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Abstract. Algorithms with operations on large regular data structures
such as image processing can be highly accelerated when executed as
hardware tasks in an FPGA fabric. The Dynamic Partial Reconfigura-
tion (DPR) feature of new SRAM-based FPGA families allows a dynamic
swapping and replacement of hardware tasks during runtime. Particu-
larly embedded systems with processing chains that change over time
or that are too large to be implemented in an FPGA fabric in parallel,
benefit from DPR. In this paper we present a complete framework for
hardware acceleration using DPR in the microkernel based Genode OS.
This makes the DPR feature available not only for the high-performance
computing field, but also for safety-critical applications. The new frame-
work is evaluated for an exemplary imaging application running on a
Xilinx Zynq-7000 SoC.

1 Introduction

Dynamic Partial Reconfiguration (DPR) is a promising feature of new SRAM-
based FPGAs to increase the overall processing power of a system. It allows to
offload software tasks and process them as hardware tasks within the FPGA fab-
ric. Computation-intensive algorithms as needed e.g. for computer vision systems
yield high acceleration rates when executed in hardware [1]. Without DPR, all
hardware tasks needed at some point during runtime, have to be instantiated con-
currently in a static FPGA design. Due to limited resources available, only a few
tasks could be migrated to hardware. DPR now allows to time-share resources
of the FPGA by swapping hardware tasks in reconfigurable regions. Therefore,
it combines the performance gain of hardware acceleration with the flexibility of
software tasks. Furthermore, complex processing pipelines that would not fit in
one static FPGA design can now be implemented for sequential execution.

Robotic applications and embedded systems in general have strict require-
ments regarding the utilized operating system in matters of real-time, safety
and reliability. The Genode OS [2] targets safety-critical applications because it
enforces a strong isolation between software components. For that reason, it has
been decided to use Genode OS in various research projects. Specifically, the
Controlling Concurrent Change (CCC) project [3] investigates mechanisms for
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an automated integration of embedded systems. In this context, the stringent
fault isolation and separation of concerns provided by Genode OS is used to
border the effects of each sub-component on the overall system.

The DPR feature has been investigated in CCC for adapting a given platform
to different operation scenarios, e.g. a car driving on a highway/in a city/parking.
Hardware accelerators suitable for the current scenario are loaded into the FPGA
fabric during runtime. This extends the utilization of DPR to mixed-critical
systems. So far, the utilization of DPR has been limited to the high-performance
computing field, and therefore safety- and reliability requirements have not been
covered yet. Safety-critical applications require the reconfiguration process to be
controlled from within an OS with appropriate real-time and reliability features,
for which Genode OS might be suitable in future. In this paper we present,
how the DPR feature can be made available for Genode OS running on a hybrid
CPU-FPGA SoC device. A framework has been developed to dispatch tasks from
software and execute them hardware-accelerated in the FPGA fabric of the SoC.
Real-time aspects of DPR are discussed.

The rest of this paper is organized as follows: the principles of Genode OS
are introduced in Sect. 2. Section 3 gives an overview of DPR support in other
operating systems. Subsequently the hardware- (Sect. 4) and software architec-
ture (Sect. 5) for using DPR in Genode OS are described. In Sect. 6, the newly
developed framework is evaluated for an exemplary imaging application running
on a Xilinx Zynq-7000 SoC.

2 Genode OS

The Genode OS framework [2] is a novel operating system approach, which is
able to master complexity by applying a strict organizational structure to all soft-
ware components including device drivers, system services and applications. Its
continuing development takes place as a community-driven open source project.

2.1 Microkernel Based System Policy

A kernel of a modern operating system, such as the Linux kernel, manages
resources, accesses the hardware, controls user processes, and more. Hence, it
requires the privilege to control the whole machine. The high functional require-
ments and the broad range of existing hardware causes such a kernel to grow
huge, by which it is impossible to fully avoid safety and security leaks that could
corrupt the proper operation of the whole system. An isolation of concurrently
running user applications can be provided by executing them within a dedi-
cated address space and allowing interaction with other user applications only
via mechanisms provided by the kernel. Microkernel-based systems use this tech-
nique also for device drivers, file systems, and other typical kernel-level services.
Therefore, the effect of a bug-prone component is locally restricted. Further-
more, a microkernel enforces CPU time scheduling and can grant guaranteed
processing time to user processes. No unprivileged system component is able to
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violate such guarantees. Therefore, a microkernel can safely execute sensitive
applications, unprivileged system services, and large untrusted applications side
by side on one machine.

