3, . . . .

Set rn to be 1/ ln for the ln so chosen at n. Then,
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lim sup
n→∞

μ(B(x0, krn))

μ(B(x0, rn))
≤ βk = 2d(k + 1)dk2

ε
μ(Rd)

for all k ∈ N. Consequently, with cn := μ(B(x0, rn))
−1 we have

lim sup
n→∞

(cnT (x0,rn)
# μ)(B(0, k)) ≤ Cε(k + 1)d+2

for some ε-dependent constant Cε > 0. First, this shows that we may select a sub-

sequence of the rn’s (not explicitly labeled) such that cnT (x0,rn)
# μ

∗
⇀ τ ∈ Tan(μ, x0)

inMloc(R
d). Second, τ is non-zero since

τ(B(0, 1)) ≥ lim sup
n→∞

(cnT (x0,rn)
# μ)(B(0, 1)) ≥ 1.

Third,
τ(B(0, k)) ≤ lim inf

n→∞ (cnT (x0,rn)
# μ)(B(0, k)) ≤ Cε(k + 1)d+2.

In conclusion, we have shown that τ is a non-zero tangent measure to μ in x0 with
polynomial growth.

The existence of a τ as above holds atμ-almost every x0 ∈ R
d since we can make

ε > 0 arbitrarily small, whereby the exceptional set must be μ-negligible. �

The following observation shows that we may even find blow-up sequences that
converge strictly.

Lemma 10.6. Let μ ∈ Mloc(R
d; R

N ). At |μ|-almost every x0 ∈ R
d and for every

open, bounded, and convex set C ⊂ R
d the following assertions hold:

(i) There exists a tangent measure τ ∈ Tan(μ0, x0) with |τ |(C) = 1, |τ |(∂C) = 0.
(ii) There exists a blow-up sequence γn := cnT (x0,rn)

# μ such that γn → τ strictly in
M (C; R

N ).

Proof. Choose η > 0, K ∈ N such that B(0, 1) � ηC � B(0, K ). At |μ|-almost
every point x0 ∈ suppμ there exists a sequence rn ↓ 0 such that

lim sup
n→∞

|μ|(B(x0, Krn))

|μ|(B(x0, rn))
≤ βK (10.4)

for a constant βK > 0; this is proved in Proposition 10.5.
At such an x0, let bn := |μ|(B(x0, rn))

−1. Then we have from (10.4) that, up to
selecting a subsequence,

bnT (x0,rn)
# μ

∗
⇀ σ inM (B(0, K ); R

N ).

Hence,
|σ |(ηC) ≥ lim sup

n→∞
(bnT (x0,rn)

# |μ|)(ηC) ≥ 1.
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From Lemma 10.4 we infer furthermore that

bnT (x0,rn)
# |μ| ∗

⇀ |σ |.

We can also assume |σ |(∂(ηC)) = 0 by increasing η slightly and without changing
K since |σ | is a finite measure, see Problem 10.1.

For the rescaled measure

τ := 1

|σ |(ηC)
T (0,η)

# σ = σ(η �)

|σ |(ηC)

it holds with cn := |σ |(ηC)−1bn that

γn := cnT (x0,ηrn)

# μ
∗

⇀ τ inM (C; R
N ), cnT (x0,ηrn)

# |μ| ∗
⇀ |τ | inM+(C).

Since |τ |(∂C) = |σ |(ηC)−1|σ |(∂(ηC)) = 0,we get from standard results inmeasure
theory (see Lemma A.22) that

|γn|(C) → |τ |(C) = 1.

Thus, τ ∈ Tan(μ, x0) satisfies assertion (i) in the statement of the lemma and the
blow-up sequence γn = cnT (x0,ηrn)

# μ satisfies assertion (ii). �

10.3 Functions of Bounded Variation

In this section we give an overview over some aspects of the theory of BV-functions.
We refer to [15, 112, 176, 285] for a more thorough exposition and for proofs.

As usual, let Ω ⊂ R
d be a bounded Lipschitz domain. The space BV(Ω; R

m)

of functions of bounded variation is defined to contain all u ∈ L1(Ω; R
m)

such that there exists a matrix-valued Radon measure Du = [Du]i
j = [∂ j ui ]i

j ∈
M (Ω; R

m×d), henceforth called the derivative of u, with the property that for all
i = 1, . . . , m and j = 1, . . . , d the integration-by-parts formula

∫

Ω

ui (x)
∂ψ

∂x j
(x) dx = −

∫

Ω

ψ(x) d[Du]i
j (x), ψ ∈ C1

c(Ω),

holds. One observes that BV(Ω; R
m) is a Banach space under the norm

‖u‖BV(Ω;Rm ) := ‖u‖L1(Ω;Rm ) + |Du|(Ω),

but the norm topology turns out to be too strong for most purposes (for instance,
smooth maps are not norm-dense in BV(Ω; R

m)). Therefore, one is led to consider
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the following notions of convergence: We say that a sequence (u j ) ⊂ BV(Ω; R
m)

converges weakly* to u ∈ BV(Ω; R
m), denoted as “u j

∗
⇀ u”, if

(i) u j → u in L1 and

(ii) Du j
∗

⇀ Du inM (Ω; R
m×d).

If we add the mass-conservation hypothesis

(iii) |Du j |(Ω) → |Du|(Ω),

then the u j are said to converge to u strictly , written as “u j → u strictly”; in
fact, (ii) then follows from (i) and (iii). An even stronger notion of convergence is
the area-strict convergence , where (iii) is replaced by

(iii’) 〈Du j 〉(Ω) → 〈Du〉(Ω).

Here, for μ ∈ M (Ω, R
N ) with Lebesgue–Radon–Nikodým decomposition μ =

dμ
dL d L

d Ω + μs (μs singular with respect to L d ), the quantity 〈μ〉(Ω) is the
(reduced) area-functional , which is defined via

〈μ〉(B) :=
∫

B

√

1 +
∣
∣
∣
dμ
dL d

∣
∣
∣
2
dx + |μs |(B)

for any Borel set B ⊂ Ω . It can be shown that area-strict convergence implies strict
convergence, see Problem 10.3 (ii). Smooth functions are area-strictly dense (hence
also strictly dense) in BV(Ω; R

m), see Lemma 11.1 in the next chapter.
The compactness theorem for weak* convergence in BV(Ω; R

m) says that a
sequence (u j ) ⊂ BV(Ω; R

m) with sup j ‖u j‖BV < ∞ has a weakly* converging
subsequence.

The derivative Du of u ∈ BV(Ω; R
m) has the Lebesgue–Radon–Nikodým

decomposition
Du = Dau + Dsu, Dau = ∇u L d Ω,

where the Lebesgue density∇u ∈ L1(Ω; R
m×d) is called the approximate gradient

of u and the measure Dsu ∈ M (Ω; R
m×d) is the singular part of Du. The latter

further splits as
Dsu = D j u + Dcu,

where D j u is the jump part and Dcu is the Cantor part . The jump part is of the
form

D j u = (u+ − u−) ⊗ n Ju H
d−1 Ju,

where Ju ⊂ Ω is theH d−1-rectifiable jump set , n Ju is a normal on Ju , and u± are
the one-sided traces of u on Ju (in positive and negative n Ju -direction, respectively);
we refer to [15] for the definition of rectifiability (which is not absolutely important
for our purposes here). More precisely, Ju is the H d−1-rectifiable (Borel) set of
points x0 ∈ Ω , where both the two one-sided traces u±(x0), defined via
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lim
r↓0

1

rd

∫

{ x∈B(x0,r) : x ·n Ju ≷0 }
|u(y) − u±(x0)| dy = 0,

exist, but differ.
It can be shown that ifH d−1(S) = 0, then also Du(S) = 0.
For every u ∈ BV(Ω; R

m) there is anL d -negligible Borel set Su ⊂ Ω such that
every x0 ∈ Ω \ Su is an approximate continuity point of u, that is, there exists a
ũ(x0) ∈ R

m such that

lim
r↓0

1

rd

∫

B(x0,r)

|u(y) − ũ(x0)| dy = 0.

Consequently, Su is called the approximate discontinuity set of u, and the map
ũ : Ω\Su → R

m (which can be made Borel-measurable) is called the precise rep-
resentative of u.

The Lebesgue density ∇u of the derivative Du can also be interpreted point-
wise: The Calderón–Zygmund theorem entails that atL d -almost every approximate
continuity point x0 ∈ Ω \ Su the map u is approximately differentiable , that is,

lim
r↓0 −

∫

B(x0,r)

|u(x) − ũ(x0) − ∇u(x0)(x − x0)|
r

dx = 0.

From the Besicovitch Differentiation Theorem A.23 it further follows that

∇u(x0) = lim
r↓0

Du(B(x0, r))

ωdrd
= lim

r↓0
Dau(B(x0, r))

ωdrd

at L d -almost every x0 ∈ Ω . Denote by Du the approximate differentiability set,
i.e., the collection of all approximate differentiability points x0 ∈ Ω such that∇u(x0)
satisfies the two conditions above. At all x0 ∈ Du ,

lim
r↓0

|Dsu|(B(x0, r))

rd
= 0. (10.5)

On the other hand, |Dsu|-almost every x0 ∈ Ω satisfies

lim
r↓0

|Du|(B(x0, r))

rd
= ∞, (10.6)

again by the Besicovitch Differentiation Theorem A.23.
The trace u|∂Ω : ∂Ω → R

m of u ∈ BV(Ω; R
m) on the boundary of Ω is defined

forH d−1-almost every x0 ∈ ∂Ω via

lim
r↓0

1

rd

∫

B(x0,r)∩Ω

∣
∣u(y) − u|∂Ω(x0)

∣
∣ dx = 0.
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It can be shown that u|∂Ω ∈ L1(∂Ω; R
m).

We define the one-sided traces on Lipschitz subdomains D � Ω in the same
manner as the boundary traces. The inner and outer one-sided trace disagree on a
H d−1-non-negligible subset of ∂ D precisely if |Du|(∂ D) > 0. It is easy to see that
the trace operator u �→ u|∂Ω is not continuous with respect to weak*-convergence
in BV(Ω; R

m), but it is continuous with respect to the strict convergence and hence
also with respect to the area-strict convergence.

We also remark that any bounded Lipschitz domain Ω ⊂ R
d is a BV-extension

domain in the sense that for every u ∈ BV(Ω; R
m) there exists ū ∈ BV(Rd; R

m)

such that u = ū almost everywhere in Ω and |Dū|(∂Ω) = 0.
In BV, a Poincaré inequality holds: For all u ∈ BV(Ω; R

m),

‖u‖BV ≤ C

(

|Du|(Ω) +
∫

∂Ω

|u| dH d−1

)

, (10.7)

where C = C(Ω) > 0 is a domain-dependent constant, and in the last integral the
values of u are to be understood in the sense of trace.

Wewill employ the following “gluing” procedure tacitlymany times in the sequel:
Given a Lipschitz subdomain D � Ω as well as u ∈ BV(D; R

m), v ∈ BV(Ω \
D; R

m), the “glued” map w := u1D + v1Ω\D lies in BV(Ω; R
m). In this case

Dw = Du D + Dv (Ω \ D) + (u|∂ D − v|∂(Rd\D)) ⊗ nD H d−1 ∂ D,

where nD is the measure-theoretic unit inner normal to ∂ D, that is, nD := dD1D
d|D1D | .

For u ∈ BV(Ω; R
m), extended to all ofR

d , in the followingwewill often consider
the push-forward maps T (x0,r)

# u under the rescaling T (x0,r)(x) := (x − x0)/r (where
x0 ∈ Ω and r > 0), that is,

(T (x0,r)
# u)(y) := u(x0 + r y), y ∈ R

d .

Then,

D(T (x0,r)
# u)(B) = (T (x0,r)

# Du)(B)

rd−1
= Du(x0 + r B)

rd−1
(10.8)

for any Borel set B ⊂ Ω , see Problem 10.2.

10.4 Structure of Singularities

Recall the decomposition of the derivative Du of u ∈ BV(Ω; R
m), namely

Du = ∇u L d Ω + (u+ − u−) ⊗ n H d−1 Ju + Dcu.
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Fig. 10.2 The blow-up of a
BV map at a singular point

Here, (u+ − u−) ⊗ n H d−1 Ju is the jump part of Du, as specified in the previous
section.

For the jump part the local structure is clear. In particular, we have the (trivial)
property that

rank

(
dD j u

d|D j u| (x)

)

= 1 for |D j u|-a.e. x ∈ Ω.

Intuitively, “locally” around x0 ∈ Ju the map u is almost one-directional (locally,
the set Ju is “almost straight”).

A natural but deep question is whether the same property also holds for the
Cantor part. This was conjectured by Ambrosio & De Giorgi [14] and proved first
by Giovanni Alberti. The result is now usually called Alberti’s rank-one theorem.

Theorem 10.7 (Alberti 1993 [4]). Let u ∈ BV(Ω; R
m). Then,

rank

(
dDsu

d|Dsu| (x)

)

= 1 for |Dsu| -a.e. x ∈ Ω.

As a consequence of this fundamental theorem, we get that even at points x0 ∈ Ω

around which u ∈ BV(Ω; R
m) has a Cantor-type (e.g. fractal) structure, the “slope”

of u has a well-defined direction, given by the vector n(x0) ∈ S
d−1 from dDs u

d|Ds u| (x0) =
a(x0)⊗ n(x0) (a(x0) ∈ R

m×d \ {0}). This is made precise in the following important
consequence of Alberti’s theorem.

Corollary 10.8. Let u ∈ BV(Ω; R
m). Then, at |Dsu|-almost every x0 ∈ Ω every

tangent measure τ ∈ Tan(Dsu, x0) is one-directional in the sense that there exists a
direction n ∈ S

d−1 such that
τ(B + v) = τ(B)

for all bounded Borel sets B ⊂ R
d and all v ∈ R

d orthogonal to n.

This corollary is illustrated in Figure 10.2.

Proof. By Lemma 10.4 and Alberti’s Rank-One Theorem 10.7 we know that at
|Dsu|-almost every x0 ∈ Ω ,

τ = P0|τ | with rank P0 = 1.
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We write P0 = a ⊗ n for some a, n ∈ S
d−1. If γn := cnT (x0,rn)

# Dsu is a blow-up
sequence for τ , then set

vn(y) := rd−1
n cnu(x0 + rn y) + dn, y ∈ Rd ,

where the dn ∈ R
m are chosen such that [vn] = −

∫

B(0,1) vn dx = 0. Then, Dvn =
γn

∗
⇀ τ in Mloc(R

d; R
m×d) and thus, by the Poincaré inequality in BV, vn

∗
⇀ w in

BVloc for some w ∈ BVloc(R
d; R

m), for which Dw = τ = P0|τ |.
A mollification argument shows that we may assume that Dw = ∇wL d with a

smooth, locally integrable map w ∈ C∞(Rd; R
m) such that

∇w(x) = P0|∇w(x)| for a.e. x ∈ R
d .

Then we could conclude by the Ball–James Rigidity Theorem 5.13 (i) (b). However,
for the sake of clarity let us write out the short argument here. For any v ∈ R

d that
is orthogonal to n we have

d

dt
w(x + tv)

∣
∣
∣
∣
t=0

= ∇w(x)v = [anT v]|∇w(x)| = 0.

This implies that w is constant in direction v. As v was an arbitrary orthogonal vector
to n, w(x) can only depend on x ·n. This directly yields the assertion of the lemma.�

Example 10.9. Let S ⊂ R
2 be the Sierpiński triangle in the plane, which is

constructed by repeatedly removing inverted maximal equilateral (solid) triangles
from a given equilateral (solid) triangle, see Figure 10.3. Denote the sets in this
construction by S0, S1, . . ., whereby S = ⋂∞

n=0 Sn . It is shown, for instance, in
Example 9.4 of [113] that S is of Hausdorff-dimension s = log 3/ log 2 and
0 < H log 3/ log 2(S) < ∞. It is also easy to see that S is self-similar,

S =
3⋃

n=1

ψn(S),

where the ψ1, ψ2, ψ3 : R
2 → R

2 are the homotheties of rate 1/2 that keep one of
the three vertices of S0 fixed. Call S∞ the result of covering all of R

2 with copies of
S. Define

μS := H log 3/ log 2 S∞

and observe that μS is not one-directional in the sense of Corollary 10.8. In fact,
for the blowup-sequence γn := cnT (x0,rn)

# μS with rn = 2−n and x0 ∈ S∞, we have
that the γn are just translates of μS with uniformly bounded translation distances
(because of the self-similarity). In particular, they are locally uniformly bounded
in the total variation norm and so a subsequence converges weakly* to a tangent
measure τ ∈ Tan(μS, x0). However, this τ can only be a translation of μS and so
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Fig. 10.3 The Sierpiński
triangle

τ is not one-directional. Thus, from Corollary 10.8 we infer that there is no map
u ∈ BVloc(R

2; R
m) for any m ∈ N with |Dsu| = μS .

Here, we consider Alberti’s rank-one theorem as a consequence of a more general
result about singularities thatmay occur inmeasure solutions to linear PDEs,which is
related to the compensated compactness theory presented in Section 8.8. LetΩ ⊂ R

d

be open and consider a weak solution μ ∈ M (Ω; R
N ) to the k’th-order linear

constant-coefficient PDE

A μ :=
∑

|α|≤k

Aα∂αμ = σ in C∞
c (Ω; R

M)∗, (10.9)

where Aα ∈ R
M×N , ∂α = ∂

α1
1 · · · ∂αd

d for each multi-index α = (α1, . . . , αd) ∈
(N ∪ {0})d with length |α| := α1 + · · · + αd ≤ k (k ∈ N), and σ ∈ M (Ω; R

M).
This means that we require

(−1)|α| ∑

|α|≤k

∫

Ω

(AT
α ∂αψ) · dμ =

∫

Ω

ψ · dσ, ψ ∈ C∞
c (Ω; R

M).

For A we define the wave cone (cf. the definition in Section 8.8 for first-order
operators)

ΛA :=
⋃

ξ∈Sd−1

ker A
k(ξ) ⊂ R

N with A
k(ξ) := (2π i)k

∑

|α|=k

Aαξα ∈ R
M×N ,

where ξα := ξ
α1
1 · · · ξαd

d ∈ R and A
k is called the principal symbol of A .
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We have seen in Section 8.8 that the wave cone plays a fundamental role in the
study of oscillations under the constraint (10.9) (there, however, we only consid-
ered uniformly L∞-bounded sequences instead of measures). In this section we will
see that the wave cone also determines the admissible concentrations in measures
satisfying (10.9).

The underlying idea can best be understood via a heuristic argument: Assume for
simplicity that σ = 0 and that A is a first-order homogeneous PDE operator, i.e.
A = ∑d

l=1 Al∂l . If A μ = 0, then also A τ = 0 for all singular tangent measures
τ ∈ Tan(μs, x0) at |μs |-almost every point x0 ∈ Ω , as can be calculated easily. By
Lemma 10.4,

τ = P0|τ | with P0 = dμs

d|μs | (x0).

We may formally Fourier-transform the PDE A τ = 0 to get (here, A(ξ) = A
1(ξ))

A(ξ )̂τ (ξ) = A(ξ)P0 |̂τ |(ξ) = (2π i)
d∑

l=1

Alξl P0 |̂τ |(ξ) = 0 for all ξ ∈ R
d ,

where |̂τ | denotes the Fourier transform of |τ | (which is only defined if τ happens to
be a tempered distribution, see [138]). Thus,

P0 ∈ kerA(ξ) ⊂ ΛA for all ξ ∈ R
d \ {0} with |̂τ |(ξ) �= 0.

In particular, if P0 /∈ ΛA , then

|̂τ |(ξ) = 0 for all ξ ∈ R
d \ {0},

whereby supp |̂τ | ⊂ {0} and hence τ is absolutely continuous with respect to L d .
This suggests that x0 cannot be a singular point of μ. However, by itself the absolute
continuity of τ with respect toL d is not a contradiction to τ ∈ Tan(μs, x0). Indeed,
Preiss provided an example of a purely singular measure that has only multiples
of Lebesgue measure as tangent measures, see Example 5.9 (1) in [224]. Yet, the
singular polar dμs

d|μs | indeed only attains values in the wave cone ΛA :

Theorem 10.10 (De Philippis–Rindler 2016 [92]). Let μ ∈ M (Ω; R
N ) be a

solution of (10.9) with Lebesgue–Radon–Nikodým decomposition

μ = μa + dμs

d|μs | |μ
s |, μs singular with respect to L d .

Then,
dμs

d|μs | (x) ∈ ΛA for |μs | -a.e. x ∈ Ω.

In the proof we will need the following two auxiliary lemmas:
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Lemma 10.11. Define the Bessel potential of order s > 0 via

(id−�)−s/2u := F−1
[
(1 + 4π2|ξ |2)−s/2û(ξ)

]
, u ∈ C∞

c (Rd).

Then, (id−�)−s/2 extends to a compact operator from L1(B(0, 1)) to Lp(Rd) when-
ever 1 ≤ p < p(d, s), where

p(d, s) :=
{

d
d−s if s < d,

∞ if s ≥ d.

Here, as usual, the compactness of the operator (id−�)−s/2 means that it maps
norm-bounded sets into precompact sets.

Proof. For u ∈ C∞
c (Rd) we can write the application of the Bessel potential via a

convolution,

(id−�)−s/2u = u � bs,d , where bs,d := F−1[(1 + 4π2|ξ |2)−s/2].

It can be computed, see, for instance, Section 6.1.2 of [139], that bs,d is smooth in
R

d \ {0} and that

bs,d(x) ≈
{

|x |−d+s if |x | ≤ 2,

e−|x |/2 if |x | ≥ 2.

Thus, bs,d ∈ Lp(Rd) for 1 ≤ p < p(d, s). Young’s inequality for convolutions, see
Lemma A.32, then gives for u ∈ L1(B(0, 1)) that

(id−�)−s/2u ∈ Lp(Rd) for 1 ≤ p < p(d, s).

For every ε > 0 we can furthermore write

bs,d = b1,ε + b2,ε with b1,ε ∈ C1
c(R

d) and ‖b2,ε‖L1 < ε.

Indeed, for a smooth radial cut-off function ρ ∈ C∞
c (B(0, 1); [0, 1]) with ρ ≡ 1 in

a neighborhood of the origin we may set

b1,ε := (
ρ(δx) − ρ(δ−1x)

)
bs,d , b2,ε := (

1 − ρ(δx) + ρ(δ−1x)
)
bs,d ,

where δ ∈ (0, 1) is chosen sufficiently small. Then,

(id−�)−s/2u = u � b1,ε + u � b2,ε =: T (1)
ε u + T (2)

ε u.

Because b1,ε ∈ C1
c(R

d), the operator T (1)
ε is compact from L1(B(0, 1)) to L1(Rd).

Moreover, again by Young’s inequality for convolutions,
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‖(id−�)−s/2 − T (1)
ε ‖L1→L1 = ‖T (2)

ε ‖L1→L1 ≤ ε,

so that (id−�)−s/2 is the limit in the uniform topology of compact operators and
thus compact as well. Indeed, the last statement can be seen as follows: Let (u j ) ⊂
L1(B(0, 1)) be a norm-bounded sequence. The compactness of T (1)

ε means that for
all ε > 0 the sequence (T (1)

ε u j ) j is precompact in L1(Rd). Fix a sequence εk ↓ 0 and
let (u1, j ) j be a subsequence of (u0, j ) j := (u j ) j such that (T (1)

ε1
u1, j ) j is a Cauchy

sequence in L1(B(0, 1)). In particular, we may require that ‖T (1)
ε1

u1,1−T (1)
ε1

u1,l‖L1 ≤
ε1 for all l ∈ N. In this manner we construct for every k ∈ N a subsequence (uk, j ) j

of (uk−1, j ) j≥k such that (T (1)
εk

uk, j ) j is Cauchy and ‖T (1)
εk

uk,k − T (1)
εk

uk,l‖L1 ≤ εk for
all l ≥ k. Setting v j := u j, j , we then have for l ≥ k that

‖(id−�)−s/2uk − (id−�)−s/2ul‖L1

≤ ‖(id−�)−s/2uk − T (1)
εk

uk‖L1 + ‖T (1)
εk

uk − T (1)
εk

ul‖L1

+ ‖T (1)
εk

ul − (id−�)−s/2ul‖L1

≤ 2εk sup
j∈N

‖u j‖L1 + εk .

Thus, the sequence ((id−�)−s/2u j ) j isCauchy inL1(B(0, 1)) andhence (id−�)−s/2

is compact.
The conclusion of the lemma now follows since strong L1-convergence together

with Lp-boundedness also implies strong Lq -convergence for all 1 ≤ q < p (this
follows from Hölder’s inequality). �

Lemma 10.12. Let ( f j ) ⊂ L1(B(0, 1)) be such that

(i) f j
∗

⇀ 0 in C∞
c (B(0, 1))∗;

(ii) the negative parts f −
j := max{− f j , 0} of the f j ’s converge to zero in measure,

i.e.,
lim
j→∞

∣
∣
{

x ∈ B(0, 1) : f −
j (x) > δ

}∣
∣ = 0 for every δ > 0;

(iii) the family of negative parts { f −
j } is equiintegrable.

Then, f j → 0 in L1
loc(B(0, 1)).

Proof. Let ϕ ∈ C∞
c (B(0, 1); [0, 1]). Then,

∫

ϕ| f j | dx =
∫

ϕ f j dx + 2
∫

ϕ f −
j dx ≤

∫

ϕ f j dx + 2
∫

f −
j dx .

The first term on the right-hand side vanishes as j → ∞ by assumption (i). Vitali’s
Convergence Theorem A.11 in conjunction with assumptions (ii) and (iii) further
gives that the second term also tends to zero in the limit. �
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Proof of Theorem 10.10. We will only show the theorem for the first-order homoge-
neous equation with zero on the right-hand side, i.e.,

A μ =
d∑

l=1

Al∂lμ = 0 inC∞
c (Ω; R

M)∗

since this is the only case that is needed in the sequel. See [92] for the full proof. In
this situation,

ΛA =
⋃

ξ∈Sd−1

kerA(ξ), A(ξ) = (2π i)
d∑

l=1

Alξl .

Step 1. Assume to the contrary that there exists a point x0 ∈ Ω and a sequence
rn ↓ 0 such that

(a) lim
n→∞

|μa|(B(x0, rn))

|μs |(B(x0, rn))
= 0;

(b) lim
n→∞ −

∫

B(x0,rn)

∣
∣
∣
∣
dμ

d|μ| (x0) − dμ

d|μ| (x)

∣
∣
∣
∣ d|μs |(x) = 0;

(c) there exists a positive Radon measure τ ∈ M+(B(0, 1))with τ(B(0, 1/2)) > 0
and

γn := cnT (x0,rn)
# |μs | ∗

⇀ τ inM (B(0, 1)), cn := |μs |(B(x0, rn))
−1;

(d) for the polar vector it holds that

P0 := dμs

d|μs | (x0) /∈ ΛA

and hence there is a positive constant c > 0 such that |A(ξ)P0| ≥ c|ξ | for all
ξ ∈ R

d .

Indeed, (a), (b) hold at |μs |-almost every point by the Besicovitch Differentiation
TheoremA.23 and the fact that |μs |-almost every x0 ∈ Ω is a Lebesgue point of dμ

d|μ| .
Assertion (c) follows since for |μs |-almost every x ∈ Ω the space of tangentmeasures
Tan(|μs |, x) to |μs | at x ∈ Ω is non-trivial, see Proposition 10.5. Note that by (10.3)
we may define the cn as above (choose the radii rn such that |μs |(∂ B(x0, rn)) = 0)
and via a rescaling argument (if necessary) we can ensure that τ(B(0, 1/2)) > 0.
Finally, (d) is the assumption that will lead to a contradiction.

We will show below that (a)–(d) imply the following two assertions:

(I) τ B(0, 1/2) is absolutely continuous with respect toL d ;
(II) lim

n→∞ |γn − τ |(B(0, 1/2)) = 0.

Then, we may conclude as follows: The γn are singular with respect to L d by
construction. So, by (I) we may find Borel sets En ⊂ B(0, 1/2) with L d(En) =
τ(En) = 0 and γn(En) = γn(B(0, 1/2)). Then, by (II),
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γn(B(0, 1/2)) = γn(En) ≤ |γn−τ |(B(0, 1/2))+τ(En) = |γn−τ |(B(0, 1/2)) → 0.

Hence, τ(B(0, 1/2)) = 0, contradicting (c) above. We are thus left to prove (I)
and (II).

Step 2.SinceA is rescaling-invariant, we have for all r > 0 thatA (T (x0,r)
# μ) = 0.

Therefore,
A (P0γn) = A

(
P0γn − cnT (x0,rn)

# μ
)
. (10.10)

Let (ηδ)δ>0 ⊂ C∞
c (Rd) be a family of positive mollifiers. The total variation on open

sets is lower semicontinuous, whereby

|γn − τ |(B(0, 1/2)) ≤ lim inf
δ→0

|γn � ηδ − τ |(B(0, 1/2)).

Thus, for every n ∈ N there exists a δn ∈ (0, 1/n) with

|γn − τ |(B(0, 1/2)) ≤ |γn � ηδn − τ |(B(0, 1/2)) + 1

n
. (10.11)

We now convolve (10.10) with ηδn . In this way, with

un := γn � ηδn

∗
⇀ τ inMloc(R

d), Vn := [
P0γn − cnT (x0,rn)

# μ
]
� ηδn ,

we get
A (P0un) = A (Vn). (10.12)

Note that un, Vn are smooth and un ≥ 0 since our family of mollifiers was chosen
to be positive. Let ρ ∈ C∞

c (B(0, 3/4); [0, 1]) be a cut-off function with ρ ≡ 1 on
B(0, 1/2). Then, from (10.12) we get

A (P0ρun) = ρA (P0un) + A (P0ρ)un = A (ρVn) + Rn, (10.13)

where

Rn := A (P0ρ)un −
d∑

l=1

Al Vn∂lρ ∈ C∞
c (B(0, 1); R

M ).

For δn ≤ 1/4 it holds that

∫

B(0,3/4)
|Vn| dx ≤ cn

∣
∣P0 T (x0,rn)

# |μs | − T (x0,rn)
# μ

∣
∣(B(0, 1))

≤ |P0|μs | − μs |(B(x0, rn))

|μs |(B(x0, rn))
+ |μa|(B(x0, rn))

|μs |(B(x0, rn))

= −
∫

B(x0,rn)

∣
∣
∣
∣
dμ

d|μ| (x0) − dμ

d|μ| (x)

∣
∣
∣
∣d|μs |(x) + |μa|(B(x0, rn))

|μs |(B(x0, rn))
.



10.4 Structure of Singularities 291

From (a), (b) we deduce that

lim
n→∞

∫

B(0,3/4)
|Vn| dx = 0. (10.14)

Hence, the remainder terms Rn are uniformly L1-bounded.
Step 3. We now Fourier transform (10.13) to obtain

[A(ξ)P0] ρ̂un(ξ) = A(ξ )̂ρVn(ξ) + R̂n(ξ), ξ ∈ R
d .

Multiplying on the left by [A(ξ)P0]∗ = [A(ξ)P0]T and adding ρ̂un(ξ) to both sides
of the above equation yields

(1 + |A(ξ)P0|2) ρ̂un(ξ) = [A(ξ)P0]∗A(ξ) ρ̂Vn(ξ) + ρ̂un(ξ) + [A(ξ)P0]∗ R̂n(ξ)

or, equivalently,

ρ̂un(ξ) = [A(ξ)P0]∗A(ξ)

1 + |A(ξ)P0|2 ρ̂Vn(ξ)

+ 1 + 4π2|ξ |2
1 + |A(ξ)P0|2 · 1

1 + 4π2|ξ |2 ρ̂un(ξ)

+ (1 + 4π2|ξ |2)1/2[A(ξ)P0]∗
1 + |A(ξ)P0|2 · 1

(1 + 4π2|ξ |2)1/2 R̂n(ξ).

Thus,

ρun = T0[ρVn] + (
T1 ◦ (id−�)−1)[ρun] + (

T2 ◦ (id−�)−1/2)[Rn]
=: fn + gn + hn (10.15)

with

T0[V ] := F−1
[
m0(ξ)V̂ (ξ)

]
, m0(ξ) = [A(ξ)P0]∗A(ξ)

1 + |A(ξ)P0|2 ,

T1[u] := F−1
[
m1(ξ )̂u(ξ)

]
, m1(ξ) = 1 + 4π2|ξ |2

1 + |A(ξ)P0|2 ,

T2[R] := F−1
[
m2(ξ)R̂(ξ)

]
, m2(ξ) = (1 + 4π2|ξ |2)1/2[A(ξ)P0]∗

1 + |A(ξ)P0|2 ,

and
(id−�)−s/2w = F−1[(1 + 4π2|ξ |2)−s/2ŵ(ξ)

]
.
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By the ellipticity estimate

|A(ξ)P0| ≥ c|ξ | for ξ ∈ R
d

from (d) above, T0 is an operator associatedwith aMihlin Fourier multiplier, see The-
oremA.35.Theweak-type estimate from the said theorem in conjunctionwith (10.14)
gives

sup
t≥0

t
∣
∣
{

x ∈ R
d : | fn(x)| > t

}∣
∣ ≤ C‖ρVn‖L1 → 0. (10.16)

By Lemma 10.11, for every s > 0 the operator (id−�)−s/2 is compact from
L1(B(0, 1)) to Lp(Rd) for 1 ≤ p < p(d, s) and the operators T1, T2 are bounded
fromLp to Lp by theMihlinMultiplier TheoremA.35 and (d) again. Thus, the family

gn + hn = (
T1 ◦ (id−�)−1)[ρun] + (

T2 ◦ (id−�)−1/2)[Rn]

is precompact in L1
loc(R

d). Furthermore, since ρun ≥ 0, we conclude from (10.15)
that

f −
n := max{− fn, 0} ≤ |gn + hn|.

Thus, the family { f −
n } is precompact in L1

loc(R
d), hence equiintegrable by the

Dunford–Pettis Theorem A.12. Now apply Lemma 10.12, using also (10.16), and,
via (10.14),

〈
fn, ϕ

〉 = 〈
T0[ρVn], ϕ

〉 = 〈
ρVn, T ∗

0 [ϕ]〉 → 0 for every ϕ ∈ C∞
c (Rd),

where T ∗
0 is the adjoint of T0. Consequently, fn → 0 in L1

loc(R
d). We conclude

from (10.15) that the family {ρun}n is precompact in L1
loc(R

d) and that

ρun → ρτ in L1(Rd),

in particular ρτ ∈ L1(Rd). This immediately yields (I) and, combining with (10.11),
also (II). �

The proof of Alberti’s rank-one theorem then follows by simple linear algebra:

Proof of Theorem 10.7. Let u ∈ BV(Ω; R
m). Then, one sees directly from the

definition of weak derivatives that

∂i [Du]k
j = ∂i∂ j u

k = ∂ j∂i u
k = ∂ j [Du]k

i for all i, j = 1, . . . , d; k = 1, . . . , m,

where all derivatives are to be interpreted in the sense of C∞
c (Ω)∗. We showed in the

proof of Corollary 8.31 that for (with an obvious abuse of notation)

A μ := curl μ := (
∂ jμ

k
i − ∂iμ

k
j

)k=1,...,m
i, j=1,...,d
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we have

Λcurl =
⋃

ξ∈Sd−1

kerA
1(ξ) = {

a ⊗ ξ ∈ R
m×d : a ∈ R

m, ξ ∈ S
d−1

}
.

Consequently, the assertion of Theorem 10.7 follows immediately from Theo-
rem 10.10. �

10.5 Convexity at Singularities

The following result about positively 1-homogeneous and rank-one convex functions
is very useful since in conjunction with Alberti’s rank-one theorem it implies that at
singularities we can work with convexity.

Theorem 10.13 (Kirchheim–Kristensen 2016 [162]). Let h∞ : R
m×d → R be

positively 1-homogeneous and rank-one convex. Then, h∞ is convex at every matrix
F ∈ R

m×d with rank F ≤ 1, i.e., there exists a linear function aF : R
m×d → R with

h∞(F) = aF (F) and h∞ ≥ aF .

Recall that the positive 1-homogeneity of h∞ means that h∞(α A) = αh∞(A)

for all A ∈ R
m×d , α ≥ 0.

In the language of Section 3.5 the preceding result says that ∂h∞(F) �= ∅ at every
matrix F ∈ R

m×d with rank F ≤ 1 (here we exceptionally also use the definition
of subdifferential for non-convex functions). We also record that as an immediate
consequence of this theorem, for all probability measures μ ∈ M 1(Rm×d) with
the property that the barycenter [μ] = 〈id, μ〉 is a matrix of rank at most one, the
Jensen-type inequality

h∞([μ]) ≤
∫

h∞ dμ (10.17)

holds.
To prove Theorem 10.13, we first show two auxiliary results.

Lemma 10.14. Let g : R
m×d → R be positively 1-homogeneous and rank-one con-

vex. If X, Y ∈ R
m×d with rank X ≤ 1, then

g(X + Y ) ≤ g(X) + g(Y ).

Proof. Observe by the rank-one convexity and positive 1-homogeneity of g that for
all t ≥ 1 we have

g(X + Y ) − g(Y ) ≤ g(t X + Y ) − g(Y )

t
= g

(

X + Y

t

)

− g(Y )

t
.

Since g is (globally) Lipschitz by Lemma 5.6, the right-hand side converges to g(X)

as t → ∞, which proves the claim. �
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Lemma 10.15. Let h∞ : R
m×d → R be positively 1-homogeneous and rank-one

convex. Then, for every matrix A ∈ R
m×d with rank A ≤ 1 there exists a positively

1-homogeneous and rank-one convex subcone g : R
m×d → R to h∞ at A, that is,

h∞(A) + g(B − A) ≤ h∞(B) for all B ∈ R
m×d . (10.18)

Proof. Throughout the proof of the lemma we assume without loss of generality that
h∞(A) = 0. Indeed, we may add a linear function to h∞ to achieve this.

Step 1. We first show that for all B ∈ R
m×d with B �= A and all θ ∈ (0, 1) it holds

that
h∞(A + θ(B − A))

θ
≤ h∞(B). (10.19)

Applying Lemma 10.14 for g = h∞, X = (θ−1 − 1)A, Y = B, we get

h∞(A + θ(B − A))

θ
= h∞

(
A

θ
+(B− A)

)

≤ h∞(
(θ−1−1)A

)+h∞(B) = h∞(B),

which is (10.19).
Step 2. Define for s ≥ 1 the function

gs(M) := sh∞
(

A + M

s

)

, M ∈ R
m×d ,

which satisfies gs(0) = 0. Moreover, for M1, M2 ∈ R
m×d we have

|gs(M1) − gs(M2)| ≤ sL

∣
∣
∣
∣

M1

s
− M2

s

∣
∣
∣
∣ = L|M1 − M2|,

where L > 0 is the Lipschitz constant of h∞, which is finite by Lemma 5.6. So, the
functions gs are uniformly Lipschitz continuous.

Now let t ≥ s. From (10.19) with B := A + s−1M and θ := s/t we get

gt(M) = th∞
(

A + M

t

)

≤ sh∞
(

A + M

s

)

= gs(M).

Thus, gs(M) is monotonically decreasing in s for every fixed M ∈ R
m×d . Define

g(M) := lim
s→∞ gs(M) = inf

s>0
gs(M), M ∈ R

m×d .

As the pointwise limit of uniformly Lipschitz continuous rank-one convex functions,
g is also Lipschitz continuous and rank-one convex. Moreover, g is positively 1-
homogeneous since for all α ≥ 0 and M ∈ R

m×d it holds that
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g(αM) = lim
s→∞

[

sh∞
(

A + αM

s

)]

= α lim
s→∞

[
s

α
h∞

(

A + M

s/α

)]

= αg(M).

Finally, for M := B − A, B ∈ R
m×d , we get

g(B − A) ≤ g1(B − A) = h∞(B).

Thus, (10.18) holds and we have proved the lemma. �

Proof of Theorem 10.13. We assume without loss of generality that F = 0, whereby
also h∞(F) = h∞(0) = 0. Let A1, . . . , Amd be an orthonormal basis of R

m×d

consisting of rank-one matrices (for instance, the collection {ei ⊗ e j }i, j ). First, we
construct a sequence

h∞ =: gmd ≥ gmd−1 ≥ · · · ≥ g0

of positively 1-homogeneous rank-one convex functions gk : R
m×d → R as follows:

Set gmd := h∞, Then, given gk , we inductively define gk−1 : R
m×d → R to be

a subcone to gk at Ak as in Lemma 10.15. From (10.18) we get with h∞ := gk ,
g := gk−1, A := Ak , B := Ak + M , where M ∈ R

m×d , and Lemma 10.14 with
g := gk , X := Ak , Y := M that

gk(Ak) + gk−1(M) ≤ gk(Ak + M) ≤ gk(Ak) + gk(M),

Hence gk ≥ gk−1.
Next, with all the gk constructed, define linear maps

Lk : span{A1, . . . , Ak} → R

iteratively according to the following procedure: Let L0 : {0} → R be the trivial
linear map. At step k we assume

Lk ≤ gk on span{A1, . . . , Ak} and Lk(Ak) = gk(Ak), (10.20)

which is certainly true for k = 0. Then set

Lk+1(αAk+1 + B) := αgk+1(Ak+1) + Lk(B), B ∈ span{A1, . . . , Ak}, α ∈ R.

By (10.20) and the fact that gk is a subcone to gk+1 at Ak+1,
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Lk+1(Ak+1 + B) = gk+1(Ak+1) + Lk(B)

≤ gk+1(Ak+1) + gk(B)

≤ gk+1(Ak+1 + B).

Since gk+1 is positively 1-homogeneous, this further implies for α ≥ 0 that

Lk+1(αAk+1 + B) = αLk+1(Ak+1 + α−1B)

≤ αgk+1(Ak+1 + α−1B)

= gk+1(α Ak+1 + B).

