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Abstract Evolutionary computation has much scope for solving several important
practical applications. However, sometimes they return only marginal performance,
related to inappropriate selection of various parameters (tuning), inadequate rep-
resentation, the number of iterations and stop criteria, and so on. For these
cases, hybridization could be a reasonable way to improve the performance of
algorithms. Electrical impedance tomography (EIT) is a non-invasive imaging
technique free of ionizing radiation. EIT image reconstruction is considered an ill-
posed problem and, therefore, its results are dependent on dynamics and constraints
of reconstruction algorithms. The use of evolutionary and bioinspired techniques to
reconstruct EIT images has been taking place in the reconstruction algorithm area
with promising qualitative results. In this chapter, we discuss the implementation
of evolutionary and bioinspired algorithms and its hybridizations to EIT image
reconstruction. Quantitative and qualitative analyses of the results demonstrate that
hybrid algorithms, here considered, in general, obtain more coherent anatomical
images than canonical and non-hybrid algorithms.
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1 Introduction

From the several areas of computational intelligence, evolutionary computation
has been emerging as one of the most important sets of problems for solving
methodologies and tools in many fields of engineering and computing [1–5]. When
compared to other optimization techniques, learning processes based on population,
self-adaptation, and robustness appear as fundamental aspects of evolutionary
algorithms in comparison to other optimization techniques [1–3].

Despite the large acceptance of evolutionary computation to solve several
important applications in several fields such as engineering, e-commerce, business,
economy, and health, they tend to return marginal performance [1–3]. Such
limitation is related to the large numbers of parameters being selected (the tuning
problem), inadequate data representation, the number of iterations, and stop criteria.
Nevertheless, according to the No Free Lunch theorem, it is not possible to find
the best optimization algorithm for solving all problems with uniform performance
(i.e. for all algorithms); high performance over a determined set of problems
is compensated by medium and low performance in all other problems [1, 2].
Therefore, taking into account all possible problems, the overall performance for
all possible optimization algorithms tends to be the same [1, 6–8].

Evolutionary algorithm behavior is governed by interrelated aspects of exploita-
tion [1, 2]. Such aspects point to limitations that could be overcome by the use
of hybrid evolutionary methods dedicated to optimizing the performance of direct
and classical evolutionary approaches [1–5]. The hybridization of evolutionary
algorithms has become relatively widespread due to their ability to deal with a
considerable amount of real world complex issues usually constrained by some
degrees of uncertainty, imprecision, interference, and noise [4, 5, 9, 10].

Academia and industry have been paying increasing interest to non-invasive
imaging techniques and health applications [11, 12], since imaging diagnosis
techniques and devices based on ionizing radiation methods could be related to
the occurrence of several health problems due to long exposure, like benign and
malignant tissues and, consequently, cancer, one of the most important public health
problems, both for developed and under-developed countries [11, 12].

Electrical impedance tomography (EIT) is a low-cost, portable, and safely
handled non-invasive imaging technique free of ionizing radiation, offering a
considerably wide field of possibilities [13]. Its fundamentals are based on the
application of electrical currents to a pair of electrodes on the surface of the volume
of interest [13–16], returning electrical potentials used in tomographic image
reconstruction, that is finding the distribution of electrical conductivities, by solving
the boundary value problem [15, 16]. Since this is an ill-posed problem, there is
no unique solution, that is there is no warranty to obtain the same conductivity
distribution for a given distribution of electrical potentials on surface electrodes
[13, 16].

Boundary value problems can be solved using optimization problems by con-
sidering one or more target metrics to optimize. Taking into account this principle,
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the EIT reconstruction problem can be solved by the effort to minimize the relative
reconstruction error using evolutionary computation, where individuals (solution
candidates) are probable conductivity distributions. The reconstruction error is
defined as the error between the experimental and calculated distributions of surface
voltages.

In this chapter we propose a methodology to solve the problem of reconstruction
of EIT images based on hybrid evolutionary optimization methods in which tuning
limitations are compensated by the use of adequate heuristics. We perform simu-
lations and compare experimental results with ground-truth images considering the
relative squared error. The evaluation of quantitative and qualitative results indicate
that the use of hybrid evolutionary and bioinspired algorithms aid the avoidance
of local minima and obtain anatomically consistent results, side-stepping the use
of empirical constraints as in common and non-hybrid EIT reconstruction methods
[17], in a direct and relatively simple way, despite their inherent complexity.

This chapter is organized as follows. In Sect. 2 we present a review on evo-
lutionary computation and bioinspired algorithms, with special focus on swarm
intelligence; in Sect. 3 we present a review on density-based fish school search, a
bioinspired swarm algorithm based on fish school behavior; in Sect. 4 we briefly
present a Gauss–Newton electrical impedance tomography reconstruction method;
some comments on hybridization are presented in Sect. 6; in Sect. 5 we present a
bibliographical revision of EIT, image reconstruction problems, and software tools
for image reconstruction based on finite elements; in Sect. 7 we present our proposed
EIT image reconstruction methodology based on hybrid heuristic optimization
algorithms, as well as the experimental approach and infrastructure; in Sect. 8 we
present the experimental results and some discussion; since EIT is a relatively
new imaging technique, we also present a hardware proposal in Sect. 9; finally, in
Sect. 10 we make more general comments on methodology and results.

2 Heuristic Search, Evolutionary Computation,
and Bioinspired Algorithms

Evolutionary computation is one of the main methodologies that compose computa-
tional intelligence. The algorithms of evolutionary computation (called evolutionary
algorithms) were inspired by the evolution principles from genetics and elements of
Darwin’s Theory of Evolution, such as natural selection, reproduction, and mutation
[18].

The main goal of evolutionary computing is to provide tools for building
intelligent systems to model intelligent behavior [18]. Since evolutionary algorithms
are non-expert iterative tools, that is they are not dedicated to a specific problem,
having a general nature that makes possible their application to a relatively wide
range of problems, they can be used in optimization, modeling, and simulation
problems [19].
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An evolutionary algorithm is a population-based stochastic algorithm. According
to [19], the idea behind evolutionary algorithms is the same: given a population of
individuals embedded in some resource-constrained environment, competition for
such resources causes natural selection, where better adapted individuals succeed
in surviving, reproducing and perpetuating its characteristics (survival of the
fittest). As the generations go by, the fitness of the population increases toward
the environment. The environment represents the problem itself, an individual a
possible solution (also called a solution candidate), the fitness of an individual
represents the quality of the solution to the problem in question, and generations
represent the iterations of the algorithm [19, 20]. The way in which these algorithms
solve problems is called trial-and-error (also known as generate-and-test) [19].
Following evolutionary concepts, possible solutions to the problem are generated
and evaluated for the problem in question. In order to get even better solutions, some
of them are chosen to be combined by generating new candidates for the solution.

Besides evolutionary algorithms, computational intelligence also uses bioin-
spired algorithms. These two types of algorithms differ from each other by the
inspiration or metaphor taken into account for its development. While evolutionary
algorithms take into account the theories of genetics and evolution, the other one
takes into account the behavior of living things in nature, such as the collective
behavior of birds in searching for food. The brute-force proposal generate-and-
test is the same for both algorithms; however, bioinspired algorithms do not
have recombination, mutation, and selection operators. In spite of that, they have
operators which simulate intelligent behavior.

Some examples of bioinspired algorithms are: Particle Swarm Optimization
(PSO), based on the behavior of birds in searching for food [21]; the Bacterial
Foraging Algorithm, inspired by the social foraging behavior of the bacterium
Escherichia coli present in the human intestine [22]; the Search for Fish School
(FSS) [23]; and Density based on Fish School Search (dFSS) [24], based on
the collective behavior of fish in searching for food. Some of these types of
algorithm are also based on insect behavior: Ant Colony Optimization (ACO) [25]
and Artificial Bee Colony [26, 27]. In the following subsections some of these
algorithms that were applied in the reconstruction of EIT images are presented.

