
Do Iterative Solvers Benefit
from Approximate Computing?

An Evaluation Study Considering
Orthogonal Approximation Methods

Michael Bromberger1(B), Markus Hoffmann1, and Robin Rehrmann2

1 Computer Architecture and Parallel Processing,
Karlsruhe Institute of Technology, Karlsruhe, Germany

bromberger@kit.edu
2 Database Technology Group, Technische Universität Dresden,

Dresden, Germany

Abstract. Employing algorithms of scientific computing often comes in
hand with finding a trade-off between accuracy and performance. Novel
parallel hardware and algorithms only slightly improve these issues due
to the increasing size of the problems. While high accuracy is inevitable
for most problems, there are parts in scientific computing that allow us to
introduce approximation. Therefore, in this paper we give answers to the
following questions: (1) Can we exploit different approximate computing
strategies in scientific computing? (2) Is there a strategy to combine
approaches? To answer these questions, we apply different approximation
strategies to a widely used iterative solver for linear systems of equations.
We show the advantages and the limits of each strategy and a way to
configure a combination of strategies according to a given relative error.
Combining orthogonal strategies as an overall concept gives us significant
opportunities to increase the performance.

1 Introduction

Scientific computing poses a difficult challenge for people from different domains,
especially in order to find a suitable trade-off between desired solution quality
and computational effort. Even the high parallel capabilities of todays hardware
and novel parallel algorithms do not lead to a significant reduction of these
challenges because of the increasing dimensions of current problems. Hence, we
rely on new ways to find suitable methods to overcome the aforementioned issues.

In recent years, the idea of an approximate computing (AC) paradigm has
been gaining high attention in computer science [11]. A consideration of current
applications, such as Recognition, Mining, and Synthesis (RMS) concludes that
these applications have an inherent resilience against computational errors [8].
Trading off internal or external accuracy of an application allows the hardware,
the programmer, or the user to improve other design goals like performance or
energy consumption [3]. There already exists a wide variety of AC approaches
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 297–310, 2018.
https://doi.org/10.1007/978-3-319-77610-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_22&domain=pdf

298 M. Bromberger et al.

on different layers of the compute stack [11,21]. Additionally, there is quite some
effort to control the degree of approximation according to given constraints [3].

In contrast, high accuracy is often inevitable for scientific computing. Hence,
at first glance, it seems counterproductive to marry AC with scientific comput-
ing. However, there is already some successful work that introduces AC into
scientific computing [2,17–19,22,23]. They mostly analyze the influence of data
type precision on the accuracy. Asynchronous parallelization methods, which
can be compared with relaxed synchronization, are well-known in numerics and
show a high efficiency on GPUs [1]. But these works lack a schematic evaluation
of AC on different parts inside a scientific application. Therefore, this paper is
a first step to apply a holistic evaluation of AC on a widely used algorithm in
scientific computing. This gives us the knowledge, where it is possible to apply
AC and how we can combine orthogonal methods.

1.1 Current Status

AC approaches can be grouped according to the compute stack. Here, we order
the approaches in the following:

– Task Layer approaches comprise skipping tasks, relaxing synchronization
points [13], or exploiting approximate parallel patterns [15]. There exist run-
time approaches that select a task from different approximate versions [3].

– Algorithmic Layer methods use the concept of loop perforation [21] or loop
tiling [15]. Others rely on an automatic transformation of the code into a
neural network. Sampling the input data offers a further way. Additionally,
there are automatic ways to reason about the required data type.

– Architecture Layer approaches introduce AC into the hardware architec-
ture. This includes neural processing units, approximated memory compo-
nents [10], or entire designs that integrated dynamic accuracy and voltage
scaling. Programmers can use such components through an extended ISA.

– Hardware Layer approaches [11] often deal with approximating process-
ing units. This also includes providing different hardware-supported data
types [6], i.e. exploit precision scaling.

Previous work shows that considering various levels and introducing different
AC methods result in an enormous benefit [12]. However, such an orthogonal
view is missing for scientific applications.

