
Mladen Berekovic · Rainer Buchty
Heiko Hamann · Dirk Koch
Thilo Pionteck (Eds.)

 123

LN
CS

 1
07

93

31st International Conference
Braunschweig, Germany, April 9–12, 2018
Proceedings

Architecture of
Computing Systems –
ARCS 2018

Lecture Notes in Computer Science 10793

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Mladen Berekovic • Rainer Buchty
Heiko Hamann • Dirk Koch
Thilo Pionteck (Eds.)

Architecture of
Computing Systems –
ARCS 2018
31st International Conference
Braunschweig, Germany, April 9–12, 2018
Proceedings

123

Editors
Mladen Berekovic
Chair for Chip Design
for Embedded Computing

Technische Universität Braunschweig
Braunschweig
Germany

Rainer Buchty
Chair for Chip Design
for Embedded Computing

Technische Universität Braunschweig
Braunschweig
Germany

Heiko Hamann
Institute of Computer Engineering
Universität zu Lübeck
Lübeck
Germany

Dirk Koch
School of Computer Science
The University of Manchester
Manchester
UK

Thilo Pionteck
Institute for Information Technology
and Communications

Otto-von-Guericke Universität Magdeburg
Magdeburg
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-77609-5 ISBN 978-3-319-77610-1 (eBook)
https://doi.org/10.1007/978-3-319-77610-1

Library of Congress Control Number: 2018935900

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 31st International Conference on Computer Architecture (ARCS 2018) was hosted
at the Technische Universität Braunschweig, Braunschweig, Germany, April 9–12,
2018. It was organized by the special interest group on “Architecture of Computing
Systems” of the GI (Gesellschaft für Informatik e. V.) and ITG (Informationstechnische
Gesellschaft im VDE).

With a tradition of 31 annual editions, ARCS has always been a conference
attracting leading-edge research outcomes in computer architecture and operating
systems, including a wide spectrum of topics ranging from embedded and real-time
systems all the way to large-scale and parallel systems. ARCS provides a holistic view
of computer architecture as it covers both hardware design aspects as well as a wide
range of software techniques required to exploit and build new hardware systems
efficiently. ARCS is also a platform covering new emerging and cross-cutting topics,
such as autonomous and ubiquitous systems, reconfigurable computing and accelera-
tion, neural networks, and AI as well as outlooks on future topics like post-Moore
architectures and organic computing. The focus of ARCS 2018 was on architectures for
robotics, autonomous vehicles, and automation systems. With this, ARCS is reflecting
the large interest in intelligent systems that are currently emerging and that have
disruptive character across the entire research and industry landscape.

ARCS 2018 attracted 53 submissions from authors in 17 countries. With 14 authors,
India had more authors submitting papers than the UK (13), China (12), Japan (9), and
France (9). Each paper was reviewed by a diverse and dedicated Program Committee
providing a total of 199 reviews. The Program Committee selected 23 submissions to
be presented at ARCS and published in the proceedings, which corresponds to a 43%
paper acceptance rate. The accepted papers were presented in eight sessions: Embedded
Systems (3 papers), Multicore Systems (2 papers), Analysis and Optimization (2
papers), On-Chip and Off-Chip Networks (4 papers), Memory Models and Systems (4
papers), Energy Efficient Systems (3 papers), Partial Reconfiguration (3 papers) as well
as a session on Large Scale Computing (2 papers). The word “cloud” in the beginning
of the preface was compiled from all the paper titles of the ARCS 2018 proceedings.

ARCS has a long tradition of hosting associated workshops. The following five
workshops were held in conjunction with the main conference this year:

– VERFE: 14th Workshop on Dependability and Fault Tolerance
– PASA: 13th Workshop on Parallel Systems and Algorithms
– FORMUS3IC: Third FORMUS3IC Workshop
– SAOS: 6th International Workshop on Self-Optimization in Autonomic and Organic

Computing Systems
– CompSpace: Second Workshop on Computer Architectures in Space

We thank the many individuals who contributed to the success of ARCS 2018, in
particular the members of the Program Committee and all the additional external

reviewers for their time and effort in carefully reviewing and judging the submissions.
We further thank all authors for submitting their work to ARCS and presenting
accepted papers. The workshops were organized and coordinated by Carsten Trinitis,
the proceedings were compiled by Thilo Pionteck, and Gerald Krell, the website was
maintained by Markus Hoffmann. Thanks to all these individuals and all the many
other people who helped in the organization of ARCS 2018.

April 2018 Mladen Berekovic
Dirk Koch

Rainer Buchty
Heiko Hamann

VI Preface

Organization

General Chair

Mladen Berekovic Technische Universität Braunschweig, Germany

Program Co-chairs

Rainer Buchty Technische Universität Braunschweig, Germany
Heiko Hamann Universität zu Lübeck, Germany
Dirk Koch University of Manchester, UK

Workshop and Tutorial Chair

Carsten Trinitis Technical University of Munich, Germany

Publicity Chair

Rainer Buchty Technische Universität Braunschweig, Germany

Publication Chair

Thilo Pionteck Otto von Guericke University Magdeburg, Germany

Local Organization

Anna Jankowski Technische Universität Braunschweig, Germany

Web Chair

Markus Hoffmann Karlsruhe Institute of Technology, Germany

Program Committee

Hamid Amiri University of Tunis El Manar, Tunisia
Michael Beigl Karlsruhe Institute of Technology, Germany
Mladen Berekovic Technische Universität Braunschweig, Germany
Jürgen Brehm Leibniz Universität Hannover, Germany
Uwe Brinkschulte Goethe-Universität Frankfurt am Main, Germany
Rainer Buchty Technische Universität Braunschweig, Germany
João M. P. Cardoso Universidade do Porto, Portugal
Laura Carrington San Diego Supercomputer Center/University of California,

USA

Martin Danĕk daiteq s.r.o., Czech Republic
Nikitas Dimopoulos University of Victoria, Canada
Ahmed El-Mahdy Egypt-Japan University of Science and Technology, Egypt
Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
William Fornaciari Politecnico di Milano, Italy
Roberto Giorgi University of Siena, Italy
Daniel Gracia Pérez Thales Research and Technology, France
Jan Haase Universität zu Lübeck, Germany
Jörg Hähner University of Augsburg, Germany
Heiko Hamann Universität zu Lübeck, Germany
Andreas Herkersdorf Technical University of Munich, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Koji Inoue Kyushu University, Japan
Gert Jervan Tallinn University of Technology, Estonia
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Jörg Keller Fern Universität in Hagen, Germany
Andreas Koch Technische Universität Darmstadt, Germany
Dirk Koch University of Manchester, UK
Hana Kubátová FIT CTU, Prague, Czech Republic
Olaf Landsiedel Chalmers University of Technology, Sweden
Erik Maehle Universität zu Lübeck, Germany
Alex Orailoglu University of California, San Diego, USA
Luis Miguel Pinho CISTER, ISEP, Portugal
Thilo Pionteck Otto von Guericke University Magdeburg, Germany
Pascal Sainrat IRIT, Université de Toulouse, France
Luca Santinelli ONERA, France
Toshinori Sato Fukuoka University, Japan
Wolfgang

Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Martin Schulz Technical University of Munich, Germany
Muhammad Shafique Vienna University of Technology, Austria
Cristina Silvano Politecnico di Milano, Italy
Leonel Sousa Universidade de Lisboa, Portugal
Rainer G. Spallek Technische Universität Dresden, Germany
Olaf Spinczyk Technische Universität Dortmund, Germany
Benno Stabernack Fraunhofer Institute for Telecommunications,

Heinrich Hertz Institute, Germany
Walter Stechele Technical University of Munich, Germany
Djamshid Tavangarian Universität Rostock, Germany
Jürgen Teich Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Sven Tomforde University of Kassel, Germany
Eduardo Tovar Polytechnic Institute of Porto, Portugal
Carsten Trinitis Technical University of Munich, Germany
Nicolas Tsiftes SICS Swedish ICT, Sweden

VIII Organization

Sascha Uhrig Airbus, Germany
Theo Ungerer University of Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Stephane Vialle CentraleSupelec and UMI GT-CNRS 2958, France
Lucian Vintan Lucian Blaga University of Sibiu, Romania
Klaus Waldschmidt Goethe-Universität Frankfurt am Main, Germany
Dominik Wist BIOTRONIC Berlin, Germany
Stephan Wong Delft University of Technology, The Netherlands
Sungjoo Yoo Seoul National University, South Korea

Additional Reviewers

Afzal, Ayesha
Becker, Thomas
Borghorst, Hendrik
Brand, Marcel
Bromberger, Michael
Buschhoff, Markus
Courtaud, Cédric
Dellagostin Souza, Jeckson
Eitschberger, Patrick
Freitag, Johannes
Frickenstein, Alexander
Friesel, Daniel
Gante, João
Ghasempouri, Tara
Gottschling, Philip
Hoffmann, Markus
Hofmann, Jaco
Hoozemans, Joost
Joseph, Moritz
Jung, Lukas
Khalid, Faiq
Korinth, Jens
Lorenzon, Arthur
Martins, Paulo
Mische, Jörg

Niazmand, Behrad
Ozen, Elbruz
Payandeh Azad, Siavoosh
Perner, Cora
Procaccini, Marco
Pusz, Oskar
Reif, Stefan
Rheindt, Sven
Schirmeier, Horst
Schmaus, Florian
Schwarz, Alexander
Shuka, Romeo
Singh, Jasdeep
Sommer, Lukas
Spiekermann, Daniel
Srivatsa, Akshay
Stegmeier, Alexander
Terraneo, Federico
Tsiokanis, Ioannis
Wirsch, Ramon
Witterauf, Michael
Wägemann, Peter
Yang, Dai
Zoni, Davide

Organization IX

Biologically-Inspired
Massively-Parallel Computation

(Keynote Talk)

Steve Furber

Abstract. The SpiNNaker project has delivered a massively-parallel computer
incorporating half a million ARM processor cores (with the ultimate goal of
expanding to a million cores) aimed at supporting large-scale models of spiking
neural systems that run in biological real time. The project has been 20 years in
conception and 10 years in construction, and the machine has been on line for a
year and a half as one of two major neuromorphic platforms supported by the
EU Flagship Human Brain Project.

The key problem to address in supporting biological neural networks is the
very high connectivity of those networks: each neuron typically receives con-
nections from, and connects to, around 10,000 (and sometimes as many as
250,000) other neurons. Biological neurons communicate primarily by issuing
action potentials or “spikes”, and in SpiNNaker each spike is sent as a small
packet through a packet-switched fabric. The high connectivity is achieved by
using a multicast communication protocol. Each SpiNNaker chip incorporates
18 ARM968 processor cores and a packet router, where information about
packet destinations is held in tables in the router. This exploits the fact that the
topology of the biological network is static or, in the case of synaptogenesis or
neurogenesis, at most slowly changing.

The equations describing the neurons and the synapses (including learning
rules) are implemented on software running on the ARM processor cores, so the
problem of mapping a particular network application onto the machine has two
parts, both of which are run on a host server or PC: the network topology is
mapped onto the machine and the routing tables set up, and separately the
neuron and synaptic functionality is compiled into executables to run on the
ARM cores. Execution is supported by a small event-driven real-time kernel
running on each core.

This talk will cover the relationship between neuromorphic systems and the
parallel development of Deep Networks and Convolutional Neural Networks in
machine learning, the architecture of the SpiNNaker machine and its packet-
routing mechanisms, and examples of applications that run on the machine, with
some discussion of the role that neuromorphics may play in future computer
architectures.

Steve Furber CBE FRS FREng is ICL Professor of Computer Engineering in the
School of Computer Science at the University of Manchester, UK. After completing a
BA in mathematics and a PhD in aerodynamics at the University of Cambridge, UK, he
spent the 1980s at Acorn Computers, where he was a principal designer of the BBC

Microcomputer and the ARM 32-bit RISC microprocessor. Over 100 billion variants
of the ARM processor have since been manufactured, powering much of the world’s
mobile and embedded computing. He moved to the ICL Chair at Manchester in 1990
where he leads research into asynchronous and low-power systems and, more recently,
neural systems engineering, where the SpiNNaker project is delivering a computer
incorporating a million ARM processors optimised for brain modelling applications.

XII S. Furber

Contents

Embedded Systems

Trade-Off Between Performance, Fault Tolerance and Energy Consumption
in Duplication-Based Taskgraph Scheduling . 3

Patrick Eitschberger, Simon Holmbacka, and Jörg Keller

Lipsi: Probably the Smallest Processor in the World 18
Martin Schoeberl

Superlinear Scalability in Parallel Computing and Multi-robot Systems:
Shared Resources, Collaboration, and Network Topology. 31

Heiko Hamann

Multicore Systems

Closed Loop Controller for Multicore Real-Time Systems 45
Johannes Freitag and Sascha Uhrig

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 57
Maxime France-Pillois, Jérôme Martin, and Frédéric Rousseau

Analysis and Optimization

Ampehre: An Open Source Measurement Framework for Heterogeneous
Compute Nodes . 73

Achim Lösch, Alex Wiens, and Marco Platzner

A Hybrid Approach for Runtime Analysis Using a Cycle and Instruction
Accurate Model . 85

Sebastian Rachuj, Christian Herglotz, Marc Reichenbach, André Kaup,
and Dietmar Fey

On-chip and Off-chip Networks

A CAM-Free Exascalable HPC Router for Low-Energy Communications. . . . 99
Caroline Concatto, Jose A. Pascual, Javier Navaridas, Joshua Lant,
Andrew Attwood, Mikel Lujan, and John Goodacre

Lightweight Hardware Synchronization for Avoiding Buffer Overflows
in Network-on-Chips . 112

Martin Frieb, Alexander Stegmeier, Jörg Mische, and Theo Ungerer

Network Optimization for Safety-Critical Systems
Using Software-Defined Networks. 127

Cora Perner

CaCAO: Complex and Compositional Atomic Operations for NoC-Based
Manycore Platforms . 139

Sven Rheindt, Andreas Schenk, Akshay Srivatsa, Thomas Wild,
and Andreas Herkersdorf

Memory Models and Systems

Redundant Execution on Heterogeneous Multi-cores Utilizing
Transactional Memory . 155

Rico Amslinger, Sebastian Weis, Christian Piatka, Florian Haas,
and Theo Ungerer

Improving the Performance of STT-MRAM LLC Through Enhanced
Cache Replacement Policy . 168

Pierre-Yves Péneau, David Novo, Florent Bruguier, Lionel Torres,
Gilles Sassatelli, and Abdoulaye Gamatié

On Automated Feedback-Driven Data Placement in Multi-tiered Memory . . . 181
T. Chad Effler, Adam P. Howard, Tong Zhou, Michael R. Jantz,
Kshitij A. Doshi, and Prasad A. Kulkarni

Operational Characterization of Weak Memory Consistency Models 195
M. Senftleben and K. Schneider

Energy Efficient Systems

A Tightly Coupled Heterogeneous Core with Highly Efficient
Low-Power Mode . 211

Yasumasa Chidai, Kojiro Izuoka, Ryota Shioya, Masahiro Goshima,
and Hideki Ando

Performance-Energy Trade-off in CMPs with Per-Core DVFS 225
Solomon Abera, M. Balakrishnan, and Anshul Kumar

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 239
Giuseppe Massari, Federico Terraneo, Michele Zanella,
and Davide Zoni

Partial Reconfiguration

Evaluating Auto-adaptation Methods for Fine-Grained
Adaptable Processors . 255

Joost Hoozemans, Jeroen van Straten, Zaid Al-Ars, and Stephan Wong

XIV Contents

HLS Enabled Partially Reconfigurable Module Implementation. 269
Nicolae Bogdan Grigore, Charalampos Kritikakis, and Dirk Koch

Hardware Acceleration in Genode OS Using Dynamic
Partial Reconfiguration . 283

Alexander Dörflinger, Mark Albers, Björn Fiethe, and Harald Michalik

Large Scale Computing

Do Iterative Solvers Benefit from Approximate Computing? An Evaluation
Study Considering Orthogonal Approximation Methods 297

Michael Bromberger, Markus Hoffmann, and Robin Rehrmann

A Flexible FPGA-Based Inference Architecture for Pruned
Deep Neural Networks. 311

Thorbjörn Posewsky and Daniel Ziener

Author Index . 325

Contents XV

Embedded Systems

Trade-Off Between Performance, Fault
Tolerance and Energy Consumption in

Duplication-Based Taskgraph Scheduling

Patrick Eitschberger1(B), Simon Holmbacka2, and Jörg Keller1

1 Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
Hagen, Germany

{patrick.eitschberger,jorg.keller}@fernuni-hagen.de
2 Faculty of Science and Engineering, Abo Akademi University, Turku, Finland

sholmbac@abo.fi

Abstract. Fault tolerance in parallel systems can be achieved by dupli-
cating task executions onto several processing units, so in case one pro-
cessing unit (PU) fails, the task can continue executing on another unit.
Duplicating task execution affects the performance of the system in fault-
free and fault cases, and its energy consumption. Currently, there are
no tools for properly handling the three-variable optimization problem:
Performance ↔ Fault Tolerance ↔ Energy Consumption, and no facili-
ties for integrating it into an actual system. We present a fault-tolerant
runtime system (called RUPS) for user defined schedules, in which the
user can give their preferences about the trade-off between performance,
energy and fault tolerance. We present an approach for determining the
best trade-off for modern multicore architectures and we test RUPS on
a real system to verify the accuracy of our approach itself.

Keywords: Scheduling · Fault tolerance · Energy efficiency
Trade-off · Power modeling · Optimization · Runtime system

1 Introduction

Fault tolerance is important for parallel systems like manycores and grids, where
a permanent failure of a processing unit (PU), resulting from either a hardware or
software fault, might occur during the execution of a scheduled parallel program.

The schedules of parallel programs can be created statically, prior to execu-
tion with the help of a task graph that represents the tasks and dependencies
between them. To maximize performance in static schedules, it is critical to
minimize the length of a schedule, the so-called makespan. However, integrat-
ing fault tolerance techniques typically results in performance overhead. This
leads to increasing makespans. One kind of fault tolerance is the task duplica-
tion where for each task a copy – a so-called duplicate – is created on another
PU. In case of a failure, the duplicate is used to continue the schedule execu-
tion. The performance of the system in the fault case will then benefit from the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-77610-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_1&domain=pdf

4 P. Eitschberger et al.

duplicates, since the progress of the schedule can seamlessly be continued by the
tasks’ duplicates. Another issue emerging especially in recent years is the prob-
lem of minimizing the energy consumption. Duplicating tasks requires additional
resources because the task is actually executing simultaneously on various PUs.
In the fault-free case this is regarded as energy wasting. The energy consumption
is also affected by scaling down the clock frequency of a PU. By executing at
different clock frequencies, the makespan is affected by the altered performance,
and the energy consumption is affected by the altered power dissipation. This
leads to a three-variable trade-off decision to be made between Performance PE,
Energy Consumption E, and Fault tolerance FT .

There are several approaches in the literature for two-dimensional optimiza-
tions in the area of performance, energy and fault tolerance for various parallel
platforms and with different fault tolerance techniques, e.g. in [3,10,12,13,15–
17,20]. Although the optimization for all two-dimensional combinations is well
researched, the three-dimensional optimization is rarely addressed. There exist
a few exceptions that focus on real-time systems where tasks have to be exe-
cuted in predefined time frames or within a certain deadline. Therefore, PE
in corresponding approaches is the major objective. For example Cai et al. [6]
present a greedy heuristic to reduce the energy consumption in fault-tolerant
distributed embedded systems with time-constraints. Another approach is pre-
sented by Alam and Kumar [1]. They assume that only one specific transient
fault could occur during the execution of a task. Tosun et al. [19] present a
framework that maps a given real-time embedded application under different
optimization criteria onto a heterogeneous chip multiprocessor architecture. In
all of these approaches, the focus typically lies on transient faults, where check-
pointing or backup mechanisms are used to circumvent a fault. In our approach,
we focus on permanent faults and present scheduling strategies that combine all
three criteria without a real-time constraint. Hence, in this work a broader range
is considered, which is not yet addressed in previous work.

We propose a solution for the three-variable optimization problem for cases
where the user can inform the scheduler about his preferences. We firstly extend
an energy efficient and fault tolerant scheduler by integrating new scheduling
strategies that can be set according to the user’s preferences. Secondly, to demon-
strate the influence of the user preferences we present a runtime system RUPS
for scheduling parallel applications with adjustable degrees of fault tolerance
on grids, computing clusters or manycore systems. The runtime system utilizes
a pre-optimized static schedule with the desired characteristics and trade-off
between PE, E and FT . To obtain the energy consumption for a selected sched-
ule, we create a realistic power model based on experiments for an actual real-
world processor. Several example models for different platforms are created, and
we show that their accuracy is sufficient to predict the requirements for the
trade-off between PE, E and FT . Thirdly, with the power model and the given
schedule, we can construct the trade-off map to be used during system planning,
and we show how the PE, E and FT parameters can affect the planning deci-
sions of parallel fault-tolerant applications. Our results indicate that the power

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 5

model is accurate and that the experiments match the predictions. Finally the
trade-off map shows in detail the relations between PE, E and FT .

The remainder of this paper is structured as follows. In Sect. 2 the trade-off
problem is discussed. Sections 3, 4 and 5 present the extended scheduler, the
runtime system and the power model. In Sect. 6 the results are presented and
analyzed. In Sect. 7, we conclude and give an outlook on future work.

2 The Trade-Off Problem

A combination of all three objectives is possible in general, but there does not
exit an overall optimal solution. In this context the degree of FT is rated by
the overhead in performance (and energy) that results from the fault tolerance
techniques in both the fault-free and fault case. Therefore, a compromise between
the optimization criteria must be made. While one criterion is improved, either
one or both of the others are worsened.

When we focus on PE of a schedule, it is dependent on the mapping of the
tasks. The more an application can be parallelized the better is the performance.
Additionally, modern processors support several frequencies at which a processor
can run. Thus, tasks should be accelerated as much as possible, i.e. use the
highest supported frequency of a PU. In contrast, a more parallelized application
results in fewer gaps between tasks and thus in fewer possibilities to include
duplicates without shifting successor tasks. This results in a high performance
overhead in case of a failure, e.g. a low FT . Additionally, running on a high
frequency typically leads to a high E. When we focus on FT , duplicates should
be executed completely in the fault-free case and available but unused PUs
should also be considered for mapping duplicates to minimize performance loss
in case of a fault. In this case, duplicates may lead to shifts of original tasks and
thus to a low PE in the fault-free case. In terms of E, both executing duplicates
completely and using available PUs not necessary for the original tasks result
in a high E. Is the focus put on E, low frequencies and short duplicates are
preferable. But low frequencies lead to low PE and short duplicates to a high
performance overhead (FT) in case of a failure.

In addition, the main focus of a user varies in different situations. For exam-
ple, in a time critical environment, PE is the most important criterion next to
FT . Thus, in this situation PE and also FT is usually favored over minimizing
E. Another situation is, that a failure occurs extremely rarely and thus E is
becoming more important. Other examples exist in mobile devices where E is
the most important criterion next to PE. The main focus is therefore put on E
and PE while FT is neglected. However, the alignment of the optimization is
very situational and ultimately depends highly on the user preferences.

3 Fault Tolerant and Energy Efficient Scheduling

We start by reviewing the ideas of [10] and briefly introduce our previous work.
Then we present two new strategies to improve either FT or E of the schedules.

6 P. Eitschberger et al.

3.1 Previous Approach

Fechner et al. [10] provides a fault-tolerant duplication-based scheduling app-
roach that guarantees no overhead in a fault-free case. Starting from an already
existing schedule (and taskgraph), each original task is copied and its duplicate
(D) is placed on another PU than the original task so that in case of a failure
the schedule execution can be continued. We assume homogeneous PUs and a
fail-stop model, where a failure of a PU might result from a faulty hardware,
software or network. We only consider one failure per schedule execution.

If an original task has finished it sends a commit message to its corresponding
D so that it can be aborted. Schedules often comprise several gaps between tasks
resulting from dependencies. Ds can be placed either in those gaps or directly
between two succeeding tasks. To avoid an overhead in a fault-free case, in
all situations where a D would lead to a shift of all its successor tasks only a
placeholder, a so called dummy duplicate (DD) is placed. DDs are only extended
to fully Ds in case of a failure. To reduce the communication overhead, Ds are
placed with a short delay, so called slack. Thus, either the results of an original
task are sent to its successor tasks or the results of the corresponding D, but not
both. Figure 1(a) illustrates an example taskgraph. For a better understanding
the communication times and the slack are disregarded. Figure 1(b) and (c) show
the resulting schedules of two strategies, the first uses only DDs the second uses
Ds and DDs.

Fig. 1. (a) simplified taskgraph, (b) strategy 1: use only DDs, (c) strategy 2: use Ds and
DDs, (d) strategy 3: use half of PUs for original tasks, the others for Ds, (e) strategy
4: select a lower frequency for original tasks

In our previous work [8], we show the importance of considering communi-
cation times for the placement of Ds and DDs. We present in [9] an extension
to improve E of schedules by calculating a buffer for each task. It indicates how
much a task could be slowed down by scaling down the frequency of the cor-
responding PU without prolonging the makespan. Frequencies are then set to
the lowest possibles to fill the buffers. We assume a general power model like
explained in [2] and use continues normalized frequencies for our predictions.

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 7

3.2 Extensions

We extend the scheduler for supporting also a concrete power model (that we
describe in Sect. 5) with discrete frequencies and we include two new simple
strategies. In our first strategy, we use a simple list scheduler to create schedules
with respect to the dependencies from the corresponding taskgraph. Instead of
using as many PUs as possible, only half of the available PUs are used for the
placement of original tasks and the remaining PUs are used to include Ds (see
Fig. 1(d)). With this strategy we try to focus on FT .

In our second strategy, the user can set a frequency level with which the
original tasks should run before including Ds and DDs (see Fig. 1(e)). Thus, we
leave the mapping of all original tasks as it is and change only the runtime of
the tasks by using the selected frequency level. Then, the start times of tasks
are corrected according to the dependencies given by the taskgraph.

4 Runtime System

RUPS (Runtime system for User Preferences-defined Schedules) is a scheduling
tool for parallel platforms with features allowing the user to input various pref-
erences e.g. PE, E or FT in the schedule. Schedules are then created with the
RUPS tool – optimized for the user defined preference in question. RUPS consists
of four main parts illustrated in Fig. 2(a). The processor details are extracted in
Part 1 and passed to the scheduler (Part 3), which in turn optimizes the sched-
ule based on the processor parameters and user preferences (Part 2). Finally,
the schedule is passed to the runtime system (Part 4), and scheduled on the
processor. In this section, we describe the details of these four parts.

Fig. 2. Overview of (a) RUPS and (b) the runtime system

4.1 System Check Tool

At the first use of RUPS, it has to be initialized once with the system check
tool to adjust the power model for the processor used. This tool measures the
power consumption of the processor for all supported frequencies and for a dif-
ferent number of cores under full load. We measure the power consumption for
10 seconds (s) with a sampling rate of 10 milliseconds (ms). All cases are repeated

8 P. Eitschberger et al.

five times to compensate high power values that could occur due to unexpected
background processes. Between each case, all cores are set to the lowest fre-
quency in idle mode for 5 s to reduce the rise in temperature of the processor
and thus the influence on the power consumption. Then the averaged results of
the measure points for each case are used as values for the power model.

4.2 Scheduler and User Preferences

The scheduler consists of two main parts. One part for the schedule creation and
one part for the simulation of generated schedules to predict the energy con-
sumption in different situations. It supports several strategies for the placement
of Ds/DDs and the user can set different options for the behavior during the
scheduling process like setting the time for a slack, considering unused cores for
the placement of Ds/DDs, simulating failures or only creating the fault-tolerant
schedules. The simulator can then be used to simulate for each task in the sched-
ule one failure. It can also handle task slow downs that result from a high load
level of a PU. For more details we refer to [8,9].

4.3 Runtime System

The runtime system is based on ULFM-MPI [5], a fault tolerant extension of
Open-MPI. For each core a MPI-process is created, that reads the schedule
and taskgraph information from files and generates a task queue (sorted by the
starting times of tasks). Then, a while loop is executed as long as there is a task
in the queue. The loop is used for a polling mechanism that reacts and handles
the communication (via messages), starts a task if possible and also aborts a task
if necessary. The task execution is separated from the communication process
by a (posix) thread. Data transfers between tasks are simulated by only sending
the message header, that includes next to others the information about the start
time of the sending operation and the transfer time. This simplification has a
neglectable effect on the results, as the energy consumption of the communication
is not considered in the measurements and models.

Figure 2(b) illustrates a short overview of the runtime system. We simulate
a failure by exiting a MPI-process just before the corresponding task is started.
The other processes are then informed about the failure by an error handler. We
integrate a testing mode where one additional MPI-process is started to measure
the energy consumption with the help of Intel RAPL. The measurement process
measures the energy with a sample rate of 10 ms.

5 Power Model

To predict the energy consumption for a schedule, an appropriate power model
for the processor is necessary. Basically, a model is a simplified representation of
the reality. The complexity of a model increases significantly with its accuracy.
As the power consumption of a processor depends on several factors, like the

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 9

temperature, instruction mix, usage rate and technology of the processor, there
exist numerous approaches in the literature to model the power consumption of
a processor with varying complexities and accuracies, like in [4,7,11] or [18].

In general the power consumption can be subdivided into a static part, that is
frequency-independent and a dynamic part, that depends both on the frequency
and on the supply voltage.

Pprocessor = Pstatic + Pdynamic (1)

The static power consumption consists of the idle power Pidle and a device
specific constant s, that is only needed when the processor is under load.

Pprocessor =

{
Pidle + s + Pdynamic if under load
Pidle else

(2)

The dynamic power consumption is typically modeled as a cubic frequency
function [2], as the frequency and voltage are loosely linearly correlated1. Addi-
tionally the supply voltage and thus the dynamic power consumption depends
on the load level of a core. As we only consider fully loaded cores or cores that
are in idle mode (at the lowest frequency) the influence of a load level can be
given by a parameter w ∈ {0, 1}. If we assume a homogeneous multi-core pro-
cessor with n cores, a simple power model for the dynamic part can be given by
the following equation, where a, b and β are device specific constants, i is the
core index and fcurr,i is the current frequency of core i:

Pdynamic =
n−1∑
i=0

wi · β
(
fcur,i

3 + a · fcur,i
2 + b · fcur,i

)
(3)

Only if a core runs at a higher frequency under full load, the dynamic part
of the power consumption for the processor is considered.

5.1 Model Validation

To prove the accuracy of the power model, we used three different computer
systems with Intel processors as test platforms:

1. Intel i7 3630qm Ivy-Bridge based laptop
2. Intel i5 4570 Haswell based desktop machine
3. Intel i5 E1620 server machine

To construct the power model, we extracted the power values by physical
experiments using the Intel RAPL tool. As described in Sect. 4.1, we measured
the power consumption for each frequency combination for 10 s with a sampling
rate of 10 ms and repeated all measurements five times. We test the power

1 For a given voltage there is a maximum frequency and for a desired frequency there
is a minimum voltage required.

10 P. Eitschberger et al.

model for six different workload scenarios: ALU-, FPU-, SSE-, BP- and RAM-
intensive workloads and for a combination of these tests as mixed workload. The
measured power values were used to construct the power model for each platform
and scenario. The architecture specific tuning parameters (s, β, a and b) in Eqs. 2
and 3 were then determined using a least squares analysis.

Table 1 shows exemplary the individual parameters for each platform for
a mixed workload after fitting the physical measurements to Eqs. 2 and 3 and
optimizing the tuning parameters. The results of the least squares analysis for the
other tests only differ slightly from the mixed workload scenario. The different
parameters for the power model can be determined and saved in advance and
used for several classes of applications with a specific workload type dominating.
Then the power consumption can be measured during the execution of the first
application and compared to the different power models to find the best suitable
for the whole class.

Table 1. Values of the architecture specific tuning parameters for a mixed workload

Pidle s β a b

i7 3630 3.781 W 1.29 W 0.340 W/Hz3 −3.42 Hz 5.88 Hz2

i5 4570 5.976 W 0.42 W 0.091 W/Hz3 1.02 Hz 12.08 Hz2

i5 E1620 8.728 W 3.83 W 0.344 W/Hz3 −2.87 Hz 6.13 Hz2

Table 2 shows the difference between the data and model as the maximum
and average deviation. The maximum deviation was lowest using the desktop
CPU (i5 4570). The reason for having a less exact fit using the server (i5 E1620)
and laptop CPU (i7 3630) is because of the significantly higher power output
using the turbo boost on these CPUs, which is more difficult to fit to the curve
than the more smooth power curve of the i5 4570 CPU. However, with a low
average error value we consider this model feasible for our experiments. In Fig. 3
we present exemplary the resulting power curve for the server test platform for
the real data and for the model.

Table 2. Difference between the data and model as error values squared from Fig. 3

i7 3630 i5 4570 i5 E1620

Avg. deviation 1.09% 0.84% 1.13%

Max deviation 15.56% 7.28% 17.07%

5.2 Real-World Evaluation

For our real-world evaluation we used the server system as a common platform
for clusters and grids. We tested 922 schedules in total that are related to 40
taskgraphs with random properties and between 19 and 24 tasks (see Sect. 6).

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 11

Fig. 3. Power consumption and power model for the server platform

For each taskgraph we first let the already existing schedule run without any
changes and thus without any failures. Then, the fault-tolerant schedules that
result from the first strategy – using only DDs – (see Sect. 3) were calculated
and executed by the runtime system. And we let run all fault-tolerant schedules
with a simulated failure at each task by exiting the corresponding MPI-Process
directly before the task execution started.

We validate the accuracy of the prediction by comparing the predicted energy
values that result from the scheduler with the real measurements of the runtime
system. In Fig. 4 we present the predicted and real energy consumption for all
schedules. With a maximum deviation of 7.14% and 1.64% on average, our pre-
diction fits the reality quite well.

Fig. 4. Predicted and measured energy consumption (for a mixed workload)

6 Experimental Results

For our experiments we used a benchmark suite of synthetic taskgraphs [14] with
36000 performance optimal schedules, that can be subdivided by the number of
PUs (2, 4, 8, 16 and 32), the number of tasks (7–12, 13–18 and 19–24), the
edge density and length and the node and edge weights. The schedules were
generated with a PDS-algorithm (Pruned Depth-first Search). To find optimal
solutions in an acceptable time, the search space is reduced by pruning selected
paths in the search tree. As the scheduling problem is NP-hard, there have been

12 P. Eitschberger et al.

some taskgraphs where no optimal schedule could be found even after weeks of
computation. Those taskgraphs are excluded from this study. As seen in Sect. 5.2,
our system model closely reflects the real system in terms of energy consumption.
We used this fact to simulate nearly 34500 of the given schedules using the RUPS
system. We evaluate the trade-off between PE, FT and E with four scenarios
in which we use the four strategies from Sect. 3. These scenarios reflect system
setups with one of the three parameters as inherently dominating. This choice
will give a wide range of experiments with the extreme corner cases covered, and
everything between them. The following scenarios were used for our simulation,
where we do not consider the turbo frequency to avoid throttling effects:

(A) Strategy 1: Use only DDs and start with the highest supported frequency
(3.5 GHz). In this scenario we focus on PE.

(B) Strategy 2: Use Ds and DDs and start with the highest supported frequency
(3.5 GHz). This scenario mainly targets on PE, but also on FT .

(C) Strategy 3: Create the schedules with a simple List Scheduler that uses half
of the PUs for original tasks, the other for the Ds and start with the highest
supported frequency (3.5 GHz). Here the focus is on FT .

(D) Strategy 4: Select a lower frequency for original tasks and start with fre-
quency level 7 (2.3 GHz). With this scenario we try to focus on E.

To visualize the trade-off between PE, FT and E the results of the four
strategies are relatively related to the following estimated upper and lower
boundaries for each criterion (see Table 3) where m is the makespan in cycles,
mseq is the makespan, when all tasks are running in sequence and mft is the
makespan in case of a failure. pmax ∈ PU is the maximum number of PUs used
and fhighest/lowest is the highest or lowest frequency respectively.

Table 3. Upper and lower boundaries for PE, FT and E

Best case Worst case

PE
mseq

pmax·fhighest

mseq

1·flowest

FT
mft−m

m
· 100 = 0% 2·m−m

m
· 100 = 100%

E
mseq

pmax·2.3 GHz
mseq

1·flowest

Focusing on performance PE, the best solution is to parallelize an application
as much as possible. Furthermore, the highest available frequency fhighest should
be selected, if the system in use supports different frequencies. A lower bound
for the performance can be achieved by running all tasks in sequence on one PU
with the lowest possible frequency flowest.

While a schedule is either fault-tolerant or not, the fault tolerance FT is rated
by the performance overhead in case of a failure. Therefore, when focusing on
the fault tolerance the best solution is to copy the whole schedule and execute
it simultaneously (completely independent) to the original one on other PUs.

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 13

Then, both the performance, i.e. the makespan mft in case of a failure and in a
fault-free case m are equal. Accordingly, the performance overhead results to zero
percent. However, the worst solution is when the schedule is not fault-tolerant
and a failure occurs directly before the end of the schedule execution. Then, the
whole schedule has to be repeated on p − 1 PUs and the makespan mft = 2 · m
in case of a failure is at least doubled in comparison to the fault-free case m.
Thus, the performance overhead in case of a failure results in 100%.

While the estimation of upper and lower bounds for PE and FT are inde-
pendent of a certain system, E depends highly on the system in use. Therefore,
we calculated the best and worst energy consumption of the i5 E1620 proces-
sor with the measured power values from the system check tool for a perfectly
divisible workload. In this case, the most efficient frequency is at 2.3 GHz. The
boundaries for E in Table 3 have to be multiplied with the corresponding power
values from the system to get the energy consumption in Joule.

In Fig. 5 the results of all scenarios are presented. For a better illustration
we only show the results for systems with 4 PUs (in total 6500 schedules with
different properties). But the results for the other number of PUs (2, 8, 16 and
32 PUs) are similar with respect to the overall trends. They differ only slightly
by small shifts. The left column of the figure presents for all scenarios (A, B, C
and D) the trade-off between E and PE, the middle column between E and FT
and the right column between PE and FT .

Starting with scenario A, we can see that a better performance also leads to
a better energy consumption. With a performance of nearly 100% the energy
consumption goes down to around 5% (related to the best and worst cases from
the boundaries). This behavior seems to be related to the high idle power of the
system compared to the dynamic power. The higher the idle power is, the better
it is to run on a high frequency, e.g. at the highest like here. If we now focus on the
trade-off between E and FT we can see, that the lower the energy consumption
in the fault free case is, and thus the higher the performance of the schedule, the
higher is also the performance overhead in case of a failure. This behavior results
from the decreasing number and size of gaps within a schedule, when improving
the performance. Because then each DD leads directly to a shift of its successor
tasks. The trade-off between PE and FT shows directly the same behavior.
The higher the performance the higher is also the performance overhead. In
scenario B we used Ds and DDs for the fault tolerance. We see that the left part
(E ↔ PE) of the figure is more spread. This indicates, that especially for a lower
performance more gaps can be filled with Ds. This leads to an increased energy.
The middle part of the figure (E ↔ FT) shows the resulting improvement of the
performance overhead in case of a failure. And also on the right part (PE ↔ FT)
we see the slightly shift of all results to the left. In scenario C we try to use a
simple strategy to get a good FT result. Looking on the left side, we see that the
performance is much lower and the energy consumption is much higher than for
scenario A and B. As the performance does not change in case of a failure, the
middle and right part of the figure are empty. Scenario D shows the results for
schedules that run with a lower frequency (frequency level 7, 2.3 GHz). Here we

14 P. Eitschberger et al.

Fig. 5. Results when scheduling according to scenarios A, B, C, D showing: relative
energy consumption (lower is better), performance (higher is better), performance over-
head when fault (lower is better)

can see that running on a lower frequency results in a better energy consumption,
but only if the performance increases. Then we can reach nearly the best energy
consumption. The other both trade-offs are the same like for scenario A. They
are just a little bit stretched.

We could show, that there does not exist any overall solution for that three-
variable problem without giving up at least one of the three parameters. Thus,
the decision on which parameter the main focus lies must be made by the user.

Exemplary user preferences and favored strategies are summarized in Table 4.
As seen in Table 4, various user preferences are represented by the proposed

Table 4. User preferences and favored strategies.

User preferences Favored strategies

Fault-free case Fault case

PE (E) – S1

PE (FT) PE S2

FT PE S3

E E S4

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 15

strategies. Next to major objectives, also minor criteria can be considered, result-
ing in a variety of possible solutions with reasonable results. The worsening of
criteria that are not focused is moderate. Thus, the investment for improving
favored objectives is low. In addition, the strategies can be hidden from users
that do not have any background knowledge about scheduling, so that they only
have to give their preferences by selecting a combination of objectives. Then, the
corresponding strategies can be chosen automatically by the scheduler.

Please note that the user preference might not only depend on the user, but
also on the taskgraph, schedule and deadline at hand. If e.g. the deadline is close
to the makespan of the corresponding schedule (i.e. all cores must execute tasks
at one of the highest frequencies), then energy savings in the fault-free case are
hardly possible, and the user will be better of to focus on other preferences. If
the deadline is farther away from the makespan, then energy efficiency can be
considered. If the deadline is hard, then the preference will be on keeping the
deadline even in each possible fault-case, and energy will only be a secondary
preference.

7 Conclusions

We presented a method to quantitatively handle the trade-off between PE, E
and FT when scheduling taskgraphs onto parallel machines with DVFS. We also
presented a scheduling and execution tool called RUPS that implements these
schedules on real machines. Fault tolerance is achieved by adding task duplicates
in parallel with the original tasks; affecting both the energy consumption and
the time-to-recovery in case a fault occurs in the system. This tool is intended
to bridge the gap between Performance, Energy efficiency and Fault tolerance
(PE, E, FT), which are the parameters the scheduling decisions are based on.
We demonstrate the trade-off between PE, E and FT with four corner case
studies, which can heavily impact the decisions needed during system planning.
The experiments on real machines also provide evidence on the accuracy of the
underlying performance and energy model used in the scheduler. As future work,
we plan to extend the scheduler for tolerating more than one failure per schedule
and for integrating reconnected PUs after a failure. We also plan to investigate
in more strategies that focus on the corner cases E and FT and to integrate real
transfer datas next to the message headers into the runtime system.

References

1. Alam, B., Kumar, A.: Fault tolerance issues in real time systems with energy
minimization. Int. J. Inf. Comput. Technol. 3(10), 1001–1008 (2013)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Aupy, G., Benoit, A., Renaud-Goud, P., Robert, Y.: Energy-aware algorithms for

task graph scheduling, replica placement and checkpoint strategies. In: Khan, S.,
Zomaya, A. (eds.) Handbook on Data Centers, pp. 37–80. Springer, New York
(2015). https://doi.org/10.1007/978-1-4939-2092-1 2

https://doi.org/10.1007/978-1-4939-2092-1_2

16 P. Eitschberger et al.

4. Basmadjian, R., de Meer, H.: Evaluating and modeling power consumption of
multi-core processors. In: Proceedings of the 3rd International Conference on
Future Systems: Where Energy, Computing and Communication Meet (e-Energy
2012), pp. 1–10 (2012)

5. Bland, W.: User level failure mitigation in MPI. In: Caragiannis, I., Alexander, M.,
Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer,
B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par 2012. LNCS, vol.
7640, pp. 499–504. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36949-0 57

6. Cai, Y., Reddy, S.M., Al-Hashimi, B.M.: Reducing the energy consumption in fault-
tolerant distributed embedded systems with time-constraint. In: 8th International
Symposium on Quality Electronic Design (ISQED 2007), pp. 368–373 (2007)

7. Cichowski, P., Keller, J., Kessler, C.: Modelling power consumption of the Intel
SCC. In: Proceedings of the 6th Many-Core Applications Research Community
Symposium (MARC 2012), pp. 46–51 (2012)

8. Eitschberger, P., Keller, J.: Efficient and fault-tolerant static scheduling for grids.
In: Proceedings of the 14th IEEE International Workshop on Parallel and Dis-
tributed Scientific and Engineering Computing (PDSEC 2013), pp. 1439–1448
(2013)

9. Eitschberger, P., Keller, J.: Energy-efficient and fault-tolerant taskgraph scheduling
for manycores and grids. In: an Mey, D., et al. (eds.) Euro-Par 2013. LNCS, vol.
8374, pp. 769–778. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54420-0 75

10. Fechner, B., Hönig, U., Keller, J., Schiffmann, W.: Fault-tolerant static scheduling
for grids. In: Proceedings of the 13th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems (DPDNS 2008), pp. 1–6 (2008)

11. Goel, B., McKee, S.A.: A methodology for modeling dynamic and static power
consumption for multicore processors. In: Proceedings of the 30th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2016), pp. 273–282
(2016)

12. Hashimoto, K., Tsuchiya, T., Kikuno, T.: Effective scheduling of duplicated tasks
for fault tolerance in multiprocessor systems. IEICE Trans. Inf. Syst. 85, 525–534
(2002)

13. Hongxia, W., Xin, Q.: Dynamic replication of fault-tolerant scheduling algorithm.
Open Cybern. Syst. J. 9, 2670–2676 (2015)

14. Hönig, U., Schiffmann, W.: A comprehensive test bench for the evaluation of
scheduling heuristics. In: Proceedings 16th IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS 2004), pp. 437–442 (2004)

15. Kianzad, V., Bhattacharyya, S., Ou, G.: CASPER: an integrated energy-driven
approach for task graph scheduling on distributed embedded systems. In: Proceed-
ings of the 16th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP 2005) (2005)

16. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory Comput. Syst. 43(1), 67–80 (2008)

17. Singh, J., Auluck, N.: DVFS and duplication based scheduling for optimizing power
and performance in heterogeneous multiprocessors. In: Proceedings of the High
Performance Computing Symposium (HPC 2014), pp. 22:1–22:8 (2014)

18. Takouna, I., Dawoud, W., Meinel, C.: Accurate mutlicore processor power models
for power-aware resource management. In: Proceedings of the 9th IEEE Inter-
national Conference on Dependable, Autonomic and Secure Computing (DASC
2011), pp. 419–426 (2011)

https://doi.org/10.1007/978-3-642-36949-0_57
https://doi.org/10.1007/978-3-642-36949-0_57
https://doi.org/10.1007/978-3-642-54420-0_75
https://doi.org/10.1007/978-3-642-54420-0_75

Trade-Off Between Performance, Fault Tolerance and Energy Consumption 17

19. Tosun, S., Mansouri, N., Kandemir, M., Ozturk, O.: An ILP formulation for task
scheduling on heterogeneous chip multiprocessors. In: Levi, A., Savaş, E., Yenigün,
H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 267–276.
Springer, Heidelberg (2006). https://doi.org/10.1007/11902140 30

20. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic
number of replicas in heterogeneous systems. In: 12th IEEE International Confer-
ence on High Performance Computing and Communications (HPCC), pp. 434–441
(2010)

https://doi.org/10.1007/11902140_30

Lipsi: Probably the Smallest Processor
in the World

Martin Schoeberl(B)

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

masca@dtu.dk

Abstract. While research on high-performance processors is important,
it is also interesting to explore processor architectures at the other end
of the spectrum: tiny processor cores for auxiliary functions. While it is
common to implement small circuits for such functions, such as a serial
port, in dedicated hardware, usually as a state machine or a combina-
tion of communicating state machines, these functionalities may also be
implemented by a small processor. In this paper, we present Lipsi, a
very tiny processor to make it possible to implement classic finite state
machine logic in software at a minimal cost.

1 Introduction

This paper presents Lipsi, a tiny microcontroller optimized for utility functions
in an FPGA. Lipsi can be used to implement a peripheral device or a state
machine as part of a larger system-on-chip. The design goal of Lipsi is a very
small hardware design built around a single block RAM for instructions and
data.

Using a single block RAM for instructions and data means that this memory
is time shared between instruction fetch and data read. Therefore, Lipsi is a
sequential and not a pipelined architecture. Most instructions execute in two
clock cycles.

Lipsi is such a simple processor that it is possible to completely describe
its datapath, instruction set and instruction encoding in a paper. Besides being
a useful processor for auxiliary functions, we also envision Lipsi being used in
teaching basic computer architecture. For example, it can be used to learn pro-
gramming at the machine level. Or it should be possible for students to develop
a simulator for Lipsi in a single lab session.

Lipsi is part of a family of processors, which all have been designed during an
inspiring vacation on Greek islands, which gave the processors their names. The
name for each processor was chosen from that island where the first sketches
were drawn. The three sisters are: Patmos, Leros, and Lipsi. Patmos is a dual
issue, 32-bit RISC pipeline optimized for real-time systems [1] and used in the
multicore T-CREST platform [2]. Leros is a 16-bit processor for small embedded
systems [3] and can execute a small Java virtual machine [4]. Lipsi is the smallest
sister and an 8-bit accumulator architecture using a single on-chip block RAM,
which is the topic of this paper.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 18–30, 2018.
https://doi.org/10.1007/978-3-319-77610-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_2&domain=pdf
http://orcid.org/0000-0003-2366-382X

Lipsi: Probably the Smallest Processor in the World 19

This paper is organized in 5 sections: The following section presents related
work. Section 3 describes the design of Lipsi. Section 4 evaluates and discusses
the design. Section 5 concludes.

2 Related Work

Altera provides a softcore, the Nios II [5], for Altera FPGAs. The Nios RISC
architecture implements a 32-bit instruction set like the MIPS instruction set
architecture. Although Nios II represents a different design point from Lipsi, it
is interesting to note that Nios II can be customized to meet the application
requirements. Three different models are available [5]: the Fast core is optimized
for high performance; the Standard core is intended to balance performance and
size; and the Economy core is optimized for smallest size. The smallest core
can be implemented in less than 700 logic elements (LEs). It is a sequential
implementation and each instruction takes at least 6 clock cycles. Lipsi is a
smaller (8-bit), accumulator-based architecture, and most instructions execute
in two clock cycles.

PicoBlaze is an 8-bit microcontroller for Xilinx FPGAs [6]. The processor is
highly optimized for low resource usage. This optimization results in restrictions
such as a maximum program size of 1024 instructions and 64 bytes data memory.
The benefit of this puristic design is a processor that can be implemented with
one on-chip memory and 96 logic slices in a Spartan-3 FPGA. PicoBlaze provides
16 8-bit registers and executes one instruction in two clock cycles. The interface
to I/O devices is minimalistic in the positive sense: it is simple and very efficient
to connect simple I/O devices to the processor.

The Lipsi approach is, like the concept of PicoBlaze, to provide a small
processor for utility functions. Lipsi is optimized to balance the resource usage
between on-chip memory and logic cells. Therefore, the LE count of Lipsi is
slightly lower than the one of PicoBlaze. PicoBlaze is coded at a very low level
of abstraction by using Xilinx primitive components such as LUT4 or MUXCY.
Therefore, the design is optimized for Xilinx FPGAs and practically not portable.
Lipsi is written in vendor agnostic Chisel and compiles unmodified for Altera
and Xilinx devices.

The SpartanMC is a small microcontroller optimized for FPGA technol-
ogy [7]. One interesting feature is that the instruction width and the data width
are 18 bits. The argument is that current FPGAs contain on-chip memory blocks
that are 18-bit wide (originally intended to contain parity protection). The pro-
cessor is a 16 register RISC architecture with two operand instructions and is
implemented in a three-stage pipeline. To avoid data forwarding within the reg-
ister file, the instruction fetch and the write-back stage are split into two phases,
like the original MIPS pipeline [8]. This decision slightly complicates the design
as two phase-shifted clocks are needed. We assume that this phase splitting also
limits the maximum clock frequency. As on-chip memories for register files are
large, this resource is utilized by a sliding register window to speedup function
calls. SpartanMC performs comparable to the 32-bit RISC processors LEON-
II [9] and MicroBlaze [10] on the Dhrystone benchmark.

20 M. Schoeberl

Compared to the SpartanMC, Lipsi is further optimized for FPGAs using
fewer resources and avoiding unusual clocking of pipeline stages. Lipsi simpli-
fies the access to registers in on-chip memory by implementing an accumulator
architecture instead of a register architecture. Although an accumulator architec-
ture is in theory less efficient, the resulting maximum achievable clock frequency
offsets the higher instruction count.

The Supersmall processor [11] is optimized for low resource consumption
(half of the NIOS economy version). Resources are reduced by serializing ALU
operations to single bit operations. The LE consumption is comparable to Lipsi,
but the on-chip memory consumption is not reported.

The Ultrasmall MIPS project [12] is based on the Supersmall architecture.
The main difference is the change of the ALU serialization to perform two bit
operations each cycle instead of single bits. Therefore, a 32-bit operation needs 16
clock cycles to complete. It is reported that Ultrasmall consumes 137 slices in a
Xilinx Spartan-3E, which is 84% of the resource consumption of Supersmall. Due
to the serialization of the ALU operations, the average clocks per instructions
is in the range of 22 for Ultrasmall. According to the authors, “Ultrasmall is
the smallest 32-bit ISA soft processor in the world”. We appreciate this effort
of building the smallest 32-bit processor and are in line with that argument to
build the smallest (8-bit) processor of the world.

The Ø processor by Wolfgang Puffitsch1 is an accumulator machine aiming
at low resource usage. The bit width of the accumulator (and register width)
is freely configurable. Furthermore, hardware is only generated for instructions
that are used in the program. An instance of an 8-bit Ø processor executing a
blinking function consumes 176 LEs and 32 memory bits. The Ø processor is
designed with a similar mind set to Lipsi.

A very early processor targeting FPGAs is the DOP processor [13]. DOP
is a 16-bit stack oriented processor with additional registers, such as address
registers and a work register. As this work register is directly connected to the
ALU, DOP is similar to Lipsi an accumulator oriented architecture. No resource
consumption is given for the DOP design.

Leros is, like Lipsi, an accumulator machine [3]. The machine word in Leros
is 16-bit and Leros uses two on-chip memories: one for instructions and one for
data. Therefore, Leros is organized as a two-stage pipeline and can execute one
instruction every clock cycle. The Leros 16-bit architecture is powerful enough
to run a small Java virtual machine [4].

3 The Lipsi Design

Lipsi is an 8-bit processor organized as an accumulator machine and has been
designed and optimized around FPGA specific block RAMs. The focus of the
design is to use just a single block RAM.

Different FPGA families contain differently organized and differently sized
on-chip memories, which are also called block RAMs. The current minimum
1 https://github.com/jeuneS2/oe.

https://github.com/jeuneS2/oe

Lipsi: Probably the Smallest Processor in the World 21

rd
addr

PC
+

 ALU A

1

wr
data

wr
addr

Memory

0

rd
data

Fig. 1. The datapath of Lipsi.

block RAM2 is 4096 bits (or 512 bytes) large and has an independent read and
write port. Lipsi is an 8-bit processor in its purest form. Therefore, we can use
256 bytes from that memory as instructions and 256 bytes for register and data.
We use the lower half of the memory for the program, as the address register
powers up at zero to fetch the first instruction.

Using a single block RAM for instructions and data means that this memory
is time shared between instruction fetch and data read. Therefore, Lipsi is a
sequential and not a pipelined architecture.

Most instructions execute in two clock cycles: one for instruction fetch and
one for data access and ALU operation. As on-chip memories in FPGAs usually
have independent read and write ports, a store instruction can execute in a single
cycle.

Most instructions are single byte. Only immediate and branch instructions
contain a second byte for the immediate value or the branch target.

3.1 The Datapath

Figure 1 shows the datapath of Lipsi. The processor consists of a program counter
(PC), an on-chip memory, an arithmetic-logic unit (ALU), and an accumulator
register (A). Besides those basic components, one adder and three multiplexers
are needed. The decode logic, which basically drives the multiplexers and the
ALU function is not shown in the figure.

The memory is divided into three areas: (1) program area, (2) a register file,
and (3) data memory. A single on-chip memory in most FPGAs is 512 bytes.

2 This number is for relative old FPGAs, such as Xilinx Spartan-3 and Altera Cyclone
II. Actual FPGAs from Xilinx have 16 Kbit and Altera have 8 Kbit memory blocks.

22 M. Schoeberl

Table 1. Lipsi instruction set with encoding

Encoding Instruction Meaning Operation

0fff rrrr f rx ALU register A = A f m[r]

1000 rrrr st rx Store A into register m[r] = A

1001 rrrr brl rx Branch and link m[r] = PC, PC = A

1010 rrrr ldind (rx) Load indirect A = m[m[r]]

1011 rrrr stind (rx) Store indirect m[m[r]] = A

1100 -fff nnnn nnnn fi n ALU immediate A = A f n

1101 --00 aaaa aaaa br Branch PC = a

1101 --10 aaaa aaaa brz Branch if A is zero PC = a

1101 --11 aaaa aaaa brnz Branch if A is not zero PC = a

1110 --ff sh ALU shift A = shift(A)

1111 aaaa io Input and output IO = A, A = IO

1111 1111 exit Exit for the tester PC = PC

This memory is split into two 8-bit addressable areas: one for instructions and
one for data. The data area itself is split into 16 bytes treated specially as a
register file, while the rest is for general data storage.

We can perform a back of an envelope estimation of the resource usage, the
number of logic elements (LE). For each LE we assume a 4-bit lookup table for
combinational logic and one register. As the design will be dominated by the logic
used, we estimate the resource consumption based on combinational logic. The
ALU supports addition and subtraction. With careful coding, it should be pos-
sible to implement both functions together in 8 LEs. Four logic functions (and,
or, xor, and load) can be implemented in a single LE per bit. The shift opera-
tions should consume one LE per bit. The selection between adder/subtractor,
the logic function, and the shift needs a 3:1 multiplexer with two LEs per bit.
Therefore, the ALU should consume about 32 LEs. The adder will consume 8
LEs, the two 2:1 multiplexers each 8 LEs and the 3:1 multiplexer 16 LEs. This
sums up to 64 LEs. Branch condition on zero or nonzero of A consumes 3 LEs
Instruction decoding is performed on 4 bits, which fit into one LE. Therefore, 4
LEs are needed for the multiplexer driving and another LE for the PC register
enable. The multiplexer and add/sub selector in the ALU decode from 3 function
bits and need another 3 LEs. Therefore, Lipsi should consume around 84 LEs.

3.2 The Instruction Set

The instruction set of Lipsi includes ALU instructions with register and immedi-
ate operands, accumulator store, register indirect load and store, unconditional
and conditional branch, branch and link for function call, and shift operations.
Instruction length is one or two bytes.

Table 1 shows all instructions of Lipsi and their encoding. A represents the
accumulator, f an ALU function, PC the program counter, m[] the memory,

Lipsi: Probably the Smallest Processor in the World 23

Table 2. ALU operation and encoding

Encoding Name Operation

000 add A = A + op

001 sub A = A − op

010 adc A = A + op + c

011 sbb A = A − op − c

100 and A = A ∧ op

101 or A = A ∨ op

110 xor A = A ⊕ op

111 ld A = op

r a register number in the range of 0 to 15, n an immediate constant, a an 8-bit
address, and IO an input/output device. As Lipsi is an accumulator machine,
all operations (except unconditional branch) involve the accumulator register
A. Furthermore, we use the notion of additional registers, which are the first 16
bytes in the data memory. Lipsi implements ALU operations with those registers
and with immediate values. The accumulator A can be stored in any one of the
registers. Memory load and store operations are implemented as register indirect.
Those operations need three memory accesses: fetch the instruction, read the
register content for the address, and finally load from memory into A or a store
A in the memory. Register indirect load executes therefore in 3 clock cycles and
an indirect store in 2 clock cycles.

Table 2 lists all ALU operations, including addition, subtraction, and logic
operations. For an 8-bit architecture it is also useful to support addition with
carry and subtraction with borrow for arithmetic on larger numbers. With careful
coding these additional operations are almost for free (by adding one lower bit
to the adder, setting one input to 1 and using the carry flag as second input).
Furthermore, current FPGAs have an dedicated Xor gate in front of the LUT,
so that an adder can also be used as subtractor (when using the additional input
bit as well.).

Furthermore, three logic operations and a bypass operation for a load instruc-
tion are available. Again, we could be very minimalistic to support only a single
inverting logic function, such as nand. However, implementation of these base
operations is very cheap in an FPGA.

3.3 Implementation and Assembly in Hardware

For the implementation of Lipsi we use the relatively new hardware construction
language Chisel [14]. In Chisel, the hardware is described in two classes: one for
the processor and one for the memory. Describing the memory component in its
own class allows future optimization to use an initialized memory (described in
VHDL), which is currently not possible with Chisel.

24 M. Schoeberl

Fig. 2. The central statement of the Lipsi assembler in Scala

The hardware abstraction level of Chisel is not so different from VHDL or
Verilog. Hardware is described at the register transfer level. However, the power
of Chisel lies in that Chisel is a language embedded in Scala [15], a modern
general-purpose programming language. Scala itself runs on top of the JVM and
can use libraries written in Java. Therefore, all these libraries and a modern
object oriented and functional language are available at hardware construction
time.

One of the first tools a processor developer needs is an assembler. A common
approach is to write an assembler in some general-purpose language, e.g., Java,
and spit out a VHDL table for the code that shall go into the ROM. This
approach is also used for generating any hardware table which is needed, such
as for function lookup or binary to binary-coded-decimal translation. As we can
read in data with Scala and then generate a hardware table from Scala, the
assembler can now instead generate a binary file that we read in at hardware
construction time.

We have, however, gone a step further and have written the assembler itself
in Scala, invoking it at hardware generation time, reading in the assembler code,
and directly generating the hardware table to the ROM. With the power of
the Scala match statement the assembler itself is just a handful of lines of code.
Figure 2 shows this statement, which is the core of the assembler. The full assem-
bler is less than 100 lines of code and was written in a few hours.

Lipsi: Probably the Smallest Processor in the World 25

3.4 Simulation and Testing

Chisel supports testing of hardware with a so-called tester. Within the tester
one sets input signals with poke, advances the simulation by one clock cycle
with step, and reads signals with peek. This is similar to a testbench in VHDL,
except that the tester is written in Scala with the full power of a general purpose
language available.

Furthermore, the tester also generates waveforms that can be inspected with
ModelSim or gtkwave. We used this form of testing for the initial design.

As a next step, we wrote some test programs in assembly code with the
convention that the test shall result in a zero in the accumulator at the end of
the program. Furthermore, we defined an IO instruction to mark the end of the
program. The testing against the zero in the accumulator has been integrated
into the tester. With a handful of assembler programs we have, with minimal
effort, achieved a first regression test.

As a further step, we have implemented a software simulator for Lipsi in
Scala. The software simulator reuses the assembler that was written in the con-
text of the hardware generation. Having a software simulator of Chisel opens up
for testing of the hardware with co-simulation. As the hardware and the software
simulator for Lipsi are all written in the same language (Scala with the Chisel
library) it is possible to execute both together. Therefore, we also implemented
a tester that executes the Lipsi hardware and the software simulation in lock
step and compares the content of the program counter and the accumulator at
every clock cycle. As all data will pass through the accumulator any error in
the implementation (hardware of software simulator) will manifest itself at some
stage as a difference in the accumulator.

The assembly of code and co-simulation of hardware and a software simulator
in the very same language shows the power of Chisel as a hardware construction
language. This usage of Chisel/Scala is probably just scratching the surface of
new approaches to hardware design and testing.

With two implementations of Lipsi available, we can also explore random
testing. As a next step, we plan to generate random byte patterns, which result in
random instructions, and to compare the execution of the hardware and software
simulator.

3.5 Developing a Processor

Although it is unusual to write about the history of the development in a sci-
entific paper, we will provide here a brief history of the project. Actually, the
development of Lipsi follows a pattern that we have observed several times.
Therefore, the description of this development pattern for a moderately small
digital design project, such as a processor, may be a contribution on its own.

Initially the processor was designed on paper in a notebook. Not really start-
ing from scratch, as the author of this paper has designed several processors
before. The Leros processor had been designed just a few days before, on paper
as well. The pattern is that one often builds on previous designs. However, one

26 M. Schoeberl

should not restrict always oneself to reuse older designs, as this might restrict
the design to not try entirely different approaches for a new system. And the
author is convinced that a sketch of the datapath and some timing diagrams of
execution traces on a piece of paper is important before coding any hardware.

From the detailed datapath design on paper, almost identical to Fig. 1, and
an initial instruction set encoding we started with coding of the hardware in
Chisel. First we setup the infrastructure, describe a small part of the datapath
in hardware, and started with simple testers (the name of test benches in Chisel).

From there we bootstrapped the implementation of the first instructions,
the immediate instructions. We provide test code in very small programs as
hexadecimal values in a static array that is then translated into a hardware table
(ROM). First tests are manual checks with a Chisel tester (printf debugging)
and manual inspection of waveforms. In parallel we also setup a Quartus FPGA
project to observe the hardware cost development as we add features to the
processor.

As manual assembly becomes too tedious, we developed an assembler. First
just for the instructions that have already been assembled by hand for the test
of the assembler by comparing with the manually generated instructions.

From that point in time on, the instructions in Lipsi and the assembler were
developed in tandem. With more instructions being implemented, some automa-
tion of the testing is desirable. Especially some regression testing to make sure
that newly added functionality does not break older functionality.

To perform some form of automated testing we need two functions: stop-
ping of the test and an indication of success or failure. To stop the simulation
(tester), we invented an exit instruction (which is just an IO instruction to a
special address). For an indication of test success, we defined as success that the
accumulator has to contain zero at the end of the test. All tests are written to
have a dependent data flow from all operations into the accumulator. The tester
checks at the end for zero and exits itself with an exit value different from zero
when a test fails. This will also exit the make based automation of the testing
code so we can observe the failure.

For further testing of Lipsi we wrote a software simulator of Lipsi, also in
Scala. That software simulator is designed to be cycle accurate, modeling the
timing of the Lipsi hardware. With that additional implementation we can per-
form co-simulation of the hardware description and the software simulator.

Now those tests are triggered manually with a make target. This project is
too small for automated regression test. However, for larger projects, such as the
Patmos project, we use nightly regression tests that follow a similar pattern.

Maybe this design flow with a relatively early automation of testing sounds
like a lot of work and distracts from the fun of hardware design. The opposite is
true. From the creation of the first file to contain Chisel code until the automation
of the tests and implementation of around 2/3 of the functionality of Lipsi, just
8 h have been spent on coding and testing. This very short development time was
because of early automation with an assembler and smart testing not despite of it.

Lipsi: Probably the Smallest Processor in the World 27

The message of this subsection is to start early with very low effort automation
and testing. Invest into the infrastructure of your project just what is needed at
the moment.

4 Evaluation and Discussion

For the evaluation, we have synthesized Lipsi for a Cyclon IV FPGA, as this is the
FPGA on the popular DE2-115 FPGA board. We used Quartus Prime Lite Edi-
tion 16.1 with the default settings and did not introduce any constraints related
to the maximum clock frequency. Cyclone IV is the last generation of Cyclone
FPGAs where a logic element (LE) contains a 4-bit lookup table (LUT).3 There-
fore, we can compare the resource numbers with designs on older FPGAs (e.g.,
Xilinx Spartan 3).

4.1 Resource Consumption

Table 3 shows the resource consumption in LEs and on-chip memory blocks,
the maximum clock frequency, and the FPGA used for obtaining the results for
different small processors. We synthesized Lipsi with a test program that slowly
counts and puts the result on the LEDs. This configuration also contains one
input port and one output port. Indeed, we can see that Lipsi is the smallest
processor in this table. However, it is closely followed by Leros, which is a 16-bit,
pipelined processor. With respect to the maximum clock frequency, Lipsi is in
the same range as the other processors. We can see that the two pipeline stages
of Leros result in a higher clock frequency than Lipsi where the critical path is
in a memory read and an ALU operation.

The main reason why Lipsi is not even smaller is that with the current version
of Chisel we cannot express an initialized block RAM. Therefore, the program
is described in a table, which is then synthesized to logic. This logic for the
instruction memory consumes 66 out of the 162 LEs. With the current work-
around (using an on-chip memory and a logic table) we also need an additional

Table 3. Comparison of Lipsi with Leros, PicoBlaze, Ultrasmall, and SpartanMC

Processor Logic (LE) Memory (blocks) Fmax (MHz) FPGA

Lipsi 162 1 136 Cyclone IV

Leros 189 1 160 Cyclone IV

PicoBlaze 177 1 117 Spartan 3

Ultrasmall 235 3 65 Spartan 3E

SpartanMC 1271 3 50 Sparten 3

3 Newer generations is FPGAs use a 6-bit LUT, which can be split into two smaller
LUTs.

28 M. Schoeberl

multiplexer at the output of the memory component. Therefore, the processor
core is smaller than 100 LEs.

As future work, we plan to describe the block RAM, including the initial-
ization data, in VHDL or Verilog and instantiating it as a black box in Chisel.
However, this solution is not very elegant as we mix languages and need to
use different implementations of the memory for testing and synthesis. Another
approach would be to extend Chisel to generate Verilog for initialized memory.

4.2 The Smallest Processor?

Is Lipsi now the smallest possible processor? No – if we really want a mini-
mal implementation that can compute, we could drop several instructions. E.g.,
subtraction can be performed with xor and addition.

However, our target was a very small but useful processor. When we compare
Lipsi with other processors, we think we have achieved that goal. With around
100 LEs and one block RAM we can fit many Lipsi cores into a low-cost FPGA.

4.3 A Lipsi Manycore Processor

We have explored how many Lipsi cores we can fit into the low-cost EP4CE115
FPGA from the DE2-115 board. Each processor contains one input and one
output port. All processors are connected into a pipeline, which is the minimum
useful connection of those processors. The first processors’s input port is con-
nected to the keys on the FPGA board and the last processor’s output port is
connected to the LEDs. Each processor reads the input, adds one to it, and puts
the result to the output port.

The EP4CE115 contains 432 memory blocks. Therefore, we have configured
432 Lipsi processors in this computing pipeline. The resource consumption in
the FPGA 67,130 is LEs out of 114,480 LEs, which is a resource consumption
of 59%. This shows that this kind of design is memory bound and we can add
more functionality to the processor for a balanced use of the available resources.

This experiment is just meant as a proof of concept to build a manycore
processor in a low-cost FPGA. Future work will be to use the remaining resources
to add a simple network-in-chip to the 432 processor cores. This will enable
more flexible communication paths and enable exploring network-on-chip designs
within a high count of processing cores.

4.4 Lipsi in Teaching

The instruction set of Lipsi is so simple that it can be explained completely in
this paper. However, it is complete enough to write useful programs. Therefore,
we envision that Lipsi can serve as an example processor for a first semester
introduction course in computer systems. Besides writing small assembler pro-
grams and running them on a simulator for Lipsi, writing a full simulator for
Lipsi can serve as an exercise for a two-hour lab.

Lipsi: Probably the Smallest Processor in the World 29

4.5 Source Access

We strongly believe in open-source designs for research, as far as legal possible.
Especially when the research is funded by public funds, the full results (data
and source code, not only a paper) shall be available to the public. Open-source
enables independent researches to reproduce the published results. Furthermore,
it also simplifies to build future research on top of the published research.

Lipsi’s source is available at GitHub: https://github.com/schoeberl/lipsi.
The README.md describes which tools are need to be installed and how to build
Lipsi.

5 Conclusion

This paper presents Lipsi, a very tiny processor core. We believe that Lipsi is
one of the smallest processors available. The intention of a small processor is
to serve for auxiliary functions like an intelligent peripheral device, such as a
serial port with buffering. Lipsi and the supporting assembler are all written in
the same language, Chisel, which itself is based on Scala. This gives the power
that the whole compilation flow from assembling the program till testing and
hardware generation is driven by one description. Besides being a processor for
peripheral devices, Lipsi can also serve as a small, but non-trivial example for
the relatively new hardware construction language Chisel. Furthermore, as the
processor structure is so simple that it can be drawn on half a page, it can also
be used in an introductory course on computer architecture.

