l‘)

Check for
updates

Lipsi: Probably the Smallest Processor
in the World

Martin Schoeberl(®)

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark
masca@dtu.dk

Abstract. While research on high-performance processors is important,
it is also interesting to explore processor architectures at the other end
of the spectrum: tiny processor cores for auxiliary functions. While it is
common to implement small circuits for such functions, such as a serial
port, in dedicated hardware, usually as a state machine or a combina-
tion of communicating state machines, these functionalities may also be
implemented by a small processor. In this paper, we present Lipsi, a
very tiny processor to make it possible to implement classic finite state
machine logic in software at a minimal cost.

1 Introduction

This paper presents Lipsi, a tiny microcontroller optimized for utility functions
in an FPGA. Lipsi can be used to implement a peripheral device or a state
machine as part of a larger system-on-chip. The design goal of Lipsi is a very
small hardware design built around a single block RAM for instructions and
data.

Using a single block RAM for instructions and data means that this memory
is time shared between instruction fetch and data read. Therefore, Lipsi is a
sequential and not a pipelined architecture. Most instructions execute in two
clock cycles.

Lipsi is such a simple processor that it is possible to completely describe
its datapath, instruction set and instruction encoding in a paper. Besides being
a useful processor for auxiliary functions, we also envision Lipsi being used in
teaching basic computer architecture. For example, it can be used to learn pro-
gramming at the machine level. Or it should be possible for students to develop
a simulator for Lipsi in a single lab session.

Lipsi is part of a family of processors, which all have been designed during an
inspiring vacation on Greek islands, which gave the processors their names. The
name for each processor was chosen from that island where the first sketches
were drawn. The three sisters are: Patmos, Leros, and Lipsi. Patmos is a dual
issue, 32-bit RISC pipeline optimized for real-time systems [1] and used in the
multicore T-CREST platform [2]. Leros is a 16-bit processor for small embedded
systems [3] and can execute a small Java virtual machine [4]. Lipsi is the smallest
sister and an 8-bit accumulator architecture using a single on-chip block RAM,
which is the topic of this paper.
© Springer International Publishing AG, part of Springer Nature 2018

M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 18-30, 2018.
https://doi.org/10.1007/978-3-319-77610-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_2&domain=pdf
http://orcid.org/0000-0003-2366-382X

Lipsi: Probably the Smallest Processor in the World 19

This paper is organized in 5 sections: The following section presents related
work. Section 3 describes the design of Lipsi. Section4 evaluates and discusses
the design. Section 5 concludes.

2 Related Work

Altera provides a softcore, the Nios IT [5], for Altera FPGAs. The Nios RISC
architecture implements a 32-bit instruction set like the MIPS instruction set
architecture. Although Nios II represents a different design point from Lipsi, it
is interesting to note that Nios II can be customized to meet the application
requirements. Three different models are available [5]: the Fast core is optimized
for high performance; the Standard core is intended to balance performance and
size; and the Economy core is optimized for smallest size. The smallest core
can be implemented in less than 700 logic elements (LEs). It is a sequential
implementation and each instruction takes at least 6 clock cycles. Lipsi is a
smaller (8-bit), accumulator-based architecture, and most instructions execute
in two clock cycles.

PicoBlaze is an 8-bit microcontroller for Xilinx FPGAs [6]. The processor is
highly optimized for low resource usage. This optimization results in restrictions
such as a maximum program size of 1024 instructions and 64 bytes data memory.
The benefit of this puristic design is a processor that can be implemented with
one on-chip memory and 96 logic slices in a Spartan-3 FPGA. PicoBlaze provides
16 8-bit registers and executes one instruction in two clock cycles. The interface
to I/O devices is minimalistic in the positive sense: it is simple and very efficient
to connect simple I/O devices to the processor.