1.2 Methodology of the Evaluation

As previous work shows that AC can be beneficial for scientific computation,
we analyze the usage of orthogonal AC methods for the Jacobi method. Firstly,
we assemble representative input data for our evaluation (see Sect. 2). Then,
we select suitable and promising AC approaches for our evaluation in Sect. 3. To
note, we analyze the applicability and combination of orthogonal AC approaches,
but we do not provide a run-time approach that controls the quality. However,

Do Iterative Solvers Benefit from Approximate Computing? 299

there already exist such approaches that can be used to control a combination of
AC methods [11]. Our systematic evaluation compares the different approaches
regarding their execution times and the relative error as described in Sect. 4. This
evaluation aims to answer the following questions: How big is the influence of
well-known AC methods on the accuracy of a scientific algorithm? Is it possible
to combine AC methods to improve other design parameters while keeping an
acceptable accuracy?

1.3 Main Findings

Based on the outcome of our experiments, the following conclusions can be
drawn:

– Conclusion 1: There exist further AC approaches besides precision scal-
ing which are useful for scientific computing. Loop tiling and loop trunca-
tion enable a programmer to trade-off accuracy for performance for the syn-
chronous and parallelized Jacobi algorithm. Additionally, an approximation
parameter that specifies the degree of relaxed synchronization poses an oppor-
tunity to find an optimal configuration point for accuracy and performance.

– Conclusion 2: Combining orthogonal AC methods leads to configuration
points that cannot not be reached by a single method. Hence, this combination
outperforms single methods regarding accuracy and performance. We show
that coupling up to five AC methods is possible for the Jacobi method.

– Conclusion 3: Using a simple greedy-based algorithm, we can find suitable
parameter values for the orthogonal AC methods. A user can state a desired
relative error that is tolerable for the solution of the Jacobi method. Then, the
algorithm finds the best possible performance for that given error by tuning
the AC parameter.

2 Mathematical Background and Data Generation

A common task within scientific computing is numerically solving partial dif-
ferential equations (PDEs). This is typically done by transforming the basic
problem into a large scaled system of (linear) equations [9]. The finite element
method, for example, transfers a weak formulation of the PDE directly into a
system of linear equations:

Ax = b, (1)

where xi are the coefficients of a linear combination of basis functions for an
appropriate function space, which approximate the solution of the PDE. Depend-
ing on the set of basis functions, the original problem, and the given approxima-
tion of the observed area, A has different characteristics including high dimen-
sionality. Wisely selecting the basis functions leads to a sparse A. Hence, Krylow
subspace methods are ideal candidates for solving the problem (1) [14]. Lowering
the conditional number of A results in a higher convergence for those methods.
This is accomplished by multiplying a suitable matrix B with A [20]. One method

300 M. Bromberger et al.

to find a suitable B, the so-called preconditioning matrix, is a factorization of
A based on its characteristics. A widely usable factorization is the incomplete
LU -factorization [5]:

A ≈ LU = B−1, (2)

where L and U are lower and upper triangle matrices, respectively. As for per-
formance reasons B is embedded within the Krylow subspace method by multi-
plying it with a basis vector vm of the actual Krylow subspace Vm, new systems
of equations have to be computed:

Bvm = y ⇔ LUy = vm ⇔ Lỹ = vm, Uy = ỹ. (3)

Because L and U are sparse but triangle matrices, typically solvers based on
splitting methods like the Jacobi method are used to solve the inner systems [5].

The main challenge now is to solve these inner systems (3) very efficiently
to keep the performance benefit due to fewer iterations of the Krylow subspace
method. An important fact to note is that the accuracy of the solution of the
inner systems only affects the convergence rate, hence it does not affect the
solution of the outer method. To note, there are some important mathematical
properties for solvers and preconditioning methods. First of all, the precondi-
tioning operator B has to be invariable over the whole iteration process for most
Krylow subspace methods [14]. Manipulating the updating process of the inner
solver may change the operator from one iteration to another. However, methods
such as FGMRES allow us to adapt the preconditioners per iteration [14].

The second problem is the convergence of the inner solver. Having a spectral
radius ρ of L and U smaller than unity results in a secured convergence [4].
Although this requirement on ρ might not be fulfilled for all matrices assembled
from discretization of PDEs and incomplete factorization, there are large and
relevant classes of problems with resulting triangular matrices that can be solved
by matrix splitting based solving methods.

