
CaCAO: Complex and Compositional
Atomic Operations for NoC-Based

Manycore Platforms

Sven Rheindt(B), Andreas Schenk, Akshay Srivatsa, Thomas Wild,
and Andreas Herkersdorf

Chair for Integrated Systems, Technical University Munich, Munich, Germany
{sven.rheindt,andreas.schenk,srivatsa.akshay,thomas.wild,

herkersdorf}@tum.de

Abstract. Tile-based distributed memory systems have increased the
scalability of manycore platforms. However, inter-tile memory accesses,
especially thread synchronization suffer from high remote access laten-
cies. Our thorough investigations of lock-based and lock-free synchro-
nization primitives show that there is a concurrency dependent cross-
over point between them, i.e. there is no one-fits-all solution. Therefore,
we propose to combine the conceptual advantages (no retries and lock-
free) of both variants by using dedicated hardware support for inter-tile
atomic operations. For frequently used and highly concurrent data struc-
tures, we show a speedup factor of 23.9 and 35.4 over the lock-based and
lock-free implementations respectively, which increases with higher con-
currency.

Keywords: Atomic operations · Remote synchronization
Compare-and-swap · Distributed shared memory · Network-on-Chip

1 Introduction

In the last decade, the power wall limited the increase of processor frequency.
With the advent of mainstream multicore platforms, this technological prob-
lem was tackled by distributing applications over multiple cores that still used
one common memory. Further scalability was introduced by transitioning to dis-
tributed shared memory architectures to lower memory access contention and
hotspots [1]. An example is our hybrid tiled architecture depicted in Fig. 1, with
Network-on-Chip (NoC)-based interconnect and several bus-connected cores per
tile, sharing a tile local memory.

Most distributed memory platform make use of the Message-Passing-
Interface (MPI) programming model, but there is still a demand for shared
memory programming due to its ease of use [1,2]. But, multicore architectures
in combination with shared memory programming introduce the challenge of pro-
viding atomic memory accesses to local/remote shared data structures. Thread
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 139–152, 2018.
https://doi.org/10.1007/978-3-319-77610-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_11&domain=pdf


140 S. Rheindt et al.

synchronization is even more challenging for distributed shared than for purely
shared memory systems, since the widely used NoC interconnect does not inher-
ently allow for atomic memory accesses. Additionally, distributed shared memory
architectures exhibit non-uniform memory access (NUMA) properties. Applica-
tion performance therefore highly depends on data-to-task locality and efficient
synchronization primitives.

Fig. 1. Hybrid interconnect distributed
shared memory platform with atomics unit

Synchronization can be categorized
into three classes of atomic primitives.
Lock - based primitives atomically
lock the critical section. Classical locks
are often implemented using hardware
support in the form of test-and-set
(TAS) or compare-and-swap (CAS).
Software based lock-free mechanisms
use general-purpose atomic opera-
tions like CAS or linked-load/store-
conditional (LL/SC), which are lock-
free and provided by the underly-
ing hardware often as ISA exten-
sions. Hardware based primitives use
so called special-purpose atomic oper-
ations to implement the whole critical
section in dedicated hardware without
using locks. An example is the class of
fetch-and-ops [3–6].

Due to the NUMA properties of distributed shared memory architectures,
different aspects of synchronization get a new weight. If, for example, an appli-
cation loops over a CAS until it is successful, the retry penalty/NoC travel time
for a failed CAS is much higher for remote than for local operations. Even though
a purely lock-based or lock-free software implementation might be favorable for
a given concurrent data structure in a conventional bus-based system, totally
different results might be true for distributed shared memory architectures.

In this paper, we therefore investigate the effects of lock-based and lock-
free software synchronization primitives on a distributed shared memory archi-
tecture. We further propose special-purpose hardware implementations for effi-
cient remote atomic operations. We couple the advantages of both lock-based
and lock-free primitives with remote execution of the critical section in ded-
icated hardware to tackle the challenge of NUMA operations on distributed
shared memory platforms. We call this combination complex and compositional
atomic operations (CaCAO). We compare our dedicated hardware implementa-
tion to lock-based and lock-free software based variants that use partial hardware
support.