The Lipsi approach is, like the concept of PicoBlaze, to provide a small
processor for utility functions. Lipsi is optimized to balance the resource usage
between on-chip memory and logic cells. Therefore, the LE count of Lipsi is
slightly lower than the one of PicoBlaze. PicoBlaze is coded at a very low level
of abstraction by using Xilinx primitive components such as LUT4 or MUXCY.
Therefore, the design is optimized for Xilinx FPGAs and practically not portable.
Lipsi is written in vendor agnostic Chisel and compiles unmodified for Altera
and Xilinx devices.

The SpartanMC is a small microcontroller optimized for FPGA technol-
ogy [7]. One interesting feature is that the instruction width and the data width
are 18 bits. The argument is that current FPGAs contain on-chip memory blocks
that are 18-bit wide (originally intended to contain parity protection). The pro-
cessor is a 16 register RISC architecture with two operand instructions and is
implemented in a three-stage pipeline. To avoid data forwarding within the reg-
ister file, the instruction fetch and the write-back stage are split into two phases,
like the original MIPS pipeline [8]. This decision slightly complicates the design
as two phase-shifted clocks are needed. We assume that this phase splitting also
limits the maximum clock frequency. As on-chip memories for register files are
large, this resource is utilized by a sliding register window to speedup function
calls. SpartanMC performs comparable to the 32-bit RISC processors LEON-
IT [9] and MicroBlaze [10] on the Dhrystone benchmark.

20 M. Schoeberl

Compared to the SpartanMC, Lipsi is further optimized for FPGAs using
fewer resources and avoiding unusual clocking of pipeline stages. Lipsi simpli-
fies the access to registers in on-chip memory by implementing an accumulator
architecture instead of a register architecture. Although an accumulator architec-
ture is in theory less efficient, the resulting maximum achievable clock frequency
offsets the higher instruction count.

The Supersmall processor [11] is optimized for low resource consumption
(half of the NIOS economy version). Resources are reduced by serializing ALU
operations to single bit operations. The LE consumption is comparable to Lipsi,
but the on-chip memory consumption is not reported.

The Ultrasmall MIPS project [12] is based on the Supersmall architecture.
The main difference is the change of the ALU serialization to perform two bit
operations each cycle instead of single bits. Therefore, a 32-bit operation needs 16
clock cycles to complete. It is reported that Ultrasmall consumes 137 slices in a
Xilinx Spartan-3E, which is 84% of the resource consumption of Supersmall. Due
to the serialization of the ALU operations, the average clocks per instructions
is in the range of 22 for Ultrasmall. According to the authors, “Ultrasmall is
the smallest 32-bit ISA soft processor in the world”. We appreciate this effort
of building the smallest 32-bit processor and are in line with that argument to
build the smallest (8-bit) processor of the world.

The @ processor by Wolfgang Puffitsch! is an accumulator machine aiming
at low resource usage. The bit width of the accumulator (and register width)
is freely configurable. Furthermore, hardware is only generated for instructions
that are used in the program. An instance of an 8-bit @ processor executing a
blinking function consumes 176 LEs and 32 memory bits. The @ processor is
designed with a similar mind set to Lipsi.

A very early processor targeting FPGAs is the DOP processor [13]. DOP
is a 16-bit stack oriented processor with additional registers, such as address
registers and a work register. As this work register is directly connected to the
ALU, DOP is similar to Lipsi an accumulator oriented architecture. No resource
consumption is given for the DOP design.

Leros is, like Lipsi, an accumulator machine [3]. The machine word in Leros
is 16-bit and Leros uses two on-chip memories: one for instructions and one for
data. Therefore, Leros is organized as a two-stage pipeline and can execute one
instruction every clock cycle. The Leros 16-bit architecture is powerful enough
to run a small Java virtual machine [4].

3 The Lipsi Design

Lipsi is an 8-bit processor organized as an accumulator machine and has been
designed and optimized around FPGA specific block RAMs. The focus of the
design is to use just a single block RAM.