Now, we take a look at the generation of the test data. The basic problem
that we use is an inhomogeneous Poisson’s problem with homogeneous boundary
conditions on the unit square. The discretization is done with a five-point-stencil
and the finite difference method. The resulting system of equations is diagonally
dominant, irreducible, and can be easily scaled to any useful dimension. A is
also sparse, symmetric, and positive definite. We use the Jacobi method as inner
solver. The right side vm of (3) is a set of vectors that are created as residu-
als within a performed CG method. To avoid misunderstandings, we would like
to emphasize that we are only investigating the influence of AC on the Jacobi
method. Therefore, we are only solving the resulting inner systems for evaluation
purposes, but we are not trying to precondition the CG method. As mentioned
before, the CG method needs an invariable preconditioning operator which is
violated by our methods. Considering the influence on the preconditioning qual-
ity, for instance using FGMRES is left for future work.

Do Iterative Solvers Benefit from Approximate Computing? 301

3 Approximation Computing Methods

The selection of the considered approximation methods is inspired by two things.
Firstly, we want to evaluate orthogonal methods which can be applied concur-
rently. Secondly, we decide to use approaches that seem promising and have a
high standing in the approximate computing domain. Moreover, each of them
have shown great success on different applications. Our selection of methods is
shown in Table 1. Each of these methods offers different parameters that influ-
ence the trade-off between different design goals like accuracy and performance.
We describe the meaning of each parameter in this section. Moreover, we state
the useful approximation parameters.

Table 1. Overview about the considered approximation methods.

Level Approaches Description Evaluation

Thread Relaxed synchronisation Section 3.1 Section 4.4

Data Loop perforation, Loop tiling, and Loop skipping Section 3.2 Section 4.3

Data type Precision scaling and approximate memory Section 3.3 Section 4.2

Input approximation Input data approximation Section 3.4 Section 4.5

3.1 Relaxed Synchronization

Relaxed synchronization is a way to reduce the synchronization overhead intro-
duced for a parallel execution [13]. It means that some synchronization points
are intentionally violated to improve performance. However, relaxed synchro-
nization can hamper the accuracy of the result. Hence, programmers have to
take care where relaxed synchronization is viable. Barriers or synchronizations
that assure to read the most recent data are good points to introduce relaxation.

For our evaluation, we use an algorithmic-specific relaxation, which are often
called asynchronous methods in numerics. The used relaxation is based on a work
of Anzt et al. [1]. Normally, a given starting vector is updated within each step
of the Jacobi method which can be done in parallel but needs synchronization at
the end of the iteration. The idea behind the relaxation is to subdivide entries
of the vector in groups of a given size. Only all members of the same group are
synchronized at the end of the iteration step but synchronizations between two
different groups are relaxed. Anzt showed that this relaxation may lead to great
speedups on GPUs. Additionally, convergence is proven for the asynchronous
Jacobi method [7]. The number of groups present the approximation parameter.

3.2 Sampling

Here, we present approaches that influence the loop behavior of an algorithm.
On one side, there are approaches on this level that can be considered as sam-
pling approaches. They decide which items of the input data are used for the

302 M. Bromberger et al.

for i ← 0 to n − 1,
i+=steps do

result = do work();
end

(a) Loop perforation.

for i ← 0 to
(n − steps), i++ do

result = do work();
end

(b) Loop truncation.

for i ← 0 to n − 1, i+=steps do
result[i] = do work(input[i]);
for j ← 1 to steps − 1, j++ do

result[i+j] = result[i];
end

end

(c) Loop tiling.

Fig. 1. Used approximation methods on the data level (sampling approaches).

computation. On the other side, we count approaches to this level that earlier
stops the execution of an iterative algorithm. Figure 1 shows the schematic of
these approaches.

Loop perforation (see Fig. 1a) is a well-known technique of AC on the software
level [21]. The idea is to reduce the execution time of a loop by skipping iterations
in between. Depending on the actual loop this essentially results in sampling the
input or output. In addition, it is sometimes worth to adapt the final result, for
instance using scaling for a summation of an array. Let us assume, that we only
use half of the values of the sum, then multiplying the result with two can be
useful. The perforation rate is the approximation parameter.

Loop truncation (see Fig. 1b) is a method that drops the last iterations of a
loop. Here, the approximation parameter specifies the number of dropped iter-
ations. Such an approach is especially useful for iterative methods. Iterative
methods are commonly used in numerical mathematics. They perform a com-
putation in such a way that they calculate a sequence of approximate solutions
that ideally converge to the exact solution.

