®

Check for
updates

Performance-Energy Trade-off in CMPs
with Per-Core DVF'S

Solomon Abera™), M. Balakrishnan, and Anshul Kumar

Indian Institute of Technology Delhi, New Delhi, India
{solomon,mbala,anshul}@cse.iitd.ac.in

Abstract. In recent years, energy consumption of multicores has been
a critical research agenda as chip multiprocessors (CMPs) have emerged
as the leading architectural choice of computing systems. Unlike the uni-
processor environment, the energy consumption of an application run-
ning on a CMP depends not only on the characteristics of the application
but also the behavior of its co-runners (applications running on other
cores). In this paper, we model the energy-performance trade-off using
machine learning. We use the model to sacrifice a certain user-specified
percentage of the maximum achievable performance of an application to
save energy. The input to the model is the isolated memory behavior of
the application and each of its co-runners, as well as the performance
constraint. The output of the model is the minimum core frequency at
which the application should run to guarantee the given performance
constraint in the influence of the co-runners. We show that, in a quad-
core processor, we can save up to 51% core energy by allowing 16%
degradation of performance.

Keywords: CMP - Shared resource + DVFS + Machine learning

1 Introduction

Over the last couple of decades, CMPs have been the leading architectural
choice for computing systems ranging from high-end servers to battery-operated
devices. Energy efficiency has been an issue for multicores due to battery life
in portable devices, and cooling and energy costs in server class systems and
compute clusters. Despite the fact that CMPs improve performance through
concurrency, the contention for shared resources makes their performance and
energy consumption unpredictable and inefficient [7,8]. These depend greatly on
the nature of the co-runners.

Dynamic voltage and frequency scaling (DVFS) is used to reduce the power
consumption of a processor by trading-off performance. In recent years, modern
processors (Intel Haswell, IBM Power8, ...) provide support for per-core DVFS
where each core can run at different frequency, resulting in a vast configuration
space for the applications running on these cores.

© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 225-238, 2018.
https://doi.org/10.1007/978-3-319-77610-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_17&domain=pdf

226 S. Abera et al.

Compute-bound applications, which make very few accesses to LLC, benefit
from a higher core frequency as their performance is determined by the process-
ing speed of the cores.

On the other hand, memory-bound applications, which make a lot of accesses
to the LLC, behave differently and can be divided into two classes. The first class
consists of those applications whose performance has a high dependence on the
shared cache space (applications with high data reuse, or “cache-friendly” appli-
cations). These show higher performance when they run alone or with compute-
bound applications. With such co-runners, their performance is determined by
the core frequency as their memory transaction latency is hidden by the cache.
However, in the wake of competition for shared cache space from other memory-
bound co-runners, their performance hugely drops. In such situations, the core
frequency is not a big factor, and it can be lowered without impacting the per-
formance much.

The second class of memory-bound applications are those whose perfor-
mance does not depend on the amount of shared cache space (applications
with low data reuse), like streaming applications. However, the performance
of such applications is affected by the available memory bandwidth when they
run with memory-bound co-runners. Regarding core frequency, varying it has
little impact on the performance of these applications, regardless of the nature
of the co-runners.

Any DVFS policy should take these determining factors into account before
choosing the optimal frequency at which any workload should run. Consider
the two SPEC2006 benchmarks calculix and bzip2. Calculix is a compute-
intensive benchmark, whereas bzip2 is a cache-friendly one. We simulated the
execution of each of the two benchmarks running on a quad-core CMP sharing
2MB L2 cache with other three co-runner benchmarks. We prepared five differ-
ent sets of co-runners, each posing a different cumulative pressure on the shared
L2 cache. We quantify the pressure posed by an application with the metric
“aggressiveness” (see Sect. 3.1). The cumulative pressure of the three co-runners
is termed “global-aggressiveness” (GA). The higher the GA, the greater the pres-
sure on the L2 by the co-runners. When calculix runs with different competing
benchmarks (Fig. 1a), its performance shows little degradation. Rather its per-
formance is severely affected by the reduction of its core frequency. On the other
hand, bzip2 (Fig. 1b) shows different levels of performance degradation with dif-
ferent co-runners. When it runs with memory-intensive co-runners (GA = 53),
its execution time increased by only 40% when the core frequency changed from
2.4 GHz to 1.0 GHz. However, when it runs with compute-intensive workloads
(GA = 8.92), it slowed down by 120% for the same change in frequency. There-
fore, any proposed model to select the appropriate frequency should take into
account the application’s characteristics and the global stress on the shared
resources.

