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Abstract. Power consumption is the main hurdle in the race for design-
ing Exascale-capable computing systems which would require deploying
millions of computing elements. While this problem is being addressed by
designing increasingly more power-efficient processing subsystems, little
effort has been put on reducing the power consumption of the intercon-
nection network. This is precisely the objective of this work, in which
we study the benefits, in terms of both area and power, of avoiding
costly and power-hungry CAM-based routing tables deep-rooted in all
current networking technologies. We present our custom-made, FPGA-
based router based on a simple, arithmetic routing engine which is shown
to be much more power- and area-efficient than even a relatively small
2K-entry routing table which requires as much area and one order of
magnitude more power than our router.

1 Introduction

Exascale computing is the next challenge for the supercomputing community
aiming to design systems capable of delivering Exaflops (1018 floating point oper-
ations per second). To achieve these huge computing capabilities, systems will
require millions of interconnected computing elements to execute massive paral-
lel applications. Traditionally these were High Performance Computing (HPC)
applications where the computation:communication ratio was heavily biased
towards the former. However, the wider availability of increasingly large comput-
ing facilities and the new paradigms associated to the ubiquitous digital economy
have favored the emergence of new data-oriented applications arising from the
massive amounts of scientific- or business-oriented data that are being gener-
ated. These new application domains (e.g. MapReduce [9], graph-analytics [7] or
new HPC database systems such as MonetDB [21]) impose completely different
needs to the computing systems (and specially to the interconnection and I/O
subsystems). In order to suit the necessities of these new kind of data-intensive
applications, new architectures and platforms are being developed, such as our
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novel, custom-made architecture, ExaNeSt [14]. In such systems the Interconnec-
tion Network (IN) is crucial to ensure performance, mainly because it needs to
support extreme levels of parallelism with applications using tens of thousands of
nodes with any latency or bandwidth bottlenecks translating into severe penal-
ties to execution time.

One of the main limitations for the scalability of HPC (and datacentre) facili-
ties is power consumption. The largest current systems based on traditional HPC
processors are over one order of magnitude1 away from Exascale but already
require a large, dedicated power station to supply electricity to the system. If
we tried to scale computing systems just by putting more components together
without changing the architectures or paradigms, we will end up requiring tens
of power stations, just to power the system, which is obviously unattainable.
Some steps towards reducing power have been taken in the computing subsys-
tems by using ARM processors [4] or accelerators (e.g. GPGPU or FPGAs) that
offer high FLOPs/Watt ratios. However, improving the efficiency of other sub-
systems has been typically ignored. For instance, the network can account for
over 10% of the total power during peak utilization and up to 50% when the
system is idle [1]. Other authors mention more conservative, but still significant
power breakdowns in the range 10–20% [13]. This large share of the power bill
of such systems motivates our search for more power-efficient IN designs.

In this regards, we notice that most networking technologies, e.g., Infiniband
or 10 Gbps/100 Gbps Ethernet, rely on huge routing tables which are typically
implemented as content addressable memories (CAMs). CAMs are an integral
part of the design and, indeed, tend to be much bigger than the router logic
itself (i.e. buffers, crossbar, flow control mechanisms, etc.). This is because tens
of thousands of entries need to be stored to be able to reach all the nodes of the
system [22]. In addition, routing tables create other scalability issues. First, as
the size of the system increases, the size of the tables (number of entries) needs
to grow accordingly. Furthermore, given that routing tables have information
distributed across the whole system, they are quite sensitive to routing inconsis-
tencies and, obviously, consistency mechanisms are in themselves another limit
to scalability. All the reasons above motivate our design where we get rid of
routing tables to achieve substantial savings in terms of area and power foot-
print. Our FPGA-based router relies on simple arithmetic routing instead. For
the purpose of this work we have considered common topologies (fattree [18],
dragonfly [16]) but other topologies are possible. Our experiments measure area
and power consumption for varying number of ports and CAM entries. Results
show that routing tables are not only prohibitive in terms of area, since a rela-
tively small CAM uses more area than a 16-port router, but also that they can
consume the whole power allowance of the FPGA.

