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Preface

A metaheuristic is a higher-level procedure designed to select a heuristic (partial
search algorithm) that may lead to a sufficiently good solution to an optimization
problem, especially with incomplete or imperfect information. The basic principle
of metaheuristics is to sample a set of solutions which is large enough to be
completely sampled. As metaheuristics make few assumptions about the optimiza-
tion problem to be solved, they may be put to use in a variety of problems.
Metaheuristics do not, however, guarantee that a globally optimal solution can be
found on some class of problems since most of them implement some form of
stochastic optimization. Hence the solution found is often dependent on the set
of random variables generated. By searching over a large set of feasible solutions,
metaheuristics can often find good solutions with less computational effort than
optimization algorithms, iterative methods, or simple heuristics. As such, they are
useful approaches for optimization problems.

Even though the metaheuristics are robust enough to yield optimum solutions,
they often suffer from time complexity and degenerate solutions. In an effort
to alleviate these problems, scientists and researchers have come up with the
hybridization of the different metaheuristic approaches by conjoining them with
other soft computing tools and techniques to yield fail-safe solutions. In a recent
advancement, quantum mechanical principles are being employed to cut down
the time complexity of the metaheuristic approaches to a great extent. Thus, the
hybrid metaheuristic approaches have come a long way in dealing with real life
optimization problems quite successfully.

Proper and faithful analysis of digital images has been at the helm of affairs in
the computer vision research community given the varied amount of uncertainty
inherent in digital images. Images exhibit varied uncertainty and ambiguity of
information and hence understanding an image scene is far from being a general
procedure. The situation becomes even graver when the images become corrupt
with noise artifacts. The applications of proper analysis of images encompass a
wide range of applications which include image processing, image mining, image
inpainting, video surveillance, and intelligent transportation systems to name a few.
One of the notable areas of research in image analysis is the estimation of age
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progression in human beings through analysis of wrinkles in face images, which can
be further utilized for tracing unknown or missing persons. Hurdle detection is one
of the common tasks in robotic vision that has been done through image processing,
by identifying different types of objects in the image and then calculating the
distance between the robot and the hurdles. Image analysis has a lot to contribute in
this direction.

This volume reports on the latest results or progress in the development of hybrid
metaheuristic techniques for faithful image analysis and understanding. The book
comprises nine chapters.

The chapter “Current and Future Trends in Segmenting Satellite Images Using
Hybrid and Dynamic Genetic Algorithms” presents the foundation of a novel
variant of the genetic algorithm named the Hybrid Dynamic Genetic Algorithm.
The basis of the hybridization of the proposed genetic algorithm resorts to variable
length chromosomes. An application of this algorithm is demonstrated on image
segmentation.

In the chapter “A Hybrid Metaheuristic Algorithm Based on Quantum Genetic
Computing for Image Segmentation”, the authors present a new algorithm for edge
detection based on the hybridization of quantum computing and metaheuristics. The
main idea is the use of cellular automata as a complex system for image modeling,
and the quantum algorithm as a search strategy. The proposed Quantum Genetic
Algorithm is found to be effective in edge detection.

The chapter “Genetic Algorithm Implementation to Optimize the Hybridization
of Feature Extraction and Metaheuristic Classifiers” presents two face recognition
frameworks involving the hybridization of both the feature extraction and classi-
fication stages. Feature extraction is performed through the two proposed hybrid
techniques, one based on the orthogonal combination of local binary patterns and a
histogram of oriented gradients, and the other based on Gabor filters and Zernike
moments. A hybrid metaheuristic classifier is also investigated for classification
based on the integration of genetic algorithms (GA) and support vector machines
(SVM), where GA is used for optimization of the SVM parameters.

The chapter “Optimization of a HMM-Based Hand Gesture Recognition System
Using a Hybrid Cuckoo Search Algorithm” focuses on the optimization of a HMM-
based hand gesture recognition system using a hybrid cuckoo search algorithm. The
authors present a comparative analysis of other classification techniques used in
hand gesture recognition with their proposed hybridized bio-inspired metaheuristic
approach, namely the Cuckoo Search Algorithm for reducing the complex trajectory
in the hidden Markov model (HMM).

In the chapter “Satellite Image Contrast Enhancement Using Fuzzy Termite
Colony Optimization”, the authors propose the Termite Colony Optimization (TCO)
algorithm based on the behavior of termites. Thereafter they use the proposed TCO
algorithm and fuzzy entropy for satellite image contrast enhancement. The proposed
technique has been found to offer better contrast enhancement of images by utilizing
a type-2 fuzzy system and TCO.
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The goal of the segmentation techniques called deformable models is to adapt a
curve in order to optimize the overlapping with another image of interest with the
actual contour. Some of the problems existing in optimization are the choosing of
an optimization method, the selection of parameters, and the initialization of curves.
The chapter “Image Segmentation Using Metaheuristic-Based Deformable Models”
discusses these problems with reference to metaheuristics which are designed to
solve complex optimization and machine learning problems.

The chapter “Hybridization of the Univariate Marginal Distribution Algorithm
with Simulated Annealing for Parametric Parabola Detection” presents a new hybrid
optimization method based on the univariate marginal distribution algorithm for
a continuous domain, and the heuristic of simulated annealing for the parabola
detection problem. The proposed hybrid method is applied on the DRIVE database
of retinal fundus images to approximate the retinal vessels as a parabolic shape.
The hybrid method is applied separately using two different objective functions.
Firstly, the objective function only considers the superposition of pixels between the
target pixels in the input image and the virtual parabola, and secondly, the objective
function implements a weighted restriction on the pixels close to the parabola vertex.
Both objective functions in the hybrid method obtain suitable results to approximate
a parabolic form on the retinal vessels present in the retinal images.

Thresholding is the simplest image segmentation method, where a global or local
threshold value is selected for segmenting pixels into background and foreground
regions. However, the determination of a proper threshold value is typically
dependent on subjective assumptions or empirical rules. In the chapter “Image
Thresholding Based on Fuzzy Particle Swarm Optimization”, the authors propose
and analyze an image thresholding technique based on a fuzzy particle swarm
optimization for efficient image segmentation.

Electrical Impedance Tomography (EIT) is a non-invasive imaging technique
free of ionizing radiation. EIT image reconstruction is considered an ill-posed
problem and, therefore, its results are dependent on the dynamics and constraints of
reconstruction algorithms. The use of evolutionary and bio-inspired techniques to
reconstruct EIT images has been taking place in the reconstruction algorithm area
with promising qualitative results. In the chapter “Hybrid Metaheuristics Applied
to Image Reconstruction for an Electrical Impedance Tomography Prototype”, the
authors discuss the implementation of evolutionary and bio-inspired algorithms and
its hybridizations to EIT image reconstruction.

The editor has tried to bring together some notable contributions in the field
of computational intelligence involving hybrid metaheuristic techniques for the
purpose of image analysis. These contributions will surely open up more research
avenues in this direction given the fact that faithful image analysis still remains a
challenging thoroughfare in the computer vision research community. This book
will serve graduate students and researchers in computer science, electronics
communication engineering, electrical engineering, and information technology as
a reference book and as an advanced textbook for some parts of the curriculum.
Last but not least, the editor would like to take this opportunity to extend heartfelt
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thanks to Mr. Ronan Nugent, Senior Editor, Springer, for his valuable guidance and
constructive support during the tenure of the book project.

Kolkata, India Siddhartha Bhattacharyya
January 2018
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Current and Future Trends
in Segmenting Satellite Images Using
Hybrid and Dynamic Genetic Algorithms

Mohamad M. Awad

Abstract Metaheuristic algorithms are an upper level type of heuristic algorithm.
They are known for their efficiency in solving many difficult nondeterministic
polynomial (NP) problems such as timetable scheduling, the traveling salesmen,
telecommunications, geosciences, and many other scientific, economic, and social
problems. There are many metaheuristic algorithms, but the most important one
is the Genetic Algorithm (GA). What makes GA an exceptional algorithm is
the ability to adapt to the problem to find the most suitable solution—that is,
the global optimal solution. Adaptability of GA is the result of the population
consisting of “chromosomes” which are replaced with a new one using genetics
stimulated operators of crossover (reproduction), and mutation. The performance
of the algorithm can be enhanced if hybridized with heuristic algorithms. These
heuristics are sometimes needed to slow the convergence of GA toward the local
optimal solution that can occur with some problems, and to help in obtaining the
global optimal solution. GA is known to be very slow compared to other known
optimization algorithms such as Simulated Annealing (SA). This speed will further
decrease when GA is hybridized (HyGA). To overcome this issue, it is important to
change the structure of the chromosomes and the population. In general, this is done
by creating variable length chromosomes. This type of structure is called a Hybrid
Dynamic Genetic Algorithm (HyDyGA). In this chapter, GA is covered in detail,
including hybridization using the Hill-Climbing Algorithm. The improvements to
GA are used to solve a very complex NP problem, which is image segmentation.
Using multicomponent images increases the complexity of the segmentation task
and puts more burden on GA performance. The efficiency of HyGA and HyDyGA in
the segmentation process of multicomponent images is proved using collected field
samples; it can reach more than 97%. In addition, the reliability and the robustness
of the new algorithms are proved using different analysis methods.

M. M. Awad (�)
National Council for Scientific Research, Remote Sensing Center, Beirut, Lebanon
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1 Introduction

Currently, the world is witnessing fast changes which include the invention of
new technologies to increase the benefits for humanity. These new technologies
require accurate, reliable, and instantaneous solutions for any sudden complex
nondeterministic polynomial (NP)-complete problems. The solution most of the
time is not a complete and definite one such as in the traveling salesman problem,
timetable scheduling, and image segmentation. So, efficient algorithms are required
to find solutions for these problems and that can provide the global optimum
solution. Heuristic and metaheuristic algorithms can solve these problems. This
chapter covers the metaheuristic algorithms, specifically the Genetic Algorithm
(GA) for the segmentation of more complex types of images, namely remote sensing
multicomponent satellite images.

1.1 Heuristic and Metaheuristic Algorithms

Heuristics is a word originated from the Greek language. It means discovering or
finding. Many complex problems are known to be solved by the heuristics method
which makes an important candidate for solving difficult problems. The common
tactic between these disciplines is to search for a number of possibilities to find
the best solution by selecting and accepting some of the found solutions. Thus, a
heuristic is an algorithm that can explore all possible states of the problem, or that
can discover the best ones. As indicated before, purely heuristics-based solutions
may be unpredictable and often biased, and most of the time they lead to the
local optimal solution. To avoid these problems, metaheuristics are presented [1].
Meta is a Greek word which means beyond. Thus, metaheuristics is thought of as
an upper level heuristics, but in general it performs better than simple heuristics.
The word metaheuristic was created by Glover [1]. All modern nature-inspired
algorithms are known as metaheuristics [1–4], such as the Genetic Algorithm (GA),
Scatter Search, Simulated Annealing (SA), Tabu Search, Ant Colony Optimization,
Particle Swarm Optimization, the Differential Evolution, Firefly Algorithm, and
the Bee Algorithm [1]. Metaheuristics consist of two processes, exploitation and
exploration [1, 3]. In exploitation, the algorithm generates varied solutions to
explore the search space globally, while in exploration the algorithm emphasizes
the search in a local region to find an acceptable solution. A good balance between
exploitation and exploration should be found by selecting the best solutions to
improve algorithm convergence. Mixing these two processes ensures that a global
optimum can be obtained. Metaheuristic algorithms are nature inspired and deploy
either a population of solutions or one solution to explore the search space. Holland
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[5] invented the GA in the early 1970s, a decade later, the growth of metaheuristic
algorithms reached its highest peak. The next important step was the creation of SA
in the early 1980s by Kirkpatrick et al. [6] which was motivated by the annealing
process of metals. Glover [2] introduced the use of memory in a metaheuristic
algorithm called Tabu Search. The process records the search and places them in
a Tabu file in order to avoid revisiting previous solutions. Koza [7] introduced
a new metaheuristic called Genetic Programming that created the structure of a
whole new area of machine learning. In 2008 a Biogeography-based Optimization
Algorithm inspired by biogeography was proposed by Simon [8]. This researches
into the distribution of biological classes over time and space. Meanwhile, Yang [9]
proposed a Firefly Algorithm, and later in 2009 Yang and Deb [10] developed a
Cuckoo Search Algorithm. In 2010, Yang [11] also proposed a Bat Algorithm.

1.2 Image Segmentation

Segmentation divides an image into clusters with homogeneous attributes [12]. It
is a significant attempt at successful image analysis. Segmentation is a difficult
part in image processing because it controls the quality of extracted information
that is analyzed [13]. There are many image segmentation methods which include
edge detection [14–17], artificial neural networks (ANNs) [18, 19], and region
growing [20, 21]. However, the best known ones are the clustering methods which
are unsupervised with a random selection nature that is established on statistics.
Formally, clustering splits an image I into k non-overlapping subsets

C = C1, C2, . . . , Ck

such that

C1

⋃
C2

⋃
. . .
⋃

Ck = I

and

Ci

⋂
Cj = ∅

i �= j

There are many clustering methods such as Iterative Self-Organizing Data [22]
and Fuzzy C-Means [23]. Much of the literature has applied GA to the image
segmentation task, such as [24–28]. Finally, object-oriented segmentation meth-
ods are more precise in handling high resolution satellite images; however user
intervention is required to provide more information to guide the method towards
the solution. The software eCognitionTM by Definiens [29] is an example of an
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object oriented application for image segmentation. This type of software must
be supported by pre-required information, such as contextual or textual. This is
necessary to increase the segmentation result accuracies and to make them more
appropriate for use [30]. In turn this software is not efficient for the different types of
multicomponent images. Image segmentation methods can be either parametric or
nonparametric. Several reasons make the parametric statistics unfavorable for some
image segmentation methods. These can be: (1) complexity and inconsistency of the
data and image design which depends on specific technology; (2) defectiveness in
the process of image acquisition such as inherent noise and uncontrolled resolution
that limits its efficiency; (3) different correction requirements such as enhancement,
filtering, and the fusion process. To fix these limitations is time consuming, therefore
leading to exhaustion of computer and human resources. In response to the need for
effectiveness in statistical analysis, nonparametric segmentation methods have been
widely used in solving many problems. These methods estimate data distributions
without any assumptions about the structure of these data. Nonparametric methods
are deployed when the problem of parameterization is unavailable. GA is a well-
known nonparametric algorithm which is used widely in solving many problems
including image segmentation. Although GA solves the problems encountered in
parametric segmentation methods, it still needs to be enhanced to satisfy some
critical issues for some applications. These issues are high processing speed and
at the same time obtaining a global optimal solution. That is why Hybrid GA is
used which includes heuristic algorithms such as Hill-Climbing that plays a role in
slowing the convergence process toward a local optimal solution and providing the
desired global optimal solution. Hybrid GA provides the desired solution but it is
very slow and needs a long time to converge. To increase the speed of Hybrid GA,
variable length chromosomes are used to create a dynamic population which reduces
the time to perform the reproduction processes and increase the speed of Hybrid
GA convergence toward the global solution significantly. Image segmentation
techniques and methods can be divided into three supervised categories which
require complete interference by the user and training. Semi-supervised categories
require partial interference such as providing the number of regions, clusters, or
classes. Finally, the unsupervised methods which do not require any interference by
the user are completely automated. Some of the real-world applications of image
segmentation are machine vision, medical imaging, biometrics, natural resources
mapping, and object recognition.

1.3 Characteristics of the Remote Sensing Images

Remote sensing consists of many elements such as sensors, data, and procedures
which are crucial for extracting information about the characteristics of the Earth’s
surface (i.e. the land, atmosphere, and oceans) which can be achieved with no direct
physical contact. Information is obtained by capturing the reflected electromagnetic
wave from the Earth’s surface and its difference as a function of wavelength, angle
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direction, phase, location, and time. A variety of sensors are generally deployed both
passively (i.e. which depends on reflected solar radiation or emitted radiation) and
actively (i.e. which generates its own source of electromagnetic radiation). These
sensors operate all over the electromagnetic spectrum from visible to microwave
wavelengths. There are different platforms on which these sensors are attached,
such as Earth-orbiting satellites, aircraft (most commonly), helicopters, and also
balloons. Normally, remote sensing images are categorized by four different
characteristics based on the type of sensor technology. The first characteristic is
the spatial resolution where the higher the resolution the more detail about objects
on Earth can appear in the image (the highest resolution is a few centimeters, while
the lowest can reach 9 km). The lower the resolution the more area is captured.
The second characteristic of the remote sensing images is the spectral resolution.
It defines the capacity of the sensors to differentiate between wavelengths in the
electromagnetic (EM) spectrum (bands). The finer the resolution the more images
(bands) are collected which means that it is possible to obtain more detail about the
reaction of sensed objects to the light. There are two technologies, hyperspectral and
multispectral, where the first can have a spectral resolution of 1 nm with hundreds of
bands compared to coarser spectral resolution, and the last one that can reach 100 nm
with few bands. The third characteristic is the temporal resolution which defines the
period of time needed to revisit the same spot on Earth. This is only applicable to
satellite remote sensing. The less time needed to revisit a specific area the higher
is the temporal resolution. The fourth and last characteristic is the radiometric
characteristic. The radiometric resolution specifies how well the differences in
brightness in an image can be perceived; this is measured through the number of
levels of the gray value. The maximum value related to radiometric resolution is
defined by the number of bits (binary numbers). An eight-bit representation has 256
gray values, a 16-bit representation has 65,536 gray values. The finer or the higher
the radiometric resolution is the better are the recorded reflected waves, though the
volume of measured data will be larger.

1.4 Satellite Image Types and Sources

Satellite images are sometime captured by sensors carried by a vehicle that orbits
the Earth at a specific speed and a specific height—a satellite. Normally, the orbit
can be at any height that ranges between 400 and 36,000 km. There are two types
of satellite image: geostationary and polar, where the first covers a large fixed
area and is taken from the remarkable height of 36,000 km. An example of these
satellites is the famous Geostationary Operational Environmental Satellites (GOES)
[31]. These satellites can capture an area with a swath width of 7000 km and
with a spatial resolution lower than 4 km. The GOES images are used mainly to
monitor weather and climatic conditions and natural disasters such as tornadoes.
The other type of satellites are polar, which orbit at an elevation that ranges between
400 and 1000 km. These satellites have different characteristics which make them
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more attractive for use in different scientific and military tasks. There are many
examples of these satellites such as the free of charge Landsat 7 and 8 which are still
operational with a temporal resolution that can reach 8 days using both satellites.
These medium to high spatial resolution satellite images can be downloaded from
the USGS site [32]. Other free-of-charge satellites are Modis Aqua and Terra [33],
both providing an image with a spatial resolution that ranges between 250 and
1000 m and which can be captured in a temporal resolution of less than 1 day. There
are many other commercial satellites which are characterized by having a high to
very high resolution which ranges from 31 cm such as Worldview-4 [34] to 5 m such
as GeoEye [35]. There are more of these commercial satellites such as the 2.5 m
SPOT 5, the 1.5 m SPOT 6 and 7, and the 0.5 m for Pleiades-1A and Pleiades-1B
satellites [35].

2 Evolutionary Algorithms

Evolutionary algorithms are used for solving NP problems and to obtain global
optimal solutions. They are stimulated by biological evolution and are considered a
part of soft computing for those interested in studying these algorithms. Technically,
they are considered to be a group of problem solvers with metaheuristic charac-
teristics. These algorithms include methods stimulated by natural evolution such
as reproduction and mutation. The solution of an optimization problem is selected
from a group of individuals in the population, and the cost function determines the
location of the solution. Any evolutionary algorithm includes three main powers
that form the foundation of the optimization systems: selection, recombination,
and mutation , which create the essential variety and thereby simplify innovation,
although some consider selection as the major reason for increasing the quality of
the global optimal solution. In this chapter GA is covered with the objective to
use it in the processing of satellite images. In addition, several other heuristic and
exhaustive algorithms are combined with GA to improve the segmentation process.

2.1 Genetic Algorithm

GAs were introduced by Holland in the early 1970s. Holland’s unique goal was
not to design algorithms to solve specific problems, but to study the concept of
adaptation as it occurs in nature. He was looking to develop methods in which
natural adaptation can be introduced into computer systems. Adaptation in Natural
and Artificial Systems [5] by Holland introduced the GA as a generalization of
evolution and provided a theoretical framework for adaptation under it. Holland’s
GA is a method for moving from one population to a new population by using
what is called natural selection together with the genetic operators. The chromosome
consists of genes such that each gene is an instance of a particular allele with a value
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of 0 or 1. The selection operator picks the chromosomes in the population in order to
reproduce; in general the best chromosomes reproduce more than the less fit ones.
Mutation randomly changes the allele values of random selected locations in the
chromosome. The chromosomes in a GA population typically take the form of bit
strings or integer numbers. Each gene in the chromosome has two possible alleles:
0 and 1 for bit strings or any value Z. In the case of images it is an integer value
that ranges between 0 and 2Rbits where Rbits is the radiometric resolution. The GA
processes populations of chromosomes, successively replacing one such population
with another. The GA requires a fitness function that scores (fitness value) to each
chromosome in the current population. The fitness of a chromosome depends on
how well that individual is able to solve the problem at hand. The following pseudo-
code shows how GA works:

Randomly generate a population
Start with generation 1
Compute fitness
Select the best parent having the best fitness
While termination conditions are not met
Select randomly two parents for reproduction
Replace parents with the new off springs
Mutate chromosomes randomly
Compute fitness
Select the best parent having the best fitness
Replace old best individuals with the new best one
Increment generation
End while

Pseudo-code of Genetic Algorithm

2.2 Hill-Climbing Algorithm

Hill-Climbing is another optimization method for handling many NP problems. In
this method, a local optimal solution can be started and the solution is improved
repeatedly until some condition is maximized [36]. The idea of starting with a
local optimal solution is matched to start from the base of the hill, improving the
solution is compared to climbing a hill, and finally maximizing some conditions is
compared to reaching the top of the hill. Hill-Climbing looks only at the current
state and immediate future state. Hence, this technique is memory efficient as it
does not maintain a search tree. In this iterative progressive method, the solution
is achieved by making improvements towards an optimal choice in every iteration.
However, this technique may encounter local maxima. In this situation, there is no
nearby state for a better choice. In general the Hill-Climbing Algorithm is used in
combination with the GA to slow GA termination or convergence toward a local
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optimal solution. In this case Hill-Climbing moves the local optima trapped in a
valley toward a hill and then provides the solution to GA to continue searching
for the global optimal solution. The following pseudo-code depicts how the Hill-
Climbing Algorithm works.

Function Hill-Climbing (specific_problem)
returns a result which is the local optimal solution
Recent: best separable fitness value
Do loop
Neighbor: a highest-value replacement of recent one
if neighbor Less than or equal Recent then return recent one
Else
Recent=Neighbor
End If
End Do

Pseudo-code of Hill-Climbing Algorithm

The Hill-Climbing Algorithm is the most simple local search method. At each
run the current individual is replaced by the best neighbor. In this case, it indicates
that the best neighbor is the one with the highest fitness value. In more detail, if a
heuristic cost estimate Cos is used, it is possible find the neighbor that has the lowest
Cos.

2.3 Hybrid Genetic Algorithm

Generally, a simple GA comprises of several operations such as: (1) selection; (2)
crossover and mutation; and (3) replacement. Genetic operations such as crossover
are where two chromosomes are selected to reproduce new children, and mutation
is the process of changing randomly one gene from its existing type to another
different one. Finally, replacement is the task of substituting two parents with the
new children. A Hybrid GA (HyGA) is a GA with a Hill-Climbing Algorithm
which tests neighboring points in the search space and improves the fitness of
chromosomes. It is a method capable of finding local extrema, as mentioned in [37].
HyGA starts as a first step by generating an unsystematic first population P(0) =
p1, p2, . . . , pn. The population is created from random genes or obtained from
another method as will be shown in the following subsections. Figure 1 shows how
the Hill-Climbing Algorithm works with GA to achieve a global optimal solution.
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2.4 Example of HyGA Segmentation

The first task in HyGA is to create an initial population P(0). These chromosomes
are created using cluster centers which are obtained randomly from a satellite image
IS and by allocating image pixels to these selected clusters. These cluster centers are
represented by the gray level values (value of pixels) in the image with multi-bands.
Normally, a chromosome represents an image IS (or portion of an image IP ∈ IS)
such that four alleles represent multi-values of the gray level in three different EM
spectra for a pixel and the cluster center. The objective function is depicted in Eq. (1)
and is applied to calculate the closest pixels to the allocated center.

Min

⎛

⎝
f∑

j=1

y∑

i=1

[
Value

(
Ccej

)−
3∑

r=1

Value(pixelir )

]⎞

⎠ (1)

where f is the number of clusters in one individual, and Value (Ccej ) is the multi-
band values of the center Ccej . The final weights are summed and then they are
multiplied by 255. Value (pixelir ) are the multi-band values of the pixel assigned
to the cluster center Ccej in the chromosome (. . . pixeli,1 pixeli,2 pixeli,3 Ccej

pixeli+1,1 pixeli+1,2 pixeli+1,3 Ccej . . . ), and y describes how many pixels exist
in each cluster. The fitness F(Chromosome) is the objective function. Based on the
fitness value, a number of chances are given to each chromosome to be selected
using the roulette wheel process [38], where the lower in cost is given more chances
for reproduction. Two chromosomes are selected randomly, and they are mated to
create two new children. A mutation operator handles individual chromosomes by
changing a cluster value with a different randomly selected one from the existing
clusters in the image. The probability of crossover can vary between 40% and 70%,
while mutation can vary between 10% and 20%. These reproduced children replace
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their parents, and their fitness values are calculated again. The reproduction process
is tailed by the Hill-Climbing process in order to slow the fast convergence of GA
toward a local optimal solution. In the first experiment, SPOT 5 is used where three
bands are enhanced with respect to spatial resolution using the panchromatic image.
The size of the SPOT image is 360×360 pixels and the resolution is 5 m; see Fig. 2a.
The SPOT remote-sensing satellite program was created in France in partnership
with other European countries such as Belgium. The deployment of SPOT satellites
in orbit facilitated the mission of observing basically the entire planet in 1 day.
Field work is carried out to verify the classified image where 110 different samples
are collected from three classes (1—urban settlements (brown), 2—bare soil (light
green), and 3—vegetation (green)). The results are verified based on a collection of
samples combined with the confusion matrix [39]. The matrix covers information
about real and projected classifications done by a specific method. The efficiency
of such a method is normally estimated using the data in the matrix. The confusion
matrix (Table 1) demonstrates that the accuracy value of the HyGA method is 82%.

Fig. 2 Spot 5 image. (a) Original. (b) Segmented using HyGyA

Table 1 HyGA matrix of the
processed SPOT 5 image

Classes 1 2 3 Total

1. Urban settlements 34 3 2 39

2. Bare soil 4 32 1 37

3. Vegetation 3 1 30 34

Total 41 36 33 110
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3 Dynamic Genetic Algorithm

Dynamic means changeable, adaptable, and flexible with respect to changes in
requirements of the problem to solve. Here Dynamic GA (DyGA) is related
to changing population structure to create reliability and efficiency in solving a
problem. Normally, the population of the standard GA is static, in other words there
is no possibility to change the chromosome length. This is considered as a problem
with respect to the speed of GA and the possibility to obtain a global optimal
solution. In DyGA the structure of the chromosomes is different (the number of
genes is variable) and the population can change in size based on the problem
requirements.

3.1 Structure of the Dynamic Genetic Algorithm

DyGA is different from other conventional evolutionary algorithms, specifically
traditional GA. The difference comes from its capacity to use a variable length
of chromosomes with a different number of genes, such that each chromosome
terminates with a symbol to mark the completion of the chromosome length
(Fig. 3). Two chromosomes are chosen randomly to reproduce and two new children
(siblings) are created. DyGA success to reach a global optimal solution depends on
many factors; one of them is the probability of operators such as crossover. This
should be carefully selected to avoid fast convergence to a local optimal solution
which can be done by running many tests. The two new obtained children substitute
for their parents and the fitness is computed for each individual. There are two
main conditions that must be satisfied for the successful application of any new
dynamic structure of a chromosome: (1) The mutation operator should be applied
only on the genes, while symbols should be avoided; (2) Care should be taken
in selecting the location of the crossover and that the mutation points away from
symbols. DyGA use has many advantages such as minimizing the required time

Fig. 3 Dynamic population

Gene Symbol1

1 2 3 4 5 6

1 2 3 4 5 6 7 8

s s

s

s
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to find an optimal solution. The cause of this improvement is due to the new
structure of the chromosome. The length is variable in terms of the number of genes
allocated to each chromosome. Moreover, the time spent in executing operators
for reproduction purposes and in computation (objective and fitness functions) is
much less than that required by a normal GA with a static chromosome. The
dynamic length chromosome guarantees variability in the population, which can
easily provide the global optimal solution within the minimum time requirement.
DyGA can be hybridized; in this case it is called Hybrid DyGA. In addition, the
Hill-Climbing method is deployed to find adjacent points in the search space, and
to help in directing the solution to the best fitness value. The Hill-Climbing process
inspects cluster centers in each chromosome in detail and frequently modifies the
chromosome to increase its fitness value. Hill-Climbing is an exploitation technique
capable of finding local minima [37]. To understand the new dynamic method,
a pseudo-code of HyDyGA is presented below. It is noticeable that HyDyGA
resembles HyGA; however, the reproduction process is different with respect to
the selection points for exchanging genes between chromosomes and with respect
to mutation.

Begin
Read an image (e.g. satellite)
Begin HyDyGA
gen:=0 {count number of generations }
Create initial population Pop(gen)
Chromosomes have variable lengths
Evaluate population Pop(gen) While not completed (additional cycles) do
Hill-Climbing
gen= gen+ 1
Select two chromosomes I(gen) from Pop(gen)
Choose correct positions of the genes not symbol
Run Crossover Pop(gen)
Run Mutate Pop(gen) based on fitness value
Assess Pop(gen)
End while
End HyDyGA
Validate the results

3.2 Example of Hybrid Dynamic GA (HyDyGA)

In this example a multispectral image is segmented using HyDyGA. The Landsat
image with spatial resolution of 30 m (Fig. 4a) is first read then the population of n
chromosomes is created such that Pop(0) = {Ch1, Ch2, . . . , Chn}. Each chromosome
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Fig. 4 (a) Original image Landsat 7. (b) HyDyGA solution

Table 2 HyDyGA matrix for
Landsat 7

Classes 1 2 3 Total

1. Urban settlements 30 1 0 31

2. Vegetation 1 27 3 31

3. Bare soil 1 3 34 38

Total 32 31 37 100

comprises randomly selected cluster center values Pc and the values (three bands)
for the pixels px, which are selected from the image. The position of these pixels
in the chromosome are normally on the left side of each cluster center (pxi,1pxi,2
pxi,3 Pcj pxi+1,1pxi+1,2 pxi+1,3Pcj+1). A maximum number of cluster centers are
used in the creation of the initial population to guarantee adequate diversity between
different chromosomes. The objectives are to minimize the function in Eq. (1) and
to optimize the number of clusters. Each individual fitness Fit(Chi ) in the current
population is proportional to the objective function. Each chromosome is allowed a
number of chances to be selected by the roulette wheel process based on the fitness
value, where the higher the fitness value the greater are the chances for reproduction.
In the reproduction process, random selection of two chromosomes is the first step,
followed by mating to create children. The choice of crossover probability is based
on several tests. The maximum and the minimum mutation rate are specified by the
user based on experimental trial and error tests. The initial number of iterations
in HyDyGA is 25, the crossover probability is 65%, and the mutation ratio is
variable based on the value of an individual fitness. Figure 4b shows the result of
Landsat image segmentation. The result is again verified using a collection of field
samples and the confusion matrix [39]. The information about real and forecast
classifications in the matrix helps in the assessment of the results. Performance of
the classification method is based on the computation of specific statistics using the
matrix data. Table 2 shows the confusion matrix for three classes.
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Field investigations are completed by selecting samples from the segmented
images. Each sample can be either one of the three different classes (100 for
all classes) (1—urban settlements (green), 2—vegetation (blue), and 3—bare soil
(brown)). The accuracy of the Landsat segmentation is 91% as it is calculated based
on the confusion matrix.

4 New Methods of Cooperation Between Metaheuristics and
Other Algorithms

Sometimes it is required to advance the performance of a specific algorithm to
solve a certain problem by using metaheuristic algorithms. The complexity of
the problem shapes how these programs cooperate in order to solve a specific
problem. The objective is to make the algorithm adapt to the problem at hand in
order to obtain the global optimum solution. It is thought that self-adaptation is
improved if cooperation and competition between algorithms are involved. There
are several types of cooperation between GA and other algorithms, such as fuzzy
logic, ANN and Fuzzy C-Means. However, there are few papers which cover the
segmentation of satellite images. One, a promising paper [40], segments Landsat 8
images using a semi-supervised method based on GA and trained using a Radial
Basis Function Neural Network. In a research paper [41] the authors used multiple-
kernel fuzzy C-means (MFCM), ANN, fuzzy logic, and GA to segment a satellite
image to extract some urban features such as buildings and roads. According to
the authors their method was able to extract roads with an accuracy close to 89%,
compared to 80% for another which combines only MFCM and ANN. Another
research paper [42] uses GA to optimize the weights for an ANN supervised Multi-
Layer Percepteron (MLP) [43] algorithm, in order to extract clouds from a weather
satellite image. The results of GA-MLP showed better accuracy compared to the
results of the MLP algorithm. Fuzzy logic and GA cooperation has played an
important role in advancing the satellite image segmentation process, but its use
is still limited to adjusting the probabilities of the reproduction operators for GA
during this segmentation process. Sumera and Turker [44] used fuzzy logic to adjust
the probabilities of crossover and mutation during the segmentation process of high
resolution images by GA. The method proved to be efficient with a kappa index
that approached 0.88. In this section, unsupervised nonparametric metaheuristic
algorithm cooperation with another two non-metaheuristic algorithms to segment
satellite images is illustrated using two different examples. There are several reasons
for selecting these two examples, such as the lack of papers which cover this area of
research and to prove that these types of algorithms can solve many of the problems
which were listed in the previous sections (accuracy and speed). This includes the
cooperation of Hybrid Dynamic GA (HyDyGA) with Fuzzy C-Means (FCM) [45];
here the role of the metaheuristic process is to improve the performance of FCM in
image segmentation. On the other hand, another process which is an ANN algorithm
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called Self-Organizing Maps (SOMs) [46] is used to provide the metaheuristic
process GA with initial cluster centers to start from an advanced point in the space
of satellite segmentation solutions.

4.1 Hybrid Genetic Algorithm (HyGA) and Self-Organizing
Maps (SOMs)

Kohonen’s SOMs is an unsupervised nonparametric Artificial Neural Network
method (ANN), where SOMs transform patterns of random dimensionality into
the responses of 2D arrays of neurons. An important characteristic of the SOMs
is the capability to conserve the neighborhood relationships of the input pattern. A
distinctive SOMs structure consists of an input and an output layer (Fig. 5). The
number of input neurons is equal to the dimensions of the input data; the neurons
are arranged in a 2D array where each input is completely connected to all units.
The values of the initial weights are randomly created, and their influence on the
final state decreases as the number of trials increases or decreases [47]. SOMs
segmentation of a satellite image maps patterns from a 3D into a 2D space. The
network size is determined by the image size which can be computed empirically.
The network is depicted by a mesh of n × n neurons which represents cluster units,
such that each neuron represents the values of a pixel in three different bands of the
image. During the training phase, the cluster unit is elected as a winner based on
an input pattern matching the unit weight. This matching is based on the minimum
value obtained by using Euclidean distance (Eq. (2)).

‖v− W
�k�
l ‖ = min

i
‖v− W

�k�
i ‖ (2)

Im =
⋃n
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⋂
Rj = ∅

where v is the input vector, W
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l is the weight of the selected unit l at repetition

k, and W
�k�
i is the weight for neuron i at iteration k. This selected unit and

a neighborhood around it are then updated. All the neurons within a certain
neighborhood around the leader participate in the weight update process (Eq. (3)).
This process can be described by an iterative procedure.
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where H
�k�
li is a smoothing kernel which can be written in terms of the following

Gaussian function:

H
�k�
li = α�k�exp

(
− d2 (l, 2)

2
(
sd�k�)2

)
(4)

H
�k�
li → 0 when k → T where T is the total number of iterations defined previously

to be 1000, α�0� is the initial guiding rate, and the default value is 0.1. The guiding
rate is updated with every cycle as follows.

α�k� = α�0�exp

(
− k

T

)
(5)

sd�k� is the search distance at iteration k; initially, sd�0� can be half the length of the
network. As learning proceeds, the size of the neighborhood should be reduced until
it includes only a single unit. The function is described by the following equation.

sd�k� = sd�0�
(

1 − k

T

)
(6)

After the SOMs reaches an unchangeable state, the image is transformed from an
unlimited color space to a smaller dimension color space. In this space the number
of colors is equal to the number of cells that form the network of SOMs. The final
list of weight vectors after the network reaches stability are used as the new sample
space. Each pixel’s gray level value is represented by a neuron which stores the final
weight. These results are used for clustering, by assigning from the weight values a
set of cluster centers. The results obtained by the segmentation process of the image
using SOMs is a local optimal one. It is expected that this solution is described as
an over-segmented one where the following guidelines are not respected in the final
result: i and j, there is no overlap of the regions. The violation of the above rules
leads to over-segmentation. This is normally an NP problem; that is every time the
same algorithm is run with different parameters (iteration numbers, network size) a
different solution is obtained. To generate stability in the provided solution by SOMs
it is essential to discover a global optimal solution. Usually, GA is an examining
process which is built upon the laws of natural selection. Usually, it consists mainly
of selection, genetic operations, and replacement. Genetic operations are crossover
(reproduction) where two parents are selected to reproduce, and mutation is the
process of altering one gene from one kind to another. Finally, replacement is the
process of substituting two parents with the newly evolved children. An important
characteristic of GA is its capacity to discover the global optimal solution without
being stuck at the local minima [48]. Sometimes the complexity of the image
segmentation problem makes it difficult to avoid falling into the local optima. To
solve this matter a new procedure is added to GA; this new process is called
Hill-Climbing. That is why the new technique is called Hybrid GA (HyGA).
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Fig. 6 SOMs-HyGA process

Hill-Climbing works by reducing the speed of convergence by penalizing individ-
uals in the population (reducing fitness of the fittest). The segmentation procedure
of the new method (Fig. 6) starts by reading a satellite image. Then SOMs uses
the image features to combine the pixels into groups. The cluster center of each
group is provided to HyGA to select the optimal solution in the segmentation
process, by considering two criteria: (1) each group’s total pixels, and (2) the
proximity of pixels in the group to the cluster center. HyGA generates a population
of individuals where the genes in each individual represent centers obtained from
SOMs combined with the color value for each pixel in the multi-bands as part of the
multispectral image. Equation (7) evaluates the fitness of chromosomes after each
run, and the best solution is selected. Each chromosome consists of genes and each
is a combination of the variable cluster center and the unchangeable pixel values
obtained from the image. HyGA attempts to obtain the optimal number of classes
(no over or under-segmentation). In other words, SOMs-HyGA fixes the problems
encountered during the segmentation task because of deploying SOMs as a stand-
alone segmentation algorithm. The objective function in Eq. (7) is used to compute
the difference between pixels and the allocated centers. Another innovation of the
new method is the ability to control the behavior of the (GA) by letting the Hill-
Climbing process slow down the convergence and by controlling the elimination of
individuals in the population.

min
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⎝
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where kk is the number of the cluster centers in a chromosome, and Va (Pj ) is the
multi-band values of the cluster center Pj . It is the sum of the obtained weights
multiplied by 255. Va(pxir) are the multi-band values of the pixel on the left side
of the cluster center Pj in the chromosome. This method will lead HyGA to find
an optimal number of classes (no under or over-segmentation). Moreover, SOMs-
HyGA fixes the problem of under and over-segmentation which are normally the
result of using one method alone.

4.2 Hybrid Dynamic (GA) and Fuzzy C-Means (FCM)

Fuzzy C-means (FCM) and hybrid dynamic GA (HyDyGA) can collaborate
to improve the segmentation process. Typically, FCM clusters the image while
HyDyGA finds the best arrangement of cluster centers that helps in minimizing the
objective function of FCM (Eq. (8)) in order to obtain the global optimal solution.
Given a set of n data patterns, x = xi , . . . , xn, the FCM algorithm minimizes the
weights within the group sum of the squared error objective function J(U, V ),
where xk is the kth p-dimensional data vector, vi is the sample of the cluster center
i, uik is the degree of membership of xk in the ith cluster, and m is a weighting
exponent on each fuzzy membership. The function dik(xk , vi ) is a distance measure
between the data vector xk and the cluster center vi , n is the number of data vectors,
and c is the number of clusters. A solution of the objective function J(U, V) can be
obtained via an iterative process where the degree of membership uik and the cluster
center vi are updated via Eqs. (9) and (10), respectively. The time is managed and
allocated by HyDyGA while locating and then updating cluster centers. Another
benefit gained by joining FCM and HyDyGA is the possibility to converge to a
local optimal solution (which is a rare case) if the process fails. Then HyDyGA and
FCM continues with the best cluster centers (local optimal) provided by the Hybrid
Dynamic metaheuristic algorithm.
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The alternative solution due to HyDyGA failure is to repeat the process with dif-
ferent individual chromosome structures and with different styles and probabilities
of reproduction operators. The results are expected to be of different value, but
HyDyGA can keep the process running with different parameters and structures
until it locates a global optimal solution. For a better understanding of this new
method, the pseudo-code provides a detailed and clear explanation of the steps
involved in the whole process.

Begin the process
Read a satellite image
Start HyDyGA
gen: =0 initialization of generation counter
Initialize chromosomes Pop(gen)
Evaluate chromosomes Pop(gen) (i.e. compute fitness values)
While not over (more cycles) do
Randomize_Func (a heuristic process)
Hill-Climbing (Another heuristic)
gen:=gen+1
Select two chromosomes Pop(gen) from Pop(gen-1)
Run crossover Pop(gen)
Run Mutate Pop(gen) with fitness criteria
Assess Pop(gen)
End while
Provide the solution to FCM
Is it an optimal solution for FCM?
If no then change FCM parameters and continue with HyDyGA
Else (if yes)
End HyDyGA
Defuzzify and write final processed image
Evaluate the results

Pseudo-code of HyDyGA-FCM

The cooperative method works in series. First HyDyGA finds an optimal
solution by running all the tasks required (initial population, selection reproduction,
mutation). The results are then fed to FCM which in turn evaluates them and sends a
response to HyDyGA. Normally, it is expected that the solution is the final one and
that the result is unchangeable; then HyDyGA terminates and FCM creates the new
segmented image. The method can be improved in the future by implementing the
cooperative method as a parallel task where the communication between HyDyGA
and FCM is done through sending signs as messages between different cooperating
units or processors. In the case where no termination sign is sent by FCM, then
HyDyGA keeps running, and the solutions are saved in a dynamic list. There
are many advantages to these enhancements which include improvement of the
efficiency of HyDyGA and increasing clustering speed.
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4.3 Examples of Image Segmentation Using SOMs-HyGA

To demonstrate the practicality, strength, accuracy, and efficiency of the SOMs-
HyGA an experiment on a Spot 4 satellite image is implemented (Fig. 7a), and at
the end of the segmentation processes (Fig. 7b) a number of samples are collected
from the segmented images which represent major classes. These samples are
evaluated based on field work accompanied with advanced geospatial technologies
such as a Global Positioning System (GPS). Later confusion matrices [39] are
used to compute the accuracies. Each matrix consists of information about actual
and predicted results which are created by the collection of field samples and the
segmentation method. The performance of such systems is commonly evaluated
using the data in the matrix. This task is completed with four classes (1 = crop_1
(light green), 2 = infrastructure/ urban (light brown), 3 = shrub (light pink), 4 =
crop_2 green)) with hundreds of survey points (see Table 3). The accuracy of SOMs-
HyGA is 92%.

The second experiment is implemented on a different type of satellite image, the
IKONOS image (Fig. 8a) that has high spatial resolution of 1 m. The SOMs-HyGA
is used to segment the IKONOS image with high quality (Fig. 8b) which improves

Fig. 7 Spot 4 satellite image. (a) Original. (b) Segmented by SOMs-HyGA

Table 3 Matrix of spot 4
image segmentation by
SOMs-HyGA

Classes 1 2 3 4 Total

Crop_1 87 0 3 0 90

Infrastructure/urban 0 80 8 2 90

Shrub 5 0 85 0 90

Crop_2 0 10 0 80 90

Total 92 90 96 82 360
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Fig. 8 IKONOS. (a) Original image. (b) Segmented by SOMs-HyGA

Table 4 Matrix of IKONOS
image segmentation by
SOMs-HyGA

Classes 1 2 3 4 Total

Water bodies 85 5 0 0 90

Vegetation 0 86 4 0 90

Bare soil 2 3 83 2 90

Rocks 0 0 2 88 90

Total 87 94 89 90 360

clearly this important step of image processing. Moreover, the confusion matrix is
used to prove the high accuracy of the results (Table 4).

Four classes are used and evaluated with hundreds of samples collected in the
field. These classes are the following: 1—water bodies (blue to dark blue), 2—
vegetation (green), 3—bare land (gray), and 4—rock (white). The confusion matrix
shows that the accuracy of SOM-HGA can reach 95%.

4.4 Examples of Satellite Image Segmentation Using
FCM-HyDyGA

In this subsection, the FCM-HyDyGA cooperative method is used to segment two
different satellite images: a medium spatial resolution image (30 m) and a high
spatial resolution image (4 m). These two images are captured by Landsat ETM+
and IKONOS respectively. It should be noted here that both images consist of multi-
bands, but only three spectral bands are used. In addition, IKONOS and Landsat
satellite images are pan-sharpened with high to very high resolution panchromatic
bands. The IKONOS image consists of many bands; one of them is the panchromatic
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Fig. 9 Image. (a) IKONOS. (b) Landsat. (c) Segmented IKONOS. (d) Segmented Landsat

band. To improve the spatial resolution of the visible to near infrared (VNIR), these
bands are fused “pan-sharpened” with panchromatic band (1 m) (Fig. 9a). In the
case of Landsat the panchromatic fusion process increases the resolution to 15 m
(Fig. 9b). HyDyGA is initiated with 30 iterations, but this can be increased without
any dropping of the efficiency linked to the speed of convergence for the new
method. Being a semi-supervised method FCM requires that the number of clusters
be provided a priori. To overcome this obstacle, the new method runs HyDyGA first.
This means that the optimal number of clusters and their values can be obtained
before running FCM (optimal global solution). Segmentation of the images by
FCM-HyDyGA resulted in different classes for each image such that in the case
of the IKONOS image only four (Fig. 9c) classes are obtained while in the case of
the Landsat image only six classes are obtained (Fig. 9d). Three important classes
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Table 5 FCM-HyDyGA
confusion matrix for Landsat
7 ETM+

Classes 1 2 3 Total

1. Urban settlements 23 2 0 25

2. Bare soil 0 22 0 22

3. Agriculture 0 0 27 27

Total 23 24 27 74

Table 6 FCM-HyDyGA
matrix for IKONOS

Classes 1 2 3 4 Total

1. Vegetation_1 22 2 1 1 26

2. Urban settlements 0 21 0 3 24

3. Soil 0 2 29 0 31

4. Shadow 0 1 0 18 19

Total 22 26 30 22 100

in the segmented Landsat image are selected for evaluation (1—urban settlements
(black), 2—bare soil (dark blue), 3—agriculture (dark green)), while all four classes
are evaluated in the case of the IKONOS image (1—vegetation_1 (dark blue), 2—
urban settlements (red), 3—soil (orange), 4—shadow (light blue)). The results of the
segmentation method FCM-HyDyGA are evaluated using the confusion matrix [39]
which consists of actual (field samples) and predicted (segmentation results) values.
Tables 5 and 6 show the evaluation of both Landsat and IKONOS images. Normally,
the distribution of the field samples plays an important role in the reliability of
the accuracy. The distribution of these samples in this experiment ranges between
uniform to random depending on the accessibility of the area of studies.

