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Abstract. In critical and hard real-time applications multicore proces-
sors are still not used very often. One of the reasons is the lack of timing
predictability or the high Worst Case Execution Time (WCET) overes-
timation caused by the use of shared resources. Nevertheless, multicore
processors can significantly increase system integration density also in
critical and hard real-time applications.

We present a Closed Performance Control Loop that enables a stand-
alone WCET estimation of a hard real-time application and execution
on a multicore system concurrently to other applications. The advantage
of our proposal is that it is transparent and non-intrusive to the critical
application. Moreover, it is implemented as an external safety net and no
additional software functionality on the multicore is required. The pre-
viously presented Fingerprinting approach to measure an application’s
performance is used as sensor element, extended by a Pulse Width Mod-
ulated core thwarting technique and two different control algorithms are
combined to a Closed Control Loop.

Keywords: Embedded multicore systems · Critical systems
Safety net · Real-time systems

1 Introduction

Future avionic applications will require higher computation performance while
at the same time a reduction in space, weight and power is needed. These needs
are shown for example in the concept of the Airbus Vahana, Pop-up, or CityAir-
bus [1] aircrafts which will be ultra lightweight electrical helicopter-style vehicles
providing novel autonomous urban transportation. In comparison to current air-
crafts the avionic systems must be much smaller and lightweight while at the
same time provide sufficient performance to compute not only the flight control
data similar to current aircrafts but additionally compute the complex algo-
rithms for autonomous flying, navigation, and collision avoidance. One solution
for these demands is the consolidation of flight applications, currently running
on multiple single core computers, on a small number of multicore processors.
Furthermore, legacy applications shall be reused without major modifications.
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Even though first ideas of the regulations on how to apply multicore sys-
tems to avionics are presented in the CAST-32 position paper and its follow-up
CAST-32a [2], both authored from the Certification Authorities Software Team
(CAST), concrete design details are still open. One of the major challenges
in this context is the interference between applications since theoretically one
application can compromise another one, at least in the timing domain. Accord-
ingly, an essential requirement for certification is a clear and reliable isolation
of safety-critical applications that needs to be demonstrated to the certification
authorities.

The Fingerprinting technology presented in [3] allows non-intrusive tracking
of an application’s progress. Moreover, it allows continuous online quantification
of an application’s slowdown caused by interferences on shared resources com-
pared to the stand-alone execution of the same application. Starting from this
ability, we developed a closed loop controlling mechanism that keeps the cur-
rent slowdown of an application inside given acceptable boundaries compared
to stand-alone performance. This is done by thwarting the execution of other
cores if necessary, in order to reduce interferences. Consequently, an estimated
Worst Case Execution Time (WCET) of the stand-alone execution can hold for
the multicore execution with the same acceptable bounds. The fingerprinting
technology is targeting applications that are executed in a periodical way which
is a typical feature of applications used in aircrafts.

The contributions of this paper are

– adjustable performance reduction techniques based on a Pulse Width Modu-
lated (PWM) signal,

– a complete closed control loop system controlling an application’s
performance.

The remainder of this paper is organized as follows. Section 2 provides an
overview of mature techniques and related work. The closed loop control tech-
niques including a background on the Fingerprinting is described in Sect. 3 while
the evaluation is presented in Sect. 4. The paper concludes with Sect. 5 including
an outlook on future work.

2 Related Work

The use of multicore systems in avionic applications is still not wide spread. One
reason is the difficulty to obtain suitable Worst Case Execution Time (WCET)
estimates since application performance can theoretically drop significantly if
multiple cores (i.e. applications) are sharing bus and memory [4]. Furthermore,
it is not possible to identify all interference channels on COTS multicore proces-
sors [5]. Therefore, a WCET analysis on possible worst case scenarios leads to a
high WCET overestimation (WCET to average execution time ratio) for current
COTS MPSoCs. Hence, the performance gain of the multicore is neglected.

There exist several approaches to limit or even control the interferences
between high and low critical tasks on multicore systems to relax the worst
case scenario and, hence, improve WCET analysis results. Most of them focus
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on task or even thread granularity and are integrated into the scheduling of
the system. The main idea of these approaches is counting e.g. bus accesses
and limiting them by suspending the corresponding thread. Examples of such
approaches are presented in [6–9]. An overview of these and other approaches
is given in [10]. Even though these approaches are interesting for newly devel-
oped applications, they are not suitable for combing multiple legacy single core
avionic applications on a multicore processor because the legacy applications or
the underlying operating system would either have to be modified completely,
which leads to a high effort in certification, or restrict the applications in a way
that the performance gain of the multicore is neglected.

