
Trade-Off Between Performance, Fault
Tolerance and Energy Consumption in

Duplication-Based Taskgraph Scheduling

Patrick Eitschberger1(B), Simon Holmbacka2, and Jörg Keller1

1 Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
Hagen, Germany

{patrick.eitschberger,jorg.keller}@fernuni-hagen.de
2 Faculty of Science and Engineering, Abo Akademi University, Turku, Finland

sholmbac@abo.fi

Abstract. Fault tolerance in parallel systems can be achieved by dupli-
cating task executions onto several processing units, so in case one pro-
cessing unit (PU) fails, the task can continue executing on another unit.
Duplicating task execution affects the performance of the system in fault-
free and fault cases, and its energy consumption. Currently, there are
no tools for properly handling the three-variable optimization problem:
Performance ↔ Fault Tolerance ↔ Energy Consumption, and no facili-
ties for integrating it into an actual system. We present a fault-tolerant
runtime system (called RUPS) for user defined schedules, in which the
user can give their preferences about the trade-off between performance,
energy and fault tolerance. We present an approach for determining the
best trade-off for modern multicore architectures and we test RUPS on
a real system to verify the accuracy of our approach itself.

Keywords: Scheduling · Fault tolerance · Energy efficiency
Trade-off · Power modeling · Optimization · Runtime system

1 Introduction

Fault tolerance is important for parallel systems like manycores and grids, where
a permanent failure of a processing unit (PU), resulting from either a hardware or
software fault, might occur during the execution of a scheduled parallel program.

The schedules of parallel programs can be created statically, prior to execu-
tion with the help of a task graph that represents the tasks and dependencies
between them. To maximize performance in static schedules, it is critical to
minimize the length of a schedule, the so-called makespan. However, integrat-
ing fault tolerance techniques typically results in performance overhead. This
leads to increasing makespans. One kind of fault tolerance is the task duplica-
tion where for each task a copy – a so-called duplicate – is created on another
PU. In case of a failure, the duplicate is used to continue the schedule execu-
tion. The performance of the system in the fault case will then benefit from the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-77610-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_1&domain=pdf


4 P. Eitschberger et al.

duplicates, since the progress of the schedule can seamlessly be continued by the
tasks’ duplicates. Another issue emerging especially in recent years is the prob-
lem of minimizing the energy consumption. Duplicating tasks requires additional
resources because the task is actually executing simultaneously on various PUs.
In the fault-free case this is regarded as energy wasting. The energy consumption
is also affected by scaling down the clock frequency of a PU. By executing at
different clock frequencies, the makespan is affected by the altered performance,
and the energy consumption is affected by the altered power dissipation. This
leads to a three-variable trade-off decision to be made between Performance PE,
Energy Consumption E, and Fault tolerance FT .

There are several approaches in the literature for two-dimensional optimiza-
tions in the area of performance, energy and fault tolerance for various parallel
platforms and with different fault tolerance techniques, e.g. in [3,10,12,13,15–
17,20]. Although the optimization for all two-dimensional combinations is well
researched, the three-dimensional optimization is rarely addressed. There exist
a few exceptions that focus on real-time systems where tasks have to be exe-
cuted in predefined time frames or within a certain deadline. Therefore, PE
in corresponding approaches is the major objective. For example Cai et al. [6]
present a greedy heuristic to reduce the energy consumption in fault-tolerant
distributed embedded systems with time-constraints. Another approach is pre-
sented by Alam and Kumar [1]. They assume that only one specific transient
fault could occur during the execution of a task. Tosun et al. [19] present a
framework that maps a given real-time embedded application under different
optimization criteria onto a heterogeneous chip multiprocessor architecture. In
all of these approaches, the focus typically lies on transient faults, where check-
pointing or backup mechanisms are used to circumvent a fault. In our approach,
we focus on permanent faults and present scheduling strategies that combine all
three criteria without a real-time constraint. Hence, in this work a broader range
is considered, which is not yet addressed in previous work.