Using the confusion tables to evaluate the segmentation results of both Landsat
and IKONOS by FCM-HyDyGA, one can determine that the accuracies of both
segmented images to be 97% and 90% respectively. However, one can argue that the
number of samples are not equal and at the same time not all the classes of Landsat
images are included. But, considering all these factors we still believe that obtaining
an accuracy equal to 90% for IKONOS and higher for Landsat is appropriate to
prove the high efficiency and reliability of FCM-HyDyGA in providing a global
optimal solution.

5 Metaheuristic Performance Analysis

In this section different analyses are conducted to show the efficiency and robustness
of the metaheuristic algorithms. Landsat and IKONOS images of size 480×480 pix-
els (Fig. 9a, b) are used to analyze the speed and efficiency of these algorithms.
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5.1 Metaheuristic Algorithm Complexity Analysis

The time complexity of SOMs is of the order O(S*T*Gen) where S and T are
the size of Self-Organizing Maps Grid and Gen is the number of iterations.
HyGA includes the Hill-Climbing process where the time complexity is equal to
max(O(Size(Pop), Size(Ch)), O(Size(Pop)*Size(Ch)*Size(Gen))), where Size(Ch)
is the size of the chromosome, and Size(Pop) is the size of the population.
The maximum rule states that SOMs-HyGA, which cooperates with both SOMs
and HyGA, is the slowest with a time complexity equal to max(O(S*T*Gen),
O(Size(Pop)*Size(Ch)*Size(Gen))). On the other hand, HyGA is the second seg-
mentation method in speed followed by SOMs. FCM is more robust than the
SOMs-HyGA method because FCM has a time complexity equal to O(Cn2), where
C is the number of clusters and n is the data size. In FCM-HyDyGA, the estimation
of cluster values is taken care of by the HyDyGA metaheuristic process which
has a time complexity equal to max(O(Size(Pop)), O(Size(Pop)*Size(Gen))) which
reduces the time complexity of FCM to O(Cn). This is caused by having a dynamic
number of cluster centers in short length chromosomes. That is why the Size(Ch)
for HyDyGA is considered small and negligible (greater than or equal to 3 and less
than the size of the image) compared to HyGA’s Size(Ch) which is equal to the size
of the image. This concludes that FCM-HyDyGA is the fastest with time complexity
equal to max(O(Cn2), O(Size(Pop)*Size(Gen))) followed in order by FCM, SOMs,
and SOMs-HyGA.

5.2 Robustness and Efficiency Analysis

Several experiments are conducted with respect to speed and accuracy on the
metaheuristic algorithm GA alone and in combination with other algorithms. The
results of these experiments are compared to the results of SOMs and FCM

Fig. 10 Speed performance of metaheuristic methods
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Fig. 11 Accuracy analysis of different metaheuristic methods

performances. Figure 10 shows the speed analysis for these algorithms. It is clear
that HyDyGA performance is the best and is stable with the increase in the number
of generations. Analyses are conducted to evaluate the accuracies of different
segmentation methods including the metaheuristic ones and the results are displayed
in Fig. 11. The graph shows that the highest accuracy is for FCM-HyDyGA followed
by SOMs-HyGA, HyGA, FCM, and SOMs respectively. The provision of the initial
solution by SOMs to HyGA makes their cooperation successful in providing a
global optimal solution especially in the case of high resolution images which is
comparable to the FCM-HyDyGA solution. However, the accuracy increases when
FCM-HyDyGA is used to segment a mid-resolution image compared to SOMs-
HyGA. The reasons are: (1) the Landsat image is more complex with respect to the
variability of the features; (2) HyDyGA provides a global optimal solution to FCM
as an initial solution.

5.3 Responsiveness Analysis

It is also important to analyze the reliability of metaheuristic algorithms with respect
to responsiveness. This is done by adding more noise to the original image to be
segmented. Noise adding should not reduce the accuracy, and the responsiveness of
the segmentation method should be stable. To test this concept, the Landsat image
in Fig. 9b is contaminated with different percentages of Gaussian noise [49], before
being segmented with different segmentation methods. The responsiveness rate is
calculated based on the following equation:

ε = 1 − Ac0 − Aci

Ac0
(11)

where ε is the responsiveness rate, Ac0 is the accuracy of the segmented image
without noise, and Aci is the accuracy of the segmented image with i% of noise.
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Fig. 12 Analysis of the responsiveness of metaheuristic methods to noise

Normally the responsiveness rate is between 0 and 1 where 1 is the best and 0 the
worst. Figure 12 shows the responsiveness of the different methods with respect to
noise adding. It is noticeable that all methods which depend on GA have the highest
responsiveness rate. In addition, the responsiveness rates are different between
different algorithms at low noise and stable for GA and cooperative algorithms.
Analyzing the graph it is obvious that adding more noise drives SOMs and FCM
toward the local optimal solution, and therefore the responsiveness is lower than GA.

6 Discussion

The segmentation process is known to be a very hard NP problem and the result
of this process is very important for the success of the essential steps in image
processing such as image classification, object detection, and object recognition.
Many disciplines depend on the success of this important step in image processing.
Example of these are the following: (1) traffic planning and control such as video
surveillance [50], (2) land use planning such as mapping and natural resources
management [51], (3) automation such as robotics and object extractions[52, 53],
(4) biometrics such as face and finger print recognition [54], (5) medical image
processing for the sake of locating tumors and virtual surgery simulation [55, 56],
(6) in assessing the environment [57, 58], and (7) it is used in many other disciplines
which lie outside the scope of this chapter. This large variety of use in different
disciplines makes this process a critical one and forces the scientific community to
look for more effective methods that can enhance the results of image segmentation
than the existing ones such as supervised parametric methods. The main concern
nowadays is to increase the accuracy of the results and the efficiency with respect
to the speed of processing. Combining both objectives seems to be a difficult
task especially with the appearance of more complex types of images such as
multicomponent images where one of these images is the satellite image. This
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chapter has introduced several types of satellite images and illustrated the difference
between them based on the spatial, spectral, temporal, and radiometric resolution.
These differences complicate the task of image processing and add more burden on
the segmentation methods. In this case the method must be adaptive to these changes
and this is how it has been approached in this chapter where the metaheuristic
GA has been modified to be Hybrid by including the Hill-Climbing method. This
inclusion reduces the speed and slows down the process of image segmentation
which can be noticed when increasing the satellite image size. To speed up the
new modified GA a new term is introduced: the dynamic population or variable
chromosome where in this new method the size of the chromosome is variable. In
addition, part of the image is used in a random process of creation of the population
which means that the required time for reproduction, replacement, and fitness
calculation will be reduced significantly. Although the accuracy obtained can be
judged as a good one, sometimes it is not higher than the one obtained using Hybrid
GA alone. In addition, in the HyDyGA there are several issues which must be
checked every time reproduction or mutation is performed, which is the difference
in the size of the chromosomes and the position(s) of point(s) of selection in the
crossover process. This is a very complex task which is performed successfully.
The variability of the population is another issue that must be taken care of at the
beginning when creating the population and in the evolution of a new population
during the running of HyDyGA. One important topic which may improve the
segmentation process, but may increase the complexity of the metaheuristic GA
is the use of multi-objective GA. This topic is not tackled in this chapter due to
the lack of sufficient experiments and work on this issue. However, it is worth
listing some of these limited studies such as the ones in [59, 60]. These studies
deal with image segmentation problems as problems having multiple objectives.
This property can be defined as minimizing the distances between objects in the
same cluster (intra-cluster), and maximizing the distances between different clusters
(inter-cluster). Working with multiple objectives is considered a difficult problem,
but sometime a multi-objective optimization approach for some problems is the
only suitable method to find a solution [61]. Working with multi-objective GA
adds more burden on the computer resources. It requires that the final result which
is the best approximation of the Pareto front be considered as a multi-global
optimum segmentation solution. On the other hand this problem is solved by using
the combination of a metaheuristic algorithm such as GA and another clustering
algorithm such as SOMs, which is the case with SOMs-HyGA or the combination
of GA with FCM. In that case these processes can be run with different settings and
can be evaluated to obtain the best global optimal solution.

7 Conclusion

Segmentation is one of the major steps in image processing without which object
recognition would be obsolete. The segmentation problem is considered as a hard
NP problem [62] and it cannot be solved with known conventional exhaustive
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algorithms and methods. Most of the known methods are either statistical parametric
supervised, or statistical unsupervised . The lack of nonparametric unsupervised
methods to segment different increasing types of complex multicomponent satellite
images led the scientific community to think of metaheuristic algorithms as a
solution for the segmentation of these types of multicomponent images. The success
of these methods in solving many complex NP problems supported our choice of GA
as a metaheuristic algorithm. GA is characterized by being efficient and robust in
solving many different known NP problems. In this chapter, it has been shown that
GA performance improves when another heuristic process such as Hill-Climbing
is added. Moreover, changing the cluster size of centers in each chromosome
increases the algorithm’s efficiency. The suggested combination of Hill-Climbing
with dynamic population improved the performance of GA with respect to finding
the global optimal solution in less time compared to the conventional GA. The
dynamic population of GA is created by changing the length of each chromosome
and by adding a trivial number to complete every chromosome. This is done
in order to ease and simplify the job of the crossover and mutation operators.
Most of the time in normal GA, avoiding a local optimal solution requires further
iterations as has been proved in much of the literature and in many experiments.
However, sometimes the increase of iterations will lead GA to become stuck in
the local optimal solution [63]. Here Hill-Climbing comes in handy to slow the
convergence to a local optimal solution due to many factors such as changing the
current solution provided by GA. This is done in order to prevent the metaheuristic
algorithm from becoming stuck in the valley (local optimal solution) due to the Hill-
Climbing process and moving it slowly toward the hill (global optimal solution). In
addition, the experiments in this chapter covered the use of many different types
of satellite images. It has been proved in this chapter that metaheuristic algorithms,
specifically GA, can improve the segmentation process such that the accuracy of
the segmentation can reach more than 97%. Finally it is suggested that Hybrid
Dynamic GA can be further improved to solve more complex and large images
by implementing a parallel version of the algorithm.

Acknowledgements The author thanks CNRS and the United States Geological Survey for
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A Hybrid Metaheuristic Algorithm Based
on Quantum Genetic Computing
for Image Segmentation

Safia Djemame and Mohamed Batouche

Abstract This chapter presents a new algorithm for edge detection based on the
hybridization of quantum computing and metaheuristics. The main idea is the use
of cellular automata (CA) as a complex system for image modeling, and quantum
algorithms as a search strategy. CA is a grid of cells which cooperate in parallel
and have local interaction with their neighbors using simple transition rules. The
aim is to produce a global function and exhibit new structures. CA is used to
find a subset of a large set of transition rules, which leads to the final result, in
our case: edge detection. To tackle this difficult problem, the authors propose the
use of a Quantum Genetic Algorithm (QGA) for training CA to carry out edge
detection tasks. The efficiency and the enforceability of QGA are demonstrated by
visual and quantitative results. A comparison is made with the Conventional Genetic
Algorithm. The obtained results are encouraging.

Keywords Metaheuristics · Quantum computing · Quantum genetic algorithm ·
Complex systems · Image segmentation · Edge detection · Cellular automata ·
Rule optimization

1 Introduction

Quantum computing (QC) is an emerging interdisciplinary science that has induced
intense research in the last decade. QC is based on the principles of quantum
mechanics such as quantum bit representation and state superposition. QC is capable
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of processing a huge number of states simultaneously, so it brings a new philosophy
to optimization due to its underlying concepts.

Metaheuristics has become the main interest for researchers in optimization. It
has allowed the solving of many practical and academic optimization problems,
and gives better results than classical methods. Though, the use of a unique
metaheuristic is a bit restrictive, a smart hybridization of these concepts leads to
more satisfying behavior and better results, especially when dealing with large
scale problems. Combinations of metaheuristics with mathematical programming,
machine learning, and quantum computing have provided very powerful search
algorithms.

These approaches are commonly referred to as “hybrid metaheuristics”.
They reveal efficiency in solving the following complex optimization problems:
continuous/discrete optimization, mono-objective/multi-objective optimization
[18], optimization under uncertainty, combinatorial optimization [20], and
classification [1]) in a diverse range of application domains.

This chapter deals with the hybridization of a metaheuristic: the Genetic
Algorithm and the concept of quantum computing for solving an image processing
problem (image segmentation).

The novelty of this work is twofold: firstly, a new approach is presented,
combining the powerful principle of QC with a complex system CA, to deal with
edge detection. To the best of our knowledge, especially in image processing, there
is no prior work combining CA and QGA for solving edge detection problems.

Secondly, the use of QGA as a search strategy in the large space of transition
rules gives an efficient solution to the hard problem of how to find the subset of
rules which achieves the desired function.

The remainder of the chapter is organized as follows: In Sect. 2, related works are
discussed. In Sect. 3, an overview of quantum computing is presented. In Sect. 4, the
concepts inherent to the QGA are explained. In Sect. 5, the new proposed approach
for edge detection using QGA and CA rules is illustrated. In Sect. 6, experimental
results, both visual and numerical, are shown. In Sect. 7, a comparison is made
between the QGA algorithm and the Conventional Genetic Algorithm (CGA), and
experimental results are shown. Finally, conclusions and future perspectives are
drawn in Sect. 8.

2 Related Works

In [17], the author proposed the first quantum algorithm for number factorization.
In [4], the authors proposed a solution to the problem of random searches in
databases by using a quantum algorithm. Researchers attempted to fit the features
of QC into conventional algorithms. In the early 1990s, the hybridization of QC and
evolutionary computation proved its efficiency when working on complex problems.
Regarding this, QGA showed high ability for solving large scale optimization
problems [6, 7]. QGA can handle the stability between exploration and exploitation



A Hybrid Metaheuristic Algorithm Based on Quantum Genetic Computing for. . . 35

more readily than classical genetic algorithms. A few individuals are sufficient for
exploring the search space and finding a good solution within a short time [8]. QGA
is also characterized by the representation of chromosomes, the search space, the
fitness function, and the movements of populations. Besides mutation and crossover,
a new operation called interference, introduced in [15], is also utilized. QGA is
characterized by a small size of the population, a high speed of convergence, a great
capability of global optimization, and good robustness.

QGA has been used for solving combinatorial problems [5] and function
optimization [23]. In bioinformatics, QGA is used to solve the prediction of new
protein sequences [13]. In the image processing domain, the area of interest,
there are a few works in the literature which solve image processing problems
like filtering and edge detection by using QGAs. In [24], the authors present a
QGA for image segmentation based on maximum entropy. In [19], the authors
present a quantum inspired genetic algorithm for multi-objective segmentation with
a split/merge strategy. In [3], the authors applied quantum modeled clustering
algorithms for image segmentation. Concerning the problem of automating rule
generation, we found in the literature several works. For example, [16] used a
Sequential Floating Forward Search Algorithm to achieve image processing tasks
with CA. In [10], the authors used GA for evolving CA rules for edge detection. In
[2] a quantum algorithm is used for image denoising.

In an attempt to make a contribution in this field, we propose the use of a QGA
as a search strategy for finding CA rules from a very large space to perform edge
detection on images. The algorithm proposed in this chapter benefits from QGA
capabilities to explore wide search spaces and rapid convergence, and the power
of CA to model images efficiently and extract a subset of rules which performs
satisfactory edge detection.

3 Overview of Quantum Computing

During the 1980s, Richard Feynman, the American physicist, made influential
contributions in the domain of quantum mechanics. He was also one of the first
scientists to conceive the possibility of quantum computers. During the early 1990s,
QC attracted increasing interest and gave rise to much research. The algorithmic
complexity here is obviously reduced by the parallelism of QC. Such a capability
can also be exploited to resolve optimization problems which need to be examined
over large solution intervals.

3.1 Definition of a Quantum Bit

The smallest unit of information stocked on a quantum computer is called a quantum
bit (qubit) [9]. A qubit lies within the superposition values of 0 and 1. The state of a
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Fig. 1 Classical bit and
quantum bit [11]

qubit is depicted by Dirac’s equation:

|ψ = α|0 > +β|1 > (1)

α and β are complex numbers called the probability amplitudes of the corresponding
state of the qubit and satisfy the condition:

|α|2 + |β|2 = 1 (2)

|0 > is the classical bit value 0 and |1 > is the classical bit value 1. When we
measure the qubit’s state, it gives 0 with a probability |α|2 and 1 with a probability
|β|2 (Fig. 1).

3.2 Quantum Register

A quantum register is an arbitrary superposition of m qubits. In a classical system, a
register of m bits can represent only one value among 2m possible values. However,
a quantum register can represent 2m states simultaneously.

The size of the search space grows exponentially with the number of particles.
This suggests that instructions are executed with higher speed on quantum comput-
ers than on sequential computers. A quantum operation is performed in parallel on
all the states of the superposition[14].

3.3 Quantum Measure

The measure of a qubit state leads to either bit ‘1’ or bit ‘0’. The result depends on
the values of the qubit’s amplitudes. Figure 2 shows an example of qubit measure
which has a probability of 70% of being in state ‘1’, and probability 30% of being
in state ‘0’.
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Fig. 2 Quantum measure [11]

3.4 Quantum Algorithms

A quantum algorithm is constituted by a succession of quantum operations, realized
on a quantum system. They are executed sequentially using quantum gates and
quantum circuits.

Quantum gates are elementary operations on a qubit or a quantum register. The
most used quantum gates are NOT gates, controlled NOT gates, Hadamard gates,
and rotation gates. The choice of the quantum gate depends on the problem to be
solved

Quantum circuits are the combination of two or several quantum gates, allowing
the application of a more complex processing on a quantum system.

Quantum algorithms offer a reduced algorithmic complexity, in comparison with
classical algorithms, thanks to the superposition of states. Let us emphasize that the
design of such algorithms is difficult. The design of a powerful quantum machine is
prohibitively difficult, and developed quantum algorithms still need to be simulated
on conventional processors [12].

4 Quantum Genetic Algorithm Principles

A QGA is a genetic algorithm where manipulated individuals are quantum chro-
mosomes. Representation of the chromosomes rests on the principle of the qubit
and is endowed with other quantum operations. This means that genetic operations
are totally redefined to be adapted to the new representation of the chromosomes.
Algorithm (1) shows the pseudo-code of QGA.
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ALGORITHM 1
BEGIN
Q(t = 0) is a population of qubit chromosomes at generation t

P (t) is a set of binary solutions at generation t

Initially generate randomly initial population Q(t = 0) of quantum chromosomes
Repeat until convergence
Generate P(t) by measure of Q(t)

Evaluate P(t)

Save the best solution b

Update Q(t) by quantum interference
t ←− t + 1
END.

4.1 Coding of Quantum Chromosomes

A quantum chromosome is a chain of n qubits, forming a quantum register. Table 1
illustrates the structure of a quantum chromosome.

4.2 Measuring Chromosomes

For exploiting effectively the superpositioned states in the qubit, we need to take
a reading for each qubit. The purpose of this operation is the extraction of a
binary chromosome from a quantum one. The purpose is to allow evaluation of the
population’s individuals according to the binary chromosomes extracted (Table 2).

The measure function can be easily represented by algorithm (2).
Let q be a qubit and ‘measure’ its measure function. q is depicted by:

|ψ = α|0 > +β|1 > (3)

Table 1 Structure of a
quantum chromosome

α0 α1 α2 α3 . . . αn

β0 β1 β2 β3 . . . βn

Table 2 Measure of
chromosomes

Quantum chromosome

α0 α1 α2 α3 α4 α5 . . . αn

β0 β1 β2 β3 β4 β5 . . . βn

⇓ Measure

0 1 1 0 0 1 . . . 1

Binary chromosome
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ALGORITHM 2
BEGIN
r = get r randomly in [0, 1]
if r > (α)2 return 1
else return 0
END.

where:

|α|2 + |β|2 = 1 (4)

The fitness value is obtained by the evaluation of each binary solution.

4.3 Quantum Genetic Operations

In this subsection, we describe the most important quantum genetic operations:

• Quantum crossover: this operation is similar to the crossover of a classical GA,
except that it operates on the qubits of a quantum chromosome. The selected
individuals will be randomly distributed in couples, then they begin to reproduce.
The operation is realized by exchanging fragments situated after the cut points,
which allows the creation of two new quantum chromosomes.

• Quantum mutation: the role of this operation is to change the value of some
random positions in the quantum chromosome according to a mutation rate.

• Quantum interference: this operation allows the modification of individual
amplitudes. The aim is the amelioration of their fitness. It consists in moving
the state of every qubit in the direction of the value of the best found solution.
This operation is useful to intensify the search around the best solution. It can be
realized by the means of a transformation which allows a rotation. The angle
of the rotation is a function of the amplitudes α, β and the value of the bit
corresponding to the best solution. The value of rotation angle δθ must be chosen
so as to avoid premature convergence.

5 The Proposed Approach

The problem we propose to solve is detecting edges in images. For modeling an
image, we use a complex system: CA.

CA is a grid of cells which interact locally by simple rules and evolve towards
a global complex behavior. Interactions between cells are defined with local rules.
The set of all these rules forms the transition function of the CA.
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Fig. 3 Models of cellular automata neighborhood
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Fig. 4 Correspondence between CA and chromosome

In image processing, CA is used efficiently to model an image. A state of a cell
is the color of the pixel. The transition rule is defined by the actual state of the cell
and the state of the neighborhood. In this work, the neighborhood used is the one in
“Moore” (Fig. 3).

The initial configuration of CA is the input image to be processed.
The final configuration is the output image (segmented, filtered).
The main problem with CA remains how to define the only subset of rules, among

a big set, which gives rise to the desired effect. The number of transition functions
grows with the number of cell states and the size of neighborhood. For example, for
a Moore neighborhood and two cell states, the size of the transition function is 512,
and the number of possible transition functions is 2512.

5.1 From Cellular Automata to Chromosome

Each transition function is associated with a lookup table; its size is 512 positions.
Each position corresponds to a specific configuration of the neighborhood. Figure 4
shows a possible way for corresponding a configuration of the neighborhood with its
position in the lookup table, and then deducing the result value in the chromosome.
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Table 3 Initialization of
quantum chromosome

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

. . . 1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

. . . 1√
2

Table 4 Measured
chromosome

Quantum chromosome
1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

. . . 1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

. . . 1√
2

⇓ Measure

0 1 1 0 0 1 . . . 1

Binary chromosome

5.2 Initialization

In Sect. 5, we saw that there are 2512 possible transition functions. This huge
set corresponds to the search space of the problem (all possible CA rules). Each
individual of the search space is coded on a chromosome which is a binary chain of
512 bits. Initially, all qubits are set to 1√

2
(Table 3).

5.3 Measure of Quantum Chromosomes

A measure function (Sect. 4.3) is applied on quantum chromosomes in order to
extract the binary classic chromosomes, which represent the output value of the
CA rule (Table 4).

5.4 Evaluation of Solutions

The next step is the evaluation of these solutions. Each binary chromosome is
performed on the original image. After a few steps, the resulting image is produced.
This is compared to the ground truth image, in order to determine its fitness
computed with a measure of error. Three measures of error are used in this
algorithm: the root mean square error (RMSE), the Hamming distance (HD), and
the Structural Similarity Index (SSIM).

The Hamming distance is the number of different pixels between two images.
The fitness F is computed as:

F = 1

1 + HD
(5)
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The RMSE is calculated according to Eq. (6)

RMSE =
√

1

MN
ΣM−1

r=0 ΣN−1
c=0 [E(r, c) − O(r, c)]2 (6)

where O(r, c) is the original image (in our case the ground-truth image) and E(r, c)

is the reconstructed image (in our case the QGA result).
The SSIM between two images x and y is defined as [21]:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(7)

where μx,μy are the mean of x, the mean of y. σ 2
x , σ 2

y are respectively the variance
of x, the variance of y. σxy is the covariance of x and y. Following Wang et al. [22],
C1 is set to (0.01 ∗ 255)2 and C2 = (0.03 ∗ 255)2.

5.5 Updating Chromosomes by Interference

In the next step, the chromosomes are updated by the use of quantum interference.
We update a qubit chromosome using a rotation gate U(θ). This is defined as
follows:

U(θ) =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(8)

where θ is the rotation angle. This rotation has the effect of making the qubit
chromosome converge to the most suitable solution. In the next step, the best
solution among all the population is chosen. The i-th qubit value (αi ,βi) is
updated as:

(
α′

i

β ′
i

)
=
(

cos(θi) − sin(θi)

sin(θi) cos(θi)

)(
αi

βi

)
(9)

The parameters used in this problem are shown in Table 5. xi and bi are the
i-th bits of x and b (the best solution). The value of δθi influences directly
the speed of convergence; if it is too high, the solutions will diverge or have a
premature convergence to a local optimum. The sign s(αi ,βi) defines the direction of
convergence to a global optimum. Table 5 shows the strategy of rotation of quantum
gates for convergence.

5.6 Updating of Best Solutions

In this step, the better local solution and the better global solution are updated. When
the algorithm is finished, the better edge obtained and the best fitness are displayed.
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Table 5 Lookup table for rotation of quantum gates

s(αi , βi)

xi bi f (x) >= f (b) δθi αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 False 0.005Π − + ± ±
0 0 True 0.005Π − + ± ±
0 1 False 0.08Π − + ± ±
0 1 True 0.005Π − + ± ±
1 0 False 0.08Π + − ± ±
1 0 True 0.005Π + − ± ±
1 1 False 0.005Π + − ± ±
1 1 True 0.005Π + − ± ±

6 Experimental Results

Experiments were carried out on images from the Berkeley Benchmark Dataset
(BBD), which provides for each image its handmade ground truth. The population
size was equal to 50. The best solution is collected within 100 generations. Figures 5
and 6 show the results of the proposed algorithm on four images from BBD:
Bird, Woman, Mountain, and Landscape. It is clearly visible that the QGA method
produced good edges, in comparison with the ground truth image, and a well known
classical method of edge detection called Canny. Table 6 shows the mean best fitness
values obtained for the three images illustrated above. For each image, the QGA and
Canny edge detector are tested with the three fitness functions: Hamming distance,

Fig. 5 Visual results of QGA and comparison. (a) Original image. (b) Ground truth. (c) Canny
edge. (d) QGA edge
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Fig. 6 Visual results of QGA and comparison. (a) Original image. (b) Ground truth. (c) Canny
edge. (d) QGA edge

Table 6 Best fitness results for three images

QGA Canny

Image Iterations F SSIM RMSE F SSIM RMSE

Bird 20 2.07e−4 0.9977 0.2767 4.56e−4 0.9765 0.3042

40 2.12e−4 0.9971 0.2742 – – –

100 1.98e−4 0.9966 0.2735 – – –

Woman 20 1.94e−4 0.9985 0.2482 3.87e−4 0.9716 0.2751

40 1.77e−4 0.9984 0.2484 – – –

100 1.68e−4 0.9976 0.2479 – – –

Mountain 20 1.59e−4 0.9992 0.2005 3.22e−4 0.9632 0.2483

40 1.62e−4 0.9987 0.2132 – – –

100 1.45e−4 0.9979 0.2014 – – –

RMSE, and SSIM. Concerning Canny, only one iteration is sufficient to collect the
fitness values. The QGA algorithm is tested over 25 runs, with respectively 20, 40,
and 100 iterations.

7 Comparison Between Quantum GA and Conventional GA

In this section, a visual and numerical comparison between QGA results and CGA
[10] results are presented. CGA [10] is an evolutionary algorithm which extracts a
pack of rules for edge detection. It is based on a genetic algorithm which evolves
CA over many generations to realize the best edge detection.

7.1 Visual Results

In the following, we consider the same images used in [10]. A QGA algorithm is
applied on this set of images. The original image, the reference image, the CGA
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Fig. 7 Edge detection for cameraman and Lena images. (a) Original image. (b) Reference image.
(c) CGA edge. (d) QGA edge

result, and QGA result are illustrated in order to show clearly the performance of
QGA (Fig. 7). The result of QGA is sharply better: it allowed the extraction of all the
edges in the original image with high accuracy. The visual results of the cameraman
shows that the QGA algorithm has a better effect than CGA, rather more in fact as
the continuity of edges is strong. QGA has a better curve outline of the edges and has
good detection effects on the whole camera as well as the body features compared
to CGA. This latter gives poor and discontinuous results and also includes false
edges, whereas QGA gives good, clean, and almost continuous true edges. On the
Lena image, the visual results clearly demonstrate that the QGA method has a better
effect than CGA. CGA gives weak and discontinuous edges. It also includes false
edges, whereas QGA gives clean and almost continuous and true edges.

7.2 Numerical Results

Experiments were carried out on several images for both CGA and QGA algorithms.
In the conventional genetic algorithm, the population size is 100. The value of the
crossover probability is 0.65. The value of the mutation probability is 0.05. The
population size of QGA is 10. We recorded the best solution values after 2000
iterations, over 25 runs.

The experiment shows that QGA yielded superior results as compared to CGA.
QGA gives good results even if we use a small-sized population (10 items). QGA
can look for solutions near the optimum after a few iterations as compared to CGA.

The evolution of mean best fitness value (MBFV) over 2000 generations is
shown in Fig. 8, for QGA and CGA algorithms. It is clear that QGA outdid CGA
concerning the rate of convergence and the quality of the final results. At the
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Fig. 8 Evolution of best
fitness value (BFV) for CGA
and QGA algorithms over
iterations
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beginning of the MBFV plotting, CGA shows a slower convergence rate. After
50 generations, CGA maintains a constant convergence rate. From the beginning
of the plotting, we can see that QGA has a rate of convergence faster than CGA
because of its superior global search capacity. For the CGA algorithm, the best
fitness value of 0.98 is achieved after about 1500 generations. Beyond this threshold,
no improvement in the result is noticed. The effectiveness and applicability of QGA
is demonstrated by experimental results. Figure 8 shows the high global search
capacity and fast convergence of QGA against CGA.

8 Conclusion

This chapter has presented a new approach to resolving edge detection. A powerful
complex system, CA, has been used to model the image. A QGA was used to explore
the large search space of CA transition rules and extract efficiently the best rules
that perform good edge detection. Experimental results proved that QGA is more
efficient and powerful than CGA. The originality of this work mainly relates to
solving edge detection by combining a quantum approach, a genetic algorithm, and
CA. The main motivation behind this new method is to benefit from the parallelism
of QGA in exploring the search space in order to find the best solution, with
maximum effectiveness. Experimental results show that QGA is a very promising
tool for exploring large search spaces like CA rule extraction, while preserving the
balance between efficiency and performance. The QGA has proved its effectiveness
and applicability in image processing tasks, especially for edge detection. Fast
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convergence and good global search capability characterize its performance. A few
chromosomes are sufficient to study the problem. The use of quantum interference
offers a powerful tool to reinforce the search stability. The large search space is
explored, keeping the balance of efficiency and performance.

In future work, major interest will be given to comparing different QGA
strategies for investigating the effect of changing rotation gate angles, the number
of chromosomes, introducing crossover and mutation operators, and their impact on
the performances of the QGA algorithm.
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Genetic Algorithm Implementation
to Optimize the Hybridization of Feature
Extraction and Metaheuristic Classifiers

Geetika Singh and Indu Chhabra

Abstract Hybridization represents a promising approach for solving any recog-
nition problem. This chapter presents two face recognition frameworks involving
the hybridization of both the feature extraction and classification stages. Feature
extraction is performed through the two proposed hybrid techniques, one based
on the orthogonal combination of local binary patterns and histogram of oriented
gradients, and the other based on gabor filters and Zernike moments. A hybrid
metaheuristic classifier is also investigated for classification based on the integration
of genetic algorithms (GA) and support vector machines (SVM), where GA has been
used for the optimization of the SVM parameters. This is crucial since the optimal
selection of SVM parameters ultimately governs its recognition accuracy. Experi-
mental results and comparisons prove the suitability of the proposed frameworks as
compared to the other baseline and previous works.

Keywords Face recognition · Hybrid feature extraction · Support vector
machine · Genetic algorithm · GA-SVM classification

1 Introduction

Face recognition technology is gaining importance primarily due to its non-intrusive
nature for secured biometric identification. It has not only been found suitable for
authentication and access control but has several other practical applications, such
as facilitating crime investigations, carrying out secure e-commerce transactions,
surveillance, finding missing people, and human–computer interaction. Though
the latest professional face recognition systems have achieved a certain level of
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accuracy, like other biometric systems their performance is limited in real-world
scenarios. The quality of the fingerprint systems may be affected by the variability
in the orientation of the finger or the pressure applied against the sensor. Signature
verification systems may result in low accuracy due to a lack of consistency
in the signatures. Accuracy of voice recognition systems may degrade by the
change in voice of a person due to several factors. Similarly, robustness of facial
identification systems is also challenged by various situations as the highly dynamic
face objects may also undergo wide variations due to pose, lighting conditions,
expression changes, occlusion, and age factors. Hence, there is a need to develop
invariant algorithms that can handle these types of variations to some reasonable
extent and which could provide good recognition accuracy for real-world scenarios
as well. Apart from these parameters, accurate representation of faces under
such situations, computational simplicity, ease of implementation, and speed are
additional factors that need to be examined for an optimal recognition framework. A
face recognition system, thus, needs to be robust, fast, computationally feasible, and
have the capability of achieving at least equivalent or better than human recognition
performance.

There are three stages in solving any face recognition problem, namely face
segmentation, feature extraction, and classification. Feature extraction is considered
as the most crucial stage in order to represent the face in a way that should minimize
its variations and contribute to the best recognition result. Various techniques have
been proposed in the literature for facial feature extraction including global, local,
and hybrid methods.

Global techniques are appearance-based approaches which are applied to the
whole face to extract the complete face information [4, 11, 17, 19, 30, 31, 35, 39].
These include subspace-based methods, spatial frequency techniques, and moments
based methods. Subspace-based methods transform the facial image to a low-
dimensional space that is eventually used for performing the recognition. These
comprise some of the successful face recognition approaches like Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA), Independent Com-
ponent Analysis (ICA), Two-dimensional PCA (2DPCA), 2DLDA, Kernel PCA
(KPCA), KLDA, and KICA [4, 11, 19, 39]. Spatial-frequency techniques include
approaches such as the Fourier Transform and the Discrete Cosine Transform (DCT)
[17, 35]. These map the spatial image to the frequency domain; recognition is then
performed using coefficients of the low frequency band. Moments-based methods
are the most widely used global face descriptors. The magnitude of these moments
is used as image descriptor, as it is invariant to rotation and can be made invariant
to translation and scale through proper normalization. Amongst the global methods,
facial shape representation with Zernike Moment (ZM) exhibits efficient recognition
ability [31, 33]. This is due to the fact that this technique is rotation invariant and
therefore capable of recognizing tilted as well as posed faces. It is also invariant
to noise, position, and tilt and can be made translation and scale invariant through
normalization.

However, the performance of global approaches degrades in the case of large
pose changes as much of the face gets occluded. Studies therefore have also
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emphasized local approaches, as they extract local features of the face to provide
finer detail and are also effective when faces are captured at large pose angles.
Local methods utilize two approaches in this context. In the first one, the image
is divided into subparts and features are derived for each of these subcomponents
[1, 2, 6, 12, 16, 18, 20, 38, 45]. Thus, local features are computed pixel by pixel
over the input image. The second approach is concerned with the localization of
different geometrical face constituents like eyes, mouth, and nose [9, 23, 42, 44].
A feature vector is obtained from the set of corresponding estimated structural
parameters like ratios and distances. Much of the recent research work is centered
on the former approach, as it has been found to be more robust especially in the
case of variations of illumination, occlusion, and expression. A prominent descriptor
in this category is Local Binary Pattern (LBP). LBP computes a histogram by
considering the value of each image pixel and its neighborhood [1]. This approach
has been found to yield a recognition accuracy of 97% and 79% for expression
and illumination variations respectively on the FERET dataset using chi-square
distance as the similarity measure. This approach has also been extended to use
the AdaBoost algorithm to select discriminative LBP features which has resulted
in a better recognition accuracy of 97.9% for the FERET dataset [20]. Apart from
being computationally efficient and illumination invariant, LBP possesses excellent
classification performance. However, it is not invariant to rotation. Orthogonal
Combination of Local Binary Patterns (OC-LBP) is a recently introduced variation
of LBPs with much reduced dimensionality along with better discriminative power
and invariance properties as compared to the traditional LBP operator [55]. OC-
LBP has achieved improvement in accuracy by up to 5% on standard texture
classification datasets. Gabor filters have also proved to be effective in the case
of varied facial changes [5, 36, 48]. In Gabor-based methods, features are obtained
by convolving the input face image through a set of filters at different scale and
orientation levels. These can efficiently represent the facial contours and edges
as they are invariant to scale and orientation. However, high feature dimension
and computational complexity make this technique less suitable for real-time
applications. The Histogram of Oriented Gradient (HOG) is a recent descriptor
that has been successfully applied to the problems of computer vision such as
human detection and hand gesture recognition. Recently, it has been tested for
face recognition in three variations and has provided improved results [10]. In the
first case [2], a set of facial landmarks are localized using an Elastic Bunch Graph
Matching (EBGM) algorithm; the corresponding HOG descriptors are computed
for each of the key points. This has performed better in comparison to the classical
Gabor-EBGM approach. In the second variation [12], HOG descriptors are obtained
from a regular grid applied at different scales and then combined through the
product rule. In the third case [38], a HOG window is placed over the entire face
image to compute the feature vector. This has not only reduced the complexity
but has also exhibited improved performance. Research further reveals that HOG
features are robust to changes of illumination, rotation, and small displacements. In
addition to this, this descriptor has lower computational complexity as compared
to its competitors, which makes it suitable for real-time applications. However,
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both OC-LBPs and HOGs still offer considerable research space for their in-depth
exploration. In the case of Gabor filters, reducing their dimensionality using suitable
methods that are complementary to their behavior is again a research problem that
needs addressing.

Hybrid techniques, an imitation of the human perception system, exploit the
characteristics of two or more local or global approaches; these are now an active
area of research. They have shown better results as the integrated feature set is
capable of retaining the information about the maximum varying aspects of any
facial image. Significant attempts have been made in this direction to find an optimal
set of combination that can be generalized for the majority of real-world situations
[14, 22, 25, 32, 33, 37, 38, 43, 46, 47, 53, 54]. Recently, a hybrid method was
proposed that fuses ZM and LBP features where classification was performed at the
matching score level [33]. Significantly higher accuracy was reported as compared
to their individual implementation in the case of pose, illumination, and expression
variations. Another promising implementation has been proposed in [38] where
HOG features are extracted both at the global and local level and fused together for
classification using the weighted angle distance. Although recent methods proposed
in the literature focus on hybridization of feature sets, selection of an appropriate
combination still remains a challenge.

For the final phase of recognizing faces, classifiers are trained to match the
extracted features with their corresponding face classes as the correct outputs.
Different classifiers are available, such as the distance-based, multi-layer, Back-
propagation Neural Network, the Adaptive Neuro Fuzzy Inference System, and
the Support Vector Machine (SVM). Selection of an appropriate classifier that
is complementary with the extracted feature vector is crucial to obtain optimal
recognition performance. The SVM, proposed by Vapnik, is now a well-known
name among the classification strategies that is based on supervised machine
learning methodology. The prime advantages of SVM include their computational
efficiency, flexibility, and capability to handle large amounts of high-dimensional
non-linear data. However, in order to apply this technique to specific recognition
problems, its parameters, namely the regularization or the cost (c) parameter and
gamma (γ ), need to be adjusted using some heuristic strategy. Selection of these
kernel parameters is one of the main factors affecting the application results and is
a critical research area in the study of SVMs [8]. The most popular and a traditional
strategy to optimize SVM parameters is based on gradient descent or grid search
over the set of parameters, though it involves high computation cost, and therefore
this technique is reliable only in low-dimensional datasets. The Genetic Algorithm
(GA) is a global metaheuristic strategy that was first developed by John Holland
in 1975. The literature suggests that this algorithm is a promising methodology
over other optimization algorithms for automatically tuning the parameters of SVM
as it is flexible and allows hybridization with other methodologies so as to obtain
enhanced solutions [8]. In face recognition, GA has been used in conjunction with
SVMs primarily for feature selection [3]. It selects a subset of extracted facial
features which are fed to the SVM for final classification. However, its application
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to optimize SVM parameters for the problem of face recognition still needs to be
investigated.

Motivated by this, the present work makes contributions both in the feature
extraction stage and in the classification stage. In the feature extraction stage, two
hybrid algorithms are proposed based on the fusion of distinct and complementary
feature sets. In the classification stage, an improved methodology based on a
hybridization of the metaheuristic GA and SVM is developed.

The first feature extraction framework is based on representing the faces with
both texture as well as edge information. This is done to make the recognition
algorithm memorize the combination of varying facial expressions of the individuals
along with the statistically already memorized facial shapes. The texture features
capture the appearance of the face such as spots and flat areas while the edges detect
the face shape. Both features are unique for every individual and hence provide a
mechanism for distinctive identification. Thus, the study attempts to inspect a hybrid
method based on a combination of the recently introduced OC-LBP, which captures
the facial texture, and HOG descriptors, which represent the facial shape.

The second hybrid implementation is achieved through the extraction of shape
features for different alignments of the same face. This has helped in representing
the same face in varying conditions of pose, scale, and orientation. This is achieved
by extracting ZM coefficients from the Gabor filtered face images. Gabor filters rep-
resent the face image at different alignments and ZM has the capability of extracting
invariant shape features. As Gabor filters are not inherently orthogonal and result
in high dimensionality features, so this approach performs orthogonalization of the
generated filter bank and reduces the dimensionality of the final feature vector while
enhancing the discrimination power.

The classification phase is proposed to be achieved by using different distance-
based metrics, including χ2, square-chord, and extended-canberra [26], as well
as SVMs with a Radial Basis Function (RBF) and χ2 kernels. χ2, square-chord,
and extended-canberra are histogram-based metrics and may prove beneficial for
the OC-LBP and HOG methods as they are based on representing the extracted
feature vectors as histograms. The present study also proposes the hybridization of
metaheuristic GA with a soft-computing technique, that is SVM, and explores a
hybrid metaheuristic SVM model for face recognition. In this approach, the GA is
used to determine the optimal values of the SVM parameters c and γ . This results in
providing high classification accuracy along with better generalization ability, lower
computational cost, and a fast learning speed.

The implemented techniques are evaluated for their robustness to different facial
variations on benchmark face databases. A face database has also been created and
the performance of implemented techniques is also verified against this database.
The improved techniques have also been thoroughly compared with the state-of-
the-art face recognition algorithms for establishing their recognition performance.
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2 Feature Extraction

This section presents the implicit details of the underlying feature extraction
techniques in the developed hybrid approaches. These include Gabor filters, LBPs,
orthogonal combination of LBPs, and HOGs.

2.1 Gabor Filters

Gabor filters, as the name suggests, are capable of filtering the multi-orientational
information from an image for different scales. Hence, their face description
characteristics are similar to those of the human visual system. A two-dimensional
Gabor filter in the spatial domain is implemented as:

ϕu,v (x, y) = f 2
u

πγ η
e
−
(

f 2

γ 2 x ′2+ f 2

η2 y ′2)
ej2πxuf ′

(1)

x ′ = x cos θv+y sin θv , y ′ = −x sin θv+y cos θv , θv = vπ
8 and fu= fmax

2u/2 , fmax
is the maximum frequency of the filters which is assigned to fmax = 0.25.

This definition implies that Gabor filters are complex signals generated by the
Gaussian kernel functions which are further modulated by a complex plane wave
whose center frequency and orientation are fu and θv respectively. The values of
γ and η are set to γ = η = √

2. These determine the ratio between the center
frequency and the size of the Gaussian envelope and, when set to some optimal
value, ensure that Gabor filters of different scales for a given orientation behave as
the scaled versions of each other.

To derive the Gabor face representation from a given face image I (x, y), a filter
bank consisting of ‘u’ scales with ‘v’ orientations is created. The image is filtered
with each computed Gabor filter as:

Gu,v (x, y) = I (x, y)×ϕu,v(x, y) (2)

where Gu,v(x, y) denotes the complex convolution results with both real and
imaginary parts as:

Eu,v (x, y) = Re[Gu,v (x, y)]; Ou,v (x, y) = Im[Gu,v (x, y)] (3)

respectively. Then, the phase ϕu,v(x, y) and the magnitude Au,v(x, y) of the filter
responses are computed as:

Au,v (x, y) =
√

Eu,v(x, y)2+ Ou,v(x, y)2 ; ϕu,v= arctan

(
Ou,v (x, y)

Eu,v (x, y)

)
(4)
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Fig. 1 Gabor filter response computation for a face image

respectively. The computed phase responses vary significantly even for the spatial
locations having few pixel differences, therefore those phase features are considered
unstable and hence are discarded. The magnitude responses, on the other hand, vary
very slowly with the spatial position and hence are used in the final feature vector.
Figure 1 demonstrates the computation of Gabor filtered images.

As each filtered response is of the same dimensionality as that of the input image,
the feature vector computed is 40 times the size of the original image. To overcome
this problem, the magnitude features are down-sampled using a simple rectangular
sampling grid and are further projected to a low-dimensional subspace using PCA.

2.2 Local Binary Patterns and Orthogonal Combination
of Local Binary Patterns

LBP is the most frequently used local descriptor which captures texture information.
It is computationally simple, invariant to illumination, and provides robustness to
wider pose changes. The LBP operator considers a specific neighborhood around
each pixel to threshold the limits of these neighboring pixels with respect to the
central pixel. The result for a neighboring pixel is 1 if its value is greater than that of
the central pixel, otherwise it is 0 as inferred by Eq. (5) and demonstrated in Fig. 2.

b (pi− pc) =
{

1, pi ≥ pc

0, pi < pc
(5)
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Fig. 2 Pixel-wise generation of LBP codes

where pc is the value of the central pixel and pi represents gray values of the p

neighboring pixels. The LBP code for the central pixel is then computed as:

LBP =
p∑

i=0

b (pi− pc) 2p (6)

The final LBP description of an image is derived by computing the LBP code of
each pixel to build a histogram.

The chief benefit of LBPs is that they are invariant to illumination variations and
are very fast to compute. The main drawback, however, is the high dimensional
histograms produced by the LBP codes. For instance, the LBP description for 3 × 3
neighborhoods results in a 28, that is a 256-dimensional histogram. Uniform-LBP
[45] is an alternative to this original LBP operator which significantly reduces the
number of LBP histogram bins from 256 to 59 in the case of eight-bit patterns. This
is due to the fact that out of 256 patterns, only 58 uniform patterns preserve 90%
of texture information while the remaining patterns mostly depict noise. Center-
symmetric LBP [18], called CS-LBP, compares only center-symmetric pairs of
pixels instead of comparing each pixel with the central pixel. Hence, this halves
the number of comparisons as compared to the original LBP operator. OC-LBP
[55] has been proposed recently to reduce dimensionality by considering fewer
neighboring pixels while retaining the discriminative and photometric invariance
properties. It takes into account two different non-overlapping four-orthogonal-
neighbor operators and combines their histograms. The first operator is obtained
by considering only horizontal and vertical neighbors as in Eq. (7) and the second
operator is obtained by considering the diagonal neighbors as in Eq. (8). The final
descriptor is then derived by combining the histograms of the first and second
operators (Eq. (9)). The size of the LBP is reduced significantly to 24 × 2 = 32
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in comparison to 256 by the original operator.

OC-LBP1 = 20×b (p0− pc) + 21×b (p2− pc)

+ 22×b (p4− pc) + 23×b(p6− pc) (7)

OC-LBP2 = 20×b (p1− pc) + 21×b (p3− pc)

+ 22×b (p5− pc) + 23×b(p7− pc) (8)

OC-LBP = [OC-LBP1, OC-LBP2] (9)

2.3 Histogram of Oriented Gradients

These shape descriptors express the local object appearance and shape through the
distribution of local intensity gradients and edge orientations. At first, both the
x- and y-directional gradients Gh and Gv of the input image are computed using
the Sobel filter. Then, the magnitude MG(x, y) and orientation θG(x, y) of these
gradients are obtained where each pixel is represented as a gradient vector consisting
of both magnitude and direction:

MG=
√

Gh(x, y)2+ Gv(x, y)2 (10)

and

θG= arctan

(
Gh(x, y)

Gv(x, y)

)
(11)

Afterwards, the image is divided into small connected areas called cells and a
histogram of edge orientations is obtained for each of these spatial cells. To achieve
this, the gradient angles of all pixels in each of the cells are quantized into a number
of bins B so that the magnitudes of identical orientations can be accumulated in the
form of a histogram as depicted in Fig. 3.