To make the approach of fault isolation and separation of concerns effec-
tive, all those unprivileged components must be appropriately organized. A pol-
icy must be provided by some instance because typical microkernels implement
only mechanisms. This would be possible with a central policy management
component controlled by a specially-privileged administrator. The complexity
and manageability of a centralized policy, however, depends on the scale of the
system. To overcome this problem, Genode OS extends the microkernel idea by
decomposing also the system policy and imposes a strict organizational struc-
ture onto each part of the system. Processes are organized as a tree and child
processes are created out of the resources of their respective parent. When cre-
ating a child process, a parent fully defines the virtual environment in which the
new process gets executed. The child, in turn, can further create children from
its assigned resources, thereby creating an arbitrary structured subsystem. Each
parent maintains full control over the subsystems it created and defines their
inter-relationship, for example by selectively permitting communication between
them or by assigning physical resources. The parent-child interface is the same
at each hierarchy level, which makes this organizational approach recursively
applicable.

2.2 Component Communication

The basic communication between components takes place via services using
Remote Procedure Call (RPC). In order to provide a service, a component needs
to create an RPC object implementing the so-called root interface, which offers
functions for creating and destroying sessions of the service. Then, the compo-
nent has to inform its parent about it by an announce function, which takes the
service name and the capability for the service’s root interface as arguments.
The counterpart of the service announcement is the creation of a session by a
client which issues a session request to its parent. Along with the session call,
the client specifies the type of the service and a number of session arguments.
As a result of the session request, the client expects to obtain a capability to an
RPC object that implements the session interface of the requested service.

3 Related Work

The approach of developing efficient embedded CPU-FPGA based systems with
DPR has already been studied in some researches. [4] discusses the reconfigura-
tion management on the Xilinx Zynq-7000 platform at application level without
the use of any operating system. Another approach used a custom ARM-specified
microkernel on a partial reconfigurable FPGA platform to dynamically manage
reconfigurable HW accelerators and SW tasks by developing a specific scheduling
mechanism [5]. Based on this, the ability to dispatch hardware tasks to virtual
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machines hosted by the microkernel was integrated [6]. In [7], a PowerPC was
used to exchange reconfigurable engines representing different image processing
algorithms for driving assistant systems. There are also approaches to design new
interface structures to either increase the performance [8] or reduce the resource
requirements [9]. Another work describes a dynamic and partial reconfigurable
system using a Zynq-7000 SoC with Linux and demonstrates, that acceptable
delays for the configuration process can be achieved in that constellation [10]. In
spite of all investigation efforts on DPR for CPU-FPGA based systems, there is
no solution for doing this in Genode OS, yet. By implementing DPR for Genode
OS, hardware acceleration can be applied for safety-critical applications which
require strong isolation of software components.

4 Reconfigurable Hardware

Hardware tasks are hosted and run within separate reconfigurable regions of the
FPGA fabric. These regions need to be embedded in a static logic that provides
the infrastructure for communication etc. While the static logic is configured at
startup and remains unchanged thereafter, the configuration of hardware tasks
can be written into reconfigurable regions through the Processor Configuration
Access Port (PCAP) during runtime. Other alternative configuration ports (such
as ICAP, SelectMAP, Serial, and JTAG) are available in the Zynq-7000 SoC, but
have drawbacks regarding bandwidth or accessibility. With a bandwidth of up to
3.2Gb/s, the PCAP allows fast reconfiguration times.

The resulting architecture for a hardware accelerated CPU-FPGA SoC
design is depicted in Fig. 1. The architecture targets Xilinx Zynq-7000 or Zynq-
UltraScale+ devices with a Processing System (PS) and Programmable Logic
(PL). Hardware accelerated algorithms are implemented for the FPGA fabric
and can be placed in one or more available reconfigurable regions. Configuration-
and status data is communicated over the AXI Lite Interconnect and attached
to a general purpose AXI port (AXI GP).

Each reconfigurable region connects to an AXI Stream Interconnect network
which allows flexible streaming of data to any endpoint. This allows to stream
the output of one reconfigurable region directly to the input of another region,
and datapaths with multiple hardware tasks to be executed sequentially can
be set up. DMA (or Video DMA for image processing applications) IP-cores
translate between the streaming- and memory mapped communication. For a
fast transfer of processing data, a high performance AXI port (AXI HP) is used
between the PS and PL.

As different hardware tasks generally have very diverse demands of FPGA
resources, the definition of appropriate reconfigurable region sizes is a sophisti-
cated problem. In order to distribute the FPGA resources between all reconfig-
urable regions for a given set of hardware tasks efficiently, we use an algorithm
introduced by us in [11].
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Fig. 1. Hardware accelerated CPU-FPGA SoC design.

Fig. 2. Loading bitstreams from a file system to DDR memory.

