
A Flexible FPGA-Based Inference
Architecture for Pruned Deep

Neural Networks

Thorbjörn Posewsky1 and Daniel Ziener2(B)

1 Ibeo Automotive Systems GmbH, Hamburg, Germany
2 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

daniel.ziener@fau.de

Abstract. In this paper, we present an architecture for embedded
FPGA-based deep neural network inference which is able to handle
pruned weight matrices. Pruning of weights and even entire neurons
reduces the amount of data and calculations significantly, thus improving
enormously the efficiency and performance of the neural network infer-
ence in embedded devices. By using an HLS approach, the architecture
is easily extendable and highly configurable with a free choice of param-
eters like the number of MAC units or the used activation function. For
large neural networks, our approach competes with at least compara-
ble performance as state-of-the-art x86-based software implementations
while only using 10% of the energy.

1 Introduction and Motivation

For more and more people, Deep Neural Networks (DNNs) have become a sub-
stantial part of their daily life. Applications like image classification [22] or speech
recognition [20] are used by millions on their wearables, smartphones, or tablets.
This applies not only to mobile computing, it also holds true for related areas
like robotics or autonomous vehicles. Yet, these emerging areas have different
power requirements and lack processing power in contrast to high-performance
computing which is more often associated with deep learning techniques.

In order to achieve state-of-the-art and beyond classification rates in tasks like
object recognition, the number of artificial neurons and layers in DNNs has grown
to ever new records in the past years. Despite a significantly increased demand
for computational power, the size needed to store such networks has similarly
increased. For embedded devices, this is particularly challenging since memory is
typically a scarce resource and, more importantly, the access to off-chip memories
represents the dominating factor when considering the energy consumption [13].
Hence, to lower both DNN inference time and energy-consumption, this work
focuses on techniques that reduce the amount of data to be transferred.

The technique investigated in this work, now known as pruning, represents a
form of DNN compression [13,17]. Pruning reduces the number of synaptic con-
nections to adjacent neurons such that the overall amount of weights is reduced.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 311–323, 2018.
https://doi.org/10.1007/978-3-319-77610-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_23&domain=pdf


312 T. Posewsky and D. Ziener

Most importantly, pruning is often able to eliminate a significant portion of these
connections without or with just minor accuracy drops for, i.e., classification
tasks. Due to the reduced amount of weights, less data needs to be transferred
and less calculations are needed in the hardware. Correspondingly, accelerators
are able to compute DNNs much faster. Currently, only a very limited number
of previous works exist that consider dedicated hardware support for pruned
DNNs [11,12].

As previously mentioned, deep learning can generally be used for many
embedded computing applications. The inference efficiency of such embedded
solutions plays a pivotal role and is highly dependent on the right hardware
architecture for the application-specific neural network architecture. To support
a wide area of different networks and, therefore, applications, we use an FPGA-
based high level synthesis (HLS) [15] approach in order to design a very efficient
hardware by rapidly exploring different design parameters, like the number of
MAC units or different activation functions. In this paper, we show how a flexible
streaming architecture for arbitrarily pruned DNNs can be designed as opposed
to designs with partially or completely embedded parameters. We focus partic-
ularly on an efficient inference of fully-connected DNNs since these layers are
the most memory-intensive and build the foundation for all of today’s most
successful network kinds.

The rest of this paper is organized as follows: Sect. 2 gives an overview
of related work. The concept and architecture of our accelerator is explained
in Sects. 3 and 4, respectively. Section 5 continues with experimental results.
Finally, Sect. 6 concludes the work and highlights future research directions.

2 Related Work

Recently, many accelerator designs for Convolutional Neural Networks (CNNs)
were introduced. CNNs are often found in image and video recognition systems
and typically use a series of kernels or convolution matrices prior to the above
mentioned fully-connected network architecture [21]. One example for such an
accelerator is given in [10]. Since the number of parameters for convolution matri-
ces is typically only a fraction of the weights of fully-connected network layers,
the exploitable compute parallelism is usually greater and thus favors hardware
accelerators. However, while such a design and many others (e.g., [8]) are very
effective for convolutional layers, their internal buffers and routing elements are
not optimized for fully-connected or compressed networks.