Orientation bins are evenly spaced over 0–180◦ for unsigned gradient evaluation
and vary from 0◦ to 360◦ for signed gradient evaluation. The length of the
histogram vector of each cell is indicated by the number of bins used. To make
the final descriptor invariant to illumination and contrast, the histogram of each
cell is normalized. This is performed by estimating the measure of intensity over
larger spatially connected blocks and utilizing these results to normalize each cell
within that block. The final HOG feature vector is then obtained by concatenating
normalized cell histograms for all these blocks.



58 G. Singh and I. Chhabra

Fig. 3 HOG feature computation and extraction

3 Distance-Based Classification

For the final phase of recognizing faces, classifiers are trained to match the extracted
features with their corresponding face classes as the correct outputs. In the present
study, both the distance-based classifiers and the SVM have been utilized. The
distance-based classifiers used are elaborated in this section. Section 4 discusses
the proposed hybrid SVM model utilizing the metaheuristic GA technique.

Distance-based classifiers, called statistical classifiers, are well-known and the
oldest and simplest methods used for classification. They estimate the similarity
between two feature vectors of database and query images through some predefined
function. The χ2, extended canberra, and square-chord distances are histogram-
based metrics which work efficiently for histogram features such as those generated
by LBP and HOG. The extended canberra metric was recently proposed in the
literature [26] and has shown improved results as compared to both χ2 and square-
chord metrics. The distance between two sets of n-dimensional feature sets x and y

of database and query images respectively are defined as:
Chi-square distance:

d=
n∑

i=1

(xi − yi)
2

(xi + yi)
(12)

Extended canberra distance:

d =
n∑

i=1

|xi − yi |
|xi+u| + |yi+v| ; u =

m∑

i=1

xi/n, v =
m∑

i=1

yi/n (13)

Square-chord distance:

d =
n∑

i=1

(
√

xi −√
yi)

2 (14)



Hybrid Feature Extraction and GA-SVM Classification for Face Recognition 59

4 Proposed Hybrid Metaheuristic GA-SVMModel
for Classification

SVM is an advanced AI-based machine learning approach which possesses good
generalization ability. It has been found to be one of the most powerful tools for
solving any kind of classification problem. However, one of the main drawbacks is
that the level of accuracy achieved depends extensively on the parameters chosen
to design the SVM model. Thus, it becomes necessary that the parameters of the
SVM classifier are configured properly so as to utilize effectively its capability. One
of the most widely used approaches for optimizing the SVM parameters is based
on gradient descent or the grid searching approach. This technique is based on an
exhaustive search of the defined subset space for the parameters. This subset space
is specified using a lower bound and an upper bound value along with the number
of steps to iterate through that space. The performance of each combination of the
parameter values is established using some performance metric. The grid-search
approach prevents the over-fitting of data; however, it has certain limitations. One
possible drawback is that this method is time consuming as the number of possible
combinations to be evaluated grows exponentially with the increase in the number
of parameters to be optimized. In addition, this technique also has a tendency to
converge to only a sub-optimal or a locally optimal solution. Hence, alternative
techniques are required that can show precedence over the traditional method. For
such a requirement, GA-based methods have been proved in some studies to be a
better choice to determine the parameters [3, 8, 24, 50]. This chapter investigates
GAs to tune automatically the parameter of SVM for face classification.

4.1 Support Vector Machines

SVM is a useful technique for non-linear data classification. It separates a non-
linear separable classification problem by mapping the data to a linearly separable
feature space using a non-linear map. This mapping is achieved by the use of a
kernel function. In this study, the RBF and the χ2 kernel functions are utilized for
designing the SVM model. This is due to the fact that these two kernel functions
can analyze high-dimensional non-linear data and require only two parameters to
be optimized, namely c and γ . In addition, the χ2 kernel proves effective when the
features are histogram-based. The RBF and the χ2 kernel are defined as:

RBF = e−γ×|u−v|2 (15)

where u, v are feature vectors and |u − v|2 is the squared Euclidean distance
between u and v,

chi-square = e−γ
(
χ2)

(16)
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where χ2 is the chi-square distance between two feature vectors.
The two important normalization parameters for these kernels are the cost (c) and

the gamma (γ ). c controls the trade-off between achieving a low training error and a
low testing error, that is it is the ability to generalize the classifier to the unseen data.
γ determines the width of the bell-shaped Gaussian surface. Larger values of gamma
result in over-fitting while smaller gamma values cannot capture the ‘complexity’
or ‘shape’ of the data effectively.

4.2 Genetic Algorithm

GA, first proposed by John Holland in 1975, is a method for solving optimization
problems through the process of Darwinian natural selection and genetics in bio-
logical systems. Unlike a grid search algorithm which can work ambiguously, GA
can find the optimal solution for large-scale permutation problems very efficiently.
GA starts with a set of candidate solutions called a population and each solution is
represented as a chromosome. This obtains the optimal solution, that is the solution
of the problem through a series of iterative computations. For this, the successive
populations of alternate solutions are generated by the application of reproduction
operators (namely, crossover and mutation) on the chromosomes. A crossover
operator exchanges the genes between two chromosomes using a crossover point
and, in mutation, the genes are altered, that is a changing of the binary codes of the
genes. The quality or fitness of the resulting chromosomes at each step is determined
through a fitness function. The fit chromosomes have a higher probability of being
selected into the recombination pool and forming the population for the next step.
This process is repeated until acceptable results are obtained, that is the termination
conditions are satisfied.

One of the prime advantages of GA is that it offers flexibility of searching even
when the range and other dependencies of the SVM parameters are not known at all.
It also allows hybridization with other methodologies in order to obtain improved
solutions [8]. These advantages make GAs reasonable candidates for overcoming
the disadvantages of SVM.

4.3 Chromosome Design

The design of chromosomes is an important step in the application of GAs to solve
any optimization problem. As only c and γ need to be optimized in our study,
the chromosome consists of two parts, one corresponding to each parameter. Each
chromosome is represented as a bit string using a binary coding system as shown in
Fig. 4.
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Fig. 4 Encoding of chromosome

c1 − cnc represents the value for parameter c where nc is the number of bits
representing c. γ1 − γnγ is the value for parameter γ and nγ is the number of bits
used to represent γ . These bit strings representing the genotype of the parameters
c and γ are then converted to phenotypes which is an inverse process of encoding
and coverts the binary chromosomes to their corresponding numeric values. This
conversion is accomplished as follows:

p = minp + maxp − minp

2n − 1
× d (17)

where p is the phenotype of the binary string, maxp is the maximum value of the
parameter, minp is the minimum value of the parameter, d is the decimal value of
the bit string, and n is the length of the binary string.

4.4 Fitness Function

Fitness function values of the chromosomes determine the effectiveness of the
corresponding c and γ parameters in designing a more generalized and reliable
SVM model. One of the widely used performance metrics to assess the general-
ization ability of the SVM classifier is k-fold cross-validation. On a given training
dataset, the higher the cross-validation classification rate, the greater is the SVM
generalization ability. Thus, in this study, the k-fold cross-validation approach has
been used to estimate the fitness values. In this technique, training data is randomly
divided into k subsets. The classifier is trained on the k −1 subsets and tested on the
remaining kth subset. The training process is repeated for k iterations and the final
classification accuracy is obtained as the average of all the k classification rates.
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The k-fold cross-validation fitness function F is defined as:

F = 1

k

k∑

i=1

Ri (18)

where Ri is the classification rate of the ith iteration. The literature reports that
tenfold cross-validation results in optimal computation time and variance [50].
Thus, in this study, a tenfold cross-validation approach has been used to assess the
performance of the designed SVM model.

4.5 Design of the Proposed GA-SVM Model

The complete methodology followed for implementation of the proposed GA-SVM
parameter optimization process is shown in Fig. 5 and the steps are summarized as
follows:

1. Scale the training data (i.e. the extracted feature vectors of the training images)
for transforming it to the format of an SVM package. This avoids those attributes
which are in greater numeric ranges from dominating those in smaller numeric
ranges and also avoids numerical difficulties during the calculation. This results
in higher accuracy rates. Each feature is scaled as follows:

f ′ = f − fmin

fmax
(19)

where f ′ is the scaled feature value, f is the original value, fmin is the minimum
value of that feature, and fmax is the maximum value.

2. Transform the parameters c and γ as chromosomes and represent them as binary
strings. Further, initialize the population of N chromosomes.

3. Decode each chromosome, that is convert each genotype to a phenotype.
4. For each chromosome represented by c and γ , evaluate the tenfold cross-

validation accuracy of the SVM classifier using the training data. This step yields
the classification accuracy for a given set of parameters.

5. Select the chromosomes (i.e. c and γ values) with respect to the greater fitness
values or the cross-validation accuracies.

6. If the termination condition is met, stop the process. In the present study, the
termination criterion is the maximum number of generations to be evolved. If the
condition is not satisfied, produce the next generations using the reproduction
operators of crossover and mutation.
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Fig. 5 Architecture of the proposed GA-SVM method

5 Proposed Hybrid Face Recognition Approaches

Two hybrid face recognition algorithms utilizing the complementary properties of
the existing feature extraction approaches and the GA-SVM classifier have been
designed and analyzed. The present section explains their strategic execution along
with the detailed step-by-step mechanism followed for their implementation.

5.1 Integrating OC-LBP and HOG Features

LBP captures texture information and is invariant especially to monotonic light
changes and is computationally very simple. However, it is not robust to geometric
transformations and cannot capture the local shape and edge information. HOG on
the other hand can effectively represent the edges as well as the facial contours,
apart from its computational simplicity and robustness to illumination changes and
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geometric transformations. Though it can represent the edge information it cannot
capture the texture information and its performance also degrades when the facial
edges are noisy. LBP, however, has the capability to filter out those noises from the
image and thus has proved to be complementary in this aspect.

Hence, the combination of HOG and LBP has been attempted in the literature
for human detection [41], palm tracking [15], and object localization [49] with good
results. Following this line of research, a method based on the combination of these
two complementary feature sets has been tested in the present study using OC-LBP
in place of LBP due to its better reported performance. OC-LBP reduces the time
complexity as well as the dimensionality of the LBP operator and also increases
the discriminative power of the extracted feature set. As the number of OC-LBP
and HOG features generated are approximately equal, it has become feasible to
integrate these two features without any domination of one over the other. Also, both
the descriptors are very fast to compute. Thus, the total time for feature extraction
is extremely low which makes this framework suitable especially for a real-time
environment.

The procedure followed for the proposed approach is depicted in Fig. 6. It
includes the following steps:

1. Normalize an image to 64 × 64 standard size. Divide the image in 64 blocks of
size 8 × 8 pixels and compute HOG and OC-LBP codes for each block.

2. Compute a histogram for each of the OC-LBP and HOG blocks. Combine the
histograms of all the blocks into HOG and OC-LBP feature vectors respectively.

3. Normalize the histograms using L2-norm. This is required to map the feature
sets onto a common range so that they can easily be combined and none
of them dominates over the other. The number of HOG features obtained
per image = 1764 = 49 overlapping blocks× 36 features = 49 × (9 bins × 4 cell-
s/block) features. The number of LBP features obtained per image = 2048 = 64
cells × 32 features from each cell.

4. Integrate the HOG and OC-LBP feature vectors.
5. Obtain the matching scores between the integrated feature vectors using χ2,

extended canberra, and square-chord histogram-based distance metrics as well
as the GA-SVM algorithm with a χ2 kernel. Distance-based classifiers, as taken
in the literature, are considered so that this method can be compared with
the LBP and HOG based methods presented in the literature with the same
evaluation protocol. SVM-based classification is proposed for this framework
as it complements the feature sets and provides high recognition accuracy.

5.2 Gabor Filtered Zernike Moments

ZM polynomials are inherently orthogonal to one another and thus represent the
global characteristics of an image without any redundancy and overlap. Gabor
filters capture the local multi-orientational information at different scales from the
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Fig. 6 Hybrid OC-LBP and HOG approach

facial image. They exhibit desirable properties of orientational selectivity and spatial
locality; however, they are not orthogonal which makes the information extracted by
them highly redundant. This duplicity of information in the extracted feature vector
may affect the recognition accuracy of the classifier. In addition, the Gabor face
representation is of very high dimensionality in that the computed feature space is
about 40 times more dimensional for five scales and eight orientations than that of
the original image space.

Thus, it is essential to alter the Gabor features in a way that derives a compact,
discriminative, and non-redundant face representation. The study proposes to extract
ZM coefficients from the Gabor filtered images. This orthogonalizes the generated
filter bank and also reduces the dimensionality of the final feature vector. The
orthogonalization of the filters eliminates the redundancy of information and
increases their discrimination power. It also enables ZM to behave as a local image
descriptor and extract the finer details at different scales and orientations. The
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Fig. 7 Gabor filtered Zernike moments

final descriptor, thus, possesses the properties of orthogonality, compactness, and
discrimination. The procedure for this proposed scheme is depicted in Fig. 7. The
complete procedure comprises of the following steps:

1. Resize an image to 64 × 64 pixels standard size. Generate the Gabor filter bank
of 40 Gabor filters at five scales and eight orientations and convolve the input
face image with each filter of the generated filter bank. This results in 40 Gabor
filtered images.

2. Compute the ZM descriptors from each of these Gabor filtered images up
to an optimal order. The order for extracting ZM features is derived through
experimentation.
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3. Accumulate the ZM descriptors to accommodate all the filtered images into a
single feature vector and normalize it using L2-norm.

4. Measure the similarity score among feature vectors of training face images as
well as the test face image using a GA-SVM classifier with an RBF kernel
function to provide the output face.

6 Empirical Evaluation

The developed methodologies were implemented through MATLAB code in a
Microsoft Windows environment on a Pentium PC with a 2.93 GHz CPU and 2 GB
RAM. SVM classification was realized using the LibSVM package [7]. Techniques
have been evaluated for their robustness to different face variations, such as facial
expressions, aging, pose, and illumination.

6.1 Datasets Used

Experiments were performed on various datasets of the standard ORL, Yale, and
FERET databases. These datasets include a range of variations and comprise
randomly selected training and test images. The results presented in the following
sections therefore are the mean of several possible experiments carried out to make
the analysis at least a good representative.

Results of the developed face recognition methodologies have been compared
with similar and state-of-the art approaches for their validity. The applicability
of these techniques in a real-time scenario has been determined through their
computational complexity analysis.

6.1.1 ORL Database

AT&T/ORL database consists of 400 face images for 40 individuals as depicted in
Fig. 8. There are 10 images in Portable Gray-Map format for each person. Images
are in the grayscale and of size 92 × 112 pixels each. This database contains pose,
expression, lighting, occlusion, scale, and position variations. Poses range from 0◦
(frontal) to ±20◦. Expression variations are presented in a way that either a person
is smiling or not smiling and has open or closed eyes. There are also small light
variations and occlusion of the eyes with eye-glasses. In this database, 10 images
of each individual have been split into three groups containing three, four, and
five randomly selected images per person respectively in the training set and the
remaining images in the test set as considered in the literature.
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Fig. 8 Sample face images from ORL face database

Fig. 9 Face images of one subject from the Yale face database

6.1.2 Yale Database

The Yale database has 165 total face images for 15 persons. There are 11 images
per person in grayscale form as shown in Fig. 9. Graphics Interchange Format (GIF)
has been used to store the images. Each image is of the size 243 × 320 pixels. This
database presents major variations of light and facial expressions. Therefore, it is
a challenging database for checking the robustness of face recognition algorithms
especially in the case of light changes. To incorporate the light changes, images
have been captured by placing the light source at the left, right, front, and back
of each individual. Images have also been captured with different expressions such
as sad, happy, and with the mouth open. There are also occlusions of the eyes with
eye-glasses. For this database, experiments have been performed on different groups
consisting of three, four, five, and six randomly selected images for the training set
and the remaining eight, seven, six, and five images respectively for the test set.

6.1.3 FERET Database

The FERET database is one of the most challenging datasets for the face recognition
research community. It has 14,051 grayscale images of size 256 × 384 pixels for
1196 individuals. In the literature, this database has been widely used by well-known
face recognition methods for the testing and validation of their results.
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Fig. 10 Face images of one subject from experimental Set 1

Fig. 11 FERET ‘b’ category images of one subject

It has wide variations in poses (±90◦), expressions, illumination, occlusion as
well as aging. On this database, experiments have been performed on a subset
of randomly selected face images of 100 persons in seven different poses of
±0◦, ±22.5◦, ±67.5◦, and ±90◦ referred to as Set 1 (Fig. 10) for the study. For
experimentation, three images per person are selected for training and the rest
considered for testing. This results in 300 images for training and 400 images for
testing.

Experiments have also been performed on the database’s category ‘b’ images
of 200 subjects, named Set 2 in the study, as shown in Fig. 11. For each subject,
there are 11 images from ba to bk where ba represents the frontal pose, neutral
expressions, and no light variation. Images bb through be are with pose angles of
−15◦, −25◦, −40◦, and −60◦ and are symmetric analogues of images bf to bi which
are with pose angles of +15◦, +25◦, +40◦, and +60◦. The bj image was captured
with different expressions and bk under different light conditions.

The FERET evaluation protocol also partitions the database into a gallery set:
fa with 1196 frontal face images and four test sets; fb (1195 images with facial
expression variations); fc (194 images with illumination variations); dupI (722
images); and dupII (234 images). The dupI and dupII sets depict age variations.
Sample face images from these datasets are shown in Fig. 12. Experiments were
also performed on these FERET gallery and probe sets.

For comparative analysis, images in all these three databases are normalized to
the standard size of 64 × 64 pixels.
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Fig. 12 Face images from the FERET gallery/probe sets

6.2 Implementation Parameters

The main parameters of the GA employed in this study are: population size (100),
maximum number of generations (500 or the fitness value does not improve during
the last 100 generations), probability of crossover (0.7), elite count (2), and mutation
rate ( = 0.02). Tournament selection has been used as the selection strategy over the
roulette wheel selection as it does not require sorting the population of chromosomes
by their fitness values. Among the crossover techniques, uniform crossover has been
used in which each gene of the child chromosome is selected randomly from the
corresponding genes of the two parents. For the mutation, the genes are altered,
that is changing the binary gene code from 0 to 1 or vice versa. The search range
of parameter c is set to [2−1, 212], while the search range of parameter γ is set
to [2−12, 22]. The study evaluates the results of both the grid-search based and
the proposed GA-based SVM model. The steps followed to achieve the SVM
classification using grid search are briefly listed below:

1. Scale the training data to avoid domination of greater numeric ranges over
smaller numeric ranges.

2. Perform a ‘grid search’ using a tenfold cross-validation technique to find the best
values for c and γ and use these parameters to train the complete training set.
During this process, various pairs of (c, γ ) values are tried and the one with the
best cross-validation accuracy is selected. The range for c and γ is established as
c = 2−5, 2−3, . . . , 215, and γ = 2−15, 2−13,. . . , 23 for an exhaustive search.

3. Test the classifier on the new unseen data to verify its performance.

The recognition rate (in percentage) is measured as:

Recognition rate = Nt− Nr

Nt

× 100 (20)
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where Nt is the total number of images in the test set and Nr is the number of
incorrectly recognized images.

6.3 Database Generation for Validation

After establishing the efficacy of the developed techniques on benchmark databases,
a self-designed database is created and utilized to validate their performance in-
house. This database not only evaluates the developed techniques under diverse pose
and light conditions but also verifies their performance for a real-life scenario. The
collected database comprises 15 images per person for a total of 10 individuals.
Each image has a size of 128 × 128 pixels and is stored in the gray-scale format
as a joint photographic experts group (JPEG) file. This file format is chosen as it
is efficient in storing photographic gray-scale images with less storage along with
high quality.

The individuals are captured under varying light and pose conditions. The poses
range from ±10◦ to ±60◦ (±10◦, ±20◦, ±30◦, ±45◦ and ±60◦), thus there are a
total of 10 pose images for each person. These posed images are captured by placing
the camera in the respective directions. Posed images from this database are shown
in Fig. 13.

Light variations are captured through four images, with the light source placed
at the left, right, front, and back of the person being photographed. A neutral frontal
face image at 0◦ (no pose variation) with no light variation is also taken for each
person. The images with light intensity variations are captured by placing the light
source at the desired position. The corresponding image set is shown in Fig. 14.

The entire facial set of each individual is captured in one sitting. Care is taken
to ensure uniform facial expressions of each person throughout the sessions. The
illumination of the photography room is also kept constant.

6.4 Performance Evaluation of the Integrated OC-LBP
and HOG Approaches

The performance of LBP, OC-LBP, and OC-LBP+HOG methods is evaluated on
experimental databases for different kinds of facial variations. Tables 1, 2, and 3
present the results on the FERET, Yale, and ORL databases respectively.

Table 1 shows that the highest recognition rate of 99.5%, 99.7%, 96.2%, and
93.8% are obtained with the OC-LBP+HOG-GA-SVM approach on the fb, fc, dup
I, and dup II datasets respectively. On Set I and Set II, the highest recognition rates
of 95.6% and 97.9% are obtained by the proposed approach. It is further observed
that on these two datasets both the HOG and OC-LBP descriptors show similar
performance with HOG depicting a slight improvement of the maximum up to 1%.
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Fig. 13 Self-generated database: face images captured in different pose variations

Fig. 14 Self-generated database: face images captured in different light variations
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Table 1 Performance of OCLBP+HOG method on the FERET database

fb fc
(expression variations) (light variations)

Square Extended Square Extended
Method χ2 chord canberra GA-SVM χ2 chord canberra GA-SVM

LBP 96.3 97.5 97.4 98.7 76.8 77.2 77.1 85.4

OC-LBP 97.3 97.9 98.1 99 77.1 79.8 79.9 87.6

HOG 91.2 93.1 93.2 98.8 82.5 84.3 84.7 93.1

OC-LBP+HOG 98.7 99.1 99.2 99.5 96.4 97 97.1 99.7

dup I dup II
(age variations) (age variations)

LBP 68 70.2 70.3 77 61 63.2 63.3 71.9

OC-LBP 69.4 72.4 72.6 79.2 62.5 64 63.8 74.2

HOG 85.9 86.2 86.3 94.1 75.5 76.9 77.2 85.3

OC-LBP+HOG 87.1 87.7 87.9 96.2 82.3 83.6 83.8 93.8

FERET FERET
(Set 1) (Set 2)

LBP 72.6 73.2 72.9 77.6 80.6 82.3 82.9 88.6

OC-LBP 72.1 73.4 73.2 78.9 82.3 84.4 84.3 88.9

HOG 73.3 74.5 74.7 78.2 83.3 84.5 84.6 89.1

OC-LBP+HOG 89.0 90.3 91.5 95.6 88.4 90.1 91.2 97.9

Table 2 Performance of the OC-LBP+HOG method on the Yale database

Training images per person

3 4

Square Extended Square Extended
Method χ2 chord canberra GA-SVM χ2 chord canberra GA-SVM

LBP 90.6 91.1 91.8 95 92.8 94.2 94.8 97

OC-LBP 93.2 94.7 95 98.1 94.2 96.1 96.3 97.9

HOG 93.7 95.1 95.2 97.9 95 96.9 96.8 97.5

OC-LBP+HOG 96 97.5 97.9 98.7 97.5 98.9 98.7 98.9

Training images per person

5 6

Square Extended Square Extended
χ2 chord canberra GA-SVM χ2 chord canberra GA-SVM

LBP 93.1 94.5 94.9 97 93.7 95.1 95.6 97.1

OC-LBP 95.3 96.6 96.7 97.9 95.8 97 97 99

HOG 95.8 96.1 96.6 98.3 96 97.9 97.8 98.9

OC-LBP+HOG 98 98 98.1 99 98.5 99.1 99.2 99.7

This is due to the fact that higher pose angles occlude a significant portion of the face
image and both features, due to their local nature, are robust to such distortions. On
comparing the results of different distance metrics, it is observed that square-chord
and extended-canberra metrics increase the performance accuracy by 3% and 3.2%
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respectively over the χ2 metric. GA-SVM provides superior recognition rates and
exhibits an improvement of up to 11% over χ2, square-chord as well as extended-
canberra distance metrics.

The dup I and dup II sets are extremely challenging datasets as they include
not only the age variations but also contain lighting, expression, and background
variations. Also, the performance of the LBP descriptors is better than HOG for
the fb dataset (expression variations) whereas HOG performs better than LBP for
fc (light changes) as well as the dup I and dup II (aging) datasets. This is because
HOG features capture the edge information which may degrade their performance
in the case of expression changes, though that has proved effective for light changes
and aging.

It is observed from Table 2 that on the Yale database the recognition rates
obtained from the OC-LBP+HOG-GASVM approach are higher than those obtained
by OC-LBP and HOG by up to 5.5% and 5% respectively. It is well known that both
the HOG and LBP methods are invariant to light changes which contribute to the
high results on this database. It is, however, noted that the HOG method shows
more robustness to image intensities than LBP. This is due to the fact that HOG
computes the image gradients which capture the edge information and thus provide
more resistance. Normalizing each cell histogram also introduces better invariance
to light, shadows, and even edge contrast.

On comparing the results of different distance metrics on all datasets of the Yale
database, both the square chord and extended canberra metrics are found to provide
a performance improvement of up to 1.9% and 2.1% respectively over the χ2 metric.
GA-SVM further supplements the recognition rate up to 8%. From the results it can
therefore be concluded that the integrated OCLBP+HOG-GASVM method is robust
to illumination as well as for expression variations.

For the ORL database (Table 3), in the case of four and five images in the training
set and for the remaining six and five images respectively in the test set, an average
recognition rate of 99.5% is achieved using the SVM classifier. The performance of
HOG features is better than LBP on this database due to the presence of pose, tilt,
and scale variations; HOG features are more robust to such displacements.

6.5 Performance Evaluation of the Gabor Filtered ZM Method

The efficacy of the Gabor filtered ZM approach (GFZM) is determined and
compared to the individual ZM and Gabor techniques. ZM features are extracted
from Gabor filtered images of a face. This filter inherently possesses invariance
to illumination changes and also extracts features invariant to pose and scale. In
other words, it pre-processes the face images. This implies that the extraction of
ZM features becomes independent of the database under consideration and becomes
confined to only the uniformly filtered face images across multiple databases.
Figure 15 shows the implication of this observation on the Yale database. It
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Fig. 15 Effect of GFZM order selection on the Yale database

Table 4 Performance of GFZM on the ORL and Yale databases

Descriptor

Gabor filter GFZM-GA-SVM
Number of randomly selected (established) (proposed)

images in the training set ORL Yale ORL Yale

3 95.1 94.9 97.5 96.2

4 96.7 95.4 99.5 97.3

5 97.2 97.9 99.8 99.5

6 - 98.7 - 99.5

Table 5 Performance of GFZM on the FERET database

Descriptor

Dataset Gabor filter (established) GFZM-GA-SVM (proposed)

FERET database subsets Set 1 83.3 88

Set 2 82.1 93.2

FERET gallery/Probe sets fb 75.2 88.5

fc 83.7 99.3

dup I 69.3 76.4

dup II 67.4 75.8

illustrates the recognition accuracy obtained with different groups of orders of
ZM. On this dataset, the traditional ZM features have to be extracted for orders
(4, 14) [31]. However, the figure shows that orders (2, 10) are more beneficial
for extracting ZM features from Gabor filtered face images. The same behavior is
observed in all experimental databases. Thus, ZM order of (2, 10) are selected for
further experimental analysis.

The performance is evaluated in Tables 4 and 5 for the ORL, Yale, and FERET
databases.



Hybrid Feature Extraction and GA-SVM Classification for Face Recognition 77

The Gabor filter is actually a linear filter used for edge detection. Gabor
representation of the facial image filters out the facial contours and the edges. It
is observed from Table 4 that on the ORL and Yale databases this property of Gabor
filters is proved effective for recognition under different illumination conditions.
Further processing of the Gabor filtered images with ZM increases the robustness
to light and contrast. From the results, it is observed that GFZM-GA-SVM achieves
the highest recognition of 99.8% and 99.5% for the ORL and Yale databases
respectively.

In the case of the FERET database (Table 5), the results of Set 1 and Set 2 datasets
show that the Gabor filtered ZM approach has proved tough especially to pose
variations. However, Gabor images cannot effectively extract expression invariant
features and ZM cannot represent age changes, thus the results on the fa/fb, dup I,
and dup II datasets are not as competent as expected.

7 Performance Comparison with Other Similar
and State-of-the-Art Methods

In this section, a comparison among the combined methods and other similar state-
of-the-art approaches is made for the three benchmark databases.

It is inferred from Table 6 that on the ORL database the recognition rate
of the integrated approaches is higher as compared to that of the similar and
state-of-the-art methods available in the literature. It is noteworthy that the GFZM-
GA-SVM approach achieves the highest recognition rate of 99.8%. In the lit-
erature, the reported highest recognition accuracy on this database is 99.2% by
the ZMcomponentLTP approach [33]. The results indicate that the implemented
approaches show robustness to poses (up to ±20◦), slight occlusion, scale, position,
and tilt variations as well.

Comparing the results of the proposed approach and the state-of-the art
approaches on the Yale database (Table 7), it is observed that the achieved
highest recognition rate is 99.5%, whereas the literature reports 100% accuracy
for the Block-based S-P approach [13]. It is worth mentioning here that the Block-
based S-P approach has been tested only on a single randomly generated dataset.
In the present study, results have been illustrated as means of several possible
simulations of randomly generated training and test sets. The comparative analysis,
therefore, ascertains the robustness of the developed approaches against illumination
variations.
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Table 6 Performance comparison with state-of-the-art methods on the ORL database

Recognition
Method rate (%)

Linear Discriminant Analysis (LDA, 2008) [51] 91

Direct LDA (D-LDA, 2008) [51] 92.5

2D-LDA (2008) [51] 92.5

Two Dimensional LDA (2D-WLDA, 2008) [51] 93.5

2D-DWLDA (2008) [51] 94

Combined Global and Local Preserving Feature (CGLPF, 2010) [34] 91.39

Complex Zernike Moments (CZM, 2011) [31] 96.5

Complex Wavelet Moments, CWM (2013) [30] 96
Intrinsicfaces (2010) [40] 97

DCT + EFM (Combined Discrete Cosine Transform and Enhanced Fisher
Linear Discriminant Model, 2004) [52]

93.2

Feature Fisher classifier (F3C, 2004) [52] 94.9

Combined Feature Fisher classifier (CF2C, 2006) [53] 96.8

Block-based S-P (2011) [13] (on single random dataset) 99

GZMs+dwpLWLD (Combined ZM and Weber Law Descriptor, 2012) [32] 98

ZMmagLTP (Magnitudes of ZM with Local Ternary Pattern, 2014) [33] 98.85

ZMcomponentLTP (Real and imaginary components of ZM with Local Ternary
Pattern, 2014) [33]

99.2

Two-directional two-dimensional Principal Component Analysis (2D2PCA,
2010) [21]

90.5

Wavelet + LDA (2015) [22] 97.1

Local Directional Pattern (LDP, 2014) [29] 91

Two-dimensional PCA with LDA (2DPCA + LDA, 2014) [54] 91.2

OC-LBP+HOG - GA-SVM 99.5
GFZM-GA-SVM 99.8

From Table 8 with comparison to the FERET gallery and probe sets, it is noted
that on the results for the fa and fc datasets, the LLGP and LGBP methods presented
in the literature have the highest recognition rates of 99% and 99.6% respectively.
The proposed OC-LBP+HOG approach achieves a recognition accuracy of 99.7%.

This technique achieves improved results especially on the dup I as well as the
dup II datasets. It is well-known that these two datasets are extremely challenging
for face recognition approaches as they not only exhibit aging variations but also
reflect the changes in background and clothing. Thus, the integrated framework of
fusing OC-LBP and HOG features is more robust to extreme expression and aging
variations. Further, these descriptors are computationally very fast which makes
them highly feasible in all types of conditions.
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Table 7 Performance comparison with state-of-the-art methods on the Yale database

Method Recognition rate (%)

Linear Discriminant Analysis (LDA, 2008) [51] 81.89

Direct LDA (D-LDA, 2008) [51] 93.2

2D-LDA (2008) [51] 86.57

Two Dimensional LDA (2D-WLDA, 2008) [51] 88

2D-DWLDA (2008) [51] 89.33

Intrinsicfaces (2010) [40] 74

DCT + EFM (Combined Discrete Cosine Transform and
Enhanced Fisher Linear Discriminant Model , 2004) [52]

93.9

F3C (2004) [52] 96.4

Combined feature Fisher classifier (CF2C, 2006) [53] 96.9

Gabor + LBP + LPQ (2013) [54] 90.7

GELM (2015) [28] 82.3

Gabor + DSNPE (2012) [27] 93.5

Block-based S-P (2011) [13] (on single random dataset) 100

GZMs+dwpLWLD (2012) [32] 94.11

ZMmagLTP (2014) [33] 97.56

ZMcomponent (2014) [33] 97

OC-LBP+HOG-GA-SVM 99
GFZM-GA-SVM 99.5

Table 8 Performance comparison with state-of-the-art methods on the FERET gallery and probe
sets

Method fb fc dup I dup II

Combined HOG features at 8 × 8–28 × 28 scales
using product rule (2011) [12]

95.4 84 74.6 69.2

FHOGC (2014) [38] 98.3 93.3 86.3 81.2

Multi-scale LBP (2007) [6] 98.6 71.1 72.2 47.4

LBP (2004) [1] 97 79 66 64

Boosted LBP (2004) [45] 97.9 − − −
HGPP (2007) [47] 97.6 98.9 77.7 76.1

LLGP (2009) [43] 99 99 80 78

LGBPHS (2005) [46] 98 97 74 71

LGBP (2006) [20] 99.6 99 92 88.9

ELGBP (2006) [48] 99 96 78 77

GPCA (2009) [38] 96 84 70 57

Gabor-EBGM (1997) [42] 87.3 38.7 42.8 22.7

PCA (1991) [2] 85.3 65.5 44.3 21.8

HOG-EBGM (2008) [2] 95.5 81.9 60.1 55.6

Gabor + LBP (2007) [37] 98 98 90 85

ZMmagPhaseLBP (2014) [33] 98.1 91.5 69.4 66.5

LDA [38] 72.1 41.8 41.3 15.4

OC-LBP+HOG- GA-SVM 99.5 99.7 96.2 93.8
GFZM -GA-SVM 88.5 99.3 76.4 75.8
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8 Performance Evaluation on the Self-generated Database

To test the performance for pose variations, experiments have been performed with
different training and test sets. Figure 16 shows the images of one subject in different
pose variations from the self-generated database.

Firstly, the classifier is trained to recognize face images with pose changes up
to a maximum of ±10◦. Testing is done to identify face images with poses ±20◦,
±30◦, ±40◦, and ±60◦. In the next experiment, the classifier is trained for features
of only frontal face images while testing is carried out for face images with poses
±20◦, ±30◦, and ±45◦. Table 9 depicts the formation of both training and test sets
and presents the recognition results of the completed experiments.

It is inferred from the results presented in Table 9 that the OC-LBP+HOG-GA-
SVM and GFZM-GA-SVM show almost similar performances in all the cases.
However, GFZM exhibits a slight improvement in performance in comparison
to the OC-LBP+HOG approach due to their rotation as well as pose invariance
capabilities. In the case of a test set comprising images with poses up to ±20◦,
the highest recognition accuracy of 99.6% was obtained with the GFZM-GA-
SVM method. While testing for poses up to ±30◦, GFZM has shown the highest
recognition rate of 92.4%. In the third experiment for pose variations of up to ±45◦,
the OC-LBP+HOG method exhibits the highest recognition accuracy of 83.1%.

Fig. 16 Face images of one subject in different pose variations (0◦−±90◦) from the self-generated
database

Table 9 Experimental results for pose variations on the self-generated database

Experimental datasets Method

Training Testing OC-LBP+HOG-GA-SVM GFZM GA-SVM

1,2,7 (±10◦) 1,2,3,7,8 (±20◦) 99 99.6

1,2,7 (±10◦) 1,2,3,4,7,8,9 (±30◦) 91.1 92.4

1,2,7 (±10◦) 1,2,3,4,5,7,8,9,10 (±45◦) 83.1 82

1,2,7 (±10◦) 1-11 (±60◦) 74.5 74.6

1 (0◦) 1,2,7 (±20◦) 93.3 93.3

1 (0◦) 1,2,3,7,8 (±30◦) 84 84

1 (0◦) 1,2,3,4,7,8,9 (±45◦) 73.6 75.7

Mean 85.5 85.9
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Fig. 17 Face images of one subject in different light variations from the self-generated database

Table 10 Recognition accuracy for different lighting conditions on the self-generated database

Training set

Method Random 1 image Random 2 images

OC-LBP+HOG-GA-SVM 96 98

GFZM-GA-SVM 94.4 97

For images up to ±60◦, both methods present similar results. In the experiments
involving only a single training frontal image and rest testing images with poses of
up to ±20◦, ±30◦, and ±45◦, both integrated approaches perform equally well and
exhibit the highest recognition accuracy of 93.3%, 84.0%, and 75.7% respectively.

Experiments have also been carried out to test the performance of the developed
techniques in the case of light variations. Firstly, training is done on one image
randomly selected from the images with light changes of each subject as shown in
Fig. 17. Testing is done on five images including frontal image with no light effect
and the four images with light variations.

In the next experiment, training is done on two randomly selected images and
testing on all the five images as considered in the first experiment. The results are
shown in Table 10.

Among the results depicted in Table 10, it is observed that the OC-LBP+HOG
approach shows the best performance and exhibits up to a 2.4% improvement in
recognition accuracy as compared to the GFZM method. As both HOG and OC-
LBP techniques are highly effective for light alterations, their combination yields
the recognition rates of 96% and 98%. GFZM also achieves reasonably good results.

9 Performance Comparison of the Grid-Based and GA-SVM
Model

The study compares the grid-search-based SVM model with the proposed GA-based
model. Figures 18 and 19 show the classification accuracy obtained using both the
approaches on the different subsets of the three experimental databases using the
proposed OC-LBP+HOG and GFZM feature extraction methods. For the ORL and
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Fig. 18 Comparison of classification accuracy obtained using the GA-SVM model and grid-
search-based SVM using the OCLBP+HOG feature extraction method

Fig. 19 Comparison of classification accuracy obtained using the GA-SVM model and Grid-
search-based SVM using the GFZM feature extraction method

Yale databases, five images per person are used in the training set and testing is done
on the remaining five and six images respectively. It is observed that the overall
accuracy achieved with the GA-based SVM model is superior to its traditional
counterpart. In a nutshell, an improvement of 4.4% is observed in the recognition
results using the GA-SVM approach.

9.1 Time Efficiency

Experiments have also been performed to compare the time efficiency of both
models to compute the parameters. The results have, hence, been obtained for
different k-cross-validation ranges, with k ranging from 3 to 7. Experimentation has
been done on the ORL database. As can be seen from Table 11, the time efficiency
of the GA-based model is superior to its grid-based counterpart. Taking the fivefold
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Table 11 Time requirement
for Grid-based and GA-based
SVM models

SVM model

k Grid-SVM GA-SVM

3 812.8 387.1

4 1045.6 612.4

5 1326.7 720.3

6 1891.1 823.4

7 2122.8 941.6

cross-validation for example, the parameter optimization and the classification time
for the GA-based model is 720.3 s while that of the grid-based model is 1326.7 s.

10 Conclusion

In the present study, two hybrid feature extraction methods along with a GA
and SVM-based hybrid metaheuristic classification model (GA-SVM) have been
proposed for face recognition. Owing to the fact that both texture and edge
information is required for face representation, the study has inspected one of the
hybrid feature extraction methods based on the combination of recently introduced
OC-LBP and HOG descriptors. The other method is based on the integration of
the Gabor filters and Zernike moments in order to represent faces in varying
conditions of pose, orientation, and scale. In the GA-SVM model, a GA-based
strategy has been used for the parameter optimization of the SVM classifier. This
was done since the selection of parameter values for this classifier is crucial and
has a direct influence on the final accuracy achieved. Classification of the developed
feature extraction methods was achieved by using different distance-based metrics,
including χ2, square-chord, and extended canberra, as well as by the GA-SVM
model with RBF and χ2 kernels. A comparison of the results of a GA-based
parameter optimization strategy to the traditional grid-based algorithm has also been
made to depict its applicability. A face database was also created in this study and
the performance of the implemented techniques verified against that database. The
techniques proposed through this work have been evaluated for varying poses, light
conditions, expression changes, occlusion (especially of eyes with eye-glasses),
and aging. These have been thoroughly compared with the state-of-the-art face
recognition algorithms for establishing their recognition performance. Experimental
results indicate the suitability of the proposed recognition frameworks in real-life
scenarios.
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Optimization of a HMM-Based Hand
Gesture Recognition System Using
a Hybrid Cuckoo Search Algorithm

K. Martin Sagayam, D. Jude Hemanth, X. Ajay Vasanth,
Lawerence E. Henesy, and Chiung Ching Ho

Abstract The authors develop an advanced hand motion recognition system for
virtual reality applications using a well defined stochastic mathematical approach.
Hand gesture is a natural way of interaction with a computer by interpreting the
primitive characteristics of gesture movement to the system. This concerns three
basic issues: (1) there is no physical contact between the user and the system, (2)
the rotation of the hand gesture can be determined by the geometric features, and (3)
the model parameter must be optimized to improve measurement of performance.
A comparative analysis of other classification techniques used in hand gesture
recognition is carried out on the proposed work hybrid with the bio-inspired
metaheuristic approach, namely the cuckoo search algorithm, for reducing the
complex trajectory in the hidden Markov model (HMM) model. An experimental
result is as to how to validate the HMM model, based on the cost value of the
optimizer, in order to improve the performance measures of the system.

Keywords Virtual reality · Stochastic mathematical approach · Shape-based
features · Gesture recognition · Cuckoo search algorithm

1 Introduction

In the present scenario, human–computer interaction (HCI) has made a tremendous
change in our society based on gesture recognition for the development of a virtual
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reality system. Human hand gesture is a non-verbal communication, an instinctive,
creative, and natural relating to a computer. The main objective of the system is
to recognize the hand gesture by determining hand gesture features such as shape,
orientation, and velocity, which can be segmented from the static background effect.
In this modern age, electronic gadgets are mostly interacted with by touch. This
technology has predominately supported the evolution of the touchless device.
Most of the real time applications are based on hand gesture control without any
physical contact between the computer and the human [38]. In the last decade,
little attention has been given to HCI in the field of pattern recognition, such as
movement of body, speech, voice, or hand gesture, which can be enriched by a
natural user interface with the system. In virtual reality applications, HCI has been
very significant in developing a system with the gesture patterns of the whole human
body. There are a few artifacts which interact with the system, which was deployed
by the Kinect sensor developed by Microsoft Ltd. When considering the entire
body movement, the system has to be predefined by the shapes of the human body,
like fingers, noses, eyes, hands, lips, and legs. These small dimensional objects are
incorporated with the Kinect sensors for determining the correct decisions based
on each action given by the users. In this work, an extension of the Kinect sensor
based on contour analysis has been adopted to the system for locating the position
of the human gesture. In addition to the Kinect sensor output, Graphics Processing
Unit (GPU)-based gesture recognition in real time using a Leap Motion sensor
has been compared with the various strategies of natural interaction towards the
system. This technique directly maps onto two-dimensional (2D) windows, icons,
menus, and pointers that convert into a three-dimensional (3D) user interface in
the 3D environment [8]. The primary constraint of hand gesture recognition in a
2D environment is the loss of information in any one of the coordinate axes (z-
axis). This leads sometimes to a wrong interpretation of the system. Nowadays,
most electronic devices are inculcated with gesture recognition in a 3D environment
for reducing the computational complexity in the touch devices. A few options
in touch devices, like forward, backward, left, and right buttons, are replaced
by sensors in touchless devices. In this work we propose a stereo vision based
approach for classifying the centroid movement and intensity level of pixels using
a conditional random field. This provides the depth image from the acquired input
while calibrating the device. The system is robust towards Arabic numerals from 0
to 9, color-based segmentation, and variation of the intensity level of pixels [26].
Based on previous work, [30] an approach is proposed for developing an intangible
interface with the help of computer vision technology for HCI using dynamic hand
gestures. In the desktop or laptop system, the input device such as a mouse or
joystick has basic control like left, right, and a scroll button. It can be controlled
by hand gestures in different illumination conditions. After acquisition of real data,
it segments the hand portion and converts it into a binary value which is then passed
to the system for processing. It should be kept in mind that performance measures
like recognition rate and accuracy are the most important values in the design of the
hand gesture recognition system based on a stochastic mathematical model. Hand
gestures can be used to control the system virtually, as in games, media players,
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and education. The detailed case study about hand posture and gesture recognition
based on a different machine learning algorithm for virtual reality applications has
been discussed. The number of potential applications based on hand gestures used
in various fields should be acknowledged [35].

1.1 Literature Survey on a Hand Gesture Recognition System
Based on HMM

In recent years, most technologies are emerging based on touchless electronic
gadgets. Sign language recognition is the most predominant factor in HCI. It can be
helpful for recognizing English alphabets by deaf and dumb people by continuous
gesture patterns using an artificial neural network [4]. While hand gesture movement
is continuous in a 3D environment, it is hard for the system to recognize the critical
conditions that occur in a moment. The continuous gesture pattern divides into ‘n’
number of frames without any artifacts using a spotting algorithm. The performance
of the system is improved by efficiency and accuracy [55]. This article has focused
on high dimensionality and the redundant feature value of gesture patterns stored
in the code book of a HMM model. It can be compressed without change of
representation using sparse coding (SC). A hybrid technique hidden Markov model
(HMM) +SC and vector quantization has been applied to generate the effective
utilization of the data in the code book of the HMM model [34]. A new method
has been proposed [12] to control robots by using gesture recognition using HMM.
This work is mainly focused on the mapping of human gestures to robots in a 3D
environment. Human gestures seamlessly provide normal action to the system, in
which the commands are properly transmitted to the robots. This can be perform
by mounting an Red-Green-Blue-Depth (RGB-D) camera on the robot to acquire
3D data, and then simultaneously transmitting data to the remote server, finally
rendering it into a Virtual Reality (VR) device. On the other hand, the intention of
the user is inferred using the recognition process of the motion of head movement
which is again made purely on the basis of HMMs. This is later interpreted into
commands in order to control the robot. Based on the HMM a dynamic hand
gesture interface is introduced for the virtual environment. This model is employed
to represent the continuous dynamic gestures where its parameters are learned from
the training data which is collected from the cyber glove. Gesture spotting is a major
problem faced and thus to avoid it standard deviation is employed for measuring the
variation in an angle for each joint in a finger print which uniquely describes the
character of gestures. A prototype is applied to the three dynamic gestures which
control the rotational directions of a 3D cube that has been implemented to test the
effectiveness of the model that is proposed [9].

Apart from all this, the work focused on the evaluation and development of the
haptic enhanced system which is virtually real. This system amazingly allows a
user to make a handshake with a virtual partner by the use of this haptic interface.
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Feedback signals that are multi-modal in nature are designed to generate the illusion
which improvises the feel of making a handshake with another human, but in reality
it is a robotic arm. An advanced controller from the interfacing field is developed
which ultimately responds to the user’s behavior in online mode. HMM approaches
to human interaction and strategy estimation are the techniques used to achieve
online behavior. In order to evaluate the performance of the system, human–robot
handshake experiments were carried out. The haptic rendering was compared by
means of two different approaches. One was by introducing a basic controller in
normal mode along with an embedded curve in the robot which disregards the
human partner. The later approach was an introduction of an interactive robot
controller for online behavior estimation. These two approaches were matched
with the partner behavior of another human driving the robot via tele-operation
rather than implementing a virtual partner. In the final estimation, the interactive
controller is used to recognize the human using basic controller mode. This concept
concentrates on the development of the haptic rendering approach for a hand
shaking system. The subjective analysis of an experiment was integrated with visual
and haptic cue reports which were analyzed [47]. This work was extended to
acknowledge 3D positions, device information which is shared, and also the input
from hand gestures. The model was designed by the discrete HMM which were
basically rated around 80%; the complex ones amounted to 60% approximately
[11]. A low cost acquisition system was adopted for hand gesture recognition on
the basis of the various conditions. The possible sets of gesture patterns are trained
and stored in the C library for implementing in real time applications [12].