Different FPGA families contain differently organized and differently sized
on-chip memories, which are also called block RAMs. The current minimum

! https://github.com /jeuneS2/oe.

https://github.com/jeuneS2/oe

Lipsi: Probably the Smallest Processor in the World 21
| rd rd

" laddr data

> AN

Memory

> wr

0 —» addr|
’_> VAN LA\ |
- > wr

data
A

Fig. 1. The datapath of Lipsi.

block RAM? is 4096 bits (or 512 bytes) large and has an independent read and
write port. Lipsi is an 8-bit processor in its purest form. Therefore, we can use
256 bytes from that memory as instructions and 256 bytes for register and data.
We use the lower half of the memory for the program, as the address register
powers up at zero to fetch the first instruction.

Using a single block RAM for instructions and data means that this memory
is time shared between instruction fetch and data read. Therefore, Lipsi is a
sequential and not a pipelined architecture.

Most instructions execute in two clock cycles: one for instruction fetch and
one for data access and ALU operation. As on-chip memories in FPGAs usually
have independent read and write ports, a store instruction can execute in a single
cycle.

Most instructions are single byte. Only immediate and branch instructions
contain a second byte for the immediate value or the branch target.

3.1 The Datapath

Figure 1 shows the datapath of Lipsi. The processor consists of a program counter
(PC), an on-chip memory, an arithmetic-logic unit (ALU), and an accumulator
register (A). Besides those basic components, one adder and three multiplexers
are needed. The decode logic, which basically drives the multiplexers and the
ALU function is not shown in the figure.

The memory is divided into three areas: (1) program area, (2) a register file,
and (3) data memory. A single on-chip memory in most FPGAs is 512 bytes.

2 This number is for relative old FPGAs, such as Xilinx Spartan-3 and Altera Cyclone
II. Actual FPGAs from Xilinx have 16 Kbit and Altera have 8 Kbit memory blocks.

22 M. Schoeberl

Table 1. Lipsi instruction set with encoding

Encoding Instruction Meaning Operation

Offf rrrr frx ALU register A=A fm]
1000 rrrr st rx Store A into register ~m[r] = A

1001 rrrr brl rx Branch and link mfr] = PC,PC = A
1010 rrrr ldind (rx) Load indirect A = m[mr]]
1011 rrrr stind (rx) Store indirect m[mfr]] = A
1100 -fff nnnn nnnn fin ALU immediate A=Afn

1101 --00 aaaa aaaa br Branch PC=a

1101 --10 aaaa aaaa brz Branch if A is zero PC=a

1101 --11 aaaa aaaa brnz Branch if A is not zero PC = a

1110 —-£f sh ALU shift A = shift(A)
1111 aaaa io Input and output I0=A A=10
1111 1111 exit Exit for the tester PC = PC

This memory is split into two 8-bit addressable areas: one for instructions and
one for data. The data area itself is split into 16 bytes treated specially as a
register file, while the rest is for general data storage.

We can perform a back of an envelope estimation of the resource usage, the
number of logic elements (LE). For each LE we assume a 4-bit lookup table for
combinational logic and one register. As the design will be dominated by the logic
used, we estimate the resource consumption based on combinational logic. The
ALU supports addition and subtraction. With careful coding, it should be pos-
sible to implement both functions together in 8 LEs. Four logic functions (and,
or, xor, and load) can be implemented in a single LE per bit. The shift opera-
tions should consume one LE per bit. The selection between adder/subtractor,
the logic function, and the shift needs a 3:1 multiplexer with two LEs per bit.
Therefore, the ALU should consume about 32 LEs. The adder will consume 8
LEs, the two 2:1 multiplexers each 8 LEs and the 3:1 multiplexer 16 LEs. This
sums up to 64 LEs. Branch condition on zero or nonzero of A consumes 3 LEs
Instruction decoding is performed on 4 bits, which fit into one LE. Therefore, 4
LEs are needed for the multiplexer driving and another LE for the PC register
enable. The multiplexer and add/sub selector in the ALU decode from 3 function
bits and need another 3 LEs. Therefore, Lipsi should consume around 84 LEs.