We propose a solution for the three-variable optimization problem for cases
where the user can inform the scheduler about his preferences. We firstly extend
an energy efficient and fault tolerant scheduler by integrating new scheduling
strategies that can be set according to the user’s preferences. Secondly, to demon-
strate the influence of the user preferences we present a runtime system RUPS
for scheduling parallel applications with adjustable degrees of fault tolerance
on grids, computing clusters or manycore systems. The runtime system utilizes
a pre-optimized static schedule with the desired characteristics and trade-off
between PE, E and FT . To obtain the energy consumption for a selected sched-
ule, we create a realistic power model based on experiments for an actual real-
world processor. Several example models for different platforms are created, and
we show that their accuracy is sufficient to predict the requirements for the
trade-off between PE, E and FT . Thirdly, with the power model and the given
schedule, we can construct the trade-off map to be used during system planning,
and we show how the PE, E and FT parameters can affect the planning deci-
sions of parallel fault-tolerant applications. Our results indicate that the power



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 5

model is accurate and that the experiments match the predictions. Finally the
trade-off map shows in detail the relations between PE, E and FT .

The remainder of this paper is structured as follows. In Sect. 2 the trade-off
problem is discussed. Sections 3, 4 and 5 present the extended scheduler, the
runtime system and the power model. In Sect. 6 the results are presented and
analyzed. In Sect. 7, we conclude and give an outlook on future work.

2 The Trade-Off Problem

A combination of all three objectives is possible in general, but there does not
exit an overall optimal solution. In this context the degree of FT is rated by
the overhead in performance (and energy) that results from the fault tolerance
techniques in both the fault-free and fault case. Therefore, a compromise between
the optimization criteria must be made. While one criterion is improved, either
one or both of the others are worsened.

When we focus on PE of a schedule, it is dependent on the mapping of the
tasks. The more an application can be parallelized the better is the performance.
Additionally, modern processors support several frequencies at which a processor
can run. Thus, tasks should be accelerated as much as possible, i.e. use the
highest supported frequency of a PU. In contrast, a more parallelized application
results in fewer gaps between tasks and thus in fewer possibilities to include
duplicates without shifting successor tasks. This results in a high performance
overhead in case of a failure, e.g. a low FT . Additionally, running on a high
frequency typically leads to a high E. When we focus on FT , duplicates should
be executed completely in the fault-free case and available but unused PUs
should also be considered for mapping duplicates to minimize performance loss
in case of a fault. In this case, duplicates may lead to shifts of original tasks and
thus to a low PE in the fault-free case. In terms of E, both executing duplicates
completely and using available PUs not necessary for the original tasks result
in a high E. Is the focus put on E, low frequencies and short duplicates are
preferable. But low frequencies lead to low PE and short duplicates to a high
performance overhead (FT ) in case of a failure.

In addition, the main focus of a user varies in different situations. For exam-
ple, in a time critical environment, PE is the most important criterion next to
FT . Thus, in this situation PE and also FT is usually favored over minimizing
E. Another situation is, that a failure occurs extremely rarely and thus E is
becoming more important. Other examples exist in mobile devices where E is
the most important criterion next to PE. The main focus is therefore put on E
and PE while FT is neglected. However, the alignment of the optimization is
very situational and ultimately depends highly on the user preferences.

3 Fault Tolerant and Energy Efficient Scheduling

We start by reviewing the ideas of [10] and briefly introduce our previous work.
Then we present two new strategies to improve either FT or E of the schedules.



6 P. Eitschberger et al.

3.1 Previous Approach

Fechner et al. [10] provides a fault-tolerant duplication-based scheduling app-
roach that guarantees no overhead in a fault-free case. Starting from an already
existing schedule (and taskgraph), each original task is copied and its duplicate
(D) is placed on another PU than the original task so that in case of a failure
the schedule execution can be continued. We assume homogeneous PUs and a
fail-stop model, where a failure of a PU might result from a faulty hardware,
software or network. We only consider one failure per schedule execution.

