
A Tightly Coupled Heterogeneous Core
with Highly Efficient Low-Power Mode

Yasumasa Chidai1(B), Kojiro Izuoka1, Ryota Shioya1, Masahiro Goshima2,
and Hideki Ando1

1 Nagoya University, Nagoya, Aichi, Japan
{chidai,izuoka}@ando.nuee.nagoya-u.ac.jp,

{shioya,ando}@nuee.nagoya-u.ac.jp
2 National Institute of Informatics, Tokyo, Japan

goshima@nii.ac.jp

Abstract. A tightly coupled heterogeneous core (TCHC) has heteroge-
neous execution units with different characteristics inside the core. The
composite core (CC) and the front-end execution architecture (FXA)
are examples of state-of-the-art TCHCs. These TCHCs have in-order
and out-of-order execution units in the core. They selectively execute
instructions in-order and it improves the energy efficiency without sig-
nificant performance degradation compared to out-of-order execution.
However, these TCHCs cannot improve the energy efficiency sufficiently.
CC has a large switching penalty of the execution units, and thus, CC
cannot sufficiently execute instructions in-order. FXA cannot suspend
energy consuming out-of-order execution units when it executes instruc-
tions in-order. We propose a dual-mode frontend execution architecture
(DM-FXA), which is based on the FXA. DM-FXA has our proposed
low-power execution mode, which completely suspends the out-of-order
execution unit on in-order execution, and thus, DM-FXA consumes less
energy than does the FXA. In addition, DM-FXA has a smaller switch-
ing penalty than CC. In our evaluation, the proposed methods reduce
energy consumption by 34.7% compared with a conventional out-of-order
processor, and performance degradation is within 3.2%.

1 Introduction

A heterogeneous multicore (HMC) is an effective method for improving the
energy efficiency of processors [1–5]. HMCs consist of multiple cores with differ-
ent performance and energy-efficiency characteristics. HMCs execute each pro-
gram phase using the most energy-efficient core by switching the active core.
ARM big.LITTLE [5] is a commercialized example of an HMC.

However, because each core has dedicated caches and predictors, core switch-
ing causes significant penalty cycles. As a result, core switching granularity is
restricted to be long intervals (e.g., 100M instructions) [1].

To reduce the switching penalty, a tightly coupled heterogeneous core (TCHC)
was proposed [6–12]. A typical TCHC has two execution units, in-order (InO)
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 211–224, 2018.
https://doi.org/10.1007/978-3-319-77610-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_16&domain=pdf


212 Y. Chidai et al.

Fig. 1. Block diagram of CC.

Fig. 2. Block diagram of FXA.

Fig. 3. LP mode in DM-FXA.

and out-of-order (OoO), in a single core. Because the caches and predictors are
shared by the units in the core, the TCHC enables the fine-grained switching of
execution units, and thus, it improves energy efficiency.

The composite core (CC) [6,7] is an example of state-of-the-art TCHCs. CC
[6,7] has an InO and an OoO backend, as shown in Fig. 1. CC has two execution
modes: a low-power (LP) mode, using the InO backend and a high-performance
(HP) mode, using the OoO backend. CC shares the frontend and L1D/I cache
between the backends, thereby reducing the penalty for mode switching.

However, because CC has the independent backends, there is always a penalty
when switching modes. Although this switching penalty is much shorter than
those of the HMCs, it has a non-negligible effect on fine-grained mode switch-
ing in CC (e.g., 500 instructions interval). As a result, the switching penalty
significantly reduces opportunities for LP mode execution in CC.

The front-end execution architecture (FXA) [8] is a TCHC contrasting to CC.
FXA has two execution units: an in-order execution unit (IXU) and an OoO exe-
cution unit (OXU), as shown in Fig. 2 [8]. The difference between FXA and CC
is that the IXU and OXU are connected serially, and the IXU serves as a filter
for the OXU. The IXU is placed in the processor frontend and executes instruc-
tions that can fetch all their source operands in the frontend. The instructions
executed in the IXU are not dispatched to the OXU, which reduces the energy
consumption of the OXU. As a result, FXA does not have the mode switching
penalty and can execute instructions in-order at instruction granularity.

In addition, the IXU has a higher capability than an InO processor. An InO
processor usually stalls the pipeline when dependent instructions are decoded
at the same cycle. In contrast, the IXU can execute such instructions without
pipeline stall. As a result, the IXU can execute many instructions (approximately
50% [8]).