2.1 Particle Swarm Optimization

PSO is a bioinspired method for search and optimization inspired by a flock’s flight
in search of food sources and the shared knowledge among the flock’s members.
The method was created by mathematically modeling the birds as particles, their
flight as direction vectors, and their velocity as continuous values [21].

As in the bird’s flock flight, the particles move toward the food source influenced
by two main forces: its own knowledge and memory of where to go, and the leader’s
experience. The leader is commonly the bird which is most experienced, and in
the mathematical model it is the solution candidate that best fits the approached
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function [21]. The velocity and weight distribution updating is done according to
the following expressions (1) and (2).

vi(t + 1) = ω(t)vi(t) + c1(t)r1(t)(pi − xi(t)) + c2(t)r2(t)(pg − xi(t)) (1)

xi(t + 1) = xi + vi(t + 1) (2)

where vi(t + 1) is the velocity vector of the i-th particle; ω(t) is the inertia factor;
c1 and c2 are the individual influence and the social factor, modeling the strength of
the particle’s own experience and that of the leader, respectively; and r1(t), r2(t) ∼
U [0, 1].

Along the iterative process, the particles have their configuration updated
by receiving the mathematical influence of the best configuration found so far
(modeling the leader influence), and the best configuration ever found by the particle
itself (modeling its own experience). There is also an inertia factor, which is a
number, generally less than 1, that decreases the velocity of the particle at each
iteration, modeling the reduction of the velocity when the particle gets close to the
optimal configuration. In Table 1 we show the general PSO algorithm.

In the first step, the particles are initialized as vectors containing ‘Dim’ positions
each. Each position is normally initialized with a random number, in the range of
domain of the approached problem.

The second phase is to initialize the velocities. They are vectors with the same
dimension of the particles and in the same quantity of the particles. Each velocity
vector corresponds to a particle and each position of this vector corresponds to one
position (weight) of this particle.

The third and 5.III phases calculate the objective function for each particle and
create a rank with the evaluation of each particle. Those evaluations will be used in
the following step.

Table 1 Particle swarm optimization

Particle swarm optimization pseudo-code

1. Initialize the particles with random distribution
2. Initialize all the velocities as 0
3. Calculate the fitness function for all particles
4. Identify the best particle and the best position ever found for each particle
5. Until the number of iterations is reached, do:

(I) Calculate the objective function for each particle.
(II) Update the velocities and weights of each particle.

(III) Identify the Pbest and GBest.

end Until
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In steps 4 and 5.II, GBest is identified, which is the best particle found so far (by
evaluation through the objective function), and Pbest is identified, which for each
particle is the best configuration found so far.

Finally in the 5.II phase, the particle weights are updated by their respective
velocity vector and are calculated as in the expression (1).

The PSO algorithm, as approached in this work, is used to reconstruct EIT images
by modeling solution candidates as particles, as described in Sect. 7.

The hybrid technique will evolve the insertion of one of the particles that will be
generated by the Gauss–Newton algorithm.

2.2 Simulated Annealing

Simulated annealing (SA) is a stochastic approach for the global optimization of
a given function based on local search and hill climbing. It is a metaheuristic
optimization algorithm to deal with large discrete search spaces [28]. SA could
be preferable to gradient-descent methods when reaching an approximate global
optimum is more important than finding a precise local optimum, given a determined
time interval [28].

Its metaheuristic is inspired by annealing in metallurgy, in which heating and
controlled cooling of a material is employed to increase the size of its crystals
and reduce their defects, affecting both the temperature and the thermodynamic
free energy. The process of slow cooling is interpreted as a slow decrease in the
probability of accepting the worse solutions, thus improving exploration capabilities
[28]. In each iteration, a solution close to the current one is selected and evaluated.
Afterwards, the algorithm decides to accept or reject the current solution, taking
into account the probabilities of the newly calculated solution being better or worse
than the present solution. The temperature is progressively decreased, converging
from an initial positive value to zero, which affects the probabilities. Probabilities
are calculated as described in Eq. (3). The general behavior of SA algorithms is
given by the pseudocode of Table 2, adapted to solve the EIT image reconstruction
problem [29]. The symbolic function GenerateRandomNeighbor(S) is responsible
for obtaining a neighbor solution in the search space of the current solution (S) and
depends on the problem to be solved.

P(ΔE) = e− ΔE
kT (3)

where P(ΔE) is the probability of keeping a state that produces a thermal energy
increase of ΔE (as in statistical mechanics) in the objective function; k is a
parameter analogous to Stefan–Boltzman’s Constant, usually assumed to be 1; and
T is the temperature defined by a cooling scheme, the main parameter of the
process control. The probability of a particular state decreases with its energy as
temperature increases. This fact can be observed in the reduction of the slope of
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Table 2 The pseudocode of a Simulated Annealing algorithm

Pseudocode: Simulated Annealing

1. S∗ ← S; //Initial solution

2. T ← T0; //Initial temperature

3. k; //Process parameter

4. γ ; //Random constant ∈ [0, 1]
5. I terTmax; //Maximum iteration for temperature stabilization

6. while Stopping criteria is not satisfied

7. I terT ← 0; //Iterations for temperature stabilization

8. while (I terT < IterTmax) do

9. I terT ← I terT + 1

10. S′ ← GenerateRandomNeighbor(S);

11. ΔE ← f (S′) − f (S); //Change of objective function f

12. if (ΔE < 0) then

13. S ← S′;
14. if (f (S′) < f (S)) then

15. S∗ ← S′;
16. else if

17. take a random P ∈ [0, 1];
18. if

(
P < e− ΔE

kT

)
then S ← S′;

19. end of if;

20. Temporary end;

21. T ← T

1+γ
√

T
;

22. I terT ← 0;

23. Temporary end;

24. S ← S∗;

25. Return S∗;

26. End of Simulated Annealing

P(ΔE) [29]. Additionally, it is possible to demonstrate that, as SA converges to
the global minimum, a very slow temperature reduction is observed, requiring a
considerably large amount of iterations [28].

2.3 Differential Evolution

After presenting the Chebychev Polynomial Problem by Rainer Storn, Kenneth
Price (1995) in attempting to solve this problem created Differential Evolution
(DE) when he had the idea of using different vectors to recreate the population
vector. Since then, a number of tests and substantial improvements have been made
which has resulted in DE becoming a versatile and robust Evolutionary Computation
algorithm [30, 31].
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Table 3 The pseudocode of a Differential Evolution algorithm

Pseudocode: Differential Evolution

1. Generate the initial population of n random agents, each one represented by a vector xi where
i = 1, 2, . . . , n

2. Repeat until the stop criterion is satisfied:
(A) For i = 1, 2, . . . , n do

(i) Given a random number r ∼ U [0, 1];
(ii) If r ≤ PCR then

(a) Generate a mutated agent through the Table 4;
(b) Generate a cross-agent x̌i through the expression (4);
(c) If f0(x̌i ) < f0(xi ) then xi ← x̌i (minimization);

2.3.1 Stages of Differential Evolution

According to [30], DE is characterized by its simplicity and efficiency at solving
global optimization problems in continuous spaces. Similar to Genetic algorithms,
DE benefits from diversity combined operators of mutation and crossover, in order
to generate individuals modeled as vectors, which are candidates for the next
generation. The new population is defined by the selection mechanism, selecting
the individuals to survive for the next population according to simple criteria. In
this process, the population size remains constant. Therefore, the individuals of
generation G are modeled as real vectors, xi,G, i = 1, 2, . . . , NP , where NP is
the population size [32].