A previous approach for characterizing an application’s execution is presented
in [11]. It is used in high performance systems to predict an application’s future
behaviour and needs for adjusting architectural parameters for performance opti-
mizations. It is not related to embedded real-time systems but successfully uses
a similar, but intrusive, technology for tracking an application’s performance.

The use of feedback controllers in the utilization of real-time systems is not
novel. For example, a closed loop controller is used in [12] for dynamic resource
allocation and power optimization of multicore processors. An example for closed
loop control in a real-time scheduler is presented in [13,14] while a controller for
thermal control of a multicore processor is introduced in [15]. However, all of
these methods require intrusive measurements and no non-intrusive approach
for controlling the interferences between cores by an external device has been
presented in the past.

3 Closed Performance Control Loop

In the following the basic idea of the Fingerprinting approach is briefly described.
This Fingerprinting is used as the sensor element of the closed control loop.
Subsection 3.2 describes the actuator to influence the performance of the other
cores and, hence, the interferences. The complete closed control loop is presented
in Subsect. 3.3. Figure 1 shows the setup of multicore processor and safety net
system with the integrated closed control loop. Note that our proposed closed
performance control loop does not require any additional software functionality
running on the multicore.

3.1 Basic Fingerprinting

During the execution of an application, a flow of instructions is executed. This
flow is not homogeneous in terms of type of instructions, source of the instruc-
tions, and execution time of instructions. Accordingly, measuring for example
the number of executed floating point instructions per time unit will lead to a
characteristic curve of an application or a part of the application. If the appli-
cation is executed several times with the same input parameters the measured
curves are very similar (if sample rates greater than 1µs are applied). For track-
ing the progress of a known application, its measured curve can be compared to
the recorded reference curve.
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Fig. 1. Hardware setup with closed performance control loop implemented in the safety
net system

In case an application executed on a multicore processor suffers from inter-
ferences with other applications on the shared memory hierarchy, its progress is
slowed down. Slowing down the application will result in a stretched (in time)
but shrunk (in the value range) curve. When comparing such a mutated mea-
sured curve with the original reference curve, the actual slowdown can not only
be identified but also be quantified at any time during execution.

Many current MPSoC (e.g. based on ARM, PowerPC) include performance
counters implemented in hardware which can be configured to increment every
time a given event is raised. While the amount of events which can be config-
ured is usually more than 100, the amount of counters that can be incremented
simultaneously is small (around 4 to 6) [16]. An example of such curves is shown
in Fig. 2.

The Fingerprint model is obtained by the execution of the main application
several (thousand) times without other applications running in parallel. The
performance counter values of the selected events are recorded with the frequency
defined by the safety net system (100µs period in the prototype FPGA case).
Afterwards, the recorded characteristics are clustered in order to reduce the
amount of curves that are combined into a model. With a bisecting k-means
algorithm slight variations of the curves are filtered out. As the bisecting k-means
algorithm does not need a predefined number of clusters, the resulting amount
of clusters is depending on the similarity of the curves which is defined by the
distance function1

d(x,y) =
n∑

i=1

[|xi − yi| > limit] (1)

1 Please note the Iverson brackets: [P ] =

{
1 if P is true;
0 otherwise.
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Fig. 2. Measured curves of four event counters when executing an avionic application

with x Runtime measurement vector, y Centroid vector and n length of the
pattern. Finally, the medians of the resulting cluster centroids are combined
into a tree model, the Fingerprint. The tree data structure is used because it
can be accessed in a simple way to allow a fast access when the application is
tracked. The root of the tree is the beginning of a new period of the application.

During the actual execution, the Fingerprint safety net system compares the
performance counter values with the stored Fingerprint model and the actual
execution path along the tree is tracked. In contrast to the generation of the
Fingerprint model which can be created offline on a powerful compute node,
timing is crucial for the tracking phase.

In case the slowdown of a critical application executed on one core exceeds
a given limit (acceptable delay based on the single core WCET), other cores
running less critical software are thwarted to reduce concurrency and, hence,
increase performance of the critical application.

In summary, the fingerprint safety net approach [3] tracks the application’s
progress on the basis of characterized behavior of hardware event counters inte-
grated inside the core of a multicore. Periodically reading and resetting such
counters results in a curve that is characteristic for an executed application, more
specifically, for the progress of that application. When comparing a recorded ref-
erence curve with the performance counter values measured online, the current
progress with respect to the reference execution can be measured.

3.2 Pulse Width Modulated Interferences

The P4080 multicore system used in this paper provides means to halt and
resume cores individually. Both actions can be triggered by messages on the
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back channel of the trace interface, i.e. by writing to control registers. This
means that the Safety Net processor (see Fig. 1) is able to control the activity of
the cores individually and externally. This way the cores that interfere with the
memory accesses of the core under observation with the fingerprinting technique
can be halted to not further increase the slowdown of the main application.