An FPGA-based DNN inference architecture that specifically addresses fully-
connected layers is presented in [19]. Additionally, the approach enables the reuse
of previously transferred weight matrices across multiple input samples, which is
referred to as batch processing. Both techniques, the one presented in this work
and the one in [19], reduce data transfers for the inference of fully-connected
DNNs significantly but are conceptually orthogonal.

A third important type of networks is known as Recurrent Neural Network
(RNN) [21]. RNNs allow the processing of input sequences through cyclical con-
nections in the network architecture. Like fully-connected layers, these networks



A Flexible FPGA-Based Inference Architecture for Pruned DNNs 313

are typically memory bound and thus make a parallel execution more difficult.
Consequently, corresponding designs are less frequent. However, an early app-
roach for a state-of-the-art RNN, called LSTMs, which uses the same FPGA as
this work, is shown in [3] and their results are accordingly compared to ours in
Sect. 5.

The theoretical foundation for pruning and, thus, our accelerator was intro-
duced by LeCun et al. in [17]. Originally, it was used to improve generalization
and speed of learning in shallow network architectures. However, Han et al. [13]
recently revived the technique for DNNs and were able to reduce the number of
connections by a factor between 9x and 13x. A corresponding ASIC design with
large on-chip memories for the remaining parameters after pruning and quantiza-
tion (without Huffamn encoding) is given in [12]. As discussed later, our acceler-
ator utilizes a similar format, presented in [24], for the resulting sparse matrices
(e.g., after pruning) but does not embed parameters for specific DNNs on-chip.
Instead, we propose a streaming architecture for arbitrary DNNs. Very recently
their approach was further extended to support LSTMs for speech recognition
on high-performance FPGAs [11].

3 Concept

A typical neural network contains several layers j = 1 . . . L. A layer j itself
consists of sj neurons. Fully-connected layers in DNNs are characterized by a
bipartite graph of neuron connections between two adjacent layers j and j + 1
for 1 ≤ j ≤ L − 1. For the rest of this work, we will specify the architecture of
these networks through the number of neurons sj in each layer, e.g., s0 × s1 × s2
for a L = 3 layer network. The synaptic strength of a connection is modeled
through a scalar value w

(j)
i,k called weight that represents the connection to the

i-th neuron in layer j + 1 from the k-th neuron in layer j. A transition from
layer j to the next layer j + 1 involves a weight matrix W (j) where w

(j)
i,k are the

components and the outputs a
(j)
k of connecting neurons in the layer j. The result

of each neuron a
(j+1)
i is computed by the following functions:

a
(j+1)
i = ϕ(z(j+1)

i ), z
(j+1)
i =

sj∑

k=0

w
(j)
i,k · a

(j)
k

A variety of different types of activation functions ϕ are known in neural
network literature. For example, while before the deep learning era the so called
sigmoid function was found most frequently, today’s most successful implemen-
tations usually deploy Rectified Linear Units (ReLU) [18] or variations of it [6].

On the hardware side, modern FPGAs typically offer a rich set of DSP and
RAM resources within their fabric that can be used to process these networks.
However, compared to the depth and layer size of deep neural networks, these
resources are no longer sufficient for a full and direct mapping the way it was
often done in previous generations of neural network accelerators. For example,



314 T. Posewsky and D. Ziener

given a network with L = 7 layers and architecture 784 × 2500 × 2000 × 1500 ×
1000×500×10 that was proposed in [5]. The network weights need approximately
22 MB if each weight is encoded using 16 bits. Compared to FPGA platforms
like the Zynq, where even the largest device is limited to a total BRAM size of
less than 3.3 MB [27] (i.e. 26.5 Mb≈ 3.3 MB for the Z7100 device), a complete
mapping with all neurons and weights directly onto the FPGA is no longer
possible.

Modern and deep neural networks are usually partitioned into smaller sec-
tions in order to process them on embedded FPGAs platforms. We refer to a
section as a certain number m of neurons in a given layer j with m ≤ sj+1 that
can be processed in parallel through our hardware coprocessor with m individ-
ual processing units. Each processing unit is responsible for the transfer function
of exactly one neuron in each section. Each processing unit may consists of r
different computation resources, e.g., multipliers which are able to consume r
weights as inputs in parallel for the calculation of the transfer function.

