
Operational Characterization of Weak
Memory Consistency Models

M. Senftleben(B) and K. Schneider

TU Kaiserslautern, 67653 Kaiserslautern, Germany
{senftleben,schneider}@cs.uni-kl.de

Abstract. To improve their overall performance, all current multicore
and multiprocessor systems are based on memory architectures that
allow behaviors that do not exist in interleaved (sequential) memory
systems. The possible behaviors of such systems can be described by so-
called weak memory consistency models. Several of these models have
been introduced so far, and different ways to specify these models have
been considered like axiomatic or view-based formalizations which have
their particular advantages and disadvantages. In this paper, we propose
the use of operational/architectural models to describe the semantics of
weak memory consistency models in an operational, i.e., executable way.
The operational semantics allow a more intuitive understanding of the
possible behaviors and clearly point out the differences of these models.
Furthermore, they can be used for simulation, formal verification, and
even to automatically synthesize such memory systems.

Keywords: Memory models · Weak memory consistency
Processor architecture · Memory architecture

1 Introduction

Historically, computer architectures were considered to consist of a single proces-
sor that is connected with a single memory via a bus (von Neumann architecture;
1945). The sequentialization of the read and write operations via the single bus
ensured that each read operation returns the value most recently written to the
corresponding memory location and that we can at all define the most recently
written value. Even if the processor of such a computer architecture would be
used to execute multiple processes by interleaving their executions, the memory
operations would still take place one after the other and will therefore form a
sequence where all memory operations are totally ordered.

Nowadays, essentially all computer architectures consist of multicore proces-
sors or even multiple processors which share a common main memory. Early
multiprocessor systems still connected multiple processors via a single bus with
the shared memory. This way, processors had to compete for bus access that
still enforced an ordering of the memory operations in a linear sequence. Mod-
ern multiprocessor systems, however, are based on much more complex memory
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 195–208, 2018.
https://doi.org/10.1007/978-3-319-77610-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_15&domain=pdf
http://orcid.org/0000-0003-3360-2887
http://orcid.org/0000-0002-1305-7132

196 M. Senftleben and K. Schneider

architectures that do not only make use of caches with cache coherence protocols,
but also add further local memories to improve their performance. In particular,
the use of local store buffers between the processor cores and the caches allows
a significantly faster execution: Using store buffers, processors simply ‘execute’
store operations by putting a pair consisting of an address and a value to be
stored at that address in a FIFO buffer. The processor can then continue with
the execution of its next instruction and may consult its own store buffer in case a
later load operation is executed. The store buffer will execute its store operations
as soon as it is given access to the main memory. This avoids idle times due to
waiting for the bus access for each store operation and allows a faster execution
in general. However, since processors cannot see the store buffers of other pro-
cessors, they will temporarily have different views on the shared memory. Note
that after the store buffers were finally emptied, the cache coherence protocol
ensures a coherent view on the shared memory, but before that point of time, the
different views that exist due to the contents of the local store buffers allow exe-
cutions that are otherwise impossible. For this reason, one speaks about weakly
consistent memory models that do not impose as strong constraints as the tra-
ditional sequential memory models that just interleaved the memory operations
of different processors.

Store buffers are one – but not the only – reason that lead to the introduction
of weak memory consistency models [1,12,15,27]. For example, in distributed
computer systems, the single memory is replaced by multiple distributed memo-
ries which can be specific to single processors or can be shared with all or some
other processors. Depending on the implemented memory architecture, very dif-
ferent weak memory models were developed through the past decades, and some
of them may lead to behaviors that are really unexpected by the programmers.
It is therefore very important that the designers of modern computer systems
are able to describe the potential memory behaviors of their systems in a precise
but yet comprehensive way so that the programmers are able to determine when
memory synchronization is required in their programs.

Memory consistency models have been defined in different ways: First
descriptions of weak memory models were just given in natural language and
were therefore often ambiguous. In fact, such ambiguous descriptions lead to
non-equivalent versions of the processor consistency model [3,10].