To provide a not only digital (on/off) way of setting the performance of
the cores, we implemented a (software-based) Pulse Width Modulated (PWM)
enabling/disabling of the individual cores, according to the signals from the
closed loop controller. By halting and resuming a core, the application on this
core can still make progress in contrast to suspending the application completely.

We have chosen a PWM period of 1 ms which is equal to 10 times the 100µs
period used for tracking the application’s progress. Hence, we can reduce the
performance of cores competing with our main core in steps of 10% from 0 to
100% utilization. For example, a utilization of 60% means that the corresponding
core is halted for 0.4 ms and runs for 0.6 ms per millisecond.

3.3 Closed Loop Controller

Two algorithms are used as control element, a simple threshold-based algorithm
and a proportional controller. Both techniques affect all concurrent cores syn-
chronously. The threshold-based algorithm disables the concurrent cores when
the slowdown of the main application exceeds a given threshold and enables the
cores again when the slowdown falls below the same threshold again. The second
technique uses a proportional controller and the PWM-based activity control as
described in the previous section.

4 Evaluation

We evaluated the effectiveness of the PWM-based activity setting on the main
core’s performance followed by the evaluation of the full closed control loop sys-
tem. The selected performance counter values for the evaluation are Instructions
completed, Branch instructions completed, Stores completed and Bus interface
unit accesses. This selection results in very diverse curves which lead to a more
robust model. Some paths may look similar in one curve but can be distinguished
when taking different curves into account. Furthermore, the Bus interface unit
accesses curve is an important measurement as it shows the operations that lead
to cache misses. Therefore, this curve shows the possible interference hot spots.

4.1 PWM Effectiveness

The main application benchmarks in two different scenarios is used for the evalu-
ation of the effectiveness of the PWM-based activity setting, i.e. the interference
control. On the main core, the TACLeBench benchmark is executed in every
case. The two benchmarks for the competing application cores are
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– Read benchmark: This artificial benchmark generates high read traffic on the
shared interconnect and the memory by performing read accesses to memory
and does not profit from local data caches,

– TACLeBench [17]: A benchmark suite which is application oriented and gen-
erates realistic traffic on the shared interconnect and memory and profits
from local data caches. Example algorithms used are JPEG image transcoding
routines, GSM provisional standard decoder, H.264 block decoding functions,
Huffman encoding/decoding and Rijndael AES encoding/decoding.

The two benchmarks are executed in the two scenarios with and without local
caches enabled (L1 instruction and data caches). These scenarios show that the
technique also works for very high interference configurations. Furthermore, dis-
abling the caches is relevant for creating the single core WCET as mentioned in
Subsect. 3.1. In both scenarios, no external memory is accessed and the inter-
nal L3 platform cache is configured as shared SRAM to reduce memory access
delay and focus on interferences in the interconnect. The activity of the com-
peting cores has been set by the PWM signal in parallel for all cores from 0%
to 100% in steps of 10%. The execution time of the main application is mea-
sured. Figure 3 shows the results of the scenario without local caches. It can
be observed that for the Read benchmark thwarting the competing cores by
10% still reduces execution time of the main application by nearly 30%. The
decrease stays very intensive until the competing cores reach an activity rate of
60%. Below 60% the execution time of the main application decreases nearly lin-
early. The TACLe benchmark performs nearly 15% better in case competition is
reduced from 100% to 90%. Below this value, the execution time decreases more
or less linear until the competition is zero.

We ran the same set of benchmarks with active L1 data and L1 instruction
caches for all cores. Here, the overall slowdown is not as dramatical as without
caches. Even when running the Read benchmark as opponent the main core
performs significantly better with a factor of 1.5 on execution time compared
to nearly 4.5 as maximum slowdown without caches. This effect is not based on
data accesses since the benchmark is constructed to generate the maximum cache
miss rate on the data path but the L1 instruction cache is also enabled (disabled
in previous scenario) now, which relaxes the pressure on the interconnect and
memory significantly. The TACLeBench shows a maximum increase in execution
time of only 10%, compared to a factor of 2.15 in the previous scenario. If the
performance of the competing TACLeBench cores is reduced, the main core
improves nearly linearly while execution time with Read opponents is reduced
intensively for duty cycles over 80%. Below 80% the performance improvement
is also linear.