1 See www.top500.org.

www.top500.org
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2 Related Work

One of the first steps towards using FPGA for networking was the NetFPGA [25]
project which provides software and hardware infrastructure for rapid prototyp-
ing of open-source high-speed networking platforms. NetFPGA platform enables
to modify parts of it and compare with other implementations. However, there
are many differences between NetFPGA and our home-made router. First of
all, NetFPGA focuses on IP networks and, thus, relies on routing tables, which
as explained we want to avoid. Moreover, IP networking has many overheads
that dismiss it as a good infrastructure for HPC networks due to inadequate
throughput and latency. Finally, the NetFPGA platform has many features that
consume lots of area and power but are not required in the context of ExaNeSt.

While arithmetic routing per se is not a new idea, its use in recent years has
been restricted to cube-like topologies such as the ones in the BlueGene family
of supercomputers [6] or the TOFU interconnect [2]. To our knowledge, flexi-
ble architectures relying on arithmetic routing, but capable of being arranged
into different topologies just by reconfiguring the firmware (to update the rout-
ing logic) such as the one we introduce here have never been proposed before.
Arithmetic routing is commonly used in SW to fill the routing tables of the
switches of table-based technologies (see, e.g., [23] which generates routes arith-
metically and then embed them in the routing tables of an Infiniband IN). There
also exist more advanced strategies (also for Infiniband) that take into consid-
eration the congestion of the links by storing this information in the routing
tables together with the destination address to perform routing decisions [24].
More recently, the Bull EXascale Interconnect (BXI) [10] has followed a simi-
lar approach. They use a 2-stage routing strategy [22]: first an off-line algorithm
calculates the paths between each source and destination. These paths are deter-
ministic and populated into the routing tables during system start-up (could be
done arithmetically). The second stage is performed on-line, when the system
is running, and can change the previously calculated static routes in order to
avoid congestion or failures. The 48-port routers, implemented as ASICs, store
64K entries for each port for a total of 3M entries per router. Bull switches use
2 routing tables, a bigger one with the addresses set at start-up and another
small table used in case of faults or congestion in which the addresses are used
to repair faulty routes.

The only effort on minimizing the impact of routing tables on the networking
equipment we are aware of is on strategies to reduce their footprint. For example,
using a 2-level CAM routing strategy [3]: the first level stores addresses that
require a full match in order to select the output port, the second level stores
masks. If the first level does not produce a match, then the selection of the port
is performed based on similarity between the mask on level 2 and the destination
address. This helps alleviating the impact of routing tables in terms of area and
power to some extent, but the other scalability issues of routing tables still hold.

Alternatives to local CAMs do exist, but none of them would keep appropri-
ate performance levels for FPGA-based HPC interconnects. For instance, using
an off-chip CAM would severely slow packet processing because of the extra
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(a) ExaNeSt arranged as a Fattree topology
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(b) ExaNeSt arranged as a Dragonfly topology

Fig. 1. ExaNeSt system-level networks with route examples in red (2, 1 to 1, 2). (Color
figure online)

delays to go off-chip for routing information. Moreover in a extreme-density
design, such as the one we propose in ExaNeSt, adding extra components to the
already tightly packed boards is undesirable. Implementing the tables in RAM
(as some low-end switches do), would render information fetching even slower
due to the lack of parallel access. A proposal that assigns range(s) of addresses
to ports [12] and routes to the port which matches the destination was a step
towards getting rid of CAMS. However, it is restricted to tree-like topologies and
does not scale very well for large networks because range complexity increases
with network size.

3 ExaNeSt System Architecture

In this Section we introduce the architecture of ExaNeSt, which will be showcased
by means of a small, 2-cabinet, prototype—currently under construction. An
ExaNeSt system will require millions of low-power-consumption ARM+FPGA
MPSoCs to reach Exascale and includes a unified, low-latency IN and a fully
distributed storage subsystem with data spread across the nodes using local Non-
Volatile Memory (NVM) storage. Our building block is a quad-FPGA-daughter-
board (QFDB) based on Zynq Ultrascale+ MPSoCs2. The next level (Tier 1)
is the Blade, which is composed by up to 16 QFDBs interconnected using a
backplane that delivers high-bandwidth connectivity, whilst reducing the costs
and power consumption of external cables and transceivers. Six of these Blades
are contained in a Chassis which also incorporates our FPGA router with a
variable number of links that are used to interconnect the blades (Tier 2) as well

2 See https://www.xilinx.com/support/documentation/white papers/wp482-zu-pwr-
perf.pdf.

https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
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as to provide uplinks to the system-level interconnect (Tier 3 and above depicted
in Fig. 1). As these routers are implemented on FPGAs, the number of uplinks
can vary in order to deliver networks with different characteristics. Next, we will
focus on describing the architecture of the FPGA-based router used in Tier 3
(and above).