The rest of the paper is organized as follows. We describe the related work
in Sect. 2. In Sect. 3, we analyze and compare existing synchronization prim-
itives and propose the use of complex and compositional atomic operations.



CaCAO: Complex and Compositional Atomic Operations 141

Architectural details of our implemented hardware prototype are given in Sect. 4.
In Sect. 5, we present and discuss our experimental results, before we finally con-
clude this paper and give an outlook to future work in Sect. 6.

2 Related Work

On the one hand, the trend of lock-based synchronization leads towards effi-
cient lock implementations [1,7–9] without support for general purpose atomic
primitives. On the other hand, many - but not all - multicore platforms provide
lock-free synchronization capabilities [2–4,6,10]. For example Mellanox, earlier
Tilera, - who provides one of the modern tile-based architectures - supports the
CAS primitive only for their GX platform [2], not for the Pro platform [11].

Authors in [12] developed the MCS-lock to overcome the performance bot-
tleneck and other limitations of simple, ticket and various queue based spinlocks
[4,7,10,13]. Through spinning on local variables only, they require O(1) network
operations for acquiring a remote lock. The MCS-lock can be efficiently imple-
mented in software, but needs an atomic swap operation for basic functionality
and the CAS primitive to provide full features like FIFO ordering and starva-
tion freedom. This was adopted by the authors of [7,8] in their two consecutive
works on efficient lock-based synchronization for NoC-based distributed shared
memory systems. They transitioned from optimized simple and ticket spinlocks
[8] to MCS-locks [7]. Their lock implementations use a hardware loop for local
polling until acquisition. An atomic fetch-and-inc/dec unit is used to integrate
the ticket spinlock and semaphores. They purely focus on optimizing locks by
performing these atomic operations exclusively on special globally addressable
registers in their synchronization unit and not on arbitrary memory locations.
Apart from the swap instruction, they do not support atomic operations on mem-
ory, especially no lock-free primitives. Authors in [9] basically adopt the same
idea of just optimizing lock implementations for distributed memory. Through
optimized lock queue handling, they avoid head-of-line blocking of independent
synchronization requests.

With the lock-free universal primitives CAS and LL/SC, it is possible to
emulate all other atomic primitives or transform lock-based mechanisms into
lock-free ones [3–6]. Authors in [4] convert operations into purely lock-free vari-
ants using the universal primitive LL/SC and the fetch-and-op primitives, that
are common in modern multicore systems. However, they admit that in general
many lock-free mechanisms can get quite complex. Authors in [3] use a standard
2D-mesh NoC interconnect with one core per tile. They suggest a rather complex
combination of CAS as in-cache implementation together with a write-invalidate
coherence policy and a load-exclusive coherence policy extension to minimize the
CAS operations on memory. Furthermore, they recommend a hardware based
serial number extension for the CAS primitive to tackle the ABA problem and
also suggest a fetch-and-add primitive for efficient counters.

To our knowledge, the related work either optimizes lock-based synchro-
nization with efficient lock implementation or investigates purely lock-free vari-
ants [14,15]. Few provide the special purpose fetch-and-increment primitive for



142 S. Rheindt et al.

remote operations on NoC-based systems [1,3]. However, no dedicated hardware
support for more complex special purpose atomic operations are provided by
state-of-the-art distributed shared memory systems.

3 Complex and Compositional Atomic Operations

We classify synchronization primitives into three main categories, that use dif-
ferent amounts and kinds of hardware support:

(α) Software lock-based: using (efficient) hardware lock support
(β) Software lock-free: using hardware CAS or LL/SC
(γ) Dedicated hardware for whole critical section (wait-free)

In this paper, we first describe and compare (α) and (β). Then we propose to
combine their conceptual advantages by using dedicated hardware support (γ)
for complex and compositional atomic operations (CaCAO approach).

A main attribute of synchronization primitives is the number of retries. An
operation has zero retries, if the read-modify-write cycle is non-conditional. This
means, if there is no interfering concurrency on the data structure that makes
a retry of the operation necessary. This holds true, e.g. for the fetch-and-ops,
but not for the CAS, since the latter only writes back if the read value did not
change in the meantime.