If an original task has finished it sends a commit message to its corresponding
D so that it can be aborted. Schedules often comprise several gaps between tasks
resulting from dependencies. Ds can be placed either in those gaps or directly
between two succeeding tasks. To avoid an overhead in a fault-free case, in
all situations where a D would lead to a shift of all its successor tasks only a
placeholder, a so called dummy duplicate (DD) is placed. DDs are only extended
to fully Ds in case of a failure. To reduce the communication overhead, Ds are
placed with a short delay, so called slack. Thus, either the results of an original
task are sent to its successor tasks or the results of the corresponding D, but not
both. Figure 1(a) illustrates an example taskgraph. For a better understanding
the communication times and the slack are disregarded. Figure 1(b) and (c) show
the resulting schedules of two strategies, the first uses only DDs the second uses
Ds and DDs.

Fig. 1. (a) simplified taskgraph, (b) strategy 1: use only DDs, (c) strategy 2: use Ds and
DDs, (d) strategy 3: use half of PUs for original tasks, the others for Ds, (e) strategy
4: select a lower frequency for original tasks

In our previous work [8], we show the importance of considering communi-
cation times for the placement of Ds and DDs. We present in [9] an extension
to improve E of schedules by calculating a buffer for each task. It indicates how
much a task could be slowed down by scaling down the frequency of the cor-
responding PU without prolonging the makespan. Frequencies are then set to
the lowest possibles to fill the buffers. We assume a general power model like
explained in [2] and use continues normalized frequencies for our predictions.



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 7

3.2 Extensions

We extend the scheduler for supporting also a concrete power model (that we
describe in Sect. 5) with discrete frequencies and we include two new simple
strategies. In our first strategy, we use a simple list scheduler to create schedules
with respect to the dependencies from the corresponding taskgraph. Instead of
using as many PUs as possible, only half of the available PUs are used for the
placement of original tasks and the remaining PUs are used to include Ds (see
Fig. 1(d)). With this strategy we try to focus on FT .

In our second strategy, the user can set a frequency level with which the
original tasks should run before including Ds and DDs (see Fig. 1(e)). Thus, we
leave the mapping of all original tasks as it is and change only the runtime of
the tasks by using the selected frequency level. Then, the start times of tasks
are corrected according to the dependencies given by the taskgraph.

4 Runtime System

RUPS (Runtime system for User Preferences-defined Schedules) is a scheduling
tool for parallel platforms with features allowing the user to input various pref-
erences e.g. PE, E or FT in the schedule. Schedules are then created with the
RUPS tool – optimized for the user defined preference in question. RUPS consists
of four main parts illustrated in Fig. 2(a). The processor details are extracted in
Part 1 and passed to the scheduler (Part 3), which in turn optimizes the sched-
ule based on the processor parameters and user preferences (Part 2). Finally,
the schedule is passed to the runtime system (Part 4), and scheduled on the
processor. In this section, we describe the details of these four parts.

Fig. 2. Overview of (a) RUPS and (b) the runtime system

4.1 System Check Tool

At the first use of RUPS, it has to be initialized once with the system check
tool to adjust the power model for the processor used. This tool measures the
power consumption of the processor for all supported frequencies and for a dif-
ferent number of cores under full load. We measure the power consumption for
10 seconds (s) with a sampling rate of 10 milliseconds (ms). All cases are repeated



8 P. Eitschberger et al.

five times to compensate high power values that could occur due to unexpected
background processes. Between each case, all cores are set to the lowest fre-
quency in idle mode for 5 s to reduce the rise in temperature of the processor
and thus the influence on the power consumption. Then the averaged results of
the measure points for each case are used as values for the power model.

4.2 Scheduler and User Preferences

The scheduler consists of two main parts. One part for the schedule creation and
one part for the simulation of generated schedules to predict the energy con-
sumption in different situations. It supports several strategies for the placement
of Ds/DDs and the user can set different options for the behavior during the
scheduling process like setting the time for a slack, considering unused cores for
the placement of Ds/DDs, simulating failures or only creating the fault-tolerant
schedules. The simulator can then be used to simulate for each task in the sched-
ule one failure. It can also handle task slow downs that result from a high load
level of a PU. For more details we refer to [8,9].