The optimization process is governed by the following:

1. Initialization: The algorithm is initiated by creating a randomly chosen initial
population with uniform distribution, corresponding to the vectors of unknown
parameters (potential solutions), taking into account the search space limit [30].
Typically, the unknown parameters are conditioned by lower and upper boundary
constraints, x

(L)
j e x

(U)
j , respectively, as in the following:

x
(L)
j ≤ xj ≤ x

(U)
j , j = 1, 2, . . . ,D. (4)

Therefore, the initial population is defined as:

x
(0)
j,i = x

(L)
j + rj [0, 1] · (x

(U)
j − x

(L)
j ) (5)

where, i = 1, 2, . . . , NP , j = 1, 2, . . . ,D, and rj ∼ U [0, 1].
2. Mutation: In DE, new individuals are generated by three individuals, related as

following. For each individual xi,G, i = 1, 2, . . . , NP , a basic DE mutant vector
(classical) is generated according to:

vi,G+1 = xa,G + F(xb,G − xc,G), (6)
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Table 4 Main strategies of the Differential Evolution technique

Mutation expression Notation

V q+1 = X
q
α + FP (X

q
β − X

q
γ ) ED/rand/1/bin

V q+1 = X
q
α + FP (X

q
ρ − X

q
β) + FP (X

q
γ − X

q
δ ) ED/rand/2/bin

V q+1 = X
q

best + FP (X
q
β − X

q
γ ) ED/best/1/bin

V q+1 = X
q

best + FP (X
q
α − X

q

β) + FP (X
q
γ − X

q

δ ) ED/best/2/bin

V q+1 = X
q

old + FP (X
q

best − X
q

old) + FP (X
q
γ − X

q
δ ) ED/rand-to-best/2/bin

V q+1 = X
q
α + FP (X

q

β − X
q
γ ) ED/rand/1/exp

V q+1 = X
q
best + FP (X

q
β − X

q
γ ) ED/best/1/exp

V q+1 = X
q
α + FP (X

q
ρ − X

q
β) + FP (X

q
γ − X

q
δ ) ED/rand/2/exp

V q+1 = X
q

best + FP (X
q
α − X

q

β) + FP (X
q
γ − X

q

δ ) ED/best/2/exp

V q+1 = X
q
old + FP (X

q
best − X

q
old) + FP (X

q
γ − X

q
δ ) ED/rand-to-best/2/exp

where the random indexes a, b, c ∈ {1, 2, . . . , NP } and a 	= b 	= c.
The amplification parameter F ∼ U(0, 2] controls the amplification of the
differential variation (xb,G − xc,G). However, there are some other variant
mutation operations, as shown in Table 4.

A potential reason for DE to acquire reasonable results is that the mutation
operator is governed by the difference between the coordinates of the individuals
of the current population [30]. Consequently, each parameter is automatically
exchanged and appropriately reduced, aiding convergence to the desired approx-
imate solution.

3. Crossover: The mutated vector is mixed with the target vector to produce the
trial vector, formed as in the following:

wi,G+1 =
{

vi,G+1, rj ≤ CR ∨ j = k(i)

xi,G, rj > CR ∨ j 	= k(i)
, (7)

where j = 1, 2, . . . ,D, i = 1, 2, . . . , NP , rj ∼ U [0, 1], and k(i) ∈ 1, 2, . . . ,D

is a randomly chosen index, which ensures that wi,G+1 receives at least one
coordinate of vi,G+1. The parameter CR ∈ [0, 1] is the crossing constant, set
by the user [30].

4. Selection: The individual of the new generation is selected as the better evalu-
ated vector from the trial vector wi,G+1 and the target vector xi,G, according to
the objective function [30].

5. Stop criterion: The iterative process finishes when a determined number of
iterations is reached or a predetermined value of the objective function is obtained
with a considerably small error [30].

6. Selection of control parameters: The population size NP is chosen from 5D

to 10D and is kept constant during the search process. Parameters F and CR are
set during the search process and affect the speed of convergence and robustness.
Appropriate values for NP , F , and CR are usually empirically determined [30].
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The optimization process is detailed in the pseudocode of DE algorithms,
designed to minimize an objective function f0 : R

n → R, where PCR is the
probability of crossing [33–36], shown in Table 3.

2.3.2 Differential Evolution Strategies

The strategies of DE consist of different variation operators, and can be nominated
according to the following acronym: DE/a/b/c, where [32]:

a: Specifies the vector to be disturbed, which can be “rand” (a vector of the
randomly selected population) or “best” (the least cost vector of the population);

b: Determines the number of weighted differences used for the perturbation of a;
c: Denotes the type of crossings (exp: exponential; bin: binomial).

Price [37] suggested 10 different strategies and some work guidelines for using
them. These strategies were derived from the five different DE mutation regimes.
Each mutation strategy was combined with the “Exponential” or “Binomial”
crossover, providing 5 × 2 = 10 DE strategies. Nevertheless, other combinations
of linear vectors can be used for the mutation. In Table 4 we have Prive’s 10 DE
strategies [37].

The α, β, γ , ρ, and δ indexes are mutually exclusive integers chosen randomly
in the range [1, n], where n is the number of agents of the initial population, and
all are different from the old base index. These indexes are randomly generated
once for each donor vector. The scale factor Fp is a positive control parameter

for the expansion of the difference vectors. X
(q)

best is the agent vector with the best
aptitude (i.e. the lowest objective function value for a minimization problem) in the
generation population q .

2.4 Fish School Search

The FSS was developed by Bastos Filho and Lima Neto in 2008. Such a method
takes into account the protection and realization of the mutual achievements
of oceanic fish [23], where the real characteristics of the fish that served as
inspiration for the method can be classified as feeding and swimming. In the first
characteristic, it is considered that fish possess the natural instinct to seek food;
such a characteristic is incorporated into the algorithm to indicate the success of
fish (those who find more feed are more successful). In the second characteristic,
the capacity of the fish to move individually and in a flock (shoal) is taken into
account, where the search for feed is one of the reasons why fish move.

Therefore, the process of FSS is performed by a population of individuals with
limited memory—the fish [23]. Each fish in the shoal represents a possible solution
to the optimization problem [23]. This method is recommended for high-dimension
search and optimization problems [23, 24]. Considering the characteristics of
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feeding and swimming, the algorithm is formed by four operators, being one of
feeding (the weight) and three of swimming (the operators of movement), which
are described in the following sections.

2.4.1 Individual Movement Operator

Considering fish’s individual capacity for searching for food, the individual move-
ment operator is responsible for moving the fish to a random region of its
neighborhood; this movement does not consider the influence of the other fish of
the school for its realization. An important feature of such a movement is that the
fish moves only in the positive direction of the fitness function, that is it travels only
if the random position is better than the current position.

The individual displacement of each fish i, Δxindi is given in Eq. (8), where
rand(−1, 1) is a vector of random values uniformly distributed in the range [−1, 1],
and stepind is the individual movement step, a parameter that represents the ability
of the fish to move in the individual movement. After calculating the individual
displacement the position of fish xindi is updated through Eq. (9).

Δxindi (t + 1) = stepind · rand(−1, 1) (8)

xindi (t + 1) = xindi (t) + Δxindi (t + 1) (9)

In order to guarantee the convergence of the algorithm during the search process,
the value of the parameter stepind decreases linearly as shown in Eq. (10), where
stepindi and stepindf are the initial and final values of stepind , and iterations is the
maximum possible value of iterations of the algorithm.

stepind (t + 1) = stepind (t) − stepindi − stepindf

iterations
(10)

2.4.2 Feeding Operator

The weight of the fish is the indicator of its success, that is the more food the
fish finds, the more successful the fish is, which represents a better solution in the
optimization problem [24, 38]. In this way, weight is the function to be maximized
by the search process. The fish’s weight is given as a function of the variation of
the fitness function generated by the individual movement (Δfi), as shown in the
equation below:

Wi(t + 1) = Wi(t) + Δfi

max(Δf )
(11)
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where Wi(t) and Wi(t + 1) represent the weight of the i fish before and after the
update.

2.4.3 Collective Instinctive Movement Operator

The first collective movement to be considered in FSS is the collective-instinctive
movement, where the most successful fish in the individual movement guides the
other fish to the points of greatest food encountered by it. Such motion is carried
out through the resulting direction vector I (t), that is the weighted average of the
individual displacements ξ . Having as weight the individual fitness variance Δxi ,
the expression for that mean is given in Eq. (12), where N represents the number of
fish in the shoal. Then, the new position of all fish is obtained following Eq. (13).