3.1 Comparison of the Synchronization Primitives (α) and (β)

(α) A lock-based software implementation of a given function locks the critical
section (CS) that has to be performed atomically. It uses hardware support like
test-and-set to acquire the lock. Whereas - by design - the critical section inside
the lock has zero retries, the lock acquisition itself does not and is not even wait-
free, since no upper bound for the number of retries until lock acquisition can be
given. However, much research has already been done to provide efficient lock
implementations [1,7–9]. In the following, when we refer to lock-based software
primitives, we therefore use a variant with efficient hardware look support.

(β) Lock-free software implementations of a given function can be achieved
with the lock-free universal primitives CAS or LL/SC, that need to be provided
by the hardware. As their names already suggest, their read-modify-write cycle
is conditional and they therefore are not retry-free. A software loop is needed
to repeat the operation until it is successful. The best-case execution time of a
lock-free software primitive can be one try, if no other party interfered in the
meantime. However, the average execution time is heavily dependent on the
concurrency and the worst-case can even lead to starvation. Therefore, these
lock-free implementations are not guaranteed to be wait-free.

A theoretical comparison between (α) and (β) shows that the best-case
execution time of a lock-free software variant is approximately equal to the
execution time of the critical section of a lock-based variant without the time
for acquiring and releasing the lock. The average time of the lock-free variant is



CaCAO: Complex and Compositional Atomic Operations 143

dependent on the interfering concurrency and the thereby necessary retries (as
well as other factors like run-time background traffic). Whereas for the lock-free
variant the average execution time is linear in the number of retries, the average
lock-based execution time is linear in the number of concurrent contenders for
the lock.

This comparison shows that - whereas in the best-case a lock-free imple-
mentation is always better - in the average case there can be a cross-over point
between the lock-based and lock-free implementations. If the concurrency depen-
dent retry rate is greater than a threshold, the lock-based implementation yields
better performance and vice versa. A design time decision between (α) and (β)
would be necessary by the programmer. In Sect. 6 we talk about a more dynamic
decision making as future work.

3.2 CaCAO Approach (γ)

If one only has (α) and (β), no one-fits-all solution would be available. But we
overcome the deficiencies of both software lock-based (α) as well as software
lock-free (β) implementations by combining their conceptual advantages: zero
retries and lock-freeness.

We propose a dedicated hardware (γ) implementation that outsources and
atomically executes the whole critical section in a dedicated hardware module
(near the memory where the shared data is stored), thereby guaranteeing zero
retries by design. Since an upper bound for the execution time can be given, this
approach is not only lock-free, but also wait-free.

In the best-case, the whole execution (NoC travel time plus atomic read-
modify-write cycles) of the lock-free primitives (β and γ) is approximately as
small as the minimal time for lock acquisition of the lock-based variant (α).
More importantly, the average and worst case times for the proposed dedicated
hardware solution (γ) do not rise much, since no interfering concurrency is pos-
sible and therefore no retries are necessary. Especially for remote accesses the
atomic read-modify-write cycles with constant duration after bus grant are much
shorter than the travel time over the NoC. Even if there are several concurrent
contenders, they cannot interfere one another due to the atomic read-modify-
write cycles in hardware, thereby guaranteeing wait-free operation.

This approach has general validity and outperforms the software lock-based
as well as lock-free variants by design. This local or remote site execution in a
dedicated hardware module (CaCAO approach) helps to tackle the data-to-task
locality problem of distributed shared memory architectures.

In contrast to software based lock-free implementations that might get quite
complex [4], CaCAO does not need atomic operations inside the critical section,
since the atomicity is intrinsically provided by the dedicated hardware module.

However, the disadvantage of this approach is its very application specific
nature due to the need of implementing each needed functionality in dedicated
hardware.

In future work, we plan to further extend the functionality and complexity of
CaCAO. Because of the compositional nature of this approach, various already



144 S. Rheindt et al.

(a) lock-based (b) lock-free (c) dedicated hardware

Fig. 2. Message sequence charts for three types of shared counter implementations

implemented as well as future functionalities of our dedicated hardware module
do and can reuse the same hardware blocks.