When comparing the size of the input data (sj values), the output data (m
values), and in particular the weights (≈sj × m values), it can be seen that the
transfer of the weight matrix is very costly. In order to reduce the amount of
data to transfer from the memory and for calculation, it is possible to remove
some connections entirely. After some initial iterations of the training phase,
small weights which are below a certain threshold δ can be set to zero:

w
(j)
i,k < δ

following
=====⇒
iterations

w
(j)
i,k := 0

Subsequently, these pruned weights are kept at zero and the remaining weights
are refined in the following iterations of the training phase. While this can poten-
tially reduce the accuracy if too many weights are pruned, it was shown that over
90% of the weights in fully-connected layers of common CNNs can be pruned
without noticeable accuracy drops [13].

Since weights with the value zero neither influence the result of the transfer
nor the result of the activation function, these weights don’t have to be stored
in memory, transferred to the compute units, or used in computations. However,
by pruning weights, the weight matrix becomes sparse and the hardware needs
to be designed in a way that the involved calculations are computed efficiently.

4 Architecture

We have implemented our design with support for pruned DNNs on Xilinx’s
Zynq-7000 All Programmable SoC platform [27] and using Xilinx Vivado HLS.
The flexible HLS approach allows us to quickly elaborate the best performing
architecture for a given neural network architecture. For example, the number
of processing units m and the number of MAC units per unit r can be freely
configured during design time. Moreover, the size and format of the weights and
the kind of activation function can be easily exchanged. Furthermore, the design
time is drastically reduced and our approach is easily extensible to support new



A Flexible FPGA-Based Inference Architecture for Pruned DNNs 315

kinds of neurons, activation functions, or complete network architectures. An
visualization of the overall accelerator structure and all related Zynq peripherals
is shown in Fig. 1.

Fig. 1. Overview of our DNN accelerator with the Zynq processing system (PS) on
the left and the custom accelerator inside the programmable logic (PL) on the right.
The connecting PS-PL interfaces are shown in between. In addition, four DMA mas-
ter peripherals are used for the weight transfer. All major connections that cross the
boundary of our actual DNN accelerator are indicated as dashed lines.

The accelerator has an internal memory hierarchy that is used to store input
and output activations for the currently calculated layer (controllable and acces-
sible via software through the GP ports). While the input for the first layer needs
to be copied by the ARM cores, the inputs for the following layers are always
outputs of previous layers and thus computed and stored inside the memory
hierarchy.

The Matrix Coprocessor computes the transfer function, i.e., the weighted
sum of inputs z

(j)
i . This involves matrix-vector operations that are mainly imple-

mented with multiply-accumulate units (MACs) by using DSP slices. We use a
fixed point data format, known as Q7.8, that consists of one sign bit, seven
integer bits and eight fractional bits. Although there exist first results that use
fewer bits for both weights and activations (e.g., between 1 and 8 bits) [7], 16
bits are, as of today, the most frequently used bit-width. For the DNN inference,
this format is proven to be almost as accurate as single precision floating point
weights [4,9,10], whereas weight encodings with very few bits (e.g., 1 or 2 bits)
suffer from comparable low accuracy [23]. Note that multiplications use 16 bits,



316 T. Posewsky and D. Ziener

while the subsequent accumulation is done with 32 bits. This ensures that the
input of the activation function is provided with full precision (e.g., Q15.16).

Compared to a design without pruning support where it is sufficient to trans-
fer a sequence of weights and the dimension of the matrix operation, pruning
requires additional metadata that gives information about the actual position
of a weight w

(j)
i,k within the matrix W (j). We use a format similar to [12] that

represents individual rows of the sparse weight matrices using tuples of (wl, zwl
)

entries, with l = 0 . . . (1 − q
(j)
prune,k) · sj − 1. Here, wl encodes a remaining weight

after pruning and zwl
denotes the number of preceding zeros that come before

wl in the corresponding row. The number of remaining weights after pruning
is sj · (1 − q

(j)
prune,k), where q

(j)
prune,k is the pruning factor of row k of the weight

matrix W (j). The overall pruning factor q
(j)
prune of the weight matrix W (j) can be

calculated with

q(j)prune =
1

sj+1
·
sj+1−1∑

k=0

q
(j)
prune,k.