3.1 Router Architecture

The architecture of the router (inside the red square) is depicted in Fig. 2
together with the FIFOs, MACs and PHYs. We built a 3-stage pipelined router
using a wormhole switching approach in which the packets (composed of header,
payload and footer) are split into multiple flits of size 66 bits (64 bits for data
and 2 extra bits to control the beginning and the end of the packets). The router
sends and receives flits from and to the FIFO using a handshake flow control
mechanism implemented using two signals: val and ack. When data is ready to
be sent in the FIFO the val signal is enabled; if there is space to store the data
into the router, the ack signal will be enabled. When at some point there is no
more data available in the FIFO or no more space at the router, the correspond-
ing signal will be disabled. A similar process happens in the output ports. The
data sent and received by the FIFO comes from and goes to the 10 Gbps custom-
made MAC layer which is connected to the 10 Gbps transceivers (PHY), which
serialize/deserialize the data between the routers using an optical fiber. Our
router uses Virtual Output Queues (VOQs) [8] to reduce Head of Line (HOL)
blocking and, in turn, minimize congestion. Although the use of VOQs increases
resource utilization, we expect the extra resources to be compensated by the
performance gains and the savings of our table-free design.

The three stages of our router are as follows. Stage-1:, the router receives
the val signal (a new packet has arrived to an input port). The header flit will
be stored in a register. Stage-2: the arithmetic routing block decides, based on
the destination address of the packet, the output port to forward the packet.
Then the desired VOQ is selected and used for the remaining flits of the packet.
Stage-3: the switch allocator selects one input port (among all the requesting
ones) to be forwarded through the crossbar to the required output port. For
simplicity we use round robin arbitration, but others are possible.

3.2 Routing Algorithms

Our protocol relies on a geographic addressing scheme in which the location of all
the components is embedded in their address. This comes as a side-effect of the
highly hierarchical system. The current prototypes would require 22 bits out of
the 24 available for encoding end-point ids (2 bits for the chip within a DB, 4 bits
for the DB within a mezzanine, 4 bits for the mezzanine within a chassis, 4 bits
for the chassis within a cabinet and 8 bits for the cabinet). This would leave 2 free
bits within an address that could be used for different purposes, e.g., multipath
routing, priority levels or system-level operations. Such a naming convention
is enabled by the fact that FPGAs come without a defined address and that
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Fig. 2. Block diagram of the 3-stage router plus the FIFOs, the MACs and the
transceivers (PHYs). (Color figure online)

initializing it at boot-up time would be trivial and would require barely any
overhead, just by leveraging locational information into the different levels, e.g.
through system-level controllers or even an EPROM holding this information.

It is our vision that having this hierarchical information within the addressing
scheme can be exploited by means of arithmetic routing as many high perfor-
mance topologies feature very simple routing algorithms that take routing deci-
sions based only on a single coordinate within the hierarchy (e.g. k-ary n-trees
and Dragonfly, as provided here or others such as generalised hypercubes [5],
Clos [20] or torus [2,6]). Indeed, such arithmetic forms of routing are specially
well suited for FPGAs as they would require very simple logic to be imple-
mented and could be changed accordingly to the selected topology as opposed
to an ASIC-based implementation, which must be static (or software based).

Algorithm 1 shows the routing algorithm for a fattree. Packets travel up and
then down the tree according to the destination address, tier and router ID. This
is done in order to avoid deadlocks [19]. First, the algorithm checks if the router
is in Tier-4 (the top of the tree), in which case the packet goes down through
the port connected to the destination cabinet. If the packet is in Tier-3, the
router checks if the destination address is local to its cabinet, in which case it
takes the port connected to the corresponding chassis. Otherwise the packet goes
through any of the uplink ports (using Round Robin for simplicity), seamlessly
performing multipath routing. In the future we expect to investigate improved
congestion-aware policies. Figure 1a, shows a route example marked with red
dotted lines. We denote addresses as [Cabinet, Chassis]. The source, [1, 2], sends
a packet to the destination [2, 1]. First [1, 2] sends the packet to router 1 in Tier
3 using link A. Then, the packet will be sent through any uplink (B, in the
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Algorithm 1. Routing strategy for fattree
1: procedure RouteFattree(header, tier, routerId)
2: if tier = 4 then � top tier
3: req ← header.cabinet
4: else if header.cabinet = routerId then
5: req ← header.chassis � go down
6: else
7: req ← port going up � go up