I (t) =
∑N

i=1 ΔxindiΔfi∑N
i=1 Δfi

(12)

xi(t + 1) = xi(t) + I (t) (13)

2.4.4 Collective Volitive Movement Operator

The following and last collective movement, the collective-volitional movement,
is based on the performance of all fish in the school [39]. In this movement, the
fish may move towards the center of mass of the shoal or move away from it.
The calculation of the center of mass of the school, Bary(t), is done according
to Eq. (14).

The choice whether the fish will approach or move away from the center of mass
is made by analyzing whether the fish are gaining weight during the search process.
If the fish, in general, are increasing in weight, it means that the search is being
successful and the fish approach each other, decreasing the radius of the search; in
this case, the movement is carried out following Eq. (15). Otherwise, if the fish are
losing weight, the search is unsuccessful and the fish move away from each other,
increasing the search radius, executing the movement through Eq. (16). In Eqs. (15)
and (16), the parameters rand(0, 1) represent a vector of random values evenly
distributed in the range [0, 1], and stepvol is the step of the collective-volitional
movement.

Bary(t) =
∑N

i=1 xiWi(t)∑N
i=1 Wi(t)

(14)

x(t + 1) = x(t) − stepvol · rand(0, 1)(x(t) − Bary(t)) (15)

x(t + 1) = x(t) + stepvol · rand(0, 1)(x(t) − Bary(t)) (16)
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3 Density Based on Fish School Search

Based on the FSS, the Density based on Fish School Search (dFSS) is an algorithm
dedicated to the optimization of multimodal functions proposed by Madeiro, Bastos-
Filho, and Lima Neto [24, 38]. In the method, the main Fish School is divided into
Sub-Fish Schools of different sizes, so that each sub-group will explore different
regions of the aquarium, which have possible solutions to the problem. Unlike the
other methods discussed here, which get only one solution at the end of their runs,
on dFSS it is possible to obtain a set of global and local optimal solutions. In fact, the
function of the relative quadratic error for TIE is multimodal, but since the objective
of the reconstruction is to obtain only one image, the application of dFSS to TIE is
done by considering as a solution the best image obtained by the method in relation
to the objective function.

In addition to the feeding and movement operators of the search for Fish schools
adapted to the multimodal approach, dFSS has two more operators, the memory and
partitioning operators, which will be dealt with in more detail later in this section.

In dFSS the food purchased by a fish is shared with the other fish of the shoal. The
amount of shared food from one fish i to another fish j , C(i, j) is given by Eq. (17),
where qij is the number of fish k that satisfy the relationship dik < dij (density
of fish around the fish i), including fish i, and dRij = dij /[∀k 	= i, min(dik)] is
the normalized distance. Then, the updating of the weight of each fish will take
into account the total food that was shared with it, as given by Eq. (18), where Q

represents the number of fish that were successful during the individual movement.
Different from what happens in nature, in the dFSS proposal it is assumed that the
weight of the fish does not decrease over the iterations [24].

C(i, j) = Δfi

(dRij )
qij

∑N
k=1

1
(dRik

)qik

(17)

Wi(t + 1) = Wi(t) +
Q∑

j=1

C(i, j) (18)

Food sharing is responsible for the control and maintenance of different sub-
Fish Schools, since each fish cooperates (sharing its success) with the other fish
around them, the most significant sharing is with the closest fish and in regions less
populous. This is modeled by the index (dRij )

−qij greater is the value of qij (i.e. the
denser the region around the fish i), smaller will be the quantity shared for the fish
j [24]. Further detail on the formation of sub-shoals is given in the explanation of
the memory and partitioning operators in the following paragraphs.

Individual movement in the dFSS occurs in the same way as in the FSS,
but for segregation of the main fish school the adjustment of the movement
parameter has been modified. The new way of updating the step of the individual
movement is given by Eqs. (19), (20), (21), and (22), where decayi is the decay
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rate, decaymin ∈ [0, 1], decaymax are the minimum and maximum decay rates,
respectively, decaymaxinit

, decaymaxend
∈ [0, 1] are the initial and final maximum

decay rates, respectively, and must obey the following condition: decaymaxend
<

decaymaxinit
< decaymin, and finally Tmax is the maximum number of iterations

[24, 38]. The initial value of the individual step is given by the parameter stepinit ,
that is stepindi (0) = stepinit [24].

stepindi (t + 1) = decayi · stepindi (t) (19)

decayi = decaymin −
(

Ri(t) − min(Rj (t))

max(Rj (t)) − min(Rj (t))

)
(decaymin − decaymax(t))

(20)

decaymax(t) = decaymaxinit

(
decaymaxend

decaymaxinit

)t/Tmax

(21)

Ri(t) =
Q∑

j=1

Δfj

(dRij )
qij

∑N
k=1

1(
dRjk

)qjk

(22)

In the dFSS each fish has a memory Mi = {Mi1,Mi2, . . . ,MiN }, where N is the
total number of fish. In a fish’s memory is the information of how much food the
other fish have shared with it throughout the search process. The index Mij indicates
the influence of fish j on fish i, that is, the larger the Mij the greater the influence
of fish j on fish i. The memory operator is calculated by Eq. (23), where ρ ∈ [0, 1]
is the forgetting rate, a parameter that controls how the influence exerted on past
iterations is remembered.

Mij (t + 1) = (1 − ρ)Mij (t) + C(j, i) (23)

The collective-instinctive movement of dFSS is similar to the Fish School search,
although each fish has its own resulting direction vector Ii which is given by the
weighted average of the displacement performed on the individual movement by
a fish j having as weight its influence Mij as shown in Eq. (24). The fish position
update is given by Eq. (25). According to [24], even the fish that did not move during
the individual movement will influence the result of Ii , causing fish i to simulate this
behavior by remaining stationary according to the value of Mij .

Ii(t) =
∑N

j=1 ΔxjMij∑N
k=1 Mik

(24)

xi(t + 1) = xi(t) + Ii(t) (25)

After the execution of the collective-instinctive movement the partitioning
operator responsible for the division of the main school into several sub-schools of
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different sizes is executed. For the division of the school, the following belonging
condition is taken into account: a fish i belongs to the same sub-school of fish j

only if i is the fish that exerts the greatest influence on fish j or vice versa [24].
The division process begins when a randomly chosen fish i is removed from the
main school to form a new sub-shoal, then another fish j is sought where i is the
most influential for j or vice versa; if there is a j that satisfies this condition it will
be removed from the main shoal and added to the sub-school in question; then this
procedure is repeated for fish j in a cascade process. This process is repeated until
no more fish that satisfy the condition of belonging to that particular sub-school
are found. When this happens a new fish from the main shoal will be randomly
removed to compose a new sub-school and the process resumes. The formation of
the sub-shoals is carried out until there are no more fish in the main shoal [24].