Furthermore, there are cases in which we may need a DVFS policy that
enables us to trade-off certain percentage of the maximum achievable perfor-
mance for energy savings. For example, let us say the user is willing to sacrifice

Performance-Energy Trade-off in CMPs with Per-Core DVFS 227

2.4 . . —calculix 2.4 . . —bzip2
4| GA=53.0 | L Ny A ,a| == GA=530 | T T
J]| e cA=41.03 : : : : o]|+ ca=41.03
EZ'O —¥ GA=29.20 : : R §2. —v GA=29.20
El& = GA=20.88 . . : §1 ~= GA=2088 . . A& .
o |00 GA=8.92 5 |00 GA=8.92
518 Solo-run St Solo-run |-+ P S ST
E ‘ £ ‘ : : ‘
o SLA -t P AT
=4 =z
I R R T I R R I — i U SU
Yr 77 20 T8 16 14 T2 10 12 20 18 16 14
Frequency in GHz Frequency in GHz
(a) calculix (b) bzip2

Fig. 1. Effect of DVFS and resource contention on performance

10% of the maximum possible performance of an application (when it runs with
a given set of co-runners) in exchange for energy savings. As we discussed earlier,
this 10% of application’s performance is determined by its behavior as well as
the nature of the co-runners. When that application runs with memory-intensive
workloads, surrendering 10% of its performance might allow significant lowering
of the core frequency as the application will slow down due to the cache and
bandwidth contention. On the other hand, the same application, when it runs
with less memory hungry applications, even a small reduction in the core fre-
quency may reduce the performance beyond the allowed 10% limit. In this paper,
we model the performance-energy trade-off using a learning-based algorithm. In
order to capture the contention among the co-runners, we chose a lightweight
contention metric that can efficiently convey the potential contention that will
be faced by the workload. The model takes individual LLC aggressiveness, the
global LLC intensity that emanates from the other cores and the performance
constraint as input and generates the optimal frequency setting for that core. We
assume that the underlying architecture to be a CMP architecture consisting of
multiple symmetric cores, where all the cores share the LLC. We also consider
the applications to be single threaded, with no data sharing among them.

The rest of the paper is organized as follows: Sect. 2 describes previous work
in the domain of CMP energy efficiency. Section3 discusses the overview of
the model construction, Sect.4 compares different machine learning algorithms,
Sect. 5 describes the evaluation of the described scheme, for different performance
constraints, and shows the efficiency of the developed model. Finally, Sect.6
concludes the paper.

2 Related Work

Energy consumption has become an important optimization metric for CMP
based computational platforms. Since its proposal by Weiser et al. [1], DVFS
has been used to minimize the processor energy consumption while limiting the
reduction of the overall system performance. DVFS can be applied in CMPs on
a per-chip, per-core or per-cluster basis. Most of the previous works are directed

228 S. Abera et al.

towards CMPs with chip-wise DVFS. There have been a significant amount of
DVFS based works [2-6] focused on real-time systems that try to reduce energy
consumption by utilizing the slack time for frequency scaling.

A lot of solutions have been proposed in the form of energy-aware schedul-
ing that try to minimize the effect of contention, and apply DVFS to decrease
the energy consumption. Merkel et al. [9] used task activity vectors (L2 and
memory accesses) to capture the resource utilization of each task. When they
schedule tasks, they try to pair memory-intensive tasks with compute-intensive
ones to improve performance. When there are only memory intensive tasks in
the workload, they scale down the chip frequency to save energy. Dhiman et al.
[10] proposed a learning-based algorithm for a multi-tasking environment that
suggests the optimal frequency based on tasks’ degree of memory-boundedness.
They used CPI stacks to quantify this behavior.