For α ≤ 0 we have by Lemma 10.14 with g := gk+1, X := (1 − α)Ak+1, Y :=
αAk+1 + B,

gk+1(Ak+1) + Lk(B) = Lk+1(Ak+1 + B)

≤ gk+1(Ak+1 + B)

≤ gk+1((1 − α)Ak+1) + gk+1(αAk+1 + B)

= (1 − α)gk+1(Ak+1) + gk+1(αAk+1 + B).

Thus, by definition of Lk+1, also in the case α ≤ 0 it holds that

Lk+1(αAk+1 + B) = αgk+1(Ak+1) + Lk(B) ≤ gk+1(αAk+1 + B)

and we have established (10.20) at k + 1. Then set a0 := Lmd ≤ gmd = h∞, for
which a0(0) = Lmd(0) = 0 = h∞(0). �

Notes and Historical Remarks

The Reshetnyak Continuity Theorem 10.3 was first proved in [226], whereas our
argument is from [15]. The paper [94] contains more on different notions of conver-
gence for measures.

Often, tangent measures are only considered as defined on the unit ball instead
of the whole of the space (see, for example, Section 2.7 in [15]). This is, however,
sometimes restrictive. Here, we use Preiss’s original theory as developed in [224],
also see Chapter 14 of [183]. The original definition, however, explicitly excluded
the zero-measure from Tan(μ, x0), which here we include. Proposition 10.5 is a
slight improvement of Preiss’ existence theorem for non-zero tangent measures, see
Theorem 2.5 in [224] or the appendix of [227]. The proof of Lemma 10.4 is adapted
from Theorem 2.44 in [15]. Lemma 10.6 is originally due to Larsen, see Lemma 5.1
in [174].

We remark that the study of local properties of a measure via its tangent measures
has its limits. Most strikingly, Preiss constructed a purely singular positive measure
on a bounded interval (in particular a BV-derivative) such that each of its tangent
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measures is a multiple of Lebesgue measure, see Example 5.9 (1) in [224]. Also
see [219] for a measure that has every local measure as a tangent measure at almost
every point.

The notion of area-strict convergence in BV seems to be somewhat less well
known than it deserves. However, as shown in the next chapter, it is the right one
when considering integral functionals.

Alberti’s original proof [4] of what is now called Alberti’s rank-one theorem is
via a “decomposition technique” together with the BV-coarea formula; a streamlined
version of his proof can be found in [90]. Another proof in two dimensions was
announced in [5]. There is also now a nice short geometric proof [181]. Our argument
is more in the spirit of PDE theory and has several other implications, see [92]. For
more on the wave cone we refer to [98, 209, 210, 229, 267, 268].

The Kirchheim–Kristensen Theorem 10.13 was already announced in 2011 [161]
with a simpler proof in a special case. The full proof appeared in [162]. The theorem
actually holds in more generality, see Problem 10.10.

Problems

10.1. Let Λ ∈ M+(B(0, 1)) be a finite and positive Borel measure. Then, we
have Λ(∂ B(0, r)) = 0 for all but finitely many r ∈ (0, 1). Hint: Consider the sets
En := { r ∈ (0, 1) : Λ(∂ B(0, r)) > 1/n }, where n ∈ N.

10.2. Prove (10.8) using the integration-by-parts definition of BV-functions.

10.3. Let Ω ⊂ R
d be open.

(i) ShowReshetnyak’s lower semicontinuity theorem: Let f : Ω×S
N−1 → [0,∞]

be lower semicontinuous and convex in the second argument. For any sequence

(μ j ) ⊂ M (Ω; R
N ) with μ j

∗
⇀ μ it holds that

∫

f

(

x,
dμ

d|μ| (x)

)

d|μ|(x) ≤ lim inf
j→∞

∫

f

(

x,
dμ j

d|μ j | (x)

)

d|μ j |(x).

Hint: Adapt the strategy of the proof of Theorem 10.3.

(ii) Let (μ j ) ⊂ M (Ω; R
N ) with μ j → μ area-strictly, i.e., μ j

∗
⇀ μ and

〈μ j 〉(Ω) → 〈μ〉(Ω). Show that then also μ j → μ strictly. Hint: If μ =
aL d + μs is the Lebesgue–Radon–Nikodým decomposition of μ, then define
μ̃ ∈ M (Ω; R

N ×R) as μ̃(B) := (a, 0)L d + (0, 1)μs and use the Reshetnyak
continuity theorem.

(iii) Show that the mapping μ ∈ M (Ω; R
N ) �→ 〈μ〉(Ω) is weakly* lower semi-

continuous.
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10.4. Let u ∈ BV(Ω; R
m) and assume that x0 ∈ Ω is such that

dDsu

d|Dsu| (x0) = a ⊗ n for some a ∈ S
m−1, n ∈ S

d−1.

Set

ur (y) := rd

|Du|(Qn(x0, r))
· u(x0 + r y) − [u]B(x0,r)

r
, y ∈ Qn(x0, r), r > 0,

where Qn(x0, r) is an open cube with midpoint x0 ∈ Ω , side-length r , and two
faces orthogonal to n. Then, show that for |Dsu|-almost every such x0 it holds that

ur
∗

⇀ u0 in BV(Qn(0, 1); R
m) with u0(y) = aψ(y · n) for a bounded function

ψ : (−1/2, 1/2) → R. Further show that ψ can be chosen to be increasing. Hint:
Use Corollary 10.8.

10.5. Let u ∈ BV(Ω; R
m). Show that for |Du|-almost every x0 ∈ Ω , every τ ∈

Tan(Du, x0) is a BV-derivative, τ = Dv for some v ∈ BVloc(R
d; R

m), and with
P0 := dDu

d|Du| (x0) it holds that:

(i) If rank P0 ≥ 2, then v(x) = v0 + α P0x , where α ∈ R, v0 ∈ R
m .

(ii) If P0 = a ⊗ n (a ∈ R
m , n ∈ S

d−1), then there exist h ∈ BV(R), v0 ∈ R
m such

that v(x) = v0 + h(x · n)a.

What does Alberti’s Rank-One Theorem imply about (i)? This problem is continued
in Problem 12.7.

10.6. Let Ω ⊂ R
d be an open set and let u ∈ L1(Ω; R

m) with the property that the
r ’th (weak) derivative Dr u ∈ M (Ω;SLinr (Rd; R

m)) exists for some r ∈ N, where
SLinr (Rd; R

m) contains all symmetric r -linear maps fromR
d toR

m . Then show that
for |(Dr u)s |-almost every x ∈ Ω there exist a(x) ∈ R

m \ {0}, n(x) ∈ S
d−1 such that

d(Dr u)s

d|(Dr u)s | (x) = a(x) ⊗ n(x) ⊗ · · · ⊗ n(x)
︸ ︷︷ ︸

r times

.

Here, the tensor on the right-hand side is the r -linear map

V (v0, v1, . . . , vr ) := (a(x) · v0)
r∏

i=1

(n(x) · vi ), v0 ∈ R
m, v1, . . . , vr ∈ R

d .

This is Alberti’s theorem for higher-order gradients [4]. Hint: Use Theorem 10.10.

10.7. Let μ ∈ M (Ω; R
d×d) be a matrix-valued measure such that (in the distribu-

tional, i.e. C∞
c (Ω)∗-weak sense)

div μ ∈ M (Ω; R
d).
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Prove that then

rank

(
dμ

d|μ| (x)

)

≤ d − 1 for |μs |-a.e. x ∈ Ω.

10.8. Amap u ∈ L1(Ω; R
d) (Ω ⊂ R

d a bounded Lipschitz domain) is called a func-
tion of bounded deformation if the symmetric part of its distributional derivative
is a measure,

Eu := Du + (Du)T

2
∈ M (Ω; R

d×d
sym ).

We collect all these functions into the set BD(Ω); see [12, 273, 274] for the theory
of this space. Let μ = (μk

j ) ∈ M (Ω, R
d×d
sym ) be the symmetrized derivative of some

u ∈ BD(Ω), μ = Eu. Verify that then

0 = A μ :=
[ d∑

i=1

∂i∂kμ
j
i + ∂i∂ jμ

k
i − ∂ j∂kμ

i
i − ∂i∂iμ

k
j

]

j,k=1,...,d

in the sense of C∞
c (Ω)∗. These equations are often called the Saint-Venant compat-

ibility conditions in applications.

10.9. In the situation of the previous problem and denoting the Lebesgue–Radon–
Nikodým decomposition of the symmetrized derivative Eu of u ∈ BD(Ω) by

Eu = E u L d Ω + Esu,

prove that for |Esu|-almost every x ∈ Ω , there exist a(x), b(x) ∈ R
d \ {0} such that

dEsu

d|Esu| (x) = a(x) � b(x),

where we define the symmetrized tensor product as a � b := (a ⊗ b + b ⊗ a)/2 for
a, b ∈ R

d . Hint: Use Theorem 10.10 and the previous problem. This result was one
of the main motivations for Theorem 10.10.

10.10. Assume that D ⊂ R
N is a balanced cone, that is, for v ∈ D and t ∈ R also

tv ∈ D, and further assume that span D = R
N . Let h∞ : R

N → R be positively
1-homogeneous and convex in all directions in D. Show that h∞ is convex at every
F ∈ D, i.e., there exists an affine function aF : R

N → R with

h∞(F) = aF (F) and h∞ ≥ aF .

This is (almost) the main result of [162].



Chapter 11
Linear-Growth Functionals

After the preparations in the previous chapter, we now return to the task at hand,
namely to analyze the following minimization problem for an integral functional
with linear growth:

⎧
⎨

⎩

Minimize F [u] :=
∫

Ω

f (x,∇u(x)) dx

over all u ∈ W1,1(Ω;Rm)with u|∂Ω = g.

Asusual,we assumeΩ ⊂ R
d to be a boundedLipschitz domain and f : Ω×R

m×d →
R to be a Carathéodory integrand.We also suppose that there exists a constant M > 0
such that

| f (x, A)| ≤ M(1 + |A|), (x, A) ∈ Ω × R
m×d .

Furthermore, we let g ∈ L1(∂Ω;Rm).
As we have seen in the introduction to the previous chapter, W1,1(Ω;Rm) is

too small to describe concentration effects. Our first task is thus to extend F in a
natural way to a functional F̃ defined on BV(Ω;Rm) such that this extension is
continuous with respect to a notion of convergence in which W1,1(Ω;Rm) is dense
in BV(Ω;Rm). As we will see shortly, this extension turns out to be

F̃ [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f ∞
(

x,
dDsu

d|Dsu| (x)

)

d|Dsu|(x),

where f ∞ is the (strong) recession function, defined in (11.8) below, which we
assume to exist as a continuous function. The notion of convergence in which F̃
is continuous and in which W1,1(Ω;Rm) is dense in BV(Ω;Rm) can be found in
the area-strict convergence, which is weaker than convergence in norm, but stronger
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than weak* convergence in BV(Ω;Rm). In particular, we conclude that the infimum
of F over W1,1(Ω;Rm) and the infimum of F̃ over BV(Ω;Rm) agree.

If we assume coercivity of f , then we obtain a uniform W1,1-norm bound on
any minimizing sequence for F . Invoking the compactness theorem for the weak*
convergence in BV(Ω;Rm), we select a (not explicitly labeled) subsequence of

our minimizing sequence (u j ) ⊂ W1,1(Ω;Rm) with u j
∗

⇀ u ∈ BV(Ω;Rm). One
observes that any minimizing sequence (u j ) ⊂ W1,1(Ω;Rm) forF is still minimiz-
ing for F̃ (we could even choose (u j ) ⊂ C∞(Ω;Rm) by a mollification argument).
We thus need to investigate the weak* lower semicontinuity in BV(Ω;Rm) of our
extended functional F̃ .

In this chapter, we first prove a result concerning the extension of our functionalF
to F̃ . Then we consider the questions of lower-semicontinuity and relaxation. Here,
we focus on the “classical” approach to these questions, whereas the next chapter
present a more abstract perspective.

11.1 Extension of Functionals

Recall that for a sequence (u j ) ⊂ BV(Ω;Rm) we say that u j → u area-strictly if

u j → u in L1, Du j
∗

⇀ Du in M (Ω;Rm×d), and 〈Du j 〉(Ω) → 〈Du〉(Ω), where
〈 �〉 is the (reduced) area functional, which we defined in Section 10.3.

Lemma 11.1. Let Ω ⊂ R
d be a bounded open set. For each u ∈ BV(Ω;Rm) there

exists a sequence (v j ) ⊂ (W1,1 ∩ C∞)(Ω;Rm) with v j |∂Ω = u|∂Ω and v j → u
area-strictly. If u ∈ W1,1(Ω;Rm) we may additionally require that v j → u in W1,1.

Note that for this lemma we do not assume any boundary regularity on Ω (which
is sometimes useful). See Problem 11.1 for a simpler proof in the case when Ω is a
Lipschitz domain.

Proof. Let ε > 0 and take a collection of open sets Ωi ⊂ Ω , where i ∈ N ∪ {0},
with

Ωi � Ωi+1 and
∞⋃

i=0

Ωi = Ω.

Furthermore, we assume
|Du|(Ω \ Ω0) < ε.

Let U0 := Ω1 and set

Ui := Ωi+1 \ Ωi−1 for i ∈ N.

Then, the Ui , i ∈ N ∪ {0}, form an open cover of Ω such that every point of Ω

lies in at most two of the sets Ui . Let {ρi }i∈N∪{0} ⊂ C∞(Ω; [0, 1]) be a smooth
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partition of unity subordinate to the cover (Ui )i . In particular, ρi ∈ C∞
c (Ui ; [0, 1])

and
∑∞

i=0 ρi = 1Ω . The construction of such partitions of unity is detailed, for
instance, in Lemma 2.3.1 of [285].

Now take a family ofmollifiers (ηδ)δ>0 ∈ C∞
c (B(0, 1)). Then, for each i ∈ N∪{0}

choose δi > 0 such that
supp

(
ηδi 	 (ρi u)

) ⊂ Ui , (11.1)

∫

Ω

|ηδi 	 (ρi u) − ρi u| dx <
ε

2i+1
, (11.2)

∫

Ω

|ηδi 	 (u ⊗ ∇ρi ) − u ⊗ ∇ρi | dx <
ε

2i+1
, (11.3)

and ∫

Ω

ρi (ηδi 	 〈ρi Du〉) dx ≤
∫

Ω

ρi d〈ρi Du〉 + ε −
∫

Ω

ρi dx, (11.4)

where ρi u and u ⊗ ∇ρi are understood to be extended by zero to all of Rd . Let

vε :=
∞∑

i=0

ηδi 	 (ρi u).

Then, vε ∈ C∞(Ω) and, since u =∑∞
i=0 ρi u, we get from (11.2) that

∫

Ω

|vε − u| dx ≤
∞∑

i=0

∫

Ω

|ρi u − ηδi 	 (ρi u)| dx < ε. (11.5)

By the product rule,

∇vε =
∞∑

i=0

ηδi 	 (ρi Du) +
∞∑

i=0

[
ηδi 	 (u ⊗ ∇ρi ) − u ⊗ ∇ρi

]

since
∑∞

i=0 ∇ρi = 0. For x ∈ Ui at most two terms in each sum are non-zero, hence

∇vε = ηδi 	 (ρi Du) + Ei on Ui ,

where Ei is an error term, which we may estimate using (11.3) as

∞∑

i=0

∫

Ui

|Ei | dx ≤ 2|Du|(Ω \ Ω0) + ε < 3ε. (11.6)

Here we also used that ρ0 ≡ 1 on Ω0.
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For 〈A〉 := √
1 + |A|2 the elementary estimate 〈A + B〉 ≤ 〈A〉 + |B| holds for

all A, B ∈ R
m×d . Thus,

∫

Ω

ρi 〈∇vε〉 dx ≤
∫

Ω

ρi 〈ηδi 	 (ρi Du)〉 dx +
∞∑

i=0

∫

Ui

|Ei | dx .

Also, by Jensen’s inequality and (11.4),

∫

Ω

ρi 〈ηδi 	 (ρi Du)〉 dx ≤
∫

Ω

ρi (ηδi 	 〈ρi Du〉) dx

≤
∫

Ω

ρi d〈ρi Du〉 + ε −
∫

Ω

ρi dx

≤
∫

Ω

ρi d〈Du〉 + ε −
∫

Ω

ρi dx .

Combining the last two estimates, summing over i ∈ N∪{0}, and employing (11.6),
we arrive at

〈Dvε〉(Ω) ≤ 〈Du〉(Ω) + 4ε.

Since the (reduced) area functional 〈 �〉(Ω) is lower semicontinuous with respect to
the weak* convergence of measures (see Problem 10.3 (iii)), we furthermore have

〈Du〉(Ω) ≤ lim inf
ε↓0 〈Dvε〉(Ω) ≤ lim sup

ε↓0
〈Dvε〉(Ω) ≤ 〈Du〉(Ω).

Hence, 〈Dvε〉(Ω) → 〈Du〉(Ω) as ε ↓ 0. As we have already established that
‖u − vε‖L1 < ε, see (11.5), this shows the area-strict convergence of vε to u.

If u ∈ W1,1(Ω;Rm), then in the preceding argument we choose δi so that in
addition to (11.1)–(11.4) also

∫

Ui

∣
∣∇(ρi u) − ∇(ηδi 	 (ρi u))

∣
∣ dx <

ε

2i+1

holds for each i ∈ N ∪ {0}. Then,
∫

Ω

|∇u − ∇vε| dx < ε

and the strong convergence vε → u in W1,1 follows.
It remains to show that vε ∈ W1,1(Ω;Rm) with vε|∂Ω = u|∂Ω , which will com-

plete the proof. By construction, vε ∈ W1,1(D;Rm) for all Lipschitz subdomains
D � Ω . We will prove that
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w :=
{

vε − u on Ω,

0 on R
d \ Ω,

lies in BV(Rd;Rm) and that |Dw|(∂Ω) = 0. Take any ψ ∈ C∞
c (Rd). From (11.1)

we derive for j = 1, . . . , d and k = 1, . . . , m that

∫

Rd

wk ∂ψ

∂x j
dx =

∫

Ω

[vε − u]k ∂ψ

∂x j
dx

=
∞∑

i=0

∫

Ω

[
ηδi 	 (ρi u) − ρi u

]k ∂ψ

∂x j
dx

=
∞∑

i=0

[∫

Ui

ρiψ d[Du]k
j −
∫

Ui

ηδi 	 (ρi [Du]k
j )ψ dx

]

+
∞∑

i=0

∫

Ui

ψ

[

uk ∂ρi

∂x j
− ηδi 	

(

uk ∂ρi

∂x j

)]

dx . (11.7)

Combining this with (11.3), we arrive at

∣
∣
∣
∣

∫

Rd

wk ∂ψ

∂x j
dx

∣
∣
∣
∣ ≤ C

(|Du|(Ω) + 1
)‖ψ‖∞.

Thus, w ∈ BV(Rd;Rm). Next, assume that ψ is supported near ∂Ω , say ψ ≡ 0 on
Ui for all i < i0. Then, by (11.7) we get

∫

Rd

wk ∂ψ

∂x j
dx =

∞∑

i=i0

[ ∫

Ui

ρiψ d[Du]k
j −
∫

Ui

ηδi 	 (ρi [Du]k
j )ψ dx

]

+
∞∑

i=i0

∫

Ui

ψ

[

uk ∂ρi

∂x j
− ηδi 	

(
uk ∂ρi

∂x j

)]

dx,

and so, letting i0 → ∞, we conclude that |Dw|(∂Ω) = 0. �

If we want to determine the extension of the functionalF from W1,1(Ω;Rm) to
BV(Ω;Rm), we will need to deal with concentrations. In order to understand the
behavior of the (linear-growth) integrand f “at infinity”, we define the following
notions: Let f : Ω ×R

N → R be a Carathéodory integrand with linear growth. The
(strong) recession function f ∞ : Ω × R

N → R is

f ∞(x, A) := lim
x ′→x
A′→A

t→∞

f (x ′, t A′)
t

, (x, A) ∈ Ω × R
N , (11.8)
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if this limit exists (in R). The function f ∞ is easily seen to be positively 1-
homogeneous in A, that is,

f ∞(x, αA) = α f ∞(x, A) for all α ≥ 0, (x, A) ∈ Ω × R
N .

If f is Lipschitz continuous in its second argument and the Lipschitz constant is
uniform with respect to x , then the definition of f ∞ simplifies to

f ∞(x, A) = lim
x ′→x
t→∞

f (x ′, t A)

t
.

Clearly, the recession function f ∞ does not necessarily exist (not even for qua-
siconvex f , see Theorem 2 of [200]). However, for f with linear growth, we can
always define the upper weak recession function f # : Ω ×R

N → R and the lower
weak recession function f# : Ω × R

N → R, respectively, by

f #(x, A) := lim sup
x ′→x
A′→A

t→∞

f (x ′, t A′)
t

, f#(x, A) := lim inf
x ′→x
A′→A

t→∞

f (x ′, t A′)
t

,

where x ∈ Ω , A ∈ R
m×d . We remark that here we employed the usual definition of

lim sup, lim inf for functions on metric spaces, i.e.,

f #(x, A) = lim
ε↓0 sup

{
f (x ′, t A′)

t
: 0 < |x ′ − x | < ε, 0 < |A′ − A| < ε, t >

1

ε

}

,

f#(x, A) = lim
ε↓0 inf

{
f (x ′, t A′)

t
: 0 < |x ′ − x | < ε, 0 < |A′ − A| < ε, t >

1

ε

}

.

It is immediate that f #, f# are finite and positively 1-homogeneous in their second
argument. If f is Lipschitz continuous in its second argument and the Lipschitz
constant is uniform with respect to x , then

f #(x, A) = lim sup
x ′→x
t→∞

f (x ′, t A)

t
, f#(x, A) = lim inf

x ′→x
t→∞

f (x ′, t A)

t
,

where x ∈ Ω , A ∈ R
N .

We remark that by the rank-one convexity in conjunctionwith Alberti’s Rank-One
Theorem 10.7, one may replace the upper limit in the definition of h# by a proper
limit at matrices of rank at most one.

The extension question for F is then settled by the following result.
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Theorem 11.2. Let f : Ω × R
m×d → R be a continuous integrand with linear

growth and such that the strong recession function f ∞ exists. Then, the area-strictly
continuous extension of the functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx, u ∈ W1,1(Ω;Rm),

to u ∈ BV(Ω;Rm) is given by

F̃ [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f ∞
(

x,
dDsu

d|Dsu| (x)

)

d|Dsu|(x),

where

Du = ∇u L d + dDsu

d|Dsu| |Dsu|

is the Lebesgue–Radon–Nikodým decomposition of Du. In particular, F̃ is area-
strictly continuous.

Remark 11.3. It turns out that the preceding result remains validwith the upper weak
recession function f # in place of f ∞ if f is continuous and rank-one convex (or
rank-one concave) and moreover we assume

f #(x, A) = f#(x, A) = ( f (x, �))#(A) = lim sup
A′→A

t→∞

f (x, t A′)
t

for all (x, A) ∈ Ω × R
m×d such that rankA ≤ 1. The proof of this extension is the

task of Problem 11.5; also see Problem 11.6 for a condition on how to verify the
above equality between recession functions.

Remark 11.4. A version of the preceding theorem also holds true for a class of
u-dependent integrands, see [231].

Proof of Theorem 11.2. We will prove the general statement that for any sequence

(μ j ) ⊂ M (Ω;RN ) with μ j → μ area-strictly, i.e., μ j
∗

⇀ μ and 〈μ j 〉(Ω) →
〈μ〉(Ω), it holds that

∫

Ω

f

(

x,
dμ j

dL d
(x)

)

dx +
∫

Ω

f ∞
(

x,
dμs

j

d|μs
j |

(x)

)

d|μs
j |(x)

→
∫

Ω

f

(

x,
dμ

dL d
(x)

)

dx +
∫

Ω

f ∞
(

x,
dμs

d|μs | (x)

)

d|μs |(x).

This can be seen as an extension of Reshetnyak’s continuity theorem. This assertion
together with Lemma 11.1 then immediately implies the theorem.

To see the claim, for an integrand f as in the statement of the theorem define the
perspective integrand P f : Ω × R

N × R → R by



308 11 Linear-Growth Functionals

P f (x, A, s) :=
{

s f (x, s−1 A) if s �= 0,

f ∞(x, A) if s = 0,
(x, A, s) ∈ Ω × R

N × R.

Clearly, P f is continuous and (A, s) �→ f (x, A, s) is positively 1-homogeneous
(jointly in (A, s)) for fixed x ∈ Ω . Likewise, for μ ∈ M (Ω;RN ) we define P∗μ ∈
M (Ω;RN × R) via

P∗μ(B) := (μ(B),L d(B)
)

for any Borel set B ⊂ Ω.

With the Lebesgue–Radon–Nikodým decomposition μ = aL d + μs of μ we have

P∗μ = (a, 1)L d + (1, 0) μs .

Then,

|P∗μ|(Ω) =
∫

Ω

|(a, 1)| dx + |μs |(Ω) = 〈μ〉(Ω)

and hence the area-strict convergence of a sequence (μ j ) ⊂ M (Ω;RN ) is equivalent
to the strict convergence of (P∗μ j ) ⊂ M (Ω;RN × R). Thus, by Reshetnyak’s
continuity theorem, the mapping

μ �→ G [μ] :=
∫

Ω

P f

(

x,
dP∗μ
d|P∗μ| (x)

)

d|P∗μ|(x)

is area-strictly continuous. Since

G [μ] =
∫

Ω

f

(

x,
dμ

dL d
(x)

)

dx +
∫

Ω

f ∞
(

x,
dμs

d|μs | (x)

)

d|μs |(x),

the claim follows. �

Example 11.5. Let w ∈ BVloc(R) be the (shifted) staircase function

w(x) :=
⌊

x − 1

2

⌋

, x ∈ R.

For the sequence (u j ) ⊂ BV(0, 1) defined as u j (x) := w( j x)/j for x ∈ (0, 1), we

have u j
∗

⇀ u with u(x) = x and also

|Du j |((0, 1)) = 〈Du j 〉((0, 1)) = 1, |Du|((0, 1)) = 1, 〈Du〉((0, 1)) = √
2,

whereby u j → u strictly but the u j do not converge area-strictly to u. Thus, the
area-strict convergence cannot be replaced with mere strict convergence in the above
theorem since strict continuity fails for F̃ := 〈 �〉(Ω) (with integrand f (A) :=√
1 + |A|2, which has the strong recession function f ∞(A) = |A|).
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Example 11.6. We also observe that the requirement that the strong recession func-
tion exists cannot be dispensed with in general: On Ω := (−1, 1) and R

m×d = R

define f (a) := |a| sin a, a ∈ R. Then,

f #(±1) = lim sup
t→∞

f (±t)

t
= 1, f#(±1) = lim inf

t→∞
f (±t)

t
= −1.

Now set

u j (x) := β j x1(0,β−1
j )(x) + 1(β−1

j ,1)(x), where β j := 2π j − π/2.

Denote by F̃ # the functional F̃ with f ∞ replaced by f #. We compute

u′
j = β j1(0,β−1

j ) → δ0 area-strictly,

whereby u j → 1(0,1) area-strictly in BV, but

F [u j ] = F̃ #[u j ] =
∫ β−1

j

0
β j sin β j dx = −1 �= 1 = F̃ #[1(0,1)].

Likewise, one can convince oneself with a similar example that also with f# we do
not get the extension property.

11.2 Lower Semicontinuity

For a Carathéodory integrand f : Rm×d → R with linear growth we now (re)define

F [u] :=
∫

Ω

f (∇u(x)) dx +
∫

Ω

f #
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x), u ∈ BV(Ω;Rm).

Note that here we use the upper weak recession function, which always exists. If even
the strong recession function f ∞ exists, then by Theorem 11.2 the F so defined is
the area-strictly continuous extension of our originalF (defined on W1,1(Ω;Rm)).
We will show in the next section that the aboveF , however, is always the relaxation
of the extended-valued functional

F∞[u] :=
⎧
⎨

⎩

∫

Ω

f (∇u(x)) dx if u ∈ W1,1(Ω;Rm),

+∞ if u ∈ (BV \ W1,1)(Ω;Rm).

Thus, our choice of extension forF is justified even if the strong recession function
f ∞ does not exist.
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The following is one of the most well-known lower semicontinuity theorems in
BV.

Theorem 11.7 (Ambrosio–Dal Maso 1992 & Fonseca–Müller 1993 [13, 124]).
Assume that f : Rm×d → [0,∞) is a continuous and quasiconvex integrand with
linear growth. Then, F is weakly* lower semicontinuous on the space BV(Ω;Rm).

Hence, under a suitable coercivity hypothesis a minimization problem forF has
a solution in BV(Ω;Rm):

Theorem 11.8. Let f : Rm×d → [0,∞) be a continuous integrand satisfying the
coercivity and linear growth estimate

μ|A| ≤ f (A) ≤ M(1 + |A|) A ∈ R
m×d ,

for some μ, M > 0. If f is quasiconvex, then the associated functional F has a
minimizer over the space BV(Ω;Rm).

This theorem follows directly from the lower semicontinuity result via the Direct
Method and the usual coercivity arguments, in particular the Poincaré inequality in
BV, see (10.7). We postpone the investigation into boundary conditions to Corol-
lary 11.17 below.

In the following we only prove Theorem 11.7 under the additional assumption
that the strong recession function f ∞ exists, see Remark 11.18 below for the general
case.

We will analyze F through the “blow-up” behavior of the auxiliary functional

J [u; D] := inf
{
F [w; D] : w ∈ BV(D;Rm) with w|∂ D = u|∂ D

}
, (11.9)

where D ⊂ Ω is a Lipschitz subdomain of Ω and

F [u; D] :=
∫

D
f (∇u(x)) dx +

∫

D
f #
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x)

for u ∈ BV(Ω;Rm). A crucial step in the proof of Theorem 11.7 will be to show
that J [u; D] and F [u; D] are close in value if D is a small ball or cube.

One may easily prove the transformation rule

J

[

y �→ u(x0 + r y)

r
; D

]

= 1

rd
J [u; x0 + r D] (11.10)

for all x0 ∈ Ω and r > 0. An easy way to see this is by approximating u with smooth
maps via Lemma 11.1 and employing a change of variables.

We start with the following simple BV-gluing lemma.

Lemma 11.9. Let U, V ⊂ R
d be bounded Lipschitz domains with U � V and let

u ∈ BV(U ;Rm), v ∈ BV(V \ U ;Rm). For
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w := u1U + v1V \U ∈ BV(U ;Rm)

there exists a sequence (w j ) j ⊂ (W1,1 ∩C∞)(V ;Rm) that converges area-strictly to
w on V . Moreover, for all continuous linear-growth integrands f : Rm×d → R such
that the strong recession function f ∞ exists, it holds that

lim
j→∞F [w j ; V ] = F [u; U ] + F [v; V \ U ]

+
∫

∂U
f ∞
(

u − v

|u − v| ⊗ nU

)

|u − v| dH d−1,

where the values of u and v on ∂U are to be understood as one-sided traces (that
is, u = u|∂U and v = v|∂(V \U )) and nU denotes the (measure-theoretic) unit inner
normal on ∂U.

Proof. By the usual BV-theory (see Section 10.3), we have that w = u1U + v1V \U
lies in BV(V ;Rm) and satisfies

Dw = Du U + Dv (V \ U ) + (u − v) ⊗ nU H d−1 ∂U.

Hence, the conclusion follows immediately from Theorem 11.2 in conjunction with
Lemma 11.1. �

Next, we present a characterization of quasiconvexity in BV.

Lemma 11.10. Let h : Rm×d → R be a Borel function with linear growth and such
that the strong recession function h∞ exists. Then, h is quasiconvex if and only if for
one (hence all) bounded Lipschitz domains D ⊂ R

d , all u ∈ BV(D;Rm), and all
affine maps a : Rd → R

m it holds that

|D|h(∇a) ≤
∫

D
h(∇u) dx +

∫

D
h∞
(

dDsu

d|Dsu|
)

d|Dsu|

+
∫

∂ D
h∞
(

u − a

|u − a| ⊗ nD

)

|u − a| dH d−1,

where nD denotes the unit inner normal on ∂ D and u = u|∂ D is the inner trace.

Proof. First, we notice that for u ∈ W1,∞(D;Rm) ⊂ BV(D;Rm)with u|∂ D = a|∂ D ,
the inequality in the lemma reads as

|D|h(∇a) ≤
∫

D
h(∇u) dx,

which is equivalent to the quasiconvexity of h.
Turning to the other implication, we assume that h is quasiconvex. Let r ∈ (0, 1)

and define the bounded Lipschitz domain
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Dr = { x ∈ R
d : dist(x; D) < r

}
.

Take a sequence rn ↓ 0 such that

D � Drn and
⋂

n∈N
Drn = D.

Via Lemma 11.9 with U := D, V := Drn , u ∈ BV(U,Rm), and v = a we find maps
wn ∈ W 1,∞

a (Drn ;Rm) with

∫

Drn

h(∇wn) dx ≤
∫

D
h(∇u) dx +

∫

D
h∞
(

dDsu

d|Dsu|
)

d|Dsu| +
∫

Drn \D
h(∇a) dx

+
∫

∂ D
h∞
(

u − a

|u − a| ⊗ nD

)

|u − a| dH d−1 + 1

n
.

The quasiconvexity of h then implies

|Drn |h(∇a) ≤
∫

Drn

h(∇wn) dx .

On the other hand,

∫

Drn \D
h(∇a) dx ≤ M(1 + |∇a|)|Drn \ D| → 0 as n → ∞.

Thus,

|D|h(∇a) ≤ lim
n→∞

∫

Drn

h(∇wn) dx

≤
∫

D
h(∇u) dx +

∫

D
h∞
(

dDsu

d|Dsu|
)

d|Dsu|

+
∫

∂ D
h∞
(

u − a

|u − a| ⊗ nD

)

|u − a| dH d−1.

Hence, the assertion of the lemma follows. �

Next, we prove the following “maximum principle” for J :

Lemma 11.11. For all u, v ∈ BV(Ω;Rm) and all convex Lipschitz subdomains
D ⊂ Ω it holds that

∣
∣J [u; D] − J [v; D]∣∣ ≤ M

∫

∂ D
|u − v| dH d−1,

where M > 0 is the linear-growth constant of f .
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Proof. For reasons of notational simplicity we assume that D = B is a ball, the
general proof proceeds along the same lines.

Since the trace spaces for BV(B;Rm) and (W1,1 ∩C∞)(B;Rm) are both equal to
L1(∂ B;Rm) and since J only depends on boundary values, we may without loss
of generality assume that u, v ∈ (W1,1 ∩ C∞)(B;Rm). Below we will establish that

J [u; B] ≤ F [w; B] + M
∫

∂ B
|u − v| dH d−1 (11.11)

for all w ∈ BV(B;Rm)with w|∂ B = v|∂ B . The conclusion of the lemma then follows
by taking the infimum over all such w and also by switching the roles of u and v.

To show (11.11), wemay assume thatw ∈ (W1,1∩C∞)(B;Rm)withw|∂ B = v|∂ B

by virtue of Theorem 11.2 in conjunction with Lemma 11.1. Let B = B(x0, R) for
some x0 ∈ R

d and R > 0. For δ ∈ (0, 1) denote the concentric subball with radius
δR by Bδ := B(x0, δR). Let wδ ∈ BV(B;Rm) be defined as

wδ(x) :=
{

w(x) if x ∈ Bδ,

u(x) if x ∈ B \ Bδ,

for which wδ|∂ B = u|∂ B and

Dwδ = Dw Bδ + Du (B \ Bδ) + (w − u) ⊗ nBδ
H d−1 ∂ Bδ,

where nBδ
is the unit inner normal on ∂ Bδ . Using the linear growth of f (with growth

constant M > 0), we estimate

J [u; B] ≤ F [w; Bδ] + F [u; B \ Bδ]
+
∫

∂ Bδ

f ∞
(

w − u

|w − u| ⊗ nBδ

)

|w − u| dH d−1

≤ F [w; B] + M
(
2L d + |Dw| + |Du|)(B \ Bδ)

+ M
∫

∂ Bδ

|w − u| dH d−1.

We then let δ ↑ 1, for which the second term vanishes and the surface integral tends
to
∫

∂ B |w − u| dH d−1 (by smoothness). Thus, (11.11) follows. �

The following is a local lower semicontinuity property ofJ :

Lemma 11.12. Let u j
∗

⇀ u in BV(Ω;Rm) and |Du j | ∗
⇀ Λ in M+(Ω). Then, for

every Lipschitz subdomain D ⊂ Ω with Λ(∂ D) = 0 it holds that

J [u; D] ≤ lim inf
j→∞ F [u j ; D].
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Proof. Again we only consider the case of a ball, D = B(x0, R) ⊂ Ω for some
x0 ∈ Ω , R > 0. In view of Theorem 11.2 in conjunction with Lemma 11.1 we may
without loss of generality suppose that u j ∈ (W1,1 ∩ C∞)(Ω;Rm).

Take a sequence of radii rk ↑ R such that Λ(∂ B(x0, rk)) = 0 and, possibly after
selecting a subsequence (not explicitly labeled),

∫

∂ B(x0,rk )

|u j − u| dH d−1 → 0 as j → ∞

for all k ∈ N. The existence of such radii can be seen as follows: By a curvilinear
version of Fubini’s theorem (coarea formula),

∫ R

0

∫

∂ B(x0,r)

|u j − u| dH d−1 dr =
∫

B(x0,R)

|u j − u| dx → 0.

Thus, we may select a subsequence of the u j ’s such that

∫

∂ B(x0,r)

|u j − u| dH d−1 → 0 for a.e. r ∈ (0, R),

and then choose appropriate radii rk ; we remark that the set of r ∈ (0, R) with the
property Λ(∂ B(x0, r)) �= 0 is at most countable because Λ is a finite measure (see
Problem 10.1). Due to the inequality |Du| ≤ w*-lim j→∞|Du j | = Λ, it also holds
that |Du|(∂ B(x0, rk)) = 0 and therefore the inner and outer one-sided traces on
∂ B(x0, rk) coincide,

u|∂ B(x0,rk ) = u|∂(Ω\B(x0,rk ))
H d−1 -a.e.

We fix k, set B := B(x0, R), Bk := B(x0, rk), and define

w j (x) :=
{

u j (x) if x ∈ Bk,

u(x) if x ∈ B \ Bk,

which lies in BV(B;Rm), satisfies w j |∂ B = u|∂ B , and

Dw j = Du j Bk + Du (B \ Bk) + (u j − u) ⊗ nBk H
d−1 ∂ Bk .

From the additivity ofF [u; �] for disjoint sets and the linear growth of f with growth
constant M > 0 we deduce that

J [u; B] ≤ F [w j ; B]
= F [u j ; Bk] + F [u; B \ Bk]

+
∫

∂ Bk

f ∞
(

u j − u

|u j − u| ⊗ nBk

)

|u j − u| dH d−1
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≤ F [u j ; B] + M
(
2L d + |Du| + |Du j |

)
(B \ Bk)

+ M
∫

∂ Bk

|u j − u| dH d−1.

Taking the lower limit as j → ∞ (and keeping k fixed), we deduce fromΛ(∂ Bk) = 0
and |Du| ≤ Λ that

J [u; B] ≤ lim inf
j→∞ F [u j ; B] + 2M(L d + Λ)(B \ Bk).

Now let k → ∞. The claim of the lemma follows for our subsequence of u j ’s since
Λ(B \ Bk) → Λ(∂ B) = 0.

It remains to prove the result for our original sequence (u j ). For this, select a
subsequence j (l) such that

lim
l→∞F [u j (l); B] = lim inf

j→∞ F [u j ; B].

Then, by the proof above, we get for a further subsequence (still denoted as j (l))
that

J [u; B] ≤ lim inf
l→∞ F [u j (l); B] = lim inf

j→∞ F [u j ; B].

This finishes the proof of the lemma. �

Next, we investigate the fine structure of F around regular and singular points.
We will show below that for (L d + |Du|)-almost every x0 ∈ Ω and for every ε > 0
there exists an r0(x0) > 0 such that

F [u; U (x0, r)] ≤ J [u, U (x0, r)] + ε(L d + |Du|)(U (x0, r)) (11.12)

for almost all r ∈ (0, r0(x0)), whereU (x0, r) ⊂ Ω is an open convex set that contains
x0 and satisfies

(L d + |Du| + Λ)(∂U (x0, r)) = 0, B(x0, r) ⊂ U (x0, r) ⊂ B(x0, κr)

for a fixed constant κ ≥ 1 andΛ from above. In fact,U (x0, r)will either be the open
ball B(x0, r) or a cube with side length 2r ; hence we may choose κ = √

d.

Lemma 11.13. The estimate (11.12) holds for L d -almost every point x0 ∈ Ω with
U (x0, r) = B(x0, r).

Proof. Let x0 ∈ Ω be such that

(a) u is approximately differentiable at x0 (see Section 10.3);

(b) lim
r↓0

Du(B(x0, r))

ωdrd
= dDu

dL d
(x0) = ∇u(x0);

(c) lim
r↓0

|Du|(B(x0, r))

ωdrd
= d|Du|

dL d
(x0) = |∇u(x0)|;

(d) x0 is an L d -Lebesgue point of ∇u.
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By the results of Section 10.3, L d -almost every x0 ∈ Ω has these properties.
The maps

ur (y) := u(x0 + r y) − ũ(x0)

r
, y ∈ B(0, 1),

where we denote the precise representative of u by ũ (see Section 10.3), satisfy

ur → u0 in L1, Dur → Du0 strictly as r ↓ 0

with u0(y) := ∇u(x0)y. Indeed, the L1-strong convergence follows from the approx-
imate differentiability after a change of variables. The strict convergence of Dur to
Du0 can be seen by using (10.8) and calculating

lim
r↓0 |Dur |(B(0, 1)) = ωd lim

r↓0
|Du|(B(x0, r))

|B(x0, r)| = ωd |∇u(x0)| = |Du0|(B(0, 1)).