3.2 The Instruction Set

The instruction set of Lipsi includes ALU instructions with register and immedi-
ate operands, accumulator store, register indirect load and store, unconditional
and conditional branch, branch and link for function call, and shift operations.
Instruction length is one or two bytes.

Table 1 shows all instructions of Lipsi and their encoding. A represents the
accumulator, f an ALU function, PC the program counter, m[] the memory,

Lipsi: Probably the Smallest Processor in the World 23

Table 2. ALU operation and encoding

Encoding Name Operation

000 add A=A+op
001 sub A=A-op
010 adc A=A+op+c
011 sbb A=A-op—c
100 and A=AAop
101 or A=AVop
110 xor A=A op
111 1d A=op

r a register number in the range of 0 to 15, n an immediate constant, a an 8-bit
address, and I0 an input/output device. As Lipsi is an accumulator machine,
all operations (except unconditional branch) involve the accumulator register
A. Furthermore, we use the notion of additional registers, which are the first 16
bytes in the data memory. Lipsi implements ALU operations with those registers
and with immediate values. The accumulator A can be stored in any one of the
registers. Memory load and store operations are implemented as register indirect.
Those operations need three memory accesses: fetch the instruction, read the
register content for the address, and finally load from memory into A or a store
A in the memory. Register indirect load executes therefore in 3 clock cycles and
an indirect store in 2 clock cycles.

Table 2 lists all ALU operations, including addition, subtraction, and logic
operations. For an 8-bit architecture it is also useful to support addition with
carry and subtraction with borrow for arithmetic on larger numbers. With careful
coding these additional operations are almost for free (by adding one lower bit
to the adder, setting one input to 1 and using the carry flag as second input).
Furthermore, current FPGAs have an dedicated Xor gate in front of the LUT,
so that an adder can also be used as subtractor (when using the additional input
bit as well.).

Furthermore, three logic operations and a bypass operation for a load instruc-
tion are available. Again, we could be very minimalistic to support only a single
inverting logic function, such as nand. However, implementation of these base
operations is very cheap in an FPGA.

3.3 Implementation and Assembly in Hardware

For the implementation of Lipsi we use the relatively new hardware construction
language Chisel [14]. In Chisel, the hardware is described in two classes: one for
the processor and one for the memory. Describing the memory component in its
own class allows future optimization to use an initialized memory (described in
VHDL), which is currently not possible with Chisel.

24 M. Schoeberl

val tokens = line.trim.split(" ")
val Pattern = "(.*:)".r
val instr = tokens(0®) match {
case "#" => // comment
case Pattern(l) => if (!pass2) symbols += (l.substring(®, l.length - 1) -> pc)
case "add" => 0x00 + regNumber (tokens(1))
case "sub" => 0x10 + regNumber(tokens(1))
// and similar pattern
case "addi" => (0xc0, toInt(tokens(1l)))
case "subi" => (0xcl, toInt(tokens(1l)))
// and similar pattern
case "st" => 0x80 + regNumber(tokens(1l))
case "ldind" => 0xa® + regIndirect(tokens(1))
case "stind" => 0xb® + regIndirect(tokens(1l))
case "br" => (0xd®, if (pass2) symbols(tokens(1l)) else 0)
case "brz" => (0xd2, if (pass2) symbols(tokens(1)) else 0)
case "brnz" => (0xd3, if (pass2) symbols(tokens(1l)) else 0)
case "io" => 0xf® + toInt(tokens(1l))
case "exit" => (Oxff)

case "" => // empty line
case t: String => throw new Exception("Assembler error: unknown instruction')
case _ => throw new Exception("Assembler error")

Fig. 2. The central statement of the Lipsi assembler in Scala

The hardware abstraction level of Chisel is not so different from VHDL or
Verilog. Hardware is described at the register transfer level. However, the power
of Chisel lies in that Chisel is a language embedded in Scala [15], a modern
general-purpose programming language. Scala itself runs on top of the JVM and
can use libraries written in Java. Therefore, all these libraries and a modern
object oriented and functional language are available at hardware construction
time.