5 Reconfiguration Software

5.1 Loading Partial Bitstreams

For an autonomous operation of an embedded system, all partial bitstreams need
to be stored in non-volatile memory. Similar to [12], all bitstreams are copied
from non-volatile memory to DDR memory during the boot sequence. Hence,
partial bitstreams can be accessed rapidly and reconfiguration times are kept
short. This task is executed by the bitstream loader component in Genode OS.
For each partial bitstream, it requests a read-only dataspace (ROM session)
which is served by a file system containing the corresponding .bit files. Once the
ROM session is created, Genode OS maps the bitstream to the private memory of
the bitstream loader component. The bitstream loader also keeps track of meta-
data for each bitstream, such as its physical address, size, region, and contained
hardware task. Figure 2 depicts the principle process of loading bitstreams to
DDR memory.

5.2 Accessing the Configuration Port

Once a reconfiguration process is triggered, the partial bitstream needs to be
written into the FPGA fabric. This is handled by the device configuration inter-
face (DevC, [13]), which moves the bitstream data from DDR memory to the
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Fig. 3. Reconfiguration times and throughput for different bitstream sizes.

PCAP using DMA. A DevC driver has been developed for Genode OS. It pro-
vides address and size of the bitstream to the DevC component, enables the
PCAP port, and handles the PCAP interrupt which indicates the completion of
a bitstream transfer.

Important performance metrics of the DevC driver are reconfiguration times,
which are measured for various bitstream sizes ranging from 100 kByte to
2MByte. As depicted in Fig. 3, the reconfiguration time scales accurately with
the bitstream size. The slope of reconfiguration time to bitstream size is lim-
ited by DDR memory and the PCAP bandwidth. The initialization time of the
DevC component for each reconfiguration process is independent of bitstream
size and causes the throughput to drop for small bitstreams copied to the PL.
The throughput saturates at about 130MByte/s for large bitstreams, which is
below the PCAP bandwidth. Still, when compared to a Linux-based reference
design provided by Xilinx [14] using the same FPGA device and identical PCAP
clock, the reconfiguration speed achieved with the new Genode OS DevC driver
is about twice as fast for a bitstream of a medium size of 734 kByte.

5.3 Hardware Scheduler

The hardware scheduler knows which hardware task can be placed in which
reconfigurable region. Once it receives an incoming request for a hardware task,
it checks if the task is already configured in any reconfigurable region and sus-
pended. If true, it returns access to the corresponding region to the requesting
software component. If the task is not configured in any region yet, it tries to
place it in a free region. For Genode OS, such a hardware scheduler has been
developed. Up to now, it serves incoming requests in FCFS order. In future it is
planned to implement an intelligent scheduling strategy and algorithm. Depend-
ing on well predictable reconfiguration times, execution times, and deadlines,
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Fig. 4. SW component instantiation graphs for a processing chain fully implemented
in SW and HW accelerated.

the hardware scheduler can select a requested hardware task which fits best for
the next reconfiguration.

The reconfiguration time of a task can be accurately predicted as it is a func-
tion of bitstream size. No other dependencies such as interfering memory access
have been observed. Hence, the reconfiguration time can be upper bounded when
considered in a real-time application. However, a task might get blocked once its
region is occupied. In order to meet given real-time requirements, the scheduler
is responsible for guaranteeing an upper bound for blocking times. The currently
implemented FCFS scheduler does not satisfy this requirement and further work
needs to be done on this topic.

5.4 Hardware Acceleration

The top part of Fig. 4 depicts the software component instantiation graph of a
processing chain with three Processing Elements (PEs) implemented in software.
Such a processing chain could be part of an image processing application. Each
PE may require 1..n data inputs and generate 1..m data outputs. Multiple tasks
can be connected in parallel or serially. In Genode OS, a software component
can access its source data by reading from one ore more read-only dataspace(s)
or ROM session(s). Respectively, the software component writes the already
processed destination data to one or more RAM dataspace(s), which can be
accessed by the following component as a ROM session again.

Now some computation intensive PEs are identified and should be accelerated
in hardware. In the example given, PE 1 and PE 3 can be accelerated and the
resulting software component instantiation graph is given in the bottom part of
Fig. 4. Hardware tasks receive their source data from a network on chip and also
transmit their results over the same communication medium. Therefore each
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input dataspace needs to be converted into a stream before passing it to the
hardware task. This is handled by the rom dma component. It initializes a DMA
engine that moves the input data from DDR memory to a network on chip, e.g.
the AXI stream. The dma rom component works analogously and copies stream
data to a dataspace in DDR memory.

The rom dma and dma rom software components have been developed
together with Genode OS drivers for the Xilinx AXI DMA IP-core [15]. Also,
its variants rom vdma and vdma rom using the Xilinx AXI Video DMA IP-Core
[16] are available for imaging applications.

The execution of PEs is triggered every time the data of an input ROM
session gets updated. The software PE receives a notification of this event and
starts processing the input data. Once it is done, it signals a notification to the
proceeding PE.

For hardware accelerated designs, this forward signaling needs to be
extended, because hardware modules need to be reconfigured and initialized
before starting execution. The following signaling policy, as depicted in Fig. 5, is
implemented:

Fig. 5. Signaling policy.