From Lemma 5.6 we know that the integrand f is (globally) Lipschitz continuous
in the second argument, say with Lipschitz constant L > 0. Since x0 is a Lebesgue
point of ∇u and since r−d |Dsu|(B(x0, r)) → 0 by the approximate differentiability
of u in x0 (see (10.5)), we get

∣
∣F [u; B(x0, r)] − F [u0; B(x0, r)]∣∣

≤ L
∫

B(x0,r)

|∇u(y) − ∇u(x0)| dy + M |Dsu|(B(x0, r))

≤ ε

2
|B(x0, r)|

for r > 0 sufficiently small. Lemma 11.10 (i.e., quasiconvexity) thus implies for all
w ∈ BV(B(x0, r);Rm) with w = u0 on ∂ B(x0, r) that

F [u; B(x0, r)] ≤
∫

B(x0,r)

f (∇u0) dx + ε

2
|B(x0, r)|

≤ F [w; B(x0, r)] + ε

2
|B(x0, r)|.

Taking the infimum over all such w, we arrive at

F [u; B(x0, r)] ≤ J [u0; B(x0, r)] + ε

2
|B(x0, r)|. (11.13)

On the other hand,

J [u0; B(x0, r)] = rdJ [u0; B(0, 1)], J [u; B(x0, r)] = rdJ [ur ; B(0, 1)],

see (11.10). We thus infer from Lemma 11.11 together with the strict convergence of
the Dur to Du0 and the strict continuity of the trace operator (recalled in Section 10.3)
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that ∣
∣J [u0; B(x0, r)] − J [u; B(x0, r)]∣∣ ≤ ε

2
|B(x0, r)|

for r sufficiently small. Together with (11.13), the estimate (11.12) follows
with U (x0, r) := B(x0, r) after selecting r > 0 such that (L d + |Du| +
Λ)(∂ B(x0, r)) = 0. �

Lemma 11.14. The estimate (11.12) holds for |Dsu|-almost every point x0 ∈ Ω

with U (x0, r) a (rotated) cube.

Proof. We claim that (11.12) holds for all x0 ∈ Ω such that

(a)
dDsu

d|Dsu| (x0) = a ⊗ n for some a ∈ S
m−1, n ∈ S

d−1;

(b) αr := r−d |Du|(Qn(x0, 2r)) → ∞ as r ↓ 0, where Qn(x0, 2r) is a (henceforth
fixed) open cubewithmidpoint x0 ∈ Ω , side-length 2r , and two faces orthogonal
to n.

By virtue of Alberti’s Rank-One Theorem 10.7, the Besicovitch Differentiation The-
orem A.23, and (10.6), these properties hold for |Dsu|-almost every x0 ∈ Ω . During
the course of the proof we will require further properties of x0, but every time the
exceptional set will be |Dsu|-negligible.

Step 1. Let

ur (y) := 1

αr
· u(x0 + r y) − [u]B(x0,r)

r
, y ∈ Qn(0, 2), r > 0,

whereby [ur ] = −
∫

B(0,1) ur dx = 0. One calculates, using (10.8),

Dur (B) = Du(x0 + r B)

rdαr
= Du(x0 + r B)

|Du|(Qn(x0, 2r))

for any Borel set B ⊂ Qn(0, 2). Hence, |Dur |(Qn(0, 2)) = 1. By Corollary 10.8 (a
consequence of Alberti’s Rank-One Theorem 10.7) and the Poincaré inequality in

BV, ur
∗

⇀ u0 in BV(Qn(0, 2);Rm) for

u0(y) = aψ(y · n) (11.14)

with a bounded and increasing function ψ : (−1, 1) → R, also see Problem 10.4.
Now apply Lemma 10.6 on blow-ups without loss of mass to the measure |Du| to
see that we may furthermore assume that

(c) Dur converges strictly to Du0 on Qn(0, 2) and |Du0|(Qn(0, 2)) = 1.

Then, Du0(Qn(0, 2)) = a ⊗ n.
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Define the functions fr : Rm×d → R, r > 0, as

fr (A) := f (αr A)

αr
, A ∈ R

m×d ,

which satisfy | fr (A)| ≤ M(1+|A|) for r small enough. The fr are quasiconvex (see
Problem 11.7) and

fr (A) → f ∞(A) as r ↓ 0 whenever rank(A) ≤ 1

by the rank-one convexity of f .
Next, define the auxiliary functionals Fr ,Jr for Lipschitz subdomains D ⊂ Ω

and v ∈ BV(D;Rm) via

Fr [v; D] :=
∫

D
fr (∇v) dx +

∫

D
f ∞
r

(
dDsv

d|Dsv|
)

d|Dsv|,
Jr [v; D] := inf

{
Fr [w; D] : w ∈ BV(D;Rm) with w|∂ D = v|∂ D

}
.

We observe that Lemma 11.11 (forJr ) implies

∣
∣Jr [ur ; Qn(0, 2)] − Jr [u0; Qn(0, 2)]

∣
∣ ≤ M

∫

∂ Qn(0,2)
|ur − u0| dH d−1

→ 0, (11.15)

where the convergence follows by the strict convergence of Dur to Du0 and the strict
continuity of the trace operator in BV.

Step 2. We will show next that

Jr [u0; Qn(0, 2)] ≥ fr

(
Du0(Qn(0, 2))

|Qn(0, 2)|
)

|Qn(0, 2)|. (11.16)

With ψ from (11.14) we have

Du0 = (a ⊗ n)|Du0| = (a ⊗ n)Dψ,

whereby, using (c) above, 1 = |Du0|(Qn(0, 2)) = 2d−1|Dψ |(−1, 1). Thus,

|Dψ |(−1, 1) = ψ(+1−) − ψ(−1+) = 21−d ,

where the values of ψ on the right-hand side are to be understood in the sense of left
and right limits, respectively.

Define the staircase function

v(y) := aψ

(

y · n − 2

⌊
y · n + 1

2

⌋)

+ 21−da

⌊
y · n + 1

2

⌋

, y ∈ R
d .
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Furthermore, set wk(y) := v(ky)/k for y ∈ Qn(0, 2) and k ∈ N. We have that
wk → w uniformly in Qn(0, 2) as k → ∞, where

w(y) := 2−d(a ⊗ n)y, y ∈ R
d ,

becauseψ is bounded. Moreover, the trace of wk on ∂ Qn(0, 2) converges to the trace
of w and hence Lemma 11.11 implies

∣
∣Jr [wk; Qn(0, 2)] − Jr [w; Qn(0, 2)]

∣
∣ ≤ M

∫

∂ Qn(0,2)
|wk − w| dH d−1 → 0.

(11.17)
Now disjointly split

Qn(0, 2) = Z ∪
kd
⋃

l=1

Q(k)
l , |Z | = 0,

in the canonical way into a grid of kd open cubes with two faces orthogonal to n and
with side length 2/k. From (11.10) we infer that

Jr [u0; Qn(0, 2)] = Jr [v; Qn(0, 2)]
= kdJr [wk; (−1/k, 1/k)d ]

=
kd
∑

l=1

Jr [wk; Q(k)
l ]

≥ Jr [wk; Qn(0, 2)]

for all k ∈ N. The last inequality follows since wemay combine admissible functions
in the definition of Jr [wk; Q(k)

l ] into an admissible function in the definition of
Jr [wk; Qn(0, 2)]. Now let k → ∞ and employ (11.17) together with Lemma 11.10
to see that

Jr [u0; Qn(0, 2)] ≥ Jr [w; Qn(0, 2)] ≥ |Qn(0, 2)| fr (∇w).

The claim (11.16) now follows from∇w = 2−d(a⊗n) = Du0(Qn(0, 2))/|Qn(0, 2)|
since Du0(Qn(0, 2)) = a ⊗ n.

Step 3. From (11.16) and (c) we infer that

Jr [u0; Qn(0, 2)] ≥ fr

(
Du0(Qn(0, 2))

|Qn(0, 2)|
)

|Qn(0, 2)|

= fr

(
a ⊗ n

|Qn(0, 2)|
)

|Qn(0, 2)|
→ f ∞(a ⊗ n) as r ↓ 0.
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Combining this with (11.15), we arrive at

lim inf
r↓0 Jr [ur ; Qn(0, 2)] ≥ f ∞(a ⊗ n).

We will show below that

F [u; Qn(x0, 2r)]
|Du|(Qn(x0, 2r))

→ f ∞(a ⊗ n) as r ↓ 0 (11.18)

for |Dsu|-a.e. x0 ∈ Ω . Then, for r sufficiently small,

J [u; Qn(x0, 2r)]
|Du|(Qn(x0, 2r))

= Jr [ur ; Qn(0, 2)]

≥ f ∞(a ⊗ n) − ε

2

≥ F [u; Qn(x0, 2r)]
|Du|(Qn(x0, 2r))

− ε.

Thus, (11.12) follows with U (x0, r) := Qn(x0, 2r).
Step 4.Tofinish the proof of the lemma, it remains to show (11.18) at |Dsu|-almost

every point x0 ∈ Ω . We now additionally assume that x0 satisfies

(d) lim
r↓0

|Dau|(Qn(x0, 2r))

|Du|(Qn(x0, 2r))
= d|Dau|

d|Du| (x0) = 0;

(e) x0 is a |Dsu|-Lebesgue point of dDs u
d|Ds u| .

This is no restriction because

d|Dau|
d|Du| (x0) ≤ d|Dau|

d|Dsu| (x0) = 0,

which determines the limit in (d) for |Dsu|-almost every x0 ∈ Ω by the Besicovitch
Differentiation Theorem A.23. So,

d|Dsu|
d|Du| = d|Dau|

d|Du| + d|Dsu|
d|Du| = d|Du|

d|Du| = 1 |Du| -a.e.

By the Lebesgue point property (e) of x0,

1

|Dsu|(Qn(x0, 2r)

∫

Qn(x0,2r))

∣
∣
∣
∣ f ∞

(
dDsu

d|Dsu|
)

− f ∞(a ⊗ n)

∣
∣
∣
∣ d|Dsu|

≤ L

|Dsu|(Qn(x0, 2r)

∫

Qn(x0,2r))

∣
∣
∣
∣
dDsu

d|Dsu| (y) − dDsu

d|Dsu| (x0)

∣
∣
∣
∣ d|Dsu|(y)

→ 0 as r ↓ 0,
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where L > 0 is the Lipschitz constant of f ∞ (which is the same as the Lipschitz con-
stant of f ). Furthermore, d|Ds u|

d|Du| (x0) = 1 and hence we can replace the denominator
in the leading fraction by |Du|(Q(x0, r)). Finally,

1

|Du|(Qn(x0, 2r))

∫

Qn(x0,2r)

| f (∇u)| dx

≤ M

|Du|(Qn(x0, 2r))

∫

Qn(x0,2r)

1 + |∇u| dx

→ 0 as r ↓ 0

since αr → ∞ and d|Dau|
d|Du| (x0) = 0. Together, these assertions yield (11.18). �

Combining the last two lemmas, we get:

Lemma 11.15. Let Λ ∈ M+(Ω) and ε > 0. Then, there exist countably many
disjoint convex open sets {Uk}k∈N (balls or cubes) with Λ(∂Uk) = 0 that cover Ω

up to a (L d + |Du|)-negligible set such that

F [u;Ω] ≤
∞∑

k=1

J [u; Uk] + ε.

Proof. We have shown in the last two lemmas that (L d + |Dsu|)-almost every
x0 ∈ Ω satisfies (11.12) for sufficiently small radii r > 0 and some convex open set
U (x0, r). More precisely, there is anL d -negligible Borel set N1 ⊂ Ω and a |Dsu|-
negligible Borel set N2 such that (11.12) holds at all x0 ∈ (Ω \ N1) ∪ (Ω \ N2) =
Ω \ (N1 ∩ N2). Thus, at such x0 the assumptions of the following covering theorem
hold: �
Theorem 11.16 (Morse covering theorem). Let B ⊂ R

d be a bounded Borel set,
μ ∈ M+(Rd), κ ≥ 1, and let

C ⊂ { x + K : x ∈ B, K ⊂ R
d convex and compact

}

be a family of sets such that for all x ∈ B \ N, where N ⊂ B is a Borel set with
μ(N ) = 0, and for all r ∈ (0, r0(x0)) (r0(x0) > 0 given for every x0 ∈ B), there
exists an x + K ∈ C with

B(x, r) ⊂ x + K ⊂ B(x, κr).

Then, there exists a disjoint countable family C ′ ⊂ C with

μ
(

B \
⋃

C ′
)

= 0.

Via this theorem, which is proved in Theorem 1.147 of [122], we can cover
Ω up to a (L d + |Du|)-negligible set by countably many mutually disjoint sets
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Uk (k ∈ N) satisfying (11.12). Note that the original result only holds for the closures
Uk , but as (L d + |Du|)(∂Uk) = 0, this is equivalent.

Clearly, as an integral functional, F [u; �] is countably additive and vanishes on
(L d + |Du|)-negligible sets. Thus, (11.12) gives

F [u;Ω] ≤
∞∑

k=1

J [u; Uk] + ε(L d + |Du|)(Ω).

This immediately yields the claim after adjusting ε. �
We can now complete the proof of the main result of this section.

Proof of Theorem 11.7. Let (u j ) ⊂ BV(Ω;Rm) with u j
∗

⇀ u in BV(Ω;Rm). By
Lemma 11.1 in conjunction with Theorem 11.2 we may assume that in fact u j ∈
(W1,1 ∩ C∞)(Ω;Rm) and that (after selecting a not explicitly labeled subsequence)

f (∇u j )L
d Ω

∗
⇀ λ, |Du j | ∗

⇀ Λ inM+(Ω).

By the linear growth assumption (12.2), we have 0 ≤ λ ≤ M(L d Ω + Λ).
Furthermore, f is Lipschitz continuous byLemma5.6withLipschitz constant L > 0,
say. We also assume that | f (0)| ≤ L .

Via Lemma 11.15we construct a countable family of open disjoint setsUk (k ∈ N)
with Λ(∂Uk) = 0 for all k ∈ N, (L d + |Du|)(Ω \⋃k∈N Uk) = 0, and such that

F [u;Ω] ≤
∞∑

k=1

J [u; Uk] + ε ≤
∞∑

k=1

lim inf
j→∞ F [u j ; Uk] + ε,

where we used Lemma 11.12 for each of the Uk’s. Since Λ(∂Uk) = 0, it holds that

lim
j→∞F [u j ; Uk] = λ(Uk).

Thus,

F [u;Ω] ≤ λ

(⋃

k∈N
Uk

)

+ ε = λ(Ω) + ε.

By standard results in measure theory (see Lemma A.19), we infer that (note f ≥ 0)

λ(Ω) ≤ lim inf
j→∞ F [u j ;Ω],

whereby
F [u;Ω] ≤ lim inf

j→∞ F [u j ;Ω] + ε.

Thus, as ε > 0 was arbitrary, we have proved thatF = F [ �;Ω] is lower semicon-
tinuous. �
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Extending all functions u ∈ BV(Ω;Rm) to ũ ∈ BV(Ω̃;Rm) on a larger domain
Ω̃ � Ω by setting ũ|Ω̃\Ω := w for some w ∈ BV(Ω̃ \ Ω;Rm), and applying Theo-
rem 11.7 in Ω̃ , we also immediately get the following weak* lower semicontinuity
result:

Corollary 11.17. Assume that f : Rm×d → [0,∞) is a quasiconvex integrand with
linear growth and let g ∈ L1(∂Ω;Rm). Then, the functional

Fext[u] :=
∫

Ω

f (∇u(x)) dx +
∫

Ω

f #
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x)

+
∫

∂Ω

f #
(
(u(x) − g(x)) ⊗ nΩ(x)

)
dH d−1(x), u ∈ BV(Ω;Rm),

is weakly* lower semicontinuous.

Remark 11.18. We stated Theorem 11.7 and Corollary 11.17 also in the case when
the strong recession function f ∞ does not exist, but only proved them under this
additional existence assumption. In the general case (with f # in the definition ofF ),
the proof of Theorem 11.7 and Corollary 11.17 is the same except that the use of
Theorem 11.2 has to be replaced by Remark 11.3 (i.e., the solution to Problem 11.5).

As an existence theorem for minimizers we then get by the Direct Method:

Theorem 11.19. Assume that f : Rm×d → [0,∞) is a quasiconvex integrand that
satisfies the coercivity and linear growth estimate

μ|A| ≤ f (A) ≤ M(1 + |A|) A ∈ R
m×d ,

for some μ, M > 0 and let g ∈ L1(∂Ω;Rm). Then, the functional

Fext[u] :=
∫

Ω

f (∇u(x)) dx +
∫

Ω

f #
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x)

+
∫

∂Ω

f #
(
(u(x) − g(x)) ⊗ nΩ(x)

)
dH d−1(x), u ∈ BV(Ω;Rm),

has a minimizer over the space BV(Ω;Rm).

Note that since the trace operator on BV(Ω;Rm) is not weakly* continuous, we
cannot expect that boundary values are preserved along a minimizing sequence.

Example 11.20. The isoperimetric problem from Section 1.2 leads to the following
minimization problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize F [u] :=
∫ 1

0

√
1 + (u(s)′)2 ds + |u(0) − α| + |u(1) − β|

over all u ∈ BV(0, 1) with
∫ 1

0
u(s) ds = A,
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Fig. 11.1 The solution to
the isoperimetric problem

where α, β, A > 0 are given. Note that we have already translated the strict boundary
conditions into the penalty terms |u(0) − α| and |u(1) − β| (observe that the strong
recession function of the integrand f (a) := √

1 + a2 is f ∞(a) = |a|). By the
preceding theorem, there exists a solution to this problem (the side constraint can be
incorporated like in Section 2.5).

Let us also identify this solution under the assumption that it is of class W2,1

inside the domain (0, 1). Then, we can use Theorem 3.2.1 on Lagrange multipliers
to see that u must solve the differential equation

(
u′

√
1 + (u′)2

)′
= λ in (0, 1)

for some λ ∈ R. The term on the left is the inverse curvature radius of the curve
γ (s) := (s, u(s))T , which is hence constant. From geometric reasoning we must
therefore have that u is part of a circle that is open from below, see Figure11.1.

In the special case when α = β we get that u is biggest when the radius of the
circle is 1/2 and u is a semicircle. Then, the area under the graph is

Amax = α + π

8
.

Consequently, if the prescribed area A is larger than π/8, we must have a jump
in u in the left and right endpoints. Of course, this is not directly expressible in
the space BV(0, 1), whose elements are maps defined on the open interval (0, 1).
We can, however, as above extend u to all of R by α and work in the set { u ∈
BV(R) : Du (R \ [0, 1]) = 0 } instead.



11.3 Relaxation 325

11.3 Relaxation

In analogy to Chapter 7 we now consider the situation where the integrand f of the
functionalF is not quasiconvex. Then,F cannot be weakly* lower semicontinuous.
For f : Rm×d → [0,∞) a continuous integrand andanyLipschitz subdomain D ⊂ Ω

we let the (restricted) functional F [ �; D] : W1,1(Ω;Rm) → R be given as

F [u; D] :=
∫

D
f (∇u(x)) dx, u ∈ W1,1(Ω;Rm).

Then, for u ∈ BV(Ω;Rm) we define the relaxation F∗[ �; D] of F [ �; D] as

F∗[u; D] := inf
{
lim inf

j→∞ F [u j ; D] : (u j ) ⊂ W1,1(D;Rm) with u j
∗

⇀ u in BV
}

and we also set F∗[u] := F∗[u;Ω]. Note that this definition does not agree with
the abstract definition of the relaxation in Chapter 7. Indeed, there we identified the
relaxation with the (weakly*) lower semicontinuous envelope, which here is

F̃∗[u] := sup
{
H [u] : H ≤ F and H is weakly* lower semicontinuous

}
.

However, we will show in Theorem 11.21 below thatF∗ as defined above is weakly*
lower semicontinuous. Then, for all u ∈ BV(Ω;Rm) it holds that

F̃∗[u] ≤ inf
{
lim inf

j→∞ F̃∗[u j ] : (u j ) ⊂ W1,1(Ω;Rm) with u j
∗

⇀ u in BV
}

≤ inf
{
lim inf

j→∞ F [u j ] : (u j ) ⊂ W1,1(Ω;Rm) with u j
∗

⇀ u in BV
}

= F∗[u]
≤ F̃∗[u]

and a posteriori we conclude that in fact F̃∗ = F∗. Thus, we may work with the
more convenient definition of the relaxation given in F∗. In this context also see
Problem 7.5.

The main theorem of this section is the following.

Theorem 11.21. Assume that f : Rm×d → [0,∞) is a continuous integrand with

μ|A| ≤ f (A) ≤ M(1 + |A|), A ∈ R
m×d ,

for some μ, M > 0. We denote the quasiconvex envelope of f by Q f . Then, the
integral representation

F∗[u] =
∫

Ω

Q f (∇u(x)) dx +
∫

Ω

(Q f )#
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x)

holds for all u ∈ BV(Ω;Rm). In particular, the functional F∗ is weakly* lower
semicontinuous on BV(Ω;Rm).
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Remark 11.22. The result continues to hold if instead of the lower bound μ|A| ≤
f (A) we only assume that Q( f − δ| �|) > −∞ for some δ > 0, see Problem 11.9.

Proof. We know from Lemma 7.1 that Q f is finite, quasiconvex, and has linear
growth, say also with growth constant M > 0. We have Q f (∇u) ≤ M(1 + |∇u|)
and (Q f )#

(
dDs u
d|Ds u|

) ≤ M . Denote by QF [u] the functional on the right-hand side
above. The inequality

QF ≤ F∗ (11.19)

follows immediately from the Ambrosio–Dal Maso–Fonseca–Müller Theorem 11.7,
which entails that QF is weakly* lower semicontinuous. It remains to show the
reverse inequality to (11.19).

Step 1. We claim that

F∗[u] = inf

{

lim inf
j→∞

∫

Ω

f (∇u j (x)) dx : (u j ) ⊂ W1,1(Ω;Rm)

with u j → u in L1

}

.

Indeed, if this were false, we could find (u j ) ⊂ W1,1(Ω;Rm) with u j → u in L1

and

F∗[u] > lim
j→∞

∫

Ω

f (∇u j (x)) dx ≥ μ‖∇u j‖L1 .

So, the ∇u j are uniformly L1-bounded and u j
∗

⇀ u in BV, whereby we get the
contradiction F∗[u] > F∗[u].

Step 2. Using Lemma 11.1 choose a sequence (u j ) ⊂ W1,1(Ω;Rm)with u j |∂Ω =
u|∂Ω and u j → u area-strictly. Furthermore, let Ω0 � Ω be a Lipschitz subdomain
with (L d +|Du|)(∂Ω0) = 0. Since countably piecewise affine functions are dense in
W1,1(Ω0;Rm) under given boundary values (see Theorem A.29), via Theorem 11.2
we may assume that u j is countably piecewise affine in Ω0, say ∇u j = A( j)

i almost
everywhere inΩ

( j)
i ⊂ Ω0 (A

( j)
i ∈ R

m×d , i ∈ N ). Here, theΩ
( j)
i are open and disjoint

and for every j ∈ N it holds that Ω0 = Z ( j) ∪⋃i Ω
( j)
i for some L d -negligible set

Z ( j).
Employing the formula (7.1) for the quasiconvex envelope, we can pick maps

ψ
( j)
i ∈ W 1,∞

0 (Ω
( j)
i ;Rm) with

∫

Ω
( j)
i

|ψ( j)
i (x)| dx ≤ |Ω( j)

i |
j

and ∫

Ω
( j)
i

f (A( j)
i + ∇ψ

( j)
i (x)) dx <

(

Q f (A( j)
i ) + 1

j

)

|Ω( j)
i |.
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Let v j ∈ W1,1(Ω;Rm) be defined as

v j :=
{

u j + ψ
( j)
i in Ω

( j)
i (i ∈ N),

u j in Ω \ Ω0,

for which v j |∂Ω = u|∂Ω and v j → u in L1. Thus,

F∗[u] ≤ lim inf
j→∞

∫

Ω

f (∇v j (x)) dx .

Since v j = u j on Ω \ Ω0 we may estimate

∫

Ω

f (∇v j (x)) dx ≤
∫

Ω0

Q f (∇u j (x)) dx + |Ω|
j

+ M
∫

Ω\Ω0

1 + |∇u j (x)| dx .

Using Theorem 11.2 and Remark 11.3 we can pass to the limit as j → ∞ to get

F∗[u] ≤
∫

Ω0

Q f (∇u(x)) dx +
∫

Ω0

(Q f )#
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x)

+ M(L d + |Du|)(Ω \ Ω0).

Now let Ω0 ↑ Ω (in the sense that supx∈Ω0
dist(x, ∂Ω) → 0) to see that

F∗[u] ≤
∫

Ω

Q f (∇u(x)) dx +
∫

Ω

(Q f )#
(

dDsu

d|Dsu| (x)

)

d|Dsu|(x) = QF [u].

Together with (11.19) this concludes the proof of the theorem. �

Notes and Historical Remarks

The proof of Lemma 11.1 is from the appendix of [168] (the case for Lipschitz
domains can be found in Lemma B.1 of [44]). Theorem 11.2 in the extended form
of Remark 11.3 is from [169]. Results in this direction already appear in [44].

The blow-up method in the proof of the Ambrosio–Dal Maso–Fonseca–Müller
Theorem 11.7 was first introduced in [123], also see [48] for a systematic approach
to the idea of proving lower semicontinuity and relaxation theorems for integral
functionals via the auxiliary functional J [u; U ] from (11.9). In fact, the idea of
Lemma 11.15 dates back to [86] where it was used in the context of Sobolev spaces.
In the BV-context it seems to have been used for the first time in [47] and [48].
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We note that the work by Fonseca & Müller [124] also considered u-dependent
integrands. A more general approach to this problem using liftings can be found
in [230].

The reader is pointed to Problem 11.3 and also to [284] for the construction of
a non-convex quasiconvex function with linear growth and to [200] for an example
of a non-convex quasiconvex function that is even positively 1-homogeneous. The-
orem 8.1 of [164] shows, in a non-constructive fashion, that “many” quasiconvex
functions with linear growth must exist.

The notation for recession functions is not consistent in the literature. In many
works, the upper weak recession function f # is written as f ∞ and simply called the
“recession function”.We refer to [22], in particular Section 2.5, for amore systematic
approach to recession functions and their associated cones.

Problems

11.1. Find a simpler proof of Lemma 11.1 in the casewhenΩ is a bounded Lipschitz
domain as follows: For u ∈ BV(Ω;Rm) define

uδ(x) :=
∫

η(y)u(x − δρ(x)y) dy, δ > 0,

whereη ∈ C∞
c (B(0, 1)) is a standardmollifying kernel andρ is a regularized distance

to the boundary of Ω , i.e., ρ ∈ C∞(Ω), C−1dist(x, ∂Ω) ≤ ρ(x) ≤ Cdist(x, ∂Ω)

(C > 0), and |∇ρ(x)| ≤ C for all x ∈ Ω . See, for instance, [246], p. 171, for the
construction of such a ρ.

11.2. Show that for a continuous convex function f : RN → R with linear growth
it holds that f # = f ∞.

11.3. Prove that there exists a non-convex quasiconvex integrand f : Rm×d → R

with linear growth. Also prove that the strong recession function f ∞ exists. Hint:
Extend Lemma 7.3 to the case p = 1.

11.4. Let f : Ω × R
m×d → R be a Carathéodory integrand satisfying the lower

bound f (x, A) ≥ −C(1 + |A|) for all (x, A) ∈ Ω × R
m×d and some constant

C > 0. Then, show that there exists a sequence ( fk)k of continuous integrands for
which the strong recession functions f ∞

k exists and such that

sup
k∈N

fk(x, A) = f (x, A) and sup
k∈N

f ∞
k (x, A) = f#(x, A).

11.5. Prove the following strengthened version of Theorem 11.2: Let f : Ω ×
R

m×d → [0,∞) be continuous with linear growth such that A �→ f (x, A) is
rank-one convex (or rank-one concave) for almost every x ∈ Ω and moreover
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f #(x, A) = f#(x, A) = ( f (x, �))#(A) = lim sup
A′→A

t→∞

f (x, t A′)
t

for all (x, A) ∈ Ω × R
m×d such that rankA ≤ 1. Then, the functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f #
(

x,
dDsu

d|Dsu| (x)

)

d|Dsu|(x), u ∈ BV(Ω;Rm),

is continuous with respect to the area-strict convergence on BV(Ω,Rm). Hint: Use
Problem 11.4 and also Alberti’s Rank-One Theorem 10.7.

11.6. Show that if f : Ω × R
m×d → R is rank-one convex and the function

( f (x, �))#(A) = lim sup
A′→A

t→∞

f (x, t A′)
t

is continuous in x ∈ Ω for fixed A, then

f #(x, A) = f#(x, A) = ( f (x, �))#(A)

for all (x, A) ∈ Ω × R
m×d such that rankA ≤ 1. Hint: Use Dini’s Theorem, which

asserts that if a monotone sequence of continuous functions converges pointwise on
a compact space and if the limit function is also continuous, then the convergence is
uniform.

11.7. Show that for a quasiconvex h : Rm×d → R with linear growth the rescaled
functions

hr (A) := h(r A)

r
, A ∈ R

m×d ,

are quasiconvex for all r > 0. Conclude that the upper weak recession function

h#(A) := lim sup
t→∞

h(t A)

t

is quasiconvex. Show also that if rankA ≤ 1, then this upper limit is in fact a proper
limit.

11.8. Show that Theorem 11.7 cannot be extended to integrands f taking negative
values without restricting the class of admissible BV-sequences.

11.9. Show that Theorem 11.21 continues to hold if instead of the lower bound
μ|A| ≤ f (A) we only assume that Q( f − δ| �|) > −∞ for some δ > 0. Hint: Use
the Kirchheim–Kristensen Theorem 10.13.

11.10. Prove the statements in Theorem 8.3 for the case p = 1. Hint: Use the
weak-type estimates for Fourier multipliers from Theorem A.35.



Chapter 12
Generalized Young Measures

In this chapter we continue the study of the integral functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f #
(
x,

dDsu

d|Dsu| (x)
)

, u ∈ BV(Ω; R
m),

for a Carathéodory integrand f : Ω × R
m×d → R with linear growth. In contrast

to the preceding chapter, however, here we proceed in a more abstract way: We first
introduce the theory of generalized Young measures, which extends the standard
theory of Young measures developed in Chapter 4. Besides quantifying oscillations
(like classical Young measures), this theory crucially allows one to quantify con-
centrations as well, thus providing a rich toolbox for investigating linear-growth
functionals. While the (generalized) Young measure approach requires a fair bit of
abstract theory, the initial effort is rewarded with a robust general framework that
has become a core tool in the calculus of variations with applications way beyond
the lower semicontinuity theory of integral functionals.

To get a feel for this tool, let us outline a few basic ideas that play a prominent
role in this chapter. Recall that if p ∈ (1,∞], then for a standard W1,p-gradient
Youngmeasure ν = (νx )x∈Ω ∈ GYp(Ω; R

m×d)we can always find a norm-bounded

sequence (u j ) ⊂ W1,p(Ω; R
m) with ∇u j

Y→ ν and such that additionally {∇u j } j is
Lp-equiintegrable (if p < ∞), see Lemma 4.13 for p < ∞ and Zhang’s Lemma 7.18
for p = ∞. Thus, for p > 1, we do not need to worry about (Lp-)concentrations
in generating sequences of gradients. However, as has already become apparent in
Chapters 10 and 11, the linear-growth case p = 1 is very special. Here, concentration
effects really have to be taken into account and classical Young measures cannot be
used to this effect.

The main new, yet fairly simple, idea allowing one to pass from classical to
generalized Young measures is to employ a compactification. For this, we transform
maps u : Ω → R

N into maps ũ taking values in B
N , the (open) unit ball in R

N .
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This can be achieved by choosing a homeomorphism ϕ : R
N → B

N and setting
ũ := u ◦ϕ−1. Then, the behavior of u “at infinity” can be understood by studying the
behavior of ũ near ∂B

N . Likewise, when considering a (for simplicity) homogeneous
Young measure ν ∈ M 1(RN ), we can instead study the push-forward ν̃ := ϕ#ν ∈
M 1(BN ). Generalized Young measures can then be understood as classical Young
measures on the compactified space BN . In this way we can treat situations where
some mass in a sequence (ν j ) ⊂ M 1(RN ) escapes to infinity. The precise way this
is formulated is slightly different, though, to make the theory more user-friendly.

After developing the functional analysis setup of generalized Young measures,
including the introduction of a suitable set of “test integrands”, we turn to the class
of generalized Young measures that are generated by BV-sequences. In particular,
localization (“blow-up”) principles will play a prominent role, just like they did for
classical Young measures. Finally, we will consider how these tools can be used to
establish Jensen-type inequalities, which will yield lower semicontinuity results for
integral functionals.

12.1 Functional Analysis Setup

We first define the space E(Ω; R
N ), whose elements are the “test integrands” for

generalized Young measures. In order to do so, we introduce for f ∈ C(Ω × R
N )

and g ∈ C(Ω ×B
N ), where by B

N we denote the open unit ball in R
N , the following

linear transformations:

(S f )(x, Â) := (1 − | Â|) f

(
x,

Â

1 − | Â|
)

, x ∈ Ω, Â ∈ B
N , (12.1)

(S−1g)(x, A) := (1 + |A|) g
(
x,

A

1 + |A|
)

, (x, A) ∈ Ω × R
N .

Clearly, S−1 ◦ S and S ◦ S−1 are the identities on C(Ω × R
N ) and C(Ω × B

N ),
respectively. Then we set

E(Ω; R
N ) := {

f ∈ C(Ω × R
N ) : S f ∈ C(Ω × BN )

}
.

Here, the condition “S f ∈ C(Ω × BN )” is to be understood in the way that S f ∈
C(Ω × B

N ) has a (necessarily unique) continuous extension to Ω × BN , which is
also denoted by S f . As the norm on E(Ω; R

N ) we use the natural choice

‖ f ‖E(Ω;RN ) := ‖S f ‖C(Ω×BN )
= sup

(x, Â)∈Ω×BN

|S f (x, Â)|,

under which E(Ω; R
N ) becomes a Banach space and the operator S : E(Ω; R

N ) →
C(Ω × BN ) is an isometric isomorphism. In particular, E(Ω; R

N ) is separable.
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Since | f (x, A)| = (1+|A|)|S f (x, (1+|A|)−1A)|, all f ∈ E(Ω; R
N ) have linear

growth, i.e., there exists a constant M > 0 with

| f (x, A)| ≤ M(1 + |A|), (x, A) ∈ Ω × R
N . (12.2)

Moreover, our definition of E(Ω; R
N ) is designed so that the (strong) recession

function f ∞ : Ω × R
N → R exists, which was defined in (11.8) as

f ∞(x, A) := lim
x ′→x
A′→A
t→∞

f (x ′, t A′)
t

, (x, A) ∈ Ω × R
N .

We also recall that f ∞ is positively 1-homogeneous. Note that f ∞ agrees with S f
on Ω × S

N−1, as can be seen by substituting t = s/(1 − s), s ∈ (0, 1), and letting
s → 1.

A generalized Young measure on the bounded open set Ω ⊂ R
d with values in

R
N is a triple ν = (νx , λν, ν

∞
x ) consisting of

(i) a parametrized family of probability measures (νx )x∈Ω ⊂ M 1(RN ), called the
oscillation measure;

(ii) a positive finite measure λν ∈ M+(Ω), called the concentration measure;
(iii) a parametrized family of probability measures (ν∞

x )x∈Ω ⊂ M 1(SN−1), called
the concentration-direction measure;

and satisfying the conditions

(iv) the map x �→ νx is weakly* measurable with respect to L d , i.e., the function
x �→ 〈 f (x, �), νx 〉 isL d -measurable for all bounded Borel functions f : Ω ×
R

N → R;
(v) the map x �→ ν∞

x is weakly* measurable with respect to λν , i.e., the function
x �→ 〈 f ∞(x, �), ν∞

x 〉 is λν-measurable for all bounded Borel functions f : Ω ×
S
N−1 → R;

(vi) x �→ 〈| �|, νx 〉 ∈ L1(Ω).

We identify generalized Young measures μ, ν if μx = νx for L d -almost every
x ∈ Ω , λμ = λν , and μ∞

x = ν∞
x for λμ-almost every x ∈ Ω . All these (equivalence

classes of) generalized Young measures are collected in the set

YM (Ω; R
N ).

If for the target dimension we have N = 1, then we simply write YM (Ω) instead of
YM (Ω; R). In all of the following we usually refer to generalized Young measures
simply as “Young measures”.
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The duality pairing between f ∈ E(Ω; R
N ) and ν ∈ YM (Ω; R

N ) is defined as

〈〈
f, ν
〉〉 :=

∫
Ω

〈
f (x, �), νx

〉
dx +

∫
Ω

〈
f ∞(x, �), ν∞

x

〉
dλν(x)

=
∫

Ω

∫
RN

f (x, A) dνx (A) dx +
∫

Ω

∫
SN−1

f ∞(x, A) dν∞
x (A) dλν(x).

In this way, the space YM (Ω; R
N ) can be considered a part of the dual space of

E(Ω; R
N ). A sequence of Youngmeasures (ν j ) ⊂ YM (Ω; R

N ) converges weakly*

to ν ∈ YM (Ω; R
N ), written as “ν j

∗
⇀ ν”, if for every f ∈ E(Ω; R

N ) it holds that〈〈
f, ν j

〉〉 → 〈〈
f, ν
〉〉
.

The barycenter of a Young measure ν ∈ YM (Ω; R
N ) is the measure [ν] ∈

M (Ω; R
N ) given by

[ν] := [νx ]L d
x Ω + [ν∞

x ] λν(dx), (12.3)

where [μ] := ∫
A dμ(A) and we wroteL d

x , λν(dx) to emphasize that the measures

L d , λν act with respect to the x-variable. It is not hard to see that if ν j
∗

⇀ ν in

YM (Ω; R
N ), then [ν j ] ∗

⇀ [ν] inM (Ω; R
N ).

In the following we study further the space YM (Ω; R
N ) and establish a funda-

mental compactness result for weak* convergence. Notice that sinceYM (Ω; R
N ) ⊂

E(Ω; R
N )∗, a sequence of Young measures that is suitably bounded (to be detailed

below) has a weakly*-converging subsequence in E(Ω; R
N )∗. However, it is not a

priori clear that the limit is also a Young measure. Here and in the following we
always identify C(Ω × BN )∗ with M (Ω × BN ) via the Riesz Representation The-
orem A.21.

We first observe that the linear transformation S : E(Ω; R
N ) → C(Ω × BN )

defined in (12.1) is an isomorphism, hence the operator

S−∗ := (S−1)∗ : E(Ω; R
N )∗ → M (Ω × BN ),

that is, the dual operator of the inverse of S, acts on a Young measure ν ∈
YM (Ω; R

N ) as

〈
Φ, S−∗ν

〉 = 〈〈
S−1Φ, ν

〉〉

=
∫

Ω

〈
S−1Φ(x, �), νx

〉
dx +

∫
Ω

〈
Φ(x, �), ν∞

x

〉
dλν(x) (12.4)

for any Φ ∈ C(Ω × BN ) (notice that (S−1Φ)∞|Ω×SN−1 = Φ|Ω×SN−1 ). In particular,

〈
S f, S−∗ν

〉 = 〈〈
f, ν
〉〉

for all f ∈ E(Ω; R
N ).

See Figure 12.1 for a diagram of the duality relationships.
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Fig. 12.1 Duality
relationships.

Lemma 12.1. The set S−∗(YM (Ω; R
N )) ⊂ M (Ω × BN ) consists of all the posi-

tive measures μ ∈ M+(Ω × BN ) that satisfy

∫
Ω×BN

ϕ(x)(1 − |A|) dμ(x, A) =
∫

Ω

ϕ(x) dx for all ϕ ∈ C(Ω). (12.5)

Proof. Step 1. For ν ∈ YM (Ω; R
N ) and Φ = 1, (12.4) gives

(S−∗ν)(Ω × BN ) = 〈
1, S−∗ν

〉 =
∫

Ω

〈
1 + | �|, νx

〉
dx + λν(Ω) < ∞

by the assumptions on ν. Thus, S−∗ν is a finite measure on Ω × BN . Moreover, for
ϕ ∈ C(Ω) set Φ(x, A) := ϕ(x)(1 − |A|), which gives

∫
Ω×BN

ϕ(x)(1 − |A|) d(S−∗ν)(x, A) = 〈
Φ, S−∗ν

〉 = 〈〈
ϕ ⊗ 1, ν

〉〉 =
∫

Ω

ϕ(x) dx .

This implies (12.5). The positivity of S−∗ν follows from the fact that for Φ ≥ 0 it
holds that 〈

Φ, S−∗ν
〉 = 〈〈

S−1Φ, ν
〉〉 ≥ 0.

Step 2. To prove the converse, let μ ∈ M+(Ω × BN ) be such that (12.5) holds.
We need to construct a Young measure ν ∈ YM (Ω; R

N ) with μ = S−∗ν, that is,
〈
S f, μ

〉 = 〈
S f, S−∗ν

〉 = 〈〈
f, ν
〉〉

for all f ∈ E(Ω; R
N ).

By the Disintegration Theorem 4.4 we infer the existence of a measure κ ∈
M+(Ω) and a weakly* κ-measurable family (ηx )x∈Ω ⊂ M 1(BN ) such that

μ = κ(dx) ⊗ ηx .

For ease of notation in the following we will suppress all mention of the integration
variable x for κ and L d Ω . Let

κ = gL d Ω + κs, g ∈ L1(Ω), κssingular toL d ,
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be the Lebesgue–Radon–Nikodým decomposition of κ . From (12.5) we get that

〈1 − | �|, ηx 〉
[
gL d Ω + κs

] = L d Ω.