References

1. Schoeberl, M., Schleuniger, P., Puffitsch, W., Brandner, F., Probst, C.W., Karlsson,
S., Thorn, T.: Towards a time-predictable dual-issue microprocessor: the Patmos
approach. In: First Workshop on Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (PPES 2011), Grenoble, France, pp. 11–20,
March 2011

2. Schoeberl, M., Abbaspour, S., Akesson, B., Audsley, N., Capasso, R., Garside,
J., Goossens, K., Goossens, S., Hansen, S., Heckmann, R., Hepp, S., Huber, B.,
Jordan, A., Kasapaki, E., Knoop, J., Li, Y., Prokesch, D., Puffitsch, W., Puschner,
P., Rocha, A., Silva, C., Sparsø, J., Tocchi, A.: T-CREST: time-predictable multi-
core architecture for embedded systems. J. Syst. Architect. 61(9), 449–471 (2015)

3. Schoeberl, M.: Leros: a tiny microcontroller for FPGAs. In: Proceedings of the 21st
International Conference on Field Programmable Logic and Applications (FPL
2011), Chania, Crete, Greece, pp. 10–14. IEEE Computer Society, September 2011

4. Caska, J., Schoeberl, M.: Java dust: how small can embedded Java be? In: Pro-
ceedings of the 9th International Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES 2011), pp. 125–129. ACM, New York, September
2011

5. Altera Corporation: Nios II Processor Reference Handbook, May 2011. http://
www.altera.com/literature/lit-nio2.jsp, Version NII5V1-11.0

6. Xilinx: PicoBlaze 8-bit embedded microcontroller user guide (2010)

https://github.com/schoeberl/lipsi
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp

30 M. Schoeberl

7. Hempel, G., Hochberger, C.: A resource optimized processor core for FPGA based
SoCs. In: Kubatova, H. (ed.) Proceedings of the 10th Euromicro Conference on
Digital System Design (DSD 2007), pp. 51–58. IEEE (2007)

8. Hennessy, J.L.: VLSI processor architecture. IEEE Trans. Comput. C-33(12),
1221–1246 (1984)

9. Gaisler, J.: A portable and fault-tolerant microprocessor based on the SPARC v8
architecture. In: Proceedings of the 2002 International Conference on Dependable
Systems and Networks (DSN 2002), p. 409. IEEE Computer Society, Washington,
DC (2002)

10. Xilinx Inc.: MicroBlaze processor reference guide (2008). Version 9.0
11. Robinson, J., Vafaee, S., Scobbie, J., Ritche, M., Rose, J.: The supersmall soft

processor. In: 2010 VI Southern Programmable Logic Conference (SPL), pp. 3–8,
March 2010

12. Nakatsuka, H., Tanaka, Y., Chu, T.V., Takamaeda-Yamazaki, S., Kise, K.: Ultra-
small: the smallest MIPS soft processor. In: 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–4, September 2014

13. Danecek, J., Drapal, F., Pluhacek, A., Salcic, Z., Servit, M.: DOP—a simple pro-
cessor for custom computing machines. J. Microcomput. Appl. 17(3), 239–253
(1994)

14. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R.,
Wawrzynek, J., Asanovic, K.: Chisel: constructing hardware in a scala embed-
ded language. In: Groeneveld, P., Sciuto, D., Hassoun, S. (eds.) The 49th Annual
Design Automation Conference (DAC 2012), pp. 1216–1225. ACM, San Francisco
(2012)

15. Venners, B., Spoon, L., Odersky, M.: Programming in Scala, 3rd edn. Artima Inc.,
Mountain View (2016)

Superlinear Scalability in Parallel
Computing and Multi-robot Systems:

Shared Resources, Collaboration,
and Network Topology

Heiko Hamann(B)

Department of Computer Engineering, University of Lübeck, Lübeck, Germany
hamann@iti.uni-luebeck.de

Abstract. The uniting idea of both parallel computing and multi-robot
systems is that having multiple processors or robots working on a task
decreases the processing time. Typically we desire a linear speedup, that
is, doubling the number of processing units halves the execution time.
Sometimes superlinear scalability is observed in parallel computing sys-
tems and more frequently in multi-robot and swarm systems. Super-
linearity means each individual processing unit gets more efficient by
increasing the system size—a desired and rather counterintuitive phe-
nomenon.

In an interdisciplinary approach, we compare abstract models of sys-
tem performance from three different fields of research: parallel comput-
ing, multi-robot systems, and network science. We find agreement in the
modeled universal properties of scalability and summarize our findings
by formulating more generic interpretations of the observed phenomena.
Our result is that scalability across fields can be interpreted as a tradeoff
in three dimensions between too competitive and too cooperative pro-
cessing schemes, too little information sharing and too much information
sharing, while finding a balance between neither underusing nor deplet-
ing shared resources. We successfully verify our claims by two simple
simulations of a multi-robot and a network system.

Keywords: Parallel computing · Multi-robot systems
Distributed robotics · Swarm robotics · Scalability · Speedup

1 Introduction

Superlinear scalability is a desirable phenomenon in both parallel computing
and multi-robot systems. It is counterintuitive because one seemingly receives a
profit without paying for it. Also our experience of working together in human
groups dominantly gives a different impression, as indicated, for example, by
the Ringelmann effect. According to Ingham et al. [1] the Ringelmann effect
implies a nonlinear decrease of individual performance with increasing group size.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 31–42, 2018.
https://doi.org/10.1007/978-3-319-77610-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_3&domain=pdf
http://orcid.org/0000-0002-2458-8289

32 H. Hamann

We call the improvement in speed of the task execution achieved by adding more
processing units ‘speedup’: S = T1/Tp, for latency T1 of the smaller system
(typically one processing unit) and latency Tp of the bigger system (p > 1
processing units); efficiency is E = T1/(pTp). Scalability describes how far we
can go in keep adding processing units p without getting E < 1.

As superlinear speedups seem special, they were frequently discussed and
studied [2,3]. There even exists a proof showing the impossibility of superlinear
speedups but it assumes fixed problem size [4]. Superlinear speedups are rather
infrequently observed in parallel computing (e.g., cache-size effects [5]) compared
to rather frequent observations in multi-robot and swarm systems (e.g., inher-
ently collaborative tasks [6]). When observed, superlinearity is often a discrete
effect, such as a workpackage happening to fit into the processors cache [5] or
a robot group being able to form a bucket brigade [7,8]. Superlinear scalability
has much potential that should be enough motivation to investigate it across
different domains and to understand how one can provoke it.

1.1 Superlinear Performance in Multi-robot Systems

Superlinear performance increases are observed in multi-robot systems due to
physical effects in tasks, such as pulling, passing gaps, and passing steps [9]. Ana-
lyzing the literature on multi-robot systems and, in particular, swarm robotics,
one finds that plots of system performance over system size (number of robots)
have similar features independent of the investigate task (see Fig. 1 as example).

Fig. 1. Generic diagram of system performance over system size for multi-robot sys-
tems, without units, function P (N) = Nb exp(cN) (Eq. 1) depending on parameters
b > 1 (profits from cooperation, Nb), c < 0 (overhead due to interference, exp(−N)),
and system size N [10,11].

It was noticed that there is an optimal robot density, that is, how many
robots should share the same area [12]. Initially the performance curve increases
with increased number of robots but then first levels off and then decreases [13].

Superlinear Scalability in Parallel Computing and Multi-robot Systems 33

The most obvious shared resource in robotics is space. Adding robots to the sys-
tem while keeping the provided area constant, the additional robots may generate
more possibilities to cooperate but they may also physically interfere [14,15]. So
we identify a first tradeoff between options for collaborations and an increased
overhead due to physical interference. Østergaard et al. [16] discuss the exis-
tence of a general multi-robot performance diagram with a focus on its peak
performance:

We know that by varying the implementation of a given task, we can move
the point of “maximum performance” and we can change the shapes of the
curve on either side of it, but we cannot change the general shape of the
graph.

Examples of such performance diagrams are found across the literature, for
example, in multi-robot foraging [14,17–20], collective decision making [21], the
emergent taxis scenario [11,22,23], and aggregation behaviors [24,25].

In previous works [10,11], the author has proposed the following simple model
of performance P (N) in multi-robot and swarm systems:

P (N) = C(N)(I(N) − d) = a1N
ba2 exp(cN), (1)

for a cooperation function C(N) = a1N
b, an interference function I(N) =

a2 exp(cN) + d, parameter c < 0, and scaling constants a1, a2 > 0, d for
translation up/down. For b > 1 we have potentially superlinear scalability but
interference is counteracting exponentially with exp(−N). This rather rough
and abstract model was successfully fitted to a number of multi-robot scenar-
ios [10,11].

Out of the multi-robot domain, other systems are worth mentioning.
Although they are much harder to measure, similar diagrams are also found
for natural swarms, such as the hypothesis for per capita output in social wasps
by Jeanne et al. [26]. The well-known ‘fundamental diagram’ of traffic flow is
also similar but symmetric [27].

1.2 Universal Scalability Law

There is a model for parallel processing performance in distributed systems by
Gunther [28]. He calls it the Universal Scalability Law (USL). For a relative
capacity R(N) (i.e., XN/X1, for throughput XN achieved using N processors
and throughput X1 for one processor) he defines

R(N) =
N

1 + α((N − 1) + βN(N − 1))
, (2)

for a coefficient α that gives the degree of contention (inference) in the sys-
tem and coefficient β that gives the lack of coherency in the distributed data.
Contention occurs because resources are shared. Whenever the capacity of a
shared resource is used completely and another process requests to use that

34 H. Hamann

Fig. 2. Universal Scalability Law following Gunther [28], four standard situations and
superlinear speedup [5] depending on parameters α (degree of contention) and β (lack
of coherency).

resource, then the process has to wait. Contention increases with increasing sys-
tem size, while keeping resources at the same capacity. Lack of coherency occurs
because processes, to a certain extent, operate locally. For example, they have
local changes in their caches that are not immediately communicated to all other
processes. Maintaining coherency is costly and the costs increase with increasing
system size.

Superlinear Scalability in Parallel Computing and Multi-robot Systems 35

Gunther identifies four qualitatively different situations:

a. If contention and lack of coherency are negligible, then we get “equal bang
for the buck” and have a linear speedup (α = 0, β = 0, Fig. 2a).

b. If there is a cost for sharing resources in the form of contention, then we have
a sublinear speedup (α > 0, β = 0, Fig. 2b).

c. If there is an increased negative influence due to contention, then the speedup
clearly levels off (α � 0, β = 0, Fig. 2c).

d. If in addition there is also an increased influence of incoherence then there
exists a peak speedup and for bigger system sizes the speedup decreases (α �
0, β > 0, Fig. 2d).

In the original work of Gunther [28], superlinear performance increases are
basically not allowed. In a more recent work [5], superlinear speedups are dis-
cussed and negative contention coefficients α < 0 are allowed now (see Fig. 2e).
While contention α > 0 refers to capacity consumption due to sublinear scala-
bility, α < 0 refers to a capacity boost due to superlinear scalability. In parallel
computing, superlinear speedups can occur due to some interplay between prob-
lem size per computing unit and available memory. For example, if the problem
can be divided into pieces that fit completely into a CPU’s cache, then one
can observe a considerable speedup. In swarm robotics, superlinear performance
increases occur due to qualitatively different collaboration modes that are acces-
sible with increasing swarm size as in the bucket brigade example [7,8] or when
assembled swarm robots cross a hole in a team.

In the context of swarm robotics we can interpret contention as interference
between robots due to shared resources, such as an entrance to a base station or
generally space. Following this interpretation, the collision avoidance behavior
between robots can be understood as a waiting loop because the shared resource
space is currently not available. That is intuitive and similar to an airplane flying
a holding pattern because the resource runway is currently in use and should cer-
tainly not be shared. Incoherence, in turn, can be interpreted as inconsistencies
or overhead due to limited communication of information or due to imperfect
synchrony.

While Gunther assumes that there cannot be a system-wide deadlock situa-
tion due to contention (speedup monotonically increases with increasing α), that
could occur in a swarm robotics system. For example, the swarm density could
be too high, such that all robots permanently try to avoid collisions resulting in
zero performance.

2 Unified Interpretation Across Fields of Research

Both the simple multi-robot performance model (Eq. 1) and the Universal Scal-
ability Law (Eq. 2) are phenomenological macroscopic models, that is, they are
not derived from elementary microscopic features that could be tracked back to
concrete procedures and behaviors of robots and processing units. Hence, also

36 H. Hamann

their interpretation and specifically the interpretation of individual mathemati-
cal terms are abstract considerations that make the chosen function more plau-
sible and understandable but they are also subject to speculation. For example,
Gunther’s assumption that coefficient α corresponds to contention is a widely
applicable concept. However, his assumption that coefficient β corresponds to
the lack of coherency is much more specific. Similarly, in the simple multi-robot
model the assumed exponential increase of interference is a rather strong assump-
tion. We follow that both models allow or even invite reinterpretations and have
potential to be generalized. In the following, we make a number of assumptions
of how this can be done, which are then verified in Sect. 3.

We argue that interacting entities in parallel computing, multi-robot systems,
and networks are facing tradeoffs in three categories: (R) utilization of shared
resources, (I) information flow, and (C) degree of collaboration. A typical system
has to deal with several instances from one or more of these categories (e.g.,
two shared resources and one type of collaboration). They are usually mutually
dependent, which is the cause of their complexity. For example, maximizing
the utilization of a resource r1 ∈ R may be necessary to maximize a type of
collaboration c ∈ C, but before r1 is fully utilized another resource r2 ∈ R is
already depleted causing overhead.

P

N
resources

collaboration

information

under-
used

too
competitive

depleted

too
cooperative

none all2all

optim
al

Fig. 3. Schema of how to interpret scalability
challenges across fields

In Fig. 3 we give a schematic
overview of our interpretation. We
separate the interval of system
size N ∈ {1, 2, . . . } into three
regions. First, the region of under-
used resource, too little collabora-
tion, and too little information flow
(left-hand side in Fig. 3). Second,
the region of optimally balanced
tradeoffs corresponding to optimal
achievable performance (middle part
in Fig. 3). Third, the region of
depleted resources, too much col-
laboration, and too intensive infor-
mation exchange (right-hand side in
Fig. 3).

While it is intuitive to understand that depleting resources is disadvanta-
geous and creates overhead (e.g., long queues, interference), it is maybe less
intuitive to understand why there can be too much of collaboration or too much
information flow. For the degree of collaboration, we distinguish between a com-
petitive approach without or with little collaboration and a cooperative approach
with a high degree of cooperation. In parallel computing, we can relate that to
the distinction between competition parallelization (a parallel race to solve the
same problem with different methods) and partitioning parallelization (standard
approach to parallelization). Without collaboration all processing units work on
their own and create a competitive environment. With a maximal degree of

Superlinear Scalability in Parallel Computing and Multi-robot Systems 37

collaboration all processing units cooperate and may, hence, work on too sim-
ilar potential solutions to the problem. Similarly, for the information flow we
can avoid any exchange of information or share information all-to-all. Without
sharing any information we may fall back to a purely competitive approach but
in a multi-robot setting this could still be a useful parallelization, for exam-
ple, of a cleaning task. With all-to-all communication we may loose diversity in
the solution approaches and end up with a homogeneous approach where each
processing unit basically processes the same workpackages.

3 Results

To verify and further investigate these interpretations, we study two example sce-
narios. In the stick pulling scenario, we investigate the tradeoff between properly
exploiting shared resources while not depleting them. In the parallel optimiza-
tion scenario, we investigate the tradeoff between intensifying collaboration but
not loosing too much diversity.

3.1 Stick Pulling: Shared Resources and Collaboration

We investigate the tradeoff between not depleting resources while creating suf-
ficiently many opportunities for collaboration in the well-known stick pulling
task [6]. A group of robots equipped with grippers is supposed to collect sticks.
The sticks are found standing upright in holes. The sticks are too long as if a
single robot could remove them from the hole in one grip. Instead robots have
to cooperate. A first robot does the first grip and removes the stick half-way.
A second robot then grips the stick and removes it completely from the hole.
The task is interesting as for an efficient solution a proper balance of the robot
number relative to the number of sticks and the provided area is required as well
as an optimized waiting time (for how long should the robot wait for support
after the first grip).

To make our point here, we restrict ourselves to a simplified, non-embodied
model. We only model that N ∈ {2, 3, . . . , 20} robots are randomly distributed
among M = 20 stick sites, wait there for a defined waiting time watStick = 7
[discrete time steps], and the commute time T between sites is also modeled.
We scale the commute time T with the system size N in two variants. First, we
scale it linearly

Tl(N) = N + ξ, (3)

for a random number ξ ∈ {0, 1, 2}. Second, we scale it quadratically

Tq(N) = cN2 + ξ, (4)

with an arbitrary constant c = 0.12 to scale Tq to intervals comparable to Tl and
again a random number ξ ∈ {0, 1, 2}. The underlying idea is that with increased
system size there is more traffic, robots physically interfere, and have delays due
to collision avoidance behaviors. The following simulations are separated in two

38 H. Hamann

sets where we either use Tl or Tq to calculate how long a robot has to travel
from any stick site to any other stick site.

Each robot can be in one of M +1 = 21 states. In state s0 a robot is currently
commuting. In state si with i > 0 a robot is currently positioned at stick site i
and waits for help. In addition, each robot has a current waiting time w that
represents for how long a robot has been waiting already. Once at least two robots
meet at a stick site at the same time step, we say they instantaneously remove
the stick, they immediately start to commute to another, randomly selected
site, and the stick is put back ready to be removed again. System performance
is measured in the total number of removed sticks over the full duration of an
experiment (1000 time steps). Each experiment setting was repeated 5000 times.

Fig. 4. Stick pulling experiment, relative capacity and efficiency E = T2/(NTN) over
system size N , averaged over 5000 repetitions (Color figure online)

The results are shown in Fig. 4. First, Fig. 4(a) gives the relative capacity, that
is, the total number of pulled sticks normalized by the performance for system
size N = 2, over system size N for linearly scaled commute time Tl (green)
and quadratically scaled commute time Tq (blue; standard deviation for linear
commute time: N = 2, 2.16; N = 10, 7.5; N = 15, 8.1; N = 20, 8.6; N = 30,
9.1; N = 40, 9.5; standard deviation for quadratic commute time: N = 2, 2.6;
N = 10, 6.8; N = 15, 6.4; N = 20, 6.2; N = 30, 5.4; N = 40, 4.4). For the
linear commute times, the system performance improves with increasing system
size for all tested system sizes. For the quadratic commute times, the system
performance decreases starting with N = 8. As expected, the quadratic scaling
increases the commute times much faster (despite discount factor c = 0.12).
The dashed line gives the linear scaling. The relative capacity is superlinear
for N < 10 (quadratic commute times) and for N < 32 (linear). Figure 4(b)
gives the efficiency normalized with the mean execution time observed for system
size N = 2. Both efficiencies decrease for too big system sizes. The efficiencies
shown in Fig. 4(b) correspond to case d. in Gunther’s USL (α � 0, β > 0).

Superlinear Scalability in Parallel Computing and Multi-robot Systems 39

3.2 Parallel Optimization: Network Topologies and Information
Flow

Here, we follow a network model described by Lazer and Friedman [29] but
extend it to random geometric graphs instead of predefined network topologies
and small-world networks. Random geometric graphs are more closely related
to typical setups in multi-robot systems. Initially we place robots in a 2-d plane
(i.e., a point process), which is here the unit square. Hence, each robot has a
position x. We say, all robots have a given sensor range r. A considered robot
has an edge to another robot if that robot is within range r, that is, for robot
positions x1 and x2 we test the Euclidean distance |x1 − x2| < r.

The task is to solve an optimization problem in parallel. The problem is gen-
erated using Kauffman’s so-called NK model [30]. That is a standard technique
to generate test problems with rugged fitness landscapes, for example, in evolu-
tionary computation [31]. For details about the optimization problem see Lazer
and Friedman [29]. Each robot (or processing unit) could, in principle, try to
solve the problem on its own. That is actually also what a robot needs to do if it
happens to have no neighbors in the geometric graph. The idea is, however, that
the robots cooperate and share information about the optimization problem.
Neighboring robots can compare their current best solutions, the robot with the
worse solution can replace it with the other robot’s better solution, and continue
to optimize the problem starting from there.

The network model iterates over the following procedure. Each of the N =
100 robots checks whether a neighbor has currently a better solution. If yes,
it replaces its own current solution with the best solution of its neighbors. If
not, the robot does a local search, that is, a brute force approach to improve
its current solution by checking small changes of it. This is iterated for 20 time
steps. We test different sensor ranges r ∈ [0.001, 1] and each experiment setting
is repeated 1000 times.

Fig. 5. Parallel optimization experiment, system performance, note logarithmic scale
on the horizontal axis (left: mean, right: histogram) over sensor range r, averaged over
1000 repetitions

40 H. Hamann

In Fig. 5 we give the results. In these plots we use a logarithmic scale for
the horizontal axis, which does not change the shape qualitatively (e.g., in com-
parison to Fig. 1). Figure 5(a) gives the mean performance (i.e., best solution in
the multi-robot system) averaged over 1000 repetitions of the experiment set-
ting. Figure 5(b) gives a histogram of the same data set and indicates that there
is rather little variance. The sensor range r determines how many neighbors a
robot has in average. The number of neighbors determines how often a robot
adapts solutions from other robots instead of doing a local search to optimize
the problem. Having more neighbors helps to gather better solutions but if each
robot has many neighbors the overall system reduces its potential for exploring
the problem’s search space.

4 Discussion and Conclusion

The stick pulling experiment clearly indicates the tradeoff between creating
chances to collaborate and ensuring that resources are not depleted. Each stick
site can be seen as a resource that needs to be populated, because if they are
underused the system performance suffers. However, the resource ‘space’ between
the sites is limited. Hence, we find an optimum system size that balances the
use of stick sites and space.

The parallel optimization experiment indicates the tradeoff between collab-
orating while not loosing too much diversity. If there is no collaboration, each
robot independently tries to optimize the problem. If each robot is connected
to every other robot, then the search is not parallelized anymore but all robots
investigate the same problem instances in parallel. There is clearly an optimum
between sharing some information (a medium information flow through the sys-
tem) and sharing too much information.

Gunther’s interpretation of his Universal Scaling Law speaks of contention
(i.e., overhead in sharing resources) and lack of coherence (e.g., as in cache hier-
archies). While contention can be easily identified in the multi-robot setup (e.g.,
for linearly scaled commuting times in the stick pulling scenario, see Fig. 4(b)),
a correspondence to ‘lack of coherency’ is difficult to be identified. Instead we
see two contradicting uses of shared resources in the stick pulling scenario. One
resource is supposed to be populated to increase profit (stick sites) but the other
resource is already depleted and creates overheads (space). In the parallel opti-
mization scenario, there is also no lack of coherence but instead a too intensive
communication that then crucially reduces exploration in the system.

Superlinearity seems more frequent in multi-robot systems and swarm sys-
tems probably mainly due to physical effects. In tasks, such as collectively pulling
a heavy object and passing a gap or a steep hill, one or a few robots basically
achieve zero performance (they cannot pull the object at all due to friction, they
can just not pass the gap or the hill) but once a certain threshold Nc of system
size N > Nc is reached the performance increases rapidly. Superlinearity as seen
in the stick pulling scenario, however, is more subtle and less easily connected
directly to such a single cause. Obviously it is the interplay of not underusing
one resource while not depleting another.

Superlinear Scalability in Parallel Computing and Multi-robot Systems 41

As mentioned above, the generic swarm performance curve (Fig. 1) is
observed frequently. Hence, we follow that the above described phenomena
observed in the two investigated scenarios must also be frequent. It is encouraging
to see that similar phenomena emerge in such different domains as multi-robot
system, networks, and parallel computing. This is a clear indicator that universal
models across all fields must exist.

References

1. Ingham, A.G., Levinger, G., Graves, J., Peckham, V.: The Ringelmann effect:
studies of group size and group performance. J. Exp. Soc. Psychol. 10(4), 371–384
(1974)

2. Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Pro-
ceedings of the Fifth Distributed Memory Computing Conference (DMCC5), pp.
1255–1260 (1990)

3. Helmbold, D.P., McDowell, C.E.: Modelling speedup (n) greater than n. IEEE
Trans. Parallel Distrib. Syst. 1(2), 250–256 (1990)

4. Faber, V., Lubeck, O.M., White Jr., A.B.: Superlinear speedup of an efficient
sequential algorithm is not possible. Parallel Comput. 3(3), 259–260 (1986)

5. Gunther, N.J., Puglia, P., Tomasette, K.: Hadoop super-linear scalability: the per-
petual motion of parallel performance. ACM Queue 13(5), 46–55 (2015)

6. Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the exploitation of local interactions in autonomous collective robotics: the stick
pulling experiment. Auton. Robots 11, 149–171 (2001)

7. Lein, A., Vaughan, R.T.: Adaptive multi-robot bucket brigade foraging. Artif. Life
11, 337 (2008)

8. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Interference reduction through
task partitioning in a robotic swarm. In: Sixth International Conference on Infor-
matics in Control, Automation and Robotics-ICINCO, pp. 52–59 (2009)

9. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano, D.:
Superlinear physical performances in a SWARM-BOT. In: Capcarrère, M.S., Fre-
itas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS
(LNAI), vol. 3630, pp. 282–291. Springer, Heidelberg (2005). https://doi.org/10.
1007/11553090 29

10. Hamann, H.: Towards swarm calculus: universal properties of swarm performance
and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp.
168–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32650-
9 15

11. Hamann, H.: Towards swarm calculus: urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013)

12. Schneider-Fontán, M., Matarić, M.J.: A study of territoriality: The role of critical
mass in adaptive task division. In: Maes, P., Wilson, S.W., Matarić, M.J., (eds.)
From animals to animats IV, pp. 553–561. MIT Press (1996)

13. Arkin, R.C., Balch, T., Nitz, E.: Communication of behavioral state in multi-
agent retrieval tasks. In: Book, W., Luh, J. (eds.) IEEE Conference on Robotics
and Automation, vol. 3, pp. 588–594. IEEE Press, Los Alamitos (1993)

14. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots:
effect of interference. Auton. Robots 13, 127–141 (2002)

https://doi.org/10.1007/11553090_29
https://doi.org/10.1007/11553090_29
https://doi.org/10.1007/978-3-642-32650-9_15
https://doi.org/10.1007/978-3-642-32650-9_15

42 H. Hamann

15. Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating
multi-robot controllers. In: Kuipers, B.J., Webber, B., (eds.) Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp. 637–
642. MIT Press, Cambridge (1997)

16. Østergaard, E.H., Sukhatme, G.S., Matarić, M.J.: Emergent bucket brigading: a
simple mechanisms for improving performance in multi-robot constrained-space
foraging tasks. In: André, E., Sen, S., Frasson, C., Müller, J.P., (eds.) Proceedings
of the Fifth International Conference on Autonomous Agents (AGENTS 2001), pp.
29–35. ACM, New York (2001)

17. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. Artificial Life IV, pp. 189–197 (1994)

18. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In: Şahin, E., Spears, W.M. (eds.) SR 2004.
LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30552-1 12

19. Khaluf, Y., Birattari, M., Rammig, F.: Probabilistic analysis of long-term swarm
performance under spatial interferences. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe,
B., Vega-Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 121–132.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2 10

20. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents
Multi Agent Syst. 28(1), 101–125 (2014)

21. Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symme-
try breaking in collective decision making. Neural Comput. Appl. 21(2), 207–218
(2012)

22. Nembrini, J., Winfield, A.F.T., Melhuish, C.: Minimalist coherent swarming of
wireless networked autonomous mobile robots. In: Hallam, B., Floreano, D., Hal-
lam, J., Hayes, G., Meyer, J.A., (eds.) Proceedings of the Seventh International
Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp.
373–382. MIT Press, Cambridge (2002)

23. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a
wireless connected swarm of mobile robots. In: Shi, Y., Dorigo, M. (eds.) IEEE
Swarm Intelligence Symposium, pp. 45–52. IEEE Press, Los Alamitos (2007)

24. Meister, T., Thenius, R., Kengyel, D., Schmickl, T.: Cooperation of two different
swarms controlled by BEECLUST algorithm. In: Mathematical Models for the
Living Systems and Life Sciences (ECAL), pp. 1124–1125 (2013)

25. Hamann, H.: Modeling and investigation of robot swarms. Master’s thesis, Univer-
sity of Stuttgart, Germany (2006)

26. Jeanne, R.L., Nordheim, E.V.: Productivity in a social wasp: per capita output
increases with swarm size. Behav. Ecol. 7(1), 43–48 (1996)

27. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on
long crowded roads. Proc. Royal Soc. London A229(1178), 317–345 (1955)

28. Gunther, N.J.: A simple capacity model of massively parallel transaction systems.
In: CMG National Conference, pp. 1035–1044 (1993)

29. Lazer, D., Friedman, A.: The network structure of exploration and exploitation.
Adm. Sci. Q. 52, 667–694 (2007)

30. Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. J. Theor. Biol. 128(1), 11–45 (1987)

31. Eiben, Á.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-
44874-8

https://doi.org/10.1007/978-3-540-30552-1_12
https://doi.org/10.1007/978-3-540-30552-1_12
https://doi.org/10.1007/978-3-642-45008-2_10
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8

Multicore Systems

Closed Loop Controller for Multicore
Real-Time Systems

Johannes Freitag(B) and Sascha Uhrig

Airbus, Munich, Germany
johannes.freitag@airbus.com

Abstract. In critical and hard real-time applications multicore proces-
sors are still not used very often. One of the reasons is the lack of timing
predictability or the high Worst Case Execution Time (WCET) overes-
timation caused by the use of shared resources. Nevertheless, multicore
processors can significantly increase system integration density also in
critical and hard real-time applications.

We present a Closed Performance Control Loop that enables a stand-
alone WCET estimation of a hard real-time application and execution
on a multicore system concurrently to other applications. The advantage
of our proposal is that it is transparent and non-intrusive to the critical
application. Moreover, it is implemented as an external safety net and no
additional software functionality on the multicore is required. The pre-
viously presented Fingerprinting approach to measure an application’s
performance is used as sensor element, extended by a Pulse Width Mod-
ulated core thwarting technique and two different control algorithms are
combined to a Closed Control Loop.

Keywords: Embedded multicore systems · Critical systems
Safety net · Real-time systems

1 Introduction

Future avionic applications will require higher computation performance while
at the same time a reduction in space, weight and power is needed. These needs
are shown for example in the concept of the Airbus Vahana, Pop-up, or CityAir-
bus [1] aircrafts which will be ultra lightweight electrical helicopter-style vehicles
providing novel autonomous urban transportation. In comparison to current air-
crafts the avionic systems must be much smaller and lightweight while at the
same time provide sufficient performance to compute not only the flight control
data similar to current aircrafts but additionally compute the complex algo-
rithms for autonomous flying, navigation, and collision avoidance. One solution
for these demands is the consolidation of flight applications, currently running
on multiple single core computers, on a small number of multicore processors.
Furthermore, legacy applications shall be reused without major modifications.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 45–56, 2018.
https://doi.org/10.1007/978-3-319-77610-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_4&domain=pdf

46 J. Freitag and S. Uhrig

Even though first ideas of the regulations on how to apply multicore sys-
tems to avionics are presented in the CAST-32 position paper and its follow-up
CAST-32a [2], both authored from the Certification Authorities Software Team
(CAST), concrete design details are still open. One of the major challenges
in this context is the interference between applications since theoretically one
application can compromise another one, at least in the timing domain. Accord-
ingly, an essential requirement for certification is a clear and reliable isolation
of safety-critical applications that needs to be demonstrated to the certification
authorities.

The Fingerprinting technology presented in [3] allows non-intrusive tracking
of an application’s progress. Moreover, it allows continuous online quantification
of an application’s slowdown caused by interferences on shared resources com-
pared to the stand-alone execution of the same application. Starting from this
ability, we developed a closed loop controlling mechanism that keeps the cur-
rent slowdown of an application inside given acceptable boundaries compared
to stand-alone performance. This is done by thwarting the execution of other
cores if necessary, in order to reduce interferences. Consequently, an estimated
Worst Case Execution Time (WCET) of the stand-alone execution can hold for
the multicore execution with the same acceptable bounds. The fingerprinting
technology is targeting applications that are executed in a periodical way which
is a typical feature of applications used in aircrafts.

The contributions of this paper are

– adjustable performance reduction techniques based on a Pulse Width Modu-
lated (PWM) signal,

– a complete closed control loop system controlling an application’s
performance.

The remainder of this paper is organized as follows. Section 2 provides an
overview of mature techniques and related work. The closed loop control tech-
niques including a background on the Fingerprinting is described in Sect. 3 while
the evaluation is presented in Sect. 4. The paper concludes with Sect. 5 including
an outlook on future work.

2 Related Work

The use of multicore systems in avionic applications is still not wide spread. One
reason is the difficulty to obtain suitable Worst Case Execution Time (WCET)
estimates since application performance can theoretically drop significantly if
multiple cores (i.e. applications) are sharing bus and memory [4]. Furthermore,
it is not possible to identify all interference channels on COTS multicore proces-
sors [5]. Therefore, a WCET analysis on possible worst case scenarios leads to a
high WCET overestimation (WCET to average execution time ratio) for current
COTS MPSoCs. Hence, the performance gain of the multicore is neglected.

There exist several approaches to limit or even control the interferences
between high and low critical tasks on multicore systems to relax the worst
case scenario and, hence, improve WCET analysis results. Most of them focus

Closed Loop Controller for Multicore Real-Time Systems 47

on task or even thread granularity and are integrated into the scheduling of
the system. The main idea of these approaches is counting e.g. bus accesses
and limiting them by suspending the corresponding thread. Examples of such
approaches are presented in [6–9]. An overview of these and other approaches
is given in [10]. Even though these approaches are interesting for newly devel-
oped applications, they are not suitable for combing multiple legacy single core
avionic applications on a multicore processor because the legacy applications or
the underlying operating system would either have to be modified completely,
which leads to a high effort in certification, or restrict the applications in a way
that the performance gain of the multicore is neglected.

A previous approach for characterizing an application’s execution is presented
in [11]. It is used in high performance systems to predict an application’s future
behaviour and needs for adjusting architectural parameters for performance opti-
mizations. It is not related to embedded real-time systems but successfully uses
a similar, but intrusive, technology for tracking an application’s performance.

The use of feedback controllers in the utilization of real-time systems is not
novel. For example, a closed loop controller is used in [12] for dynamic resource
allocation and power optimization of multicore processors. An example for closed
loop control in a real-time scheduler is presented in [13,14] while a controller for
thermal control of a multicore processor is introduced in [15]. However, all of
these methods require intrusive measurements and no non-intrusive approach
for controlling the interferences between cores by an external device has been
presented in the past.

3 Closed Performance Control Loop

In the following the basic idea of the Fingerprinting approach is briefly described.
This Fingerprinting is used as the sensor element of the closed control loop.
Subsection 3.2 describes the actuator to influence the performance of the other
cores and, hence, the interferences. The complete closed control loop is presented
in Subsect. 3.3. Figure 1 shows the setup of multicore processor and safety net
system with the integrated closed control loop. Note that our proposed closed
performance control loop does not require any additional software functionality
running on the multicore.

3.1 Basic Fingerprinting

During the execution of an application, a flow of instructions is executed. This
flow is not homogeneous in terms of type of instructions, source of the instruc-
tions, and execution time of instructions. Accordingly, measuring for example
the number of executed floating point instructions per time unit will lead to a
characteristic curve of an application or a part of the application. If the appli-
cation is executed several times with the same input parameters the measured
curves are very similar (if sample rates greater than 1µs are applied). For track-
ing the progress of a known application, its measured curve can be compared to
the recorded reference curve.

48 J. Freitag and S. Uhrig

Multicore Processor
NXP P4080

cores 1-7

FPGA
Xilinx Virtex-7

Safety Net Processor
MicroBlaze

A
ur

or
a

N
ex

usHigh Speed
Serial

Fingerprint
Model

Quality of Service
Algorithm

core 0

Interconnect

Periodical
access
to the

performance
counters

of all
cores

Debug
Interface

Other
Applications
(bad guys)

Critical application
(TACLeBench)

Measure performance (Fingerprint)

Set utilization (PWM)

ecna
mrofrepl ort no

C

Fig. 1. Hardware setup with closed performance control loop implemented in the safety
net system

In case an application executed on a multicore processor suffers from inter-
ferences with other applications on the shared memory hierarchy, its progress is
slowed down. Slowing down the application will result in a stretched (in time)
but shrunk (in the value range) curve. When comparing such a mutated mea-
sured curve with the original reference curve, the actual slowdown can not only
be identified but also be quantified at any time during execution.

Many current MPSoC (e.g. based on ARM, PowerPC) include performance
counters implemented in hardware which can be configured to increment every
time a given event is raised. While the amount of events which can be config-
ured is usually more than 100, the amount of counters that can be incremented
simultaneously is small (around 4 to 6) [16]. An example of such curves is shown
in Fig. 2.

The Fingerprint model is obtained by the execution of the main application
several (thousand) times without other applications running in parallel. The
performance counter values of the selected events are recorded with the frequency
defined by the safety net system (100µs period in the prototype FPGA case).
Afterwards, the recorded characteristics are clustered in order to reduce the
amount of curves that are combined into a model. With a bisecting k-means
algorithm slight variations of the curves are filtered out. As the bisecting k-means
algorithm does not need a predefined number of clusters, the resulting amount
of clusters is depending on the similarity of the curves which is defined by the
distance function1

d(x,y) =
n∑

i=1

[|xi − yi| > limit] (1)

1 Please note the Iverson brackets: [P] =

{
1 if P is true;
0 otherwise.

Closed Loop Controller for Multicore Real-Time Systems 49

Fig. 2. Measured curves of four event counters when executing an avionic application

with x Runtime measurement vector, y Centroid vector and n length of the
pattern. Finally, the medians of the resulting cluster centroids are combined
into a tree model, the Fingerprint. The tree data structure is used because it
can be accessed in a simple way to allow a fast access when the application is
tracked. The root of the tree is the beginning of a new period of the application.

During the actual execution, the Fingerprint safety net system compares the
performance counter values with the stored Fingerprint model and the actual
execution path along the tree is tracked. In contrast to the generation of the
Fingerprint model which can be created offline on a powerful compute node,
timing is crucial for the tracking phase.

In case the slowdown of a critical application executed on one core exceeds
a given limit (acceptable delay based on the single core WCET), other cores
running less critical software are thwarted to reduce concurrency and, hence,
increase performance of the critical application.

In summary, the fingerprint safety net approach [3] tracks the application’s
progress on the basis of characterized behavior of hardware event counters inte-
grated inside the core of a multicore. Periodically reading and resetting such
counters results in a curve that is characteristic for an executed application, more
specifically, for the progress of that application. When comparing a recorded ref-
erence curve with the performance counter values measured online, the current
progress with respect to the reference execution can be measured.

3.2 Pulse Width Modulated Interferences

The P4080 multicore system used in this paper provides means to halt and
resume cores individually. Both actions can be triggered by messages on the

50 J. Freitag and S. Uhrig

back channel of the trace interface, i.e. by writing to control registers. This
means that the Safety Net processor (see Fig. 1) is able to control the activity of
the cores individually and externally. This way the cores that interfere with the
memory accesses of the core under observation with the fingerprinting technique
can be halted to not further increase the slowdown of the main application.

To provide a not only digital (on/off) way of setting the performance of
the cores, we implemented a (software-based) Pulse Width Modulated (PWM)
enabling/disabling of the individual cores, according to the signals from the
closed loop controller. By halting and resuming a core, the application on this
core can still make progress in contrast to suspending the application completely.

We have chosen a PWM period of 1 ms which is equal to 10 times the 100µs
period used for tracking the application’s progress. Hence, we can reduce the
performance of cores competing with our main core in steps of 10% from 0 to
100% utilization. For example, a utilization of 60% means that the corresponding
core is halted for 0.4 ms and runs for 0.6 ms per millisecond.

3.3 Closed Loop Controller

Two algorithms are used as control element, a simple threshold-based algorithm
and a proportional controller. Both techniques affect all concurrent cores syn-
chronously. The threshold-based algorithm disables the concurrent cores when
the slowdown of the main application exceeds a given threshold and enables the
cores again when the slowdown falls below the same threshold again. The second
technique uses a proportional controller and the PWM-based activity control as
described in the previous section.

4 Evaluation

We evaluated the effectiveness of the PWM-based activity setting on the main
core’s performance followed by the evaluation of the full closed control loop sys-
tem. The selected performance counter values for the evaluation are Instructions
completed, Branch instructions completed, Stores completed and Bus interface
unit accesses. This selection results in very diverse curves which lead to a more
robust model. Some paths may look similar in one curve but can be distinguished
when taking different curves into account. Furthermore, the Bus interface unit
accesses curve is an important measurement as it shows the operations that lead
to cache misses. Therefore, this curve shows the possible interference hot spots.

4.1 PWM Effectiveness

The main application benchmarks in two different scenarios is used for the evalu-
ation of the effectiveness of the PWM-based activity setting, i.e. the interference
control. On the main core, the TACLeBench benchmark is executed in every
case. The two benchmarks for the competing application cores are

Closed Loop Controller for Multicore Real-Time Systems 51

– Read benchmark: This artificial benchmark generates high read traffic on the
shared interconnect and the memory by performing read accesses to memory
and does not profit from local data caches,

– TACLeBench [17]: A benchmark suite which is application oriented and gen-
erates realistic traffic on the shared interconnect and memory and profits
from local data caches. Example algorithms used are JPEG image transcoding
routines, GSM provisional standard decoder, H.264 block decoding functions,
Huffman encoding/decoding and Rijndael AES encoding/decoding.

The two benchmarks are executed in the two scenarios with and without local
caches enabled (L1 instruction and data caches). These scenarios show that the
technique also works for very high interference configurations. Furthermore, dis-
abling the caches is relevant for creating the single core WCET as mentioned in
Subsect. 3.1. In both scenarios, no external memory is accessed and the inter-
nal L3 platform cache is configured as shared SRAM to reduce memory access
delay and focus on interferences in the interconnect. The activity of the com-
peting cores has been set by the PWM signal in parallel for all cores from 0%
to 100% in steps of 10%. The execution time of the main application is mea-
sured. Figure 3 shows the results of the scenario without local caches. It can
be observed that for the Read benchmark thwarting the competing cores by
10% still reduces execution time of the main application by nearly 30%. The
decrease stays very intensive until the competing cores reach an activity rate of
60%. Below 60% the execution time of the main application decreases nearly lin-
early. The TACLe benchmark performs nearly 15% better in case competition is
reduced from 100% to 90%. Below this value, the execution time decreases more
or less linear until the competition is zero.

We ran the same set of benchmarks with active L1 data and L1 instruction
caches for all cores. Here, the overall slowdown is not as dramatical as without
caches. Even when running the Read benchmark as opponent the main core
performs significantly better with a factor of 1.5 on execution time compared
to nearly 4.5 as maximum slowdown without caches. This effect is not based on
data accesses since the benchmark is constructed to generate the maximum cache
miss rate on the data path but the L1 instruction cache is also enabled (disabled
in previous scenario) now, which relaxes the pressure on the interconnect and
memory significantly. The TACLeBench shows a maximum increase in execution
time of only 10%, compared to a factor of 2.15 in the previous scenario. If the
performance of the competing TACLeBench cores is reduced, the main core
improves nearly linearly while execution time with Read opponents is reduced
intensively for duty cycles over 80%. Below 80% the performance improvement
is also linear.

Our evaluation of the PWM-based thwarting of competing cores show a suit-
able performance improvement of a memory intensive main application if the
reduction is only 10–20%, depending on the use of instruction caches (data caches
have no effect on this benchmark) (Fig. 4). In case of an application that is using
shared resources to a realistic extend, PWM-based thwarting leads to nearly a
linear improvement. The choice of the Read and TACLeBench shows that the

52 J. Freitag and S. Uhrig

Fig. 3. Execution time of the TACLe benchmark without any local caches and different
activity of competing cores

Fig. 4. Execution time of the TACLe benchmark with enabled local instruction and
data L1 caches and different activity of competing cores

Closed Loop Controller for Multicore Real-Time Systems 53

slowdown with realistic applications running in parallel on other cores are small
and may also be within the acceptable delay (e.g. 10%) when the L1 caches are
enabled. However, in case one of these applications turns into a bad guy (e.g. by
a fault) similar to the Read benchmark, PWM-based thwarting can protect the
correct timing of the main application.

4.2 Closed Loop Controller

We evaluated the closed control loop using TACLeBench as main application
and Read as bad guys running on seven cores in parallel. We set a maximum
slowdown of 4% as target performance of the main application compared to
stand-alone execution.

Figure 5 shows the performance of the TACLeBench over time (upper part)
and the development of the slowdown over time (lower part) without any inter-
ference control and with simple threshold-based control. The upper part presents
the number of executed instruction per µs. It can be seen that the uncontrolled
execution takes about 10% longer for execution at the end. The diagram in
the lower part represents the slowdown of the main application as tracked by
the Fingerprinting. Since tracking of progress is based on discrete steps, the
performance reductions are manifested in sharp steps. The following phases of
smooth performance increases are caused by relative distribution of a slowdown
over a longer time, i.e. a one-time delay at the start of the application of 5%
is reduced over the total execution time to a much lower slowdown. The dotted
line represents the threshold (4%) i.e. the maximum target slowdown of the main
application.

Fig. 5. TACLe performance over time without control and with applied simple thresh-
old controller

54 J. Freitag and S. Uhrig

Fig. 6. TACLe performance over time without control and with applied PWM con-
troller

As can be seen in the figure, TACLeBench experienced a slowdown of about
10% over the complete execution time if no control mechanism is applied. With
our simple control, the target of 4% maximum slowdown is reached at the end.
The grey shaded boxes identify the times when the other seven cores are active.
No grey shading means that the other cores are disabled by the control mecha-
nism. At first glance, the competing cores are most of the time disabled meaning
that applications running on these cores will not get much execution time. But,
note that the competing applications are seven bad guy applications flooding
the shared resources with maximum traffic. However, even in this simple control
case, the other cores each get 23.4% processing time.

In Fig. 6 we show the behaviour of the PWM controller. The duty cycles of
the competing cores are set according to the actual slowdown. A slowdown of
less than 2% allows full performance for all cores, a slowdown above 7% leads to
completely disabled competing cores. Between 7% and 2%, the duty cycles are
adjusted in 10% steps from 0% to 100% (one step per half percent of slowdown).
The grey shaded areas represent the duty cycles of the PWM core activation
signal.

As can be observed that the 4% target slowdown of the main application is
also reached at completion. Moreover, the active phases of the competing cores
are much longer in time but less intensive. Since we are using a PWM signal,
this means that the cores are active for many but smaller periods. The period
of a PWM signal is 1 ms (10 times the sampling period of the Fingerprinting).
With this PWM control, the seven bad guys get 34% of the cores’ performance
while the main application still meets the performance requirements.

Closed Loop Controller for Multicore Real-Time Systems 55

5 Conclusion

In this paper a closed control loop for interferences on a multicore processor
is presented. It enables a stand-alone WCET estimation of a hard real-time
application and execution on a multicore system concurrently to other applica-
tions by defining an acceptable slowdown. The presented approach is transparent
and none-intrusive to the critical application as it is implemented as an exter-
nal safety net using the debug/tracing interface for extraction of performance
counter values. Furthermore, no additional software functionality on the multi-
core is required. The fingerprinting approach is used to measure an application’s
progress. In the closed control loop it is used as sensor element while a sim-
ple core on/off switch or, alternatively, a pulse width modulated core thwarting
technique represents the actuator.

Our evaluations show that both control techniques perform well and can guar-
antee the given maximum slowdown factor. We used a Read benchmark applica-
tion flooding the shared resources with maximum traffic and the TACLeBench
benchmark suite as competing applications. With the simple control mecha-
nism, a digital enable/disable of competing cores, the competing cores can still
get 23.4% performance. When applying a PWM-based controller, the same com-
peting applications will get 34.0% performance.

In the future we will add another performance setting actuator that modifies
the frequency of competing cores such that they can stay active all the time but
with reduced clock frequency. Moreover, evaluations with other realistic traffic
applications and different cache settings can be interesting. Moreover, we plan
providing a formal analysis and, hence, a prove of our approach.

References

1. Airbus: future of urban mobility. http://www.airbus.com/newsroom/news/en/
2016/12/My-Kind-Of-Flyover.html

2. Certification Authorities Software Team (CAST): position paper CAST-32A:
multi-core processors, November 2016

3. Freitag, J., Uhrig, S.: Dynamic interference quantification for multicore proces-
sors. In: Proceedings of the 36th IEEE/AIAA Digital Avionics Systems Conference
(DASC), pp. 1–6, September 2017

4. Nowotsch, J., Paulitsch, M.: Leveraging multi-core computing architectures in
avionics. In: 2012 Ninth European Dependable Computing Conference, pp. 132–
143, May 2012

5. Agirre, I., Abella, J., Azkarate-Askasua, M., Cazorla, F.J.: On the tailoring of
CAST-32A certification guidance to real COTS multicore architectures. In: Pro-
ceedings of 12th IEEE International Symposium on Industrial Embedded Systems
(2017)

6. Kritikakou, A., Rochange, C., Faugère, M., Pagetti, C., Roy, M., Girbal, S., Gracia
Pérez, D.: Distributed run-time WCET controller for concurrent critical tasks in
mixed-critical systems. In: Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, RTNS 2014, New York, NY, USA, pp. 139:139–
139:148. ACM (2014)

http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-Flyover.html

56 J. Freitag and S. Uhrig

7. Nowotsch, J., Paulitsch, M., Buhler, D., Theiling, H., Wegener, S., Schmidt,
M.: Multi-core interference-sensitive WCET analysis leveraging runtime resource
capacity enforcement. In: ECRTS, pp. 109–118. IEEE Computer Society (2014)

8. Bak, S., Yao, G., Pellizzoni, R., Caccamo, M.: Memory-aware scheduling of mul-
ticore task sets for real-time systems. In: 2012 IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pp. 300–309,
August 2012

9. Agrawal, A., Fohler, G., Freitag, J., Nowotsch, J., Uhrig, S., Paulitsch, M.:
Contention-aware dynamic memory bandwidth isolation with predictability in cots
multicores: an avionics case study. In: 29th Euromicro Conference on Real-Time
Systems (ECRTS), June 2017 (to appear)

10. Girbal, S., Jean, X., Rhun, J.L., Gracia Pérez, D., Gatti, M.: Deterministic platform
software for hard real-time systems using multi-core COTS. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC), pp. 8D4-1–8D4-15, September
2015

11. Duesterwald, E., Dwarkadas, S.: Characterizing and predicting program behav-
ior and its variability. In: International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 220–231 (2003)

12. Maggio, M., Hoffmann, H., Santambrogio, M.D., Agarwal, A., Leva, A.: Power opti-
mization in embedded systems via feedback control of resource allocation. IEEE
Trans. Control Syst. Technol. 21(1), 239–246 (2013)

13. Sahoo, D.R., Swaminathan, S., Al-Omari, R., Salapaka, M.V., Manimaran, G.,
Somani, A.K.: Feedback control for real-time scheduling. In: Proceedings of the
2002 American Control Conference (IEEE Cat. No. CH37301), vol. 2, pp. 1254–
1259, May 2002

14. Cucinotta, T., Checconi, F., Abeni, L., Palopoli, L.: Self-tuning schedulers for
legacy real-time applications. In: Proceedings of the 5th European Conference on
Computer Systems, EuroSys 2010, New York, NY, USA, pp. 55–68. ACM (2010)

15. Fu, Y., Kottenstette, N., Lu, C., Koutsoukos, X.D.: Feedback thermal control of
real-time systems on multicore processors. In: Proceedings of the Tenth ACM Inter-
national Conference on Embedded Software, EMSOFT 2012, New York, NY, USA,
pp. 113–122. ACM (2012)

16. NXP Semiconductors: e500mc Core Reference Manual (2013). Rev. 3
17. Falk, H., Altmeyer, S., Hellinckx, P., Lisper, B., Puffitsch, W., Rochange, C., Schoe-

berl, M., Sørensen, R.B., Wägemann, P., Wegener, S.: TACLeBench: a benchmark
collection to support worst-case execution time research. In: Schoeberl, M. (ed.)
16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016). OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, vol. 55,
pp. 2:1–2:10. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016)

Optimization of the GNU OpenMP
Synchronization Barrier in MPSoC

Maxime France-Pillois1,2(B), Jérôme Martin1,2, and Frédéric Rousseau3

1 Univ. Grenoble Alpes, 38000 Grenoble, France
{maxime.france-pillois,jerome.martin}@cea.fr

2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France
3 TIMA, CNRS Grenoble INP, Institute of Engineering,

Univ. Grenoble Alpes, 38000 Grenoble, France
frederic.rousseau@univ-grenoble-alpes.fr

Abstract. Synchronization mechanisms have been central issues in the
race toward the computing units parallelization. Indeed when the number
of cores increases, the applications are split into more and more software
tasks, leading to the higher use of synchronization primitives to pre-
serve the initial application services. In this context, providing efficient
synchronization mechanisms turns to be essential to leverage parallelism
offered by Multi-Processor Systems-on-Chip.

By using an instrumented emulation platform allowing us to extract
accurate timing information, in a non-intrusive way, we led a fine analysis
of the synchronization barriers of the GNU OpenMP library. This study
reveals that a time expensive function was uselessly called during the
barrier awakening process. We propose here a software optimization of
this library that saves up to 80% of the release phase duration for a 16-
core MSoCs. Moreover, being localized into the middle-ware OpenMP
library, benefiting this optimization requires no specific care from the
application programmer’s point of view, but a library update and can be
used on every kinds of platform.

Keywords: GNU OpenMP library · Emulation platform
Synchronization barrier optimization
Generic middle-ware optimization

1 Introduction

For almost 20 years, high performance computing systems are made of several
computing elements (typ. processors) implemented on the same die, called multi-
processors system-on-chip (MPSoC). MPSoCs incorporate more and more com-
puting units and presently reach several hundreds of cores. In this case, they
are refereed to as manycores. Examples of this kind of chip are the Tile-Gx72 of
Tilera that embeds 72 cores [4], or the MPPA of Karlay integrating 256 cores [2].

To benefit from these highly parallel manycore architectures, the software
has to be parallelized. Parallelizing an initially sequential software code consists
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 57–69, 2018.
https://doi.org/10.1007/978-3-319-77610-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_5&domain=pdf

58 M. France-Pillois et al.

in dividing the program into several sub-tasks. These sub-tasks have to exchange
data to achieve the required service. To ensure data integrity, the inter-task com-
munication requires synchronization operations such as synchronization barrier.

To ease the parallelization process, some “user-friendly” libraries came-up,
like the OpenMP standard, allowing programmers to parallelize programs just
by adding specific preprocessor directives. Interpreting these primitives, the com-
piler can then produce a parallelized program split into several sub-tasks syn-
chronized with each other. Synchronization mechanisms are managed by the
library. Users don’t have to worry about them.

The first step to optimize fine grain software mechanisms is to get repre-
sentative runtime behaviors. Indeed to solve slowdowns implies to get accurate
measurements of the time spent in the different phases of these mechanisms.
Thanks to an ad-hoc designed non-intrusive measurement tool chain, we are
able to analyze the GNU implementation of OpenMP standard on a fully coher-
ent shared memory MPSoC platform. This accurate study reveals a sub-optimal
library code, starting point to an improvement proposal.

The rest of this paper is organized as followed. Section 2 exposes main cat-
egories of solutions proposed to reduce synchronization mechanisms slowdowns.
In Sect. 3, we describe the OpenMP library and its synchronization barrier
mechanism. Then, Sect. 4 presents the experimentation environment and the
methodology set-up to study the synchronization slowdown issues. Section 5
details the GNU OpenMP synchronization barrier study and the cross-platform
optimization.

2 Related Work

The aim of our study is to improve synchronization mechanisms on MPSoC and
specifically the synchronization barrier. This subject has been largely studied
and many solutions, based either on software or hardware optimizations, have
been proposed. In this section we first present an overview of existing solutions
and then expose research directions that are still worth exploring.

Software-based solutions usually aim at speeding-up barriers by improving
barrier algorithms. In [8], Hoefler et al. present the principal algorithms designed
to implement synchronization barrier optimizing either the fastness or reducing
the potential contention issues resulting from simultaneous accesses to the same
resource (memory).

Nevertheless, some studies such as [6,12,14], highlight the fact that overheads
resulting from software processing are very expensive. Hence hardware proposals
have been formulated. Two trends can be identified:

(1) The addition of communication media dedicated to synchronization mech-
anisms like the “G-barrier” of Abellán et al. [6], which consists in imple-
menting a barrier with fast propagation link (g-line) and dedicated bar-
rier controllers. This proposal exposes very good results, however, the
“G-barrier”, like other solutions in the same trend [9,11], does not scale
very well since the addition of a processor requires extra barrier-dedicated

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 59

hardware (link and controllers). Another drawback of the “g-barrier” is that
the processors taking part in the barrier have to be known before the begin-
ning of the barrier. Moreover only a thread by processor can take part in
the barrier. All these restrictions make this proposal hard to use in real
operational systems.

(2) The second trend is the addition of a dedicated buffer to manage synchro-
nizations like the “synchronization buffer” of Monchiero et al. [10]. The
strength of this proposal is to unload the software from the synchronization
management, allowing it to perform other tasks during this time.

Proposed optimizations are numerous. All of them target the synchronization
primitive itself, trying to offer a new optimized mechanism. The main flaw of
these approaches is the poor studying of the mechanisms within their realistic
ecosystem environments before proposing a solution. Hence the majority of these
solutions have never been implemented in real operational systems. Our approach
differs on this point because we have chosen to carefully study an already wide
spread solution, in our case the OpenMP library, and then to improve it. We do
not directly target the low-level hardware mechanism nor the high-level software
algorithm but the middleware layer between the two. Thanks to our methodology
we are able to target real issues and to offer solutions usable seamlessly by
programmers.

3 The GNU OpenMP Synchronization Barrier
Mechanism

OpenMP is a library designed to help users to develop parallel software by adding
an abstraction layer over the classic parallel services (threads management, syn-
chronization mechanisms, ...). In this section, we present the key principles of
this library.

3.1 Code Parallelization and Synchronization

The Listing 1.1 exposes an example of a simple “high abstraction level” code.

Listing 1.1. Original high level C code with openMP directives

1 #inc lude <omp . h>
2 #de f i n e TAB SIZE 1000

3 i n t main (void){
4 unsigned i n t n=0;
5 unsigned i n t s inTable [TAB SIZE] ;
6 omp set num threads (16) ;

7 #pragma omp p a r a l l e l f o r shared (s inTable)
8 f o r (n=0; n<TAB SIZE ; n++)
9 s inTable [n] = n∗2 ;

10 p r i n t t a b l e (s inTable) ;
11 re turn 1 ;}

60 M. France-Pillois et al.

The aim of this program is to compute the elements of an array (line 9) then to
display them (line 10). The array computation is parallelized into sixteen threads
thanks to the OpenMP directives lines 6 and 7. During the compilation phase
OpenMP directives are interpreted by the compiler, and the code is expanded with
threads creation and management services. In our example, the for loop will be
replaced by the creation of sixteen threads. Each thread processing one sixteenth
of the array. The OpenMP library inserts also a synchronization barrier after the
parallel loop (between lines 9 and 10) in order to wait for the completion of all
thread computations before going forward to the display of the array (line 10).
The display of the array is processed by only one thread (the main thread) since
the parallel section ends with the end of the for loop.

At first sight, in this example, we note the heavy impact of synchronization
mechanisms on parallelized code since the OpenMP library inserts a synchro-
nization barrier at the end of each parallel section.

Delays introduced by synchronization mechanisms are of two kinds. (1) Appli-
cation dependent delays which are most of the time due to bad load balancing.
In our barrier example, all the tasks have to wait for the slowest to complete its
computation, which can lead to inefficient use of computing power and reduced
application performance. (2) Synchronization mechanisms intrinsic delays: delays
resulting from the establishment of the synchronization itself.

When we speak about synchronization optimization, we aim to reduce the
second type of delays since the first one, which is more a global application
optimization issue, is out of our scope of action.

3.2 Active Wait and GNU OpenMP Policy

To synchronize threads means that a thread could wait until others become in
states allowing the establishment of the synchronization. This waiting phase can
be fulfilled in two different ways: (1) active wait, and (2) passive wait.

The active wait consists in doing polling (periodic reads) on a waiting flag
until this one reaches an expected value. This kind of waiting is very efficient
in term of execution resuming speed since as soon as the flag state changes, the
thread can resume its nominal execution flow. However periodic reads may lead
to a waste of computing time and power consumption for long waiting periods.

The passive wait involves putting the waiting thread to sleep. When a thread
changes the state of the waiting flag from the waiting state to the release state,
this thread is also in charge of awakening at least one sleeping thread.

The default GNU OpenMP library waiting policy is the following: active wait
is performed by a waiting thread until a predefined amount of time is elapsed.
When this amount of time is elapsed, wait policy switches to passive wait and
the thread goes to sleep till the barrier completion. Waiting modes can also be
forced using explicit directives.

The active wait is used when highly reactive applications are expected, reduc-
ing as much as possible the synchronization delays. In this study we decided to
focus on these applications, for which reducing the total computation time is the
main challenge.

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 61

4 Experimentation Environment

This section first presents the architecture of the MPSoC used to perform the
initial study. Then we give a description of the evaluation platform set up. And
finally we describe our non-intrusive measurement tool chain.

4.1 TSAR Manycore Architecture

The evaluation was carried out on the TSAR full coherent shared memory many-
core platform [5]. TSAR is a clustered manycore architecture based on NoC
which makes it well representative of modern MPSoCs. As represented in the
Fig. 1, each cluster is mainly made of four MIPS32 processors with a private L1
cache, and a L2 cache which is also a shared memory segment. Each L2 memory
is designed to cache a section of the global memory and the L2 cache of a cluster
can be accessed by cores inside and outside the cluster.

Fig. 1. 4-cluster (16 cores) TSAR MPSoC architecture

4.2 Evaluation Platform

Regarding the hardware side, our evaluation platform is based on a Veloce2
Quattro emulator. Emulation platform allows us to fast emulate a full Regis-
ter Transfer Level (RTL) system, with a cycle accurate precision. Indeed, to
lead timing measurement campaigns on operating system primitives (e.g. syn-
chronization mechanisms), we have to get information from software execution
(operating system boot + application run) during a very large number of clock
cycles. With the “classical” simulation limitations, accurate simulation of these
mechanisms is extensively long. For example, the boot of a Linux kernel on top of

62 M. France-Pillois et al.

cycle accurate SystemCass [7] simulation system could take several days for a 16-
core TSAR platform. Hence it is hard to imagine a full measurement campaign
with a so long kernel boot duration. Commonly, people choose to deteriorate the
accuracy of the simulated model to improve the running time. On our side, we
use hardware support to speed-up simulation time without losing accuracy.

As for the software aspect, we use a port of Linux kernel 4.6 and the µClibc
to boot the TSAR platform in our measurement campaign.

The GCC version used to compile applications for this platform is the 4.8.2.
Note that the GNU OpenMP library is part of GCC. Hence the GNU OpenMP
library version is directly related to the GCC release version. The GCC ver-
sion used is quite old, but the synchronization barrier management of the GNU
OpenMP library has not changed in more recent GCC releases. Slowdown issues
are the same in the release 4.8.2 that in the latest 7.2 GCC release.

To avoid interferences of the scheduling policy on our measurements, we
bound each thread to a different core, by setting the suitable OpenMP directive.

4.3 A Non Intrusive Measurement Tool Chain

Obtaining accurate timing information is the central point to analyze slowdowns
in software program. To reach this goal, we set up a non-intrusive measurement
tool chain. Unlike the traditional software timing instrumentation, our method
allows to measure delays without interacting with the software program or dis-
torting its execution flow. Hence software behavior is still the same than in
regular operating mode, and actual issues can be identified.

The co-emulation feature of the emulation platform allows communication
between the emulator and a workstation. Based on co-emulation, we imple-
mented a spy module in the platform to extract at runtime, by this side channel,
useful signals like processors program counters and registers. The extracted sig-
nals are dumped into files. The content of these files is then processed by different
tools that analyze signal values and provide relevant information of time spent
in the studied mechanisms. Leveraging accurate non distorted timing measure-
ments, this tool chain allows to expose synchronization mechanisms slowdowns
in real working conditions.

5 Active Wait Optimization for GNU OpenMP
Synchronization Barrier

This section describes the study and the optimization proposed for the GNU
OpenMP library. We chose to study the GNU implementation of the OpenMP
standard because of its large adoption in real operational systems.

5.1 Barrier Mechanism Measurements and Study

The GNU OpenMP library implements a central-counter algorithm for the syn-
chronization barrier. The Fig. 2 shows a time chart of this algorithm. Each thread

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 63

Fig. 2. Synchronization barrier time chart for 3 threads.

is initially in a computing phase corresponding to the nominal program execu-
tion. Then each thread calls the barrier function and enters its “arrival phase”.
It increments the barrier counter. If the barrier counter has not reached the
expected value, the thread waits until its release. It is the case of the threads
0 and 2 in the figure. Once the counter reaches the expected number (thread
1), the thread causing this event has to release all waiting threads, refereed to
as the “release phase”. In theory, the “arrival phase” and the “release phase”
can both be sources of slowdowns: (1) resulting from contention issues caused
by concurrent access to the shared central counter variable during the “arrival
phase”, (2) due to the threads release policy for the “release phase”.

Actually, as observed by Wei et al. [13] threads do not reach the barrier
simultaneously resulting from diverse sources: cache misses, I/O management,
.... Thus contention risk during the “arrival phase” is very low. Moreover, since
the thread will then switch to a waiting phase, most of the arrival phase delays
are masked by the waiting phase and do not increase the whole program duration.

“Release Phase” Timing Observations. Regarding the “release phase”, the
delays measured for our 16-core platform are presented in the Fig. 3a. In order
to get relevant reproductive behaviors by limiting operating system artifacts, we
loop 400 times over the for loop of the Listing 1.1.

This figure shows the release phase delays by thread. The Y-axis represents
the number of cycles between the moment the last thread became aware that
it is the last one and has to start the release process, and the instant a thread
leaves the barrier to resume its nominal execution flow. The X-axis represents
the threads in order of release. For example, the first column represents the first
thread that resumes its execution whatever its thread ID is. The figure shows box
plots in which the red line is the median. The blue box contains 50% of the values.
The minimum value is represented by a dot, and the maximum value by an ‘X’.
We can see on the figure that box plots are well grouped around the median,
however the maximum values could be far above the core group of the values.

64 M. France-Pillois et al.

This is due to contention issues and interrupt management subroutines triggered
by the operating system independently from our application, which delay the
nominal execution flow of threads. Hence values delayed by these artifacts should
not be taken into account in our analysis since these values are not the result of
the synchronization mechanism itself. Thus we focus our study on the median
value and the box plot for each thread.

We note on this figure that complete process until all threads resume their
execution lasts 13194 cycles, and that one thread is especially delayed compared
to the others. Hence we decide to analyze more accurately the sources of this
large amount of time with our non-intrusive measurement tool chain.

Fig. 3. Delays between barrier completion awareness and thread releases for 16 threads
bound on 16 cores for 400 barrier calls without (a) and with optimization (b)

Library Study. Analyzing more precisely the execution flow inside the “release
phase” using a time annotated function call stack generated by our tool chain,
we remark that GNU OpenMP library calls every time the “threads wake-up
function” during the release phase: whatever threads are actually sleeping or not.
As a matter of fact, the dual active/passive wait policy implies that some threads
can do active wait and others can be sleeping, according to the thread waiting
time. In this case, threads performing active wait should be released by switching
the state of the waiting flag, whereas sleeping threads should be awaken by calling
the wake-up function. However, if the software is well balanced, which is the case
most of the time with the OpenMP workload split policy, threads do not sleep
but just perform active wait due to short waiting durations. The program shown
in Listing 1.1 simulates this case of relatively well balanced threads.

We found that the time spent in the wake-up function is about 12891 cycles
whereas no thread has to be awakened, that is to say about 97.7% of the whole
release process for 16 threads. This observation leads us to consider a workaround
to speed-up the release phase in the case of fully active wait policy.

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 65

5.2 Optimization Proposal

GNU OpenMP library wait policy implies that on the same barrier some threads
can do active wait whereas others can sleep. When no thread is sleeping, the
expensive call to the wake-up function (“futex wake”) is not required. Hence, we
propose to keep an information of the waiting mode of the threads participating
to the barrier. If no thread is sleeping, we skip the call to the wake-up function.
Else, we perform the call if at least one sleeping thread has to be awaken.

The idea is to tag the barrier as “barrier to be awaken” as soon as one thread
of the barrier calls the function to go to sleep. To achieve this purpose, we keep
a list of “barriers to be awaken”. We chose to implement a global list and not a
scalar in the barrier structure to ease the implementation by reducing as much
as possible the impact on the existing code.

When the last thread of a barrier starts the awakening process, it reads this
list. If the identifier (address) of the current barrier is in the list, the thread
removes the identifier from it and calls the wake-up function. Else, if the current
barrier identifier is not in the list, the call to the wake-up function is skipped.

The list implemented is a single linked list without peculiar requirements.
Indeed, since the number of simultaneous barriers in OpenMP programs is
reduced, the search process in the list is relatively fast. Based on this assumption
and on the use cases of the list (only a thread performing the release process),
concurrent access to the list is supposed very sporadic. Hence we decide to sim-
ply protect the list by a global lock. After its registration in the list, but before
going into sleep mode, a thread checks again the wait flag, thanks to the linux
sleeping futex function, in order to prevent potential race between threads.

This optimization is only 50 lines of codes long affecting 2 files of the library.
The use of this optimization requires only a library update to speed-up pro-

gram execution, while the application code does not change at all.

5.3 Micro-benchmark Results

We evaluated our proposal by running a micro-benchmark executing successively
the implicit barrier primitive of the GNU OpenMP library (400x Listing 1.1).

Large Gain on the 16-Core Reference Platform. On our TSAR 16-core
reference platform, our optimization brings large time saving. The Fig. 3b shows
the delays of the “release phase” by thread with our optimization for 16 threads
bound on 16 cores.

We remark that the first thread to resume its execution (first column) is
faster than the first thread of the non optimized version (Fig. 3a). Indeed, the
first thread is now the one in charge of the release process. Spared from calling
the wake-up function, this thread is able to perform the release of all threads
(toggle the waiting flag of the active wait) and to return to its nominal execution
very quickly.

As represented in the Fig. 3, the optimized barrier is completed for 16 threads
in approximatively 2107 cycles (median value) against the previous 13194 cycles.

66 M. France-Pillois et al.

Hence, our optimization provides a significant gain of 81% of the time required
to perform the “release phase” on our 16-core platform.

Since other OpenMP libraries (LLVM, Intel, ...) are not available on our
platform, we can not compare them to our optimization. However, once our
solution evaluation performed, we watched the LLVM open-source library which
seems to implement an analog strategy calling wake function only when it is
required.

Platform Size Generalization. Concerned by extending our optimization for
various MPSoC sizes, we measure the gain obtained for a TSAR platform made
of 8, 16 and 24 cores (Table 1).

In the Table 1, we remark the decrease of the gain with the increase of the
number of threads. Indeed, discarding the potential contention issues on the
wake-up function, the time spent in this one is constant (when no thread has
to be awaken). On the other side time required by threads to resume their
execution depends on the number of threads. Thus, when the number of threads
is growing the gain reached by our optimization becomes smaller. However, even
for 24 threads we get a very good gain of approximatively 43%. Thus these
results show that our optimization is attractive for different sizes of MPSoCs
with significant time saving.

Table 1. GNU OpenMP library barrier release phase gain

Platform Threads number Full release phase delay
without optimization

Full release phase delay
with optimization

Gain

8 on 8 cores 11662 cycles (median) 1481 cycles (median) 87%

TSAR 16 on 16 cores 13194 cycles (median) 2522 cycles (median) 81%

24 on 24 cores 14039 cycles (median) 7975 cycles (median) 43%

8 on 8 cores

Alpha 16 on 16 cores 608 cycles (median) 50 cycles (median) 91%

24 on 24 cores

Applicability on Other Platforms. In order to validate this optimization
with other platforms, we set-up a similar test case on Gem5 simulator [1].
In line with the current MPSoC architecture, the simulated system is made
of clusters of 4 Alpha cores sharing L2 caches. Each core owns its private L1
cache. However, this system differs from the TSAR system in two major points:
(1) Clusters are linked to each other by a crossbar interconnect and not any-
more by a NoC. Hence there is no time gap to access different distant L2 caches.
(2) The L2 cache policy is a round robin like policy. In TSAR platform each L2
cache is associated to a memory section whereas is this Gem5 platform cache
line are spread over L2 caches according to a circular policy. Regarding the
software environment, the linux kernel run is the 2.6.27. The micro-benchmark

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 67

(Listing 1.1) was compiled with a GCC 4.7.3. The implementation of the barrier
mechanism is the same in this GCC version and the version 4.8.2 used with the
TSAR platform.