Opposed to [12], we do not separate the weights and zeros into two 1-dimensional
arrays and store them in on-chip tables, but rather pack a certain number r of
consecutive (wl, zwl

) tuples into one data word (cf. [26]). In our architecture
we use r = 3 tuples, encode wl with the Q7.8 format, and represent zwl

as an
unsigned integer with 5 bits. Using these parameters, a row

(0, −1.5, 0, 0, +0.3, −0.17, 0, 0, 0, +1.1, 0, 0, −0.2, 0, +0.1, . . . )

is encoded into the following sequence of 64 bit data words

−1.5 1 +0.3 2 −0.17 0 +1.1 3 −0.2 2 +0.1 1 . . .
data word 0 data word 1

If zwl would require more than 5 bits, e.g. more than 31 consecutive weights
were pruned, we instead use multiple tuples with (wl, zwl) = (0, 31) until the last
tuple of the sequence holds the condition zwl < 31. Note that the encoding of a
data word uses only 63 bit from the available 64 bit. The advantage is that the
data is memory aligned to the 64 bit border which eases the memory access. The
corresponding overhead per weight compared to non-pruning implementations
is qoverhead = 64 bit/(3 × 16 bit) = 1.33.

Compared to other sparse matrix encodings that, for example, use separate
vectors for the absolute row and column pointers [24], this format works well for
streaming architectures since it directly combines both the weight and its relative
position in one stream. This means that it does not require synchronization for,
e.g., weight and multiple index streams. Since the structure of pruned weight
matrices is not as homogeneous as their dense counterparts, the datapath of a
corresponding streaming architecture must be design to handle sparse matrices
in order to avoid pipeline stalls (see Fig. 2).

Therefore, the coprocessor needs to calculate the address of the input acti-
vation a

(j)
k for the current weight. This input address is potentially different for



A Flexible FPGA-Based Inference Architecture for Pruned DNNs 317

Fig. 2. Datapath for the computation of sparse rows in pruned DNNs. This example
presumes a pipeline word with r tuples, each containing a weight and the number
of zeros before it. In order to avoid delays when fetching the input activation that
corresponds to a given weight, the BRAMs in the I/O memory are also duplicated r
times, such that each multiplier has its own memory port. By combining m of these
datapath instances, m neurons can be computed in parallel (i.e., m rows of the sparse
matrix). In such cases, an IP that merges the activations of different rows must be
connected with the I/O memories (indicated through the dashed lines).

every row which makes a parallel distribution of the inputs impractical. There-
fore, each of the m parallel sparse row coprocessors has it own I/O memory unit.
This means that the I/O memory and the coprocessors are replicated m times.
The offset calculation IP computes theses addresses for all r weights iteratively
using the previously computed and stored offset oreg, the number of non-zero
weights before wl and the zero fields zwl

from the pipeline word:

addressi = oreg + i +
i∑

k=0

zwk
, i = 0 . . . r − 1

Having computed the addresses, the coprocessor can multiply the weights and
retrieve input activations and subsequently accumulate the partial sums. How-
ever, in order to retrieve the weights in parallel and avoid multiple cycles for a
sequential fetching of the individual activations, the input memory needs r read
ports. Given that RAM resources in current FPGA technologies usually do not
provide more than two memory ports, the I/O memory stores both input and
output activations in r redundant BRAM copies. When m neurons should be
computed in parallel, this redundancy is even increased to m ·r copies since each
of the m coprocessors needs r individual read ports. If the calculated addressi



318 T. Posewsky and D. Ziener

surpasses the stored number of inputs sj , the calculation of the current transfer
function z

(j+1)
i is finalized, the result is handed over to the activation function,

and the corresponding processing unit starts calculating the following trans-
fer function z

(j+1)
i+m . After the activation function, a merger IP (not depicted in

Fig. 2) distributes the computed output activations of the m neurons to all I/O
memories (second port of the BRAM crossbar).

5 Experimental Results

To evaluate and verify the so far discussed concept, we have implemented our
accelerator on an embedded platform and compared them with different config-
urations against miscellaneous software platforms. We chose the Zynq Evalua-
tion and Development Board [2], short ZedBoard, for the implementation of our
designs. The design uses two clock domains: the memory interface (e.g., Zynq
high performance ports and DMAs) is clocked with 133 MHz and the remaining
processing IPs use a 100 MHz clock (fpu). Due to the limited amount of 4 high
performance ports on the Zynq, our design utilizes only m = 4 coprocessors
with r = 3 MAC units. This results in a total utilization of only 12 MACs. By
using an HLS design flow, the design time was cut down to approximately 8
person weeks. In comparison, an earlier design (see [19]) with a similar complex-
ity needed about 24 person weeks by using a standard RTL-based design flow
(using VHDL). Furthermore, a substantial amount of the previously mentioned
time for the HLS-based design was spent in creating a suitable testbench that is
capable of loading arbitrary networks and transforming the weight matrices in
the internal representation for the actual processing.