1.2 Literature Survey on the Optimization of the Hidden
Markov Model

In order to reduce recursiveness and self looping problem in HMM, a new approach
was developed using swam based optimization technique (Fig. 1). An optimization
approach is to find the maxima or minima values based on the objective function
defined in the system model. This can be an iterative process to achieve better
cost value of the given data to the model [39]. The optimization problem deals
with managing nature-inspired concepts by choosing the best option in the sense
of the given target work. It is broadly classified into two types: the metaheuristic
and the heuristic approach. The heuristic approach is a problem-designed rule that
has its own decisions for certain issues. The metaheuristic approach is a problem
solver that can be finely tuned for various optimization problems by legitimately
adjusting the parameters of the system. It can be further classified into three
different types: swarm-based, trajectory-based, and evolutionary-algorithm (EA)
based optimization [5]. In a machine learning algorithm, nature-inspired algorithms
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Fig. 1 Various types of optimization techniques

are very essential to get the optimum value for better convergence within a limited
run time. This approach narrates the behavior of a group of animals searching for
their food with less significant time, climatic condition, and duration. The Krill-
Herd algorithm can be used in any research field as a hybridization, multi-objective,
and parameter-less function [6]. Based on the different searching methods, a few
bio-inspired characters are recognized in the field of pattern recognition, such as
the cuckoo search algorithm (CSA) [53], the firefly algorithm [49], the particle
swarm optimization [19], and the artificial bee colony (ABC) [21]. Trajectory-
based algorithms begin with a solitary temporary arrangement. At every step,
the arrangement will be moved to its neighboring arrangement, with respect to
a particular neighborhood structure. Based on the search space in a region, it is
classified into four types: β-hill climbing [1], hill climbing [25], simulated annealing
(SA) [23], and tabu search [16]. An evolutionary-based algorithm begins with
an arrangement of creatures called a population. In every era, EA approaches
recombine the ideal qualities of the present generation to transform them into a
new generation based on natural methods. Nature inspired selection principle, is
classified into four types: harmony search [15], differential evolution [42], genetic
programming [24], and genetic algorithm (GA) [18]. The conventional optimization
has a few limitations while hybridizing with any machine learning algorithm. In
this work, it was proposed that during the training process the GA hybridizes
with HMM, which is more optimal than training HMM using the Baum–Welch
(BW) approach, as it takes more time for training the HMM model to get higher
precision, and recalls the value for web information extraction [48]. The same
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method has been used for text information selection. During the training phase,
the genetic operator combines with the Baum–Welch algorithm to optimize the
model parameter of HMM. From the reconstructed HMM, the text information
is extracted using the Viterbi algorithm with an optimal state sequence of tested
values of text data. GA-HMM is superior to the traditional method of HMM in
terms of higher robustness and wide optimization range, whereas it has a defective
premature convergence rate [27]. Baum’s re-estimation algorithm is used to decode
the state sequence in HMM model for getting constant directly for single channel
kinetics. This approach is unable to optimize with the constant rate for a single
channel directly. A most likelihood function was derived using the quasi-Newton
method to get the most efficient optimum value to improve the performance rate
by hybridizing the HMM model with the direct optimization approach [31]. The
Viterbi algorithm is typically difficult to get to the optimum state sequence in all
its observations of the HMM model. An extended version of the Viterbi algorithm
optimizes the HMM in real time for multi-target tracking [2]. Any state sequence in
the HMM model has a quite complex structure for any problem and is often of higher
dimensionality. A complex framework for ancestral population genomics was built.
This produced a high prominent result for parameter estimation using the heuristic
based optimization approach than the gradient based optimization approach [10].

1.3 Outline

This chapter is organized as follows: Section 2 explains the motivation, problem
statement, and framework of the proposed system. Section 3 presents the sample
hand dataset and image pre-processing procedure. Section 4 discusses how to extract
the hand gesture feature points. Section 5 describes in detail the complexity of the
HMM model based on the state sequence of hand gestures. Section 6 presents how
to get the optimum value using the CSA. Section 7 shows an experimental result
with an analytical discussion. Finally, the conclusion and summary with future
enhancement of this research work is shown in Sect. 8.

2 Motivation and Problem Statement

A recent innovation for developing virtual reality applications using hand gesture
recognition is listed in Table 1 [35]. Based on the issues, it is proposed to enhance
the newer model with a stochastic mathematical approach for Human Computer
Interaction (HCI). Glove-based (GB) hand gesture normally wears the glove on
the hand and is connected to the system. The interaction is made with the system
by folding the hand or fingers. This leads to short circuitry, which affects the
robustness of the system. Vision-based (VB) gesture recognition delays recognizing
hand movement by the system. The factors affecting this scheme are: (1) the quality
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Table 1 Problems in conventional techniques of hand gesture recognition systems [35]

S. no Techniques Problem

1 Active shape model + VB Track only the hand movement

2 Feature extraction + GB Computational complexity is quite high

3 Finite state machine Robustness is quite low in rigid condition

4 Linear fingertip model + VB Not applicable real-time purpose

5 Principal component analysis + VB
and GB

Time consumption is significantly more in
training process

6 Template matching + VB and GB Not applicable for huge dataset

7 Time delay neural network Robustness is quite low in typical input

Fig. 2 Framework of hand gesture recognition with the proposed system

of the acquisition device, (2) the recognition rate and accuracy, (3) the user’s
environment, (4) the usage of a low-level feature point of the given data, and (5)
discrepancies of the input data to the system. The conventional methods of hand
gesture recognition are replaced by the machine learning approaches, which can
learn from the trained data and make predictions to the system. A model can be
constructed from the sample data, using statistically programmed instructions by
using data-driven decisions. Some of the algorithms can support any data-driven
problem such as a support vector machine, a logistic regression, a decision tree,
an HMM, a linear regression, or Naive Bayes, K-mean clustering. In most of the
research problems, HMM has been used for pattern recognition applications. A few
problems in the HMM model are scalability, recursiveness, storage capabilities,
fitness value, and unwanted transitions [36, 37]. These problems in the machine
learning algorithm can be significantly overcome either by heuristic or metaheuristic
optimization approaches. This can reduce the system and computational complexity
in the model [5].

2.1 Proposed Work

The framework of the hand gesture recognition system is shown in Fig. 2. In
this work, the four major functional blocks are pre-processing, feature extraction,
classification, and optimization. First, create the hand gesture dataset of five
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different classes with 60 frames per second. So, in total 300 hand images are stored
in the image dataset, which has been taken from the Cambridge hand dataset. To
locate the exact boundary of the hand image from the dataset we have to apply the
edge detection technique using its kernel function for determining angular position
in free space. To define the hand gesture with the shape-based descriptor which is
used to locate the point of interest and converts the target point into coordinate using
speeded up robust feature (SURF). After achieving the prescribed feature point
from the hand gesture data, train and test using the HMM approach. Basically, the
HMM structure, which is constructed with the finite state machine , presents some
difficulty when using the dynamic programming approach in finding the optimum
path from source to the target point in the model. In order to enhance the fitness
value of the HMM model, a new hybrid metaheuristic approach called the CSA is
used. This algorithm is used to reduce an unwanted transition state sequence in the
HMM model during the training process. This can improve performance measures
of the system.

3 Image Database and Pre-processing

This work is carried out with five different hand gestures in the database: flat to left,
flat to right, flat to contract, V-shape left, and V-shape right, which are taken from
the Cambridge hand dataset from Imperial college, London [36, 37]. Each class has
60 frames per second, dimensions of 320 × 240, and total 300 hand gestures, which
are stored in the database shown in Fig. 3. Consider the case of a hand moving from
flat to left position which takes the sample data of the 0th, 15th, 30th, 45th, and 60th

Fig. 3 Cambridge hand dataset: five different classes of hand gesture data (a) Flat to left (b) Flat
to right (c) Flat to contract (d) V-shape to left (e) V-shape to right

Fig. 4 Hand movement from flat to left position at the (a) 0th (b) 15th (c) 30th (d) 45th (e) 60th
frame
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Fig. 5 Sobel operator

Fig. 6 Pre-processed hand gestures (a) 0th (b) 15th (c) 30th (d) 45th (e) 60th frame

frame from the total frames per second as shown in Fig. 4. An input hand gesture
pattern shows as a shadow on the screen, which leads to the wrong decision while
cropping the edge of the hand data. There are various pre-processing techniques,
such as edge detection, smoothing filters, histogram equalization, thresholding, and
desaturation. In order to plot and identify the discontinuity in the hand gesture
data, the edge detector based on the Sobel operator [17] is used as shown in
Fig. 5. Thus the main agenda of pattern recognition is done by the detector. This
does the work of cropping the boundary of the hand gesture data with respect to
the adjacent background [28]. The pre-processed hand gestures use the coefficient
values of the Sobel operator Fig. 5; the sample frames per second are listed at the
0th, 15th, 30th, 45th, and 60th frame, as shown in Fig. 6.

4 Feature Extraction

Machine learning comprises the concept of extracting a feature, which has a large
set of data from an original information into a smaller set. Three feature detection
methods are basically used for rotational features: (1) a scale invariant feature
transform (SIFT), (2) principal component analysis-SIFT (PCA-SIFT), and (3) a
SURF transform [20]. Here, in order to extract from the scaling, hand rotation, noise,
illumination condition, and direction, the SURF detector is widely used. The over-
emphasizing factor of SURF is that it works much faster based on the interest point
with less dimensionality [3]. To spot the required relevant point from the data, a
Hessian matrix H(X, σ) is used.

H(X, σ) =
[
Lxx(X, σ) Lxy(X, σ)

Lyx(X, σ) Lyy(X, σ)

]
(1)
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where L represents the Gaussian second-order derivative of the convoluted image at
X with scaling of σ .

4.1 Point of Interest

This approach is made purely on the basis of Hessian matrix approximation. To
determine the point of interest used by one of the blob detectors a method called
SURF based on a Hessian matrix is used. The notation of an integral image
IΣ |X=(x,y)T implies the summation of a pixel in the given input data. This allows
the performing at a higher rate of an input image which has a rectangular boundary
of input I.

IΣ(X) =
∑

i

∑

j

I (i, j); 0 < i ≤ x; 0 < j ≤ y (2)

The discriminate value of a hand gesture can extract the maximum and minimum
from the descriptive features. A feature vector point can be detected from the
description of the input data. This initiates the building of the window surrounded by
that feature point. Feature points can be calculated from the orientation of a window
in a pixel region.

4.2 Descriptor

The surrounding point distributes maximum intensity to the neighborhood and
mainly uses a scale space interpolation method to identify the exact interest points.
Along the x and y directions, the circular neighborhood response is extracted from
a 2D Haar wavelet. This works in such a manner that it slides π/3 times over
and over again until the window size is in a circular manner for every iteration it
accesses. Now, based on its orientation it is split into a smaller region which is from
a quadratic grid to a square region on the basis of the point of interest as shown
in Fig. 7. This split up happens in order to improve the deformation and also the
robustness against localized errors on the basis of the response of dx and dy. Thus
the relative sum of the oriented points is given by V = (Σdx,Σdy,Σ|dx|,Σ|dy|);
where the resultant value describes the feature point in the vector and, if the vector
is unity, the contrast effect is achieved, which is on the basis of variance in a scaling
factor [3].
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Fig. 7 An oriented quadratic grid based on the point of interest with a square region

4.3 Matching

The orientation of the Laplacian operator is prominently used based on need. It
mainly highlights the fact that the feature points are formed perfectly matched; it
also ensures that the gestures move at a faster rate. Thus, we can conclude that the
SURF algorithm is comparatively more accurate than the SIFT, though both are
invariant to rotation, which is applicable for pattern recognition [43].
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5 Classification

Pattern recognition plays a vital role in various fields such as signal processing,
machine learning, probability, computational geometry, and statistics. It has a
significant role in computer vision and artificial intelligence, and for applications
in science, engineering, business, and medicine. In the last couple of decades, most
of the researchers focused on pattern recognition problems using machine learning
algorithms [41]. Classification is a method for arranging pixels and assigning them
to particular classes. There are two broad categories of learning scheme: supervised
and unsupervised learning. If the learning scheme is said to be supervised then
the system has to guide by providing the trained data for each class, whereas
unsupervised learning does not provide trained data to the system. In this work,
supervised learning was chosen for training and testing the given problem. Here
the background of the hand gesture is fixed and modeled using the HMM from the
extracted feature point from the contours of hand data [44].

5.1 Hidden Markov Model

The HMM is a stochastic mathematical model for any pattern recognition scheme.
It is characterized with ‘n’ number of states, where ‘s’ denotes an individual state,
‘o’ denotes the number of different observation variables by states, νdenotes an
individual symbol and a set initial parameter λ = (A,B, π), where A = (aij ) is the
transition state probability matrix with,

aij = P [qt+1 = sj |qt = si], 1 ≤ i, j ≤ n (3)

B = bj (k) is the distribution probability of the observation symbol.

bj (k) = P [νk,t |qt = sj ], 1 ≤ j ≤ n; 1 ≤ k ≤ 0 (4)

and Π = (πi) is the distribution state probability of the initial state sequence.

πi = P [q1 = si ], 1 ≤ i ≤ n (5)

where s = (si ), i = 1, 2, . . . n is the state of subsets, qt is a state sequence at
each time interval t , and ν = (νi), i = 1, 2, . . . n is the set of symbols in the
state sequence. Three fundamental problems in the HMM model are evaluation,
decoding, and training. The evaluation process can be done by calculating the output
observable state sequence ‘o’ with respect to ‘λ’. This can be solved by a forward-
backward algorithm [14]. The decoding process can be done by determining an
optimum state variable which is involved with observable state variable ‘o’ in the
HMM model parameter ‘λ’. This can further be solved by a Viterbi algorithm [32].
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The training phase is solved by the BW approach, which maximizes the output
probability of an observation sequence ‘o’ [14]. Consider the observation sequence
Q = (Q1,Q2, . . . .QT ) and its model parameter λ = (A,B, π).

Problem 1 The effectiveness problem to find the probability of observation state
sequence P(Q|λ).

Problem 2 To set the model parameter λ = (A,B, π) to find the probability of the
observation state sequence P(Q|λ) is maximum.

The distribution probability of the observation sequence P [νk,t |qt = si] contains
only either continuous or discrete variables. If the probability of the observation
variable is continuous then,

bi(k) =
∫ k

i

P [νk,t |qt = si ] (6)

If the probability of the observation variable is discrete then,

bi(k) =
k∑

i

P [νk,t |qt = si ] (7)

If the probability of the observation variable is a vector then,

bi(k) = P [νk,t |qt = si ] = N(x|μ,Σ) (8)

N(x|μ,Σ) = 1√
2πd |Σ

e
−1
2 (x−μ)T Σ−1(x−μ) (9)

The Gaussian mixture O of the model is more flexible than others and is
expressed as,

P [νx,t |qt = si ] =
O∑

o=1

P [Ot = o|qt = si ]N(xm,i,Σm,i) (10)

where Ot represents a hidden layer with its mixture component; the a priori
probability of the conditional weight is P [Ot = o|qt = si] = Ci,m. In this work,
create the model for the hand gesture using HMM for each class of variables.

5.2 Solution to Problem 1

To determine the probability of the observation sequence Q = (Qi); i = 1, 2, . . . T

with its model parameter λ = (A,B, π) directly deals with all possible state
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sequences of all observations of length T . The effective procedure instead of
performing the mentioned scheme is called a forward-backward approach. Solving
Problem 1, we have to know how to recognize success for a trained model with
its observation state sequence. The weight values can be updated iteratively as
mentioned in Eqs. (11) and (12).

αt (i) ≈ P(o1, . . . oT , qt = si ) (11)

βt(i) ≈ P(ot+1, . . . oT , qt = si ) (12)

where αt (i) represents the probability of state model qi(t) which initiates t elements
of observation sequence Q with step t , βt(i) represents the probability of state
model qi(t) which generates the remainder of the target state sequence, that is from
T ← t + 1. To solve αt (i) and βt(i), there are three basic steps using an inductive
approach: initialization, induction, and termination.

1. Initialization:

αt (i) = πibi(oi), 1 ≤ i ≤ n (13)

βt(i) = 1, 1 ≤ i ≤ n (14)

2. Induction:

αt+1(j) =
n∑

i=1

αt (i)αij bj (ot+1), 1 ≤ t ≤ T − 1; 1 ≤ j ≤ n (15)

βt (j) =
n∑

i=1

aij bj (ot+1βt(i)), 1 ≤ t ≤ T − 1; 1 ≤ j ≤ n (16)

3. Termination:

P [Q|λ] =
n∑

i=1

αt (i) =
n∑

i=1

βt(i) =
n∑

i=1

βt(i)αt (i) (17)

5.3 Solution to Problem 2

The predominant step is to set the model parameters λ(A,B, π) and to maximize
the probability P(Q|λ) because there is no optimal solution of model parameter
estimation for a given finite observation state sequence. This can be avoided by
locally maximizing its model parameter using a BW algorithm. Let us consider the
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probability at initial state si at time t , and state si at t + 1, given the parameter and
observation state sequence, that is,

ψt(i, j) = P [qt = i, qt+1 = j |Q,λ] (18)

Rewrite Eq. (18) by using the forward-backward algorithm,

ψt(i, j) = P [qt = i, qt+1 = j |Q,λ]
P [Q|λ]

ψt (i, j) = αt(i)αij bj (ot+1)βt+1(j)

P [Q|λ]

ψt (i, j) = αt(i)βt+1(j)aij bj (ot+1)∑n
i=1
∑n

j=1 αt (i)βt+1(j)aij bj (ot+1)
(19)

Equation (20) shows the probability value being in the state si

γt (i) =
n∑

j=1

ψt(i, j) (20)

This is satisfied by Shotton et al. [40] who maximize O(λ, λ) over λ results to a
maximum likelihood for estimation of the HMM model by Eq. (22)

O(λ, λ) =
∑

O

P [O|Q,λ]log([O,Q|λ]) (21)

max
λ

[O(λ, λ)] = P [Q|λ] ≥ P [Q|λ] (22)

The model parameter λ = (A,B, π) can be re-estimated using:

aij =
∑T −1

t=1 ψt (i, j)
∑T −1

t=1 γt (i)
(23)

bj =
∑

j,Uk
sj,uk∑

j sj
(24)

At time t = 1, the expected state sequence si has to re-estimate the model
parameter by λ = (A,B, λ) using Eqs. (23) and (24), through which it determines
an observation state sequence based on maximum likelihood value.
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5.4 Inference Problem in HMM

The probability of a classification error making an incorrect decision is due to the
following reasons.

1. A Viterbi algorithm is expensive, both in terms of memory and computing time,
for a sequence of length n. The dynamic programming for finding the best path
through a model with s states and e edges takes a memory proportional to sn and
time proportional to en as in Eqs. (20) and (22).

2. The forward-backward approach is even more expensive. It needs to be trained
on a set of seed sequences and generally requires a larger seed than the
simple Markov models. The training involves repeated iterations of the Viterbi
algorithm.

6 Cuckoo Search Optimization

Lots of species of birds have common behaviors and features [33]. In general, eggs
of different shapes lie by the mother birds and are secure in the nest for the safeness
of the chicks [32]. During reproduction time, birds need a specific nest to live in
together, the birds that do not build their own nest are referred as breed parasites.
These kinds of birds have laid their eggs in other species’ nests, in which their
young can be taken care of by the host. In this category, the cuckoo is the most
representative. The process requires the cuckoo to install its own eggs in the host
nest. However, it deliberately matches the egg with the patterns, color, and shape
of the eggs already in the host nest, an expertise that requires a high precision rate.
An egg-laid time is a predominant factor for selection of the nest, where the other
birds laid eggs in another nest [22, 33]. This process will be evident to the cuckoo
birds, whose egg will hatch before the other bird’s eggs. This emphasizes clearly
that the host bird has taken care of all the chicks in the nest. The gain of a feeding
opportunity for the cuckoo’s chick will be huge and it will live safely until it is grown
[50]. Yang et al. [53] propose the optimization technique using CSA. This has been
significantly used in all fields of research such as signal processing, data analytics,
pattern recognition, and machine learning [13]. It has been specialized to restrict the
character of breed parasitic species such as cuckoo birds, with heavy tail so that they
can go higher distance with higher levy flight. It could be inspired by the behavior
and character of a few birds and fruit flies. In addition, it is found [7, 29] that in
real time levy flight moves randomly with less interval of time [45, 46]. This is an
efficient metaheuristic based approach which balances the search space problem in
terms of a local search and globally [41].
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6.1 Hybridization of the CSA with HMM

There are some distinguishing characteristics of cuckoo birds when laying their eggs
[54]. Three idealized conditions are to be follow for the search space problem:

1. At a particular time, one egg is laid by the cuckoo and randomly stored in the
nest.

2. A high quality nest acquires the best eggs, which will be preserved for future
generations.

3. The host bird’s nest is fixed, and to identify the cuckoo bird which lay their egg
in other bird’s nest can be found using probability condition Pa ∈ [0, 1]. In some
cases, either the host will leave from the nest or the cuckoo will construct a new
nest by itself. Also, the value of probability Pa signifies the change of nest from
the host.

Despite these three conditions, the fundamental procedure for constructing with a
pseudo-code the cuckoo search algorithm appears in the algorithm below. One of
the essential points of interest of CSA is that it uses fewer parameters to control
against compared to numerous other search techniques [15, 18, 39]. Table 2 shows
the commonly used values, qualities, and parameters. The points of interest are
gathered from [53].If the host discovers the egg is another bird’s then there is the
possible probability of Pa ∈ [0, 1] for the egg to be thrown out of the nest. So the
cuckoo birds build their own nests in order to protect the younger ones, randomly.
This is one of the optimum solutions xt+1 of the cuckoo birds [51, 52].

xt+1 = xt + a ⊕ levy(λ) (25)

Algorithm 1: Cuckoo search optimization

Step 1 Initialize the set X = (xd ; d = 1, ,D)T ; define the objective function f(X)

Step 2 Initial population of n host nests has to be generated Xi(i = 1, , n)

Step 3 While t < maximum_iteration do

(t < maximum_generation) or (stop)

Get a random cuckoo by levy flight

Evaluate the fitness function Fi

Choose a nest among n in random

Step 4 If Fi > Fj then

Replace j by new optimum solution

End if
Step 5 Pa fraction of host bird identifies the cuckoo’s egg and the cuckoo builds a new nest

Step 6 Keep the chicks of the cuckoo which should be safer (best solution);

Step 7 Determine the best cost value

End While
Repeat Step 1
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Table 2 Initial parameter
setting of CSA [39]

Parameters Commonly used Qualities (range) Symbols

Step size a = 1 [28] a > 0 a

Fraction Pa = 0.25 [57] [0, 1] Pa

Nest N = 1 [34] [15, 56] N

where step size a > 0 represents the scaling of interest to this problem. The symbol
⊕ denotes the multiplication entry-wise.

levy(λ) ≈ ν = t−λ (26)

Equation (26) provides the best solution for the cuckoo bird in a random manner to
survive their young ones in a protective way.

The concept of CSA is hybridized with HMM during the training process. The
model parameter of HMM λ = (A,B, π) has to incorporate CSA to choose the
optimum path state sequence in the forward-backward algorithm using the Viterbi
approach. This could find the survival of the fitness function from the objective value
defined in the problem. Until the most probable likelihood is maximized, repeat Step
3 to get the best cost value. Or else repeat Step 1 to get the optimum HMM as shown
in the algorithm below.

Algorithm 2: Hybridization of CSA with HMM

Step 1 Initialize the number of state sequence ‘s’ as an objective function

Step 2 Fix the observation sequence of state ‘o’ as the host nest

Step 3 While t < maximum_iteration do

Choose the optimum path in the forward-backward algorithm using the Viterbi
approach survival of fitness function

Step 4 If Fi > Fj then

Optimum solution

End if
Step 5 Most probable likelihood function produces the best cost value; Repeat Step 3

Step 6 Determine the best cost value

End While
Repeat Step 1

7 Results and Discussion

In this work, five different classes of Cambridge hand gesture data consists of 60
frames with dimensions of 320 × 240, so in total 300 images are stored in the
database. These gestures are labeled as flat-to-left, flat-to-right, flat-to-contract,
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V-shape left, and V-shape right, which are shown in Fig. 3. These data are pre-
processed by using an edge detection technique. This is used to crop the hand
contour region from the image without cropping the shadow and other content in
the image dataset. In edge detection techniques, there are four different operators:
Sobel, Prewitt, Canny, and Robert. Among these four, the Sobel operator provides
the target object in black and white to represent low and high-level pixel quantities
in the image which deliberately avoids false detection, as shown in Fig. 6.

7.1 SURF Features

SURF is used to obtain distinctive features from the given dataset, to reduce the
dimensionality of feature points in different angular positions, illumination, and
shape. The objective of this work is to reduce the dimensionality of the feature with
higher robustness and precision using SURF [3, 43]. This follows the procedure
based on Hessian matrix H(X, σ) with a scaling ‘σ ’ in the range (0–1) [3]. To
measure the performance metrics using SURF features it is recommended that the
feature vector point uses two parameters, that is recall and precision, as given in
Eqs. (27) and (28).

Recall = retrieval of correct match

total no. of correct match
(27)

Precision = retrieval of corrected match

total no. of matches retrieved
(28)

Table 3 shows the performance metrics of SURF features for the hand gesture
data. It has various descriptors based on blurred edges, blurred texture, scaled
edges, scaled texture, view point edges, view point texture, illumination, JPEG
compression, and different dimensions. This can work with a nearest neighbor
distance ratio (NNDR) strategy which selects the corresponding point of interest
which represents the minimum Euclidean distance below the threshold value.

Table 3 Performance metrics of SURF features (Cambridge hand gesture data)

Descriptors Dimension (D) Recall Precision

SURF-blurred region 30 [0, 0.8] [0, 0.65]

SURF-blurred texture 32 [0, 0.6] [0, 0.78]

SURF-scaled edges 32 [0, 0.59] [0, 0.85]

SURF-scaled texture 32 [0, 0.55] [0.85, 0.95]

SURF-view point edges 32 [0, 0.5] [0.2, 0.88]

SURF-view point texture 32 [0, 0.65] [0.07, 0.75]

SURF-illumination 32 [0, 0.8] [0.3, 0.7]

SURF-JPEG compression 28 [0, 0.85] [0, 0.3]

SURF-different dimensions NNDR [0, 0.68] [0, 0.85]
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Fig. 8 Estimation of HMM model: feature values vs no. of states n = 1

Fig. 9 Estimation of HMM model: feature values vs no. of states n = 2

7.2 Classification Results

Among five different classes of hand gesture data defined in the dataset, we have to
classify which one belongs to the given target set using HMM. Define the model of
HMM parameter λ = (A,B, π) with respect to the number of states n = 1, 2, 3
respectively. Once the trained feature point is passed to the HMM model, a different
pattern is shown based on its feature values vs the state sequence as shown in
Figs. 8, 9, and 10. For validation of these hand gestures in the HMM model, train
first 45 observations of five different classes of hand gesture data using a K-fold
cross-validation procedure. Table 4 shows that the training and testing data for
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Fig. 10 Estimation of HMM model: feature values vs no. of states n = 3

Table 4 Training and testing hand gesture data using cross-validation method

K-fold cross-validation

Model Total no. of frames Training set Testing set

Flat-to-left 60 45 25

Flat-to-right 60 40 20

Flat-to-contract 60 48 12

V-shape left 60 42 18

V-shape right 60 46 14

Table 5 Complexity analysis in terms of time and memory

Forward-

backward Addition Multiplication Division

algorithm time time time Memory

αt (i) s2t − s2
s s2t + st − s2 st − s st

βt (j) s2t − st − s2 + 2 2s2t − 2s2 st −∑T −1
t=1 γt (i) st − t st st s∑T −1
t=1 ψt (i, j) s2t − st − s2 + s 3s2 − t − 3s2 s2t − s2 s2

Total 3s2t + st − 3s2 + 3s − t 6s2t + 2st − 6s2 s2t + 3st − s2 − s st + s2 + s

all classes of data using a K-fold cross-validation method, where K is random
integer value based on the different gesture patterns. The internal structure of HMM
has a complex construction in relation to the state and observation sequences. It
can be derived by a dynamic programming method either by using a forward-
backward algorithm or a Viterbi algorithm. The main issue in both algorithms
is memory consumption, due to the recursiveness in the model as mentioned in
Sect. 5.4. A manual calculation for the forward-backward approach with a Viterbi
algorithm is made by an analysis in terms of time and memory as shown in Table 5.
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Fig. 11 Lower bounded region based on model evidence w.r.t. no. of states n = 1

Fig. 12 Lower bounded region based on model evidence w.r.t. no. of states n = 2

Figures 11, 12, and 13 show that the lower and upper bound variations based
on the model evidence have been presented with respect to the number of states.
Table 6 shows the performance result metrics of hand gesture recognition without
an optimization technique. This can be validated by using K-fold cross-validation
method, which provides an average recognition rate of 80.16% and an error rate of
6.79% respectively.
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Fig. 13 Lower bounded region based on model evidence w.r.t. no. of states n = 3

Table 6 Performance metrics without optimization

Models Testing data Recognition rate (%) Error rate (%)

Flat-to-left 25 85.56 4.35

Flat-to-right 20 75.87 9.52

Flat-to-contract 12 84.45 5.64

V-shape left 18 77.48 6.72

V-shape right 14 77.33 7.72

7.3 Hybridization of HMM with CSA

The model parameters of HMM can be defined in this work as λ = (A,B, π).
It has three parameters to optimize using metaheuristic-based optimization called
CSA. Table 7 shows that a different number of state sequences versus cost value
is produced by using CSA with various iterations. In addition, the setting up of an
initial parameter in CSA is shown in Table 8. Again the system has to be validated
with the same procedure as with CSA initial parameters and best cost value. This
shows the improved result as listed in Table 9. The testing set of hand gesture data
can be determined by HMM incorporated with the CSA algorithm. This produces an
average recognition rate of 81.21% and an error rate of 6.17% respectively. Below
table shows the comparative analysis of the proposed CSA-HMM with conventional
hybridization optimization approach.

Hybridize optimization model Recognition rate (%) Error rate (%)

Proposed CSA-HMM 81.21 6.2

ABC-HMM [24] 72.93 3.6

GA-HMM [18] 75.98 4.4
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Table 7 Best cost function
using CSA

No. of states (n) Cost value Iteration

1 1,205,868 4

2 2,280,126.45 4

3 2,827,946.16 3

Table 8 Setting up of an
initial parameter in CSA

Initial parameters Values assigned

No. of cuckoos 1,2,3

Minimum no. of eggs 2

Maximum no. of eggs 4

Maximum iteration 100

KNN cluster numbers 1

Motion coefficient 9

Accuracy −inf

Maximum no. of cuckoos 10

Radius coefficient 5

Cuckoo population variance 1e−13

Table 9 Performance metrics with CSA optimization

Models Testing set Recognition rate (%) Error rate (%)

Flat-to-left 25 86.72 4.09

Flat-to-right 20 78.77 8.67

Flat-to-contract 12 84.65 5.02

V-shape left 18 78.02 6.03

V-shape right 14 77.87 7.04

8 Summary and Conclusions

In the present scenario, hand gestures are more significant in the development
of virtual reality applications. This work has mainly focused on the optimization
of HMM-based hand gesture recognition using a metaheuristic approach known
as CSA. The traditional system of HMM for hand gesture recognition has been
trained and tested with the proposed method and compared with a GA and an ABC
algorithm. A framework of the system consists of four major blocks: pre-processing,
feature extraction, classification, and optimization. Firstly, the Cambridge hand
gesture dataset stores 300 images with dimensions of 320 × 240 of five different
classes defined as flat-to-left, flat-to-right, flat-to-contract, V-shape left, and V-
shape right. These hand gesture images have fixed illumination conditions and each
class has 60 frames per second. Secondly, the hand data is cropped from the input
image using a Sobel operator. The Canny operator also provides the same quality
of result but for this work the Sobel operator provides the better boundary region
of a hand gesture with high and low-level intensity values than the other edge-
detection operators. Thirdly, feature extraction is used to obtain distinctive features
from the given datasets, which reduces the dimensionality of features in different
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orientations, illumination, and shape using a SURF transform. In this work, the
comparison has been made between dimension, recall, and precision for different
qualities of feature vector. Fourthly, the hand gesture is constructed using HMM for
different classes in the dataset. This could be validated by K-fold cross-validation
for simplifying the process of the classification to get the trained and tested data.
The model parameter of HMM is then estimated in the defined structure using its
feature points. The lower and upper bounds signify the model evidence as to how
it can be performed. This produces an average recognition rate of 80.16% and an
error rate of 6.79% respectively. In order to avoid time and memory consumption
due to the recursiveness in both the forward-backward algorithm and the Viterbi
algorithm, the training process was tabulated with a manual relation between the
number of states s and the length of the sequence t, which are shown in Table 6.

Once again the same procedure was followed from the validation with its average
best cost value of 2,104,646.87 and its CSA initial parameters. The result shows
that the average value of performance metrics with CSA is increased by 1.05%
of the recognition rate and decreased by 0.62% of the error rate respectively. A
comparative analysis was made for the proposed method CSA-HMM with ABC-
HMM and GA-HMM. This signifies that the optimized model of the hand gesture
recognition system has been improved by the recognition rate and accuracy for
virtual reality applications.
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Satellite Image Contrast Enhancement
Using Fuzzy Termite Colony
Optimization

Biswajit Biswas and Biplab Kanti Sen

Abstract Image enhancement is an essential subdomain of image processing which
caters to the enhancement of visual information within an image. Researchers
incorporate different bio-inspired methodologies which imitate the behavior of
natural species for optimization-based enhancement techniques. Particle Swarm
Optimization imitates the behavior of swarms to discover the finest possible solution
in the search space. The peculiar nature of ants to accumulate information about the
environment by depositing pheromones is adopted by another technique called Ant
Colony Optimization. However, termites have both these characteristics common
in them. In this work, the authors have proposed a Termite Colony Optimization
(TCO) algorithm based on the behavior of termites. Thereafter they use the
proposed algorithm and fuzzy entropy for satellite image contrast enhancement.
This technique offers better contrast enhancement of images by utilizing a type-
2 fuzzy system and TCO. Initially two sub-images from the input image, named
lower and upper in the fuzzy domain, are determined by a type-2 fuzzy system. The
S-shape membership function is used for fuzzification. Then an objective function
such as fuzzy entropy is optimized in terms of TCO and the adaptive parameters are
defined which are applied in the proposed enhancement technique. The performance
of the proposed method is evaluated and compared with a number of optimization-
based enhancement methods using several test images with several statistical
metrics. Moreover, the execution time of TCO is evaluated to find its applicability
in real time. Better experimental results over the conventional optimization based
enhancement techniques demonstrate the superiority of our proposed methodology.
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1 Introduction

Image enhancement is one of the crucial parts in the domain of image process-
ing. The objective of image processing is not confined to the improvement of
the visual quality of an image but also deals with the enhancement of visual
information within an image for better human perception [15, 19, 22, 25, 28, 36].
An efficient image enhancement technique plays an immensely important role in
the field of computer vision, biomedical image analysis, surveillance applications,
robot navigation, weapon detection, and so on [15, 19, 22, 36]. The common
prevalent image enhancement methodologies of recent times are histogram and
transform-based techniques [1, 3, 19, 31, 34], contrast stretching [19, 22, 36], image
smoothing [19, 25, 32], image sharpening [7, 22], inverse filtering [25, 32, 36], and
Wiener filtering [7, 28]. These are widely used but lack success when implemented
in the domain of colored images [15, 19, 22, 28]. Another popular enhancement
technique is Hue preserved color image enhancement, which extends existing gray
scale contrast intensification procedures in color images [10, 15, 19, 22].

Satellite images play a significant role in numerous areas at the present time [11,
12, 19, 34, 36]. Due to the growing application to high-resolution images in
satellite image processing, contrast enhancement techniques are widely used to
achieve better visual perception and color reproduction [11, 12, 15, 36]. Generally,
unprocessed satellite images (i.e. initially captured raw data) have covered a
comparatively narrow range of brightness values; in this case, contrast enhancement
is commonly used to improve a narrow range of multi-band satellite images for
better understanding and imaging [11, 12, 19, 34, 36]. On the other hand, the
average resolution of raw satellite images is very low due to various factors such as
absorption, scattering, illumination of the light source, and the lens apparatus. For
several decades, various enhancement techniques have been suggested for increased
resolution and contrast of the satellite images. On the other hand, waveletbased
techniques have been established as the most robust process that satisfies the
required purpose. In the literature, different histogram equalization techniques have
been proposed for image enhancement. However, histogram equalization is the
most common approach for enhancing the contrast in the area of different imaging
applications, for example, surveillance, medical image processing, and satellite
image processing [11, 12, 32, 34]. However, they often reduce the overall image
quality (color information, illumination, etc.) by showing certain artifacts in both
low and high-intensity regions in the images.

For low contrast image processing, several image enhancement techniques have
been utilized to overcome the leading problem of image enhancement, such as
improved image contrast, brightness, and the preservation of color information. In
this regard, a collection of different image enhancement techniques with different
ideas has successfully been used in satellite imaging in the literature [1, 9, 11,
12, 25, 28]. Similarly, there are several histogram based techniques that have
been suggested as able to overcome these problems [11, 12, 19, 34, 36], such
as generalized histogram equalization (GHE) [12, 19, 35] and local histogram
equalization(LHE) [20, 32, 34] and etc. [9, 17, 21, 26]. The GHE technique is a
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simple and effective approach for contrast improvement for many image processing
applications. LHE is better than GHE, but suffers from inappropriate intensity
distribution of the pixel in the image areas. However, most of them cannot maintain
an average brightness level, which creates artifacts (either under or over-saturation)
in the resulting image [11, 12, 15]. Most commonly satellite images are certainly
affected by the most prevalent contrast enhancement techniques, for example, drift-
ing pixel intensity, saturation of brightness levels, and distorted color details. The
number of artifacts which are not propagated throughout the image in the sense of
both spatial locations and intensity levels needs to be minimized [11, 12, 15, 22]. In
most of the cases, enhancement algorithms for satellites reduce the pixel distortion
in low and high-intensity regions. The proposed algorithm solves this problem by
using the advanced fuzzy-based metaheuristic approach [8, 9, 17, 21, 22, 36].

In recent years, many efficient methods have been developed for image enhance-
ment, such as the bat algorithm [5, 17, 19], the cuckoo algorithm [5, 8, 14], and the
immune algorithm [2, 19, 33]. In [15, 17, 19], the authors combined the neuron net-
work and the bat algorithm to explain the image enhancement problem, and applied
the bat algorithm to tune the parameters of the modified neuron model for the
maximization of the indices contrast enhancement factor and mean opinion score.
In [5, 8, 14], the author suggested image enhancement by the cuckoo algorithm
and optimum wavelet by choosing the best wavelet coefficients. Recently, many
researchers have suggested excellent image enhancement methods [15, 16, 19, 36].
Interestingly, we found that most suggested methods include Principal Component
Analysis [3, 16, 19, 23], Independent Component Analysis [1, 15, 16, 32], Sparse
Coding [5, 19, 23], and Gaussian Mixture Model [7, 19, 20, 25]. Most recently,
different deep learning based schemes, such as Stacked Denoising Sparse Auto-
encoder (SSDA), have been applied to image enhancement. However, the author has
been used the SSDA in image enhancement but for large number of training data, the
model suffered over-fitting and the trained model parameters restricted under input
dataset directly. In [9, 13, 15, 20], the authors have been suggested and overcame
some limitations of the SSDA. The limitations are removed by using the end-to-end
processing approach and the semantics of feature extraction are performed on the
basis of predefined parameters.

Various neural network-based image enhanced schemes are straightforwardly
recommended for image processing in the literature [13, 18, 20, 22, 24, 36].
Recently, deep convolutional networks (DCNN) have realized significant growth
on low-level vision and image processing tasks, such as depth estimation [13,
18, 22, 24, 36], optical flow [18, 36], super-resolution [13, 18], demosaicking and
denoising [13, 18, 24], image matting [13, 24], colorization [22, 24, 36], and general
image-to-image translation tasks [18, 36]. The latest approaches have even explored
learning deep networks contained by a bilateral grid [13, 18, 24]; however, this
method does not achieve the proper task of learning image transformations in that
learning space, but rather emphasizing classification and semantic segmentation.
Typically, the DCNN architectures have been trained more or less to approxi-
mate a general class of supervises in the gradient domain under a multi-layer
network [13, 18]. In [13, 22], the author designed a DCNN to train recursively
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filters for color interpolation, denoising, image-smoothing, and painting [13, 20].
However, they mutually train a group of recursive networks and a convolutional
network to calculate image-dependent promulgation weights [13, 18]. On the other
hand, we can notice that some of the DCNN works for the low resolution images on
GPU environment but still they are excessively slow for the real-time processing of
high-resolution image applications.

Further, several efficient fuzzy enhancement methods have been developed
for low light images on the basis of the statistical features of the gray-level
histogram [8, 16, 19, 22, 27, 34]. Fuzzy intensification methodologies are used to
enhance images by the authors in [9, 15, 17, 21]. The authors have been suggest
a fuzzy system to enhance an image by using the Hue-Saturation-Value (HSV)
model and considered the Gaussian parameters as Saturation (S) and Value (V),
respectively in [15, 17]. In this work, the S-curve is the transformation function;
by optimizing the image information through entropy [9, 15, 17, 21] the parameters
of the S-curve are estimated. However, the problem lies in their dependency on
several image properties like local surface reflectance, occlusion, and shadow to
enhance the quality of the image [3, 16, 19, 22]. Authors have proposed a fuzzy
method to enhance dark regions and that also works well with night images [15, 16].
In [15, 19, 22] the authors used fuzzy membership functions for the enhancement
of color images. Another generalized iterative fuzzy enhancement algorithm is
proposed in [9, 15, 17, 21] for the degraded images with less gray levels and low
contrasts. Here the statistical features of the gray-level histogram of images are
used as an image quality assessment criterion to control the iterative procedure. In
[12, 31, 33], the author used a fuzzy system to enhance an HSV image by modeling
S and V as Gaussian. In [9, 15, 17, 19, 21], the authors have successfully explored
the relationship between intensity and saturation. This work also proposed a new
method called SI correction for removing color distortion in the HSV space. Some
work [9, 15, 17] used a scene irradiance map as an image property to enhance the
image with many factors, such as local surface reflectance, occlusion, and shadow.

Recent research has exposed different measures of image quality and the
widespread use of gray-level image enhancement techniques [9, 15, 17, 21]. The
most popular measures among these constitute the activity measurement of edge
pixels, pixel intensity variation, and variation of image entropy [2, 19, 22, 34]. Such
measures have been successfully utilized in the domain of image enhancement
incorporated with swarm intelligence optimization techniques like the Genetic
algorithm [4, 19, 22, 23, 30], the Differential Evaluation Optimization algorithm [4,
8, 22, 30], Particle Swarm Optimization (PSO) [2, 22, 29, 37], the Cuckoo Search
(CS) algorithm [6, 10, 19], Artificial Bee Colony (ABC) [5, 8, 14], Ant Colony
Optimization (ACO) [15, 17, 19, 22, 33] and Bacterial Foraging (BF) [19, 22, 33]. In
the case of the BF algorithm, this has been used by the authors in [30, 33] to optimize
the objective function for color image enhancement. ABC is a metaheuristic
technique which is efficiently utilized for the production of high-quality image
enhancement methodologies. This is a comparatively new metaheuristic approach
which has proved to be efficient over the existing techniques in solving optimization
algorithms. This is shown by the authors in [15, 17, 19, 22, 33].
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Resolving enhancement problems by the Artificial Ant Colony System or the
ACO technique has been successfully illustrated by the authors in [15, 17, 19, 22,
33]. The authors have been successfully introduced an image contrast enhancement
technique with the combination of particle swarm optimization (PCO) and cuckoo
search (CS) algorithms to solve the high-quality image enhancement problems [2,
22, 29, 37]. Like the Bat optimization algorithm [6, 22, 33], the Genetic Algorithm
(GA) [4, 19, 22, 23, 30], and the Differential evaluation algorithm (DE) [4, 8, 22,
30], bio-inspired intelligent based techniques also find an important place in the
domain of image enhancement [15, 19, 22, 32]. In [9, 15, 17, 23, 33], the authors have
proposed a GA technique that utilizes the algorithm to find an optimal mapping onto
the gray levels of the source image. This results in the production of an enhanced
image with new gray levels and better contrast image quality. The authors in [4,
6, 30] proposed another GA based color image enhancement approach which was
used in nonlinear transforms as a function for contrast enhancement. In [6, 15, 17,
19, 23], the author suggested a DE algorithm to solve image enhancement problems.
The DE algorithm is more local optimal than GA but parametric restriction is more
sensitive than DE under maximal optimization [4, 19, 23, 30]. In this work, we have
analyzed the behavior of termites and expose the common nature which they share
with ants and swarms. We propose a new technique for image enhancement, Termite
Colony Optimization (TCO), which is based on the nature and action of termites in
the real world. TCO is a combination of PSO and ACO techniques which when
utilized for image enhancement provides better results than prevalent techniques.
The proposed method (TCO) is used to optimize fuzzy entropy in a fuzzy domain.
Entropy used here is an objective function which is used to find the optimized value
of the parameters in the domain of image enhancement. The key contributions of
this study are briefly:

1. A bio-inspired panchromatic (PAN) satellite image enhancement scheme is
proposed and studied.

2. The proposed model effectively uses the standard S-fuzzy membership function
and Shanon fuzzy entropy measure to optimize the image contrast within the
dynamic range of gray levels.

3. A special mechanism of the proposed TCO is employed to optimize the quality of
sharpness in the low contrast image regions in terms of the function optimization
criterion.

4. Simulation of the proposed technique and outstanding performance is offered.
5. A collection of PAN satellite image data examples illustrate the practical

usefulness of the proposed model.

The work is organized as follows. We introduce and explain the basic concepts
of TCO in Sect. 2. In Sect. 3, we discuss the methodology of TCO application in
fuzzy image enhancement. Implementation and results are discussed in Sect. 4 with
conclusions in Sect. 5.
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2 Termite Colony Optimization Algorithm

ACO [22, 23, 36] and PCO are population-based optimization algorithms [22, 36,
37]. The characteristics of termites have a similarity with the behavior of ants,
depicted by ACO, and the nature of swarms is represented by PCO [24, 25]. TCO
is an evolutionary computing algorithm inspired by swarm and ant intelligence. It
resembles the behavior of swarms to find the best possible position in the search
space for an optimal problem. Each termite moves with a velocity following the
direction of its previous best position. Hence, like the swarm, it moves towards the
best previous position in the search space. Moreover, termites are also guided by
pheromones as are ants. The pheromone trail leads them to accumulate information
about the environment. This trail can be accessed by other members of the colony,
like ants.