4.3 Runtime System

The runtime system is based on ULFM-MPI [5], a fault tolerant extension of
Open-MPI. For each core a MPI-process is created, that reads the schedule
and taskgraph information from files and generates a task queue (sorted by the
starting times of tasks). Then, a while loop is executed as long as there is a task
in the queue. The loop is used for a polling mechanism that reacts and handles
the communication (via messages), starts a task if possible and also aborts a task
if necessary. The task execution is separated from the communication process
by a (posix) thread. Data transfers between tasks are simulated by only sending
the message header, that includes next to others the information about the start
time of the sending operation and the transfer time. This simplification has a
neglectable effect on the results, as the energy consumption of the communication
is not considered in the measurements and models.

Figure 2(b) illustrates a short overview of the runtime system. We simulate
a failure by exiting a MPI-process just before the corresponding task is started.
The other processes are then informed about the failure by an error handler. We
integrate a testing mode where one additional MPI-process is started to measure
the energy consumption with the help of Intel RAPL. The measurement process
measures the energy with a sample rate of 10 ms.

5 Power Model

To predict the energy consumption for a schedule, an appropriate power model
for the processor is necessary. Basically, a model is a simplified representation of
the reality. The complexity of a model increases significantly with its accuracy.
As the power consumption of a processor depends on several factors, like the



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 9

temperature, instruction mix, usage rate and technology of the processor, there
exist numerous approaches in the literature to model the power consumption of
a processor with varying complexities and accuracies, like in [4,7,11] or [18].

In general the power consumption can be subdivided into a static part, that is
frequency-independent and a dynamic part, that depends both on the frequency
and on the supply voltage.

Pprocessor = Pstatic + Pdynamic (1)

The static power consumption consists of the idle power Pidle and a device
specific constant s, that is only needed when the processor is under load.

Pprocessor =

{
Pidle + s + Pdynamic if under load
Pidle else

(2)

The dynamic power consumption is typically modeled as a cubic frequency
function [2], as the frequency and voltage are loosely linearly correlated1. Addi-
tionally the supply voltage and thus the dynamic power consumption depends
on the load level of a core. As we only consider fully loaded cores or cores that
are in idle mode (at the lowest frequency) the influence of a load level can be
given by a parameter w ∈ {0, 1}. If we assume a homogeneous multi-core pro-
cessor with n cores, a simple power model for the dynamic part can be given by
the following equation, where a, b and β are device specific constants, i is the
core index and fcurr,i is the current frequency of core i:

Pdynamic =
n−1∑
i=0

wi · β
(
fcur,i

3 + a · fcur,i
2 + b · fcur,i

)
(3)

Only if a core runs at a higher frequency under full load, the dynamic part
of the power consumption for the processor is considered.

5.1 Model Validation

To prove the accuracy of the power model, we used three different computer
systems with Intel processors as test platforms:

1. Intel i7 3630qm Ivy-Bridge based laptop
2. Intel i5 4570 Haswell based desktop machine
3. Intel i5 E1620 server machine

To construct the power model, we extracted the power values by physical
experiments using the Intel RAPL tool. As described in Sect. 4.1, we measured
the power consumption for each frequency combination for 10 s with a sampling
rate of 10 ms and repeated all measurements five times. We test the power

1 For a given voltage there is a maximum frequency and for a desired frequency there
is a minimum voltage required.



10 P. Eitschberger et al.

model for six different workload scenarios: ALU-, FPU-, SSE-, BP- and RAM-
intensive workloads and for a combination of these tests as mixed workload. The
measured power values were used to construct the power model for each platform
and scenario. The architecture specific tuning parameters (s, β, a and b) in Eqs. 2
and 3 were then determined using a least squares analysis.

Table 1 shows exemplary the individual parameters for each platform for
a mixed workload after fitting the physical measurements to Eqs. 2 and 3 and
optimizing the tuning parameters. The results of the least squares analysis for the
other tests only differ slightly from the mixed workload scenario. The different
parameters for the power model can be determined and saved in advance and
used for several classes of applications with a specific workload type dominating.
Then the power consumption can be measured during the execution of the first
application and compared to the different power models to find the best suitable
for the whole class.