Loop tiling (see Fig. 1c) assumes that near located elements of an input have
similar values [15]. Hence, it only calculates some iterations of the loop and
assigns nearby outputs to the already calculated value. This actually forms a
tile structure of the output. The tile size presents the approximation parameter.

3.3 On the Data Type Level

Typically, numerical algorithms rely on floating-point operations performed on
the executing hardware. Many approaches in AC present designs that deal with
arithmetic units, which also includes floating-point units. These approaches can
be roughly grouped into two general approaches.

Do Iterative Solvers Benefit from Approximate Computing? 303

One deals with the precision of the operations itself [11]. This is achieved by
precision scaling or by redesigning a processing unit in an approximate way. This
leads to more efficient hardware designs regarding power consumption, latency,
or area. The other approaches deal with approximate memory which may affect
the accuracy of involved operands [10]. In general, approximate memories can
lead to indeterministic stored data.

To include those approaches in our evaluation, we adapt floating-point oper-
ations within the algorithm. The first group is simulated by truncating bits
of the significand (called precision scaling). The approximation parameter
states the number of truncated bits. For the second, we introduce random bits
for those less significant bits. However, this means that each memory access
is affected. Therefore, we perform additional experiments, where we introduce
errors according to different realistic error rates of an approximate memory [10].

3.4 Input Data Approximation

We consider a method that approximates the input data. In our test case, this
can be done by taking influence to the ILU factorization as this specifies the
resulting system of equations, hence the input data of the Jacobi method.

Using a sparsity pattern it is possible to specify entries of L or U that are set
to zero. Therefore, the operations within the Jacobi method are reduced. The
challenge is to decide which entry has the least impact on the accuracy of the
Jacobi method as this is most likely the best entry to remove next.

Taking a look at the updating process of the Jacobi method it is obvious that
for us the best element of L or U to remove is either the one matching to the
entry of y from (3) closest to zero or the one which is closest to zero itself, both
with the restriction not to remove the diagonals of the matrices. As y is unknown
while computing the ILU factorization, the latter method is the one of choice.
To keep the original structure of the matrices as long as possible, we additionally
decide to give removing priority to the leftmost (rightmost) element of a row.
Hence, it results in removing these elements first. We exploit the number of
removed entries as the approximation parameter.

4 Experiments

We apply the described methods above to an iterative and parallel Jacobi solver
individually. Additionally, we consider a combination of several AC methods. We
run all the experiments on a AMD Opteron 6128 processor providing 64 GB of
main memory. A synchronous and parallel version of the Jacobi solver executed
using 32 threads is our base line. We parallelize over matrix rows. The parallel
algorithm requires 130.1 ms for a matrix dimension of 10242 and 631.2 ms for a
dimension of 20482. If not otherwise mentioned, we set the iteration count to
10. Stopping the iterative method after 10 iterations results in a relative error
of roughly 10−4 compared to the exact solution independent from the matrix
dimension d.

304 M. Bromberger et al.

4.1 Evaluation Metrics

For the accuracy, we calculate the relative error

Erel =
||x − x̃||2

||x||2 ,

where x is the solution vector of the base line and x̃ the solution of the approx-
imate version. Moreover, we measure the performance stated as execution time
if possible. In other cases, we include realistic numbers from the literature.

4.2 Influence of Approximate Computing on the Data Type Level

In this section, we investigate how the internal data type precision impacts the
accuracy of the solution vector. Since we cannot perform these experiments on
current hardware, we use an emulation scheme to evaluate the influence of preci-
sion. The reason is that current hardware does not provide other floating-point
data types apart from float or double in general. We consider two well-known
AC methods: precision scaling and approximate memory. Figure 2a shows the
impact of these methods on the relative error. We vary the number of influenced
precision bits of the significands from 53 to 0. We can see that for the given linear
system, the most of the least significant bits of the significand play a minor role
for the accuracy. Moreover, the results are more or less independent from the
matrix dimension d and the way how we influence the data type precision. 13 bits
are enough to have almost no additional error compared to the base line. Having
less than roughly 8 correct bits leads to an exponential increase in the relative
error. However, according to literature it is not very likely that all memory reads
are affected by approximation. It actually depends on how this approximation
method is implemented. A common way is to increase the refresh cycle time of
a DDR memory bank, which can significantly save energy. Depending on this

Fig. 2. Influence of the data type precision on the accuracy.