We used the previous methodology on this platform, running 400 loops of
the Listing 1.1 and measuring by a side channel the “release phase” duration
for platforms made of 8, 16 and 24 cores (Table 1). Considering components
as perfect (caches, interconnects, ...), the simulation platform discards memory
access delays and contention issues coming up when increasing the number of
threads. This is why the measured time are the same for the three platform sizes.
Thereby we can notice the large gain provided by our optimization, around 91%.
It confirms the attractiveness of our optimization for different kinds of MPSoC.

Moreover, we can theoretically enlarge these experimentations to affirm that
our optimization is working for all kinds of platforms. Indeed, our optimization
aims at removing unnecessary function calls at the middle-ware level. The alter-
native strategy proposed is fully independent of platform since this function is
still non-useful whatever the platform is. Hence by skipping it, we can guarantee
a time saving. However, the amount of time saved depends of the host system.

Table 2. GNU OpenMP library optimization results for 40 runs (20 with optimization,
20 without) of the IS (class S) NAS Benchmark reference application for 16 threads

Total release time Total execution time

IS with optimization 93393049 cycles 1069602910 cycles

IS without optimization 162493024 cycles 1228012444 cycles

Gain with optimization 42.5% 12.9%

5.4 Performances Evaluation on the NAS Benchmark IS
Application

The second phase of our evaluation consists in measuring the impact of our
optimization on a full application. We choose the Integer Sort application of
NAS benchmark [3] as reference. We measure the total time spent in the barrier
release phases and the total application duration on the 16-core TSAR emulated
platform. In order to get results as representative as possible by averaging oper-
ating system artifacts, we ran 20 times the IS application class ’S’ (Small) with
and without optimization. The results are shown in Table 2. We can note that
the gain on the total time spent in the release phase for the reference application
is 42.5%. This gain is smaller than the one measured on the micro-benchmark
due to operating system interferences which parasite the results despite the 20
runs.

We note a gain of 12.9% concerning the total execution time of the bench-
mark application. This gain can be explained by the time saved in the barrier

68 M. France-Pillois et al.

mechanism itself, but also by the removal of memory accesses (resulting from
the optimization) which reduces memory contention issues.

6 Conclusion

Proposing a new approach to deal with synchronization slowdowns, we demon-
strate that software middle-ware level is interesting to improve system perfor-
mances and provide optimization easily set up in various industrial systems.

Based on an accurate study of the GNU OpenMP barrier synchronization
we detected, thanks to our custom tool chain, a sub-optimal code section in
this wide-spread library. Fine analysis of this mechanism allows us to propose a
workaround to the library weakness leading to a large gain, with a reduction of
81% of the “release phase” for 16 threads/cores on our TSAR platform.

Running it on several MPSoCs, and thanks to a theoretical analysis, we
disclose the expandability of this optimization on different platforms. Hence, our
approach allows us to provide significant gains with no change of the OpenMP
programmers habits since no special care is required to benefit from our patch.

We plan in future works to leverage the designed tool chain to improve other
mechanisms of the OpenMP library or other middle-ware software libraries.

References

1. gem5. http://gem5.org
2. Kalray. http://www.kalrayinc.com/kalray/products
3. NAS parallel benchmarks. https://www.nas.nasa.gov/publications/npb.html
4. Tilera corporation. http://www.mellanox.com/repository/solutions/tile-scm/

docs/UG130-ArchOverview-TILE-Gx.pdf
5. Tsar. https://www-soc.lip6.fr/trac/tsar
6. Abellan, J., Fernandez, J., Acacio, M.: Efficient hardware barrier synchronization

in many-core CMPs. IEEE Trans. Parallel Distrib. Syst. 23(8), 1453–1466 (2012)
7. Buchmann, R., Greiner, A.: A fully static scheduling approach for fast cycle accu-

rate systemC simulation of MPSoCs. In: 2007 International Conference on Micro-
electronics, pp. 101–104 (2007)

8. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: A survey of barrier algorithms for
coarse grained supercomputers. Chemnitzer Informatik Berichte 04(03) (2004).
ISSN: 0947-5152. http://www.unixer.de/∼htor/publications/

9. Leiserson, C.E., et al.: The network architecture of the connection machine CM-5.
In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 1992, pp. 272–285. ACM (1992)

10. Monchiero, M., Palermo, G., Silvano, C., Villa, O.: Efficient synchronization for
embedded on-chip multiprocessors. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 14(10), 1049–1062 (2006)

11. Soga, T., Sasaki, H., Hirao, T., Kondo, M., Inoue, K.: A flexible hardware barrier
mechanism for many-core processors. In: Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), 2015 20th Asia and South Pacific, pp. 61–68 (2015)

http://gem5.org
http://www.kalrayinc.com/kalray/products
https://www.nas.nasa.gov/publications/npb.html
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
https://www-soc.lip6.fr/trac/tsar
http://www.unixer.de/~htor/publications/

Optimization of the GNU OpenMP Synchronization Barrier in MPSoC 69

12. Villa, O., Palermo, G., Silvano, C.: Efficiency and scalability of barrier synchro-
nization on NoC based many-core architectures. In: Proceedings of the 2008 Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded Sys-
tems, CASES 2008, pp. 81–90. ACM (2008)

13. Wei, Z., Liu, P., Sun, R., Ying, R.: TAB barrier: hybrid barrier synchronization for
NoC-based processors. In: 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 409–412 (2015)

14. Zhengbin, P., Shaogang, W., Dan, W., Pingjing, L.: Hardware acceleration of bar-
rier communication for large scale parallel computer. In: 2013 8th International
ICST Conference on Communications and Networking in China (CHINACOM),
pp. 610–614 (2013)

Analysis and Optimization

Ampehre: An Open Source Measurement
Framework for Heterogeneous Compute

Nodes

Achim Lösch(B) , Alex Wiens , and Marco Platzner

Paderborn University, Paderborn, Germany
{achim.loesch,platzner}@upb.de, awiens@mail.upb.de

Abstract. Profiling applications on a heterogeneous compute node is
challenging since the way to retrieve data from the resources and inter-
pret them varies between resource types and manufacturers. This holds
especially true for measuring the energy consumption. In this paper we
present Ampehre, a novel open source measurement framework that
allows developers to gather comparable measurements from heteroge-
neous compute nodes, e.g., nodes comprising CPU, GPU, and FPGA. We
explain the architecture of Ampehre and detail the measurement process
on the example of energy measurements on CPU and GPU. To charac-
terize the probing effect, we quantitatively analyze the trade-off between
the accuracy of measurements and the CPU load imposed by Ampehre.
Based on this analysis, we are able to specify reasonable combinations
of sampling periods for the different resource types of a compute node.

Keywords: Heterogeneous computing · Measurement · Energy
Open source

1 Introduction

Application profiling is a major step in software development. Most commonly,
developers focus on performance analysis based on hardware performance coun-
ters provided by the target resource and on timing information. Using these data,
developers gain knowledge about runtime metrics such as number of executed
instructions, cache misses, page-faults, or the costs of called functions. Under-
standing runtime behavior is instrumental for optmizing applications perfor-
mance. A widely-used open source performance analysis tool is Perf which was
introduced in Linux 2.6.31 and since then is an inherent part of the Linux infras-
tructure [1]. Other similar open source tools are IgProf [2] and Likwid [3]. Ven-
dors have implemented closed source professional profiling tools to support appli-
cation development for their devices, e.g., the Intel VTune Amplifier [4] or the
Nvidia GPU development IDE Nvidia Nsight and command line tool nvprof [5].
Since the introduction of the Running Average Power Limit (RAPL) interface
for Intel CPUs, developers are able to perform energy measurements on CPUs

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 73–84, 2018.
https://doi.org/10.1007/978-3-319-77610-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_6&domain=pdf
http://orcid.org/0000-0001-6362-0686
http://orcid.org/0000-0003-1764-9773
http://orcid.org/0000-0002-6893-063X

74 A. Lösch et al.

although some source code modifications are required. For example, in [6] the
authors add an energy profiling module for Intel CPUs to IgProf. Their changes
allow for basic power analysis and optimization. Optimizing the energy consump-
tion of applications has become an emerging topic in high performance comput-
ing and will continue to grow in importance, given the rising electricity costs.

All the mentioned tools lack an easy-to-use and extensible application pro-
grammer interface (API) that allows user applications to read comparable perfor-
mance and energy data from different resource types. The Performance Applica-
tion Programming Interface (PAPI) project [7] has been developed to solve these
issues. Particularly with the PAPI version 5 release, developers are able to add
capabilities for power or temperature analysis by implementing so-called PAPI
components, extending PAPI to new platforms and other sensor types [8]. These
capabilities make dedicated measuring equipment such as digital multimeters
redundant. PAPI provides a unified API that hides the underlying device-specific
measuring procedures when reading power, energy, and temperature sensors.
However, even with PAPI the retrieved data must be interpreted to gain seman-
tically comparable measurement results across the resource boundaries. Such
comparable measurements are particularly important for developing and opti-
mizing applications as well as system software for heterogeneous compute nodes.

To overcome these limitations, we have developed the novel framework
Ampehre, short for Accurately Measuring Power and Energy for Heterogeneous
Resource Environments [9], with the key features: (i) easy integration into other
projects by providing a clear API covering all resource types, (ii) extensible to
new resources and sensors through the use of PAPI, and (iii) open source under
the terms of the 2-clause BSD license.

In Sect. 2 of this paper, we present an overview of the Ampehre frame-
work architecture. Section 3 illustrates the measuring procedure with Ampehre
explained by an example for measuring energy on CPU and GPU. In Sect. 4
we evaluate the trade-off between data accuracy and the additional CPU load
imposed by Ampehre. In Sect. 5 we show how to extend Ampehre to new com-
puting resources and sensors. Finally, Sect. 6 concludes the paper.

2 Architecture and Components of Ampehre

Ampehre is designed for heterogeneous high-performance compute nodes run-
ning Linux. In this paper, we refer to an implementation on a heterogeneous
server using a Dell PowerEdge T620 with two Intel Xeon E5-2609 v2 CPUs
as host processors, a PCIe-connected Nvidia Tesla K20c GPGPU based on the
Kepler microarchitecture, and a PCIe-connected Maxeler Vectis FPGA board
based on Xilinx Virtex 6 (xc6vsx475t). The server runs CentOS 6.8 Linux with
kernel v2.6.32. In Sect. 5 we explain the necessary adaptations to Ampehre when
deployed on different compute resources. Figure 1 presents the architecture of the
Ampehre framework, which comprises three layers in user space: an extended
PAPI library, the Ampehre library, and the Ampehre tools. In this section, we
describe each of these layers.

Ampehre: An Open Source Measurement Framework 75

Linux Kernel v2.6.32

Heterogeneous Compute Node

Ampehre library

Vendor libraries

Live monitoring
tool

msmonitor

Measuring
tool

hettime

User
applica on

fork()

FPGA GPUCPU

PAPI library v5.5.1 (extended)

Ke
rn

el
 sp

ac
e

U
se

r s
pa

ce

Live monitoring
tool
(client/server)
msmonitor_cs

Fig. 1. Ampehre architecture comprising an extended PAPI library, the Ampehre
library, and Ampehre tools. Orange blocks denote components we have implemented
or extended. (Color figure online)

2.1 Extended PAPI Library

We base the Ampehre framework on PAPI, which is short for Performance Appli-
cation Programming Interface [7]. PAPI is a well-known and widely-used Linux
library for gathering performance data on CPU-based systems. The use of PAPI
makes Ampehre inherently portable to other systems running a Linux OS dis-
tribution. We have extended the PAPI library to support not only CPU and
system-wide sensors but also to retrieve performance data gathered at the accel-
erator components.

Figure 2 denotes the main components with their interfaces utilized by
Ampehre to obtain measurements from the heterogeneous computing resources
and the main board of our server node. Overall, for use with Ampehre PAPI
must be compiled with four software components enabled: The PAPI compo-
nent rapl supports CPU measurements, including the cores, last-level cache,
memory controller and DRAMs. Modern Intel CPUs provide several so-called
Model Specific Registers (MSR) to retrieve data related to energy consumption,
temperature, etc. Already with the first Pentium processor family, Intel intro-
duced MSR read and write instructions, RDMSR and WRMSR, in the instruction
set. The PAPI component ipmi is necessary to retrieve system-wide measure-
ments such as the system-wide power dissipation measured at the power sup-
ply. For this, the component communicates with the Baseboard Management
Controller (BMC) by means of the Linux OpenIPMI library. IMPI, short for
Intelligent Platform Management Interface [10], is a standard to unify server

76 A. Lösch et al.

platform management. The Nvidia GPU is supported if PAPI is compiled with
the nvml component. This component includes the Nvidia Management Library
(NVML) [11], which is used to obtain the current power dissipation and die
temperature. Finally, Ampehre is enabled to gather measurement data on the
Maxeler Vectis by linking against the MaxelerOS library if the maxeler compo-
nent is enabled in PAPI. From the overall four described PAPI components, we
have implemented maxeler and ipmi from scratch and extended rapl and nvml
in order to support the sensors of interest on our heterogeneous compute node.

Intelligent Pla orm Management Interface

Model Secific Registers MaxelerOS Nvidia Mgmt Library

CPU(s)

CoreCore
CoreCore

LLC, Mem.
Controller

DRAM

FPGA board

Main
Compute

FPGA

Interface
FPGA

DRAM

GPU board

Core

DRAM

PCI Express

BMC (iDRAC)South Bridge

PAPI: rapl PAPI: maxeler PAPI: nvml

PAPI: ipmi

Fig. 2. PAPI components required to retrieve measurements from the heterogeneous
computing resources and the main board. We use Linux OS kernel interfaces to sample
CPU and BMC sensors (red blocks), while vendor libraries provide functions to retrieve
measurements from the FPGA and GPU boards (green blocks). (Color figure online)

2.2 Ampehre Library API

While PAPI simplifies the resource and vendor-specific measuring procedures
by a unified interface, the sampled raw data must be properly interpreted in
order to provide comparable measurements for all resources. For example, PAPI
directly measures the energy consumption on Intel CPUs, but for our Nvidia
GPU it can only retrieve the latest power dissipation readings. Therefore, we
have developed the Ampehre library with the goal to hide all computations and
data interpretations from the application developer. Extending PAPI function-
ality, the Ampehre library unifies the meaning of gained data across resource
boundaries and provides the developer with a set of functions having the same
semantics for all resource types. The Ampehre library is used by the Ampehre
tools and must also be included by any measured user application (see Fig. 1).

The application programmer interface (API) of the Ampehre library is writ-
ten in C. Table 1 lists the essential functions that must be invoked to perform

Ampehre: An Open Source Measurement Framework 77

Table 1. Ampehre library C interface. The function call sequence 0 – 9
presents a correct use of the library. Actual measurements are obtained between
ms start measurement() and ms stop measurement()

Function Explanation

0 MS = ms init (); Initialize Ampehre and PAPI libraries

1 MD = ms alloc measurement (); Allocate data containers storing measured and calculated

data

2 ms set timer (MD, Component,

Sampling Period);

Set component-specific sampling period. Repeat function

call for all required PAPI components

3 ms init measurement (MS, MD); Register data containers with Ampehre. Initialize timers

for periodic sampling

4 ms start measurement (MS); Start measuring. Each component is periodically sampled

by a dedicated thread. Data are stored in priorly

registered MD

5 ms stop measurement (MS); Stop measuring. Terminate sampling threads

6 ms join measurement (MS); Wait until all sampling threads have terminated

7 ms fini measurement (MS); Clean up environment

8 ms free measurement (MD); Free data containers

9 ms fini(MS); Shut down Ampehre and PAPI libraries

measurements. The sequence of function calls in the table shows the correct use
of the library. The library implementation as well as the API isolate the data
structures storing the measurement results from the actual measuring system.
We refer to these two parts as measurement data MD and measuring system MS,
respectively. Step 0 initializes the MS, i.e., the underlying Ampehre library, the
PAPI library, the Linux OS drivers, and the vendor libraries are opened and con-
figured to retrieve measurements. The MD is allocated subsequently in step 1 .

Step 2 sets the sampling period for the measurement, where for each under-
lying PAPI component a separate sampling period can be chosen. Setting sam-
pling periods involves a trade-off since short sampling periods lead to measure-
ments with high accuracy, but can increase the CPU load caused by the measur-
ing framework unacceptably. Long sampling periods lead to smaller increases of
CPU load but also to less accurate measurements. We discuss this trade-off in
more detail in Sect. 4. The next step 3 links the MD with the MS and initializes
one periodic timer per PAPI component. Whenever a timer expires, it triggers
the actual measuring procedures in the PAPI respective component followed by
internal calculations mainly in the Ampehre library. The measurement frame-
work starts with step 4 , that creates a POSIX thread for each component.
This way, we can perform the required computations for the components inde-
pendently. The gained results are stored in the registered MD structures. Properly
stopping the measurement framework requires the steps 5 , 6 , and 7 . These
steps terminate the measurement threads and performs cleanups. The accumu-
lated measurements remain stored in MD until 8 and 9 are called to free the
data structures and shut down all libraries.

78 A. Lösch et al.

Table 2. Quantities that can be measured or computed with the extended PAPI library
and the Ampehre library.

Component Energy Power Temperature Utilization Frequency Alloc. memory

Accumulated Current, Minimum, Average, Maximum

rapl ✓ ✓ ✓ ✓ ✓ ✓

nvml ✓ ✓ ✓ ✓ ✓ ✓

maxeler ✓ ✓ ✓ ✓ ✗ ✗

ipmi ✓ ✓ ✓ ✗ ✗ ✗

Table 2 gives an overview of the quantities that can be reported by the
Ampehre framework for each of the four PAPI components. All measurements
follow the sequence shown in Table 1 and thus the reported quantities are with
respect to a specific measurement period, determined by the function calls 4
and 5 . The measured energy is by definition a value accumulated over the
measurement period. For the other quantities, which are power, temperature,
utilization, frequency, and amount of allocated memory, Ampehre reports the
current (latest) value and the minimum, maximum, and average over the mea-
surement period.

2.3 Ampehre Tools

Developers can instantiate the Ampehre library in their applications to use our
measurement framework, or they can use one of the following Ampehre tools:
hettime extends the well-known Linux utility time by reporting comprehensive
measurements for an executed binary. While time returns the system resource
usage of a binary given as argument, hettime additionally reports the energy
consumed by the overall system, the average power dissipation and maximum
temperature for each component, etc. The results can be stored in JSON files,
CSV tables, or simply printed to the shell. hettime is highly configurable through
19 different flags in total. For example, the flags -c, -g, -f, and -s set the
sampling periods for the CPU (PAPI component rapl), GPU (PAPI component
nvml), FPGA (PAPI component maxeler), and the system (PAPI component
ipmi).
msmonitor is a Qt-based live monitoring tool plotting the most recent measure-
ments. msmonitor can display the measurement data in form of an array of
curves or as heat maps. These features are exemplary illustrated in Fig. 3. The
screenshot displays data taken while an arbitrary set of 15 tasks is concurrently
executed on CPU, GPU, and FPGA. The array of curves on the left side of Fig. 3
represent the current power dissipation of the three computing resources, while
the heat maps on the right side of Fig. 3 show device utilizations.
msmonitor cs is a server-client implementation of msmonitor for reducing prob-
ing effects on the measured server by transferring the GUI rendering to a client
connected via TCP/IP.

Ampehre: An Open Source Measurement Framework 79

Fig. 3. Power dissipation and utilization plotted by msmonitor while an arbitrary set
of 15 tasks are executed on CPU, GPU, and FPGA.

3 Example: Measuring Energy on CPU and GPU

We illustrate the interaction of the different layers of our framework, the operat-
ing system, and the vendor libraries on the example of measuring energy on the
Intel CPU and the Nvidia GPU. Figure 4 gives an overview over the measurement
data processing layers.

The energy measurement procedures for CPU and GPU are very different.
For the CPU, we read energy counters at two different points in time and the dif-
ference denotes the energy consumed during that period of time. Yet, we sample
the energy counters periodically to handle register overflows appropriately and
to be able to provide the user with power dissipation values. The GPU allows
us to only measure the power dissipation and not the consumed energy. Based
on the sampling interval Tnvml, set in step 2 of Table 1, we estimate the energy
EGPU consumed over a period of time Δt as shown in Eq. 1. Ampehre hides
the essentially different approaches for CPU and GPU to obtain the energy con-
sumption. Developers including Ampehre can thus use energy variables without
being required to know about the actual measuring procedures.

EGPU (t0,Δt) =
∫ t0+Δt

t0

p(t) dt ≈
N∑
j=1

p(tj) · Tnvml with N =
⌈
t0 + Δt

Tnvml

⌉
(1)

As shown in Fig. 4, the energy and power dissipation readings for CPU
and GPU are obtained from the compute elements using an OS driver and
a vendor-specific library, respectively. Intel CPUs based on Sandy Bridge or
newer microarchitectures implement the Running Average Power Limit (RAPL)
interface which is a set of Model-Specific Registers (MSR) to measure CPU
energy counters [12]. Xeon CPU energy counters can be derived for three power
domains, each one represented by a dedicated MSR: The Package power domain
refers to the entire die including cores, caches, and the memory controller. The
Power Plane 0 domain is a subset of the Package domain and considers only

80 A. Lösch et al.

Fig. 4. Interaction of the Ampehre tools, libraries and the Linux OS exemplary illus-
trated with energy and power measurements obtained from the CPU and GPU. The
abbreviations MS (measuring system) and MD (measurement data) are references to the
pointers used by the functions in Table 1.

the energy consumption of the cores as well as L1 and L2 caches. The DRAM
domain represents the energy consumption of the main memory. Linux provides
an MSR driver executing the RDMSR instruction to retrieve the values stored in
the MSRs. In contrast, for the GPU the function nvmlDeviceGetPowerUsage()
of the Nvidia Management Library (NVML) [11] provides the current power
dissipation in single device power domain.

The next layer is the PAPI library that fetches the data from the Linux
MSR driver and the Nvidia Management Library. Abstracting from the resource-
specific interfaces and measuring methods, the main advantage of PAPI is to
provide the function PAPI read() to the next layer in a component-independent
way. For the GPU, PAPI read() returns the latest power dissipation. For the
CPU, determining the energy value requires some computations such as adjust-
ing the energy counters by so-called power units that are also retrieved from
MSRs.

The Ampehre library continues data processing and provides comparable and
equally interpretable measurements to user applications, as shown in Fig. 4. To
this end, the Ampehre library employs several threads that periodically sample
the PAPI components by invocations of PAPI read() and similar functions.
Data processing in the library’s measuring system MS leads to two data fields
in the library’s measurement data MD with almost equal semantics for CPU and
GPU: The data fields cpu power cur and gpu power cur store the current power
dissipation of the resources and are always updated after the corresponding
timer has expired. Likewise, the data fields cpu egy accu and gpu egy accu

Ampehre: An Open Source Measurement Framework 81

continuously increase by the energy consumed since the last measurement has
been received. Together with the selected sampling periods for the CPU and
GPU, T rapl and T nvml, the current power dissipation and accumulated energy
values are available for further processing by user applications or, as shown in
Fig. 4, by the Ampehre live monitoring tools msmonitor and msmonitor cs or
by the Ampehre measuring tool hettime. User applications have full access to
MD whether or not MS is active.

4 Balancing Accuracy and Overhead

The selection of sampling periods involves a trade-off between accuracy of the
measurements and overhead on the system CPUs for running the measurement
system. Shorter sampling periods better approximate continuous signals and thus
increase the accuracy, but also result in higher CPU load. To quantify this trade-
off, we have conducted a series of measurements on our heterogeneous compute
node with the rapl, nvml, and maxeler components enabled in PAPI. Each
measurement has lasted for a period of 60 s on an idling system, i.e., except the
operating system no tasks have been executed. The sampling periods have been
varied between 10 ms and 100 ms with an increment of 10 ms. Each measurement
has been repeated 41 times and the results have been averaged.

Figure 5 shows the results and displays the average power dissipation and the
utilization, combined for both CPUs, as functions of the sampling period. As a
baseline, we have developed a minimal program which is just able to read the
CPU energy consumption and utilization without making use of the Ampehre
framework, i.e., Ampehre and PAPI libraries. This simple program has been
executed under (i) an entirely booted CentOS Linux (black curve) and (ii) a
Linux kernel executing BusyBox [13] (gray curve). The blue, red, and green
curves in Fig. 5 illustrate the impact of Ampehre when sampling the CPU, GPU,
and FPGA, respectively. In addition, the purple curve shows Ampehre’s impact
if all three components are enabled with identical sampling periods.

As expected, the results show that longer sampling periods lead to less over-
heads on the CPUs for both utilization and average power dissipation. For exam-
ple, when increasing the sampling period (purple curve) from 10 ms to 100 ms
the average power dissipation drops from 33.56 W to 16.66 W, and the CPU
utilization decreases from 13.29% to just 1.24%. Moreover, it can be seen that
higher sampling periods show results close to the baseline implementation exe-
cuted under CentOS. When comparing Ampehre with the minimal measurement
program executed under CentOS for sampling all three components, the average
power consumption drops from 17.57 W at a sampling period of 10 ms to 1.83 W
at 100 ms. Contrasting the two baselines, it becomes apparent that a fully booted
operating system leads to a distinct increase in power dissipation which varies
in the range of 4.24 W and 6.97 W between the baselines.

In a real use of Ampehre the heterogeneous components are likely to be
sampled at different periods, which makes the estimation of the CPU overheads
more involved. We have conducted a second series of measurements where we

82 A. Lösch et al.

10

15

20

25

30

35
P
ow

er
[W

]

10 20 30 40 50 60 70 80 90 100
Sampling Period [ms]

0

5

10

15

U
ti
liz
at
io
n
[%

]

CPU (rapl)
GPU (nvml)

FPGA (maxeler)
Kernel + CentOS

Kernel + BusyBox
CPU + GPU + FPGA

Fig. 5. Average power dissipation and utilization as well as their standard deviations
of both CPUs as functions of the sampling period. (Color figure online)

have varied the sampling periods for the three components independently, again
ranging from 10 ms to 100 ms with an increment of 10 ms. Overall, 1000 com-
binations of sampling periods have been evaluated. Then, we have filtered the
results with different thresholds on the CPU utilization and recorded the result-
ing combinations in a multi-dimensional space. Table 3 lists the achieved Pareto
frontiers for five different utilization thresholds, with their sampling periods and
the average power consumption. Thus, the sampling period combinations in this
table represent optimal selections, subject to guaranteed maximum CPU load
increases.

5 Availability and Extensibility of Ampehre

Ampehre is open source and freely available [9]. The framework has been devel-
oped to support research on heterogeneous computing. For example, in [14] novel
scheduling techniques featuring heterogeneous task migration are studied and
Ampehre measures the energy consumption of CPU, GPU, and FPGA dur-
ing the execution of a set of dynamically scheduled tasks. In [15], Ampehre is

Ampehre: An Open Source Measurement Framework 83

Table 3. Valid sampling period combinations for Ampehre taking utilization thresh-
olds between 1.5% and 10% into account. The measurements are performed on our
heterogeneous compute node. These data are collected while sampling all sensors avail-
able in the rapl (C), nvml (G), and maxeler (F) components. Furthermore, we show the
average power dissipation of the CPUs (P̄) for the listed sampling period combinations.

≤1.5% ≤5% ≤7% ≤10%

C G F P̄ C G F P̄ C G F P̄ C G F P̄ C G F P̄

ms ms ms W ms ms ms W ms ms ms W ms ms ms W ms ms ms W

50 60 100 18.7 10 10 50 29.5 100 10 30 25.4 10 10 30 30.3 10 10 20 31.8

70 30 100 18.2 10 20 40 28.7 40 100 20 26.3 10 20 20 31.0 20 40 10 33.0

50 70 90 18.1 40 10 40 25.6 60 70 20 26.3 30 10 20 28.4 30 30 10 32.6

80 30 90 18.8 10 30 30 30.8 70 50 20 26.8 80 20 10 32.6

70 40 70 19.6 20 20 30 25.7 80 40 20 25.6

70 90 60 18.9

instrumental for developing energy-centric schedulers by quantifying the energy
consumption of multi-resource binaries on a heterogeneous compute node with
idling resources. Since easy extensibility and portability to other servers are
major design objective of the framework, users can extend Ampehre to support
additional resources and sensors. Basically, the following three major modifica-
tions have to be realized to add a new sensor to Ampehre:

1. Extend the PAPI library. First, an existing PAPI component must be
extended or a new one must be created, according to the official PAPI docu-
mentation [7]. Hereby, developers implement the abstract PAPI API and hide
resource-specific details. This step allows for retrieving the new component-
specific measurements by invoking PAPI read().

2. Configure the Ampehre library. Depending on the new sensor, the
Ampehre library must be configured to properly process the raw data read
from the PAPI library. This can be done by simply modifying a configuration
file.

3. Enable measurements. Add the event name for the new sensor to the
event list stored in a file. PAPI-internally, sensors are represented as events.
Thus, each sensor must be assigned an event name. Data is read from sensors
and processed only if their event names appear in the event list.

6 Conclusion

In this paper we have presented Ampehre, an open source measurement frame-
work for heterogeneous compute nodes. Ampehre is based on the widely-used
PAPI library, which greatly facilitates its adaptation to other resources and
sensors. Ampehre unifies the measuring procedures and interpretation of gained
data across different resource types such as CPU, CPU and FPGA, which makes
it easily usable. An important issue in any measurement framework are probing

84 A. Lösch et al.

effects. We have quantified the overhead of Ampehre and determined sets of rea-
sonable combination of sampling periods for the different resources types, such
that the CPU load imposed by the framework can be limited.

Acknowledgement. This work has been partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center 901 “On-The-Fly
Computing”.

References

1. Linux Kernel: perf: Linux Profiling with Performance Counters (2017). https://
perf.wiki.kernel.org/index.php/Main Page

2. Eulisse, G., Tuura, L.: IgProf, the Ignominous Profiler (2013). http://igprof.org/
3. Roehl, T.: Performance Monitoring and Benchmarking Suite (2017). https://

github.com/RRZE-HPC/likwid/
4. Intel Corporation: Intel VTune Amplifier (2017). https://software.intel.com/en-

us/intel-vtune-amplifier-xe
5. Nvidia Corporation: Nvidia Nsight (2017). http://www.nvidia.com/object/nsight.

html
6. Khan, K.N., Nybäck, F., Ou, Z., Nurminen, J.K., Niemi, T., Eulisse, G., Elmer,

P., Abdurachmanov, D.: Energy profiling using IgProf. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May 2015

7. Innovative Computing Laboratory, University of Tennessee: Performance Applica-
tion Programming Interface (PAPI) (2016). http://icl.utk.edu/papi/

8. McCraw, H., Ralph, J., Danalis, A., Dongarra, J.: Power monitoring with PAPI
for extreme scale architectures and dataflow-based programming models. In: 2014
IEEE International Conference on Cluster Computing (CLUSTER), September
2014

9. Lösch, A., Knorr, C., El-Ali, A., Wiens, A.: Ampehre: Accurately Measuring Power
and Energy for Heterogeneous Resource Environments (2017). http://ampehre.
uni-paderborn.de/

10. Intel Corporation: Intelligent Platform Management Interface (IPMI), IPMI
Technical Resources (2015). https://www.intel.com/content/www/us/en/servers/
ipmi/ipmi-technical-resources.html

11. Nvidia Corporation: Nvidia Management Library (NVML) (2017). https://
developer.nvidia.com/nvidia-management-library-nvml/

12. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer Manuals,
October 2017. https://software.intel.com/en-us/articles/intel-sdm/

13. Vlasenko, D.: BusyBox: The Swiss Army Knife of Embedded Linux (2017). https://
busybox.net/

14. Lösch, A., Beisel, T., Kenter, T., Plessl, C., Platzner, M.: Performance-centric
scheduling with task migration for a heterogeneous compute node in the data cen-
ter. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 912–917, March 2016

15. Lösch, A., Platzner, M.: reMinMin: a novel static energy-centric list scheduling
approach based on real measurements. In: 2017 IEEE 28th International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP), pp.
149–154, July 2017

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://igprof.org/
https://github.com/RRZE-HPC/likwid/
https://github.com/RRZE-HPC/likwid/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.nvidia.com/object/nsight.html
http://www.nvidia.com/object/nsight.html
http://icl.utk.edu/papi/
http://ampehre.uni-paderborn.de/
http://ampehre.uni-paderborn.de/
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-technical-resources.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-technical-resources.html
https://developer.nvidia.com/nvidia-management-library-nvml/
https://developer.nvidia.com/nvidia-management-library-nvml/
https://software.intel.com/en-us/articles/intel-sdm/
https://busybox.net/
https://busybox.net/

A Hybrid Approach for Runtime Analysis
Using a Cycle and Instruction Accurate

Model

Sebastian Rachuj(B), Christian Herglotz, Marc Reichenbach,
André Kaup, and Dietmar Fey

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
{sebastian.rachuj,christian.herglotz,marc.reichenbach,

andre.kaup,dietmar.fey}@fau.de

Abstract. Developing a new microchip for an embedded application
these days means that the engineer has to take many different design
options into account. Evaluating the different processor cores regarding
their runtime for a certain algorithm requires simulation tools which
make emulation feasible. They come in two flavors: Cycle and instruction
accurate simulation. The first one offers a high accuracy regarding the
estimated time but is very slow. The second one offers a high simulation
speed but only provides a very imprecise estimation of the real runtime.
This paper shows a new approach that allows to combine these kinds of
simulation to increase the exactness of the estimated time while limiting
the additionally required simulation time.

1 Introduction

Hardware platforms are rising in complexity and have an increasing amount
of configurable parts. For example, a developer must decide which processors
to integrate into the system. There are a lot of different architectures which
are available with different characteristics. ARM offers the Cortex-R series for
embedded devices which are more predictable but comparably slow and the
Cortex-A series for entertainment devices which achieve a much higher perfor-
mance but sacrifice the simplicity required for statically determining execution
time. Additionally, the single models of the series have different characteristics
like in-order (e.g. Cortex-A 53) or out-of-order execution (e.g. Cortex-A 57).
Apart from ARM there are also other instruction set architectures like MIPS or
PowerPC that might be suitable. Before manufacturing the hardware, the plat-
form architect will evaluate its algorithms on a simulation framework providing
certain parameters like performance and energy consumption which she can use
to decide which core and system layout to deploy.

Simulation can be done on different levels. The most accurate but also the
slowest method is to use tools for Application Specific Integrated Circuit (ASIC)
validation. For a brief evaluation, it is not necessary to have a completely exact
result on the electrical level. Thus, a simulation approach implementing the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 85–96, 2018.
https://doi.org/10.1007/978-3-319-77610-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_7&domain=pdf

86 S. Rachuj et al.

architectures in a high level language like SystemC is sensible since the exe-
cution speed of the target software is increased. The second level offers a cycle
accurate simulation of the hardware. Cycle accurate means that the pipeline and
superscalar architecture is modelled to behave like the real hardware regarding
the cycle count per instruction. In comparison to instruction accurate emulation
which just executes an instruction each cycle without considering the actual
hardware layout, this approach is still very slow. However, the instruction accu-
rate emulation misses the architectural characteristics. For simple deterministic
in-order architectures, this method might suffice. But complex out-of-order pro-
cessor designs are usually much faster as they can execute multiple instructions
per cycle which makes the results of an instruction accurate simulation insuffi-
cient for the assessment of the processor.

Combining these two kinds of CPU simulation can result in improved accu-
racy while avoiding an enormous rise in simulation time in comparison to only
using the instruction or cycle accurate model. For this paper such a methodology
was developed based on the observation that most programs mainly consist of
loops. Not each of the loops’ iteration must be simulated in great detail. After a
few runs of the loop body, the pipeline is filled with only the instruction stream of
the loop. Hence, not much deviation between further iterations is expected. This
allows to extrapolate the results of few exactly analyzed iterations to the many
inaccurately simulated ones. In this work, gem5 [2] is used as it already provides
a cycle accurate and an instruction accurate model which can be exchanged as
required.

While this method is capable of increasing the accuracy with only a mod-
erate growth of the simulation time, the real benefits depend on the software
that is analyzed. As example applications a radar processing algorithm often
used in the automotive industry and the High Efficiency Video Codec decoding
implementation known from entertainment products are assessed.

In the following section some related works are presented which try to solve
the same issue. Afterwards, the methodology is presented in detail. Subsequently,
an evaluation using the aforementioned algorithms is shown. For this, a custom
metric was created that uses the default gem5 models as a reference. Finally, a
conclusion is drawn.

2 Related Work

There are different approaches in current research to increase the simulation
speed of virtual prototyping tools without sacrificing the accuracy. Since the
amount of processor cores per SoC steadily rises, a sequential simulation cannot
keep up with the new hardware. Therefore, simulators were created which also
parallelize the emulation of the multi-core platforms. Manifold [14] is an example
for a simulation framework that was exactly designed for this purpose of creating
a multi-core system. It shows tremendous speedups of up to 12 times the speed of
the sequential emulation of a 64-core platform. The next step is to distribute the
threads of the simulation tool across multiple host computers which results in

A Hybrid Approach for Runtime Analysis 87

distributed simulation introducing new challenges. An overview of the different
issues and methods of parallel and distributed discrete event simulation is given
in [7]. While these approaches are the future solutions for handling the systems
with many cores, they don’t optimize a single complex core very well. This issue
is addressed in this paper.

The Sniper [3] simulator is a tool increasing the exactness of the instruction
accurate simulation (called one-IPC (instruction per cycle) simulation) with-
out introducing the overhead of a cycle accurate simulator. It separates the
instruction stream into intervals which are analyzed regarding their architec-
tural behavior and stored in an execution window during the emulation. This
allows to model time penalties of real hardware occurring because of data depen-
dencies between instructions or cache misses. In their paper they also suggested
to parallelize the execution of the simulation. They achieve an average absolute
error of less than 23.8% for the SPLASH-2 benchmark but have a slow-down of
2–3 times in comparison to the one-IPC simulation. The work presented in this
paper is intended as an alternative way to achieve similar benefits like Sniper.

Switching the processor models of gem5 like presented in this work was done
before by Hsieh et al. [9]. They use this approach to fast-forward to their region
of interest. As soon as the inaccurate (they call it “in-order”) model reaches the
point which has to be investigated, the accurate out-of-order model is switched
in. How this region is found and how they keep track of the instruction flow is
not explained. Additionally, since this work was not their main topic, no further
comparisons of the accuracy achieved for the simulation time required for the full
program was made. The mechanics of gem5 to exchange certain processor models
was also used to emulate dynamic voltage and frequency scaling. Haririan et al.
implemented this feature for gem5 [8]. However, their main focus for evaluation
lied on the accuracy of the method. Thus, they did not try to accelerate their
work or to compare it regarding its simulation speed.

This section shows that there are already many approaches to improve the
efficiency of CPU simulation. But to the knowledge of the authors, no evaluations
integrating both dimensions, the simulation time and the accuracy, were made.
Hence, the newly proposed methodology is evaluated in a way that includes both
metrics. For the future, it is expected that some of the related work presented
here might also benefit from the proposed methodology.

3 Proposed Methodology

As mentioned in the introduction, the methodology is intended to exploit the
fact that programs mostly consist of loops which are responsible for the biggest
proportion of the required runtime. Thereby, saving simulation time in loops will
also result in a greatly decreased total simulation time. This is true all the more
since accurate simulators take a multiple of the time for each virtually executed
instruction the real hardware needs. Software without many loops is expected
to be short enough for a fully cycle accurate simulation and is not required to
be executed with the aid of the presented approach.

88 S. Rachuj et al.

Therefore, an important part is the analysis of the program to find the loops.
This requires the creation of a control flow graph (CFG). After the information
is acquired, an augmented simulator based on gem5 is run to perform the actual
runtime estimation. The flow of the methodology is depicted in Fig. 1 and is
elaborated in the following sections. The reference implementation created for
this paper is currently only able to analyze and run programs that were compiled
for the ARM AArch64 architecture. However, the methodology itself is agnostic
to the architecture and can be adapted for instruction set architectures with a
fixed instruction size. Variable instruction lengths require further customizations.

Fig. 1. The flow of the methodology starting with the binary file to the runtime
estimation

3.1 Analyzing the Program

Since the key concept of the approach requires to know the addresses of the
loops within the binary, the first action is to investigate the instruction stream
and to create a CFG consisting of basic blocks. A basic block is defined by
Cooper as a maximal length sequence of instructions with only one entry at the
beginning and one exit at the end [4]. It allows a more abstract view on the
control flow and is used in compilers to analyze the program. There are two
possibilities to create a CFG. The first one is to perform a static analysis of
the binary file. Reverse engineering tools often provide this functionality and
offer a library to use within other software. For the means of this paper, this
would suffice. However, the implementation created here uses another method
to build a CFG that also delivers information about the actual control flow
during the execution. It takes the instruction trace of a fast functional simulation
for this purpose. Thereby, the loops and basic blocks can be annotated by the
amount of times they were executed. Additionally, dead code is not taken into
account. With this knowledge, future enhancements of this methodology might
for example use different amounts of accurate iterations for each loop depending
on the information gathered from the first run. As of now, a plain CFG extracted
from the program under test is enough.

As depicted in Fig. 1, the next step is to find the loops within the CFG. For
this, the dominance relationship between the basic blocks inside a function is
required. If a node A in a graph dominates another node B, it means that all
paths that reach B starting from the function entry block also must contain A.
This relationship can be extracted by a simple textbook algorithm that is fast

A Hybrid Approach for Runtime Analysis 89

enough in most occasions [5]. A loop consists of basic blocks in between a loop
entry block dominating all instructions in the loop body and the backward edge
returning to the loop entry. Irreducible loops without an unambiguous head are
not taken into account within this work. Since functions called within loops are
difficult to handle, a simplification is introduced. A set called “considered blocks”
is created that contains all basic blocks of the loop body. Additionally, all called
functions are visited and their basic blocks including the basic blocks of other
functions called within them are inserted recursively. The set is used to find
out if a certain loop is already left or still executed but currently calls another
function. While this approach is simple to determine the basic control flow of a
program, sophisticated cases containing complex call hierarchies within a loop
are not satisfactorily handled. Furthermore, the start and end addresses of all
basic blocks are saved to allow the identification of the currently executed block
by using the current program counter of the simulated architecture. Additional
information that can be annotated to the nodes of the CFG is the amount of
executions of a basic block in case an instruction stream was analyzed.

Another simplification that is implemented into the presented system is that
only the outer loops are taken into account. This is sensible since all iterations
of the inner loops are run during one iteration of an outer loop. However, this
is not true for inner loops with different runtimes during each iteration of the
outer loop. Thus, future improvements of this methodology might need to also
take inner loops into account.

3.2 Running the Simulation

After the analysis step finished gathering the information needed from the pro-
gram, the simulator can be started. It is written in SystemC and connected to
gem5 using the works of Menard et al. [11] to connect TLM (Transaction Level
Modeling) compatible modules. This allows more flexibility with custom periph-
ery that might be used in conjunction with other processor simulators. Thus in
the future, the whole memory hierarchy and some more complex devices can
be exchanged with more accurate or faster models. As a result, not only the
microarchitecture but also the connected parts of a platform can be taken into
account during loop executions. Most simulation models support connecting to
SystemC or even TLM compatible modules.

For the simulation, the O3 model and the Timing Simple (TS) model of gem5
are used. O3 is an implementation of a complex out-of-order pipeline originally
based on the Alpha CPUs. It is cycle accurate and as such the reference for
the highest possible accuracy and the slowest simulation speed. TS implements
an instruction accurate processor model that typifies the most inaccurate but
fastest possible simulation.

First attempts showed that it is insignificant whether to use the O3 or the
TS model outside of loops. The simulation time and the estimated time are only
slightly affected. This confirms our assumption that programs remain most of
their time within loops. At the beginning, the implemented simulation starts

90 S. Rachuj et al.

with an active O3 model to reduce the overhead of switching from TS to O3
when entering a loop.

Keeping track of the currently executed instruction is done by using the
tracing functionality of gem5. It logs the committed instructions in the correct
order. With the help of the information gathered during the analysis of the
program, the basic block of each finished instruction can be found. Whenever
the next basic block is reached, the simulation host updates some statistics of the
left basic block like the number of its executions and the required estimated time.
The latter is tracked for the simulation of each model separately. Additionally,
it is checked whether the basic block is the head of an outer loop or, in case a
loop was already entered, if the block is still part of the loop. According to the
results of these checks, the model is switched accordingly.

The default tracing implementation of gem5 does not log instructions that
result in an exception. This behavior is not suitable for the methodology since
the knowledge of where the exception occurred is required. Hence, when only
relying on the tracing implementation, it is difficult to track which instruction
is responsible for the fault. Adding support for tracing these instructions can be
achieved by some minor adjustments preventing gem5 from removing the created
log data structures in the case of an exception.

For each committed instruction, gem5 writes a line to a C++ stream which
can be intercepted by providing an output stream with a custom stream buffer.
Parsing the lines allows the extraction of the program counter and the corre-
sponding disassembled instruction. This information is used as described above
to find the basic block belonging to the logged line and to keep the statistics
up to date.

As soon as a head block of a loop reaches a manually configurable number of
executions, the O3 model is replaced by the TS model. This increases the speed
of the remaining iterations significantly. When the loop is left, the O3 model
takes the simulation over again. In case the loop is executed again (e.g. due to
being inside a function called multiple times from sequential code), the models
are switched directly at the beginning since enough runtime information was
already gathered at the first time.

Changing the model from O3 to TS and backwards is based on functionality
of gem5 that was initially intended for checkpointing. To exchange the models,
a so-called “drain” can be requested. This leads to gem5 notifying all of its
components to come to a consistent state that can safely be serialized, e.g. for
writing it into a file as it is done by the checkpointing implementation. Until
all components are drained, some further cycles must be emulated since the
processor needs to commit all instructions still residing in the pipeline. When
the process is finished, the CPU models are exchanged with the help of functions
already built into gem5 and the simulation is continued. Enabling a switched
out model again works in the same way just with interchanged roles. Due to
the latency required by the drain implementation, it is not possible to exchange
the simulators exactly at the beginning of a new iteration. Predicting when the
draining is completed is also not practicable since the number of cycles depend

A Hybrid Approach for Runtime Analysis 91

on the current state of the pipeline. That is why an execution of a basic block
is only considered completely accurate, if the O3 model was active from the
beginning to the end of the block. Otherwise it is considered inaccurate and not
used for the runtime estimation.

After the simulation has come to an end, a correcting calculation of the
estimated runtime using the statistics gathered during the run is performed.
The following variables for each basic block k are available:

nC,k Amount of times basic block k was reached during the simulation using
the O3 (cycle accurate) model.

nI,k Amount of times basic block k was reached during the simulation using the
TS (instruction accurate) model.

tC,k Cumulative simulated time of basic block k during the simulation using the
O3 (cycle accurate) model.

tI,k Cumulative simulated time of basic block k during the simulation using the
TS (instruction accurate) model.

Equation (1) shows the computation used for estimating the global estimated
runtime t from these variables. Basic blocks never executed in O3 mode are
handled in the else case. Their runtime estimation is equivalent to the instruction
accurate simulation. For the other basic blocks the estimated time for one cycle
accurate iteration is taken and multiplied by the number of times the block was
reached during the run.

t =
∑

k

{
tC,k

nC,k
· (nC,k + nI,k) if nC,k > 0

tI,k else
(1)

By tracking the statistics for each basic block with the help of the tracing
functionality and the previously gathered control flow information, a change in
the runtime behavior of the following loop iterations is correctly respected by the
estimation. However, this is only true if there is no or only a similar fluctuation
during the inaccurate execution. This is the main weakness of the methodology.
In the future, implementing a mechanics for finding great discrepancies during
a loop can allow switching back to the accurate model to solve this issue.

4 Evaluation

To assess the introduced methodology, two real world algorithms were chosen.
The first one consists of an algorithm for Frequency Modulated Continuous Wave
(FMCW) radars which are often used within vehicles to process the raw data
of the radar antennas [15]. With the help of multiple Fast Fourier Transfor-
mations (FFTs), it is possible to extract range and velocity information from
the delay and the Doppler shift of the signal [16]. A Constant False Alarm
Rate (CFAR) algorithm identifies single targets in the output of the FFTs [12].
When using an array of antennas, the direction of the targets can also be deter-
mined [1]. The procedure is the same as required for the velocity and range and

92 S. Rachuj et al.

also includes multiple FFTs and the CFAR approach. For the purpose of eval-
uating the methodology, an example situation was generated. Its recordings are
used for every run of the algorithm.

The second algorithm used for the evaluation of the reference implementation
of this methodology is a decoder of the High Efficiency Video Codec (HEVC, also
known as H.265) [13]. As a showcase, 30 frames of the akiyo sequence encoded
with FFmpeg [6] are decoded. The HEVC decoder [10] is chosen because the
complexity of many loops depend on the size of a coded block such that execution
times can differ significantly. For example, an inter coded block can have a size of
8×8 to up to 64×64 pixels. Hence, the complexity for predicting the large block
is 64 times higher. HEVC is selected as an example to show that the proposed
approach can also cope with loops of variable complexity.

4.1 Metric

A quantitative comparison with other approaches that increase the accuracy of
instruction accurate models or decrease the simulation runtime of cycle accu-
rate models is not easy. There is no well-known metric that takes the required
simulation time as well as the resulting exactness into account. They are most
of the time viewed as independent dimensions. For this reason, a new unit is
introduced that determines “how much accuracy for each time unit” is achieved.
To also allow comparisons of multiple algorithms which are run on a simulated
architecture using the presented methodology, the accuracy and simulation time
themselves have to be normalized. This enables to compare different approaches,
e.g. the ones presented in the related work section, regarding their improvement
over the standard approaches with respect to both units. In this paper this app-
roach is used to show how different amounts of accurate iterations for each loop
change the quality of the methodology.

To implement the metric, the required simulation time and error of the TS
and O3 model are defined as reference points. The O3 model represents the
accurate but slow simulator while the TS model is taken as the fast but inaccu-
rate one. We define the exactness of the TS model to one since it is the worst
case scenario. In contrast, the O3 model has an exactness of two. The reference
implementation of the proposed methodology will have values between these two
numbers. Consequently, the accuracy function en is defined as shown in Eq. (2).
ts,x denotes the estimated time for which the exactness is calculated. ts,O3 is the
estimated time of the O3 model and ts,TS is the estimated time the TS model
provides. The absolute error in comparison to the O3 model can be found in
the numerator of the fraction while the absolute error of the TS model is in the
denominator. To have the range between one and two, the resulting relative error
of the fraction is deducted from two. For the TS model the accuracy, according
to the term, is one while for the O3 model it is two.

en (ts,x) = 2 − |ts,x − ts,O3|
|ts,TS − ts,O3| (2)

A Hybrid Approach for Runtime Analysis 93

In a similar way, the simulation time is normalized and defined. The function
tn is given in Eq. (3). tx is the required simulation time for which the normalized
simulation time is computed. tTS is the simulation time needed by the TS model
and tO3 is the simulation time the O3 model needs for a full simulation run. In
the numerator, the absolute deviation from the TS model is determined and set
in relation to the deviation of the O3 model from the TS model. The one is
added to have the resulting values within the expected range of one (simulation
time of TS model) to two (simulation time of O3 model).

tn (tx) = 1 +
|tx − tTS |
|tO3 − tTS | (3)

The quotient an of the two normalized values (shown in (4)) yields a synthetic
number that can be used for comparisons of runs with different configurations.
For the reference models, it is exactly one. Approaches that achieve a higher
number have a better accuracy per simulation time ratio which means that the
target was reached. On the other hand, values smaller than one mean that the
approach performs worse with regard to the accuracy per time in comparison
to the reference models. However, since the accuracy or the time itself might be
increased, the methodology might still be beneficial. Different situations of the
introduced metric are depicted in Fig. 2. Besides the angle bisecting line that
shows where the values are the same as achieved by the reference models, it
also shows two examples of lines where the results are better or worse. If an
yields two, a perfect solution is obtained because the accuracy of the O3 model
is reached with a simulation time that is equal to the TS model. This happens
within Fig. 2 at the point where the line annotated with “2” has a normalized
accuracy of two with a normalized simulation time of one.

an (ts,x, tx) =
en (ts,x)
tn (tx)

(4)

The presented metric is used to compare the runs of the different algorithms
using different configuration options against the TS and O3 model. The results
are given in the following section.

4.2 Results

While the estimated time is deterministic for each run using the same config-
uration options, the required simulation time is variable due to running the
simulation on a computer with a preemptive operating system. Therefore, each
configuration was measured ten times on the same computer with no additional
load and the average simulation time was calculated.

The raw data used for calculating the metric can be seen in Figs. 4 and 5.
The latter shows the simulation time required for each iteration while the first
one depicts the estimated time. As a reference, the TS and O3 values are also
drawn. The plots confirm the previously stated behavior differences. While the
estimated runtime of the radar algorithm converges fast and does not change

94 S. Rachuj et al.

Fig. 2. Plot with the two nor-
malized values used for the
axes that shows when a quo-
tient of the values is consid-
ered better or worse than the
TS and O3 reference

Fig. 3. The value for the metric of both real
world algorithms depending on the amount of
accurately executed iterations. The reference
value is depicted in gray.

much from 500 accurately analyzed iterations upwards, the HEVC algorithm
has two points where the estimated runtime decreases tremendously. On the
other hand, the simulation time increases in this range while the radar has only
small fluctuations which can be traced back to the behavior of the host operating
system. It has to be remarked that the estimated time of radar algorithm further
increases when using more accurate iterations. However, this means a number of
several tens of thousands and is not shown in the figures. The simulation time
only rises moderately in this range. For comparison, the total iteration count of
the longest loop within our example radar scenario is around 740,000 meaning
that only a very small part of the actual runtime was analyzed accurately.

Figure 3 shows the final values of the metric presented in the previous section.
The numbers of the different algorithms depending on the number of iterations a
loop was executed accurately before switching to the instruction accurate model
are depicted. For the radar algorithm the new methodology converges really fast,
since it already reaches its maximal accuracy per time with just 500 accurate
iterations of the outer-most loops. On the other hand, for the HEVC algorithm,
the technique performs worse than the O3 and TS model when only running less
than 3000 iterations accurately. However, with 3000 exact iterations, the value
rises above the reference. This can be explained by certain loops within the
HEVC which have a different runtime characteristic above a certain threshold.
When executing iteration 2657 the loop exhibits a greater processing time than
all iterations before which results in a dramatic increase in estimated accuracy.
Cases like this having a loop displaying a huge difference in runtime between
two iterations are only correctly analysable with the methodology when a more
detailed examination of the CFG is performed. Due to the rising simulation time
when emulating the loop iterations with the greater runtime, the metric results
get worse again and approach the reference while still staying slightly above.
The loop having the greatest iteration count of the HEVC algorithm spins is
executed more than 114,000 times.

A Hybrid Approach for Runtime Analysis 95

Fig. 4. The estimated times of the
algorithms depending on the amount of
accurately executed iterations.

Fig. 5. The measured simulation time of
the algorithms depending on the amount
of accurately executed iterations.

With these results, one can see that the benefits of the methodology is depen-
dent on the algorithm and the configuration of the simulation. The radar pro-
cessing consists mostly of similar loops that have the same behavior during each
iteration. Hence, its value in the introduced metric shows nice results. In con-
trast, the HEVC has very heterogeneous loop behaviors which make it difficult to
get benefits from the methodology without a more detailed control flow analysis.
Such an addition could be integrated in the future to achieve a high accuracy
with less accurate iterations by a more refined selection of the accurately exe-
cuted iterations of a loop.

5 Conclusion

In this paper, a new methodology for estimating the runtime of a program with
the help of simulation is shown. It tries to reach the accuracy of a cycle accurate
simulator while still providing the speed of an instruction accurate emulation.
For this, loops are only partially run with the cycle accurate model of the gem5
simulator and the estimated runtime of the remaining loops is extrapolated from
the results of the first few. Evaluating a radar algorithm and the HEVC using
this new approach shows that simulation based runtime analysis can benefit from
the methodology. However, it strongly depends on the behavior of the algorithm.
For better results, a more detailed control flow analysis might be required in the
future. Though, the first measurements show that the introduced technique is
promising.

Acknowledgement. This work is supported by the Bavarian Research Foundation
(BFS) as part of their research project “FORMUS3IC”.

References

1. Adve, R.: Direction of arrival estimation (2013)
2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A.,

Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput.
Archit. News 39(2), 1–7 (2011)

96 S. Rachuj et al.

3. Carlson, T.E., Heirmant, W., Eeckhout, L.: Sniper: exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation. In: 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12, November 2011

4. Cooper, K., Torczon, L.: Engineering a Compiler, 2nd edn. Elsevier, Amsterdam
(2012)

5. Cooper, K.D., Harvey, T.J., Kennedy, K.: A simple, fast dominance algorithm.
Softw. Pract. Exp. 4(1–10), 1–8 (2001)

6. FFmpeg (2017). http://ffmpeg.org/. Accessed 10 2017
7. Fujimoto, R.: Parallel and distributed simulation. In: Proceedings of the 2015 Win-

ter Simulation Conference, WSC 2015, pp. 45–59. IEEE Press, Piscataway (2015)
8. Haririan, P., Garcia-Ortiz, A.: Non-intrusive DVFS emulation in gem5 with appli-

cation to self-aware architectures. In: 2014 9th International Symposium on Recon-
figurable and Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–7, May
2014

9. Hsieh, M., Pedretti, K., Meng, J., Coskun, A., Levenhagen, M., Rodrigues, A.:
SST + gem5 = a scalable simulation infrastructure for high performance comput-
ing. In: Proceedings of the 5th International ICST Conference on Simulation Tools
and Techniques, SIMUTOOLS 2012, pp. 196–201. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels
(2012)

10. Joint Collaborative Team on Video Coding: HEVC test model reference software
(HM). https://hevc.hhi.fraunhofer.de/, https://hevc.hhi.fraunhofer.de/

11. Menard, C., Jung, M., Castrillon, J., Wehn, N.: System simulation with gem5
and systemC: the keystone for full interoperability. In: Proceedings of the IEEE
International Conference on Embedded Computer Systems Architectures Modeling
and Simulation (SAMOS). IEEE, July 2017

12. Rohling, H.: Radar CFAR thresholding in clutter and multiple target situations.
IEEE Trans. Aerosp. Electron. Syst. AES 19(4), 608–621 (1983)

13. Sullivan, G., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency
video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12),
1649–1668 (2012)

14. Wang, J., Beu, J., Bheda, R., Conte, T., Dong, Z., Kersey, C., Rasquinha, M.,
Riley, G., Song, W., Xiao, H., Xu, P., Yalamanchili, S.: Manifold: a parallel simu-
lation framework for multicore systems. In: 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 106–115, March
2014

15. Wenger, J.: Automotive radar - status and perspectives. In: IEEE Compound Semi-
conductor Integrated Circuit Symposium, CSIC 2005, p. 4, October 2005

16. Winkler, V.: Range doppler detection for automotive FMCW radars. In: 2007
European Microwave Conference, pp. 1445–1448, October 2007

http://ffmpeg.org/
https://hevc.hhi.fraunhofer.de/
https://hevc.hhi.fraunhofer.de/

On-chip and Off-chip Networks

A CAM-Free Exascalable HPC Router
for Low-Energy Communications

Caroline Concatto(B), Jose A. Pascual, Javier Navaridas, Joshua Lant,
Andrew Attwood, Mikel Lujan, and John Goodacre

School of Computer Science, University of Manchester, Manchester, UK
caroline.concatto@manchester.ac.uk

Abstract. Power consumption is the main hurdle in the race for design-
ing Exascale-capable computing systems which would require deploying
millions of computing elements. While this problem is being addressed by
designing increasingly more power-efficient processing subsystems, little
effort has been put on reducing the power consumption of the intercon-
nection network. This is precisely the objective of this work, in which
we study the benefits, in terms of both area and power, of avoiding
costly and power-hungry CAM-based routing tables deep-rooted in all
current networking technologies. We present our custom-made, FPGA-
based router based on a simple, arithmetic routing engine which is shown
to be much more power- and area-efficient than even a relatively small
2K-entry routing table which requires as much area and one order of
magnitude more power than our router.

1 Introduction

Exascale computing is the next challenge for the supercomputing community
aiming to design systems capable of delivering Exaflops (1018 floating point oper-
ations per second). To achieve these huge computing capabilities, systems will
require millions of interconnected computing elements to execute massive paral-
lel applications. Traditionally these were High Performance Computing (HPC)
applications where the computation:communication ratio was heavily biased
towards the former. However, the wider availability of increasingly large comput-
ing facilities and the new paradigms associated to the ubiquitous digital economy
have favored the emergence of new data-oriented applications arising from the
massive amounts of scientific- or business-oriented data that are being gener-
ated. These new application domains (e.g. MapReduce [9], graph-analytics [7] or
new HPC database systems such as MonetDB [21]) impose completely different
needs to the computing systems (and specially to the interconnection and I/O
subsystems). In order to suit the necessities of these new kind of data-intensive
applications, new architectures and platforms are being developed, such as our

J. Goodacre—This work was funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 671553.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 99–111, 2018.
https://doi.org/10.1007/978-3-319-77610-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_8&domain=pdf

100 C. Concatto et al.

novel, custom-made architecture, ExaNeSt [14]. In such systems the Interconnec-
tion Network (IN) is crucial to ensure performance, mainly because it needs to
support extreme levels of parallelism with applications using tens of thousands of
nodes with any latency or bandwidth bottlenecks translating into severe penal-
ties to execution time.

One of the main limitations for the scalability of HPC (and datacentre) facili-
ties is power consumption. The largest current systems based on traditional HPC
processors are over one order of magnitude1 away from Exascale but already
require a large, dedicated power station to supply electricity to the system. If
we tried to scale computing systems just by putting more components together
without changing the architectures or paradigms, we will end up requiring tens
of power stations, just to power the system, which is obviously unattainable.
Some steps towards reducing power have been taken in the computing subsys-
tems by using ARM processors [4] or accelerators (e.g. GPGPU or FPGAs) that
offer high FLOPs/Watt ratios. However, improving the efficiency of other sub-
systems has been typically ignored. For instance, the network can account for
over 10% of the total power during peak utilization and up to 50% when the
system is idle [1]. Other authors mention more conservative, but still significant
power breakdowns in the range 10–20% [13]. This large share of the power bill
of such systems motivates our search for more power-efficient IN designs.

In this regards, we notice that most networking technologies, e.g., Infiniband
or 10 Gbps/100 Gbps Ethernet, rely on huge routing tables which are typically
implemented as content addressable memories (CAMs). CAMs are an integral
part of the design and, indeed, tend to be much bigger than the router logic
itself (i.e. buffers, crossbar, flow control mechanisms, etc.). This is because tens
of thousands of entries need to be stored to be able to reach all the nodes of the
system [22]. In addition, routing tables create other scalability issues. First, as
the size of the system increases, the size of the tables (number of entries) needs
to grow accordingly. Furthermore, given that routing tables have information
distributed across the whole system, they are quite sensitive to routing inconsis-
tencies and, obviously, consistency mechanisms are in themselves another limit
to scalability. All the reasons above motivate our design where we get rid of
routing tables to achieve substantial savings in terms of area and power foot-
print. Our FPGA-based router relies on simple arithmetic routing instead. For
the purpose of this work we have considered common topologies (fattree [18],
dragonfly [16]) but other topologies are possible. Our experiments measure area
and power consumption for varying number of ports and CAM entries. Results
show that routing tables are not only prohibitive in terms of area, since a rela-
tively small CAM uses more area than a 16-port router, but also that they can
consume the whole power allowance of the FPGA.

1 See www.top500.org.

www.top500.org

A CAM-Free Exascalable HPC Router for Low-Energy Communications 101

2 Related Work

One of the first steps towards using FPGA for networking was the NetFPGA [25]
project which provides software and hardware infrastructure for rapid prototyp-
ing of open-source high-speed networking platforms. NetFPGA platform enables
to modify parts of it and compare with other implementations. However, there
are many differences between NetFPGA and our home-made router. First of
all, NetFPGA focuses on IP networks and, thus, relies on routing tables, which
as explained we want to avoid. Moreover, IP networking has many overheads
that dismiss it as a good infrastructure for HPC networks due to inadequate
throughput and latency. Finally, the NetFPGA platform has many features that
consume lots of area and power but are not required in the context of ExaNeSt.

While arithmetic routing per se is not a new idea, its use in recent years has
been restricted to cube-like topologies such as the ones in the BlueGene family
of supercomputers [6] or the TOFU interconnect [2]. To our knowledge, flexi-
ble architectures relying on arithmetic routing, but capable of being arranged
into different topologies just by reconfiguring the firmware (to update the rout-
ing logic) such as the one we introduce here have never been proposed before.
Arithmetic routing is commonly used in SW to fill the routing tables of the
switches of table-based technologies (see, e.g., [23] which generates routes arith-
metically and then embed them in the routing tables of an Infiniband IN). There
also exist more advanced strategies (also for Infiniband) that take into consid-
eration the congestion of the links by storing this information in the routing
tables together with the destination address to perform routing decisions [24].
More recently, the Bull EXascale Interconnect (BXI) [10] has followed a simi-
lar approach. They use a 2-stage routing strategy [22]: first an off-line algorithm
calculates the paths between each source and destination. These paths are deter-
ministic and populated into the routing tables during system start-up (could be
done arithmetically). The second stage is performed on-line, when the system
is running, and can change the previously calculated static routes in order to
avoid congestion or failures. The 48-port routers, implemented as ASICs, store
64K entries for each port for a total of 3M entries per router. Bull switches use
2 routing tables, a bigger one with the addresses set at start-up and another
small table used in case of faults or congestion in which the addresses are used
to repair faulty routes.

The only effort on minimizing the impact of routing tables on the networking
equipment we are aware of is on strategies to reduce their footprint. For example,
using a 2-level CAM routing strategy [3]: the first level stores addresses that
require a full match in order to select the output port, the second level stores
masks. If the first level does not produce a match, then the selection of the port
is performed based on similarity between the mask on level 2 and the destination
address. This helps alleviating the impact of routing tables in terms of area and
power to some extent, but the other scalability issues of routing tables still hold.

Alternatives to local CAMs do exist, but none of them would keep appropri-
ate performance levels for FPGA-based HPC interconnects. For instance, using
an off-chip CAM would severely slow packet processing because of the extra

102 C. Concatto et al.

Tier 4 0 1 2 0 1 2 0 1 2

Tier 3 0 1 2
Router ID[0]

0 1 2
Router ID[1]

0 1 2
Router ID[2]

Cabinet 0

0 1 2 0 1 2 0 1 2Tier 2

Cabinet 1 Cabinet 2

A

B C

D

FE

(a) ExaNeSt arranged as a Fattree topology

Tier 3 0 1 2
Router ID[0]

0 1 2
Router ID[1]

0 1 2
Router ID[2]

Cabinet 0

0 1 2 0 1 2 0 1 2Tier 2

Cabinet 1 Cabinet 2

A D

0 1 2
Router ID[0]

Cabinet 3

0 1 2

0 1 2
Router ID[0]

Cabinet 4

0 1 2

0 1 2
Router ID[0]

Cabinet 5

0 1 2

BC

(b) ExaNeSt arranged as a Dragonfly topology

Fig. 1. ExaNeSt system-level networks with route examples in red (2, 1 to 1, 2). (Color
figure online)

delays to go off-chip for routing information. Moreover in a extreme-density
design, such as the one we propose in ExaNeSt, adding extra components to the
already tightly packed boards is undesirable. Implementing the tables in RAM
(as some low-end switches do), would render information fetching even slower
due to the lack of parallel access. A proposal that assigns range(s) of addresses
to ports [12] and routes to the port which matches the destination was a step
towards getting rid of CAMS. However, it is restricted to tree-like topologies and
does not scale very well for large networks because range complexity increases
with network size.

3 ExaNeSt System Architecture

In this Section we introduce the architecture of ExaNeSt, which will be showcased
by means of a small, 2-cabinet, prototype—currently under construction. An
ExaNeSt system will require millions of low-power-consumption ARM+FPGA
MPSoCs to reach Exascale and includes a unified, low-latency IN and a fully
distributed storage subsystem with data spread across the nodes using local Non-
Volatile Memory (NVM) storage. Our building block is a quad-FPGA-daughter-
board (QFDB) based on Zynq Ultrascale+ MPSoCs2. The next level (Tier 1)
is the Blade, which is composed by up to 16 QFDBs interconnected using a
backplane that delivers high-bandwidth connectivity, whilst reducing the costs
and power consumption of external cables and transceivers. Six of these Blades
are contained in a Chassis which also incorporates our FPGA router with a
variable number of links that are used to interconnect the blades (Tier 2) as well

2 See https://www.xilinx.com/support/documentation/white papers/wp482-zu-pwr-
perf.pdf.

https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf

A CAM-Free Exascalable HPC Router for Low-Energy Communications 103

as to provide uplinks to the system-level interconnect (Tier 3 and above depicted
in Fig. 1). As these routers are implemented on FPGAs, the number of uplinks
can vary in order to deliver networks with different characteristics. Next, we will
focus on describing the architecture of the FPGA-based router used in Tier 3
(and above).

3.1 Router Architecture

The architecture of the router (inside the red square) is depicted in Fig. 2
together with the FIFOs, MACs and PHYs. We built a 3-stage pipelined router
using a wormhole switching approach in which the packets (composed of header,
payload and footer) are split into multiple flits of size 66 bits (64 bits for data
and 2 extra bits to control the beginning and the end of the packets). The router
sends and receives flits from and to the FIFO using a handshake flow control
mechanism implemented using two signals: val and ack. When data is ready to
be sent in the FIFO the val signal is enabled; if there is space to store the data
into the router, the ack signal will be enabled. When at some point there is no
more data available in the FIFO or no more space at the router, the correspond-
ing signal will be disabled. A similar process happens in the output ports. The
data sent and received by the FIFO comes from and goes to the 10 Gbps custom-
made MAC layer which is connected to the 10 Gbps transceivers (PHY), which
serialize/deserialize the data between the routers using an optical fiber. Our
router uses Virtual Output Queues (VOQs) [8] to reduce Head of Line (HOL)
blocking and, in turn, minimize congestion. Although the use of VOQs increases
resource utilization, we expect the extra resources to be compensated by the
performance gains and the savings of our table-free design.

The three stages of our router are as follows. Stage-1:, the router receives
the val signal (a new packet has arrived to an input port). The header flit will
be stored in a register. Stage-2: the arithmetic routing block decides, based on
the destination address of the packet, the output port to forward the packet.
Then the desired VOQ is selected and used for the remaining flits of the packet.
Stage-3: the switch allocator selects one input port (among all the requesting
ones) to be forwarded through the crossbar to the required output port. For
simplicity we use round robin arbitration, but others are possible.

3.2 Routing Algorithms

Our protocol relies on a geographic addressing scheme in which the location of all
the components is embedded in their address. This comes as a side-effect of the
highly hierarchical system. The current prototypes would require 22 bits out of
the 24 available for encoding end-point ids (2 bits for the chip within a DB, 4 bits
for the DB within a mezzanine, 4 bits for the mezzanine within a chassis, 4 bits
for the chassis within a cabinet and 8 bits for the cabinet). This would leave 2 free
bits within an address that could be used for different purposes, e.g., multipath
routing, priority levels or system-level operations. Such a naming convention
is enabled by the fact that FPGAs come without a defined address and that

104 C. Concatto et al.

VOQ(0)

VOQ(n-1)

PHY
(RX)

XGMII_OUT(n-1)

XGMII_OUT(0)

Output(0)

ack
val

LOCAL
PORT
(RX)

F
I
F
O

MAC
(TX)

XGMII_IN(n-1)

XGMII_IN(0)

PHY
(TX)

VOQ(0)

VOQ(n-1)

VOQ(0)

VOQ(n-1)

CROSSBAR
n*(n-1):n

ROUTING
BLOCK SWITCH

ALLOCATOR

F
I
F
O
s

Local Out

ack
val

Output(n-1)

ack
val

MAC
(RX)

Local In

ack
val

Input (0)

ack
val

Input (n-1)

ack
val

F
I
F
O
s

LOCAL
PORT
(TX)

F
I
F
O

Fig. 2. Block diagram of the 3-stage router plus the FIFOs, the MACs and the
transceivers (PHYs). (Color figure online)

initializing it at boot-up time would be trivial and would require barely any
overhead, just by leveraging locational information into the different levels, e.g.
through system-level controllers or even an EPROM holding this information.