Table 1. Values of the architecture specific tuning parameters for a mixed workload

Pidle s β a b

i7 3630 3.781 W 1.29 W 0.340 W/Hz3 −3.42 Hz 5.88 Hz2

i5 4570 5.976 W 0.42 W 0.091 W/Hz3 1.02 Hz 12.08 Hz2

i5 E1620 8.728 W 3.83 W 0.344 W/Hz3 −2.87 Hz 6.13 Hz2

Table 2 shows the difference between the data and model as the maximum
and average deviation. The maximum deviation was lowest using the desktop
CPU (i5 4570). The reason for having a less exact fit using the server (i5 E1620)
and laptop CPU (i7 3630) is because of the significantly higher power output
using the turbo boost on these CPUs, which is more difficult to fit to the curve
than the more smooth power curve of the i5 4570 CPU. However, with a low
average error value we consider this model feasible for our experiments. In Fig. 3
we present exemplary the resulting power curve for the server test platform for
the real data and for the model.

Table 2. Difference between the data and model as error values squared from Fig. 3

i7 3630 i5 4570 i5 E1620

Avg. deviation 1.09% 0.84% 1.13%

Max deviation 15.56% 7.28% 17.07%

5.2 Real-World Evaluation

For our real-world evaluation we used the server system as a common platform
for clusters and grids. We tested 922 schedules in total that are related to 40
taskgraphs with random properties and between 19 and 24 tasks (see Sect. 6).



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 11

Fig. 3. Power consumption and power model for the server platform

For each taskgraph we first let the already existing schedule run without any
changes and thus without any failures. Then, the fault-tolerant schedules that
result from the first strategy – using only DDs – (see Sect. 3) were calculated
and executed by the runtime system. And we let run all fault-tolerant schedules
with a simulated failure at each task by exiting the corresponding MPI-Process
directly before the task execution started.

We validate the accuracy of the prediction by comparing the predicted energy
values that result from the scheduler with the real measurements of the runtime
system. In Fig. 4 we present the predicted and real energy consumption for all
schedules. With a maximum deviation of 7.14% and 1.64% on average, our pre-
diction fits the reality quite well.

Fig. 4. Predicted and measured energy consumption (for a mixed workload)

6 Experimental Results

For our experiments we used a benchmark suite of synthetic taskgraphs [14] with
36000 performance optimal schedules, that can be subdivided by the number of
PUs (2, 4, 8, 16 and 32), the number of tasks (7–12, 13–18 and 19–24), the
edge density and length and the node and edge weights. The schedules were
generated with a PDS-algorithm (Pruned Depth-first Search). To find optimal
solutions in an acceptable time, the search space is reduced by pruning selected
paths in the search tree. As the scheduling problem is NP-hard, there have been



12 P. Eitschberger et al.

some taskgraphs where no optimal schedule could be found even after weeks of
computation. Those taskgraphs are excluded from this study. As seen in Sect. 5.2,
our system model closely reflects the real system in terms of energy consumption.
We used this fact to simulate nearly 34500 of the given schedules using the RUPS
system. We evaluate the trade-off between PE, FT and E with four scenarios
in which we use the four strategies from Sect. 3. These scenarios reflect system
setups with one of the three parameters as inherently dominating. This choice
will give a wide range of experiments with the extreme corner cases covered, and
everything between them. The following scenarios were used for our simulation,
where we do not consider the turbo frequency to avoid throttling effects:

(A) Strategy 1: Use only DDs and start with the highest supported frequency
(3.5 GHz). In this scenario we focus on PE.

(B) Strategy 2: Use Ds and DDs and start with the highest supported frequency
(3.5 GHz). This scenario mainly targets on PE, but also on FT .

(C) Strategy 3: Create the schedules with a simple List Scheduler that uses half
of the PUs for original tasks, the other for the Ds and start with the highest
supported frequency (3.5 GHz). Here the focus is on FT .

(D) Strategy 4: Select a lower frequency for original tasks and start with fre-
quency level 7 (2.3 GHz). With this scenario we try to focus on E.