In recent years, machine learning algorithms have been applied to perform
intelligent DVF'S based energy saving [10-15]. The authors of [14] used reinforce-
ment learning in which they took task characteristics and processor configuration
to scale frequency for real-time systems. The task execution characteristics are
derived from the execution time of the task (its CPU-time and stall-time). The
proposal by Shen and Qiu [15] is the most related work to ours. In their work,
they applied a machine learning technique to predict the performance degrada-
tion that would be faced by an application due to other applications in a CMP,
and simultaneous application of DVFS. They define degradation with respect to
a solitary run (solo-run) of the application on the CMP at the highest allowed
frequency. They assumed global DVFS for all the cores. In this work, we assume
that DVFS can be individually applied to each core. In addition to that, we
argue that it would be difficult to guarantee a quality of service from the solo-
run performance perspective as resource contention depends on the identity of
the co-runner. Instead, the reference should be the maximum achievable perfor-
mance with the given set of co-runners. In this work, we take this approach. For
a given application, based on its memory behavior and that of its co-runners’,
the model can predict the correspondence between the performance loss and the
discrete frequency steps.

3 Model Construction Methodology

The proposed machine learning based DVFS model attempts to predict the
optimal core-frequency setting for a given user-specified acceptable loss in per-
formance. The model is constructed offline by capturing the relationship between
the nature of a benchmark, its operating frequency, the nature of its co-runners,
and its performance. The model is then used online to find the optimal frequency
that an application should run at, such that the given performance requirement
is satisfied, and maximum energy savings are obtained.

Section 3.1 discusses the contention metrics that best capture the nature of
a benchmark for the task at hand while Sect. 3.2 describes the data collection
methodology. Section 3.3 then discusses the building process of the model and
Sect. 3.4 covers the application of the model.

Performance-Energy Trade-off in CMPs with Per-Core DVFS 229

3.1 Contention Metrics

In order to construct a model that accurately captures the impact of frequency
scaling and resource contention on performance, we need appropriate contention
metrics. When applications are run in an isolated environment (solo-run), the
amount of energy saved per percentage point of performance degradation varies
based on their characteristics. Applications that are compute-intensive tend to
save less energy for each percentage point of performance loss. Whereas, appli-
cations that are memory intensive tend to save much more energy for each per-
centage point of performance loss. This is because these applications take much
time to progress as they wait for their data to arrive. Hence, in an isolated envi-
ronment, the applications performance-energy trade-off balance can be modeled
by its characteristics only.

As we mentioned earlier, shared resource contention in CMPs, particularly
competition for shared cache space and memory bandwidth, severely harms
performance and makes them energy inefficient. The slowdown encountered
by individual applications hugely varies with the identities of the co-runners.
The more the application slowed, the more insensitive it will be to frequency
change and vice versa. Hence, the effect of frequency scaling also varies with the
co-runners.

Therefore, when an application runs with other co-runners, they also prove
to be a factor in the obtained energy savings through frequency scaling. If the
application’s performance does not depend on its usage of the shared resources, it
does not incur any significant additional delay because of sharing. Hence, its own
memory characteristics can be enough to drive the performance-energy trade-off
and shows similar trade-off curve as its solo-run (Fig. 1a). If the application’s per-
formance does depend on the usage of the shared resources, it can show different
behaviors based on the co-runners’ characteristics. When the co-runners are not
very shared resource hungry, the application might not incur much slowdown.
Here, the performance-energy trade-off might not deviate much from its solo-run
trade-off curve (see the curve in Fig. 1b with GA = 8.92). On the other hand, if
its co-runners are resource hungry, the magnitude of their resource usage deter-
mines the slowdown suffered by the application. Accordingly, its energy saving
per percentage point of performance loss varies with co-runners (see the curves
in Fig. 1b with GA = 53, GA = 41.03, GA = 29.20 and GA = 20.88).