It is our vision that having this hierarchical information within the addressing
scheme can be exploited by means of arithmetic routing as many high perfor-
mance topologies feature very simple routing algorithms that take routing deci-
sions based only on a single coordinate within the hierarchy (e.g. k-ary n-trees
and Dragonfly, as provided here or others such as generalised hypercubes [5],
Clos [20] or torus [2,6]). Indeed, such arithmetic forms of routing are specially
well suited for FPGAs as they would require very simple logic to be imple-
mented and could be changed accordingly to the selected topology as opposed
to an ASIC-based implementation, which must be static (or software based).

Algorithm 1 shows the routing algorithm for a fattree. Packets travel up and
then down the tree according to the destination address, tier and router ID. This
is done in order to avoid deadlocks [19]. First, the algorithm checks if the router
is in Tier-4 (the top of the tree), in which case the packet goes down through
the port connected to the destination cabinet. If the packet is in Tier-3, the
router checks if the destination address is local to its cabinet, in which case it
takes the port connected to the corresponding chassis. Otherwise the packet goes
through any of the uplink ports (using Round Robin for simplicity), seamlessly
performing multipath routing. In the future we expect to investigate improved
congestion-aware policies. Figure 1a, shows a route example marked with red
dotted lines. We denote addresses as [Cabinet, Chassis]. The source, [1, 2], sends
a packet to the destination [2, 1]. First [1, 2] sends the packet to router 1 in Tier
3 using link A. Then, the packet will be sent through any uplink (B, in the

A CAM-Free Exascalable HPC Router for Low-Energy Communications 105

Algorithm 1. Routing strategy for fattree
1: procedure RouteFattree(header, tier, routerId)
2: if tier = 4 then � top tier
3: req ← header.cabinet
4: else if header.cabinet = routerId then
5: req ← header.chassis � go down
6: else
7: req ← port going up � go up

8: return req

Algorithm 2. Routing strategy for dragonfly
1: procedure RouteDragonfly(header, routerId)
2: if header.cabinet = routerId then
3: req ← header.chassis � go down
4: else if group(header.cabinet) = group(routerId) then
5: req ← intraGroupPort(header.cabinet) � same group
6: else
7: req ← interGroupPort(header.cabinet) � route to other group

8: return req

example) to Tier 4, because of line 7 in Algorithm 1. Now the packet is in Tier
4, so Algorithm 1 dictates to follow link C to Cabinet 2 (line 3) and the packet
arrives to router 2 in Tier 3. Now the router ID and destination Cabinet are the
same, so line 5 in Algorithm 1 selects port 1 (Chassis of destination address is 1)
and the packet is forwarded through link D. Finally, the packet arrives to [2, 1],
and is routed to the correct QFDB through the lower Tier networks.

Algorithm 2 shows the routing algorithm for dragonfly. Packets travel
between groups according to the destination address and router ID. First the
algorithm checks if the packet is addressed to the local router, in which case the
packet goes down to the corresponding chassis. If not the router checks whether
it goes to another cabinet in the group in which case it takes the port connected
to the corresponding router. Otherwise the packet needs to move to a different
group, either directly through their up-ports or through another router in the
group through the intra-group ports. Functions group(), intraGroupPort()
and interGroupPort() are arithmetic and use router coordinates and topol-
ogy parameters only, but are not shown here due to space constraints. Figure 1b
shows a route example between nodes [1, 2] and [2, 1]. First [1, 2] sends the packet
to router 1 in Tier 3 using link A. Then, the packet will be sent to router 0
through link B, as dictated by line 7. Given inter-group routing is still needed
Router 0 will forward to Router 2 following link C, (line 7). Now the router ID
and destination Cabinet are the same, so line 3 selects port 1 and the packet is
forwarded to the destination chassis through link D.

106 C. Concatto et al.

4 Evaluation

In this Section we firstly present our set-up to measure the area, power and
performance (Throughput and latency) required to implement the router and
the routing tables. FPGAs have a restricted amount of resources and router
design must scale nicely, i.e., do not explode in terms of resources (or power) as
the number of ports or the size of the CAMs increase. Therefore we measure the
area and power consumption of the approaches to show their scalability. Finally
we measure throughput and latency as they are the most important performance
metrics for HPC systems.

4.1 Experimental Setup

We implemented the router architecture described in Sect. 3 (and shown in
Fig. 2) as a soft core IP in Verilog and synthesise it in a Virtex-709 FPGA.
The transceivers (PHY in Figure 2) are hard-core IPs in the FPGA containing a
serializer/deserializer (serdes) IP working at 10 Gbps and 156.25 MHz3. We use
a custom MAC IP which synchronizes the clocks between the transceivers of the
sender and the receiver by adding a short preamble and footer in the packets.
Finally the router was instantiated with a varying number of ports plus one local
port (used as injector/consumer for testing purposes). The FPGA area is mea-
sured and considers the amount of Look-up-Tables (LUT), LUTRAM (LUT used
as memory), Flip-flops (FF) and Memories (BRAM) consumed by the router and
the routing table. To measure the performance, we used two interconnected Vir-
tex FPGAs. In this experiment, the router has 4 external ports plus one local
port because our development boards have only 4 SFP ports. Thus the routers
were instantiated with 3 downlinks + 1 uplink. The two boards were wire con-
nected using optic fibers and the traffic was generated and received by soft-core
MicroBlaze processors attached to the local ports. Traffic was composed of pack-
ets with 100 flits length generated at intervals of 11 clock cycles. We provide the
local port interface with counters to measure the number of packets received in
1 s and the delay to receive the first packet after the system has started.

4.2 Area

The BRAMs were used to implement the buffers in the MAC layer. The LUT and
FFs were used to implement the logic and the LUTRAMs were used to implement
the VOQs (with space for 16 flits each) and the memory in the routing table.
In case of the routing tables, for the sake of clarity, we just show the resources
used to implement them, not the whole router. Given that the footprint of the
arithmetic routing block is negligible, implementing the switch with the routing
tables will require, at least, the same amount of resources as implementing each
of them separately.

3 See seen on 8th January 2018: https://www.xilinx.com/support/documentation/
ip documentation/ten gig eth pcs pma/v6 0/pg068-ten-gig-eth-pcs-pma.pdf.

https://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_pcs_pma/v6_0/pg068-ten-gig-eth-pcs-pma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ten_gig_eth_pcs_pma/v6_0/pg068-ten-gig-eth-pcs-pma.pdf

A CAM-Free Exascalable HPC Router for Low-Energy Communications 107

(a) Arithmetic router (b) Routing tables

Fig. 3. Area used in the FPGA.

Figure 3a shows the area results for our arithmetic router, including the
MACs and PHYs, the latter two takes most of the router area. We have mea-
sured the area of between 2 and 16 ports (plus the local port, used for evaluation
purposes). The maximum area required in the FPGA is around 30% of the LUTs
for the 16-port version. More importantly, resource consumption scales roughly
linearly with the number of ports which show the scalability of our design. For
comparison, Fig. 3b shows the area required to implement routing tables with
different number of entries, from 32 up to 2048. Routing tables were imple-
mented following the node-table approach shown in [11] in which one table is
shared among all the input ports of the router. The logic of the routing table
will match the destination address with the stored node addresses and then,
extract from that CAM line the output port to be used. The area required
increases roughly linearly with the number of entries requiring almost 20% of
the LUTRAMs for 2K entries. Even for a relatively small routing table by today’s
standards (e.g. 64K entries used by Bull interconnect [10], 48K for Infiniband or
32K for Ethernet [15]) these routing tables take a significant part of the FPGA
resources and would seriously limit the scalability and the number of ports we
could implement. Moreover tables with 256 entries or more cannot work at our
target frequency, as shown in Fig. 3b. This is because the huge MUX/DEMUX
trees required to access the tables severely increase the critical path. Comparing
the routing table area with the router is not trivial as the routing tables uses
more LUTRAM to implement memory and the router uses more FF and LUTs
to implement its logic. In terms of LUTs a 4-port router consumes almost the
same as a routing table with 1K entries. However for LUTRAMs a 4-port router
uses almost the same area as a 256-entry routing table.

4.3 Power Consumption

Figure 4a shows the power consumption estimated by Xilinx tools for routers
with 2, 4, 8 and 16 ports (plus the local port) for the different resources
used by the router. Notice that the GTH transceivers work at a frequency of

108 C. Concatto et al.

(a) Arithmetic router (b) Routing tables

Fig. 4. Power consumption in Watts.

156.25 MHz in order to transmit at 10 Gbps. However the router with 16 ports
works at a slightly lower frequency, 140 MHz, due to the size of the crossbar
that grows exponentially. Other aspect of the implementation in the FPGA
that should be noticed is that Virtex-709 only has 4 SFP+ connectors (hence
4 GTH transceivers). For that reason the remaining serial ports for the 8- and
16-port routers were placed in the FMC HPC connector (standard connection
for any type of interface) of the FPGA using the same clock source (SFP+ con-
nector). The results clearly show that the GTH transceivers are the resources
that consume more power (higher than 50% of the total). The maximum power
consumption (for 16 ports) is ∼4 W which is relatively low; about 10% of the
max FPGA power (40 W) for this implementation. Figure 4b shows the power
consumed by the routing tables measured at a frequency of 156.25 MHz. We
show both the dynamic (logic plus signal switching) and the static power. As
expected the routing tables demand higher power as we increase the number of
entries for the same frequency (156.25 MHz). For instance, a routing table with
2048 entries consumes 40 W, which is already the maximum FPGA power ren-
dering the implementation of other elements impossible. In contrast 32 entries
consumes less then ∼4 W. A 8-ports router plus MACs and PHYs consumes the
same power as 256 entries routing table. Moreover a router with a routing table
with 2K entries consumes almost 4 times more power than the proposed routers
with 16 ports + 1.

4.4 Performance

We close this Section by measuring the throughput and latency of our design.
Notice that a VOQ-based router using routing tables would theoretically have
the same performance as ours (assuming that accessing the table can be done in
one clock cycle and that the frequency remains the same). Our tests showed
that the router is able to maintain a throughput higher than 8 Gbps (with
10 Gbps transceivers), which is acceptable for a first prototype. The main cul-
prit for not being able to saturate the links (achieve 10 Gbps) is our custom

A CAM-Free Exascalable HPC Router for Low-Energy Communications 109

MAC implementation which stalls packet-forwarding in order to check whether
the transceivers are synchronized. Regarding the latency per hop, our measure-
ments drew between 70 to 80 clock cycles to traverse both routers. This latency
is the time required to traverse the source router (3 cycles), MAC (12 cycles),
both transceivers TX and RX (25–45 clock cycles each) and the MAC in the
destination router (12 cycles). Note that data transmission is much slower than
taking routing decisions in our design.

5 Conclusions and Future Work

The interconnection network will play a crucial role in future systems that aim
to break the Exascale frontier. One of the main concerns in these systems is
the reduction of the power consumption, issue that is being faced by using
low-power computing elements or other power-efficient devices delivering high
performance/Watt. However in these massive interconnected systems the net-
work can be responsible of consuming a large share of the required power, so
traditional approaches are not suitable any more. To deal with this issue we pro-
pose a disrupting interconnection architecture that avoids the use of costly and
power hungry routing tables. These are deep-rooted in commercial devices for
HPC and datacentre networks. Our design leverages an FPGA-based arithmetic
router with our geographical addressing scheme.

Our experimental work shows that the amount of resources required to imple-
ment the router is small allowing designs with more than 32-ports in this partic-
ular FPGA model. Regarding the power consumption the routing tables exceed
the maximum power output of the FPGA as early as 2K entries. On the other
hand, the router implemented using the arithmetic routing requires less than
5 W, that is, 12.5% of the power delivered by the FPGA. Finally we measured
the throughput and latency showing promising figures of 8 Gbps and 70–80 cycles
(500 ns) per hop, respectively. Moreover, we found that avoiding the use of rout-
ing tables is essential for our design as a small CAM table (2K entries), would
not only require ∼20% of the FPGA resources, but would also exhaust the
power budget of the FPGA. In the future, we plan to improve the performance
of the router optimizing the MAC layer. We will also evaluate the area and
power consumption of the arithmetic router using more modern FPGAs like the
Virtex UltraScale+ from Xilinx. Finally we want to explore the impact of our
VOQs + arithmetic router on the performance of larger networks by using our
in-house developed simulator, INSEE [17].

References

1. Abts, D., et al.: Energy proportional datacenter networks. In: International Sym-
posium on Computer Architecture, ISCA 2010, pp. 338–347. ACM, New York
(2010)

2. Ajima, Y., et al.: The Tofu interconnect. IEEE Micro 32(1), 21–31 (2012)

110 C. Concatto et al.

3. Al-Fares, et al.: A scalable, commodity data center network architecture. In: ACM
SIGCOMM 2008 Conference on Data Communication, SIGCOMM 2008, pp. 63–
74. ACM, New York (2008)

4. Aroca, R.V., Gonçalves, L.M.G.: Towards green data centers: a comparison of
×86 and ARM architectures power efficiency. J. Parallel Distrib. Comput. 72(12),
1770–1780 (2012)

5. Bhuyan, L.N., Agrawal, D.P.: Generalized hypercube and hyperbus structures for
a computer network. IEEE Trans. Comput. 33(4), 323–333 (1984)

6. Chen, D., et al.: Looking under the hood of the IBM Blue Gene/Q network. In:
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12, November 2012

7. Cuzzocrea, et al.: Big graph analytics: the state of the art and future research
agenda. In: Proceedings of the 17th International Workshop on Data Warehousing
and OLAP, DOLAP 2014, pp. 99–101, ACM, New York (2014)

8. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco (2003)

9. Dean, J., et al.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

10. Derradji, S., et al.: The BXI interconnect architecture. In: IEEE Annual Sympo-
sium on High-Performance Interconnects, HOTI 2015, pp. 18–25. IEEE Computer
Society, Washington (2015)

11. Duato, J., et al.: Interconnection Networks: An Engineering Approach. Morgan
Kaufmann Publishers Inc., San Francisco (2002)

12. Gómez, C., et al.: Deterministic versus adaptive routing in fat-trees. In: Workshop
on Communication Architecture on Clusters (CAC 2007) (2007)

13. Heller, B., et al.: ElasticTree: saving energy in data center networks
14. Katevenis, M., et al.: The exanest project: interconnects, storage, and packaging

for exascale systems. In: 2016 Euromicro Conference on Digital System Design
(DSD), pp. 60–67, August 2016

15. Kieu, T.C., et al.: An interconnection network exploiting trade-off between rout-
ing table size and path length. In: International Symposium on Computing and
Networking (CANDAR), pp. 666–670, November 2016

16. Kim, J., et al.: Technology-driven, highly-scalable dragonfly topology. In: 2008
International Symposium on Computer Architecture, pp. 77–88, June 2008

17. Navaridas, J., Miguel-Alonso, J., Pascual, J.A., Ridruejo, F.J.: Simulating
and evaluating interconnection networks with insee. Simul. Model. Pract.
Theory 19(1), 494–515 (2011). http://www.sciencedirect.com/science/article/
pii/S1569190X1000184X

18. Petrini, F., Vanneschi, M.: k-ary n-trees: high performance networks for massively
parallel architectures. In: International Parallel Processing Symposium, pp. 87–93
(1997)

19. Sancho, J.C., et al.: Effective methodology for deadlock-free minimal routing in
infiniband networks. In: Proceedings International Conference on Parallel Process-
ing, pp. 409–418 (2002)

20. Singh, A., et al.: Jupiter rising: a decade of Clos topologies and centralized control
in Google’s datacenter network. In: ACM Conference on Special Interest Group on
Data Communication, SIGCOMM 2015, pp. 183–197. ACM, New York (2015)

21. Vermeij, M., et al.: MonetDB, a novel spatial columnstore DBMS. In: Free and
Open Source for Geospatial (FOSS4G) Conference, OSGeo (2008)

22. Vignéras, P., Quintin, J.N.: The BXI routing architecture for exascale supercom-
puter. J. Supercomput. 72(12), 4418–4437 (2016)

http://www.sciencedirect.com/science/article/pii/S1569190X1000184X
http://www.sciencedirect.com/science/article/pii/S1569190X1000184X

A CAM-Free Exascalable HPC Router for Low-Energy Communications 111

23. Zahavi, E.: Fat-tree routing and node ordering providing contention free traffic for
MPI global collectives. J. Parallel Distrib. Comput. 72(11), 1423–1432 (2012)

24. Zahid, F., et al.: A weighted fat-tree routing algorithm for efficient load-balancing
in infini band enterprise clusters. In: 2015 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, pp. 35–42, March 2015

25. Zilberman, N., et al.: NetFPGA SUME: toward 100 Gbps as research commodity.
IEEE Micro 34(5), 32–41 (2014)

Lightweight Hardware Synchronization
for Avoiding Buffer Overflows

in Network-on-Chips

Martin Frieb(B), Alexander Stegmeier, Jörg Mische, and Theo Ungerer

Institute of Computer Science, University of Augsburg, 86159 Augsburg, Germany
{martin.frieb,alexander.stegmeier,mische,

ungerer}@informatik.uni-augsburg.de

Abstract. Buffer overflows are a serious problem when running
message-passing programs on network-on-chip based many-core proces-
sors. A simple synchronization mechanism ensures that data is trans-
ferred when nodes need it. Thereby, it avoids full buffers and interrup-
tion at any other time. However, software synchronization is not able to
completely achieve these objectives, because its flits may still interrupt
nodes or fill buffers. Therefore, we propose a lightweight hardware syn-
chronization. It requires only small architectural changes as it comprises
only very small components and it scales well. For controlling our hard-
ware supported synchronization, we add two new assembler instructions.
Furthermore, we show the difference in the software development process
and evaluate the impact on the execution time of global communication
operations and required receive buffer slots.

1 Introduction

In recent years, more and more many-core processors appeared. Typically, they
are connected via a network-on-chip (NoC). In a typical NoC [1,2] all nodes are
connected to the network via a network interface (NI) containing a send and a
receive buffer. As buffers occupy a high amount of hardware logic [18], hardware
designers tend to minimize the number of possible buffer entries. Especially the
receive buffers need to be of an appropriate size to avoid performance degradation
when they are full.

Parallel programs often diverge during their execution, causing some proces-
sors executing program parts being far ahead of other processors. In distributed
systems, it is often a strategy to send data to some other node without wait-
ing for that node to be at the same part of the program, i.e. needing this data
yet [15]. The receiver node just stores this data away in its memory and gets
it from there when it actually processes it. This strategy is important because
communication is a major bottleneck in distributed systems. However, in NoCs
receive buffers are quite small and core-local memory is limited. Therefore, send-
ing data to some node without checking if this node is ready to handle this data
might lead to buffer overflows and deadlocks.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 112–126, 2018.
https://doi.org/10.1007/978-3-319-77610-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_9&domain=pdf

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 113

Fig. 1. Node C fills the receive buffer of node B, which is currently waiting for flits from
node A. Thus, node B is busy processing received flits before it can answer the request
from node A which it was originally waiting for. Boxes represent local computation
times and arrows the delivery of flits.

The problem is illustrated in Fig. 1: There are three nodes A, B and C run-
ning a parallel application. Each of them does some local computation (boxes),
followed by communication (flits represented as arrows). The computation of
node A takes a little bit longer than on nodes B and C. Meanwhile, node C
finishes its local computation and sends several flits to node B. Node A sends
a request to node B, but node B is busy processing flits sent by node C. In the
case when the receive buffer of node B is full, the request from node A even
cannot be stored there. Thus, A has to wait until C is finished, then it can send
its request to B again.

To avoid buffer overflows, we propose to add a synchronization mechanism:
each node planing to send data has to wait for a flit from its intended receiver
indicating that it is ready to handle incoming flits. A receiver node sends this flit
when reaching its receive operation, ensuring that it is fully capable to process
incoming flits. When implementing this synchronization in software, there might
still arrive a lot of synchronization flits at a node (at most one from each other
node). Thus, we suggest to realize it with hardware support. Our hardware
implementation stores synchronization information and makes it available for the
processing element when it asks for it. Thereby, we focus on minimal hardware
and synchronization overhead.

Altogether, the contribution of our paper is a cheap and simple hardware syn-
chronization mechanism which can easily be controlled in software, to increase
performance while decreasing receive buffer size and hardware costs. Our app-
roach is independent of router design and network topology.

The remainder of this paper is structured as follows: In the next section,
we present related work and backgrounds. Afterwards, first our synchroniza-
tion concept is explained in Sect. 3, followed by the description of the hardware
implementation in Sect. 4 and subsequently it is evaluated in Sect. 5. Finally, the
paper is concluded in Sect. 6.

2 Related Work and Background

As described in the introduction, we see the trend that many-core processors
employ NoCs and communication takes place via send and receive operations.
Some current multi-/many-core processors like the Intel Xeon Phi [4] do not

114 M. Frieb et al.

employ send/receive operations or a NoC. Instead, they rely on shared memory
and complex coherence protocols. In our opinion, these approaches do not scale
well, because shared resources become the bottleneck when adding more cores.
Therefore, we see the future of many-cores in employing NoCs, like e.g. in the
Intel Single-chip Cloud Computer (SCC) [13]. Thereby, small buffers are beneci-
fial, because otherwise most of the chip area would be occupied with buffers. In
the remainder, we only consider architectures working with NoCs and explicit
message passing.

Classical synchronization approaches were developed for distributed sys-
tems [14,15], where several constraints have to be respected. For example, commu-
nication times might be very long, packets or their parts might get lost or a node
may drop out surprisingly. In a NoC, all nodes are reliable and communication
times are short [1,2]. However, NoCs contribute a lot to the power consumption
of many-core chips. The NoC of the Intel 80-core Teraflops research chip consumes
28% of the power per tile [17]. This percentage increases when more cores are put
on the chip [3]. A high amount of this contribution stems from buffers. They need
a lot of chip area, e.g. 60% of the tile area of the Tilera TILE64 many-core [18].
Nevertheless, compared to buffers in distributed systems, buffers in NoCs seem to
be very small.1 Therefore, flow control has to take place.

Our approach is a variation of stop-and-wait protocols (s-a-ws) [8,16]: in the
original s-a-w after sending a flit, the sender has to wait for an acknowledge-
ment from the receiver before sending the next flit. This means that each flit
has to be acknowledged separately and leads to a high overhead. In contrast,
in our approach the sender waits for a synchronization flit before starting to
send. Instead of acknowledging each flit several flits can be sent. Then, the next
synchronization takes place (see details in Sect. 3).

Another concept is credit-based flow control [7], which works as follows: When
a node wants to send data to another node, it asks it for credit. Then, the receiver
node tells the sender how many receive buffer slots it can use. Therefore, the
sender knows how many flits it can send. While sending, the receiver might
update the credit, then the sender can send more flits. Credit-based flow con-
trol is implemented e.g. in the Æthereal NoC [6]. Thereby, a forward channel is
used to send data and a reverse channel to give feedback about buffer utiliza-
tion. Our approach does not dynamically exchange detailed information about
buffer utilization. Instead, it is intended to only find the starting point of the
communication.

In Message Passing Interface (MPI), the standard for message-based commu-
nication [9], a function MPI Ssend is defined for synchronous sending/receiving.
It requires that the receiving nodes have already called the function before the
sending node calls it. Therefore, it implements something similar as our synchro-
nization for synchronous communication. However, this takes place at a higher
abstraction level, while our synchronization is realized at low software level or
even at hardware level.

1 At distributed systems, there is plenty of buffer space because the main memory and
swap space (hard disk) may be employed.

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 115

Fig. 2. Communication with ready synchronization: each node waits with sending flits
until the receiving node is ready (ready flits are denoted with R).

Ruadulescu et al. [5] describe an approach to optimize the buffer size on
NoCs with credit-based flow-control. They employ time-division multiple access
(TDMA) with an application-specific schedule, i.e. contention-free paths are
determined at design time of the System-on-Chip (SoC). Ruadulescu et al. focus
on building a SoC with buffers being as small as possible for a specific appli-
cation. In contrast, our approach works at execution time and is application
independent. Instead of determining the optimal buffer size at design time, our
focus is on using buffers of a specific size as efficient as possible without having
buffer overflows.

3 Synchronization Concept

In NoCs, bandwidth is restricted and a lot of communication takes place between
nodes. Therefore, our idea is to avoid buffer overflows with just one synchroniza-
tion flit – we call it ready flit. It does not contain payload and is just used to
indicate that the receiver node is ready to receive data.2 When the receiver node
is ready to handle incoming data from the intended sender, it replies with a
ready flit. This indicates that its receive buffer is free and any incoming flit will
immediately be processed by the receiver node.

On the other side, the sender node does not send any flits to the receiver
before it receives the ready flit. Meanwhile, it has to wait for it or execute some
alternative code. When the ready flit arrives at the sender, it knows that the
receiver is now ready and starts sending. In this way, it is ensured that the
receiving node has free buffer slots and is ready to handle the received flits.
Should it be necessary to tell the receiver how many flits follow, a header flit
containing all relevant data might be sent and processed in software.

The concept of ready synchronization is illustrated in Fig. 2: as in Fig. 1, node
B waits for data from nodes A and C. Since it first needs data from node A, it
sends a ready flit there. Node A starts sending flits after its local computation

2 When implementing ready synchronization in software, a particular payload is
defined to represent ready flits. In the hardware implementation, a payload is not
possible because ready flits do not reach the processing element of a node.

116 M. Frieb et al.

has finished. After receiving and processing all data from node A, node B sends a
ready flit to node C, which in turn starts sending. This leads to node C waiting
until node B is willing to receive data and avoids any slowdown caused by full
buffers. Altogether, problems occuring when nodes do not meet a communication
part at the same time are avoided: A node sending flits waits until the receiving
node signalizes that it is ready. And a node receiving flits only sends one ready
flit when it is ready to receive and then waits for flits from the sender (flit transfer
starts “on demand”). Should the sender not yet be ready to send data, it just
has to store the ready flit and can start sending as soon as it has finished its
computation.

Our procedure is completely safe when synchronizing each flit (like in s-a-w),
but then synchronization overhead is way too high. Instead, we intend that ready
synchronization takes place only once per packet or program block (which may
even imply communication in both directions). This works well as long as a
packet does not exceed a certain length and each program block is written in a
way that ensures that the receiver can process incoming flits fast enough. When
a sender delivers faster than its receiver can process incoming flits and it sends
more flits than the receiver node has buffer slots, buffers could still run full. In
this case, the maximum number of flits before the next synchronization is limited
by the number of receive buffer slots at the receiver node and the difference in
time between executing a send and a receive operation.3 When processing of
flits at the receiver is at least as fast as flits are sent from the sender, there
is no problem and therefore no restriction on the number of flits to be sent.
However, it has to be considered that not all flits might arrive in constant time
periods, although they may be sent in such. On their way through the NoC, flits
may be hindered (e.g. collisions, deflection routing) on their direct way between
sender and receiver. Thus, there might be periods where few flits arrive and
others with more flits arriving – which might be more than the receiver node
might handle at a time. An ideal number of flits between two synchronizations is
up to the software developer and influenced by specific details of the architecture.
Therefore, attention has to be paid that ready synchronization takes place in
appropriate periods to avoid full buffers.

The ready synchronization concept is realizable without requiring additional
hardware. Thereby, each node maintains a software array with one entry for
each other node. These entries indicate if a node is ready to receive data (i.e.
if a ready flit was received from a particular node). Nodes can send ready flits
at any time. Thereby, ready flits are normal flits with a defined content. Code
example 1 illustrates the source code of the sender side: the sender node has
to check the array for the state of the receiver node. When it already indicates
ready, it can jump over the while loop, reset the entry in the array and start
sending. Otherwise, the code in the while loop is executed: the next flit is taken
from the FIFO receive buffer. It has to be checked whether it is a ready flit

3 For example, when a send operation takes 100 cycles and a receive operation takes
105 cycles, it takes 20 sends (2000 cycles) to permanently occupy one more buffer
slot.

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 117

Code example 1. Code to be executed on sender side with software ready
synchronization before send operation can start

// i s r e c e i v e r node ready ?
whi le (ready nodes [r e c e i v e r] == 0) {

// i f not , r e c e i v e next f l i t . . .
f l i t f = r e c v f r om f i f o () ;
// . . . check i t and mark correspond ing node as ready
i f (f . data == READY) ready nodes [f . r e c e i v e r] = 1 ;
// i f i t was the intended r e c e i v e r , i t w i l l be not i c ed at whi le

}
// r e s e t ready s t a t e o f r e c e i v e r
ready nodes [r e c e i v e r] = 0 ;
// s t a r t sending
send (r e c e i v e r , data) ;

and the corresponding node is marked as ready in this case. Afterwards, the
next while condition check will show if it was the ready flit from the intended
receiver node. While receiving data, a node checks each incoming flit if it is a
ready flit or a data flit. Ready flits set the corresponding entry in the array,
data flits are processed regularly. Then, the node can go on with the next flit.
Code example 1 works without interrupts, it directly checks the receive buffer.
On platforms where flit receival is processed via interrupts, code may have to be
adapted.

4 Hardware Supported ready Synchronization

The software implementation leads to several drawbacks: First, all nodes may
receive ready flits from other nodes, which might get data at a later point in the
program execution. They have to handle these ready flits and note that these
nodes are ready. The number of these ready flits is limited to the number of
(other) nodes in the NoC. Therefore, the receive buffer has to be large enough:
besides the entries for data flits, there have to be enough entries for ready flits (as
many as there are other nodes in the NoC). Figure 3 illustrates an example with
8 other nodes: Node D sends a lot of data flits to node E (continuous arrows).

Fig. 3. One node is sending data flits to node E (continuous arrows), all other nodes
send ready flits (dotted arrows) at the same time. Therefore, buffer space is needed for
incoming data as well as for incoming ready flits.

118 M. Frieb et al.

Then, all other nodes (A–C, F–I) send their software ready flits to node E at
the same time (dotted arrows). Therefore, the receive buffer of node E has to
be large enough to save the arrived data flits as well as the ready flits from all
other nodes.

Furthermore, it is possible, though very unlikely, that some data flit has
exactly the same payload as a ready flit – how can data and ready flits be
distinguished in a safe way?4 Finally, program execution is still slowed down
by flits that arrive and have to be handled, but are not needed yet. Therefore,
ready synchronization should be implemented in hardware. Then, ready flits
can be handled in dedicated hardware logic bypassing the normal receive buffer
in the NI. A simple check mechanism for the sender to know whether some node
is ready is provided.

4.1 Hardware Implementation

Basically, the hardware implementation works similar to the software implemen-
tation. The difference is a dedicated receive logic to process ready flits indepen-
dent from data flits: ready flits are processed by our new logic, while data flits
are still processed on the processing element. For the differentiation of ready and
data flits, we introduce an additional 1-bit signal isReady everywhere between
sender and receive logic. For data flits, it is 0 and for ready flits it is set to 1.
Architectural changes besides the additional signal are colored in grey in Fig. 4.
A node consists of a processing element with local memory, which is connected
to the network router via a NI. The original NI comprises a send and receive
buffer. Now we extend the NI by a hardware bit array, which is called Bit Array
in the Figure. It stores the source nodes’ id of incoming ready flits and as such
has the same role as the array in the software implementation.

A multiplexer denoted as MUX in Fig. 4 is required to distinguish each incom-
ing flit if it is a ready or data flit. This is done via the isReady signal. Therefore,
data flits are stored in the receive buffer just as normal and when the isReady

Fig. 4. Hardware structure of a node: processing element with local memory, connected
to the NoC router via a NI containing send buffer, receive buffer and hardware bit
array. Furthermore, there is a multiplexer to distinguish between ready and data flits.
Components added by our approach are colored in grey.

4 At some architectures, this might be solved with a header flit. However, not all
architectures support this approach, see for example the RC/MC architecture [10].

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 119

signal is set the sender’s corresponding bit in the hardware bit array is set to 1.
Each node has its own bit array where each bit corresponds to one particular
node.

When a node wants to send data to some other node, it can check the bit
array if the corresponding node is ready. As shown in Fig. 4, the processing
element should have direct access to the bit array to check the state. All flits
that arrive at the node are either needed by the processing element (data which
was requested and is now processed) or they are ready synchronization flits. The
latter do not reach the processing element, but are processed in the NI and put
in the hardware bit array. Therefore, it is avoided that flits which are currently
not needed reach the processing element. Furthermore, this is a very scalable
solution since each additional node only needs one bit of additional storage per
node.

4.2 New Instructions

Received ready information is automatically placed in the hardware bit array.
However, two new instructions are needed for handling ready information: send
ready (srdy) for sending ready flits and branch if not ready (bnr) to check
if a specific node is ready. An overview is given in Table 1.

Table 1. Instruction set extension for ready synchronization

Mnemonic Source register Immediate value Function

srdy Sender node Send ready flit to sender node

bnr Receiver node Jump target Check if receiver node is ready

When it is not, jump to jump target

srdy sends a ready flit to the node which is given in the register sender
node. It does the same like a regular send operation with two differences: first,
there is no payload. Second, the additional signal isReady is set to 1 (for regular
data send operations it has to be 0). When the ready flit arrives at the target
node, it is not put into the receive buffer. Instead, the isReady signal allows
the detection as ready flit. Therefore, the corresponding bit in the hardware bit
array is set to 1. This allows the processing element to check if the receiver is
ready. srdy might be called some cycles before the receive instruction on the
same node to reduce waiting times (the time between sending the ready flit and
receiving the answer from the sender node).

bnr is a branch instruction with the two operands receiver node (given in
a register) and jump target (provided as immediate). It checks if node is ready
to receive data and jumps to jump target if it is not. For this purpose, the
corresponding bit is checked in the hardware bit array. Originally, we intended
an instruction returning the bit itself in a register, but found a branch instruction

120 M. Frieb et al.

to be more efficient: when the receiver node is ready, the following instruction
can be directly executed (it is already in the pipeline). Otherwise, the sender
node has to wait for the ready flit. It can use the waiting time for executing
alternative code, spin on the bnr instruction or the instruction may be extended
to energy saving waiting: the processing element could sleep and be woken up
by the NI when the ready flit arrives. However, this is beyond the scope of this
paper.

Although branch instructions with side effects are uncommon, we designed
bnr with one small side effect: when the receiver node is ready, the bit in the
hardware bit array is reset to 0. This is necessary to ensure that at the next pro-
gram part which requires synchronization a new ready flit is awaited before flits
are sent. Alternatives to this behaviour would be a dedicated reset instruction
or a combination with a normal send operation. A dedicated reset instruction
may be forgotten and lead to time-consuming debugging by the software devel-
oper. On the other hand, a combination with a normal send operation leads to
complex code when several flits are sent in a loop. Then, the first flit would have
to be sent outside of the loop via send and reset and the rest could be sent via
regular send in the loop. With the bit being reset at the bnr instruction, there
is no need for other specialized instructions and code stays simple with only two
additional instructions.

Code example 2. Our new instructions srdy and bnr in a program. The
receiver sends the ready flit and can afterwards call a blocking receive. On
sender side, bnr can be utilized for busy waiting or executing alternative code,
afterwards sending can start.

// Rece iver
srdy sender
r e c e i v e

// Sender
check ready :
bnr r e c e i v e r , check ready // or a l t e r n a t i v e c od e
send r e c e i v e r , data

Code example 2 illustrates how easy hardware ready synchronization can be
employed in software. The receiver node just sends the ready flit to the sender
via srdy. Afterwards, it receives the requested flits. The sender node spins on
its bnr instruction (or executes alternative code meanwhile) until it knows that
the receiver node is ready. Then, it can directly start sending flits.

4.3 Impact of Ready Synchronization on Hardware Size

Ready flit handling requires additional hardware logic: in the focus is the hard-
ware bit array, how it is connected to the processing element and processes
incoming ready flits. It is the largest part of our hardware synchronization and

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 121

grows with the number of nodes in the NoC. However, it scales very well as it
only grows with 1 bit per additional node (plus management logic). Further logic
is needed for the additional isReady signal, which is 1 bit wide and has to be
passed through from the senders’ send buffer to the receiver. Other signals com-
prise the flits’ source, destination, payload and routing information. Therefore,
the overhead should be at a maximum of 1–2% compared to the other infor-
mation that is sent through the NoC. Finally, the additional send instruction
srdy has to be provided. However, it does the same like the regular send besides
setting the isReady signal to 1, while the regular send instruction has to set it
to 0. This overhead should be negligible.

The additional logic might pay itself by saving buffer slots: Since the pro-
cessing element is not interrupted by incoming flits anymore, processing times
are reduced. The received data flits can immediately be processed. Therefore,
fewer buffer slots should be needed. But most promising seems that received
ready flits do not enter the receive buffer due to their handling in hardware.
Thus, the receive buffer is only needed for data flits and does not have to carry
any synchronization flits. Altogether, the load in the receive buffer is drastically
reduced and the processing element is not interrupted anymore by flits that are
currently not needed. Since ready flits do not carry a payload, even the send
buffer might be relieved: dedicated (small) send buffer slots that only save the
target node id could be utilized reducing the need for normal send buffer slots.

5 Evaluation

For the evaluation, we use the reduced complexity many-core (RC/MC) architec-
ture [10], a 64-bit distributed memory many-core with semi-bufferless routing.
It employs a combination of simple RISC-V cores with a lightweight NoC router
called PaterNoster [11]. Thereby, the PaterNoster routers realize xy-routing: flits
are forwarded bufferless first in x-direction until they reach the target column.
There, they are stored in the so-called corner buffer. Flits wait in the corner-
buffer, until there is a free slot to move them on in y-direction until they reach
their target node. Buffers are only needed as send, receive and corner buffers.
The NoC is organized as unidirectional torus. A FPGA model as well as a cycle-
accurate simulator written in C which was checked against the VHDL model
are open source5. For our programs, we utilize 4 RISC-V cores with a 5-stage
pipeline and the NoC works with TDMA in a One-to-All schedule [12]: in each
period each node is allowed to send one flit to any other node. This means that
in each period each node can receive at most one flit from each other node. Links
between nodes have a width of 69 bits: 64 bits for the payload of each flit, 2 bits
for adressing the target node, another 2 bits for adressing the sender node and 1
bit for the ready signal. The platform does not have any speculative components
as it is developed to have a predictable behaviour. Therefore, it is sufficient to
execute each program once. Repeating the execution leads to exactly the same
results.
5 They can be downloaded at www.github.com/unia-sik/rcmc.

www.github.com/unia-sik/rcmc

122 M. Frieb et al.

5.1 Comparison of Ready Synchronization in Software and Hardware

In the previous sections, we already presented two code examples: On the one
hand, Code example 1 illustrates how ready synchronization would be realized
as software implementation without hardware support. Thereby, the sender exe-
cutes a while loop and an if statement, which takes several cycles. On the other
hand, Code example 2 shows the minimalistic effort of ready synchronization
with hardware support: the sender node only needs to execute one assembler
instruction. In both implementations, the receiver node has to execute only one
instruction: it sends a ready flit, in the software implementation with a regu-
lar send operation and in the hardware implementation with srdy. However, at
data receival in the software implementation, the receiver always has to distin-
guish if a received flit is a ready or data flit. Altogether, our hardware ready
implementation saves execution cycles and simplifies code, which is beneficial
e.g. for maintainability and code analysis.

5.2 Execution Times

We executed several programs where four nodes work together, e.g. for exchang-
ing data. In the following, we compare software versus hardware implementation
of ready synchronization. Both are implemented in the way we described in the
previous sections. Our programs are (i) four nodes meeting at a barrier and a
(ii) broadcast of 1280 values from one node to three other nodes.6 Furthermore,
we have a (iii) All-to-All broadcast, i.e. all nodes broadcast one 64-bit value to
all other nodes. Finally, we have (iv) a global reduce operation, where a global
sum is computed from values coming from all nodes.

These programs are small building blocks used in distributed memory pro-
grams. The more these building blocks are employed in programs, the bigger is
the effect. All numbers are dependent on the hardware as well as the application
and its implementation.

Table 2. Overview on benchmarks and their results

Name Software ready [cycles] Hardware ready [cycles] Saving

Barrier 237 116 51%

Broadcast 29 764 18 124 39%

All-to-All broadcast 1 167 1 007 14%

Reduce, global sum 1 208 1 055 13%

Table 2 gives an overview of our results. Compared to the software imple-
mentation, the execution time of all programs is reduced in the hardware imple-
mentation. The savings reach from 10% to 50%. As Code examples 1 and 2
6 A broadcast operation with one flit would result in numbers similar to the Barrier

and All-to-All broadcast. Therefore, we took a larger broadcast to give an idea about
what happens when lots of data is transmitted.

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 123

already illustrate, less code is executed. It should be noted that no ready flits
from non-participating nodes interfere these executions. When there would be
some, they would interrupt the software ready implementation and increase its
execution times. However, they would have no impact on the hardware ready
execution times, because they are handled by specialized hardware.

5.3 Impact on Hardware Costs

Now, we check how many slots in the receive buffer would be needed to avoid
overflows. For this, we execute the above programs in the simulator and decrease
the receive buffer size until a buffer overflow occurs. The results can be seen in
Table 3. Thereby, the numbers at No Synchronization represent the buffer space
needed in the worst case when there is no synchronization present. It results
from the maximum number of flits sent by other nodes to one node. Thereby, it
is assumed that all nodes send all their flits at the same time and the receiving
node is not yet ready to process them.

Table 3. Overview on required receive buffer slots

Name No Synchronization
[buffer slots]

Software Ready
[buffer slots]

Hardware Ready
[buffer slots]

Saving

Barrier 2 1 1 0%

Broadcast 1280 251 1 >99%

All-to-All broadcast 3 2 2 0%

Reduce, global sum 2 2 1 50%

Hardware ready flits do not occupy receive buffer slots. Therefore, less or
in the worst case equal receive buffer slots are required. As before, there are no
other nodes sending interfering ready flits. Otherwise, more buffer slots would
be required in the software implementation. At the barrier and reduce program,
only two buffer slots are occupied without synchronization. This is because of the
implementation of these programs, where tree-based algorithms are realized. At
the broadcast implementation, 1280 64-bit values are to be broadcasted, which
are 1280 flits. As can be seen in Table 3, a lot of buffer slots can be saved. The
reason is the implementation: it is not one node sending flits to all other nodes.
Instead, the broadcast operation is distributed in the network. Thus, there are
intermediate nodes having to receive data and forward it to other nodes. In the
software ready implementation, they need too much time to process flits. New
flits arrive faster than the old ones are processed. Therefore, more and more flits
retain at the intermediate nodes. In the hardware ready implementation, code
parts are shorter and processing can take place faster. Therefore, it is avoided
that buffers run full.

For estimation of the hardware costs, we made a synthesis of the FPGA
model for an Altera Cyclone IV FPGA using Altera Quartus 16.0. Since scaling

124 M. Frieb et al.

Table 4. Overview on required hardware resources

Component ALMs Registers Memory bits

Hardware ready 109 34 0

One 64-bit receive buffer slot 139 65 0

is proportional to the number of nodes, we synthesized 4 nodes and scaled the
numbers in Table 4 to one node. Hardware logic is measured in Logic Elements7

and registers. Table 4 illustrates that implementing hardware ready costs 116
additional LEs at each node and 34 additional registers (the total layout with 4
nodes including hardware ready needs around 53 300 LEs and 21 500 registers).
One receive buffer slot requires 139 LEs and 65 registers and there are 32 of
them in each node. Therefore, saving only one receive buffer slot already pays
the hardware logic needed for ready synchronization.

6 Conclusion

When parallel programs diverge during their execution, nodes may send data to
other nodes that are not yet ready to process it. This is no problem in distributed
systems, where receive buffers are huge. However, in many-core processors with
NoCs receive buffers and core-local memory are limited. Therefore, data should
only be sent when receiver nodes are ready to process it. Thus, a systematic syn-
chronization mechanism should be applied. To keep network utilization low, we
presented synchronization with one ready flit. It is sent from the node that wants
to receive data to the intended sender node. The sender node does not start send-
ing until the ready flit arrives. When it arrives, it knows that the receiver node
is ready to handle incoming flits and starts sending. This simple principle can
be implemented in software, but is less performant than an implementation in
hardware. For an efficient hardware implementation, we added two new instruc-
tions srdy and bnr, a 1-bit signal from the send buffer to the receiver node and
a hardware bit array (plus management logic) at the receiver. The latter allows
to check if a specific node is ready to receive flits. Our evaluation shows that
global communication operations execute 10–50% faster and need fewer receive
buffer slots. By saving buffer slots, our hardware ready synchronization pays
itself as it requires only a small amount of additional logic.

Acknowledgement. The authors thank Ingo Sewing for his efforts implementing our
lightweight hardware synchronization in the RC/MC architecture.

7 Altera uses the term Logic Element for their elementary logic block, basically a
lookup table with 4 inputs and 1 output (4-LUT).

Lightweight Hardware Synchronization for Avoiding Buffer Overflows in NoC 125

References

1. Agarwal, A., Iskander, C., Shankar, R.: Survey of network on chip (NoC) architec-
tures & contributions. J. Eng. Comput. Archit. 3(1), 21–27 (2009)

2. Bjerregaard, T., Mahadevan, S.: A survey of research and practices of network-on-
chip. ACM Comput. Surv. (CSUR) 38(1), 1–51 (2006)

3. Borkar, S.: Future of interconnect fabric: a contrarian view. In: Workshop on Sys-
tem Level Interconnect Prediction, SLIP 2010, pp. 1–2 (2010)

4. Chrysos, G.: Intel R© Xeon Phi coprocessor (codename knights corner). In: Hot
Chips 24 Symposium (HCS), 2012 IEEE, pp. 1–31. IEEE (2012)

5. Coenen, M., Murali, S., Ruadulescu, A., Goossens, K., De Micheli, G.: A buffer-
sizing algorithm for networks on chip using TDMA and credit-based end-to-end
flow control. In: Proceedings of the 4th International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ ISSS 2006, pp. 130–135. IEEE
(2006)

6. Goossens, K., Dielissen, J., Radulescu, A.: Æthereal network on chip: concepts,
architectures, and implementations. IEEE Design Test Comput. 22(5), 414–421
(2005)

7. Kung, H.T., Morris, R.: Credit-based flow control for ATM networks. IEEE Netw.
9(2), 40–48 (1995)

8. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach. Pearson,
London (2012)

9. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 3.1. High Performance Computing Center Stuttgart (HLRS) (2015).
http://mpi-forum.org/docs/mpi-3.1/mpi31-report-book.pdf

10. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: Reduced complexity many-core:
timing predictability due to message-passing. In: Knoop, J., Karl, W., Schulz, M.,
Inoue, K., Pionteck, T. (eds.) ARCS 2017. LNCS, vol. 10172, pp. 139–151. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54999-6 11

11. Mische, J., Ungerer, T.: Low power flitwise routing in an unidirectional torus with
minimal buffering. In: Proceedings of the Fifth International Workshop on Network
on Chip Architectures, NoCArc 2012, pp. 63–68. ACM, New York (2012)

12. Mische, J., Ungerer, T.: Guaranteed service independent of the task placement in
NoCs with torus topology. In: Proceedings of the 22nd International Conference
on Real-Time Networks and Systems, RTNS 2014, pp. 151–160. ACM, New York
(2014)

13. Rattner, J.: An experimental many-core processor from Intel Labs. Presenta-
tion (2010). http://download.intel.com/pressroom/pdf/rockcreek/SCC Announce
ment JustinRattner.pdf

14. Raynal, M., Helary, J.M.: Synchronization and Control of Distributed Systems
and Programs. Wiley Series in Parallel Computing. Wiley, Chichester (1990).
(Trans: Synchronisation et contrôle des systèmes et des programmes réparties,
Paris, Eyrolles). http://cds.cern.ch/record/223733

15. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall, Upper Saddle River (2007)

16. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks. Pearson, London (2010)

http://mpi-forum.org/docs/mpi-3.1/mpi31-report-book.pdf
https://doi.org/10.1007/978-3-319-54999-6_11
http://download.intel.com/pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.pdf
http://download.intel.com/pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.pdf
http://cds.cern.ch/record/223733

126 M. Frieb et al.

17. Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar, N.,
Borkar, S.: An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE J.
Solid-State Circ. 43(1), 29–41 (2008)

18. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,
M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the tile processor. IEEE Micro 27(5), 15–31 (2007)

Network Optimization for Safety-Critical
Systems Using Software-Defined Networks

Cora Perner(B)

Airbus Group Innovations, Taufkirchen, Germany
cora-lisa.perner@airbus.com

Abstract. Software-Defined Networking allows to separate traffic han-
dling from network management. This – in combination with potential
cost savings – makes it interesting for areas for which it has not been
originally designed: safety-critical systems such as aeroplanes or power
grids. These require resilience against faults and failures as well as pre-
dictable timing and availability. Network optimization provides a mean
to incorporate these demands during the design stage of critical systems
while taking limitations such as capacities into account.

This paper focuses on obtaining network configurations that satisfy
the demands of safety-critical systems. To this end, this paper studies
example topologies of both critical and non-critical systems to investi-
gate the effect of resilient routing on network and traffic parameters and
solve a minimum cost linear optimization problem that incorporates con-
straints of safety-critical traffic.

The results thus obtained are then compared with a capacity-
constrained and an Earliest-Deadline-First placement heuristic. Hence
it can be shown that while heuristics can perform well in some aspects,
they violate either capacity or timing constraints, thus making them
unsuitable for networks that provide safety-critical services.

1 Introduction

Traditionally, where safety-critical systems such as power grids, aeroplanes
or automotive applications require network functionality, a heavy emphasis is
placed on hard-wired physical redundancy and methods such as network calcu-
lus [1] to ensure that critical traffic can achieve its safety goals. These methods
are used to achieve performance goals and to ensure that the critical functional-
ity (e.g. providing control commands to actuators for braking) can be performed
safely. Yet only a small percentage of the traffic across the network is actually
safety-critical, with a larger quantity related to diagnostics, convenience and
management. Notwithstanding, traffic flows with lower requirements obviously
influence those with higher demands (e.g. by potentially congestion of the net-
work, starving critical traffic of resources etc.). Consequently, all traffic demands
need to be analyzed, not just the most critical ones.

Software-Defined Networking (SDN), on the other hand, allows to separate
the handling of traffic from network management. Thus network management
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 127–138, 2018.
https://doi.org/10.1007/978-3-319-77610-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_10&domain=pdf
http://orcid.org/0000-0001-8534-3632

128 C. Perner

can be more flexible and effective [2]. Due to these benefits, SDN is receiving
some attention in areas for which it was not originally designed: for safety-
critical applications. However, safety-critical traffic places some demands that are
not inherent properties of SDN. These requirements derive from the underlying
certification demand for proof that no single fault may result in a catastrophical
failure [3, S.2-F-47]. Additionally, some traffic (e.g. a braking signal) needs to
arrive at its destination within a given time. Hence, for each critical demand,
the following conditions need to be satisfied:

1. resilience against faults and failures
2. timing/predictability guarantees (some traffic must be delivered to its desti-

nation within a given time)
3. availability

Network optimization provides a mean to incorporate these demands of crit-
ical systems while taking the limitations of SDN into account. Current network
optimization efforts e.g. [4–7] focus mainly on balancing network loads. However,
for safety-critical systems a different approach is needed. Here, the demands for
network management are based on the functionalities mentioned above rather
than performance issues of network management. Notwithstanding, the limita-
tions of network capacity still apply.

This paper focuses on methods to obtain SDN configurations that satisfy
the demands given. To this end, an algorithm is obtained that provides optimal
routing for a given traffic matrix with a given network topology, provided the
network can deal with all demands. The main contribution is to include all
traffic demands of safety-critical systems (resilience, timing, availability) in the
optimization problem. Here the inclusion of latency is of particular importance,
as it accounts the effect that every routing also influences the queuing delay
of the other flows sharing that particular link. For safety-critical system, this
analysis needs to be performed prior to deployment, hence network changes and
thus the effects of the SDN controller are not considered.

The remainder of this work is organized as follows: a brief overview about
similar efforts is provided in Sect. 2, while Sect. 3 describes the optimization
problem. Details on the networks investigated and the experimental setup are
given in Sect. 4. Finally, the results obtained are discussed in Sect. 5.

2 Related Work

In the past years, some research has been conducted in the area of SDN resilience.
For example, [6] presents a framework for SDN to abstract resilience functions
through so-called Management patterns to describe the interactions between
different resilience mechanisms. These patterns specify requirements which are
satisfied through the assignment to particular components by a combination of
a knowledge-base and machine-learning based approaches.

An alternative approach [5] investigates the recovery from failure in SDN
by performing run-time optimization using iterative routing of feasible solutions

Network Optimization for Safety-Critical Systems 129

until optimality is achieved. However, their only constraint is the link capacity,
they do not take the requirements of the traffic into account. A similar approach
is presented in [8]. While not using an iterative approach, it focuses on minimiz-
ing operational cost in finding a recovery path while simultaneously trying to
minimize the flow operations needed.

Some publications also investigated resilient routing for other network types.
The change in complexity between resilient and non-resilient IP routing has been
addressed in [9]. The authors compared various heuristic objective functions for
their effect on link utilization and average path length. It was found that while
heuristics improve certain characteristics, others will be negatively affected, thus
special care needs to be taken during network design to select the appropriate
strategy.

Optimization for non-resilient networks has also been a prospering research
topic. Among them, [7] focuses on minimizing path length of packet forwarding
and switch memory usage under the constraints of forwarding table entries. On
the other hand, [10] extends the problem by also considering the facility place-
ment i.e. where the traffic sources and demands are placed. While it dynamically
changes traffic routing and demands, it does not consider delay-sensitive traffic.

Non-functional safety requirements have been less frequently considered. For
example, [11] investigates a delay-constrained routing problem for a M/M/1
arrival rate, while [12] minimize the latency of the flow with the highest delay
bound in the network using shortest path and greedy algorithms as well as
iterative versions thereof.

Beyond that, some papers have also investigated the safety-critical use of
SDN. While [13] reviews general challenges and security issues, [14] provides
an overview of how SDN (positively and negatively) can influence the network
resilience. Finally, [15] describes a mechanism to provide one-link fault tolerance
by using the fast-failover groups feature of OpenFlow.

While these papers address important points, they do not consider the traf-
fic constraints relevant to most critical systems (see Sect. 1). Taking those into
account is the key feature of this paper.

3 Problem Formulation

Thus a software-defined network constituting of a number of network switches,
with a given topology and links between them is considered. Across this network
a number of demands needs to be routed. This network consists of network
switches s ∈ S, with the number of forwarding rules rs and the throughput of
the switch cs. The network links (i, j) ∈ L have a capacity c[i, j] of the link
(i, j) and cost a[i, j] of using this link. This network is used to satisfy the traffic
demands d ∈ R

3 from a source switch src ∈ S to a destination switch dst ∈ S.
Each demand is composed of a bandwidth demand qnt[d], a maximum latency
of dΔt and the resilience k required, i.e. how many independent paths must be
provided. Beyond the requirements originating from the traffic demands, three
constraints apply. Firstly, the maximum number of forwarding rules rmax that

130 C. Perner

may be placed at each SDN switch. Secondly, the maximum capacity cmax that
each switch can handle. Thirdly, the maximum bandwidth bwmax of each link.

The traffic demands are satisfied through the according placement of flows
by the introduction of the variable x[r, d, i, j] ∈ X defined as

x[r, d, i, j] =

{
1 if d ∈ (i, j)
0 if d /∈ (i, j)

. (1)

where r = {1, . . . , k} of the resilient path, since this paper does not consider
multipath routing. The latency for each demand can be obtained from∑

(i,j)∈L

tq[d] + tpp + tt
∑
s∈S

tpr = dΔt (2)

i.e. the sum of the delay due to propagation tpp, transmission tt, processing
tpr and queueing tq. This allows to formulate the minimum cost optimization
problem:

∀r ∈ R : min
∑
d∈D

∑
(i,j)∈L

a[i, j] · x[r, d, i, j] · qnt[d] (3)

subject to the placement of all demands

∀d ∈ D :
∑
r∈R

∑
(src[d],j)∈L

x[d, src[d], j] = k (4)

at the source node and all requests at the destination node:

∀d ∈ D :
∑
r∈R

∑
(i,dst[d])∈L

x[d, i,dst[d]] = k (5)

To ensure flow continuation, it needs to be ensured that all required flows are
forwarded:

∀r ∈ R : ∀d ∈ D : ∀s ∈ S :
∑

(j,s)∈L

x[r, d, j, s] + (if s = src[d] then 1)

−
∑

(s,j)∈L

x[r, d, s, j] − (if s = dst[d] then 1) = 0 (6)

Furthermore, the maximum available capacity cmax at the node

∀s ∈ S :
∑

r∈R

∑

d∈D

∑

(s,j)∈L

x[r, d, n, j] · qnt[d] +
∑

r∈R

∑

d∈D

∑

(i,s)∈L

x[r, d, i, s] · qnt[d] ≤ cmax

(7)
and the maximum capacity bwmax at each link

∀(i, j) ∈ L :
∑
r∈R

∑
d∈D

x[r, d, i, j] · qnt[d] ≤ bwmax[i, j] (8)

Network Optimization for Safety-Critical Systems 131

must not be exceeded. As a full duplex link is assumed in this case, the limit
applies to each direction. Since the internal memory for forwarding rules in the
SDN switches is limited, the number of flow table entries needs to be constrained
likewise:

∀s ∈ S :
∑

r∈R,d∈D

∑
(s,j)∈L

x[r, d, n, j] ≤ rmax (9)

Additionally, (10) and (11) ensure that the maximum latency for each demand
is not exceeded

∀r ∈ R, d ∈ D :
∑

(i,j)∈L

tq[d] + tpp + tt
∑
s∈S

tpr ≤ dΔt (10)

and that no links are shared between resilient flows:

∀d ∈ D : ∀(i, j) ∈ L :
∑
r∈R

x[r, d, i, j] +
∑
r∈R

x[r, d, j, i] ≤ 1 (11)

Both requirements follow from the application to safety-critical traffic, where the
formulation of (11) assumes that a failure affects both flow directions. In that
context, (9) is specific to the utilization of SDN and would need to be adapted
accordingly for non-SDN networks.

4 Experimental Setup

To begin with, the networks and traffic parameters under study are described.
Two different types of network topologies were used: critical and standard net-
works. In this context, standard means that they are not commonly associated
with critical traffic demands. To this end, the PDH and DI-YUAN networks
(see Figs. 1a and b) with the associated traffic demands and link costs were
investigated a as well as the AFDX [16] and NOBEL-EU (see Figs. 1c and d)
networks as examples for critical networks. For all but the AFDX network, this
information has been obtained from the SND-LIB [17] library. In those figures,
the circles represent network switches where flows may enter or leave the net-
work, while the arrows represent bidirectional links between switches. Attached
to the switches are end-systems (not shown) which generate traffic demands, e.g.
a control computer communicating with an actuator.

Due to the additional constraints of our approach, the maximum capacity
was selected from each definition. Since maximum latency or resilience was not
part of the specification, the resilience was set to k = 2, while the maximum
latency was set to follow a Gaussian distribution with μ = 20ms i.e. 10–20%
less than the number of demands and σ = 5ms for both the DI-YUAN and
the PDH network. For the critical networks, k was likewise set to 2, while the
latency was set to follow the distribution described in Table 2 which was based
on the information for flight data recording in [18, AMC CAT.IDE.A.190]. For
reasons detailed in Subsect. 5.2, 200 randomly selected demands were used for
those networks. In addition, a fixed value for the link cost of the AFDX network

132 C. Perner

(a) PDH network (b) Di-Yuan network (c) AFDX
network[16]

(d) NOBEL-EU
network

Fig. 1. Network topologies used

Table 1. Network parameters

Network Nodes Links Demands

DI-YUAN 11 42 22

PDH 11 34 24

AFDX 8 15 200

NOBEL 28 41 200

Table 2. Probability distribution for
Δt = Δtmax[d] for critical networks

Δt 125 25 500 1000 2000 4000 8000

P(Δt) [%] 2.5 7.5 15 50 15 7.5 2.5

of 10 for every link was assumed. The main properties of the networks under
study are provided in Table 1.

The AFDX network used in this study follows the description in [16]. The
information useful for the problem considered in this paper is summarized in
Tables 3 and 4.

Table 3. Number of VLANs from
source src to destination dst [16]

src/dst 1 2 3 4 5 6 7 8

1 71 78 34

2 72 77 34

3 90 212 35 42 52

4 97 134 37 35 48

5 80 72 64

6 82 61 52

7 52 47 59 67

8 51 45 43 52

Table 4. AFDX Frame lengths [16]

Frame length
(bytes)

Number
of VLANs

0–150 561

151–300 202

301–600 114

601–900 57

901–1200 12

1201–1500 35

>1500 3

4.1 Assumptions

In order to reduce the problem space, the following assumptions were made with
no loss of generality:

– src[d] �= dst[d]
– separate output queue for each link

Network Optimization for Safety-Critical Systems 133

– identical switch capacities
– identical link capacities
– the bandwidth of an SDN switch is 107 Bits/s (compare [19])

Generally, the delay for each flow in the network is calculated as in (2). However,
as all terms save tq are constant (and depend on fixed, physical properties of the
network), they are assumed to be zero i.e. tpp = tt = tpr = 0. Thus the latency
solely depends on the number of flows sharing the link and the sending capacity
of the link.

Since the focus of this paper does not lie on the queuing model, a worst case
scenario is assumed (i.e. all demands need to be satisfied simultaneously) with
no preemption (FIFO). Thus a simplified model for the delay can be constructed
as follows:

Δt =

{∑
d∈D

∑
(i,j)∈L

x[r,d,i,j]·qnt[d]
bwmax[i,j] if the path traverses(i, j)

0 otherwise
(12)

To avoid including an additional dimension into the problem (and thus being
no longer able to use linear programming) an auxiliary variable y[r, d, i, j], with
r ∈ R, d ∈ D, (i, j) ∈ L is introduced where

∀r ∈ R : ∀d ∈ D : ∀(i, j) ∈ L : y[r, d, i, j] ≤ u · x[r, d, i, j] (13)

with u = max(dΔt).

∀r ∈ R : ∀d ∈ D : ∀(i, j) ∈ L : y[r, d, i, j]

≥
∑
r1∈R

∑
d1∈D

x[r, d1, i, j] · qnt[d1]
bwmax[i, j]

− (u · 1 − x[r, d, i, j]) (14)

and
∀r ∈ R : ∀d ∈ D : ∀(i, j) ∈ L : y[r, d, i, j] ≥ 0 (15)

applies. Consequently, the constraint for time delay of a flow can be simplified
from (10) to

∀r ∈ R, d ∈ D :
∑

(i,j)∈L

y[r, d, i, j] ≤ dΔt (16)

4.2 Baseline

For comparison with the optimization algorithm in this paper, the shortest path
and Dijkstra algorithm of Python’s networkx software package as well as two
simple heuristics are used. Additionally, the first heuristic (Heur. Capa.) uses
Dijkstra’s algorithm until the link capacity is exceeded, at which point that link
can be no longer used, while the second (Heur. EDF) implements a simple Ear-
liest Deadline First (EDF) schedule, where the path with the smallest resulting
latency is selected for placement first and the placement of successive flows must
not violate the requirements of the previous ones. Those were selected as the
capacity and latency requirements were observed to be frequently violated by
applying the shortest path algorithms.

134 C. Perner

5 Numerical Results and Discussion

For critical systems, it is likely that the optimization will be performed prior
to deployment. Hence, no detailed timing analyses are included in this paper.
However, some observations are made in that respect in Subsect. 5.2. What is
more, since the results of the shortest path did not noticeably differ from those of
the Dijkstra algorithm, only the latter is discussed in the analysis. Additionally,
as no significant additional insights could be gained, only one standard and one
resilient network is discussed in detail.

Since the latency requirements have been randomly generated (see Sect. 4),
ten problem instances were created and solved for each network. The effect of
the placement on cost, flow table entries as well as latency and number of hops
(for the standard and resilient case) have been investigated further. These results
are described in more detail in the following paragraphs.

5.1 Standard Networks

The results for the flow placement with the various algorithms can be obtained
from Fig. 2, detailing the various performance characteristics. It can be noted
that the results for the Dijkstra algorithm and the capacity- constrained heuristic
are identical in this case, since the largest possible capacities from the definitions
were obtained, as k ·qnt has to be transported due to the resilience requirement.
However, this cannot generally be assumed to be the case.

Figure 2a shows that the cost varies significantly between the methods. While
the cost obtained through Dijkstra and the heuristics was identical through
all runs (since the different demands have not been considered), the cost for
the optimized rule placement varied significantly. What is more, it was only
about half of that obtainable through the other methods. The lower cost of the
EDF heuristic can be explained through the consideration of the latency, since
expensive links are not used by that many flows as the maximum number of
flows is mainly limited by the most critical demand placed there.

The distribution of flow placements is depicted in Fig. 2b. Here, the Dijksta
and capacity heuristic both have a lower value since they only use the shortest
paths which means fewer hops for each flow and thus fewer flow table entries.
Additionally, the EDF heuristic has more than the optimization, since the former
uses the shortest path until one flow’s latency requirement is violated.

The time delay Δt for the resilient case is shown in Figs. 2c and d. Here,
the optimization produces higher values than the other methods, since the cost
minimization leads to on average, a significantly lower link utilization, which is
shown in Fig. 2e and further illustrated by the number of hops for the resilient
case in Fig. 2f. In the standard case (not depicted) it was uniformly one (safe for
one flow in the optimization) and thus has a negligible impact.

Network Optimization for Safety-Critical Systems 135

Optim. Dijkstra Heur. Capa. Heur. EDF
3

4

5

6

7

×1010 Relative cost

(a) Cost

Optim. Dijkstra Heur. Capa. Heur. EDF

5

10

15

20

25

Flow table entries

(b) Flow table entries

Optim. Dijkstra Heur. Capa. Heur. EDF

2

4

6

8

Latency (Std) [s]

(c) Δt - Standard

Optim. Dijkstra Heur. Capa. Heur. EDF

5

10

15

20

Latency (Res) [s]

(d) Δt - Resilient

Optim. Dijkstra Heur. Capa. Heur. EDF
0

250

500

750

1000

1250

1500

Used capacity (Link)

(e) Link capacity

Optim. Dijkstra Heur. Capa. Heur. EDF

2

4

6

8

Number of hops (Res)

(f) Number of hops (Res)

Fig. 2. Results standard network (PDH)

5.2 Critical Networks

Empiric performance analyses showed that calculation time for optimization has
a nearly quadratic growth rate for every hundred demands (e.g. if a problem with
100 demands needs about 60 s to run, one with 200 needs about 275 s), while the
number of links and nodes do not have a pronounced effect. This is due to the
significant number of constraints that need to be created and evaluated, as the
placement of every demand influences every other demand in the network and
also the reason to use a smaller number of demands of 100 for AFDX.

What is more, while standard networks with around 20 demands can easily
and generally quickly be calculated with standard hardware and open-source
software, the constraints needed for the full AFDX dataset need more than the

136 C. Perner

Optim. Dijkstra Heur. Capa. Heur. EDF

5000

10000

15000

20000

25000

Relative cost

(a) Cost

Optim. Dijkstra Heur. Capa. Heur. EDF
75

100

125

150

175

200

225
Flow table entries

(b) Flow table entries

Optim. Dijkstra Heur. Capa. Heur. EDF

10

20

30

40

50

60

Latency (Std) [s]

(c) Δt - Standard

Optim. Dijkstra Heur. Capa. Heur. EDF

50

100

150

200

250

300
Latency (Res) [s]

(d) Δt - Resilient

Optim. Dijkstra Heur. Capa. Heur. EDF
0

250

500

750

1000

1250

1500

Used capacity (Link)

(e) Link capacity

Optim. Dijkstra Heur. Capa. Heur. EDF
2

3

4

5

6
Number of hops (Res)

(f) Number of hops (Res)

Fig. 3. Results resilient network (AFDX)

internal memory of the GNU Linear Programming Kit and half the dataset
already requires about 64 GB of RAM, thus making it only solvable on special
hardware and commercial software. The results for the flow placement with the
various algorithms can be obtained from Fig. 3. As for the PDH network, the
results for the Dijkstra algorithm and the capacity-constrained heuristic are
identical in this case, as the largest possible capacities were taken from the
definitions, but this will not generally be the case.

The distribution of flow placements is depicted in Fig. 3b. Here, the opti-
mization has the lowest number, while the Dijkstra and heuristics have a much
larger value on average. This is due to the much higher amount of hops for the
resilient path, which of course results in fewer entries per switch. This is also
reflected in the time delay Δt for the standard and the resilient case as shown

Network Optimization for Safety-Critical Systems 137

in Figs. 3c and d. As with the standard networks, since the main goal of cost
minimization results on average in a significantly lower link utilization, which is
shown in Fig. 3e and further illustrated by the number of hops for the resilient
case in Fig. 3f. With one exception in the optimization solution, the number of
hops was uniformly one for all algorithms.

6 Conclusion and Future Work

This paper has shown that while heuristics may theoretically result in bet-
ter performance, they cannot be practically applied since they violate some or
all constraints or result in unnecessarily costly design. Using the optimization
method discussed, it could be shown that network optimization can take all
necessary traffic considerations into account, which is paramount in using SDN
for safety critical system. While alternative shortest path algorithms are sig-
nificantly faster, they are unable to account for all requirements, thus proving
unsuitable for safety-critical systems.

For future work, it is planned to investigate the effect of various objective
functions as well as parameter variation on overall network performance.

Acknowledgment. This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) under Grant Nr. 16KIS0537K (DecADe).