To visualize the trade-off between PE, FT and E the results of the four
strategies are relatively related to the following estimated upper and lower
boundaries for each criterion (see Table 3) where m is the makespan in cycles,
mseq is the makespan, when all tasks are running in sequence and mft is the
makespan in case of a failure. pmax ∈ PU is the maximum number of PUs used
and fhighest/lowest is the highest or lowest frequency respectively.

Table 3. Upper and lower boundaries for PE, FT and E

Best case Worst case

PE
mseq

pmax·fhighest

mseq

1·flowest

FT
mft−m

m
· 100 = 0% 2·m−m

m
· 100 = 100%

E
mseq

pmax·2.3 GHz
mseq

1·flowest

Focusing on performance PE, the best solution is to parallelize an application
as much as possible. Furthermore, the highest available frequency fhighest should
be selected, if the system in use supports different frequencies. A lower bound
for the performance can be achieved by running all tasks in sequence on one PU
with the lowest possible frequency flowest.

While a schedule is either fault-tolerant or not, the fault tolerance FT is rated
by the performance overhead in case of a failure. Therefore, when focusing on
the fault tolerance the best solution is to copy the whole schedule and execute
it simultaneously (completely independent) to the original one on other PUs.



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 13

Then, both the performance, i.e. the makespan mft in case of a failure and in a
fault-free case m are equal. Accordingly, the performance overhead results to zero
percent. However, the worst solution is when the schedule is not fault-tolerant
and a failure occurs directly before the end of the schedule execution. Then, the
whole schedule has to be repeated on p − 1 PUs and the makespan mft = 2 · m
in case of a failure is at least doubled in comparison to the fault-free case m.
Thus, the performance overhead in case of a failure results in 100%.

While the estimation of upper and lower bounds for PE and FT are inde-
pendent of a certain system, E depends highly on the system in use. Therefore,
we calculated the best and worst energy consumption of the i5 E1620 proces-
sor with the measured power values from the system check tool for a perfectly
divisible workload. In this case, the most efficient frequency is at 2.3 GHz. The
boundaries for E in Table 3 have to be multiplied with the corresponding power
values from the system to get the energy consumption in Joule.

In Fig. 5 the results of all scenarios are presented. For a better illustration
we only show the results for systems with 4 PUs (in total 6500 schedules with
different properties). But the results for the other number of PUs (2, 8, 16 and
32 PUs) are similar with respect to the overall trends. They differ only slightly
by small shifts. The left column of the figure presents for all scenarios (A, B, C
and D) the trade-off between E and PE, the middle column between E and FT
and the right column between PE and FT .

Starting with scenario A, we can see that a better performance also leads to
a better energy consumption. With a performance of nearly 100% the energy
consumption goes down to around 5% (related to the best and worst cases from
the boundaries). This behavior seems to be related to the high idle power of the
system compared to the dynamic power. The higher the idle power is, the better
it is to run on a high frequency, e.g. at the highest like here. If we now focus on the
trade-off between E and FT we can see, that the lower the energy consumption
in the fault free case is, and thus the higher the performance of the schedule, the
higher is also the performance overhead in case of a failure. This behavior results
from the decreasing number and size of gaps within a schedule, when improving
the performance. Because then each DD leads directly to a shift of its successor
tasks. The trade-off between PE and FT shows directly the same behavior.
The higher the performance the higher is also the performance overhead. In
scenario B we used Ds and DDs for the fault tolerance. We see that the left part
(E ↔ PE) of the figure is more spread. This indicates, that especially for a lower
performance more gaps can be filled with Ds. This leads to an increased energy.
The middle part of the figure (E ↔ FT ) shows the resulting improvement of the
performance overhead in case of a failure. And also on the right part (PE ↔ FT )
we see the slightly shift of all results to the left. In scenario C we try to use a
simple strategy to get a good FT result. Looking on the left side, we see that the
performance is much lower and the energy consumption is much higher than for
scenario A and B. As the performance does not change in case of a failure, the
middle and right part of the figure are empty. Scenario D shows the results for
schedules that run with a lower frequency (frequency level 7, 2.3 GHz). Here we



14 P. Eitschberger et al.

Fig. 5. Results when scheduling according to scenarios A, B, C, D showing: relative
energy consumption (lower is better), performance (higher is better), performance over-
head when fault (lower is better)

can see that running on a lower frequency results in a better energy consumption,
but only if the performance increases. Then we can reach nearly the best energy
consumption. The other both trade-offs are the same like for scenario A. They
are just a little bit stretched.