For an image enhancement problem, we assume the initial position of a termite
to be i in a termite colony. The probability of the termite selecting a route from pixel
i to pixel j among n pixels is given by [6, 14, 33, 37]

τij = τα
ij d

β
ij

∑n
i,j=1 τα

ij d
β

ij

(1)

For each termite, the parameter α controls the relative evaporation or delay of
pheromone intensity and the parameter β controls the desirability decision. Both
α and β is > 0. τij represents the concentration of pheromone associated with
edge (i, j), and dij is the desirability of edge (i, j). Due to evaporation, the
concentration of pheromone decays with time. For simplicity, the pheromone is
updated as follows [22, 33, 36]:

τij (t + 1) = (1 − γ ) τij (t) + δτij (t) (2)

where γ ∈ [0, 1] is the rate of decay of the pheromone intensity. The increment
δτij (t) is the amount of pheromone deposited at time t along route i to j when
a termite travels along a path. The pheromone update policy and the decision rule
exploited within the termite system are given by Eqs. (2) and (1), respectively. Each
termite deposits a pheromone at all chosen edges and thus the additional pheromone
deposited at each edge (i, j) is given by

δτij (t) =
m∑

k=1

δτ k
ij (t) (3)

where m is the number of termites and δτ k
ij (t) is the additional pheromone deposited

at edge (i, j) by the kth termite at the end of iteration t .
Assuming that the size of the swarm is N within the M dimensional search

space, then the position of the ith termite is denoted as Xi

(
xi1, xi2 , . . . , xiM

)
, which
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indicates a possible solution of an optimal problem. The velocity of each termite
is represented by Vi

(
vi1 , vi2 , . . . , viM

)
. The best previous position of the termite

is denoted as Pi

(
pi1 , pi2 , . . . , piM

)
, while the best previous position of the whole

swarm is represented as Pg

(
pg1, pg2, . . . , pgM

)
. The termites exhibit characteristics

denoted by the following equations [17, 33]:

vk+1
im = ωk ∗ vk

im + c1 ∗ τk
ij (t) ∗

(
pim − xk

im

)
Δt + c2 ∗ τk

ij (t) ∗
(
pgm − xk

im

)
/Δt (4)

xk+1
im = xk

im + Δt ∗ vk
im (5)

ωk = ωmax − k ∗ (ωmax − ωmin) /kmax (6)

where 1 ≤ m ≤ M , and rand() are dimension of the termite and random
number with uniform distribution U(0, 1); c1 and c2 are acceleration coefficients;
ω is the inertia weight; ωmax and ωmin are the maximum and minimum values
of ω, respectively; k and kmax are the current and the maximum iteration times
respectively; generally Δt is the time unit. vk+1

im and xk+1
im must be under the

restricted conditions as follows [6, 33, 36, 37]:

vk+1
im =

⎧
⎪⎪⎨

⎪⎪⎩

vk+1
im − vmax ≤ vk+1

im ≤ vmax

vmax vk+1
im > vmax

−vmax vk+1
im < −vmax

(7)

xk+1
im =

⎧
⎪⎪⎨

⎪⎪⎩

xk+1
im xmin ≤ xk+1

im ≤ xmax

xinit xk+1
im > xmax

xinit xk+1
im < xmin

(8)

xk+1
init = xmin + γ ∗ (xmax − xmin) (9)

where vmax is the maximum value of v; xmax and xmin are the maximum and
minimum values of x, respectively (Fig. 1).

The basic steps of TCO can be summarized as follows:

1. Initialize the population with weights, position of swarm termites, and the
number of training iterations. Every swarm termite has its distinct random
position, velocity, desirability, and rate of evaporation of the pheromone.

2. Verify the fitness function value for each termite swarm.
3. Determine the best position and evaporation rate of the pheromone of each

termite swarm.
4. Determine the position of the best termite swarm.
5. Update the evaporation rate of the pheromone, velocity, and position of each

termite swarm by Eqs. (2), (7), and (8) respectively.
6. Stop if the condition of optimization is satisfied. If not, repeat from Step 2.
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Fig. 1 A schematic overview of the proposed algorithm. All steps correspond to Algorithm 1

In our previous explanation of our algorithm TCO, we discussed the convergent
properties of the TCO in brief. The TCO algorithm may have a formal proof
of convergence like other metaheuristic approaches (such as ACO and swarm
optimization [9, 17, 21, 27]) which depends on the size of the termite. We can control
the behavior of the TCO algorithm by manipulating the termites within the arbitrary
position. Any given termites with size N and position P within a sufficient number of
iterations always lead to equilibrium; and at that point the pheromone distribution
of the accepted states is stationary. We may note that for size N and position P
almost any change is accepted. This equilibrium convenience state indicates that the
TCO algorithm is able to expand a large neighborhood of the current position of the
termites. Initially, position P transitions to the next position with the same termite
size N, which becomes less frequent, and the solution stabilizes at the stationary
states. The TCO algorithm depicts different advantages over the other metaheuristic
approach, for example,

1. For larger size problems, the transitions overhead are significantly reduced.
2. The position of transitions depends not only on the size of the termites but also

the position of its states. Thus, in comparison to other metaheuristic approaches,
as the size of the problem increases, the performance of the method improves.

3. For optimal and stationary states, fewer moves are required for termites to be
transferred because the TCO algorithm converges and reaches an equilibrium
state at a certain number of iterations, for the reason that the efficiency of the
TCO algorithm increases.

Figure 2a shows the convergent graph of the TCO algorithm with a certain
number of iteration steps. On the basis of the following explanation, we apply
the TCO algorithm in low contrast satellite PAN image contrast enhancement: (1)
we address the scheme of the transformation function in the fuzzy domain, which
creates new fuzzy pixel intensities for the improved contrast image from the original
source image; and (2) we define the proper fitness function which investigates the
quality of the produced image. In this study, we choose fuzzy entropy as the fitness
function. These two challenges are described in the following sections.
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Fig. 2 Illustration of convergence and variation of TCO with a given number of iterations: (a) Plot
for TCO convergence; (b) Plot for Fuzzy entropy variation

Fig. 3 Comparative histograms of a given PAN image and the result of the TCO. (a) Original
image, (b) histogram of the original image, (c) enhanced by the TCO, (d) histogram of the output
image

3 Fuzzy TCO Application in Image Enhancement

Occasionally, images of the scenes appear in nature contrasting with their visual
comprehension, which is why the histogram of an image is unable to occupy the
entire dynamic range. It is well known that the image region turns out darker when
the intensity distribution is skewed towards the lower part of the histogram as well
as the image appearing brighter [17, 22, 36] when it is skewed towards the upper part
of the histogram and the image seems to be perceived as blurred. This means that
those images have regions which are over dark and over bright, which indicates that
a group of neighborhood pixels has gray levels very close to either the minimum or
the maximum with respect to the available dynamic range. In this regard, we utilized
the available dynamic range of a given satellite image by means of a fuzzy based
metaheuristic enhancement technique (TCO). In Figure 3 (a–d), we have illustrated
the original and extended histograms of the source and enhanced images of a ground
truth PAN satellite image.

GHE based contrast enhancement techniques are not able to conserve boundary
or edge details and cannot conceal certain artifacts in the low and high-intensity
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regions, even though GHE is considered one of the best enhancement methods.
However, sometimes it shows definite artifacts, for instance, false color composites,
less brightness, darkness, and irregular dim regions according to the nature of
the images. If spatially varying intensity distributions are not considered then the
corresponding enhanced images may have intensity distortion and may lose image
details in some regions.

In this study, we have proposed suitable fuzzy image enhancement techniques
which deal with the fuzziness and uncertainty of images [16, 17, 27, 36]. Let X

refer to an image of size M × N with L dynamic gray levels ranging from Lmin
to Lmax. xij represents the gray level of the (i, j)th pixel in X [22]. Depending on
fuzzy set theory, X is transformed into a set of fuzzy singletons G using a particular
membership function.

G = {μX(xij ) i = 1, 2, . . . ,M; j = 1, 2, . . . , N} (10)

where 0 ≤ μX(xij ) ≤ 1 and μX(xij ) represent some image properties like
brightness and grayness for the (i, j)th pixel.

Fuzzification is a transformation of the values of intensity to an interval between
0 and 1 [17, 22, 27, 36]. This is done by the use of any suitable fuzzy membership
function. The standard S-function is commonly used as a membership function due
to its simplicity and robustness. This is defined as [17, 22, 27, 36]:

S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x < p

2 ×
(

x−p
r−p

)2
p ≤ x < q

1 − 2 ×
(

r−x
r−p

)2
q ≤ x < r

1 x ≥ r

(11)

where p, q and r denote fuzzy parameters.
The parameter q is the cross-over point and is given by q = (p + r)/2. The

interval [p, r] is the fuzzy region whose width is 2Δq = r − p. The interval
[Lmin, p] and [r, Lmax] are defined as non-fuzzy regions.

Conventionally, Type-2 fuzzy sets deal with the uncertain assignment of a
membership degree [17, 22, 27, 36]. So, it is more consistent than a Type-1 fuzzy
set. In general, the amount of uncertainty in the membership of a Type-2 fuzzy set
is represented by the footprint of uncertainty, which is described in terms of upper
and lower membership functions. According to a Type-2 fuzzy set, we can define a
Type-1 fuzzy set and assign upper and lower membership degrees to each element
to determine the footprint of uncertainty [17, 22, 27, 36]. Conventionally, a Type-2
fuzzy set is represented as:

G̃ = {(x, μL(x), μU(x)|) , ∀x ∈ X,

μL(x) ≤ μ(x) ≤ μU(x), μ ∈ [0, 1]} (12)
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where μL(x) and μU(x) are the upper and lower membership degrees of the primary
membership function μ(x). Hence, the lower and upper membership values can be
defined as [22, 27, 36]:

μL(x) =
[
μ(x)q/2

]
, and μU(x) =

[
μ(x)2∗q

]
(13)

where r ∈ [0, 1]. Based on the lower and upper membership degrees μL(x) and
μU(x) of the primary membership function μ(x), the decomposed membership
degrees are composed of the fuzzy weighted average which represents the output
image μge . The output image μge is expressed as

μge(x) = (η × μL(x) + (1 − η) × μU(x)) (14)

where parameter η is defined as η = 4 ∗ q2. It is observed that the brightness of the
image depends on the value of η.

Based on the optimal problem, we have constructed the termites in the swarm
with position and velocity, which are both two-dimensional vectors of real numbers.
There are three main procedures in the proposed image enhancement method: (1)
devise the termites in the swarm, (2) design the fitness function, and (3) decide on
the swarm search strategy [3, 10, 27]. The detailed procedure is:

3.1 Devise the Termites in the Swarm

The position of each termite Xi

(
xi1, xi2, . . . , xiM

)
denotes a possible solution of the

optimal problem, where M is equal to M ×N . However, the velocity of each termite
belongs to the same direction with a different velocity. The different position and
velocity of each termite is a real number. In this work, we have introduced TCO
into the process of primary fuzzy set μX(x) to find the best parameter adaptively.
The parameters of the proposed method are the size of the swarm, which is M ×
N , and the maximum iterative time is 200, c1 = 1.1915, c2 = 1.4431, xmax =
max(μX(x)), xmin = min(μX(x)). The mutation rate is 0.175 and the range of the
local search is ±30 around Pg and α = 0.25, β = 0.5, γ = 0.4551 respectively.

Now, we consider the position of all termites in the swarm colony by a position
matrix Xs and the velocity of all termites by a velocity matrix Vs . Concentration of
the pheromone is represented by Ps and desirability by Ds for all termites. Now,
Xs , Vs , Ps , and Ds are defined as:

Xs =

⎛

⎜⎜⎜⎝

x11 x12 · · · x1M

x21 x22 · · · x2M

...
...

...
...

xN1 xN2 · · · xNM

⎞

⎟⎟⎟⎠ (15)
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Vs =

⎛

⎜⎜⎜⎝

v11 v12 · · · v1M

v21 v22 · · · v2M

...
...

...
...

vN1 vN2 · · · vNM

⎞

⎟⎟⎟⎠ (16)

Ps = 1

Xs

, and Ds =
(
Xsi+1,j+1

2 + Xsi,j
2
)1/2

(17)

where N is the number of termites in the swarm and M is the dimension of
each termite. Finally, the enhanced image Ge(i, j) is obtained by the following
defuzzification technique [17, 22, 27, 36]:

Ge(i, j) =
M⋃

i=1

N⋃

j=1

μge(i, j) ∗ (L − 1) (18)

where Ge(i, j) represents the gray level of the (i, j)th pixel in the enhanced image
and L denotes the highest gray level of image X.

3.2 Fitness Function Designing

The position of a termite is measured by a special function which is known as
a fitness function [17, 21, 27]. The larger the value of the fitness function of a
termite, the better the optimal solution becomes. Entropy can be used as a qualitative
measure of image quality. The fuzzy contrast of an image is a measure of the total
amount of variation of the membership values of intensities of pixels of an image
from the cross-over point. Fuzzy entropy is a measure of the uncertainty of a fuzzy
set. The fitness function for the optimal solution can be defined as:

H(X) = 1

MN ln 2

M∑

i=1

N∑

j=1

Sn

(
μX

(
xij

))
(19)

where Sn(·) is Shannon’s function defined by:

Sn

(
μX

(
xij

)) = −μX

(
xij

)
ln μX

(
xij

)− (1 − μX

(
xij

))
ln
(
1 − μX

(
xij

))
(20)

Based on the fitness function, the larger functional value represents the more
informational quantity of μX (x). Therefore, when the fitness function has the
maximum value, the corresponding parameter is the best one. Figure 2b shows the
fuzzy entropy optimization graph of the TCO algorithm with a given number of
iteration steps.
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3.3 Termites Search Strategy

For each image μx(i, j), the swarm search strategy is illustrated as follows:

1. Initialize the position matrix X and the velocity matrix V of the termite swarm
by using Eq. (15), where the elements in the position matrix X and the velocity
matrix V are initialized according to the following equations:

xX = xmin + (xmax − xmin) ∗ γ (21)

vX = −vmax + 1.25 ∗ vmax (22)

where i = 1, 2, . . . , N and m = 1, 2; N is the size of the swarm; γ is the real
number with the value of 0 or 1; vmax is the maximum value of v; xmax and
xmin are the maximum and minimum values of x, respectively; xmax = LX

max,
xmin = Lmin + 1; Lmax and Lmin are the maximum and minimum values of X

respectively.
2. Estimate the fitness value of each termite in the swarm using the fitness function

Eq. (19).
3. Update the position of each termite in optimal space. Compare the calculated

fitness value of each termite with the fitness value of its best previous position.
If the current value is better, then set the current position as its best previous
position.

4. Compare the evaluated fitness value of each termite with the fitness value of the
whole swarm’s best previous position Pg (Eq. (4)). If the current value is better,
then set the current position as the whole swarm’s best previous position.

5. Calculate the position and velocity of each termite according to Eqs. (21)
and (22).

6. The position of each termite is represented by the primary fuzzy membership
grades as μX(x). However, to maintain the original proportion in the swarm
according to the mutation rate, apply the mutation function to them as follows:

mut(xX) = xX ×
(

1 + 1

1 + exp −(σ )

)
(23)

where mut(xX) is the position after mutation and σ denotes the variation of xX. If
the fitness value of the termite after mutation is better than the fitness value of the
termite before mutation, the mutation result is updated. Otherwise, the mutation
result is rejected.

7. Exit the loop if the stop criterion is satisfied under the predefined maximum
iteration time and search if the output of the best parameter Pg is optimal.
Otherwise, go to Step (2).

8. Determine the best fuzzy parameter combination (p, r) in the fuzzy and non-
fuzzy regions around Pg .

9. Compute the fuzzy parameter r using the best fuzzy parameter combination
(p, r) and enhance the image using Eq. (14).
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Algorithm 1: Pseudo-code of the proposed algorithm
Require: Image matrix IM×N , (p1, p2, . . . , pn) ∈ IM×N ;
Initialize parameters c1, c2, xmax, xmin, α, β, γ, τ and search rang set as −30 to +30;
set maximum number of iterations n;
Output: Enhanced satellite image Ie;
Preparation: Fuzzify the input matrix IM×N into Iμij

fuzzy matrix using S(p, q, r)−function
(Eq. (11)) with arbitrary values (e.g. p = 50, q = 75, r = 100);
Initialize matrix Xs, Vc, Ps, Ds by TCO and fuzzy entropy H(·) (Eq. (19));
while (k ≤ n) do

Calculate xk
X and vk

X where xX, vX are position and velocity matrices according to
Eqs. (21)–(22);
Compute fuzzy fitness value Hk(·) by using Eq. (19) with Eq. (4);
Estimate xk+1

X , vk+1
X for Ik

μij
according to TCO;

Update P k
s = 1

Xk
s

by Eq. (17);

xk+1
X = xk

min + (xk
max − xk

min

) ∗ γ by Eq. (21);

vk+1
X = −vk

max + 1.25 ∗ vk
max by Eq. (21);

Search fuzzy S(p, q, r) parameter (p, q), (q, r) using xk+1
X , vk+1

X when P k+1
s maximum;

Update Ik
μij

with parameter (p, q), (q, r) using Eq. (11);
k = k + 1;

end while
Compute fuzzy weighted average μge

by Eq. (14);
Perform fuzzy membership manipulation on μge

according to Eq. (13);
Post-process (defuzzification of μge

) results and visualization (enhanced image Ie);

4 Experiment and Results Analysis

The proposed methodology was implemented on Intel(R) Core (TM) i5 − 3304S

CPU at 2.80 GHz with 16 GB RAM using Python version anaconda 4.6. The
proposed algorithm was validated by applying it to a set of test images (http://
earthobservatory.nasa.gov/). Experiments were performed on over 100 selected
Panchromatic QuickBird (http://earthobservatory.nasa.gov/) ( PAN-QuickBird, 0.7−
m resolution, 512 × 512 pixels after resizing) images from various sources which
confirm the results. We compared our proposed technique with four metaheuristic
methods such as GA [4, 23, 30], DE [4, 8, 30], ABC [5, 8, 14], PSO [2, 29, 37], ACO
[4, 15, 33, 36], and CSO[6, 10]. Initially, to enhance the original PAN satellite image,
for all aforementioned algorithms have been tested on the three color channels i.e.
read (R), green (G) and blue(B) of a color image (RGB) separately. Each channel
is considered a 2D gray-level image (monochromatic). Then, results achieved from
each enhanced channel were combined to form the resultant color image.

In this study, the above mentioned metaheuristic based approaches are performed
as enhancement tasks with adjustments to their own control parameters because
these restrict the systematic model of each algorithm. For example, in this work,
we used the essential control parameters for the GA and DE approaches as
suggested in [4, 23, 30] and [4, 8, 30] using the author’s setting. The optimality

http://earthobservatory.nasa.gov/
http://earthobservatory.nasa.gov/
http://earthobservatory.nasa.gov/
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of the GA algorithm is influenced by different control parameters such as cross-
over probabilities and mutation rates. On the other hand, DE is controlled by
certain operators such as the initial population generation, cross-over, mutation, and
selection. The main steps of all algorithms revolve around the initial population
generation, evaluation of the individuals in the population, evaluation of the fitness
function, and global optimization. The operation of each process in the TCO is
repeated until a predefined stopping criterion such as a maximum generation number
that is satisfied for each generation. All the above algorithms are straightforwardly
implemented in Python with entropy as the global optimization function and n = 50
fixed iterations.

From the above discussion, we can notice that the aforesaid metaheuristic based
image enhancement approaches are required to adjust their associated parameters.
Due to their parametric based optimization nature, each algorithm can be impacted
in their result by their corresponding parameter’s values. On the other hand, the
parameters of the PSO method are set as follows: number of particles = 30, number
of iterations = 50, mutation probability value pa = 0.25, scale factor β = 1.0
as suggested in [2, 29, 36, 37]. Similarly, the parameters for ABC are set to the
following values: total number of bees = 30 and the number of iterations = 50,
where employed foragers and idle foragers share half the population respectively
as suggested in [5, 8, 14, 22, 36]. For ACO [22, 33, 36] and CSO [6, 10, 36], we
set the parameters as follows: number of fireflies = 30, number of iterations = 50,
attractiveness probability value β0 = 0.25, cooling factor κ = 0.40, and α = 0.05,
γ = 1.0, and δ = 0.01, respectively as suggested in [6, 10, 22, 33, 36].

This section we have described exactly how to use all algorithms to solve low
contrast image enhancement, for instance, in Figs. 4(a), 5(a), 6(a), 7(a), 8(a), and

Fig. 4 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)
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Fig. 5 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)

Fig. 6 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)
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Fig. 7 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)

Fig. 8 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)
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Fig. 9 Simulation results of the source PAN QuickBird image (QuickBird, 0.7-m resolution, 512×
512 pixels after resizing) and enhanced results of different methods. (a) Original “PAN image”,
(b) GA-based technique, (c) DE-based technique, (d) ABC technique, (e) PSO-based technique,
(f) ACO-based technique, (g) CSO-based technique, and (h) the proposed technique (TCO)

9(a), we have shown different low-contrast ground truth PAN QuickBird satellite
images which are taken from http://earthobservatory.nasa.gov/. These images have
been enhanced using GA, DE, ABC, PSO, ACO, and CSO techniques, and the
proposed TCO method. In experiments, the performance of these techniques are
assessed by considering the consistency of the reconstructed enhanced image from
the original image. For subjective evaluation, mean square error (MSE) [15, 19, 36],
peak signal to noise ratio (PSNR) [15, 19, 36], picture quality scale (PQS) [17,
22, 28], the universal quality index (UQI) [17, 22, 28, 36], the linear index of
fuzziness (LIF) [17, 28, 36], structural similarity metrics (SSIM) [22, 25, 28, 36],
and assessment metrics are taken into account. In the testing stage, several satellite
images are included to validate the usefulness of our algorithm. The performance of
this technique is assessed in terms of the following significant metrics [17, 22, 25,
28, 36]:

Mean(μ) = 1

MN

M−1∑

x=1

N−1∑

y=1

I (x, y) (24)

STD(σ ) =

√√√√√ 1

MN

M−1∑

x=1

N−1∑

y=1

[I (x, y) − μ]2 (25)

Mean (μ) is the average of all intensity values. It denotes the average brightness
of the image, whereas standard deviation is the deviation of intensity values about
the mean. It denotes the average contrast of the image. Here I (x, y) is the intensity
value of the pixel (x, y), and (M,N) is the dimension of the image. At first, the
performance of the proposed algorithm is applied on multi-spectral PAN satellite
sample images. Thereafter, comparison of the proposed TCO technique is conducted

http://earthobservatory.nasa.gov/
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with the most popular metaheuristic based approaches such as GA, DE, ABC, PSO,
ACO, and CSO, which shows the superiority of the proposed technique in the image
enhancing problem.

In order to performance analysis, the PSNR block computes the PSNR between
two images in decibels. This ratio is frequently used as a superiority measurement
between the original and enhanced images. A higher PSNR indicates a better quality
of the enriched or reconstructed image. MSE and PSNR are the two error metrics
measured against the enhanced quality of the image. MSE represents the cumulative
squared error between the enhanced and original image, whereas PSNR represents
a measure of the peak error. The lower value of MSE represents a lower error. In
addition, other popular quality metrics (UQI, LIF, and SSIM) are used and discussed
in the subsequent section in detail. In our experiment, we do not depict the mean
(μ) and variance (σ ) in the case of comparison. Here, we used μ, σ to define more
powerful metrics such as UQI, LIF, and SSIM respectively.

Experimentally, to provide the objective performance comparison, several stan-
dard measurement metrics (image quality measurements) such as MSE [9], PSNR,
PQS, index UQI, and SSIM are successfully utilized in detail. They are defined as
follows [22, 25, 28, 36]:

1. MSE: Let xi,j and yi,j denote the pixels at the position (i, j) of the original
image and the reconstructed image with a size of M × N each, respectively.
MSE is calculated by the following equation:

MSE =
∑M

i=1
∑N

j=1

(
xi,j − yi,j

)2

M × N
(26)

Here, M and N are the number of rows and columns in the input images,
respectively. x is the original image and y is the enhanced image.

2. PSNR: To compute PSNR, the MSE is used, which is defined by:

PSNR = 10 · log10
Q2

1
M×N

∑M
i=1
∑N

j=1

(
xi,j − yi,j

)2 (27)

where Q = 255 for 8-bit 2D images. Here, M and N are the number of rows and
columns in the input images, respectively. I1 is the original image and I2 is the
enhanced image.

3. PQS: PQS is calculated based on the biased difference between image X and Y,
where the function f (·) is the frequency-selective property of the human visual
system. Typically, PQS is represented in the following form [25, 36]:

PQS = 10 · log10
1

1
M×N

∑M
i=1
∑N

j=1

(
xi,j − yi,j

)2 (28)

where the function f (·) is defined the same as in [25, 36]. A larger PQS value
specifies a better image quality.
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4. UQI: Typically, UQI measures the amount of image distortion in terms of three
parameters: loss of correction, luminance variation, and contrast distortion. Its
highest value is 1, and as being close to the maximum indicates minimum
distortion. UQI is defined as [17, 22]:

UQI = 4σxyμxμy

(σ 2
x + σ 2

y )(μ2
x + μ2

y)
(29)

σxy =
M∑

i=1

N∑

j=1

(xij − μx)(yij − μx) (30)

where x and y are the source and final images, with its mean as μx , μy , and its
variance as σx σy , respectively.

5. LIF [22, 25, 28, 36]: LIF is a spatial information based performance evaluation
metric that is widely used to measure the quality of a processed image (especially
image enhancement). For an image I with size M×N , it is defined and written as:

LIF = 2

M × N

M∑

i=1

N∑

j=1

min{μij ,
(
1 − μij

)} (31)

μij = sin

[
π

2

(
1 − Ii,j

Imax

)]
(32)

where Iij denotes the pixel intensity at spatial location (i, j), and Imax is the
maximum intensity value of the given image. A small value of LIF indicates
better enhancing performance of the tested method [25, 28].

6. SSIM [22, 25, 28, 36]: Let, x and y be the source and final images with its
mean as μx , μy , and variance as σx σy , respectively. The structural similarity
index (SSIM) is defined by intern = ms of several values such as p1 = 0.01,
p2 = 0.03, and L as the dynamic range of pixel intensity (for an eight-bit image
L ∈ [0, 255]) as follows:

SSIM = (2σxy + d2)(2μxμy + d1)

(σ 2
x + σ 2

y + d2)(μ2
x + μ2

y + d1)
(33)

where d1 = (p1 × L)2, d2 = (p2 × L)2, and σxy are defined in UQI.

Tables 1, 2, 3, 4, 5, and 6 show the various results of the quantitative perfor-
mances of all enhanced methods for the selected images which are shown in Figs. 4,
5, 6, 7, 8, and 9, respectively. From these tables and figures, it can be seen that the
proposed algorithm always achieves the highest values of all performance metrics
(MSE, PSNR, PQS, UQI, LIF, and SSIM) which are listed as bold than from the
aforementioned algorithms.
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Table 1 Performance comparison of different methods with several metrics on the source
image 4

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 5.0573 42.8571 26.0570 0.6531 0.4228 0.8842

DE 4.7501 42.9715 26.1309 0.6618 0.3904 0.8931

ABC 4.4120 43.2916 26.1673 0.6897 0.3751 0.8978

PSO 4.3431 43.9881 26.2202 0.7197 0.3541 0.9904

ACO 4.2523 44.1223 26.3519 0.7262 0.3136 0.9917

CSO 4.1519 44.3739 26.5389 0.7368 0.3107 0.9922

TCO 4.0361 44.9361 26.5961 0.7401 0.3094 0.9931

Table 2 Performance comparison of different methods with several metrics on the source
image 5

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 4.6157 42.3185 25.1575 0.6507 0.3639 0.8023

DE 4.4167 42.3620 25.1630 0.6564 0.3463 0.8246

ABC 4.3431 43.3722 25.2206 0.7218 0.3056 0.8509

PSO 4.2122 43.4876 25.2418 0.7871 0.2840 0.8607

ACO 4.2523 44.5127 25.3059 0.7962 0.2602 0.8878

CSO 4.1416 44.7362 25.3379 0.8302 0.2505 0.8937

TCO 4.0907 44.9530 25.3728 0.8540 0.2133 0.9012

Table 3 Performance comparison of different methods with several metrics on the source
image 6

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 4.2772 42.9480 26.1012 0.5443 0.4409 0.8254

DE 4.2314 42.7296 26.1773 0.5820 0.4177 0.8473

ABC 4.1861 43.0970 26.2257 0.6169 0.4066 0.8566

PSO 4.1740 43.1419 26.2808 0.6305 0.3933 0.8793

ACO 4.1116 44.2711 26.3004 0.6757 0.3834 0.8935

CSO 4.0910 44.3611 26.3259 0.7099 0.3603 0.9077

TCO 4.0082 44.4068 26.3469 0.7514 0.3263 0.9105

Table 4 Performance comparison of different methods with several metrics on the source
image 7

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 5.6679 43.1773 27.0627 0.7531 0.5228 0.7842

DE 5.6531 43.1871 27.1080 0.7618 0.5904 0.7931

ABC 5.6268 43.1797 27.1673 0.7897 0.5751 0.7978

PSO 5.6093 43.1801 27.2202 0.7197 0.4541 0.8904

ACO 5.5855 44.0923 26.3519 0.8262 0.4136 0.8917

CSO 5.5749 44.1095 26.5389 0.8368 0.4107 0.8922

TCO 5.5528 44.1133 26.5961 0.8401 0.4094 0.9931
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Table 5 Performance comparison of different methods with several metrics on the source
image 8

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 5.1183 43.1829 27.3945 0.8156 0.5991 0.8151

DE 5.0837 43.1972 27.12873 0.8288 0.5751 0.8404

ABC 5.0675 43.2159 27.1759 0.8361 0.5517 0.8645

PSO 4.9168 43.2584 27.0266 0.8599 0.5358 0.8941

ACO 4.6156 44.1579 26.8618 0.8769 0.5358 0.9276

CSO 4.3956 44.2832 26.3938 0.8991 0.5160 0.9431

TCO 4.3754 44.3014 26.1753 0.9068 0.5082 0.9671

Table 6 Performance comparison of different methods with several metrics on the source
image 9

Methods MSE PSNR (dB) PQS (dB) UQI LIF SSIM

GA 4.4214 42.1649 26.3831 0.7749 0.4322 0.8655

DE 4.4185 42.2522 26.5759 0.7827 0.4129 0.8728

ABC 4.4058 43.5976 26.6719 0.8025 0.4027 0.8828

PSO 4.3924 43.7468 26.8414 0.8347 0.3910 0.8929

ACO 4.3899 44.0503 26.9072 0.8691 0.3861 0.9025

CSO 4.3680 44.1616 26.9287 0.8875 0.3773 0.9196

TCO 4.3467 44.3130 26.9871 0.8964 0.3688 0.9366

Because of the complexity problem (resolution variation, spectral preservation)
in satellite image processing, most of the existing enhancement techniques have
been tested on an average remote sensing dataset, or otherwise simply on gray tone
images. In the case of satellite images, the rate of variation of the resolution and
image detailed are certainly high because most satellite images are typically very
dense. By reason of the highly compact spectral bands, the rate of variation from
one image region to another region of the satellite image is really fast. Thus, for dim
satellite image enhancement, exact enhancement seems to be challenging. There are
several approaches, which have been developed and successfully applied to resolve
enhancement problems with satellite images.

In this work, six metaheuristic approaches—GA, DE, ABC, PSO, ACO, and
CSO techniques—were applied for assessment and investigation. Figs. 4, 5, 6, 7, 8,
and 9 are shown the low contrast original PAN satellite images, respectively. These
images were enhanced using GA, DE, ABC, PSO, ACO, CSO, and the proposed
algorithm, which is shown in Figs. 4, 5, 6, 7, 8, and 9. The TCO technique is
included in Figs. 4, 5, 6, 7, 8, and 9h, which provides better enhancement of the
image than GA, DE, ABC, PSO, ACO and, CSO, which are shown in Figs. 4,
5, 6, 7, 8, and 9f. All the results shown in Figs. 4, 5, 6, 7, 8, and 9h represent
the improved images (contrast enhanced) by the proposed TCO approach. Images
obtained by remaining methods are shown in Figs. 4, 5, 6, 7, 8, and 9g. The quality
of the enhanced image and improved results indicate that the proposed enhancement
technique TCO can produce a sharp and brighter image than the conventional GA,
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DE, ABC, PSO, ACO, and CSO approaches. In Figs. 4, 5, 6, 7, 8, and 9h, we
notice that all the resulting images made by GA, DE, ABC, PSO, ACO, and CSO
techniques are comparably different from the image obtained by the proposed TCO
method, though these six approaches are mainly considered for validation purposes
and tests have been carried out on more than 100 particular PAN QuickBird satellite
images. In addition, GA, DE, ABC, PSO, ACO, and CSO techniques have great
ability to solve the low contrast image enhancing problem while they meet the
proper criteria (such as exact parameter setting, number of iterations, selection, and
choosing a suitable global function).

Figure 4a–h displays the resulting image of TCO on the remote sensing PAN
source image and when compared with the conventional GA, DE, ABC, PSO,
ACO, and CSO individually. Figure 4a shows the original low contrast PAN image
with resolution (512 × 512). The GA, DE, ABC, PSO, and ACO methods do not
successfully preserve the edge information, such as for the tree. Also, it can be
observed in Fig. 4b–g that image objects (tree, road, and house) in the background
of the image appear slightly hazy and dim. The image quality is significantly better
in Fig. 4h according to the TCO approach. Moreover, we may notice that the details
of the images are clearly preserved and the variations in the shade of the background
are more visible, which facilitates better human perception, although CSO obtains
almost the same results as TCO, which is illustrated in Fig. 4g. Observably, Fig. 4h
makes better color consistency by TCO, which is better than GA, DE, ABC, PSO,
ACO, and CSO in Fig. 4b–g.

In the same way, for the following test image sets, Fig. 9a–g provides the
assessment results of all algorithms with the original source PAN image of size
512 × 512 that cover the islands on the river under an urban scene. The houses
and trees on the islands are more visible in Fig. 4h, generated by TCO. The image
in Fig. 4b–f loses more detail and has reduced clarity due to improper parameter
assignment. In Fig. 4g, CSO demonstrates better improved enhancement results than
GA, DE, ABC, PSO, and ACO, except TCO. In contrast, TCO produces highly
improved contrast with certain iterations as shown in Fig. 9g. On the other hand,
the following experiments were performed on a remote sensing QuickBird satellite
PAN image; the original image in Fig. 8a was taken in a part of Tokyo city with dim
light. Accordingly, we may notice that the city buildings and the road seem to be
slightly visible after enhancement by the standard GA, DE, ABC, PSO, and ACO
in Fig. 8b–f. Figure 8g, h shows CSO and TCO offer better enhanced results than
GA, DE, ABC, PSO, and ACO but not TCO provides more visible appearance than
CSO. Similarly, the sharpness, better detail, and stable clarity for TCO and CSO are
more consistent than for GA, DE, ABC, PSO, and ACO.

In the following assessment, Fig. 7b–g provides the expected resulting images of
all considered enhancement algorithms with the 512 × 512 resolution QuickBird
satellite PAN image which shows the buildings with connected roads in the city
scene. The houses and the road appear sharper and clearer in Fig. 7g achieved by our
algorithm; the background appears clearer than the source image as well as the other
resultant images. The resulting images in Fig. 7b–f obtained by GA, DE, ABC, PSO,
and ACO lose certain image detail and a reduced contrast level, whereas CSO and
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TCO provide improved image details and an enhanced contrast level in the resulting
images in Fig. 7g and h, respectively. In contrast, TCO yields an optimal contrast
level with better image detail which is shown in Fig. 7f. Thus, we may remark that
TCO and also CSO can modify the dynamic intensity level of the source images
better than the remaining methods.

In Fig. 7g, the house beside the road is more perceivable by the TCO algorithm. In
the next simulation of a QuickBird PAN image with size 512×512, all the resulting
images are shown in Fig. 6b–g. In Fig. 6b–f, other comparative methods are shown
to be definitely losing image detail. CSO and TCO exhibit better results in Fig. 6g, h.
Then again, we notice that TCO produces the finest sharpness and with great detail
in Fig. 6h, more than 6g by the CSO method. It is obvious that our method is more
suitable for enhancing a dim PAN satellite scene and effectively preserving image
detail than is the case with most prevailing approaches. In brief, Tables 1, 2, 3, 4,
and 5 all provide the evaluated results of all comparative algorithms for all fixed size
(512×512) benchmark images in terms of all metrics (MSE, PSNR, PQS, UQI, LIF,
and SSIM). According to the results, our proposed algorithm demonstrates better
performance in the six low contrast scenes, although GA, DE, ABC, PSO, ACO, and
CSO need to adjust their scale parameters and iterations with respect to the variety
of environments to attain improved results. In this chapter, the proposed model TCO
utilizes an entropy global optimization function to achieve the optimal outcome by
adjusting the fitness values. In the case of other methods selected for comparison, we
used entropy as the global function and adopted it to their corresponding parameters.
In this study, we restricted ourselves to design and implementation and compared
our proposed method with most conventional metaheuristic approaches, such as GA,
DE, ABC, PSO, ACO, and CSO.

To address the computational efficiency of all enhanced techniques, the execution
times of the standard GA, DE, ABC, PSO, ACO, CSO, and TCO are verified and
shown in Table 6 with the minute as the unit, although, due to the several parameters
and different iterations, GA, DE, ABC, PSO, ACO, and CSO perform with different
running times. In particular, GA, DE, ABC, PSO, and ACO take several minutes
to handle an image, whereas CSO and TCO require apparently less time than for
the same image. TCO achieves the best indices compared to other approaches as
shown in Tables 1, 2, 3, 4, 5, and 6. On the other hand, Table 7 prominently shows
the execution times of GA, DE, ABC, PSO, ACO, CSO, and TCO in minutes. It

Table 7 Comparison of execution times of the different methods in minutes

Methods Image-4 Image-5 Image-6 Image-7 Image-8 Image-9 Average

GA 1.2859 1.2855 1.2865 1.2854 1.2856 1.2851 1.2856

DE 1.2858 1.2859 1.2863 1.2857 1.2858 1.2853 1.2858

ABC 1.2859 1.2854 1.2864 1.2856 1.2857 1.2850 1.2856

PSO 1.2857 1.2859 1.2867 1.2853 1.2855 1.2855 1.2857

ACO 1.2855 1.2856 1.2862 1.2855 1.2859 1.2852 1.2857

CSO 1.2853 1.2858 1.2863 1.2854 1.2853 1.2854 1.2855

TCO 1.2851 1.2856 1.2862 1.2853 1.2849 1.2849 1.2854
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Fig. 10 Histogram comparison of different enhancement methods of the original source image 4.
(a) Histogram of the original image, (b) Histogram of the GA technique, (c) Histogram of the DE
technique, (d) Histogram of the ABC technique, (e) Histogram of the PSO technique, (f) Histogram
of the ACO technique, (g) Histogram of the CSO technique, and (h) Histogram of the proposed
technique (TCO)

demonstrates that the TCO algorithm can minimize the computational complexity
within a specified iteration.

In order to validate the performance of the proposed TCO method, we performed
not only a subjective evaluation but also constructed histograms for comparison. We
generated the histogram of each result of the above mentioned algorithms with an
image set Fig. 4. We noticed that the histogram of the original source PAN image in
Fig. 10a is more narrow within the dynamic gray level range [0–256], whereas each
and every histogram of the comparison methods used (i.e. GA, DE, ABC, PSO,
ACO, and CSO, as shown in Fig. 10b–h), except the proposed method, modify the
dynamic gray level range. However, the histogram of TCO, as shown in Fig. 10h,
reveals that TCO is able to modify the dynamic gray level range more than the
others, due to its better enhancing ability.

In this section, we show all resultant images generated by different methods,
that is GA, DE, ABC, PSO, ACO, CSO, and TCO, and present all the above
mentioned performance evaluation matrix values in Tables 1, 2, 3, 4, 5, and 6
with selected sets of benchmark images. However, due to page constraints, we only
present the graphical plots for the image sets Fig. 4. Here, we show all performance
comparisons in terms of bar chart, pie chart, and line plots. For example, Fig. 11a–
d illustrate all the matrix values provided by different methods used on image sets,
as shown in Fig. 4 with bar chart, pie chart, and line plots. On the other hand, the
run time for individual methods for all image sets is presented in Table 7 and, for
better understanding, we represent the obtained result of Table 7 by bar chart, pie
chart, and group plot, separately. Average run times of all the above mentioned
methods for all image sets are measured and shown in Table 7 with bold notation
and by Figs. 12 (a), 12 (b) and 12 (c) are bar plot (average runtime), pie plot, and
group bar plot (different runtime) which are illustrated the runtimes of all methods,
respectively. On the basis of all these methods and benchmark images, we may
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Fig. 11 Quantitative plots of performance metrics of different methods for image group 4: (a) bar
plot, (b) point line plot, (c) pie plot, (d) line plot

greatly expect that the proposed method would be an alternative image enhancing
method for low contrast images in the domain of remote sensing.

In order to establish the effectiveness of TCO, estimated data in terms of
several matrices of MSE, PSNR, PQS, UQI, LIF, and SSIM are presented in
Tables 1, 2, 3, 4, and 5 and are truly compared with the performances for GA,
DE, ABC, PSO, ACO, CSO, and TCO to specify the validation of our experiments.
Furthermore, in order to make a complete evaluation, all methods are executed with
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Fig. 12 Quantitative plots of overall run time of different methods: (a) bar plot(average), (b) pie
plot, (c) group bar plot

all the used benchmark PAN satellite images and their processed times are recorded
to understand their performance. The results in Tables 1, 2, 3, 4, and 5 indicate that
the proposed technique (TCO) over-performs the above techniques in enhancing
image contrast.

The primary advantage of the proposed TCO technique is that it is adept at
enhancing the poor and low-contrast satellite PAN images when devised for very
low illumination. The metaheuristic optimization enhanced techniques can perform
better if their corresponding parameters are optimally set. However, if the input
PAN image contains very dim images and the variation of the pixel intensity in the
image is fixed then these techniques are not able to perform better enhancement. As
shown in Table 7, the proposed technique has less execution time than the others
where the input satellite images have a fixed resolution (512 × 512). Therefore,
Tables 1, 2, 3, 4, 5, and 6 demonstrate the superiority of the proposed algorithm
especially for very low and poor-contrast PAN satellite images.
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In this work, only a large collection of PAN QuickBird satellite images are
considered and applied to test performance validation of our proposed enhancement
algorithm. We have compared our approach with the existing most popular meta-
heuristic optimization based enhancement approaches for comparative (subjective
and objective assessment) studies. From all these facts, we see that the TCO
approach not only enhances the input images visually but also produces sharper and
brighter enhanced images which assists in producing a better interpretation than the
state-of-the-art satellite image enhancement approach.

From these plots of Figs. 11a–d and 12a–c, it can be observed that for all
benchmark low-contrast PAN satellite images, the TCO performed a considerable
improvement in contrast enhancement. From this comparative plot of MSE, PSNR,
PQS, UQI, LIF, and SSIM matrices, it is clear that the proposed method provides
better enhancing performance in low contrast PAN images. Similarly, statistically,
the performance analysis in terms of PQS, UQI, LIF, and SSIM are plotted in Fig. 11
for different images with different approaches. From the plots in Fig. 11a–d based on
metric records, it is clear that there is an improvement found in edge sharpness and
clarity by the proposed TCO approach compared to the other approaches. According
to the all data plots of the aforesaide performance matrices, it can be observed that
the assessment values of PQS, UQI, LIF, and SSIM are highest and it is achieved by
the proposed approach TCO which are listed in bold in the all tables. Therefore, it is
clear that the TCO can make a significant improvement in image enhancing task and
it can be more suitable for real-time remote sensing applications, specifically low
light contrast improvement. Finally, the plots shown in Fig. 12 depict a considerable
improvement in the execution time by the proposed method.

From all points of view, to establish a true validation of TCO for enhancing
the PAN satellite image, in terms of several performance measures, metrics like
MSE, PSNR, PQS, UQI, LIF, and SSIM are carefully considered and reported in
Tables 1, 2, 3, 4, 5, and 6 individually. Based on the values of these indices, it is
validated that the proposed TCO approach not only outperformed other approaches
but also successfully enhanced the low contrast PAN image in a reasonable run time.
In the plots of Figs. 11a–d and 12a–c, it has been established that there is not only an
improvement in contrast but also an improvement in image detail by the proposed
approach with an effective cost of execution.

5 Conclusion

We have proposed a TCO algorithm in this work and successfully utilized it for
contrast enhancement in low light or unevenly illuminated images. This TCO
algorithm along with fuzzy type-2 methodology has been applied to the image
enhancement technique on low contrast color images. To optimize the informational
quantity in an enhanced image, we operated a fitness function such as fuzziness
in the fuzzy domain. The fuzzifier and intensification parameters were evaluated
automatically for the input color image of the TCO system in the fuzzy domain.
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This technique has been successfully tested on various low contrast color images.
Experimental results show the superiority of our proposed technique over prevailing
conventional methodologies.
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Image Segmentation Using
Metaheuristic-Based Deformable Models

B. K. Tripathy, T. R. Sooraj, and R. K. Mohanty

Abstract The goal of the segmentation techniques called deformable models is to
adapt a curve in order to optimize the overlapping with another image of interest
with the actual contour. Some of the problems existing in optimization involve
choosing an optimization method, selecting parameters, and initializing the curve.
All these problems will be discussed within this chapter, with reference to meta-
heuristics, and are designed to solve complex optimization and machine learning
problems. We discuss image segmentation techniques which depend on active
contour models using metaheuristics. Similarly, histological image segmentation
techniques are elaborated using a level set approach based upon metaheuristics.

Keywords Metaheuristics · Active contour models · Histological images · Level
set

1 Introduction

In computer science and electronics, image segmentation is one of the growing
fields. It has wide applicability in the medical field, satellite image processing,
and so on. The main problem that we face is the presence of noise in the images.
The quality of the existing image segmentation techniques like edge detection and
thresholding becomes reduced in the presence of noise. Curves and surfaces come
under deformable models (DMs) when these are defined within a flexible image
domain, where the flexibility is provided by different forces acting externally and
internally. The design of internal forces is made in such a way that the deformation
process applied to curves or surfaces are achieved smoothly. On the other hand the
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external forces move the model towards the object boundary and are computed from
the image data. The DMs are divided into two basic categories:

1. Parametric deformable models (PDMs)
2. Geometric deformable models (GDMs)

Under Category 1, as the name suggests, parametric forms of the curves and
surfaces are used during the process of deformation. The advantage of parametric
representation is that it is compact and the real time application thereafter can be
fast. In the case of PDMs, aggregating and separating different parts is difficult.
For GDMs, the handling of changes in structure is very natural. There exist
different models which are based on curve evolution [6], the level set method, active
contour methods, and so on. An implicit representation technique is followed for
presenting curve evolution and a level set of functions of higher dimension non-
vector functions. First a complete deformation is carried out and then an evaluation
of the parametrization, as in this process accommodation of topological adaptivity
is done easily. Identical principles are followed for the two methods.

Optimization algorithms are classified into two categories

1. Exact algorithms: These are the ones in which optimal solutions are obtained in
a finite amount of time.

2. Heuristic algorithms: These are the one which can find better solutions, though
an optimal solution is not guaranteed.

So, depending upon the nature of the output we need, we can select either exact
or heuristic algorithms. Heuristics cannot be used to find the exact solution within
the stipulated time, so in those cases where exact solutions are required, then exact
algorithms are the best ones to use. There is not a way to measure practically the
closeness of the solution obtained through heuristics and the global optimum.

Most of the heuristic algorithms are specific and problem dependent, though on
the other hand metaheuristics are problem independent. Metaheuristics have their
own guidelines and strategies for developing heuristic optimization algorithms. The
main difference between heuristics and metaheuristics is that the latter repeatedly
try to optimize the problems through computational methods. This enables us to
search in large spaces of candidate solutions.

The categorization of metaheuristics is as follows:

1. Trajectory methods (TMs): In this method the search process forms a trajectory
in the search space which seems to be the generation of a discrete dynamical
system in non-continuous time. In tabu search, simulated annealing, iterative
local search, and variable neighborhood search, TM is used.

2. Population based methods: A population of solutions is searched during each
individual iteration step of these methods. It is seen that a member of the
solution space is generated in discrete time. Evolutionary algorithms (EAs)
such as genetic algorithms [16, 19], evolution strategies [2], and evolutionary
programming [13] come under this paradigm. It also includes particle swarm
optimization (PSO) [22]. Biological evolutionary terms such as reproduction,
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mutation, recombination, and selection form the basic notions of evolutionary
algorithms, which are basically used to solve optimization problems. The
collective behavior of decentralized, self-organized artificial systems is used
in swarm intelligence methods. A more recent and popular algorithm for non-
discrete optimization is differential evolution [37]. This method borrows features
from EAs as well as swarm intelligence methods.

3. Memetic algorithms: These are generalizations of Genetic Algorithms (GAs).
The chance of untimely convergence is controlled through local search tech-
niques. A local enhancement method is embedded into an algorithm based upon
population and is a hybridization of different search methods which may be either
local or global [31]. Overall its effect can be described as the reproduction of
learning and societal interaction in a life time of people getting global search
solutions being effected by the optimization of their local counterparts. As an
example, we can take the case of scatter search [15].