We desire a lightweight contention metric that conveys the resource hungri-
ness of the application and helps in predicting slowdown that will be encountered
by individual applications when they run together. This metric should be easy to
collect online and the number of attributes should also be small as it reduces the
sampling time. We have collected various performance metrics and tested their
ability to predict the potential contention between the co-running applications.
In our study, we run 275 combinations (each set of four) of SPEC2006 bench-
mark fragments on a quad-core environment sharing the LLC. We record the
solo-run and co-run performance of the four co-running applications Ay, Ay, A
and As. The solo-run and co-run performance of each application is represented

230 S. Abera et al.

by its number of instructions per cycle as I PCy,, and I PC,, respectively. We
computed the average slowdown as specified in Eq. 1.

7 o IPCooio(A;) — 07 TPCoo(A;)
5% o TPCloio(As)

We have analyzed parameters that present a high correlation with the
observed slowdown. We chose three metrics: the solo-run IPC, number of LLC
accesses (LLCA) and LLC misses per 1K cycles (MPKC). We also considered two
methods of aggregating the parameters of the applications: sum and product.
Table 1 presents the correlation between the six different candidates with the
actual slowdown.

Slowdown =

x 100, (1)

Table 1. Correlation between aggressiveness strategies and slowdown

Parameter Correlation with slowdown
IPCsym —0.69469
IPCproduct —0.46521
LLCAsum 0.73869
LLC Aproduct 0.48090
MPKCsum 0.81011
MPKCproguet | 0.57714

As we can see from Table1, MPKC,,,, shows the highest correlation with
slowdown. The IPC based contention metrics show negative correlation with the
slowdown, as high aggregate IPC implies lower contention, resulting in a lower
slowdown. In this work, we represent the memory characteristics of applications
by their aggressiveness scores (A_Score). A_Score is a metric that characterizes
how aggressively an application competes for the shared cache space and memory
bandwidth. We use MPKC as A_Score, and to model the global cache pressure
emanating from the co-runners, define global-aggressiveness (GA) as the sum of
the individual A_Scores of the co-runners.

We also perform experiment to demonstrate the correlation of the A_Score
with performance loss, under the influence of frequency scaling. We run 20 single-
threaded, single-phase (collected 250 million instructions fragments using Sim-
Point) SPEC2006 benchmarks on sniper multicore simulator with quad-core con-
figuration sharing a 2 MB L2 cache. In the experiment, we run the benchmarks
without competing co-runners. We scaled the frequency from 2.4 GHz through
1.0 GHz and record the performance response of each benchmark to the fre-
quency scaling. We present, in Fig. 2, the correlation between their A_Score
and performance degradation. As we can observe from the figure, the compute-
intensive benchmarks (low A_Score) show higher performance degradation when
their frequency is scaled down. On the other hand, we can see memory-intensive

Performance-Energy Trade-off in CMPs with Per-Core DVFS 231

Normalized Delay

[a)
'_
[a)]
[
[0
£
(]
O]

Fig. 2. Sensitivity of 20 SPEC2006 applications for frequency scaling and correlation
with their A_Score

benchmarks are only marginally affected by frequency scaling as their perfor-
mance is not determined by the core frequency.

In addition to its correlation with the slowdown (because of contention as
well as frequency scaling), A_Score also can capture the impact of core-frequency
changes on the aggressiveness of the application. Let us assume one application
has @ LLC misses when running at frequency fl. When the same application
runs at 2 (2=0.5f1), its LLC misses do not change but its cache pressure is
minimized as its cache requests arrive at longer time intervals between them.
This phenomenon is captured by the choice of LLC MPKC as a contention metric
and makes it suitable for online DVFS modeling as every core might run at a
different frequency. The cycles in our context are representation of time (elapsed
time multiplied by the maximum core frequency).