Another way to define a memory consistency model is the so-called view-
based approach where the different views processors may have during the execu-
tion of a multithreaded program are formally specified. From the viewpoint of a
particular processor, this is usually done in that one has to determine which of
the memory operations of other threads have to be interleaved with the memory
operations of the own thread to define its local view. For example, for PRAM
consistency, one would have to consider all store operations of all other threads,
but not their load operations, while for other memory models other sets of store
operations may be considered. The view-based approach can also be defined from
the viewpoint of the memory, providing rules for the ordering of all operations
as observed by the main memory. View-based definitions are quite popular, and

Operational Characterization of Weak Memory Consistency Models 197

[27] showed how most of the existing weak memory models can be defined in this
way. The authors of [27] even managed to organize many weak memory models
in a hierarchy regarding their weakness, and they could describe most of the
weak memory models systematically as combinations of four basic constraints.

However, the view-based approach remains quite abstract and formal, and
while being precise for a formal analysis [9], it is not comprehensive enough to
serve as a general description for programmers. A slightly different approach has
been followed by the SPARC memory models TSO and PSO that are described
in an axiomatic way [28]. Also being view-based in principle, these weak memory
models were specified by just a few axioms that can be directly used for formal
reasoning about the potential executions of a multithreaded system. While also
lacking of comprehensiveness, these descriptions are much more succinct, and
allow one to directly make use of formal verification that is not that directly
applicable when the views are defined by a couple of total or partial orders.

More recent efforts made use of theorem provers to specify weak memory
models, using e.g., higher order logic [18,22] or temporal logic [25]. The moti-
vation for this choice is to ensure the well-definedness of the given non-trivial
formalization, and to directly reason about properties of the specified memory
models with verification tools. However, also these approaches tend to be too
difficult to be used as a reference for programmers.

From programming languages, it is well-known that besides the axiomatic
and denotational semantics, the operational semantics is often preferred for defin-
ing simulators or virtual machines [6]. Usually, programmers also prefer opera-
tional semantics, obviously since that kind of semantics directly determines how
the programs are executed. Operational semantics are therefore usually the best
means to define programming models.

In this paper, we therefore advocate the use of operational semantics for the
specification of weak memory consistency models. We believe that operational
semantics may also lead to formally precise, but still comprehensive specifica-
tions of weak memory consistency models that might be preferable for program-
mers. To specify such an operational description, one has to define for each weak
memory model an abstract memory architecture with load/store ports for the
processors. These operational/architectural models can be described using mod-
ern system-level languages to obtain precise and executable models. Using these
operational models in teaching, we found that students were able to much bet-
ter and quicker understand the subtle differences between the memory models.
Moreover, our operational models can be directly used for simulation, formal
verification, and also for synthesis. In particular, we will list such operational/
architectural models for the important memory consistency models described
in literature [5,10,14,16]. These reference architectures are obtained by directly
deriving implementations of memory systems from the definitions of their mem-
ory consistency model. The resulting reference machines do not claim to be effi-
cient (for synthesis), but minimal in terms of different components and structures
to simplify verification of correctness and completeness of the implementation.

198 M. Senftleben and K. Schneider

The outline of the paper is as follows: In the next section, we briefly review
related work and then define some weak memory models according to [27].
Section 4 contains the core of this paper where we present operational archi-
tectures for the models considered before. Finally, we discuss future work with
preliminary conclusions.

2 Related Work

Comprehensive introductions to memory consistency models are [1,19]. Refer-
ence [20] provides a good overview over many of the models known at that time
and compares these with each other.

The formalism and some of the definitions used in this publication are based
on [27] which introduced a systematic framework for view-based definitions for
many common memory consistency models and revealed the relations between
different memory models. In the next section, we list four of the many weak mem-
ory models of [27] which are described in an operational way afterwards. Sim-
ilarly, [2,4] provided unified formalizations for multiple memory models. Other
work on view-based definitions include [3,5]. Reference [26], on the other hand,
introduces a framework for axiomatic definitions.