A TCHC with Highly Efficient Low-Power Mode 213

However, FXA cannot sufficiently reduce the energy consumption compared
to CC. This is because it is necessary for FXA to keep to operate some OoO
components such as a rename unit and a re-order buffer (ROB) even if instruc-
tions are executed in the IXU. As a result, the in-order execution in FXA is less
energy efficient than the LP mode in CC, because the LP mode in CC completely
stops the OoO components.

As described above, CC and FXA have the following problems: (1) the mode-
switching penalty of CC is still large, and (2) the in-order execution in FXA is
not energy efficient. In order to resolve these problems, we propose a dual-mode
frontend execution architecture (DM-FXA), which is based on FXA and has LP
and HP modes. The LP mode executes all instructions in-order using the IXU
only and suspends the OXU, whereas the HP mode executes instructions in
the same way as in FXA. Similarly to CC, DM-FXA executes instructions by
switching between these modes and improves the energy efficiency.

The contributions of DM-FXA are as follows:

1. DM-FXA can switch from LP to HP mode without incurring a penalty. This
is because the switching from in-order (LP) to OoO (HP) execution can be
realized only by resuming dispatch to the OXU since the IXU and OXU are
connected serially. Consequently, it mitigates the large switching penalty of
CC, and thus, it improves an LP mode use rate.

2. The LP mode in DM-FXA completely omits the processes required by OoO
execution, and consequently, it solves the inefficient energy reduction of the
in-order execution in FXA.

3. Since the LP mode of DM-FXA leverages the IXU, the LP mode of DM-FXA
has higher performance than LP mode of CC using a normal InO processor. As
a result, DM-FXA can get more opportunities to perform LP mode execution
than CC without performance degradation.

4. Our evaluation shows that the performance-energy ratio (the inverse of the
energy-delay product) of DM-FXA is 24.1% and 12.1% higher than those of
CC and FXA, respectively.

The rest of the paper is organized as follows. Section 2 describes CC and
FXA. In Sect. 3, we propose DM-FXA, and in Sect. 4, we evaluate our proposed
method. Then, Sect. 5 summarizes related work.

2 Existing TCHC Architecture

2.1 Composite Core

CC [6,7] has InO and OoO backends (Fig. 1), which are used in LP and HP
mode, respectively. The two backends share some units, such as the branch
predictor and L1D/I caches, to avoid a cold start on switching. This allows CC
to perform fast execution-mode switching. Other latency-critical components,
such as a register file (RF), are independent for each backend.



214 Y. Chidai et al.

Execution Mode Selection. CC basically selects the execution mode as fol-
lows. In execution mode selection, CC controls the (estimated) increase of exe-
cution cycles from the HP mode within a user-configured range (e.g., 5%). That
is, supposing that a part of a program is executed by both HP and LP modes,
and if the increase in cycles of LP mode execution is estimated to be smaller
than that of the HP mode execution, then CC switches its mode to LP mode.
We call such a part an LP-friendly interval when LP mode effectively improves
energy efficiency.

The authors of CC found that the LP-friendliness fluctuates wildly in fine
granularity (e.g., 500 instructions) [6,7], and CC improves energy efficiency by
exploiting such fine-grained LP-friendly intervals. In their evaluation, the use
rate of LP mode in CC is approximately 30% while the performance degradation
is within 5% [7].

Execution Mode Switching. CC switches its execution mode as follows.
(1) CC stops the instruction fetch and waits until all instructions are retired
from the active backend. (2) In parallel with the fetch stop, CC speculatively
starts to migrate register values between the dedicated RFs. (3) After the retire-
ment of instructions from the active backend, the values for which speculative
migration failed are remigrated. (4) When the remigration is completed, the
switching destination backend starts instruction execution. The cycles required
for this retirement and migration is the switching penalty.

Although the penalty cycles are significantly shorter (about 37 cycles in
our evaluation) than those in conventional heterogeneous multicore proces-
sors (approximately 20µs [13]), the penalty has non-negligible negative effects
because CC switches modes with a considerably fine granularity. As a result,
CC’s switching granularity is restricted to more than hundreds of instructions [7].

2.2 Front-End Execution Architecture

Structure and Behavior. FXA also has two execution units: OXU and IXU
(Fig. 2). While the OXU is a reduced backend of a conventional OoO proces-
sor, the IXU consists of an array of functional units (FUs). The IXU is placed
after the rename stage in the frontend and executes instructions in order. FXA
has additional register ports for the IXU; however, the total number of register
ports is not significantly increased because the OXU size is reduced as shown in
Figs. 1 and 2.