Do Iterative Solvers Benefit from Approximate Computing? 305

increase the error rate of getting wrong results from the memory also raises. For
some realistic values, we consider how this error rate impacts the accuracy of the
Jacobi solver, see Fig. 2b. Even if we have relatively high error rates, for instance
1.3 × 10−4, the influence on the accuracy is not drastic. Such an approximate
memory approach decreases the power required for refresh up to 25% having an
error rate of 1.3 × 10−4 [10]. Getting the actual performance or energy gain is
very difficult, since it would require to build such a hardware and to evaluate
the wanted metrics. Here, we show the potential of the reduction in precision
bits.

4.3 Analysis of Approximate Computing Loop Strategies

A common method in AC is to adapt the execution of iterations for a loop. This
essentially leads to skipping iterations or a sampling scheme on the input data.
Figure 3 shows the impact of loop perforation and loop tiling for different approx-
imation parameters (called steps in Fig. 1). The method loop perforation is
not applicable at all for the considered algorithm, since the error exponentially
increases with the approximation parameter. In contrast, loop tiling works
quite well. Especially, small values for the approximation parameter still lead to
small errors. We can see an influence of the dimension on the accuracy for loop
tiling. A smaller dimension shows a higher error behavior.

Fortunately, the execution time significantly decreases for small parameter
values. Larger values have no further considerable benefit regarding the execution
time. The rationale behind is that at a certain point the synchronization overhead
of the parallelization and other parts of the algorithm, where the AC methods
have no effect, have the main impact on the execution time.

loop truncation is a natural way to approximate iterative methods. It just
stops the iterative method before it converges. Figure 4 shows the accuracy and

Fig. 3. Influence of loop perforation and loop tiling (Measurements are overlapping for
loop perforation).

306 M. Bromberger et al.

Fig. 4. Influence of loop truncation regarding accuracy and performance (Measure-
ments for accuracy are overlapping).

execution time for different stop points. A stop point specifies the number of
allowed iterations. Again the relative error is almost independent from the matrix
dimension. The error exponentially decreases with the iterations at the beginning
and then requires some time to converge. The execution time for large dimensions
scales roughly linearly with the number of iterations. For small dimensions, the
synchronization overhead is quite high.

To sum up, loop perforation is not a useful approach for the Jacobi
method. Regarding the error and performance, loop truncation provides the
best solution in general. However, loop tiling can be a useful method for larger
allowed relative errors.

4.4 Accuracy Degradation Caused by Relaxed Synchronization

In the following experiment (see Fig. 5a), we investigate the influence of relaxed
synchronization on the accuracy of the result vector. A higher number of blocks
states that more synchronizations are relaxed during the execution. The relax-
ation method introduces a small error until the number of blocks is larger than
the number of available cores, in our case 25 = 32. At this point, we can see
a high increase of the relative error. In contrast, the optimal point regarding
performance is reached when the number of blocks is roughly eight times the
number of cores. The curves show similar behavior for different matrix dimen-
sions, but the relative error is smaller for the larger dimensions. The performance
gain is more significant for larger matrix dimensions.

Do Iterative Solvers Benefit from Approximate Computing? 307

Fig. 5. Consideration of relaxed synchronization and input approximation on the
Jacobi method (We are aware of the strange time measurements but unfortunately
it is unclear where the oscillation comes from. However, they are reproduceable).

4.5 Input Approximation

Instead of using approximation in the algorithm itself, one can adapt the input
data. Therefore, we remove certain inputs according to a method described
in Sect. 3.4. The approximation parameter presents an offset which specifies the
rows of the input matrix that will be affected. For instance, 20 means that
we influence each 20th row. In general, affecting fewer rows leads to a reduc-
tion of the error. Until a parameter value of 20, this reduction is exponential
(see Fig. 5b). Afterwards, the error decreases slowly.

However, we cannot see that removing certain inputs have a clear influence
on the execution time. There are strong variations in the execution time which
means that they are independent from the approximation parameter. According
to these results, we draw the conclusion that input approximation is not useful
for our test case.