For the validation of the concept, we implemented and investigated the widely
used fetch-and-add operation in the use case scenario of a shared counter as well
as dedicated hardware implementations of atomic linked-queue enqueue/dequeue
operations. For both scenarios, we implemented and evaluated all three variants
(α), (β) and (γ) on our FPGA prototype as described in Sect. 5. In the following,
these scenarios are briefly explained and used to show the key differences of the
three synchronization variants.

shared_counter_locked(*lck,*cnt)
// HW support for lock
1 lock(lck);
2 tmp = *cnt
3 tmp++;
4 *cnt = tmp;
5 unlock(lck);

shared_counter_lock_free(*cnt)
// HW support for CAS
1 tmp = *cnt;
2 do{
3 old = tmp;
4 tmp = CAS(cnt, old, old+1);
5 }while(tmp != old);

shared_counter_HW(*cnt)
// HW support for whole CS
1 fetch_and_inc(cnt);

Fig. 3. Pseudo code of shared counter
implementation for the three synchroniza-
tion types

Shared Counter Scenario. The
pseudo source codes for the three
synchronization types for the shared
counter for N cores on several tiles are
given in Fig. 3. In Fig. 2 the message
sequence charts are given.
(α) The lock-based software imple-
mentation first acquires a lock (line 1
in Fig. 3) over the NoC, then remote
reads the counter value (2), increments
it (3) locally and writes the value
back to memory (4) before unlock-
ing (5) the critical section. As can be
seen in Fig. 2(a), the critical section
(CS) inside the lock has zero retries,
whereas the lock acquisition itself may
require several retries. An efficient lock
implementation, as shown for lock2,
lowers these through local polling in
hardware at remote site. For (α), hard-
ware support is only provided for effi-
cient locks.



CaCAO: Complex and Compositional Atomic Operations 145

(β) The lock-free software based implementation reads the counter value non-
atomically (1). Then it performs a compare-and-swap on the counter with the
incremented old value (4). It is successful if the counter value did not change in
the meantime (5). Otherwise, the compare-and-swap is reissued with the updated
old value (2–4). This can be seen in Fig. 2(b). Between the read2 (1) and the
CAS2a (4) from T0 to T1, another CAS1 from T2 to T1 happens and updates
the shared value, so that the CAS2a fails and needs a retry (CAS2b).
(γ) The dedicated hardware implementation uses the atomic fetch-and-increment
mechanism. It is retry-free by definition since the read-modify-write operation is
performed atomically in hardware at remote site by sending the whole operation
there (Fig. 2(c)). It is clear that the fetch-and-add operation is standard in many
CPU ISAs. However, these mostly support only local and no remote memory
operations.

Linked Queue Scenario. A more advanced example is the enqueue and
dequeue operation of a linked-list queue. Without loss of generality, we limit this
scenario to tail-enqueue and head-dequeue operations. The tail-enqueue opera-
tion has to atomically update the tail.next pointer only if the read value of
tail.next is still NULL, meaning no other enqueue operation happened in the
meantime. The second step is to set the tail pointer to the new element non-
atomically. Until this operation is finished, all other enqueue attempts result in
a fail and retry.

The head-dequeue operation has to atomically update the head pointer,
which is successful if no other dequeue operation happened in the meantime.

Analog to the shared counter example, (α) only uses hardware support for
efficient lock implementation. (β) is in need for hardware CAS support and (γ)
needs dedicated hardware for the whole enqueue/dequeue operation.

4 Implementation Aspects

We implemented a configurable, resource reusing hardware module for local and
remote atomic operations. As depicted in Fig. 1, it is inside of a modular network
adapter connected to the tile local bus. Besides the atomics unit, the network
adapter provides several other functionalities, like e.g. remote reads and writes,
direct memory accesses, etc. The extension towards atomic operations of the
network adapter consists of submodules for sending (TX) and receiving (RX)
atomic operation requests and the atomics unit containing several operations.