FXA handles instructions as follows (assuming integer instructions with one-
cycle latency). (1) FXA attempts to obtain source operands at the register read
stage in the frontend by (1-a) reading from RF or (1-b) bypassing from the
FUs in the IXU (not from the OXU). Operands are bypassed between FUs on
different stages, e.g., a result calculated on the first stage is received by the second
stage. FXA then checks whether all the operands are obtained, that is, whether
instructions are ready to be executed. (2) A ready instruction is executed in the
IXU and is not dispatched to the IQ. (3) A non-ready instruction goes through



A TCHC with Highly Efficient Low-Power Mode 215

the IXU as a NOP and is then dispatched to the IQ in OXU and executed. Note
that an InO processor stalls its pipeline until its readiness is resolved; however
non-ready instructions in FXA go through the IXU pipeline as a NOP without
stalling the pipeline.

IXU Capability. The IXU has a higher capability than an InO processor.
An InO processor usually stalls the pipeline when dependent instructions are
decoded at the same cycle. In contrast, the FU array in the IXU can execute
such instructions without pipeline stall. For example, in Fig. 2, when the pro-
ducer instruction P© is executed in the first stage of the IXU, its consumer C©
decoded at the same cycle goes through the first stage as a NOP and then is
executed in the second stage. As a result, the IXU can execute many instructions
(approximately 50% [8]).

IXU executes not only integer instructions but also load/store and branch
instructions. Other instructions such as floating-point (FP) instructions are not
executed in IXU because the resource overhead for additional FPUs is large.

Merits and Demerits. FXA has the following merits:

– The energy consumption is reduced. IXU has no instruction-scheduling hard-
ware and thus it can execute instructions with high energy efficiency. More-
over, IXU filters many instructions (e.g. 50%); thus, the size of OXU can be
reduced without performance degradation.

– The performance is improved because the number of FUs is increased as
shown in Figs. 1 and 2. CC can execute up to two instructions, while FXA
can execute up to five instructions per cycle.

However, the IXU execution in FXA cannot sufficiently reduce energy con-
sumption compared with the LP mode in CC, which can completely omit OoO
execution. In FXA, OXU must execute instructions not filtered by IXU, and
thus FXA must keep operating OoO execution components such as a rename
unit, ROB, and load/store queue (LSQ).

3 Dual-Mode Front-End Execution Architecture

As described before, CC and FXA have the following problems:

1. CC: The switching penalty is large (Sect. 2.1).
2. FXA: The reduction in energy consumption is not sufficient (Sect. 2.2).

In order to solve these problems, we propose a dual-mode front-end execu-
tion architecture (DM-FXA), based on FXA, with LP and HP modes.



216 Y. Chidai et al.

3.1 Implementation of LP Mode

The LP mode in DM-FXA executes all instructions using the IXU only, whereas
the HP mode executes instructions in the same way as in FXA. The execution
mode selection is performed in the same way of CC (Sect. 2.1).

Figure 3 shows DM-FXA in the LP mode. DM-FXA has a similar physical
architecture to FXA. In this figure, the shadowed units, such as IQ, are stopped
in the LP mode. Note that power gating is not applied to the deactivated units
as in the prior work of CC [6,7] because recovery from power gating requires
significant time.

The LP mode stalls the pipeline when its source operands cannot be obtained
and waits for resolving dependencies as in an InO processor. When decoding
complex instructions not supported by the IXU (Sect. 2.2) in the LP mode,
DM-FXA immediately switches to the HP mode.

The LP mode completely omits OoO execution as follows:

1. It deactivates the OXU including IQ, LSQ, and ROB.
2. It stops register renaming, and RF is accessed using logical register numbers.
3. Only a partial region in RF is accessed when accessing RF with the logical

numbers; thus, the other region of RF can be deactivated. We call active
partial region head region. If the number of logical registers is 32, the head
region is from register 0 to 31. In modern processors, RFs generally consist
of hierarchical SRAMs [14,15]; thus, the LP mode deactivates not accessed
SRAMs.

Thus, the LP mode resolves the problem of inefficient energy reduction in FXA
(Sect. 2.2).

3.2 Switching from HP to LP Mode

The switching from the HP to LP mode occurs as follows.