In our own previous work, we analyzed in [8,9] the complexity of testing
whether given execution traces comply with a certain memory model. Similar to
this publication, [13] provided definitions and comparisons of several consistency
models and defined machines for the models.

The only previous works we are aware of that made also use of operational
semantics were Lipton and Sandberg [16] who provided an implementation for
PRAM by defining its structure and communication rules. Recently, [7] described
the semantics of the ARMv8 multiprocessor architecture with an operational
approach. Our approach is more general, and claims to have the potential to be
used to describe most known weak memory models in an operational, and thus
comprehensive way.

3 View-Based Definitions of Memory Consistency Models

In this section, we adapt the terminology introduced by Steinke and Nutt in [27]
to provide formal definitions of four weak memory consistency models. Note that
this formalism does not describe the multithreaded system in an executable/op-
erational way. Instead, it just determines the set of possible executions in terms
of possible traces of memory operations, but does not explain how or why these
were generated. In the next section, we will then provide operational models for
the memory models considered in this section.

In this setting, a memory operation is expressed as a quadruple (o, p, l, v)
where o is either a read or write operation, p is the process id of the process
executing the operation o, l is the memory location (address), and v is the value
read or written. The local order relation <i reflects the execution order of all
memory operations of process Pi in that it orders the operations according to the

Operational Characterization of Weak Memory Consistency Models 199

program code of the process. The process order <P is the conjunction
∧

i∈P <i

of all local order relations. Definitions of memory models can then be given in
the following form:

∀i∈P∃SerialV iew (<| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

which means that for each process Pi, there must exist a serial view on all its own
operations (using wildcards (∗, i, ∗, ∗)) and all write operations of all processes
((w, ∗, ∗, ∗)) which respects the ordering <. A serial view is thereby a total
order � over the given set of operations and a superset of the provided relation
<. Furthermore, in a serial view �, the memory value of each read operation has
to correspond to the most recent write operation to that location with respect
to �. This implicitly defines the writes-to order w �→ r which maps each read
operation r to the write operation it reads from.

3.1 Local Consistency

Local consistency was first defined by Heddaya and Sinha [11] as the weakest
constraint that could be required of a shared memory system. In a locally con-
sistent system, each process observes its own operations in local order while
all other operations may be observed in an arbitrary order. Different processes’
orders are not related at all in this memory model. Local consistency [5,11] can
be expressed in the introduced formalism as follows [27]:

∀i∈P∃SerialV iew (<i| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)) .

3.2 Cache Consistency (CC)

In 1989, Goodman [10] provided a definition for cache consistency, which he
called weak consistency since he assumed that it is the weakest form of memory
consistency. Furthermore, he expected that no synchronization guarantees could
be given in cache consistency. Meanwhile, both assumptions have been proven
wrong by the existence of weaker models and algorithms that can ensure mutual
exclusion in weaker models like slow consistency. Cache consistency [10] can be
defined as follows, which means that each process observes the same ordering on
memory operations regarding the same memory location, but processes may see
operations regarding different memory locations in different orders:

∀x∈V ∃SerialV iew (<P | (∗, ∗, x, ∗))

3.3 Pipelined-RAM (PRAM) Consistency

One of the first well known weak memory models described was PRAM
(Pipelined RAM) which was presented 1988 by Lipton and Sandberg [16,17].

200 M. Senftleben and K. Schneider

They show that their shared memory system PRAM scales better than sequen-
tially consistent systems as it is immune to high network latency. Additionally,
synchronization costs remain low while performance increases significantly. Due
to its informal textual definition, there exists an interpretation of Ahamad
et al. [3], and another slightly different one by Mosberger [21] as shown in [24].
PRAM consistency based on Ahamad et al. [3] can be expressed as follows:

∀i∈P∃SerialV iew (<P |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

In a PRAM consistent execution, every process observes all the writes of all
other processes in the order they were issued. However, different processes may
see the writes of the other processes in a different order. A system implementing
PRAM consistency therefore only has to ensure that the communication from
one process to another does not reorder or lose writes, while the transmission
delay between processors is arbitrary.