2 Image Segmentation (IS) Using Metaheuristic Based DMs

IS can be defined as the dividing of images into components such that the
intersection of these components must be empty. To segment an image, one has
to consider the attributes which are related to the image. Some of those attributes
are image type, others are image intensity. Some of the areas relating to IS are
medical images, object detection, and video surveillance. IS can be classified as
thresholding techniques, edge based methods, region based approaches, and DMs.
In thresholding techniques, the segmentation is based on the intensity of the pixel.
In the case of edge based methods, it is based on boundary localization. If the
segmentation is based on region detection, then we can call it a region based
approach; and if it is based on shape, then we can call it a DM.

In this chapter, we are focused on DMs and metaheuristics and how they are
related to IS. As mentioned earlier, DMs start from curves and are modified due to
internal and external forces (shrinking or expansion operations). The aim of these
operations is minimizing the energy function. A consequence of this is that the
boundary of the object to be segmented must fit to the curve. Thus it boils down
to the fact that IS can be viewed as optimizing a function which is multimodal.

The significant properties of metaheuristics have helped researchers to apply it
with IS using DMs. Mainly IS techniques use metaheuristics and are applied in
medical images [27, 45]. Zografos [45] used concepts in genetic algorithms which
helped to improve the convergence speed. Maulik [27] discussed the suitability
of various optimization techniques by conducting tests over a series of two-
dimensional analytical functions. The tests conducted by them highlighted the
properties of the various optimization techniques. In the next section, we discuss
the metaheuristic approaches using an active contour model.
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2.1 Active Contour Models (ACMs)

Kass et al. introduced a concept called snakes, which is a model for detecting
the boundaries of objects coming under the general concept of ACMs. In order
to minimize the energy function so that it coincides with the boundary of the
object a deformation procedure is used. A latest method to achieve contour based
segmentation is genetic algorithm (GA) snakes. The main features of this method
are related to complexity, storage, and storage space [26].

Active contour modeling can be efficiently used in object boundary extraction.
In [26] the vector bundle (VB) constraint method, based on ACMs for PSO, is
discussed. This method can be differentiated in the sense that VB is predefined
whereas the restriction in velocity update is its bundle. The particles in PSO are
represented by the control points on the contour in order to apply the idea of ACMs;
the particles drive the evolution procedure. Many research publications have come
out of the interest of researchers in classic contour models in swarm intelligence
[12].

Simulated annealing (SA) is a technique to approximate global optimization in a
large search space. Some of the techniques using SA and basic memetic approaches
are discussed in [39]. Tang et al. discussed an improved snake model using SA. This
model differs from the existing models in the use of center energy in the traditional
snake model; curved energy can be tuned according to the pot. This will help the
initialized curve to store both topological properties and also to fit the concave of
the object.

Nowadays metaheuristics are applied in IS, and one of the most useful models
in this direction is (ACMs). For most of the methods, metaheuristics is used
for evolving control points of the model such that in the search space best
locations can be searched. Several applications of IS have evolved from the idea
of geometric snakes introduced in [3]. Many different strategies which use a coarse-
to-fine approach in the form of multi-scale segmentation, multi-stage evolution, or
the combination of different optimization methods at different stages have been
proposed.

To search for the best possible set of parametric values in generating ACMs
several methods have been proposed. These parameters are basically the terms
involved in defining an energy function. This is a supervised learning process where
the training methods are used for finding optimal values of the parameters and where
the training data are obtained from manual segmentation. GAs are used by Rousselle
et al. [36] to propose a mechanism for parameter adjustment. The two approaches
introduced in [36] are categorized as: a global set of parameters generated through
a supervised approach, where the evaluation functions of the GA are done by
using Greedy algorithms; an unsupervised approach through which local sets of
parameters are generated. The GA is used to find the parameter set minimizing
the energy at each point in the neighborhood of the current point in the Greedy
algorithm. The noise in medical images is removed and its low quality is improved
in the approach of Talebi et al. [38], where GAs are combined with ACMs. This
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algorithm is advantageous as the learning and optimization capabilities of GA are
used such that the active contour model is evolved jointly with the weights of the
energy terms. Metaheuristics have been used for setting the initial location of the
snake and to calculate how many snakes are required and the appropriate number
of control points. SA is used to find approximate global optimization through a
metaheuristic approach in a large search space. In [35], optimization of energy
function in SA is used to determine the state of neurons in a Hopfield network.

2.1.1 Encoding

There exist different methods in encoding and these approaches can be grouped on
various factors, that is they may be based on the way they evolve control points or
on the basis they learn energy term weights or on the way they initialize the model.
But the encoding schemes used in the approaches are not the same. Normally the
position of the snake is considered for encoding the images in polar coordinates
and the chromosomes contain the count of the snake control. The encoding scheme
is used by the authors [3–5]. Also, there are variants of this scheme for Cartesian
coordinates. The other approaches also use Gray-coding or real-number encoding
[42]. Some other proposals in similar circumstances follow no encoding of the
control point coordinates.

MacEachern et al. [26] discussed a method for active contour optimization,
where we have Si , Ci and Vij . Here Ci is the contour of the bit coded contour whose
state is represented by Si after the ith state transition, following the cardinality of the
parameter set Vij . The vector contour state is obtained by adding the displacement
vectors to V . The detection of brain tumors and deformity boundaries for medical
images is obtained by using the wavelet based pre-processing method [32]. In this
method for each control point we have to encode the distance as well as the angle
from the center to the control point. Obtaining the contour of an object accurately
was the objective while applying GAs. The components of the internal energy are
continuity energy, curvature energy, and image energy. The energy function depends
upon the internal energy. In the earlier stages an active contour model was used in
optimization problems. But, later many researchers applied it to derive the solutions
of partial differential equations. The pros and cons of active contour based models
are speed and instability respectively. So, to improve the outcome of active contour
based models Fan et al. introduced a parallel GA based active contour model and
used it in segmenting the lateral ventricles from magnetic resonance imaging (MRI)
images. Here, a chromosome consists of three numbers of 2D arrays with the Fourier
descriptors as the entries [11], and in [33] a location dependent determination of
control points and their indices are used to fix a chromosome in the form of an
integer array. In some other cases an identical approach is used to encode data using
swarm intelligence. The search space is developed by using control points in [11],
where as in [12], a swarm of particles around the control points in the snake are
made to be related when searching in a neighborhood around them.
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In some cases, metaheuristics are used to learn the energy term weights. Here one
method differs from another due to the encoding scheme used even if they use a GA.
These algorithms have the capability to learn from examples. A procedure for the
contour based segmentation of 3D physical information is carried out by Cagnoni et
al. [8] for evolving adaptive procedures in it. The edge detector parameter and the
DM parameters are extracted from the examples. At first, a user has to determine
multiple 2D contours of relevant parallel planes from the anatomical structure
through division of datasets using arbitrary boundaries. The evolution of contour
detectors is generated by taking examples for training in connection with GAs.

A complete segmentation of a structure of an image is obtained by using a
detector on the ordered occurrence of images. Other ordering of images can be
exposed to the same detector. The control of segmentation is carried out through a
contour-tracking strategy which is dependent upon an elastic-contour model where
GA is used to optimize the parameters. The two parameters, edge detectors, and
DM are used in [42], which are characteristically very different from each other.
Here, the parameters involved, including the real valued ones, are encoded by using
six-bit binary strings, which transform into a genome sequence of 96 bits. Encoding
of parameters for Boolean models is carried out in [7]. This process includes (1) the
mapping of image values to image potentials, (2) the strength of the deformation
force, (3) the appearance and intensity of gradients, (4) the minimal and maximal
edge length, (5) the scale of gradients, and (6) the sign of the pressure. Individuals
in this universe are parameters Qi = q−>

i,j , comprising the values of parameters and
their variability, which is responsible for the variation of values of the population
that becomes evolved.

Automatic segmentation of cardiac MRI is dealt with in [40]. This technique
is mainly confined to GA to achieve optimization of the parameters used in the
configuration. In the process of encoding, the three parameters of elasticity, rigidity,
and viscosity are considered as components, and some additional parameters like
the largest amplitude associated with the image gradient and the balloon forces are
weighed to determine the strengths. Binary encoding is used to represent all these
parameters. The crucial point is in the understanding of the energy terms associated
with the active contour model which are used to study the corresponding nature
of the objective functions for an image. An auto-learning architecture basing upon
the snake model is presented in [10], which comprises the two sections associated
with learning and detection. In this, the required object contour is determined by the
user and weights are determined through a training method. The Taguchi approach
was used by the authors for the determination of the weight ratios among energy
terms. The difference between the above two methods lies in the determination of
control points on the basis of local weights or global ones. The control points have
weighted features. The supervised and unsupervised approaches used in [36] use
a Greedy algorithm in implementing a framework. The difference between these
two approaches is in the generation of parameters. The first one generates a global
set of parameters and that of the second one is a local set. The GA computes a set
of parameters which minimize the energy at each point in the neighborhood of the
current point in the Greedy algorithm.
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A two-phased GA is used in [36], comprising the first phase where the GA learns
the global snake parameters and in the next phase where encoding of the generated
parameters is done based upon the snake points. Continuity, curvature, gradient,
intensity, and balloon force are the parameters used in [36]. Encoding by using a
set of binary genes is done in [38] for continuity, curvature, image, and pressure,
considered as the control coefficients of a balloon model.

There are two approaches which execute the initialization mechanism through
the active control model and metaheuristics. Encoding into a binary chromosome
by a Canny edge detector is performed through the threshold and sigma parameters
in [38]. In the second one, initialization of the snake is carried out through swarm
intelligence. Three variables, namely position, velocity, and energy, are used to
define the agent’s behavior.

2.1.2 Operators

Normally binary or real-coded encoding schemes are used in the implementation of
operators in evolutionary algorithms. There are a lot of constraints like disallowing
the crossing of links in snake models. Ad hoc operator design helped to overcome
these limitations. If the fitness function [29] is used in penalty terms then we
can neglect the above mentioned restrictions. There is another standard approach
which penalizes unfeasible solutions with the help of a fitness function. So, uniform
mutation is used in most of the methods. It is different for bit coding where flipping
of bits is used.

There are some suggestions which use a scheme instead of the mutation operator.
[42] proposed a bi-phase procedure for the segmentation of the left ventricle which
uses landmark detection; the outcome being evolutionary snakes. This approach is
widely used in angiograms in human beings. All these approaches including those of
[33] as well as [25] use non-uniform mutation. This approach was first introduced by
Michalewicz [30]. However, [18] used a random control point assigning technique
for members of the universe, basing it upon a temporary mutation design.

A chromosome requires a number of bits to be completely encoded; the mutation
rate is related to this number. One of the most popular methods applied to the
mechanism of selection is the roulette wheel method [3–5]; next comes tournament
selection [36]. In [26] the implementation of a rank-based selection operator is made
and differentiation of inter- and intra-population selection mechanisms is obtained
in [33]. In the intra-population method out of the three chromosomes selected,
the selection of two parents is done on the basis of the largest average distance
between the control points [44]. On the other hand, the selection of parents is done
on the basis of population interest, called the reference population. The selected
chromosomes are called candidate populations. Sometimes the chromosomes are
selected from the reference and candidate populations. These are called the major
and minor chromosomes or parents, depending upon appropriateness. The selection
of a minor parent from the candidate population for crossing with a major parent
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is randomly selected from a candidate population. While most of the mechanisms
apply to crossover operators, elitism is rarely used in a few mechanisms [42].

As a special case, it should be noted that all the binary-coded approaches use
two-point [3, 36], one-point, or uniform crossover [26]. On the other hand, no
specific approach is utilized for real-coded chromosomes. However, some ready-
made operators are proposed without any logical support. Some of the standards
in this direction are (BLX-α), which is employed in [28] and linear crossover
in [42]. As for ready-made crossover techniques, a couple of such operators are
implemented in [36], the selection of one among them is by a fixed number of
individuals. In the first approach only one child is created from one pair of parents,
for which the method of random selection is used with the procedure being selection
of parameters confined to uniform distribution over a range. In the other approach
the mean of the values of the parameters is computed and the single point crossover
technique is used which determines the range being defined. The intra- and inter-
crossovers are employed by some other authors as in the case of a selection operator
[34]. The use of crossover operators is different for the two approaches. In the first
approach uniform, arithmetic, and linear arithmetic crossover operators are used and
in the second a majorİparent is split and used to determine the location of the split
at random. This location helps in generating a legitimate child which is obtained by
selecting a segment at a randomly chosen location in the minor parent and replacing
it with one of its ends.

The selection of a population initially is a region generated between two user
defined radii as in [3–5]. The differentiating factor between the approach of [21] and
that of Ballerini is the selection of the initial population. Also, the initial selection is
a square window in the approach of Ballerini which is substantially different from
a radii being selected by Hussain [21]. The sorting of individuals on the basis of
the fitness function is the distinguishing feature in the approach in the GA proposed
in [27] and the selection of single parents by using the Poisson distribution such
that it is most likely to select the individuals who are more fit. The parameter
value selection is done by taking the initial value as one-fifth of its absolute value.
In another approach in [42], the selection of the first population is carried out by
arbitrary deformation of the landmarks found in a given neighborhood and, for the
GA, the first universe consists of the weights obtained by Taguchi’s method. There
are several deviations from the ones described above in the form of evolutionary
algorithms which are based on swarm intelligence.

In [11] the approach is a customized PSO algorithm where the concave bound-
aries and local minima are not used so that it will not be sensitive to noise. The
average position of particles at a point of time t is considered as an approximation
of the center of mass of particles. To reduce the time of execution of the algorithm it
is stopped when the snake stagnates automatically without any external force being
there. To this effect the PSO equations are modified with an external energy term
being included in them. Another approach is followed in [18] where the first set of
values and the further motions of the particles in the swarm of particles are computed
by using the boundary as the window for searching solutions. The boundary for
example can be the perpendicular bisector of the line connecting two neighboring
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control points. Through this approach sudden changes are controlled, which in turn
a snake evolution looks more appropriate by it not crossing itself. Finally, classical
SA based approaches have been proposed in [1]. Sometimes a logarithmic cooling
agenda is used by considering the Boltzmann distribution [43]. This approach starts
with the selection of a contour in the 2D image space of dimension two such that the
number of vertices is predetermined. A contour is formed for each pixel by taking a
square matrix of pixel of dimension n. After that, an energy function is used to select
a new vertex as candidate. For instance, the number of iterations is used to accept
a vertex; further, the same technique is followed to determine the cardinality of the
set of accepted vertices and whether it leads to an incorrect solution or not. Also,
another property is used for elimination or creation of new vertices. The property is
derived from the elements of the contour. Before the elimination or creation of a new
vertex all the vertices in the contour are tested at a particular temperature. A criterion
for the elimination of a vertex is derived by fixing a value as the minimum distance
and those vertices are eliminated whose distances are less than the fixed minimum
distance. In parallel, a maximum distance value is fixed, and if the distance between
a pair of vertices is greater than this maximum distance value, a new vertex is
created.

2.1.3 Fitness Function

In the common practice of using metaheuristics, the snake’s energy is required to be
minimized, which is a fitness function, the aim being to evolve the control points of
an active contour model. Depending upon the objects to be segmented the methods
change from one to another as the active contour model terms change. In fact, the
external terms in [4, 42] include the gradient of the image plus a slightly different
edge functional whose minima lie on the zero-crossings of ∇2Gσ ∗I (x, y). Through
these methods the eyes’ foveal avascular zone receives an additional term called the
energy term. As a result, the image’s energy is modified by considering the two
factors associated with gradient: magnitude and direction.

The formulation developed in [4] is improved by defining a contour as a
parametric curve which is piecewise continuous and uses a cubic B-spline. Further,
the Lai and Chin curvature and continuity terms are added to the cubic B-spline
model. Genetic snakes introduced in [3] have been used for obtaining improved
solutions in different applications; like segmenting connective tissue in meat images,
exploring additional internal and external energy terms, and applying them to color
images [4]. The addition of a new component in the energy equation involves the
gradient of the components of RGB color model; as a result change occurs in the
contour directly proportional to the sign of the constant used in the formula. Another
additional term in the energy equation compels the snake to contain a predefined
reference area. The harmonic potential form of this term reaches the lowest value
when the area enclosed by the snake is equal to the reference area. Another change
is introduced into the fitness function by including a priori knowledge, so that bones
in radiographic images can be segmented [5]. An identical number (three) of snakes
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represent the corresponding bones and the whole combination forms a binding force.
It may be noted that the position of the bones are essential but not their geometrical
structure. Thirty-six points form the structure of a snake and five pairs of successive
points at the junctions form the binding energy. In addition to the above form, where
internal and external energy terms were proposed, two more terms are added. These
are (1) a derivative energy which assumes its minimal value on the edge of the
image and has brighter and darker regions positioned to the left and right of the
snake and (2) a model of the anatomical relationship between adjacent bones which
connects suitable points of snakes close to each other. The procedure followed in
[11] is the same as in [32], but there the application was different in the sense that
it was to generate videos of human body components and the persons themselves.
However, a change was made by removing the derivative term and adding a fresh
term whereby color images can be taken care of and which involves the derivatives
of each of the three components of white light, that is red, green, and blue. This
technique was also used in [5].

In [32] the requirement was to apply segmentation to the brain image including
both white and gray matter and the fluid in the cerebral spinal part. But the approach
uses a few technical internal terms in the form of continuity and curvature and
external terms in the Kirsch spatial gradient [23]. They further extended their work
by changing the internal features to be dynamic during the process of training and
in the later stages through slices, and exactly the opposite is done for the external
features.

Contour length and center were considered to be internal features as were the
intensive associations in the direction of the gradient for different contour points
and the related neighbors as external features. The fitness function took care of
knowledge acquired previously in the destination object, which was the mouth. A
high intensity level is used for the lips; but blurring effects are seen for the teeth
which is also the case for the interior of the mouth. During the Sobel filtering, a
processor is used for putting into binary form and process related to morphology
are applied. The objective is to place snakes on the outer and inner lip contours.

A GA is used in [42] to find out the most suitable location, which is carried out in
two steps. The steps or stages are such that the first one is for internal energy while
the other one is for the generation of external energy to be added to the internal
one. A parallel double stage procedure is suggested which can provide solutions
to two major problems; namely the response to the sensitivity of models in the
active state which is for the contour the starting model; the other problem concerns
capturing the characteristic of numerical gradient-based techniques for finding local
minima as a result of noise in images and edges which are not concrete. At first, the
destination object is segmented roughly using a single image set, one slice at a time,
by applying a 2D procedure. In the second step the initial surface is segmented
in the beginning. A finite difference method which results in the generation of a
simultaneous GA optimizer is used to solve the equation which controls the time
change for the contour. In the later stage the simultaneous GA is used to finesse
the surface which generates the ultimate result. In order to construct the image, the
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object surface data and a GA are used where the discontinuous surface is represented
geometrically using Fourier descriptors.

In [33] one more technique is presented which also depends upon multiple fitness
functions. A co-evolutionary GA uses a multiple energy term based on the fitness
function and has two different components. The first component determines its own
fitness by making an active comparison of a single universe of chromosomes among
themselves; the second one determines the fitness of the whole system. The fitness
of the chromosome is obtained as a component of the final solution. While the first
component uses only gradient energy, the latter one depends upon three features
given below:

1. The distance of the control points of the current chromosome.
2. The best chromosome obtained by using the Euclidean distance function; a term

which is used for the minimization of the distance of the subset of end points of
the contour in focus now and that of the best one in the universe of populations.

3. A count function that observes the cardinality of the set of Fourier descriptors of
the contour which is the result of the crossover operation being performed upon
the current and best chromosome from other populations.

However, the evolutionary scheme implemented in [38] is different. Here, the
approach involves a multiple stage minimization process of a contour which is active
at present. A formulation using quintuples of the ith state transition refers to the
contour state. The population of different states is arbitrarily generated in which a
GA is run. A contour is extended to a higher state if the latter has less energy than
the current state. In all the proposals using swarm intelligence every swarm which
is related to some control point is managed by PSO. The local energy of a point in a
swarm refers to the cost of that particle. The scanning of control points is performed
on a repetitive basis by allocating a search window and then optimizing the local
energy. When it is found that no change occurs in all the swarms, the process is
terminated. The groups of approaches which use fitness functions differ very much
from those which learn energy term weights using metaheuristics. Mostly, the basis
for these approaches is the segmentation error derived from the running contours
for which parameter adjustment is done without any other intervention. Previously
segmented reference images are used to achieve this aim. In [36] this procedure is
followed. The use of a segmentation error rate is replaced with a fitness function
derived from the distance of the center of gravity from the previously segmented
curve. The fitness is considered as the energy of the active contour in many of
the evolutionary based techniques. In [38] a four-control-point-based unique active
contour is used for which weights are generated through GA. Following the survival
of the fittest principle the contour deformation is carried out on the best individual.
The fitness function used is given by

1

(1 + αEcontinuity + βEcurvature + γEimage + KEpressure)
(1)
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Segmentation tasks determine the fitness function in the approaches using
metaheuristics for setting the initial values of the contour models. A Canny edge
detector is used in the selection of the curve at the beginning in [20] for optimizing
different parameters and the threshold. A fitness function is directly proportional to
the product of the weight and the ratio of the maximum value of the length to that
of the total length. The approach in [32] is used for the snake initialization method.
This in turn sets the number of snakes and the number of control points required.
The state of equilibrium of a swarm is gauged by the activity of the swarm. The
equilibrium of a swarm is judged and checked as to whether it has dropped below
a certain threshold value or not; then the agents are ready for shaping up contours.
The adjacent agents to an agent are connected pairwise in some predetermined order
to achieve this. The selection of neighbors is done by finding two neighbors on this
basis and on factors like distance and angle. The selection of agents is based on
distance and so the agents which are closer are preferred. However, as far as angle
is concerned, the agents forming wider connections are given preference. The user
has to prefix threshold values to put a constraint on the distance and the angle in
advance.

3 Segmentation of Histological Images Using
a Metaheuristic-Based Level Set Approach

In this section we discuss the segmentation of the hippocampus in histological
images given by Mesejo et al., where they follow the idea presented by Ghosh
and Mitchell [14]. Here they introduce a new operator called a real-value crossover
operator which closely matches the behavior of our chromosomes. The attractive
feature of this method is that they use textual features, which is different from the
earlier approaches. [28] applied segmentation of the hippocampus of histological
images in bi-steps. They used a gray level co-occurrence matrix (GLCM) which
produces better results than existing work. Since the size of the histological images
is huge, the application of segmentation of text is only applied for a fixed number
of repeated steps. Since the structure orientation increases the temporal as well as
computational cost during optimization, we do not consider it here. The two main
phases in this method are training and proper segmentation. The computation of
the average shape is done on the basis of the physically obtained segments during
the process of training. The computation of a suitable hippocampus is carried out
and from it the principal modes of variation and median texture are obtained.
Principle component analysis (PCA) is used on a group of signed representations
of distance to generate a prototype of a segmenting curve. The weights to combine
the mean shape and shape variables into single unidirectional vectors in the process
of segmentation are obtained by using metaheuristics. Also, a comparison is carried
out between the texture enclosed by the evolving contour and the representative
texture.
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3.1 Training Phase

3.1.1 Shape

At first, from the training set we have to extract the shape. For this we have to
represent the contours in the zero level set of the signed distance function Pi(u, v)

where 1 ≤ and ≤ v are the pixel coordinates and n denotes the cardinality of the
set of training contours required to obtain shape variability. The signum function is
used for representing the shape, in which shape boundaries are linked to the zero
level set of a signum function. The insides and outside of the object are assigned
negative and positive distances respectively. The mean level set function is defined
as:

Qi(x, y) = 1

n

N∑

i=1

Pi(u, v) (2)

Mean offset functions are computed from the relation (3) as follows:

Q̃i = Qi − P̄ (3)

We elaborate the above construction through an example. Suppose M is the
image size, which is say M = M1 × M2. Then we have to resize the image to
say 500 × 500 pixels. To form a column vector bi of size 1 × M the columns of M

are put in a stack one after another in their order of occurrence. The shape variability
matrix V (of size M × m) is derived from these column vectors as

V = [b1, b2, b3 . . . , bm]

Shape variance is given by Eq. (4) and it looks like an eigenvalue decomposition
on V :

1

m
V V T = UPUT (4)

where U is an M × m matrix having m orthogonal modes of shape variation as
its columns, P , whose elements are eigenvalues in an m × m diagonal matrix and
the columns of U are the corresponding eigenvectors. In [24] a smaller matrix is
considered for the computation of the eigenvectors; the eigenshapes are given by (5).

{a1, a2, a3 . . . , an} (5)
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In [41] the further computation of the level function representing the segmenting
curve is derived as in (6)

a[w] = a +
k∑

i=1

wjaj (6)

It is easy to see that now the role of the metaheuristic is confined to obtaining the
values of w which put the value of a fitness function to be defined in the test phase.

3.1.2 Texture

Visual points when arranged in some pattern with several replica or normal patterns
are said to form a texture. GLCM is a procedure which uses statistical techniques to
check the characteristics of a texture by taking into account the 3D relationship of
the constituents. GLCM was introduced by Haralick et al. [17] is a method that
uses the features describing a texture and are comprised of feature values. The
Co-occurance Matrix (CM) represents the spatial relationship between two gray
levels. The (m, n)th entry in a GLCM represents the cardinality of occurrences of
the m and n pair of gray levels which are separated from each other by not more
than a predefined distance in a specific direction.

Let us consider an example again. We follow the textural priors narrated in
[28], which shows high end performance. Eleven textual features which are used to
encode the training pattern as a vector are as follows. These features can be broadly
categorized as first-order and second-order measures. Under the first category we
have the features of standard deviation, skewness, kurtosis, entropy, coefficient of
variation, and energy; whereas the features which come under the second category
are contrast, correlation, energy, and homogeneity from GLCM. For example, using
(1, 1) as the spatial relationship (i.e. θ = 315◦ and d = 1 pixel), where a window of
dimension 30 × 30 pixels is used. The focus was on capturing the textural essence of
the hippocampus in the course of segmenting and enclosing the texture by the DM
surface with the ideal texture of the training set. To realize this median texture an
image density of p is taken in the training set with an arbitrary selection procedure
inside the hippocampus; a sample of size t were selected through them as pixels-
of-interest. The dimension of the generated matrix is (a · b) × c, where c is the
cardinality of the training image set, a is the cardinality of the textual feature set,
and b is that of the selected point set. Specifically in the example, a is chosen to
be 11 and b is taken as 100. The value of the median computed from this matrix
represents the texture in the hippocampus with the assumption that points having
values nearer to it are considered as being in the hippocampus.
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3.1.3 Test Phase

This phase is related to segmenting the object in focus in a justified manner. The
outer boundary of the hippocampus is used to fit a hidden model of the contour
being guided by a metaheuristic. In order to achieve this weights are generated
through a combination of mean and variability. A combination of region and texture
based terms are used to generate the fitness function. For the first one the model in
[9] is used, whereas for the second one a standard distance function between the
textures related to our contour and the median texture found in the training set is
used. The Euclidean distance is used to measure the median texture extracted from
the training set (T) and the actual texture enclosed by the evolving contour (t(C)).
Using this functional, our model takes intensity and texture criteria simultaneously
into account. In this case, both terms have been weighted equally.

At the end, a quick step is used for refinement, which requires 50 repeated
applications of the local procedure introduced in Chan and Vese [43]. This step
considers only the points in the nearer area of the boundary, and extradition
connected components is done for components having an area smaller than a pre-
assigned value (in terms of pixels).

4 Conclusion

DMs are procedures considered for segmenting, which uses a curve aimed at
optimizing positively the overlapping with the actual contour of an object under
consideration inside an image. This work comprised of dealing with metaheuristic
applications in segmenting images using live contour models. Our presentation also
includes the segmentation of histological images using a metaheuristic based level
set approach.
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Hybridization of the Univariate Marginal
Distribution Algorithm with Simulated
Annealing for Parametric Parabola
Detection
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Abstract This chapter presents a new hybrid optimization method based on the
univariate marginal distribution algorithm for a continuous domain, and the heuristic
of simulated annealing for the parabola detection problem. The hybrid proposed
method is applied to the DRIVE database of retinal fundus images to approximate
the retinal vessels as a parabolic shape. The hybrid method is applied separately
using two different objective functions. Firstly, the objective function only considers
the superposition of pixels between the target pixels in the input image and the
virtual parabola; secondly, the objective function implements a weighted restriction
on the pixels close to the parabola vertex. Both objective functions in the hybrid
method obtain suitable results to approximate a parabolic form on the retinal vessels
present in the retinal images. The experiments show that the parabola detection
results obtained from the proposed method are more robust than those obtained by
the comparative method. Additionally, the average execution time achieved by the
proposed hybrid method (1.57 s) is lower than the computational time obtained by
the comparative method on the database of 20 retinal images, which is of interest to
computer-aided diagnosis in clinical practice.
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1 Introduction

The automatic detection of parametric objects is an essential task in different
research areas such as medical and natural image analysis. In general, this problem
can be addressed in two steps: the definition of the parametric equation of the target
object (which is not an easy task), and the definition of a search strategy. In the
first step, the boundaries of the target object have to be clearly detected in order to
perform the matching process with the parametric equation. This task is commonly
performed by using edge detection techniques such as Sobel or Canny operators. To
perform the second step, an exhaustive or heuristic strategy can be applied.

In the literature, the Hough transform (HT) is the most highlighted method for
parametric object detection [1–3]. The HT is a standard technique for parametric
shape recognition which is useful for image analysis and computer vision. HT was
first applied to straight line detection [4], and later used to detect circles [5–7],
ellipses [8], and parabolas [9, 10]. The main advantages of the HT method are that
it is insensitive to noise and it is easy to implement; however, the main disadvantage
is the execution time, since the computational complexity is O(ns), where s is the
number of unknown variables in the parametric equation defining the target object.

An important application of the HT for parabola detection is the approximation
of the shape of blood vessels in fundus images of the retina. It is known that some
pathologies, such as diabetic retinopathy, affect the shape of the vessels in the
retina and because of this the shape itself can be used to aid the diagnosis of those
diseases [9, 10]. In medical practice, the approximation of the shape of blood vessels
in retinal images is an exhaustive manual task which requires the visual detection of
representative features on the retinal vasculature. This task can be automated using
the HT transform embedded within a computerized aided system in order to reduce
the time and intensive labor taken by a specialist during the diagnosis of diseases.

On the other hand, to solve the drawback of computational complexity of the HT
method, several strategies have been introduced involving least squares [11], the
pruning-and-voting strategy [12], randomized techniques [13–16], and population
methods based on particle swarm optimization [17], electromagnetism optimiza-
tion [18], genetic algorithms [19], an artificial immune system [20], differential
evolution [21], and estimation of distribution algorithms (EDAs) [22, 23].

In general, the performance of the population-based methods is very suitable
in terms of computational time and detection accuracy, since they are useful for
avoiding the local minima problem. In the present chapter, a new hybrid optimiza-
tion method based on an estimation of the distribution algorithm for a continuous
domain; simulated annealing (SA) is introduced to detect parabolic shapes on retinal
fundus images. Since the proposed method is a stochastic optimization technique,
the introduced fitness function is based on the shape maximization between a virtual
parabola and the target object of the input image. In addition, the proposed method
is compared with different state-of-the-art parametric detection methods in terms of
computational time, robustness, and detection accuracy.
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The chapter is organized as follows. In Sect. 2, the parabola detection problem
is introduced along with the techniques of SA and estimation of distribution
algorithms, which are explained in detail. In Sect. 3, the proposed hybrid method for
parabola detection is introduced and analyzed. Computational results are presented
and discussed in Sect. 4, and conclusions are given in Sect. 5.

2 Background

This section introduces the fundamentals of the parabola detection problem and
two state-of-the-art estimation of distribution algorithms along with the local search
method known as SA.

2.1 Parabola Detection Problem

The parabola detection problem can be defined as a matching problem. Hence, we
draw a parabola in a binary image, then we compute the number of white pixels
which match with the white pixels in the target image. In order to draw the parabola
we require a set of four parameters x = [x1 = a, x2 = b, x3 = c, x4 = θ ] used as
shown in Eq. (1).

ŷ = ax̂2 + bx̂ + c,

xv = − b

2a
,

yv = ax2
v + bxv + c,

x = integer(cos(θ)(x̂ − xv) − sin(θ)(ŷ − yv) + xv),

y = integer(sin(θ)(x̂ − xv) + cos(θ)(ŷ − yv) + yv),

(1)

where [a, b, c] are used to define a parabola aligned to the y-axis, which is then
rotated at a θ angle, with respect to the vertex (xv, yv). Consider a target image with
height nrow and width ncol. We draw a parabola with a set of coordinates [xi, yi]
for i = 1, 2, . . . , ncoord, where xi ∈ {1 . . . nrow} and yi ∈ {1 . . . ncol}. Then, we
count the number of pixels p that are different from 0 in the parabola and the
target images according to Eq. (2). This equation is the objective function; notice
that [xi, yi] depend on x = [x1 = a, x2 = b, x3 = c, x4 = θ ].

f (xi, yi) =
ncoord∑

i=1

ppar(xi, yi)ptarget(xi, yi), (2)
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where ppar(xi, yi) and ptarget(xi, yi) are pixel values in the parabola and target
image, respectively.

2.1.1 Hough Transform

In image analysis, the HT is the most commonly used strategy to detect parametric
forms such as lines or circles [1]. On the other hand, the HT can also be extended
for detecting parabolic shapes. In general, HT requires the parametric equation of
the object to be detected in the Cartesian or polar coordinate system. For instance, to
detect lines, circles, or parabolas in Cartesian coordinates, the following equations
can be evaluated, respectively:

y = mx + b (3)

r2 = (x − a)2 + (y − b)2 (4)

(y − y0)
2 = 4a(x − x0) (5)

In order to detect parametric objects in images by using the HT algorithm, the
input image must be binary. The pixels with intensity different to zero represent the
potential object to be detected, while all the pixels with intensity zero represent the
background image, which are irrelevant for the process.

The resolution of the search space plays an important role, since it is used for
testing all possible parameter combinations (exhaustive search strategy). Conse-
quently, there is a trade-off between detection precision and computational time.
High precision obtains good detection results involving high execution time, but
low precision may not find the target object.

The generic procedure to perform the HT can be described as follows:

1. Determine the equation of the parametric object to be evaluated and the
number of unknown parameters n.

2. Initialize the dimension of the accumulator array according to n.
3. Compute for each pixel (x, y) of interest the parametric equation.
4. Increment the value of the accumulator array for the set of unknown

parameters.
5. Find the sets of parameters with the highest values.
6. Determine the best set of parameters for the parametric object (typically

by applying a threshold or a local maxima strategy).
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The HT strategy presents two main disadvantages. Firstly, the high computation
time of the exhaustive search, and secondly, the method to determine the optimal set
of values, where the most widely used strategy to find it is the local maxima method.

2.2 Simulated Annealing

SA is a widely known algorithm first proposed for discrete domains by Kirkpatrick
et al. [24]; other researchers have presented different modifications and versions.
One of the best performed in continuous domains is the one proposed by Corana et
al. [25]. Nevertheless, SA is a global optimizer for multimodal functions; we use it
as a local optimizer, considering that it searches in the vicinity of the best solution
at each iteration of the optimization process. SA is shown in Algorithm 1.

The initial temperature is set as: T0 = −f̂ /(2 log(0.2)) where f̂ is the average
of the objective function value of the current population. Notice that the initial
temperature changes in every iteration. The step size is computed as suggested by
Corana et al. [25]. Finally, the well known Metropolis criterion is as follows:

Algorithm 1: Simulated annealing
Input: T0 = A high temperature.
xinf , xsup = Inferior and superior limits respectively.

1 t = 0;
2 Initial solution xbest = x0 = [x1, x2, . . . , xn];
3 Evaluate and initialize the best objective function value fbest = f (xt );
4 x̂ = xt ;
5 while Stopping criterion is not met do
6 for T = 1 . . . NT do
7 for ns = 1..Ns do
8 for i = 1..n do
9 ei ∼ U(−vi , vi ) ;

10 while (x̂i + ei) < x
inf

i ∨ (x̂i + ei ) > x
sup

i do
11 ei ∼ U(xinf , xsup);

12 Evaluate x̂;
13 if f (x̂) < fbest then
14 fbest = f (x̂);
15 xbest = f (x̂);

16 Accept the solution x̂ according to the Metropolis criterion;

17 Adjust the step size v;

18 T = αT T ;
19 Update xt = xbest and f (xt ) = fbest ;
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1. Let xt be the current solution and x̂ the perturbed solution.
2. Δf = f (xt ) − f (x̂).
3. If (Δf (x) ≤ 0 ) then xt+1 = x̂.

4. else The perturbed solution is accepted with probability exp
(−Δf

T

)
, that

is to say the perturbed solution replaces the current one.

The Metropolis criterion permits us to accept wrong solutions rather than the
current one with the aim of avoiding local minima problems. The algorithm stops
if the objective function is not improved more than ε = 1 in five consecutive
temperature reductions or reaches 30 function evaluations. The SA algorithm is
presented in the Appendix in the C programming language.

2.3 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are population-based methods used to
solve optimization problems. The main difference with evolutionary computation
techniques is the fact that the crossover and mutation operators are not required,
since the new potential solutions are generated by building probabilistic models
based on the statistical information of promising solutions [26–28]. In this work,
we focus on the univariate marginal distribution algorithm (UMDA) in both discrete
and continuous domains.

2.3.1 Univariate Marginal Distribution Algorithm

The UMDA is a search strategy derived from EDAs to solve linear optimization
problems with not many significant dependencies [29]. This stochastic method
is a population-based strategy where a marginal probability is computed at each
generation [30]. The probabilistic model is calculated from a subset of individuals
(potential solutions) in order to generate the next population of the iterative process.
Similar to evolutionary computation techniques, UMDA uses a fitness function
and binary encoding to represent the individuals. Consequently, the genes of the
individuals are randomly initialized between {0, 1} with a uniform probability.

The selection step is applied to select a subset of individuals. This operator
uses the truncation strategy, which orders the solutions according to their fitness.
Subsequently, the estimation of the univariate marginal probabilitiesP are computed
using the subset of individuals. The marginal probability model for independent
variables can be defined as follows:

P(x) =
n∏

i=1

P(Xi = xi) , (6)
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where x = (x1, x2, . . . , xn)
T is the binary value of the ith bit in the solution, and

Xi is the ith uniform random value of the vector X.
Finally, UMDA generates a new population from the estimated marginal prob-

ability model. The process is iteratively performed until a convergence criterion
is satisfied, and the best individual (elite) is the one with the best fitness along
generations.

According to the above description, UMDA can be implemented as follows:

1. Initialize number of individuals n.
2. Initialize number of generations t .
3. Initialize selection rate [0, 1].
4. Initialize the individuals into the predefined search space.
5. Select a subset of individuals S of m ≤ n according to the selection rate.
6. Compute the marginal probabilities ps

i (xi, t) of S.
7. Generate n new individuals by computing p(x, t + 1) =∏n

i=1 ps
i (xi, t).

8. Stop if convergence criterion is satisfied, otherwise repeat steps (4)–(7).

2.3.2 Univariate Marginal Distribution Algorithm for Continuous
Domains (UMDAc)

The univariate marginal distribution algorithm for continuous domains (UMDAc) is
an evolutionary algorithm from the family of EDAs. It was proposed by Larrañaga
and Lozano [26]. In this case, we use a particular version which a priori defines
the normal probability function; this version is named UMDAGc. The UMDAGc

considers that variables are independent of each other; the joint probability function
can then be written as:

fN (x, θ) =
n∏

i=1

1√
2πσi

e
− 1

2

(
xi−μi

σi

)2

(7)

Thus, the parameters μi and σi must be estimated from the selected set for
each dimension i. The UMDAGc is shown in Algorithm 2. At line 2, the initial
population is sampled from a uniform distribution defined inside given limits. At
line 3, the population is evaluated, then half of the best solutions are selected in the
S set, and the elite individual, xbest, fbest, is stored. Then, for ngen generations, the
vectors of means μ and standard deviations σ are estimated via maximum likelihood
estimators over S. At line 7, the new population is formed by the combination of
npop − 1 sampled candidate solutions and the elite individual, and so on. Figure 1
illustrates the flow of Algorithm 2 for the UMDAGc strategy.
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Algorithm 2: The univariate marginal distribution for continuous domains
using a normal distribution
Data: D=Number of dimensions.

npop=Population size.
ngen=Number of generations.
xinf =Inferior search limits.
xsup =Superior search limits.

Result: xbest and fbest . Optimum approximation and its objective function value.
1 t = 0;
2 Xt ∼ U(xinf , xsup);
3 F t = Evaluate(Xt );
4 [St , xt

best , f
t
best ] = Selection(Xt , F t );

5 for 1..ngen do
6 [μt , σ t ] = ParameterEstimation(St );
7 Xt+1 = [xt

best , Sampling(μt , σ t , npop − 1)];
8 t = t + 1;
9 F t = Evaluate(Xt );

10 [S, xt
best , f

t
best ] = Selection(Xt , F t );

Fig. 1 Flowchart of the algorithm of the univariate marginal distribution algorithm for continuous
domains using a normal distribution

2.3.3 Applications

The EDAs have proven to be very effective for solving high-dimensional opti-
mization problems. In the literature, different mathematical functions have been
introduced for testing optimization algorithms. In this section, to illustrate the
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Fig. 2 Goldstein–Price function in two dimensions including level plot in the range [−2, 2] for
each independent variable

implementation of UMDAGc in an optimization task, the 2D Goldstein–Price
function is introduced.

Commonly, the range for each variable of the test function is X1 ∈ [−2, 2],
X2 ∈ [−2, 2], and the optimal value is located on f (0,−1) = 3. The 2DGoldstein–
Price test function is defined below in Eq. (8), and illustrated in Fig. 2.

f (x1, x2) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2 )
]

×
[
30 + (2x1 − 3x2)

2(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )
]
.

(8)

Moreover, to solve the Goldstein–Price function, the population of the UMDAGc

strategy is randomly distributed in the search space and also it is encoded using
the two dimensions of the problem for each individual. The numerical example
of the optimization process using the real-coded UMDAGc is illustrated in Fig. 3.
In the illustration, the ESTIMATION OF THE MARGINAL DISTRIBUTIONS block
marks each individual in St with a cross on the level curves of the Goldstein–
Price function. The convergence to the optimal solution is exemplified as the
reduction of the dispersion of the individuals within the search space throughout
three generations. The reduction of the dispersion is represented as the narrowing of
the distribution curves present in the margin of the block.
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Fig. 3 Numerical example for solving the 2D Goldstein–Price function using UMDAGc as an
optimization strategy

3 Proposed Hybrid Method

In this section, the proposed hybrid method based on the UMDA and SA is
presented. In the first stage, the hybrid scheme which is the main contribution of
the present work is explained in detail. Finally, the process to adapt the parametric
parabola problem to be solved by the proposed method is introduced.

3.1 Hybridization of UMDAc with SA

The main proposal is a hybridization of UMDAGc with SA as follows. At each
generation the best solution from UMDAGc (the elite) is used as a starting point for
SA.
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In the case when the elite individual is improved, this solution is always inserted
in the selected set and stored. In addition, for the annealing schedule, the initial
temperature is computed by using the objective function values in the last population
in UMDAGc. In the same vein, the inferior and superior search limits for all
variables of SA are computed by using the standard deviation vectors, computed
in the last UMDAGc iteration, as follows: xt

inf = xt
best − 0.05sdt and xt

sup =
xt

best + 0.05sdt . According to these limits, the search performed by SA occurs in
a small vicinity of the current best solution. In addition, the smaller the standard
deviation of the current population is, the smaller the vicinity in the SA algorithm
is. Thus, both algorithms take advantage of each other, the UMDAGc is used to
provide an adequate temperature, initial point, and search limits of SA, while SA
often improves the best solution in the UMDA population, a bias in the search
toward the most promising regions.

Algorithm 3 describes the general hybrid proposal. Lines 5 and 12 show where
the SA step is; as a result of this step the selected set Ŝt and the elite xbest could be
updated, if the best solution from UMDAGc is improved; in such a case this new
elite is inserted into the selected set Ŝt and, as a consequence, used to compute the
UMDAGc parameters, as is shown in Line 7.

This hybrid algorithm could be applied to any optimization problem, and
it requires as input the population size which is set to 30 in all our reported
experiments, a maximum number of generations which is set to 30, and search
limits.

For the particular case of using this algorithm for parabola detection, the search
limits are computed for each target image as is shown in Line 2; this procedure is
detailed in Sect. 3.2.

Algorithm 3: Hybrid UMDAGc/SA
Data: D=Number of dimensions.

npop=Population size.
ngen=Number of generations.
xinf and xsup=Inferior and superior limits.

Result: xbest and fbest . Optimum approximation and its objective function value.
1 t = 0;
2 Xt ∼ U(xinf , xsup) ;
3 F t = Evaluate(Xt );
4 [St , xt

best , f
t
best ] = Selection(Xt , F t , T );

5 [Ŝt , xt
best , f

t
best ] = SimulatedAnnealing(xt

best , f
t
best ) ;

6 for 1..ngen do
7 [μt , σ t ] = ParameterEstimation(Ŝt ) ;
8 Xt+1 = [xt

best , Sampling(μt , σ t , npop − 1)];
9 t = t + 1;

10 F t = Evaluate(Xt );
11 [S, xt

best , f
t
best ] = Selection(Xt , F t );

12 [Ŝt , xt
best , f

t
best ] = SimulatedAnnealing(xt

best , f
t
best , T ) ;
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Fig. 4 Flowchart of the algorithm of the Hybrid UMDAGc/SA. The highlighted process in the
chart represents the use of SA to improve the best solution found by UMDAGc

The flowchart of the UMDAGc/SA strategy is presented in Fig. 4, where the
process of improving the UMDAGc best solution for each iteration using SA is
highlighted. Computationally, the hybridization of the UMDAGc can expect an
average time overhead of up to 48.91% and a mean memory overhead of up to
0.51% due to the improvement of the solution using SA.

3.2 Parametric Parabola Detection Using the Proposed Method

For the purpose of using this proposal for parabola detection, a candidate solution
(chromosome) is represented by four variables, as previously mentioned in Sect. 2.1,
x = [x1 = a, x2 = b, x3 = c, x4 = θ ], and the search limits are necessary.

Algorithm 3 requires the superior and inferior search limits; our proposal
computes these limits for each target image automatically; the procedure assumes
that the parabola is always vertically aligned, though it could be upwards or
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downwards; this direction is, also, automatically detected by using the following
procedure:

• From the target image we randomly select 10% of the non-zero pixels.
• Using these pixels we compute a least squares parabola fitting, hence we obtain

a, b, and c quotients.
• Repeat the two steps above 10 times.
• Then, we get a set of 10 [a, b, c] quotients. We compute the means μa , μb, and μc

and the standard deviations σa , σb, and σc. Notice that the sign of the a parameter
in the equation ax2 + bx + c determines whether the parabola opens upwards or
downwards. Thus, we define two cases:

– if (μa <0)

ainf = μa − σa ,
binf = μb − σb,
cinf = μc − σc,
asup = μa + 4σa ,
bsup = μb + 4σb,
csup = μc + 4σc,
xv = −bsup/(2asup), notice that this is the x-coordinate of the parabola

vertex using the superior limits.
yv = asupx

2
v + bsupxv + (μc + 4σc), this is the y-coordinate of the parabola

vertex.
csup = cinf + (nrow − yv) − 1

– else

ainf = μa − 4σa ,
binf = μb − 4σb,
xv = −binf/(2ainf), notice that this is the x-coordinate of the parabola vertex

using the inferior limits.
yv = ainfx

2
v + binfxv + (μc − 4σc), this is the y-coordinate of the parabola

vertex using the inferior limits.
cinf = (μc − 4σc) − yv + 1,
asup = μa + σa ,
bsup = μb + σb,
csup = μc + σc.