1. The fetch instruction is stopped, and DM-FXA waits for the retirement of all
instructions in a similar way to the as CC.

2. DM-FXA rearranges the values in the RF in the order of the logical register
numbers so that the RF is accessed using logical numbers. In this rearrange-
ment, live values in the head region are temporally migrated to the other
region in order to clean out the head region, and then all values are migrated
to the head region.

Additional cycles for this temporal migration are small because the number
of live registers is equal to that of logical registers after the retirement of all
instructions; thus, there is a low probability of live values in the head region
(e.g., 32 logical regs/160 physical regs = 0.2). In addition, the required cycles
for this rearrangement are shorter (maximally 20 cycles in our evaluation) than
those required for the retirement of instructions, and thus, does not cause serious
problems.



A TCHC with Highly Efficient Low-Power Mode 217

3.3 Switching from LP to HP Mode

The switching from the LP to HP mode is performed by (1) initializing a register
alias table (RAT), and (2) restarting OoO execution. Unlike CC, DM-FXA does
not incur a penalty when switching from the LP to HP mode.

The RAT must be initialized before returning to the HP mode because the
register values are rearranged when switching modes. In this case, the RAT is
initialized because each logical register number points to the same number of
a physical register entry. This initialization can be performed in parallel with
execution in the LP mode because the LP mode does not use the RAT.

3.4 Execution Correctness

When switching from the LP to HP mode, unlike CC, it is not necessary for DM-
FXA to wait for the instructions to retire from the pipeline. In this behavior, the
execution correctness in DM-FXA is still maintained. For describing the reason,
we refer to instructions fetched in LP and HP mode as LP and HP instructions,
respectively.

In the LP mode of DM-FXA, ROB and LSQ entries are not allocated to LP
instructions; consequently, if HP instructions are executed before the execution
of all LP instructions, the correctness of execution is not maintained.

However, HP instructions do not overtake LP instructions in execution.
Figure 4 shows the switching of an execution mode from the LP to HP mode,
and both LP and HP instructions simultaneously exist in the pipeline. The ovals
labeled as LP and HP show LP and HP instructions respectively, and the instruc-
tions are arranged from right to left in the program order.

The left-sided HP instructions cannot be dispatched to IQ in OXU before all
the right-sided LP instructions are executed because all the instructions must
proceed in order in the frontend pipeline including IXU. As a result, when HP
instructions are dispatched to IQ in OXU, all the LP instructions have been
completed to maintain execution correctness.

Fig. 4. Switching from LP to HP mode.



218 Y. Chidai et al.

3.5 LP Mode Utilization

DM-FXA can get more opportunities to perform LP mode execution than CC
without performance degradation for the following reasons:

1. As described above, DM-FXA can switch from the LP to HP mode without
incurring the switching penalty. As a result, compared with CC, execution
cycles in which the core is stopped due to the switching penalty are reduced,
and more instructions can be executed by LP mode.

2. As described in Sect. 2.2, the IXU has the higher capability than an InO
processor. Since the LP mode of DM-FXA leverages the IXU, the LP mode
of DM-FXA has higher performance than LP mode of CC using a normal
InO processor.

The evaluation results in Sect. 4.2 show that DM-FXA can execute about 3 times
more instructions in LP mode than CC with the same performance.

3.6 Hardware Cost

The additional hardware cost of DM-FXA compared with FXA is mainly com-
posed of switching control hardware that is almost the same as that for CC. The
circuit area and energy consumption of this additional hardware are negligible
compared with those of the whole processor [6,7].

4 Evaluation

4.1 Evaluation Environment

We evaluate the IPCs using an in-house cycle-accurate processor simulator. Sim-
ilar to gem5 [16], this simulator is execution driven, but it more accurately sim-
ulates dynamic scheduling in OoO processors, such as a replay mechanism on
cache misses. We evaluate the energy consumption using the McPAT simulator
[17], with the parameters shown in Table 1.

We use the programs from the SPEC CPU 2006 INT benchmark suite [18].
The programs were compiled using GCC 4.5.3 with “-O3” option. We skipped
the first 2G instructions, and evaluate the next 100M instructions using ref
data sets. These benchmarks and evaluated instructions are basically the same
as those used in prior CC-related studies [6,7].