3.2 Data Collection

Let us assume a processor having N cores. Let us also assume we have a set
of N, applications A = {Ag, A1,...,An,—1} that are to be run on this pro-
cessor. We first collect the aggressiveness score of each application A.,,- € A as
A_Scorega,,, by running (or simulating) it alone on the given processor. We then
construct a set of Nog co-runner groups, C = {CGy, CGq,...,CGNqe—1}, with
each group having N¢o — 1 applications from the set A. The global-aggressiveness
of each co-runner group Cl,, is given by GAc,, ., and is computed by summing
the individual A_Scores of the N¢ — 1 applications in that group. We prepared
the set C' in such a way that their G A values are well spread over the entire spec-
trum of G A values ranging from maximum (all memory-bound) to the minimum
(all compute-bound). We take only representative samples, not exhaustively, to
construct the set C.

232 S. Abera et al.

Algorithm 1. Data Collection Methodology

1 for each application Acyr tn A do
2 schedule A, on core 0;
3 for each co-runner group Cey, in C do
a schedule the applications in C.q, on cores 1 to No — 1;
5 set the frequency of cores 1 to No — 1 to frmaz;
6 set the frequency of core 0 to fiax;
7 execute / simulate;
8 Ttpae = time taken to execute Acyr;
9 for each frequency feur tn F, other than fyaq. do
10 set the frequency of core 0 to feyur;
11 execute / simulate;
12 Tewr = time taken to execute Acyr;
13 AP = T " imar 100
fmazx
14 save the tuple <A_Scorea,,,., GAc.y,rs AP, feur >;
15 end
16 end
17 end

Let us also assume that the processor is capable of operating at Ny different
frequencies F' = {fo, f1,. .., fn;—1}, with the maximum frequency among these
being labeled fi,q.- As discussed earlier, we assume the DVFS can be done on
a per-core basis. Algorithm 1 describes how the data collection is done.

3.3 Building the Model

We desire a model that best captures the relationship between a benchmark’s
memory behavior, that of its co-runners, the frequency at which former is exe-
cuted, and its performance. Therefore, in the training phase, we use A_Score,GA,
AP (as defined in Algorithm 1) and frequency values, as collected in Sect. 3.2 to
build the model, as shown in Fig.3. In the testing phase, the model, given a
benchmark, its co-runners, and a desired performance requirement, returns the
minimum frequency that guarantees specified performance. There are a variety
of machine learning algorithms that can be applied to capture the relationships

Training
Input Output o :
A_Score | GA AP f : . /.\
663 |aas6 |2373 w00 |, Iraim i /.\ o
663 |4456 | 1651 | 1200 : Program PP
6.63 |44.56 |11.78 |1400 : :
Random
,,, Faorest Model ... _ .
{ Export
Testing
A_Score ———
GA —— Test —f

Fig. 3. Training and testing of the model

Performance-Energy Trade-off in CMPs with Per-Core DVFS 233

in different ways. Section4 discusses the various machine learning algorithms
considered, and their respective scores of predictions.

3.4 Application of the Model

The model can be used as a part of batch as well as online scheduler. In the
case of online use, at each scheduling decision, for each of the runnable tasks
running on the available cores, their previous epochs’ performance metrics can
be used for tuning each core’s frequency. Here, the cost of DVFS transition as
well as the time it takes to execute the prediction model should be taken into
account to determine the time interval between two consecutive schedules. The
input parameters that are collected from performance counters (A_score, GA)
will be used along with the QoS policy imposed by the user, like AP = z, for
2% of performance loss that the user wants to let go to save energy. Then the
model predicts the minimum frequency at which the core should run to satisfy
the requested QoS.