References

1. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45318-0

2. Kreutz, D., Ramos, F.M.V., Verssimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

3. European Aviation Safety Agency: Certification specifications and accept-
able means of compliance for large aeroplanes. Technical report CS-
25 and AMC, EASA (2015). http://www.easa.europa.eu/official-publication/
certification-specifications. Accessed 11 Dec 2017

4. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, HotNets 2016, pp. 50–56. ACM, New York (2016)

5. Paris, S., Paschos, G.S., Leguay, J.: Dynamic control for failure recovery and flow
reconfiguration in SDN. In: 2016 12th International Conference on the Design of
Reliable Communication Networks (DRCN), pp. 152–159, March 2016

6. Smith, P., Schaeffer-Filho, A., Hutchison, D., Mauthe, A.: Management patterns:
SDN-enabled network resilience management. In: 2014 IEEE Network Operations
and Management Symposium (NOMS), pp. 1–9, May 2014

7. Prabhu, S., Dong, M., Meng, T., Godfrey, P.B., Caesar, M.: Let me rephrase that:
transparent optimization in SDNs. In: Proceedings of the Symposium on SDN
Research, SOSR 2017, pp. 41–47. ACM, New York (2017)

https://doi.org/10.1007/3-540-45318-0
http://www.easa.europa.eu/official-publication/certification-specifications
http://www.easa.europa.eu/official-publication/certification-specifications

138 C. Perner

8. Astaneh, S., Heydari, S.S.: Multi-failure restoration with minimal flow operations
in software defined networks. In: 2015 11th International Conference on the Design
of Reliable Communication Networks (DRCN), pp. 263–266, March 2015

9. Hartmann, M., Hock, D., Menth, M., Schwartz, C.: Objective functions for opti-
mization of resilient and non-resilient IP routing. In: 2009 7th International Work-
shop on Design of Reliable Communication Networks, pp. 289–296, October 2009

10. Papadimitriou, D., Colle, D., Demeester, P.: Mixed-integer optimization for the
combined capacitated facility location-routing problem. In: 2016 12th International
Conference on the Design of Reliable Communication Networks (DRCN), pp. 14–
22, March 2016

11. Hijazi, H., Bonami, P., Ouorou, A.: Robust delay-constrained routing in telecom-
munications. Ann. Oper. Res. 206(1), 163–181 (2013)

12. Cattelan, B., Bondorf, S.: Iterative design space exploration for networks requir-
ing performance guarantees. In: 2017 IEEE/AIAA 36th Digital Avionics Systems
Conference (DASC), pp. 1–10, September 2017

13. Sampigethaya, K.: Software-defined networking in aviation: opportunities and chal-
lenges. In: Integrated Communication, Navigation, and Surveillance Conference
(ICNS), pp. 1–21, April 2015

14. Mas Machuca, C., Secci, S., Vizarreta, P., Kuipers, F., Gouglidis, A., Hutchison,
D., Jouet, S., Pezaros, D., Elmokashfi, A., Heegaard, P., Ristov, S., Gusev, M.:
Technology-related disasters: a survey towards disaster-resilient software defined
networks. In: 2016 8th International Workshop on Resilient Networks Design and
Modeling (RNDM), pp. 35–42, September 2016

15. Pfeiffenberger, T., Du, J.L., Arruda, P.B., Anzaloni, A.: Reliable and flexible com-
munications for power systems: fault-tolerant multicast with SDN/OpenFlow. In:
2015 7th International Conference on New Technologies, Mobility and Security
(NTMS), pp. 277–283, July 2015

16. Charara, H., Scharbarg, J.L., Ermont, J., Fraboul, C.: Methods for bounding end-
to-end delays on an AFDX network. In: 18th Euromicro Conference on Real-Time
Systems (ECRTS 2006), pp. 193–202 (2006)

17. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: SNDlib 1.0-survivable
network design library. Networks 55(3), 276–286 (2009). http://sndlib.zib.de.
Accessed 01 Sept 2018

18. European Aviation Safety Agency: Commission regulation (EU) no 965/2012 on
air operations and related EASA decisions (AMC & GM and CS-FTL.1). Techni-
cal report regulation (EU) 965/2012, EASA (2016). http://www.easa.europa.eu/
document-library/regulations. Accessed 11 Dec 2017

19. Durner, R., Blenk, A., Kellerer, W.: Performance study of dynamic QoS man-
agement for OpenFlow-enabled SDN switches. In: 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS). pp. 177–182, June 2015

http://sndlib.zib.de
http://www.easa.europa.eu/document-library/regulations
http://www.easa.europa.eu/document-library/regulations

CaCAO: Complex and Compositional
Atomic Operations for NoC-Based

Manycore Platforms

Sven Rheindt(B), Andreas Schenk, Akshay Srivatsa, Thomas Wild,
and Andreas Herkersdorf

Chair for Integrated Systems, Technical University Munich, Munich, Germany
{sven.rheindt,andreas.schenk,srivatsa.akshay,thomas.wild,

herkersdorf}@tum.de

Abstract. Tile-based distributed memory systems have increased the
scalability of manycore platforms. However, inter-tile memory accesses,
especially thread synchronization suffer from high remote access laten-
cies. Our thorough investigations of lock-based and lock-free synchro-
nization primitives show that there is a concurrency dependent cross-
over point between them, i.e. there is no one-fits-all solution. Therefore,
we propose to combine the conceptual advantages (no retries and lock-
free) of both variants by using dedicated hardware support for inter-tile
atomic operations. For frequently used and highly concurrent data struc-
tures, we show a speedup factor of 23.9 and 35.4 over the lock-based and
lock-free implementations respectively, which increases with higher con-
currency.

Keywords: Atomic operations · Remote synchronization
Compare-and-swap · Distributed shared memory · Network-on-Chip

1 Introduction

In the last decade, the power wall limited the increase of processor frequency.
With the advent of mainstream multicore platforms, this technological prob-
lem was tackled by distributing applications over multiple cores that still used
one common memory. Further scalability was introduced by transitioning to dis-
tributed shared memory architectures to lower memory access contention and
hotspots [1]. An example is our hybrid tiled architecture depicted in Fig. 1, with
Network-on-Chip (NoC)-based interconnect and several bus-connected cores per
tile, sharing a tile local memory.

Most distributed memory platform make use of the Message-Passing-
Interface (MPI) programming model, but there is still a demand for shared
memory programming due to its ease of use [1,2]. But, multicore architectures
in combination with shared memory programming introduce the challenge of pro-
viding atomic memory accesses to local/remote shared data structures. Thread
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 139–152, 2018.
https://doi.org/10.1007/978-3-319-77610-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_11&domain=pdf

140 S. Rheindt et al.

synchronization is even more challenging for distributed shared than for purely
shared memory systems, since the widely used NoC interconnect does not inher-
ently allow for atomic memory accesses. Additionally, distributed shared memory
architectures exhibit non-uniform memory access (NUMA) properties. Applica-
tion performance therefore highly depends on data-to-task locality and efficient
synchronization primitives.

Fig. 1. Hybrid interconnect distributed
shared memory platform with atomics unit

Synchronization can be categorized
into three classes of atomic primitives.
Lock - based primitives atomically
lock the critical section. Classical locks
are often implemented using hardware
support in the form of test-and-set
(TAS) or compare-and-swap (CAS).
Software based lock-free mechanisms
use general-purpose atomic opera-
tions like CAS or linked-load/store-
conditional (LL/SC), which are lock-
free and provided by the underly-
ing hardware often as ISA exten-
sions. Hardware based primitives use
so called special-purpose atomic oper-
ations to implement the whole critical
section in dedicated hardware without
using locks. An example is the class of
fetch-and-ops [3–6].

Due to the NUMA properties of distributed shared memory architectures,
different aspects of synchronization get a new weight. If, for example, an appli-
cation loops over a CAS until it is successful, the retry penalty/NoC travel time
for a failed CAS is much higher for remote than for local operations. Even though
a purely lock-based or lock-free software implementation might be favorable for
a given concurrent data structure in a conventional bus-based system, totally
different results might be true for distributed shared memory architectures.

In this paper, we therefore investigate the effects of lock-based and lock-
free software synchronization primitives on a distributed shared memory archi-
tecture. We further propose special-purpose hardware implementations for effi-
cient remote atomic operations. We couple the advantages of both lock-based
and lock-free primitives with remote execution of the critical section in ded-
icated hardware to tackle the challenge of NUMA operations on distributed
shared memory platforms. We call this combination complex and compositional
atomic operations (CaCAO). We compare our dedicated hardware implementa-
tion to lock-based and lock-free software based variants that use partial hardware
support.

The rest of the paper is organized as follows. We describe the related work
in Sect. 2. In Sect. 3, we analyze and compare existing synchronization prim-
itives and propose the use of complex and compositional atomic operations.

CaCAO: Complex and Compositional Atomic Operations 141

Architectural details of our implemented hardware prototype are given in Sect. 4.
In Sect. 5, we present and discuss our experimental results, before we finally con-
clude this paper and give an outlook to future work in Sect. 6.

2 Related Work

On the one hand, the trend of lock-based synchronization leads towards effi-
cient lock implementations [1,7–9] without support for general purpose atomic
primitives. On the other hand, many - but not all - multicore platforms provide
lock-free synchronization capabilities [2–4,6,10]. For example Mellanox, earlier
Tilera, - who provides one of the modern tile-based architectures - supports the
CAS primitive only for their GX platform [2], not for the Pro platform [11].

Authors in [12] developed the MCS-lock to overcome the performance bot-
tleneck and other limitations of simple, ticket and various queue based spinlocks
[4,7,10,13]. Through spinning on local variables only, they require O(1) network
operations for acquiring a remote lock. The MCS-lock can be efficiently imple-
mented in software, but needs an atomic swap operation for basic functionality
and the CAS primitive to provide full features like FIFO ordering and starva-
tion freedom. This was adopted by the authors of [7,8] in their two consecutive
works on efficient lock-based synchronization for NoC-based distributed shared
memory systems. They transitioned from optimized simple and ticket spinlocks
[8] to MCS-locks [7]. Their lock implementations use a hardware loop for local
polling until acquisition. An atomic fetch-and-inc/dec unit is used to integrate
the ticket spinlock and semaphores. They purely focus on optimizing locks by
performing these atomic operations exclusively on special globally addressable
registers in their synchronization unit and not on arbitrary memory locations.
Apart from the swap instruction, they do not support atomic operations on mem-
ory, especially no lock-free primitives. Authors in [9] basically adopt the same
idea of just optimizing lock implementations for distributed memory. Through
optimized lock queue handling, they avoid head-of-line blocking of independent
synchronization requests.

With the lock-free universal primitives CAS and LL/SC, it is possible to
emulate all other atomic primitives or transform lock-based mechanisms into
lock-free ones [3–6]. Authors in [4] convert operations into purely lock-free vari-
ants using the universal primitive LL/SC and the fetch-and-op primitives, that
are common in modern multicore systems. However, they admit that in general
many lock-free mechanisms can get quite complex. Authors in [3] use a standard
2D-mesh NoC interconnect with one core per tile. They suggest a rather complex
combination of CAS as in-cache implementation together with a write-invalidate
coherence policy and a load-exclusive coherence policy extension to minimize the
CAS operations on memory. Furthermore, they recommend a hardware based
serial number extension for the CAS primitive to tackle the ABA problem and
also suggest a fetch-and-add primitive for efficient counters.

To our knowledge, the related work either optimizes lock-based synchro-
nization with efficient lock implementation or investigates purely lock-free vari-
ants [14,15]. Few provide the special purpose fetch-and-increment primitive for

142 S. Rheindt et al.

remote operations on NoC-based systems [1,3]. However, no dedicated hardware
support for more complex special purpose atomic operations are provided by
state-of-the-art distributed shared memory systems.

3 Complex and Compositional Atomic Operations

We classify synchronization primitives into three main categories, that use dif-
ferent amounts and kinds of hardware support:

(α) Software lock-based: using (efficient) hardware lock support
(β) Software lock-free: using hardware CAS or LL/SC
(γ) Dedicated hardware for whole critical section (wait-free)

In this paper, we first describe and compare (α) and (β). Then we propose to
combine their conceptual advantages by using dedicated hardware support (γ)
for complex and compositional atomic operations (CaCAO approach).

A main attribute of synchronization primitives is the number of retries. An
operation has zero retries, if the read-modify-write cycle is non-conditional. This
means, if there is no interfering concurrency on the data structure that makes
a retry of the operation necessary. This holds true, e.g. for the fetch-and-ops,
but not for the CAS, since the latter only writes back if the read value did not
change in the meantime.

3.1 Comparison of the Synchronization Primitives (α) and (β)

(α) A lock-based software implementation of a given function locks the critical
section (CS) that has to be performed atomically. It uses hardware support like
test-and-set to acquire the lock. Whereas - by design - the critical section inside
the lock has zero retries, the lock acquisition itself does not and is not even wait-
free, since no upper bound for the number of retries until lock acquisition can be
given. However, much research has already been done to provide efficient lock
implementations [1,7–9]. In the following, when we refer to lock-based software
primitives, we therefore use a variant with efficient hardware look support.

(β) Lock-free software implementations of a given function can be achieved
with the lock-free universal primitives CAS or LL/SC, that need to be provided
by the hardware. As their names already suggest, their read-modify-write cycle
is conditional and they therefore are not retry-free. A software loop is needed
to repeat the operation until it is successful. The best-case execution time of a
lock-free software primitive can be one try, if no other party interfered in the
meantime. However, the average execution time is heavily dependent on the
concurrency and the worst-case can even lead to starvation. Therefore, these
lock-free implementations are not guaranteed to be wait-free.

A theoretical comparison between (α) and (β) shows that the best-case
execution time of a lock-free software variant is approximately equal to the
execution time of the critical section of a lock-based variant without the time
for acquiring and releasing the lock. The average time of the lock-free variant is

CaCAO: Complex and Compositional Atomic Operations 143

dependent on the interfering concurrency and the thereby necessary retries (as
well as other factors like run-time background traffic). Whereas for the lock-free
variant the average execution time is linear in the number of retries, the average
lock-based execution time is linear in the number of concurrent contenders for
the lock.

This comparison shows that - whereas in the best-case a lock-free imple-
mentation is always better - in the average case there can be a cross-over point
between the lock-based and lock-free implementations. If the concurrency depen-
dent retry rate is greater than a threshold, the lock-based implementation yields
better performance and vice versa. A design time decision between (α) and (β)
would be necessary by the programmer. In Sect. 6 we talk about a more dynamic
decision making as future work.

3.2 CaCAO Approach (γ)

If one only has (α) and (β), no one-fits-all solution would be available. But we
overcome the deficiencies of both software lock-based (α) as well as software
lock-free (β) implementations by combining their conceptual advantages: zero
retries and lock-freeness.

We propose a dedicated hardware (γ) implementation that outsources and
atomically executes the whole critical section in a dedicated hardware module
(near the memory where the shared data is stored), thereby guaranteeing zero
retries by design. Since an upper bound for the execution time can be given, this
approach is not only lock-free, but also wait-free.

In the best-case, the whole execution (NoC travel time plus atomic read-
modify-write cycles) of the lock-free primitives (β and γ) is approximately as
small as the minimal time for lock acquisition of the lock-based variant (α).
More importantly, the average and worst case times for the proposed dedicated
hardware solution (γ) do not rise much, since no interfering concurrency is pos-
sible and therefore no retries are necessary. Especially for remote accesses the
atomic read-modify-write cycles with constant duration after bus grant are much
shorter than the travel time over the NoC. Even if there are several concurrent
contenders, they cannot interfere one another due to the atomic read-modify-
write cycles in hardware, thereby guaranteeing wait-free operation.

This approach has general validity and outperforms the software lock-based
as well as lock-free variants by design. This local or remote site execution in a
dedicated hardware module (CaCAO approach) helps to tackle the data-to-task
locality problem of distributed shared memory architectures.

In contrast to software based lock-free implementations that might get quite
complex [4], CaCAO does not need atomic operations inside the critical section,
since the atomicity is intrinsically provided by the dedicated hardware module.

However, the disadvantage of this approach is its very application specific
nature due to the need of implementing each needed functionality in dedicated
hardware.

In future work, we plan to further extend the functionality and complexity of
CaCAO. Because of the compositional nature of this approach, various already

144 S. Rheindt et al.

(a) lock-based (b) lock-free (c) dedicated hardware

Fig. 2. Message sequence charts for three types of shared counter implementations

implemented as well as future functionalities of our dedicated hardware module
do and can reuse the same hardware blocks.

For the validation of the concept, we implemented and investigated the widely
used fetch-and-add operation in the use case scenario of a shared counter as well
as dedicated hardware implementations of atomic linked-queue enqueue/dequeue
operations. For both scenarios, we implemented and evaluated all three variants
(α), (β) and (γ) on our FPGA prototype as described in Sect. 5. In the following,
these scenarios are briefly explained and used to show the key differences of the
three synchronization variants.

shared_counter_locked(*lck,*cnt)
// HW support for lock
1 lock(lck);
2 tmp = *cnt
3 tmp++;
4 *cnt = tmp;
5 unlock(lck);

shared_counter_lock_free(*cnt)
// HW support for CAS
1 tmp = *cnt;
2 do{
3 old = tmp;
4 tmp = CAS(cnt, old, old+1);
5 }while(tmp != old);

shared_counter_HW(*cnt)
// HW support for whole CS
1 fetch_and_inc(cnt);

Fig. 3. Pseudo code of shared counter
implementation for the three synchroniza-
tion types

Shared Counter Scenario. The
pseudo source codes for the three
synchronization types for the shared
counter for N cores on several tiles are
given in Fig. 3. In Fig. 2 the message
sequence charts are given.
(α) The lock-based software imple-
mentation first acquires a lock (line 1
in Fig. 3) over the NoC, then remote
reads the counter value (2), increments
it (3) locally and writes the value
back to memory (4) before unlock-
ing (5) the critical section. As can be
seen in Fig. 2(a), the critical section
(CS) inside the lock has zero retries,
whereas the lock acquisition itself may
require several retries. An efficient lock
implementation, as shown for lock2,
lowers these through local polling in
hardware at remote site. For (α), hard-
ware support is only provided for effi-
cient locks.

CaCAO: Complex and Compositional Atomic Operations 145

(β) The lock-free software based implementation reads the counter value non-
atomically (1). Then it performs a compare-and-swap on the counter with the
incremented old value (4). It is successful if the counter value did not change in
the meantime (5). Otherwise, the compare-and-swap is reissued with the updated
old value (2–4). This can be seen in Fig. 2(b). Between the read2 (1) and the
CAS2a (4) from T0 to T1, another CAS1 from T2 to T1 happens and updates
the shared value, so that the CAS2a fails and needs a retry (CAS2b).
(γ) The dedicated hardware implementation uses the atomic fetch-and-increment
mechanism. It is retry-free by definition since the read-modify-write operation is
performed atomically in hardware at remote site by sending the whole operation
there (Fig. 2(c)). It is clear that the fetch-and-add operation is standard in many
CPU ISAs. However, these mostly support only local and no remote memory
operations.

Linked Queue Scenario. A more advanced example is the enqueue and
dequeue operation of a linked-list queue. Without loss of generality, we limit this
scenario to tail-enqueue and head-dequeue operations. The tail-enqueue opera-
tion has to atomically update the tail.next pointer only if the read value of
tail.next is still NULL, meaning no other enqueue operation happened in the
meantime. The second step is to set the tail pointer to the new element non-
atomically. Until this operation is finished, all other enqueue attempts result in
a fail and retry.

The head-dequeue operation has to atomically update the head pointer,
which is successful if no other dequeue operation happened in the meantime.

Analog to the shared counter example, (α) only uses hardware support for
efficient lock implementation. (β) is in need for hardware CAS support and (γ)
needs dedicated hardware for the whole enqueue/dequeue operation.

4 Implementation Aspects

We implemented a configurable, resource reusing hardware module for local and
remote atomic operations. As depicted in Fig. 1, it is inside of a modular network
adapter connected to the tile local bus. Besides the atomics unit, the network
adapter provides several other functionalities, like e.g. remote reads and writes,
direct memory accesses, etc. The extension towards atomic operations of the
network adapter consists of submodules for sending (TX) and receiving (RX)
atomic operation requests and the atomics unit containing several operations.

Architectural details. As we use a hybrid NoC-bus-based architecture, the
atomics unit is - as part of the network adapter - connected to the bus. To
perform any atomic operation on memory, it (1) first blocks the bus for any
other accesses, (2) executes the (conditional) read-modify-write cycle on the
memory connected to the bus, before (3) unlocking the bus again. The modify
or conditional write operations of step (2) are performed or evaluated in the
hardware unit to minimize calculation and network time by processing at the
remote tile. This approach basically allows for arbitrary complex operations in

146 S. Rheindt et al.

step (2), that are completely atomic through the exclusive bus usage between (1)
and (3). However, in this paper, we limit ourselves to the set of atomic primitives
described below.

These network triggered atomic operations concur with atomic operations
triggered by local processors and are sequentialized through exclusive usage of
the bus. This modular design with standard interfaces therefore ensures high
adaptability and integrability into existing systems. On our platform as described
in Sect. 5, only support for local atomic swap and CAS is given as ISA of the
cores. However - as for most systems - no support for inter-tile remote atomic
operations is given.

As the atomic primitives described in the next paragraph require a response
or acknowledgement, we implemented them in a synchronous manner. Therefore
each CPU can have one pending request. However, since we have several CPUs
per tile, several pending requests per tile are possible. The maximum number
of pending requests per atomics unit is therefore the total number of CPUs
in the system. These are buffered in the FIFOs of the virtual channel based
packet-switched NoC which are served in a round-robin fashion.

Atomic Primitives. To support the three types of synchronization primitives
(α, β and γ), we implemented the following set of atomic operations:

(a) efficient spinlock implementation
(b) fetch-and-op operations, with op = {Add, Sub, And, Or}
(c) compare-and-swap primitive
(d) CaCAO: linked queue enqueue/dequeue

(a) The efficient spinlock has an integrated hardware loop until lock acquisi-
tion to ensure an O(1) network utilization. Although acquiring a spinlock is in
itself not retry-free and has to be repeated until it is successful, outsourcing the
retry attempts into a remote site hardware loop minimizes the retry-penalty.
Instead of going back and forth over the NoC, even up into system software
- costing several hundreds of clock cycles - the retry penalty of the hardware
loop is only a few cycles due to bus arbitration. A back-off retry threshold with
accompanying “lock not acquired” response is also implemented.

(b) The fetch-and-op primitives follow the same (1)(2)(3) steps. Between (1)
locking the bus and (3) unlocking the bus, the hardware unit performs the (2)
step by (2a) reading/fetching data, (2b) executing the {op}-operation in hard-
ware (2c) writing back the modified data and finally (2d) sending the fetched
data back to the requesting processor. The fetch-and-op primitive has zero retries
since the write-back is non-conditional. Strictly speaking, this primitive can
already be classified as CaCAO, even though the critical section in step (2)
is not very complex.

(c) The compare-and-swap instruction is similar to (b) with the difference of a
conditional write-back, only if the read value is equal to the old value argument
of the CAS. This additional comparison is handled in the hardware module,
whilst reusing the read and write logic already present for (a) and (b).

The CAS can be in need of retries, since between reading the old value by the
CPU (which then issues the CAS) and checking the read value against the old

CaCAO: Complex and Compositional Atomic Operations 147

value inside of the CAS unit. An interfering write accesses can happen, which
would lead to a unsuccessful CAS. Therefore, the CPU will have to repeat the
procedure until it is eventually successful, leading to increasing network load.

A solution to this problem can be given in hardware, if the operation to be
performed on the data can be outsourced to some dedicated logic in hardware.
This possibility is function specific, but we show, that it well serves for certain
frequently used methods, especially for remote atomic operations. We call these
complex and composed atomic operations, as discussed in (d).

(d) CaCAO: Complex and compositional atomic operations. The same (1) (2)
(3) steps are followed. However, step (2) basically could be of arbitrary complex-
ity and functionality, even though in this paper we only provide enqueue/dequeue
operations into a linked queue. But also the fetch-and-op primitive as discussed
in (b) could be classified into this category, since the whole critical section is
outsourced into dedicated hardware.

The proposed dedicated hardware module has a compositional nature since
the various atomic primitives reuse the same building blocks. The memory read
(1) and write (3) step is part of every primitive and there is therefore no waste of
resources. E.g. the spinlock reuses the CAS building block with hard-coded old
and new values 0 and 1, respectively. These building blocks compose the whole
module and a future extension to more functionality can build upon them.

5 Experimental Setup and Results

Our measurements were carried out on our distributed shared memory architec-
ture synthesized onto a FPGA prototype. We used a 2× 2 tile design with up to
8 Leon3 cores per tile and a tile local memory, which are connected by a shared
bus. The tiles are interconnected with a 2D-Mesh NoC. The timing analysis of
our design with the tool Xilinx Vivado revealed, that the proposed atomics unit
itself is able to operate at 419 MHz. Together with its TX and RX interface, it
still reaches 285 MHz. It is integrated into the network adapter, which is cur-
rently able to run at 100 MHz. The complete design with CPUs, NoC, Bus and
other modules of our complete project limits the frequency to 50 MHz, since
one single clock domain is used so far. Further, due to resource constraints our
FPGA prototype limits us to a 2× 2 tile design. We tried to compensate this by
increasing the core count to 8 cores per tile.

Before running actual stress tests, we first obtained cycle accurate minimal
duration simulations using an RTL simulator. The results are shown in Fig. 4(a)
for the various atomic primitives implemented in our atomics unit. The whole
duration is split into trigger-time (triggering the network adapter by the cores),
NoC-time (time for flit generation on sender side, reception on receiver side and
travel time over the NoC for both request and response messages) and atomics-
time (actual time for carrying out the atomic operation in the atomics unit). It
is made clear, that while the trigger-time only depends on the bus arbitration,
the NoC-time can increase drastically for higher network load. However, the
atomics-time is constant after bus grant.

148 S. Rheindt et al.

function Ttrigger TNoC Tatomics

spinlock 7 47 10
spinlock retry 0 0 10
CAS 14 50 10
Fetch-and-op 11 49 10
hw enqueue 14 49 37
hw dequeue 7 48 30

(a) Cycle accurate minimal duration of
individual and standalone atomic oper-
ations in number of clock cycles

Module LUTs Register
Atomics 501 316

TX & RX 1031 687
∑

1532 1003
% NA 11.85% 12.35%
% Tile 1.44% 2.00%

(b) Resource utilization of
the atomics unit

Fig. 4. Minimal duration simulations and synthesis results

Further, the synthesis of our module has the resource usage given in Fig. 4(b).
It is part of a network adapter that additionally has load/store, DMA as well as
task spawning support. The overall resource utilization of the atomics unit with
around 12% of the network adapter and only maximally 2% of the whole tile, is
comparatively low.

Besides these minimal duration simulations, we investigated several stress
test measurements on our FPGA platform using the scenarios described earlier.
In all the following micro benchmarks, each used core performs 10k iterations
of the given scenarios, i.e. either 10k increments to the shared counter (SC)
or 10k enqueue/dequeue operations to the linked queue (LQ). The tests are
always done for all three synchronization types (lock-based, lock-free or dedicated
hardware). We want to note, that for x cores, the overall workload is x-times
as high. Alternatively, if the overall workload was kept constant with increasing
core counts, the resulting graphs - from a purely visual perspective - would not
be as easily distinguishable as shown in Fig. 5.

The results for the first stress test are depicted in Fig. 5(a) and show the
execution time for both the shared counter (SC, solid lines) and the linked-
queue update (LQ, dashed lines) for all three types of synchronization classes
each. In this scenario, we investigate remote accesses to one tile from three
other tiles with 1 to 8 cores each, totaling to up to 24 cores. Due to the higher
complexity and therefore longer iteration duration of the linked-queue scenario,
the dashed lines are always above the corresponding solid lines. Apart from
that, the two scenarios behave similar. We make four key observations: (1) For
no and low concurrency on the data structure, the lock-free variant is preferable
over the lock-based one, since it does not suffer from (many) retries and the
corresponding re-execution of the critical section. (2) Although not shown in the
graphs, but underlined by our measurements, the retry rate rises with increasing
concurrency, i.e. core count. We further did not depict but measured, that the
execution time of the lock-based variants is linear in the number of cores, while
the execution time for the lock-free variants is linear in the number of retries. (3)
There is a concurrency depended cross-over point between the lock-based and
lock-free variants (intersection of the lines). A concurrency depended decision

CaCAO: Complex and Compositional Atomic Operations 149

5 10 15 20
number of cores

0

5

10

15

20

25

30

35

40
T

[s
ec

]
SC: lock-based
SC: lock-free
SC: hw
LQ: lock-based
LQ: lock-free
LQ: hw

(a) Execution time for the three synchro-
nization variants (lock-based, lock-free,
hw) for the shared counter (SC) and the
linked queue (LQ) for different core counts

1 2 3 4 5 6 7 8
number of cores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
[s

ec
]

local lock-based
local lock-free
local hw
remote lock-based
remote lock-free
remote hw

(b) Comparison of purely local vs. purely
remote execution of the linked queue (LQ)
scenario for variable core counts per tile

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration extension in us

0

10

20

30

40

T
[s

ec
]

12C lock-based
12C lock-free
12C hw
24C lock-based
24C lock-free
24C hw

(c) Variable iteration duration for fixed critical section size for the three variants for a
12 and 24 core scenario, respectively

Fig. 5. Stress test measurement results

for one or the other could be investigated and made at design and/or run-time
as possible performance optimization. (4) In all cases, the dedicated hardware
implementation fetch-and-inc/CaCAO outperforms the other two variants by
far. For the list-queue, the speedup rises from 9.5 (3× 1 core) to 35.4 (3× 8
cores) and from 14.6 to 23.9 compared to the lock-free and lock-based variant,
respectively. The dedicated hardware implementation almost does not suffer from
rising concurrency. The additional time is due to serialized execution in the
atomics unit.

In the second stress test, we compare the execution time of LQ for purely
local vs. purely remote access to the shared data structure. The results are
depicted in Fig. 5(b) for varying core count between 1 and 8. We make 3 further

150 S. Rheindt et al.

key observations: (5) As expected, the purely local execution outperforms the
remote operation in general. (6) Whereas for remote operation, there again is
a cross-over point between the lock-based and lock-free variants (intersection of
dashed lines), for local operations this behavior is not observed. The concurrency
in combination with the much lower retry penalty explains this. (7) The relative
advantage of the dedicated hardware implementation is much higher for remote
than for local operations due to the higher retry penalty of the lock-free and
the higher iteration duration of the lock-based variant. The advantage of the
dedicated hardware over the lock-free variant is 6.5 times higher for remote
compared to local operations. The advantage over the lock-based variant is 3.3
times higher. In both cases, we considered 8 local vs. 8 remote cores.

In our final measurements, we mimic different ratios of the non-critical part
to the critical section of an application. This is done by keeping the critical
section size constant, whereas we extend the whole base iteration by some itera-
tion extension (iteration = base iteration + iteration extension). In Fig. 5(c), the
results are depicted for the three variants of the linked-queue scenario for 12 and
24 cores. For an extension of 0 µs, the critical section in our scenarios is e.g.
around 5% of the unextended base iteration for the SC in the 24 core variant.
With this said, we make further key observations: (8) The lower the percentage
of the critical section compared to the whole iteration, the lower the retries for
the lock-free version and the corresponding total time. (9) A minimum can be
found at a delay of around 1400 µs for the 24 core variant and at 500 µs for the
12 core variant (these times equal the average base iteration times for the lock-
free variant). The retry rate drops to almost zero at these points. From then
on, the execution time is dominated by the iteration extension, i.e. the addi-
tional time of the non-critical section. Similarly the lock-based variants start to
be dominated by this extension after their average unextended base iteration
times are reached, which are 800 µs and 2700 µs, respectively. (10) If the itera-
tion extension dominates the whole iteration, i.e. if the percentage of the critical
section gets very small, all variants converge. Even the dedicated hardware vari-
ants are dominated by the non-critical part. (11) At 500 µs, were the 12 core
variant reaches the zero retry point, shows that the higher concurrency of 24
cores still has a high number of retries. An extrapolation of this principle would
yield similar behavior for more than 24 cores at the 1400 µs mark, etc.

6 Conclusion and Future Work

To tackle the scalability issue of future manycore platforms, efficient remote
operations and synchronization primitives are a key.

Our investigated scenarios show that there are application specific usecases
for lock-based, as well as lock-free synchronization. Modern distributed shared
memory platforms should therefore provide both types of synchronization (effi-
cient inter-tile lock implementation, as well as general purpose atomic primitives
like CAS or LL/SC) to allow flexibility for the programmer.

CaCAO: Complex and Compositional Atomic Operations 151

We further showed, that especially remote operation highly profit from ded-
icated hardware implementations to overcome the disadvantages of both lock-
based and lock-free software implementations. Future systems should implement
often used and highly concurrent tasks as dedicated hardware. Near memory
acceleration could be a further improvement.

As future work, for systems without CaCAO support, one could explore the
potential of situation based usage of the lock-based or lock-free variants, which
would require a concurrency dependent decision. A heuristic, with which the run-
time system could choose between the lock-based and lock-free variant would be
needed.

Further, we plan to extend the CaCAO approach to more complex function-
alities based on its compositional nature. We want to identify useful functions
and investigate their potential in real applications.

Acknowledgement. This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center Invasive
Computing [SFB/TR 89]. The authors would also like to thank Christoph Erhardt,
Sebastian Maier and Florian Schmaus from FAU Erlangen, as well as Dirk Gabriel
from our chair for the helpful discussions.

References

1. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.D., Gupta, A., Hennessy,
J., Horowitz, M., Lam, M.S.: The stanford dash multiprocessor. Computer 25(3),
63–79 (1992)

2. Mellanox: Ug130-archoverview-tile-gx. http://www.mellanox.com/repository/solu
tions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

3. Michael, M.M., Scott, M.L.: Implementation of atomic primitives on distributed
shared memory multiprocessors. In: 1995 Proceedings of First IEEE Symposium
on High-Performance Computer Architecture, pp. 222–231. IEEE (1995)

4. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel appli-
cations: performance advantages and methodologies. In: Proceedings of the 3rd
International Workshop on Software and Performance, pp. 55–67. ACM (2002)

5. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
(TOPLAS) 13(1), 124–149 (1991)

6. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst. (TOPLAS) 15(5), 745–770 (1993)

7. Wei, Z., Liu, P., Sun, R., Ying, R.: High-efficient queue-based spin locks for
Network-on-Chip processors. In: 2014 IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS), pp. 260–263. IEEE (2014)

8. Wei, Z., Liu, P., Zeng, Z., Xu, J., Ying, R.: Instruction-based high-efficient synchro-
nization in a many-core Network-on-Chip processor. In: 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2193–2196. IEEE (2014)

9. Chen, X., Lu, Z., Jantsch, A., Chen, S.: Handling shared variable synchronization
in multi-core Network-on-Chips with distributed memory. In: 2010 IEEE Interna-
tional on SOC Conference (SOCC), pp. 467–472. IEEE (2010)

10. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT), pp. 445–456. IEEE (2015)

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

152 S. Rheindt et al.

11. Mellanox: Ug101-user-architecture-reference.pdf. http://www.mellanox.com/
repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf

12. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (TOCS) 9(1), 21–65
(1991)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2011)

14. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput.
51(1), 1–26 (1998)

15. Tian, G., Hammami, O.: Performance measurements of synchronization mecha-
nisms on 16PE NoC based multi-core with dedicated synchronization and data
NoC. In: 16th IEEE International Conference on Electronics, Circuits, and Sys-
tems, ICECS 2009, pp. 988–991. IEEE (2009)

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG101-User-Architecture-Reference.pdf

Memory Models and Systems

Redundant Execution on Heterogeneous
Multi-cores Utilizing Transactional

Memory

Rico Amslinger(B), Sebastian Weis, Christian Piatka, Florian Haas,
and Theo Ungerer

University of Augsburg, Augsburg, Germany
{rico.amslinger,sebastian.weis,christian.piatka,

florian.haas,theo.ungerer}@informatik.uni-augsburg.de

Abstract. Cycle-by-cycle lockstep execution as implemented by cur-
rent embedded processors is unsuitable for energy-efficient heterogeneous
multi-cores, because the different cores are not cycle synchronous. Fur-
thermore, current and future safety-critical applications demand fail-
operational execution, which requires mechanisms for error recovery.

In this paper, we propose a loosely-coupled redundancy approach
which combines an in-order with an out-of-order core and utilizes trans-
actional memory for error recovery. The critical program is run in dual-
modular redundancy on the out-of-order and the in-order core. The mem-
ory accesses of the out-of-order core are used to prefetch for the in-order
core. The transactional memory system’s checkpointing mechanism is
leveraged to recover from errors. The resulting system runs up to 2.9
times faster than a lockstep system consisting of two in-order cores and
consumes up to 35% less energy at the same performance than a lockstep
system consisting of two out-of-order cores.

Keywords: Fault tolerance · Multi-core · Heterogeneous system
Transactional memory · Cache

1 Introduction

Heterogeneous multi-cores like ARM big.LITTLETM-systems [2] combine fast
and complex (i. e. out-of-order) cores with slow and simple (i. e. in-order) cores
to achieve both high peak performance and long battery life. While these archi-
tectures are mainly designed for mobile devices, modern embedded applications,
e. g. those used for autonomous driving, also require high performance and power
efficiency.

Additionally, these applications require high safety levels, as they are sup-
ported by current safety-critical lockstep processors [1,8,12]. However, cycle-by-
cycle lockstep execution requires determinism at cycle granularity, because the
core states are compared after every cycle. This strict determinism complicates

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 155–167, 2018.
https://doi.org/10.1007/978-3-319-77610-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_12&domain=pdf

156 R. Amslinger et al.

the use of modern out-of-order pipelines, limits dynamic power management
mechanisms [5], and also prevents the combination of a fast out-of-order core
with an energy-efficient in-order core, even if both execute the same instruc-
tion set. In contrast to lockstep execution, loosely-coupled redundant execution
approaches [14–16], where the cores are not synchronized every cycle, allow the
cores to execute more independently. As a cycle-based synchronization between
the redundant cores is not necessary, resource sharing of parts of the memory
hierarchy becomes possible. In that case, a heterogeneous dual-core may benefit
from synergies between the cores, where a slower in-order core checks the results
of a faster out-of-order core. In case an application does not need result verifi-
cation, the redundant core can be switched off for energy savings or used as a
separate unit for parallel execution.

Furthermore, current safety-critical lockstep cores only support fail-safe
execution, since they are only able to detect errors. However, future safety-
critical applications may additionally demand a fail-operational execution, which
requires the implementation of recovery mechanisms. In this paper, we present
a loosely-coupled fault-tolerance approach, combining a heterogeneous multi-
core with hardware transactional memory for error isolation and recovery. Its
advantages are a more energy efficient execution than an out-of-order lockstep
system, more performance than an in-order lockstep system, and less hardware
and energy consumption than a triple modular redundant system.

Due to the loose coupling it is possible to combine different cores and to
employ fault-tolerance on a heterogeneous dual-core. In this case, the out-of-
order core can run ahead of the in-order core. This enables the leading (out-
of-order) core to forward its information about memory accesses and branch
outcomes to the trailing (in-order) core to increase its performance. Therefore,
the approach provides a desirable trade-off between a homogeneous lockstep
system consisting of either out-of-order or in-order cores as it is more power
efficient or faster, respectively. The hardware cost for the implementation can be
reduced by utilizing existing hardware transactional memory (HTM) structures.
The HTM system provides rollback capabilities, which enable the system to make
progress even if faults occur. The affected transactions are re-executed, until they
succeed. No additional main memory is required, as the HTM system isolates
speculative values in the caches. If a parallel workload does not require a fault-
tolerant execution, the loose coupling can be switched off at run-time to benefit
from the multi-core CPU and the transactional memory for multi-threading.

The contributions of this paper are: (1) A mechanism to couple heterogeneous
cores for redundancy that speeds up the trailing core by forwarding data cache
accesses and branch outcomes. (2) A design of a HTM for embedded multi-
cores to support loosely-coupled redundancy with implicit checkpoints. (3) An
evaluation of throughput and power consumption of our proposed heterogeneous
redundant system compared to a lockstep processor.

The remainder of this paper is structured as follows. Related work is dis-
cussed in Sect. 2. Section 3 describes our redundant execution implementation.
The baseline system is depicted first. Then our loose coupling and the rollback

Redundant Execution on Heterogeneous Multi-cores 157

mechanism are explained. The following subsection describes the necessary
changes to the HTM system. The last subsection specifies the advantages for
heterogeneous systems. Section 4 contains a performance evaluation of several
microbenchmarks. Our approach is compared to a lockstep system and a stride
prefetching mechanism. The paper is concluded in Sect. 5.

2 Related Work

Reinhardt and Mukherjee [15] propose to use the simultaneous multithreading
capabilities of modern processors for error detection. The program is executed
twice on the same core. The executions are shifted and can use different execution
units for the same instruction. It is proposed to maintain a constant slack to
minimize memory stalls.

AR-SMT [16] is a time redundant fault-tolerance approach. An SMT-
processor executes the same program twice with some delay. The execution state
of the second thread is used to restore the first thread to a safe state if an error
occurs.

The Slipstream Processor [18] is a concept which does not only provide fault
tolerance, but also higher performance by executing a second, slimmer version
of the program on either the same or another core. The second version of the
program is generated by leaving out instructions which are predicted to be inef-
fective. The resulting branch outcomes and prefetches are used to accelerate the
full version of the program. Errors are detected by comparing stores.

LBRA [17] is a loosely-coupled redundant architecture extending the trans-
action system LogTM-SE [20]. The old value for every memory location accessed
by the leading thread is stored in a log. For writes the new value is immediately
stored in memory. The trailing thread uses the log values for input duplication.
Both cores calculate signatures for every transaction. If an error is detected, the
log is traversed backwards to restore the old memory state.

FaulTM [19] is a fault-tolerance system utilizing transactional memory. Their
approach differs from ours in that it executes redundant transactions syn-
chronously. The write-sets and registers of both transactions are compared simul-
taneously, with one transaction committing to memory. This prohibits one thread
to run ahead of the other and thus suppresses possible cache-related performance
benefits.

Haas et al. [9,10] use the existing Intel HTM system (TSX) for error detection
and recovery. As Intel TSX does not support automatic transaction creation or
write set comparison, the protected software is instrumented to provide those
features itself. Transactional blocks are executed with an offset in the trailing
process, as TSX does not allow checksum transfer within active transactions. As
the redundant processes use the same virtual addresses, but different physical
memory locations, no speedups due to positive cache effects occur in the trailing
process.

158 R. Amslinger et al.

3 Transaction-Based Redundant Execution Model

The baseline multi-core architecture with HTM is shown in Fig. 1 as an abstrac-
tion of a state-of-the-art heterogeneous multi-core. The architecture consists,
similar to ARM big.LITTLE, of two different cores with private L1 data and
instruction caches that are connected to a private L2 cache. Cache coherence is
guaranteed by hardware.

Hardware facilities support the execution of transactions. As the ARM-
architecture does not offer HTM yet, a design comparable to Intel Haswell [11]
is used. The register sets of the cores are extended to provide snapshot capa-
bilities. The data caches and the coherence protocol are enhanced to manage
the read and write sets. The affected cache blocks cannot be evicted during
the transaction. The instruction caches do not require read and write sets since
self-modifying code is not supported. Transactional conflicts are detected by an
extended cache-coherence protocol. Additional enhancements to support redun-
dant execution are described in Sect. 3.2.

3.1 Loosely-Coupled Redundancy with Checkpoints

The proposed fault-tolerance mechanisms can detect and recover from faults that
occur in the pipelines of the cores, which is shown by the Sphere of Replication
in Fig. 1. While there are multiple instances of every cache and register set, a
distinct fault-tolerance mechanism like an error correction code (ECC) is still
required for all caches and register sets to ensure the consistency of the generated
checkpoints.

Figure 2 shows the redundant execution approach. The redundant system
proposed in this paper executes the same code on both cores. The execution on
the cores is shifted by a dynamic time offset, called slack. Both cores will start

Core 1

Register Snapshot
Core 2

Register Snapshot

Sphere of Replication

I$
D$

Write Set
Read Set I$

D$

Write Set
Read Set

L2$ L2$

RAM

Fig. 1. Baseline multi-core architecture, enhanced to support hardware transactions.

Redundant Execution on Heterogeneous Multi-cores 159

Fig. 2. Redundant execution with transactions.

execution at the same instruction, when redundancy is enabled. Later the out-
of-order core is running ahead of the in-order core, except for I/O operations or
error recovery, that require synchronization of the cores to be resolved. As the
leading core usually runs faster, the slack increases. For implementation reasons
like buffer sizes the slack is limited to a certain number of instructions. This
hard limit will not be hit often, as accelerating effects for the trailing core like
forwarding memory accesses will become more effective with increasing slack.

To enable recoverability, checkpoints are automatically created by the cores,
when a transaction is started. The cores will automatically start and commit
transactions in a way that minimizes transaction and comparison overhead, while
ensuring that they fit in the cache. Instrumentation of the program with explicit
transaction instructions is not required.

While the trailing core only keeps the last checkpoint, the leading core must
retain two. This enables the rollback after an error, regardless of the core it
occurs on. If the leading core gets more than two checkpoints ahead (e. g. after
TX2), it has to wait. It is also necessary for the trailing core to wait at the
checkpoint if it overtakes the leading core. As the HTM system uses the caches
to hold unverified data, the cache size also limits the slack. When the trailing
core reaches a checkpoint, the current state is compared to the corresponding
checkpoint of the leading core. The new checkpoint for the trailing core is only
created after a successful comparison. The leading core on the other hand can
speculatively progress as long as it keeps at least one confirmed checkpoint.

Unconfirmed data is never written back to memory or transferred to another
cache. Only after confirming correct execution, the trailing core writes modified
data back to memory or marks it as valid for the cache coherence protocol. The
leading core’s cache silently evicts modified cache lines that were already verified
instead of writing them back. It relies on getting their data back from memory or
by cache to cache transfer from the trailing core. As none of the caches can evict
data written after active checkpoints, the cache size clearly limits the distance
between subsequent checkpoints.

160 R. Amslinger et al.

Figure 2 also shows the handling of an error. After the error occurs, the
next comparison after TX4 results in a mismatch. The leading core has already
advanced past the potential erroneous checkpoint, but is still keeping an older
confirmed checkpoint at the start of TX4. Thus both cores rollback to the start
of TX4. As all changes after the confirmed checkpoint are confined in the cores
and their L1 caches, the rollback is fast. If the fault was transient, the next
comparison will succeed and the execution resumes regularly.

3.2 Extension of HTM to Support Fault Tolerance

If the processor already includes support for HTM to speculatively speed up par-
allel execution, the implementation of the redundant system can be simplified.
The assumed HTM system has to provide support for isolation and checkpoint-
ing. Thus those components can simply be reused. As the leading core requires
multiple checkpoints, the checkpointing capabilities of some simple transaction
systems may be insufficient.

The conflict detection component of HTM is unnecessary for redundant exe-
cution on a dual-core, as both cores execute the same thread. The obvious app-
roach is to disable it completely, in order to avoid detection of false conflicts
between the leading and trailing core. The commit logic of the leading core can
be simplified, as writeback of confirmed data is handled by the trailing core.

Some additions are still required to support full fault tolerance. First, HTM
usually relies on special instructions to start and end transactions. For fault
tolerance another approach is preferred: The transaction boundaries should be
determined automatically at run-time, as it is hard to predict exact cache usage
at compile time. The first transaction is started, when fault tolerance is enabled.
The transaction is committed, once the checkpoint’s capacity is exhausted or
another limit (e. g. execution time or instruction count) is reached. The trailing
core commits at the same instruction as the leading core. The next transaction
is started directly after the commit.

Second, regular HTM systems do not care about the content of written cache
blocks. Only their addresses need to be compared for conflict detection. It is
thus necessary to implement an additional unit to compare registers and cache
block content. Depending on the employed conflict detection mechanism, differ-
ent implementations are feasible. If the transaction system uses a lazy conflict
detection mechanism, which already transfers all cache lines and their content
while committing, the comparison can be extended to include this data. Register
values can be stored in a cache line with a special address. This does not only
allow for their comparison, but will also store them in main memory for check-
point creation. If the transaction system does not already transfer all cache lines
while committing, the use of a checksum is favored, as this minimizes additional
overhead at commit time. The checksum is updated whenever a cache line is
written in a transaction. At commit the register values are also included in the
checksum. The checksum has to be transferred to the other core. If a mismatch
is detected, this information is broadcasted to restart both cores at the correct
checkpoints.

Redundant Execution on Heterogeneous Multi-cores 161

3.3 Heterogeneous Redundant Systems

Tightly-coupled redundancy approaches like lockstep execution are not applica-
ble when heterogeneous cores are employed. Once a core executes an instruction
faster than the other core, a false error will be detected, causing the abort of
the application or a costly recovery attempt. Loosely-coupled redundant execu-
tion does not suffer from the disadvantage of false positives caused by different
microarchitectural implementations.

If the slack is sufficiently large, a cache miss is detected in the leading core
before the trailing core even reaches the instruction that causes the fetch. Thus
the leading core’s memory access addresses can be forwarded to the trailing core,
so it can prefetch them. This increases the performance, as cache misses are often
more expensive for simpler cores. Since the total run-time of the system is deter-
mined by the slower core, this optimization improves total system performance.
The trailing core still performs full address calculation, as an error could occur
in the leading core’s address calculation. The trailing core always uses its own
address calculation for memory access and thus a cache miss can occur if the
calculated addresses differ. If the loaded values also differ, the next comparison
will detect the mismatch and cause a rollback.

The trailing core can also benefit from other information. Even simple in-
order cores like the ARM Cortex-A7 feature branch prediction. As the cores’
data structures used for branch prediction are smaller than those of complex
cores, mispredictions are more common. These mispredictions can be eliminated
by forwarding branch outcomes from the leading core to the trailing core by
using a branch outcome queue [15]. This requires the leading core to stay far
enough ahead, so that it can retire the branch before the trailing core decodes
it. If the leading core is sufficiently fast, all branches in the trailing core are
predicted correctly. Thus, the performance improves in programs with many
data dependent branches. Error detection is not impacted, as the trailing core
will interpret different branch outcomes as mispredict.

With increasing differences between the cores, the implementation of such
enhancements becomes more difficult. For instance, a complex core may replace
short branches with predicated execution [13]. Thus the branch will not reach the
core’s commit stage. As a result the trailing core will not find a corresponding
entry in the branch outcome queue, when it reaches the branch. Such problems
can cause the cores to lose synchronization and therefore decrease performance,
as shifted branch outcomes can be more inaccurate than the trailing core’s reg-
ular branch prediction.

4 Evaluation

The suggested approach was modeled in Gem5 [6]. Based on Butko et al. [7],
the fast and slow cores were configured to match the ARM Cortex-A15 and
ARM Cortex-A7, respectively. The per core 32 kB L1 caches are split into data
and instruction caches, while the per core 512 kB L2 caches are unified. Power

162 R. Amslinger et al.

consumption was approximated as the product of the simulated benchmark run-
time and the average power consumption of an Exynos 5430 SoC. It was assumed
that a lockstep system runs as fast as a corresponding single-core machine, but
consumes twice the energy. For our approach, a limit was put in place to prevent
the leading core from running too far ahead. The leading core stalls when it has
committed 1,000 instructions more than the trailing core, or if it tries to evict a
modified cache line that the trailing core has not written yet.

We implemented several sequential microbenchmarks with different memory
access patterns. The following microbenchmarks were used to assess the perfor-
mance of the approach:

– The breadth-first benchmark calculates the size of a tree by traversing it in
breadth-first order. Each node has a random number of children.

– The heapsort benchmark sorts an array using heapsort. The array is initialized
with random positive integers.

– The matrixmul benchmark calculates the product of two dense matrices.
– The quicksort benchmark sorts an array using quicksort. The array is initial-

ized with random positive integers.
– The red-black tree benchmark inserts random entries into a red-black tree.
– The shuffle benchmark shuffles an array using the Fisher-Yates shuffle.

The seed of the random number generator was constant for all runs.
Figure 3 shows the microbenchmarks’ throughput on the y-axis and the cor-

responding energy consumption per run on the x-axis. The microbenchmarks
were executed on a lockstep system consisting of two Cortex-A7, another lock-
step system consisting of two Cortex-A15 and our approach, using a Cortex-A15
as leading core and a Cortex-A7 as trailing core. The cores’ clock frequency were
varied in their frequency ranges (Cortex-A7: 500–1300 MHz, Cortex-A15: 700–
1900 MHz) in 100 MHz steps. For our approach the trailing core’s frequency was
fixed at 1300 MHz, while the leading core’s frequency was varied from 700 MHz
to 1900 MHz.

All systems were evaluated with and without a hardware prefetcher. The
Cortex-A7 utilizes early issue of memory operations [3] in all variants. A stride
prefetcher [4], which tries to detect regular access patterns on a per-instruction
basis, was used in the corresponding variants. If an instruction accesses memory
locations with a constant distance, the prefetcher will predict the next addresses
and preload them into the L1 cache. As the stride prefetcher works on physical
addresses, a detected stream will be terminated at the page boundary. For this
evaluation the prefetcher was configured to observe 32 distinct instructions on a
least recently used basis and prefetch up to 4 cache lines ahead of the last actual
access.

At first only a small increase in voltage per 100 MHz step is required to
allow the core to run stable. Thus for the lockstep systems, a large increase in
throughput can be achieved at low frequencies by a small increase in power con-
sumption. Note that the frequency itself has only minor influence on the results,
as power consumption is measured per benchmark run and not per time unit.

Redundant Execution on Heterogeneous Multi-cores 163

0 20 40 60 80
0

20

40

breadth-first

0 500 1,000 1,500 2,000
0

0.5

1

heapsort

0 50 100
0

10

20

30

matrixmul

0 200 400 600 800
0

1

2

3

quicksort

0 50 100
0

10

20

red-black tree

0 5 10 15
0

50

100

150

shuffle

Energy per run [mJ]

2x Cortex-A7 2x Cortex-A7 with prefetcher
2x Cortex-A15 2x Cortex-A15 with prefetcher

Cortex-A7 + Cortex-A15 Cortex-A7 + Cortex-A15 with prefetcher

T
hr

ou
gh

pu
t

[1
/s

]

Fig. 3. Trade-off between throughput and power consumption (Color figure online)

164 R. Amslinger et al.

When the cores approach their maximum frequency, the required increase in volt-
age raises. At the same time the achieved acceleration decreases, as the memory
clock frequency remains constant. Thus for high frequencies only a small increase
in throughput can be achieved by a large increase in power consumption. The
effect is more pronounced on the Cortex-A15, as it performs more instructions
per cycle on average and its maximum frequency is higher.

Our approach shows a different pattern. For the frequency range, in which
the out-of-order core’s performance does not exceed the in-order core’s perfor-
mance at maximum frequency, the leading core slows down the entire system.
Increasing the leading core’s frequency, can reduce total power consumption
(e. g. in quicksort or shuffle), as the task finishes quicker, thus reducing the time
the trailing core is running at maximum voltage. After the leading core’s per-
formance exceeds the trailing core’s, there is a phase in which the trailing core
can be accelerated to the leading core’s level by prefetching. This area is the
most interesting as it offers higher performance than the trailing core, at a lower
power consumption than a lockstep system of two out-of-order cores. If the lead-
ing core’s frequency is increased further, eventually a point will be reached, at
which every memory access is prefetched. The graph asymptotically approaches
this performance level. As the leading core’s power consumption still raises, the
combination will eventually consume more energy than a lockstep system con-
sisting of two out-of-order cores would at the same performance level (apparent
in matrixmul). Thus further increasing the frequency of the leading core should
be avoided.

The effectiveness of the stride prefetcher varies depending on the benchmark’s
memory access pattern. For benchmarks with regular access pattern like matrix-
mul most cache misses can be eliminated by the prefetcher. This leads to a huge
performance increase during the initialization of the source matrices. This phase
does not profit from an increase in clock frequency, as it is entirely limited by
the memory accesses. Out-of-order execution does not help much as well, as the
reorder buffer can not hold enough loop iterations to reach the next cache line
but one. The prefetcher on the other hand can fetch 4 cache lines ahead. If the
prefetcher is enabled, all variants profit from a performance increase, which is
independent of the clock frequency. The calculation phase still hits the same limit
in the Cortex-A7, as the variant without the stride-prefetcher already prefetches
all memory accesses if the Cortex-A15 is clocked high enough.

Shuffle accesses one of the locations for the swap operand at random. As
consequence, the stride prefetcher is unable to predict this access. The other swap
operand can be prefetched. As multiple values fit in a cache line, the amount of
cache misses caused by this access is already lower to begin with. Therefore, the
performance increase for the lockstep systems is relatively small. Our approach
reaches the Cortex-A7’s peak performance even without the stride prefetcher.
With a stride prefetcher, however, it is possible, to clock the Cortex-A15 slower
and thus decrease total power consumption.

Tree-based benchmarks like breadth-first or red-black tree show a very irregu-
lar memory access pattern. They do not benefit as much from a stride prefetcher,

Redundant Execution on Heterogeneous Multi-cores 165

as it will rarely detect consistent strides when traversing the tree. Therefore, the
performance is exactly the same for red-black tree. However, the stride prefetcher
can improve performance for the queue used in breadth-first, as it shows a regu-
lar access pattern. An overly aggressive prefetcher may reduce performance for
such algorithms, as it evicts cache lines that will be reused for false prefetches.
Our approach on the other hand can eliminate all cache misses even for such
irregular patterns, as long as the leading core runs fast enough. The resulting
speedup exceeds, what is achievable with a simple prefetcher.

Our approach can achieve higher speedups than the stride prefetcher alone
for both sorting algorithms. However the reasons differ. Heapsort shows an irreg-
ular access pattern, as the heap is tree-based. Thus, our approach can benefit
from its superior prefetching performance, while enabling the stride prefetcher
results only in minor performance improvements. Quicksort on the other hand
shows a very regular access pattern, as it linearly accesses elements from both
directions. However, quicksort uses data dependent comparisons as loop condi-
tion in the Hoare partition scheme. Regular branch predictors can not predict
those branches, as they are essentially random for random data. However, in
our approach the trailing core can use the forwarded branch outcomes from the
leading core to further increase performance. Combining our approach with the
stride prefetcher increases the throughput even further.

5 Conclusion

Loosely-coupled redundant execution with transactional memory to support
checkpointing has the potential to be an alternative to current lockstep systems.
As the HTM system already provides mechanisms like isolation and checkpoint-
ing, the required hardware enhancements are small. The isolation allows both
cores to operate on the same memory region, while the checkpointing mecha-
nism enables error recovery even with just two cores. The loose coupling makes
it possible to use the approach in heterogeneous multi-cores.

The evaluation of the proposed approach showed that a slower in-order core
is able to keep up with a faster out-of-order core to provide redundancy. This
requires a near-optimal data prefetching in the trailing core, which is achieved
by forwarding the memory accesses of the leading core. Supplying branch out-
comes further increases the throughput of the slower core. The combination of
heterogeneous cores for redundant execution results in a good trade-off between
performance and power consumption. It offers up to 2.9 times the performance
and up to 35% less power consumption than comparable lockstep systems con-
sisting of only slow or fast cores, respectively. It is also possible to decrease
power consumption by lowering the leading core’s clock frequency, but this also
slightly decreases performance. In some applications it is possible to achieve both
a higher performance and a lower power consumption than a lockstep system
consisting of slow cores, when an appropriate clock frequency is selected. Addi-
tionally, flexible coupling of cores improves the flexibility for parallel applications
with varying fault-tolerance requirements.

166 R. Amslinger et al.

As future work, we plan to extend our approach to larger heterogeneous
multi-cores, which will enable to change the coupling of cores dynamically at run-
time. Programs that exhibit a sufficient amount of cache misses benefit from a
heterogeneous coupling, since the in-order trailing core will be accelerated by the
cached data of the leading core. Otherwise, homogeneous coupling is preferred
for compute intensive programs to deliver better performance. Further, we plan
to extend the approach to support multi-threaded applications, regardless of the
synchronization mechanism they use.

References

1. ARM Ltd.: Cortex-R5 and Cortex-R5F - Technical Reference Manual
(2011). http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C
cortexr5 trm.pdf. Revision r1p1

2. ARM Ltd.: big.LITTLE Technology: The Future of Mobile (2013). https://www.
arm.com/files/pdf/big LITTLE Technology the Futue of Mobile.pdf

3. Austin, T.M., Sohi, G.S.: Zero-cycle loads: microarchitecture support for reduc-
ing load latency. In: Proceedings of the 28th Annual International Symposium on
Microarchitecture, pp. 82–92 (1995)

4. Baer, J.L., Chen, T.F.: An effective on-chip preloading scheme to reduce data access
penalty. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing 1991, pp. 176–186. ACM (1991)

5. Bernick, D., Bruckert, B., Vigna, P., Garcia, D., Jardine, R., Klecka, J., Smullen,
J.: NonStopR© advanced architecture. In: International Conference on Dependable
Systems and Networks (DSN), pp. 12–21 (2005)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Comput. Archit. News 39(2), 1–7 (2011)

7. Butko, A., Bruguier, F., Gamatié, A., Sassatelli, G., Novo, D., Torres, L., Robert,
M.: Full-system simulation of big.LITTLE multicore architecture for performance
and energy exploration. In: IEEE 10th International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip (MCSoC), pp. 201–208. IEEE (2016)

8. Freescale Semiconductor: Safety Manual for Qorivva MPC5643L (2013). https://
www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf

9. Haas, F., Weis, S., Metzlaff, S., Ungerer, T.: Exploiting Intel TSX for fault-tolerant
execution in safety-critical systems. In: IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 197–202
(2014)

10. Haas, F., Weis, S., Ungerer, T., Pokam, G., Wu, Y.: Fault-tolerant execution on
COTS multi-core processors with hardware transactional memory support. In:
Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds.) ARCS 2017. LNCS,
vol. 10172, pp. 16–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54999-6 2

11. Hammarlund, P., Martinez, A.J., Bajwa, A.A., Hill, D.L., Hallnor, E., Jiang,
H., Dixon, M., Derr, M., Hunsaker, M., Kumar, R., et al.: Haswell: the fourth-
generation Intel core processor. IEEE Micro 34(2), 6–20 (2014)

12. Infineon Technologies AG: Highly integrated and performance optimized 32-bit
microcontrollers for automotive and industrial applications (2017). https://
www.infineon.com/dgdl/Infineon-TriCore-Family 2017-BC-v02 00-EN.pdf?
fileId=5546d4625d5945ed015dc81f47b436c7

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf
https://www.nxp.com/docs/en/user-guide/MPC5643LSM.pdf
https://doi.org/10.1007/978-3-319-54999-6_2
https://doi.org/10.1007/978-3-319-54999-6_2
https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore-Family_2017-BC-v02_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7

Redundant Execution on Heterogeneous Multi-cores 167

13. Klauser, A., Austin, T., Grunwald, D., Calder, B.: Dynamic hammock predication
for non-predicated instruction set architectures. In: International Conference on
Parallel Architectures and Compilation Techniques (PACT), pp. 278–285 (1998)

14. LaFrieda, C., Ipek, E., Martinez, J., Manohar, R.: Utilizing dynamically coupled
cores to form a resilient chip multiprocessor. In: 37th International Conference on
Dependable Systems and Networks (DSN), pp. 317–326 (2007)

15. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous mul-
tithreading. In: 27th Annual International Symposium on Computer Architecture
(ISCA), pp. 25–36. ACM (2000)

16. Rotenberg, E.: AR-SMT: a microarchitectural approach to fault tolerance in
microprocessors. In: 29th International Symposium on Fault-Tolerant Computing
(FTCS), pp. 84–91 (1999)

17. Sánchez, D., Aragón, J., Garcıa, J.: A log-based redundant architecture for reliable
parallel computation. In: International Conference on High Performance Comput-
ing (HiPC) (2010)

18. Sundaramoorthy, K., Purser, Z., Rotenberg, E.: Slipstream processors: improv-
ing both performance and fault tolerance. ACM SIGPLAN Not. 35(11), 257–268
(2000)

19. Yalcin, G., Unsal, O., Cristal, A.: FaulTM: error detection and recovery using
hardware transactional memory. In: Conference on Design, Automation and Test
in Europe (DATE), pp. 220–225 (2013)

20. Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: LogTM-SE: decoupling hardware transactional memory from caches.
In: IEEE 13th International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 261–272 (2007)

Improving the Performance of
STT-MRAM LLC Through Enhanced

Cache Replacement Policy

Pierre-Yves Péneau(B), David Novo, Florent Bruguier, Lionel Torres,
Gilles Sassatelli, and Abdoulaye Gamatié

LIRMM, CNRS and University of Montpellier,
161 rue Ada, 34095 Montpellier, France

{peneau,novo,bruguier,torres,sassatelli,gamatie}@lirmm.fr

Abstract. Modern architectures adopt large on-chip cache memory
hierarchies with more than two levels. While this improves performance,
it has a certain cost in area and power consumption. In this paper,
we consider an emerging non volatile memory technology, namely the
Spin-Transfer Torque Magnetic RAM (STT-MRAM), with a powerful
cache replacement policy in order to design an efficient STT-MRAM
Last-Level Cache (LLC) in terms of performance. Well-known benefits
of STT-MRAM are their near-zero static power and high density com-
pared to volatile memories. Nonetheless, their high write latency may
be detrimental to system performance. In order to mitigate this issue,
we combine STT-MRAM with a recent cache The benefit of this combi-
nation is evaluated through experiments on SPEC CPU2006 benchmark
suite, showing performance improvements of up to 10% compared to
SRAM cache with LRU on a single core system.

1 Introduction

Energy consumption has become an important concern of computer architecture
design for the last decades. While the demand for more computing resources
is growing every year, much effort has been put on finding the best trade-off
between performance and power consumption in order to build energy-efficient
architectures. Current design trends show that the memory speed is not grow-
ing as fast as cores computing capacity, leading to the so-called memory-wall
issue. Caching techniques, which have been pushed in the past for mitigating
the memory-wall, are facing the silicon area constraints. Typically, up to 40%
of the total area of processors [9] is occupied by the caches hierarchy. As a con-
sequence, the energy consumed by this part of the CPU is important. As an
example, it constitutes up to 30% of the total energy of a StrongARM chip [11].
In particular, as the technology scaling continues, the static power consumption
is becoming predominant over the dynamic power consumption [4].

Data accesses that occur beyond the Last-Level Cache (LLC) are usually
time and energy-consuming as they have to reach the off-chip main memory. An
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 168–180, 2018.
https://doi.org/10.1007/978-3-319-77610-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_13&domain=pdf

Improving the Performance of STT-MRAM LLC 169

intelligent design of the LLC reducing such accesses can save power and increase
the overall performance. An usual technique adopted in the past consists in
increasing the cache storage capacity so as to reduce the cache miss rate. This
approach is no longer desired due to area and energy constraints. Increasing the
cache size has a negative impact on the financial cost and increases the static
power consumption.

In this paper, we consider an emerging memory technology, the Spin-Torque
Transfer Magnetic RAM (STT-MRAM), a Non-Volatile Memory (NVM) that
has a near-zero leakage consumption. This memory has a higher density than
SRAM, providing more storage capacity for the same area. While STT-MRAM
read latency is close to SRAM read latency, the gap for write access is currently
one obstacle to a wide STT-MRAM adoption. In the present work, we study the
impact in write reduction of cache replacement policies. Each read request lead-
ing to a cache miss eventually triggers a write. Upon this cache miss, the request
is forwarded to an upper level in the memory hierarchy.1 When the response
is received, the corresponding data is written into the cache. Hence, the cache
replacement policy has indirectly an important impact on the number of writes
that occur upon cache misses. We carry out a fine-grained analysis on the actual
sequence of read/write transactions taking place in the cache management strat-
egy. On the basis of this study, we propose and evaluate the combined use of
STT-MRAM and state-of-the-art Hawkeye cache replacement policy [8]. Thanks
to Hawkeye, the number of writes due to cache misses is reduced, while benefit-
ing from STT-MRAM density for larger LLC. Since STT-MRAM integration is
known to provide energy savings [17], we put the focus on its impact on system
performance so as to avoid a degradation of the overall energy-efficiency.

This paper is organized as follows: Sect. 2 presents related work; Sect. 3 intro-
duces a motivational example and our proposed approach; Sect. 4 describes the
experimental results validating our proposal; finally, Sect. 5 gives some conclud-
ing remarks and perspectives.

2 Related Work

The use of hybrid caches has been a recurrent approach to address write asym-
metry in NVMs. A hybrid cache mixes SRAM and NVM memories to achieve
the best of each technology. Most existing techniques rely on a combination of
hardware and software techniques.

Wu et al. [18] proposed a hybrid memory hierarchy based on a larger LLC
thanks to NVM density. They evaluated different memory technologies and iden-
tified eDRAM as the best choice for performance improvement, while STT-
MRAM is the best choice for energy saving. Sun et al. [16] designed a hybrid
L2 cache with STT-MRAM and SRAM, and employed migration based policy
to mitigate the latency drawbacks of STT-MRAM. The idea is to keep as many
write intensive data in the SRAM part as possible. Senni et al. [14] proposed
a hybrid cache design where the cache tag uses SRAM while cache data array
1 The first cache level (L1), the closest to the CPU, is the lowest level.

170 P.-Y. Péneau et al.

uses STT-MRAM. The cache reacts at the speed of SRAM for hits and misses,
which slightly mitigate the overall latency, while power is saved on the data array
thanks to low leakage. Migration techniques for hybrid memories are expensive
and may suffer from inaccurate predictions, inducing extra write operations.

Zhou et al. [19] proposed another technique called early-write-termination:
upon a write, if the value to write is already in the cell, i.e., a redundant write,
the operation is canceled. This technique, implemented at circuit level, does not
require an extra read before writing and saves dynamic writing energy. Never-
theless, it is mainly relevant to applications with many redundant writes.

Software techniques to mitigate NVMs drawbacks have been also proposed.
Li et al. [10] proposed a compilation method called migration-aware code motion.
The goal is to change the data access patterns in cache blocks so as to minimize
the extra cost due to migrations. Instructions that access the same cache block
with the same operation are scheduled by the CPU close to each other. Péneau
et al. [13] proposed to integrate STT-MRAM-based cache at L1 and L2 level
and to apply aggressive code optimizations to reduce the number of writes.

Smullen et al. [15] redesigned the STT-MRAM memory cells to reduce the
high dynamic energy and write latency. They decreased the data retention time
(i.e., the non-volatility period) and reduce the current required for writing. While
this approach shows promising results, it relies on an aggressive retention reduc-
tion that incurs the introduction of a costly refresh policy to avoid data loss.

In this work, we take a complementary approach and evaluate the impact
of cache replacement policies coupled with variations on LLC capacity in the
reduction of critical writes. We basically re-evaluate the gap in performance
between STT-MRAM and SRAM-based LLC given the latest advances in cache
replacement policies.

3 Motivation and Approach

In this work, we use the ChampSim [1] simulator with a subset of applications
from the SPEC CPU2006 benchmark suite [7] for motivating our approach.
Timing and energy results are obtained from CACTI [12] for the LLC and from
datasheet information for the main memory [2]. More details of the experimental
setup are given in Sect. 4.1. A common metric used to assess LLC performance
is the Miss Per Kilo Instructions (MPKI), defined as the total number of cache
misses divided by the total number of executed instructions. One possibility to
reduce the MPKI is to increase the cache size. The cache contains more data
and reduces the probability for a cache miss to occur. This results in penalties
in terms of cache latency, energy and area.

3.1 Motivational Example

Let us evaluate the execution of two SPEC CPU2006 applications, namely
soplex and libquantum. These applications have different memory access pat-
terns. Figure 1a depicts the impact of 4 MB versus 2 MB LLC cache designs on

Improving the Performance of STT-MRAM LLC 171

the MPKI, the Instruction Per Cycle (IPC) and the energy consumption of LLC
and the main memory. For soplex, the MPKI is decreased by 27.6%, leading to
a faster execution by 9.7%, while the energy consumption of the LLC and the
main memory is respectively degraded by 33% and improved by 23%. While the
performance for soplex application benefits from a larger cache, this induces a
negative impact on the LLC energy consumption. On the other hand, the out-
come is different for the libquantum application. As shown in Fig. 1a, the MPKI
is unchanged (i.e., no improvement), while the IPC is slightly degraded by 0.6%.
The energy consumption of the LLC and the main memory is also degraded,
due to more expensive read/write transactions on the LLC. Moreover, a lower
IPC, i.e., a longer execution time, increases the static energy. Here, the energy
consumption of the LLC drastically grows by up to 47% with larger cache. The
breakdown in static and dynamic energy consumption of the LLC is detailed in
Fig. 1b: 80% of the energy comes from the static part.

Fig. 1. Evaluation of 2MB and 4 MB LLC for soplex and libquantum

Increasing the cache size shows interesting results for performance but faces
two obstacles. Firstly, the LLC energy consumption is increased. Moreover,
depending of the memory access pattern of the application, it may degrade the
LLC energy while offering no gain in performance. Secondly, doubling the LLC
size increases the silicon area on the chip. This aspect is crucial in design and
larger caches are often not realistic due to area budget constraints. To tackle
these two aspects, we consider STT-MRAM, which is considered as a future
candidate for SRAM replacement [17]. NVMs offer near-zero leakage and are
denser than SRAM (a STT-MRAM cell is composed of one transistor versus
six transistors for a SRAM cell). But, they suffer from higher memory access
latency and energy per access, especially for write operation. STT-MRAM offers
a near-zero leakage consumption, eliminating the high static energy consump-
tion observed with SRAM (see Fig. 1b). This is even relevant for applications

172 P.-Y. Péneau et al.

that do not benefit from larger cache such as libquantum (see Fig. 1b) In such a
case, even though the execution time is longer, the energy consumption would
not dramatically increase thanks to the low static energy of STT-MRAM.

3.2 Writes Operations at Last-Level Cache

At last-level cache, write operations are divided into two categories: (a) write-
back, i.e., a write operation coming from a lower cache level, and (b) write-fill,
i.e., a write operation that occurs when the LLC receives an answer from the
main memory. These schemes are illustrated in Fig. 2. Let us consider L3 cache
as LLC. Transaction (1) is a write-back coming from the L2 for data X. In this
case, X is immediately written in the cache line (transaction (2a)). Possibly, a
write-back could be generated by the LLC towards the main memory (transaction
(2b)) if data D has been modified and needs to be saved. For the request (3) and
(4), corresponding respectively to a read and a prefetch, the requested Y data
is not in the cache. This cache miss triggers a transaction to the main memory
to fetch Y , and upon receiving the response, Y data is written in the cache.
This operation represents a write-fill. As with transaction (2b), a write-back is
generated if data L replaced in the LLC must be saved.