Table 1. Device configurations

Technology 22 nm, Fin-FET

Temperature, VDD 320 K, 0.8 V

Device type (core) High performance (I off: 127 nA/um)

Device type (L2) Low standby power (I off: 0.0968 nA/um)



A TCHC with Highly Efficient Low-Power Mode 219

Table 2. Processor configurations.

BASE/CC(OoO) FXA/DM-FXA CC(InO)

Fetch width 3 ← ←
Issue width 4 2 3

Retire width 3 ← N/A

Function unit ALU:2, FPU:2, MEM:2 ← ALU:2, FPU:1, MEM:1

IQ 64 entries 32 entries N/A

Ld./St. queue 32/32 entries ← N/A

ROB 128 entries ← N/A

I/D TLB 64/64 entries ← ←
u-op cache 4KB, one cycle ← ←
L1 I-cache 48KB, two cycles ← ←
L1 D-cache 32KB, two cycles ← ←
L2 cache 512KB, 12 cycles ← ←
L2 prefetcher Stream prefetcher ← ←
Main memory 200 cycles ← ←
IXU N/A 5 FUs, 3 stages [8] N/A

ISA Alpha ← ←

We evaluate the following models:

BASE: A baseline model for an OoO superscalar processor.
CC5: A CC model with an execution mode selection algorithm proposed in [7].

As in previous studies, we use a trace-based phase predictor with a 9-bit index
and the corresponding 512-entry PHT. The switching length [7] is set to 500
instructions. In this model, the allowable increase rate for the execution cycles
is set to 1.05 (5% slowdown) from BASE, as in previous studies [6,7].

CC10: This model is CC5 with an allowable increase rate of 1.1 (10% slowdown).
FXA: An FXA model with an IQ with issue width and half the capacity of those

in BASE because the IXU filters instructions to the IQ without performance
degradation, as described in Sect. 2.2.

DMFXA5: A DM-FXA model with the same mode selection algorithm of the
CC models. The length of the switching interval is set to 500 instructions. In
this model, the allowable increase rate is set to 1.05 (5% slowdown), not from
BASE, but from FXA. This model has a comparable IPC to that of BASE
because the IPC for FXA is 6.8% higher than that for BASE, as described in
Sect. 2.2. The IQ in this model is also half that in BASE.

DMFXA10: This model is DMFXA5 with an allowable increase rate of 1.1 (10%
slowdown). For the same reason as in DMFXA5, this model has almost same
IPC as CC5.

Table 2 lists the configurations for these models. The parameters are based on
those in ARM big.LITTLE architecture, which consists of ARM Cortex-A57 [19]
and A53 [20]. The InO backend used in CC5 is a three-issue in-order superscalar
processor. These configurations are similar to those used in prior FXA studies [8].



220 Y. Chidai et al.

4.2 Evaluation Results

Control Accuracy and Performance. First, we evaluate the performance
control accuracy for each model. The average error rates for CC5, CC10,
DMFXA5, and DMFXA10 are 0.35%, 0.15%, 0.28%, and 0.55%, respectively.
Thus, the performance follows each target performance with high accuracy.
These results show that the mode selection algorithm for CC can be also appli-
cable to DM-FXA with high control accuracy.

Figure 5 shows the performance of all models, normalized by that of BASE.
As mentioned above, the performance of FXA is 6.8% higher than BASE, on
average. Therefore, DMFXA5 has almost the same performance as BASE, and
DMFXA10 has almost the same performance as CC5. Compared to BASE, the
performance levels of CC5 and DMFXA10 are 95.2% and 96.8%, respectively.

LP Mode Utilization. Figure 6 shows the rate of instructions executed in LP
mode. The use rate in CC5 is 21.7%, on average, whereas that of DMFXA5, which
has the same 5% slowdown rate as CC5, is 38.0%, on average. Moreover, the use
rate for DMFXA10, the performance of which is nearly equal to that of CC5,

Fig. 5. IPC relative to BASE.

Fig. 6. LP mode use rate.



A TCHC with Highly Efficient Low-Power Mode 221

Fig. 7. Energy consumption relative to BASE. Fig. 8. PER relative to BASE.

is 60.0%. Such improvements are achieved by the following reasons: (1) DM-
FXA can reduce the switching penalty compared to CC and (2) since IXU has
better performance than normal in-order execution, it gives more opportunities
to execute LP mode than CC (Sect. 3).

Energy Consumption. Figure 7 shows the energy consumption of each model
relative to that of BASE, on average. These results include static and dynamic
energy consumption.