We could show, that there does not exist any overall solution for that three-
variable problem without giving up at least one of the three parameters. Thus,
the decision on which parameter the main focus lies must be made by the user.

Exemplary user preferences and favored strategies are summarized in Table 4.
As seen in Table 4, various user preferences are represented by the proposed

Table 4. User preferences and favored strategies.

User preferences Favored strategies

Fault-free case Fault case

PE (E) – S1

PE (FT) PE S2

FT PE S3

E E S4



Trade-Off Between Performance, Fault Tolerance and Energy Consumption 15

strategies. Next to major objectives, also minor criteria can be considered, result-
ing in a variety of possible solutions with reasonable results. The worsening of
criteria that are not focused is moderate. Thus, the investment for improving
favored objectives is low. In addition, the strategies can be hidden from users
that do not have any background knowledge about scheduling, so that they only
have to give their preferences by selecting a combination of objectives. Then, the
corresponding strategies can be chosen automatically by the scheduler.

Please note that the user preference might not only depend on the user, but
also on the taskgraph, schedule and deadline at hand. If e.g. the deadline is close
to the makespan of the corresponding schedule (i.e. all cores must execute tasks
at one of the highest frequencies), then energy savings in the fault-free case are
hardly possible, and the user will be better of to focus on other preferences. If
the deadline is farther away from the makespan, then energy efficiency can be
considered. If the deadline is hard, then the preference will be on keeping the
deadline even in each possible fault-case, and energy will only be a secondary
preference.

7 Conclusions

We presented a method to quantitatively handle the trade-off between PE, E
and FT when scheduling taskgraphs onto parallel machines with DVFS. We also
presented a scheduling and execution tool called RUPS that implements these
schedules on real machines. Fault tolerance is achieved by adding task duplicates
in parallel with the original tasks; affecting both the energy consumption and
the time-to-recovery in case a fault occurs in the system. This tool is intended
to bridge the gap between Performance, Energy efficiency and Fault tolerance
(PE, E, FT ), which are the parameters the scheduling decisions are based on.
We demonstrate the trade-off between PE, E and FT with four corner case
studies, which can heavily impact the decisions needed during system planning.
The experiments on real machines also provide evidence on the accuracy of the
underlying performance and energy model used in the scheduler. As future work,
we plan to extend the scheduler for tolerating more than one failure per schedule
and for integrating reconnected PUs after a failure. We also plan to investigate
in more strategies that focus on the corner cases E and FT and to integrate real
transfer datas next to the message headers into the runtime system.

References

1. Alam, B., Kumar, A.: Fault tolerance issues in real time systems with energy
minimization. Int. J. Inf. Comput. Technol. 3(10), 1001–1008 (2013)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Aupy, G., Benoit, A., Renaud-Goud, P., Robert, Y.: Energy-aware algorithms for

task graph scheduling, replica placement and checkpoint strategies. In: Khan, S.,
Zomaya, A. (eds.) Handbook on Data Centers, pp. 37–80. Springer, New York
(2015). https://doi.org/10.1007/978-1-4939-2092-1 2

https://doi.org/10.1007/978-1-4939-2092-1_2


16 P. Eitschberger et al.

4. Basmadjian, R., de Meer, H.: Evaluating and modeling power consumption of
multi-core processors. In: Proceedings of the 3rd International Conference on
Future Systems: Where Energy, Computing and Communication Meet (e-Energy
2012), pp. 1–10 (2012)

5. Bland, W.: User level failure mitigation in MPI. In: Caragiannis, I., Alexander, M.,
Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer,
B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par 2012. LNCS, vol.
7640, pp. 499–504. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36949-0 57

6. Cai, Y., Reddy, S.M., Al-Hashimi, B.M.: Reducing the energy consumption in fault-
tolerant distributed embedded systems with time-constraint. In: 8th International
Symposium on Quality Electronic Design (ISQED 2007), pp. 368–373 (2007)