Architectural details. As we use a hybrid NoC-bus-based architecture, the
atomics unit is - as part of the network adapter - connected to the bus. To
perform any atomic operation on memory, it (1) first blocks the bus for any
other accesses, (2) executes the (conditional) read-modify-write cycle on the
memory connected to the bus, before (3) unlocking the bus again. The modify
or conditional write operations of step (2) are performed or evaluated in the
hardware unit to minimize calculation and network time by processing at the
remote tile. This approach basically allows for arbitrary complex operations in



146 S. Rheindt et al.

step (2), that are completely atomic through the exclusive bus usage between (1)
and (3). However, in this paper, we limit ourselves to the set of atomic primitives
described below.

These network triggered atomic operations concur with atomic operations
triggered by local processors and are sequentialized through exclusive usage of
the bus. This modular design with standard interfaces therefore ensures high
adaptability and integrability into existing systems. On our platform as described
in Sect. 5, only support for local atomic swap and CAS is given as ISA of the
cores. However - as for most systems - no support for inter-tile remote atomic
operations is given.

As the atomic primitives described in the next paragraph require a response
or acknowledgement, we implemented them in a synchronous manner. Therefore
each CPU can have one pending request. However, since we have several CPUs
per tile, several pending requests per tile are possible. The maximum number
of pending requests per atomics unit is therefore the total number of CPUs
in the system. These are buffered in the FIFOs of the virtual channel based
packet-switched NoC which are served in a round-robin fashion.

Atomic Primitives. To support the three types of synchronization primitives
(α, β and γ), we implemented the following set of atomic operations:

(a) efficient spinlock implementation
(b) fetch-and-op operations, with op = {Add, Sub, And, Or}
(c) compare-and-swap primitive
(d) CaCAO: linked queue enqueue/dequeue

(a) The efficient spinlock has an integrated hardware loop until lock acquisi-
tion to ensure an O(1) network utilization. Although acquiring a spinlock is in
itself not retry-free and has to be repeated until it is successful, outsourcing the
retry attempts into a remote site hardware loop minimizes the retry-penalty.
Instead of going back and forth over the NoC, even up into system software
- costing several hundreds of clock cycles - the retry penalty of the hardware
loop is only a few cycles due to bus arbitration. A back-off retry threshold with
accompanying “lock not acquired” response is also implemented.

(b) The fetch-and-op primitives follow the same (1)(2)(3) steps. Between (1)
locking the bus and (3) unlocking the bus, the hardware unit performs the (2)
step by (2a) reading/fetching data, (2b) executing the {op}-operation in hard-
ware (2c) writing back the modified data and finally (2d) sending the fetched
data back to the requesting processor. The fetch-and-op primitive has zero retries
since the write-back is non-conditional. Strictly speaking, this primitive can
already be classified as CaCAO, even though the critical section in step (2)
is not very complex.

(c) The compare-and-swap instruction is similar to (b) with the difference of a
conditional write-back, only if the read value is equal to the old value argument
of the CAS. This additional comparison is handled in the hardware module,
whilst reusing the read and write logic already present for (a) and (b).

The CAS can be in need of retries, since between reading the old value by the
CPU (which then issues the CAS) and checking the read value against the old



CaCAO: Complex and Compositional Atomic Operations 147

value inside of the CAS unit. An interfering write accesses can happen, which
would lead to a unsuccessful CAS. Therefore, the CPU will have to repeat the
procedure until it is eventually successful, leading to increasing network load.

A solution to this problem can be given in hardware, if the operation to be
performed on the data can be outsourced to some dedicated logic in hardware.
This possibility is function specific, but we show, that it well serves for certain
frequently used methods, especially for remote atomic operations. We call these
complex and composed atomic operations, as discussed in (d).

(d) CaCAO: Complex and compositional atomic operations. The same (1) (2)
(3) steps are followed. However, step (2) basically could be of arbitrary complex-
ity and functionality, even though in this paper we only provide enqueue/dequeue
operations into a linked queue. But also the fetch-and-op primitive as discussed
in (b) could be classified into this category, since the whole critical section is
outsourced into dedicated hardware.