Thus, 〈1 − | �|, ηx 〉 κs = 0, whereby ηx is concentrated in S
N−1 for κs-almost every

x ∈ Ω . Consequently, for f ∈ E(Ω; R
N ) (recall S f = f ∞ on Ω × S

N−1),

〈
S f (x, �), ηx

〉
κ =

(
g(x)

∫
BN

S f (x, �) dηx

)
L d Ω

+
(

ηx (S
N−1)g(x) −

∫
∂BN

f ∞(x, �) dηx

)
L d Ω

+
(

ηx (S
N−1) −

∫
∂BN

f ∞(x, �) dηx

)
κs . (12.6)

Define the measures νx ∈ M+(RN ), x ∈ Ω , via

〈
h, νx

〉 := g(x)
∫
BN

Sh dηx , h ∈ C0(R
N );

the measures ν∞
x ∈ M+(SN−1), x ∈ Ω , via

〈
h∞, ν∞

x

〉 := −
∫
SN−1

h∞ dηx , h∞ ∈ C(SN−1);

and

λν := ηx (S
N−1) κ = ηx (S

N−1)
[
gL d Ω + κs

] ∈ M+(Ω).

Then, (12.6) becomes

〈
S f (x, �), ηx

〉
κ = 〈

f (x, �), νx
〉
L d Ω + 〈

f ∞(x, �), ν∞
x

〉
λν. (12.7)

Step 3. Next, we will show that νx and ν∞
x are indeed probability measures.

For ν∞
x , which is defined through an averaged integral, this is obvious. For νx , at

L d -almost every x ∈ Ω observe that by (12.7) with f (x, A) := ϕ(x) and (12.5) we
infer that

∫
Ω

ϕ(x)
〈
1, νx

〉
dx =

∫
Ω

ϕ(x)
〈
1 − | �|, ηx

〉
dκ(x)

=
∫

Ω×BN

ϕ(x)(1 − |A|) dμ(x, A)

=
∫

Ω

ϕ(x) dx
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for every ϕ ∈ C(Ω). Thus, 〈1, νx 〉 = 1 forL d -almost every x ∈ Ω .
Finally, using f (x, A) := 1 + |A| in (12.7),

∫
Ω

〈
1 + | �|, νx

〉
dx + λν(Ω) = 〈

1, μ
〉 = μ(Ω × BN ) < ∞

since S f (x, A) = 1. Therefore, x �→ 〈| �|, νx 〉 ∈ L1(Ω) and λν(Ω) < ∞. ��
Corollary 12.2. The setYM (Ω; R

N ) is weakly* closed (as a subset ofE(Ω; R
N )∗).

Proof. It suffices to observe that condition (12.5) is weak*-continuous (in the topo-
logical sense). Indeed, since ϕ(x)(1 − |A|) for ϕ ∈ C(Ω) is an admissible test
function for the weak* topology on M (Ω × BN ) ∼= C(Ω × BN )∗, the map

μ ∈ M (Ω × BN ) �→
∫

Ω×BN

ϕ(x)(1 − |A|) dμ(x, A)

is continuous in the (locally convex) weak* topology and thus S−∗(YM (Ω; R
N )) ⊂

M (Ω × BN ) is weakly* closed in C(Ω × BN )∗. Via the isomorphism S∗ the weak*
closedness is transported to the set YM (Ω; R

N ). ��
The following is the basic compactness principle for generalizedYoungmeasures.

Corollary 12.3. Let (ν j ) ⊂ YM (Ω; R
N ) be a sequence of Young measures such

that

sup
j∈N

〈〈
1 ⊗ | �|, ν j

〉〉
< ∞

or, equivalently,

(i) the functions x �→ 〈| �|, (ν j )x 〉 are uniformly bounded in L1(Ω) and
(ii) the sequence (λν j (Ω)) j is uniformly bounded.

Then, there exists a subsequence (not explicitly labeled) such that ν j
∗

⇀ ν for a
Young measure ν ∈ YM (Ω; R

N ).

Proof. Let Φ ∈ C(Ω × BN ) with ‖Φ‖∞ ≤ 1. Then,

∣∣〈Φ, S−∗ν j
〉∣∣ = ∣∣〈〈S−1Φ, ν j

〉〉∣∣
≤
∫

Ω

∫
RN

(1 + |A|)
∣∣∣∣Φ
(
x,

A

1 + |A|
)∣∣∣∣ d(ν j )x (A) dx

+
∫

Ω

∫
SN−1

|Φ(x, A)| d(ν j )
∞
x (A) dλν(x)

≤ sup
j∈N

(∫
Ω

〈
1 + | �|, (ν j )x

〉
dx + λν j (Ω)

)

< ∞.
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Thus, the sequence (S−∗ν j ) is uniformly norm-bounded inM+(Ω × BN ) and hence

there exists a weakly* converging subsequence, say S−∗ν j
∗

⇀ μ in M+(Ω × BN ).
By Corollary 12.2, the limit μ is again the transformation under S−∗ of a Young
measure. So, μ = S−∗ν for a Young measure ν ∈ YM (Ω; R

N ). ��

12.2 Generation and Examples

Having built the foundation of the theory of generalized Young measures, we now
proceed to the question of generation of the said Young measures by sequences
of L1-bounded sequences of maps or, more generally, sequences of (vector) Radon
measures that have uniformly bounded mass.

Let γ ∈ M (Ω; R
N ) be a (finite) Radon measure with Lebesgue–Radon–

Nikodým decomposition

γ = gL d Ω + γ s, where g ∈ L1(Ω; R
N ), γ s singular toL d .

To γ we associate an elementary Young measure δ[γ ] ∈ YM (Ω; R
N ) via

δ[γ ]x := δg(x) L d -a.e., λδ[γ ] := |γ s |, δ[γ ]∞x := δP(x) |γ s |-a.e.,

where

P := dγ s

d|γ s | ∈ L1(Ω, |γ s |; S
N−1).

Wewill seemomentarilywhy this definition is chosen as such.We say that a sequence
(γ j ) ⊂ M (Ω; R

N ) with sup j |γ j |(Ω) < ∞ generates the Young measure ν =
(νx , λν, ν

∞
x ) ∈ YM (Ω; R

N ), in symbols “γ j
Y→ ν”, if δ[γ j ] ∗

⇀ ν in YM (Ω; R
N ),

that is, 〈〈
f, δ[γ j ]

〉〉 → 〈〈
f, ν
〉〉

for all f ∈ E(Ω; R
N ).

Unwinding the definitions further, γ j
Y→ ν means that for all f ∈ E(Ω; R

N ),

f

(
x,

dγ j

dL d
(x)

)
L d

x Ω + f ∞
(
x,

dγ s
j

d|γ s
j |

(x)

)
|γ s

j |(dx)
∗

⇀
〈
f (x, �), νx

〉
L d

x Ω + 〈
f ∞(x, �), ν∞

x

〉
λν(dx) inM (Ω).

If v j L d Ω
Y→ ν for a sequenceof uniformlyL1-boundedmaps (v j ) ⊂ L1(Ω; R

N ),

we simply write v j
Y→ ν.

The following result justifies the definition of elementary Young measures.
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Fig. 12.2 A concentrating sequence

Proposition 12.4. Let (γ j ) ⊂ M (Ω; R
N ). Then, γ j → γ area-strictly if and only

if γ j
Y→ δ[γ ].

Proof. If γ j → γ area-strictly inM (Ω; R
N ), then γ j

Y→ δ[γ ] follows by the same
strategy as in the proof of Theorem 11.2, which is based on Reshetnyak’s Continuity

Theorem 10.3. For the converse test the weak* convergence δ[γ j ] ∗
⇀ δ[γ ] with the

integrand f (x, A) := √
1 + |A|2, which lies in E(Ω; R

N ). ��
The following is customarily called the Fundamental Theorem of the generalized

Young measure theory.

Theorem 12.5. Let (γ j ) ⊂ M (Ω; R
N ) be a sequence of Radon measures such that

sup
j∈N

|γ j |(Ω) < ∞.

Then, there exists a subsequence (not explicitly labeled) with γ j
Y→ ν for some

ν ∈ YM (Ω; R
N ).

Proof. Set ν j := δ[γ j ], the elementary Young measure associated with γ j and apply
the compactness result from Corollary 12.3. The assumptions of that corollary are
satisfied since the quantities

〈〈
1 ⊗ | �|, δ[γ j ]

〉〉 = |γ j |(Ω) are uniformly bounded. ��
We have already seen many examples of oscillation effects, most directly in the

examples of classical Young measures from Sections 4.2, 4.4. All these examples
carry over to the present theory of generalized Youngmeasures (with zero concentra-
tion measure). The following examples will illustrate model cases of concentration
effects.

Example 12.6. Take Ω := (0, 1) and set u j := j1(0,1/j), see Figure 12.2. Then,

u j
Y→ ν ∈ YM ((0, 1)) with

νx = δ0 a.e., λν = δ0, ν∞
0 = δ+1.
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Fig. 12.3 Another concentrating sequence

Example 12.7. OnΩ := (−1, 1)defineu j := j (1(0,1/j)−1(−1/j,0)), see Figure 12.3.

Then, u j
Y→ ν ∈ YM ((0, 1)) with

νx = δ0 a.e., λν = 2δ0, ν∞
0 = 1

2
δ+1 + 1

2
δ−1.

Example 12.8 (Diffuse concentration). On Ω := (0, 1) define the uniformly L1-
bounded sequence

u j :=
j−1∑
k=0

j1( k
j ,

k
j + 1

j2

), j ∈ N,

see Figure 12.4. The u j converge to zero almost everywhere and in the biting sense,
i.e., there exists an increasing sequence of subsets Ωk ⊂ Ω with |Ωk | ↑ |Ω| as
k → ∞ and u j ⇀ 0 in L1(Ωk) for all k ∈ N (see Section 6.4 in [222] for more

on this biting convergence). On the other hand, u j
∗

⇀ 1 in the sense of measures.
Consequently, the (u j ) cannot be equiintegrable; otherwise by Vitali’s Convergence
Theorem A.11 the limits would agree. We can also verify this directly:

lim
h→∞ sup

j∈N

∫
{|u j |≥h}

|u j | dx = 1.

Furthermore, (u j ) has no L1-weakly converging subsequence: Since L1-weak con-
vergence implies weak* convergence in the sense of measures, the L1-weak limit
would have to be 1, contradicting the biting limit 0. It is the task of Problem 12.3 to

show that u j
Y→ ν ∈ YM ((0, 1)) with

νx = δ0 a.e., λν = L 1 (0, 1), ν∞
x = δ+1.

Example 12.9. The last example can be modified (now with R
2 as target space) to

v j (x) :=
j−1∑
k=0

j1( k
j ,

k
j + 1

j2

)(x)
[
cos(2π j2x)
sin(2π j2x)

]
.
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Fig. 12.4 A diffuse concentration

One can compute that v j
Y→ ν for ν ∈ YM ((0, 1); R

2) given as

νx = δ0 L d -a.e., λν = L 1 (0, 1), ν∞
x = 1

2π
H 1

S
1.

Indeed, the v j concentrate in all directions uniformly, hence ν∞
x must be the uniform

probability measure on S
1.

We finish this section with a useful density result.

Lemma 12.10. There exists a countable set { fk}k∈N = {ϕk ⊗ hk}k∈N ⊂ E(Ω; R
N )

with ϕk ∈ C(Ω) and hk ∈ C(RN ) such that for ν j , ν ∈ YM (Ω; R
N ) the condition

〈〈
fk, ν j

〉〉 → 〈〈
fk, ν

〉〉
for all k ∈ N

implies ν j
∗

⇀ ν. Moreover, all the hk can be chosen to be Lipschitz continuous.

Proof. First, assuming that f := 1⊗| �| is in the collection, we may always suppose
that the sequence (ν j ) converges weakly*. It remains to identify the limit.

Take countable sets A ⊂ C(Ω), B ⊂ C1
c(R

N ) that are dense in C(Ω) and
C0(R

N ), respectively, in the ‖ �‖∞-norm. Furthermore, let C ⊂ C1(SN−1) be count-
able and dense in C(SN−1)with 1 ∈ C . Let (Gh∞)(A) := |A|h∞(A/|A|) (A ∈ R

N )
for h∞ ∈ C and define

{
ϕk ⊗ hk

}
k := (A ⊗ B) ∪ (A ⊗ G(C )) ⊂ E(Ω; R

N ),

where the tensor product is understood to act elementwise. By standard results of
measure theory, the values of

〈〈
ϕ ⊗ h, ν

〉〉 =
∫

Ω

ϕ(x)
〈
h, νx

〉
dx for all ϕ ∈ A , h ∈ B
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determine the L1(Ω)-function x �→ 〈h, νx 〉 and then in turn the measures νx L d -
almost everywhere. Testing with A ⊗ (G1) gives for all ϕ ∈ C(Ω) that

〈〈
ϕ ⊗ G1, ν

〉〉 =
∫

Ω

ϕ(x)
〈
G1, νx

〉
dx +

∫
Ω

ϕ(x)
〈
1, ν∞

x

〉
dλν(x).

Since the first integral is already identified and the second integral reduces to∫
Ω

ϕ dλν , the measure λν is also uniquely determined. The identification of ν∞
x (up to

a
λν-negligible set) is similar to that of νx .

By construction, every hk ∈ B is Lipschitz continuous. If hk = G(h∞) with
h∞ ∈ C , then there is a constant C > 0 with

∣∣∣∣h∞
(

A

|A|
)

− h∞
(

B

|B|
)∣∣∣∣ ≤ C

∣∣∣∣ A

|A| − B

|B|
∣∣∣∣ for all A, B ∈ R

N \ {0}.

We may estimate

∣∣hk(A) − hk(B)
∣∣ ≤

∣∣∣∣h∞
(

A

|A|
)

− h∞
(

B

|B|
)∣∣∣∣|B| +

∣∣∣∣h∞
(

A

|A|
)∣∣∣∣|A − B|

≤ C

∣∣∣∣ A

|A| |B| − B

∣∣∣∣+
(
max
SN−1

|h∞|
)
|A − B|

≤
(
2C + max

SN−1
|h∞|

)
|A − B|,

hence those hk are also Lipschitz continuous. ��

12.3 Extended Representation

We now extend the representation of limits via Young measures to a larger class
of integrands than E(Ω; R

N ), called the representation integrands and defined as
follows:

R(Ω; R
N ) :=

{
f : Ω × R

N → R : f Carathéodory with linear growth

and f ∞ ∈ C(Ω × R
N ) exists as in (11.8)

}
.

Note that we do not identify integrands that are equal almost everywhere.

Proposition 12.11. Let ν j
∗

⇀ ν in YM (Ω; R
N ) and assume either

(i) f ∈ R(Ω; R
N ) or

(ii) f (x, A) = 1B(x)g(x, A), where g ∈ E(Ω; R
N ) and B ⊂ Ω is a Borel set with

(L d + λν)(∂B) = 0.

Then,
〈〈
f, ν j

〉〉 → 〈〈
f, ν
〉〉
.
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Before we come to the proof, we note that for f ∈ R(Ω; R
N ) the expression

〈〈
f, ν
〉〉 =

∫
Ω

∫
RN

f (x, A) dνx (A) dx +
∫

Ω

∫
SN−1

f ∞(x, A) dν∞
x (A) dλν(x)

is well-defined by theweak*measurability of (νx )x with respect toL d and theweak*
measurability of (ν∞

x )x with respect to λν . In case (ii), where f ∞ is not continuous,
the discontinuity set is Borel-measurable and (L d + λν)-negligible, so the above
expression is still well-defined.

Proof. Wewill show the representation for a Carathéodory integrand f : Ω×R
N →

R that possesses a jointly continuous recession function f ∞ : (Ω \ Z) × R
N → R

in the sense of (11.8), where Z ⊂ Ω is a Borel set with (L d + λν)(Z) = 0. This
implies both (i) and (ii).

Step 1. First, we assume that f (x, �) has uniformly bounded support, that is,
supp f (x, �) � B(0, R) for all x ∈ Ω and a fixed R > 0. Since f ∞ ≡ 0, we need
to show

∫
Ω

〈
f (x, �), (ν j )x

〉
dx →

∫
Ω

〈
f (x, �), νx

〉
dx .

Let {ψk}k ⊂ C0(B(0, R/(1 + R))) be a countable and dense family and fix ε > 0.
Set

Ek := {
x ∈ Ω : ‖S f (x, �) − ψk‖∞ ≤ ε

}
, k ∈ N,

which is a measurable set since, by the continuity of f (x, �) for fixed x ∈ Ω ,

Ek =
⋂
A∈QN

{
x ∈ Ω : |S f (x, A) − ψk(A)| ≤ ε

}
.

We have that
⋃

k∈N Ek = Ω because for any fixed x ∈ Ω it holds that S f (x, �) ∈
C0(B(0, R/(1+ R))) and thus x ∈ Ek for at least one k ∈ N. Consequently, the sets
Fk := Ek \⋃k−1

i=1 Fi form a measurable disjoint partition of Ω . Define

gε(x, A) :=
∞∑
k=1

1Fk (x)S
−1ψk(A), (x, A) ∈ Ω × R

N .

Then, ‖S f − Sgε‖∞ ≤ ε, whereby in particular

‖gε‖∞ ≤ (1 + R)(‖S f ‖∞ + ε).
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For each fixed k ∈ N we infer from ν j
∗

⇀ ν that

∫
ϕ(x)

〈
S−1ψk, (ν j )x

〉
dx →

∫
ϕ(x)

〈
S−1ψk, νx

〉
dx, ϕ ∈ C∞(Ω).

Thus, for all k ∈ N,

∫
Fk

〈
S−1ψk, (ν j )x

〉
dx →

∫
Fk

〈
S−1ψk, νx

〉
dx (12.8)

because we can L1-approximate 1Fk by smooth functions. Since

∣∣∣∣
∫
Fk

〈
S−1ψk, (ν j )x

〉
dx

∣∣∣∣ ≤ (1 + R)(‖S f ‖∞ + ε)|Fk |,

we can then use the dominated convergence theorem for sums and (12.8) to compute

lim
j→∞

∫
Ω

〈
gε(x, �), (ν j )x

〉
dx = lim

j→∞

∞∑
k=1

∫
Fk

〈
S−1ψk, (ν j )x

〉
dx

=
∞∑
k=1

lim
j→∞

∫
Fk

〈
S−1ψk, (ν j )x

〉
dx

=
∞∑
k=1

∫
Fk

〈
S−1ψk, νx

〉
dx

=
∫

Ω

〈
gε(x, �), νx

〉
dx .

Moreover, ‖S f − Sgε‖∞ ≤ ε, and so,

∣∣∣∣
∫

Ω

〈
gε(x, �), (ν j )x

〉
dx −

∫
Ω

〈
f (x, �), (ν j )x

〉
dx

∣∣∣∣ ≤ ε

∫
Ω

〈
1 + | �|, (ν j )x

〉
dx ≤ εC

for some j-independent constant C > 0; the same holds with ν in place of ν j .
Combining these arguments,

∣∣∣∣ limj→∞
〈〈
f, ν j

〉〉− 〈〈
f, ν
〉〉∣∣∣∣ ≤

∣∣∣∣ limj→∞
〈〈
gε, ν j

〉〉− 〈〈
gε, ν

〉〉∣∣∣∣+ 2εC = 2εC.

As ε > 0was arbitrary,wehave proved the assertion in the casewhen f has uniformly
bounded support.

Step 2. Next, we extend the representation to Carathéodory integrands f : Ω ×
R

N → R with f ∞ ≡ 0. Fix ε > 0 and let r ∈ (0, 1) be so large that |S f (x, A)| ≤ ε

for all x ∈ Ω and A ∈ B
N with |A| ≥ r . We can see that such an r > 0 must
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exist since otherwise we could find sequences (xn) ⊂ Ω and (An) ⊂ B
N with

|An| ≥ 1 − n−1 and S f (xn, An) ≥ ε. Without loss of generality we may assume
xn → x ∈ Ω , An → A ∈ S

N−1 and so f ∞ cannot be zero everywhere.
Select a cut-off function ρ ∈ C∞

c (RN ; [0, 1]) with ρ ≡ 1 on B(0, r/(1 − r)).
Then, writing fρ for the function (x, A) �→ f (x, A)ρ(A), where x ∈ Ω , A ∈ R

N ,
we have

∣∣〈〈 fρ − f, ν j
〉〉∣∣ ≤ ε

[ ∫
Ω

〈
1 + | �|, (ν j )x

〉
dx + λν j (Ω)

]
≤ εC

for some constant C > 0 and all j ∈ N; the same holds with ν in place of ν j . By the
previous step, 〈〈

fρ, ν j
〉〉 → 〈〈

fρ, ν
〉〉

and so, combining with the previous estimate, the conclusion follows in the case
when f ∞ ≡ 0.

Step 3. Finally, when f ∞ is not identically zero, we write

f = g + f ∞ with g∞ ≡ 0.

The last step applies to g and we get

〈〈
g, ν j

〉〉 → 〈〈
g, ν

〉〉
. (12.9)

To investigate the convergence for the positively 1-homogeneous functions f ∞,

we define the measures μ j := S−∗ν j ∈ M+(Ω × BN ). Then, μ j
∗

⇀ μ := S−∗ν
and

〈
Φ,μ j

〉 =
∫

Ω

〈
S−1Φ(x, �), (ν j )x

〉
dx +

∫
Ω

〈
Φ(x, �), (ν j )

∞
x

〉
dλν j (x)

for all Φ ∈ C(Ω × BN ). Testing this with all Φ such that ‖Φ‖∞ ≤ 1, we get

|μ j | ≤ 〈1 + | �|, (ν j )x 〉L d Ω + λν j

∗
⇀ 〈1 + | �|, νx 〉L d Ω + λν.

Denote byΛ theweak* limit of the |μ j | inM+(Ω). Then, (L d+λν)(Z) = 0 implies
Λ(Z × BN ) = 0. By standard results in measure theory (see Lemma A.22), for any
bounded Borel function Ψ : Ω × BN → R with a Λ-negligible set of discontinuity
points we have 〈

Ψ,μ j
〉 → 〈

Ψ,μ
〉
.

For Ψ := S f ∞, which by assumption is continuous outside Z × BN , this gives

〈〈
f ∞, ν j

〉〉 = 〈
S f ∞, μ j

〉 → 〈
S f ∞, μ

〉 = 〈〈
f ∞, ν

〉〉
.
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Combining this with (12.9), we arrive at

〈〈
f, ν j

〉〉 = 〈〈
g, ν j

〉〉+ 〈〈
f ∞, ν j

〉〉 → 〈〈
g, ν

〉〉+ 〈〈
f ∞, ν

〉〉 = 〈〈
f, ν
〉〉
.

This shows the assertion at the beginning of the proof and thus (i) and (ii). ��
Example 12.12. On Ω := (−1, 1) let f (x, A) := 1(0,1)(x)|A|, for which
f ∞(x, A) = 1(0,1)(x)|A|. Then, for ν j ∈ YM (Ω; R

N ) given as

(ν j )x := δ0 a.e., λν j := δ1/j , (ν j )
∞
1/j := δ+1

we have ν j
∗

⇀ ν for

νx = δ0 a.e., λν = δ0, ν∞
0 = δ+1.

On the other hand,

lim
j→∞

〈〈
f, ν j

〉〉 = lim
j→∞

∫
(0,1)

1(0,1)(x) dδ1/j (x) = 1 �= 0 = 〈〈
f, ν
〉〉
.

Here, the discontinuity set {0, 1} of f is not negligible with respect to L d + δ0.
This example therefore shows that in Proposition 12.11 (ii) the assumption (L d +
λν)(∂B) = 0 is necessary.

12.4 Strong Precompactness of Sequences

By Vitali’s Convergence Theorem A.11, the absence of oscillations and concentra-
tions implies strong precompactness of an L1-bounded sequence. In this section we
study inmore detail how compactness properties are reflected in the generated Young
measure.

We start with oscillations:

Lemma 12.13. Let (Vj ) ⊂ L1(Ω; R
N ) with Vj

Y→ ν ∈ YM (Ω; R
N ). Then, the

sequence (Vj ) converges in measure to V ∈ L1(Ω; R
N ) if and only if νx = δV (x)

almost everywhere.

Proof. The proof is very similar to that of Lemma 4.12 once we observe that the
integrand

f (x, A) := |A − V (x)|
1 + |A − V (x)| , (x, A) ∈ Ω × R

N ,

from that proof lies in R(Ω; R
N ) and f ∞ ≡ 0. ��

Next, we show how the concentration parts λν, (ν
∞
x )x of a Young measure ν ∈

YM (Ω; R
N ) reflect the equiintegrability properties of the generating sequence.
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Lemma 12.14. Let (Vj ) ⊂ L1(Ω; R
N ) with Vj

Y→ ν ∈ YM (Ω; R
N ).

(i) The sequence (Vj ) is equiintegrable if and only if λν = 0.
(ii) For f ∈ E(Ω; R

N ) let Fj (x) := f (x, Vj (x)) (x ∈ Ω). Then, the sequence
(Fj ) is equiintegrable if and only if 〈| f ∞(x, �)|, ν∞

x 〉 = 0 for λν-almost every
x ∈ Ω .

Proof. We only need to show (ii), for (i) take f (x, A) := |A|. So, let f ∈ E(Ω; R
N )

and R > 0. Set

ηR := lim sup
j→∞

∫
{|Fj |≥R}

|Fj | dx, η∞ := lim
R↑∞ ηR .

The family (Fj ) is equiintegrable if and only if η∞ = 0 (see Appendix A.3). In the
following we will prove the formula

η∞ =
∫

Ω

〈| f ∞(x, �)|, ν∞
x

〉
dλν(x), (12.10)

which implies (ii).
Let, for t ≥ 0,

h(t) :=

⎧⎪⎨
⎪⎩
0 if 0 < t < 1

2 ,

2t − 1 if 1
2 ≤ t ≤ 1,

t if t > 1,

hR(t) := Rh

(
t

R

)
.

We have

h2R(t) ≤ t1[R,∞)(t) ≤ hR(t) for all t ≥ 0, (hR ◦ | f |)∞ = | f ∞|.

This allows us to estimate
∫

Ω

h2R(|Fj (x)|) dx ≤
∫

{|Fj |≥R}
|Fj (x)| dx ≤

∫
Ω

hR(|Fj (x)|) dx .

Letting j → ∞, we arrive at

∫
Ω

〈
h2R ◦ | f (x, �)|, νx

〉
dx +

∫
Ω

〈| f ∞(x, �)|, ν∞
x

〉
dλν(x)

≤ ηR ≤
∫

Ω

〈
hR ◦ | f (x, �)|, νx

〉
dx +

∫
Ω

〈| f ∞(x, �)|, ν∞
x

〉
dλν(x).

For R → ∞ the first integral in both the first and the last expression vanishes
and (12.10) follows. ��

We can now combine the last two lemmas via Vitali’s Convergence TheoremA.11
to decidewhether a L1-bounded sequences is strongly precompact from the generated
Young measure:
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Corollary 12.15. Let (Vj ) ⊂ L1(Ω; R
N ) with Vj

Y→ ν ∈ YM (Ω; R
N ). Then,

Vj → V in L1 if and only if νx = δV (x) almost everywhere and λν = 0.

12.5 BV-Young Measures

Like for classical Youngmeasures, themost important subclass of generalizedYoung
measures are those generated by gradients. Here, we consider gradients ofW1,1-maps
or, more generally, BV-derivatives. We thus specialize the framework defined in the
preceding sections to R

N = R
m×d and we denote by B

m×d and ∂B
m×d the unit ball

and the unit sphere in R
m×d , respectively.

For u ∈ BV(Ω; R
m) we associate with Du ∈ M (Ω; R

m×d) the elementary
Young measure δ[Du] ∈ YM (Ω; R

m×d) as before, that is,

δ[Du]x := δ∇u(x) L d -a.e., λδ[Du] := |Dsu|, δ[Du]∞x := δP(x) |Dsu|-a.e.,

where

P := dDsu

d|Dsu| ∈ L1(Ω, |Dsu|; ∂B
m×d).

For (u j ) ⊂ BV(Ω; R
m) the sequence (Du j ) generates the Young measure ν ∈

YM (Ω; R
m×d), in symbols “Du j

Y→ ν”, if

δ[Du j ] ∗
⇀ ν in YM (Ω; R

m×d).

We collect all these BV-Young measures ν in the set

BVY(Ω; R
m×d) ⊂ YM (Ω; R

m×d),

where we again identify equivalent Young measures as we did for YM (Ω; R
m×d).

The Fundamental Theorem 12.5 adapts to our BV-context as follows:

Theorem 12.16. Let (u j ) ⊂ BV(Ω; R
m) be a uniformly norm-bounded sequence.

Then, there exists a subsequence (not explicitly labeled) such that Du j
Y→ ν for

some ν ∈ BVY(Ω; R
m×d).

All the examples from Section 12.2 are in fact BV-Young measures since the
generating sequences are defined on a one-dimensional domain and thus are trivially
derivatives.

The restriction of the barycenter [ν] to Ω is a BV-derivative since for a sequence

u j
∗

⇀ u in BV(Ω; R
m) and the integrand f (x, A) := A, it follows from (12.3) that

Du j
∗

⇀ [ν] = [νx ]L d
x Ω + [ν∞

x ] λν(dx) inM (Ω; R
m×d).
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Fig. 12.5 The construction of the standard 1/3-Cantor function

On the other hand, Du j
∗

⇀ Du inM (Ω; R
m×d), and so

Du = [ν] Ω = [νx ]L d
x Ω + [ν∞

x ] (λν Ω)(dx).

Any u ∈ BV(Ω; R
m) with Du = [ν] Ω is called an underlying deformation of

ν.
If λs

ν Ω = g |Dsu| + λ∗
ν is the Lebesgue–Radon–Nikodým decomposition of

λs
ν Ω with respect to |Dsu|, then

dDsu

d|Dsu| (x) = [ν∞
x ] g(x) for |Dsu|-a.e. x ∈ Ω

and
[ν∞

x ] = 0 for λ∗
ν-a.e. x ∈ Ω.

Then, by Alberti’s Rank-One Theorem 10.7, the matrix [ν∞
x ] has rank one for |Dsu|-

almost every x ∈ Ω (note that g(x) �= 0 for |Dsu|-almost every x ∈ Ω). Thus,

rank [ν∞
x ] ≤ 1 for λs

ν-a.e. x ∈ Ω. (12.11)

Before we proceed with the abstract theory, we give another example of a BV-
Young measure.

Example 12.17 (Cantor functions). Fix δ ∈ (0, 1/2) and letC j be the j’th set in the
construction of the δ-Cantor set, i.e., C0 := (0, 1) and we obtain C j+1 from C j by
removing from each interval in C j the centered open interval of length δ j (1 − 2δ).
The usual Cantor set is obtained for δ = 1/3. Then, the δ-Cantor set is

C :=
⋂
j∈N

C j .

The maps (see Figure 12.5)

u j (x) := 1

(2δ) j

∫ x

0
1C j dy
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converge area-strictly in BV(0, 1) to the δ-Cantor function χδ ∈ C((0, 1)), where

χδ(x) = α−1H γ (C ∩ [0, x]), Dχδ = α−1H γ C,

for

γ = ln 2

ln(1/δ)
, α = H γ (C) = 2−γ πγ/2

Γ (1 + γ /2)
,

where Γ is Euler’s Γ -function, see p. 60 ff. in [183] for the details. By Proposi-
tion 12.4 the Young measure ν ∈ BVY((0, 1)) generated by (Du j ) is

νx = δ0 L d -a.e., λν = α−1 H γ C, ν∞
x = δ+1 H γ − a.e.

The following result on good generating sequences is often useful.

Proposition 12.18. Let ν ∈ BVY(Ω; R
m×d).

(i) There exists a sequence (u j ) ⊂ (W1,1 ∩ C∞)(Ω; R
m) with ∇u j

Y→ ν.
(ii) If λν(∂Ω) = 0, then the u j from (i) can be chosen to satisfy u j |∂Ω = u|∂Ω for

any underlying deformation u ∈ BV(Ω; R
m) of ν.

See Problem 12.5 for the necessity of the assumption λν(∂Ω) = 0 in (ii).

Proof. Ad (i). Let (v j ) ⊂ BV(Ω; R
m) be a generating sequence for ν, that is,

Dvj
Y→ ν. We also take a countable collection { fk} ⊂ E(Ω; R

m×d) that deter-
mines the Youngmeasure convergence as in Lemma 12.10. Then, from the area-strict
density of smooth functions in BV(Ω; R

m), see Lemma 11.1, in conjunction with
Proposition 12.4 we construct for each j ∈ N a map u j ∈ (W1,1 ∩C∞)(Ω; R

m)with
∣∣∣∣
∫

Ω

fk(x,∇v j (x)) dx +
∫

Ω

f ∞
k

(
x,

dDsv j
d|Dsv j | (x)

)
d|Dsv j |(x)

−
∫

Ω

fk(x,∇u j (x)) dx

∣∣∣∣ ≤ 1

j

whenever k ≤ j . Then,

∫
Ω

fk(x,∇u j (x)) dx → 〈〈
fk, ν

〉〉
as j → ∞ for all k ∈ N,

and so, Lemma 12.10 implies ∇u j
Y→ ν.

Ad (ii). From (i) we know that there exist a sequence (v j ) ⊂ (W1,1∩C∞)(Ω; R
m)

with Dvj
Y→ ν. We may add constants to the v j and take another subsequence such

that in addition v j → u in L1. Then choose a sequence (ρn) ⊂ C∞
c (Ω; [0, 1]) of

cut-off functions with ρn ↑ 1Ω pointwise as n → ∞ and such that for

Kn := {
x ∈ Ω : ρn(x) = 1

}
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it holds that
(L d + λν)(∂Kn) = 0.

Now employ Lemma 11.1 to get a sequence (wj ) ⊂ (W1,1 ∩ C∞)(Ω; R
m) such

that wj |∂Ω = u|∂Ω and wj → u area-strictly. Set

u j,n := ρnv j + (1 − ρn)wj ∈ W1,1(Ω; R
m).

Then, u j,n|∂Ω = u|∂Ω and

∇u j,n = ρn∇v j + (1 − ρn)∇wj + (v j − wj ) ⊗ ∇ρn

and
lim
n→∞ lim

j→∞ ‖u j,n − u‖L1(Ω;Rm) = 0.

Thus, for f ∈ E(Ω; R
m×d) with linear-growth constant M > 0 we can estimate

∣∣〈〈 f, δ[Du j,n]
〉〉− 〈〈

f, δ[Dvj ]
〉〉∣∣

≤
∫

Ω\Kn

| f (∇u j,n)| + | f (∇v j )| dx

≤ M
∫

Ω\Kn

2 + 2|∇v j | + |∇wj | + |v j − wj ||∇ρn| dx .

Hence, since (L d + λν)(∂Kn) = 0,

lim sup
n→∞

lim sup
j→∞

∣∣〈〈 f, δ[Du j,n]
〉〉− 〈〈

f, δ[Dvj ]
〉〉∣∣

≤ lim sup
n→∞

2M

(∫
Ω\Kn

〈
1 + | �|, νx

〉
dx + λν(Ω \ Kn) + |Du|(Ω \ Kn)

)

= 2Mλν(∂Ω)

= 0.

We can then select a diagonal sequence u j := u j,n( j) with the desired properties. ��
Like for classical Young measures, the question arises whether one can charac-

terize the subclass of BV-Young measures BVY(Ω; R
m×d) in YM (Ω; R

m×d). The
analogue of the Kinderlehrer–Pedregal Theorem 7.15 is the following:
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Theorem 12.19 (Kristensen–Rindler 2010 [168]). Let ν ∈ YM (Ω; R
m×d) with

λν(∂Ω) = 0. (12.12)

Then, ν ∈ BVY(Ω; R
m×d) if and only if there exists a map u ∈ BV(Ω; R

m) with
[ν] = Du and for all quasiconvex h : R

m×d → R with linear growth the regular
Jensen-type inequality

h

(
[νx ] + [ν∞

x ] dλν

dL d
(x)

)
≤ 〈

h, νx
〉+ 〈

h#, ν∞
x

〉 dλν

dL d
(x)

holds at almost every x ∈ Ω .

Remark 12.20. It turns out that in the situation of the preceding theorem for all
quasiconvex h : R

m×d → Rwith linear growth the singular Jensen-type inequality

h#([ν∞
x ]) ≤ 〈

h#, ν∞
x

〉

also holds at λs
ν-almost every x ∈ Ω , see Proposition 12.27.

The proof of Theorem 12.19 is quite long and involved, so we omit it here. The
interested reader is referred to [229] for a direct argument and also to [162] for a
refinement. An extension of the above theorem without the assumption (12.12) is
in [23].

12.6 Localization

In Proposition 5.14 we saw how we can “blow-up” or “localize” a classical gradient
Young measure ν = (νx )x ∈ GYp(Ω; R

m×d), p ∈ [1,∞). As a result, for almost
every x0 ∈ Ω the probability measure νx0 is a homogeneous Young measure in its
own right. The discussion in this section parallels these developments for generalized
Young measures. As the barycenter is now a measure instead of a function, however,
we need to employ the theory of tangent measures from Section 10.2 and we will
also distinguish between regular and singular blow-ups.

Before we come to the localization principles, we need to introduce local versions
of generalized Young measures. DefineYM

loc (R
d; R

N ) likeYM (Rd; R
N ) but with λν

only in M+
loc(R

d) and x �→ 〈| �|, νx 〉 ∈ L1
loc(Ω). Now, YM

loc (R
d; R

N ) can be seen as
part of the dual space to Ec(R

d; R
N ), which is defined like E(Rd; R

N ), but requiring
in addition that for f ∈ Ec(R

d; R
N ) ⊂ C(Rd × R

N ) there exists a compact set
K ⊂ R

d with supp f ( �, A) ⊂ K for all A ∈ R
N . Likewise, the (local) weak*

convergence ν j
∗

⇀ ν inYM
loc (R

d; R
N ) is defined with respect toEc(R

d; R
N ), that is,

ν j
∗

⇀ ν in YM
loc if

〈〈
f, ν j

〉〉 → 〈〈
f, ν
〉〉
for all f ∈ Ec(R

d; R
N ). All of the results from

the preceding sections also holdmutatis mutandis inYM
loc (R

d; R
N ). In particular, we

have the following compactness result.
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Corollary 12.21. Let (ν j ) ⊂ YM
loc (R

d; R
N ) satisfy

sup
j∈N

〈〈
ϕ ⊗ | �|, ν j

〉〉
< ∞ for all ϕ ∈ Cc(R

d).

Then, there exists a subsequence (not explicitly labeled) such that ν j
∗

⇀ ν for a
Young measure ν ∈ YM

loc (R
d; R

N ).

Finally, define BVYloc(R
d; R

m×d) as the space of all those local (generalized)
Young measures that are generated by derivatives of sequences in BVloc(R

d; R
m).

We are now in a position to state and prove the first localization principle.

Proposition 12.22. Let ν ∈ BVY(Ω; R
m×d). Then, for L d -almost every x0 ∈ Ω

there exists a regular tangent Young measure σ ∈ BVYloc(R
d; R

m×d), that is,

[σ ] ∈ Tan([ν], x0), σy = νx0 L d -a.e., (12.13)

λσ = dλν

dL d
(x0)L

d ∈ Tan(λν, x0), σ∞
y = ν∞

x0 λσ -a.e. (12.14)

Proof. Step 1. Let the family {ϕk ⊗ hk}k∈N ⊂ Ec(R
d; R

m×d) determine the (local)
weak* Young measure convergence; the construction of this family is analogous to
the proof of Lemma 12.10.

Choose x0 ∈ Ω with the following properties:

(a) There exists a sequence rn ↓ 0 such that with P0 := d[ν]
dL d (x0) it holds that

γn := r−d
n T (x0,rn)

# [ν] ∗
⇀ P0 L

d ∈ Tan([ν], x0),

where T (x0,rn)
# [ν] denotes the push-forward of themeasure [ν] under the rescaling

map T (x0,rn)(x) := (x − x0)/rn as in Section 10.2;
(b) lim

r↓0 r
−dλs

ν(B(x0, r)) = 0, where λs
ν is the Lebesgue-singular part of λν , and

dλν

dL d
(x0)L

d ∈ Tan(λν, x0);

(c) the point x0 is an L d -Lebesgue point for the functions

x �→ 〈
hk, νx

〉+ 〈
h∞
k , ν∞

x

〉 dλν

dL d
(x), k ∈ N.

Indeed, at L d -almost every x0 ∈ Ω condition (a) follows from Theorem A.20
and Lemma 10.4; condition (b) is a consequence of the Besicovitch Differentia-
tion Theorem A.23 and Proposition 10.5; finally, condition (c) is again implied by
Theorem A.20.
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Step2.Byvirtue ofProposition12.18 take a sequence (u j ) ⊂ (W1,1∩C∞)(Ω; R
m)

with ∇u j
Y→ ν and let ũ j ∈ BV(Rd; R

m) be the extension of u j by zero to all of R
d .

Define

v(n)
j (y) := ũ j (x0 + rn y)

rn
, y ∈ R

d .

We have the following transformation rules for T (x0,rn)
# μ, where μ ∈ M (Ω; R

N ):

dT (x0,rn)
# μ

dL d
= rdn

dμ

dL d
(x0 + rn �),

dT (x0,rn)
# μ

d|T (x0,rn)
# μ| = dμ

d|μ| (x0 + rn �).

We may then compute

Dv(n)
j = r−d

n T (x0,rn)
# Dũ j

= ∇u j (x0 + rn �)L d + r−1
n

(
u j (x0 + rn �)|∂Ωn ⊗ nΩn

)
H d−1 ∂Ωn.

Here, Ωn := r−1
n (Ω − x0), nΩn : ∂Ωn → S

d−1 is the unit inner normal to ∂Ωn , and
u j (x0 + rn �)|∂Ωn is the (inner) trace of y �→ u j (x0 + rn y) on ∂Ωn . Then, also using
the BV-Poincaré inequality (10.7) and the boundedness of the BV-trace operator,
see Section 10.3,

‖v(n)
j ‖BV(Rd ;Rm ) ≤ C(n)|Dv(n)

j |(Rd)

= C(n)|Dũ j |(Rd)

≤ C(n)‖u j‖BV(Ω;Rm ), (12.15)

where we have absorbed all n-dependent constants (including r−d
n ) into C(n) > 0. If

weholdn fixed, this expression is j-uniformly bounded.Consequently,wemay select

ann-dependent subsequenceof the j’s (not explicitly labeled) such that Dv(n)
j

Y→ σ (n)

for some σ (n) ∈ BVY(Rd; R
m×d).