Throughput Evaluation: For a fair comparison of both hardware and soft-
ware, we have trained different fully-connected neural network architectures with
multiple real-world data set. As many before us, we use the MNIST database
of handwritten digits [16] as the first benchmark. In addition, we have also per-
formed all tests with a second benchmark that deals with the subject of recog-
nizing human activities (HAR) of daily living through smartphone sensors [1].
We have also tested multiple neural network architectures which are taken or
inspired from current research in the field. For example, the smaller network
for MNIST was proposed in [14] while the larger one is an artificially extended
version of that architecture with four additional hidden layers.

In our evaluation, the hardware competes against a software implementation
that we have tested on an embedded (i.e., the ZedBoard without FPGA use),
a notebook and, a desktop machine. The notebook uses an Intel Core i7-5600U
dual core processor with 2.6–3.2 GHz, 4096 KB L3 cache, and 8192 MB single
channel DDR3 memory. The desktop CPU is an Intel Core i7-4790 quad core
with 3.6–4.0 GHz, 8192 KB L3 cache, and 16384 MB dual channel DDR3 memory.
The peak memory throughput is 12.8 GB/s for the laptop and 25.6 GB/s for the
desktop system. The ZedBoard has only a memory throughput of 4.2 GB/s.



A Flexible FPGA-Based Inference Architecture for Pruned DNNs 319

Furthermore, all presented processors feature some variant of a vector exten-
sion to accelerate floating-point intensive calculations through parallelism on
instruction level. In order to get the best runtime result on all presented plat-
forms, we use the BLAS [25] library for the software inference of the DNNs.
Xilinx’s bare-metal layer is used for the ZedBoard whereas both the notebook
and the desktop machine use Linux-based operating systems. By default, bare-
metal uses only one core for the software execution. The throughput results for
the DNN inference on all software implementations and our hardware platform
are depicted in Table 1.

Table 1. Throughput comparison of our hardware design with pruning support and
software inference on three different systems. Execution times are averaged over the
size of the used test set and given in samples per milliseconds (ms). The best results
for both hardware designs and all software runs are highlighted.

MNIST a HAR b

Device Configuration 4-layer netw. 8-layer netw. 4-layer netw. 6-layer netw.
1,275,200 3,835,200 1,035,000 5,473,800
Parameters Parameters Parameters Parameters

Hardware-based processing

Pruning factor 0.72 0.78 0.88 0.94

HW design 12 MACs 0.439 1.072 0.161 0.420

Software-based processingc

ARM #Threads: 1 16.151 48.603 13.120 70.240
Cortex-A9

Intel Core #Threads: 1 0.285 1.603 0.223 2.246
i7-5600U #Threads: 2 0.221 1.555 0.144 2.220

#Threads: 4 0.247 1.591 0.182 2.417

Intel Core #Threads: 1 0.118 0.917 0.114 1.406
i7-4790 #Threads: 4 0.057 0.569 0.045 1.205

#Threads: 8 0.065 0.687 0.055 1.491
a

Network architectures: 784 × 800 × 800 × 10 and 784 × 800 × 800 × 800 × 800 × 800 × 800 × 10
b

Network architectures: 561 × 1200 × 300 × 6 and 561 × 2000 × 1500 × 750 × 300 × 6
c

Software calculations are performed using the IEEE 754 floating point single precision format and using BLAS. The
i7-4790 utilizes dual channel memory whereas the others only use single channel.

On the software side, we see the fastest inference for the desktop machine
with a utilization of 4 threads and dual channel memory. On both the mobile
and desktop CPU, the execution times depend mostly on the network size and,
more precisely, on the matrix sizes of the individual layers. While the matrices of
both 4-layer networks fit completely into the CPU caches and thus enable faster
execution times, the tables are turned for matrices of the deep learning era. For
example, the 6-layer HAR network with a 2000 × 1500 matrix represents such
a typical fully-connected layer. Here, the hardware, despite its five times slower
memory interface, clearly outperforms all software implementations.