The proposed dedicated hardware module has a compositional nature since
the various atomic primitives reuse the same building blocks. The memory read
(1) and write (3) step is part of every primitive and there is therefore no waste of
resources. E.g. the spinlock reuses the CAS building block with hard-coded old
and new values 0 and 1, respectively. These building blocks compose the whole
module and a future extension to more functionality can build upon them.

5 Experimental Setup and Results

Our measurements were carried out on our distributed shared memory architec-
ture synthesized onto a FPGA prototype. We used a 2× 2 tile design with up to
8 Leon3 cores per tile and a tile local memory, which are connected by a shared
bus. The tiles are interconnected with a 2D-Mesh NoC. The timing analysis of
our design with the tool Xilinx Vivado revealed, that the proposed atomics unit
itself is able to operate at 419 MHz. Together with its TX and RX interface, it
still reaches 285 MHz. It is integrated into the network adapter, which is cur-
rently able to run at 100 MHz. The complete design with CPUs, NoC, Bus and
other modules of our complete project limits the frequency to 50 MHz, since
one single clock domain is used so far. Further, due to resource constraints our
FPGA prototype limits us to a 2× 2 tile design. We tried to compensate this by
increasing the core count to 8 cores per tile.

Before running actual stress tests, we first obtained cycle accurate minimal
duration simulations using an RTL simulator. The results are shown in Fig. 4(a)
for the various atomic primitives implemented in our atomics unit. The whole
duration is split into trigger-time (triggering the network adapter by the cores),
NoC-time (time for flit generation on sender side, reception on receiver side and
travel time over the NoC for both request and response messages) and atomics-
time (actual time for carrying out the atomic operation in the atomics unit). It
is made clear, that while the trigger-time only depends on the bus arbitration,
the NoC-time can increase drastically for higher network load. However, the
atomics-time is constant after bus grant.



148 S. Rheindt et al.

function Ttrigger TNoC Tatomics

spinlock 7 47 10
spinlock retry 0 0 10
CAS 14 50 10
Fetch-and-op 11 49 10
hw enqueue 14 49 37
hw dequeue 7 48 30

(a) Cycle accurate minimal duration of
individual and standalone atomic oper-
ations in number of clock cycles

Module LUTs Register
Atomics 501 316

TX & RX 1031 687
∑

1532 1003
% NA 11.85% 12.35%
% Tile 1.44% 2.00%

(b) Resource utilization of
the atomics unit

Fig. 4. Minimal duration simulations and synthesis results

Further, the synthesis of our module has the resource usage given in Fig. 4(b).
It is part of a network adapter that additionally has load/store, DMA as well as
task spawning support. The overall resource utilization of the atomics unit with
around 12% of the network adapter and only maximally 2% of the whole tile, is
comparatively low.

Besides these minimal duration simulations, we investigated several stress
test measurements on our FPGA platform using the scenarios described earlier.
In all the following micro benchmarks, each used core performs 10k iterations
of the given scenarios, i.e. either 10k increments to the shared counter (SC)
or 10k enqueue/dequeue operations to the linked queue (LQ). The tests are
always done for all three synchronization types (lock-based, lock-free or dedicated
hardware). We want to note, that for x cores, the overall workload is x-times
as high. Alternatively, if the overall workload was kept constant with increasing
core counts, the resulting graphs - from a purely visual perspective - would not
be as easily distinguishable as shown in Fig. 5.

The results for the first stress test are depicted in Fig. 5(a) and show the
execution time for both the shared counter (SC, solid lines) and the linked-
queue update (LQ, dashed lines) for all three types of synchronization classes
each. In this scenario, we investigate remote accesses to one tile from three
other tiles with 1 to 8 cores each, totaling to up to 24 cores. Due to the higher
complexity and therefore longer iteration duration of the linked-queue scenario,
the dashed lines are always above the corresponding solid lines. Apart from
that, the two scenarios behave similar. We make four key observations: (1) For
no and low concurrency on the data structure, the lock-free variant is preferable
over the lock-based one, since it does not suffer from (many) retries and the
corresponding re-execution of the critical section. (2) Although not shown in the
graphs, but underlined by our measurements, the retry rate rises with increasing
concurrency, i.e. core count. We further did not depict but measured, that the
execution time of the lock-based variants is linear in the number of cores, while
the execution time for the lock-free variants is linear in the number of retries. (3)
There is a concurrency depended cross-over point between the lock-based and
lock-free variants (intersection of the lines). A concurrency depended decision