Fig. 2. Write transactions on the Last-Level Cache

Then, an important question that arises is to know whether or not write-back
and write-fill have an equivalent impact on the overall system performance?
For illustration, we consider five SPEC CPU2006 applications with different
writes distributions to answer this question. Figure 3a reports the normalized
IPC for different write latencies. Here, WF and WB respectively denote write-
fill latency and write-back latency. We define the reference configuration as a
2 MB STT-MRAM LLC with WF = WB = 38 cycles. Results are normalized
to this reference. We also compare with a 2 MB SRAM LLC where WF = WB =
20 cycles.

Improving the Performance of STT-MRAM LLC 173

First, we set WF = 0 cycle in order to assess the impact of the write-fill
operation on system performance. Then, we apply the same for WB for eval-
uating the impact of write-back. We also compare to the specific configuration
where both WF and WB are set to zero. For all configurations, the write-buffer
contains up to 16 elements. Moreover, bypassing is disabled for write-back.

Fig. 3. Write operations performance and distribution

When WF = 0 cycle, i.e., write-fill has no impact on performance, results
show a reduced execution time by 0.93× on average and up to 0.84× for libquan-
tum. When WB = 0 cycle, i.e., write-back has no impact on performance, the
execution time is the same as for the reference STT-MRAM configuration.
Finally, when both WF and WB are set to zero, the execution time is the
same as the case where only write-fill latency is set to zero. Performance gains
are particularly visible for applications that have a higher number of write-fill
than write-back requests, such as libquantum or sphinx3. Nevertheless, even for
an application with more write-back requests such as perlbench (see Fig. 3b),
results show that WB = 0 cycle has no impact on performance. These results
show that only write-fill have a high impact on performance. Indeed, a write-back
operation coming from a lower level of the memory does not require an imme-
diate response from the LLC. Hence, it does not stall the CPU. Conversely, a

174 P.-Y. Péneau et al.

write-fill occurs upon a cache miss, meaning that the CPU needs a data to con-
tinue the execution of an application. Unless the data becomes available, the
CPU could be stalled if further instructions depend on this data.

The above analysis shows that one should primarily focus on write-fill oper-
ations for reducing the number of writes on the LLC and improving system
performance. Let us define A the performance improvement with WF = 0, B
the performance improvement with WB = 0 and C the performance improve-
ment with WF = WB = 0. Figure 3a shows that A+B = C for all applications.
Hence, A does not have an impact on B and vice versa. Therefore, one could
reduce the number of write-fill without a side effect on write-back.

3.3 Cache Replacement Policy

Write-fill operations are directly dependent on the MPKI of the LLC. A low
MPKI leads to a low amount of requests to the main memory, and then a low
amount of write-fill operations. Thus, one way to mitigate the STT-MRAM write
latency is to reduce the MPKI to decrease the number of write-fill requests.

The cache replacement policy is responsible for data eviction when a cache
line is full. For example, in Fig. 2, data X of the write-back transaction erases
data D. It means that D has been chosen by the replacement policy to be
evicted. Hence, the next access to D will generate a cache miss. Therefore, the
replacement policy directly affects the number of misses, and so the MPKI. An
efficient policy should evict data that will not be re-used in the future, or at
least be re-used further than the other data in the same cache line. The most
common used policy is the Least-Recently Used (LRU), which is cheap in terms
of hardware resources. However, LRU is less efficient than advanced replacement
policies such as Hawkeye [8], which targets the theoretical optimal in terms of
cache eviction decision. Hawkeye identifies instructions that often generate cache
misses. For each cache access, a data structure called a predictor keeps in memory
the result of this access, i.e., hit or miss. The instruction that has generated the
access is also saved. Hence, the memory of the predictor contains instructions
that generate hits or misses. Predictions are made upon each access. Cache
blocks, which are accessed by instructions generating cache misses have higher
priority for eviction. The policy is based on the MIN algorithm [5]. To the best
of our knowledge, this is the most advanced replacement policy [3].

4 Experimental Results

4.1 Environment Setup

We describe the timing and area models used in the sequel for the LLC and the
main memory. Then, we introduce the used simulation infrastructure and we
explain its calibration with considered timing information.

Improving the Performance of STT-MRAM LLC 175

Memory Model. We first optimized SRAM and STT-MRAM cache memo-
ries respectively for low leakage with CACTI [12] and read energy-delay-product
with NVSim [6]. For both LLC models, we used 32 nm technology with a tem-
perature of 350 K. The considered STT-MRAM model is provided with NVSim
and assumes optimizations for cell area, set/reset pulse duration and energy.
The obtained parameter values are summarized in Table 1. The considered main
memory model is based on a publicly available datasheet from Micron Tech-
nology [2]. We modeled a 4 GB DDR3 with 1 DIMM, 8 ranks, 8 banks per
ranks, organized with 16 × 65536 columns with 64 B on each row. Thus, each
bank contains 64 MB of data, each rank 512 MB, and the total is 4 GB. The
extracted latency parameters are as follows: tRP = tRCD = tCAS = 11 cycles,
tRAS = 28 cycles, tRFC = 208 cycles and tCK = 1.25 ns.

Table 1. SRAM and STT-MRAM timing and area results configurations

SRAM STT-MRAM

2MB 4 MB 8 MB 2MB 4MB 8 MB

Read latency [ns] 1.34 1.47 1.66 1.90 2.06 2.53

Write latency [ns] 1.34 1.47 1.66 5.75 5.83 6.07

Area [mm2] 5.32 10.88 20.49 1.19 2.19 4.00

Simulation Environment. Our evaluation is conducted with the ChampSim
simulator [1] used for the Cache Replacement Championship at ISCA’17 confer-
ence [3]. The simulator executes application traces. The modeled architecture is
based on an Intel Core i7 system. Cores are Out-of-Order with a 3-level on chip
cache hierarchy plus a main memory. The setup is specified in Table 2. We use
a set of 20 SPEC CPU2006 traces available with ChampSim. The cache warm-
up period is 200 millions instructions. Reported statistics concern a period of
800 millions instructions. We calculate the average performance, i.e., IPC, by
applying a geometric mean on the IPCs measured for all applications, as in [8].

Eight configurations are addressed in this study: 2 MB LLC cache with SRAM
and STT-MRAM; 4 MB and 8 MB LLC caches only with STT-MRAM; and
each of these four caches is combined with either LRU or Hawkeye. For the
sake of simplicity, we associate the prefixes M (for Medium), B (for Big) and H
(for Huge) together with technology names in order to denote respectively the
2 MB, 4 MB and 8 MB LLC configurations. The name of considered replacement
policies, i.e., LRU and Hawkeye, are used as a suffix. For instance, M stt hawk
denotes a 2 MB STT cache, using the Hawkeye policy.

Latency Calibration. The reference LLC latency in ChampSim is 20 cycles for
a 2 MB 16-way associative cache, based on an Intel i7 processor. This corresponds
to a latency of 5 ns at 4 GHz. Hence, we define the following latency relation:
LT = LC + LW = 5ns, where LT is the total latency for LLC to process a

176 P.-Y. Péneau et al.

Table 2. Experimental setup configuration

L1 (I/D) 32 KB, 8-way, LRU, private, 4 cycles

L2 256KB, 8-way, LRU, unified, 8 cycles

L3 Varying size/policy, 16-way, shared

L3 size 2 MB 4 MB 8MB

L3 SRAM latency 20 21 22

L3 STT latency (R/W) 22/38 23/38 23/38

Hawkeye budget 28.2 KB 58.7 KB 114.7 KB

CPU 1core, Out-of-order, 4GHz

Main mem. size/latency 4GB, hit: 55 cycles, miss: 165 cycles

request from L2 cache, LC is the LLC access latency and LW is the wire latency
between L2 cache and LLC. Thus, the effective latency is the sum of the wire
latency and the cache latency. Thanks to CACTI, we extract LC = 1.34 ns for
the LLC reference configuration. Then, LW = LT − LC = 3.66 ns. We set LW

to this value and use it as an offset to calculate each cache latency with the
previous latency relation, where LC is extracted from either CACTI or NVSim.

4.2 Results

This section presents our results as follows: firstly, we assess the impact of the
LLC size in SRAM and STT-MRAM, by exploiting density to enlarge the cache
capacity. Secondly, we report results when taking the Hawkeye cache replacement
policy into account. Finally, we discuss this policy w.r.t. LRU. Except when it
is explicitly mentioned, all results are normalized to the reference setup, i.e.,
M sram lru.

Impact of Cache Size and Technology. Here, all configurations use the
LRU replacement policy. The top of Fig. 4 shows the MPKI improvement w.r.t.
the reference configuration. We observe that the M stt lru configuration does
not influence the MPKI since the cache size remains unchanged. Conversely, a
reduction of MPKI is clearly visible with B stt lru and H stt lru configurations.
Some applications are not sensitive to cache size, like bwaves, libquantum or milc.
Conversely, the lbm application is very sensitive to cache size from 8 MB. For
this application, the MPKI is decreased by a factor of 0.56× (i.e., 56%). This
indicates that a large part of the working set now fits into the LLC.

The bottom part of Fig. 4 shows the normalized IPC achieved by STT-
MRAM configurations w.r.t the reference configuration. The M stt lru config-
uration, i.e., a direct replacement of SRAM by STT-MRAM, is slower than the
reference. This is due to the higher latency of STT-MRAM. The B stt lru and
H stt lru configurations outperform the reference on average by 1.03× and 1.09×
respectively. With B stt lru, the IPC is degraded for nine applications, while it

Improving the Performance of STT-MRAM LLC 177

is only for five applications with H stt lru. The performance for the soplex appli-
cation is correlated to the MPKI. Indeed, there is a linear trend between MPKI
reduction and IPC improvement. Conversely, the following applications, gobmk,
gromacs and perlbench exhibit a significant MPKI reduction with no visible
impact on performance. This is due to the very low amount of requests received
by the LLC compared to the other applications. Hence, reducing this activity is
not significant enough to improve the overall performance.

On average, increasing the LLC size shows that STT-MRAM could achieve
the same performance as SRAM under area constraint.

Fig. 4. MPKI (top) and IPC (bottom) with LRU normalized to M sram lru

Impact of Cache Replacement Policy. Here, all configurations use the
Hawkeye replacement policy. Performance results are presented in Fig. 5. We
observe the gains on the M sram hawk configuration, i.e., the Hawkeye reference.
This configuration never degrades performances and achieves an average speedup
of 1.05×. Larger STT-MRAM configurations, B stt hawk and H stt hawk , per-
form better than M sram hawk on average. Thanks to the Hawkeye policy,
M stt hawk and B stt hawk outperform the reference for lbm or mcf. This was
not the case with LRU, as depicted in Fig. 4. Note that for a few applications such
as bwaves, GemsFDTD or zeusmp, the M sram hawk configuration achieves a
higher speedup than larger configurations with the same MPKI. This shows that
performance is still constrained by STT-MRAM latency, even with an enhanced
replacement policy.

Nevertheless, Hawkeye improves performance where a larger cache only can-
not. For example, all STT-MRAM configurations achieve the same IPC for the
milc application with LRU, considering the LLC size. When Hawkeye is used,
the performance is linearly increased with the cache size. As a matter of fact,
Hawkeye can deal with some memory patterns not exploited by larger LLCs.

The best configuration is H stt hawk , which achieves a performance improve-
ment of 1.1× (i.e., 10%) on average over the M sram lru baseline.

178 P.-Y. Péneau et al.

Fig. 5. MPKI (top) and IPC (bottom) with Hawkeye normalized to M sram lru

Hawkeye versus LRU. Figure 6 shows the effect of the Hawkeye policy over
LRU. Results are normalized for each configuration to its counterpart with LRU.
For example, H stt hawk is normalized to H stt lru. For this experiment, we also
run SRAM configuration that do not fit into area constraint to illustrate the
effect of Hawkeye on SRAM and STT-MRAM for the same cache size. Both
SRAM and STT-MRAM configurations follow the same trend regarding the
MPKI reduction over LRU since the Hawkeye policy is not impacted by cache
latency. Moreover, we use a single core platform where parallel events cannot
occur. Hence, eviction decision remains identical for a given cache size, regard-
less of the cache size. However, the average gain obtained with Hawkeye is
slightly better with STT-MRAM. The performance gap between SRAM and
STT-MRAM is 3.3% and 3.1%, respectively with LRU and Hawkeye. Hence,
reducing the amount of write-fill has higher impact on STT-MRAM where writes
are penalizing.

Figure 6 shows that the 8 MB configuration is not as efficient as the 4 MB con-
figuration in terms of performance improvement. The average gain for the IPC
for H sram hawk and H stt hawk is lower than B sram hawk and B stt hawk .
This suggests an issue that can be due to either a larger LLC, or the Hawkeye
policy, or both. Even if the overall performance improvement reported in Fig. 5
shows that the 8 MB configuration is faster, we note that there may be a limit
to the performance improvement provided by the Hawkeye policy. This behavior
is visible with bzip2, wrf and sphinx3. In Fig. 4, results show that the MPKI is
reduced for B stt lru and H stt lru. Hence, increasing the cache size is efficient.
Similarly, in Fig. 5, the MPKI is also reduced for the same configurations while
replacing LRU by Hawkeye. However, the gains observed in Fig. 6 show that
Hawkeye increases the MPKI compared to LRU for a 8 MB LLC. The reason
is that Hawkeye made wrong eviction decisions. Indeed, the Hawkeye predictor
exploits all cache accesses to identify the instructions that generate cache misses.
Since a large cache size reduces the number of cache misses, it becomes more

Improving the Performance of STT-MRAM LLC 179

difficult for the predictor to learn accurately from a small set of miss events.
Note that the performance for H stt hawk is still better than other configura-
tions despite these inaccurate decisions.

Fig. 6. Performance impact of Hawkeye normalized to LRU

5 Conclusion and Perspectives

This paper evaluates the mitigation of STT-MRAM performance obstacle by
exploiting its density to increase LLC cache size and by applying an enhanced
cache replacement policy to reduce the LLC write-fill activity due to cache
misses.

We showed that write-fill are a side-effect of read misses and they are more
important than write-back for performance improvement since they are on the
critical path to main memory access. Thus, we applied the Hawkeye replacement
policy which is designed for reducing cache read misses. Moreover, we showed
that using such policy with STT-MRAM is more beneficial than with SRAM.
Indeed, the read/write latency asymmetry of this technology allows a higher
gap of improvement in terms of performance than with SRAM. However, with
a large cache that drastically reduces the number of misses, the small amount
of accesses makes the training of the Hawkeye predictor longer. Thus, it leads
to wrong eviction decisions. The evaluation results showed that performance
can be improved up to 10%. This gain, combined with the drastic static energy
reduction enabled by STT-MRAM, leads to increased energy-efficiency.

Future work will focus on a deeper study of the Hawkeye policy to improve
its accuracy under low LLC activity. A multicore design will be also investigated
to confirm the benefits of large STT-MRAM LLC with this replacement policy.

Acknowledgements. This work has been funded by the French ANR agency under
the grant ANR-15-CE25-0007-01, within the framework of the CONTINUUM project.

180 P.-Y. Péneau et al.

References

1. The ChampSim simulator. https://github.com/ChampSim/ChampSim
2. DDR3-Micron MT41K512M8DA-125 datasheet, October 2017. https://www.

micron.com/∼/media/documents/products/data-sheet/dram/ddr3/4gb ddr3l.pdf
3. ISCA 2017 Cache Replacement Championship. http://crc2.ece.tamu.edu
4. International Technology Roadmap for Semiconductors (ITRS) (2015)
5. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.

IBM Syst. J. 5(2), 78–101 (1966)
6. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSim: a circuit-level performance, energy,

and area model for emerging nonvolatile memory. IEEE Trans. Comput.-Aided
Des. Integr. Circ. Syst. 31(7), 994–1007 (2012)

7. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

8. Jain, A., Lin, C.: Back to the future: leveraging Belady’s algorithm for improved
cache replacement. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 78–89. IEEE (2016)

9. Kommaraju, A.V.: Designing energy-aware optimization techniques through pro-
gram behavior analysis. Ph.D. thesis, Indian Institute of Science, Bangalore (2014)

10. Li, Q., Shi, L., Li, J., Xue, C.J., He, Y.: Code motion for migration minimiza-
tion in STT-RAM based hybrid cache. In: 2012 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 410–415. IEEE (2012)

11. Mittal, S.: A survey of architectural techniques for improving cache power effi-
ciency. Sustain. Comput.: Inform. Syst. 4(1), 33–43 (2014)

12. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: CACTI 6.0: a tool to
model large caches. HP Laboratories, pp. 22–31 (2009)

13. Péneau, P.Y., Bouziane, R., Gamatié, A., Rohou, E., Bruguier, F., Sassatelli, G.,
Torres, L., Senni, S.: Loop optimization in presence of STT-MRAM caches: a
study of performance-energy tradeoffs. In: 2016 26th International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 162–
169. IEEE (2016)

14. Senni, S., Delobelle, T., Coi, O., Péneau, P.Y., Torres, L., Gamatié, A., Benoit,
P., Sassatelli, G.: Embedded systems to high performance computing using STT-
MRAM. In: 2017 Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), pp. 536–541. IEEE (2017)

15. Smullen, C.W., Mohan, V., Nigam, A., Gurumurthi, S., Stan, M.R.: Relaxing non-
volatility for fast and energy-efficient STT-RAM caches. In: 2011 IEEE 17th Inter-
national Symposium on High Performance Computer Architecture (HPCA), pp.
50–61. IEEE (2011)

16. Sun, G., Dong, X., Xie, Y., Li, J., Chen, Y.: A novel architecture of the 3D stacked
MRAM L2 cache for CMPs. In: IEEE 15th International Symposium on High
Performance Computer Architecture, HPCA 2009, pp. 239–249. IEEE (2009)

17. Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-
scale high-performance computing. Comput. Sci. Eng. 17(2), 73–82 (2015)

18. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., Xie, Y.: Hybrid cache archi-
tecture with disparate memory technologies. In: ACM SIGARCH Computer Archi-
tecture News, vol. 37, pp. 34–45. ACM (2009)

19. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for STT-RAM using
early write termination. In: IEEE/ACM International Conference on Computer-
Aided Design-Digest of Technical Papers, ICCAD 2009, pp. 264–268. IEEE (2009)

https://github.com/ChampSim/ChampSim
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf
http://crc2.ece.tamu.edu

On Automated Feedback-Driven Data
Placement in Multi-tiered Memory

T. Chad Effler1, Adam P. Howard1, Tong Zhou1, Michael R. Jantz1(B),
Kshitij A. Doshi2, and Prasad A. Kulkarni3

1 University of Tennessee, Knoxville, USA
{teffler,ahoward,tzhou9,mrjantz}@utk.edu

2 Intel Corporation, Santa Clara, USA
kshitij.a.doshi@intel.com

3 University of Kansas, Lawrence, USA
kulkarni@ittc.ku.edu

Abstract. Recent emergence of systems with multiple performance and
capacity tiers of memory invites a fresh consideration of strategies for
optimal placement of data into the various tiers. This work explores a
variety of cross-layer strategies for managing application data in multi-
tiered memory. We propose new profiling techniques based on the auto-
matic classification of program allocation sites, with the goal of using
those classifications to guide memory tier assignments. We evaluate our
approach with different profiling inputs and application strategies, and
show that it outperforms other state-of-the-art management techniques.

1 Introduction

Systems with multiple tiers of memory that are directly accessible via processor-
memory buses are emerging. These tiers include (i) a limited capacity high-
performance MCDRAM or HBM tier, (ii) a traditional DDR3/4 DRAM tier, and
(iii) a large capacity (∼terabytes) tier [1] whose performance may lag current
DDR technologies by only a small factor. For a virtuous blend of capacity and
performance from the multiple tiers, memory allocation needs to match different
categories of data to the performance characteristics of the tiers into which they
are placed, within the capacity constraints of each tier.

One approach is to exercise the faster, lower capacity tier(s) as a large,
hardware-managed cache. While this approach has the immediate advantage
of being backwards compatible and software transparent, it is not flexible and
imposes unpalatable architectural costs that are difficult to scale in line with
capacity increases [2]. An alternative approach is for application and-or operat-
ing system (OS) software to assign data into different memory tiers with facil-
ities to allow migration of data between those tiers as needed. Monitoring of
per-page accesses has been proposed recently [3,4] with the goal of letting an
OS (re)assign tiers. While this approach preserves application transparency, it is
strictly reactive and relies on non-standard hardware. A third approach is anno-
tation of source code [5–7] by which developers take control of, and coordinate
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 181–194, 2018.
https://doi.org/10.1007/978-3-319-77610-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_14&domain=pdf

182 T. C. Effler et al.

tier assignments at the finer-grain of program objects. This approach requires
expert knowledge, manual modifications to source code, and risks making such
guidance stale as programs and configurations evolve.

Our work aims to combine the power and control of profile-guided and
application-directed management with the transparency of OS-based approaches
without relying on non-standard hardware. Allocation code paths are grouped
into various sets on the basis of prior profiling, and the sets are preference-tied
to different tiers in the underlying memory hardware. During execution, these
preferences guide the placement of data. This approach does not require source
code modifications and permits adapting to memory usage guidance for different
program inputs and alternating phases of execution. In this paper, we describe
the design and implementation of our automated application guidance frame-
work, and then compare its performance to other hardware- and software-based
hybrid memory management strategies using SPEC CPU2006 as workload.

This work makes the following important contributions: (1) We propose,
design, implement and evaluate a multi-tiered allocation strategy that uses prior
information to group sites for automatic tier selection, (2) We build an open-
source simulation-based framework for instrumenting and evaluating it, includ-
ing a custom Pin binary instrumentation tool [8], as well as extensions to the
jemalloc arena allocator [9] and to Ramulator [10], (3) We show that a guidance-
based approach has the potential, even when guidance has some inaccuracy, to
outperform precise information based reactive placement of data, and (4) We
find that adapting to individual program phases has limited benefit, suggesting
that a simpler, static policy based on prior profiling is likely to be good enough.

2 Related Work

New frameworks, techniques, and strategies for managing heterogeneous memory
systems [3–7,11–14] have emerged recently. Of these, several works [6,7,13,14]
employ profiling to find frequently accessed data structures, and translate their
findings into tiering hints that can be inserted into program source code. Our
approach combines runtime allocation site detection with a custom arena allo-
cator to enable memory usage guidance without altering source, and is the first
to explore impacts from variation in profiling inputs and from adapting tiering
to individual program phases.

Cross-layer management techniques have also been used to optimize data
placement across NUMA or other parts of the (single-tier) memory hierarchy [15–
18]. Some of these works [17,18] rely on program profiling and analysis to guide
placement decisions. While this work employs similar techniques, the goals, appli-
cation, and effects of our proposed management strategies are very different.

3 Feedback-Driven Data Placement for Hybrid Memories

Our approach uses a capacity normalized access metric to generate guidance:
informally, it seeks to favor placing smaller and hotter objects for allocation

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 183

into a higher performance tier. This metric is generated on the basis of prior
profiling, and is associated with the code paths (also called allocation sites1) by
which objects are allocated. Since the number of allocation sites can be much
larger than the number of memory tiers, allocation sites are further grouped into
sets (as described shortly in Sect. 3.2) and this partitioning guides the placements
at run time.2 To bound evaluation scope, each application is assumed to execute
within a container with fixed upper tier capacity.

3.1 Allocation Site Partitioning

We propose two simple alternatives for partitioning program sites into groups.
The first alternative is called knapsack. Inspired by [17], it uses a classical 0/1
knapsack formulation to produce groupings that collectively fit into a knapsack
(of any capacity by which we want to represent the upper tier) while maximizing
aggregate access into it. The second alternative is called hotset. It avoids a
weakness of knapsack, namely, that knapsack may exclude an allocation site
based on the raw capacity of that site, even if allocations from it exhibit a high
access count. In the hotset approach, we sort allocation sites by accesses-per-byte
scores and then select those with highest scores until we exceed an alternate soft
capacity. The limiting capacity for inducing the hot-cold split in each case is
taken as a fraction of an applications total dynamic footprint, D. Thus, if this
fraction is 12.5%, then the knapsack approach selects allocation sites such that
the aggregate size is just below D/8, while the hotset approaches stops after
D/8 is crossed.

3.2 Profile-Guided Management

During a guided run, the application address space is divided into arenas, each of
which is page-aligned and therefore can be independently assigned to a memory
tier. Using a system interface, such as the NUMA API or memory coloring [16],
the application or runtime can instruct the OS memory manager about preferred
arena-to-tier assignments. Our framework supports two schemes for using prior
guidance: static arena allocation and per-phase arena allocation. In the static
scheme, the application creates two arenas: hot and cold, and guides allocations
from the hotset/knapsack partitions into the hot (and all else into the cold)
arena, with the guidance remaining fixed across the run. The per-phase scheme
is designed to adjust with changes of behavior during the run. It uses per-phase
guidance for grouping sites into arenas such that phase by phase, an arena can
(optionally) swap tiers, but may never be in more than one tier at a time.

1 This allocation site-based strategy for optimizing accesses-per-byte is designed to
obviate tracing or sampling on an object-by-object basis.

2 The primary goal of this work is to study the potential benefits of automated applica-
tion guidance. While our simulation-based evaluation neglects overhead of profiling,
Sect. 4 covers how in practice, allocation site based guidance can be generated (either
online or offline) and applied in direct execution with negligible overhead.

184 T. C. Effler et al.

Fig. 1. Per-phase strategy for managing hybrid memories. (a) In phase 1, A1 and A2
correspond to hot allocation sites and are originally mapped to the HBM tier. (b) On
transition to phase 4, the guidance indicates A3 will become hot, and A1 is now cold.
The application communicates this guidance to the lower-level memory manager, which
may now attempt to remap the data in A1 to DDR and the data in A3 to HBM.

Figure 1 illustrates the per-phase scheme. Program execution is divided into
phases. For N phases, an N bit vector per allocation site describes the sites
hot/cold classification phase by phase. For instance, if a site has a vector ‘10100’,
the vector indicates it is hot in phases 3 and 5, and cold in phases 1, 2, and 4,
across 5 phases. The total number of unique vectors determines the total num-
ber of arenas created at application startup time. During execution, sites with
matching bit vectors allocate data to the same arena. Upon a phase transition3,
the OS adjusts the hot/cold tier classification of each arena and migrates data
accordingly. This arena-based coarse-grained remapping of tiers to virtual ranges
permits efficiently amortized and application transparent migration.

4 Implementation Details

4.1 Associating Memory Usage Profiles with Program Allocation
Sites

To collect access profiles, we instrumented using the Pin framework (v. 2.14) [8].
Our custom Pintool4 intercepts all of the application’s allocation and dealloca-
tion requests (specifically, all calls to malloc, calloc, realloc, and free). The
arguments to these routines are then used to build a shadow structure mapping
each allocated region to its allocation site with context. The tool captures the
estimated capacity (in peak resident set size, accounting for dynamic allocations
and unmaps) allocated at each allocation site; and, it computes an estimated
aggregate post-cache memory access counts over those allocations by filtering
the accessed addresses through an in-band cache simulator. At the end of appli-
cation execution, the tool outputs the allocation site profiles to a file.
3 Phase transitions may be detected online by several means, including through models

of instruction and data access behaviors, hardware event ratios, etc.
4 For direct execution, an alternative to Pin based instrumentation is to use LLVM

inserted wrappers (as described in Sect. 4.2.1), and to sample access rates through
hardware-based counters (e.g., using the PEBS facility on modern Intel processors).

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 185

4.2 Hybrid Memory Management

Evaluation requires two major components: (1) an allocator that uses the above
profiles to partition allocation sites into arenas, and (2) a manager that models
the effect of, and which applies, guidance-based management strategies.

4.2.1 Arena Allocation
We employ shared library preloading to dynamically link each evaluation run to a
custom allocator that overrides allocation requests with our own arena allocation
routines based off of jemalloc [9]. Some calls to realloc may request a different
arena from that used for the original data, and for those, the overriding call
transfers the resized data into the new arena.

To identify allocation sites during execution, our evaluation framework cur-
rently collects up to seven layers of call stack context using the backtrace rou-
tine from the C standard library. While straightforward and easy to implement,
this approach can incur substantial overhead if there are too many allocation
requests. In a set of native execution runs on an Intel Xeon-based server machine,
we found that using backtrace for context detection incurs an average overhead
of 3.6% for the 14 benchmarks listed in Table 1, with a maximum slowdown of
more than 40% for gcc.

To eliminate these overheads, we developed a static compilation pass in the
LLVM compiler infrastructure [19] that automatically creates a separate code
path for each hot call site and its context. Preliminary tests show that this static
pass completely eliminates the overhead of context detection for our benchmark
set, and is still able to identify the same set of hot data as the backtrace
technique.5 Since the primary goal of this work is to study the potential benefits
of automated application guidance during hybrid memory management, we leave
full evaluation of the accuracy and performance of static context detection as
future work. The simulation-based experiments in Sect. 6 assume no additional
overhead for context detection.

4.2.2 Simulation of Hybrid Memory Architectures
Our framework for modeling the behavior and performance of hybrid memory
systems adopts and extends the Ramulator DRAM simulator [10]. Ramulator
is a trace-based simulator that provides cycle accurate performance models for
a variety of DRAM standards, including: conventional (DDR3/4), low-power
(LPDDR3/4), graphics (GDDR5), and die-stacked (HBM, WIO2) memories, as
well as a number of other academic and emerging memory technologies. For this
work, we modified Ramulator’s memory controller to support multiple tiers with
distinct DRAM standards simultaneously. This extended simulator maintains a
map of which physical pages correspond to each tier, and sends each request

5 Other, more compact encodings of the allocation sites may also be employed – e.g.,
a low-overhead approximate method in direct execution is to use a hash over (call-
return) last branch records (LBR) recorded by a processor’s monitoring unit.

186 T. C. Effler et al.

Table 1. Benchmarks with usage statistics.

Benchmark MB Sites Allocs LLCPKI

512KB 8MB

bzip2 853 10 174 15.43 -

gcc 901 19.6K 28.46M 32.18 -

mcf 1, 683 5 6 95.26 46.17

milc 711 56 6.52M 47.77 23.72

cactusADM 668 5.3K 0.13M 15.46 5.07

leslie3d 146 101 0.31M 65.23 22.59

gobmk 39 175 0.66M 4.27 -

soplex 604 363 0.31M 57.30 22.07

hmmer 45 188 2.47M 46.31 -

GemsFDTD 884 509 0.75M 31.42 17.26

libquantum 105 10 180 40.95 29.06

h264ref 83 260 0.18M 7.39 -

lbm 415 4 5 66.72 38.75

sphinx3 72 281 14.22M 18.18 -

Average 514 1.9K 3.39M 38.85 25.59

Fig. 2. Framework for simulating hybrid
memory management.

to the appropriate DRAM model depending on its address. It also accepts an
alternative instruction trace format with annotations describing the preferred
tier of each memory request. When a page is first accessed, the simulator uses the
annotations to map the page to the appropriate tier, depending on the current
policy and system configuration.

Figure 2 illustrates our approach. At startup, the application connects to a
custom Pintool, which filters each load/store through an online cache model
and emits a post-cache instruction trace into the extended Ramulator. At the
same time, the custom allocator automatically partitions the allocation sites into
arenas according to the pre-computed guidance files, and the Pintool inserts the
preferred tier into the trace. Ramulator interprets the trace, one request at a
time, mapping new data to the appropriate memory tier, until completion.

5 Experimental Framework

5.1 Simulation Platform

Ramulators execution model includes a 3.2 GHz, 4-wide issue CPU with 128-
entry re-order buffer, and assumes one cycle for each non-memory instruction.
To estimate the impact of various hybrid memory strategies we simulated with
two processor cache configurations: (1) a single-level, 512 KB, 32-way cache,
which would be suitable for embedded devices, and (2) a two-level cache with
32 KB, 32-way L1, and an 8 MB, 16-way L2, which is more typical for desktop
and server machines.

We added logic to Ramulator for simulating a hybrid memory architecture
with two tiers: a high-performance tier with configurable, limited capacity, and a
slower tier with no capacity bound. We experimented with a range of capacities
for the upper tier, and opted to use 12.5% of peak resident set size (RSS) (i.e., 1:8
ratio across tiers) in our evaluations. The choice of 1:8 reasonably approximates

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 187

the expected capacity ratios of typical (current [20] and expected [1]) hybrid
memory systems.

All experiments use the (unmodified) HBM standard included with Ramula-
tor to simulate the fast tier, and use either the DDR3 or DDR4 standard to simu-
late the slow tier. Detailed statistics about each standard, including rate, timing,
bus width, and bandwidth, are listed in Table 4 of [10]. Although we evaluate
all of the proposed strategies with an HBM-DDR4 configuration, our detailed
experimental results use HBM-DDR3 to model a wider asymmetry between the
upper and lower tiers. A summary of our performance results for both platform
configurations is presented in Sect. 6.5.

Some of our studies include migration of data between memory tiers. To
model the cost of data movement, we folded penalties for migration into our
simulations experiments as described in [3], which are as follows. Page faults
and TLB shootdowns incur fixed penalties of 5µs and 3µs, respectively. The
experimental framework further adds execution time for data migrations, which
is a function of the bandwidth of the lower tier.

For a faithful reflection of the effects that guidance-based strategies have on
allocation behavior and heap layout, each experiment executes the entire pro-
gram run from start to finish. However, detailed cache and memory simulations
are limited to only a representative portion of the run using Simpoints [21].
Unless stated otherwise, all of the experiments simulate a single, large, contigu-
ous slice of 64 billion program instructions. With our simulation framework, this
volume of instructions corresponds to at least 5 full seconds of execution time
(measured in CPU cycles), and a typical execution time of 20 to 30 s.

5.2 Benchmarks Description

For our evaluation, we used the standard SPEC CPU2006 benchmark suite [22].
We compiled the benchmarks using gcc (version 4.8.5) with -O2. Profile guidance
is collected using both the train and ref inputs, and all evaluation is performed
using the ref input. In cases where the benchmark-input pair requires multi-
ple invocations of the application, we conduct independent experiments for each
invocation and aggregate the results to compute a single score for each bench-
mark.

To identify applications where efficient utilization of the upper-level memory
can have a significant impact on program performance, we conducted pilot mea-
surements using shorter simulations of up to 10 program phases and 1 billion
instructions per phase for each program run.6 For these experiments, we evalu-
ated each benchmark against the two cache configurations and against Ramula-
tors default memory model with (1) a single-tier of (unlimited capacity) HBM
(HBM-only) and (2) a single-tier of DDR3 (DDR3-only).

The results of the pilot measurements showed that there is significant poten-
tial to improve performance with HBM. 14 (of 28) benchmarks exhibited more

6 We had to omit zeusmp due to an incompatibility with our adopted basic block
vector collection tool [23].

188 T. C. Effler et al.

Fig. 3. Performance (IPC) of base-
line configurations relative to DDR3-
only.

Fig. 4. Performance (IPC) with static
guidance strategies relative to DDR3-
only.

than 10% IPC improvement with HBM relative to DDR3 with the 512 KB
cache, while 8 benchmarks show similar improvements with the 8 MB cache.
The remainder of this work focuses on this limited set of benchmark-cache pairs.
Table 1 lists our selected benchmarks along with their memory usage information.

6 Evaluation

6.1 Baseline Configurations

For baseline comparison, we implement two strategies that have been common
in hybrid memory systems. The first uses the upper tier as a large direct-mapped
cache to hold data brought in from an even larger lower tier [20]. We refer to this
type of hardware based tiering as cache mode (not to be confused with processor
caches). The other baseline strategy is the static first touch (FT) [3] policy. Under
static FT, when a page is first touched, it is instantiated in HBM if possible and
in DDR (the lower tier) otherwise; and, remains there until unmapped.

Figure 3 shows the performance (IPC) of the two baseline policies– cache
mode and static FT in a hybrid HBM-DDR3 system where the capacity of
the HBM tier is 12.5% of the DDR3 tier. For each benchmark, the IPC in
Fig. 3 is shown relative to the IPC of the DDR3-only configuration. Hence, while
cache mode outperforms static FT for a few benchmarks (e.g., gcc and hmmer)
static FT is the superior choice. On average, static FT allocation improves IPC
(over DDR3-only) by 22% and 9% for the 512 KB and 8 MB CPU cache sizes,
respectively. In cache mode, the average IPC change is 17% better for the 512 KB
CPU cache but 17% worse for the 8 MB CPU cache. Our simulation diagnostics
show that the degradation in cache mode occurs due to a high miss rate (over
67% for the 8 MB cache) resulting in higher overheads for memory traffic. A
third bar in Fig. 3 also shows that in the idealized HBM-only case, the average
IPC is better by 61.9% and 30.1% respectively for the small and large CPU
caches.

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 189

6.2 Static Application Guidance

We next introduce a static guidance hybrid management policy that uses prior
profiling to partition allocation sites into hot and cold subsets, and then applies
the static arena allocation scheme to separate hot and cold data in the evaluation
run. The hot space places data in the HBM tier on a first touch basis, while cold
data is always assigned to DDR.

We conducted an initial set of shorter simulations (10 phases, 1B instructions
per phase) to assess the impact of different strategies for selecting hot subsets.
For these experiments, we compute profiling with the ref and train program
inputs and construct hot subsets using the knapsack and hotset strategies with
capacities of 3.125%, 6.25%, 12.5%, 25.0%, and 50.0%. We find that the best
size for each approach varies depending on the benchmark and profile input.
Knapsack achieves its best performance with the largest capacity (50.0%), while
hotset does best with sizes similar or smaller than the upper tier capacity limit
(of 12.5%). Across all benchmarks, the best hotset outperforms the best knapsack
by 4.4% with the train profile and by 4.2% with the ref profile, on average. This
outcome lends strength to the idea that being too conservative in cases where
an allocation site with very hot data does not fit entirely in the upper tier is less
effective than allowing a portion of the site’s data to map to the faster device. We
therefore continue using only the hotset strategy and select the hotset capacity
that performs best on average, as follows: 12.5% for train and 6.25% for ref with
the smaller cache, and 25% for both train and ref with the larger cache.

Figure 4 shows the IPC of the benchmarks with the static hotset guidance
approaches with train and ref profiling inputs (respectively labeled as static-
train and static-ref) relative to single-tier DDR3. Thus, application guidance,
whether based on profiles of the train or ref input, does better than static FT
during the evaluation run. On average, the more accurate ref profile enables
static-ref to outperform static-train by more than 12%, when the CPU cache is
small (512 KB), but the difference is negligible when the cache is larger (8 MB).
Surprisingly, with the 8 MB cache, static-train performs slightly better due to a
skewed result from the lbm benchmark. Further analysis shows that lbm produces
about the same amount of traffic into the upper tier with both static-ref and
static-train, but the disparity is primarily due to an effect on spatial locality
caused by different data layouts. We plan to fully evaluate the impact of our
technique on spatial locality in future work.

6.3 Adaptive Application Guidance

We next introduce the adaptive-ref policy to examine the potential benefit of
adapting guidance to changing access patterns, as described below.

For each benchmark, we use Simpoints to divide the evaluation (ref input)
run into slices of dynamic instructions (of length l), and then classify each slice
into one of up to k program phases. We then conduct profiling and compute hot-
sets for each program phase, and use this guidance to apply the per-phase arena
allocation scheme during the evaluation run. When the application enters a new

190 T. C. Effler et al.

Fig. 5. Performance (IPC) of
adaptive-ref with different # and
length of phases.

Fig. 6. Performance (IPC) with adaptive
strategies on relative to DDR3-only.

phase, it suspends execution, and attempts to migrate data in each arena to
the appropriate tier using the guidance for the upcoming program phase. Since
our goal is to investigate the potential advantages of this approach, our exper-
iments assume the application is always able to detect program phase changes
accurately and immediately.

We conducted a series of experiments with the adaptive-ref policy varying the
length (l) and maximum number of program phases (k). For k values of 2, 8, and
32, Fig. 5 plots a line showing the average performance (IPC) of the adaptive-
ref policy, relative to DDR3-only, with phase lengths of 10 million (M), 100M,
1 billion (B), and 8B dynamic instructions. Additionally, we plot dashed lines
to show the average IPC of the static-ref policy with each cache size. Detailed
results comparing the static-ref and best adaptive-ref configuration (with k = 8,
l =100M) for each benchmark are shown in Fig. 6.

In most cases, we find that adaptive-ref exhibits similar performance as static-
ref, even with the idealistic assumption of accurate phase detection. Different
phase lengths have little impact on the proportion of accesses to the HBM tier,
but selecting a length that is too short will incur significant data migration
overheads, and result in worse overall performance. For a few workloads, such
as milc and cactusADM, increasing the number of program phases does produce
benefits, but on average the impact is small. Additionally, we find that the best
adaptive-ref configuration drives only slightly (<2%) more traffic to the HBM
tier than the static approach, as shown in Table 2. Thus, static-ref makes nearly
as-good placement decisions across phases as adaptive-ref, even though it is not
capable of adapting to the individual program phases.

6.4 Comparison with OS/Architectural Reactive Profiling

Using our simulation framework, we implemented the first-touch-hot-page
(FTHP) reactive profiling approach from Meswani et al. [3]. FTHP uses non-
standard page access counters in hardware to identify recently hot physical pages
and migrate them at epoch boundaries. We evaluate FTHP using two epoch
lengths of 1 s and 100 ms. For our comparisons, we chose the 1 s epoch because
it achieves slightly (1.2%) better performance with our benchmarks.

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 191

Table 2. % of accesses to upper-level memory and data migrated (in GB).

Benchmark % of accesses to upper-level memory GBs migrated

Cache-

mode

Static

FT

Static

train

Static

ref

Adaptive

ref

FTHP

1s

Cache-

mode

FTHP

1s

Adaptive

ref

512KB cache

bzip2 80.92 69.03 77.08 70.59 81.06 94.09 207.44 0.99 16.94

gcc 96.17 16.78 24.61 80.57 70.14 69.24 68.70 3.73 16.99

mcf 20.04 48.80 48.50 48.48 48.50 63.39 256.59 6.15 0.00

milc 80.97 31.58 32.54 27.16 53.80 56.98 55.36 0.50 19.75

cactusADM 79.27 46.89 46.70 46.69 46.54 44.37 57.24 0.66 0.00

leslie3d 76.12 28.21 27.83 28.76 18.10 37.17 106.71 0.15 0.00

gobmk 95.39 27.84 13.78 14.90 14.18 37.53 13.19 0.04 0.00

soplex 59.65 15.87 46.37 52.92 61.66 51.52 137.88 0.12 0.13

hmmer 96.04 63.31 34.41 75.00 75.79 71.08 59.20 0.01 0.00

GemsFDTD 11.05 13.46 15.56 21.55 12.93 17.70 79.66 2.02 63.95

libquantum 99.53 11.55 11.54 11.54 11.54 13.53 1.04 0.02 0.00

h264ref 95.63 72.13 85.55 86.84 88.21 77.83 32.04 0.02 0.75

lbm 94.97 12.77 12.72 12.72 12.51 10.64 145.82 0.55 29.81

sphinx3 62.65 45.66 59.33 61.83 57.25 69.18 29.74 0.01 0.17

Average 74.88 35.99 38.32 45.68 46.59 51.02 89.33 1.07 10.61

8MB cache

mcf 17.77 24.78 24.88 25.22 24.88 43.24 137.19 5.60 0.00

milc 57.89 15.48 16.09 21.58 32.42 29.44 43.87 0.58 20.92

cactusADM 30.58 29.74 29.74 29.69 32.66 27.31 13.69 0.52 0.00

leslie3d 43.66 20.81 20.96 20.75 20.04 14.74 52.86 0.10 0.00

soplex 43.93 30.85 19.64 30.39 35.40 30.16 80.07 0.11 2.17

GemsFDTD 4.72 14.40 15.00 14.99 11.87 9.60 62.14 1.38 61.97

libquantum 99.97 12.50 0.00 12.49 12.49 11.33 0.03 0.01 0.00

lbm 84.00 12.71 12.79 12.79 12.47 11.73 50.37 0.10 30.01

Average 47.82 20.16 17.39 20.99 22.78 22.19 55.03 1.05 14.38

Referring again to Fig. 6, a third bar shows the results for FTHP relative to
DDR3-only, on an identical HBM-DDR3 platform with 12.5% HBM capacity.
Thus, even though they do not have the benefit of dynamic feedback from spe-
cialized hardware, the application guidance policies often achieve similar perfor-
mance as FTHP. With the 512 KB cache, static-ref and adaptive-ref respectively
outperform FTHP by 2.8% and 2.9%, while with the 8 MB cache, static-ref
performs slightly (1.9%) worse, and adaptive-ref performs 5.3% better. Even
static-train (shown in Fig. 4) performs slightly (1.5%) better than FTHP with
the larger cache, but does exhibit some slowdown (9.6%) with the smaller cache.

Both adaptive-ref and FTHP limit the frequency of data migration to amor-
tize the cost of page faults and TLB synchronization. The final three columns
of Table 2 show the amount of data migrated (in GB) for each adaptive policy.

192 T. C. Effler et al.

Note also that the amount of migration for both FTHP and adaptive-ref depends
on the length of each epoch/phase. For instance, compared to the adaptive-ref
configuration in the table (with k = 8, l = 100M), adaptive-ref with l = 10M
migrates almost 2.4x more data over the course of each run, on average. Con-
sidering these results with the performance results in Fig. 6 and HBM traffic
comparison in Table 2, we conclude that, although more frequent migration can
steer a higher portion of traffic to the HBM, the additional costs often outweigh
the performance benefits for our selected benchmarks.

6.5 Performance Summary
Table 3. Performance (IPC) summary of
different allocation strategies.

Policy 512KB cache 8MB cache

HBM-
DDR3

HBM-
DDR4

HBM-
DDR3

HBM-
DDR4

Cache-mode 1.173 1.173 0.833 0.907

Static-FT 1.223 1.165 1.094 1.045

Static-train 1.269 1.226 1.136 1.115

Static-ref 1.393 1.325 1.102 1.113

Adaptive-ref 1.393 1.323 1.173 1.099

FTHP 1.347 1.272 1.107 1.084

HBM-only 1.838 1.568 1.466 1.255

Table 3 presents the average IPC of
all of the management policies for
both HBM-DDR3 and HBM-DDR4
platforms with 12.5% capacity in the
HBM tier. Each set of results uses
the corresponding DDR3/4-only con-
figuration as its baseline. As expected,
the policies on the HBM-DDR4 plat-
form exhibit similar performance trends
as on the HBM-DDR3 platform. On
average, the application-guided policies
achieve the best performance on HBM-
DDR4, boosting performance with the small and large caches by more than 15%
and 20% compared to cache mode, by 16% and 7% compared to static FT, and
by 5% and 3% compared to FTHP.

7 Conclusions and Future Work

This work demonstrates that emerging hybrid memory systems will not be able
to rely solely on conventional hardware-based caching or coarse-grained software
approaches, such as static NUMA assignments, and stand to benefit greatly
from fine-grained, application-level guidance. The results point to a need for
developing new source, binary, and run-time capabilities to make application
guided memory tiering practical. While the current evaluation uses simulation,
our goal is to adapt our automated guidance framework for direct execution on
real hybrid memory hardware. The immediate next steps include development
of hardware-based sampling to profile memory accesses during native execution
and low-overhead context detection techniques as described in Sect. 4.

Other findings in this study warrant additional investigation. In many cases,
we found that tailoring application guidance to each program phase has a rela-
tively small impact on performance. Further research is necessary to understand
the relationship between program phases and memory behavior, and whether
this result is specific to our selected benchmarks and experimental configura-
tion, or if it reflects a more fundamental property of hybrid memory systems.

On Automated Feedback-Driven Data Placement in Multi-tiered Memory 193

While investigating these issues, we also plan to explore the feasibility of using
pure static analysis, without program profiling, to guide hybrid memory man-
agement. Finally, we plan to evaluate the potential of extending guidance to
other parts of the memory hierarchy, such as caching or prefetching.

Acknowledgements. This research is supported in part by the National Science
Foundation under CCF-1619140, CCF-1617954, and CNS-1464288, as well as a grant
from the Software and Services Group (SSG) at IntelR©.

References

1. Intel: 3D XPoint (2016). http://www.intel.com/content/www/us/en/architecture-
and-technology/3d-xpoint-unveiled-video.html

2. Mittal, S., Vetter, J.S.: A survey of techniques for architecting DRAM caches.
IEEE Trans. Parallel Distrib. Syst. 27(6), 1852–1863 (2016)

3. Meswani, M., Blagodurov, S., Roberts, D., Slice, J., Ignatowski, M., Loh, G.: Het-
erogeneous memory architectures: a HW/SW approach for mixing die-stacked and
off-package memories. In: HPCA, 2015 (February 2015)

4. Li, Y., Ghose, S., Choi, J., Sun, J., Wang, H., Mutlu, O.: Utility-based hybrid
memory management. In: IEEE CLUSTER (September 2017)

5. Cantalupo, C., Venkatesan, V., Hammond, J.R.: User extensible heap manager
for heterogeneous memory platforms and mixed memory policies (2015). http://
memkind.github.io/memkind/memkind arch 20150318.pdf

6. Dulloor, S.R., et al.: Data tiering in heterogeneous memory systems. In: Eleventh
European Conference on Computer Systems, p. 15. ACM (2016)

7. Agarwal, N., et al.: Page placement strategies for GPUs within heterogeneous
memory systems. SIGPLAN Not. 50(4), 607–618 (2015)

8. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. SIGPLAN Not. 40(6), 190–200 (2005)

9. Evans, J.: A scalable concurrent malloc (3) implementation for FreeBSD (2006)
10. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator.

IEEE Comput. Archit. Lett. 15(1), 45–49 (2016). https://doi.org/10.1109/LCA.
2015.2414456

11. Giardino, M., Doshi, K., Ferri, B.H.: Soft2LM: application guided heterogeneous
memory management. In: IEEE International Conference on Networking, Archi-
tecture and Storage (NAS), USA, pp. 1–10 (2016)

12. Agarwal, N., Wenisch, T.F.: Thermostat: application-transparent page manage-
ment for two-tiered main memory. In: ASPLOS. ASPLOS 2017, pp. 631–644. ACM,
New York (2017)

13. Peng, I.B., Gioiosa, R., Kestor, G., Cicotti, P., Laure, E., Markidis, S.: RTHMS: a
tool for data placement on hybrid memory system. In: ISMM (2017)

14. Servat, H., Pea, A.J., Llort, G., Mercadal, E., Hoppe, H., Labarta, J.: Automating
the application data placement in hybrid memory systems. In: 2017 IEEE Inter-
national Conference on Cluster Computing (CLUSTER) (September 2017)

15. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., Quema,
V., Roth, M.: Traffic management: a holistic approach to memory placement on
NUMA systems. SIGPLAN Not. 48(4), 381–394 (2013)

16. Jantz, M.R., et al.: A framework for application guidance in virtual memory sys-
tems. In: Virtual Execution Environments. VEE 2013, pp. 155–166 (2013)

http://www.intel.com/content/www/us/en/architecture-and-technology/3d-xpoint-unveiled-video.html
http://www.intel.com/content/www/us/en/architecture-and-technology/3d-xpoint-unveiled-video.html
http://memkind.github.io/memkind/memkind_arch_20150318.pdf
http://memkind.github.io/memkind/memkind_arch_20150318.pdf
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456

194 T. C. Effler et al.

17. Jantz, M.R., et al.: Cross-layer memory management for managed language appli-
cations. In: ACM/SIGPLAN OOPSLA. ACM, New York (2015)

18. Guo, R., Liao, X., Jin, H., Yue, J., Tan, G.: NightWatch: integrating lightweight
and transparent cache pollution control into dynamic memory allocation systems.
In: 2015 USENIX Annual Technical Conference (USENIX ATC 15), pp. 307–318
(2015)

19. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Code Generation and Optimization (2004)

20. Sodani, A.: Knights Landing (KNL): 2nd generation Intel R© Xeon Phi processor.
In: 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–24. IEEE (2015)

21. Hamerly, G., Perelman, E., Lau, J., Calder, B.: Simpoint 3.0. J. Instr. Level Par-
allelism 7(4), 1–28 (2005)

22. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

23. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI (2007)

Operational Characterization of Weak
Memory Consistency Models

M. Senftleben(B) and K. Schneider

TU Kaiserslautern, 67653 Kaiserslautern, Germany
{senftleben,schneider}@cs.uni-kl.de

Abstract. To improve their overall performance, all current multicore
and multiprocessor systems are based on memory architectures that
allow behaviors that do not exist in interleaved (sequential) memory
systems. The possible behaviors of such systems can be described by so-
called weak memory consistency models. Several of these models have
been introduced so far, and different ways to specify these models have
been considered like axiomatic or view-based formalizations which have
their particular advantages and disadvantages. In this paper, we propose
the use of operational/architectural models to describe the semantics of
weak memory consistency models in an operational, i.e., executable way.
The operational semantics allow a more intuitive understanding of the
possible behaviors and clearly point out the differences of these models.
Furthermore, they can be used for simulation, formal verification, and
even to automatically synthesize such memory systems.

Keywords: Memory models · Weak memory consistency
Processor architecture · Memory architecture

1 Introduction

Historically, computer architectures were considered to consist of a single proces-
sor that is connected with a single memory via a bus (von Neumann architecture;
1945). The sequentialization of the read and write operations via the single bus
ensured that each read operation returns the value most recently written to the
corresponding memory location and that we can at all define the most recently
written value. Even if the processor of such a computer architecture would be
used to execute multiple processes by interleaving their executions, the memory
operations would still take place one after the other and will therefore form a
sequence where all memory operations are totally ordered.

Nowadays, essentially all computer architectures consist of multicore proces-
sors or even multiple processors which share a common main memory. Early
multiprocessor systems still connected multiple processors via a single bus with
the shared memory. This way, processors had to compete for bus access that
still enforced an ordering of the memory operations in a linear sequence. Mod-
ern multiprocessor systems, however, are based on much more complex memory
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 195–208, 2018.
https://doi.org/10.1007/978-3-319-77610-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_15&domain=pdf
http://orcid.org/0000-0003-3360-2887
http://orcid.org/0000-0002-1305-7132

196 M. Senftleben and K. Schneider

architectures that do not only make use of caches with cache coherence protocols,
but also add further local memories to improve their performance. In particular,
the use of local store buffers between the processor cores and the caches allows
a significantly faster execution: Using store buffers, processors simply ‘execute’
store operations by putting a pair consisting of an address and a value to be
stored at that address in a FIFO buffer. The processor can then continue with
the execution of its next instruction and may consult its own store buffer in case a
later load operation is executed. The store buffer will execute its store operations
as soon as it is given access to the main memory. This avoids idle times due to
waiting for the bus access for each store operation and allows a faster execution
in general. However, since processors cannot see the store buffers of other pro-
cessors, they will temporarily have different views on the shared memory. Note
that after the store buffers were finally emptied, the cache coherence protocol
ensures a coherent view on the shared memory, but before that point of time, the
different views that exist due to the contents of the local store buffers allow exe-
cutions that are otherwise impossible. For this reason, one speaks about weakly
consistent memory models that do not impose as strong constraints as the tra-
ditional sequential memory models that just interleaved the memory operations
of different processors.

Store buffers are one – but not the only – reason that lead to the introduction
of weak memory consistency models [1,12,15,27]. For example, in distributed
computer systems, the single memory is replaced by multiple distributed memo-
ries which can be specific to single processors or can be shared with all or some
other processors. Depending on the implemented memory architecture, very dif-
ferent weak memory models were developed through the past decades, and some
of them may lead to behaviors that are really unexpected by the programmers.
It is therefore very important that the designers of modern computer systems
are able to describe the potential memory behaviors of their systems in a precise
but yet comprehensive way so that the programmers are able to determine when
memory synchronization is required in their programs.

Memory consistency models have been defined in different ways: First
descriptions of weak memory models were just given in natural language and
were therefore often ambiguous. In fact, such ambiguous descriptions lead to
non-equivalent versions of the processor consistency model [3,10].

Another way to define a memory consistency model is the so-called view-
based approach where the different views processors may have during the execu-
tion of a multithreaded program are formally specified. From the viewpoint of a
particular processor, this is usually done in that one has to determine which of
the memory operations of other threads have to be interleaved with the memory
operations of the own thread to define its local view. For example, for PRAM
consistency, one would have to consider all store operations of all other threads,
but not their load operations, while for other memory models other sets of store
operations may be considered. The view-based approach can also be defined from
the viewpoint of the memory, providing rules for the ordering of all operations
as observed by the main memory. View-based definitions are quite popular, and

Operational Characterization of Weak Memory Consistency Models 197

[27] showed how most of the existing weak memory models can be defined in this
way. The authors of [27] even managed to organize many weak memory models
in a hierarchy regarding their weakness, and they could describe most of the
weak memory models systematically as combinations of four basic constraints.

However, the view-based approach remains quite abstract and formal, and
while being precise for a formal analysis [9], it is not comprehensive enough to
serve as a general description for programmers. A slightly different approach has
been followed by the SPARC memory models TSO and PSO that are described
in an axiomatic way [28]. Also being view-based in principle, these weak memory
models were specified by just a few axioms that can be directly used for formal
reasoning about the potential executions of a multithreaded system. While also
lacking of comprehensiveness, these descriptions are much more succinct, and
allow one to directly make use of formal verification that is not that directly
applicable when the views are defined by a couple of total or partial orders.

More recent efforts made use of theorem provers to specify weak memory
models, using e.g., higher order logic [18,22] or temporal logic [25]. The moti-
vation for this choice is to ensure the well-definedness of the given non-trivial
formalization, and to directly reason about properties of the specified memory
models with verification tools. However, also these approaches tend to be too
difficult to be used as a reference for programmers.

From programming languages, it is well-known that besides the axiomatic
and denotational semantics, the operational semantics is often preferred for defin-
ing simulators or virtual machines [6]. Usually, programmers also prefer opera-
tional semantics, obviously since that kind of semantics directly determines how
the programs are executed. Operational semantics are therefore usually the best
means to define programming models.

In this paper, we therefore advocate the use of operational semantics for the
specification of weak memory consistency models. We believe that operational
semantics may also lead to formally precise, but still comprehensive specifica-
tions of weak memory consistency models that might be preferable for program-
mers. To specify such an operational description, one has to define for each weak
memory model an abstract memory architecture with load/store ports for the
processors. These operational/architectural models can be described using mod-
ern system-level languages to obtain precise and executable models. Using these
operational models in teaching, we found that students were able to much bet-
ter and quicker understand the subtle differences between the memory models.
Moreover, our operational models can be directly used for simulation, formal
verification, and also for synthesis. In particular, we will list such operational/
architectural models for the important memory consistency models described
in literature [5,10,14,16]. These reference architectures are obtained by directly
deriving implementations of memory systems from the definitions of their mem-
ory consistency model. The resulting reference machines do not claim to be effi-
cient (for synthesis), but minimal in terms of different components and structures
to simplify verification of correctness and completeness of the implementation.

198 M. Senftleben and K. Schneider

The outline of the paper is as follows: In the next section, we briefly review
related work and then define some weak memory models according to [27].
Section 4 contains the core of this paper where we present operational archi-
tectures for the models considered before. Finally, we discuss future work with
preliminary conclusions.

2 Related Work

Comprehensive introductions to memory consistency models are [1,19]. Refer-
ence [20] provides a good overview over many of the models known at that time
and compares these with each other.

The formalism and some of the definitions used in this publication are based
on [27] which introduced a systematic framework for view-based definitions for
many common memory consistency models and revealed the relations between
different memory models. In the next section, we list four of the many weak mem-
ory models of [27] which are described in an operational way afterwards. Sim-
ilarly, [2,4] provided unified formalizations for multiple memory models. Other
work on view-based definitions include [3,5]. Reference [26], on the other hand,
introduces a framework for axiomatic definitions.

In our own previous work, we analyzed in [8,9] the complexity of testing
whether given execution traces comply with a certain memory model. Similar to
this publication, [13] provided definitions and comparisons of several consistency
models and defined machines for the models.

The only previous works we are aware of that made also use of operational
semantics were Lipton and Sandberg [16] who provided an implementation for
PRAM by defining its structure and communication rules. Recently, [7] described
the semantics of the ARMv8 multiprocessor architecture with an operational
approach. Our approach is more general, and claims to have the potential to be
used to describe most known weak memory models in an operational, and thus
comprehensive way.

3 View-Based Definitions of Memory Consistency Models

In this section, we adapt the terminology introduced by Steinke and Nutt in [27]
to provide formal definitions of four weak memory consistency models. Note that
this formalism does not describe the multithreaded system in an executable/op-
erational way. Instead, it just determines the set of possible executions in terms
of possible traces of memory operations, but does not explain how or why these
were generated. In the next section, we will then provide operational models for
the memory models considered in this section.

In this setting, a memory operation is expressed as a quadruple (o, p, l, v)
where o is either a read or write operation, p is the process id of the process
executing the operation o, l is the memory location (address), and v is the value
read or written. The local order relation <i reflects the execution order of all
memory operations of process Pi in that it orders the operations according to the

Operational Characterization of Weak Memory Consistency Models 199

program code of the process. The process order <P is the conjunction
∧

i∈P <i

of all local order relations. Definitions of memory models can then be given in
the following form:

∀i∈P∃SerialV iew (<| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

which means that for each process Pi, there must exist a serial view on all its own
operations (using wildcards (∗, i, ∗, ∗)) and all write operations of all processes
((w, ∗, ∗, ∗)) which respects the ordering <. A serial view is thereby a total
order � over the given set of operations and a superset of the provided relation
<. Furthermore, in a serial view �, the memory value of each read operation has
to correspond to the most recent write operation to that location with respect
to �. This implicitly defines the writes-to order w �→ r which maps each read
operation r to the write operation it reads from.

3.1 Local Consistency

Local consistency was first defined by Heddaya and Sinha [11] as the weakest
constraint that could be required of a shared memory system. In a locally con-
sistent system, each process observes its own operations in local order while
all other operations may be observed in an arbitrary order. Different processes’
orders are not related at all in this memory model. Local consistency [5,11] can
be expressed in the introduced formalism as follows [27]:

∀i∈P∃SerialV iew (<i| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)) .

3.2 Cache Consistency (CC)

In 1989, Goodman [10] provided a definition for cache consistency, which he
called weak consistency since he assumed that it is the weakest form of memory
consistency. Furthermore, he expected that no synchronization guarantees could
be given in cache consistency. Meanwhile, both assumptions have been proven
wrong by the existence of weaker models and algorithms that can ensure mutual
exclusion in weaker models like slow consistency. Cache consistency [10] can be
defined as follows, which means that each process observes the same ordering on
memory operations regarding the same memory location, but processes may see
operations regarding different memory locations in different orders:

∀x∈V ∃SerialV iew (<P | (∗, ∗, x, ∗))

3.3 Pipelined-RAM (PRAM) Consistency

One of the first well known weak memory models described was PRAM
(Pipelined RAM) which was presented 1988 by Lipton and Sandberg [16,17].

200 M. Senftleben and K. Schneider

They show that their shared memory system PRAM scales better than sequen-
tially consistent systems as it is immune to high network latency. Additionally,
synchronization costs remain low while performance increases significantly. Due
to its informal textual definition, there exists an interpretation of Ahamad
et al. [3], and another slightly different one by Mosberger [21] as shown in [24].
PRAM consistency based on Ahamad et al. [3] can be expressed as follows:

∀i∈P∃SerialV iew (<P |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

In a PRAM consistent execution, every process observes all the writes of all
other processes in the order they were issued. However, different processes may
see the writes of the other processes in a different order. A system implementing
PRAM consistency therefore only has to ensure that the communication from
one process to another does not reorder or lose writes, while the transmission
delay between processors is arbitrary.

3.4 Sequential Consistency (SC)

While technically not a weak model, we include sequential consistency as defined
by Lamport [14] as a base reference. Sequential consistency has been the pre-
ferred memory model for programmers since it just considers the interleaving
of the single thread executions. The definition of sequential consistency [14] as
expressed by [27] is:

∃SerialV iew (<P |(∗, ∗, ∗, ∗))

which means that a system is sequentially consistent if for all executions, there
exists a corresponding sequential order for all operations which respects the
process order.

4 Operational Definitions of Memory Consistency Models

This section contains the main contribution of our paper, i.e., the operational/
architectural characterizations of the four weak memory models described in the
previous section. To this end, we provide reference machines for each one of these
memory models, and discuss then their correctness and completeness, i.e., that
these reference machines can only execute computations that belong to the con-
sidered memory model (correctness), and that the reference machine can execute
all computations that belong to the considered memory model (completeness).
We have also developed reference machines for other memory models during our
research [24] but these cannot be included in this paper due to lack of space.

In order to discuss these reference machines, we first introduce some common
basic components in the next section. Then, the reference machines are presented
and their correctness and completeness are briefly discussed. Finally, further
details on the actual implementation in the synchronous language Quartz [23]
are given.

Operational Characterization of Weak Memory Consistency Models 201

4.1 Basic Components

The reference machines in this section are constructed with the basic components
described in this section.

FIFO: The FIFO component is a First-In-First-Out Buffer which buffers mem-
ory operations as tuples. It holds the operation type (read or write), the issuing
process’ id, the memory address, and in case of a write operation the value to
be written. The component’s interface is defined as follows:
module FIFO(

event ?pop ,
event ?push ,
event ! isempty ,
event i s f u l l ,
// input : writeCommand & targe t & value
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ? inp ,
// output : writeCommand & targe t & value
event (bool ∗ nat{ProcessCount} ∗ nat{MemSize} ∗ bv{DataWidth}) ! outp

)

The outputs isempty and isfull signal the current state of the buffer. Both data
channels inp and outp consist of a valid flag, the id of the originating processor,
the memory location to write to and the actual value to write. Adding an entry
to the buffer is handled by input signal push while providing the data to inp.
Similarly, removing the first entry of the buffer is handled by input signal pop
and reading data from outp.

BAG: The BAG component shares the same interface as the FIFO component
but slightly differs in its semantics: While the FIFO component will always
return and remove the oldest entry when signal pop is set, the BAG component
may non-deterministically return and remove any stored entry.

MEM: The memory unit MEM stores the latest write to a location and returns
for read operations the most recently written value of a location.

In the next subsections, we discuss reference machines for local consistency,
cache consistency, PRAM consistency, and sequential consistency. To that end,
we will first describe the architecture of the reference machine using the above
mentioned basic components. After this, we briefly discuss the correctness and
completeness of the given reference machine, where correctness means that all
computations of our reference machine belong to the considered weak mem-
ory consistency model, and conversely, completeness means that our reference
machine can simulate all possible executions of the considered weak memory
consistency model. Hence, the reference machines exactly characterize the weak
memory consistency model in an operational/architectural manner.

202 M. Senftleben and K. Schneider

Fig. 1. Reference machine for local consistency

4.2 Reference Machine for Local Consistency

Architecture: The implementation of the reference machine for local consis-
tency is shown in Fig. 1 for a given set P of n processes and m memory locations.
For each process Pi ∈ P , the memory system has a distributor Disti, an arbiter
Arbiteri, a memory unit Memi, a FIFO buffer FIFOi, and n−1 different BAG
structures BAGi,j with j ∈ {1, . . . , n}, j 	= i. A distributor Disti broadcasts
received writes to its FIFOi, and all corresponding BAGj,i, j ∈ {1, . . . , n}, j 	= i,
and sends all received reads to its FIFOi. The arbiters nondeterministically
decide to idle or to nondeterministically choose a read from the connected FIFO
and BAG structures. Any operation read from the selected FIFO or BAG is
forwarded to the memory unit.

Correctness: By construction, a process’ own memory operations are kept in
order in the FIFO maintaining <i. The arbiters generate a serial view covering
all own ordered operations and all others’ write operations.

Completeness: Consider now an arbitrary locally consistent execution.
According to its definition, a serial view exists for each process. Now, the arbiter
can choose to read from the BAG/FIFO structures as the order of the serial
view suggests, or to idle as long as the next required value is not yet available.
The given architecture allows to wait until the required values are available and
therefore covers the required behavior.

Operational Characterization of Weak Memory Consistency Models 203

Fig. 2. Reference machine for cache consistency

4.3 Reference Machine for Cache Consistency

Architecture: The implementation of the reference machine for cache con-
sistency is shown in Fig. 2 for a given set P of n processes. For each process
Pi ∈ P , the memory system has a distributor Disti, a receiver Reci, and m
different FIFO buffers FIFOi,j for j ∈ {1, . . . , m}. For each memory cell Mj ,
the memory system provides a memory unit Memj and an arbiter Arbiterj . A
distributor Disti passes the received memory command for memory cell Mj to
the corresponding FIFOi,j . The arbiters choose nondeterministically from the
connected FIFOs to read from. The memory unit returns the result of a read
operation to the receiver Reci of process Pi. The receiver Reci receives reads for
its process and returns them to the process’ data interface.

Correctness: The use of FIFO buffers ensures by construction that the read
and write operations regarding a specific memory location of each process are
kept in order (maintains ≤PO per variable). Therefore, each arbiter Arbiterj
constructs a serial view on all read and write operations regarding its memory
location j.

Completeness: Consider now an arbitrary cache consistent execution. If each
arbiter selects its action according to the executions’ serial view corresponding
to its memory location, then the resulting writes-to order �→ is the same as the
one of the assumed execution. As no memory operations are lost, and the serial
views adhere to the process order, it cannot be the case that the next required
value is stuck behind another value in one of the FIFOs. Therefore, each arbiter
can idle until eventually the next required operation will be available at the head
of one of the connected FIFOs.

204 M. Senftleben and K. Schneider

Fig. 3. Reference machine for PRAM consistency

4.4 Reference Machine for PRAM Consistency

As can be seen in Fig. 3, the reference machine for PRAM consistency provides a
single memory for every process, so that this kind of memory model is typically
found in distributed computing.

Architecture: The implementation of the reference machine for PRAM consis-
tency is shown in Fig. 3 for a given set P of n processes. For each process Pi ∈ P ,
the memory system has a distributor Disti, an arbiter Arbiteri, a memory unit
Memi, and n different buffers FIFOi,j for j ∈ {1, . . . , n}. A distributor Disti
broadcasts received writes to all corresponding FIFOi,j for j ∈ {1, . . . , n}, and
sends all received reads to its FIFOi,i. The arbiters choose nondeterministically
from the connected FIFOs.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining ≤PO). The arbiter
takes elements from the top of a FIFO buffer and issues the operation to the
memory unit. Therefore, the arbiter constructs a serial view on write operations
of all processes and the read operations of its corresponding process.

Completeness: Consider now an arbitrary PRAM execution. If each arbiter
selects its actions according to the execution’s serial view corresponding to its
process, then the resulting writes-to order �→ is the same as the one of the
assumed execution. As said before, as no writes are lost and an arbiter can always
wait until the required value is available, every PRAM consistent execution is
covered by the reference machine.

Operational Characterization of Weak Memory Consistency Models 205

Fig. 4. Reference machine for sequential consistency

4.5 Reference Machine for Sequential Consistency

Architecture: Figure 4 shows an implementation of a reference machine for a
sequential consistency. It consists of a FIFO buffer for each connected process,
which are directly connected to their process interface, an arbiter which selects
nondeterministically from all FIFOs and passes the operations to the memory
unit or otherwise idles. The memory unit passes processed reads to the process
that issued the read operation.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining ≤PO). The arbiter
generates a serialization of all memory operations while maintaining the process
order and therefore satisfies sequential consistency.

Completeness: If an arbitrary execution is sequentially consistent, then a serial
view exists for all memory operations which respects <P . If the arbiter uses
this view to make its nondeterministic choices, then the resulting behavior is
equivalent to the considered execution. Consequently, all sequentially consistent
executions are covered by the given reference machine.

206 M. Senftleben and K. Schneider

4.6 Implementation of Reference Machines

We have implemented all reference machines discussed in the previous sections
as well as many others in the synchronous programming language Quartz [23].
The complete implementations can be found in [24].

To test their correctness, programs like Dekkers mutual exclusion protocol
and programs derived from memory model litmus test suites have been success-
fully run on the presented reference machines.

While the introduced reference machines require unbounded buffers and true
nondeterminism to guarantee the completeness of the memory model, their
implementations in a system description language like Quartz have to specify
bounds for such structures. Clearly, since we can determine the required buffer
sizes for each finite execution, it is still possible to ensure the completeness. For
simulation purposes, we can resort to randomizing the nondeterministic choices,
and for verification or coverage checking, those have to be handled by oracle
inputs which are controlled by the underlying tools.