Furthermore, we compared our approach with a related FPGA-based neu-
ral network accelerator. A fair and direct comparison is only possible with
approaches that supply results for fully-connected DNNs or RNNs (RNNs have



320 T. Posewsky and D. Ziener

only slightly more weights due to neuron feedback connections). However, when
considering only fully-connected layers, our approach clearly outperforms related
work like, for example, a recent RNN approach on the ZedBoard [3]. The authors
claim an overall throughput of 388.8 MOps/s. With our approach, we reach a
throughput of 0.8 GOps/s (only counting MAC operations). However, compared
with non-pruned approaches, this is equivalent to 3.83 MOps/1.07 ms = 3.58
GOps/s and 5.47 MOps/0.42 ms = 13.02 GOps/s, respectively (i.e., the non-
pruned weight matrix is used as the number of operations, see Table 1).

Energy Efficiency: For determining the energy consumption, we measured
the system power for processing the 8-layer neural network and the idle power
for all platforms (see Table 2). The overall power consumption on the ZedBoard
is evaluated by measuring the average input voltage and the voltage drop on a
shunt resistor. Whereas, the average power of the x86-based systems is measured
on the primary side of the power supply with an ampere and volt meter. Besides
the idle and processing power, the energy consumption with (Overall Energy)
and without (Dynamic Energy) idle power consumption is shown in Table 2.

Table 2. Energy consumption comparison of our hardware design and three processors
(network: MNIST 8-layer).

Device Configuration Power Overall Dynamic
(W) Energy (mJ) Energy (mJ)

ZedBoard idle 2.4 — —
HW (m = 4) 4.1 4.4 1.8
SW BLAS 3.8 184.7 68.0

Intel Core idle 8.9 — —
i7-5600U #Threads: 1 20.7 33.2 18.9

#Threads: 2 22.6 35.1 21.3
#Threads: 4 24.9 39.6 25.5

Intel Core idle 41.4 — —
i7-4790 #Threads: 1 65.8 63.9 22.4

#Threads: 4 82.3 46.8 23.3
#Threads: 8 81.8 56.2 27.8

Comparing our hardware configuration with pure software approaches, an
overall energy efficiency improvement of almost factor 10 can be achieved. Com-
pared to a competing LSTM design [11], our pruning approach is about factor
1.8 more energy efficient using their network with 3248128 weights and their
pruning factor of qprune = 0.888 (1.9 mJ for our approach and 3.4 mJ for their
approach).

Accuracy Evaluation: The objective for the training with pruning was a max-
imum accuracy deviation of 1.5% in correctly predicted samples. All networks
discussed in the throughput evaluation (i.e., Sect. 5) meet this objective and
deliver an accuracy very similar to their non-pruned counterparts (most deviate
less than 0.5%).



A Flexible FPGA-Based Inference Architecture for Pruned DNNs 321

Table 3. Accuracy evaluation in percentage of correctly predicted test set samples
depending on the overall pruning factor qprune of the network

MNISTa HARb

Number of parameters 4-layer netw.

1,275,200

parameters

8-layer netw.

3,835,200

parameters

4-layer netw.

1,035,000

parameters

6-layer netw.

5,473,800

parameters

Best non-pruned accuracy 98.3 95.9

Pruning factor 0.72 0.78 0.88 0.94

Accuracy 98.27 97.62 94.14 95.72
aNetwork architectures: 784 × 800 × 800 × 10 and 784 × 800 × 800 × 800 × 800 × 800 × 800 × 10
bNetwork architectures: 561 × 1200 × 300 × 6 and 561 × 2000 × 1500 × 750 × 300 × 6

A detailed comparison of accuracy and pruning percentage is shown in
Table 3.

6 Conclusions

In this paper, we present a flexible architecture for an FPGA-based embedded
SoC that is able to accelerate the inference of previously learned and arbitrary
pruned fully-connected deep neural networks. This architecture enables the infer-
ence of today’s huge networks on energy-constrained embedded devices. By using
pruning, the size of external memory as well as the amount of data to be trans-
ferred can be significantly reduced which increases the energy efficiency and
performance. An application and network-specific design can be easily achieved
by using HLS in order to increase the abstraction level of the design entry. The
resulting architecture has a comparable performance with state-of-the-art desk-
top and server processors for large networks. However, only a fraction of energy
is needed which enables new applications for embedded systems, even on battery
powered devices. Future works on this topic might further increase the through-
put and energy efficiency by combining pruning with batch processing [19] into
one architecture.