3.4 Sequential Consistency (SC)

While technically not a weak model, we include sequential consistency as defined
by Lamport [14] as a base reference. Sequential consistency has been the pre-
ferred memory model for programmers since it just considers the interleaving
of the single thread executions. The definition of sequential consistency [14] as
expressed by [27] is:

∃SerialV iew (<P |(∗, ∗, ∗, ∗))

which means that a system is sequentially consistent if for all executions, there
exists a corresponding sequential order for all operations which respects the
process order.

4 Operational Definitions of Memory Consistency Models

This section contains the main contribution of our paper, i.e., the operational/
architectural characterizations of the four weak memory models described in the
previous section. To this end, we provide reference machines for each one of these
memory models, and discuss then their correctness and completeness, i.e., that
these reference machines can only execute computations that belong to the con-
sidered memory model (correctness), and that the reference machine can execute
all computations that belong to the considered memory model (completeness).
We have also developed reference machines for other memory models during our
research [24] but these cannot be included in this paper due to lack of space.

In order to discuss these reference machines, we first introduce some common
basic components in the next section. Then, the reference machines are presented
and their correctness and completeness are briefly discussed. Finally, further
details on the actual implementation in the synchronous language Quartz [23]
are given.

Operational Characterization of Weak Memory Consistency Models 201

4.1 Basic Components

The reference machines in this section are constructed with the basic components
described in this section.

FIFO: The FIFO component is a First-In-First-Out Buffer which buffers mem-
ory operations as tuples. It holds the operation type (read or write), the issuing
process’ id, the memory address, and in case of a write operation the value to
be written. The component’s interface is defined as follows:
module FIFO(

event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & targe t & value
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ? inp ,
// output : writeCommand & targe t & value
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ! outp

)

The outputs isempty and isfull signal the current state of the buffer. Both data
channels inp and outp consist of a valid flag, the id of the originating processor,
the memory location to write to and the actual value to write. Adding an entry
to the buffer is handled by input signal push while providing the data to inp.
Similarly, removing the first entry of the buffer is handled by input signal pop
and reading data from outp.

BAG: The BAG component shares the same interface as the FIFO component
but slightly differs in its semantics: While the FIFO component will always
return and remove the oldest entry when signal pop is set, the BAG component
may non-deterministically return and remove any stored entry.

MEM: The memory unit MEM stores the latest write to a location and returns
for read operations the most recently written value of a location.

In the next subsections, we discuss reference machines for local consistency,
cache consistency, PRAM consistency, and sequential consistency. To that end,
we will first describe the architecture of the reference machine using the above
mentioned basic components. After this, we briefly discuss the correctness and
completeness of the given reference machine, where correctness means that all
computations of our reference machine belong to the considered weak mem-
ory consistency model, and conversely, completeness means that our reference
machine can simulate all possible executions of the considered weak memory
consistency model. Hence, the reference machines exactly characterize the weak
memory consistency model in an operational/architectural manner.

202 M. Senftleben and K. Schneider

Fig. 1. Reference machine for local consistency

4.2 Reference Machine for Local Consistency

Architecture: The implementation of the reference machine for local consis-
tency is shown in Fig. 1 for a given set P of n processes and m memory locations.
For each process Pi ∈ P , the memory system has a distributor Disti, an arbiter
Arbiteri, a memory unit Memi, a FIFO buffer FIFOi, and n−1 different BAG
structures BAGi,j with j ∈ {1, . . . , n}, j 	= i. A distributor Disti broadcasts
received writes to its FIFOi, and all corresponding BAGj,i, j ∈ {1, . . . , n}, j 	= i,
and sends all received reads to its FIFOi. The arbiters nondeterministically
decide to idle or to nondeterministically choose a read from the connected FIFO
and BAG structures. Any operation read from the selected FIFO or BAG is
forwarded to the memory unit.