DMFXA10 reduces the energy consumption by 34.7% compared with BASE
because the energy consumption of the units for OoO execution, such as IQ, LSQ,
RF and a rename logic, is significantly reduced. DMFXA10 reduces energy con-
sumption by 28.5% compared with CC5, which has almost the same performance
as DMFXA10. This is because the use rate of LP mode increases significantly,
as described before. DMFXA10 reduces energy consumption by 14.2% compared
with FXA, because the energy consumption of the components that the FXA
must continue activating, such as the rename logic (Sect. 3.1), is reduced in the
LP mode of DM-FXA.

Note that the breakdown of BASE is very similar to that in AMD Steamroller
[21] and ARM Cortex A15 [22]. The energy consumption of the L2 cache is very
small in all the models. This is because we use Fin-FET technology [23] and
low-standby-power transistors for the L2 caches (Table 1), and consequently, the
static energy consumption of the L2 caches is very small.

Performance Energy Ratio. This section shows the performance-energy ratio
(PER) of each model, which is equal to the inverse of the energy-delay prod-
uct (EDP)1. The PER shows how each model reduces energy consumption with
respect to its performance degradation. Figure 8 shows the PER of each model
relative to that of BASE. In the figure, DMFXA10 improves the PER compared
to BASE, CC10, and FXA by 41.5%, 24.1%, and 12.1%, respectively. This high

1 We use a PER instead of an EDP because it is easy to understand. That is, a larger
PER shows better energy efficiency.



222 Y. Chidai et al.

PER is achieved because DMFXA10 significantly reduces the energy consump-
tion compared to its performance degradation. Noted that FXA has the better
PER than its reduced energy consumption, because FXA does not degrade but
improves performance [8].

Switching Penalty. In the DM-FXA, there is no penalty for switching from
LP to HP mode; thus, the number of penalty cycles per switch is smaller than
that of the CC. The number of average penalty cycles per switch is 56 cycles for
the CC and 32 cycles for the DM-FXA, respectively. As described in Sect. 3.5,
DM-FXA takes advantage of this short penalty and increases the number of
instructions executed in the LP mode

5 Related Work

Typical HMCs include heterogeneity based on the difference in the micro-
architecture between the cores, such as InO and OoO cores [1–5]. Other methods
have also been proposed with heterogeneity based on the DVFS control [3,24].

Unlike the naive HMCs, TCHCs have tightly coupled heterogeneous exe-
cution units within a single core. Therefore, TCHCs perform energy-efficient
execution at a finer granularity. We summarize this research in the following
paragraphs.

The heterogeneous block architecture (HBA) [9] improves energy efficiency
by caching dynamically scheduled instructions and executing the cached instruc-
tions InO. DynaMOS [10] also caches scheduled instructions and executes them
InO. DynaMOS is based on the CC architecture and improves the InO backend
execution ratio by executing the scheduled instructions in the InO backend. Com-
pared with our proposed method, these methods require special mechanisms,
such as a special trace cache for storing scheduled instructions and additional
renaming logic.

Early OoO late execution (EOLE) [12] is similar to the FXA in that EOLE
executes instructions InO using FUs added to the frontend. EOLE must also
continue activating components for OoO execution for the same reason as the
FXA, and consequently, the reduction of consumed energy is restricted compared
with that of the DM-FXA.

6 Conclusion

The CC and FXA introduce heterogeneity within a single core and were pre-
viously proposed for to improve energy efficiency. However, these TCHCs have
problems with their switching latency hardware, and the amount of energy con-
sumption reduction is insufficient. In order to resolve these problems, we pro-
posed the DM-FXA, which is based on the FXA and has an LP mode. In our
evaluation, our proposed method achieved a reduction in energy consumption
by 34.7%, with a 3.2% performance overhead in comparison with a conventional
superscalar processor.



A TCHC with Highly Efficient Low-Power Mode 223

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
16H05855.