One of the first tools a processor developer needs is an assembler. A common
approach is to write an assembler in some general-purpose language, e.g., Java,
and spit out a VHDL table for the code that shall go into the ROM. This
approach is also used for generating any hardware table which is needed, such
as for function lookup or binary to binary-coded-decimal translation. As we can
read in data with Scala and then generate a hardware table from Scala, the
assembler can now instead generate a binary file that we read in at hardware
construction time.

We have, however, gone a step further and have written the assembler itself
in Scala, invoking it at hardware generation time, reading in the assembler code,
and directly generating the hardware table to the ROM. With the power of
the Scala match statement the assembler itself is just a handful of lines of code.
Figure 2 shows this statement, which is the core of the assembler. The full assem-
bler is less than 100 lines of code and was written in a few hours.

Lipsi: Probably the Smallest Processor in the World 25

3.4 Simulation and Testing

Chisel supports testing of hardware with a so-called tester. Within the tester
one sets input signals with poke, advances the simulation by one clock cycle
with step, and reads signals with peek. This is similar to a testbench in VHDL,
except that the tester is written in Scala with the full power of a general purpose
language available.

Furthermore, the tester also generates waveforms that can be inspected with
ModelSim or gtkwave. We used this form of testing for the initial design.

As a next step, we wrote some test programs in assembly code with the
convention that the test shall result in a zero in the accumulator at the end of
the program. Furthermore, we defined an IO instruction to mark the end of the
program. The testing against the zero in the accumulator has been integrated
into the tester. With a handful of assembler programs we have, with minimal
effort, achieved a first regression test.

As a further step, we have implemented a software simulator for Lipsi in
Scala. The software simulator reuses the assembler that was written in the con-
text of the hardware generation. Having a software simulator of Chisel opens up
for testing of the hardware with co-simulation. As the hardware and the software
simulator for Lipsi are all written in the same language (Scala with the Chisel
library) it is possible to execute both together. Therefore, we also implemented
a tester that executes the Lipsi hardware and the software simulation in lock
step and compares the content of the program counter and the accumulator at
every clock cycle. As all data will pass through the accumulator any error in
the implementation (hardware of software simulator) will manifest itself at some
stage as a difference in the accumulator.

The assembly of code and co-simulation of hardware and a software simulator
in the very same language shows the power of Chisel as a hardware construction
language. This usage of Chisel/Scala is probably just scratching the surface of
new approaches to hardware design and testing.

With two implementations of Lipsi available, we can also explore random
testing. As a next step, we plan to generate random byte patterns, which result in
random instructions, and to compare the execution of the hardware and software
simulator.

3.5 Developing a Processor

Although it is unusual to write about the history of the development in a sci-
entific paper, we will provide here a brief history of the project. Actually, the
development of Lipsi follows a pattern that we have observed several times.
Therefore, the description of this development pattern for a moderately small
digital design project, such as a processor, may be a contribution on its own.
Initially the processor was designed on paper in a notebook. Not really start-
ing from scratch, as the author of this paper has designed several processors
before. The Leros processor had been designed just a few days before, on paper
as well. The pattern is that one often builds on previous designs. However, one

26 M. Schoeberl

should not restrict always oneself to reuse older designs, as this might restrict
the design to not try entirely different approaches for a new system. And the
author is convinced that a sketch of the datapath and some timing diagrams of
execution traces on a piece of paper is important before coding any hardware.

From the detailed datapath design on paper, almost identical to Fig. 1, and
an initial instruction set encoding we started with coding of the hardware in
Chisel. First we setup the infrastructure, describe a small part of the datapath
in hardware, and started with simple testers (the name of test benches in Chisel).