4.6 Putting Everything Together

Now, we are able to combine multiple and orthogonal AC methods. According to
the results so far, we include loop truncation, loop tiling, relaxed synchro-
nization and precision scaling. All of them have an approximation parameter
that can be tuned. We set these approximation parameter values according to
a given relative error, which represents our constraint. To find a good configu-
ration of parameter values that satisfies these constraints, we exploit a known
greedy algorithm [16] based on steepest ascent hill climbing. For the first test, we
exclude precision scaling, since we cannot make performance measurements for
this method. Then, the task of the greedy algorithm is to find the parameter val-
ues which offers the best performance under the given error constraint. We adapt

308 M. Bromberger et al.

Fig. 6. Considering multiple orthogonal approximation methods for the Jacobi method.
Parameter set (TI|RS|TR|PS) TI: loop tiling, RS: relaxed synchronization, TR: loop
truncation, PS: precision scaling

approximation parameters in a way that higher values present a more aggres-
sive approximation level. The results are shown for different error constraints
in Fig. 6a. As we can see, the configuration algorithm tunes the parameter of all
three orthogonal methods. Hence, the combination of methods is beneficial to
reach good performance points for different error constraints. Allowing a relative
error of 1%, we get a performance improvement of roughly 300% compared to
the 32 threaded basis version. Moreover, a 10% allowed error leads to almost a
speed-up of 6.

For the found configuration points, we further consider the potential of preci-
sion scaling, see Fig. 6b. All configurations enable us to further introduce AC on
the data type level. This allows a hardware designer to approximate hardware
arithmetic units for the algorithm under test. Additionally, another possibility
is to include approximate DRAM according to Sect. 4.2 as fifth parameter.

4.7 Discussion

Taking a look on our results, we see that not only a single AC strategy can
be useful in terms of scientific computing, but also a combination of strategies,
especially in the context of preconditioning, where high accuracy is unnecessary
in most cases. Moreover, it is possible to estimate tolerable computing errors.
Hence, we are sure, that it is possible to reduce computation times for the inner
solver dramatically by reducing accuracy to a reasonable degree. Of course, we
are aware that accompanying quality loss of the preconditioning method can
result in lower convergence rates for the Krylow subspace method. But the results
of the combined AC strategies show that remarkable speed-ups can be gained
with careful accuracy reductions.

Do Iterative Solvers Benefit from Approximate Computing? 309

Based on our results we want to use a flexible Krylow subspace method, like
FGMRES, in combination with a set of AC strategies for the preconditioning
method adjusted with a tunable accuracy parameter. Although we have not mea-
sured the quality of the preconditioning method yet, we think that this setting
will lead to great speed-ups for the whole preconditioned solver. Additionally,
further AC strategies, like reformulating the ILU solver into an iterative method
and skipping iterations, which does not influence the speed of the Jacobi method
but the quality of the preconditioning method, can be added easily.

5 Conclusion and Future Directions

In this paper, we considered orthogonal approximate computing (AC) meth-
ods and how they influence the accuracy and performance trade-off of a scien-
tific computing algorithm. All methods were experimentally investigated for the
Jacobi method performing on realistic data. Hence, we applied the first exten-
sive, holistic, and schematic evaluation of AC on a scientific algorithm. While
single methods already can be seen as useful, a combination of them results
in a much higher gain. For instance, allowing 1% relative error we achieve an
acceleration of 3 compared to the parallel version of Jacobi (32 threads).

For future work it is mandatory to extend the test setting to the complete
Krylow subspace method to measure the effects of AC methods on the quality of
the preconditioning. With this enlarged setting, the usefulness of the presented
methods can be considered in a broader spectrum.