8: return req

Algorithm 2. Routing strategy for dragonfly
1: procedure RouteDragonfly(header, routerId)
2: if header.cabinet = routerId then
3: req ← header.chassis � go down
4: else if group(header.cabinet) = group(routerId) then
5: req ← intraGroupPort(header.cabinet) � same group
6: else
7: req ← interGroupPort(header.cabinet) � route to other group

8: return req

example) to Tier 4, because of line 7 in Algorithm 1. Now the packet is in Tier
4, so Algorithm 1 dictates to follow link C to Cabinet 2 (line 3) and the packet
arrives to router 2 in Tier 3. Now the router ID and destination Cabinet are the
same, so line 5 in Algorithm 1 selects port 1 (Chassis of destination address is 1)
and the packet is forwarded through link D. Finally, the packet arrives to [2, 1],
and is routed to the correct QFDB through the lower Tier networks.

Algorithm 2 shows the routing algorithm for dragonfly. Packets travel
between groups according to the destination address and router ID. First the
algorithm checks if the packet is addressed to the local router, in which case the
packet goes down to the corresponding chassis. If not the router checks whether
it goes to another cabinet in the group in which case it takes the port connected
to the corresponding router. Otherwise the packet needs to move to a different
group, either directly through their up-ports or through another router in the
group through the intra-group ports. Functions group(), intraGroupPort()
and interGroupPort() are arithmetic and use router coordinates and topol-
ogy parameters only, but are not shown here due to space constraints. Figure 1b
shows a route example between nodes [1, 2] and [2, 1]. First [1, 2] sends the packet
to router 1 in Tier 3 using link A. Then, the packet will be sent to router 0
through link B, as dictated by line 7. Given inter-group routing is still needed
Router 0 will forward to Router 2 following link C, (line 7). Now the router ID
and destination Cabinet are the same, so line 3 selects port 1 and the packet is
forwarded to the destination chassis through link D.



106 C. Concatto et al.

4 Evaluation

In this Section we firstly present our set-up to measure the area, power and
performance (Throughput and latency) required to implement the router and
the routing tables. FPGAs have a restricted amount of resources and router
design must scale nicely, i.e., do not explode in terms of resources (or power) as
the number of ports or the size of the CAMs increase. Therefore we measure the
area and power consumption of the approaches to show their scalability. Finally
we measure throughput and latency as they are the most important performance
metrics for HPC systems.

4.1 Experimental Setup

We implemented the router architecture described in Sect. 3 (and shown in
Fig. 2) as a soft core IP in Verilog and synthesise it in a Virtex-709 FPGA.
The transceivers (PHY in Figure 2) are hard-core IPs in the FPGA containing a
serializer/deserializer (serdes) IP working at 10 Gbps and 156.25 MHz3. We use
a custom MAC IP which synchronizes the clocks between the transceivers of the
sender and the receiver by adding a short preamble and footer in the packets.
Finally the router was instantiated with a varying number of ports plus one local
port (used as injector/consumer for testing purposes). The FPGA area is mea-
sured and considers the amount of Look-up-Tables (LUT), LUTRAM (LUT used
as memory), Flip-flops (FF) and Memories (BRAM) consumed by the router and
the routing table. To measure the performance, we used two interconnected Vir-
tex FPGAs. In this experiment, the router has 4 external ports plus one local
port because our development boards have only 4 SFP ports. Thus the routers
were instantiated with 3 downlinks + 1 uplink. The two boards were wire con-
nected using optic fibers and the traffic was generated and received by soft-core
MicroBlaze processors attached to the local ports. Traffic was composed of pack-
ets with 100 flits length generated at intervals of 11 clock cycles. We provide the
local port interface with counters to measure the number of packets received in
1 s and the delay to receive the first packet after the system has started.