From there we bootstrapped the implementation of the first instructions,
the immediate instructions. We provide test code in very small programs as
hexadecimal values in a static array that is then translated into a hardware table
(ROM). First tests are manual checks with a Chisel tester (printf debugging)
and manual inspection of waveforms. In parallel we also setup a Quartus FPGA
project to observe the hardware cost development as we add features to the
processor.

As manual assembly becomes too tedious, we developed an assembler. First
just for the instructions that have already been assembled by hand for the test
of the assembler by comparing with the manually generated instructions.

From that point in time on, the instructions in Lipsi and the assembler were
developed in tandem. With more instructions being implemented, some automa-
tion of the testing is desirable. Especially some regression testing to make sure
that newly added functionality does not break older functionality.

To perform some form of automated testing we need two functions: stop-
ping of the test and an indication of success or failure. To stop the simulation
(tester), we invented an exit instruction (which is just an IO instruction to a
special address). For an indication of test success, we defined as success that the
accumulator has to contain zero at the end of the test. All tests are written to
have a dependent data flow from all operations into the accumulator. The tester
checks at the end for zero and exits itself with an exit value different from zero
when a test fails. This will also exit the make based automation of the testing
code so we can observe the failure.

For further testing of Lipsi we wrote a software simulator of Lipsi, also in
Scala. That software simulator is designed to be cycle accurate, modeling the
timing of the Lipsi hardware. With that additional implementation we can per-
form co-simulation of the hardware description and the software simulator.

Now those tests are triggered manually with a make target. This project is
too small for automated regression test. However, for larger projects, such as the
Patmos project, we use nightly regression tests that follow a similar pattern.

Maybe this design flow with a relatively early automation of testing sounds
like a lot of work and distracts from the fun of hardware design. The opposite is
true. From the creation of the first file to contain Chisel code until the automation
of the tests and implementation of around 2/3 of the functionality of Lipsi, just
8 h have been spent on coding and testing. This very short development time was
because of early automation with an assembler and smart testing not despite of it.

Lipsi: Probably the Smallest Processor in the World 27

The message of this subsection is to start early with very low effort automation
and testing. Invest into the infrastructure of your project just what is needed at
the moment.

4 Evaluation and Discussion

For the evaluation, we have synthesized Lipsi for a Cyclon IV FPGA, as this is the
FPGA on the popular DE2-115 FPGA board. We used Quartus Prime Lite Edi-
tion 16.1 with the default settings and did not introduce any constraints related
to the maximum clock frequency. Cyclone IV is the last generation of Cyclone
FPGAs where a logic element (LE) contains a 4-bit lookup table (LUT).? There-
fore, we can compare the resource numbers with designs on older FPGAs (e.g.,
Xilinx Spartan 3).

4.1 Resource Consumption

Table 3 shows the resource consumption in LEs and on-chip memory blocks,
the maximum clock frequency, and the FPGA used for obtaining the results for
different small processors. We synthesized Lipsi with a test program that slowly
counts and puts the result on the LEDs. This configuration also contains one
input port and one output port. Indeed, we can see that Lipsi is the smallest
processor in this table. However, it is closely followed by Leros, which is a 16-bit,
pipelined processor. With respect to the maximum clock frequency, Lipsi is in
the same range as the other processors. We can see that the two pipeline stages
of Leros result in a higher clock frequency than Lipsi where the critical path is
in a memory read and an ALU operation.

The main reason why Lipsi is not even smaller is that with the current version
of Chisel we cannot express an initialized block RAM. Therefore, the program
is described in a table, which is then synthesized to logic. This logic for the
instruction memory consumes 66 out of the 162 LEs. With the current work-
around (using an on-chip memory and a logic table) we also need an additional

Table 3. Comparison of Lipsi with Leros, PicoBlaze, Ultrasmall, and SpartanMC

Processor Logic (LE) Memory (blocks) Fmax (MHz) FPGA

Lipsi 162 1 136 Cyclone IV
Leros 189 1 160 Cyclone IV
PicoBlaze 177 1 117 Spartan 3
Ultrasmall 235 3 65 Spartan 3E
SpartanMC 1271 3 50 Sparten 3

3 Newer generations is FPGAs use a 6-bit LUT, which can be split into two smaller
LUTs.

28 M. Schoeberl

multiplexer at the output of the memory component. Therefore, the processor
core is smaller than 100 LEs.