CaCAO: Complex and Compositional Atomic Operations 149

5 10 15 20
number of cores

0

5

10

15

20

25

30

35

40
T 

[s
ec

]
SC: lock-based
SC: lock-free
SC: hw
LQ: lock-based
LQ: lock-free
LQ: hw

(a) Execution time for the three synchro-
nization variants (lock-based, lock-free,
hw) for the shared counter (SC) and the
linked queue (LQ) for different core counts

1 2 3 4 5 6 7 8
number of cores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T 
[s

ec
]

local lock-based
local lock-free
local hw
remote lock-based
remote lock-free
remote hw

(b) Comparison of purely local vs. purely
remote execution of the linked queue (LQ)
scenario for variable core counts per tile

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration extension in us

0

10

20

30

40

T 
[s

ec
]

12C lock-based
12C lock-free
12C hw
24C lock-based
24C lock-free
24C hw

(c) Variable iteration duration for fixed critical section size for the three variants for a
12 and 24 core scenario, respectively

Fig. 5. Stress test measurement results

for one or the other could be investigated and made at design and/or run-time
as possible performance optimization. (4) In all cases, the dedicated hardware
implementation fetch-and-inc/CaCAO outperforms the other two variants by
far. For the list-queue, the speedup rises from 9.5 (3× 1 core) to 35.4 (3× 8
cores) and from 14.6 to 23.9 compared to the lock-free and lock-based variant,
respectively. The dedicated hardware implementation almost does not suffer from
rising concurrency. The additional time is due to serialized execution in the
atomics unit.

In the second stress test, we compare the execution time of LQ for purely
local vs. purely remote access to the shared data structure. The results are
depicted in Fig. 5(b) for varying core count between 1 and 8. We make 3 further



150 S. Rheindt et al.

key observations: (5) As expected, the purely local execution outperforms the
remote operation in general. (6) Whereas for remote operation, there again is
a cross-over point between the lock-based and lock-free variants (intersection of
dashed lines), for local operations this behavior is not observed. The concurrency
in combination with the much lower retry penalty explains this. (7) The relative
advantage of the dedicated hardware implementation is much higher for remote
than for local operations due to the higher retry penalty of the lock-free and
the higher iteration duration of the lock-based variant. The advantage of the
dedicated hardware over the lock-free variant is 6.5 times higher for remote
compared to local operations. The advantage over the lock-based variant is 3.3
times higher. In both cases, we considered 8 local vs. 8 remote cores.

In our final measurements, we mimic different ratios of the non-critical part
to the critical section of an application. This is done by keeping the critical
section size constant, whereas we extend the whole base iteration by some itera-
tion extension (iteration = base iteration + iteration extension). In Fig. 5(c), the
results are depicted for the three variants of the linked-queue scenario for 12 and
24 cores. For an extension of 0 µs, the critical section in our scenarios is e.g.
around 5% of the unextended base iteration for the SC in the 24 core variant.
With this said, we make further key observations: (8) The lower the percentage
of the critical section compared to the whole iteration, the lower the retries for
the lock-free version and the corresponding total time. (9) A minimum can be
found at a delay of around 1400 µs for the 24 core variant and at 500 µs for the
12 core variant (these times equal the average base iteration times for the lock-
free variant). The retry rate drops to almost zero at these points. From then
on, the execution time is dominated by the iteration extension, i.e. the addi-
tional time of the non-critical section. Similarly the lock-based variants start to
be dominated by this extension after their average unextended base iteration
times are reached, which are 800 µs and 2700 µs, respectively. (10) If the itera-
tion extension dominates the whole iteration, i.e. if the percentage of the critical
section gets very small, all variants converge. Even the dedicated hardware vari-
ants are dominated by the non-critical part. (11) At 500 µs, were the 12 core
variant reaches the zero retry point, shows that the higher concurrency of 24
cores still has a high number of retries. An extrapolation of this principle would
yield similar behavior for more than 24 cores at the 1400 µs mark, etc.