Step 3. Fix ϕk ⊗ hk ∈ Ec(R
d; R

m×d) from the Young measure-determining col-
lection above and choose n ∈ N so large that suppϕk � Ωn . Then, the boundary
measure in Dv(n)

j (the part supported on ∂Ωn) can be neglected in the following
calculation:

〈〈
ϕk ⊗ hk, σ

(n)
〉〉 = lim

j→∞

∫
ϕk(y)hk

(∇v(n)
j (y)

)
dy

= lim
j→∞

∫
ϕk(y)hk

(∇u j (x0 + rn y)
)
dy

= lim
j→∞

1

rdn

∫
ϕk

( x − x0
rn

)
hk(∇u j (x)) dx

= 1

rdn

〈〈
ϕk

(
� − x0
rn

)
⊗ hk, ν

〉〉
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= 1

rdn

∫
ϕk

( x − x0
rn

)[〈
hk, νx

〉+ 〈
h∞
k , ν∞

x

〉 dλν

dL d
(x)

]
dx

+ 1

rdn

∫
ϕk

( x − x0
rn

)〈
h∞
k , ν∞

x

〉
dλs

ν(x).

We call the last two integrals the regular and the singular parts respectively.
For the regular part we have

1

rdn

∫
ϕk

( x − x0
rn

)[〈
hk, νx

〉+ 〈
h∞
k , ν∞

x

〉 dλν

dL d
(x)

]
dx

=
∫

ϕk(y)

[〈
hk, νx0+rn y

〉+ 〈
h∞, ν∞

x0+rn y

〉 dλν

dL d
(x0 + rn y)

]
dy

→
∫

ϕk(y)

[〈
hk, νx0

〉+ 〈
h∞
k , ν∞

x0

〉 dλν

dL d
(x0)

]
dy

as n → ∞ (rn ↓ 0) by the Lebesgue point property (c) above.
Turning to the singular part, let N ∈ N be so large that suppϕk ⊂ B(0, N ). By

assumption (b) on x0,

∣∣∣∣ 1rdn
∫

ϕk

( x − x0
rn

)〈
h∞
k , ν∞

x

〉
dλs

ν(x)

∣∣∣∣ ≤ M‖ϕk‖∞ · λs
ν(B(x0, Nrn))

rdn
→ 0

as n → ∞, where M := sup { |h∞(A)| : A ∈ ∂B
m×d }.

Step 4.Wemay assume that the integrands ϕ⊗| �| for a dense set of ϕ ∈ Cc(R
d) (in

the ‖ �‖∞-norm) are contained in the collection {ϕk⊗hk}k . Then, the above arguments
imply

sup
n∈N

∣∣〈〈ϕ ⊗ | �|, σ (n)
〉〉∣∣ < ∞ for all ϕ ∈ Cc(R

d).

Hence, the compactness result from Corollary 12.21 applies and we may select a
subsequence (not relabeled) with

σ (n) ∗
⇀ σ ∈ BVYloc(R

d; R
m×d).

Here we also used that BVYloc(R
d; R

m×d) is sequentially weakly* closed, see Prob-
lem 12.9. Since [σ (n)] = γn plus a jump part that moves out to infinity in the limit, we
furthermore get that [σ ] ∈ Tan([ν], x0). This implies the first assertion in (12.13).

It also follows from the preceding arguments that

〈〈
ϕk ⊗ h, σ

〉〉 =
∫

ϕk(y)

[〈
hk, νx0

〉+ 〈
h∞
k , ν∞

x0

〉 dλν

dL d
(x0)

]
dy

for all ϕk ⊗ hk from the family exhibited at the beginning of the proof. Since the
ϕk ⊗ hk are dense in Ec(R

d; R
m×d) (in the sense that they determine Young mea-

sures), we have σy = νx0 and σ∞
y = ν∞

x0 for L d -almost every y ∈ R
d , that is,
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the second assertion of (12.13) and the second assertion of (12.14) hold. Finally, the
first assertion of (12.14) follows since

λσ = dλν

dL d
(x0)L

d ∈ Tan(λν, x0)

by (b). ��
Next, we investigate localization at singular points (we remark that this result is

not actually needed anywhere in the sequel).

Proposition 12.23. Let ν ∈ BVY(Ω; R
m×d). Then, for λs

ν-almost every x0 ∈ Ω

there exists a singular tangent Young measure σ ∈ BVYloc(R
d; R

m×d), that is,

[σ ] ∈ Tan([ν], x0), σy = δ0 L d -a.e., (12.16)

λσ ∈ Tan(λs
ν, x0) \ {0}, σ∞

y = ν∞
x0 λσ -a.e. (12.17)

Proof. Step 1. Let {gk} ⊂ C(Rm×d) be a countable set of positively 1-homogeneous
functions whose restrictions to ∂B

m×d are dense in C(∂B
m×d). Let x0 ∈ Ω be such

that the following properties hold:

(a) There exist sequences rn ↓ 0, cn > 0 and λ0 ∈ Tan(λs
ν, x0) \ {0} such that

cnT
(x0,rn)
# λs

ν

∗
⇀ λ0; (12.18)

(b) it holds that

lim
r↓0

1

λs
ν(B(x0, r))

∫
B(x0,r)

1 + 〈| �|, νx
〉+ dλν

dL d
(x) dx = 0; (12.19)

(c) the point x0 is a λs
ν-Lebesgue point for the functions

x �→ [ν∞
x ] and x �→ 〈

gk, ν
∞
x

〉
, k ∈ N.

By Proposition 10.5 condition (a) holds at λs
ν-almost every x0 ∈ Ω , condition (b)

follows from the Besicovitch Differentiation Theorem A.23, and condition (c) is a
direct consequence of Theorem A.20. Further, by (10.3), the constants cn in (12.18)
can be chosen to be

cn = c
[
λs

ν(B(x0, Rrn))
]−1

for any (henceforth fixed) R > 0 and corresponding c > 0 with the property that
λ0(B(0, R)) > 0. We also choose R such that λs

ν(∂B(x0, Rrn)) = 0 for all n, which
is always possible by the finiteness of the measure λs

ν (see Problem 10.1). Then, we
get from (12.18) that there exist constants βN > 0, N = 1, 2, . . ., such that

lim sup
n→∞

cnλ
s
ν(B(x0, Nrn)) = lim sup

n→∞
c · λs

ν(B(x0, Nrn))

λs
ν(B(x0, Rrn))

≤ βN . (12.20)
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Thus, with (12.19), we compute

lim sup
n→∞

cn
〈〈
1B(x0,Nrn) ⊗ | �|, ν〉〉

= lim sup
n→∞

[
c

λs
ν(B(x0, Rrn))

∫
B(x0,Nrn)

〈| �|, νx
〉+ dλν

dL d
(x) dx

+ c · λs
ν(B(x0, Nrn))

λs
ν(B(x0, Rrn))

]

≤ 0 + βN .

Similarly,

lim sup
n→∞

(
cnT

(x0,rn)
# |[ν]|)(B(0, N )) ≤ βN for all N ∈ N.

After selecting a subsequence (not explicitly labeled) of the rn , we may thus suppose
that

cnT
(x0,rn)
# [ν] ∗

⇀ τ ∈ Tan([ν], x0). (12.21)

We note that it is possible that τ = 0 (clearly, τ �= 0 for [ν]-almost every x0 ∈
supp [ν], but not necessarily for λs

ν-almost every x0 ∈ Ω).

Step 2. Let (u j ) ⊂ (W1,1 ∩ C∞)(Ω; R
m) be such that ∇u j

Y→ ν, see Proposi-
tion 12.18. Denote by ũ j ∈ BV(Rd; R

m) the extension of u j by zero and define

v(n)
j (y) := rd−1

n cnũ j (x0 + rn y), y ∈ R
d .

We have

Dv(n)
j = cnT

(x0,rn)
# Dũ j

= rdn cn∇u j (x0 + rn �)L d + rd−1
n cn

(
u j (x0 + rn �)|∂Ωn ⊗ nΩn

)
H d−1 Ωn,

where Ωn := r−1
n (Ω − x0). Similarly to (12.15), we get

‖v(n)
j ‖BV(Rd ;Rm ) ≤ C(n)‖u j‖BV(Ω;Rm ).

Hence, holding n fixed, we may assume, up to taking an n-dependent subsequence

of the j’s, that Dv(n)
j

Y→ σ (n) for some σ (n) ∈ BVY(Rd; R
m×d) as j → ∞.

Step 3. Fix a positively 1-homogeneous g ∈ C(Rm×d) and ϕ ∈ Cc(R
d). For all n

so large that suppϕ � Ωn ,

〈〈
ϕ ⊗ g, σ (n)

〉〉 = lim
j→∞

∫
ϕ(y)g

(∇v(n)
j (y)

)
dy

= lim
j→∞ rdn cn

∫
ϕ(y)g

(∇u j (x0 + rn y)
)
dy
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= lim
j→∞ cn

∫
ϕ
( x − x0

rn

)
g(∇u j (x)) dy

= cn
〈〈

ϕ
(

� − x0
rn

)
⊗ g, ν

〉〉

= cn

∫
ϕ
( x − x0

rn

)[〈
g, νx

〉+ 〈
g, ν∞

x

〉 dλν

dL d
(x)

]
dx

+ cn

∫
ϕ
( x − x0

rn

)〈
g, ν∞

x

〉
dλs

ν(x). (12.22)

As before, we call the last two integrals the regular and singular parts, respectively.
The regular part is estimated as follows: Set M := sup { |g(A)| : A ∈ ∂B

m×d }
and pick N ∈ N large enough such that suppϕ ⊂ B(0, N ). Via (12.20) we assume
n to be so large that

cnλ
s
ν(B(x0, Nrn)) ≤ βN + 1.

Then,

∣∣∣∣cn
∫

ϕ
( x − x0

rn

)[〈
g, νx

〉+ 〈
g, ν∞

x

〉 dλν

dL d
(x)

]
dx

∣∣∣∣
≤ cnM‖ϕ‖∞

∫
B(x0,Nrn)

〈| �|, νx
〉+ dλν

dL d
(x) dx

≤ M‖ϕ‖∞(βN + 1)

λs
ν(B(x0, Nrn))

∫
B(x0,Nrn)

〈| �|, νx
〉+ dλν

dL d
(x) dx

→ 0 as n → ∞. (12.23)

Here, the convergence in the last line follows from (12.19). Plugging this back in-
to (12.22), we get

lim sup
n→∞

〈〈
ϕ ⊗ g, σ (n)

〉〉 = lim sup
n→∞

cn

∫
ϕ
( x − x0

rn

)〈
g, ν∞

x

〉
dλs

ν(x). (12.24)

For g = | �|, also using (12.18), this gives

lim sup
n→∞

〈〈
ϕ ⊗ | �|, σ (n)

〉〉 = lim sup
n→∞

cn

∫
ϕ
( x − x0

rn

)
dλs

ν(x)

= lim sup
n→∞

∫
ϕ d

(
cnT

(x0,rn)
# λs

ν

)

=
∫

ϕ dλ0.
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In particular,

lim sup
n→∞

〈〈
ϕ ⊗ | �|, σ (n)

〉〉 ≤ ‖ϕ‖∞ λ0(suppϕ).

Thus, the Young measure compactness criterion, see Corollary 12.21, implies that
there exists a subsequence of the rn’s (not explicitly labeled) with

σ (n) ∗
⇀ σ ∈ BVYloc(R

d; R
m×d),

where we also used that BVYloc(R
d; R

m×d) is sequentially weakly* closed, see
Problem 12.9. Furthermore, (12.24) implies

〈〈
ϕ ⊗ g, σ

〉〉 = lim
n→∞ cn

∫
ϕ
( x − x0

rn

)〈
g, ν∞

x

〉
dλs

ν(x). (12.25)

Step 4. We have
[σ (n)] = cnT

(x0,rn)
# [ν] + μn,

where μn ∈ Mloc(R
d; R

m×d) is a measure carried by the set ∂Ωn , whereby μn
∗

⇀ 0.

From (12.21), we thus infer that [σ (n)] ∗
⇀ τ as n → ∞ and

[σ ] = τ ∈ Tan([ν], x0),

which is the first statement in (12.16).
We now take functions ϕ ∈ Cc(R

d), χ ∈ Cc(R
m×d) and in a similar fashion

to (12.22) derive that

〈〈
ϕ ⊗ | �|χ( �), σ (n)

〉〉 = lim
j→∞ cn

∫
ϕ
( x − x0

rn

)
|∇u j (x)|χ

(
rdn cn∇u j (x)

)
dx

= cn
〈〈

ϕ
(

� − x0
rn

)
⊗ | �|χ(rdn cn �), ν

〉〉

→ 0 as n → ∞.

Here, the last convergence follows analogously to (12.23) since χ has compact sup-
port in R

m×d . Thus,

〈〈
ϕ ⊗ | �|χ( �), σ

〉〉 = 0

for all ϕ, χ as above. From this, varying ϕ and χ , we conclude that σy = δ0 for
L d -almost every y ∈ R

d , which is the second statement of (12.16).
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Moving on to the first assertion of (12.17), use g := | �| in (12.25) and the
previously shown fact σy = δ0 almost everywhere to derive

∫
ϕ dλσ = 〈〈

ϕ ⊗ | �|, σ 〉〉

= lim
n→∞ cn

∫
ϕ
( x − x0

rn

)
dλs

ν(x)

= lim
n→∞

∫
ϕ d

(
cnT

(x0,rn)
# λs

ν

)

=
∫

ϕ dλ0

for any ϕ ∈ Cc(R
d). Here, the last equality is a consequence of (12.18). Thus, indeed

λσ = λ0 ∈ Tan(λs
ν, x0).

Finally, to establish the second statement of (12.17), we first prove the following
assertion: Let U ⊂ R

d be open and bounded with (L d + λσ )(∂U ) = 0 and let
g ∈ C(Rm×d) be positively 1-homogeneous. Then,

〈〈
1U ⊗ g, σ

〉〉 = 〈
g, ν∞

x0

〉
λσ (U ). (12.26)

Once this is established we may vary U and g to see that σ∞
y = ν∞

x0 for λσ -almost
every y ∈ R

d , which is the second claim of (12.17).
To prove (12.26), we assume λσ (U ) > 0 since the case λσ (U ) = 0 is trivial.

Then use ϕ = 1U in (12.25) via Proposition 12.11 (ii) to get

∫
U

〈
g, σ∞

y

〉
dλσ (y) = 〈〈

1U ⊗ g, σ
〉〉 = lim

n→∞ cn

∫
x0+rnU

〈
g, ν∞

x

〉
dλs

ν(x).

Since λσ ∈ Tan(λs
ν, x0) and λσ (U ) > 0, (10.3) implies

cn = c̃(U )

λs
ν(x0 + rnU )

for some c̃(U ) > 0. Consequently,

lim
n→∞ cn

∫
x0+rnU

〈
g, ν∞

x

〉
dλs

ν(x) = c̃(U ) · lim
n→∞ −

∫
x0+rnU

〈
g, ν∞

x

〉
dλs

ν(x)

= c̃(U )
〈
g, ν∞

x0

〉

by the Lebesgue point property (c) of x0 (first for g = gk and then by density for the
general case). Thus, we have

〈〈
1U ⊗ g, σ

〉〉 =
∫
U

〈
g, σ∞

y

〉
dλσ (y) = c̃(U )

〈
g, ν∞

x0

〉
.

With g = | �| we see that c̃(U ) = λσ (U ) and (12.26) follows. ��
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12.7 Lower Semicontinuity

We now show how the theory of generalized Young measures can be used to inves-
tigate the weak* lower semicontinuity properties of functionals with linear-growth
integrands. First, we extend Theorem 11.2 as follows:

Proposition 12.24. Let f ∈ R(Ω; R
m×d). Then, the functional

F̃ [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f ∞
(
x,

dDsu

d|Dsu| (x)
)
d|Dsu|(x)

+
∫

∂Ω

f ∞(x, u(x) ⊗ nΩ(x)
)
dH d−1(x), u ∈ BV(Ω; R

m),

where nΩ : ∂Ω → S
d−1 is the unit inner normal to ∂Ω (“inner” with respect to Ω),

is the area-strictly continuous extension to the space BV(Ω; R
m) of the functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

∂Ω

f ∞(x, u(x) ⊗ nΩ(x)
)
dH d−1(x),

where u ∈ W1,1(Ω; R
m).

Proof. Extend u by zero to a larger Lipschitz domain Ω ′ � Ω . Then, F̃ as de-
fined above is the counterpart of the usual F , but on Ω ′. The space W1,1(Ω ′; R

m)

is area-strictly dense in BV(Ω ′; R
m) by Lemma 11.1. The result then follows by

Proposition 12.4 together with Proposition 12.11 on extended representation. ��
The following is the main lower semicontinuity result of this section. In com-

parison to the Ambrosio–Dal Maso–Fonseca–Müller Theorem 11.7 we allow the
integrand to be x-dependent, but we need to require that the recession function exists
in the strong sense (we note that already [124] treated x-dependent integrands, albeit
under further technical assumptions).

Theorem 12.25. Let f ∈ R(Ω; R
m×d) be quasiconvex in the second argument, that

is, we suppose that f : Ω × R
m×d → [0,∞) is such that the following assumptions

hold:

(i) f is a Carathéodory integrand;
(ii) | f (x, A)| ≤ M(1 + |A|) for some M > 0 and all x ∈ Ω , A ∈ R

m×d ;
(iii) the strong recession function f ∞ exists in the sense of (11.8) and is (jointly)

continuous on Ω × R
m×d ;

(iv) f (x, �) is quasiconvex for all x ∈ Ω .

Then, the functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f ∞
(
x,

dDsu

d|Dsu| (x)
)
d|Dsu|(x)

+
∫

∂Ω

f ∞(x, u(x) ⊗ nΩ(x)
)
dH d−1(x), u ∈ BV(Ω; R

m),

is lower semicontinuous with respect to the weak* convergence in BV(Ω; R
m).
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Remark 12.26. The boundary term in F may be omitted, see Problem 12.10.

The proof proceeds by showing Jensen-type inequalities for BV-Young measures
at regular and singular points.

Proposition 12.27. Let ν ∈ BVY(Ω; R
m×d). Then, for all quasiconvex and contin-

uous h : R
m×d → [0,∞) with linear growth, it holds that

(i) h

(
[νx ] + [ν∞

x ] dλν

dL d
(x)

)
≤ 〈

h, νx
〉+ 〈

h#, ν∞
x

〉 dλν

dL d
(x) forL d -a.e. x ∈ Ω;

(ii) h#([ν∞
x ]) ≤ 〈

h#, ν∞
x

〉
for λs

ν-a.e. x ∈ Ω , where λs
ν is the singular part of λν with

respect toL d .

In the proof of the proposition we will need an approximation lemma, which we
state in slightly more generality than is strictly necessary here (we only need the
x-independent case) because of the independent interest of the result.

Lemma 12.28. For every function f ∈ C(Ω × R
N ) with linear growth there is a

decreasing sequence ( fn) ⊂ E(Ω; R
N ) with

inf
n∈N

fn = lim
n→∞ fn = f, inf

n∈N
f ∞
n = lim

n→∞ f ∞
n = f # (pointwise).

Furthermore, if M ≥ 0 is such that | f (x, A)| ≤ M(1 + |A|), then the fn can also
be chosen to satisfy | fn(x, A)| ≤ M(1 + |A|).
Proof. We denote by (S f )usc : Ω × BN → R the upper semicontinuous extension
of S f : Ω × B

N → R to Ω × BN , that is,

(S f )usc(x, Â) := lim sup
xn→x
Ân→ Â

S f (xn, Ân), (x, Â) ∈ Ω × BN .

Since S f is continuous on Ω × B
N , we have (S f )usc|Ω×BN = S f . For sequences

xn → x in Ω , ( Ân) → Â ∈ B
N , Â ∈ ∂B

N , and tn → ∞, it holds that

lim sup
n→∞

f (xn, tn Ân)

tn
= lim sup

n→∞
(t−1
n + | Ân|)S f

(
xn,

Ân

t−1
n + | Ân|

)
.

Hence, f # = (S f )usc|Ω×SN−1 . Indeed, “≤” holds since (S f )usc is upper semicontin-
uous and “≥” follows by taking a sequence (xn, Ân) → (x, Â) with S f (xn, Ân) →
(S f )usc(x, Â) and setting tn := (1 − | Ân|)−1.

Let now (gk) ⊂ C(Ω × BN ) be a decreasing sequence with gk ↓ (S f )usc point-
wise in Ω × BN and |gk | ≤ M . Then set fk := S−1gk for which f k ↓ f , f ∞

k exists
in the sense of (11.8), and f ∞

k = gk |Ω×SN−1 ↓ (S f )usc|Ω×SN−1 = f #.
Finally, assuming | f (x, A)| ≤ M(1+ |A|) for some M ≥ 0, it holds that |S f | ≤

M , whereby |(S f )usc| ≤ M as well. ��
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Proof of Proposition 12.27.Ad (i).Let σ ∈ BVY(B(0, 1); R
m×d) be a regular tangent

Young measure to ν at a suitable x0 ∈ Ω as in Proposition 12.22, which we consider
to be restricted to B(0, 1) (see Problem 12.8). Then,

[σ ] = F L d B(0, 1), where F = [νx0 ] + [ν∞
x0 ]

dλν

dL d
(x0).

Via Proposition 12.18 (ii) we obtain a sequence (vn) ⊂ (W1,1 ∩ C∞)(B(0, 1); R
m)

with Dvn
Y→ σ and vn = Fx on ∂B(0, 1).

For continuous functions h : R
m×d → [0,∞) with linear growth the application

of Lemma 12.28 yields a sequence (1 ⊗ hk) ⊂ E(B(0, 1); R
m×d) such that hk ↓ h,

h∞
k ↓ h# pointwise, and all hk have uniformly bounded linear growth constants.

Then, using the quasiconvexity, we get

h(F) ≤ lim sup
n→∞

−
∫
B(0,1)

h(∇vn) dx

≤ lim
n→∞ −

∫
B(0,1)

hk(∇vn) dx

= 1

ωd

〈〈
1 ⊗ hk, σ

〉〉

= 〈
hk, νx0

〉+ 〈
h∞
k , ν∞

x0

〉 dλν

dL d
(x0)

for all k ∈ N, where we used (12.13) and (12.14). We may then invoke the monotone
convergence theorem and utilize hk ↓ h, h∞

k ↓ h# to conclude.
Ad (ii). From (12.11) we know

rank [ν∞
x ] ≤ 1 for λs

ν-a.e. x ∈ Ω.

By the Kirchheim–Kristensen Theorem 10.13, h# is convex at matrices of rank at
most one, hence (ii) follows immediately from the Jensen-type inequality stated
in (10.17). ��
Proof of Theorem 12.25. Given a sequence u j

∗
⇀ u in BV(Ω; R

m), we consider all
u j , u to be extended to the whole space by zero, whereby

Du j = Du j Ω + (u j ⊗ nΩ)H d−1 ∂Ω.

Select a subsequence (u j (l)) such that

lim inf
j→∞ F [u j ] = lim

l→∞F [u j (l)]

and
Du j (l)

Y→ ν ∈ BVY(Rd; R
m×d),
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the latter being possible by Theorem 12.16. It suffices to show lower semicontinuity
along the sequence (u j (l)), which in the following we just denote by (u j ).

We have

[ν] = Du + (u ⊗ nΩ)H d−1 ∂Ω.

Let λ∗
ν be the singular part of λν with respect to |Dsu|+|u|H d−1 ∂Ω; in particular,

λ∗
ν is carried by a (|Dsu|+|u|H d−1 ∂Ω)-negligible set.We compute using (12.11)

and the arguments preceding it that

[νx ] + [ν∞
x ] dλν

dL d
(x) = d[ν]

dL d
(x) =

{
∇u(x) forL d -a.e. x ∈ Ω,

0 forL d -a.e. x ∈ R
d \ Ω;

[ν∞
x ]

|[ν∞
x ]| = d[ν]s

d|[ν]s | (x) =

⎧⎪⎨
⎪⎩

dDsu

d|Dsu| (x) for |Dsu|-a.e. x ∈ Ω,

u|∂Ω(x)

|u|∂Ω(x)| ⊗ nΩ(x) for |u|H d−1-a.e. x ∈ ∂Ω;
[ν∞

x ] = 0 for λ∗
ν-a.e. x ∈ R

d;
|[ν∞

x ]| λs
ν = |Dsu| + |u|H d−1 ∂Ω;

[νx ] = 0 for all x ∈ R
d \ Ω;

λν (Rd \ Ω) = 0.

Also extend f to R
d × R

m×d as follows: first extend f ∞ restricted to Ω × ∂B
m×d

continuously to R
d × ∂B

m×d and then set f (x, A) := f ∞(x, A) for x ∈ R
d \ Ω

and A ∈ R
m×d . This extended f is still a Carathéodory integrand, f ∞ is jointly

continuous and f (x, 0) = 0 for all x ∈ R
d \ Ω .

Then, Proposition 12.11 on representation of limits with integrands of class R
and the Jensen-type inequalities in Proposition 12.27 (applied in a larger bounded
Lipschitz domain Ω ′ � Ω) give

lim inf
j→∞ F [u j ] =

∫
Ω

〈
f (x, �), νx

〉+ 〈
f ∞(x, �), ν∞

x

〉 dλν

dL d
(x) dx

+
∫

Ω

〈
f ∞(x, �), ν∞

x

〉
dλs

ν(x)

≥
∫

Ω

f

(
x, [νx ] + [ν∞

x ] dλν

dL d
(x)

)
dx +

∫
Ω

f ∞(x, [ν∞
x ]) dλs

ν(x)

= F [u].

This finishes the proof. ��
We thus have the following existence theorem.
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Theorem 12.29. Let f : Ω × R
m×d → [0,∞) be such that the following assump-

tions hold:

(i) f is a Carathéodory integrand;
(ii) | f (x, A)| ≤ M(1 + |A|) for some M > 0 and all x ∈ Ω , A ∈ R

m×d ;
(iii) the strong recession function f ∞ exists in the sense of (11.8) and is (jointly)

continuous on Ω × R
m×d ;

(iv) f (x, �) is quasiconvex for all x ∈ Ω;
(v) μ|A| ≤ f (x, A) for some μ > 0 and all (x, A) ∈ Ω × R

m×d .

Then, the functional

F [u] :=
∫

Ω

f (x,∇u(x)) dx +
∫

Ω

f ∞
(
x,

dDsu

d|Dsu| (x)
)
d|Dsu|(x)

+
∫

∂Ω

f ∞(x, u(x) ⊗ nΩ(x)
)
dH d−1(x), u ∈ BV(Ω; R

m),

has a minimizer over the space BV(Ω; R
m).

Notes and Historical Remarks

The theory of generalized Young measures started with the article [99] by
DiPerna and Majda, who were interested in turbulence concentrations in fluid dy-
namics (their measures, however, described L2-concentrations). The L1-framework
was first introduced by Alibert & Bouchitté [6] and then developed into the form pre-
sented here in [168], partly inspired by the approaches to classical Young measures
in the papers [39, 258]. Many authors have developed the theory further, a selection
of some relevant papers is [121, 155, 171, 172, 258, 265].

In our setting we only work with the sphere compactification of R
N . This is

somewhat implicit, but the basic idea is explained in the opening remarks of this
chapter, also see Problem 12.2. The theory can be extended to much more general
target spaces and compactifications. For instance, RN may be replaced by a Banach
space X with the analytic Radon–Nikodým property, i.e., the validity of the Radon–
Nikodým theorem for X -valued measures, for this see [24]. Further, we may employ
another compactification of R

N , for instance, the compactification generated by a
separable, complete ring of continuous bounded functions, see Section 4.8 in [119]
and also [60], or even the Stone–Čech compactification βR

N . Finally, Ω may be
replaced by a general finite measure space. Such generalizations are discussed in [6,
24, 57, 99, 172].

A generalized Young measure ν ∈ YM (Ω; R
N ) may also be described in the

spirit of Berliocchi–Lasry [39] as follows:

ν := (L d
x Ω) ⊗ νx and ν∞ := λν ⊗ ν∞

x .
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Then,
ν(D × R

N ) = |Ω ∩ D| and ν∞(D × S
N−1) = λν(D)

for all Borel sets D ⊂ Ω . So, ν can be understood as a classical Young measure
with respect toL d Ω and target space R

N and ν∞ can be understood as a classical
Young measure with respect to λν and target space S

N−1.
Alternative approaches to quantify concentration effects are varifolds [9–11, 125]

and currents [115, 116, 134, 135]. Time-dependent generalized Young measures
have also been developed for quasistatic evolution in plasticity theory [83–85]; in
this context also see [95].

Lemma 12.14 and Lemma 12.28 are adapted from [6]. The characterization result
of Theorem 12.19 also holds for BD-Young measures (i.e., those Young measures
generated by symmetric derivatives of functions of bounded deformation), see [93].

The approach to BV-lower semicontinuity through generalized Young measures
in Theorem 12.25 was first implemented in this form in [228], the version we present
here includes the shortening possible by the Kirchheim–Kristensen Theorem 10.13.
We remark that it is also possible to incorporate x-dependence into the strategy we
employed for the proof ofTheorem11.7, but theYoungmeasure proof gives this result
immediately (if the strong recession function of the integrand exists).We refer to [16]
for weak* lower semicontinuity results for functionals defined on PDE-constrained
measures.

We finally mention the very recent work [23], where the Souček space is con-
sidered as a more natural space of underlying deformations for BV-Young measures
with boundary concentrations.

Problems

12.1. Show that f ∈ C(Ω × R
N ) is an element of E(Ω; R

N ) if and only if f ∞
exists in the sense of (11.8).

12.2. Show that every element of YM (Ω; R
N ) can be identified with a classical

L∞-Young measure with values in the sphere compactification σR
N ∼= B

N of R
N

(where R
N is embedded into σR

N via the map v �→ (1 + |v|)−1v).

12.3. In the situation of Example 12.8, show that u′
j

Y→ ν with

νx = δ0 a.e., λν = L 1 (0, 1), ν∞
x = δ+1 a.e.

12.4. The limit x ′ → x in the definition of f ∞ cannot be omitted without breaking
important parts of the generalized Young measure theory:

(i) For Ω := (−1, 1) find a Carathéodory integrand f : Ω × R → R such that
f ∞(0, �) is not well-defined in the sense of (11.8), but
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f̃ ∞(x, A) := lim
A′→A
t→∞

f (x, t A′)
t

= 0, (x, A) ∈ Ω × R
N .

Note the omission of the limit x ′ → x in contrast to the definition (11.8) of f ∞.
(ii) Find a uniformly norm-bounded sequence (v j ) ⊂ L1(−1, 1) generating the

Young measure ν ∈ YM ((−1, 1)) with

νx = δ0 a.e., λν = 2δ0, ν∞
0 = δ+1

and
˜

〈〈
f, δ[v j ]

〉〉 �→ 〈̃〈
f, ν
〉〉
,

where
〈̃〈
�, �

〉〉
is defined like the usual duality product

〈〈
�, �

〉〉
, but with f ∞ replaced

by f̃ ∞. Conclude that Proposition 12.11 cannot hold for
〈̃〈
�, �

〉〉
in place of

〈〈
�, �

〉〉
.

12.5. Let u j := 1(0,1/j) on Ω := (0, 1), for which Du j = −δ1/j , u j
∗

⇀ 0 in

BV(0, 1), and Du j
Y→ ν ∈ BVY((0, 1)) with

νx = δ0 a.e., λν = δ0, ν∞
0 = δ−1 a.e.

Prove that no sequence (v j ) ⊂ BV((0, 1)) with v j (0) = v j (1) = 0 can generate this
ν. This shows that in Proposition 12.18 (ii) the assumption λν(∂Ω) = 0 cannot be
omitted.

12.6. Prove that for any λ ∈ M+(Ω), there exists a BV-Young measure ν ∈
BVY(Ω; R

m×d) with [ν] = 0 and λν = λ.

12.7. Use the result of Problem 10.5 to derive the singular Jensen inequality in
Proposition 12.27 without the use of the Kirchheim–Kristensen theorem or Alberti’s
Rank-One Theorem. Deduce from this the Lower Semicontinuity Theorem 12.25.
This shows that neither Alberti’s rank-one theorem nor the Kirchheim–Kristensen
theorem are necessary to prove weak* lower semicontinuity in BV.

12.8. Let Ω0,Ω ⊂ R
d be two bounded Lipschitz domains with Ω0 � Ω and let

ν ∈ BVY(Ω; R
m×d). If λν(∂Ω0) = 0, then the restriction ν Ω0, that is,

(ν Ω0)x = νx , (ν Ω0)
∞
x = ν∞

x for all x ∈ Ω0

and

λν Ω0
:= λν Ω0,

lies in BVY(Ω; R
m×d).

12.9. Show that BVY(Rd; R
m×d) and BVYloc(R

d; R
m×d) are sequentially weakly*

closed.
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12.10. Show that in the situation of Theorem 12.25 also the functional (without
boundary term)

F [u] :=
∫
Ω

f (x,∇u(x)) dx +
∫
Ω

f #
(
x,

dDsu

d|Dsu| (x)
)
d|Dsu|(x), u ∈ BV(Ω; R

m),

is lower semicontinuouswith respect toweak* convergence in the spaceBV(Ω; R
m).



Chapter 13
�-Convergence

Often, a functional of interest depends on the value of a parameter, say a small ε > 0,
as we have seen with the functionalsFε from the examples on phase transitions and
composite elastic materials in Sections 1.9 and 1.10, respectively. In these cases the
goal often lies not in minimizingFε for one particular value of ε, but in determining
the asymptotic limit of the minimization problems as ε ↓ 0. Concretely, we need to
identify, if possible, a limit functional F0 such that the minimizers and minimum
values of the Fε (if they exist) converge to the minimizers and minimum values of
F0 as ε ↓ 0. While many different situations can be considered, here we study the
following prototypical problems:

• The phase transition example from Section 1.9 leads to a singularly-perturbed
problem, where the Fε have the form

Fε[u] :=
∫

Ω

f (u(x)) + ε2|∇u(x)|2 dx, u ∈ W1,2(Ω).

Here, f : R → [0,∞) is a continuous multi-well potential. As the parameter
ε > 0 tends to zero, the regularizing term becomes weaker and (approximate)
minimizers may develop sharp interfaces, i.e., jumps. It is thus not unrealistic to
expect that the limit functional F0 is of a fundamentally different nature. This is
indeed the case, as we will see in the first part of this chapter.

• A higher-order and vectorial version of the previous problem occurs for the func-
tionals

Fε[u] :=
∫

Ω

f (∇u(x)) + ε2|∇2u(x)|2 dx, u ∈ W2,2(Ω;Rm),

where f : Rm×d → [0,∞) is again a continuous multi-well potential. In this
problem the limit functional is only known in some special cases.
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• The homogenization problem for composite materials from Section 1.10 leads to
the following periodic homogenization problem : Let the integrand f : Rd ×
R

m×d → R be 1-periodic in the first argument and consider

Fε[u] :=
∫

Ω

f
( x

ε
,∇u(x)

)
dx, u ∈ W1,p(Ω;Rm).

This functional describes microscopic oscillations, for example, a fine lamination
between different materials. The aim is to derive the macroscopic limit behav-
ior. Naturally, we expect an x-independent integrand in the limit. This will be
rigorously established in the second part of this chapter.

The unifying idea behind the above problems is that we believeFε for some non-
zero but small ε > 0 to be the “true” model and F0 to be the “simplified” model,
which, however, incorporates the lingering effects of the true model in the limit
ε ↓ 0. This is a very powerful approach since the study ofF0 is not complicated by
lower-order effects and thus the features of minimizers that we are really interested
in may be much more apparent.

While the above problems have individual theories of considerable complexity,
there is a common framework in which we can analyze sequences of functionals.
This is the theory of �-convergence, which was introduced by Ennio De Giorgi in
the 1970s. Its basic notion is a convergence of functionals that is compatible with
the Direct Method. It has all the desired properties mentioned above, namely that
the minima (infima) of the functionals Fε converge to the minimum of the limit
functional F0 and that, under an appropriate uniform coercivity hypothesis, the
minimizers (or approximate minimizers) of Fε converge in a suitable sense to a
minimizer of F0.

13.1 Abstract �-Convergence

Let X be a complete metric space. The functional F∞ : X → R ∪ {+∞} is called
the (sequential) �-limit of the functionals Fk : X → R ∪ {+∞}, k ∈ N, if the
following two conditions are satisfied:

(H1) For all sequences (uk) ⊂ X with uk → u in X , the lim inf-inequality holds:

F∞[u] ≤ lim inf
k→∞ Fk[uk].

(H2) For all u ∈ X there exists a recovery sequence (uk) ⊂ X , that is, uk → u in
X and

F∞[u] = lim
k→∞Fk[uk].



13.1 Abstract �-Convergence 371

The �-limit of the sequence (Fk)k , if it exists, is uniquely determined (see Prob-
lem 13.1) and denoted by �-limk Fk .

We note that assuming the first condition, the second condition in the definition
of �-convergence can be replaced by the limsup-inequality: For all u ∈ X there
exists a sequence uk → u in X such that

F∞[u] ≥ lim sup
k→∞

Fk[uk].

If a sequence of functionals Fk : X → R ∪ {+∞} converges locally uniformly
to a functional F∞ : X → R ∪ {+∞}, i.e., for all u ∈ X there exists some open
neighborhood U � X of u such that supu∈U |Fk[u] −F∞[u]| → 0 as k → ∞, and
if F∞ is lower semicontinuous, then the Fk also �-converge to F∞: The lim inf-
inequality holds because for any uk → u we have uk ∈ U for k sufficiently large
and hence

lim inf
k→∞ Fk[uk] ≥ lim inf

k→∞ F∞[uk] ≥ F∞[u].

The limsup-inequality holds for the constant recovery sequence.
Pointwise convergence, however, does not in general imply �-convergence:

Example 13.1. In X = R define for k ∈ N,

Fk[x] := −δ−1/k(x) + δ1/k(x) =
{

±1 if x = ±1/k,

0 otherwise,

and

F∞[x] := −δ0(x) =
{

−1 if x = 0,

0 otherwise.

We claim that�-limk Fk = F∞. Indeed, on each open setU � R\{0}, the functions
Fk converge to the zero function uniformly. Together with the lower semicontinuity
ofF∞, this implies�-convergence onR\{0}. For x = 0we have�-limFk(0) = −1
by using the recovery sequence xk := −1/k (the lim inf-inequality is trivial).

This example shows that the �-limit does not necessarily coincide with the point-
wise limit (which for our Fk is the zero function). In fact, even for the constant
sequence of functionals (F1)k , the �-limit is −δ−1 �= F1, as can be verified easily.
One can also show that �-limk(−Fk) = F∞, hence �-limk(−Fk) �= −�-limk Fk

and consequently the �-limit is not linear.

The theory of �-convergence is very useful and widely used in the calculus of
variations. One of the reasons for this is the following fact.

Proposition 13.2. F∞ = �-limk Fk is lower semicontinuous.

Proof. We will proveF∞[u] ≤ lim inf j→∞ F∞[u j ] for all u j → u in X . For every
u j choose a recovery sequence (u( j)

k )k , i.e., u
( j)
k → u j as k → ∞ and F∞[u j ] =
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limk→∞ Fk[u( j)
k ]. Next, denoting themetric in X by d, we choose a strictly increasing

sequence of indices (k( j)) j such that

d
(
u( j)
k( j), u j

) ≤ 1

j
and |Fk( j)(u

( j)
k( j)) − F∞[u j ]| ≤ 1

j
.

Then set

ũl :=
{
u( j)
k( j), if l = k( j) for some j ∈ N,

u, otherwise.

We have that ũk → u and the lim inf-inequality implies

F∞[u] ≤ lim inf
k→∞ Fk[ũk] ≤ lim inf

j→∞ Fk( j)[u( j)
k( j)] = lim inf

j→∞ F∞[u j ].

Thus we have shown the lower semicontinuity of F∞. �

As a consequence of the preceding proposition, the notion of �-convergence is
not generated by a topology, because any constant sequence of a non-lower semi-
continuous function has a different �-limit (we have already observed this fact in
Example 13.1). It turns out, however, that in spaces of lower semicontinuous func-
tions, the �-convergence is in fact generated by a topology, cf. Chapter 10 of [82]
for details.

The most important property of �-convergence is that it entails the convergence
of minima (or infima) and of the corresponding minimizers (or approximate mini-
mizers) if the following notion of uniform coercivity is satisfied: A family {Fk}k of
functionals Fk : X → R ∪ {+∞} is called equicoercive if there exists a compact
set K ⊂ X with the property that

inf
X
Fk = inf

K
Fk for all k ∈ N.

Clearly, without the equicoercivity no convergence of minima or minimizers can be
expected, as the sequence Fk := −δk in the space X := R shows.

Theorem 13.3. Let Fk : X → R ∪ {+∞}, k ∈ N, be equicoercive functionals and
assume that F∞ = �-limk Fk exists. Then, F∞ has a minimizer and

min
X

F∞ = lim
k→∞ inf

X
Fk .

In addition, all accumulation points of any precompact sequence (uk) ⊂ X with the
property that lim infk→∞ Fk[uk] = lim infk→∞ inf X Fk are minimizers of F∞.

Proof. Denote by K the compact set from the equicoercivity of theFk . For all k ∈ N

choose uk ∈ K such that |Fk[uk] − inf X Fk | ≤ 1/k. Then,

lim inf
k→∞ Fk[uk] = lim inf

k→∞ inf
X
Fk .
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Because all uk lie in the compact set K , we can select a subsequence (uk( j)) j with
uk( j) → u∗ ∈ X as j → ∞ and

lim
j→∞Fk( j)[uk( j)] = lim inf

k→∞ inf
X
Fk .

Then define the sequence (ũk)k as follows:

ũk :=
{
uk( j) if k = k( j) for some j ∈ N,

u∗ otherwise.