Correctness: By construction, a process’ own memory operations are kept in
order in the FIFO maintaining <i. The arbiters generate a serial view covering
all own ordered operations and all others’ write operations.

Completeness: Consider now an arbitrary locally consistent execution.
According to its definition, a serial view exists for each process. Now, the arbiter
can choose to read from the BAG/FIFO structures as the order of the serial
view suggests, or to idle as long as the next required value is not yet available.
The given architecture allows to wait until the required values are available and
therefore covers the required behavior.

Operational Characterization of Weak Memory Consistency Models 203

Fig. 2. Reference machine for cache consistency

4.3 Reference Machine for Cache Consistency

Architecture: The implementation of the reference machine for cache con-
sistency is shown in Fig. 2 for a given set P of n processes. For each process
Pi ∈ P , the memory system has a distributor Disti, a receiver Reci, and m
different FIFO buffers FIFOi,j for j ∈ {1, . . . , m}. For each memory cell Mj ,
the memory system provides a memory unit Memj and an arbiter Arbiterj . A
distributor Disti passes the received memory command for memory cell Mj to
the corresponding FIFOi,j . The arbiters choose nondeterministically from the
connected FIFOs to read from. The memory unit returns the result of a read
operation to the receiver Reci of process Pi. The receiver Reci receives reads for
its process and returns them to the process’ data interface.

Correctness: The use of FIFO buffers ensures by construction that the read
and write operations regarding a specific memory location of each process are
kept in order (maintains ≤PO per variable). Therefore, each arbiter Arbiterj
constructs a serial view on all read and write operations regarding its memory
location j.

Completeness: Consider now an arbitrary cache consistent execution. If each
arbiter selects its action according to the executions’ serial view corresponding
to its memory location, then the resulting writes-to order �→ is the same as the
one of the assumed execution. As no memory operations are lost, and the serial
views adhere to the process order, it cannot be the case that the next required
value is stuck behind another value in one of the FIFOs. Therefore, each arbiter
can idle until eventually the next required operation will be available at the head
of one of the connected FIFOs.

204 M. Senftleben and K. Schneider

Fig. 3. Reference machine for PRAM consistency

4.4 Reference Machine for PRAM Consistency

As can be seen in Fig. 3, the reference machine for PRAM consistency provides a
single memory for every process, so that this kind of memory model is typically
found in distributed computing.

Architecture: The implementation of the reference machine for PRAM consis-
tency is shown in Fig. 3 for a given set P of n processes. For each process Pi ∈ P ,
the memory system has a distributor Disti, an arbiter Arbiteri, a memory unit
Memi, and n different buffers FIFOi,j for j ∈ {1, . . . , n}. A distributor Disti
broadcasts received writes to all corresponding FIFOi,j for j ∈ {1, . . . , n}, and
sends all received reads to its FIFOi,i. The arbiters choose nondeterministically
from the connected FIFOs.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining ≤PO). The arbiter
takes elements from the top of a FIFO buffer and issues the operation to the
memory unit. Therefore, the arbiter constructs a serial view on write operations
of all processes and the read operations of its corresponding process.

Completeness: Consider now an arbitrary PRAM execution. If each arbiter
selects its actions according to the execution’s serial view corresponding to its
process, then the resulting writes-to order �→ is the same as the one of the
assumed execution. As said before, as no writes are lost and an arbiter can always
wait until the required value is available, every PRAM consistent execution is
covered by the reference machine.

Operational Characterization of Weak Memory Consistency Models 205

Fig. 4. Reference machine for sequential consistency

4.5 Reference Machine for Sequential Consistency

Architecture: Figure 4 shows an implementation of a reference machine for a
sequential consistency. It consists of a FIFO buffer for each connected process,
which are directly connected to their process interface, an arbiter which selects
nondeterministically from all FIFOs and passes the operations to the memory
unit or otherwise idles. The memory unit passes processed reads to the process
that issued the read operation.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining ≤PO). The arbiter
generates a serialization of all memory operations while maintaining the process
order and therefore satisfies sequential consistency.