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: 21th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, ESANN 2013, April 2013

2. Avnet Inc.: ZedBoard Hardware User’s Guide, v2.2 edn, January 2014
3. Chang, A.X.M., Martini, B., Culurciello, E.: Recurrent neural networks hardware

implementation on FPGA. arXiv preprint arXiv:1511.05552 (2015)
4. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: Diannao: a

small-footprint high-throughput accelerator for ubiquitous machine-learning. In:
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2014, pp. 269–284.
ACM, New York (2014)

http://arxiv.org/abs/1511.05552


322 T. Posewsky and D. Ziener

5. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple
neural nets excel on handwritten digit recognition. CoRR abs/1003.0358 (2010)

6. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by Exponential Linear Units (ELUs). CoRR abs/1511.07289 (2015)

7. Courbariaux, M., Bengio, Y.: BinaryNet: Training deep neural networks with
weights and activations constrained to +1 or −1. CoRR abs/1602.02830 (2016)

8. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod,
P., Talay, S.: Large-scale FPGA-based convolutional networks. In: Bekkerman,
R., Bilenko, M., Langford, J. (eds.) Scaling up Machine Learning: Parallel and
Distributed Approaches. Cambridge University Press, Cambridge (2011)

9. Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., LeCun, Y.: Neu-
flow: a runtime-reconfigurable dataflow processor for vision. In: Proceedings of
Embedded Computer Vision Workshop (ECVW 2011) (2011, invited paper)

10. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s mobile
coprocessor for deep neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 696–701, June 2014

11. Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang,
Y., Yang, H., Dally, W.J.: ESE: efficient speech recognition engine with compressed
LSTM on FPGA. CoRR abs/1612.00694 (2016)

12. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.:
EIE: efficient inference engine on compressed deep neural network. CoRR
abs/1602.01528 (2016)

13. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and Huffman coding. CoRR abs/1510.00149
(2015)

14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
ArXiv e-prints, March 2015

15. Koch, D., Hannig, F., Ziener, D. (eds.): FPGAs for Software Programmers.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26408-0

16. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database (2014).
http://yann.lecun.com/exdb/mnist/

17. LeCun, Y., Denker, J.S., Solla, S., Howard, R.E., Jackel, L.D.: Optimal Brain Dam-
age. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems
(NIPS 1989), vol. 2. Morgan Kaufman, Denver (1990)

18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-2010), pp. 807–814 (2010)

19. Posewsky, T., Ziener, D.: Efficient deep neural network acceleration through
FPGA-based batch processing. In: Proceedings of the International Conference on
Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, December
2016

20. Sainath, T.N., Kingsbury, B., Ramabhadran, B., Fousek, P., Novak, P., Mohamed,
A.: Making deep belief networks effective for large vocabulary continuous speech
recognition. In: Proceedings of the ASRU (2011)

21. Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR
abs/1404.7828 (2014)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

23. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P.H.W., Jahre,
M., Vissers, K.A.: FINN: a framework for fast, scalable binarized neural network
inference. CoRR abs/1612.07119 (2016)

https://doi.org/10.1007/978-3-319-26408-0
http://yann.lecun.com/exdb/mnist/


A Flexible FPGA-Based Inference Architecture for Pruned DNNs 323

24. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. Ph.D. the-
sis, University of California, Berkeley (2003)

25. Xianyi, Z., et al.: OpenBLAS, March 2011. http://www.openblas.net. Accessed 02
Mar 2016

26. Xilinx Inc.: Designing Protocol Processing Systems with Vivado High-Level Syn-
thesis, v1.0.1 edn, August 2014

27. Xilinx Inc.: Zynq-7000 All Programmable SoC Overview, v1.9 edn, January 2016

http://www.openblas.net

	A Flexible FPGA-Based Inference Architecture for Pruned Deep Neural Networks
	1 Introduction and Motivation
	2 Related Work
	3 Concept
	4 Architecture
	5 Experimental Results
	6 Conclusions
	References