4 Comparison of Machine Learning Algorithms

There are a variety of machine learning algorithms to choose from. We used the
WEKA (Waikato Environment for Knowledge Analysis) [16] machine learning
suite to study the efficacy of the different modeling alternatives. Table 2 shows
the list of various machine learning algorithms with their respective correla-
tion indexes when tested using 10 fold cross-validation and our test set data
respectively. The experiment was performed on Intel i7-4770 (number of physi-
cal cores =4, logical cores = 8) processor with a speed of 3.4 GHz. We found that
the decision tree based Random Forest (RF) regression model best captures the
relationship between the aggressiveness metrics, the core-frequency, and the per-
formance degradation. In addition to that, the time taken for testing the model
is short enough for an online application. RF [17] is ensemble of decision trees
where each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. The reason that
the RF model performs well is that it alleviates the overfitting problem, which is
common on other regression models.

Table 2. Algorithm comparison

Algorithms Cross-validation | Test set Testing time Training
(correlation (correlation per data point | time (secs)
index) index) (secs)

Linear regression | 0.8273 0.8799 2.27 E-05 0.26

MLP regressor | 0.9664 0.9815 3.97 E-05 0.17

SVM regressor 0.858 0.9054 2.84 E-05 2.34

REP tree 0.9764 0.9742 3.40 E-05 0.04

Random forest | 0.9904 0.9815 3.96 E-05 0.28

234 S. Abera et al.

5 Evaluation

5.1 Evaluation Setup

We use sniper multicore simulator [19] version 6.0 to validate the proposed model.
To model the energy consumption, we use McPAT (Multicore Power, Area, and
Timing) integrated power, area, and timing modeling framework [18].

Table 3. System configuration

Core Caches

Parameter Value Parameter Value

ISA X86 L1-D 32 KB, 8-way,
WRB, 4 cycles

Micro-architecture | Nehalem L1-1 32 KB, 8-way,
4 cycles

Nc¢ 4 L2(LLC) 2MB, 16-way,
WRB, 30 cycles

F {1000, +200, . ..,2400} MHz | Cache block size | 64

1% {0.8,+0.1,...,1.5} v Memory latency | 45 ns

Technology 45nm

The architectural configuration of the simulated system is given in Table 3.

We use 45 single-phase, single-threaded, 250 million instruction long SPEC2006
benchmark fragments. The SPEC2006 benchmark suite contains a mixture of
compute and memory intensive workloads [21]. The fragments are collected using
SimPoint [20].
Data Collection: We use 25 of these 45 benchmarks for the purpose of data
collection, that is, set A as defined in Sect. 3.2 (N4 = 25). The 25 benchmarks
used for the training are selected by their A_Score values covering the whole
range of A_Score values. We construct the co-runner group C as explained in
Sect. 3.2 with NCG = 10.

Testing of the Model: We first performed 10-fold cross validation using the
training set of 25 applications. We observed a high correlation index of 0.9904,
providing a preliminary validation of the proposed model. We also performed
online testing of the model. We use the remaining 20 applications for this pur-
pose. We schedule each of the 20 applications on core 0. Let us call this appli-
cation running on core 0 as the primary application. We randomly select 10
co-runner groups, each group containing 3 applications from this set of 20. These
3 co-runners are scheduled on cores 1-3, and the latter are made to run at the
highest frequency setting, that is, 2400 MHz. We evaluate against four different
Quality of Service (QoS) policies, that is, the maximum degradation in the per-
formance of the primary application that the user is willing to accept. The four

Performance-Energy Trade-off in CMPs with Per-Core DVFS 235

policies are: 5%, 10%, 15%, and 20%. Thus, there were a total of 20x 10 x4 = 800
experiments. In each experiment, we use the constructed model to predict the
lowest frequency at which core 0 must run such that the QoS policy is honored.
Since the output of the model is a real number, we approximate the value to the
nearest frequency setting. We then perform a reference run at different frequency
settings and select the frequency setting which best satisfies the user QoS policy.
We check that if the best frequency matches the predicted one or not. If not, we
see by how many frequency steps it deviates. Based on the distribution of the
inaccuracies, we calculate the average loss/gain in performance and energy. The
results of the testing is presented next.