The purpose of this procedure is to find appropriate limits. We know that a
least squares fitting is suitable; nevertheless there could be pixels that are not
representative of the target image, thus that is the reason for randomly selecting
10% of them with the aim of reducing the bias given by the outliers. Thus, the
procedure uses the parameters from 10 parabolas to determine the correct limits
using its mean and standard deviation. In addition, by observation we determine
that if the parabola opens downwards we must extend the superior limits and vice
versa; that is the reason why we set the limit of four standard deviations in one
direction and only one in the other.
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4 Computational Experiments

In this section, the proposed hybrid method based on the UMDA and SA is applied
on the 20 retinal fundus images of the publicly available DRIVE database [31].
The computational experiments are performed using the Matlab software version
2016, on a computer with an Intel Core i5, 4 GB of RAM, and a 2.4 GHz processor.
To evaluate the proposed method, it is directly compared with the evolutionary
technique proposed by de Jesus Guerrero-Turrubiates et al. [22] based on EDAs in
terms of execution time. Moreover, in order to apply the parabola detection methods,
an automatic vessel segmentation method has to be applied. In the experiments, the
method based on Gaussian matched filters proposed by [28] has been introduced.

On the other hand, the method proposed by de Jesus Guerrero-Turrubiates et
al. [22] uses the UMDA as an optimization strategy to solve the parabola detection
problem. According to this method, the average execution time is 4.5838 s for the set
of retinal images, which was performed by applying the following set of parameters
(Table 1).

Figure 5 illustrates the obtained parabola detection results by applying the
previously mentioned method.

The main contribution of this chapter is the implementation of a hybrid strategy
involving the UMDA method and the heuristic of SA. The UMDA method has been
adopted because of the good results obtained in previous works for the parabola
problem. Here, two different methods are proposed, where the main difference is
the objective function to be evaluated. The detection results of both methods are
presented below.

4.1 Parabola Detection on Retinal Fundus Images

In the first method we use binary images for maximizing the objective function in
Eq. (2). Notice that for binary images any characteristic of the parabola is as good
as any other; that is to say the algorithm looks for matching any segment in the
parabola independent of curvature to the target image. We perform 30 trials for the
set of 20 retinal fundus images. On average, each execution lasts 1.57 s with an
implementation in C language, using the GNU gcc compiler version 6.4. The best
detection results for each set of the trials is reported in Fig. 6.

Table 1 UMDA parameters
for the computational
experiments using the method
proposed in [22]

Parameter Value

Number of individuals 10

Selection rate 0.6

Maximum number of generations 30
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Fig. 5 Parabola detection using the method in [22] on the 20 retinal fundus images of the DRIVE
database

4.2 Weighting the Parabola Pixels to Improve Detection

The second proposed method is a manner of weighting pixels of the parabola
image, in order to associate a higher importance to the most relevant characteristics.
In this sense, it is of interest to find in the target image a similar region to the
parabola vertex; we consider that this region, which is close to the change in the
derivative sign, is the most important. For this purpose we use Eq. (9); notice that the
denominator of the first term is the absolute value of the derivative of the parabola
plus 1; we sum to 1 to avoid division by zero. Thus, Δx ∈ [1, 255] is maximum
when the derivative is 0; that is to say, when the xi is the parabola vertex. We use
the very same procedure and objective function, but for this case each parabola pixel
increases with a different value from the objective function. The results are shown
in Fig. 7.

Δx = 254

(
1.0

|2.0axi + b| + 1
+ 1

254

)
. (9)
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Fig. 6 Parabola detection using the Hybrid UMDAGc/SA on retinal fundus images of the DRIVE
database

The quantitative analysis of the two strategies introduced in this work and
the method proposed by de Jesus Guerrero-Turrubiates et al. [22] is presented
in Table 2. The accuracy metric was defined as the correspondence ratio of
vessel pixels superposed by the parametrized parabola. This metric was selected
due to the difficulty of defining a parabola ground-truth approved by an expert.
According to the comparison analysis, the two hybrid strategies surpass the non-
hybrid method. Moreover, the approach of weighting the parabola pixels presents a
better performance with the highest correspondence ratio.

Table 3 presents the average execution time of the proposed method and the
UMDA [22], Medical Image Processing, Analysis, and Visualization software
(MIPAV) [32], and Random Sample Consensus method (RANSAC) [33] methods
applied to the parametric parabola detection reported by de Jesus Guerrero-
Turrubiates et al. [22]. According to the computational results, the proposed hybrid
UMDAGc/SA execution time is lower than the non-hybrid approaches. The highest
accuracy and shortest execution time of the hybrid approaches introduced in this
work make them more suitable to aid the detection of diseases in fundus images of
the retina in medical practice.
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Fig. 7 Parabola detection using the second Hybrid UMDAGc/SA strategy on retinal fundus
images of the DRIVE database

Table 2 Comparative analysis of the average accuracy using 20 images of the DRIVE database
of retinal fundus images

Method Average accuracy (%)

Guerrero-Turrubiates method [22] 1.3047

Hybrid UMDAGc/SA 2.4800

Hybrid UMDAGc/SA weighting pixels 2.5288

The value in bold represents the best (highest) average accuracy

Table 3 Comparative analysis of the average execution time using the DRIVE database of retinal
fundus images

Method Average execution time (s)

Proposed method 1.57
Guerrero-Turrubiates method [22] 4.5838

MIPAV [32] 43.65

RANSAC [33] 16.66

The value in bold represents the best (lowest) average execution time
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5 Concluding Remarks

In this chapter a new hybrid optimization method based on the UMDA for
continuous domains and SA has been proposed for the parabola detection problem.
The proposed method was applied to the DRIVE database of retinal fundus
images, using two different objective functions: firstly, only taking into account the
superposition of pixels, and secondly, by weighting the detection of the parabola
vertex. Both strategies yield suitable results in the approximation of the parabolic
shape of the retinal images, obtaining more robust results than the comparative
method. In addition, the average computational time (1.57 s) of the proposed method
outperforms that of the comparative method using the database of 20 retinal fundus
images, which is useful for systems that perform computer-aided diagnosis in
clinical practice.

Acknowledgements This research was supported by the National Council of Science and
Technology of México under the project: Cátedras-CONACYT 3150-3097.

Appendix

Simulated Annealing code in C programming language used for the Hybrid
UMDAGc/SA algorithm proposed in this work.



Hybridization of UMDA with SA for Parametric Parabola Detection 181



182 S. I. Valdez et al.



Hybridization of UMDA with SA for Parametric Parabola Detection 183



184 S. I. Valdez et al.



Hybridization of UMDA with SA for Parametric Parabola Detection 185

References

1. D. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2),
111–122 (1981)

2. J. Illingworth, J. Kittler, A survey of the Hough transform. Comput. Vis. Graph. Image Process.
44(1), 87–116 (1988)

3. V. Leavers, Survey: which Hough transform? Comput. Vis. Graph. Image Process. Image
Underst. 58, 250–264 (1993)

4. R.O. Duda, P.E. Hart, Use of the Hough transformation to detect lines and curves in pictures.
Commun. ACM 15(1), 11–15 (1972)

5. E. Davies, A modified Hough scheme for general circle location. Pattern Recogn. Lett. 7, 37–
43 (1987)

6. D. Ioannou, W. Huda, A. Laine, Circle recognition through a 2D Hough transform and radius
histogramming. Image Vis. Comput. 17, 15–26 (1999)

7. L. Jiang, Efficient randomized Hough transform for circle detection using novel probability
sampling and feature points. Optik 123, 1834–1840 (2012)

8. R. Yip, P. Tam, D. Leung, Modification of Hough transform for circles and ellipses detection
using a 2-dimensional array. Pattern Recogn. 25, 1007–1022 (1992)

9. F. Oloumi, R. Rangayyan, Detection of the temporal arcade in fundus images of the retina
using the Hough transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3585–3588 (2009)

10. F. Oloumi, R. Rangayyan, A.L. Ells, Parabolic modeling of the major temporal arcade in retinal
fundus images. IEEE Trans. Instrum. Meas. 61(7), 1825–1838 (2012)

11. N. Chernov, C. Lesort, Least squares fitting of circles. J. Math. Imaging Vis. 23(3), 239–252
(2005)

12. K. Chung, Y. Huang, A pruning-and-voting strategy to speed up the detection for lines, circles
and ellipses. J. Inf. Sci. Eng. 24(2), 503–520 (2008)

13. L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized Hough transform
(RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)

14. X. Zhang, Q. Su, Y. Zhu, Fast algorithm for circle detection using randomized Hough
transform. Comput. Eng. Appl. 44(22), 62–64 (2008)



186 S. I. Valdez et al.

15. T. Chen, K. Chung, An efficient randomized algorithm for detecting circles. Comput. Vis.
Image Underst. 83(2), 172–191 (2001)

16. L. Jiang, Fast detection of multi-circle with randomized Hough transform. Optim. Lett. 5(5),
397–400 (2009)

17. H. Cheng, Y. Guo, Y. Zhang, A novel Hough transform based on eliminating particle swarm
optimization and its applications. Pattern Recogn. 42(9), 1959–1969 (2009)

18. E. Cuevas, D. Oliva, D. Zaldivar, M. Perez-Cisneros, H. Sossa, Circle detection using electro-
magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)

19. V. Ayala-Ramirez, C.H. Garcia-Capulin, A. Perez-Garcia, R.E. Sanchez-Yanez, Circle detec-
tion on images using genetic algorithms. Pattern Recogn. Lett. 27(6), 652–657 (2006)

20. E. Cuevas, V. Osuna-Enciso, F. Wario, D. Zaldivar, M. Perez-Cisneros, Automatic multiple
circle detection based on artificial immune systems. Expert Syst. Appl. 39, 713–722 (2012)

21. E. Cuevas, D. Zaldivar, M. Perez-Cisneros, M. Ramrez-Ortegon, Circle detection using discrete
differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)

22. J. de Jesus Guerrero-Turrubiates, I. Cruz-Aceves, S. Ledesma, J.M. Sierra-Hernandez,
J. Velasco, J.G. Avina-Cervantes, M.S. Avila-Garcia, H. Rostro-Gonzalez, R. Rojas-Laguna,
Fast parabola detection using estimation of distribution algorithms. Comput. Math. Methods
Med. 6494390, 1–13 (2017)

23. I. Cruz-Aceves, J. Guerrero-Turrubiates, J.M. Sierra-Hernandez, Parametric object detection
using estimation of distribution algorithms. Hybrid Intell. Tech. Pattern Anal. Underst. 1, 69–
92 (2017)

24. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

25. A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal functions of continu-
ous variables with the simulated annealing algorithm. ACM Trans. Math. Softw. 13, 262–280
(1987)

26. P. Larrañaga, J. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary
Computation (Kluwer, Boston, 2002)

27. M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms.
Swarm Evol. Comput. 1(3), 111–128 (2011)

28. I. Cruz-Aceves, A. Hernandez-Aguirre, S. Ivvan-Valdez, On the performance of nature inspired
algorithms for the automatic segmentation of coronary arteries using Gaussian matched filters.
Appl. Soft Comput. 46, 665–676 (2016)

29. I. Cruz-Aceves, F. Cervantes-Sanchez, A. Hernandez-Aguirre, R. Perez-Rodriguez, A. Ochoa-
Zezzatti, A novel Gaussian matched filter based on entropy minimization for automatic
segmentation of coronary angiograms. Comput. Electr. Eng. 53, 263–275 (2016)

30. L. Lozada-Chang, R. Santana, Univariate marginal distribution algorithm dynamics for a class
of parametric functions with unitation constraints. Inf. Sci. 181, 2340–2355 (2011)

31. J.J. Staal, M.D. Abramo, M. Niemeijer, M.A. Viergever, B. van Ginneken, Ridge based vessel
segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)

32. M.J. McAuliffe, F.M. Lalonde, D. McGarry, W. Gandler, K. Csaky, B.L. Trus, Medical
image processing, analysis & visualization in clinical research, in Proceedings of the IEEE
Symposium on Computer-Based Medical Systems (2001), pp. 381–388

33. P. Niedfeldt, R. Beard, Recursive RANSAC: multiple signal estimation with outliers. IFAC
Proc. Vol. 46(23), 430–435 (2013). 9th IFAC Symposium on Nonlinear Control Systems



Image Thresholding Based on Fuzzy
Particle Swarm Optimization

Anderson Carlos Sousa Santos and Helio Pedrini

Abstract Segmentation is a crucial stage in the image analysis process, whose main
purpose is to partition an image into meaningful regions of interest. Thresholding
is the simplest image segmentation method, where a global or local threshold
value is selected for segmenting pixels into background and foreground regions.
However, the determination of a proper threshold value is typically dependent on
subjective assumptions or empirical rules. In this work, we propose and analyze an
image thresholding technique based on a fuzzy particle swarm optimization. Several
images are used in our experiments to show the effectiveness of the developed
approach.

Keywords Image thresholding · Particle swarm optimization · Image
segmentation · Fuzzy threshold · Fitness function

1 Introduction

Image segmentation is the process of clustering pixels of the image into homoge-
neous regions based on certain properties, such as brightness, color, and texture.
Several applications in the fields of image analysis and computer vision [8, 20, 37]
require the segmentation of images, for instance, document analysis, cell counting,
brain tumor detection, vehicle license plate recognition, among other problems.

Thresholding [3, 6, 41, 44] is one of the simplest image segmentation approaches,
whose main purpose is to extract objects present in the image from its background.
Its basic assumption is that the background and objects can be distinguished through
their pixel intensity values.

Image thresholding approaches can be classified into bilevel and multilevel
techniques. In bilevel thresholding [53, 54], a single threshold value is employed to
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partition the image into two portions, one representing the background and another
corresponding to the objects. In multilevel thresholding [3, 39], multiple threshold
values are used to partition the image into background and objects present in the
image.

Entropy maximization [22], intra-class variance minimization [35], histogram
shape [35, 49], and Bayesian error minimization [50] are some of the criteria used
for the image thresholding approaches available in the literature.

The determination of the best parameters for image segmentation [9, 14, 42]
is a serious difficulty found in several thresholding algorithms. In general, the
parameters are defined by users based on empirical assumptions. Since the threshold
values can significantly influence the position of the objects present in the image, it
is crucial to develop efficient mechanisms for selecting the best thresholds.

In this work, the parameters used in different image thresholding techniques
are automatically determined by means of a fuzzy particle swarm optimization
algorithm. As main contributions, we define an efficient fitness function to evaluate
the candidate solutions based on an image quality metric and fuzzy integral,
an automatic selection of appropriate parameters for known image thresholding
techniques by means of a metaheuristic optimization approach, as well as a
combination of particle swarm optimization (PSO) and fuzzy measures, constituting
a hybrid metaheuristic method. Experiments are conducted on several images to
demonstrate the effectiveness of our method.

The remainder of the chapter is organized as follows. Relevant work associated
with image thresholding approaches is briefly reviewed in Sect. 2. The proposed
methodology for determining the best parameters for the image thresholding method
based on a fuzzy PSO algorithm is described in Sect. 3. Experimental results are
reported and analyzed in Sect. 4. Conclusions and directions for future work are
presented in Sect. 5.

2 Background

Techniques for image thresholding [6, 15, 20, 51] aim to extract pixels that belong to
objects in an image from its background. Thresholding approaches are commonly
classified into global and local methods [19, 47], according to their strategies for
selecting the threshold values.

Global thresholding methods employ a single threshold value for all the image
pixels. This strategy is more adequate when the pixel values corresponding to
objects and background are consistent throughout the entire image.

Local thresholding methods use a different threshold adaptively determined for
each pixel according to local image properties. This approach is more suitable to
adjusting non-uniform lighting conditions or the presence of local shadows in the
image.

The following subsections briefly describe some important aspects related to
global and local image thresholding techniques.



Image Thresholding Based on Fuzzy Particle Swarm Optimization 189

2.1 Global Thresholding

A straightforward mechanism for global thresholding is to determine an intensity
pixel value as a threshold T , where pixel values equal to or above T become
1 (white) and pixel values below T become 0 (black). This strategy can be
expressed as

g(x, y)=
{

1, if f(x, y) ≥ T

0, otherwise
(1)

where (x, y) corresponds to a pixel position, whereas f and g are the original image
and the transformed image, respectively.

Otsu [35] developed an automatic method for globally grouping pixels of
the image into background and foreground regions. The algorithm exhaustively
searches for the threshold that maximizes the inter-class variance (the variance
between the classes) or, conversely, minimizes the intra-class variance (that is, the
variance within the class).

The inter-class variance can be defined as

σ 2
between(T )=nB(T ) nF (T )[μB(T ) − μF (T )]2, (2)

where μB(T ) = ∑T −1
i=0 i p(i)/nB(T ) and μF (T ) = ∑L−1

i=T i p(i)/nF (T ). The
intensity levels of the image pixels are in the range [0, L − 1].

The intra-class variance can be defined as the weighted sum of the variances of
each class

σ 2
within(T )=nB(T ) σ 2

B(T ) + nF (T ) σ 2
F (T ), (3)

where nB(T )=∑T −1
i=0 p(i) and nF (T )=∑L−1

i=T p(i). The value σ 2
B(T ) corresponds

to the variance of the pixels in the background (below the threshold), whereas σ 2
F (T )

corresponds to the variance of the pixels in the foreground (above the threshold).

2.2 Local Thresholding

Bernsen [7] developed a method that computes the local threshold value based on the
mean value of the minimum and maximum pixel intensities within a neighborhood,
expressed as

T (x, y)=(zmin + zmax)/2 (4)

where zmin and zmax are the minimum and maximum intensity values, respectively,
within an n × n region centered at (x, y).
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Niblack [33] proposed a method that calculates the threshold value for each pixel
(x, y) based on the local mean and standard deviation of pixel intensities within a
neighborhood, expressed as

T (x, y)=μ(x, y) + k σ(x, y) (5)

where μ(x, y) and σ(x, y) are the local mean and standard deviation, respectively,
within an n × n region of pixel (x, y). The value k is used to adjust the fraction of
total pixels present in the foreground object.

Sauvola and Pietaksinen [40] developed a method that calculates the threshold
value for each pixel (x, y) as

T (x, y)=μ(x, y)

[
1 + k

(
σ(x, y)

R
− 1

)]
(6)

where μ(x, y) and σ(x, y) are local mean and standard deviation, respectively,
within an n×n region of pixel (x, y). Sauvola and Pietaksinen suggested the values
k = 0.5 and R = 128.

2.3 Metaheuristics for Image Thresholding

There are some metaheuristic approaches available in the literature for image
thresholding purposes. Oliva et al. [34] utilized a harmony search evolution-
ary method for multilevel thresholding. Manikandan et al. [31] used real coded
genetic algorithms for brain image segmentation with thresholding. Malisia and
Tizhoosh [30] proposed the use of Ant Colony Optimization to generate another
image representation, called a pheromone matrix, which is used along with the
original normalized image for the classification of black-and-white pixels using
K-means clustering. Liang et al. [27] also employed Ant Colony Optimization for
multilevel thresholding applied to Otsu’s criteria [35].

A differential evolution algorithm was applied for thresholding by Sarkar and
Das [38]. Charansiriphasian et al. [12] proposed an improved version of the
approach developed by Sarkar and Das [38].

Brajevic and Tuba [10] defined a threshold for each pixel using Cuckoo Search,
Firefly Algorithm, and Kapur’s criteria [22] as the objective function. Alihodzic
and Tuba [4] proposed a modification of the Bat Algorithm to perform a search for
thresholds using both Kapur’s and Otsu’s criteria.

PSO has been adopted in some image thresholding approaches. Yin [52] applied
PSO for further searching, following a minimization process using recursive
programming. A modified version of PSO with run-time adaptive population size
was proposed by Liu et al. [28] for multilevel image thresholding purposes. Liu et
al. [29] improved the PSO algorithm for thresholding with adaptive inertia weight.
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Kurban et al. [25] compared the results of PSO against other nature inspired
and evolutionary methods for image thresholding. Li et al. [26] applied a quantum-
behaved PSO for medical image segmentation with Otsu’s thresholding criteria.

Differently from the methods available in the literature, our proposal aims to
optimize the parameters of local adaptive thresholding methods instead of the
threshold value itself. Most of the metaheuristics in the literature are used to estimate
the actual threshold value. In order to avoid a prohibitive search, they work on a
global level. Another distinction is the objective function used in our method. Most
approaches use standard theoretical criteria which do not correspond to true quality
results, but rather histogram partition. The method developed and analyzed in this
chapter introduces a new criterion based on qualitative measures.

3 Methodology

In our methodology, an algorithm for PSO is applied to obtain the best arguments
for two of the most common local thresholding algorithms: Niblack’s [33] and
Sauvola’s method [40]. We propose a fitness function for the PSO algorithm based
on image quality similarity using a fuzzy formulation of the Structural Similarity
Index Measure (SSIM) [48].

Figure 1 illustrates the most relevant stages of the proposed approach. The
following subsections describe each step in more detail.

3.1 Particle Swarm Optimization

Swarm intelligence [2, 36] refers to the decentralized and collective behavior that
allows for a best solution in solving a problem. Artificial swarm intelligence
approaches were created as analogies to living beings that perform a joint effort
as a group to achieve a certain goal. In nature, an example is a colony of ants or
bees [17].

PSO [23, 43] was inspired by the organized movement in a flock of birds or
school of fish. It stands out as one of these swarm intelligence techniques. The
problem is solved by improving a candidate solution according to a specified quality
measure, where a population of particles (the swarm) moves around the problem
search space of real values, such that the movement of particles depends on their
local best known positions and their best positions in the search space [13].

As a metaheuristic, PSO does not guarantee an optimal solution. Few assump-
tions are made about the problem under investigation to search for large spaces by
starting with a sample of random solutions. Nevertheless, it is suitable for local
image thresholding optimization since the problem has a large search space and is
not differentiable.

PSO was chosen in this work due to the various advantages associated with this
approach. Its convergence is fast for our setup with only one or two variables. The
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Fig. 1 Main components of our method for local thresholding optimization
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technique is straightforward to implement and easily parallelized. Moreover, PSO
is simple to set up when only a few parameters are required to be estimated [1].

Although there are many variations of PSO available in the literature, the
fundamental concept associated with this optimization consists in an initial random
population (called a swarm) of candidate solutions (called particles), each one
having the parameters to be optimized [11]. At each iteration, every particle adjusts
its velocity vector and the best known position of the swarm is updated according to
a certain fitness function.

The PSO algorithm stores and progressively replaces the best parameters of
each particle [46], as well as the particle that best fits the parameters. The process
continues until a predefined convergence criterion is reached. Algorithm 1 presents
the PSO version used throughout this work.

The parameter N refers to the number of particles and is defined based on the
problem’s difficulty and the solution’s dimensionality.

The other parameters are associated with the velocity update equation shown
in line 7 of Algorithm 1, where ω represents an inertia weight used to control the
impact of the previous velocity value. The coefficients φp and φg serve as cognitive
and social influence, controlling the effect of personal and the swarm’s best position
on the direction of the movement, respectively.1

Algorithm 1: Particle swarm optimization
input : swarm size N , number of variables D, inertia ω, acceleration coefficients φp and φg

output: best solution

1 Create an array x for particle positions with D dimensions
2 Initialize particle velocities: v ← 0
3 while convergence is not reached do
4 for i ∈ 0, . . . , N do
5 Generate random vectors Ui(φp) and Ui(φg)

6 Compute particle velocities
7 vi = ω ∗ vi + Ui(φp) ∗ (pi − xi) + Ui(φg) ∗ (g − xi )

8 Update particle positions
9 xi = xi + vi

10 Compute objective function f

11 if f (xi) < f (pi) then
12 Update particle’s best position
13 pi ← xi

14 if f (pi) < f (g) then
15 Update swarm’s best position
16 g ← pi

17 end
18 end
19 end
20 end
21 return best particle position g.

1Ui(φ) is an array of random numbers uniformly distributed in the range [0, φ].
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Our implementation has multiple convergence criteria that stops the PSO algo-
rithm if:

• number of iterations > 200
• best objective value stalls for 30 iterations
• change in best objective value < 10−8 or
• change in best position < 10−8.

Since the parameters of our local thresholding method correspond to the
optimization goal, here we consider the entire process of computing a binary image
as the objective function (line 10, Algorithm 1) and compare it to the original image
through a quality measure. Section 3.2 presents the details of the quality metric.

A common parameter in all local thresholding methods is the neighborhood in
which they operate. Since it consists of an integer and has a limited search space, we
search for the best region size iteratively by computing a PSO for each, as shown in
Algorithm 2.

The search is performed from a vicinity of 1 until 25 with a step of 2, whereas
the local threshold arguments and neighborhood size corresponding to the minimum
value of the objective function are returned.

3.2 Fuzzy Structural Similarity Index

As mentioned in Sect. 3.1, the objective function comprehends the application of
a local threshold method and the comparison between the resulting binary image
and original gray scale image. To obtain a good quality measure for the binarization
process, we propose the use of a fuzzy version of the SSIM.

Algorithm 2: Neighborhood search
input : original image img

output: best solution

1 minV al ← +∞
2 for n ∈ 1, 3, 5, . . . , 23, 25 do
3 args ← PSO(Algorithm 1)

4 binaryImg ← localT hreshold(img, args, n)

5 f val ← fuzzyDSSIM(img, binaryImg)

6 if f val < minV al then
7 minV al ← f val

8 minArgs ← args

9 minN ← n

10 end
11 end
12 return minArgs and minN .
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The SSIM [48] is a quality measure calculated originally between two gray scale
images f and g. This is calculated for various image windows x and y, expressed as

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(7)

where μx is the mean of x, μy is the mean of y, σ 2
x is the variance of x, σ 2

y is the
variance of y, and σxy is the covariance of x and y, C1 and C2 are constants that
stabilize the equation (C1 = 0.01 × 2552 and C2 = 0.03 × 2552).

The final SSIM measure is the average of all windows in each pixel and varies in
the range of [−1, 1], such that the closer it is to 1, the more similar the images f and
g are.

The formula presented in Eq. (7) can be decomposed into three individual
functions:

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
(8)

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(9)

s(x, y) = σxy + C3

σxσy + C3
(10)

related to luminance (8), contrast (9), and structure (10).
Our main modification relies on the computation of the overall index measure,

replacing the average metric by the Sugeno Fuzzy Integral (SFI) [21, 45]. This is
based on the fuzzy measure theory [24, 32] that considers the subjectiveness of
information sources through measures that quantify the a priori importance of an
individual source and its possible coalitions.

More formally, coefficients μ(Aj) are defined for all subsets of the set of
integrands (χ) in the range [0, 1] and must meet the monotonicity condition given
in Eq. (11).

Aj ⊂ Ak �⇒ μ(Aj) ≤ μ(Ak) ∀Aj ,Ak ∈ χ (11)

A fuzzy integral [5, 16] aggregates the information according to the fuzzy
measure. The computation of the SFI [21, 45] uses minimum (∧) and maximum
(∨) operators to quantify the level of agreement between the different sources, as
shown in Eq. (12).

Sμ[h1(xi), . . . , hn(xn)] =
n∨

i=1

[h(i)(xi) ∧ μ(A(i))] (12)
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Algorithm 3: Fuzzy DSSIM
input : images A and B

output: dissimilarity measure

1 X ← SSIM(A,B)

2 X ← abs(X)

3 Xs ← reverseSort (X)

4 min ← ∅
5 for i ∈ 1, . . . , |Xs | do
6 μi ← i

|Xs |
7 min ← minimum(Xs

i , μi)

8 end
9 f uzzySSIM ← max(min)

10 return 1 − f uzzySSIM

where the sub-index (i) corresponds to a previous decreasing sort on the integrands,
where h(1)(x1) is the source with the highest value, and A(k) is the subset with the k

highest values, such that A(n) = χ .
In our problem, the sources of information are the structural similarities between

regions represented as an image X, where each pixel maintains the SSIM value of
the region around it. Nonetheless, in order to use the fuzzy integral, this similarity
must represent a fuzzy membership. To accomplish that, we used the absolute value
of SSIM since the negative value comes from Eq. (10), which means a difference
only in luminance and contrast, but a correlation in structure.

We set the fuzzy measures as probability measures, similarly to Gao et al. [18].
Thus, the fuzzy measure is defined as given in Eq. (13).

μ(A(i)) = |A(i)|
N

(13)

where |A(i)| is the cardinality of the set.
Algorithm 3 resumes all the steps for the computation of the quality measure

between images. Since PSO performs a minimization optimization, it is important
to observe that the output of the algorithm is a dissimilarity metric (DSSIM), defined
as one minus the similarity measure.

4 Results

To validate and analyze our methodology, experiments were conducted on several
gray scale images. Due to space limitation, results for four images (shown in Fig. 2)
are presented in this section.

We compared Niblack’s [33] and Sauvola’s methods [40] under our framework
and with default parameters, compared their results to Otsu’s global thresholding
approach [35] and assessed the impact of the Fuzzy Structural Dissimilarity Index
as the objective function.
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(A) Original image Niblack Sauvola

(B) Original image Niblack Sauvola

(C) Original image Niblack Sauvola

(D) Original image Niblack Sauvola

Fig. 2 Results for input images after estimating the best parameters for the thresholding methods
and Otsu’s global thresholding approach
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4.1 Parameter Setup

For the PSO, the inertia (ω) and the acceleration coefficients φp and φg were all set
to 0.5. The maximum number of iterations was set to 200 and the maximum stall
iterations was set to 30. The size of the swarm was defined as 20 for optimization of
Niblack’s method and 100 for Sauvola’s method, since the latter has a large search
space.

Furthermore, the search space size is limited by the lower and upper bounds. For
the k parameter shared in both thresholding methods (Eqs. (5) and (6)), its range
varied from −10 to 10. In Sauvola’s method, the R parameter was defined between
1 and 255.

The default parameters were used in the SSIM [48]. This was computed in each
pixel with a window of 7 × 7 and a uniform filter.

4.2 Results

Figure 2 shows the results of the application of two local thresholding procedures
using the estimated parameters found with our optimization method. The exact
arguments used are reported in Table 1, as well as the value of Fuzzy SSIM between
the binary and original image.

Table 1 Best estimated
arguments and objective
value

Image Method Arguments Fuzzy DSSIM
A Niblack n = 19 0.786697

k = −0.098298
Sauvola n = 9 0.78001

k = 0.022729

R = 74.967747
B Niblack n = 23 0.684108

k = −0.002992
Sauvola n = 7 0.681683

k = 0.020232

R = 115.061960
C Niblack n = 21 0.83455

k = −0.936996
Sauvola n = 13 0.833354

k = 0.287540

R = 25.102691
D Niblack n = 23 0.645525

k = −0.101720
Sauvola n = 23 0.644344

k = 0.065963

R = 193.819038
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It is noticeable from Fig. 2 that Sauvola’s method presented noise-free images,
especially for image C. On the other hand, it is difficult to determine which method
presented a better quality image for image B. The results for Niblack’s method
show some large unwanted blobs, whereas there is more degradation and scatter
noise for Sauvola’s method. The choice will depend on the preferred post-processing
technique.

The values of Fuzzy DSSIM, reported in Table 1, are considered high and closer
to one than zero, indicating that the images are very different. However, this was due
to the different nature of the images (gray scale versus binary). The relative quality
perception is preserved since Sauvola’s method presents a smaller value of Fuzzy
DSSIM for all images, although the difference is tiny in absolute values.

Another interesting aspect in Table 1 is the precision of the arguments found
by the method, which would be very unlikely for a human to infer. The values
obtained differ significantly among images and the local thresholding method used,
with the exception of the neighborhood size in some cases. This shows the difficulty
in working with such methods without some optimization, as well as the adaptive
power of our methodology.

To demonstrate the advantages of a local thresholding method with the param-
eters set properly over a blunt guess or a global thresholding, Figs. 3 and 4 show
the results for Otsu’s global thresholding [35], the local methods with default
configuration, and through our optimization strategy. The default settings for
Niblack’s method consist in a neighborhood of 5 and k = −0.2, whereas a
neighborhood of 5, k = 0.5, and R = 128 applies to Sauvola’s method.

It is possible to observe that the resulting images with an adaptive threshold
can be worse than a global threshold given an erroneous configuration. Sauvola’s
method presents inferior results with its default values despite being considered
better in our framework. This is understandable, since that method requires one
extra parameter when compared with Niblack’s, which increases the combinatorial
possibilities, making it hard to guess the correct combination.

To assess the impact of the fuzzy version of the Structural Dissimilarity Index as
the fitness function, we evaluate the PSO using the regular DSSIM as the objective
function. Figures 5 and 6 show the results for both regular and Fuzzy DSSIM for
Niblack’s and Sauvola’s method, respectively.

For some cases, such as image B, there is no perceptible difference among the
resulting binary images, except for image C, where a huge difference can be noticed
for both methods. The result using a fuzzy integral presented more consistent and
noise-free images as expected, since it reinforces the notion of overall agreement
compared with the average, which is susceptible to outliers. This can be noticed in
Table 2, where the arguments and values for DSSIM are reported. By analyzing the
values with Fuzzy DSSIM in Table 1, it is possible to observe that DSSIM outputs
lower values, indicating that it is more permissive and flexible in terms of similarity.

From the arguments found through the optimized thresholding methods, except
for the neighborhood in image B, there was no coincidence between the two
optimization strategies, although some images presented a similar visual result. This
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Sauvola
(recommended arguments)

Sauvola
(optimized arguments)

Otsu

Sauvola
(recommended arguments)

Sauvola
(optimized arguments)

Otsu

Sauvola
(recommended arguments)

Sauvola
(optimized arguments)

Otsu

Sauvola
(recommended arguments)

Sauvola
(optimized arguments)

Otsu

Fig. 3 Comparison against optimized Niblack’s thresholding method, its standard version, and
Otsu’s global thresholding approach
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Niblack
(recommended arguments)

Niblack
(optimized arguments)

Otsu

Niblack
(recommended arguments)

Niblack
(optimized arguments)

Otsu

Niblack
(recommended arguments)

Niblack
(optimized arguments)

Otsu

Niblack
(recommended arguments)

Niblack
(optimized arguments)

Otsu

Fig. 4 Comparison against optimized Sauvola’s thresholding method, its standard version, and
Otsu’s global thresholding approach
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DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

Fig. 5 Comparison between the use of standard DSSIM and Fuzzy DSSIM as an objective
function for Niblack’s thresholding method
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DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

DSSIM Fuzzy DSSIM

Fig. 6 Comparison between the use of standard DSSIM and Fuzzy DSSIM as an objective
function for Sauvola’s thresholding method
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Table 2 Best estimated
arguments and objective
value using standard DSSIM

Image Method Arguments DSSIM
A Niblack n = 23 0.442512

k = −0.330241

Sauvola n = 7 0.434645

k = 0.037380

R = 15.690637
B Niblack n = 23 0.352743

k = −0.065023

Sauvola n = 7 0.350361

k = 0.011847

R = 170.203209
C Niblack n = 5 0.469049

k = −0.740884

Sauvola n = 19 0.47028

k = −0.042139

R = 5.226428
D Niblack n = 9 0.364504

k = −0.086095

Sauvola n = 9 0.36346

k = 0.033138

R = 238.415270

reinforces how fine tuned the local thresholding methods need to be in order to
generate more adequate results.

5 Conclusions

The selection of threshold values for image segmentation is typically performed
manually based on empirical assumptions; however, this process may significantly
affect the quality of the final result.

This chapter has presented and discussed the application of a PSO, with a fuzzy
formulation of the image quality metric as an objective function, to two image
thresholding techniques. Experiments were conducted on different images. The
results were analyzed and compared to traditional uses of thresholding approaches.

The automatic threshold values estimated by the algorithms, according to a
fitness function based on fuzzy image quality, were able to generate competitive
results that in many cases shown a better visual result. The proposed method can
be used as a preprocessing step in other tasks, such as object location and image
interpretation.
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As directions for future work, we intend to analyze the improvement of different
image processing techniques, for instance, filtering, registration, and compression.
Furthermore, other optimization approaches could benefit from our proposed fuzzy
fitness function for image quality to improve the selection of image segmentation
parameters.
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1 Introduction

From the several areas of computational intelligence, evolutionary computation
has been emerging as one of the most important sets of problems for solving
methodologies and tools in many fields of engineering and computing [1–5]. When
compared to other optimization techniques, learning processes based on population,
self-adaptation, and robustness appear as fundamental aspects of evolutionary
algorithms in comparison to other optimization techniques [1–3].

Despite the large acceptance of evolutionary computation to solve several
important applications in several fields such as engineering, e-commerce, business,
economy, and health, they tend to return marginal performance [1–3]. Such
limitation is related to the large numbers of parameters being selected (the tuning
problem), inadequate data representation, the number of iterations, and stop criteria.
Nevertheless, according to the No Free Lunch theorem, it is not possible to find
the best optimization algorithm for solving all problems with uniform performance
(i.e. for all algorithms); high performance over a determined set of problems
is compensated by medium and low performance in all other problems [1, 2].
Therefore, taking into account all possible problems, the overall performance for
all possible optimization algorithms tends to be the same [1, 6–8].

Evolutionary algorithm behavior is governed by interrelated aspects of exploita-
tion [1, 2]. Such aspects point to limitations that could be overcome by the use
of hybrid evolutionary methods dedicated to optimizing the performance of direct
and classical evolutionary approaches [1–5]. The hybridization of evolutionary
algorithms has become relatively widespread due to their ability to deal with a
considerable amount of real world complex issues usually constrained by some
degrees of uncertainty, imprecision, interference, and noise [4, 5, 9, 10].

Academia and industry have been paying increasing interest to non-invasive
imaging techniques and health applications [11, 12], since imaging diagnosis
techniques and devices based on ionizing radiation methods could be related to
the occurrence of several health problems due to long exposure, like benign and
malignant tissues and, consequently, cancer, one of the most important public health
problems, both for developed and under-developed countries [11, 12].

Electrical impedance tomography (EIT) is a low-cost, portable, and safely
handled non-invasive imaging technique free of ionizing radiation, offering a
considerably wide field of possibilities [13]. Its fundamentals are based on the
application of electrical currents to a pair of electrodes on the surface of the volume
of interest [13–16], returning electrical potentials used in tomographic image
reconstruction, that is finding the distribution of electrical conductivities, by solving
the boundary value problem [15, 16]. Since this is an ill-posed problem, there is
no unique solution, that is there is no warranty to obtain the same conductivity
distribution for a given distribution of electrical potentials on surface electrodes
[13, 16].

Boundary value problems can be solved using optimization problems by con-
sidering one or more target metrics to optimize. Taking into account this principle,
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the EIT reconstruction problem can be solved by the effort to minimize the relative
reconstruction error using evolutionary computation, where individuals (solution
candidates) are probable conductivity distributions. The reconstruction error is
defined as the error between the experimental and calculated distributions of surface
voltages.

In this chapter we propose a methodology to solve the problem of reconstruction
of EIT images based on hybrid evolutionary optimization methods in which tuning
limitations are compensated by the use of adequate heuristics. We perform simu-
lations and compare experimental results with ground-truth images considering the
relative squared error. The evaluation of quantitative and qualitative results indicate
that the use of hybrid evolutionary and bioinspired algorithms aid the avoidance
of local minima and obtain anatomically consistent results, side-stepping the use
of empirical constraints as in common and non-hybrid EIT reconstruction methods
[17], in a direct and relatively simple way, despite their inherent complexity.

This chapter is organized as follows. In Sect. 2 we present a review on evo-
lutionary computation and bioinspired algorithms, with special focus on swarm
intelligence; in Sect. 3 we present a review on density-based fish school search, a
bioinspired swarm algorithm based on fish school behavior; in Sect. 4 we briefly
present a Gauss–Newton electrical impedance tomography reconstruction method;
some comments on hybridization are presented in Sect. 6; in Sect. 5 we present a
bibliographical revision of EIT, image reconstruction problems, and software tools
for image reconstruction based on finite elements; in Sect. 7 we present our proposed
EIT image reconstruction methodology based on hybrid heuristic optimization
algorithms, as well as the experimental approach and infrastructure; in Sect. 8 we
present the experimental results and some discussion; since EIT is a relatively
new imaging technique, we also present a hardware proposal in Sect. 9; finally, in
Sect. 10 we make more general comments on methodology and results.

2 Heuristic Search, Evolutionary Computation,
and Bioinspired Algorithms

Evolutionary computation is one of the main methodologies that compose computa-
tional intelligence. The algorithms of evolutionary computation (called evolutionary
algorithms) were inspired by the evolution principles from genetics and elements of
Darwin’s Theory of Evolution, such as natural selection, reproduction, and mutation
[18].

The main goal of evolutionary computing is to provide tools for building
intelligent systems to model intelligent behavior [18]. Since evolutionary algorithms
are non-expert iterative tools, that is they are not dedicated to a specific problem,
having a general nature that makes possible their application to a relatively wide
range of problems, they can be used in optimization, modeling, and simulation
problems [19].
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An evolutionary algorithm is a population-based stochastic algorithm. According
to [19], the idea behind evolutionary algorithms is the same: given a population of
individuals embedded in some resource-constrained environment, competition for
such resources causes natural selection, where better adapted individuals succeed
in surviving, reproducing and perpetuating its characteristics (survival of the
fittest). As the generations go by, the fitness of the population increases toward
the environment. The environment represents the problem itself, an individual a
possible solution (also called a solution candidate), the fitness of an individual
represents the quality of the solution to the problem in question, and generations
represent the iterations of the algorithm [19, 20]. The way in which these algorithms
solve problems is called trial-and-error (also known as generate-and-test) [19].
Following evolutionary concepts, possible solutions to the problem are generated
and evaluated for the problem in question. In order to get even better solutions, some
of them are chosen to be combined by generating new candidates for the solution.

Besides evolutionary algorithms, computational intelligence also uses bioin-
spired algorithms. These two types of algorithms differ from each other by the
inspiration or metaphor taken into account for its development. While evolutionary
algorithms take into account the theories of genetics and evolution, the other one
takes into account the behavior of living things in nature, such as the collective
behavior of birds in searching for food. The brute-force proposal generate-and-
test is the same for both algorithms; however, bioinspired algorithms do not
have recombination, mutation, and selection operators. In spite of that, they have
operators which simulate intelligent behavior.

Some examples of bioinspired algorithms are: Particle Swarm Optimization
(PSO), based on the behavior of birds in searching for food [21]; the Bacterial
Foraging Algorithm, inspired by the social foraging behavior of the bacterium
Escherichia coli present in the human intestine [22]; the Search for Fish School
(FSS) [23]; and Density based on Fish School Search (dFSS) [24], based on
the collective behavior of fish in searching for food. Some of these types of
algorithm are also based on insect behavior: Ant Colony Optimization (ACO) [25]
and Artificial Bee Colony [26, 27]. In the following subsections some of these
algorithms that were applied in the reconstruction of EIT images are presented.

2.1 Particle Swarm Optimization

PSO is a bioinspired method for search and optimization inspired by a flock’s flight
in search of food sources and the shared knowledge among the flock’s members.
The method was created by mathematically modeling the birds as particles, their
flight as direction vectors, and their velocity as continuous values [21].

As in the bird’s flock flight, the particles move toward the food source influenced
by two main forces: its own knowledge and memory of where to go, and the leader’s
experience. The leader is commonly the bird which is most experienced, and in
the mathematical model it is the solution candidate that best fits the approached
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function [21]. The velocity and weight distribution updating is done according to
the following expressions (1) and (2).

vi(t + 1) = ω(t)vi(t) + c1(t)r1(t)(pi − xi(t)) + c2(t)r2(t)(pg − xi(t)) (1)

xi(t + 1) = xi + vi(t + 1) (2)

where vi(t + 1) is the velocity vector of the i-th particle; ω(t) is the inertia factor;
c1 and c2 are the individual influence and the social factor, modeling the strength of
the particle’s own experience and that of the leader, respectively; and r1(t), r2(t) ∼
U [0, 1].

Along the iterative process, the particles have their configuration updated
by receiving the mathematical influence of the best configuration found so far
(modeling the leader influence), and the best configuration ever found by the particle
itself (modeling its own experience). There is also an inertia factor, which is a
number, generally less than 1, that decreases the velocity of the particle at each
iteration, modeling the reduction of the velocity when the particle gets close to the
optimal configuration. In Table 1 we show the general PSO algorithm.

In the first step, the particles are initialized as vectors containing ‘Dim’ positions
each. Each position is normally initialized with a random number, in the range of
domain of the approached problem.

The second phase is to initialize the velocities. They are vectors with the same
dimension of the particles and in the same quantity of the particles. Each velocity
vector corresponds to a particle and each position of this vector corresponds to one
position (weight) of this particle.

The third and 5.III phases calculate the objective function for each particle and
create a rank with the evaluation of each particle. Those evaluations will be used in
the following step.

Table 1 Particle swarm optimization

Particle swarm optimization pseudo-code

1. Initialize the particles with random distribution
2. Initialize all the velocities as 0
3. Calculate the fitness function for all particles
4. Identify the best particle and the best position ever found for each particle
5. Until the number of iterations is reached, do:

(I) Calculate the objective function for each particle.
(II) Update the velocities and weights of each particle.

(III) Identify the Pbest and GBest.

end Until
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In steps 4 and 5.II, GBest is identified, which is the best particle found so far (by
evaluation through the objective function), and Pbest is identified, which for each
particle is the best configuration found so far.

Finally in the 5.II phase, the particle weights are updated by their respective
velocity vector and are calculated as in the expression (1).

The PSO algorithm, as approached in this work, is used to reconstruct EIT images
by modeling solution candidates as particles, as described in Sect. 7.

The hybrid technique will evolve the insertion of one of the particles that will be
generated by the Gauss–Newton algorithm.

2.2 Simulated Annealing

Simulated annealing (SA) is a stochastic approach for the global optimization of
a given function based on local search and hill climbing. It is a metaheuristic
optimization algorithm to deal with large discrete search spaces [28]. SA could
be preferable to gradient-descent methods when reaching an approximate global
optimum is more important than finding a precise local optimum, given a determined
time interval [28].

Its metaheuristic is inspired by annealing in metallurgy, in which heating and
controlled cooling of a material is employed to increase the size of its crystals
and reduce their defects, affecting both the temperature and the thermodynamic
free energy. The process of slow cooling is interpreted as a slow decrease in the
probability of accepting the worse solutions, thus improving exploration capabilities
[28]. In each iteration, a solution close to the current one is selected and evaluated.
Afterwards, the algorithm decides to accept or reject the current solution, taking
into account the probabilities of the newly calculated solution being better or worse
than the present solution. The temperature is progressively decreased, converging
from an initial positive value to zero, which affects the probabilities. Probabilities
are calculated as described in Eq. (3). The general behavior of SA algorithms is
given by the pseudocode of Table 2, adapted to solve the EIT image reconstruction
problem [29]. The symbolic function GenerateRandomNeighbor(S) is responsible
for obtaining a neighbor solution in the search space of the current solution (S) and
depends on the problem to be solved.

P(ΔE) = e− ΔE
kT (3)

where P(ΔE) is the probability of keeping a state that produces a thermal energy
increase of ΔE (as in statistical mechanics) in the objective function; k is a
parameter analogous to Stefan–Boltzman’s Constant, usually assumed to be 1; and
T is the temperature defined by a cooling scheme, the main parameter of the
process control. The probability of a particular state decreases with its energy as
temperature increases. This fact can be observed in the reduction of the slope of
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Table 2 The pseudocode of a Simulated Annealing algorithm

Pseudocode: Simulated Annealing

1. S∗ ← S; //Initial solution

2. T ← T0; //Initial temperature

3. k; //Process parameter

4. γ ; //Random constant ∈ [0, 1]
5. I terTmax; //Maximum iteration for temperature stabilization

6. while Stopping criteria is not satisfied

7. I terT ← 0; //Iterations for temperature stabilization

8. while (I terT < IterTmax) do

9. I terT ← I terT + 1

10. S′ ← GenerateRandomNeighbor(S);

11. ΔE ← f (S′) − f (S); //Change of objective function f

12. if (ΔE < 0) then

13. S ← S′;
14. if (f (S′) < f (S)) then

15. S∗ ← S′;
16. else if

17. take a random P ∈ [0, 1];
18. if

(
P < e− ΔE

kT

)
then S ← S′;

19. end of if;

20. Temporary end;

21. T ← T

1+γ
√

T
;

22. I terT ← 0;

23. Temporary end;

24. S ← S∗;

25. Return S∗;

26. End of Simulated Annealing

P(ΔE) [29]. Additionally, it is possible to demonstrate that, as SA converges to
the global minimum, a very slow temperature reduction is observed, requiring a
considerably large amount of iterations [28].