Completeness: If an arbitrary execution is sequentially consistent, then a serial
view exists for all memory operations which respects <P . If the arbiter uses
this view to make its nondeterministic choices, then the resulting behavior is
equivalent to the considered execution. Consequently, all sequentially consistent
executions are covered by the given reference machine.

206 M. Senftleben and K. Schneider

4.6 Implementation of Reference Machines

We have implemented all reference machines discussed in the previous sections
as well as many others in the synchronous programming language Quartz [23].
The complete implementations can be found in [24].

To test their correctness, programs like Dekkers mutual exclusion protocol
and programs derived from memory model litmus test suites have been success-
fully run on the presented reference machines.

While the introduced reference machines require unbounded buffers and true
nondeterminism to guarantee the completeness of the memory model, their
implementations in a system description language like Quartz have to specify
bounds for such structures. Clearly, since we can determine the required buffer
sizes for each finite execution, it is still possible to ensure the completeness. For
simulation purposes, we can resort to randomizing the nondeterministic choices,
and for verification or coverage checking, those have to be handled by oracle
inputs which are controlled by the underlying tools.

5 Conclusions and Future Work

This paper presents reference machines to characterize weak memory consis-
tency models in an operational manner. We have implemented these reference
machines in the synchronous language Quartz so that their behaviors are pre-
cisely determined by the formal semantics of Quartz. All reference machines
were implemented by means of some basic components that clearly reflect the
intention of the considered memory model. The resulting reference machines are
useful for simulation and verification, and can serve as a comprehensive specifi-
cation that can be used as a programming model.

We have proved the correctness and completeness of our reference machines,
i.e., that the reference machines can only perform computations that belong to
the weak memory model (correctness), and that all possible computations of the
memory model can also be performed by our reference machines (completeness).
Hence, our reference machines characterize the memory models in an operational
manner.

In our future work, we would like to develop reference machines closer to
real implementations. As stated before, the provided implementations aimed
to be both correct and complete following the corresponding definitions. As
a result, their structure is more complex as a real implementation would be,
including both unboundedness and nondeterminism which are not wanted in
real implementations.

Furthermore, as we want to observe the behavior of programs developed for
sequential machines on weak memory models, the memory models were all ana-
lyzed and defined without synchronization operations. Multicore processors offer
synchronization operations for enforcing a desired behavior if needed. Therefore,
it might be of interest to include in future also synchronization operations like
fences in our architectures.

Operational Characterization of Weak Memory Consistency Models 207

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comput. 29(12), 66–76 (1996)

2. Adve, S., Hill, M.: A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst. (TPDS) 4(6), 613–624 (1993)

3. Ahamad, M., Bazzi, R., John, R., Kohli, P., Neiger, G.: The power of processor con-
sistency. In: Snyder, L. (ed.) Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 251–260. ACM, Velen (1993)

4. Alglave, J.: A formal hierarchy of weak memory models. Form. Methods Syst. Des.
(FMSD) 41(2), 178–210 (2012)

5. Bataller, J., Bernabeu, J.: Synchronized DSM models. In: Lengauer, C., Griebl,
M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 468–475. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0002771

6. Bruni, R., Montanari, U.: Models of Computation. Texts in Theoretical Computer
Science. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42900-7

7. Flur, S., Gray, K., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: concurrency and ISA.
In: Principles of Programming Languages (POPL), pp. 608–621. ACM (2016)

8. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory model-aware testing
- a unified complexity analysis. In: Application of Concurrency to System Design
(ACSD), pp. 92–101. IEEE Computer Society, Tunis La Marsa (2014)

9. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory-model-aware test-
ing – a unified complexity analysis. Trans. Embed. Comput. Syst. (TECS) 14(4),
63:1–63:25 (2015)

10. Goodman, J.: Cache consistency and sequential consistency. Technical report 1006,
Computer Sciences Department, University of Wisconsin-Madison, February 1991

11. Heddaya, A., Sinha, H.: Coherence, non-coherence and local consistency in dis-
tributed shared memory for parallel computing. Technical report BU-CS-92-004,
Department of Computer Science, Boston University (1992)

12. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach,
3rd edn. Morgan Kaufmann, Burlington (2003)

13. Higham, L., Kawash, J., Verwaal, N.: Weak memory consistency models - part I:
definitions and comparisons. Technical report 98/612/03, Department of Computer
Science, University of Calgary (1998)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. (T-C) 28(9), 690–691 (1979)

15. Lawrence, R.: A survey of cache coherence mechanisms in shared memory multi-
processors (1998)

16. Lipton, R., Sandberg, J.: PRAM: a scalable shared memory. Technical report CS-
TR-180-88, Princeton University (1988)

17. Lipton, R., Sandberg, J.: Oblivious memory computer networking. Patent US
5276806, January 1994

18. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

19. McKenney, P.: Memory barriers: a hardware view for software hackers, June 2010.
http://www.rdrop.com/users/paulmck

20. Mosberger, D.: Memory consistency models. ACM SIGOPS: Oper. Syst. Rev.
27(1), 18–26 (1993)

https://doi.org/10.1007/BFb0002771
https://doi.org/10.1007/978-3-319-42900-7
https://doi.org/10.1007/978-3-642-31424-7_36
http://www.rdrop.com/users/paulmck

208 M. Senftleben and K. Schneider

21. Mosberger, D.: Memory consistency models. Technical report TR 93/11, Depart-
ment of Computer Science, The University of Arizona, Tucson, Arizona, USA
(1993)

22. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

23. Schneider, K.: The synchronous programming language Quartz. Internal report
375, Department of Computer Science, University of Kaiserslautern, Kaiser-
slautern, Germany, December 2009

24. Senftleben, M.: Operational characterization of weak memory consistency models.
Master’s thesis, Department of Computer Science, University of Kaiserslautern,
Germany, March 2013

25. Senftleben, M., Schneider, K.: Specifying weak memory consistency with temporal
logic. In: Ghazel, M., Jmaiel, M. (eds.) Verification and Evaluation of Computer
and Communication Systems (VECoS). CEUR Workshop Proceedings, vol. 1689,
pp. 107–122. Sun SITE Central Europe, Tunis (2016). http://ceur-ws.org/Vol-
1689/

26. Sindhu, P., Frailong, J.M., Cekleov, M.: Formal specification of memory models.
In: Dubois, M., Thakkar, S. (eds.) Scalable Shared Memory Multiprocessors, pp.
25–41. Kluwer, Dordrecht (1992)

27. Steinke, R., Nutt, G.: A unified theory of shared memory consistency. J. ACM
(JACM) 51(5), 800–849 (2004)

28. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual-Version 9.
Prentice-Hall Inc., Upper Saddle River (1994)

https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
http://ceur-ws.org/Vol-1689/
http://ceur-ws.org/Vol-1689/

	Operational Characterization of Weak Memory Consistency Models
	1 Introduction
	2 Related Work
	3 View-Based Definitions of Memory Consistency Models
	3.1 Local Consistency
	3.2 Cache Consistency (CC)
	3.3 Pipelined-RAM (PRAM) Consistency
	3.4 Sequential Consistency (SC)

	4 Operational Definitions of Memory Consistency Models
	4.1 Basic Components
	4.2 Reference Machine for Local Consistency
	4.3 Reference Machine for Cache Consistency
	4.4 Reference Machine for PRAM Consistency
	4.5 Reference Machine for Sequential Consistency
	4.6 Implementation of Reference Machines

	5 Conclusions and Future Work
	References