Finally, the collective-volitional movement is performed independently for each
sub-school as given in Eq. (26). In this movement all the fish move towards the
barycenter of the sub-shoal (Baryk(t)) to which it belongs. The barycenter of
each sub-school is calculated in the same way as FSS, given in Eq. (14). To avoid
premature convergence, the magnitude of the pitch to be performed by the fish
towards the barycenter varies according to the value of decaymax(t) [24]. The
pseudocode of the dFSS method [38] is shown in Table 5.

x(t + 1) = x(t) + (1 − decaymax(t))(Baryk(t) − x(t)) (26)

4 The Gauss–Newton Method

Based on Newton’s method (dedicated to estimating roots of a function) the Gauss–
Newton method is an algorithm which has been widely used in the reconstruction
of EIT images [40, 41]. This method, implemented to eliminate the use of second
derivatives, consists of a gradient-descent-based numerical method used to solve
non-linear least squares problems minimizing the sum of quadratic functions [41].
The application of the Gauss–Newton method in EIT is done by estimating a
conductivity distribution σk which minimizes the expression given in (27), where
φext,k(

−→
u ) = f (I (

−→
u ), σk(

−→v )), for all −→
u ∈ ∂Ω and −→v ∈ Ω [41].

sk = 1

2

∑
u∈∂Ω

(φext,k(
−→u ) − φext (

−→u ))2 (27)

The hybridizations done in this work evolve the Gauss–Newton method, working
together with the techniques presented before. The nomenclature used to describe
a hybrid technique in this works is ‘technique’ with Non Blind Search (NBS) or
‘technique’-NBS. For instance, the hybrid approach with the PSO and the Gauss–
Newton algorithm will be called a PSO a with non-blind search, or PSO-NBS.
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Table 5 The pseudocode of density based on Fish School Search algorithm

Pseudocode: density based on Fish School Search

1. Initialize all fish in random positions and with null weight
2. Evaluate all fish’s fitness
3. Calculate the distance between the fish
4. Repeat steps (a) and (b) until some stopping criteria are reached

(a) For each fish in the school do:

(I) Execute the individual movement
(II) Execute the feed operator

(III) Update the fish’s weight
(IV) Execute the memory operator

(b) For each fish in the school do:

(I) Execute the instinctive collective movement
(II) Determine the most influential fish for a given fish

(c) Execute the primary school division operator
(d) For each sub-school determined in previous step do:

(I) Calculate the barycenter

(e) For each fish do:

(I) Update the individual step
(II) Execute the collective-volitional movement

(f) Evaluate all fish’s fitness
(g) Calculate the distance between the fish
(h) Update the value of decaymax(t)

5. Select the best fish from each sub-school at the end of the process

5 Electrical Impedance Tomography

EIT is a promising imaging technique that is non-invasive and free of ionizing
radiations. This technique reconstructs images of the inside of a body (or any object)
through electrical quantities measured below its surface. For this, electrodes are
placed across a transverse section of a body. These electrodes are connected with a
control and data acquisition system that is responsible for the application of a pattern
of an alternated and low amplitude electrical current and also for the measurement of
the border electrical potentials that are generated by this stimulus. When collected,
the electrical current and potential data are conveyed to a computer that makes the
image reconstruction [42, 43].

The images obtained by EIT are the computational reproduction of an estimated
mapping of electrical properties inside a section of body that are calculated through
the relation between the stimulus data and response data. By electrical properties,
in this case, is understood electrical conductivity or permissiveness; electrical
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conductivity is the measurement of how easy a material conducts electricity and
electrical permissiveness is the measurement of how easy electrical charges of a
material are separated under the application of an electric field. A good conductor
allows passage of continuous and alternated current whereas a high permissiveness
material allows the passage only of alternated current [44]. The tissues and
organs of the human body, due to its constitution, have characteristic values of
conductivity and permissiveness. Factors such as concentration of water, ions, and
blood irrigation determine whether a tissue or an organ is less or more conductive or
permissive. This justifies the use of EIT in the medical field, because the difference
of conductivity and permissiveness between organs supplies the necessary contrast
in the EIT image for differentiation of these organs.

Nowadays, the medical imaging field has very well consolidated techniques
such as X-rays, computed tomography, nuclear magnetic resonance, and positron
emission tomography. Despite that, EIT has advantages when compared to these
other methods that makes it a promising technique in medical imaging. These
advantages are:

• EIT does not use ionizing radiation, hence is harmless to patients [44]. Thus, it
is viable for performing this technique several times or even for continuous use
in monitoring certain functionalities of a body.

• EIT has small dimensions [45], which allows the device to be moved to the
patient and even used in the patient’s bed in intensive care units.

• EIT has low cost when compared to other imaging techniques.

Although these advantages make EIT a promising technique, it is still recent and
not strongly established, presenting low-resolution images and slow reconstruction
when compared to other tomography techniques [46, 47], which makes it not fully
reliable for medical diagnosis.

The process of reconstructing EIT images is divided into two problems: the direct
problem and the inverse problem [46, 47]. In the direct problem, the conductivity
distribution of the inner domain and the current are known and the objective is
to determine an electric potential distribution at the internal and boundary (edge)
points of the domain [45]. This process is governed by Poisson’s equation and its
boundary conditions for the EIT problem. In the inverse problem, the goal is to
estimate the internal conductivity distribution of a domain knowing the pattern of
the current excitation and the edge potentials due to this excitation. The inverse
problem, mathematically, is a non-linear, poorly placed and poorly conditioned
problem [42, 48], because more than one solution is possible for this problem for
the same input values, that is small data measurement errors can lead indefinitely to
large errors in the solution [42, 48]. This factor makes EIT imaging quite dependent
on the reconstruction method used.

From a mathematical point of view, the field of study of EIT, that is the section
for which the image is desired, can be considered to be a closed 2D region Ω where
its boundary surface is given by ∂Ω as shown in Fig. 1.
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Fig. 1 EIT domain
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To reduce the complexity of this problem it is considered that the image domain
should consist of an isotropic medium.1 However, the electrical nature of human
organs and tissues is anisotropic2 [49, 50]. Despite the proposed hypothesis being
wrong, it is necessary, due to the limited knowledge about this topic in EIT and
related areas [49].

Taking into account a low-frequency excitation current (of the order of 125 kHz)
the permissiveness effect can be disregarded [51]. Thus, the electric medium is
considered to be conductive σ(x, y) because, when considering low frequencies, the
inductive and capacitive effects can be ignored [52]. Therefore, the current density−→
J generated from an injected electric current is given by Eq. (28) [51].

−→
J = σ

−→
E (28)

where
−→
E represents the medium’s electric field. Considering that the excitation

frequency value is lower than 30 MHz, it has the following [53]:

−→
E = −∇φ (29)

∇ · −→
J = 0 (30)

where ∇ is the symbol nabla that denotes the gradient operator,3 ∇· is the divergent
operator4 and φ(x, y) represents the internal electric potential at a point (x, y) of the
domain Ω . Thus, replacing Eqs. (29) and (30) in Eq. (28) yields Poisson’s equation,
given in (31), which relates the conductivity values and electrical potentials of a
domain [51, 53].

∇ · (σ∇φ) = 0 (31)

1An isotropic material is a medium whose electrical characteristics do not depend on the considered
direction.
2Instead of isotropic materials, an anisotropic material has direction-dependent characteristics.
3The gradient of F(x, y) = ∇F(x, y) = i

∂F (x,y)
∂x

+ j
∂F (x,y)

∂y
=

(
∂F (x,y)

∂x
,

∂F (x,y)
∂y

)
.

4The divergent of F(Fx, Fy) = ∇ · F(Fx, Fy) = ∂Fx

∂x
+ ∂Fy

∂y
.



Hybrid Metaheuristics for Electrical Impedance Tomography 227

Poisson’s equation has unlimited solutions, which means that for a given
electrical potential distribution there are several conductivity distributions that
satisfy Eq. (31). The number of solutions is limited by boundary conditions inherent
to the problem. In EIT, the electrical currents are injected only by electrodes placed
around the patient, which means that in specific positions on the domain’s surface
the following boundary condition can be taken into account:

σ
∂φ(σ)

∂n̂
=

{
Ji, i = 1, 2, 3, . . . , ne

0, in other points of ∂Ω
(32)

where ne is the number of electrodes used and n̂ is a normal versor5 on the domain’s
edge and outside oriented. Following the same line, the known electrical potentials
are the ones arranged on a domain’s contour, measured by the electrodes. In this
way, the second contour condition for this problem is the following:

φext (x, y) = φ(x, y), ∀(x, y) ∈ ∂Ω (33)

where φext (x, y) is the electrical potential distribution measured by the electrodes.
Determination of the electric potential distribution measured by electrodes

φext (u, v), knowing the electric current of excitation I (u, v), and distribution of
internal conductivity σ(x, y), is called the direct problem of EIT. It is defined by
Eq. (31) and the boundary conditions (32) and (33) [51]. The direct problem can be
modeled by the relation given in Eq. (34).