7. Cichowski, P., Keller, J., Kessler, C.: Modelling power consumption of the Intel
SCC. In: Proceedings of the 6th Many-Core Applications Research Community
Symposium (MARC 2012), pp. 46–51 (2012)

8. Eitschberger, P., Keller, J.: Efficient and fault-tolerant static scheduling for grids.
In: Proceedings of the 14th IEEE International Workshop on Parallel and Dis-
tributed Scientific and Engineering Computing (PDSEC 2013), pp. 1439–1448
(2013)

9. Eitschberger, P., Keller, J.: Energy-efficient and fault-tolerant taskgraph scheduling
for manycores and grids. In: an Mey, D., et al. (eds.) Euro-Par 2013. LNCS, vol.
8374, pp. 769–778. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54420-0 75

10. Fechner, B., Hönig, U., Keller, J., Schiffmann, W.: Fault-tolerant static scheduling
for grids. In: Proceedings of the 13th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems (DPDNS 2008), pp. 1–6 (2008)

11. Goel, B., McKee, S.A.: A methodology for modeling dynamic and static power
consumption for multicore processors. In: Proceedings of the 30th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2016), pp. 273–282
(2016)

12. Hashimoto, K., Tsuchiya, T., Kikuno, T.: Effective scheduling of duplicated tasks
for fault tolerance in multiprocessor systems. IEICE Trans. Inf. Syst. 85, 525–534
(2002)

13. Hongxia, W., Xin, Q.: Dynamic replication of fault-tolerant scheduling algorithm.
Open Cybern. Syst. J. 9, 2670–2676 (2015)

14. Hönig, U., Schiffmann, W.: A comprehensive test bench for the evaluation of
scheduling heuristics. In: Proceedings 16th IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS 2004), pp. 437–442 (2004)

15. Kianzad, V., Bhattacharyya, S., Ou, G.: CASPER: an integrated energy-driven
approach for task graph scheduling on distributed embedded systems. In: Proceed-
ings of the 16th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP 2005) (2005)

16. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory Comput. Syst. 43(1), 67–80 (2008)

17. Singh, J., Auluck, N.: DVFS and duplication based scheduling for optimizing power
and performance in heterogeneous multiprocessors. In: Proceedings of the High
Performance Computing Symposium (HPC 2014), pp. 22:1–22:8 (2014)

18. Takouna, I., Dawoud, W., Meinel, C.: Accurate mutlicore processor power models
for power-aware resource management. In: Proceedings of the 9th IEEE Inter-
national Conference on Dependable, Autonomic and Secure Computing (DASC
2011), pp. 419–426 (2011)

https://doi.org/10.1007/978-3-642-36949-0_57
https://doi.org/10.1007/978-3-642-36949-0_57
https://doi.org/10.1007/978-3-642-54420-0_75
https://doi.org/10.1007/978-3-642-54420-0_75


Trade-Off Between Performance, Fault Tolerance and Energy Consumption 17

19. Tosun, S., Mansouri, N., Kandemir, M., Ozturk, O.: An ILP formulation for task
scheduling on heterogeneous chip multiprocessors. In: Levi, A., Savaş, E., Yenigün,
H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 267–276.
Springer, Heidelberg (2006). https://doi.org/10.1007/11902140 30

20. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic
number of replicas in heterogeneous systems. In: 12th IEEE International Confer-
ence on High Performance Computing and Communications (HPCC), pp. 434–441
(2010)

https://doi.org/10.1007/11902140_30

	Trade-Off Between Performance, Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph Scheduling
	1 Introduction
	2 The Trade-Off Problem
	3 Fault Tolerant and Energy Efficient Scheduling
	3.1 Previous Approach
	3.2 Extensions

	4 Runtime System
	4.1 System Check Tool
	4.2 Scheduler and User Preferences
	4.3 Runtime System

	5 Power Model
	5.1 Model Validation
	5.2 Real-World Evaluation

	6 Experimental Results
	7 Conclusions
	References