5.2 Analysis of the Results

Figure4 shows the average energy saved through DVFS, and the associated
average degradation in the performance of the primary application, for the four
QoS policies. We see that up to 51% of energy can be saved when the user is
willing to sacrifice 20% of the performance.

I Perfect
B RF Model |

& U O

Energy Saving(%)
w

[Perfect
I RF Model

AP (%)

Fig. 4. Performance-energy trade-off for different QoS policies: perfect vs random forest
model

We compare our proposed frequency predictor (RF model) against a perfect
predictor (one that always predicts the optimal frequency). As can be seen, our
predictor performs very close to the perfect predictor, with an accuracy of 1.3%,
thereby validating our model — both the choice of the contention metric, as well
as the machine learning algorithm. We see that, both with our predictor and the
perfect one, in each of the four QoS policies, the observed average performance
degradation is much lesser than that specified by the user. This is because of the
coarse granularity of the DVFS regulator that allows us to scale the frequency
only at steps of 200 MHz.

We further analyze the almost negligible inaccuracies of our model, and
describe our findings in Fig. 5. In each of the four figures, the first row depicts
the fraction of predictions that were correct (same as the perfect predictor), and
the fraction of predictions that were incorrect by —200MHz, +200 MHz, and
+400 MHz. Note that there were no predictions that were incorrect by a greater

236 S. Abera et al.

1.0 S1.0
208 208
© 06 O 0.6
S 0.4 S 0.4
0.2 0 0.2
An_O.O An_O.O
Roso—— 7 X
e 0. ; & 150 i
S 028 | S S 078 | R IR
o 0. " : o 0. . .
§-025 . | DU 8075 - . |
£-05 £-15
o ‘ o ‘ ‘
o — o ‘ : = ‘
o —05--------- R TR E TR PEEERREE o —0.5------ . rrrrrrrr
4 ‘ < ‘ ‘ ‘
-1. N o Ry 4 -1. Ry = T~ T
T] I I T 1 T I
= 2 = = = 2 = =
S S o o S s o o
o o S 1=} o o <} o
o~ o < o o <
' + +) + +
(a) 5% Policy (b) 10% Policy
S1.0 0.8
£if
504l - 5 04
902 ‘ 002
An.O.O An.O.O
S R 15 ‘ ‘
S 150 s
s T SRR S e g i o
5-075 - L | R G075 - . rrrrrrrrrrrr
§-15 §-15
0.5 e _ L ‘ ‘ :
X o : :] : S 8-5""""1 """"" e | . o
goog] e ST S
-1 N = N N -1 N = N L\
T 5 T T T 9 T T
= = = = = = = =
S 5 o o S 5 o o
o S <1 =} S o o =
o o < o~ o~ <
‘ + + ' + +
(c) 15% Policy (d) 20% Policy

Fig. 5. Energy and performance loss/gain because of prediction inaccuracies

margin. The second row depicts the loss/gain in energy savings associated with
the incorrect predictions, as compared to the perfect predictor. The third row
depicts the associated loss/gain in performance.

We see that the percentage of correct predictions on average is 86%. Among
the incorrect predictions, 94% are within one frequency step away from the
optimal frequency. When the predicted frequency was higher than optimal, there
is a loss in energy savings. Likewise, when the predicted frequency was lower,
there is a gain. The net effect of these inaccuracies is negligible, as can be seen
in Fig. 4. Additionally, when the predicted frequency is lower than optimal, the
QoS policy is not honored. We see that this scenario occurred only in 6.7% of
the test runs.