Our evaluation of the PWM-based thwarting of competing cores show a suit-
able performance improvement of a memory intensive main application if the
reduction is only 10–20%, depending on the use of instruction caches (data caches
have no effect on this benchmark) (Fig. 4). In case of an application that is using
shared resources to a realistic extend, PWM-based thwarting leads to nearly a
linear improvement. The choice of the Read and TACLeBench shows that the
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Fig. 3. Execution time of the TACLe benchmark without any local caches and different
activity of competing cores

Fig. 4. Execution time of the TACLe benchmark with enabled local instruction and
data L1 caches and different activity of competing cores
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slowdown with realistic applications running in parallel on other cores are small
and may also be within the acceptable delay (e.g. 10%) when the L1 caches are
enabled. However, in case one of these applications turns into a bad guy (e.g. by
a fault) similar to the Read benchmark, PWM-based thwarting can protect the
correct timing of the main application.

4.2 Closed Loop Controller

We evaluated the closed control loop using TACLeBench as main application
and Read as bad guys running on seven cores in parallel. We set a maximum
slowdown of 4% as target performance of the main application compared to
stand-alone execution.

Figure 5 shows the performance of the TACLeBench over time (upper part)
and the development of the slowdown over time (lower part) without any inter-
ference control and with simple threshold-based control. The upper part presents
the number of executed instruction per µs. It can be seen that the uncontrolled
execution takes about 10% longer for execution at the end. The diagram in
the lower part represents the slowdown of the main application as tracked by
the Fingerprinting. Since tracking of progress is based on discrete steps, the
performance reductions are manifested in sharp steps. The following phases of
smooth performance increases are caused by relative distribution of a slowdown
over a longer time, i.e. a one-time delay at the start of the application of 5%
is reduced over the total execution time to a much lower slowdown. The dotted
line represents the threshold (4%) i.e. the maximum target slowdown of the main
application.

Fig. 5. TACLe performance over time without control and with applied simple thresh-
old controller
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Fig. 6. TACLe performance over time without control and with applied PWM con-
troller

As can be seen in the figure, TACLeBench experienced a slowdown of about
10% over the complete execution time if no control mechanism is applied. With
our simple control, the target of 4% maximum slowdown is reached at the end.
The grey shaded boxes identify the times when the other seven cores are active.
No grey shading means that the other cores are disabled by the control mecha-
nism. At first glance, the competing cores are most of the time disabled meaning
that applications running on these cores will not get much execution time. But,
note that the competing applications are seven bad guy applications flooding
the shared resources with maximum traffic. However, even in this simple control
case, the other cores each get 23.4% processing time.

In Fig. 6 we show the behaviour of the PWM controller. The duty cycles of
the competing cores are set according to the actual slowdown. A slowdown of
less than 2% allows full performance for all cores, a slowdown above 7% leads to
completely disabled competing cores. Between 7% and 2%, the duty cycles are
adjusted in 10% steps from 0% to 100% (one step per half percent of slowdown).
The grey shaded areas represent the duty cycles of the PWM core activation
signal.

As can be observed that the 4% target slowdown of the main application is
also reached at completion. Moreover, the active phases of the competing cores
are much longer in time but less intensive. Since we are using a PWM signal,
this means that the cores are active for many but smaller periods. The period
of a PWM signal is 1 ms (10 times the sampling period of the Fingerprinting).
With this PWM control, the seven bad guys get 34% of the cores’ performance
while the main application still meets the performance requirements.
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5 Conclusion

In this paper a closed control loop for interferences on a multicore processor
is presented. It enables a stand-alone WCET estimation of a hard real-time
application and execution on a multicore system concurrently to other applica-
tions by defining an acceptable slowdown. The presented approach is transparent
and none-intrusive to the critical application as it is implemented as an exter-
nal safety net using the debug/tracing interface for extraction of performance
counter values. Furthermore, no additional software functionality on the multi-
core is required. The fingerprinting approach is used to measure an application’s
progress. In the closed control loop it is used as sensor element while a sim-
ple core on/off switch or, alternatively, a pulse width modulated core thwarting
technique represents the actuator.

Our evaluations show that both control techniques perform well and can guar-
antee the given maximum slowdown factor. We used a Read benchmark applica-
tion flooding the shared resources with maximum traffic and the TACLeBench
benchmark suite as competing applications. With the simple control mecha-
nism, a digital enable/disable of competing cores, the competing cores can still
get 23.4% performance. When applying a PWM-based controller, the same com-
peting applications will get 34.0% performance.

In the future we will add another performance setting actuator that modifies
the frequency of competing cores such that they can stay active all the time but
with reduced clock frequency. Moreover, evaluations with other realistic traffic
applications and different cache settings can be interesting. Moreover, we plan
providing a formal analysis and, hence, a prove of our approach.
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