4.2 Area

The BRAMs were used to implement the buffers in the MAC layer. The LUT and
FFs were used to implement the logic and the LUTRAMs were used to implement
the VOQs (with space for 16 flits each) and the memory in the routing table.
In case of the routing tables, for the sake of clarity, we just show the resources
used to implement them, not the whole router. Given that the footprint of the
arithmetic routing block is negligible, implementing the switch with the routing
tables will require, at least, the same amount of resources as implementing each
of them separately.

3 See seen on 8th January 2018: https://www.xilinx.com/support/documentation/
ip documentation/ten gig eth pcs pma/v6 0/pg068-ten-gig-eth-pcs-pma.pdf.

https://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_pcs_pma/v6_0/pg068-ten-gig-eth-pcs-pma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_pcs_pma/v6_0/pg068-ten-gig-eth-pcs-pma.pdf
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(a) Arithmetic router (b) Routing tables

Fig. 3. Area used in the FPGA.

Figure 3a shows the area results for our arithmetic router, including the
MACs and PHYs, the latter two takes most of the router area. We have mea-
sured the area of between 2 and 16 ports (plus the local port, used for evaluation
purposes). The maximum area required in the FPGA is around 30% of the LUTs
for the 16-port version. More importantly, resource consumption scales roughly
linearly with the number of ports which show the scalability of our design. For
comparison, Fig. 3b shows the area required to implement routing tables with
different number of entries, from 32 up to 2048. Routing tables were imple-
mented following the node-table approach shown in [11] in which one table is
shared among all the input ports of the router. The logic of the routing table
will match the destination address with the stored node addresses and then,
extract from that CAM line the output port to be used. The area required
increases roughly linearly with the number of entries requiring almost 20% of
the LUTRAMs for 2K entries. Even for a relatively small routing table by today’s
standards (e.g. 64K entries used by Bull interconnect [10], 48K for Infiniband or
32K for Ethernet [15]) these routing tables take a significant part of the FPGA
resources and would seriously limit the scalability and the number of ports we
could implement. Moreover tables with 256 entries or more cannot work at our
target frequency, as shown in Fig. 3b. This is because the huge MUX/DEMUX
trees required to access the tables severely increase the critical path. Comparing
the routing table area with the router is not trivial as the routing tables uses
more LUTRAM to implement memory and the router uses more FF and LUTs
to implement its logic. In terms of LUTs a 4-port router consumes almost the
same as a routing table with 1K entries. However for LUTRAMs a 4-port router
uses almost the same area as a 256-entry routing table.

4.3 Power Consumption

Figure 4a shows the power consumption estimated by Xilinx tools for routers
with 2, 4, 8 and 16 ports (plus the local port) for the different resources
used by the router. Notice that the GTH transceivers work at a frequency of



108 C. Concatto et al.

(a) Arithmetic router (b) Routing tables

Fig. 4. Power consumption in Watts.

156.25 MHz in order to transmit at 10 Gbps. However the router with 16 ports
works at a slightly lower frequency, 140 MHz, due to the size of the crossbar
that grows exponentially. Other aspect of the implementation in the FPGA
that should be noticed is that Virtex-709 only has 4 SFP+ connectors (hence
4 GTH transceivers). For that reason the remaining serial ports for the 8- and
16-port routers were placed in the FMC HPC connector (standard connection
for any type of interface) of the FPGA using the same clock source (SFP+ con-
nector). The results clearly show that the GTH transceivers are the resources
that consume more power (higher than 50% of the total). The maximum power
consumption (for 16 ports) is ∼4 W which is relatively low; about 10% of the
max FPGA power (40 W) for this implementation. Figure 4b shows the power
consumed by the routing tables measured at a frequency of 156.25 MHz. We
show both the dynamic (logic plus signal switching) and the static power. As
expected the routing tables demand higher power as we increase the number of
entries for the same frequency (156.25 MHz). For instance, a routing table with
2048 entries consumes 40 W, which is already the maximum FPGA power ren-
dering the implementation of other elements impossible. In contrast 32 entries
consumes less then ∼4 W. A 8-ports router plus MACs and PHYs consumes the
same power as 256 entries routing table. Moreover a router with a routing table
with 2K entries consumes almost 4 times more power than the proposed routers
with 16 ports + 1.