φext (u, v) = f (I (u, v), σ (x, y)), ∀(u, v) ∈ ∂Ω ∧ (x, y) ∈ Ω (34)

The inverse problem, however, is the reconstruction of EIT images themselves
[42]. The objective is to determine an internal conductivity distribution σ(x, y)

in the domain by knowing the excitation current I (u, v) and the edge potentials
measured at the electrodes φext (u, v). This problem is considered the inverse of the
function given in Eq. (34), being modeled conformed in Eq. (35).

σ(x, y) = f −1(I (u, v), φext (u, v)), ∀(u, v) ∈ ∂Ω ∧ (x, y) ∈ Ω (35)

Then, the direct problem is to solve Poisson’s equation (31) knowing the internal
conductivity distribution of a domain and the boundary condition given in Eq. (32)
for the injected current. The inverse problem consists of the resolution of Eq. (31)
knowing the two boundary conditions given by Eqs. (32) and (33), but not knowing
the conductivity distribution [54].

The inverse problem of EIT is an intrinsically ill-posed problem because it
does not have a unique solution, that is several conductivity distributions would
respond to the current excitation at the same distribution of measured electrical

5A versor is a vector of unitary module usually used to indicate the direction in a given operation.
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potentials. According to [49], if measurements were made with infinite precision
and over the entire surface of the domain, the problem would have a unique solution.
However, in the imaging process the data are discretely sampled and noisy, causing
a loss of information. Besides that a large variation of conductivity can produce
only a small variation in discrete measurements. Thus, the ideal would be to use
as many electrodes as possible. It was found that by increasing the number of
electrodes it is possible to improve the ill-posed condition of this problem and
consequently the quality of the reconstructed images [55]. However, it has also
been noted that increasing the number of electrodes significantly increases the
reconstruction time [55]. In addition to that, the number of electrodes is limited
by the measurement area and the size of the electrodes [56]. The inverse problem is
also ill-conditioned because small oscillations in the measurements (such as noise)
can produce large oscillations in the final non-linear solution, because changes in
conductivity values of the domain do not produce a linear change in the values of
the surface potentials [49].

5.1 Objective Function

The use of evolutionary and bioinspired algorithms in the reconstruction of EIT
images occurs when approaching the reconstruction problem as an optimization
problem. For this it is necessary that an objective function be optimized. In this
chapter, is used as objective function the relative squared error given in Eq. (36),
where ne is the number of electrodes, V is the electrical potential distribution
measured on the electrodes, and U(x) is the electrical potential distribution of a
random image x that is a candidate for the solution considered in the algorithm [57].

fo(x) =
[∑ne

i=1 (Ui(x) − Vi)
2

∑ne

i=1 (Vi)2

]1/2

(36)

V = (V1, V2, . . . , Vne )
T , (37)

U(x) = (U1(x), U2(x), . . . , Une (x))T (38)

5.2 Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software

Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction
Software (EIDORS) is an open source software developed at MATLAB and Octave.
The experiments presented in this chapter were performed using EIDORS, which
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has functions capable of solving the direct problem of EIT and the creation of finite
element meshes[58].

6 Hybridization

Hybridization consists in using more than one technique in cooperation to solve a
determinate problem, although if one technique can solve the approached problem in
a satisfactory way, there is no necessity for hybridization. The use of hybridization
is justified when the interaction among two or more techniques can improve the
performance of the problem resolution.

There are mainly three types of hybrid system. They are:

• Sequential hybrid system: The technique is used in a pipeline way.
• Auxiliary hybrid system: These are techniques co-working to help one technique

to solve a determinate problem. The accessory technique is used, normally, to
improve the stages of the main technique.

• Embedded hybrid system: The evolved techniques are integrated. They work
together as equals to approach the solution of a problem.

The hybridization described in this work are embedded, once the Gauss–Newton
method is responsible for including a solution into the pool of solution candidates
of each technique, which is intended to guide the search and to avoid falling in
local minimals. The results are shown for EIT image reconstruction, by using raw
techniques, such as particle swarm algorithms and density based on the Fish School
Search; Also shown are the results of the collaborative work of each one with the
Gauss–Newton model as new hybrid approaches.

6.1 Differential Evolution Hybridized with Simulated
Annealing

According to [59] the DE method which has a stronger global search character,
only a few generations are sufficient to find a solution close to the ideal. However,
according to its algorithm, each generation requires the selection, crossing, and
mutation of the agents of the current population, thus requiring a high computational
cost, that is a high number of calculations of the objective function. The SA method
is a local search algorithm with a high convergence speed due to the fact that it is
able to avoid local minima [60, 61]. In this direction, the proposal of this work is a
hybrid version of DE based on simulated annealing (DE-SA), which consists of the
implementation of DE and adding SA within the selection operator to improve ED
global search capacity.
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Pseudocode

1. Initialization: Generate the initial population of n random agents D dimen-
sional, each represented by a vector Xj,i,G = randj,i[0, 1], where j =
1, 2, . . . , NP ; G is the current generation; and Fi = rand(0, 2] is the mutation
scale factor for each individual.

2. Set the value of PCR;
3. Population Mutation: The population mutation is based on the strategy of

DE/best/1/bin. As shown in Table 4,

Vj,i,G = Xj,best,G + Fi(Xj,i1,G − Xj,i2,G)

where i1 	= i2 	= i and Xj,best,G corresponds to the most suitable agent in the
current generation.

4. Population Crossing: Population crossing is based on the DE binomial crossing
operation, as shown by the equation of Table 4.

Wj,i,G =
{

Vj,i,G, if (randj,i(0, 1) ≤ PCR or j = jrand)

Xji,G, otherwise

5. Population selection: This is processed by comparing the target vector Xj,i,G

with the vector of judgment Wj,i,G of the population. In addition, SA is added
inside the selection operator, and tG represents the ambient temperature of the
current generation.

tG+1 = tG

1 + G
√

tG
(39)

xi,j,G+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wj,i,G, if f0(Wj,i,G) ≤ f0(Wj,i,G)

Wj,i,G, if f0(Wj,i,G) > f0(Wj,i,G)

and rest
(

G
4

) = 0

and f0(Wj,best,G) = f0(Wj,best,G−1)

and f0(Wj,best,G) = f0(Wj,best,G−2)

and exp
[
− (f0(Wj,i,G)−f0(Wj,i,G))

tG

]
> rand(0, 1)

Wj,i,G, Otherwise
(40)

where Wj,best,G is the fittest agent of the current generation, Xj,best,G−1 is the
fittest agent of generation (G−1) and Xj,best,G−2 is the fittest agent of generation
(G − 2). Every four generations, these conditions are implemented to assess
whether the value of the objective function of the best candidate for the solution
has assumed a local minimum in the last three generations. In this case, the
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judgment vector Wj,i,G can be maintained for the next generation if it satisfies
the condition imposed by the exponential expression based on the probability of
the SA optimization process.

6. Stop if the stop criterion is satisfied. Otherwise, go back to Step 3.

Recall that PCR is the probability of crossing and f0 corresponds to the objective
function. Also for the DE-SA method, the initial agents were defined with a normal
distribution of random conductivity in the range [0, 1].

6.2 Fish School Search Hybridization

According to the discussion in Sect. 2.4, one can observe that the FSS algorithm is
quite dependent on the individual movement operator and therefore the parameter
stepind decreases linearly with the iterative process.

With the proposal to increase the refined search between the intermediary and
final iterations, we changed the linear decay for an exponential decay. In this way,
the stepind value decays faster, thus the algorithm will execute a more refined
search, that is the algorithm will execute a more exploitative and less exploratory
search.

The equation for the exponential decay was made in such a way that the stepind

value continues, beginning with stepindi and ending with stepindf . This expression
is given in Eq. (41).

stepind (t) = stepindi × exp

[
t

N
ln

(
stepindf

stepindi

)]
(41)

7 Methodology

In the EIT reconstruction simulations our goal was to identify a conductive object
within a circular non-conductive domain. We considered three cases where the
object was placed in the center, between the center and the edge, and at the edge
of the domain. These images, called ground-truth images, were created by using
EIDORS with a mesh of 415 finite elements and 16 electrodes. Figure 2 shows the
ground-truth images used in the experiments.