6 Conclusion and Future Work

To tackle the scalability issue of future manycore platforms, efficient remote
operations and synchronization primitives are a key.

Our investigated scenarios show that there are application specific usecases
for lock-based, as well as lock-free synchronization. Modern distributed shared
memory platforms should therefore provide both types of synchronization (effi-
cient inter-tile lock implementation, as well as general purpose atomic primitives
like CAS or LL/SC) to allow flexibility for the programmer.



CaCAO: Complex and Compositional Atomic Operations 151

We further showed, that especially remote operation highly profit from ded-
icated hardware implementations to overcome the disadvantages of both lock-
based and lock-free software implementations. Future systems should implement
often used and highly concurrent tasks as dedicated hardware. Near memory
acceleration could be a further improvement.

As future work, for systems without CaCAO support, one could explore the
potential of situation based usage of the lock-based or lock-free variants, which
would require a concurrency dependent decision. A heuristic, with which the run-
time system could choose between the lock-based and lock-free variant would be
needed.

Further, we plan to extend the CaCAO approach to more complex function-
alities based on its compositional nature. We want to identify useful functions
and investigate their potential in real applications.

Acknowledgement. This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center Invasive
Computing [SFB/TR 89]. The authors would also like to thank Christoph Erhardt,
Sebastian Maier and Florian Schmaus from FAU Erlangen, as well as Dirk Gabriel
from our chair for the helpful discussions.

References

1. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.D., Gupta, A., Hennessy,
J., Horowitz, M., Lam, M.S.: The stanford dash multiprocessor. Computer 25(3),
63–79 (1992)

2. Mellanox: Ug130-archoverview-tile-gx. http://www.mellanox.com/repository/solu
tions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

3. Michael, M.M., Scott, M.L.: Implementation of atomic primitives on distributed
shared memory multiprocessors. In: 1995 Proceedings of First IEEE Symposium
on High-Performance Computer Architecture, pp. 222–231. IEEE (1995)

4. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel appli-
cations: performance advantages and methodologies. In: Proceedings of the 3rd
International Workshop on Software and Performance, pp. 55–67. ACM (2002)

5. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
(TOPLAS) 13(1), 124–149 (1991)

6. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst. (TOPLAS) 15(5), 745–770 (1993)

7. Wei, Z., Liu, P., Sun, R., Ying, R.: High-efficient queue-based spin locks for
Network-on-Chip processors. In: 2014 IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS), pp. 260–263. IEEE (2014)

8. Wei, Z., Liu, P., Zeng, Z., Xu, J., Ying, R.: Instruction-based high-efficient synchro-
nization in a many-core Network-on-Chip processor. In: 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2193–2196. IEEE (2014)

9. Chen, X., Lu, Z., Jantsch, A., Chen, S.: Handling shared variable synchronization
in multi-core Network-on-Chips with distributed memory. In: 2010 IEEE Interna-
tional on SOC Conference (SOCC), pp. 467–472. IEEE (2010)

10. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT), pp. 445–456. IEEE (2015)

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf


152 S. Rheindt et al.

11. Mellanox: Ug101-user-architecture-reference.pdf. http://www.mellanox.com/
repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf

12. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (TOCS) 9(1), 21–65
(1991)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2011)

14. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput.
51(1), 1–26 (1998)

15. Tian, G., Hammami, O.: Performance measurements of synchronization mecha-
nisms on 16PE NoC based multi-core with dedicated synchronization and data
NoC. In: 16th IEEE International Conference on Electronics, Circuits, and Sys-
tems, ICECS 2009, pp. 988–991. IEEE (2009)

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf

	CaCAO: Complex and Compositional Atomic Operations for NoC-Based Manycore Platforms
	1 Introduction
	2 Related Work
	3 Complex and Compositional Atomic Operations
	3.1 Comparison of the Synchronization Primitives () and ()
	3.2 CaCAO Approach ()

	4 Implementation Aspects
	5 Experimental Setup and Results
	6 Conclusion and Future Work
	References