5 Conclusions and Future Work

This paper presents reference machines to characterize weak memory consis-
tency models in an operational manner. We have implemented these reference
machines in the synchronous language Quartz so that their behaviors are pre-
cisely determined by the formal semantics of Quartz. All reference machines
were implemented by means of some basic components that clearly reflect the
intention of the considered memory model. The resulting reference machines are
useful for simulation and verification, and can serve as a comprehensive specifi-
cation that can be used as a programming model.

We have proved the correctness and completeness of our reference machines,
i.e., that the reference machines can only perform computations that belong to
the weak memory model (correctness), and that all possible computations of the
memory model can also be performed by our reference machines (completeness).
Hence, our reference machines characterize the memory models in an operational
manner.

In our future work, we would like to develop reference machines closer to
real implementations. As stated before, the provided implementations aimed
to be both correct and complete following the corresponding definitions. As
a result, their structure is more complex as a real implementation would be,
including both unboundedness and nondeterminism which are not wanted in
real implementations.

Furthermore, as we want to observe the behavior of programs developed for
sequential machines on weak memory models, the memory models were all ana-
lyzed and defined without synchronization operations. Multicore processors offer
synchronization operations for enforcing a desired behavior if needed. Therefore,
it might be of interest to include in future also synchronization operations like
fences in our architectures.

Operational Characterization of Weak Memory Consistency Models 207

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comput. 29(12), 66–76 (1996)

2. Adve, S., Hill, M.: A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst. (TPDS) 4(6), 613–624 (1993)

3. Ahamad, M., Bazzi, R., John, R., Kohli, P., Neiger, G.: The power of processor con-
sistency. In: Snyder, L. (ed.) Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 251–260. ACM, Velen (1993)

4. Alglave, J.: A formal hierarchy of weak memory models. Form. Methods Syst. Des.
(FMSD) 41(2), 178–210 (2012)

5. Bataller, J., Bernabeu, J.: Synchronized DSM models. In: Lengauer, C., Griebl,
M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 468–475. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0002771

6. Bruni, R., Montanari, U.: Models of Computation. Texts in Theoretical Computer
Science. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42900-7

7. Flur, S., Gray, K., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: concurrency and ISA.
In: Principles of Programming Languages (POPL), pp. 608–621. ACM (2016)

8. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory model-aware testing
- a unified complexity analysis. In: Application of Concurrency to System Design
(ACSD), pp. 92–101. IEEE Computer Society, Tunis La Marsa (2014)

9. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory-model-aware test-
ing – a unified complexity analysis. Trans. Embed. Comput. Syst. (TECS) 14(4),
63:1–63:25 (2015)

10. Goodman, J.: Cache consistency and sequential consistency. Technical report 1006,
Computer Sciences Department, University of Wisconsin-Madison, February 1991

11. Heddaya, A., Sinha, H.: Coherence, non-coherence and local consistency in dis-
tributed shared memory for parallel computing. Technical report BU-CS-92-004,
Department of Computer Science, Boston University (1992)

12. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach,
3rd edn. Morgan Kaufmann, Burlington (2003)

13. Higham, L., Kawash, J., Verwaal, N.: Weak memory consistency models - part I:
definitions and comparisons. Technical report 98/612/03, Department of Computer
Science, University of Calgary (1998)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. (T-C) 28(9), 690–691 (1979)

15. Lawrence, R.: A survey of cache coherence mechanisms in shared memory multi-
processors (1998)

16. Lipton, R., Sandberg, J.: PRAM: a scalable shared memory. Technical report CS-
TR-180-88, Princeton University (1988)

17. Lipton, R., Sandberg, J.: Oblivious memory computer networking. Patent US
5276806, January 1994

18. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

19. McKenney, P.: Memory barriers: a hardware view for software hackers, June 2010.
http://www.rdrop.com/users/paulmck

20. Mosberger, D.: Memory consistency models. ACM SIGOPS: Oper. Syst. Rev.
27(1), 18–26 (1993)

https://doi.org/10.1007/BFb0002771
https://doi.org/10.1007/978-3-319-42900-7
https://doi.org/10.1007/978-3-642-31424-7_36
http://www.rdrop.com/users/paulmck

208 M. Senftleben and K. Schneider

21. Mosberger, D.: Memory consistency models. Technical report TR 93/11, Depart-
ment of Computer Science, The University of Arizona, Tucson, Arizona, USA
(1993)

22. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

23. Schneider, K.: The synchronous programming language Quartz. Internal report
375, Department of Computer Science, University of Kaiserslautern, Kaiser-
slautern, Germany, December 2009

24. Senftleben, M.: Operational characterization of weak memory consistency models.
Master’s thesis, Department of Computer Science, University of Kaiserslautern,
Germany, March 2013

25. Senftleben, M., Schneider, K.: Specifying weak memory consistency with temporal
logic. In: Ghazel, M., Jmaiel, M. (eds.) Verification and Evaluation of Computer
and Communication Systems (VECoS). CEUR Workshop Proceedings, vol. 1689,
pp. 107–122. Sun SITE Central Europe, Tunis (2016). http://ceur-ws.org/Vol-
1689/

26. Sindhu, P., Frailong, J.M., Cekleov, M.: Formal specification of memory models.
In: Dubois, M., Thakkar, S. (eds.) Scalable Shared Memory Multiprocessors, pp.
25–41. Kluwer, Dordrecht (1992)

27. Steinke, R., Nutt, G.: A unified theory of shared memory consistency. J. ACM
(JACM) 51(5), 800–849 (2004)

28. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual-Version 9.
Prentice-Hall Inc., Upper Saddle River (1994)

https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
http://ceur-ws.org/Vol-1689/
http://ceur-ws.org/Vol-1689/

Energy Efficient Systems

A Tightly Coupled Heterogeneous Core
with Highly Efficient Low-Power Mode

Yasumasa Chidai1(B), Kojiro Izuoka1, Ryota Shioya1, Masahiro Goshima2,
and Hideki Ando1

1 Nagoya University, Nagoya, Aichi, Japan
{chidai,izuoka}@ando.nuee.nagoya-u.ac.jp,

{shioya,ando}@nuee.nagoya-u.ac.jp
2 National Institute of Informatics, Tokyo, Japan

goshima@nii.ac.jp

Abstract. A tightly coupled heterogeneous core (TCHC) has heteroge-
neous execution units with different characteristics inside the core. The
composite core (CC) and the front-end execution architecture (FXA)
are examples of state-of-the-art TCHCs. These TCHCs have in-order
and out-of-order execution units in the core. They selectively execute
instructions in-order and it improves the energy efficiency without sig-
nificant performance degradation compared to out-of-order execution.
However, these TCHCs cannot improve the energy efficiency sufficiently.
CC has a large switching penalty of the execution units, and thus, CC
cannot sufficiently execute instructions in-order. FXA cannot suspend
energy consuming out-of-order execution units when it executes instruc-
tions in-order. We propose a dual-mode frontend execution architecture
(DM-FXA), which is based on the FXA. DM-FXA has our proposed
low-power execution mode, which completely suspends the out-of-order
execution unit on in-order execution, and thus, DM-FXA consumes less
energy than does the FXA. In addition, DM-FXA has a smaller switch-
ing penalty than CC. In our evaluation, the proposed methods reduce
energy consumption by 34.7% compared with a conventional out-of-order
processor, and performance degradation is within 3.2%.

1 Introduction

A heterogeneous multicore (HMC) is an effective method for improving the
energy efficiency of processors [1–5]. HMCs consist of multiple cores with differ-
ent performance and energy-efficiency characteristics. HMCs execute each pro-
gram phase using the most energy-efficient core by switching the active core.
ARM big.LITTLE [5] is a commercialized example of an HMC.

However, because each core has dedicated caches and predictors, core switch-
ing causes significant penalty cycles. As a result, core switching granularity is
restricted to be long intervals (e.g., 100M instructions) [1].

To reduce the switching penalty, a tightly coupled heterogeneous core (TCHC)
was proposed [6–12]. A typical TCHC has two execution units, in-order (InO)
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 211–224, 2018.
https://doi.org/10.1007/978-3-319-77610-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_16&domain=pdf

212 Y. Chidai et al.

Fig. 1. Block diagram of CC.

Fig. 2. Block diagram of FXA.

Fig. 3. LP mode in DM-FXA.

and out-of-order (OoO), in a single core. Because the caches and predictors are
shared by the units in the core, the TCHC enables the fine-grained switching of
execution units, and thus, it improves energy efficiency.

The composite core (CC) [6,7] is an example of state-of-the-art TCHCs. CC
[6,7] has an InO and an OoO backend, as shown in Fig. 1. CC has two execution
modes: a low-power (LP) mode, using the InO backend and a high-performance
(HP) mode, using the OoO backend. CC shares the frontend and L1D/I cache
between the backends, thereby reducing the penalty for mode switching.

However, because CC has the independent backends, there is always a penalty
when switching modes. Although this switching penalty is much shorter than
those of the HMCs, it has a non-negligible effect on fine-grained mode switch-
ing in CC (e.g., 500 instructions interval). As a result, the switching penalty
significantly reduces opportunities for LP mode execution in CC.

The front-end execution architecture (FXA) [8] is a TCHC contrasting to CC.
FXA has two execution units: an in-order execution unit (IXU) and an OoO exe-
cution unit (OXU), as shown in Fig. 2 [8]. The difference between FXA and CC
is that the IXU and OXU are connected serially, and the IXU serves as a filter
for the OXU. The IXU is placed in the processor frontend and executes instruc-
tions that can fetch all their source operands in the frontend. The instructions
executed in the IXU are not dispatched to the OXU, which reduces the energy
consumption of the OXU. As a result, FXA does not have the mode switching
penalty and can execute instructions in-order at instruction granularity.

In addition, the IXU has a higher capability than an InO processor. An InO
processor usually stalls the pipeline when dependent instructions are decoded
at the same cycle. In contrast, the IXU can execute such instructions without
pipeline stall. As a result, the IXU can execute many instructions (approximately
50% [8]).

A TCHC with Highly Efficient Low-Power Mode 213

However, FXA cannot sufficiently reduce the energy consumption compared
to CC. This is because it is necessary for FXA to keep to operate some OoO
components such as a rename unit and a re-order buffer (ROB) even if instruc-
tions are executed in the IXU. As a result, the in-order execution in FXA is less
energy efficient than the LP mode in CC, because the LP mode in CC completely
stops the OoO components.

As described above, CC and FXA have the following problems: (1) the mode-
switching penalty of CC is still large, and (2) the in-order execution in FXA is
not energy efficient. In order to resolve these problems, we propose a dual-mode
frontend execution architecture (DM-FXA), which is based on FXA and has LP
and HP modes. The LP mode executes all instructions in-order using the IXU
only and suspends the OXU, whereas the HP mode executes instructions in
the same way as in FXA. Similarly to CC, DM-FXA executes instructions by
switching between these modes and improves the energy efficiency.

The contributions of DM-FXA are as follows:

1. DM-FXA can switch from LP to HP mode without incurring a penalty. This
is because the switching from in-order (LP) to OoO (HP) execution can be
realized only by resuming dispatch to the OXU since the IXU and OXU are
connected serially. Consequently, it mitigates the large switching penalty of
CC, and thus, it improves an LP mode use rate.

2. The LP mode in DM-FXA completely omits the processes required by OoO
execution, and consequently, it solves the inefficient energy reduction of the
in-order execution in FXA.

3. Since the LP mode of DM-FXA leverages the IXU, the LP mode of DM-FXA
has higher performance than LP mode of CC using a normal InO processor. As
a result, DM-FXA can get more opportunities to perform LP mode execution
than CC without performance degradation.

4. Our evaluation shows that the performance-energy ratio (the inverse of the
energy-delay product) of DM-FXA is 24.1% and 12.1% higher than those of
CC and FXA, respectively.

The rest of the paper is organized as follows. Section 2 describes CC and
FXA. In Sect. 3, we propose DM-FXA, and in Sect. 4, we evaluate our proposed
method. Then, Sect. 5 summarizes related work.

2 Existing TCHC Architecture

2.1 Composite Core

CC [6,7] has InO and OoO backends (Fig. 1), which are used in LP and HP
mode, respectively. The two backends share some units, such as the branch
predictor and L1D/I caches, to avoid a cold start on switching. This allows CC
to perform fast execution-mode switching. Other latency-critical components,
such as a register file (RF), are independent for each backend.

214 Y. Chidai et al.

Execution Mode Selection. CC basically selects the execution mode as fol-
lows. In execution mode selection, CC controls the (estimated) increase of exe-
cution cycles from the HP mode within a user-configured range (e.g., 5%). That
is, supposing that a part of a program is executed by both HP and LP modes,
and if the increase in cycles of LP mode execution is estimated to be smaller
than that of the HP mode execution, then CC switches its mode to LP mode.
We call such a part an LP-friendly interval when LP mode effectively improves
energy efficiency.

The authors of CC found that the LP-friendliness fluctuates wildly in fine
granularity (e.g., 500 instructions) [6,7], and CC improves energy efficiency by
exploiting such fine-grained LP-friendly intervals. In their evaluation, the use
rate of LP mode in CC is approximately 30% while the performance degradation
is within 5% [7].

Execution Mode Switching. CC switches its execution mode as follows.
(1) CC stops the instruction fetch and waits until all instructions are retired
from the active backend. (2) In parallel with the fetch stop, CC speculatively
starts to migrate register values between the dedicated RFs. (3) After the retire-
ment of instructions from the active backend, the values for which speculative
migration failed are remigrated. (4) When the remigration is completed, the
switching destination backend starts instruction execution. The cycles required
for this retirement and migration is the switching penalty.

Although the penalty cycles are significantly shorter (about 37 cycles in
our evaluation) than those in conventional heterogeneous multicore proces-
sors (approximately 20µs [13]), the penalty has non-negligible negative effects
because CC switches modes with a considerably fine granularity. As a result,
CC’s switching granularity is restricted to more than hundreds of instructions [7].

2.2 Front-End Execution Architecture

Structure and Behavior. FXA also has two execution units: OXU and IXU
(Fig. 2). While the OXU is a reduced backend of a conventional OoO proces-
sor, the IXU consists of an array of functional units (FUs). The IXU is placed
after the rename stage in the frontend and executes instructions in order. FXA
has additional register ports for the IXU; however, the total number of register
ports is not significantly increased because the OXU size is reduced as shown in
Figs. 1 and 2.

FXA handles instructions as follows (assuming integer instructions with one-
cycle latency). (1) FXA attempts to obtain source operands at the register read
stage in the frontend by (1-a) reading from RF or (1-b) bypassing from the
FUs in the IXU (not from the OXU). Operands are bypassed between FUs on
different stages, e.g., a result calculated on the first stage is received by the second
stage. FXA then checks whether all the operands are obtained, that is, whether
instructions are ready to be executed. (2) A ready instruction is executed in the
IXU and is not dispatched to the IQ. (3) A non-ready instruction goes through

A TCHC with Highly Efficient Low-Power Mode 215

the IXU as a NOP and is then dispatched to the IQ in OXU and executed. Note
that an InO processor stalls its pipeline until its readiness is resolved; however
non-ready instructions in FXA go through the IXU pipeline as a NOP without
stalling the pipeline.

IXU Capability. The IXU has a higher capability than an InO processor.
An InO processor usually stalls the pipeline when dependent instructions are
decoded at the same cycle. In contrast, the FU array in the IXU can execute
such instructions without pipeline stall. For example, in Fig. 2, when the pro-
ducer instruction P© is executed in the first stage of the IXU, its consumer C©
decoded at the same cycle goes through the first stage as a NOP and then is
executed in the second stage. As a result, the IXU can execute many instructions
(approximately 50% [8]).

IXU executes not only integer instructions but also load/store and branch
instructions. Other instructions such as floating-point (FP) instructions are not
executed in IXU because the resource overhead for additional FPUs is large.

Merits and Demerits. FXA has the following merits:

– The energy consumption is reduced. IXU has no instruction-scheduling hard-
ware and thus it can execute instructions with high energy efficiency. More-
over, IXU filters many instructions (e.g. 50%); thus, the size of OXU can be
reduced without performance degradation.

– The performance is improved because the number of FUs is increased as
shown in Figs. 1 and 2. CC can execute up to two instructions, while FXA
can execute up to five instructions per cycle.

However, the IXU execution in FXA cannot sufficiently reduce energy con-
sumption compared with the LP mode in CC, which can completely omit OoO
execution. In FXA, OXU must execute instructions not filtered by IXU, and
thus FXA must keep operating OoO execution components such as a rename
unit, ROB, and load/store queue (LSQ).

3 Dual-Mode Front-End Execution Architecture

As described before, CC and FXA have the following problems:

1. CC: The switching penalty is large (Sect. 2.1).
2. FXA: The reduction in energy consumption is not sufficient (Sect. 2.2).

In order to solve these problems, we propose a dual-mode front-end execu-
tion architecture (DM-FXA), based on FXA, with LP and HP modes.

216 Y. Chidai et al.

3.1 Implementation of LP Mode

The LP mode in DM-FXA executes all instructions using the IXU only, whereas
the HP mode executes instructions in the same way as in FXA. The execution
mode selection is performed in the same way of CC (Sect. 2.1).

Figure 3 shows DM-FXA in the LP mode. DM-FXA has a similar physical
architecture to FXA. In this figure, the shadowed units, such as IQ, are stopped
in the LP mode. Note that power gating is not applied to the deactivated units
as in the prior work of CC [6,7] because recovery from power gating requires
significant time.

The LP mode stalls the pipeline when its source operands cannot be obtained
and waits for resolving dependencies as in an InO processor. When decoding
complex instructions not supported by the IXU (Sect. 2.2) in the LP mode,
DM-FXA immediately switches to the HP mode.

The LP mode completely omits OoO execution as follows:

1. It deactivates the OXU including IQ, LSQ, and ROB.
2. It stops register renaming, and RF is accessed using logical register numbers.
3. Only a partial region in RF is accessed when accessing RF with the logical

numbers; thus, the other region of RF can be deactivated. We call active
partial region head region. If the number of logical registers is 32, the head
region is from register 0 to 31. In modern processors, RFs generally consist
of hierarchical SRAMs [14,15]; thus, the LP mode deactivates not accessed
SRAMs.

Thus, the LP mode resolves the problem of inefficient energy reduction in FXA
(Sect. 2.2).

3.2 Switching from HP to LP Mode

The switching from the HP to LP mode occurs as follows.

1. The fetch instruction is stopped, and DM-FXA waits for the retirement of all
instructions in a similar way to the as CC.

2. DM-FXA rearranges the values in the RF in the order of the logical register
numbers so that the RF is accessed using logical numbers. In this rearrange-
ment, live values in the head region are temporally migrated to the other
region in order to clean out the head region, and then all values are migrated
to the head region.

Additional cycles for this temporal migration are small because the number
of live registers is equal to that of logical registers after the retirement of all
instructions; thus, there is a low probability of live values in the head region
(e.g., 32 logical regs/160 physical regs = 0.2). In addition, the required cycles
for this rearrangement are shorter (maximally 20 cycles in our evaluation) than
those required for the retirement of instructions, and thus, does not cause serious
problems.

A TCHC with Highly Efficient Low-Power Mode 217

3.3 Switching from LP to HP Mode

The switching from the LP to HP mode is performed by (1) initializing a register
alias table (RAT), and (2) restarting OoO execution. Unlike CC, DM-FXA does
not incur a penalty when switching from the LP to HP mode.

The RAT must be initialized before returning to the HP mode because the
register values are rearranged when switching modes. In this case, the RAT is
initialized because each logical register number points to the same number of
a physical register entry. This initialization can be performed in parallel with
execution in the LP mode because the LP mode does not use the RAT.

3.4 Execution Correctness

When switching from the LP to HP mode, unlike CC, it is not necessary for DM-
FXA to wait for the instructions to retire from the pipeline. In this behavior, the
execution correctness in DM-FXA is still maintained. For describing the reason,
we refer to instructions fetched in LP and HP mode as LP and HP instructions,
respectively.

In the LP mode of DM-FXA, ROB and LSQ entries are not allocated to LP
instructions; consequently, if HP instructions are executed before the execution
of all LP instructions, the correctness of execution is not maintained.

However, HP instructions do not overtake LP instructions in execution.
Figure 4 shows the switching of an execution mode from the LP to HP mode,
and both LP and HP instructions simultaneously exist in the pipeline. The ovals
labeled as LP and HP show LP and HP instructions respectively, and the instruc-
tions are arranged from right to left in the program order.

The left-sided HP instructions cannot be dispatched to IQ in OXU before all
the right-sided LP instructions are executed because all the instructions must
proceed in order in the frontend pipeline including IXU. As a result, when HP
instructions are dispatched to IQ in OXU, all the LP instructions have been
completed to maintain execution correctness.

Fig. 4. Switching from LP to HP mode.

218 Y. Chidai et al.

3.5 LP Mode Utilization

DM-FXA can get more opportunities to perform LP mode execution than CC
without performance degradation for the following reasons:

1. As described above, DM-FXA can switch from the LP to HP mode without
incurring the switching penalty. As a result, compared with CC, execution
cycles in which the core is stopped due to the switching penalty are reduced,
and more instructions can be executed by LP mode.

2. As described in Sect. 2.2, the IXU has the higher capability than an InO
processor. Since the LP mode of DM-FXA leverages the IXU, the LP mode
of DM-FXA has higher performance than LP mode of CC using a normal
InO processor.

The evaluation results in Sect. 4.2 show that DM-FXA can execute about 3 times
more instructions in LP mode than CC with the same performance.

3.6 Hardware Cost

The additional hardware cost of DM-FXA compared with FXA is mainly com-
posed of switching control hardware that is almost the same as that for CC. The
circuit area and energy consumption of this additional hardware are negligible
compared with those of the whole processor [6,7].

4 Evaluation

4.1 Evaluation Environment

We evaluate the IPCs using an in-house cycle-accurate processor simulator. Sim-
ilar to gem5 [16], this simulator is execution driven, but it more accurately sim-
ulates dynamic scheduling in OoO processors, such as a replay mechanism on
cache misses. We evaluate the energy consumption using the McPAT simulator
[17], with the parameters shown in Table 1.

We use the programs from the SPEC CPU 2006 INT benchmark suite [18].
The programs were compiled using GCC 4.5.3 with “-O3” option. We skipped
the first 2G instructions, and evaluate the next 100M instructions using ref
data sets. These benchmarks and evaluated instructions are basically the same
as those used in prior CC-related studies [6,7].

Table 1. Device configurations

Technology 22 nm, Fin-FET

Temperature, VDD 320 K, 0.8 V

Device type (core) High performance (I off: 127 nA/um)

Device type (L2) Low standby power (I off: 0.0968 nA/um)

A TCHC with Highly Efficient Low-Power Mode 219

Table 2. Processor configurations.

BASE/CC(OoO) FXA/DM-FXA CC(InO)

Fetch width 3 ← ←
Issue width 4 2 3

Retire width 3 ← N/A

Function unit ALU:2, FPU:2, MEM:2 ← ALU:2, FPU:1, MEM:1

IQ 64 entries 32 entries N/A

Ld./St. queue 32/32 entries ← N/A

ROB 128 entries ← N/A

I/D TLB 64/64 entries ← ←
u-op cache 4KB, one cycle ← ←
L1 I-cache 48KB, two cycles ← ←
L1 D-cache 32KB, two cycles ← ←
L2 cache 512KB, 12 cycles ← ←
L2 prefetcher Stream prefetcher ← ←
Main memory 200 cycles ← ←
IXU N/A 5 FUs, 3 stages [8] N/A

ISA Alpha ← ←

We evaluate the following models:

BASE: A baseline model for an OoO superscalar processor.
CC5: A CC model with an execution mode selection algorithm proposed in [7].

As in previous studies, we use a trace-based phase predictor with a 9-bit index
and the corresponding 512-entry PHT. The switching length [7] is set to 500
instructions. In this model, the allowable increase rate for the execution cycles
is set to 1.05 (5% slowdown) from BASE, as in previous studies [6,7].

CC10: This model is CC5 with an allowable increase rate of 1.1 (10% slowdown).
FXA: An FXA model with an IQ with issue width and half the capacity of those

in BASE because the IXU filters instructions to the IQ without performance
degradation, as described in Sect. 2.2.

DMFXA5: A DM-FXA model with the same mode selection algorithm of the
CC models. The length of the switching interval is set to 500 instructions. In
this model, the allowable increase rate is set to 1.05 (5% slowdown), not from
BASE, but from FXA. This model has a comparable IPC to that of BASE
because the IPC for FXA is 6.8% higher than that for BASE, as described in
Sect. 2.2. The IQ in this model is also half that in BASE.

DMFXA10: This model is DMFXA5 with an allowable increase rate of 1.1 (10%
slowdown). For the same reason as in DMFXA5, this model has almost same
IPC as CC5.

Table 2 lists the configurations for these models. The parameters are based on
those in ARM big.LITTLE architecture, which consists of ARM Cortex-A57 [19]
and A53 [20]. The InO backend used in CC5 is a three-issue in-order superscalar
processor. These configurations are similar to those used in prior FXA studies [8].

220 Y. Chidai et al.

4.2 Evaluation Results

Control Accuracy and Performance. First, we evaluate the performance
control accuracy for each model. The average error rates for CC5, CC10,
DMFXA5, and DMFXA10 are 0.35%, 0.15%, 0.28%, and 0.55%, respectively.
Thus, the performance follows each target performance with high accuracy.
These results show that the mode selection algorithm for CC can be also appli-
cable to DM-FXA with high control accuracy.

Figure 5 shows the performance of all models, normalized by that of BASE.
As mentioned above, the performance of FXA is 6.8% higher than BASE, on
average. Therefore, DMFXA5 has almost the same performance as BASE, and
DMFXA10 has almost the same performance as CC5. Compared to BASE, the
performance levels of CC5 and DMFXA10 are 95.2% and 96.8%, respectively.

LP Mode Utilization. Figure 6 shows the rate of instructions executed in LP
mode. The use rate in CC5 is 21.7%, on average, whereas that of DMFXA5, which
has the same 5% slowdown rate as CC5, is 38.0%, on average. Moreover, the use
rate for DMFXA10, the performance of which is nearly equal to that of CC5,

Fig. 5. IPC relative to BASE.

Fig. 6. LP mode use rate.

A TCHC with Highly Efficient Low-Power Mode 221

Fig. 7. Energy consumption relative to BASE. Fig. 8. PER relative to BASE.

is 60.0%. Such improvements are achieved by the following reasons: (1) DM-
FXA can reduce the switching penalty compared to CC and (2) since IXU has
better performance than normal in-order execution, it gives more opportunities
to execute LP mode than CC (Sect. 3).

Energy Consumption. Figure 7 shows the energy consumption of each model
relative to that of BASE, on average. These results include static and dynamic
energy consumption.

DMFXA10 reduces the energy consumption by 34.7% compared with BASE
because the energy consumption of the units for OoO execution, such as IQ, LSQ,
RF and a rename logic, is significantly reduced. DMFXA10 reduces energy con-
sumption by 28.5% compared with CC5, which has almost the same performance
as DMFXA10. This is because the use rate of LP mode increases significantly,
as described before. DMFXA10 reduces energy consumption by 14.2% compared
with FXA, because the energy consumption of the components that the FXA
must continue activating, such as the rename logic (Sect. 3.1), is reduced in the
LP mode of DM-FXA.

Note that the breakdown of BASE is very similar to that in AMD Steamroller
[21] and ARM Cortex A15 [22]. The energy consumption of the L2 cache is very
small in all the models. This is because we use Fin-FET technology [23] and
low-standby-power transistors for the L2 caches (Table 1), and consequently, the
static energy consumption of the L2 caches is very small.

Performance Energy Ratio. This section shows the performance-energy ratio
(PER) of each model, which is equal to the inverse of the energy-delay prod-
uct (EDP)1. The PER shows how each model reduces energy consumption with
respect to its performance degradation. Figure 8 shows the PER of each model
relative to that of BASE. In the figure, DMFXA10 improves the PER compared
to BASE, CC10, and FXA by 41.5%, 24.1%, and 12.1%, respectively. This high

1 We use a PER instead of an EDP because it is easy to understand. That is, a larger
PER shows better energy efficiency.

222 Y. Chidai et al.

PER is achieved because DMFXA10 significantly reduces the energy consump-
tion compared to its performance degradation. Noted that FXA has the better
PER than its reduced energy consumption, because FXA does not degrade but
improves performance [8].

Switching Penalty. In the DM-FXA, there is no penalty for switching from
LP to HP mode; thus, the number of penalty cycles per switch is smaller than
that of the CC. The number of average penalty cycles per switch is 56 cycles for
the CC and 32 cycles for the DM-FXA, respectively. As described in Sect. 3.5,
DM-FXA takes advantage of this short penalty and increases the number of
instructions executed in the LP mode

5 Related Work

Typical HMCs include heterogeneity based on the difference in the micro-
architecture between the cores, such as InO and OoO cores [1–5]. Other methods
have also been proposed with heterogeneity based on the DVFS control [3,24].

Unlike the naive HMCs, TCHCs have tightly coupled heterogeneous exe-
cution units within a single core. Therefore, TCHCs perform energy-efficient
execution at a finer granularity. We summarize this research in the following
paragraphs.

The heterogeneous block architecture (HBA) [9] improves energy efficiency
by caching dynamically scheduled instructions and executing the cached instruc-
tions InO. DynaMOS [10] also caches scheduled instructions and executes them
InO. DynaMOS is based on the CC architecture and improves the InO backend
execution ratio by executing the scheduled instructions in the InO backend. Com-
pared with our proposed method, these methods require special mechanisms,
such as a special trace cache for storing scheduled instructions and additional
renaming logic.

Early OoO late execution (EOLE) [12] is similar to the FXA in that EOLE
executes instructions InO using FUs added to the frontend. EOLE must also
continue activating components for OoO execution for the same reason as the
FXA, and consequently, the reduction of consumed energy is restricted compared
with that of the DM-FXA.

6 Conclusion

The CC and FXA introduce heterogeneity within a single core and were pre-
viously proposed for to improve energy efficiency. However, these TCHCs have
problems with their switching latency hardware, and the amount of energy con-
sumption reduction is insufficient. In order to resolve these problems, we pro-
posed the DM-FXA, which is based on the FXA and has an LP mode. In our
evaluation, our proposed method achieved a reduction in energy consumption
by 34.7%, with a 3.2% performance overhead in comparison with a conventional
superscalar processor.

A TCHC with Highly Efficient Low-Power Mode 223

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
16H05855.

References

1. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
heterogeneous multi-core architectures: the potential for processor power reduction.
In: Proceedings of the 36th Annual International Symposium on Microarchitecture
(MICRO), pp. 81–92, December 2003

2. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In: Proceedings of the 3rd Conference on Computing Frontiers,
pp. 29–40, May 2006

3. Rangan, K.K., Wei, G.Y., Brooks, D.: Thread motion: fine-grained power man-
agement for multi-core systems. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture, pp. 302–313, June 2009

4. Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Bottleneck identification and
scheduling in multithreaded applications. In: Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp. 223–234, April 2012

5. Greenhalgh, P.: Big.LITTLE Processing with ARM Cortex-A15 and Cortex-A7.
Whitepaper, September 2011

6. Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F.M., Dreslinski, R., Wenisch,
T.F., Mahlke, S.: Composite cores: pushing heterogeneity into a core. In: Pro-
ceedings of the 45th Annual International Symposium on Microarchitecture, pp.
317–328, December 2012

7. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: Trace based phase predic-
tion for tightly-coupled heterogeneous cores. In: Proceedings of the 46th Annual
International Symposium on Microarchitecture, pp. 445–456, December 2009

8. Shioya, R., Goshima, M., Ando, H.: A front-end execution architecture for high
energy efficiency. In: Proceedings of the 47th Annual International Symposium on
Microarchitecture, pp. 419–431, December 2014

9. Fallin, C., Wilkerson, C., Mutlu, O.: The heterogeneous block architecture. In:
Proceedings of the International Conference on Computer Design (ICCD), pp.
386–393, October 2014

10. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: DynaMOS: dynamic sched-
ule migration for heterogeneous cores. In: Proceedings of the 48th International
Symposium on Microarchitecture, December 2015

11. Khubaib, Suleman, M.A., Hashemi, M., Wilkerson, C., Patt, Y.N.: MorphCore: an
energy-efficient microarchitecture for high performance ILP and high throughput
TLP. In: Proceedings of the 45th Annual International Symposium on Microarchi-
tecture, pp. 305–316, December 2012

12. Perais, A., Seznec, A.: EOLE: paving the way for an effective implementation of
value prediction. In: Proceeding of the 41st Annual International Symposium on
Computer Architecture, pp. 481–492, June 2014

13. ARM: ARM Unveils its Most Energy Efficient Application Processor Ever; Rede-
fines Traditional Power And Performance Relationship With big.LITTLE Process-
ing (2011)

14. Weste, N.H.E., Harris, D.M.: CMOS VLSI Design: A Circuits and Systems Per-
spective, 4th edn. Pearson/Addison-Wesley, Boston (2011)

224 Y. Chidai et al.

15. Golden, M., Arekapudi, S., Vinh, J.: 40-Entry unified out-of-order scheduler and
integer execution unit for the AMD Bulldozer x86-64 core. In: Proceedings of the
International Solid-State Circuits Conference (ISSCC), pp. 80–82, February 2011

16. Binkert, N.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7
(2011)

17. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
McPAT: an integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In: Proceedings of the 42nd Annual International
Symposium on Microarchitecture, pp. 469–480, December 2009

18. The Standard Performance Evaluation Corporation: SPEC CPU 2006 Suite.
http://www.spec.org/cpu2006/

19. Bolaria, J.: Cortex-A57 Extends ARM’s Reach. Microprocessor Report 11/5/12-1,
November 2012

20. Krewell, K.: Cortex-A53 Is ARM’s Next Little Thing. Microprocessor Report
11/5/12-2, November 2012

21. Gillespie, K., et al.: Steamroller: an x86-64 core implemented in 28nm bulk CMOS.
In: International Solid-State Circuits Conference (ISSCC). Presentation Slides
(2014)

22. NVIDIA: NVIDIA Tegra 4 Family CPU Architecture. Whitepaper (2013)
23. Auth, C., et al.: A 22 nm high performance and low-power CMOS technology

featuring fully-depleted tri-gate transistors, self-aligned contacts and high density
MIM capacitors. In: Symposium on VLSI Technology (VLSIT), pp. 131–132 (2012)

24. Lukefahr, A., Padmanabha, S., Das, R., Dreslinski Jr., R., Wenisch, T.F., Mahlke,
S.: Heterogeneous microarchitectures trump voltage scaling for low-power cores. In:
Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pp. 237–250, July 2014

http://www.spec.org/cpu2006/

Performance-Energy Trade-off in CMPs
with Per-Core DVFS

Solomon Abera(B), M. Balakrishnan, and Anshul Kumar

Indian Institute of Technology Delhi, New Delhi, India
{solomon,mbala,anshul}@cse.iitd.ac.in

Abstract. In recent years, energy consumption of multicores has been
a critical research agenda as chip multiprocessors (CMPs) have emerged
as the leading architectural choice of computing systems. Unlike the uni-
processor environment, the energy consumption of an application run-
ning on a CMP depends not only on the characteristics of the application
but also the behavior of its co-runners (applications running on other
cores). In this paper, we model the energy-performance trade-off using
machine learning. We use the model to sacrifice a certain user-specified
percentage of the maximum achievable performance of an application to
save energy. The input to the model is the isolated memory behavior of
the application and each of its co-runners, as well as the performance
constraint. The output of the model is the minimum core frequency at
which the application should run to guarantee the given performance
constraint in the influence of the co-runners. We show that, in a quad-
core processor, we can save up to 51% core energy by allowing 16%
degradation of performance.

Keywords: CMP · Shared resource · DVFS · Machine learning

1 Introduction

Over the last couple of decades, CMPs have been the leading architectural
choice for computing systems ranging from high-end servers to battery-operated
devices. Energy efficiency has been an issue for multicores due to battery life
in portable devices, and cooling and energy costs in server class systems and
compute clusters. Despite the fact that CMPs improve performance through
concurrency, the contention for shared resources makes their performance and
energy consumption unpredictable and inefficient [7,8]. These depend greatly on
the nature of the co-runners.

Dynamic voltage and frequency scaling (DVFS) is used to reduce the power
consumption of a processor by trading-off performance. In recent years, modern
processors (Intel Haswell, IBM Power8, ...) provide support for per-core DVFS
where each core can run at different frequency, resulting in a vast configuration
space for the applications running on these cores.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 225–238, 2018.
https://doi.org/10.1007/978-3-319-77610-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_17&domain=pdf

226 S. Abera et al.

Compute-bound applications, which make very few accesses to LLC, benefit
from a higher core frequency as their performance is determined by the process-
ing speed of the cores.

On the other hand, memory-bound applications, which make a lot of accesses
to the LLC, behave differently and can be divided into two classes. The first class
consists of those applications whose performance has a high dependence on the
shared cache space (applications with high data reuse, or “cache-friendly” appli-
cations). These show higher performance when they run alone or with compute-
bound applications. With such co-runners, their performance is determined by
the core frequency as their memory transaction latency is hidden by the cache.
However, in the wake of competition for shared cache space from other memory-
bound co-runners, their performance hugely drops. In such situations, the core
frequency is not a big factor, and it can be lowered without impacting the per-
formance much.

The second class of memory-bound applications are those whose perfor-
mance does not depend on the amount of shared cache space (applications
with low data reuse), like streaming applications. However, the performance
of such applications is affected by the available memory bandwidth when they
run with memory-bound co-runners. Regarding core frequency, varying it has
little impact on the performance of these applications, regardless of the nature
of the co-runners.

Any DVFS policy should take these determining factors into account before
choosing the optimal frequency at which any workload should run. Consider
the two SPEC2006 benchmarks calculix and bzip2. Calculix is a compute-
intensive benchmark, whereas bzip2 is a cache-friendly one. We simulated the
execution of each of the two benchmarks running on a quad-core CMP sharing
2 MB L2 cache with other three co-runner benchmarks. We prepared five differ-
ent sets of co-runners, each posing a different cumulative pressure on the shared
L2 cache. We quantify the pressure posed by an application with the metric
“aggressiveness” (see Sect. 3.1). The cumulative pressure of the three co-runners
is termed “global-aggressiveness” (GA). The higher the GA, the greater the pres-
sure on the L2 by the co-runners. When calculix runs with different competing
benchmarks (Fig. 1a), its performance shows little degradation. Rather its per-
formance is severely affected by the reduction of its core frequency. On the other
hand, bzip2 (Fig. 1b) shows different levels of performance degradation with dif-
ferent co-runners. When it runs with memory-intensive co-runners (GA = 53),
its execution time increased by only 40% when the core frequency changed from
2.4 GHz to 1.0 GHz. However, when it runs with compute-intensive workloads
(GA = 8.92), it slowed down by 120% for the same change in frequency. There-
fore, any proposed model to select the appropriate frequency should take into
account the application’s characteristics and the global stress on the shared
resources.

Furthermore, there are cases in which we may need a DVFS policy that
enables us to trade-off certain percentage of the maximum achievable perfor-
mance for energy savings. For example, let us say the user is willing to sacrifice

Performance-Energy Trade-off in CMPs with Per-Core DVFS 227

(a) calculix (b) bzip2

Fig. 1. Effect of DVFS and resource contention on performance

10% of the maximum possible performance of an application (when it runs with
a given set of co-runners) in exchange for energy savings. As we discussed earlier,
this 10% of application’s performance is determined by its behavior as well as
the nature of the co-runners. When that application runs with memory-intensive
workloads, surrendering 10% of its performance might allow significant lowering
of the core frequency as the application will slow down due to the cache and
bandwidth contention. On the other hand, the same application, when it runs
with less memory hungry applications, even a small reduction in the core fre-
quency may reduce the performance beyond the allowed 10% limit. In this paper,
we model the performance-energy trade-off using a learning-based algorithm. In
order to capture the contention among the co-runners, we chose a lightweight
contention metric that can efficiently convey the potential contention that will
be faced by the workload. The model takes individual LLC aggressiveness, the
global LLC intensity that emanates from the other cores and the performance
constraint as input and generates the optimal frequency setting for that core. We
assume that the underlying architecture to be a CMP architecture consisting of
multiple symmetric cores, where all the cores share the LLC. We also consider
the applications to be single threaded, with no data sharing among them.

The rest of the paper is organized as follows: Sect. 2 describes previous work
in the domain of CMP energy efficiency. Section 3 discusses the overview of
the model construction, Sect. 4 compares different machine learning algorithms,
Sect. 5 describes the evaluation of the described scheme, for different performance
constraints, and shows the efficiency of the developed model. Finally, Sect. 6
concludes the paper.

2 Related Work

Energy consumption has become an important optimization metric for CMP
based computational platforms. Since its proposal by Weiser et al. [1], DVFS
has been used to minimize the processor energy consumption while limiting the
reduction of the overall system performance. DVFS can be applied in CMPs on
a per-chip, per-core or per-cluster basis. Most of the previous works are directed

228 S. Abera et al.

towards CMPs with chip-wise DVFS. There have been a significant amount of
DVFS based works [2–6] focused on real-time systems that try to reduce energy
consumption by utilizing the slack time for frequency scaling.

A lot of solutions have been proposed in the form of energy-aware schedul-
ing that try to minimize the effect of contention, and apply DVFS to decrease
the energy consumption. Merkel et al. [9] used task activity vectors (L2 and
memory accesses) to capture the resource utilization of each task. When they
schedule tasks, they try to pair memory-intensive tasks with compute-intensive
ones to improve performance. When there are only memory intensive tasks in
the workload, they scale down the chip frequency to save energy. Dhiman et al.
[10] proposed a learning-based algorithm for a multi-tasking environment that
suggests the optimal frequency based on tasks’ degree of memory-boundedness.
They used CPI stacks to quantify this behavior.

In recent years, machine learning algorithms have been applied to perform
intelligent DVFS based energy saving [10–15]. The authors of [14] used reinforce-
ment learning in which they took task characteristics and processor configuration
to scale frequency for real-time systems. The task execution characteristics are
derived from the execution time of the task (its CPU-time and stall-time). The
proposal by Shen and Qiu [15] is the most related work to ours. In their work,
they applied a machine learning technique to predict the performance degrada-
tion that would be faced by an application due to other applications in a CMP,
and simultaneous application of DVFS. They define degradation with respect to
a solitary run (solo-run) of the application on the CMP at the highest allowed
frequency. They assumed global DVFS for all the cores. In this work, we assume
that DVFS can be individually applied to each core. In addition to that, we
argue that it would be difficult to guarantee a quality of service from the solo-
run performance perspective as resource contention depends on the identity of
the co-runner. Instead, the reference should be the maximum achievable perfor-
mance with the given set of co-runners. In this work, we take this approach. For
a given application, based on its memory behavior and that of its co-runners’,
the model can predict the correspondence between the performance loss and the
discrete frequency steps.

3 Model Construction Methodology

The proposed machine learning based DVFS model attempts to predict the
optimal core-frequency setting for a given user-specified acceptable loss in per-
formance. The model is constructed offline by capturing the relationship between
the nature of a benchmark, its operating frequency, the nature of its co-runners,
and its performance. The model is then used online to find the optimal frequency
that an application should run at, such that the given performance requirement
is satisfied, and maximum energy savings are obtained.

Section 3.1 discusses the contention metrics that best capture the nature of
a benchmark for the task at hand while Sect. 3.2 describes the data collection
methodology. Section 3.3 then discusses the building process of the model and
Sect. 3.4 covers the application of the model.

Performance-Energy Trade-off in CMPs with Per-Core DVFS 229

3.1 Contention Metrics

In order to construct a model that accurately captures the impact of frequency
scaling and resource contention on performance, we need appropriate contention
metrics. When applications are run in an isolated environment (solo-run), the
amount of energy saved per percentage point of performance degradation varies
based on their characteristics. Applications that are compute-intensive tend to
save less energy for each percentage point of performance loss. Whereas, appli-
cations that are memory intensive tend to save much more energy for each per-
centage point of performance loss. This is because these applications take much
time to progress as they wait for their data to arrive. Hence, in an isolated envi-
ronment, the applications performance-energy trade-off balance can be modeled
by its characteristics only.

As we mentioned earlier, shared resource contention in CMPs, particularly
competition for shared cache space and memory bandwidth, severely harms
performance and makes them energy inefficient. The slowdown encountered
by individual applications hugely varies with the identities of the co-runners.
The more the application slowed, the more insensitive it will be to frequency
change and vice versa. Hence, the effect of frequency scaling also varies with the
co-runners.

Therefore, when an application runs with other co-runners, they also prove
to be a factor in the obtained energy savings through frequency scaling. If the
application’s performance does not depend on its usage of the shared resources, it
does not incur any significant additional delay because of sharing. Hence, its own
memory characteristics can be enough to drive the performance-energy trade-off
and shows similar trade-off curve as its solo-run (Fig. 1a). If the application’s per-
formance does depend on the usage of the shared resources, it can show different
behaviors based on the co-runners’ characteristics. When the co-runners are not
very shared resource hungry, the application might not incur much slowdown.
Here, the performance-energy trade-off might not deviate much from its solo-run
trade-off curve (see the curve in Fig. 1b with GA = 8.92). On the other hand, if
its co-runners are resource hungry, the magnitude of their resource usage deter-
mines the slowdown suffered by the application. Accordingly, its energy saving
per percentage point of performance loss varies with co-runners (see the curves
in Fig. 1b with GA = 53, GA = 41.03, GA = 29.20 and GA = 20.88).

We desire a lightweight contention metric that conveys the resource hungri-
ness of the application and helps in predicting slowdown that will be encountered
by individual applications when they run together. This metric should be easy to
collect online and the number of attributes should also be small as it reduces the
sampling time. We have collected various performance metrics and tested their
ability to predict the potential contention between the co-running applications.
In our study, we run 275 combinations (each set of four) of SPEC2006 bench-
mark fragments on a quad-core environment sharing the LLC. We record the
solo-run and co-run performance of the four co-running applications A0, A1, A2

and A3. The solo-run and co-run performance of each application is represented

230 S. Abera et al.

by its number of instructions per cycle as IPCsolo and IPCco respectively. We
computed the average slowdown as specified in Eq. 1.

Slowdown =
∑3

i=0 IPCsolo(Ai) − ∑3
i=0 IPCco(Ai)

∑3
i=0 IPCsolo(Ai)

× 100, (1)

We have analyzed parameters that present a high correlation with the
observed slowdown. We chose three metrics: the solo-run IPC, number of LLC
accesses (LLCA) and LLC misses per 1K cycles (MPKC). We also considered two
methods of aggregating the parameters of the applications: sum and product.
Table 1 presents the correlation between the six different candidates with the
actual slowdown.

Table 1. Correlation between aggressiveness strategies and slowdown

Parameter Correlation with slowdown

IPCsum −0.69469

IPCproduct −0.46521

LLCAsum 0.73869

LLCAproduct 0.48090

MPKCsum 0.81011

MPKCproduct 0.57714

As we can see from Table 1, MPKCsum shows the highest correlation with
slowdown. The IPC based contention metrics show negative correlation with the
slowdown, as high aggregate IPC implies lower contention, resulting in a lower
slowdown. In this work, we represent the memory characteristics of applications
by their aggressiveness scores (A Score). A Score is a metric that characterizes
how aggressively an application competes for the shared cache space and memory
bandwidth. We use MPKC as A Score, and to model the global cache pressure
emanating from the co-runners, define global-aggressiveness (GA) as the sum of
the individual A Scores of the co-runners.

We also perform experiment to demonstrate the correlation of the A Score
with performance loss, under the influence of frequency scaling. We run 20 single-
threaded, single-phase (collected 250 million instructions fragments using Sim-
Point) SPEC2006 benchmarks on sniper multicore simulator with quad-core con-
figuration sharing a 2 MB L2 cache. In the experiment, we run the benchmarks
without competing co-runners. We scaled the frequency from 2.4 GHz through
1.0 GHz and record the performance response of each benchmark to the fre-
quency scaling. We present, in Fig. 2, the correlation between their A Score
and performance degradation. As we can observe from the figure, the compute-
intensive benchmarks (low A Score) show higher performance degradation when
their frequency is scaled down. On the other hand, we can see memory-intensive

Performance-Energy Trade-off in CMPs with Per-Core DVFS 231

Fig. 2. Sensitivity of 20 SPEC2006 applications for frequency scaling and correlation
with their A Score

benchmarks are only marginally affected by frequency scaling as their perfor-
mance is not determined by the core frequency.

In addition to its correlation with the slowdown (because of contention as
well as frequency scaling), A Score also can capture the impact of core-frequency
changes on the aggressiveness of the application. Let us assume one application
has x LLC misses when running at frequency f1. When the same application
runs at f2 (f2 = 0.5f1), its LLC misses do not change but its cache pressure is
minimized as its cache requests arrive at longer time intervals between them.
This phenomenon is captured by the choice of LLC MPKC as a contention metric
and makes it suitable for online DVFS modeling as every core might run at a
different frequency. The cycles in our context are representation of time (elapsed
time multiplied by the maximum core frequency).

3.2 Data Collection

Let us assume a processor having NC cores. Let us also assume we have a set
of NA applications A = {A0, A1, . . . , ANA−1} that are to be run on this pro-
cessor. We first collect the aggressiveness score of each application Acur ∈ A as
A ScoreAcur

by running (or simulating) it alone on the given processor. We then
construct a set of NCG co-runner groups, C = {CG0, CG1, . . . , CGNCG−1}, with
each group having NC −1 applications from the set A. The global-aggressiveness
of each co-runner group Ccur is given by GACcur

, and is computed by summing
the individual A Scores of the NC − 1 applications in that group. We prepared
the set C in such a way that their GA values are well spread over the entire spec-
trum of GA values ranging from maximum (all memory-bound) to the minimum
(all compute-bound). We take only representative samples, not exhaustively, to
construct the set C.

232 S. Abera et al.

Algorithm 1. Data Collection Methodology
1 for each application Acur in A do
2 schedule Acur on core 0;
3 for each co-runner group Ccur in C do
4 schedule the applications in Ccur on cores 1 to NC − 1;
5 set the frequency of cores 1 to NC − 1 to fmax;
6 set the frequency of core 0 to fmax;
7 execute / simulate;
8 Tfmax = time taken to execute Acur ;
9 for each frequency fcur in F , other than fmax do

10 set the frequency of core 0 to fcur;
11 execute / simulate;
12 Tcur = time taken to execute Acur;

13 ΔP =
Tcur−Tfmax

Tfmax
× 100;

14 save the tuple <A ScoreAcur , GACcur , ΔP , fcur >;

15 end

16 end

17 end

Let us also assume that the processor is capable of operating at Nf different
frequencies F = {f0, f1, . . . , fNf−1}, with the maximum frequency among these
being labeled fmax. As discussed earlier, we assume the DVFS can be done on
a per-core basis. Algorithm 1 describes how the data collection is done.

3.3 Building the Model

We desire a model that best captures the relationship between a benchmark’s
memory behavior, that of its co-runners, the frequency at which former is exe-
cuted, and its performance. Therefore, in the training phase, we use A Score,GA,
ΔP (as defined in Algorithm 1) and frequency values, as collected in Sect. 3.2 to
build the model, as shown in Fig. 3. In the testing phase, the model, given a
benchmark, its co-runners, and a desired performance requirement, returns the
minimum frequency that guarantees specified performance. There are a variety
of machine learning algorithms that can be applied to capture the relationships

Fig. 3. Training and testing of the model

Performance-Energy Trade-off in CMPs with Per-Core DVFS 233

in different ways. Section 4 discusses the various machine learning algorithms
considered, and their respective scores of predictions.

3.4 Application of the Model

The model can be used as a part of batch as well as online scheduler. In the
case of online use, at each scheduling decision, for each of the runnable tasks
running on the available cores, their previous epochs’ performance metrics can
be used for tuning each core’s frequency. Here, the cost of DVFS transition as
well as the time it takes to execute the prediction model should be taken into
account to determine the time interval between two consecutive schedules. The
input parameters that are collected from performance counters (A score, GA)
will be used along with the QoS policy imposed by the user, like ΔP = x, for
x% of performance loss that the user wants to let go to save energy. Then the
model predicts the minimum frequency at which the core should run to satisfy
the requested QoS.

4 Comparison of Machine Learning Algorithms

There are a variety of machine learning algorithms to choose from. We used the
WEKA (Waikato Environment for Knowledge Analysis) [16] machine learning
suite to study the efficacy of the different modeling alternatives. Table 2 shows
the list of various machine learning algorithms with their respective correla-
tion indexes when tested using 10 fold cross-validation and our test set data
respectively. The experiment was performed on Intel i7-4770 (number of physi-
cal cores = 4, logical cores = 8) processor with a speed of 3.4 GHz. We found that
the decision tree based Random Forest (RF) regression model best captures the
relationship between the aggressiveness metrics, the core-frequency, and the per-
formance degradation. In addition to that, the time taken for testing the model
is short enough for an online application. RF [17] is ensemble of decision trees
where each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. The reason that
the RF model performs well is that it alleviates the overfitting problem, which is
common on other regression models.

Table 2. Algorithm comparison

Algorithms Cross-validation
(correlation
index)

Test set
(correlation
index)

Testing time
per data point
(secs)

Training
time (secs)

Linear regression 0.8273 0.8799 2.27 E−05 0.26

MLP regressor 0.9664 0.9815 3.97 E−05 0.17

SVM regressor 0.858 0.9054 2.84 E−05 2.34

REP tree 0.9764 0.9742 3.40 E−05 0.04

Random forest 0.9904 0.9815 3.96 E−05 0.28

234 S. Abera et al.

5 Evaluation

5.1 Evaluation Setup

We use sniper multicore simulator [19] version 6.0 to validate the proposed model.
To model the energy consumption, we use McPAT (Multicore Power, Area, and
Timing) integrated power, area, and timing modeling framework [18].

Table 3. System configuration

Core Caches

Parameter Value Parameter Value

ISA X86 L1-D 32KB, 8-way,
WB, 4 cycles

Micro-architecture Nehalem L1-I 32KB, 8-way,
4 cycles

NC 4 L2(LLC) 2MB, 16-way,
WB, 30 cycles

F {1000,+200, . . . , 2400}MHz Cache block size 64

V {0.8,+0.1, . . . , 1.5} v Memory latency 45 ns

Technology 45 nm

The architectural configuration of the simulated system is given in Table 3.
We use 45 single-phase, single-threaded, 250 million instruction long SPEC2006
benchmark fragments. The SPEC2006 benchmark suite contains a mixture of
compute and memory intensive workloads [21]. The fragments are collected using
SimPoint [20].
Data Collection: We use 25 of these 45 benchmarks for the purpose of data
collection, that is, set A as defined in Sect. 3.2 (NA = 25). The 25 benchmarks
used for the training are selected by their A Score values covering the whole
range of A Score values. We construct the co-runner group C as explained in
Sect. 3.2 with NCG = 10.
Testing of the Model: We first performed 10-fold cross validation using the
training set of 25 applications. We observed a high correlation index of 0.9904,
providing a preliminary validation of the proposed model. We also performed
online testing of the model. We use the remaining 20 applications for this pur-
pose. We schedule each of the 20 applications on core 0. Let us call this appli-
cation running on core 0 as the primary application. We randomly select 10
co-runner groups, each group containing 3 applications from this set of 20. These
3 co-runners are scheduled on cores 1–3, and the latter are made to run at the
highest frequency setting, that is, 2400 MHz. We evaluate against four different
Quality of Service (QoS) policies, that is, the maximum degradation in the per-
formance of the primary application that the user is willing to accept. The four

Performance-Energy Trade-off in CMPs with Per-Core DVFS 235

policies are: 5%, 10%, 15%, and 20%. Thus, there were a total of 20×10×4 = 800
experiments. In each experiment, we use the constructed model to predict the
lowest frequency at which core 0 must run such that the QoS policy is honored.
Since the output of the model is a real number, we approximate the value to the
nearest frequency setting. We then perform a reference run at different frequency
settings and select the frequency setting which best satisfies the user QoS policy.
We check that if the best frequency matches the predicted one or not. If not, we
see by how many frequency steps it deviates. Based on the distribution of the
inaccuracies, we calculate the average loss/gain in performance and energy. The
results of the testing is presented next.

5.2 Analysis of the Results

Figure 4 shows the average energy saved through DVFS, and the associated
average degradation in the performance of the primary application, for the four
QoS policies. We see that up to 51% of energy can be saved when the user is
willing to sacrifice 20% of the performance.

Fig. 4. Performance-energy trade-off for different QoS policies: perfect vs random forest
model

We compare our proposed frequency predictor (RF model) against a perfect
predictor (one that always predicts the optimal frequency). As can be seen, our
predictor performs very close to the perfect predictor, with an accuracy of 1.3%,
thereby validating our model – both the choice of the contention metric, as well
as the machine learning algorithm. We see that, both with our predictor and the
perfect one, in each of the four QoS policies, the observed average performance
degradation is much lesser than that specified by the user. This is because of the
coarse granularity of the DVFS regulator that allows us to scale the frequency
only at steps of 200 MHz.

We further analyze the almost negligible inaccuracies of our model, and
describe our findings in Fig. 5. In each of the four figures, the first row depicts
the fraction of predictions that were correct (same as the perfect predictor), and
the fraction of predictions that were incorrect by −200MHz,+200MHz, and
+400MHz. Note that there were no predictions that were incorrect by a greater

236 S. Abera et al.

(a) 5% Policy (b) 10% Policy

(c) 15% Policy (d) 20% Policy

Fig. 5. Energy and performance loss/gain because of prediction inaccuracies

margin. The second row depicts the loss/gain in energy savings associated with
the incorrect predictions, as compared to the perfect predictor. The third row
depicts the associated loss/gain in performance.

We see that the percentage of correct predictions on average is 86%. Among
the incorrect predictions, 94% are within one frequency step away from the
optimal frequency. When the predicted frequency was higher than optimal, there
is a loss in energy savings. Likewise, when the predicted frequency was lower,
there is a gain. The net effect of these inaccuracies is negligible, as can be seen
in Fig. 4. Additionally, when the predicted frequency is lower than optimal, the
QoS policy is not honored. We see that this scenario occurred only in 6.7% of
the test runs.

6 Conclusion

In this work, for chips with per-core DVFS capability, with the help of lightweight
metrics, we showed that we can predict the application’s performance response
to shared resource contention and frequency scaling. We also demonstrated that,

Performance-Energy Trade-off in CMPs with Per-Core DVFS 237

given application’s and its co-runners’ memory behavior just captured through a
single parameter of Aggressiveness Score, we can accurately predict the optimal
frequency for the given user QoS policy through machine learning. The results
demonstrated that on an average, 86% of the predictions were accurate and out
of the inaccurate predictions 94% were within a distance of one frequency step
(200 MHz). In addition to that, only 6.7% of the total predictions violated the
user QoS requirement. In the experiments, we observed that, by allowing 16% of
performance degradation, we can save up to 51% core-energy saving. We believe
that incorporating additional locality metrics to capture the behavior of the
applications can further improve the accuracy of the model. In addition to that,
the impact of the model from thermal perspective should also be studied.

References

1. Weiser, M., et al.: Scheduling for reduced CPU energy. USENIX (1994)
2. Zhu, D., Melhem, R., Childers, B.: Scheduling with dynamic voltage/speed adjust-

ment using slack reclamation in multiprocessor real-time systems. IEEE TPDS 4,
686–700 (2003)

3. Cong, J., Gururaj, K.: Energy efficient multiprocessor task scheduling under input-
dependent variation. In: DATE 2009, Dresden, Germany (2010)

4. Yao, F., et al.: A scheduling model for reduced CPU energy. In: FOCS 1995 (1995)
5. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable

voltage processors. In: ISLPED 1998 (1998)
6. Kim, S.I., Kim, H.T., Kang, G.S., Kim, J.-K.: Using DVFS and task scheduling

algorithms for a hard real-time heterogeneous multicore processor environment. In:
EEHPDC 2013 (2013)

7. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ASPLOS 2010 (2010)

8. Abera, S., Balakrishnan, M., Kumar, A.: PLSS: a scheduler for multi-core embed-
ded systems. In: Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds.)
ARCS 2017. LNCS, vol. 10172, pp. 164–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54999-6 13

9. Merkel, A., Stoess, J., Bellosa, F.: Resource-conscious scheduling for energy effi-
ciency on multicore processors. In: EuroSys 2010 (2010)

10. Dhiman, G., Rosing, T.S.: Dynamic voltage frequency scaling for multi-tasking
systems using online learning. In: ISLPED 2007 (2007)

11. Khan, U.A., Rinner, B.: Online learning of timeout policies for dynamic power
management. ACM-TECS 13(4), 1–25 (2014)

12. Otoom, M., et al.: Scalable and dynamic global power management for multicore
chips. In: ACM 2015 (2015)

13. Ye, R., Xu, Q.: Learning-based power management for multicore processors via
idle period manipulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
33, 1043–1055 (2014)

14. Islam, F., Lin, M.: A framework for learning based DVFS technique selection and
frequency scaling for multi-core real-time systems. In: HPCC 2015 (2015)

15. Shen, H., Qiu, Q.: Contention aware frequency scaling on CMPs with guaranteed
quality of service. In: DATE 2014 (2014)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

https://doi.org/10.1007/978-3-319-54999-6_13
https://doi.org/10.1007/978-3-319-54999-6_13

238 S. Abera et al.

17. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)
18. Li, S., et al.: McPAT: an integrated power, area, and timing modeling framework

for multicore and manycore architectures. In: MICRO 2009 (2009)
19. Sniper Multicore Simulator. http://snipersim.org
20. Calder, B., et al.: SimPoint: picking representative samples to guide simulation

(Chap. 7). In: Performance Evaluation and Benchmarking (2005)
21. Jaleel, A.: Memory characterization of workloads using instrumentation-driven

simulation. Technical report, VSSAD (2007)

http://snipersim.org

Towards Fine-Grained DVFS
in Embedded Multi-core CPUs

Giuseppe Massari, Federico Terraneo(B), Michele Zanella, and Davide Zoni

DEIB, Politecnico di Milano, Milan, Italy
{giuseppe.massari,federico.terraneo,michele.zanella,

davide.zoni}@polimi.it

Abstract. Dynamic Voltage and Frequency Scaling (DVFS) is the pre-
ferred actuator for power-performance policies, and its use is growing also
for thermal management. DVFS implementations, especially for embed-
ded platforms, have historically provided only few possible operating
points, despite this may impair the optimality of the frequency selec-
tion for a given application. Moreover, with multiple policies making
use of it, the rate at which frequency and voltage changes will occur
in a given system is expected to increase. The work presented in this
paper has a two-fold objective: first, to present a methodology to extend
a DVFS driver with additional operating points and second, to mea-
sure the impact of DVFS transitions from the performance and energy
consumption perspective. This contribution can thus help both operat-
ing system and run-time manager designers to implement more efficient
policies, as well as device driver programmers and hardware designers
to optimize the DVFS infrastructure. The proposed approach has been
tested on a quad-core ARM Cortex-A9 CPU based development board.

1 Introduction

Despite the current well-know dark silicon issues [1], parallel processing architec-
tures have found place also in power-constrained devices such as smart-phones
and tablets, with System-on-chip featuring multi-core CPUs and GPUs. How-
ever, the end of Dennard scaling has introduced energy efficiency as the main
issue in modern computing systems, in the mobile and HPC world alike.

Dedicated solutions have become widespread including heterogeneous archi-
tectures with specialized accelerators or single-ISA approaches such as the ARM
big.LITTLE [2]. Regardless of the solution, one of the key mechanism to optimize
energy efficiency is Dynamic Voltage and Frequency Scaling (DVFS) [3–5].

Looking at the DVFS implementations available in current embedded plat-
forms, however, we can say that they still exhibit some limitations with respect
to their desktop counterpart. More in detail, the overhead of DVFS transitions
may have a higher weight [6]. Moreover, the software drivers provided by the
vendors usually expose a limited number of nominal voltage-frequency operating
points, despite the underlying hardware could operate on a wider set of points.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 239–251, 2018.
https://doi.org/10.1007/978-3-319-77610-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_18&domain=pdf

240 G. Massari et al.

With multiple power-performance and thermal management frameworks [7,8]
simultaneously triggering DVFS transitions, the availability of more operating
points could increase power efficiency by selecting more accurate points [9,10]
to save power without “over-performing”.

To this aim, we propose a methodology to extend the DVFS support of exist-
ing embedded software platforms. This approach allows the operating system
to access the entire set of operating points supported by the underlying hard-
ware. This is a first step in our ongoing research to improve DVFS effectiveness
for combined power/performance/thermal policies. The proposed methodology
includes an interpolation step between the nominal operating points, thus it does
not require input from the System-on-chip (SoC) manufacturer about the safe
voltage margins of the new points, nor hardware modifications to the PLL or
voltage regulator. The only requirement is the access to the source code of the
kernel-level DVFS device driver and the data sheet of the SoC.

Another relevant issue is the efficiency of the DVFS, which becomes not
negligible with policies that lead to operating point changes very frequently. By
measuring this overhead, policy designers can be made aware of the costs of
operating point changes, both in terms of latency and energy consumption. This
allows to take into account the benefits-costs trade-off. In this regard, a second
contribution of this paper is given by a method to characterize DVFS transition
overhead and identify possible bottlenecks.

From the experimental point of view, the proposed approach has been tested
on a NXP i.MX6 SABRE board, featuring an ARM Cortex A9 quad-core CPU –
a common architecture among mobile and high-end embedded platforms –, but
can be easily applied to any architecture for which documentation is available.

2 Related Works

DVFS implementations and policies making use of DVFS are subjects of signif-
icant research, with works spanning from electronic-level voltage regulators and
PLL design, to dynamic power/performance and thermal policies, often imple-
mented at software level.

From the electronic perspective, the problem of designing fast lock PLLs [11]
that can reduce the DVFS switching overhead, as well as low power PLLs [12]
to reduce the overall energy consumption has been well studied. For what con-
cerns voltage regulators, attempts have been made to design on-chip voltage
regulators [13] and assess their performance compared to traditional off-chip
solutions. Another optimization considers the coupled control of the PLL and
voltage regulator to reduce DVFS transition times [14].

The aforementioned works address the DVFS problem at hardware level,
while targeting future System-on-chip designs. This is because the proposed
solutions require the introduction of significant changes in the processor design.
Regarding the DVFS overhead characterization, some models have been pro-
posed [15] to get estimations from desktop, mobile and low-power processors.
Some of them have been also integrated in hardware simulators, with the aim of

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 241

taking it into account, when performing cycle accurate simulations of multi-core
System-on-chips [16]. Compared to the state of the art, our approach derives
overheads from measurements on real processors.

DVFS has been also compared to other solutions in terms of through-
put/Watt. Srinivasan et al. [6] compared DVFS with dynamic reconfigura-
tion in four different architectures. Begum et al. [17] illustrated the trade-off
between CPU DVFS and memory DFS in energy-constrained devices such as
smartphones.

Although DVFS exploitation is subject of plenty of works in the literature,
this paper focuses on a methodology to extend the number of DVFS points of
existing platforms, as well as to characterize their overhead from actual measure-
ments, so as to enable a better exploitation at the software level. For instance,
this should be advantageous for DVFS scheduling algorithms for computation
and data intensive applications [18,19]. Moreover, recently introduced policies
based, for example, on control theory [8,20,21] show that the policy overhead
does not depend on the number of DVFS points, so having more DVFS points
would be even more advantageous.

3 Fine-Grained DVFS

The proposed approach applies to the case where the hardware components that
implement DVFS, the PLL and voltage regulator, can be programmed to obtain
more DVFS points than the number supported by the vendor-supplied drivers.

3.1 DVFS Points Extension

The power consumption of CMOS digital logic, without considering the static
contribution due to leakage, is governed by the well known expression P =
αCV 2

ddf where Vdd and f are the operating voltage and frequency, C the load
capacitance, and α a coefficient summarizing the switching activity.

However, voltage and frequency cannot be set arbitrarily, as voltage influ-
ences the logic delays. In fact, given a certain target frequency, a minimum volt-
age is required to allows the device to operate without incurring in a critical path
failure, leading to erroneous computations. A safety margin is usually added to
account for process variability and the temperature dependence of gate delays.
Figure 1 shows how DVFS points are located in the frequency-voltage plane.
The filled area represents the critical path failure region, i.e. the area including
voltage-frequency points for which we can experience system faults.

To extend the DVFS points set, the proposed approach assumes that the
boundary of the critical path failure region, as well as the margins, are unknown,
but can be identified through interpolation starting from the nominal DVFS
points. It is important to remind that DVFS margins depend on temperature,
running workload and process variability. The goal of our approach is not to fully
explore this dependence, but rather to select new DVFS points with margins that
are consistent with the ones selected by the manufacturer.

242 G. Massari et al.

Fig. 1. Voltage and frequency plane showing the official DFVS points and their margin.

The approach starts from a study of the DVFS hardware support, in detail
the PLL and voltage regulator. The data sheets provided by the vendor are used
to understand the actual capabilities of the hardware. At high level, a PLL can
be thought as a frequency multiplier that allows us to set the frequency of the
processor to any multiple of a base frequency, within a given range. The number
of frequency points that can be set are obtained from the data sheets, by dividing
the range width by the base frequency. Similarly to the PLL, also the voltage
regulator will have a minimum (voltage) step and a range.

We therefore obtain the entire DVFS space as the Cartesian product of volt-
age and frequency points. This space includes the optimal points, the points that
cause a critical path failure and those characterized by a low energy efficiency.
In order to find the optimal points, we start from observing the points provided
by the vendor. Then we decide what kind of interpolation (linear, quadratic,
. . .) best fits them. The selected interpolation is then performed to obtain the
extended set of points. For the validation of the set, we proceed as follows:

1. Computing the voltage margins of the official nominal DVFS points;
2. Verifying that the voltage margin of the new points is compatible with the

nominal ones.

Each of the nominal points is indeed tested using suitable benchmarks and
decreasing the voltage till a system failure is experienced. Typically such failures
consist of software faults, e.g., unexpected program terminations, wrong results
or operating system stuck due to kernel panics.

The difference between the nominal voltage and the highest voltage value
causing a failure is the voltage margin of that DVFS point. The procedure is
iterated for all the nominal points, and the iterated margins are again interpo-
lated to compute the expected margins for the new DVFS points. For the vali-
dation procedure we used the same benchmarks, but applied to the new points,
obtaining the actual margins. These are then compared against the expected
ones computed earlier. For each new DVFS point, if the difference between the
expected and actual margin is lower than a given threshold, in the order of

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 243

a few units of the voltage regulator resolution, the voltage point is accepted.
Otherwise, the highest of the two margins is taken.

3.2 Overhead Characterization

Power-performance and thermal policies relying on DVFS are often closed loop
ones, meaning that they measure some quantity (system load or chip temper-
ature), execute an algorithm to decide whether a change of operating point is
needed, and in case, pick the best one according to a multi-objective function.
Many different approaches exist, from PID control [22] to optimization tech-
niques [23], and policies can be executed as either as periodic or event-based [21]
tasks. Such policies often work better if the rate of DVFS point changes is
increased, as they can better keep up with the variability introduced by the
applications [9].

The rate of DVFS changes is thus a trade-off between the advantages of a
fast rate control and the overhead of DVFS transitions. This overhead is lim-
ited by hardware factors, which are mainly the time the PLL takes to set a
new frequency, and the time required by the voltage regulator to switch to a
new voltage. Often these two actions are performed sequentially [14], to avoid
transition through critical path failure regions.

The impact of switching to a new DVFS point can be evaluated from a
performance and a energy perspective. In fact, a DVFS transition subtracts a
certain amount of CPU time to useful computations, resulting in both perfor-
mance and energy overhead. In most embedded DVFS implementations, voltage
and frequency control are exposed to the operating system independently, and
cannot be changed simultaneously. For example, in a scale-down transition the
frequency must be changed before decreasing the voltage. The opposite happens
in the scale-up transitions. In both cases for a certain amount of time in the
middle of DVFS transitions, the voltage applied to the CPU is higher than the
value expected by the operating point for the current frequency. This sequence
is a further source of energy overhead.

The proposed solution for measuring time overheads makes use of on-board
GPIO ports, or general purpose input/output on the SoC. The DVFS driver is
instrumented in order to set the pin at the beginning of the code block to profile,
and clear it at the end. An oscilloscope can be connected to the GPIO and used
to measure the time. This technique allows to measure the full DVFS transition,
as well as its individual parts such as the PLL lock and voltage regulator settling.