References

1. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
heterogeneous multi-core architectures: the potential for processor power reduction.
In: Proceedings of the 36th Annual International Symposium on Microarchitecture
(MICRO), pp. 81–92, December 2003

2. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In: Proceedings of the 3rd Conference on Computing Frontiers,
pp. 29–40, May 2006

3. Rangan, K.K., Wei, G.Y., Brooks, D.: Thread motion: fine-grained power man-
agement for multi-core systems. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture, pp. 302–313, June 2009

4. Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Bottleneck identification and
scheduling in multithreaded applications. In: Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp. 223–234, April 2012

5. Greenhalgh, P.: Big.LITTLE Processing with ARM Cortex-A15 and Cortex-A7.
Whitepaper, September 2011

6. Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F.M., Dreslinski, R., Wenisch,
T.F., Mahlke, S.: Composite cores: pushing heterogeneity into a core. In: Pro-
ceedings of the 45th Annual International Symposium on Microarchitecture, pp.
317–328, December 2012

7. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: Trace based phase predic-
tion for tightly-coupled heterogeneous cores. In: Proceedings of the 46th Annual
International Symposium on Microarchitecture, pp. 445–456, December 2009

8. Shioya, R., Goshima, M., Ando, H.: A front-end execution architecture for high
energy efficiency. In: Proceedings of the 47th Annual International Symposium on
Microarchitecture, pp. 419–431, December 2014

9. Fallin, C., Wilkerson, C., Mutlu, O.: The heterogeneous block architecture. In:
Proceedings of the International Conference on Computer Design (ICCD), pp.
386–393, October 2014

10. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: DynaMOS: dynamic sched-
ule migration for heterogeneous cores. In: Proceedings of the 48th International
Symposium on Microarchitecture, December 2015

11. Khubaib, Suleman, M.A., Hashemi, M., Wilkerson, C., Patt, Y.N.: MorphCore: an
energy-efficient microarchitecture for high performance ILP and high throughput
TLP. In: Proceedings of the 45th Annual International Symposium on Microarchi-
tecture, pp. 305–316, December 2012

12. Perais, A., Seznec, A.: EOLE: paving the way for an effective implementation of
value prediction. In: Proceeding of the 41st Annual International Symposium on
Computer Architecture, pp. 481–492, June 2014

13. ARM: ARM Unveils its Most Energy Efficient Application Processor Ever; Rede-
fines Traditional Power And Performance Relationship With big.LITTLE Process-
ing (2011)

14. Weste, N.H.E., Harris, D.M.: CMOS VLSI Design: A Circuits and Systems Per-
spective, 4th edn. Pearson/Addison-Wesley, Boston (2011)



224 Y. Chidai et al.

15. Golden, M., Arekapudi, S., Vinh, J.: 40-Entry unified out-of-order scheduler and
integer execution unit for the AMD Bulldozer x86-64 core. In: Proceedings of the
International Solid-State Circuits Conference (ISSCC), pp. 80–82, February 2011

16. Binkert, N.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7
(2011)

17. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
McPAT: an integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In: Proceedings of the 42nd Annual International
Symposium on Microarchitecture, pp. 469–480, December 2009

18. The Standard Performance Evaluation Corporation: SPEC CPU 2006 Suite.
http://www.spec.org/cpu2006/

19. Bolaria, J.: Cortex-A57 Extends ARM’s Reach. Microprocessor Report 11/5/12-1,
November 2012

20. Krewell, K.: Cortex-A53 Is ARM’s Next Little Thing. Microprocessor Report
11/5/12-2, November 2012

21. Gillespie, K., et al.: Steamroller: an x86-64 core implemented in 28nm bulk CMOS.
In: International Solid-State Circuits Conference (ISSCC). Presentation Slides
(2014)

22. NVIDIA: NVIDIA Tegra 4 Family CPU Architecture. Whitepaper (2013)
23. Auth, C., et al.: A 22 nm high performance and low-power CMOS technology

featuring fully-depleted tri-gate transistors, self-aligned contacts and high density
MIM capacitors. In: Symposium on VLSI Technology (VLSIT), pp. 131–132 (2012)

24. Lukefahr, A., Padmanabha, S., Das, R., Dreslinski Jr., R., Wenisch, T.F., Mahlke,
S.: Heterogeneous microarchitectures trump voltage scaling for low-power cores. In:
Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pp. 237–250, July 2014

http://www.spec.org/cpu2006/

	A Tightly Coupled Heterogeneous Core with Highly Efficient Low-Power Mode
	1 Introduction
	2 Existing TCHC Architecture
	2.1 Composite Core
	2.2 Front-End Execution Architecture

	3 Dual-Mode Front-End Execution Architecture
	3.1 Implementation of LP Mode
	3.2 Switching from HP to LP Mode
	3.3 Switching from LP to HP Mode
	3.4 Execution Correctness
	3.5 LP Mode Utilization
	3.6 Hardware Cost

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References