4.4 Performance

We close this Section by measuring the throughput and latency of our design.
Notice that a VOQ-based router using routing tables would theoretically have
the same performance as ours (assuming that accessing the table can be done in
one clock cycle and that the frequency remains the same). Our tests showed
that the router is able to maintain a throughput higher than 8 Gbps (with
10 Gbps transceivers), which is acceptable for a first prototype. The main cul-
prit for not being able to saturate the links (achieve 10 Gbps) is our custom
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MAC implementation which stalls packet-forwarding in order to check whether
the transceivers are synchronized. Regarding the latency per hop, our measure-
ments drew between 70 to 80 clock cycles to traverse both routers. This latency
is the time required to traverse the source router (3 cycles), MAC (12 cycles),
both transceivers TX and RX (25–45 clock cycles each) and the MAC in the
destination router (12 cycles). Note that data transmission is much slower than
taking routing decisions in our design.

5 Conclusions and Future Work

The interconnection network will play a crucial role in future systems that aim
to break the Exascale frontier. One of the main concerns in these systems is
the reduction of the power consumption, issue that is being faced by using
low-power computing elements or other power-efficient devices delivering high
performance/Watt. However in these massive interconnected systems the net-
work can be responsible of consuming a large share of the required power, so
traditional approaches are not suitable any more. To deal with this issue we pro-
pose a disrupting interconnection architecture that avoids the use of costly and
power hungry routing tables. These are deep-rooted in commercial devices for
HPC and datacentre networks. Our design leverages an FPGA-based arithmetic
router with our geographical addressing scheme.

Our experimental work shows that the amount of resources required to imple-
ment the router is small allowing designs with more than 32-ports in this partic-
ular FPGA model. Regarding the power consumption the routing tables exceed
the maximum power output of the FPGA as early as 2K entries. On the other
hand, the router implemented using the arithmetic routing requires less than
5 W, that is, 12.5% of the power delivered by the FPGA. Finally we measured
the throughput and latency showing promising figures of 8 Gbps and 70–80 cycles
(500 ns) per hop, respectively. Moreover, we found that avoiding the use of rout-
ing tables is essential for our design as a small CAM table (2K entries), would
not only require ∼20% of the FPGA resources, but would also exhaust the
power budget of the FPGA. In the future, we plan to improve the performance
of the router optimizing the MAC layer. We will also evaluate the area and
power consumption of the arithmetic router using more modern FPGAs like the
Virtex UltraScale+ from Xilinx. Finally we want to explore the impact of our
VOQs + arithmetic router on the performance of larger networks by using our
in-house developed simulator, INSEE [17].
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12. Gómez, C., et al.: Deterministic versus adaptive routing in fat-trees. In: Workshop
on Communication Architecture on Clusters (CAC 2007) (2007)

13. Heller, B., et al.: ElasticTree: saving energy in data center networks
14. Katevenis, M., et al.: The exanest project: interconnects, storage, and packaging

for exascale systems. In: 2016 Euromicro Conference on Digital System Design
(DSD), pp. 60–67, August 2016

15. Kieu, T.C., et al.: An interconnection network exploiting trade-off between rout-
ing table size and path length. In: International Symposium on Computing and
Networking (CANDAR), pp. 666–670, November 2016

16. Kim, J., et al.: Technology-driven, highly-scalable dragonfly topology. In: 2008
International Symposium on Computer Architecture, pp. 77–88, June 2008

17. Navaridas, J., Miguel-Alonso, J., Pascual, J.A., Ridruejo, F.J.: Simulating
and evaluating interconnection networks with insee. Simul. Model. Pract.
Theory 19(1), 494–515 (2011). http://www.sciencedirect.com/science/article/
pii/S1569190X1000184X

18. Petrini, F., Vanneschi, M.: k-ary n-trees: high performance networks for massively
parallel architectures. In: International Parallel Processing Symposium, pp. 87–93
(1997)

19. Sancho, J.C., et al.: Effective methodology for deadlock-free minimal routing in
infiniband networks. In: Proceedings International Conference on Parallel Process-
ing, pp. 409–418 (2002)

20. Singh, A., et al.: Jupiter rising: a decade of Clos topologies and centralized control
in Google’s datacenter network. In: ACM Conference on Special Interest Group on
Data Communication, SIGCOMM 2015, pp. 183–197. ACM, New York (2015)

21. Vermeij, M., et al.: MonetDB, a novel spatial columnstore DBMS. In: Free and
Open Source for Geospatial (FOSS4G) Conference, OSGeo (2008)
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