As future work, we plan to describe the block RAM, including the initial-
ization data, in VHDL or Verilog and instantiating it as a black box in Chisel.
However, this solution is not very elegant as we mix languages and need to
use different implementations of the memory for testing and synthesis. Another
approach would be to extend Chisel to generate Verilog for initialized memory.

4.2 The Smallest Processor?

Is Lipsi now the smallest possible processor? No — if we really want a mini-
mal implementation that can compute, we could drop several instructions. E.g.,
subtraction can be performed with xor and addition.

However, our target was a very small but useful processor. When we compare
Lipsi with other processors, we think we have achieved that goal. With around
100 LEs and one block RAM we can fit many Lipsi cores into a low-cost FPGA.

4.3 A Lipsi Manycore Processor

We have explored how many Lipsi cores we can fit into the low-cost EP4CE115
FPGA from the DE2-115 board. Each processor contains one input and one
output port. All processors are connected into a pipeline, which is the minimum
useful connection of those processors. The first processors’s input port is con-
nected to the keys on the FPGA board and the last processor’s output port is
connected to the LEDs. Each processor reads the input, adds one to it, and puts
the result to the output port.

The EP4CE115 contains 432 memory blocks. Therefore, we have configured
432 Lipsi processors in this computing pipeline. The resource consumption in
the FPGA 67,130 is LEs out of 114,480 LEs, which is a resource consumption
of 59%. This shows that this kind of design is memory bound and we can add
more functionality to the processor for a balanced use of the available resources.

This experiment is just meant as a proof of concept to build a manycore
processor in a low-cost FPGA. Future work will be to use the remaining resources
to add a simple network-in-chip to the 432 processor cores. This will enable
more flexible communication paths and enable exploring network-on-chip designs
within a high count of processing cores.

4.4 Lipsi in Teaching

The instruction set of Lipsi is so simple that it can be explained completely in
this paper. However, it is complete enough to write useful programs. Therefore,
we envision that Lipsi can serve as an example processor for a first semester
introduction course in computer systems. Besides writing small assembler pro-
grams and running them on a simulator for Lipsi, writing a full simulator for
Lipsi can serve as an exercise for a two-hour lab.

Lipsi: Probably the Smallest Processor in the World 29

4.5 Source Access

We strongly believe in open-source designs for research, as far as legal possible.
Especially when the research is funded by public funds, the full results (data
and source code, not only a paper) shall be available to the public. Open-source
enables independent researches to reproduce the published results. Furthermore,
it also simplifies to build future research on top of the published research.

Lipsi’s source is available at GitHub: https://github.com/schoeberl/lipsi.
The README.md describes which tools are need to be installed and how to build
Lipsi.

5 Conclusion

This paper presents Lipsi, a very tiny processor core. We believe that Lipsi is
one of the smallest processors available. The intention of a small processor is
to serve for auxiliary functions like an intelligent peripheral device, such as a
serial port with buffering. Lipsi and the supporting assembler are all written in
the same language, Chisel, which itself is based on Scala. This gives the power
that the whole compilation flow from assembling the program till testing and
hardware generation is driven by one description. Besides being a processor for
peripheral devices, Lipsi can also serve as a small, but non-trivial example for
the relatively new hardware construction language Chisel. Furthermore, as the
processor structure is so simple that it can be drawn on half a page, it can also
be used in an introductory course on computer architecture.