1. The first component in line (here rom dma) receives a notification that its
input ROM has been updated. It forwards the notification to the next com-
ponent in line.

2. All intermediate components in line (here hw accelerator) forward the
notification.

3. The last component in line (here dma rom) initializes itself and signals acti-
vate to the preceding component. By doing this, it informs the preceding
component that it is ready to stream data.

4. All intermediate components in line initialize themselves, which includes
reconfiguration of hardware modules, and forward the activate notification.
They are now ready to process data.

5. The rom dma component initializes itself and starts streaming data by exe-
cuting a DMA transaction.

6. On a hardware interrupt indicating the end of data processing, all hardware
accelerators release their reconfigurable region.

7. On the same hardware interrupt, the next component is notified that newly
processed data is available.
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6 Exemplary Use Case and Evaluation

In order to verify the proper functionality of the new hardware acceleration
framework for Genode OS and to produce realistic benchmark results, we set
up the following exemplary use case. A stereo-vision system offers two operation
modes in order to satisfy the requirements of different applications such as object
recognition. Firstly, a high frame rate mode can be selected that is capable of
providing images with a frame rate of up to 60 fps. Secondly, the high-quality
mode runs additionally a rectification algorithm on each image. However, in this
mode only a frame rate of 30 fps can be achieved. In both operation modes, a
debayering algorithm converts the camera sensor data to RGB format. Both the
debayering- and the rectification algorithm have been implemented as IP-cores
for hardware acceleration.

Two reconfigurable regions are available for hosting hardware acceleration
modules. The high frame rate requires a debayering IP-core to be placed in each
region, so that sensor data from the left- and right camera eye may be processed
in parallel. This operation mode emphasizes the advantage of hardware acceler-
ation, as two debayering tasks can be executed in parallel, while an execution
in software would force the tasks to be scheduled one after the other. The high-
quality mode configures one debayering and one rectification IP-core; sensor data
from the left- and right camera eye are processed sequentially in each hardware
component. Figure 6 depicts the hardware task graph for both operation modes.

Fig. 6. Hardware task graph for high-quality and high frame rate operation modes.

For comparison, both algorithms are executed in software using the OpenCV
implementation and run on one ARM Cortex-A9 core of the Zynq-7000 clocked
with 667MHz. Execution times for the tasks accelerated in hardware are mea-
sured for a 100MHz clocking of the hardware modules in the FPGA fabric.
Table 1 shows the results for the software- and hardware implementation of
both algorithms executed stand-alone and serially one after the other. As the
debayering- and rectification algorithms have no input-dependent branches, the
measured execution times are very deterministic with a scatter of less than
0.2ms. All tests process images with a resolution of 1280 × 960 pixels.

The hardware acceleration of the debayering algorithm yields a speedup fac-
tor of about 2; the more complex rectification algorithm of about 14. When
executed one after the other, the performance gain is increased even more.
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Table 1. Execution times

Task SW impl. HW impl. Bitstream size Reconf. time

Debayer 28 ms 14 ms 521 kByte 6 ms

Rectify 212 ms 15 ms 1992 kByte 16 ms

Debayer + rectify 241 ms 15 ms 2513 kByte 22 ms

In software, both algorithms are executed sequentially, hence the execution times
of debayering and rectification add up. In hardware, a stream of pixels is pro-
cessed in a pipelined manner and therefore the overall execution time does not
increase compared to a stand-alone execution of the debayering- or rectification
algorithm.

The cost for switching the operation mode correlates to the reconfiguration
time of one debayering or rectification module. As the debayering module has a
quite small footprint in the FPGA fabric and therefore fits into a reconfigurable
region with smaller bitstream size, its reconfiguration time is shorter. In this
presented use case, exchanging a hardware module requires a reconfiguration
time on a scale of its hardware execution time. To be still efficient, the number
of reconfigurations needs to be minimized by a smart scheduling algorithm. The
given use case drops one image when switching between one operation mode and
the other, however only a few occurrences of these operation mode change are
expected.

7 Conclusion

In this paper, we presented the implementation of hardware acceleration using
DPR in Genode OS. For an exemplary imaging algorithm, the performance of
the new framework has been evaluated. It has been showed, that the hardware
acceleration yields high speedup factors while reconfiguration times are kept
low. The new availability of DPR for Genode OS allows this feature to be used
in safety-critical applications with strict requirements for real-time and isola-
tion. Computation intensive algorithms implemented in Genode OS, such as in
the Controlling Concurrent Change project, can now easily be accelerated in
hardware.

So far, the functionality of the DPR feature in Genode OS has been verified
using simple application examples. In future, we will add an intelligent hard-
ware task scheduling for arbitrary complex applications and further performance
increase.
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