6 Conclusion

In this work, for chips with per-core DVFS capability, with the help of lightweight
metrics, we showed that we can predict the application’s performance response
to shared resource contention and frequency scaling. We also demonstrated that,

Performance-Energy Trade-off in CMPs with Per-Core DVFS 237

given application’s and its co-runners’ memory behavior just captured through a
single parameter of Aggressiveness Score, we can accurately predict the optimal
frequency for the given user QoS policy through machine learning. The results
demonstrated that on an average, 86% of the predictions were accurate and out
of the inaccurate predictions 94% were within a distance of one frequency step
(200 MHz). In addition to that, only 6.7% of the total predictions violated the
user QoS requirement. In the experiments, we observed that, by allowing 16% of
performance degradation, we can save up to 51% core-energy saving. We believe
that incorporating additional locality metrics to capture the behavior of the
applications can further improve the accuracy of the model. In addition to that,
the impact of the model from thermal perspective should also be studied.

References

1. Weiser, M., et al.: Scheduling for reduced CPU energy. USENIX (1994)

2. Zhu, D., Melhem, R., Childers, B.: Scheduling with dynamic voltage/speed adjust-
ment using slack reclamation in multiprocessor real-time systems. IEEE TPDS 4,
686-700 (2003)

3. Cong, J., Gururaj, K.: Energy efficient multiprocessor task scheduling under input-
dependent variation. In: DATE 2009, Dresden, Germany (2010)

4. Yao, F., et al.: A scheduling model for reduced CPU energy. In: FOCS 1995 (1995)

5. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable
voltage processors. In: ISLPED 1998 (1998)

6. Kim, S.I., Kim, H.T., Kang, G.S., Kim, J.-K.: Using DVFS and task scheduling
algorithms for a hard real-time heterogeneous multicore processor environment. In:
EEHPDC 2013 (2013)

7. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ASPLOS 2010 (2010)

8. Abera, S., Balakrishnan, M., Kumar, A.: PLSS: a scheduler for multi-core embed-
ded systems. In: Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds.)
ARCS 2017. LNCS, vol. 10172, pp. 164-176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54999-6_13

9. Merkel, A., Stoess, J., Bellosa, F.: Resource-conscious scheduling for energy effi-
ciency on multicore processors. In: EuroSys 2010 (2010)

10. Dhiman, G., Rosing, T.S.: Dynamic voltage frequency scaling for multi-tasking
systems using online learning. In: ISLPED 2007 (2007)

11. Khan, U.A., Rinner, B.: Online learning of timeout policies for dynamic power
management. ACM-TECS 13(4), 1-25 (2014)

12. Otoom, M., et al.: Scalable and dynamic global power management for multicore
chips. In: ACM 2015 (2015)

13. Ye, R., Xu, Q.: Learning-based power management for multicore processors via
idle period manipulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
33, 1043-1055 (2014)

14. Islam, F., Lin, M.: A framework for learning based DVFS technique selection and
frequency scaling for multi-core real-time systems. In: HPCC 2015 (2015)

15. Shen, H., Qiu, Q.: Contention aware frequency scaling on CMPs with guaranteed
quality of service. In: DATE 2014 (2014)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. 11, 10-18 (2009)

https://doi.org/10.1007/978-3-319-54999-6_13
https://doi.org/10.1007/978-3-319-54999-6_13

238 S. Abera et al.

17. Breiman, L.: Random forest. Mach. Learn. 45(1), 5-32 (2001)

18. Li, S., et al.: McPAT: an integrated power, area, and timing modeling framework
for multicore and manycore architectures. In: MICRO 2009 (2009)

19. Sniper Multicore Simulator. http://snipersim.org

20. Calder, B., et al.: SimPoint: picking representative samples to guide simulation
(Chap. 7). In: Performance Evaluation and Benchmarking (2005)

21. Jaleel, A.: Memory characterization of workloads using instrumentation-driven
simulation. Technical report, VSSAD (2007)

http://snipersim.org

	Performance-Energy Trade-off in CMPs with Per-Core DVFS
	1 Introduction
	2 Related Work
	3 Model Construction Methodology
	3.1 Contention Metrics
	3.2 Data Collection
	3.3 Building the Model
	3.4 Application of the Model

	4 Comparison of Machine Learning Algorithms
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Analysis of the Results

	6 Conclusion
	References