References

1. Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for precon-
ditioning. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS,
vol. 9233, pp. 650–661. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48096-0 50

2. Anzt, H., Dongarra, J., Quintana-Ort́ı, E.S.: Adaptive precision solvers for sparse
linear systems. In: Proceedings of the 3rd International Workshop on Energy Effi-
cient Supercomputing, p. 2. ACM (2015)

3. Baek, W., Chilimbi, T.: Green: a framework for supporting energy-conscious pro-
gramming using controlled approximation. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2010)

4. Bagnara, R.: A unified proof for the convergence of Jacobi and Gauss Seidel meth-
ods. SIAM Rev. 37, 93–97 (1995)

5. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput.
Phys. 182, 418–477 (2002)

6. Bromberger, M., Heuveline, V., Karl, W.: Reducing energy consumption of data
transfers using runtime data type conversion. In: Hannig, F., Cardoso, J.M.P.,
Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J. (eds.) ARCS 2016. LNCS,
vol. 9637, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30695-7 18

7. Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2, 199–222
(1969)

https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1007/978-3-319-30695-7_18
https://doi.org/10.1007/978-3-319-30695-7_18

310 M. Bromberger et al.

8. Chippa, V., Chakradhar, S., Roy, K., Raghunathan, A.: Analysis and characteriza-
tion of inherent application resilience for approximate computing. In: Proceedings
of the 50th Annual Design Automation Conference, DAC 2013, pp. 113:1–113:9.
ACM, New York (2013)

9. Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-88706-5

10. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: saving DRAM
refresh-power through critical data partitioning. ACM SIGPLAN Not. 47(4), 213–
224 (2012)

11. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
(CSUR) 48, 62:1–62:33 (2016)

12. Raha, A., Venkataramani, S., Raghunathan, V., Raghunathan, A.: Energy-efficient
reduce-and-rank using input-adaptive approximations. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 25(2), 462–475 (2017)

13. Renganarayana, L., Srinivasan, V., Nair, R., Prener, D.: Programming with relaxed
synchronization. In: Proceedings of the 2012 ACM Workshop on Relaxing Synchro-
nization for Multicore and Manycore Scalability, pp. 41–50. ACM (2012)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS, Boston (1996)
15. Samadi, M., Jamshidi, D.A., Lee, J., Mahlke, S.: Paraprox: pattern-based approxi-

mation for data parallel applications. ACM SIGARCH Comput. Archit. News 42,
35–50 (2014)

16. Samadi, M., Lee, J., Jamshidi, D.A., Hormati, A., Mahlke, S.: SAGE: self-
tuning approximation for graphics engines. In: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 13–24. ACM
(2013)

17. Schaffner, M., Gurkaynak, F.K., Smolic, A., Kaeslin, H., Benini, L.: An approxi-
mate computing technique for reducing the complexity of a direct-solver for sparse
linear systems in real-time video processing. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2014)

18. Schöll, A., Braun, C., Wunderlich, H.J.: Applying efficient fault tolerance to enable
the preconditioned conjugate gradient solver on approximate computing hardware.
In: 2016 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 21–26. IEEE (2016)

19. Schöll, A., Braun, C., Wunderlich, H.J.: Energy-efficient and error-resilient iterative
solvers for approximate computing. In: Proceedings of the 23rd IEEE International
Symposium on On-Line Testing and Robust System Design (IOLTS 2017), pp.
237–239 (2017)

20. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. School of Computer Science, Carnegie Mellon University,
Pittsburgh, August 1994

21. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE 2011, pp. 124–134. ACM, New York (2011)

22. Zhang, Q., Tian, Y., Wang, T., Yuan, F., Xu, Q.: Approxeigen: an approximate
computing technique for large-scale eigen-decomposition. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp. 824–830.
IEEE Press (2015)

23. Zhang, Q., Yuan, F., Ye, R., Xu, Q.: Approxit: an approximate computing frame-
work for iterative methods. In: Proceedings of the 51st Annual Design Automation
Conference, pp. 1–6. ACM (2014)

https://doi.org/10.1007/978-3-540-88706-5

	Do Iterative Solvers Benefit from Approximate Computing? An Evaluation Study Considering Orthogonal Approximation Methods
	1 Introduction
	1.1 Current Status
	1.2 Methodology of the Evaluation
	1.3 Main Findings

	2 Mathematical Background and Data Generation
	3 Approximation Computing Methods
	3.1 Relaxed Synchronization
	3.2 Sampling
	3.3 On the Data Type Level
	3.4 Input Data Approximation

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Influence of Approximate Computing on the Data Type Level
	4.3 Analysis of Approximate Computing Loop Strategies
	4.4 Accuracy Degradation Caused by Relaxed Synchronization
	4.5 Input Approximation
	4.6 Putting Everything Together
	4.7 Discussion

	5 Conclusion and Future Directions
	References