For all methods here discussed we used Eq. (36) as the objective function, where
each dimension of the vector (solution candidate) corresponds to a particular finite
element on the mesh. The stop criterion utilized was the maximum number of
iterations.

The parameter used in the PSO for the experiments were: ‘c1’and ‘c2’ = 2; ω

(inertia weight) = 0.8; number of iterations = 500; and number of particles = 100.
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Fig. 2 Ground-truth images for the object placed (a) in the center (b), between the center and the
edge, and (c) at the edge of the circular domain

For the DE’ implementations, the agent referred to by the DE-SA algorithm is
represented by a numerical vector containing the internal conductivity values of
a candidate for the solution, that is the agent is a candidate for solving the TIE
problem. The parameters used to implement the DE-SA method were initial number
of agents: 100, probability of crossover: 90%, initial temperature: 200,000, and
number of iterations: 500.

The parameters used for FSS’ methods were 100 fish, W0 = 100, stepindi =
0.01, stepindf = 0.0001, stepvolt = 2stepind and iterations= 500. Whereas
for dFSS’ methods they were ρ = 0.3, stepinit = 0.01, decaymin = 0.999,
decaymaxinit = 0.99, decaymaxend = 0.95, and Tmax = 500.

8 Experimental Results and Discussion

In this section, the results obtained by reconstruction of EIT images through the use
of hybrid methods previously described are presented.

8.1 Particle Swarm Optimization

The PSO and Gauss–Newton/PSO reconstructed images are shown in this section.
They are presented in two results categories, which are:

• Qualitative: Figures 3 and 4 are the reconstructed images for the three ground-
truths (center, between the center and the border, and the border) for the canonical
PSO and the same technique with a particle generated by the Gauss–Newton
algorithm inserted at the beginning of the iterative process, respectively.

• Quantitative: The graphs, shown in Figs. 5, 6, and 7 are the evolution of the
relative error of the best particle, calculated by the objective function presented in
Sect. 5.1, along the 500 iterations of each of the three executions of the algorithms
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Fig. 3 Particle swarm optimization reconstructed images. Center ground-truth: ‘a’; between the
center and the border ground-truth: ‘b’; and border ground-truth: ‘c’. The numbers at the right side
of the chars (1, 2, and 3) stand for 50, 300, and 500 iterations, respectively

for the center, between the center and the border, and the border ground-truth
images, respectively.

8.1.1 Particle Swarm Optimization and with Non-blind Search
Qualitative Discussion

As with the results, their discussion is also qualitatively and quantitatively separated.
The qualitative analysis considers images reconstructed and several aspects of

the similarity with their respective ground-truth (Fig. 2) and the noise presence and
cleanness of the circular domain.
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Fig. 4 Particle swarm optimization with non-blind search reconstructed images. Center ground-
truth: ‘a’; between the center and the border ground-truth: ‘b’; and border ground-truth: ‘c’. The
numbers at the right side of the chars (1, 2, or 3) stand for 50, 300, and 500 iterations, respectively

The images generated by the PSO in Fig. 3 are generally noisier than the ones
generated by the hybrid technique (PSO-NBS). It is important to clarify that by
noisier we mean a less isolated resistive area (in red) with several artifacts around
it. That means that the technique could not generate images with good isolation of
the searched object (ground-truth). The same happened for the three ground-truth
configurations.

On the other hand, the images generated by the PSO with non-blind search
(Fig. 4) are cleaner than the former ones (by isolating the red object, which is
the ground-truth). This factor means that the inclusion of a particle with prior
knowledge, generated by the Gauss–Newton algorithm, can improve significantly
the quality of the generated images.
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Fig. 5 Relative error for the ground-truth center placed

Fig. 6 Relative error for the ground-truth placed between the center and the border

In these experiments, the only drawback of the hybrid approach was when the
image to be reconstructed was placed at the border of the domain (c1, c2, and
c3). The reconstructed resistive area (in red) was slightly different from its ground-
truth (Fig. 2 circular domain ‘c’). Nevertheless, these images are still in better shape
and with a better noise level than the ones generated with only the Particle Swarm
Algorithm.

Under this analysis, it is clear that, qualitatively, the PSO-NBS hybrid approach
(Fig. 4) overcame the only PSO approach (Fig. 3) in all the aspects.
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Fig. 7 Relative error for the ground-truth border placed

8.1.2 Particle Swarm Optimization and with Non-blind Search
Quantitative Discussion

The quantitative analysis is based on the capacity of finding a low relative error value
and the capacity of escaping local minimals along the iterations. Those factors can
be observed in the relative error plots.

Under the three configurations (Figs. 5, 6 and 7), the hybrid approach (PSO-
NBS, in red) shows a capacity of finding deeper values (i.e. lower relative error
values). This probably happens because of the guidance of the search when a Gauss–
Newton generated particle is put into the swarm. Besides, it is possible to notice
that, unlike the PSO (in black), the PSO-NBS, in most of the cases, is able to escape
local minimal regions. This can be seen by the linear trajectory of the back line
in Fig. 5 around 150 iterations and in Fig. 6 around 340 iterations, when the error
stops falling. The PSO-GN also has this trend of stagnating the error’s fall; however,
before that happens, this technique had already found a lower error than the PSO in
the three cases.

The reconstruction problem regarding the border reconstruction images by the
hybrid approach is also present in the quantitative results. In Fig. 7, the PSO-NBS
(in red) stops its evolution (i.e. relative error falling) near the 20th iteration, which
characterizes a local minimal stack, and therefore generation of a non-clear isolation
of the searched object, as seen in Fig. 7, sub-units c1, c2, and c3. That is also the
reason for those three images being equal, as there was no improvement (finding a
better image) after the 20th iteration.
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8.2 Differential Evolution Hybridized with Simulated
Annealing

The results obtained for the hybridized reconstruction method are compared with the
classical methods of DE and SA. The pseudocode and the characteristics of these
methods were presented in Sect. 6.1.

It is important to remember that the initial agents were defined as having a
random internal conductivity distribution in the range [0, 1] in the DE-SA method.

The results in Figs. 8 and 9 show images obtained from the DE and hybrid DE-
SA method for an isolated object located in the center, between the center and the
edge, and at the edge.

Where the situation represented in (a)–(c) is the location of an object in the center,
between the center and the edge, and near the edge, respectively. (a1), (a2), and (a3)
represent the images of the best candidates for solution of the object in the center in
50, 300, and 500 iterations, respectively. (b1), (b2), and (b3) represent the image of
the best candidate for solution of the object between the center and the edge in 50,
300, and 500 iterations. Represents the image of the best candidate for solution to
the object in near the edge in 50, 300, and 500 iterations.

Comparing the images given in Figs. 8 and 9, one can say that DE-SA can
identify the objects with only 50 iterations; on the other hand, DE is able to identify
only the case where the object is placed at the edge. Indeed, DE-SA obtained
images are anatomically consistent and conclusive from 300 iterations for the three
ground-truth images. Qualitatively, the DE-SA method showed high capacity in
generating images with few artifacts from 300 iterations for all configurations, thus
is a potential technique for eliminating image artifacts.

Figure 10 shows the graph for the error decrease in the function of the number
of iterations for the DE and DESA methods. The curves in blue, red, and green
represent the results for the object placed in the center, between the center and the
edge, and at the edge, respectively, and the continuous and dotted lines represent the
DE and DE-SA results, respectively.

From the graph in Fig. 10, we can observe that DE-SA always obtained lower
results than DE, showing that the hybrid technique succeeds the non-hybrid
technique. In this way, the comparison of the DE-SA method with the traditional
method of DE shows that the former was more efficient in reconstruction, generating
consistent images with a low relative noise level in the first 50 iterations. The
reconstructions obtained with the DE-SA technique presented a greater edge
definition when compared with the traditional method.
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Fig. 8 Reconstructions obtained from the DE method for an isolated object located in the center
(a1, a2, a3), between the center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the
circular domain for 50, 300, and 500 iterations, respectively

8.3 Exponential Hybridization of the Fish School Search

In this section the results for the hybridization of the FSS algorithm where the
parameter stepind is updated following an exponential function as discussed in
Sect. 6.2 will be presented.