References

1. Schoeberl, M., Schleuniger, P., Puffitsch, W., Brandner, F., Probst, C.W., Karlsson,
S., Thorn, T.: Towards a time-predictable dual-issue microprocessor: the Patmos
approach. In: First Workshop on Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (PPES 2011), Grenoble, France, pp. 11-20,
March 2011

2. Schoeberl, M., Abbaspour, S., Akesson, B., Audsley, N., Capasso, R., Garside,
J., Goossens, K., Goossens, S., Hansen, S., Heckmann, R., Hepp, S., Huber, B.,
Jordan, A., Kasapaki, E., Knoop, J., Li, Y., Prokesch, D., Puffitsch, W., Puschner,
P., Rocha, A., Silva, C., Sparsg, J., Tocchi, A.: T-CREST: time-predictable multi-
core architecture for embedded systems. J. Syst. Architect. 61(9), 449-471 (2015)

3. Schoeberl, M.: Leros: a tiny microcontroller for FPGAs. In: Proceedings of the 21st
International Conference on Field Programmable Logic and Applications (FPL
2011), Chania, Crete, Greece, pp. 10-14. IEEE Computer Society, September 2011

4. Caska, J., Schoeberl, M.: Java dust: how small can embedded Java be? In: Pro-
ceedings of the 9th International Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES 2011), pp. 125-129. ACM, New York, September
2011

5. Altera Corporation: Nios II Processor Reference Handbook, May 2011. http://
www.altera.com/literature/lit-nio2.jsp, Version N1I5V1-11.0

6. Xilinx: PicoBlaze 8-bit embedded microcontroller user guide (2010)

https://github.com/schoeberl/lipsi
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp

30

7

10.
11.

12.

13.

14.

15.

M. Schoeberl

. Hempel, G., Hochberger, C.: A resource optimized processor core for FPGA based
SoCs. In: Kubatova, H. (ed.) Proceedings of the 10th Euromicro Conference on
Digital System Design (DSD 2007), pp. 51-58. IEEE (2007)

. Hennessy, J.L.: VLSI processor architecture. IEEE Trans. Comput. C-33(12),
1221-1246 (1984)

. Gaisler, J.: A portable and fault-tolerant microprocessor based on the SPARC v8

architecture. In: Proceedings of the 2002 International Conference on Dependable

Systems and Networks (DSN 2002), p. 409. IEEE Computer Society, Washington,

DC (2002)

Xilinx Inc.: MicroBlaze processor reference guide (2008). Version 9.0

Robinson, J., Vafaee, S., Scobbie, J., Ritche, M., Rose, J.: The supersmall soft

processor. In: 2010 VI Southern Programmable Logic Conference (SPL), pp. 3-8,

March 2010

Nakatsuka, H., Tanaka, Y., Chu, T.V., Takamaeda-Yamazaki, S., Kise, K.: Ultra-

small: the smallest MIPS soft processor. In: 2014 24th International Conference on

Field Programmable Logic and Applications (FPL), pp. 1-4, September 2014

Danecek, J., Drapal, F., Pluhacek, A., Salcic, Z., Servit, M.: DOP—a simple pro-

cessor for custom computing machines. J. Microcomput. Appl. 17(3), 239-253

(1994)

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R.,

Wawrzynek, J., Asanovic, K.: Chisel: constructing hardware in a scala embed-

ded language. In: Groeneveld, P., Sciuto, D., Hassoun, S. (eds.) The 49th Annual

Design Automation Conference (DAC 2012), pp. 1216-1225. ACM, San Francisco

(2012)

Venners, B., Spoon, L., Odersky, M.: Programming in Scala, 3rd edn. Artima Inc.,

Mountain View (2016)

	Lipsi: Probably the Smallest Processor in the World
	1 Introduction
	2 Related Work
	3 The Lipsi Design
	3.1 The Datapath
	3.2 The Instruction Set
	3.3 Implementation and Assembly in Hardware
	3.4 Simulation and Testing
	3.5 Developing a Processor

	4 Evaluation and Discussion
	4.1 Resource Consumption
	4.2 The Smallest Processor?
	4.3 A Lipsi Manycore Processor
	4.4 Lipsi in Teaching
	4.5 Source Access

	5 Conclusion
	References