We have ũk → u∗ and, by the lim inf-inequality,

inf
X
F∞ ≤ lim inf

k→∞ Fk[ũk] ≤ lim
j→∞Fk( j)[uk( j)] = lim inf

k→∞ inf
X
Fk . (13.1)

Fix ε > 0. Let u ∈ X be such that F∞[u] ≤ inf X F∞ + ε and take a recovery
sequence uk → u for u. We estimate

lim sup
k→∞

inf
X
Fk ≤ lim sup

k→∞
Fk[uk] = F∞[u] ≤ inf

X
F∞ + ε.

Let ε ↓ 0 to get
lim sup
k→∞

inf
X
Fk ≤ inf

X
F∞. (13.2)

Combining (13.1) and (13.2), the first assertion of the theorem follows.
The second claim is clear ifwe take a sequence converging to a given accumulation

point in the argument leading up to (13.1). �

For some arguments below it is useful to introduce the following two finer notions:
The (sequential) �-lower limit �-lim infk Fk and the (sequential) �-upper limit
�-lim supk Fk of the sequence of functionals Fk : X → R ∪ {+∞}, k ∈ N, are,
respectively,

�-lim infk Fk[u] := inf
{
lim inf
k→∞ Fk[uk] : uk → u in X

}
,

�-lim supk Fk[u] := inf
{
lim sup
k→∞

Fk[uk] : uk → u in X
}
,

where u ∈ X .
The following lemma gives us an indirect way to establish that a sequence of

functionals �-converges.

Lemma 13.4. �-lim infk Fk = �-lim supk Fk = F∞ if and only if F∞ =
�-limk Fk .
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Proof. Assume first that�-lim infk Fk = �-lim supk Fk = F∞. Then, for all uk →
u in X we have

F∞[u] = �-lim infk Fk[u] ≤ lim inf
k→∞ Fk[uk],

that is, the lim inf-inequality holds. Moreover, for u ∈ X and n ∈ N choose a
sequence (u(n)

k )k with u
(n)
k → u as k → ∞ and

F∞[u] ≥ lim sup
k→∞

Fk[u(n)
k ] − 1

n
.

It is always possible to find such a sequence sinceF∞[u] = �-lim supk Fk[u]. Now
we inductively combine the sequences (u(n)

k )k into one sequence ũk as follows: Let
(K (n))n denote a growing sequence of indices such that

d(u(n)
k , u) ≤ 1

n
and F∞[u] ≥ Fk(u

(n)
k ) − 2

n
for all k ≥ K (n),

which exists by the definition of the upper limit. Then define

(ũk)k :=
(
u(1)
K (1), u

(1)
K (1)+1, . . . , u

(2)
K (2), u

(2)
K (2)+1, . . . , u

(l)
K (l), u

(l)
K (l)+1, . . .

)

and observe that ũk → u andF∞[u] ≥ lim supk→∞ Fk[ũk]. This proves the limsup-
inequality and hence the existence of a recovery sequence.

For the other direction assume F∞ = �-limk Fk . It is easy to see that for all
u ∈ X it holds that

F∞[u] ≤ �-lim infk Fk[u] ≤ �-lim supk Fk[u] ≤ F∞[u],

where the last inequality follows since recovery sequences are admissible in the
definition of the �-upper limit. �

Recall from Chapter 7 that the relaxation of a functional F : X → R ∪ {+∞}
is defined to be

F∗ := sup
{
G : G ≤ F and G is lower semicontinuous

}
.

This can be expressed via �-convergence as follows:

Proposition 13.5. �-limF = F∗, where �-limF denotes the �-limit of the con-
stant sequence (F )k .

Proof. First, we show that �-limF always exists. Indeed, by the definition of the
�-lower limit we can for all u ∈ X and all ε > 0 find a sequence uk → u such that

lim
k→∞F [uk] ≤ �-lim infk F [u] + ε.
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Using this sequence in the definition of the �-upper limit and letting ε → 0, we
conclude that �-lim supk F [u] ≤ �-lim infk F [u]. Then, Lemma 13.4 shows that
�-limk F exists.

For any lower semicontinuous function G ≤ F , we have G = �-lim G since for
all uk → u it holds that

G [u] ≤ inf
{
lim inf
k→∞ G [uk] : uk → u

}

= �-lim infk G [u]
≤ �-lim supk G [u]
≤ G [u]

since the constant sequence is admissible in the definition of the �-upper limit. Thus
G = �-lim G by Lemma 13.4. Consequently,

G = �-lim G ≤ �-limF .

Taking the supremum over all such G , we obtain F∗ ≤ �-limF .
To prove the converse inequality, note that �-limF is lower semicontinuous by

Proposition 13.2 and �-limF ≤ F (see above). Then it follows immediately that
�-limF ≤ F∗. �

13.2 Sharp-Interface Limits

As an important example of singularly-perturbed functionals we consider the follow-
ing, which we saw first in Section 1.9 in relation to phase transitions. For u ∈ L1(Ω)

we set

Fε[u] :=
⎧⎨
⎩
∫

Ω

1

ε
f (u(x)) + ε|∇u(x)|2 dx if u ∈ W1,2(Ω) and

∫
Ω
u dx = γ,

+∞ otherwise,

where Ω ⊂ R
d is a bounded Lipschitz domain, f : R → [0,∞) is a continuous

double-well potential with zeros (only) at α, β ∈ R (α < β), γ ∈ (α|Ω|, β|Ω|), and
ε > 0 is a small parameter.

For the definition of a limit candidate of the Fε as ε ↓ 0, first recall from (9.13)
the definition of the perimeter of a Borel set E ⊂ Ω , namely,

PerΩ(E) = |D1E |(Ω) = sup

{∫
E
div ϕ dx : ϕ ∈ C1

c(Ω;Rd), ‖ϕ‖∞ ≤ 1

}
.

If E has a smooth boundary, thenPerΩ(E) = H d−1(E∩Ω). Then set foru ∈ L1(Ω),
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F0[u] :=

⎧⎪⎨
⎪⎩

σ0 PerΩ
({ x ∈ Ω : u(x) = α }) if u ∈ BV(Ω; {α, β})

and
∫
Ω
u dx = γ,

+∞ otherwise,

where

σ0 := 2
∫ β

α

√
f (s) ds.

Note that in Section 1.9 we had α = −1, β = 1 and also additionally required that
u(x) ∈ [−1, 1] for almost every x ∈ Ω . As will become obvious from the proofs,
all of the following will also apply to this situation.

The main result of this section is the following:

Theorem 13.6 (Modica–Mortola1977 [189, 190]).The functionalsFε �-converge
toF0 as ε ↓ 0 with respect to the strong L1-topology.

For the proof without loss of generality we assume that α = −1 and β = 1, which
can be accomplished along the lines of the transformation applied in Section 1.9. To
establish the sought �-convergence, we need to show

(a) the lim inf-inequality
F0[u] ≤ lim inf

ε↓0 Fε[uε] (13.3)

for all sequences uε → u in L1(Ω);
(b) for all u ∈ L1(Ω) the existence of a recovery sequence (uε)ε>0 ⊂ L1(Ω) such

that uε → u in L1 as ε ↓ 0 and

F0[u] = lim
ε↓0 Fε[uε].

The lim inf-inequality turns out to be fairly straightforward to prove:

Proof of Theorem 13.6: lim inf-inequality. Let uε → u in L1(Ω) and assume that
lim infε↓0 Fε[uε] < ∞ (otherwise there is nothing to show),wherebywemay require
that uε ∈ W1,2(Ω) for all ε > 0. Then, there exists a sequence εn ↓ 0 (as n → ∞)
such that uεn → u almost everywhere and Fatou’s lemma implies

∫
Ω

f (u(x)) dx ≤ lim inf
n→∞

∫
Ω

f (uεn (x)) dx ≤ lim inf
n→∞

(
εnFεn [uεn ]

) = 0.

Thus, u(x) ∈ {−1, 1} almost everywhere.
Next, we observe from Young’s inequality that

lim inf
n→∞ Fεn [uεn ] ≥ lim inf

n→∞

∫
Ω

2
√

f (uεn (x)) · |∇uεn (x)| dx

≥ lim inf
n→∞

∫
Ω

2|∇(h ◦ uεn )(x)| dx,
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where we have set

h(t) :=
∫ t

0

√
f (s) ds.

From the L1-lower semicontinuity of the total variation norm (see Problem 13.2) we
then get

lim inf
n→∞ Fεn [uεn ] ≥ 2|D(h ◦ u)|(Ω)

= 2(h(1) − h(−1))PerΩ
({ x ∈ Ω : u(x) = −1 })

= F0[u]

since σ0 = 2(h(1) − h(−1)). In particular, u ∈ BV(Ω; {−1, 1}). This establishes
the lim inf-inequality (13.3). �

For the existence of a recovery sequence, we first need a few technical prepara-
tions.

Lemma 13.7. Let the Borel set E ⊂ Ω be of finite perimeter, i.e., PerΩ(E) < ∞,
and assume that

E and Ω \ E both contain a non-empty open ball. (13.4)

Then, there exists a sequence of open and bounded sets En ⊂ R
d with smooth

boundaries such that
|En ∩ Ω| = |E |, (13.5)

the (measure-theoretic) transversality condition

H d−1(∂En ∩ ∂Ω) = 0 (13.6)

holds, and

|(E � En) ∩ Ω| → 0, PerΩ(En) → PerΩ(E) as n → ∞. (13.7)

Here, A� B := (A \ B) ∪ (B \ A) denotes the symmetric difference between
the sets A and B.

Proof. The idea is to mollify 1E and then to select for the En suitable superlevel
sets. The technical details, however, are somewhat involved.

Step 1. Let u ∈ (BV ∩ L∞)(Rd) be an extension of 1E ∈ (BV ∩ L∞)(Ω) with
the property that |Du|(∂Ω) = 0. Since Ω was assumed to be a bounded Lipschitz
domain, such an extension of 1E always exists; this result is recalled in Section 10.3.
Let (ηδ)δ>0 ⊂ C∞

c (Rd) be a family of mollifiers as in Appendix A.5; in particular,
supp ηδ ⊂ B(0, δ). Set

uδ := ηδ � u,
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for which it holds that uδ → u in L1 and in measure, as well as |Duδ|(Rd) →
|Du|(Rd) as δ ↓ 0. The latter fact can be seen by applying the lower semicontinuity
of the total variation norm (see Problem 13.2) to Ω and to R

d \ Ω , and also using
that |Du|(∂Ω) = 0 as well as properties of the extension operator.

By assumption, there exists an ε > 0 and x1, x2 ∈ R
d such that

B(x1, 2ε) ⊂ E, B(x2, 2ε) ⊂ Ω \ E .

Then,
uδ = u on B(x1, ε) ∪ B(x2, ε) if δ < ε.

Now, since uδ → u in measure, for every n ∈ N we may choose a positive δn <

min{1/n, ε} such that

∣∣∣∣
{
x ∈ Ω :

∣∣uδn (x) − u(x)
∣∣ ≥ 1

n

}∣∣∣∣ ≤ 1

n
. (13.8)

Next, we let

pn := ess inf
t∈(1/n,1−1/n)

PerΩ
({ x ∈ R

d : uδn (x) > t }),

which is defined to be the largest almost-everywhere lower bound of the Lebesgue-
measurable function t �→ PerΩ({ x ∈ R

d : uδn (x) > t }) in the interval (1/n, 1 −
1/n) (the right-hand side is Lebesgue-measurable in t since it can be written as
the supremum over countably many continuous functions). For each n ∈ N choose
tn ∈ (1/n, 1 − 1/n) such that the following three conditions hold:

(a) PerΩ
({ x ∈ R

d : uδn (x) > tn }) ≤ pn + 1

n
;

(b) ∇uδn (x) �= 0 for all x ∈ R
d such that uδn (x) = tn;

(c) H d−1({ x ∈ ∂Ω : uδn (x) = tn }) = 0.

By definition, (a) holds for a non-negligible set of t’s and (b) is satisfied for a
Lebesgue-full set of t’s by the Sard Theorem A.17. The fact that H d−1(∂Ω) < ∞
implies (c) for all but countably many t’s. Then, with tn defined, we set

Dn := {
x ∈ R

d : uδn (x) > tn
}
, λn := |Dn ∩ Ω| − |E |,

and, letting rn > 0 such that |B(x1, rn)| = |B(x2, rn)| = |λn|, we define

En :=

⎧⎪⎨
⎪⎩
Dn \ B(x1, rn) if λn > 0,

Dn if λn = 0,

Dn ∪ B(x2, rn) if λn < 0.

Clearly, the sets En so defined are open and bounded. From (b) we furthermore infer
that ∂En is smooth. It remains to show (13.5), (13.6), and (13.7).
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Step 2. If x ∈ (Dn ∩ Ω) \ E , then uδn (x) > tn > 1/n and u(x) = 0, whereas
if x ∈ E \ (Dn ∩ Ω), then uδn (x) ≤ tn < 1 − 1/n and u(x) = 1. Hence, also
using (13.8),

|λn| ≤ |(Dn ∩ Ω)� E | ≤
∣∣∣∣
{
x ∈ Ω :

∣∣uδn (x) − u(x)
∣∣ ≥ 1

n

}∣∣∣∣ ≤ 1

n
. (13.9)

Consequently,
rn → 0 as n → ∞. (13.10)

Then, for n large enough, rn < ε/2, so that B(x1, rn) ⊂ B(x1, ε) and B(x2, rn) ⊂
B(x2, ε). Moreover, since δn < ε, we have B(x1, ε) ⊂ Dn ∩ Ω and B(x2, ε) ⊂
Ω \ Dn . We conclude that

|En ∩ Ω| =

⎧⎪⎨
⎪⎩

|Dn ∩ Ω| − |B(x1, rn)| if λn > 0,

|Dn ∩ Ω| if λn = 0,

|Dn ∩ Ω| + |B(x2, rn)| if λn < 0

= |E |,

which shows (13.5) after discarding some elements at the beginning of the sequence
(En).

Step 3. In a similar fashion to the previous step we deduce that if λn �= 0, then

∂En ∩ ∂Ω = (∂Dn ∪ ∂B(xi , rn)) ∩ ∂Ω

for either i = 1 or i = 2, depending on whether λn > 0 or λn < 0. On the other
hand, ∂B(xi , rn) ∩ ∂Ω = ∅, so that by (c) we see that

H d−1(∂En ∩ ∂Ω) = H d−1(∂Dn ∩ ∂Ω) = 0.

This shows the transversality condition (13.6).
Step 4. To prove (13.7) we first observe that B(x1, ε) ⊂ Dn ∩ Ω and B(x2, ε) ⊂

Ω \ Dn . Then, by (13.9),

|(En ∩ Ω)�(Dn ∩ Ω)| = |λn| → 0 as n → ∞.

Thus, again by (13.9),

lim
n→∞ |(E � En) ∩ Ω| = lim

n→∞ |(En ∩ Ω)� E | = lim
n→∞ |(Dn ∩ Ω)� E | = 0.

This is the first part of (13.7).
Because B(x1, ε) ⊂ Dn ∩ Ω and B(x2, ε) ⊂ Ω \ Dn , we have
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PerΩ(En) = PerΩ(Dn) + H d−1(∂B(xi , rn)) (13.11)

for i = 1 or i = 2 (depending on the sign of λn). Moreover, we have that 1En → 1E

in L1(Ω) by the first part of (13.7), which was shown above. The perimeter is lower
semicontinuous under this convergence, see Problem 13.2. Consequently,

PerΩ(E) ≤ lim inf
n→∞ PerΩ(En)

= lim inf
n→∞

[
PerΩ(Dn) + H d−1(∂B(xi , rn))

]
= lim inf

n→∞ PerΩ(Dn), (13.12)

where we also employed (13.10). On the other hand, by (a) above,

PerΩ(Dn) ≤ pn + 1

n
≤ PerΩ

({ x ∈ R
d : uδn (x) > t }) + 1

n
(13.13)

for all n ∈ N and almost every t ∈ (1/n, 1 − 1/n).
The Fleming–Rishel coarea formula in BV states that for every u ∈ BV(Ω) the

set { x ∈ Ω : u(x) > t } has finite perimeter for L 1-almost every t ∈ R and

|Du|(Ω) =
∫ +∞

−∞
PerΩ({ x ∈ Ω : u(x) > t }) dt.

A proof of this fundamental fact can be found in Theorem 3.40 of [15]. We can now
integrate (13.13) from 1/n to 1 − 1/n and employ the said coarea formula to get

(
1 − 2

n

)
PerΩ(Dn) ≤

∫
Ω

|∇uδn | dx + 1

n

(
1 − 2

n

)
. (13.14)

On theother hand, from |Duδn |(Rd) → |Du|(Rd),whichwe justified at the beginning
of the proof, we deduce that

lim
n→∞

∫
Ω

|∇uδn | dx = |Du|(Ω) = PerΩ(E).

We then see from (13.14) that

lim sup
n→∞

PerΩ(Dn) ≤ PerΩ(E).

Combining this with (13.12), we arrive at

PerΩ(E) ≤ lim inf
n→∞ PerΩ(Dn) ≤ lim sup

n→∞
PerΩ(Dn) ≤ PerΩ(E),

and so, also using (13.11),
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lim
n→∞ PerΩ(En) = lim

n→∞PerΩ(Dn) = PerΩ(E).

This is the second part of (13.7). �

If we dispense with the assumption (13.4), we can still prove the following result.

Lemma 13.8. Let the Borel set E ⊂ Ω be of finite perimeter, i.e., PerΩ(E) < ∞.
Then, there exists a sequence of sets Dn ⊂ R

d with smooth boundaries such that

|(E � Dn) ∩ Ω| → 0, PerΩ(Dn) → PerΩ(E) as n → ∞.

Proof. The proof is contained in the parts of the proof for the previous lemma relating
to the sets Dn , for which the assumption (13.4) is not used. �

Lemma 13.9. Let E ⊂ R
d be open with a smooth, compact, non-empty boundary

and such that the measure-theoretic transversality condition

H d−1(∂E ∩ ∂Ω) = 0 (13.15)

holds. Define the function δE : Rd → R via

δE (x) :=
{

− dist(x, ∂E) if x ∈ E,

dist(x, ∂E) if x /∈ E .
(13.16)

Then, δE is Lipschitz continuous, |∇δE | = 1 almost everywhere, and for all t ∈ R,

lim
t→0

H d−1(St ∩ Ω) = H d−1(∂E ∩ Ω), (13.17)

where St := {
x ∈ R

d : δE (x) = t
}
.

Proof. Step 1. We first show for the sets

Fr := {
x ∈ E : dist(x, ∂E) = r

}
, r > 0,

that
lim
r↓0 H

d−1(Fr ) = H d−1(∂E). (13.18)

For this we recall the geometric fact, proved in detail, for instance, in Section 14.6
of [136], that for small r > 0 there exists a diffeomorphism ϕ from Vr := { x ∈
E : 0 < dist(x, ∂E) < r } to ∂E × (0, r) ⊂ R

d+1 with

det∇ϕ(x) =
d−1∏
i=1

(
1 − κi (ϕ̂(x)) dist(x, ∂E)

) ≥ μ > 0, (13.19)
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where ϕ̂(x) is the component of ϕ(x) on ∂E (more precisely, ϕ̂ := π ◦ ϕ ⊂ ∂E ,
where π(y, s) := y) and κ1(x̂), . . . , κd−1(x̂) denote the principal curvatures of ∂E at
x̂ ∈ ∂E . Also, x �→ dist(x, ∂E) is smooth on V r and, with the unit outward normal
vector n on ∂E ,

∇[dist(x, ∂E)] = −n(ϕ̂(x)) for all x ∈ V r .

Finally, if mr is the normal vector to Fr , oriented outwards with respect to Vr , then

∇[dist(x, ∂E)] = mr (x) for all x ∈ Fr .

By the Gauss–Green theorem, noticing that ∂Vr = Fr ∪ ∂E (disjointly),

∫
Vr

�[dist( �, ∂E)] dx =
∫
Fr

∇[dist( �, ∂E)] · mr dH
d−1

+
∫

∂E
∇[dist( �, ∂E)] · n dH d−1

= H d−1(Fr ) − H d−1(∂E).

Using the lower bound in (13.19), we have det∇ϕ−1 ≤ μ−1 and thus

|Vr | =
∫

∂E

∫ r

0
det∇ϕ−1(y, s) ds dH d−1(y)

≤ rH d−1(∂E)

μ

→ 0 as r ↓ 0. (13.20)

This directly implies (13.18).
Step 2. Next, we show that if the transversality condition (13.15) holds, then

lim
r↓0 H

d−1(Fr ∩ Ω) = H d−1(∂E ∩ Ω). (13.21)

From (13.20) we get that 1E\Vr → 1E in L1. From the lower semicontinuity of
the perimeter (see Problem 13.2) we thus infer that

H d−1(∂E ∩ Ω) = PerΩ(E)

≤ lim inf
r↓0 PerΩ(E \ Vr )

= lim inf
r↓0 H d−1(Fr ∩ Ω), (13.22)

where the last equality follows since ∂(E \ Vr ) = Fr , which is a smooth manifold.
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Conversely, we have

H d−1(Fr ∩ Ω) ≤ H d−1(Fr ) − H d−1(Fr ∩ (Rd \ Ω)).

By a similar argument as before,

H d−1(∂E ∩ (Rd \ Ω)) ≤ lim inf
r↓0 H d−1(Fr ∩ (Rd \ Ω)).

Thus, using (13.18) and the transversality condition (13.15),

lim sup
r↓0

H d−1(Fr ∩ Ω) ≤ lim sup
r↓0

H d−1(Fr ) − lim inf
r↓0 H d−1(Fr ∩ (Rd \ Ω))

≤ H d−1(∂E) − H d−1(∂E ∩ (Rd \ Ω))

= H d−1(∂E ∩ Ω).

Combining this with (13.22), we arrive at (13.21).
Step 3. Finally, we prove the statements about δE . Clearly, we have for all x, y ∈

R
d that δE (y) ≤ δE (x) + |x − y|, so δE is Lipschitz continuous and |∇δE | ≤ 1

almost everywhere. On the other hand, for every x ∈ R
d there exists an x̄ ∈ ∂E such

that |δE (x)| = |x − x̄ |. For every y on the connecting line between x and x̄ , it holds
that |δE (y)| = |y− x̄ | and so |∇δE | = 1 almost everywhere. Finally, (13.17) follows
from Step 2 (i.e., from (13.21)) applied to E and R

d \ E . �

We can now complete the proof of the Modica–Mortola theorem.

Proof of Theorem 13.6: Recovery sequence. Since F0[u] = +∞ for u ∈ (L1 \
BV)(Ω) or if u takes values other than ±1, we only need to explicitly construct a
recovery sequence for maps u ∈ BV(Ω; {−1, 1}), which we henceforth assume.

Step 1. Set
E := E−1 = {

x ∈ Ω : u(x) = −1
} ⊂ Ω,

so that
u = −1E∩Ω + 1Ω\E , |E ∩ Ω| = |Ω \ E | − γ,

where we recall that γ ∈ (−|Ω|, |Ω|) is the parameter such that
∫
Ω
u dx = γ . Since

u has boundedvariation,weknow that E is of finite perimeter inΩ . FromLemma13.8
we infer that u may be approximated by v = −1F∩Ω + 1Ω\F , where F ⊂ Ω is of
finite perimeter and additionally has a smooth boundary. By the properties of the
approximation, for any fixed η > 0 we may choose v to also satisfy

∣∣F0[u] − F0[v]
∣∣ < η.

Since γ ∈ (−|Ω|, |Ω|), both F ∩ Ω and F \ Ω contain a non-empty open ball
(this also uses the smoothness of the boundary of ∂F). Thus, Lemma 13.7 becomes
applicable and via another approximation step we may find w = −1G∩Ω + 1Ω\G
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such thatG ⊂ Ω is of finite perimeter, has a smooth boundary, the measure-theoretic
transversality condition

H d−1(∂G ∩ ∂Ω) = 0

holds, and ∣∣F0[v] − F0[w]∣∣ < η.

The preceding approximation arguments show that we only need to find a recovery
sequence for u ∈ BV(Ω; {−1, 1}) with the property that E = E−1 ⊂ Ω is of finite
perimeter, has a smooth boundary, and themeasure-theoretic transversality condition

H d−1(∂E ∩ ∂Ω) = 0

holds. Finally, we may further assume that E is in fact open since the boundary ∂E
is a Lebesgue negligible set, on which we may modify the representative of our u
freely.

Step 2. Define for ε > 0 and s ∈ [−1, 1], t ∈ R the functions

ϕε(s) :=
∫ s

−1

ε√
ε + f (r)

dr, ψε(t) :=

⎧⎪⎨
⎪⎩

−1 if t ≤ 0,

ϕ−1
ε (t) if 0 < t < ϕε(1),

1 if ϕε(1) ≤ t .

This is possible since ϕε as defined above is strictly increasing, hence invertible.
Then, with δE : Rd → R defined as in (13.16) for our set E as above, we set

uε(x) := ψε(δE (x) + ηε), x ∈ Ω,

where ηε ∈ [0, ϕε(1)] is chosen such that

∫
Ω

uε(x) dx =
∫

Ω

u(x) dx .

Indeed, since

ψε(δE (x)) ≤ u(x) ≤ ψε(δE (x) + ϕε(1)), x ∈ Ω,

and ψε is continuous, such an ηε always exists. Figure 13.1 illustrates this transition
layer construction. We will show in the following that uε is a recovery sequence for
u.

Step 3. We first prove that uε → u in L1. For this we recall Federer’s coarea
formula, which generalizes Fubini’s theorem: Let w ∈ L1(Ω) and h : Ω → R be
Lipschitz. Then,
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Fig. 13.1 The transition
layer construction

∫
Ω

w(x)|∇h(x)| dx =
∫ +∞

−∞

∫
h−1(t)

w(x) dH d−1(x) dt.

A proof of this result (in a more general form) can be found in Section 2.12 of [15].
In our situation, we first note that if δ(x) ≤ −ηε or δE (x) ≥ ϕε(1) − ηε then

uε(x) = u(x). Define the transition region Δε ⊂ Ω via

Δε := {
x ∈ Ω : − ηε ≤ δE (x) ≤ ϕε(1) − ηε

}
.

Using that |∇δE | = 1 almost everywhere by Lemma 13.9, and Federer’s coarea
formula, we get

∫
Ω

|uε(x) − u(x)| dx =
∫

Δε

∣∣ψε(δE (x) + ηε) − u(x)
∣∣ dx

≤
∫

Δε

(|ψε(δE (x) + ηε)| + 1
) · |∇δE (x)| dx

=
∫ ϕε(1)−ηε

−ηε

(|ψε(t + ηε)| + 1
) · H d−1(St ∩ Ω) dt,

where as in Lemma 13.9 we have set St := { x ∈ R
d : δE (x) = t }. Then, with

g(s) := sup
t∈[−s,s]

H d−1(St ∩ Ω),

we can further estimate (also note 0 ≤ ηε ≤ ϕε(1) and ϕε(1) ≤ 2
√

ε)

∫
Ω

|uε(x) − u(x)| dx ≤ 2ϕε(1)g(ϕε(1)) ≤ 4
√

εg(2
√

ε).
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On the other hand, by Lemma 13.9, g(s) → H d−1(∂E ∩ Ω) < ∞ as s → 0. Thus,
we conclude that uε → u as ε ↓ 0.

Step 4. It remains to show that Fε[uε] → F0[u] as ε ↓ 0. In fact, in light of the
already established lim inf-inequality, it suffices to prove

lim sup
ε↓0

Fε[uε] ≤ F0[u]. (13.23)

Again using Federer’s coarea formula, we get

Fε[uε] =
∫

Δε

1

ε
f (ψε(δE (x) + ηε)) + ε|ψ ′

ε(δE (x) + ηε)|2 dx

=
∫ ϕε(1)−ηε

−ηε

[
1

ε
f (ψε(t + ηε)) + ε|ψ ′

ε(t + ηε)|2
]

· H d−1(St ∩ Ω) dt

≤ g(ϕε(1))
∫ ϕε(1)

0

1

ε
f (ψε(t)) + ε|ψ ′

ε(t)|2 dt.

We also compute

ψ ′
ε(t) = 1

ϕ′
ε(ϕ

−1
ε (t))

=
√

ε + f (ψε(t))

ε
for 0 < t < ϕε(1).

Then, continuing the above estimate,

Fε[uε] ≤ g(ϕε(1))
∫ ϕε(1)

0

1

ε
f (ψε(t)) + ε + f (ψε(t))

ε
dt

≤ 2g(ϕε(1))
∫ ϕε(1)

0

ε + f (ψε(t))

ε
dt

= 2g(ϕε(1))
∫ ϕε(1)

0

√
ε + f (ψε(t)) · ψ ′

ε(t) dt

= 2g(ϕε(1))
∫ 1

−1

√
ε + f (s) ds.

Taking the upper limit of the last expression as ε ↓ 0 using Lemma 13.9, we arrive
at

lim sup
ε↓0

Fε[uε] ≤ 2H d−1(∂E ∩ Ω)

∫ 1

−1

√
f (s) ds = σ0 PerΩ(E) = F0[u].

Here we also employed the fact that H d−1(∂E ∩ Ω) = PerΩ(E) since ∂E ∩ Ω is
smooth. Thus, (13.23) holds. �
Example 13.10. In our phase transition example from Section 1.9, we can now apply
the Modica–Mortola Theorem 13.6 to see that the approximate functionals Fε �-
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converge toF0 as ε ↓ 0 with respect to L1-convergence. We note that the constraint
that u(x) ∈ [α, β] causes no problems since the recovery sequence constructed
in the proof above satisfies this additional requirement anyway. In this sense, the
Fε approximate F0. We have thus shown that the regularized energy functionals
converge to their sharp-interface limit as the strength of the regularization tends to
zero.

13.3 Higher-Order Sharp-Interface Limits

In the theory ofmicrostructure, whichwe presented inChapters 8 and 9, we discussed
how the differential inclusion

{
u ∈ W1,∞(Ω;Rm),

∇u ∈ K in Ω

could be seen as an approximation to the minimization of the integral functional

F [u] :=
∫

Ω

f (∇u(x)) dx

if the set K is chosen as K := { A ∈ R
m×d : f (A) = min f }. In some situa-

tions of interest K consisted of at least two disjoint parts, usually either discrete
points or SO(d)-invariant wells. We saw in Chapter 9 that this could give rise to very
complicated finemicrostructure; in this context also note the Dolzmann–Müller The-
orem 9.13.

If we want to incorporate higher-order energy contributions into our model, we
should instead consider functionals of the (already normalized) form

Fε[u] :=
⎧⎨
⎩
∫

Ω

1

ε
f (∇u(x)) + ε|∇2u(x)|2 dx if u ∈ W2,2(Ω;Rm),

+∞ otherwise,

where f : Rm×d → R has multiple minimizing points or wells, and ε > 0 is a
small parameter modeling the relative strength of the interfacial contribution. An
important question is then whether these functionals �-converge to a limit as ε ↓ 0.
This question turns out to be quite difficult, essentially because the required curl-
freeness of a recovery sequence and the vector-valued nature of the candidate maps
necessitatemore complicated constructions.We only quote the following two results:

Theorem 13.11 (Conti–Fonseca–Leoni 2002 [72]). Let Ω ⊂ R
d be a bounded

and simply-connected Lipschitz domain. Assume that f : Rm×d → [0,∞) is con-
tinuously differentiable, that is, f (A) = 0 if and only if A ∈ {A1, A2}, where
A1, A2 ∈ R

m×d with rank(A1 − A2) = 1, and that f (A) → ∞ as |A| → ∞.
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Furthermore, suppose that the following technical condition holds:

f (A) ≥ f (0|Ad),

where in the matrix (0|Ad) ∈ R
m×d the first (d − 1) columns of A = (A′, Ad) are

replaced with zeros. Then, there is a σ > 0 such that the Fε �-converge as ε ↓ 0
with respect to the strongW1,1-topology to the functional

F0[u] :=

⎧⎪⎨
⎪⎩

σ PerΩ
({x ∈ Ω : ∇u(x) = A1}

)
if u ∈ W1,1(Ω;Rm) and

∇u ∈ BV(Ω; {A1, A2}),
+∞ otherwise.

Theorem 13.12 (Conti–Schweizer 2006 [73]). LetΩ ⊂ R
2 be a bounded Lipschitz

domain that is strictly star-shaped, i.e., there exists an x0 ∈ Ω such that for all y ∈
∂Ω the open segment from x0 to y is contained inΩ . Assume that f : R2×2 → [0,∞)

satisfies the following conditions:

(i) f (QA) = f (A) for all A ∈ R
2×2, Q ∈ SO(2);

(ii) f (A) = 0 if and only if A ∈ K := SO(2)U1∪SO(2)U2 for someU1,U2 ∈ R
2×2

with detU1, detU2 > 0 and such that there exists a matrix Q ∈ SO(2) with
rank(U1 − QU2) = 1;

(iii) f satisfies the quadratic growth condition

μ dist2(A, K ) ≤ f (A) ≤ M dist2(A, K ), A ∈ R
2×2,

for some μ, M > 0.

Then, there is a σ > 0 such that the Fε �-converge as ε ↓ 0 with respect to the
strong L1-topology to the functional

F0[u] :=
⎧⎨
⎩

∫
J∇u

g(n) dH 1 if u ∈ W1,1(Ω;R2) and ∇u ∈ BV(Ω; K ),

+∞ otherwise.

Here, J∇u ⊂ Ω is the jump set of ∇u with unit normal n : J∇u → S
1, and

g(n) := inf {lim inf
n→∞ Fεn [un; Qn] : εn → 0,un → un0 in L

1},

where Qn is the unit-volume square centered at the origin with two faces orthogonal
to n ∈ S

1 and

un0 :=
{
U1 if x · n > 0,

QU2 if x · n < 0,

with Q ∈ SO(2) such that U1 − QU2 = a ⊗ n for some a ∈ R
2.
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Note that by the Dolzmann–Müller Theorem 9.13 any u with F0[u] < ∞ is
locally a simple laminate, so for all normals n to J∇u there exists a vector a ∈ R

2

with U1 − QU2 = a ⊗ n.
An analogous result for the 3D two-well problem is not known at present.

13.4 Periodic Homogenization

We now turn to the investigation of highly-oscillatory integrands. We define for all
ε > 0 the functional

Fε[u] :=
∫

Ω

f
( x

ε
,∇u(x)

)
dx, u ∈ W1,p(Ω;Rm),

where Ω ⊂ R
d is a bounded Lipschitz domain and f : Rd × R

m×d → [0,∞) is a
Carathéodory integrand that satisfies the standard p-growth and coercivity assump-
tion

μ|A|p ≤ f (x, A) ≤ M(1 + |A|p), (x, A) ∈ R
d × R

m×d , (13.24)

for some p ∈ (1,∞) and μ, M > 0, as well as the periodicity condition

x �→ f (x, A) is 1-periodic for all A ∈ R
m×d .

Furthermore, we assume the following local Lipschitz condition:

| f (x, A) − f (x, B)| ≤ C(1 + |A|p−1 + |B|p−1)|A − B| (13.25)

for all x ∈ Ω , A, B ∈ R
m×d and some constant C > 0. We remark that the last

condition is in fact not needed if one follows a more involved proof, see [50, 52].
However, we showed in Lemma 5.6 that (13.25) holds if f (x, �) is quasiconvex for
all x , which is necessary for weak lower semicontinuity by Proposition 5.18. So,
unless we want to consider non-quasiconvex integrands, (13.25) is no restriction.

The main result of this section is the following homogenization theorem:

Theorem 13.13 (Braides 1985 & Müller 1987 [50, 199]). The functionals Fε

�-converge as ε ↓ 0 with respect to the weak W1,p-topology to the functional

F0[u] :=
∫

Ω

fhom(∇u(x)) dx, u ∈ W1,p(Ω;Rm),

where fhom : Rm×d → [0,∞) is the integrand given by the asymptotic homogeniza-
tion formula
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fhom(A) := inf
k∈N

inf
ψ∈W1,p

per ((0,k)d ;Rm )

−
∫

(0,k)d
f (x, A + ∇ψ(x)) dx, A ∈ R

m×d .

Moreover, in the definition of F0 the integrand fhom may equivalently be replaced
by

fhom,0(A) := inf
k∈N

inf
ψ∈W1,p

0 ((0,k)d ;Rm)

−
∫

(0,k)d
f (x, A + ∇ψ(x)) dx, A ∈ R

m×d .

Here, W1,p
per ((0, k)d;Rm) is the space of k-periodic functions in W1,p

loc (Rd;Rm),
namely the W1,p

loc -closure of smooth k-periodic functions. Note that the formula for
fhom,0 does not simplify to the formula (7.1) for the quasiconvex envelope because
the first argument of f is not held fixed. Indeed, it is intuitively evident that the
optimal ψ needs to take into account how f varies in its first argument.

We will establish this theorem via several lemmas. For technical reasons we
first consider F0 to be defined with fhom,0 in place of fhom and then show that
fhom,0 = fhom. In the followingwewill also simplywrite “Fx” for themap x �→ Fx .

Lemma 13.14. Let F ∈ R
m×d . Then, there exists a sequence (uε) ⊂ W1,p

Fx (Ω;Rm)

with uε ⇀ Fx inW1,p as ε ↓ 0 and

F0[Fx] = lim
ε↓0 Fε[uε].

Proof. Fix δ > 0 and choose ψδ ∈ W1,p
0 ((0, k)d;Rm) for some k ∈ N (depending

on δ) such that

fhom,0(F) ≤ −
∫

(0,k)d
f (y, F + ∇ψδ(y)) dy ≤ fhom,0(F) + δ. (13.26)

For η > 0 we denote by Ωη ⊂ Ω the set of all cubes from the regular lattice of open
cubes (0, η)d + ηZd that are contained in Ω . Consider ψδ to be extended to all of
R

d by periodicity and define

uδ,ε(x) :=
{
Fx + εψδ

( x
ε

)
if x ∈ Ωεk ,

Fx if x ∈ Ω \ Ωεk .

We have that uδ,ε ∈ W1,p
Fx (Ω;Rm) and uδ,ε → Fx in Lp as ε ↓ 0.

For every cube Q ∈ (0, εk)d + εkZd that is contained in Ωεk we have

−
∫
Q
f
( x

ε
,∇uδ,ε(x)

)
dx = −

∫
Q
f
( x

ε
, F + ∇ψδ

( x
ε

))
dx

= −
∫

(0,k)d
f (y, F + ∇ψδ(y)) dy.
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Combining this with (13.26) and summing over all cubes Q contained in Ωεk , we
get

|Ωεk | fhom,0(F) ≤
∫

Ωεk

f
( x

ε
,∇uδ,ε(x)

)
dx ≤ |Ωεk |( fhom,0(F) + δ

)
.

We now let ε ↓ 0 and use the growth bound on f together with |Ω \ Ωεk | → 0 to
conclude that

F0[Fx] ≤ lim inf
ε↓0 Fε[uδ,ε] ≤ lim sup

ε↓0
Fε[uδ,ε] ≤ F0[Fx] + δ|Ω|.

Thus, we have

lim
δ↓0 limε↓0

[∣∣Fε[uδ,ε] − F0[Fx]
∣∣ + ‖uδ,ε − Fx‖Lp

] = 0.

Using a diagonal sequence, see Problem 13.6, we can construct a function
δ : (0,∞) → (0,∞) such that for uε := uδ(ε),ε it holds that

Fε[uε] → F0[Fx] and uε → Fx in Lp.

Since by the lower bound in (13.24), we have that (∇uε) is uniformly bounded in
Lp(Ω;Rm×d), we may assume that also uε ⇀ Fx in W1,p (the weak limit is already
determined by uε → Fx in Lp). �

Lemma 13.15. Let (uε) ⊂ W1,p(Ω;Rm) with uε ⇀ Fx in W1,p as ε ↓ 0, where
F ∈ R

m×d . Then,
F0[Fx] ≤ lim inf

ε↓0 Fε[uε].

Proof. Step 1.Assume first thatΩ = Q is an open cube with all edges parallel to the
coordinate axes and side length s > 0. Assume furthermore that the uε all have the
same linear boundary values as the limit, i.e., (uε) ⊂ W1,p

Fx (Q;Rm) with uε ⇀ Fx .
For fixed ε > 0 let k ∈ N be the smallest natural number such that εk ≥ s+ε and

denote by Qε ⊃ Q an open cube with side length kε and such that all vertices of Qε

lie in εZd , i.e., Qε = εz0 + (0, εk)d for some z0 ∈ Z
d . Then extend uε continuously

to Qε by setting
uε(x) := Fx for x ∈ Qε \ Q.

Hence,

∫
Q
f
( x

ε
,∇uε(x)

)
dx =

∫
Qε

f
( x

ε
,∇uε(x)

)
dx −

∫
Qε\Q

f
( x

ε
, F

)
dx .

Since the second term vanishes as ε ↓ 0 by the growth bounds on f and |Qε \ Q| ≤
(s + 2ε)d − sd → 0, we get with the change of variables x = ε(z0 + y) and with
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ψε(x) := uε(x) − Fx ∈ W1,p
0 (Qε;Rm),

ψ̃ε(y) := ψε(ε(z0 + y))

ε
∈ W1,p

0 ((0, k)d;Rm)

that

lim inf
ε↓0

∫
Q
f
( x

ε
,∇uε(x)

)
dx ≥ lim inf

ε↓0

∫
Qε

f
( x

ε
,∇uε(x)

)
dx

= lim inf
ε↓0 (εk)d −

∫
(0,k)d

f
(
y, F + ∇ψε(ε(z0 + y))

)
dy

= lim inf
ε↓0 (εk)d −

∫
(0,k)d

f (y, F + ∇ψ̃ε(y)) dy

≥ lim inf
ε↓0 (εk)d fhom,0(F)

≥ |Q| fhom,0(F).

Here, we also used the definition of fhom,0 and εk ≥ s. This proves the claim if
Ω = Q and (uε) ⊂ W1,p

Fx (Q;Rm).
Step 2.We now assume that Ω is an arbitrary bounded Lipschitz domain, but we

still require that the uε have linear boundary values, that is, (uε) ⊂ W1,p
Fx (Ω;Rm)

with uε ⇀ Fx inW1,p. Let Q � Ω be a cubewith all edges parallel to the coordinate
axes. By the previous lemma applied in the domain Q \ Ω there exists a sequence
(vε) ⊂ W1,p

Fx (Q \ Ω;Rm) with vε ⇀ Fx in W1,p and

∫
Q\Ω

f
( x

ε
,∇vε(x)

)
dx → |Q \ Ω| fhom,0(F) as ε ↓ 0. (13.27)

Define for ε > 0,

wε(x) :=
{
uε(x) if x ∈ Ω ,

vε(x) if x ∈ Q \ Ω.