In Figs. 11 and 12 reconstructed images are shown for the FSS and for the
method hybridized with the decay of stepind exponentially, called FSSExp. When
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Fig. 9 Reconstructions obtained from the hybrid DE-SA method for an isolated object located in
the center (a1, a2, a3), between the center and the edge (b1, b2, b3), and near the edge (c1, c2, c3)
of the circular domain for 50, 300, and 500 iterations, respectively

comparing the images, it is possible to observe that the FSS method was able to
identify the object only when it is on the edge in 50 iterations, while the FSSExp
appropriates the object at the edge and was also able to detect when the object
is placed between the center and the edge. However, the results for 300 and 500
iterations show that the FSS method obtained images closer to the actual sized
objects with less noise than FSSExp. The motivation to change the way the stepind
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Fig. 10 Graph of the value
of the objective function by
number of iterations for DE
and DE-SA
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value decreases was the improvement between 300 and 500 iterations obtained by
the FSS method which is minimal and described by Fig. 11.

The data can be evaluated by the graph given in Fig. 13 quantitatively, where the
error is shown as a function of the number of iterations. The curves in shades of
blue, red, and green correspond to the images with the object in the center, between
the center and the border, and on the border, while the curves with the solid dotted
line show the results for FSS and FSSExp. The graph of Fig. 13 confirms what the
reconstructed images show. The first iterations show the curves very close; however,
the performance of the FSS ends up being higher than the FSSExp with the increase
in the number of iterations, perhaps the decay of the stepind parameter was very
aggressive, changing the exploratory search to exploitative too early. The graph
also shows the decrease in the value of the objective function obtained by the FSS
between 300 and 500 iterations.

8.4 Density Based on Fish School Search with Non-blind
Search

In this section we will present the results obtained by the density based on FSS with
the non-blind search (dFSS + NBS) and compared with the method in its simplest
form (dFSS).

Figures 14 and 15 show reconstructed images by dFSS and dFSS+NBS, respec-
tively. From these results, it is possible to observe that the use of the non-blind
search accelerated the search process for dFSS, as observed in the comparison of the
results in 50 iterations between the methods. In 50 iterations the dFSS obtained only
noisy and inconclusive images, while dFSS+NBS found the object in all three cases,
despite the high noise. In 500 iterations, the dFSS+NBS images have an object that
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Fig. 11 Results using FSS for the location of an object in the center (a1, a2, a3), between the
center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the circular domain for 50, 300,
and 500 iterations

is closer to the real one and have less noise when compared to the images obtained
by the dFSS.

Figure 16 shows a graph that describes the fall of the relative error as a function
of the number of iterations. The curves in shades of blue, red, and green correspond
to the images with the object in the center, between the center and the border,
and on the border, respectively, while the curves with the solid dotted line show
the results for FSS and dFSS+NBS, respectively. From the graph, it is possible to
observe that in the case of the object at the edge, the implementation of the non-blind
search resulted quickly in the candidate with the best solution in the first iteration.
For the other cases, the dFSS+NBS curve was higher than the dFSS. However, all
curves of dFSS+NBS were lower than that of dFSS when the iterative process was
over, demonstrating that the implementation of the solution from the Gauss–Newton
method improved the performance of dFSS.
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Fig. 12 Results using FSSExp for the location of an object in the center (a1, a2, a3), between the
center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the circular domain for 50, 300,
and 500 iterations

9 Proposed Hardware Infrastructure

EIT images are acquired using the proposed prototype, whose main function is
to control the injection of electric currents to pairs of electrodes and, afterwards,
measure the resulting electric potentials; since all boundary potentials are acquired,
a dedicated software is used to reconstruct images based on approximate numerical
solutions [62]. All functions are organized by an embedded control system in the
hardware that generates a data file; the system’s architecture is shown in Fig. 17.
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Fig. 13 Graph of the value of the objective function by number of iterations for FSS and FSSExp

• Imaging area: This is called a phantom and simulates a human tissue excited by
only a little alternated current. The experimental environment has an electrolytic
cell with an object immersed in liquid that is a normal saline solution (0.9% of
NaCl), where 16 electrodes are distributed around the surface for the excitation
and reading of electrical response potentials. The verification of the environmen-
tal impedances was made with a sensitive impedance meter during assembly for
calibration of the device for capturing a signal in the order of millivolts.

• Microcontrolled platform: Based on low-cost open hardware, this is responsible
for the general control system of the excitation module of the electrodes and also
the reading of the voltages coming from the pairs to be considered, made by the
multiplexing of analog inputs. The prototyping platform used was ARDUINO
MEGA 2560, which offers many I/O pins, serial ports for programming and
communication, and has a low purchase price ($10 on average). The control
system of an EIT is developed in ARDUINO software IDE using a C language
dialect.

• Alternating current source: A 1 mApp sine-wave source was dimensioned to
meet the needs of a signal with low amplitude and frequencies in the range of 10–
250 kHz. [63]. It is important to work with a low signal because currents injected
into a human body can be dangerous, so research always must pay attention in
this specific case.

• 16-Bit analog demultiplexer: Responsible for the switching of the excitation
signal through all the electrodes.

• 16-Bit analog multiplexer: Provides to the microcontroller the voltage readings
from a pair of electrodes following the techniques seen in the introduction.
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Fig. 14 dFSS results for an object placed in the center (a1, a2, a3), between the center and the
edge (b1, b2, b3), and at the edge (c1, c2, c3) of the circular domain for 50, 300, and 500 iterations

• Acquisition and pre-processing: The signals collected on the electrodes through
the multiplexers are treated and amplified for further reading before being
converted to digital in the microcontrolled platform.

• Computer communication: Data from the reading are transmitted digitally in
order to be processed by the reconstruction software, using a serial communica-
tion through USB port in Microcontrolled Platform.

• Computational reconstruction: In a computer, the impedance mapping data are
processed by an algorithm that reconstructs the image with one of the proposed
swarm intelligence optimizations.
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Fig. 15 dFSS+NBS results for an object placed in the center (a1, a2, a3), between the center and
the edge (b1, b2, b3), and at the edge (c1, c2, c3) of the circular domain for 50, 300, and 500
iterations

9.1 The Embedded Control System

This activates the current signal on one electrode and stores the electrical potentials
of the remaining electrode pairs, avoiding repetitions and readings of two equal
electrodes. The software operation is described in Fig. 18 and shows the steps for
reading the electrodes to prepare the data processing.
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Fig. 17 Proposed hardware block diagram
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Fig. 18 Block diagram illustrating the hardware control system in the device
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10 Conclusion

Regarding the PSO and its Gauss–Newton hybrid approach, it is clear that the
hybridization has significantly improved the performance of the image reconstruc-
tion, both qualitatively and quantitatively. It is also important to highlight that
neither the Gauss–Newton technique nor the PSO is sufficiently satisfactory when
operating alone. This fact highlights the importance of the hybridization of these
two techniques to perform a better technique for the EIT image reconstruction. The
same can be observed in the implementation of the Gauss–Newton solution to the
density based on the FSS algorithm. The hybridized technique outperformed the
simple dFSS qualitatively and quantitatively.

One other hybridization described in this chapter was the implementation of SA
in DE. The second technique has the capability to explore the search space; on the
other hand the former is better able to exploit it. In this case, the hybridization aimed
to improve the search process made by DE. The union of these techniques results in
a better EIT reconstruction algorithm as was shown by the results obtained by the
hybrid technique.

Finally the change of the linear decrease of the individual movement parameter
to an exponential decrease in the FSS algorithm was considered. The goal was to
increase the refined search during the iterative process; however, the strong decrease
of the exponential made the change of exploration to exploitation search happen
earlier. Thus, the hybridized method results were not better than the simple FSS
results, as we expected.
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