2.3 Differential Evolution

After presenting the Chebychev Polynomial Problem by Rainer Storn, Kenneth
Price (1995) in attempting to solve this problem created Differential Evolution
(DE) when he had the idea of using different vectors to recreate the population
vector. Since then, a number of tests and substantial improvements have been made
which has resulted in DE becoming a versatile and robust Evolutionary Computation
algorithm [30, 31].
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Table 3 The pseudocode of a Differential Evolution algorithm

Pseudocode: Differential Evolution

1. Generate the initial population of n random agents, each one represented by a vector xi where
i = 1, 2, . . . , n

2. Repeat until the stop criterion is satisfied:
(A) For i = 1, 2, . . . , n do

(i) Given a random number r ∼ U [0, 1];
(ii) If r ≤ PCR then

(a) Generate a mutated agent through the Table 4;
(b) Generate a cross-agent x̌i through the expression (4);
(c) If f0(x̌i ) < f0(xi ) then xi ← x̌i (minimization);

2.3.1 Stages of Differential Evolution

According to [30], DE is characterized by its simplicity and efficiency at solving
global optimization problems in continuous spaces. Similar to Genetic algorithms,
DE benefits from diversity combined operators of mutation and crossover, in order
to generate individuals modeled as vectors, which are candidates for the next
generation. The new population is defined by the selection mechanism, selecting
the individuals to survive for the next population according to simple criteria. In
this process, the population size remains constant. Therefore, the individuals of
generation G are modeled as real vectors, xi,G, i = 1, 2, . . . , NP , where NP is
the population size [32].

The optimization process is governed by the following:

1. Initialization: The algorithm is initiated by creating a randomly chosen initial
population with uniform distribution, corresponding to the vectors of unknown
parameters (potential solutions), taking into account the search space limit [30].
Typically, the unknown parameters are conditioned by lower and upper boundary
constraints, x

(L)
j e x

(U)
j , respectively, as in the following:

x
(L)
j ≤ xj ≤ x

(U)
j , j = 1, 2, . . . ,D. (4)

Therefore, the initial population is defined as:

x
(0)
j,i = x

(L)
j + rj [0, 1] · (x

(U)
j − x

(L)
j ) (5)

where, i = 1, 2, . . . , NP , j = 1, 2, . . . ,D, and rj ∼ U [0, 1].
2. Mutation: In DE, new individuals are generated by three individuals, related as

following. For each individual xi,G, i = 1, 2, . . . , NP , a basic DE mutant vector
(classical) is generated according to:

vi,G+1 = xa,G + F(xb,G − xc,G), (6)
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Table 4 Main strategies of the Differential Evolution technique

Mutation expression Notation

V q+1 = X
q
α + FP (X

q
β − X

q
γ ) ED/rand/1/bin
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q
α + FP (X

q
ρ − X

q
β) + FP (X

q
γ − X

q
δ ) ED/rand/2/bin
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best − X
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q
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q
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where the random indexes a, b, c ∈ {1, 2, . . . , NP } and a �= b �= c.
The amplification parameter F ∼ U(0, 2] controls the amplification of the
differential variation (xb,G − xc,G). However, there are some other variant
mutation operations, as shown in Table 4.

A potential reason for DE to acquire reasonable results is that the mutation
operator is governed by the difference between the coordinates of the individuals
of the current population [30]. Consequently, each parameter is automatically
exchanged and appropriately reduced, aiding convergence to the desired approx-
imate solution.

3. Crossover: The mutated vector is mixed with the target vector to produce the
trial vector, formed as in the following:

wi,G+1 =
{

vi,G+1, rj ≤ CR ∨ j = k(i)

xi,G, rj > CR ∨ j �= k(i)
, (7)

where j = 1, 2, . . . ,D, i = 1, 2, . . . , NP , rj ∼ U [0, 1], and k(i) ∈ 1, 2, . . . ,D

is a randomly chosen index, which ensures that wi,G+1 receives at least one
coordinate of vi,G+1. The parameter CR ∈ [0, 1] is the crossing constant, set
by the user [30].

4. Selection: The individual of the new generation is selected as the better evalu-
ated vector from the trial vector wi,G+1 and the target vector xi,G, according to
the objective function [30].

5. Stop criterion: The iterative process finishes when a determined number of
iterations is reached or a predetermined value of the objective function is obtained
with a considerably small error [30].

6. Selection of control parameters: The population size NP is chosen from 5D

to 10D and is kept constant during the search process. Parameters F and CR are
set during the search process and affect the speed of convergence and robustness.
Appropriate values for NP , F , and CR are usually empirically determined [30].
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The optimization process is detailed in the pseudocode of DE algorithms,
designed to minimize an objective function f0 : R

n → R, where PCR is the
probability of crossing [33–36], shown in Table 3.

2.3.2 Differential Evolution Strategies

The strategies of DE consist of different variation operators, and can be nominated
according to the following acronym: DE/a/b/c, where [32]:

a: Specifies the vector to be disturbed, which can be “rand” (a vector of the
randomly selected population) or “best” (the least cost vector of the population);

b: Determines the number of weighted differences used for the perturbation of a;
c: Denotes the type of crossings (exp: exponential; bin: binomial).

Price [37] suggested 10 different strategies and some work guidelines for using
them. These strategies were derived from the five different DE mutation regimes.
Each mutation strategy was combined with the “Exponential” or “Binomial”
crossover, providing 5 × 2 = 10 DE strategies. Nevertheless, other combinations
of linear vectors can be used for the mutation. In Table 4 we have Prive’s 10 DE
strategies [37].

The α, β, γ , ρ, and δ indexes are mutually exclusive integers chosen randomly
in the range [1, n], where n is the number of agents of the initial population, and
all are different from the old base index. These indexes are randomly generated
once for each donor vector. The scale factor Fp is a positive control parameter

for the expansion of the difference vectors. X
(q)

best is the agent vector with the best
aptitude (i.e. the lowest objective function value for a minimization problem) in the
generation population q .

2.4 Fish School Search

The FSS was developed by Bastos Filho and Lima Neto in 2008. Such a method
takes into account the protection and realization of the mutual achievements
of oceanic fish [23], where the real characteristics of the fish that served as
inspiration for the method can be classified as feeding and swimming. In the first
characteristic, it is considered that fish possess the natural instinct to seek food;
such a characteristic is incorporated into the algorithm to indicate the success of
fish (those who find more feed are more successful). In the second characteristic,
the capacity of the fish to move individually and in a flock (shoal) is taken into
account, where the search for feed is one of the reasons why fish move.

Therefore, the process of FSS is performed by a population of individuals with
limited memory—the fish [23]. Each fish in the shoal represents a possible solution
to the optimization problem [23]. This method is recommended for high-dimension
search and optimization problems [23, 24]. Considering the characteristics of
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feeding and swimming, the algorithm is formed by four operators, being one of
feeding (the weight) and three of swimming (the operators of movement), which
are described in the following sections.

2.4.1 Individual Movement Operator

Considering fish’s individual capacity for searching for food, the individual move-
ment operator is responsible for moving the fish to a random region of its
neighborhood; this movement does not consider the influence of the other fish of
the school for its realization. An important feature of such a movement is that the
fish moves only in the positive direction of the fitness function, that is it travels only
if the random position is better than the current position.

The individual displacement of each fish i, Δxindi is given in Eq. (8), where
rand(−1, 1) is a vector of random values uniformly distributed in the range [−1, 1],
and stepind is the individual movement step, a parameter that represents the ability
of the fish to move in the individual movement. After calculating the individual
displacement the position of fish xindi is updated through Eq. (9).

Δxindi (t + 1) = stepind · rand(−1, 1) (8)

xindi (t + 1) = xindi (t) + Δxindi (t + 1) (9)

In order to guarantee the convergence of the algorithm during the search process,
the value of the parameter stepind decreases linearly as shown in Eq. (10), where
stepindi and stepindf are the initial and final values of stepind , and iterations is the
maximum possible value of iterations of the algorithm.

stepind (t + 1) = stepind (t) − stepindi − stepindf

iterations
(10)

2.4.2 Feeding Operator

The weight of the fish is the indicator of its success, that is the more food the
fish finds, the more successful the fish is, which represents a better solution in the
optimization problem [24, 38]. In this way, weight is the function to be maximized
by the search process. The fish’s weight is given as a function of the variation of
the fitness function generated by the individual movement (Δfi), as shown in the
equation below:

Wi(t + 1) = Wi(t) + Δfi

max(Δf )
(11)
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where Wi(t) and Wi(t + 1) represent the weight of the i fish before and after the
update.

2.4.3 Collective Instinctive Movement Operator

The first collective movement to be considered in FSS is the collective-instinctive
movement, where the most successful fish in the individual movement guides the
other fish to the points of greatest food encountered by it. Such motion is carried
out through the resulting direction vector I (t), that is the weighted average of the
individual displacements ξ . Having as weight the individual fitness variance Δxi ,
the expression for that mean is given in Eq. (12), where N represents the number of
fish in the shoal. Then, the new position of all fish is obtained following Eq. (13).

I (t) =
∑N

i=1 ΔxindiΔfi∑N
i=1 Δfi

(12)

xi(t + 1) = xi(t) + I (t) (13)

2.4.4 Collective Volitive Movement Operator

The following and last collective movement, the collective-volitional movement,
is based on the performance of all fish in the school [39]. In this movement, the
fish may move towards the center of mass of the shoal or move away from it.
The calculation of the center of mass of the school, Bary(t), is done according
to Eq. (14).

The choice whether the fish will approach or move away from the center of mass
is made by analyzing whether the fish are gaining weight during the search process.
If the fish, in general, are increasing in weight, it means that the search is being
successful and the fish approach each other, decreasing the radius of the search; in
this case, the movement is carried out following Eq. (15). Otherwise, if the fish are
losing weight, the search is unsuccessful and the fish move away from each other,
increasing the search radius, executing the movement through Eq. (16). In Eqs. (15)
and (16), the parameters rand(0, 1) represent a vector of random values evenly
distributed in the range [0, 1], and stepvol is the step of the collective-volitional
movement.

Bary(t) =
∑N

i=1 xiWi(t)∑N
i=1 Wi(t)

(14)

x(t + 1) = x(t) − stepvol · rand(0, 1)(x(t) − Bary(t)) (15)

x(t + 1) = x(t) + stepvol · rand(0, 1)(x(t) − Bary(t)) (16)
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3 Density Based on Fish School Search

Based on the FSS, the Density based on Fish School Search (dFSS) is an algorithm
dedicated to the optimization of multimodal functions proposed by Madeiro, Bastos-
Filho, and Lima Neto [24, 38]. In the method, the main Fish School is divided into
Sub-Fish Schools of different sizes, so that each sub-group will explore different
regions of the aquarium, which have possible solutions to the problem. Unlike the
other methods discussed here, which get only one solution at the end of their runs,
on dFSS it is possible to obtain a set of global and local optimal solutions. In fact, the
function of the relative quadratic error for TIE is multimodal, but since the objective
of the reconstruction is to obtain only one image, the application of dFSS to TIE is
done by considering as a solution the best image obtained by the method in relation
to the objective function.

In addition to the feeding and movement operators of the search for Fish schools
adapted to the multimodal approach, dFSS has two more operators, the memory and
partitioning operators, which will be dealt with in more detail later in this section.

In dFSS the food purchased by a fish is shared with the other fish of the shoal. The
amount of shared food from one fish i to another fish j , C(i, j) is given by Eq. (17),
where qij is the number of fish k that satisfy the relationship dik < dij (density
of fish around the fish i), including fish i, and dRij = dij /[∀k �= i, min(dik)] is
the normalized distance. Then, the updating of the weight of each fish will take
into account the total food that was shared with it, as given by Eq. (18), where Q

represents the number of fish that were successful during the individual movement.
Different from what happens in nature, in the dFSS proposal it is assumed that the
weight of the fish does not decrease over the iterations [24].

C(i, j) = Δfi

(dRij )
qij
∑N

k=1
1

(dRik
)qik

(17)

Wi(t + 1) = Wi(t) +
Q∑

j=1

C(i, j) (18)

Food sharing is responsible for the control and maintenance of different sub-
Fish Schools, since each fish cooperates (sharing its success) with the other fish
around them, the most significant sharing is with the closest fish and in regions less
populous. This is modeled by the index (dRij )

−qij greater is the value of qij (i.e. the
denser the region around the fish i), smaller will be the quantity shared for the fish
j [24]. Further detail on the formation of sub-shoals is given in the explanation of
the memory and partitioning operators in the following paragraphs.

Individual movement in the dFSS occurs in the same way as in the FSS,
but for segregation of the main fish school the adjustment of the movement
parameter has been modified. The new way of updating the step of the individual
movement is given by Eqs. (19), (20), (21), and (22), where decayi is the decay
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rate, decaymin ∈ [0, 1], decaymax are the minimum and maximum decay rates,
respectively, decaymaxinit

, decaymaxend
∈ [0, 1] are the initial and final maximum

decay rates, respectively, and must obey the following condition: decaymaxend
<

decaymaxinit
< decaymin, and finally Tmax is the maximum number of iterations

[24, 38]. The initial value of the individual step is given by the parameter stepinit ,
that is stepindi (0) = stepinit [24].

stepindi (t + 1) = decayi · stepindi (t) (19)

decayi = decaymin −
(

Ri(t) − min(Rj (t))

max(Rj (t)) − min(Rj (t))

)
(decaymin − decaymax(t))

(20)

decaymax(t) = decaymaxinit

(
decaymaxend

decaymaxinit

)t/Tmax

(21)

Ri(t) =
Q∑

j=1

Δfj

(dRij )
qij
∑N

k=1
1(

dRjk

)qjk

(22)

In the dFSS each fish has a memory Mi = {Mi1,Mi2, . . . ,MiN }, where N is the
total number of fish. In a fish’s memory is the information of how much food the
other fish have shared with it throughout the search process. The index Mij indicates
the influence of fish j on fish i, that is, the larger the Mij the greater the influence
of fish j on fish i. The memory operator is calculated by Eq. (23), where ρ ∈ [0, 1]
is the forgetting rate, a parameter that controls how the influence exerted on past
iterations is remembered.

Mij (t + 1) = (1 − ρ)Mij (t) + C(j, i) (23)

The collective-instinctive movement of dFSS is similar to the Fish School search,
although each fish has its own resulting direction vector Ii which is given by the
weighted average of the displacement performed on the individual movement by
a fish j having as weight its influence Mij as shown in Eq. (24). The fish position
update is given by Eq. (25). According to [24], even the fish that did not move during
the individual movement will influence the result of Ii , causing fish i to simulate this
behavior by remaining stationary according to the value of Mij .

Ii(t) =
∑N

j=1 ΔxjMij
∑N

k=1 Mik

(24)

xi(t + 1) = xi(t) + Ii(t) (25)

After the execution of the collective-instinctive movement the partitioning
operator responsible for the division of the main school into several sub-schools of
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different sizes is executed. For the division of the school, the following belonging
condition is taken into account: a fish i belongs to the same sub-school of fish j

only if i is the fish that exerts the greatest influence on fish j or vice versa [24].
The division process begins when a randomly chosen fish i is removed from the
main school to form a new sub-shoal, then another fish j is sought where i is the
most influential for j or vice versa; if there is a j that satisfies this condition it will
be removed from the main shoal and added to the sub-school in question; then this
procedure is repeated for fish j in a cascade process. This process is repeated until
no more fish that satisfy the condition of belonging to that particular sub-school
are found. When this happens a new fish from the main shoal will be randomly
removed to compose a new sub-school and the process resumes. The formation of
the sub-shoals is carried out until there are no more fish in the main shoal [24].

Finally, the collective-volitional movement is performed independently for each
sub-school as given in Eq. (26). In this movement all the fish move towards the
barycenter of the sub-shoal (Baryk(t)) to which it belongs. The barycenter of
each sub-school is calculated in the same way as FSS, given in Eq. (14). To avoid
premature convergence, the magnitude of the pitch to be performed by the fish
towards the barycenter varies according to the value of decaymax(t) [24]. The
pseudocode of the dFSS method [38] is shown in Table 5.

x(t + 1) = x(t) + (1 − decaymax(t))(Baryk(t) − x(t)) (26)

4 The Gauss–Newton Method

Based on Newton’s method (dedicated to estimating roots of a function) the Gauss–
Newton method is an algorithm which has been widely used in the reconstruction
of EIT images [40, 41]. This method, implemented to eliminate the use of second
derivatives, consists of a gradient-descent-based numerical method used to solve
non-linear least squares problems minimizing the sum of quadratic functions [41].
The application of the Gauss–Newton method in EIT is done by estimating a
conductivity distribution σk which minimizes the expression given in (27), where
φext,k(

−→
u ) = f (I (

−→
u ), σk(

−→v )), for all −→
u ∈ ∂Ω and −→v ∈ Ω [41].

sk = 1

2

∑

u∈∂Ω

(φext,k(
−→u ) − φext (

−→u ))2 (27)

The hybridizations done in this work evolve the Gauss–Newton method, working
together with the techniques presented before. The nomenclature used to describe
a hybrid technique in this works is ‘technique’ with Non Blind Search (NBS) or
‘technique’-NBS. For instance, the hybrid approach with the PSO and the Gauss–
Newton algorithm will be called a PSO a with non-blind search, or PSO-NBS.
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Table 5 The pseudocode of density based on Fish School Search algorithm

Pseudocode: density based on Fish School Search

1. Initialize all fish in random positions and with null weight
2. Evaluate all fish’s fitness
3. Calculate the distance between the fish
4. Repeat steps (a) and (b) until some stopping criteria are reached

(a) For each fish in the school do:

(I) Execute the individual movement
(II) Execute the feed operator

(III) Update the fish’s weight
(IV) Execute the memory operator

(b) For each fish in the school do:

(I) Execute the instinctive collective movement
(II) Determine the most influential fish for a given fish

(c) Execute the primary school division operator
(d) For each sub-school determined in previous step do:

(I) Calculate the barycenter

(e) For each fish do:

(I) Update the individual step
(II) Execute the collective-volitional movement

(f) Evaluate all fish’s fitness
(g) Calculate the distance between the fish
(h) Update the value of decaymax(t)

5. Select the best fish from each sub-school at the end of the process

5 Electrical Impedance Tomography

EIT is a promising imaging technique that is non-invasive and free of ionizing
radiations. This technique reconstructs images of the inside of a body (or any object)
through electrical quantities measured below its surface. For this, electrodes are
placed across a transverse section of a body. These electrodes are connected with a
control and data acquisition system that is responsible for the application of a pattern
of an alternated and low amplitude electrical current and also for the measurement of
the border electrical potentials that are generated by this stimulus. When collected,
the electrical current and potential data are conveyed to a computer that makes the
image reconstruction [42, 43].

The images obtained by EIT are the computational reproduction of an estimated
mapping of electrical properties inside a section of body that are calculated through
the relation between the stimulus data and response data. By electrical properties,
in this case, is understood electrical conductivity or permissiveness; electrical
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conductivity is the measurement of how easy a material conducts electricity and
electrical permissiveness is the measurement of how easy electrical charges of a
material are separated under the application of an electric field. A good conductor
allows passage of continuous and alternated current whereas a high permissiveness
material allows the passage only of alternated current [44]. The tissues and
organs of the human body, due to its constitution, have characteristic values of
conductivity and permissiveness. Factors such as concentration of water, ions, and
blood irrigation determine whether a tissue or an organ is less or more conductive or
permissive. This justifies the use of EIT in the medical field, because the difference
of conductivity and permissiveness between organs supplies the necessary contrast
in the EIT image for differentiation of these organs.

Nowadays, the medical imaging field has very well consolidated techniques
such as X-rays, computed tomography, nuclear magnetic resonance, and positron
emission tomography. Despite that, EIT has advantages when compared to these
other methods that makes it a promising technique in medical imaging. These
advantages are:

• EIT does not use ionizing radiation, hence is harmless to patients [44]. Thus, it
is viable for performing this technique several times or even for continuous use
in monitoring certain functionalities of a body.

• EIT has small dimensions [45], which allows the device to be moved to the
patient and even used in the patient’s bed in intensive care units.

• EIT has low cost when compared to other imaging techniques.

Although these advantages make EIT a promising technique, it is still recent and
not strongly established, presenting low-resolution images and slow reconstruction
when compared to other tomography techniques [46, 47], which makes it not fully
reliable for medical diagnosis.

The process of reconstructing EIT images is divided into two problems: the direct
problem and the inverse problem [46, 47]. In the direct problem, the conductivity
distribution of the inner domain and the current are known and the objective is
to determine an electric potential distribution at the internal and boundary (edge)
points of the domain [45]. This process is governed by Poisson’s equation and its
boundary conditions for the EIT problem. In the inverse problem, the goal is to
estimate the internal conductivity distribution of a domain knowing the pattern of
the current excitation and the edge potentials due to this excitation. The inverse
problem, mathematically, is a non-linear, poorly placed and poorly conditioned
problem [42, 48], because more than one solution is possible for this problem for
the same input values, that is small data measurement errors can lead indefinitely to
large errors in the solution [42, 48]. This factor makes EIT imaging quite dependent
on the reconstruction method used.

From a mathematical point of view, the field of study of EIT, that is the section
for which the image is desired, can be considered to be a closed 2D region Ω where
its boundary surface is given by ∂Ω as shown in Fig. 1.
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Fig. 1 EIT domain
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To reduce the complexity of this problem it is considered that the image domain
should consist of an isotropic medium.1 However, the electrical nature of human
organs and tissues is anisotropic2 [49, 50]. Despite the proposed hypothesis being
wrong, it is necessary, due to the limited knowledge about this topic in EIT and
related areas [49].

Taking into account a low-frequency excitation current (of the order of 125 kHz)
the permissiveness effect can be disregarded [51]. Thus, the electric medium is
considered to be conductive σ(x, y) because, when considering low frequencies, the
inductive and capacitive effects can be ignored [52]. Therefore, the current density−→
J generated from an injected electric current is given by Eq. (28) [51].

−→
J = σ

−→
E (28)

where
−→
E represents the medium’s electric field. Considering that the excitation

frequency value is lower than 30 MHz, it has the following [53]:

−→
E = −∇φ (29)

∇ · −→
J = 0 (30)

where ∇ is the symbol nabla that denotes the gradient operator,3 ∇· is the divergent
operator4 and φ(x, y) represents the internal electric potential at a point (x, y) of the
domain Ω . Thus, replacing Eqs. (29) and (30) in Eq. (28) yields Poisson’s equation,
given in (31), which relates the conductivity values and electrical potentials of a
domain [51, 53].

∇ · (σ∇φ) = 0 (31)

1An isotropic material is a medium whose electrical characteristics do not depend on the considered
direction.
2Instead of isotropic materials, an anisotropic material has direction-dependent characteristics.
3The gradient of F(x, y) = ∇F(x, y) = i

∂F (x,y)
∂x

+ j
∂F (x,y)

∂y
=
(

∂F (x,y)
∂x

,
∂F (x,y)

∂y

)
.

4The divergent of F(Fx, Fy) = ∇ · F(Fx, Fy) = ∂Fx

∂x
+ ∂Fy

∂y
.
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Poisson’s equation has unlimited solutions, which means that for a given
electrical potential distribution there are several conductivity distributions that
satisfy Eq. (31). The number of solutions is limited by boundary conditions inherent
to the problem. In EIT, the electrical currents are injected only by electrodes placed
around the patient, which means that in specific positions on the domain’s surface
the following boundary condition can be taken into account:

σ
∂φ(σ)

∂n̂
=
{

Ji, i = 1, 2, 3, . . . , ne

0, in other points of ∂Ω
(32)

where ne is the number of electrodes used and n̂ is a normal versor5 on the domain’s
edge and outside oriented. Following the same line, the known electrical potentials
are the ones arranged on a domain’s contour, measured by the electrodes. In this
way, the second contour condition for this problem is the following:

φext (x, y) = φ(x, y), ∀(x, y) ∈ ∂Ω (33)

where φext (x, y) is the electrical potential distribution measured by the electrodes.
Determination of the electric potential distribution measured by electrodes

φext (u, v), knowing the electric current of excitation I (u, v), and distribution of
internal conductivity σ(x, y), is called the direct problem of EIT. It is defined by
Eq. (31) and the boundary conditions (32) and (33) [51]. The direct problem can be
modeled by the relation given in Eq. (34).

φext (u, v) = f (I (u, v), σ (x, y)), ∀(u, v) ∈ ∂Ω ∧ (x, y) ∈ Ω (34)

The inverse problem, however, is the reconstruction of EIT images themselves
[42]. The objective is to determine an internal conductivity distribution σ(x, y)

in the domain by knowing the excitation current I (u, v) and the edge potentials
measured at the electrodes φext (u, v). This problem is considered the inverse of the
function given in Eq. (34), being modeled conformed in Eq. (35).

σ(x, y) = f −1(I (u, v), φext (u, v)), ∀(u, v) ∈ ∂Ω ∧ (x, y) ∈ Ω (35)

Then, the direct problem is to solve Poisson’s equation (31) knowing the internal
conductivity distribution of a domain and the boundary condition given in Eq. (32)
for the injected current. The inverse problem consists of the resolution of Eq. (31)
knowing the two boundary conditions given by Eqs. (32) and (33), but not knowing
the conductivity distribution [54].

The inverse problem of EIT is an intrinsically ill-posed problem because it
does not have a unique solution, that is several conductivity distributions would
respond to the current excitation at the same distribution of measured electrical

5A versor is a vector of unitary module usually used to indicate the direction in a given operation.
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potentials. According to [49], if measurements were made with infinite precision
and over the entire surface of the domain, the problem would have a unique solution.
However, in the imaging process the data are discretely sampled and noisy, causing
a loss of information. Besides that a large variation of conductivity can produce
only a small variation in discrete measurements. Thus, the ideal would be to use
as many electrodes as possible. It was found that by increasing the number of
electrodes it is possible to improve the ill-posed condition of this problem and
consequently the quality of the reconstructed images [55]. However, it has also
been noted that increasing the number of electrodes significantly increases the
reconstruction time [55]. In addition to that, the number of electrodes is limited
by the measurement area and the size of the electrodes [56]. The inverse problem is
also ill-conditioned because small oscillations in the measurements (such as noise)
can produce large oscillations in the final non-linear solution, because changes in
conductivity values of the domain do not produce a linear change in the values of
the surface potentials [49].

5.1 Objective Function

The use of evolutionary and bioinspired algorithms in the reconstruction of EIT
images occurs when approaching the reconstruction problem as an optimization
problem. For this it is necessary that an objective function be optimized. In this
chapter, is used as objective function the relative squared error given in Eq. (36),
where ne is the number of electrodes, V is the electrical potential distribution
measured on the electrodes, and U(x) is the electrical potential distribution of a
random image x that is a candidate for the solution considered in the algorithm [57].

fo(x) =
[∑ne

i=1 (Ui(x) − Vi)
2

∑ne

i=1 (Vi)2

]1/2

(36)

V = (V1, V2, . . . , Vne )
T , (37)

U(x) = (U1(x), U2(x), . . . , Une (x))T (38)

5.2 Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software

Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction
Software (EIDORS) is an open source software developed at MATLAB and Octave.
The experiments presented in this chapter were performed using EIDORS, which
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has functions capable of solving the direct problem of EIT and the creation of finite
element meshes[58].

6 Hybridization

Hybridization consists in using more than one technique in cooperation to solve a
determinate problem, although if one technique can solve the approached problem in
a satisfactory way, there is no necessity for hybridization. The use of hybridization
is justified when the interaction among two or more techniques can improve the
performance of the problem resolution.

There are mainly three types of hybrid system. They are:

• Sequential hybrid system: The technique is used in a pipeline way.
• Auxiliary hybrid system: These are techniques co-working to help one technique

to solve a determinate problem. The accessory technique is used, normally, to
improve the stages of the main technique.

• Embedded hybrid system: The evolved techniques are integrated. They work
together as equals to approach the solution of a problem.

The hybridization described in this work are embedded, once the Gauss–Newton
method is responsible for including a solution into the pool of solution candidates
of each technique, which is intended to guide the search and to avoid falling in
local minimals. The results are shown for EIT image reconstruction, by using raw
techniques, such as particle swarm algorithms and density based on the Fish School
Search; Also shown are the results of the collaborative work of each one with the
Gauss–Newton model as new hybrid approaches.

6.1 Differential Evolution Hybridized with Simulated
Annealing

According to [59] the DE method which has a stronger global search character,
only a few generations are sufficient to find a solution close to the ideal. However,
according to its algorithm, each generation requires the selection, crossing, and
mutation of the agents of the current population, thus requiring a high computational
cost, that is a high number of calculations of the objective function. The SA method
is a local search algorithm with a high convergence speed due to the fact that it is
able to avoid local minima [60, 61]. In this direction, the proposal of this work is a
hybrid version of DE based on simulated annealing (DE-SA), which consists of the
implementation of DE and adding SA within the selection operator to improve ED
global search capacity.



230 W. P. dos Santos et al.

Pseudocode

1. Initialization: Generate the initial population of n random agents D dimen-
sional, each represented by a vector Xj,i,G = randj,i[0, 1], where j =
1, 2, . . . , NP ; G is the current generation; and Fi = rand(0, 2] is the mutation
scale factor for each individual.

2. Set the value of PCR;
3. Population Mutation: The population mutation is based on the strategy of

DE/best/1/bin. As shown in Table 4,

Vj,i,G = Xj,best,G + Fi(Xj,i1,G − Xj,i2,G)

where i1 �= i2 �= i and Xj,best,G corresponds to the most suitable agent in the
current generation.

4. Population Crossing: Population crossing is based on the DE binomial crossing
operation, as shown by the equation of Table 4.

Wj,i,G =
{

Vj,i,G, if (randj,i(0, 1) ≤ PCR or j = jrand)

Xji,G, otherwise

5. Population selection: This is processed by comparing the target vector Xj,i,G

with the vector of judgment Wj,i,G of the population. In addition, SA is added
inside the selection operator, and tG represents the ambient temperature of the
current generation.

tG+1 = tG

1 + G
√

tG
(39)

xi,j,G+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wj,i,G, if f0(Wj,i,G) ≤ f0(Wj,i,G)

Wj,i,G, if f0(Wj,i,G) > f0(Wj,i,G)

and rest
(

G
4

) = 0

and f0(Wj,best,G) = f0(Wj,best,G−1)

and f0(Wj,best,G) = f0(Wj,best,G−2)

and exp
[
− (f0(Wj,i,G)−f0(Wj,i,G))

tG

]
> rand(0, 1)

Wj,i,G, Otherwise
(40)

where Wj,best,G is the fittest agent of the current generation, Xj,best,G−1 is the
fittest agent of generation (G−1) and Xj,best,G−2 is the fittest agent of generation
(G − 2). Every four generations, these conditions are implemented to assess
whether the value of the objective function of the best candidate for the solution
has assumed a local minimum in the last three generations. In this case, the
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judgment vector Wj,i,G can be maintained for the next generation if it satisfies
the condition imposed by the exponential expression based on the probability of
the SA optimization process.

6. Stop if the stop criterion is satisfied. Otherwise, go back to Step 3.

Recall that PCR is the probability of crossing and f0 corresponds to the objective
function. Also for the DE-SA method, the initial agents were defined with a normal
distribution of random conductivity in the range [0, 1].

6.2 Fish School Search Hybridization

According to the discussion in Sect. 2.4, one can observe that the FSS algorithm is
quite dependent on the individual movement operator and therefore the parameter
stepind decreases linearly with the iterative process.

With the proposal to increase the refined search between the intermediary and
final iterations, we changed the linear decay for an exponential decay. In this way,
the stepind value decays faster, thus the algorithm will execute a more refined
search, that is the algorithm will execute a more exploitative and less exploratory
search.

The equation for the exponential decay was made in such a way that the stepind

value continues, beginning with stepindi and ending with stepindf . This expression
is given in Eq. (41).

stepind (t) = stepindi × exp

[
t

N
ln

(
stepindf

stepindi

)]
(41)

7 Methodology

In the EIT reconstruction simulations our goal was to identify a conductive object
within a circular non-conductive domain. We considered three cases where the
object was placed in the center, between the center and the edge, and at the edge
of the domain. These images, called ground-truth images, were created by using
EIDORS with a mesh of 415 finite elements and 16 electrodes. Figure 2 shows the
ground-truth images used in the experiments.

For all methods here discussed we used Eq. (36) as the objective function, where
each dimension of the vector (solution candidate) corresponds to a particular finite
element on the mesh. The stop criterion utilized was the maximum number of
iterations.

The parameter used in the PSO for the experiments were: ‘c1’and ‘c2’ = 2; ω

(inertia weight) = 0.8; number of iterations = 500; and number of particles = 100.
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Fig. 2 Ground-truth images for the object placed (a) in the center (b), between the center and the
edge, and (c) at the edge of the circular domain

For the DE’ implementations, the agent referred to by the DE-SA algorithm is
represented by a numerical vector containing the internal conductivity values of
a candidate for the solution, that is the agent is a candidate for solving the TIE
problem. The parameters used to implement the DE-SA method were initial number
of agents: 100, probability of crossover: 90%, initial temperature: 200,000, and
number of iterations: 500.

The parameters used for FSS’ methods were 100 fish, W0 = 100, stepindi =
0.01, stepindf = 0.0001, stepvolt = 2stepind and iterations= 500. Whereas
for dFSS’ methods they were ρ = 0.3, stepinit = 0.01, decaymin = 0.999,
decaymaxinit = 0.99, decaymaxend = 0.95, and Tmax = 500.

8 Experimental Results and Discussion

In this section, the results obtained by reconstruction of EIT images through the use
of hybrid methods previously described are presented.

8.1 Particle Swarm Optimization

The PSO and Gauss–Newton/PSO reconstructed images are shown in this section.
They are presented in two results categories, which are:

• Qualitative: Figures 3 and 4 are the reconstructed images for the three ground-
truths (center, between the center and the border, and the border) for the canonical
PSO and the same technique with a particle generated by the Gauss–Newton
algorithm inserted at the beginning of the iterative process, respectively.

• Quantitative: The graphs, shown in Figs. 5, 6, and 7 are the evolution of the
relative error of the best particle, calculated by the objective function presented in
Sect. 5.1, along the 500 iterations of each of the three executions of the algorithms



Hybrid Metaheuristics for Electrical Impedance Tomography 233

Fig. 3 Particle swarm optimization reconstructed images. Center ground-truth: ‘a’; between the
center and the border ground-truth: ‘b’; and border ground-truth: ‘c’. The numbers at the right side
of the chars (1, 2, and 3) stand for 50, 300, and 500 iterations, respectively

for the center, between the center and the border, and the border ground-truth
images, respectively.

8.1.1 Particle Swarm Optimization and with Non-blind Search
Qualitative Discussion

As with the results, their discussion is also qualitatively and quantitatively separated.
The qualitative analysis considers images reconstructed and several aspects of

the similarity with their respective ground-truth (Fig. 2) and the noise presence and
cleanness of the circular domain.
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Fig. 4 Particle swarm optimization with non-blind search reconstructed images. Center ground-
truth: ‘a’; between the center and the border ground-truth: ‘b’; and border ground-truth: ‘c’. The
numbers at the right side of the chars (1, 2, or 3) stand for 50, 300, and 500 iterations, respectively

The images generated by the PSO in Fig. 3 are generally noisier than the ones
generated by the hybrid technique (PSO-NBS). It is important to clarify that by
noisier we mean a less isolated resistive area (in red) with several artifacts around
it. That means that the technique could not generate images with good isolation of
the searched object (ground-truth). The same happened for the three ground-truth
configurations.

On the other hand, the images generated by the PSO with non-blind search
(Fig. 4) are cleaner than the former ones (by isolating the red object, which is
the ground-truth). This factor means that the inclusion of a particle with prior
knowledge, generated by the Gauss–Newton algorithm, can improve significantly
the quality of the generated images.
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Fig. 5 Relative error for the ground-truth center placed

Fig. 6 Relative error for the ground-truth placed between the center and the border

In these experiments, the only drawback of the hybrid approach was when the
image to be reconstructed was placed at the border of the domain (c1, c2, and
c3). The reconstructed resistive area (in red) was slightly different from its ground-
truth (Fig. 2 circular domain ‘c’). Nevertheless, these images are still in better shape
and with a better noise level than the ones generated with only the Particle Swarm
Algorithm.

Under this analysis, it is clear that, qualitatively, the PSO-NBS hybrid approach
(Fig. 4) overcame the only PSO approach (Fig. 3) in all the aspects.
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Fig. 7 Relative error for the ground-truth border placed

8.1.2 Particle Swarm Optimization and with Non-blind Search
Quantitative Discussion

The quantitative analysis is based on the capacity of finding a low relative error value
and the capacity of escaping local minimals along the iterations. Those factors can
be observed in the relative error plots.

Under the three configurations (Figs. 5, 6 and 7), the hybrid approach (PSO-
NBS, in red) shows a capacity of finding deeper values (i.e. lower relative error
values). This probably happens because of the guidance of the search when a Gauss–
Newton generated particle is put into the swarm. Besides, it is possible to notice
that, unlike the PSO (in black), the PSO-NBS, in most of the cases, is able to escape
local minimal regions. This can be seen by the linear trajectory of the back line
in Fig. 5 around 150 iterations and in Fig. 6 around 340 iterations, when the error
stops falling. The PSO-GN also has this trend of stagnating the error’s fall; however,
before that happens, this technique had already found a lower error than the PSO in
the three cases.

The reconstruction problem regarding the border reconstruction images by the
hybrid approach is also present in the quantitative results. In Fig. 7, the PSO-NBS
(in red) stops its evolution (i.e. relative error falling) near the 20th iteration, which
characterizes a local minimal stack, and therefore generation of a non-clear isolation
of the searched object, as seen in Fig. 7, sub-units c1, c2, and c3. That is also the
reason for those three images being equal, as there was no improvement (finding a
better image) after the 20th iteration.
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8.2 Differential Evolution Hybridized with Simulated
Annealing

The results obtained for the hybridized reconstruction method are compared with the
classical methods of DE and SA. The pseudocode and the characteristics of these
methods were presented in Sect. 6.1.

It is important to remember that the initial agents were defined as having a
random internal conductivity distribution in the range [0, 1] in the DE-SA method.

The results in Figs. 8 and 9 show images obtained from the DE and hybrid DE-
SA method for an isolated object located in the center, between the center and the
edge, and at the edge.

Where the situation represented in (a)–(c) is the location of an object in the center,
between the center and the edge, and near the edge, respectively. (a1), (a2), and (a3)
represent the images of the best candidates for solution of the object in the center in
50, 300, and 500 iterations, respectively. (b1), (b2), and (b3) represent the image of
the best candidate for solution of the object between the center and the edge in 50,
300, and 500 iterations. Represents the image of the best candidate for solution to
the object in near the edge in 50, 300, and 500 iterations.

Comparing the images given in Figs. 8 and 9, one can say that DE-SA can
identify the objects with only 50 iterations; on the other hand, DE is able to identify
only the case where the object is placed at the edge. Indeed, DE-SA obtained
images are anatomically consistent and conclusive from 300 iterations for the three
ground-truth images. Qualitatively, the DE-SA method showed high capacity in
generating images with few artifacts from 300 iterations for all configurations, thus
is a potential technique for eliminating image artifacts.

Figure 10 shows the graph for the error decrease in the function of the number
of iterations for the DE and DESA methods. The curves in blue, red, and green
represent the results for the object placed in the center, between the center and the
edge, and at the edge, respectively, and the continuous and dotted lines represent the
DE and DE-SA results, respectively.

From the graph in Fig. 10, we can observe that DE-SA always obtained lower
results than DE, showing that the hybrid technique succeeds the non-hybrid
technique. In this way, the comparison of the DE-SA method with the traditional
method of DE shows that the former was more efficient in reconstruction, generating
consistent images with a low relative noise level in the first 50 iterations. The
reconstructions obtained with the DE-SA technique presented a greater edge
definition when compared with the traditional method.



238 W. P. dos Santos et al.

Fig. 8 Reconstructions obtained from the DE method for an isolated object located in the center
(a1, a2, a3), between the center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the
circular domain for 50, 300, and 500 iterations, respectively

8.3 Exponential Hybridization of the Fish School Search

In this section the results for the hybridization of the FSS algorithm where the
parameter stepind is updated following an exponential function as discussed in
Sect. 6.2 will be presented.

In Figs. 11 and 12 reconstructed images are shown for the FSS and for the
method hybridized with the decay of stepind exponentially, called FSSExp. When
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Fig. 9 Reconstructions obtained from the hybrid DE-SA method for an isolated object located in
the center (a1, a2, a3), between the center and the edge (b1, b2, b3), and near the edge (c1, c2, c3)
of the circular domain for 50, 300, and 500 iterations, respectively

comparing the images, it is possible to observe that the FSS method was able to
identify the object only when it is on the edge in 50 iterations, while the FSSExp
appropriates the object at the edge and was also able to detect when the object
is placed between the center and the edge. However, the results for 300 and 500
iterations show that the FSS method obtained images closer to the actual sized
objects with less noise than FSSExp. The motivation to change the way the stepind
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Fig. 10 Graph of the value
of the objective function by
number of iterations for DE
and DE-SA
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value decreases was the improvement between 300 and 500 iterations obtained by
the FSS method which is minimal and described by Fig. 11.

The data can be evaluated by the graph given in Fig. 13 quantitatively, where the
error is shown as a function of the number of iterations. The curves in shades of
blue, red, and green correspond to the images with the object in the center, between
the center and the border, and on the border, while the curves with the solid dotted
line show the results for FSS and FSSExp. The graph of Fig. 13 confirms what the
reconstructed images show. The first iterations show the curves very close; however,
the performance of the FSS ends up being higher than the FSSExp with the increase
in the number of iterations, perhaps the decay of the stepind parameter was very
aggressive, changing the exploratory search to exploitative too early. The graph
also shows the decrease in the value of the objective function obtained by the FSS
between 300 and 500 iterations.

8.4 Density Based on Fish School Search with Non-blind
Search

In this section we will present the results obtained by the density based on FSS with
the non-blind search (dFSS + NBS) and compared with the method in its simplest
form (dFSS).

Figures 14 and 15 show reconstructed images by dFSS and dFSS+NBS, respec-
tively. From these results, it is possible to observe that the use of the non-blind
search accelerated the search process for dFSS, as observed in the comparison of the
results in 50 iterations between the methods. In 50 iterations the dFSS obtained only
noisy and inconclusive images, while dFSS+NBS found the object in all three cases,
despite the high noise. In 500 iterations, the dFSS+NBS images have an object that
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Fig. 11 Results using FSS for the location of an object in the center (a1, a2, a3), between the
center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the circular domain for 50, 300,
and 500 iterations

is closer to the real one and have less noise when compared to the images obtained
by the dFSS.

Figure 16 shows a graph that describes the fall of the relative error as a function
of the number of iterations. The curves in shades of blue, red, and green correspond
to the images with the object in the center, between the center and the border,
and on the border, respectively, while the curves with the solid dotted line show
the results for FSS and dFSS+NBS, respectively. From the graph, it is possible to
observe that in the case of the object at the edge, the implementation of the non-blind
search resulted quickly in the candidate with the best solution in the first iteration.
For the other cases, the dFSS+NBS curve was higher than the dFSS. However, all
curves of dFSS+NBS were lower than that of dFSS when the iterative process was
over, demonstrating that the implementation of the solution from the Gauss–Newton
method improved the performance of dFSS.
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Fig. 12 Results using FSSExp for the location of an object in the center (a1, a2, a3), between the
center and the edge (b1, b2, b3), and near the edge (c1, c2, c3) of the circular domain for 50, 300,
and 500 iterations

9 Proposed Hardware Infrastructure

EIT images are acquired using the proposed prototype, whose main function is
to control the injection of electric currents to pairs of electrodes and, afterwards,
measure the resulting electric potentials; since all boundary potentials are acquired,
a dedicated software is used to reconstruct images based on approximate numerical
solutions [62]. All functions are organized by an embedded control system in the
hardware that generates a data file; the system’s architecture is shown in Fig. 17.
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Fig. 13 Graph of the value of the objective function by number of iterations for FSS and FSSExp

• Imaging area: This is called a phantom and simulates a human tissue excited by
only a little alternated current. The experimental environment has an electrolytic
cell with an object immersed in liquid that is a normal saline solution (0.9% of
NaCl), where 16 electrodes are distributed around the surface for the excitation
and reading of electrical response potentials. The verification of the environmen-
tal impedances was made with a sensitive impedance meter during assembly for
calibration of the device for capturing a signal in the order of millivolts.

• Microcontrolled platform: Based on low-cost open hardware, this is responsible
for the general control system of the excitation module of the electrodes and also
the reading of the voltages coming from the pairs to be considered, made by the
multiplexing of analog inputs. The prototyping platform used was ARDUINO
MEGA 2560, which offers many I/O pins, serial ports for programming and
communication, and has a low purchase price ($10 on average). The control
system of an EIT is developed in ARDUINO software IDE using a C language
dialect.

• Alternating current source: A 1 mApp sine-wave source was dimensioned to
meet the needs of a signal with low amplitude and frequencies in the range of 10–
250 kHz. [63]. It is important to work with a low signal because currents injected
into a human body can be dangerous, so research always must pay attention in
this specific case.

• 16-Bit analog demultiplexer: Responsible for the switching of the excitation
signal through all the electrodes.

• 16-Bit analog multiplexer: Provides to the microcontroller the voltage readings
from a pair of electrodes following the techniques seen in the introduction.
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Fig. 14 dFSS results for an object placed in the center (a1, a2, a3), between the center and the
edge (b1, b2, b3), and at the edge (c1, c2, c3) of the circular domain for 50, 300, and 500 iterations

• Acquisition and pre-processing: The signals collected on the electrodes through
the multiplexers are treated and amplified for further reading before being
converted to digital in the microcontrolled platform.

• Computer communication: Data from the reading are transmitted digitally in
order to be processed by the reconstruction software, using a serial communica-
tion through USB port in Microcontrolled Platform.

• Computational reconstruction: In a computer, the impedance mapping data are
processed by an algorithm that reconstructs the image with one of the proposed
swarm intelligence optimizations.
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Fig. 15 dFSS+NBS results for an object placed in the center (a1, a2, a3), between the center and
the edge (b1, b2, b3), and at the edge (c1, c2, c3) of the circular domain for 50, 300, and 500
iterations

9.1 The Embedded Control System

This activates the current signal on one electrode and stores the electrical potentials
of the remaining electrode pairs, avoiding repetitions and readings of two equal
electrodes. The software operation is described in Fig. 18 and shows the steps for
reading the electrodes to prepare the data processing.
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Fig. 17 Proposed hardware block diagram
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Fig. 18 Block diagram illustrating the hardware control system in the device



248 W. P. dos Santos et al.

10 Conclusion

Regarding the PSO and its Gauss–Newton hybrid approach, it is clear that the
hybridization has significantly improved the performance of the image reconstruc-
tion, both qualitatively and quantitatively. It is also important to highlight that
neither the Gauss–Newton technique nor the PSO is sufficiently satisfactory when
operating alone. This fact highlights the importance of the hybridization of these
two techniques to perform a better technique for the EIT image reconstruction. The
same can be observed in the implementation of the Gauss–Newton solution to the
density based on the FSS algorithm. The hybridized technique outperformed the
simple dFSS qualitatively and quantitatively.

One other hybridization described in this chapter was the implementation of SA
in DE. The second technique has the capability to explore the search space; on the
other hand the former is better able to exploit it. In this case, the hybridization aimed
to improve the search process made by DE. The union of these techniques results in
a better EIT reconstruction algorithm as was shown by the results obtained by the
hybrid technique.

Finally the change of the linear decrease of the individual movement parameter
to an exponential decrease in the FSS algorithm was considered. The goal was to
increase the refined search during the iterative process; however, the strong decrease
of the exponential made the change of exploration to exploitation search happen
earlier. Thus, the hybridized method results were not better than the simple FSS
results, as we expected.
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