These maps lie in W1,p(Q;Rm) since the boundary values agree over the gluing
boundary. By Step 1 we have that

|Q| fhom,0(F) ≤ lim inf
ε↓0

∫
Q
f
( x

ε
,∇wε(x)

)
dx .

Hence, combining this with (13.27), we arrive at

F0[Fx] ≤ lim inf
ε↓0 Fε[uε].

Step 3. Finally, we remove the restriction on the boundary values via a cut-off
procedure. So, suppose that (uε) ⊂ W1,p(Ω;Rm) with uε ⇀ Fx in W1,p. Then let
n ∈ N and let Ω0 � Ω be Lipschitz subdomain. With R := dist(Ω0, ∂Ω) set
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Ωi :=
{
x ∈ Ω : dist(x,Ω0) <

i R

n

}
for i = 1, . . . , n.

Next, choose cut-off functions ρi ∈ C∞
0 (Ω; [0, 1]) such that

1Ωi−1 ≤ ρi ≤ 1Ωi , |∇ρi | ≤ 2n

R

and set
u(i)

ε (x) := Fx + ρi (x)(uε(x) − Fx), x ∈ Ω,

for which

∇u(i)
ε (x) = F + ρi (x)(∇uε(x) − F) + (uε(x) − Fx) ⊗ ∇ρi (x).

From the growth bound on f we get, with an i, n-independent constant C > 0,

Fε[u(i)
ε ] =

∫
Ωi−1

f
( x

ε
,∇uε(x)

)
dx

+
∫

Ωi\Ωi−1

f
( x

ε
,∇u(i)

ε (x)
)
dx +

∫
Ω\Ωi

f
( x

ε
, F

)
dx

≤
∫

Ω

f
( x

ε
,∇uε(x)

)
dx

+ C
∫

Ωi\Ωi−1

1 + |F |p + |∇uε(x) − F |p +
(2n
R

)p|uε(x) − Fx |p dx
+ C(1 + |F |p)|Ω \ Ωi |

≤ Fε[uε] + C
∫

Ωi\Ωi−1

|∇uε(x) − F |p dx + C
(2n
R

)p‖uε − Fx‖p
Lp

+ C |Ω \ Ω0|.

On the other hand, u(i)
ε ⇀ Fx in W1,p and so, by Step 2,

F0[Fx] ≤ lim inf
ε↓0 Fε[u(i)

ε ]

≤ lim inf
ε↓0

[
Fε[uε] + C

∫
Ωi\Ωi−1

|∇uε − F |p dx
]

+ C |Ω \ Ω0|.

Now sum this over i = 1, . . . , n, use the superadditivity of the lower limit (that is,
lim inf j→∞ a j + lim inf j→∞ b j ≤ lim inf j→∞(a j + b j )), and divide by n to see that

F0[Fx] ≤ lim inf
ε↓0 Fε[uε] + C

n
· lim sup

ε↓0

∫
Ω

|∇uε − F |p dx + C |Ω \ Ω0|.

Then we may let n → ∞ and Ω0 ↑ Ω , that is, |Ω \ Ω0| → 0, to conclude. �
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Lemma 13.16. The integrand fhom,0 : Rm×d → [0,∞) from Theorem 13.13 satis-
fies the growth condition (13.24) and the local Lipschitz condition (13.25).

Proof. Step 1. Since ψ = 0 is admissible in the definition of fhom,0, we immediately
have fhom,0(x, A) ≤ M(1+ |A|p). For the lower bound at A ∈ R

m×d , fix δ > 0 and
choose ψδ ∈ W1,p

0 ((0, k)d;Rm) for some k ∈ N (depending on δ) such that

fhom,0(A) + δ ≥ −
∫

(0,k)d
f (y, A + ∇ψδ(y)) dy.

Then we can estimate, using (13.24) for f and Jensen’s inequality,

fhom,0(A) + δ ≥ μ−
∫

(0,k)d
|A + ∇ψδ(y)|p dy ≥ μ|A|p,

which for δ ↓ 0 establishes the lower bound in (13.24) for fhom,0.
Step 2. To show the local Lipschitz condition (13.25) for fhom,0, we fix A, B ∈

R
m×d and use Lemma 13.14 on the domain (0, 1)d to get a (recovery) sequence

(uε) ⊂ W1,p((0, 1)d;Rm) with uε ⇀ Ax in W1,p and

fhom,0(A) =
∫

(0,1)d
fhom,0(A) dx = lim

ε↓0

∫
(0,1)d

f
( x

ε
,∇uε(x)

)
dx .

From (13.24) for fhom,0 (proved in Step 1) we infer that

lim sup
ε↓0

‖∇uε‖p
Lp ≤ 1

μ
fhom,0(A) ≤ M

μ
(1 + |A|p). (13.28)

Define
vε(x) := (B − A)x + uε(x), x ∈ (0, 1)d .

It is straightforward to see that

lim sup
ε↓0

‖∇vε‖p
Lp ≤ C

(‖∇uε‖p
Lp + |A|p + |B|p) ≤ C(1 + |A|p + |B|p). (13.29)

Furthermore, since vε ⇀ Bx in W1,p, Lemma 13.15 implies

fhom,0(B) =
∫

(0,1)d
fhom,0(B) dx ≤ lim inf

ε↓0

∫
(0,1)d

f
( x

ε
,∇vε(x)

)
dx .

Thus, also using the local Lipschitz continuity (13.25) for f ,
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fhom,0(B) − fhom,0(A)

≤ lim inf
ε↓0

∫
(0,1)d

f
( x

ε
,∇vε(x)

)
− f

( x
ε
,∇uε(x)

)
dx

≤ C · lim inf
ε↓0

∫
(0,1)d

(1 + |∇uε(x)|p−1 + |∇vε(x)|p−1) · |∇uε(x) − ∇vε(x)| dx

≤ C · lim sup
ε↓0

(
1 + ‖∇uε‖p

Lp + ‖∇vε‖p
Lp

)(p−1)/p · |A − B|

≤ C(1 + |A|p−1 + |B|p−1)|A − B|,

where we also used (13.28), (13.29) and Hölder’s inequality. Interchanging the roles
of A and B, we have thus shown (13.25) for fhom,0. �
Lemma 13.17. It holds that fhom = fhom,0.

Proof. Clearly, fhom ≤ fhom,0 since W1,p
0 ((0, k)d;Rm) is contained in the space

W1,p
per ((0, k)d;Rm).
To see the other inequality, let A ∈ R

m×d , ψ ∈ W1,p
per ((0, k)d;Rm) and define

uε(x) := Ax + εψ
( x

ε

)
, x ∈ (0, k)d .

Since uε ⇀ Ax in W1,p, we can apply Lemma 13.15 on the domain (0, 1)d to the
left-hand side to deduce that

fhom,0(A) ≤ lim inf
ε↓0

∫
(0,1)d

f
( x

ε
,∇uε(x)

)
dx

= lim inf
ε↓0 −

∫
(0,ε−1)d

f (y, A + ∇ψ(y)) dy

= −
∫

(0,k)d
f (y, A + ∇ψ(y)) dy.

Here, for the second to last equality we utilized the oscillatory nature of the
function f (x/ε,∇uε(x)), see Problem 13.5. Taking the infimum over all ψ ∈
W1,p

per ((0, k)d;Rm), we arrive at

fhom,0(A) ≤ fhom(A),

which is the claim. �
Proof of Theorem 13.13. Step 1: Liminf-inequality. Let uε ⇀ u in W1,p(Ω;Rm).
Given δ > 0, it can be seen that there exists a finite partition of Ω into disjoint open
sets Ωi ⊂ Ω , i = 1, . . . , N , and a negligible set Z ⊂ Ω , that is,

Ω = Z ∪
N⋃
i=1

Ωi , |Z | = 0,
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such that

N∑
i=1

∫
Ωi

|∇u(x) − Ai |p dx < δ p, (13.30)

where

Ai := [∇u]Ωi = −
∫

Ωi

∇u dx .

Then set

vε(x) := Ai x + uε(x) − u(x) if x ∈ Ωi (i = 1, . . . , N ).

It is obvious that vε ⇀ Ai x in W1,p(Ωi ;Rm).
Below we will show the estimates

∣∣∣∣Fε[uε] −
N∑
i=1

∫
Ωi

f
( x

ε
,∇vε(x)

)
dx

∣∣∣∣ ≤ Cδ, (13.31)

∣∣∣∣F0[u] −
N∑
i=1

∫
Ωi

fhom(Ai ) dx

∣∣∣∣ ≤ Cδ (13.32)

for some constant C > 0 that does not depend on ε or δ. From Lemma 13.15
(extended to affine maps, which is trivial) in conjunction with Lemma 13.17, we get

N∑
i=1

∫
Ωi

fhom(Ai ) dx ≤ lim inf
ε↓0

N∑
i=1

∫
Ωi

f
( x

ε
,∇vε(x)

)
dx .

Thus, combining this with (13.31) and (13.32),

F0[u] ≤ lim inf
ε↓0 Fε[uε] + Cδ.

As δ > 0 was arbitrary, we arrive at the lim inf-inequality.
It remains to show (13.31) and (13.32). For the first assertion we estimate, using

the local Lipschitz continuity (13.25) of f and Hölder’s inequality for sums, that

∣∣∣∣Fε[uε] −
N∑
i=1

∫
Ωi

f
( x

ε
,∇vε(x)

)
dx

∣∣∣∣

≤
N∑
i=1

∫
Ωi

∣∣∣∣ f
( x

ε
,∇uε(x)

)
− f

( x
ε
,∇vε(x)

)∣∣∣∣ dx

≤ C
N∑
i=1

∫
Ωi

(
1 + |∇uε(x)|p−1 + |∇vε(x)|p−1

)|∇uε(x) − ∇vε(x)| dx
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≤ C
N∑
i=1

[∥∥1 + |∇uε| + |∇vε|
∥∥p−1
Lp(Ωi )

·
(∫

Ωi

|∇u(x) − Ai |p dx
)1/p

]

≤ C
∥∥1 + |∇uε| + |∇vε|

∥∥p−1
Lp(Ω)

·
( N∑

i=1

∫
Ωi

|∇u(x) − Ai |p dx
)1/p

≤ Cδ,

where for the last estimate we also employed (13.30). The second assertion is shown
in a similar fashion using Lemma 13.16.

Step 2: Recovery sequence. Let u ∈ W1,p(Ω;Rm). Then, for every δ > 0 there
exists a uδ ∈ W1,p(Ω;Rm) that is countably piecewise affine and such that ‖u −
uδ‖W1,p < δ (see Theorem A.29). By the same estimate (based on Lemma 13.16) as
above, we get

∣∣F0[uδ] − F0[u]∣∣ ≤ C
(
1 + ‖∇uδ‖p

Lp + ‖∇u‖p
Lp

)(p−1)/p‖∇uδ − ∇u‖Lp

→ 0 as δ ↓ 0.

Suppose that Ω = Z ∪ ⋃
i Ωi is a decomposition of Ω , up to the negligible set

Z , into disjoint open patches Ωi (i ∈ N), on every one of which uδ is affine, say
∇uδ(x) = Ai ∈ R

m×d for x ∈ Ωi . We remark that the Ωi of course depend on δ, but
we suppress this in our notation, which should not cause any confusion. Now apply
Lemma 13.14 (extended to affine maps) in conjunction with Lemma 13.17 in every
Ωi separately to get sequences (u(i)

δ,ε) ⊂ W1,p(Ωi ;Rm) with u(i)
δ,ε|∂Ωi = uδ|∂Ωi and

u(i)
δ,ε ⇀ uδ in W1,p(Ωi ;Rm) as ε ↓ 0 (δ held fixed) as well as

lim
ε↓0

∫
Ωi

f
( x

ε
,∇u(i)

δ,ε(x)
)
dx = |Ωi | fhom(Ai ).

Then set
uδ,ε(x) := u(i)

δ,ε(x) if x ∈ Ωi (i ∈ N).

It holds that uδ,ε ⇀ uδ in W1,p as ε ↓ 0 and

lim
ε↓0

∫
Ω

f
( x

ε
,∇uδ,ε(x)

)
dx =

∫
Ω

fhom(∇uδ(x)) dx . (13.33)

For
vδ,ε := uδ,ε + u − uδ

we have vδ,ε ⇀ u in W1,p as ε ↓ 0 and δ held fixed.
From the Lipschitz assumption (13.25) wemay derive the equicontinuity property

∣∣Fε[uδ,ε] − Fε[vδ,ε]
∣∣ ≤ C

(
1 + ‖∇uδ,ε‖p

Lp + ‖∇uδ,ε‖p
Lp

)(p−1)/p‖∇uδ,ε − ∇vδ,ε‖Lp

≤ C‖∇u − ∇uδ‖Lp .
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Thus, also using (13.33),

lim sup
ε↓0

Fε[vδ,ε] ≤ lim sup
ε↓0

Fε[uδ,ε] + Cδ ≤ F0[uδ] + Cδ.

In a similar fashion (with Lemma 13.16 replacing (13.25)) one also gets

F0[uδ] − Cδ ≤ lim inf
ε↓0 Fε[vδ,ε].

Consequently,
lim
δ↓0 limε↓0 Fε[vδ,ε] = F0[u].

Thus we can finish the proof by the diagonal argument from Problem 13.6, just like
in the proof of Lemma 13.14. �

13.5 Convex Homogenization

In the convex case, the homogenization formula from Theorem 13.13 simplifies and
we have the following theorem.

Theorem 13.18 (Marcellini 1978 [179]). In the situation of Theorem 13.13, if addi-
tionally A �→ f (x, A) is assumed to be convex for almost every x ∈ Ω , then the
asymptotic homogenization formula simplifies to the cell problem formula

fhom(A) = inf
ϕ∈W1,p

per ((0,1)d ;Rm)

∫
(0,1)d

f (x, A + ∇ϕ(x)) dx, A ∈ R
m×d .

Remark 13.19. This result for the convex case also holds for more general upper
growth assumptions on f than the one in (13.24), but then the proof becomes more
involved, see [199]. Moreover, for the scalar case m = 1, the convexity condition is
not necessary, see Problem 13.9.

Proof. Let

f̂hom(A) := inf
ϕ∈W1,p

per ((0,1)d ;Rm )

∫
(0,1)d

f (x, A + ∇ϕ(x)) dx, A ∈ R
m×d .

We will show in the following that

inf
ψ∈W1,p

per ((0,k)d ;Rm )

−
∫

(0,k)d
f (x, A + ∇ψ(x)) dx ≥ f̂hom(A) (13.34)

for every A ∈ R
m×d and every k ∈ N. From this the conclusion follows immediately

since fhom ≤ f̂hom is trivially true.
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By Problem 13.8 we may assume that f is smooth in its second argument. Since
the values of both fhom and f̂hom are defined via minimization problems with convex,
coercive integrands, by Theorem 2.7 there exist minimizers ψ∗ ∈ W1,p

per ((0, k)d;Rm)

and ϕ∗ ∈ W1,p
per ((0, 1)d;Rm), respectively. Moreover, by a slight modification of

Theorem 3.1 for periodic spaces of candidate functions, we have the Euler–Lagrange
equation

∫
(0,1)d

DA f (x, A + ∇ϕ∗(x)) : ∇w(x) dx = 0 for all w ∈ W1,p
per ((0, 1)

d;Rm),

see Problem 13.7. From the convexity of f we then get

∫
(0,k)d

f (x, A + ∇ψ∗(x)) − f (x, A + ∇ϕ∗(x)) dx

≥
∫

(0,k)d
DA f (x, A + ∇ϕ∗(x)) : [∇ψ∗(x) − ∇ϕ∗(x)] dx .

Set v := ψ∗ − ϕ∗ and write the right-hand side as follows, using the 1-periodicity of
ϕ∗ and of f with respect to the first argument,

∫
(0,k)d

DA f (x, A + ∇ϕ∗(x)) : ∇v(x) dx

=
∑

z∈{0,...,k−1}d

∫
(0,1)d

DA f (x + z, A + ∇ϕ∗(x + z)) : ∇v(x + z) dx

=
∫

(0,1)d
DA f (x, A + ∇ϕ∗(x)) : ∇w(x) dx,

where
w(x) :=

∑
z∈{0,...,k−1}d

v(x + z), x ∈ (0, 1)d .

Then, w is 1-periodic, as can be checked easily, and thus, by the Euler–Lagrange
equation,

∫
(0,k)d

f (x, A + ∇ψ∗(x)) − f (x, A + ∇ϕ∗(x)) dx

≥
∫

(0,k)d
DA f (x, A + ∇ϕ∗(x)) : ∇w(x) dx

= 0.

This shows (13.34) and completes the proof. �



400 13 �-Convergence

We remark that in the general non-convex case the reduction to the cell problem
on (0, 1)d is not possible. A counterexample can be found in [199] or in Section 14.4
of [52].

13.6 Quadratic Homogenization

Finally, we give a more concrete formula for fhom in the case when f is quadratic.

Theorem 13.20. In the situation of Theorem 13.13 (for p = 2), assume that f has
the form

f (x, A) = A : S(x) A, (x, A) ∈ R
d × R

m×d ,

with a symmetric, uniformly positive definite, and 1-periodic fourth-order tensor field
S(x) = Sikjl(x) that is measurable in x ∈ R

d . Then, there exists a symmetric and
positive definite fourth-order tensor Shom = [Shom]ikjl such that

fhom(A) = A : Shom A, A ∈ R
m×d .

Moreover, the entries [Shom]ikjl (i, k ∈ {1, . . . ,m}, j, l ∈ {1, . . . , d}) of the tensor
Shom are given as

[Shom]ikjl =
∫

(0,1)d
(ei ⊗ e j + ∇ϕi, j (x)) : S(x) (ek ⊗ el + ∇ϕk,l(x)) dx, (13.35)

where ϕi, j ∈ W1,2
per((0, 1)

d;Rm) is the (unique up to constants) weak solution of the
cell problem PDE

{
− div

[
S(x)(ei ⊗ e j + ∇ϕi, j (x))

] = 0, x ∈ (0, 1)d ,

ϕi, j has periodic boundary values.

We also explicitly formulate this theorem for the scalar case:

Corollary 13.21. In the situation of Theorem 13.13 (for p = 2), assume that m = 1
and that f has the form

f (x, ξ) = ξ T S(x) ξ, (x, ξ) ∈ R
d × R

d ,

with a symmetric, uniformly positive definite, and 1-periodic measurable matrix
function S : Rd → R

d×d . Then, there exists a symmetric and positive definite matrix
Shom ∈ R

d×d such that

fhom(ξ) = ξ T Shom ξ, ξ ∈ R
d .
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Moreover, the entries [Shom]kl (k, l ∈ {1, . . . , d}) of the matrix Shom are given as

[Shom]kl =
∫

(0,1)d
(ek + ∇ϕk(x))

T S(x) (el + ∇ϕl(x)) dx, (13.36)

where ϕk ∈ W1,2
per((0, 1)

d) is the (unique up to constants) weak solution of the cell
problem PDE

{
− div

[
S(x)(ek + ∇ϕk(x))

] = 0, x ∈ (0, 1)d ,

ϕk has periodic boundary values.

We will use the following elementary characterization of quadratic forms, whose
proof is the task of Problem 13.10.

Lemma 13.22. Let X be a Banach space and let F : X → [0,∞). Then, F is a
quadratic form, that is, F(x) = B(x, x) with B : X × X → R bilinear, if and only
if it satisfies the following conditions:

(i) F(0) = 0;
(ii) F(t x) = t2F(x) for all x ∈ X, t > 0;
(iii) F(x + y) + F(x − y) ≤ 2F(x) + 2F(y) for every x, y ∈ X.

From the preceding lemma we may infer an abstract result about �-convergence:

Proposition 13.23. Let X be a Banach space and let Fk : X → [0,∞), k ∈ N,
be positive definite quadratic forms that �-converge to F∞ : X → R. Then, F∞ is
also a positive definite quadratic form.

Proof. It is easy to see that F∞ ≥ 0. We will show the conditions (i)–(iii) of
Lemma 13.22 forF∞.

For (i), we notice by the lim inf-inequality that

F∞[0] ≤ lim inf
j→∞ Fk[0] = 0.

Thus F∞[0] = 0.
For (ii), let u ∈ X and t > 0. Take a recovery sequence (uk) ⊂ X of u. Clearly,

tuk → tu in X . Thus, using the lim inf-inequality, the positive 2-homogeneity of the
Fk’s, and the recovery property of (uk),

F∞[tu] ≤ lim inf
k→∞ Fk[tuk] = t2 · lim

k→∞Fk[uk] = t2F∞[u].

Hence,

F∞[u] ≤ 1

t2
F∞[tu] ≤ F∞[u],

from which we conclude that F∞[tu] = t2F∞[u].
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Finally, for (iii), we take u, v ∈ X and let (uk), (vk) ⊂ X be recovery sequences
for u and v, respectively, Then it suffices to observe by the lim inf-inequality and the
recovery property of (uk), (vk) together with property (iii) forFk that

F∞[u + v] + F∞[u − v] − 2F∞[u] − 2F∞[v]
≤ lim inf

j→∞
(
Fk[uk + vk] + Fk[uk − vk] − 2Fk[uk] − 2Fk[vk]

)

≤ 0.

This shows (iii) for F∞. Hence, by Lemma 13.22, F∞ is a quadratic form. �

Proof of Theorem 13.20. Via Proposition 13.23 we immediately have

fhom(A) = A : Shom A =
m∑

i,k=1

d∑
j,l=1

[Shom]ikjl Ai
j A

k
l

for a positive definite fourth-order tensor Shom = [Shom]ikjl as in the statement of the
theorem. It only remains to show the formula (13.35).

From Marcellini’s Theorem 13.18 we know that for A ∈ R
m×d it holds that

fhom(A) = inf
ϕ∈W1,p

per ((0,1)d ;Rm )

∫
(0,1)d

(A + ∇ϕ(x)) : S(x) (A + ∇ϕ(x)) dx .

The minimizer ϕA ∈ W1,p
per ((0, 1)d;Rm) to this minimization problem exists, is

unique up to constants (by a suitable adaptation of Proposition 2.10), and satisfies
the Euler–Lagrange equation (see Problem 13.7)

− div
[
S(x)(A + ∇ϕA(x))

] = 0, x ∈ (0, 1)d ,

weakly (with the row-wise divergence). Moreover, ϕA is linear in the matrix A ∈
R

m×d , as can be seen directly from the Euler–Lagrange equation. Thus, abbreviating

ϕi, j := ϕei⊗e j ,

we may write

ϕA =
m∑
i=1

d∑
j=1

Ai
jϕi, j .
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Hence,

fhom(A) =
m∑

i,k=1

d∑
j,l=1

[Shom]ikjl Ai
j A

k
l

=
∫

(0,1)d
(A + ∇ϕA(x)) : S(x) (A + ∇ϕA(x)) dx .

Thus, fhom(A) is equal to

m∑
i,k=1

d∑
j,l=1

(∫
(0,1)d

(ei ⊗ e j + ∇ϕi, j (x)) : S(x) (ek ⊗ el + ∇ϕk,l(x)) dx

)
Ai

j A
k
l ,

which implies (13.35). �

Example 13.24. We now consider the scalar case as in Corollary 13.21 and assume
furthermore that

S(x) = h1(x1) · · · hd(xd)Id, x ∈ R
d ,

where all h1, . . . , hd : R → [0,∞) are 1-periodic Borel functions such that there
exist constants α, β > 0 with α ≤ hi ≤ β. In this case, we use the formula (13.36)
to infer that

[Shom]kk =
∫

(0,1)d
h1(x1) · · · hd(xd) |ek + ∇ϕk(x))|2 dx, (13.37)

where ϕk ∈ W1,2
per((0, 1)

d) is the (unique up to additive constants) weak solution of
the cell problem

− div
[
h1(x1) · · · hd(xd)(ek + ∇ϕk(x))

] = 0, x ∈ (0, 1)d . (13.38)

We can also deduce that, with a slight abuse of notation, ϕk(x) = ϕk(xk). Indeed,
choosing the ansatz that ϕk only depends on xk , the cell problem reads

[hk(s)(1 + ϕ′
k(s))]′ = 0, s ∈ (0, 1), (13.39)

which has a unique periodic solution (up to additive constants). Since the solution
to (13.38) is unique (up to additive constants), itmust be given by thisϕk(x) = ϕk(xk).
From the special structure of ϕk , we then deduce that

[Shom]kl =
∫

(0,1)d
h1(x1) · · · hd(xd)(ek · el) dx = 0 if k �= l.

Furthermore, as a consequence of (13.39),

hk(s)(1 + ϕ′
k(s)) ≡ const,
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and since
∫ 1
0 1 + ϕ′

k ds = 1, we may conclude that

1 + ϕ′
k(t) = 1

hk(t)

(∫ 1

0

1

hk(s)
ds

)−1

.

Plugging this into (13.37), we calculate

[Shom]kk =
∫

(0,1)d
h1(x1) · · · hd(xd) 1

hk(xk)2

(∫ 1

0

1

hk(s)
ds

)−2

dx

= h1 · · · hk−1 · hk · hk+1 · · · hd ,

where we denoted the arithmetic mean of hi by

hi :=
∫ 1

0
hi (s) ds

and the harmonic mean of hi by

hi :=
(∫ 1

0

1

hi (s)
ds

)−1

.

Example 13.25. In Section 1.10 we were led to identify the variational limit as ε ↓ 0
of the functionals

Fε[u] :=
∫

Ω

1

2
E u(x) : C

( x
ε

)
E u(x) − b(x) · u(x) dx

=
∫

Ω

f
( x

ε
,∇u(x)

)
− b(x) · u(x) dx,

where
C(x) = C1 + (C2 − C1)h(x1), x ∈ R

3,

and

h(t) :=
{
0 if t − �t� ≤ θ ,

1 if t − �t� > θ ,

for some θ ∈ (0, 1), and b ∈ L2(Ω;R3) (say). From Theorem 13.20 in conjunction
with the straightforward fact that the addition of strongly continuous ε-independent
functionals commutes with �-convergence, we infer that indeed theFε �-converge
with respect to the weak topology in W1,2(Ω;R3) to the functional

F0[u] =
∫

Ω

1

2
E u(x) : Chom E u(x) − b(x) · u(x) dx
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for some symmetric and positive definite fourth-order tensor Chom = [Chom]ikjl .
We finally consider the special case when

C1 = α I, C2 = β I

where α, β > 0 and I denotes the tensor such that A : IB = A : B (that is,
Iikjl = δikδ jl ). In this case, a simple computation shows that

f (x, A) = (
α + (β − α)h(x1)

)|A|2, (x, A) ∈ R
3 × R

3×3.

Then, we can adapt the previous example to see that

[Chom]i i11 =
(

θ

α
+ 1 − θ

β

)−1

,

[Chom]i ij j = θα + (1 − θ)β if j �= 1,

and [Chom]ikjl = 0 for all other values of i, j, k, l. Equivalently,

[Chom]ikjl = δikδ jl

[(
θ

α
+ 1 − θ

β

)−1

δ j1 + (
θα + (1 − θ)β

)
(1 − δ j1)

]
.

In particular, Chom can no longer be written as γ I for some γ ∈ R. This is also not
surprising since the anisotropic lamination structure (in the first coordinate direction)
is reflected in Chom.

Notes and Historical Remarks

The theory of �-convergence was founded by Ennio De Giorgi in the 1970s and
nowadays is widely used in the calculus of variations. All results from Section 13.1
are essentially due to De Giorgi, see [89]. The book [51] provides a first introduction
to�-convergencewithmany applications to homogenization theory, phase transition,
and free discontinuity problems. The encyclopedic work [82] treats �-convergence
in general topological spaces and also considers many applications to integral func-
tionals.

For theModica–Mortola Theorem 13.6 we closely follow the original works [189,
190], with someminormodifications. Our proof of Theorem13.13 is the one in [199],
which was obtained independently of Braides’ proof in [50].

Another powerful technique in the theory of �-convergence is the compactness
method: It can often be shown by a compactness argument that the �-limit of a
(sub)sequence of integral functionals exists as some abstract functional. The task
is then to identify this �-limit. For this, one can use a technique, which seems
to be due to De Giorgi–Letta, Fusco, and Braides, where one first shows that the
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�-limit parametrized on the domain is a measure, which then in a further step is
seen to be given by an integral. The book [52] uses this technique to present many
homogenization results in a unified framework. In fact, Chapter 14 of [52] proves
Theorem 13.13 and several extensions using this technique.

In a non-variational context, that is, on the level of PDEs, several techniques
have been developed for homogenization, which can also cope with completely
non-periodic situations. We only mention G-convergence (see [82]), H-convergence
(see [8]) and two-scale convergence (see [216] and also [8]). Here also the Div-curl
Lemma 8.32 finds its natural home.

Problems

13.1. Let X be a complete metric space. Show that the �-limit of the functionals
Fk : X → R, k ∈ N, if it exists, is uniquely determined.

13.2. Show that for a sequence (u j ) ⊂ BV(Ω) and u ∈ L1(Ω) with u j → u in L1

it holds that
|Du|(Ω) ≤ lim inf

j→∞ |Du|(Ω).

Also show that the perimeter PerΩ(E) is lower semicontinuous with respect to the
convergence of sets E j → E defined as 1E j → 1E in L1(Ω). Hint: Write the total
variation norm and the perimeter as a supremum over L1-continuous functionals.

13.3. LetFk : X → R ∪ {+∞}, k ∈ N, be equicoercive functionals on a complete
metric space. Prove that �-lim infk Fk admits a minimizer and that

min
X

�-lim infk Fk = lim inf
k→∞ inf

X
Fk .

Also show that
lim sup
k→∞

inf
X
Fk ≤ inf

X
�-lim supk Fk .

Find a sequence of equicoercive functionals such that the �-upper limit does not
fulfill the reverse inequality (this is contrary to the situation for the �-lower limit).

13.4. Find a non-separable and complete metric space (X, d) and a sequence of
functionalsFk : X → R∪{+∞} such that no subsequence of theFk’s�-converges.
Hint: Consider X := {−1, 1}N and observe that �-convergence in X is equivalent to
pointwise convergence.

13.5. Prove that if g ∈ Lp
loc(R

d) is k-periodic for some k ∈ N, then the maps
hε(x) := g(x/ε) converge weakly in L1

loc to the constant map

h0(x) := −
∫

(0,k)d
g(y) dy, x ∈ R

d .

Hint: Inspect the proof of Lemma 4.15.
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13.6. Let f : (0,∞)×(0,∞) → R. Show that there exists a function δ : (0,∞) →
(0,∞) such that δ(ε) → 0 as ε ↓ 0 and

lim sup
ε↓0

f (ε, δ(ε)) ≤ lim sup
δ↓0

lim sup
ε↓0

f (ε, δ).

13.7. Let f be as in Marcellini’s Homogenization Theorem 13.18. Show that the
problem ⎧⎪⎨

⎪⎩
Minimize

∫
(0,1)d

f (x, F + ∇ϕ(x)) dx

over all ϕ ∈ W1,p
per ((0, 1)

d;Rm)

has a solution ϕ∗ ∈ W1,p
per ((0, 1)d;Rm). Moreover, prove that ϕ∗ is a weak solution

of the Euler–Lagrange equation

− div
[
DA f (x, F + ∇ϕ∗(x))

] = 0, x ∈ (0, 1)d ,

that is,

∫
Ω

DA f (x, F + ∇ϕ∗(x)) : ∇ψ(x) dx = 0 for all ψ ∈ W1,p
per ((0, 1)

d;Rm).

13.8. LetΩ ⊂ R
d be a bounded Lipschitz domain and let f : Rd ×R

m×d → [0,∞)

be a Carathéodory integrand. Define the partial regularization fδ : Rd ×R
m×d →

[0,∞) of f as

fδ(x, A) :=
∫

ηδ(A − B) f (x, B) dB, (x, A) ∈ R
d × R

m×d ,

where (ηδ)δ>0 is a radially symmetric and positive family of mollifiers on R
m×d .

Show that fδ → f pointwise. Show also that if f satisfies any of the following
conditions, then so does fδ:

(i) μ|A|p ≤ f (x, A) ≤ M(1 + |A|p) for all (x, A) ∈ R
d × R

m×d and some
p ∈ (1,∞), μ, M > 0;

(ii) x �→ f (x, A) is 1-periodic for all A ∈ R
m×d ;

(iii) | f (x, A) − f (x, B)| ≤ C(1+ |A|p−1 + |B|p−1)|A− B| for all x ∈ Ω , A, B ∈
R

m×d and some C > 0.

13.9. In the situation of Marcellini’s Homogenization Theorem 13.18, show that if
m = 1 then

fhom(A) = inf
ϕ∈W1,p

per ((0,k)d )

∫
(0,k)d

f ∗∗(x, A + ∇ϕ(x)) dx,
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where f ∗∗ denotes the convex envelope of f with respect to the second argument.
Conclude that for m = 1 Marcellini’s Homogenization Theorem 13.18 also holds
without assuming the convexity of f in the second argument. Hint: Extend a relax-
ation theorem to periodic integrands.

13.10. Prove Lemma 13.22.



Appendix A
Prerequisites

This appendix recalls some notation and results that are needed throughout the book.

A.1 Linear Algebra

We first review some facts from linear algebra and matrix analysis, see [151] for an
advanced course.

For a (m × d)-matrix A ∈ R
m×d we denote by A j

k the element in the j’th row
and k’th column ( j = 1, . . . ,m; k = 1, . . . , d). In this book the matrix space Rm×d

always comes equipped with the Frobenius matrix (inner) product

A : B := tr(AT B) = tr(ABT ) =
∑

j,k

A j
k B

j
k , A, B ∈ R

m×d ,

which is just the Euclidean product if we identify such matrices with vectors inRmd .
This inner product induces the Frobenius matrix norm

|A| :=
√∑

j,k

(A j
k )

2, A ∈ R
m×d .

While of course all norms on the finite-dimensional space R
m×d are equivalent,

some finer arguments require us to specify a matrix norm; if nothing else is stated,
we always use the Frobenius norm.

The Frobenius norm can also be expressed as

|A| =
√∑

i

σi (A)2, A ∈ R
m×d ,

© Springer International Publishing AG, part of Springer Nature 2018
F. Rindler, Calculus of Variations, Universitext,
https://doi.org/10.1007/978-3-319-77637-8
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where σi (A) ≥ 0 is the i’th singular value of A, i = 1, . . . ,min{d,m}. For this,
recall that every matrix A ∈ R

m×d has a (real) singular value decomposition

A = PΣQT

for orthogonal matrices P ∈ R
m×m , Q ∈ R

d×d (P−1 = PT , Q−1 = QT ), and a
diagonal matrix

Σ = diag(σ1, . . . , σmin{d,m}) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .

σmin{d,m}
0 · · · 0
...

...

0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×d

with only positive diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = σr+2 = · · · = σmin{d,m},

called the singular values of A, where r is the rank of A.
From the above expression using the singular values, it follows immediately that

the Frobenius norm is orthogonally invariant, that is, for all A ∈ R
m×d and all

orthogonal P ∈ R
m×m , Q ∈ R

d×d it holds that

|PA| = |A| = |AQ|.

A special matrix in R
m×d is the tensor product of the vectors a ∈ R

m , b ∈ R
d ,

which is defined as
a ⊗ b := abT ∈ R

m×d .

Occasionally, we will also use a ⊗ b for a a column vector and b a row-vector to
denote the matrix product ab. While technically incorrect, this notation emphasizes
that the result is a matrix. We recall the following elementary fact: Let A ∈ R

m×d .
Then, rank A ≤ 1 if and only if there exist vectors a ∈ R

m , b ∈ R
d such that

A = a ⊗ b. The tensor product also interacts well with the Frobenius norm:

|a ⊗ b| = |a| · |b|, a ∈ R
m, b ∈ R

d ,

where in Rm and R
d we use the usual Euclidean norm.

A fundamental inequality involving the determinant is theHadamard inequality:
Let A ∈ R

d×d with columns A j ∈ R
d ( j = 1, . . . , d). Then,
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| det A| ≤
d∏

j=1

|A j | ≤ |A|d .

An analogous formula holds with the rows of A.
For A ∈ R

d×d the cofactor matrix cof A ∈ R
d×d of A is the matrix whose

( j, k)’th entry is (−1) j+kM¬ j
¬k (A) with M¬ j

¬k (A) being the ( j, k)-minor of A, i.e.,
the determinant of the matrix that originates from A by deleting the j’th row and the
k’th column. For

A =
(
a b
c d

)

we have

cof A =
(

d −c
−b a

)
.

One important formula (and another way to define the cofactor matrix) is

d

dA
det A = cof A.

Furthermore, Cramer’s rule entails that

A(cof A)T = (cof A)T A = (det A)Id, A ∈ R
d×d ,

where Id denotes the identity matrix. In particular, if A is invertible,

A−1 = (cof A)T

det A
. (A.1)

From this we deduce that cof A is invertible if A is. Sometimes, the matrix (cof A)T

is called the adjugate matrix to A in the literature (we will not use this terminology
here, however).

One particular consequence of Cramer’s rule is Jacobi’s formula, which says
that for any continuously differentiable function A(t) : R → R

d×d it holds that

d

dt
det A(t) = cof A(t) : dA(t)

dt
= tr

[
(cof A(t))T

dA(t)

dt

]
.

In particular, if A(t) = A0 + t B (A0, B ∈ R
d×d ), we have

d

dt
det[A0 + t B] = tr

[
(cof A0)

T B + t (cof B)T B
] = (cof A0) : B + td det B.

As a consequence, we derive that if d
dt det[A0 + t B] is constant, then necessarily

det B = 0.
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The special orthogonal group SO(d) is defined as

SO(d) := {
Q ∈ R

d×d : Q invertible, Q−1 = QT , det Q = 1
}
.

It has the following useful property, which can be verified via (A.1):

cof Q = Q for all Q ∈ SO(d).

Any Q ∈ SO(2) ⊂ R
2×2 (a rotation) has the form

Q =
(
cos θ − sin θ

sin θ cos θ

)

for some θ ∈ [0, 2π). For the convex hull SO(2)∗∗ of SO(2) one may compute

SO(2)∗∗ =
{
A =

(
a −b
b a

)
: a2 + b2 ≤ 1

}
.

Moreover, a Taylor expansion and the fact that the Lie algebra of the Lie group SO(2)
is the vector space of all skew-symmetric matrices yields

dist(Id + A,SO(2)) ≤ 1

2
|A + AT | + C |A|2 (A.2)

for some C > 0.
We also recall a special case of the theorem on the Jordan normal form for real

(2 × 2)-matrices: Let A ∈ R
2×2. Then, there exists an invertible matrix S ∈ R

2×2

such that

S−1AS =
(
a b
0 c

)
or S−1AS =

(
a b

−b a

)

with a, c ∈ R and b ∈ {0, 1}
Finally, any square matrix A ∈ R

d×d has a real polar decomposition

A = QS,

where Q is orthogonal (Q−1 = QT ) and S is symmetric and positive definite.
In a few instances we also deal with fourth-order tensors T = Tik

jl (i, k =
1, . . . ,m; j, l = 1, . . . , d). They define bilinear forms on R

m×d via

A : TB :=
∑

i,k

∑

j,l

Tik
jl A

i
j B

k
l .

We call T symmetric and positive definite if the corresponding bilinear form has
these properties.
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A.2 Functional Analysis

We assume that the reader has a solid foundation in the basic notions of functional
analysis such as Banach spaces and their duals, weak/weak* convergence (and topol-
ogy), reflexivity, and weak/weak* compactness. Note that in this book we mostly
only need convergence of sequences and rarely more advanced topological concepts.
One very thorough reference for most of this material is [74].

Let X be a Banach space. The application of x∗ ∈ X∗ to x ∈ X is often ex-
pressed via the duality pairing 〈x, x∗〉 := x∗(x). We write x j ⇀ x in X for weak

convergence, that is, 〈x j , x∗〉 → 〈x, x∗〉 for all x∗ ∈ X∗, and x∗
j

∗
⇀ x∗ in X∗ for

weak* convergence, that is, 〈x, x∗
j 〉 → 〈x, x∗〉 for all x ∈ X . The weak* topology

is metrizable on norm-bounded sets in the dual to a separable Banach space. Like-
wise, in reflexive and separable Banach spaces the weak topology is metrizable on
norm-bounded sets. In this context we note that in Banach spaces topological weak
compactness is equivalent to sequential weak compactness by the Eberlein–Šmulian
theorem. Also recall that the norm in a Banach space is lower semicontinuous with
respect to weak convergence: If x j ⇀ x in X , then ‖x‖ ≤ lim inf j→∞ ‖x j‖.
Theorem A.1 (Hahn–Banach separation theorem). Let X be a Banach space and
let K , F ⊂ X be disjoint, non-empty, and convex subsets of X such that K is compact
and F is closed. Then, K and F can be separated by a hyperplane, that is, there
exists an x∗ ∈ X∗ such that

sup
x∈K

〈x, x∗〉 < inf
x∈F 〈x, x∗〉.

Theorem A.2 (Weak compactness). Let X be a separable, reflexive Banach space.
Then, norm-bounded sets in X are sequentially weakly precompact.

Theorem A.3 (Banach–Alaoglu).Let X be a separable Banach space. Then, norm-
bounded sets in the dual space X∗ are weakly* sequentially precompact.

Weak convergence can be “improved” to strong convergence in the following way
(see Section I.1.2 in [106] for a proof):

Lemma A.4 (Mazur). Let x j ⇀ x in a Banach space X. Then, there exists a
sequence (y j ) ⊂ X of convex combinations,

y j =
N ( j)∑

n= j

θ( j)
n xn, θ ( j)

n ∈ [0, 1],
N ( j)∑

n= j

θ( j)
n = 1

such that y j → x in X.
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A.3 Measure Theory

We assume that the reader is familiar with the notion of Lebesgue- and Borel-
measurability, negligible sets, and Lp-spaces; a good introduction is [236]. For the
d-dimensional Lebesgue measure we write L d or L d

x if we want to stress the
integration variable. Often, however, the Lebesgue measure of a Borel- or Lebesgue-
measurable set A ⊂ R

d is simply denoted by |A|. We also write ωd for the volume
of the d-dimensional unit ball.

The indicator function of a subset A ∈ R
d is

1A(x) :=
{
1 if x ∈ A,

0 otherwise,
x ∈ R

d .

In the following we recall some basic results that are needed throughout the book.

Lemma A.5 Let B ⊂ R
d be a Borel set. A function f : B → R

N is Lebesgue-
measurable if and only if there exists a sequence of simple functions

f j :=
K ( j)∑

k=1

v( j)
k 1E ( j)

k

such that
f j → f pointwise as j → ∞,

where K ( j) ∈ N, the E ( j)
k ⊂ B are Lebesgue-measurable sets with

⋃K ( j)
k=1 E ( j)

k = B,

and v( j)
k ∈ R

N for all j, k.

Lemma A.6 (Fatou). Let f j : Rd → [0,+∞], j ∈ N, be Lebesgue-measurable
functions. Then, ∫

lim inf
j→∞ f j (x) dx ≤ lim inf

j→∞

∫
f j (x) dx .

Lemma A.7 (Monotone convergence). Let f j : Rd → [0,+∞], j ∈ N, be
Lebesgue-measurable functions with f j (x) ↑ f (x) for almost every x ∈ Ω . Then,
f : Rd → [0,+∞] is measurable and

∫
f (x) dx = lim

j→∞

∫
f j (x) dx .

Lemma A.8 If f j → f (strongly) in Lp(Rd), p ∈ [1,∞], that is,

‖ f j − f ‖Lp → 0 as j → ∞,

then there exists a subsequence (not explicitly labeled; we do not choose different
indices for subsequences if the original sequence is discarded at the same time) such
that f j → f pointwise almost everywhere.
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Theorem A.9 (Lebesgue dominated convergence theorem). Let f j : Rd → R
N ,

j ∈ N, be Lebesgue-measurable functions such that there exists an Lp-integrable
majorant g ∈ Lp(Rd) for some p ∈ [1,∞), that is,

| f j | ≤ g for all j ∈ N.

If f j → f pointwise almost everywhere for some f : Rd → R, then also f j → f
in Lp; in particular, f ∈ Lp(Rd).

The following strengthening of Lebesgue’s theorem is often useful in the calculus
of variations:

Theorem A.10 (Pratt). Let f j : Rd → R
N , j ∈ N, be Lebesgue-measurable func-

tions. If f j → f pointwise almost everywhere (or in measure) and there exists a
sequence (g j ) ⊂ L1(Rd) with g j → g in L1 such that | f j | ≤ g j , then f j → f in
L1.

The following convergence theorem is of fundamental significance:

Theorem A.11 (Vitali). Let Ω ⊂ R
d be bounded and let ( f j ) ⊂ Lp(Ω;Rm),

p ∈ [1,∞). Assume furthermore that the following two conditions hold:

(i) No oscillations: f j → f in measure, that is, for all δ > 0,

∣∣{ x ∈ Ω : | f j (x) − f (x)| > δ
}∣∣ → 0 as j → ∞.

(ii) No concentrations: the family { f j } j is Lp-equiintegrable.

Then, f j → f in Lp.

Here, { f j } j ⊂ Lp(Ω;Rm) is called Lp-equiintegrable if one of the following
equivalent conditions is satisfied:

(i) lim
R↑∞ sup

j∈N

∫

{| f j |>R}
| f j |p dx = 0;

(ii) lim
R↑∞ lim sup

j→∞

∫

{| f j |>R}
| f j |p dx = 0;

(iii) for every ε > 0 there exists a δ > 0 such that for all Borel sets B ⊂ Ω with
|B| < δ we have

sup
j∈N

∫

B
| f j |p dx < ε.

Theorem A.12 (Dunford–Pettis). Let Ω ⊂ R
d be bounded and open. A norm-

bounded family { f j } j∈N ⊂ L1(Ω) is equiintegrable if and only if it is weakly sequen-
tially precompact in L1(Ω).

We remark that the usual formulation of the Dunford–Pettis theorem only men-
tions topological precompactness. The statement above follows by also utilizing the
Eberlein–Šmulian theorem (see Chapter V in [74]).



416 Appendix A: Prerequisites

Theorem A.13 (Egorov). Let Ω ⊂ R
d be a bounded Borel set and let f j : Ω →

R
N , j ∈ N, be Lebesgue-measurable functions. If f j → f pointwise almost every-

where, then for every ε > 0 there exists a compact set Kε ⊂ Ω with |Ω \ Kε| ≤ ε

and such that f j → f uniformly in Kε.

Theorem A.14 (Radon–Riesz). Let p ∈ (1,∞) and let ( f j ) ⊂ Lp(Ω;Rm) with
f j ⇀ f (weak convergence) as well as ‖ f j‖Lp → ‖ f ‖Lp . Then, f j → f in Lp.

The following covering theorem is a handy tool for several constructions, see
Theorem 2.19 in [15] for a proof:

Theorem A.15 (Vitali covering theorem). Let Ω, D ⊂ R
d be open and bounded.

Then, there exist ak ∈ Ω , rk > 0, where k ∈ N, such that we may write Ω as the
disjoint union

Ω = Z ∪
∞⋃

k=1

D(ak, rk), D(ak, rk) := ak + rk D,

with Z ⊂ Ω a Lebesgue-negligible set (|Z | = 0). Moreover, if for almost every
x ∈ Ω we are given a real number r(x) > 0, then we may additionally require of
the cover that rk < r(ak) for all k ∈ N.

Theorem A.16 (Lusin). Let Ω ⊂ R
d be a bounded Borel set and let f : Ω → R

N

be Lebesgue-measurable. Then, for every ε > 0 there exists a compact set K ⊂ Ω

such that |Ω \ K | ≤ ε and f |K is continuous.

Theorem A.17 (Sard). Let f : Rd → R be d times continuously differentiable.
Then,

L 1( f (S)) = 0, where S := {
x ∈ R

d : ∇ f (x) = 0
}
.

We also need other measures than Lebesgue measure on subsets of RN (this will
usually be either Rd or a matrix space Rm×d , which is identified with R

md ). All of
these abstract measures will beBorel measures, that is, they are defined on the Borel
σ -algebra B(RN ) of RN , which is the smallest σ -algebra that contains all the open
sets. All positive Borel measures defined on R

N that do not take the value +∞ are
collected in the set M+(RN ) of (finite) positive Radon measures; its subclass of
probability measures isM 1(RN ). We remark that all σ -finite measures on RN are
in fact inner regular, meaning that for every Borel set B ⊂ R

N it holds that

μ(B) = sup
{
μ(K ) : K ⊂ B compact

}
.

A local Radon measure μ is a set function μ : B(RN ) → [0,+∞] such that μ

restricted to (subsets of) any compact set is a finite Radon measure. In this case
we write μ ∈ M+

loc(R
N ). We also use M+(U ),M+

loc(U ),M 1(U ) for the subset of
measures that only charge U ⊂ R

N , that is, the measure of the complement of U is
zero. A good reference for (advanced) measure theory is [15].
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For h : RN → R and μ ∈ M+(RN ) we define the duality pairing

〈
h, μ

〉 :=
∫

h(A) dμ(A)

whenever this integral makes sense. The following notation is convenient for the
barycenter of a (finite, positive) Borel measure μ ∈ M+(RN ):

[μ] := 〈
id, μ

〉 =
∫

A dμ(A).

We also define the support of μ ∈ M+(RN ) by

suppμ := {
x ∈ R

N : μ(B(x, r)) > 0 for all r > 0
}
,

where B(x0, r) ⊂ R
N is the ball with center x0 and radius r > 0. The restriction of

a Borel measure μ ∈ M+(RN ) to a Borel set A ⊂ R
N is

(μ A)(B) := μ(A ∩ B) for any Borel set B ⊂ R
N .

Probability measures and convex functions interact well:

Lemma A.18 (Jensen inequality). For all probability measuresμ ∈ M 1(RN ) and
all convex h : RN → R it holds that

h([μ]) ≤
∫

h(A) dμ(A).

We say that a sequence (μ j ) ⊂ M+(RN ) converges weakly* in M+(RN ) to

μ ∈ M+(RN ), in symbols “μ j
∗

⇀ μ”, if 〈ψ,μ j 〉 → 〈ψ,μ〉 for all ψ ∈ C0(R
N ).

We speak of local weak* convergence if 〈ψ,μ j 〉 → 〈ψ,μ〉 for all ψ ∈ Cc(R
N ).

A sequence (μ j ) ⊂ M+(RN ) with sup j μ j (R
N ) < ∞ has a weakly* converging

subsequence by Theorem A.2.
We also recall a useful convergence lemma:

Lemma A.19 Let μ j
∗

⇀ μ in M+
loc(R

N ). Then for every lower semicontinuous
function g : RN → [0,∞] it holds that

∫
g dμ ≤ lim inf

j→∞

∫
g dμ j ,

and for every upper semicontinuous function h : RN → [0,∞)with compact support
it holds that ∫

h dμ ≥ lim sup
j→∞

∫
h dμ j .
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In particular, for U ⊂ R
N open and K ⊂ R

N compact,

μ(U ) ≤ lim inf
j→∞ μ j (U ) and μ(K ) ≥ lim sup

j→∞
μ j (K ).

Similar definitions and statements apply to M+(U ),M+
loc(U ),M 1(U ).

Finally, we recall a very useful “continuity” property of measurable functions:

Theorem A.20 Let f ∈ L1(RN , μ), that is, f isμ-integrable, whereμ ∈ M+(RN ).
Then, μ-almost every x0 ∈ R

N is a Lebesgue point of f with respect to μ, that is,

lim
r↓0 −

∫

B(x0,r)
| f (x) − f (x0)| dμ(x) = 0,

where −
∫
B(x0,r)

:= |B(x0, r)|−1
∫
B(x0,r)

.

We denote by H s the s-dimensional Hausdorff measure, 0 ≤ s < ∞. For the
definition of this measure and the associated notion of H s-rectifiable sets (which
is not important for most of this book), we refer to [15].

A.4 Vector Measures

In this section we exhibit a few aspects of the theory of vector (Radon) mea-
sures (often just called “measures” in this book), which are σ -additive set functions
μ : B(Rd) → R

N (in particular, μ(∅) = 0). All such μ are collected in the space
M (Rd;RN ); likewise defineM (Ω;RN ) andM (Ω;RN ) for an open set Ω ⊂ R

d .
We will also use local vector measures, defined analogously to the above, which
are collected in the setMloc(Ω;RN ).

If for the target dimension we have N = 1, then we simply write M (Ω) instead
of M (Ω;R); the elements of this space are called signed (Radon) measures, but
in this case we also usually just speak of “measures”.

The total variation measure of μ ∈ M (Rd;RN ) is the positive measure |μ| ∈
M+(Rd) defined as

|μ|(B) := sup

{ ∞∑

k=1

|μ(Bk)| : B =
∞⋃

k=1

Bk as a disjoint union of Borel sets

}
.

It can be shown that for all open sets U ⊂ R
d it holds that

|μ|(U ) = sup

{∫
ψ · dμ : ψ ∈ Cc(U ;RN ), ‖ψ‖∞ ≤ 1

}
, (A.3)
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where the dot “·” indicates thatμ’s values are to be scalar-multipliedwith the values of
ψ (e.g.

∫
(v01B)·dμ = v0 ·μ(B) for v0 ∈ R

N and B a Borel set). See Proposition 1.47
in [15] for a proof. We also set suppμ := supp |μ|.

There is an alternative, dual, view on vector measures, expressed in the following
important theorem:

Theorem A.21 (Riesz representation theorem). The space of vector Radon mea-
sures M (Rd;RN ) is isometrically isomorphic to the dual space C0(R

d;RN )∗ via
the duality pairing

〈
ϕ,μ

〉 =
∫

ϕ · dμ, ϕ ∈ C0(R
d;RN ), μ ∈ M (Rd;RN ).

As an easy, often convenient, consequence, we can definemeasures through their
action on C0(R

d;RN ). Note, however, that we then need to check the boundedness
|〈ϕ,μ〉| ≤ ‖ϕ‖∞ for all ϕ ∈ C0(R

d;RN ).
If an element μ ∈ C0(R

d)∗ is additionally positive, that is, 〈ϕ,μ〉 ≥ 0 for ϕ ≥ 0,
and normalized, that is, 〈1, μ〉 = 1 (here, 1 = 1 on the whole space), then the μ

from the Riesz representation theorem is a probability measure, μ ∈ M 1(RN ).
The weak* convergence of vector measures is defined exactly as for positive mea-

sures, namely by considering vector measures as elements of C0(R
d;RN )∗. Some-

times, for a norm-bounded sequence (v j ) ⊂ L1(Ω;RN ), we will say that “v j
∗

⇀ μ

in M (Ω;RN )” when really we mean v j L d Ω
∗

⇀ μ in M (Ω;RN ). A sequence
(μ j ) ⊂ M (Ω;RN )with sup j |μ j |(Ω) < ∞ has aweakly* converging subsequence
by Theorem A.2.

The following lemma is proved in Proposition 1.62 (b) of [15].

Lemma A.22 Letμ j
∗

⇀ μ inM (Rd;RN ) and assume that |μ j | ∗
⇀ Λ ∈ M+(Rd).

If K ⊂ R
d is compact and Λ(∂K ) = 0, then μ j (K ) → μ(K ). Moreover, if

h : Rd → R is a bounded Borel function with compact support and a Λ-negligible
set of discontinuity points, then

∫
h dμ j →

∫
h dμ.

Of fundamental importance is the following theorem:

Theorem A.23 (Besicovitch differentiation theorem). Given μ ∈ M (Rd;RN )

and ν ∈ M+(Rd), for ν-almost every x0 ∈ R
d in the support of ν, the limit

dμ

dν
(x0) := lim

r↓0
μ(B(x0, r))

ν(B(x0, r))

exists in R
N and is called the Radon–Nikodým derivative of μ with respect to ν,

Moreover, the Lebesgue–Radon–Nikodým decomposition of μ is given as
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μ = dμ

dν
ν + μs .

Here, μs = μ E is singular with respect to ν (that is, μs is concentrated on a
ν-negligible set), where

E := (Rd \ supp ν) ∪
{
x ∈ supp ν : lim

r↓0
|μ|(B(x, r))

ν(B(x, r))
= ∞

}
.

Finally, for a Borel measureμ ∈ M (Ω;RN ) and a surjective Borel map ϕ : Ω →
Ω ′ ⊂ R

n , we define the push-forward measure of μ under ϕ via

ϕ#μ := μ ◦ ϕ−1 ∈ M (Ω ′;RN ).

We have the following transformation formula for any g : Ω ′ → R:

∫

Ω ′
g d(ϕ#μ) =

∫

Ω

g ◦ ϕ dμ,

provided these integrals are defined.

A.5 Sobolev and Other Function Spaces

We give a brief overview of Sobolev spaces, see [176] or [111] for more detailed
accounts and proofs.

In all of the following we assume that Ω ⊂ R
d is a Lipschitz domain, that is, Ω

is open, bounded, connected, and has a boundary that is the union of finitely many
Lipschitz manifolds. We also let p ∈ [1,∞], unless otherwise indicated. As usual,
we denote by C(Ω) = C0(Ω),Ck(Ω), k = 1, 2, . . ., the spaces of continuous and k
times continuously differentiable functions. The spaces Ck(Ω) contain the Ck(Ω)-
functions such that all l’th-order derivatives for l ≤ k can be continuously extended
to Ω . As norms in these spaces we have

‖u‖Ck :=
∑

|α|≤k

‖∂αu‖∞, u ∈ Ck(Ω), k = 0, 1, 2, . . . ,

where ‖ �‖∞ is the supremum norm. Here, the sum is over all multi-indices α ∈
(N ∪ {0})d with |α| := α1 + · · · + αd ≤ k, and

∂α := ∂
α1
1 ∂

α2
2 · · · ∂αd

d

is the α-derivative operator.
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Similarly, we define the linear space C∞(Ω) of infinitely-often differentiable
functions, but this cannot be equippedwith a complete norm.A subscript “c” indicates
that all functions u in the respective function space (e.g. C∞

c (Ω)) must have their
support

supp u := { x ∈ Ω : u(x) �= 0 }

compactly contained in Ω (so, supp u ⊂ Ω and supp u compact). For the compact
containment of a bounded set A in an open set B we write A � B, which means
that A ⊂ B. In this way, the previous condition could be written as supp u � Ω .
We denote by Ck

0(Ω) the closure of C∞
c (Ω) in Ck(Ω). All the spaces Ck

0(Ω) are
separable.

For k ∈ N a positive integer and p ∈ [1,∞], the Sobolev space Wk,p(Ω) is
defined to contain all functions u ∈ Lp(Ω) such that the weak derivative ∂αu exists
and lies in Lp(Ω) for all multi-indices α ∈ (N∪ {0})d with |α| ≤ k. This means that
for every such α, there is a (unique) function vα ∈ Lp(Ω) satisfying

∫
vα · ψ dx = (−1)|α|

∫
u · ∂αψ dx for allψ ∈ C∞

c (Ω),

and we write ∂αu for this vα . The uniqueness follows from the Fundamental Lem-
ma 3.10 of the calculus of variations. Clearly, if u ∈ Ck(Ω), then all k’th-order
weak derivatives coincide with their classical counterparts. As norm in Wk,p(Ω),
p ∈ [1,∞), we use

‖u‖Wk,p :=
(∑

|α|≤k

‖∂αu‖p
Lp

)1/p

, u ∈ Wk,p(Ω).

For p = ∞, we set

‖u‖Wk,∞ := max|α|≤k
‖∂αu‖L∞ , u ∈ Wk,∞(Ω).

Under these norms, the sets Wk,p(Ω) become Banach spaces.
For u ∈ W1,p(Ω) we further define the weak gradient and weak divergence,

∇u := (∂1u, ∂2u, . . . , ∂du), div u := ∂1u + ∂2u + · · · + ∂du.

Concerning the boundary values of Sobolev functions we have:

Theorem A.24 (Trace). For p ∈ [1,∞] there exists a linear trace operator

trΩ : W1,p(Ω) → Lp(∂Ω)

such that
trΩ(ϕ) = ϕ|∂Ω ifϕ ∈ C(Ω).

We write trΩ(u) simply as u|∂Ω . For p ∈ (1,∞) the operator trΩ is bounded and
weakly continuous between W1,p(Ω) and Lp(∂Ω).

https://doi.org/10.1007/978-3-319-77637-8_3
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For p ∈ (1,∞) denote the image ofW1,p(Ω) under trΩ byW1−1/p,p(∂Ω), which
is called the trace space ofW1,p(Ω). The norms onW1−1/p,p(∂Ω) involve fractional
derivatives, see [176] for details. For p = 1, the trace space is L1(∂Ω,H d−1 ∂Ω),
which we will denote by just L1(∂Ω).

We write W1,p
0 (Ω) for the linear subspace of W1,p(Ω) consisting of all W1,p-

functions with zero boundary values (in the sense of trace). More generally, we use
W1,p

g (Ω) with g ∈ W1−1/p,p(∂Ω) (with the convention W0,1(∂Ω) = L1(∂Ω) in the
case p = 1), for the affine subspace of all W1,p-functions with boundary trace g.

The following are some properties of Sobolev spaces, stated for simplicity only
for the first-order space W1,p(Ω).

Theorem A.25 (Extension). Every u ∈ W1,p(Ω) can be extended to ū ∈ W1,p(Rd)

with ‖ū‖W1,p(Rd ) ≤ C‖u‖W1,p(Rd ), where C = C(Ω, p) > 0 is a constant.

Theorem A.26 (Poincaré inequalities). Let u ∈ W1,p(Ω).

(i) If u|∂Ω = 0, then
‖u‖Lp ≤ C‖∇u‖Lp ,

where C = C(Ω, p) > 0 is a constant.
(ii) Setting [u]Ω := −

∫
Ω
u dx, it furthermore holds that

‖u − [u]Ω‖Lp ≤ C‖∇u‖Lp ,

where C = C(Ω, p) > 0 is a constant.

Theorem A.27 (Sobolev embedding). Let u ∈ W1,p(Ω).

(i) If p < d, then u ∈ Lp∗
(Ω), where

p∗ := dp

d − p
,

and there is a constant C = C(Ω, p) > 0 such that

‖u‖Lp∗ ≤ C‖u‖W1,p .

(ii) If p = d, then u ∈ Lq(Ω) for all 1 ≤ q < ∞ and

‖u‖Lq ≤ C‖u‖W1,p ,

where C = C(Ω, p, q) > 0 is a constant.
(iii) If p > d, then u ∈ C(Ω) and

‖u‖∞ ≤ C‖u‖W1,p ,

where C = C(Ω, p) > 0 is a constant.
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The second part can in fact be made more precise by considering embeddings into
Hölder spaces, see Section 5.6.3 in [111] for details.

Theorem A.28 (Rellich–Kondrachov).Let (u j ) ⊂ W1,p(Ω)with u j ⇀ u inW1,p.

(i) If p < d, then u j → u in Lq(Ω) for any q < p∗ = dp/(d − p).
(ii) If p = d, then u j → u in Lq(Ω) for any q < ∞.
(iii) If p > d, then u j → u uniformly (i.e., in the supremum norm).

Theorem A.29 (Density). For every p ∈ [1,∞), u ∈ W1,p(Ω), and all ε > 0 there
exists a map v ∈ (W1,p ∩C∞)(Ω)with v|∂Ω = u|∂Ω and ‖u−v‖W1,p < ε. Moreover,
there also exists a countably piecewise affine w ∈ (W1,p ∩C)(Ω) with w|∂Ω = u|∂Ω

and ‖u − w‖W1,p < ε.

Here, a map w : D → R is called countably piecewise affine if there exists a
disjoint partition of Ω into countably many open sets Dk (k ∈ N), up to a negligible
set, i.e., Ω = Z ∪ ⋃

k Dk , where |Z | = 0, such that w|Dk is affine.
For 0 < γ ≤ 1 a function u : Ω → R is γ -Hölder-continuous function, in

symbols u ∈ C0,γ (Ω), if

‖u‖C0,γ := ‖u‖∞ + sup
x,y∈Ω
x �=y

|u(x) − u(y)|
|x − y|γ < ∞.

Functions inC0,1(Ω) are calledLipschitz continuous.We construct the higher-order
spaces Ck,γ (Ω) analogously.

Theorem A.30 (Rademacher). Let Ω ⊂ R
d be an open, bounded, and convex set.

Then, the spaceW1,∞(Ω) consists precisely of all Lipschitz maps onΩ , the Lipschitz
constant is equal to the W1,∞-norm, and for u ∈ W1,∞(Ω) the classical gradient
∇u exists almost everywhere in Ω and agrees with the weak gradient.

Next, we define a family of mollifiers as follows: Let η ∈ C∞
c (Rd) be radially

symmetric and positive. Then, the family (ηδ)δ>0 is defined as follows:

ηδ(x) := 1

δd
η

(
x

δd

)
, x ∈ R

d .

For u ∈ Wk,p(Rd), where k ∈ N ∪ {0}, and p ∈ [1,∞], we define the mollification
uδ ∈ Wk,p(Rd) of u as the convolution between ηδ and u, i.e.,

uδ(x) := (ηδ � u)(x) :=
∫

ηδ(x − y)u(y) dy, x ∈ R
d .

Lemma A.31 For every p ∈ [1,∞), if u ∈ W1,p(Rd), then uδ → u in W1,p as
δ ↓ 0.

Analogous results also hold for continuously differentiable functions.
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Lemma A.32 (Young’s inequality for convolutions). Let u ∈ Lp(Rd), v ∈ Lq(Rd)

and let p, q, r ∈ [1,∞] be such that

1 + 1

r
= 1

p
+ 1

q
.

Then,
‖u � v‖Lr ≤ ‖u‖Lp · ‖v‖Lq .

Finally, all the above notions and theorems continue to hold for vector-valued
functions u = (u1, . . . , um)T : Ω → R

m and in this case we set

∇u :=

⎛

⎜⎜⎜⎝

∂1u1 ∂2u1 · · · ∂du1

∂1u2 ∂2u2 · · · ∂du2

...
...

...

∂1um ∂2um · · · ∂dum

⎞

⎟⎟⎟⎠ .

We use the spaces C(Ω;Rm), Ck(Ω;Rm), Wk,p(Ω;Rm), Ck,γ (Ω;Rm) with analo-
gous definitions as in the scalar-valued case; formatrices like∇uweuse theFrobenius
matrix norm and similarly for higher-order tensors.

Occasionally, we employ local versions of the spaces defined above, namely
Cloc(Ω), Ck

loc(Ω), Wk,p
loc (Ω), Ck,γ

loc (Ω), where the defining norm is only finite on
every compact subset of Ω .

Finally, we quote the following two classical results about extensions of functions:

Theorem A.33 (Tietze). Let X be a metric space, let F ⊂ X be closed, and assume
that f : F → R

m is continuous. Then, f canbe extended toa continuous f̄ : X → R
m.

If f is bounded, then f̄ can also be chosen as bounded.

Theorem A.34 (Kirszbraun). Let Ω ⊂ R
d and let f : Ω → R

m be a Lipschitz
continuous map. Then, f can be extended to f̄ : Rd → R

m with the same Lipschitz
constant as f .

A.6 Harmonic Analysis

In this book we only need a few basics of Fourier analysis and the Mihlin multiplier
theorem. A thorough introduction can be found in [138, 139].

Define for u ∈ L1(Rd) (or vector-valued u) the Fourier transform û = Fu ∈
L∞(Rd) as follows:

û(ξ) := Fu(ξ) :=
∫

Rd

u(x)e−2π ix ·ξ dx, ξ ∈ R
d .

We also define the inverse Fourier transform v̌ = F−1v for v ∈ L1(Rd) to be



Appendix A: Prerequisites 425

ǔ(x) := F−1v(x) :=
∫

Rd

v(ξ)e2π ix ·ξ dx, x ∈ R
d .

One can extend F ,F−1 to the space L2(Rd) via the Plancherel identity,

‖û‖L2 = ‖u‖L2 . (A.4)

Moreover, we have the Parseval relation
∫

u · v dx =
∫

û · v̂ dξ (A.5)

for all u, v ∈ L2(Rd); the same relations hold for CN -valued functions.
The following is a classical result concerning the (Lp → Lp)-boundedness of

Fourier multiplier operators, see, for instance, [38, 138] (Theorem 6.1.6) for a proof.

Theorem A.35 (Mihlin multiplier theorem). Let m ∈ C�d/2�+1(Rd \{0};C) satisfy

|∂αm(ξ)| ≤ K |ξ |−|α|, ξ ∈ R
d \ {0},

for all multi-indices α ∈ N
d
0 with |α| := |α1| + · · · + |αd | ≤ �d/2� + 1 (�t� denotes

the largest integer less than or equal to t ∈ R) and some K > 0. Then,

T u := F−1[m(ξ)û(ξ)],

which for u ∈ L2(Rd) is well-defined via the Plancherel identity (A.4), extends to
a bounded operator T : Lp(Rd) → Lp(Rd) for all p ∈ (1,∞), which satisfies the
estimate

‖T ‖Lp→Lp ≤ C max{p, (p − 1)−1}K ,

where C = C(d) > 0 is a constant. Furthermore, for p = 1 the weak-type estimate

∣∣{ x ∈ R
d : |(Tu)(x)| ≥ t

}∣∣ ≤ CK

t
‖u‖L1

holds for all t > 0 and a constant C = C(d) > 0.

As a special case, the conclusions of the preceding theorem hold for any positively
0-homogeneous smooth multiplier m : Rd \ {0} → C.

We will also use the (centered) maximal function M f : Rd → R ∪ {+∞} of
f : Rd → R ∪ {+∞}, which is defined as

(M f )(x0) := sup
r>0

−
∫

B(x0,r)
| f (x)| dx, x0 ∈ R

d .
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We quote the following results about the maximal function, whose proofs can be
found in [138, 177, 247] (in particular, (iii) is essentially contained in Lemma 1.68
of [177]):

Theorem A.36 The following statements are true:

(i) If p ∈ (1,∞], then
‖M f ‖Lp ≤ C‖ f ‖Lp ,

where C = C(d, p) > 0 is a constant.
(ii) If p ∈ [1,∞), then the weak-type estimate

∣∣{ x ∈ R
d : |M f | ≥ t

}∣∣ ≤ C

t p

∫

{| f |≥t/2}
| f |p dx ≤ C

t p
‖u‖p

Lp

holds for all t > 0 and a constant C = C(d) > 0.
(iii) For every K > 0 and f ∈ W1,p(Rd;Rm), p ∈ (1,∞], the maximal function

M f is Lipschitz continuous on the set {M(| f | + |∇ f |) < K } and its Lipschitz
constant is bounded by CK , where C = C(d,m, p) > 0 is a constant.
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135. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. II.
Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 38. Springer, Berlin (1998)

136. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.
Grundlehren der mathematischen Wissenschaften, vol. 224. Springer, Berlin (1998)

137. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)
138. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn.

Springer, Berlin (2014)
139. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn.

Springer, Berlin (2014)
140. Gratwick, R.: Singular sets and the Lavrentiev phenomenon. Proc. R. Soc. Edinb. Sect. A

145, 513–533 (2015)
141. Gratwick, R.: Variations, approximation, and low regularity in one dimension. Calc. Var.

Partial Differ. Equ. (2017). To appear
142. Gratwick, R., Preiss, D.: A one-dimensional variational problem with continuous Lagrangian

and singular minimizer. Arch. Ration. Mech. Anal. 202, 177–211 (2011)
143. Gratwick, R., Sychev, M.A., Tersenov, A.S.: Regularity and singularity phenomena for one-

dimensional variational problemswith singular ellipticity. Pure Appl. Funct. Anal. 1, 397–416
(2016)

144. Gromov, M.: Convex integration of differential relations. I. Izv. Akad. Nauk SSSR Ser. Mat.
37, 329–343 (1973)

145. Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebi-
ete, vol. 9. Springer, Berlin (1986)

146. Gurtin, M.E.: On phase transitions with bulk, interfacial, and boundary energy. Arch. Ration.
Mech. Anal. 96, 243–264 (1986)

147. Gurtin, M.E.: Some results and conjectures in the gradient theory of phase transitions. In:
Metastability and Incompletely Posed Problems (Minneapolis, Minn., 1985). The IMA Vol-
umes in Mathematics and its Applications, vol. 3, pp. 135–146. Springer, Berlin (1987)



References 433

148. Henao, D., Mora-Corral, C.: Invertibility and weak continuity of the determinant for the
modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197,
619–655 (2010)

149. Hilbert, D.: Mathematische Probleme – Vortrag, gehalten auf dem internationalen
Mathematiker-Kongreß zu Paris 1900. Nachrichten von der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse pp. 253–297 (1900)

150. Hildebrandt, S., Tromba, A.: Mathematics and Optimal Form. Scientific American Library
(1985)

151. Horn,R.A., Johnson,C.R.:MatrixAnalysis, 2nd edn.CambridgeUniversity Press, Cambridge
(2013)

152. Isett, P.: A Proof of Onsager’s Conjecture. arXiv:1608.08301
153. James, R.D.: Displacive phase transformations in solids. J. Mech. Phys. Solids 34, 359–394

(1986)
154. Jodeit Jr., M., Olver, P.J.: On the equation grad f = Mgrad g. Proc. R. Soc. Edinb. Sect. A

116, 341–358 (1990)
155. Kałamajska, A., Kružík, M.: Oscillations and concentrations in sequences of gradients. E-

SAIM Control Optim. Calc. Var. 14, 71–104 (2008)
156. Kinderlehrer, D.: Remarks about equilibrium configurations of crystals. Material Instabilities

in Continuum Mechanics (Edinburgh. 1985–1986), Oxford Science Publications, pp. 217–
241. Oxford University Press, Oxford (1988)

157. Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients.
Arch. Ration. Mech. Anal. 115, 329–365 (1991)

158. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev
spaces. J. Geom. Anal. 4, 59–90 (1994)

159. Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded
variation. Preprint 12,Max-Planck-Institut fürMathematik in denNaturwissenschaften (1998)

160. Kirchheim, B.: Rigidity and Geometry of Microstructures. Lecture notes 16, Max-Planck-
Institut für Mathematik in den Naturwissenschaften, Leipzig (2003)

161. Kirchheim, B., Kristensen, J.: Automatic convexity of rank-1 convex functions. C. R. Math.
Acad. Sci. Paris 349, 407–409 (2011)

162. Kirchheim, B., Kristensen, J.: On rank-one convex functions that are homogeneous of degree
one. Arch. Ration. Mech. Anal. 221, 527–558 (2016)

163. Kristensen, J.: Lower semicontinuity of quasi-convex integrals in BV. Calc. Var. Partial Differ.
Equ. 7(3), 249–261 (1998)

164. Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann.
313, 653–710 (1999)

165. Kristensen, J.: On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non
Linéaire 16, 1–13 (1999)

166. Kristensen, J., Melcher, C.: Regularity in oscillatory nonlinear elliptic systems. Math. Z. 260,
813–847 (2008)

167. Kristensen, J., Mingione, G.: The singular set of Lipschitzian minima of multiple integrals.
Arch. Ration. Mech. Anal. 184, 341–369 (2007)

168. Kristensen, J., Rindler, F.: Characterization of generalized gradient Youngmeasures generated
by sequences inW1,1 and BV. Arch. Ration. Mech. Anal. 197, 539–598 (2010); Erratum: Vol.
203, pp. 693–700 (2012)

169. Kristensen, J., Rindler, F.: Relaxation of signed integral functionals in BV. Calc. Var. Partial
Differ. Equ. 37, 29–62 (2010)

170. Kružík, M.: On the composition of quasiconvex functions and the transposition. J. Convex
Anal. 6, 207–213 (1999)
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Hadamard inequality, 410
Hadamard’s jump condition, 223
Hahn–Banach separation theorem, 413
Harmonic map, 51, 192
Helmholtz decomposition, 201
(Hn)-condition, 266
Hölder-continuity, 423
Homogenization theorem, 389, 398
Hull

lamination-convex, 228
lamination-convex (of open set), 244
polyconvex, 230
quasiconvex, 194
rank-one-convex, 229

Hyperelasticity, 14

I
In-approximation, 244, 265
Incompatibility relation, 196
Indicator function, 414
Injectivity almost everywhere, 146
Inner regular measure, 416
Invariance, 69
Isoperimetric problem, 6, 323

J
Jacobi’s formula, 411
Jensen inequality, 417
Jensen-type inequality

in BVY, 352
in GYp , 118

Jordan normal form, 412
Jump part of a BV-derivative, 280
Jump set, 280

K
Kinderlehrer–Pedregal theorem, 172
Kinderlehrer’s conjecture, 215
Kirchheim convex integration theorem, 253
Kirchheim–Kristensen theorem, 293
Kirchheim–Preiss theorem, 207
Kirszbraun theorem, 424
Korn inequality, 210
Kristensen theorem, 166
Kronecker delta, 70

L
Lagrange multiplier, 66
Lamé constants, 140

Laminate, 109, 228
of infinite order, 229
unbounded, 261

Lamination method, 232
Laplace equation, 51
Lavrentiev gap phenomenon, 35
Lebesgue dominated convergence theorem,

415
Lebesgue point, 418
Lebesgue–Radon–Nikodým decomposition,

419
Legendre–Fenchel transform, 40
Legendre–Hadamard condition, 165
Liminf-inequality, 370
Limsup-inequality, 371
Linear growth, 112
Linearized strain tensor, 14
Lipschitz continuity, 423
Lipschitz domain, 23
Localization principle

in BVY, regular, 353
in BVY, singular, 356
in GYp , 123

Local operator, 166
Local Radon measure, 416
Local weak* convergence for measures, 417
Lower semicontinuity, 24
Lower semicontinuity theorem

convex, 28
in BV, 361
in BV, 310
quasiconvex, 124

Lusin theorem, 416

M
Manià example, 35
Marcellini theorem, 398
Martensite phase, 17
Matos theorem, 215
Maximal function, 96, 425
Mazur lemma, 413
Microstructure, 15
Mihlin multiplier theorem, 425
Minimizing sequence, 24
Minor, 114, 411
Modica–Mortola theorem, 376
Modulus of continuity, 92
Mollification, 423
Monotone convergence lemma, 414
Montel’s theorem, 224
Mooney–Rivlin material, 14, 137
Morrey theorem, 124
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Morrey’s conjecture, 164
strong version, 260

Morse covering theorem, 321
Müller–Šverák non-regularity theorem, 251
Müller–Šverák convex integration theorem,

250
Multi-index, 420

ordered, 114
Multiple-gradient problem, 196

N
Neo-Hookean material, 14, 136
Noether theorem, 70
Normal cone, 74
Normal integrand, 131
Null-Lagrangian, 78, 115

O
Ogden material, 14, 137
1-homogeneous, 41
Orientation-preserving, 13
Ornstein’s non-inequality, 262
Oscillation, 113
Oscillation measure, 333

P
Parseval relation, 425
Partial regularity, 129
Partial regularization, 407
p-coercivity, 27
Penalty term, 324
Perimeter, 249
Periodic homogenization problem, 370
Perspective integrand, 307
p-growth, 27
Piecewise affine map, 241, 423
Piecewise affine reduction, 241
Piola identity, 116
Plancherel identity, 425
Poincaré inequality, 422
Poincaré inequality in BV, 282
Poisson equation, 7, 51
Polar decomposition, 412
Polar of a measure, 272
Polyconvex envelope, 163
Polyconvex measure, 230
Polyconvexity, 136
Pratt theorem, 415
Precise representative, 281
Probability measure, 416
Proper function, 38
Push-forward measure, 420

Q
Quasiaffinity, 117
Quasiconvex envelope, 154
Quasiconvexity, 106

on symmetric matrices, 200
periodic, 131
strong, 129

Quasiconvexity at the boundary, 131

R
Rademacher theorem, 423
Radon measure, 416
Radon–Nikodým derivative, 419
Radon–Riesz theorem, 416
Rank of a minor, 114
Rank-one connected matrices, 93
Rank-one convex envelope, 163
Rank-one convex measure, 229
Rank-one convexity, 109
Rank-one diagram, 187
RC-in-approximation, 250
Recession function

lower weak, 306
strong, 305
upper weak, 306

Recovery sequence, 167, 370
Regular variational integral, 56
Relaxation, 159, 325, 374
Relaxation theorem

abstract, 159
in BV, 325
for integral functionals, 160
with Young measures, 168

Rellich–Kondrachov theorem, 423
Representation integrand, 342
Reshetnyak continuity theorem, 272
Reshetnyak lower semicontinuity theorem,

297
Reshetnyak rigidity theorem, 209
Restriction of a measure, 417
Riemann–Lebesgue lemma, 100
Riesz representation theorem, 419
Rigid body motion, 13
Rigidity

for approximate solutions, 188
for exact solutions, 188
strong, 188

S
Saddle point, 50
Sard theorem, 416
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Schauder estimate, 63
Scorza Dragoni theorem, 86
Self-accommodation, 18
Separate convexity, 45
Separation method, 199
Set of finite perimeter, 249
Shape-memory effect, 18, 252
Shift of a Young measure, 177
Sierpiński triangle, 284
Signed measure, 418
Signum function, 74
Singular density theorem, 286
Singularly-perturbed problem, 369
Singular measure, 420
Singular part of BV-derivative, 280
Singular set, 129
Singular value, 410
Singular value decomposition, 410
Sobolev embedding theorem, 422
Sobolev extension theorem, 422
Sobolev space, 421
Solution of PDE

classical, 54
strong, 54
weak, 49

Special orthogonal group, 412
Sphere compactification, 366
Stability of microstructure, 266
Stability point (weak-to-strong), 255
Stability (piecewise affine), 253
Strict convergence

for measures, 270
in BV, 280

Strong incompatibility, 216
St. Venant–Kirchhoff material, 140
Subcone, 294
Subdifferential, 74
Subgradient, 74
Support

of a function, 421
of a measure, 417

Support function, 41
Švérak multi-well rigidity theorem, 211
Švérak three-gradient rigidity theorem, 197
Švérak two-well hull theorem, 235
Symbol of a PDE operator, 217

principal, 285
Symmetric difference, 377
Symmetries of minimizers, 68
Symmetry breaking, 252
Symmetry-invariance, 16

T
T4-configuration, 205
Tangent measure, 274
Tangent Young measure, generalized

regular, 353
singular, 356

Tartar theorem, 218
Tartar’s conjecture, 207
Tensor, 412
Tensor product, 410
Tietze extension theorem, 424
Tightness condition, 83
Tonelli–Serrin theorem, 28
Total variation measure, 418
Trace, 421

in BV, 281
Truncation, 96
Two-gradient inclusion

approximate, 120
exact, 119

U
Underlying deformation, 95, 349
Uniqueness of microstructure, 266
Uniqueness of minimizer, 31
Utility function, 10

V
Variation, 47
Variational inequality, 76
Variational principle, 3
Vector measure, 418
Vectorial problem, 31
Vitali convergence theorem, 415
Vitali covering theorem, 416

W
Wave cone, 217, 285
Wave equation, 54
Weak compactness in Banach spaces, 413
Weak continuity, 37
Weak continuity of minors, 117
Weak convergence, 413
Weak derivative, 421
Weak divergence, 421
Weak gradient, 421
Weak lower semicontinuity, 26
Weak* convergence, 413

for measures, 417
in YM , 334
in Yp , 84
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in BV, 280
Weak* measurability, 82
Well, 208
W2,2

loc -regularity theorem, 57

Y
Young inequality, 41
Young measure, 82

elementary, 84
gradient, 95
gradient, homogeneous, 98

homogeneous, 91
homogeneous gradient, 194

Young measure, generalized, 333
characterization, 352
barycenter, 334
elementary, 338
generation, 338

Z
Zhang’s lemma, 178
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