To measure the energy consumption the power supply line of the CPU cores
should be cut, and the insertion of a shunt resistor is required. Using an oscil-
loscope, it is then possible to measure the CPU core voltage and the current
drawn, from which it is possible to compute the DVFS energy consumption.

4 Experimental Results

The proposed approach has been applied to a NXP i.MX6Q SABRE develop-
ment board, featuring an ARM Cortex A9 quad-core CPU, shown in Fig. 2.

244 G. Massari et al.

Fig. 2. One of the boards used for the experimental evaluation, outlining the added
connections. Voltage and current probe points (red circle), and GPIOs (yellow circle).
(Color figure online)

The DVFS point extension was tested on two identical boards to account for
process variability, while the overhead measurement has been performed on a
single board, which has been instrumented by exposing two GPIOs for the time
overhead profiling. For what concerns the energy overhead profiling, the on-board
shunt resistor was used to measure the SoC current consumption. However, it is
important to remark that no hardware modifications were needed for extending
the number of DVFS points. The performed modifications were only necessary
for the (optional) profiling phase.

4.1 DVFS Points Extension

The NXP SoC driver exposes only three nominal DVFS points for the ARM
cores, as summarized in Table 1. Following the approach of Sect. 3, the data sheet
was studied and it was found that the PLL has a 12 MHz resolution. Considering
that the range from 396 to 996 MHz spans 600 MHz, it has been possible to
extend the number of DVFS points from 3 to 51. The voltage regulator has
instead a resolution of 25 mV. Looking at the official DVFS points, it can be
easily seen that the points fit a line whose equation is:

V = 0.95 + 0.0005 ∗ (f − 396). (1)

For this reason, a linear interpolation was selected to generate the voltage
values for the additional 48 DVFS points. The Linux DVFS driver has been
extended by replacing the look-up table of DVFS points with a function that

Table 1. Nominal CPU DVFS points supported by the NXP SoC.

Frequency (MHz) Voltage (V)

996 1.25

792 1.15

396 0.95

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 245

Table 2. Voltage margins for the official DVFS points and the benchmark applications

Frequency
(MHz)

cpuburn
margin (V)

yes
margin (V)

FFT
margin (V)

996 0.125 0.175 0.175

792 0.125 0.175 0.175

396 0.150 0.150 0.150

uses Eq. (1) to algorithmically compute the voltage starting from the frequency.
Although we considered the possibility to extend the interpolation to values
higher than the nominal range for overclocking, one of the boards that we tested
had recurrent kernel panics above 1 GHz, while the other worked flawlessly up
to 1.14 GHz. Due to the significant variability between boards, we do not rec-
ommend overclocking the i.MX6Q SoC.

The next step has been the evaluation of the voltage margins of the nominal
DVFS points, to determine which was the voltage at which a fault may occur.
This is done in order to evaluate the reliability of the new DVFS points.

Three applications were tested to identify critical path failures: the port of
cpuburn for ARM, a simple ‘‘yes>/dev/null’’ on all the CPU cores and a
multi-threaded application computing Fast-Fourier Transformations, properly
instrumented to perform a consistency check of its data structures.

Table 2 reports the voltage margins computed as the nominal voltage minus
the highest voltage at which a failure occurs. For cpuburn and yes, that do not
produce an output, the observed failures were either a kernel panic or a board
lock-up, requiring a power-cycle to be operational again. For whatever concerns
the instrumented application, no consistency check failure has been observed,
and in all cases the failure was again a kernel panic or board lock-up, hence the
OS kernel was found to be more susceptible to failures than the applications.

The collected data shows that, given a certain application, the voltage margin
is nearly constant. The only variation is by no more than one DVFS voltage
step, which in this architecture is 25 mV. cpuburn stresses the CPU generating
a higher load with respect to yes and the instrumented FFT application, causing
failures also at voltage values at which the other two work. This is to be expected,
as the critical path failure also depends on temperature, and an application that
causes a higher current consumption causes a temperature increase in the SoC.
Summarizing, the voltage margins were found to be constant for each application.

The validation procedure of the new DVFS points has been performed as
follows: assuming that the fixed margins hypothesis is correct, and considering
that a decrease in voltage for a given frequency of 125± 25 mV could cause a
failure, a decrease in voltage by 75 mV should not cause any failure. This should
hold true also for the intermediate DVFS points, not just the official ones. Now
assuming that also the linear relation of frequency to voltage is correct, it would
be possible to decrease the voltage computed through the linear interpolation
by 75 mV, and the resulting (voltage, frequency) point should still not fail.

246 G. Massari et al.

The performed test therefore consists of assigning a voltage value 75 mV lower
than Eq. (1), testing all the 51 DVFS points with the execution of cpuburn and
checking that no failure occurs. This test was performed, and as expected, no
failures have been reported, confirming that each of the 48 new DVFS points
has the same margin as the ones provided by the manufacturer.

A second test has been performed to assess the optimality of the obtained
points, by decreased the voltage an additional 50 mV, for a total of 125 mV. As
in this test the expected result is a failure, such as a kernel panic, it difficult to
automate. For this reason, not all DVFS points were tested, but for all the DVFS
points that have the same voltage (due to the voltage regulator granularity), only
the one with the highest frequency was tested. The result is that for all the tested
operating points, but two, we reported a failure. These two points are those with
a frequency of 492 and 444 MHz, respectively. A further test with the voltage
reduced by an additional 25 mV caused a kernel panic also in these two cases.
This test shows that of the 48 new DVFS points, 46 have at most 125 mV of
margin, and two have 150 mV, operating at ambient temperature. Finally, the
test was repeated with the other two applications and the other board, with
similar results.

4.2 Overhead Characterization

In this section we performed a set of measurements, aiming at characterizing
the overhead of the DVFS activity in terms of both time and energy. All mea-
surements were performed by toggling GPIO pins at the beginning and the end
of the code fragment to profile, and using an oscilloscope to measure the time
interval. We have also taken into account the overhead introduced by the exper-
imental setup. Specifically, we estimated the number of CPU cycles lost due to
the added GPIO toggling. It turned out that depending on the current operating
point (396, 792, 900 MHz) this number is about 280, 475 and 600 respectively.
Such values correspond to 0.6–0.7µs, which means that this contribution can be
considered negligible.

Time Overhead. Concerning the effective overhead in terms of time, we iden-
tified three main steps through which a change of operating point goes through.
Therefore, we separated the overhead characterization into three contributions:

1. The context-switch time occurring in case the tool sending the DVFS request
is located in user-space;

2. The time required to set the new frequency by properly configuring the PLL;
3. The time required to set the voltage, which in this architecture is dominated

by the time required for writing to the off-chip voltage regulator through the
I2C bus.

This breakdown has been summarized in Table 3. The user/kernel-space con-
text switch takes an almost constant value of 9µs, marginally affected by the

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 247

Table 3. Time overhead breakdown for each of the nominal values of frequency sup-
ported by the CPU. Time values in (µs).

396MHz 792MHz 900 MHz

U/K context-switch 9 9 9

Frequency setting (PLL) see Table 4

Voltage setting (I2C) 625 610 607

Table 4. Transition times matrix: the amount of time required to switch from one
operating frequency (row) to another (column). The values reported are in µs.

Frequencies (MHz)
From/To

396 504 600 792 900 996

396 45 30/125∗

504 8 27 121 122 121 122

600 7 125 27 123 122 122

792 7 124 123 27 123 123

900 7 123 122 123 27 121

996 7 122 122 123 122 27
∗ Switching time depending on previous frequency

Fig. 3. Voltage regulator performance. Darker line shows the transition from 0.95 V to
1.25 V, while the lighter line shows the 0.95 V to 1.1 V transitions.

current operating point. The PLL lock time is instead operating point depen-
dent. We detailed this point in Table 4. Finally, the voltage setting performance
is limited by the I2C bus bandwidth, and is the dominating contribution. The
penalty introduced by the I2C bus becomes more evident as we compare the val-
ues in Table 3 with the oscilloscope output in Fig. 3. What we observed is that
the voltage regulator performs the two transitions (from 0.95 V to 1.25 through
which a change of V and from 0.95 V to 1.1 V) in about 40µs and 25µs, respec-
tively. This means that the I2C overhead is actually more than 10 times the
voltage change time.

248 G. Massari et al.

In Table 4 we can now give a detailed look at the time required to switch
between operating frequencies. What we can see in the table is a regular pat-
tern, with the exception given by the frequency changes involving the lowermost
value, i.e. the 396 MHz frequency. The reason behind this has been discovered
by reading the data sheet coming with the development board. We have seen
indeed that the 396 MHz value comes from a secondary clock source which is not
managed through the PLL. Excluding this case, an actual change of frequency
requires 122µs on average, while resetting the same frequency value takes 27µs.

For the 396 MHz special case, scaling down the frequency is very fast (7–
8µs), since no PLL is involved, as already said. The scaling indeed is actually
performed by simply multiplexing two different clock sources. When scaling up,
we measured two different timings, depending on the frequency previously set.
In one case, scaling up from 396 MHz took around 125µs on average, which is
in line with all the other cases. This happens when we made a transition of type
X → 396 → Y . In another case, we experienced a switching time of only 30µs,
that is the case of a transition of type X → 396 → X. In such a case the PLL is
already set for the frequency X, and the transition time is thus faster.

Summing up the two contributions at OS level, a DVFS transition requires
125 + 625 = 750µs in the worst case scenario. During this time the CPU does not
perform any useful work, therefore this time represents a performance penalty.

Energy Overhead. In order to estimate the energy consumption occurring in
DVFS transitions, we must keep in mind what happens at the operating system
level. As we have seen, the driver in fact sets the PLL for the frequency change
and then the off-chip voltage regulator via I2C. In the former step, the OS must
first switch the CPU clock to a frequency not controlled by the PLL, then set the
new frequency and wait for the PLL to lock. Although the driver is implemented
using busy waiting, thus consuming energy, the CPU is clocked at a very low
frequency (24 MHz), so the energy consumption is negligible. Also the I2C driver
is implemented using busy waiting, but in this case the CPU is running at the
full clock frequency. This fact, combined with the long time needed for the I2C
communication causes this energy contribution to be the highest one. Probably, a
driver implementation exploiting DMA could have been a more efficient solution,
since in such a case we could still use the CPU for useful processing while carrying
out data transmission for the voltage regulator setting.

At this point, in order to proceed with the energy consumption estimation, we
got the CPU current drawn by measuring the voltage on top of the shunt resistor
connected to the CPU and dividing the value by the resistance value (0.02 Ω).
We repeated the measurement with the CPU running a workload simulating the
busy waiting worst case, setting first the frequency to 24 MHz, and then varying
it over a range of points from 396 to 996 MHz, as summarized in Table 5.

Now, for the CPU power consumption estimation we must consider that the
CPU operating voltage is comprised in the range [0.95–1.25] V. To simplify our
analysis we approximated it to the mean value of 1.1 V. Given that, we can
first estimate the power and energy consumption of the frequency (PLL) setting

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 249

Table 5. Current drawn by the CPU while spinning on a busy waiting.

Frequency (MHz) 24 396 504 600 792 900 996

Current (mA) 20 145 200 245 355 405 450

stage. As during this stage, the CPU operates at 24 MHz which means that the
current drawn is approximately equal to 20 mA. By multiplying the current for
the voltage value we obtained a power consumption value of 22 mW. Considering
that this stage can last at most from 7µs to 125µs, it turned out that the energy
consumption of the frequency setting ranges from 0.15µJ to 2.75µJ.

On the voltage setting side, we can say that the busy waiting of the CPU
operating at a frequency value between 396 and 996 MHz leads to a current
drawn in the range [145–450] mA, hence a power consumption contribution of
145*1.1 = 160 mW and 450*1.1 = 495 mW, respectively. We have shown how
this voltage regulation stage dominates the DVFS time overhead, taking from
607µs to 625µs, according to the power values computed above, this means an
energy consumption contribution of about 100µJ and 300µJ.

Summing up the average values of energy consumption found for the fre-
quency setting and the voltage regulation, we can say that the overall energy
required to perform a DVFS transition is 201.5µJ on average.

5 Conclusions

To summarize, in this paper we provided an experimental methodology to extend
the DVFS operating points supported by an embedded CPU beyond the nominal
ones, and validating the new points. Moreover, our approach allows to measure
the overheads occurring in DVFS transitions, both in terms of performance and
energy consumption. The approach has been tested on a real embedded devel-
opment platform, using CPU stressing workloads.

Overall, the outcome of this work aims at being a support for hardware
designer and OS level developers, in order to optimize DVFS mechanisms and
run-time management policies, taking into account both its advantages and costs.

Acknowledgments. This work was supported in part by the European Union
funded project under the grant M2DC H2020-688201 (http://www.m2dc.eu/en/) and
MANGO H2020-671668 (http://www.mango-project.eu/).

References

1. Taylor, M.: A landscape of the new dark silicon design regime. In: IEEE Micro,
pp. 8–19, September 2013

2. Nikov, K., Nunez-Yanez, J.L., Horsnell, M.: Evaluation of hybrid run-time power
models for the ARM Big.LITTLE architecture. In: IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), October 2015

http://www.m2dc.eu/en/
http://www.mango-project.eu/

250 G. Massari et al.

3. Garcia, R.C., Chung, J.M., Jo, S.W., Ha, T., Kyong, T.: Response time perfor-
mance estimation in smartphones applying dynamic voltage & frequency scaling
and completely fair scheduler. In: IEEE International Symposium on Consumer
Electronics (ISCE), pp. 1–2, June 2014

4. Kwak, J., Choi, O., Chong, S., Mohapatra, P.: Dynamic speed scaling for energy
minimization in delay-tolerant smartphone applications. In: IEEE Conference on
Computer Communications (INFOCOM), pp. 2292–2300, April 2014

5. Park, J.G., Hsieh, C.Y., Dutt, N., Lim, S.S.: Quality-aware mobile graphics work-
load characterization for energy-efficient DVFS design. In: IEEE Symposium on
Embedded Systems for Real-time Multimedia (ESTIMedia), October 2014

6. Srinivasan, S., Kurella, N., Koren, I., Kundu, S.: Dynamic reconfiguration vs.
DVFS: a comparative study on power efficiency of processors. In: International
Conference on VLSI Design and International Conference on Embedded Systems
(VLSID), pp. 563–564, January 2016

7. Egilmez, B., Memik, G., Ogrenci-Memik, S., Ergin, O.: User-specific skin
temperature-aware DVFS for smartphones. In: Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1217–1220, March 2015

8. Leva, A., Terraneo, F., Giacomello, I., Fornaciari, W.: Event-based
power/performance-aware thermal management for high-density microprocessors.
IEEE Trans. Control Syst. Technol. 26, 535–550 (2017)

9. Eyerman, S., Eeckhout, L.: Fine-grained DVFS Using on-chip regulators. ACM
Trans. Archit. Code Optim. 8, 1:1–1:24 (2011)

10. Juan, D.C., Garg, S., Park, J., Marculescu, D.: Learning the optimal operating
point for many-core systems with extended range voltage/frequency scaling. In:
International Conference on Hardware/Software Codesign and System Synthesis
(CODES + ISSS), pp. 1–10. IEEE (2013)

11. Pan, J., Yoshihara, T.: A fast lock phase-locked loop using a continuous-time phase
frequency detector. In: IEEE Conference on Electron Devices and Solid-State Cir-
cuits, pp. 393–396, December 2007

12. Abadian, A., Lotfizad, M., Majd, N.E., Ghoushchi, M.B.G., Mirzaie, H.: A new
low-power and low-complexity all digital PLL (ADPLL) in 180 nm and 32 nm. In:
IEEE International Conference on Electronics, Circuits and Systems (2010)

13. Kim, W., Gupta, M.S., Wei, G.Y., Brooks, D.: System level analysis of fast, per-
core DVFS using on-chip switching regulators. In: IEEE International Symposium
on High Performance Computer Architecture, pp. 123–134, February 2008

14. Altieri, M., Lombardi, W., Puschini, D., Lesecq, S.: Coupled voltage and frequency
control for DVFS management. In: International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), September 2013

15. Park, S., Park, J., Shin, D., Wang, Y., Xie, Q.: Accurate modeling of the delay and
energy overhead of dynamic voltage and frequency scaling in modern microproces-
sors. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 32, 695–708 (2013)

16. Terraneo, F., Zoni, D., Fornaciari, W.: A cycle accurate simulation framework for
asynchronous NoC design. In: International Symposium on System-on-Chip, SoC
2013 (2013)

17. Begum, R., Werner, D., Hempstead, M., Prasad, G., Challen, G.: Energy-
performance trade-offs on energy-constrained devices with multi-component
DVFS. In: IEEE International Symposium on Workload Characterization (IISWC)
(2015)

18. Tan, L., Chen, Z., Zong, Z., Li, D., Ge, R.: A2E: Adaptively aggressive energy
efficient DVFS scheduling for data intensive applications. In: IEEE International
Performance Computing and Communications Conference (IPCCC) (2013)

Towards Fine-Grained DVFS in Embedded Multi-core CPUs 251

19. Ge, R., Feng, X., Feng, W.C., Cameron, K.W.: CPU MISER: a performance-
directed, run-time system for power-aware clusters. In: International Conference
on Parallel Processing (ICPP), p. 18, September 2007

20. https://www.kernel.org/doc/html/v4.13/admin-guide/pm/intel pstate.html
21. Leva, A., Terraneo, F., Fornaciari, W.: Event-based control as an enabler for high

power density processors. In: International Conference on Event-based Control,
Communication, and Signal Processing (EBCCSP), June 2016

22. Rodopoulos, D., Catthoor, F., Soudris, D.: Tackling performance variability due
to RAS mechanisms with PID-controlled DVFS. IEEE Comput. Architect. Lett.
14, 156–159 (2015)

23. Liu, Y., Yang, H., Dick, R.P., Wang, H., Shang, L.: Thermal vs energy optimization
for DVFS-enabled processors in embedded systems. In: International Symposium
on Quality Electronic Design (ISQED), pp. 204–209 (2007)

https://www.kernel.org/doc/html/v4.13/admin-guide/pm/intel_pstate.html

Partial Reconfiguration

Evaluating Auto-adaptation Methods
for Fine-Grained Adaptable Processors

Joost Hoozemans(B), Jeroen van Straten, Zaid Al-Ars, and Stephan Wong

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
{j.j.hoozemans,j.vanstraten-1,z.al-ars,j.s.s.m.wong}@tudelft.nl

Abstract. To achieve energy savings while maintaining adequate per-
formance, system designers and programmers wish to create the best
possible match between program behavior and the underlying hard-
ware. Well-known current approaches include DVFS and task migrations
in heterogeneous platforms such as big.LITTLE processors. Addition-
ally, processors have been proposed in literature that are able to adapt
(parts of) their organization to the workload. These reconfigurations can
be managed using hardware monitors, profiling and other compile-time
information or a combination of both. Many current solutions are suit-
able for heterogeneous systems, as migration penalties pose a practical
limit to the maximum adaptation frequency, but not for dynamic pro-
cessors that can adapt much more fine-grained.

In this paper, we present two novel concepts to aid these low-penalty
reconfigurable processors - one requiring an ISA extension and one with-
out. Our experimental results show that our approaches enable a dynamic
processor to reduce the energy-delay product by up to 25% and on aver-
age 10% to 18% compared to the best performing static setups.

1 Introduction

With energy utilization as a new critical metric for computing systems, design-
ers have devised numerous ways of configuring systems to run in various per-
formance/power modes. The most notable examples are Dynamic Voltage and
Frequency Scaling (DVFS), Heterogeneous Multicore Processors (HMPs) such
as big.LITTLE, and polymorphic processors such as MorphCore [1]. In turn,
researchers try to match program behavior to processor configurations in order
to minimize both the energy utilization and the performance penalty associated
with low-power configurations.

The time it takes to move an ARM big.LITTLE core in or out of sleep modes
lies in the order of milliseconds and changing DVFS involves a latency of tens
of microseconds. Furthermore, migrating a task to another core will introduce
an additional penalty because of cold resources (cache, predictors) [2]. Because
of these properties, a granularity of context-switch level (10 ms) is adequate,
as adapting to the workload any faster will only result in prohibitively large
penalties.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 255–268, 2018.
https://doi.org/10.1007/978-3-319-77610-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_19&domain=pdf

256 J. Hoozemans et al.

In contrast to this, program characteristics can change at much higher fre-
quencies [3]. Therefore, designs have been proposed that greatly reduce these
penalties for heterogeneous systems [2,4], and adaptable processors have been
proposed that have very low adaptation penalties [1,5]. These processing plat-
forms have the potential of matching the program in a far more fine-grained way
(in the time domain). However, currently used monitoring-based approaches are
often based on measurement windows that are far too large to drive these high-
frequency adaptations.

This work aims to determine what evaluation frequency is needed to profit
from fine-grained adaptable processors. As sampling performance counters at
this rate will create excessive overhead, we argue that an automatic evalua-
tion circuit is required, moving the evaluation and adaptation control loop into
hardware. Next to sampling performance counters, we propose two additional
auto-adaptation approaches. In one approach, we modified the compiler to insert
instructions in locations that are likely to correspond with a phase boundary.
When encountering this instruction, the processor starts a measurement and
stores the results in a dedicated field in the same instruction word. The second
approach involves a branch target buffer. At every branch, a measurement is
started and results are stored in the buffer. When branching to the same target
address again, the code characteristics have already been measured and can be
retrieved. These two approaches aim to make adaptations more proactive.

We have applied the approaches to the ρ-VEX dynamic VLIW (very long
instruction word) processor that is able to change configurations with a penalty
of only 5 cycles (a pipeline flush). Results show that the ρ-VEX processor benefits
from monitoring windows of approximately 75 cycles. Using the auto-adaptation
approaches, the energy consumption of the adaptable processor can be reduced
by 10% to 18% on average compared to the best static setup. The branch-based
proactive approach slightly outperforms window-based solutions.

2 Approach

2.1 Target Processor

In this work, we target the ρ-VEX processor, an open-source reconfigurable
VLIW processor [6]. It can assign datapaths in pairs to one or multiple threads
or disable them to conserve energy (see Fig. 1). It has a reconfiguration penalty of
5 cycles, because it needs to flush the pipeline. The processor can switch between
a 2, 4, or 8-issue configuration without changing the binary it is executing,
because it utilizes generic binaries [7]. In short, generic binaries work by ensuring
that each VLIW bundle of 8 operations can also be executed in 2 or 4-issue mode,
by removing intra-bundle dependencies (see Fig. 2 for a simplified depiction
of this).

VLIW architectures are widely adopted in embedded media and DSP applica-
tions, providing high energy efficiency (for example, in modem, audio and image
processing subsystems in mobile phone SoCs) [8]. Code for VLIWs is statically
scheduled by the compiler, decreasing hardware complexity. Instruction-level

Evaluating Auto-adaptation Methods 257

Fig. 1. Conceptual depiction of the fine-grained reconfigurable VLIW processor tar-
geted in this work. It consists of 8 datapaths that can be split or merged in pairs (i.e.,
each sub-block represents a 2-issue VLIW processor). These can be assigned to a thread
or powered down to conserve power (left-hand side). Multiple blocks can be assigned
to a single thread to exploit as much ILP as possible, or each block can be assigned to
its own thread to exploit thread-level parallelism (right-hand side - the colors represent
different threads).

mov r2 = r3

mov r3 = r4

mov r1 = r2

;;

;;

mov r2 = r3

mov r3 = r4

mov r1 = r2

;;

;;

GenericOriginal

Fig. 2. The ρ-VEX is able to switch configurations at any time, because the toolchain
makes sure the code can be executed in every possible configuration. It does this by
‘re-sequentializing’ the code after it has been compiled for 8-issue. Each bundle is
reordered such that the dependencies (shown as arrows) are met when executing the
operations one by one.

parallelism (ILP) is explicitly encoded in the binary. This makes it possible to
measure performance of different core configurations, as we will see in Sect. 3.
This makes the chosen VLIW platform very suitable to evaluate the proposed
techniques.

2.2 Proposed Auto-adapting Method

The main idea behind our approach is that program characteristics change during
the course of execution, but characteristics of code itself is fixed. In other words,
the changes are due to the control flow through the different code sections in
the binary. We propose to measure these characteristics once for every code
section, and store this information in such a way that we can easily retrieve it
whenever we revisit that section. For each section, a measurement only needs to

258 J. Hoozemans et al.

be performed once for each core type (for HMPs) or configuration (for adaptable
processors), after which the results for both are stored in their own field.1 We
are proposing two ways to store the measured code characteristics.

The first approach utilizes a structure that is similar to the branch target
buffer (BTB) that is widely used in modern processors. Normally, the BTB is
used to predict the branch target address early in the pipeline to reduce branch
penalties. Our ‘Branch Target Configuration Buffer’ (BTCB) is a cache that is
indexed by branch target addresses. Whenever a branch occurs, the BTCB is
accessed to determine if there is information about the code that is being jumped
to. If there is not, a measurement is triggered. When the next branch occurs,
the measurement results are stored in the buffer. If there is information in the
buffer, it can be used during the branch to reconfigure the processor to the most
energy efficient configuration.

Our second approach introduces a special instruction we named pchg (phase
change) that is added to the program by the compiler at certain locations that
are likely to correspond with a longer, more stable phase (compared to the
first approach, that operates on a basic block level). When encountering this
instruction, a lookup is performed in a configuration buffer similar to the BTCB.
This lookup can use the least significant bits of the PC (program counter) as
index, or the compiler can assign indexes to code sections and place their index
in the instruction.

Fig. 3. Overview of the pchg approach when encountering a loop, using the PC address
as configuration buffer index.

During runtime, when the processor encounters this instruction for the first
time, it keeps track of the index and starts the performance counters to evaluate
the program characteristics in that phase. When the measurement has completed
(when encountering the next pchg instruction), the results of the measurement

1 On HMPs, measuring performance on one core type does not provide information
about the performance on the other core type (see [9, Sect. 6.3]). To monitor which
core type is the most efficient, the program needs to be migrated back and forth
continuously. The same holds for different configurations of an adaptable processor.

Evaluating Auto-adaptation Methods 259

are written back into the configuration buffer. Each time the processor encoun-
ters the instruction again, the information is available and the processor can use
it to perform a reconfiguration immediately. An overview of the pchg approach
is depicted in Fig. 3. Both approaches have their merits. The first approach is
the most fine-grained but may trigger adaptations too often. The second app-
roach requires recompilation of binaries (note that, if this is not possible, old
binaries will still execute correctly but not trigger any adaptations) and results
in runtime overhead because of the added instructions.

3 Implementation

This section discusses the implementation of the different approaches in the
target platform. We start with the elements that the different approaches have
in common, then we discuss the window-based monitoring approach, followed by
the BTCB approach, and concluding with the phase change annotations.

3.1 Common

The target processor has a controller that handles reconfiguration requests.
These requests can be performed via a memory-mapped control register writable
by software (user or OS). Although the platform reduces adaptation overhead to
only 5 cycles, sampling and evaluating performance counters in software intro-
duces additional overhead. At the frequencies we are proposing in this paper,
this overhead becomes very significant. Therefore, we propose to use a hard-
ware circuit to perform the evaluation and reconfiguration request directly. This
section discusses this circuit.

We use a performance counter for each possible ρ-VEX core configuration.
Using a scheme similar to [10], we increment these counters based on the location
of a VLIW bundle marker. If a bundle is completely filled with 8 operations, the
counter for the 2-issue configuration will increase by 4 and the counter for the
4-issue configuration will increase by 2 (see Fig. 4). This scheme is enough to
measure the performance of the configurations. However, we propose to estimate
energy utilization.

We have used the following energy estimation function:

E = Estatic + Edynamic where
Edynamic = (SY L ∗ Esyl) + (NOP ∗ Enop) and
Estatic = (CY C2 ∗ Ecyc2) + (CY C4 ∗ Ecyc4) + (CY S8 ∗ Ecyc8).

Here, SY L is the number of execution syllables (individual operations of a VLIW
bundle), NOP is the number of unfilled syllable slots, and CY C represents the
number of executed cycles in 2-issue, 4-issue and 8-issue mode. The energy values
depend on the hardware characteristics and should be set by the designer based
on power estimations or measurements. For our evaluation we have used the
values listed in Table 1. The dynamic part of the function is largely the same
between configurations, so we can use a single cost value for each configuration.

260 J. Hoozemans et al.

Fig. 4. Measuring the performance for different configurations is done by decoding the
location of the stop bit (VLIW bundle boundaries shown as ‘;;’). This bundle requires
4 cycles to execute on the 2-issue configuration and 2 cycles on the 4-issue. The 8-issue
counter is equivalent to the bundle counter.

Table 1. Used values for the energy estimation function in the simulator

Esyl Enop Ecyc2 Ecyc4 Ecyc8

4 1 2 3 4

Instead of multiplying the counter values with the energy estimation values
(which would be expensive in hardware), we propose to use prescaler counters.
The prescaler is increased using the configuration cycle count of the bundle
(as depicted in Fig. 4). When a configuration’s prescaler exceeds its cost value,
its energy estimation counter is increased by 1 and the prescaler is reset. The
prescaler only needs enough precision to express the ratios between the cost val-
ues. The final energy estimation counters also needs limited precision, because
(1) we are measuring relatively short sections of code and (2) if two estimations
are very close to each other, both choices are equally suitable. In our current
implementation, we are using 7 bits per configuration for the energy estima-
tion counters. When any one of the counters overflows, all of them are right
shifted by 1 position (the ratios between them stay intact). The required storage
for the configuration buffer entries is 7 × 3 bits (one for each possible ρ-VEX
configuration).

3.2 Window-Based Monitoring

Window-based monitoring is not a novel approach proposed in this paper but
rather the current art to which we will compare. Using the hardware circuit from
the previous section, our window-based implementation evaluates the energy
estimation using a fixed period. The configuration with the lowest value is for-
warded to the reconfiguration request register, and the counters are reset.

Evaluating Auto-adaptation Methods 261

3.3 BTCB

For this approach we propose to add a buffer, the Branch Target Configuration
Buffer (BTCB) that stores code information about branch targets. In case the
processor already features a BTB, such as the Philips TriMedia VLIW [11],
this structure can be widened to include the desired information.2 When the
processor executes a branch (conditional branches are only considered when
taken), it will perform a lookup in the buffer to see if there is an entry with valid
code information. If that is the case, it will perform a core adaptation.

If no such entry is found, the processor will start the performance counters.
A register keeps track of the index of the entry. When a new branch is taken,
this register is used to update the BTCB using the measured values. This can
be done one cycle later than the new branch’s BTCB lookup, to avoid requiring
an additional access port. In our implementation, the BTCB is direct-mapped.
Therefore, any collision (two branch addresses that map to the same BTCB
entry) results in an eviction.

3.4 Phase Change Annotations

In this approach, the compiler identifies locations that are likely to correspond to
a phase. In these locations, it adds an instruction, named pchg (phase change).
The processor performs a lookup in the configuration buffer when encountering
this instruction, instead of at every branch. We have modified the ρ-VEX com-
piler to add a pchg instruction at the top of every loop and every leaf function.
The compiler can choose to skip loops and functions that it estimates to have a
total execution time lower than a certain threshold.

4 Evaluation

4.1 Experimental Setup

To evaluate our approach, we have used the open source ρ-VEX polymorphic
processor as discussed in Sect. 2.1. We have implemented our pchg approach
in the compiler as discussed in Sect. 3 and modeled the monitoring hardware
in the simulator. To measure only the behavior of the processor core, caches
were disabled. Using this setup, the simulator is cycle-accurate regarding a ρ-
VEX core attached to single-cycle instruction and data memories, as the code is
completely statically scheduled. We will use MiBench [12] and SPECINT 2006
for our measurements. Not all programs could be used, as some are not supported
by the ρ-VEX toolchain or libraries. We will use the modes listed in Table 2.

Here, the static setups represent the supported ρ-VEX configuration modes,
without any runtime adaptations. The windowed modes utilize performance

2 Note that in that case, it is no longer indexed by the branch target but rather the
PC of the branch itself; the buffer will return the predicted branch target and we
propose to add the code information for that branch target to the entry.

262 J. Hoozemans et al.

Table 2. Evaluated modes of execution.

Type Modes

Static core 2-issue, 4-issue, 8-issue

Dynamic core, windowed 10,000, 1,000, 500, 250, 100, 75, 50

Dynamic core, pchg pchg-0, pchg-100

Dynamic core, BTCB BTCB-inf, BTCB-2048

monitoring with fixed windows of various sizes to perform core adaptations.
The pchg modes utilize the proposed phase change annotations, with loop anno-
tation thresholds of 0 and 100 cycles. BTCB uses the proposed branch target
configuration buffer. We have evaluated a buffer with infinite entries and one
with 2048 entries.

We will use the Energy-Delay Product (EDP) as metric and normalize to a
static 8-issue configuration which represents the highest performing setup. Note
that, due to the chosen values for the energy estimation function (see Table 1),
the outcome for all measurements cannot be lower than 0.5, because no setup
can execute faster than the 8-issue and the 2-issue energy estimation is 0.5×
that of the 8-issue.

4.2 Results

Overhead. Adding the pchg instructions into the programs results in runtime
overhead. We have measured this overhead by running all 3 version of the binaries
(not annotated, threshold 0, threshold 100 cycles) on a static 2-issue core. The
results are plotted in Fig. 5. On average, the runtime overhead is quite acceptable
at approximately 0.5% on average.

Window sizes. We evaluate windowed monitoring setups using various window
sizes between 50 and 10,000 cycles. The results are plotted in Fig. 6. For both
benchmark suites, the disadvantage (overhead) surpasses the advantage of higher
frequency adaptations at approximately 75 cycles. Our measurements reveal that
using a window size of 75 compared to 1000 cycles improves EDP up to 20% (for
specrand and rijndael) and on average 6%, supporting our claim that code
can change very frequently and a fine-grained reconfigurable processor is able to
match these changes more closely.

Runlength thresholds. The energy estimation counters can use a minimum
runlength threshold for a measured code section. If this threshold is not reached
when the measurement is finished (because of a new pchg instruction, or because
of a branch), the core will not perform an adaptation. We have evaluated different
threshold values and the results are depicted in Fig. 7. In case the BTCB is
limited in size to 2048 entries, there is a clear optimal threshold for MiBench of

Evaluating Auto-adaptation Methods 263

(a) MiBench

(b) SPEC

Fig. 5. Overhead of adding the phase change instructions.

Fig. 6. EDP for different window sizes. For both benchmark suites, 75 instructions
performs best.

264 J. Hoozemans et al.

(a) Mibench.

(b) SPEC.

Fig. 7. EDP for different runlength thresholds.

64 instruction bundles and the relative loss in performance (compared to the best
performing setup with an infinite buffer) is in this case 6%. The other setups, as
well as the SPEC benchmarks, are not as strongly influenced by the threshold.
The loss can be attributed mostly to two outliers in the form of basicmath
in MiBench and specrand in SPEC, that may suffer from a high number of
collisions.

Evaluating Auto-adaptation Methods 265

Comparing the approaches. Using the best results for each approach as
reported in previous sections, we have plotted the averages of the different tech-
niques in Fig. 8. The dynamic setups perform considerably better compared to
the static cores. The first observation is that the window-75 setup performs
relatively well, achieving 10% and 17% better EDP on average (for SPEC and
MiBench, respectively), compared to the best performing 4-issue static core. The
BTCB approach performs best, with on average 12% and 18% better EDP. The
pchg annotations perform up to 26% and on average 10% (SPEC) and 16%
(MiBench) better than the best performing static core.

Fig. 8. EDP for the best performing setups for each approach.

For many programs, ILP variability is quite low, and the EDP for the dynamic
approaches is not significantly lower than that of the best performing static
setup. The largest gains are measured for the program rawcaudio with all
approaches achieving approximately 25% better EDP than static setups. How-
ever, the window-1000 approach performs similarly for this program (indicating
that fine-grained approaches do not provide an advantage) In contrast, rijndael
does not show any improvement when using a 1000 cycle monitoring window,
while our proposed BTCB approach provides 20% lower EDP compared to the
best static core and 8% over the best window approach (75 cycles).

5 Related Work

The polymorphic processor used in our evaluations is discussed in more detail
in [5]. Other dynamic processors that could make use of our proposed scheme
are MorphCore [1], TRIPS [13] and CoreFusion [14]. Rodrigues et al. [15]
propose a dynamic processor that morphs by allowing one core to take con-
trol over a functional unit residing in a neighboring core. They introduce a

266 J. Hoozemans et al.

dynamic phase classification scheme that uses a table to store and lookup phases.
Guo et al. [10] built a windowed counter scheme for the ρ-VEX that predicts
program phases and reconfigures the processor accordingly. Similarly, [16] tries
to predict phases using statistical and table-based predictors. Chi et al. [17] show
the advantage of combining static and dynamic profiling techniques to improve
performance/energy tuning, focusing on disabling some processor resources and
fetch throttling. Our approach uses compiler analysis instead of profiling as the
static component.

In addition to dynamic processors, the scheme can be used by single-ISA
heterogeneous multicore systems [18] such as ARM big.LITTLE processors [19],
particularly, systems that were designed to have low migration penalties such
as [2,4]. For schemes with similar objectives on HMPs see for example [3,9,20].
Related work in autotuning are for example [21,22], where hardware modules
are introduced that perform evaluation of power and performance on a softcore
processor. However, the purpose is to perform dynamic partial reconfiguration,
which is very different from how the ρ-VEX works.

Sherwood et al. [23] propose a similar technique of using an on-chip buffer to
store detected phases based on branches, but focusing on long, stable phases. In
addition, they evaluate “Dynamic Processor Width Adaptation” similar to the
ρ-VEX (but supporting only a 2-issue and 8-issue configuration). They perform
a short measurement in both configurations at every phase change, which is one
of the problems that our proposed solution aims to solve (see Sect. 2.2).

6 Conclusions

When targeting a highly dynamic processor that has a low reconfiguration
penalty (in this work, the ρ-VEX with a penalty of 5 cycles), improvements
in energy efficiency can be gained by using very fine-grained automatic adapta-
tions. Evaluations of window-based autotuning of the configuration show that
using a window of 75 cycles results in the best EDP (up to 20% better than
a 1000 cycle window). This confirms that code characteristics can change very
rapidly, and that the dynamic processor is able to follow the changes more closely
than traditional autotuning schemes that use relatively large window sizes. Not
all programs show this highly dynamic behavior.

The proposed approaches open up the possibility of superscalar-based, single-
ISA heterogeneous or adaptable processors with low penalties. Using a window-
based approach is not possible in this case, because it would need continuous
migrations between core types to evaluate the code characteristics, negating
the advantages. Using our proposed methods to store information about code
sections, measurements need to be performed once in every configuration, after
which the information is stored and can be retrieved when revisiting the section.

Overall, the approaches enable the reconfigurable processor to achieve up to
25% and between 10% and 18% on average better EDP compared to the best
static platform. The proposed BTCB approach achieves the best results, slightly
outperforming window-based autotuning.

Evaluating Auto-adaptation Methods 267

Acknowledgements. This work has been supported by the ALMARVI European
Artemis project nr. 621439.

References

1. Khubaib, Suleman, M.A., Hashemi, M., Wilkerson, C., Patt, Y.N.: MorphCore: an
energy-efficient microarchitecture for high performance ILP and high throughput
TLP. In: 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 305–316, December 2012

2. Brown, J.A., Porter, L., Tullsen, D.M.: Fast thread migration via cache working
set prediction. In: 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA), pp. 193–204. IEEE (2011)

3. Rangan, K.K., Wei, G.-Y., Brooks, D.: Thread motion: fine-grained power man-
agement for multi-core systems. In: Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA 2009, pp. 302–313. ACM,
New York (2009). http://doi.acm.org/10.1145/1555754.1555793

4. Rodrigues, M., Roma, N., Tomás, P.: Fast and scalable thread migration for multi-
core architectures. In: 2015 IEEE 13th International Conference on Embedded and
Ubiquitous Computing, pp. 9–16, October 2015

5. Brandon, A., Hoozemans, J., van Straten, J., Wong, S.: Exploring ILP and TLP
on a polymorphic VLIW processor. In: Knoop, J., Karl, W., Schulz, M., Inoue, K.,
Pionteck, T. (eds.) ARCS 2017. LNCS, vol. 10172, pp. 177–189. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54999-6 14

6. Wong, S., van As, T., Brown, G.: ρ-VEX: a reconfigurable and extensible softcore
VLIW processor. In: International Conference on Field-Programmable Technology
(ICFPT), December 2008

7. Brandon, A., Wong, S.: Support for dynamic issue width in VLIW processors using
generic binaries. In: Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 827–832, March 2013

8. Codrescu, L., Anderson, W., Venkumanhanti, S., Zeng, M., Plondke, E., Koob,
C., Ingle, A., Tabony, C., Maule, R.: Hexagon DSP: an architecture optimized for
mobile multimedia and communications. IEEE Micro 34(2), 34–43 (2014)

9. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In: Proceedings of the 3rd Conference on Computing Frontiers,
ser. CF 2006, pp. 29–40. ACM, New York (2006)

10. Guo, Q., Sartor, A., Brandon, A., Beck, A.C., Zhou, X., Wong, S.: Run-time phase
prediction for a reconfigurable VLIW processor. In: 2016 Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 1634–1639. IEEE (2016)

11. Hoogerbrugge, J.: Dynamic branch prediction for a VLIW processor. In: Proceed-
ings of the International Conference on Parallel Architectures and Compilation
Techniques, (PACT), pp. 207–214. IEEE (2000)

12. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: 2001 IEEE International Workshop on Workload Characterization: WWC-4,
pp. 3–14. IEEE (2001)

13. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D.,
Keckler, S.W., Moore, C.R.: Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture. In: Proceedings of the 30th Annual International Symposium
on Computer Architecture, pp. 422–433. IEEE (2003)

http://doi.acm.org/10.1145/1555754.1555793
https://doi.org/10.1007/978-3-319-54999-6_14

268 J. Hoozemans et al.

14. Ipek, E., Kirman, M., Kirman, N., Martinez, J.F.: Core fusion: accommodating
software diversity in chip multiprocessors. In: Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA 2007, pp. 186–197.
ACM, New York (2007). http://doi.acm.org/10.1145/1250662.1250686

15. Rodrigues, R., Annamalai, A., Koren, I., Kundu, S.: Improving performance per
watt of asymmetric multi-core processors via online program phase classification
and adaptive core morphing. ACM Trans. Des. Autom. Electron. Syst. 18(1), 5:1–
5:23 (2013). http://doi.acm.org/10.1145/2390191.2390196

16. Duesterwald, E., Cascaval, C., Dwarkadas, S.: Characterizing and predicting pro-
gram behavior and its variability. In: Proceedings of the 12th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT 2003, pp.
220–231, September 2003

17. Chi, E., Salem, A.M., Bahar, R.I., Weiss, R.: Combining software and hardware
monitoring for improved power and performance tuning. In: Proceedings of the
Seventh Workshop on Interaction Between Compilers and Computer Architectures:
INTERACT-7, pp. 57–64. IEEE (2003)

18. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
heterogeneous multi-core architectures: the potential for processor power reduc-
tion. In: Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture: MICRO-36, pp. 81–92. IEEE (2003)

19. Greenhalgh, P.: big.LITTLE processing with ARM cortex-A15 & Cortex-A7. ARM
White Paper, pp. 1–8 (2011)

20. Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.: Scheduling
heterogeneous multi-cores through performance impact estimation (PIE). In: Pro-
ceedings of the 39th Annual International Symposium on Computer Architecture,
ser. ISCA 2012, pp. 213–224. IEEE Computer Society, Washington, DC (2012).
http://dl.acm.org/citation.cfm?id=2337159.2337184

21. Otero, A., Morales-Cas, A., Portilla, J., de la Torre, E., Riesgo, T.: A modular
peripheral to support self-reconfiguration in SoCs. In: 2010 13th Euromicro Con-
ference on Digital System Design: Architectures, Methods and Tools, pp. 88–95
(2010)

22. Aldham, M., Anderson, J., Brown, S., Canis, A.: Low-cost hardware profiling
of run-time and energy in FPGA embedded processors. In: ASAP 2011–22nd
IEEE International Conference on Application-specific Systems, Architectures and
Processors, pp. 61–68, September 2011

23. Sherwood, T., Sair, S., Calder, B.: Phase tracking and prediction. In: ACM
SIGARCH Computer Architecture News, vol. 31, no. 2, pp. 336–349. ACM (2003)

http://doi.acm.org/10.1145/1250662.1250686
http://doi.acm.org/10.1145/2390191.2390196
http://dl.acm.org/citation.cfm?id=2337159.2337184

HLS Enabled Partially Reconfigurable
Module Implementation

Nicolae Bogdan Grigore, Charalampos Kritikakis(B), and Dirk Koch

The University of Manchester, Manchester, UK
{nicolae.grigore,charalampos.kritikakis,dirk.koch}@manchester.ac.uk

Abstract. Making full use of the capabilities of the FPGA as an accel-
erator is difficult for non hardware experts, especially if partial reconfig-
uration is to be employed. One of the issues that arise is to physically
implement modules into bounding boxes of minimum size for improving
fragmentation cost and reconfiguration time. In this paper we present a
method which automates the modules designing step, fulfilling module
resource requirements and architectural FPGA constraints. We present
a case study that shows how our automatic module implementation flow
can be used to generate run-time reconfigurable bitstreams that are
suited for stitching together processing pipelines directly from a Maxeler
MaxJ HLS specification. This takes into consideration design alterna-
tives, fragmentation, and routing failure mitigation strategies.

1 Introduction

HLS has made tremendous progress in recent years in improving design produc-
tivity of hardware systems. In particular for FPGA acceleration in datacenters,
HLS and domain specific languages are commonly considered to be key technolo-
gies for succeeding with widespread FPGA deployment. However, one concern
against this approach is the effect of logic explosion which expresses the situ-
ation that every line of (extra) HLS code translates somehow into extra logic
on the FPGA and consequently in extra cost and more power. This situation
gets crucial if major parts of the FPGA will remain idle for longer periods of
time. For example: let us consider a driver assistance system with entire different
object classifiers that were optimized for day and night modes. Then parts of
the system (and correspondingly the FPGA) may not be used depending on the
present mode. In this situation, partial reconfiguration at run-time is a viable
option to optimize the module layout for optimizing resource utilization (e.g.,
by using reconfiguration to change between day and night object classification
in our example). In general, whenever a system provides periods in time where
functions are used mutual exclusively to each other, this is an opportunity for
applying partial reconfiguration. This holds in particular if these periods are
long enough in order to amortize the overhead induced for the reconfiguration.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 269–282, 2018.
https://doi.org/10.1007/978-3-319-77610-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_20&domain=pdf

270 N. B. Grigore et al.

The FPGA vendors Xilinx [1] and Altera [2] provide frameworks that allow
developing run-time reconfigurable systems using HLS. In particular for the
OpenCL language, industry reached a maturity level that allows software engi-
neers and domain experts to build run-time reconfigurable systems without
the need for extensive FPGA knowledge. This allows for non-FPGA experts
to develop systems that can adapt to different requirements or workloads with
the help of partial reconfiguration.

However, while this fundamentally is a strong achievement, present design
methodologies and corresponding reconfigurable FPGA-based systems have
important shortcomings that are not sufficiently addressed by the FPGA ven-
dors. This includes in particular the flexibility in which partial reconfiguration
can be used in a system. For example, present OpenCL frameworks support
multiple reconfigurable regions that could host an accelerator module. However,
a module is always only working at the position it was physically implemented
and it is not possible to run a module implementation (given as a configuration
bitstream) at another position. Moreover, the physical partially reconfigurable
module implementation is needed to be executed again whenever something
changes in the static system (i.e. the part of the system providing I/O access to
DDR memory etc.). Furthermore, the vendor flow does not foresee to use recon-
figurable regions by multiple independently reconfigured and operated modules.
Luckily, there are academic frameworks that allow the implementation of more
flexible reconfigurable systems (e.g., OpenPR [3] and GoAhead [4]).

While such tools allow implementing reconfigurable systems with more capa-
bilities, these tools are still designed to be used by FPGA experts. The goal of
this paper is to provide a frontend for such tools (in this paper, we are build-
ing a frontend for GoAhead) that allows implementing partially reconfigurable
modules directly from HLS descriptions by designers that do not need to be
FPGA experts. In detail, this paper provides an automatic compilation frame-
work for stream processing applications starting from HLS all the way down
to a partial reconfiguration bitstream that supports flexible module placement,
module relocation and multi module instantiation. We will provide a solution for
compilation of MaxJ (Java) specifications to relocatable and stitchable stream
processing modules (Sect. 5) in a dynamic dataflow system. We assume that an
expert is providing a static system. For this, HLS compilers are used to retrieve
module primitive requirements. With this, we will show how bounding boxes
for modules can be automatically computed and implemented all the way to
reconfigurable modules.

2 Related Work

As mentioned in the introduction, the major FPGA vendors are already provid-
ing solutions that allow building applications in HDLs for FPGAs that rudimen-
tary use partial reconfiguration [1,2]. Building partially reconfigurable systems
introduces some extra level of complexity that commonly needs dealing with
some low-level FPGA specific issues. In order to deal with such issues, design
automation for partial reconfiguration has been researched.

HLS Enabled Partially Reconfigurable Module Implementation 271

With OpenPR [3] and GoAhead [4], tools have been developed that allow
FPGA experts building reconfigurable systems with distinct features like mod-
ule relocation and direct module to module communication. However, using these
tools needs significant FPGA experience and a specific way of floorplanning for
partitioning FPGA resources into static and run-time reconfigurable sections as
well as for providing interfaces for integrating reconfigurable parts of a system.
The work in [5] is focusing on automating the interface design using simulated
annealing while in [6–9] the whole floorplanning process for the static system
and/or partial modules was automated for RTL designs and demonstrated for
a small number of modules. Static system only floorplanning was presented in
[10,11]. The problem of physically designing relocatable modules was addressed,
for example, in [12–14]. There is a large body of rather theoretical related work
(commonly without a system that is actually working on an FPGA) on auto-
mated floorplanning that is not listed here due to space limitations.

Physically implementing relocatable modules adds more constraints to be
obeyed by design tools, and consequently, more potential points of failure for
successfully completing the process all the way to the bitstream level. While
related work marks important automation steps, in this work we do not only
provide a holistic solution to automatic floorplanning and interface synthesis for
implementing relocatable modules, we in addition provide automatic mitigation
strategies for the case that the physical FPGA implementation fails. This makes
the whole backend flow that robust that it can be coupled with an HLS frontend
such that reconfigurable modules can be implemented fully automated directly
from high-level languages.

3 Model

Our goal is to build a design flow that can be used by non FPGA experts to
take advantage of partial dynamic reconfiguration. For this, we assume that an
expert must first design a static system that defines a reconfigurable area to test
the modules (representing the actual application). These modules will then be
implemented by a non FPGA expert using HLS.

To do this, we must first define a model for the FPGA’s reconfigurable
resources and reconfigurable modules. All modern FPGAs from the vendor Xilinx
contain a set number of resource slice types. These are usually SliceL, SliceM,
BRAM and DSP (with some variations depending on the FPGA family). We
can model the FPGA as a set of these resources or, in order to also express the
exact sequential order of resource columns, as a resource string. This allows for
modeling of the module placement process as a string matching problem.

Our automatic bounding box generation tool is generic in that it can work
on any device as long as the following generic parameters are provided:

– Number of CLBs in a clock region
– Number of LUTs in a CLB
– Number of BRAMs in a clock region
– Number of DSPs in a clock region

272 N. B. Grigore et al.

– Total number of clock regions in the reconfigurable area
– Resource string of the reconfigurable area.

This model fits directly to all Xilinx FPGA families including all 7-series
devices.

Each module requires a number of resources in order to perform the task
required, thus our initial representation has to provide at least the minimum
requirements for each: number of BRAMs, LUTs and DSPs.

Using these two string representations for the FPGA and modules, as well as
the number of primitives per resource column, we can find bounding boxes (as
discussed later). Bounding boxes are represented in two complimentary ways: a
set of three parameters specifying start position, width and height, as well as the
resource string of the bounding box and number of clock regions required. Using
string representations for the reconfigurable area and the reconfigurable modules
allows for checking for feasible placement positions using simple string compare.
The bounding box information can be used to build partially reconfigurable
modules as shown in Fig. 5. The example shows how MaxJ specifications are
divided into a static part that is separated from the actual application (here the
partial modules). Further details about this process will be given later in Sect. 5.

4 Bounding Box Generation

4.1 Overview

Our algorithm generates bounding boxes for a module based on the FPGA
resource string modeling of the available resources in the reconfigurable region,
the device specific primitive allocation to slices, and module primitive require-
ments.

During the generation phase we add more and more slices to the module
string specification from the FPGA representation until all primitive require-
ments have been met. With this, we ensure to only implement modules for
feasible module bounding boxes and that we identify all possible minimal design
alternatives. Our system also takes into consideration multiple clock regions.
The generated bounding boxes can span anywhere between one clock region and
the entire height of the device (or reconfigurable region). This adds even further
flexibility to the placement phase, making sure that the modules come with more
possible placement positions, for allowing a much tighter overall packing.

In this work we assume scenarios that benefit from small module sizes as both
examples will allow using multiple modules in a shared reconfigurable region.
In both case studies we build modules to allow stitching together processing
pipelines, while supporting direct communication.

4.2 Generation

Let us assume that we need to find placement positions for the module in
Fig. 1 inside the shown reconfigurable region. Firstly, we must know the num-
ber of primitives provided in each column. These values are device specific and

HLS Enabled Partially Reconfigurable Module Implementation 273

Fig. 1. Example of a reconfigurable region, spanning 3 clock regions, and some mod-
ule requirements. The region is modeled with the shown alphabet, and a module is
presented as a set of primitive requirements.

must be fed into our bounding box generator. In this example we will use a
Zynq FPGA. On this device, we have the following number of resources for each
column:

– SliceL: 40 * 8 LUTs
– SliceM: 40 * 8 LUTs
– BRAM: 20 RAM primitives (10 36 Kbit or 20 18 Kbit)
– DSP: 20 DSP primitives.

The algorithm (illustrated in Fig. 2) begins at the first available resource in
the reconfigurable region. It checks if this resource contains primitives needed by
the module. If so, it adds the slice to the module string and updates the module
requirements to reflect that the primitive in the added slice have already been
take into consideration. This step is repeated until all primitive requirements
have been met, and the resulting module string represents a design alternative.

As stated before, in order to give the user as much choice as possible and
to allow for fine grained and flexible module placement, our system looks for
bounding boxes spanning from one to as many clock regions as the reconfigurable
area has available. As such the steps above are repeated using incrementally
more clock regions (i.e. increasing the height of the modules). Considering our
example, we are looking at the bounding boxes starting with the first resource
slice we can determine 3 placement positions as can be seen in Fig. 3.

The bounding box generator exploits the fact that the smallest module (i.e.
the module variant with the shortest resource string) that fulfills the resource
requirements will result in the lowest internal fragmentation. As such, only the
smallest design alternatives are considered at the end of this computation. This
allows for the reduction of the run-time search space, whilst still providing high
placement flexibility. For example, we will consider only two of the three module
design alternatives for the first g position in the reconfigurable region provided:

– (LMBDMB) * 1 row
– (LMB) * 2 rows
– (LMB) * 3 rows (discarded as the two row variant has lower internal fragmen-

tation).

274 N. B. Grigore et al.

Fig. 2. Algorithm applied to each module specification. Transition 1 happens when all
bounding boxes for the current number of clock regions were found. Transition 2 hap-
pens at every step until all resource requirements for the module are met. Transition 3
occurs once the bounding boxes starting at the current start position were found.
Transition 4 allows for mitigation strategies to be employed if routing fails.

All module bounding boxes generated will be continuous and rectangle. This
means that unnecessary resources cannot be skipped. In our example, we see
that the 1 row module generated contains a DSP resource slice even though
DSPs were not necessary for the correct run of the module. Similarly the 3
row implementation uses more resources than the 2 row one, even though it only
needs just as many. This means that there is a need for a step after the bounding
box generation to determine which bounding boxes should be used for physical
implementation.

In order to further reduce the search space and still provide the user with
flexibility, we employ a heuristic. Once the total number of design alternative
is computed we sort the resulting list of bounding boxes in such a way that
the alternatives with the most possible placement positions are at the start.
Typically, a relatively small number of alternatives is sufficient to allow place-
ment with little external fragmentation (i.e. unused resources between placed
modules). This heuristic increases the chance that run-time placement results in
better resource utilization.

One of the problems that can occur when creating bounding boxes is that,
if they are defined aggressively small, there might not be enough resources left
over for routing. Because our bounding boxes are rectangles and because we
use resource columns as our placement atoms, the bounding box will likely leave

HLS Enabled Partially Reconfigurable Module Implementation 275

Fig. 3. Bounding boxes for the defined module in the reconfigurable region, starting
only at the first resource slice.

some resources unused. Seeing as how routing a particular module can be difficult
[15], the excess resources can improve the chance that routing will succeed and
timing will be met.

As an extra precaution, we have implemented a method by which the module
string can be updated to contain more resource columns as needed. Since routing
requires the switch matrix only within a column, the extra resource (which we
refer to as a slack variable) can be seen as a wild card (meaning any resource type
can be used to ensure routing). This can be added before a placement method
is applied. Finally, if timing still isn’t met, we also allow for a “fail” message to
be fed back to the generator in order to further increase the number of resources
assigned for a module (i.e. one extra slice to the left and one to the right will
most definitely solve the problem, but would be wasteful if not necessary).

Furthermore, our tool flow implements mitigation strategies that apply phys-
ical constraints that will be tried out to improve routability and performance
(achieved clock frequency). This includes using switch matrices only at places of
high possible congestion (e.g. the corner of the bounding box), as described in
Sect. 5.4.

5 Case Study

This section focuses on applying an automatic partial module implementation
flow on a Maxeler Max3 system using its dataflow model. The case study will
include creating the static part in our design, as well as injecting a reconfig-
urable region amongst the automatically generated RTL code from an HLS tool.
Moreover, we will focus on the extraction of HLS generated accelerators and the
final mapping using the bounding box generator.

5.1 Maxeler System and Dataflow

Maxeler Workstations [16] are hybrid computing platforms that are using both
a CPU and an FPGA to implement complex functions. The FPGA device is
programmed by a Java dialect, which is called MaxJ, in order to be more design
friendly to non-FPGA experts, without having knowledge of HDLs.

276 N. B. Grigore et al.

The system uses an automatically generated interface infrastructure between
the FPGAs and the rest of the system and, depending on the input interface,
our system needs for example, PCI-e and/or memory. Moreover, Maxeler has a
large userbase in academia and industry. Common applications domains include
databases, medical applications, image/video processing, networking and so on
[17].

We are currently using a Max3 Workstation, which provides a Virtex-6
XC6VSX475T FPGA from Xilinx, connected to the mother-board via PCI-e.
The FPGA is surrounded by 24 GB of DDR-3 memory and the host CPU is an
Intel(R) Core(TM) i7-2600S CPU clocked at 2.80 GHz CPU.

In order to use Maxeler, the designer has to focus on three basic parts, the
CPU interface code, the main Kernel and the Manager. When all these three
parts are developed, the MaxJ code is compiled to a corresponding RTL VHDL
description, which is compiled by the ISE toolchain, until the final bitfile genera-
tion. The tool creates the Maxfile, which is a monolithic binary that contains the
full static configuration of the FPGA and the host machine binary file. In order
to run the system, Maxeler combines the CPU interface code and the Maxfile
to run the computation and to retrieve the final result. Figure 4 is showing an
overview of the whole design flow. It should be mentioned that Maxeler is offer-
ing a custom HDL interface, in order to allow the integration of hand-crafted
RTL code to be used within Maxeler’s framework.

Fig. 4. Maxeler design flow from MaxJ to Maxfile.

5.2 Static System

Our system consists of a Maxeler interface that transfers data from the CPU to
and from the FPGA, a custom HDL implementation or an HLS generated accel-
erator and a connection to the internal configuration access port (ICAP). The
input to ICAP is needed to load the partial bitstreams of our partial modules.
Inside the wrapper of our accelerator, we can replace the automatically generated
accelerator with our reconfigurable region, which will host the partial modules.

HLS Enabled Partially Reconfigurable Module Implementation 277

In order to split the accelerator from the static part, we can use Xilinx tools to
set the accelerator as a top level entity and extract the netlist of the kernel. Then,
we can use this netlist to have the full functionality of the kernel and create a
partial module. We will focus more on the partial module creation in Sect. 5.3.
The interface of the reconfigurable region is currently implemented entirely as a
loopback device for a 512-bit wide datapath. In total, Maxeler’s automatically
generated modules around the accelerator, plus our reconfigurable region as an
entity, are defined as the final fully static part of our system. Figure 5 shows a
detailed overview of the steps we follow to generate the full static system of the
dynamic part and the reconfigurable region.

For integrating a reconfigurable region into the design, we manually floor-
planned the static system, by taking into consideration where Maxeler maps
the rest of its system. That includes the placement of I/O cells for the PCI-
e and DDR3 memory connections and the surrounding modules. Given these
constraints, the Maxeler implementation is not using the corners of the device.
Hence, our reconfigurable region is constrained to be placed in the upper right
corner of the FPGA, which is not used by the surrounding Maxeler system.

Fig. 5. Proposed design approach: MaxJ generated system split into a static system
with reconfigurable area and a module library.

The reconfigurable region is entirely generated by GoAhead and placed and
routed with ISE tools. The final reconfigurable region is depicted in Fig. 6a. To
create the reconfigurable region, we define a bounding box in GoAhead. Then,
inside the reconfigurable region, we place a series of registers in vertical fashion
on the left side, middle and right side of our region, that help us route in a specific
way across our defined area. Additionally, placement and routing constraints are

278 N. B. Grigore et al.

generated that prevent the Xilinx place and route tool to use any resources
within the reconfigurable region.

5.3 Implemented Modules

For the whole process we follow a standard pattern which is depicted in the right
side of Fig. 5. For each one of our modules, we programmed our kernel in MaxJ
and went through the Maxeler compilation flow, until the HDL code is generated.
Then, we automatically analyze the generated HDL code, in order to identify
and separate the kernel hierarchy from the surrounding Maxeler system (Fig. 5).
More specifically, we set the kernel as a top-level module and compile the entire
kernel hierarchy into one netlist file. This will also report resource requirements
to the automatic bounding box generator, which will in turn return the starting
point, the width and a resource string of the module. For each module we get
a different resource string or a set of resource strings, that refer to different
positions, depending on the requirements of the implemented module.

Subsequently, we use GoAhead to generate placement constraints and to
create a blocker around the module, such that the module routing will never
cross the module borders. With the generated constraints we can use the Xilinx
toolchain to fully map and route the module. One of our main challenges is to
route through and back of our module, precisely as we did in our reconfigurable
region. In order to ensure this routing, we place a vertical series of registers
before and after the module, that we call connection macros, that act as the
interface of our partial module. It should be mentioned that the clock signals
to ensure the routing will exactly match the routing used in the reconfigurable
region.

Finally, we can cut off only the module and save it in a netlist file format in a
module library. Again, the cutting of the module from the final routed file is done
by GoAhead. This tool allows to select a specific area, by given constraints like
height and width and a starting point, in order to extract only the module. This
module can now be placed into the reconfigurable region of the static system. We
use string matching to find module placement positions, following the module
presented in Sect. 4. This placement allows us to stitch together different stream
processing modules (that are generated by MaxJ). After each stitching process,
we generate a partial bitstream for the design. In order to place the module in
the Maxeler system, we need to have an input in our device, that targets the
ICAP port. More specifically, we can generate a partial bitfile, containing the
position and the configuration of a partial module. This bitfile can then be used
for reconfiguration through the ICAP port.

Our current module library consists of 6 image processing functions. Those
are a Sobel filter, brightness correction, a gaussian filter, an RGB to greyscale
filter, a skin color detection and a mean filter. All of those functions are generated
entirely by Maxeler and MaxJ code.

It is possible to place more than one reconfigurable module in the recon-
figurable region. An example of fully placed modules is shown in Fig. 6. More
specifically, Fig. 6(a) illustrates an empty state of our reconfigurable region using

HLS Enabled Partially Reconfigurable Module Implementation 279

Fig. 6. (Top) Empty reconfigurable region. (Bottom) Placed partial modules in recon-
figurable region. (Color figure online)

the resource string model of this region, the placer can calculate positions for
each module. Figure 6(b) shows the final placing of 3 distinct modules in the same
reconfigurable region. In that way, we can stitch a parallel pipeline of modules,
that can take an input stream and apply different functions on it.

Fig. 7. Mitigation strategy 2: we leave the top and bottom of the partial module
unmapped and we just use the switch matrices. (Color figure online)

At this point, we should point out that some parts of the modules are under-
utilized. The restricting factor is practically the internal design of the Virtex 6
FPGAs. To be more precise, if a module needs more than 4 rows of CLBs, then, by
definition, the design will have a row of either BRAMs or DSPs. This will result in

280 N. B. Grigore et al.

internal and external fragmentation, in order to fulfill the CLB resource require-
ment. An example is shown in Fig. 6b, where the first module (red boxed module)
has two columns in the middle which are a row of DSPs and a row of BRAMs. How-
ever, we can observe that the rest of the rows, which consist of CLBs, are almost
fully populated, thus a smaller bounding box could not be chosen.

5.4 Mitigation Strategies

As an additional function, our physical implementation flow is able to handle fail-
ures during mapping or routing. For example, if a module does not get mapped,
we will extend the bounding box left or right by an additional column. In the
case of a routing failure, the tool can relax the routing inside the bounding box,
using 3 different strategies, that are tried out in the following consecutive order.

– The tool can block the placement in the corners of the bounding box, because
the design tends to be heavily congested in the corners. So we are leaving them
unused but, by taking advantage of their routing resources (switch matrices),
we provide locally a higher ratio of routing logic.

– We are leaving the top and bottom side unmapped, as it can be seen in Fig. 7.
Figure 7 left shows the fully routed module, while on the right side of Fig. 7,
the unmapped CLBs on the top row are depicted, inside the gray box. This
solution can solve a rather small unroutable situation, without spreading the
design in more rows.

– The last, most efficient but also expensive strategy, occurs by using an addi-
tional layer as a frame around the module, in which we will only take advan-
tage of the routing resources. Figure 8 depicts that kind of situation. In this
case, the mapping will be done entirely in the inner side of the frame, while
we will use only the routing resources of the frame. In the left side of Fig. 8,
the full partial module is presented, while on the right, a zoomed in repre-
sentation of the partial module is presented. The above solutions can offer
significant design alternatives for our modules, without the risk of having
external fragmentation.

Fig. 8. Mitigation strategy 3: unplaced, but routed frame around the module, to relax
routing if necessary.

HLS Enabled Partially Reconfigurable Module Implementation 281

Implementing modules in bounding boxes includes more constrains on the
physical implementation. However, in some cases, routing is not possible, for a
module with the given constraints. As an example, in the four corners of the
bounding box, the router has only available about half of the available routing
wires. This situation may result in an unroutable situation and that is why
mitigation strategies are vital for such kind of implementations.

6 Conclusion

In this work we presented a tool flow that automates the generation of par-
tially reconfigurable stream processing accelerator modules directly from HLS
using minimum feasible module bounding boxes. We have discussed in detail
how our bounding box generator incorporates the heterogeneous resource lay-
out of FPGAs using a string model for reconfigurable regions as well as for the
reconfigurable modules. We are able to generate physical implementation alter-
natives for enhancing module packing at run-time. Furthermore we incorporated
automatic mitigation strategies to get even highly congested modules physically
implemented.

We demonstrated our approach using a case study that centers on a Maxeler
Max-3 Dataflow processing system. Our flow allows it to automatically generate
relocatable partial bitstreams directly from MaxJ. We also showed how these
bitstreams can be used at run-time. The here presented methodology is quite
universal and can be applied to other (Xilinx) FPGAs and other HLS tools (e.g.,
Vivado HLS).

With the proposed flow we allow for non FPGA experts to make better
use of FPGAs including powerful tools such as dynamic partial reconfiguration.
This provides also means to close a semantic gap that is that commonly a few
functions out of a larger library are called dynamically in software and the here
presented tool provides an important piece to translate this approach into FPGA
acceleration.

Acknowledgements. This work is kindly supported by the European Commission
under the H2020 Programme with the project ECOSCALE (grant agreement 671632)
and with the project Reconfigurable Tera Stream Computing, funded by the Defence
Science and Technology Laboratory under grant DSTLX10000092266.

References

1. Wirbel, L.: Xilinx SDAccel (2014)
2. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for

heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)
3. Sohanghpurwala, A.A., Athanas, P., Frangieh, T., Wood, A.: OpenPR: an open-

source partial-reconfiguration toolkit for Xilinx FPGAs. In: 2011 IEEE Interna-
tional Symposium on Parallel and Distributed Processing Workshops and Ph.D.
Forum (IPDPSW), pp. 228–235. IEEE (2011)

282 N. B. Grigore et al.

4. GoAhead Project (2017). http://www.mn.uio.no/ifi/english/research/projects/
cosrecos/goahead/

5. Carver, J.M., Pittman, R.N., Forin, A.: Automatic bus macro placement for par-
tially reconfigurable FPGA designs. In: Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 269–272. ACM (2009)

6. Vipin, K., Fahmy, S.A.: Mapping adaptive hardware systems with partial recon-
figuration using CoPR for Zynq. In: 2015 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pp. 1–8. IEEE (2015)

7. Beckhoff, C., Koch, D., Torreson, J.: Automatic floorplanning and interface syn-
thesis of island style reconfigurable systems with GoAhead. In: Kubátová, H.,
Hochberger, C., Daněk, M., Sick, B. (eds.) ARCS 2013. LNCS, vol. 7767, pp. 303–
316. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36424-2 26

8. Beckhoff, C., Koch, D., Torresen, J.: GoAhead: a partial reconfiguration framework.
In: IEEE 20th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 37–44. IEEE (2012)

9. Rabozzi, M., Durelli, G.C., Miele, A., Lillis, J., Santambrogio, M.D.: Floorplanning
automation for partial-reconfigurable FPGAs via feasible placements generation.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(1), 151–164 (2017)

10. Mao, F., Chen, Y.-C., Zhang, W., Li, H.H., He, B.: Library-based placement
and routing in FPGAs with support of partial reconfiguration. ACM Trans. Des.
Autom. Electron. Syst. (TODAES) 21(4), 71 (2016)

11. Otero, A., Morales-Cas, A., Portilla, J., de la Torre, E., Riesgo, T.: A modular
peripheral to support self-reconfiguration in SoCs. In: 2010 13th Euromicro Con-
ference on Digital System Design: Architectures, Methods and Tools (DSD), pp.
88–95. IEEE (2010)

12. Lalevee, A., Horrein, P.-H., Arzel, M., Hübner, M., Vaton, S.: AutoReloc: auto-
mated design flow for bitstream relocation on Xilinx FPGAs. In: 2016 Euromicro
Conference on Digital System Design (DSD), pp. 14–21. IEEE (2016)

13. Ferrandi, F., Novati, M., Morandi, M., Santambrogio, M.D., Sciuto, D.: Dynamic
reconfiguration: core relocation via partial bitstreams filtering with minimal over-
head. In: International Symposium on System-on-Chip, pp. 1–4. IEEE (2006)

14. Kalte, H., Lee, G., Porrmann, M., Ruckert, U.: Replica: a bitstream manipulation
filter for module relocation in partial reconfigurable systems. In: Proceedings of
the 19th IEEE International Parallel and Distributed Processing Symposium, pp.
8–pp. IEEE (2005)

15. DeHon, A.: Balancing interconnect and computation in a reconfigurable computing
array (or, why you don’t really want 100% LUT utilization). In: Proceedings of
the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable
Gate Arrays, pp. 69–78. ACM (1999)

16. Maxeler Technologies: Multiscale dataflow programing (2014)
17. Maxeler App Gallery (2017). http://appgallery.maxeler.com/

http://www.mn.uio.no/ifi/english/research/projects/cosrecos/goahead/
http://www.mn.uio.no/ifi/english/research/projects/cosrecos/goahead/
https://doi.org/10.1007/978-3-642-36424-2_26
http://appgallery.maxeler.com/

Hardware Acceleration in Genode OS
Using Dynamic Partial Reconfiguration

Alexander Dörflinger(B), Mark Albers, Björn Fiethe, and Harald Michalik

Institute of Computer and Network Engineering (IDA), TU Braunschweig,
Braunschweig, Germany

{doerflinger,albers,fiethe,michalik}@ida.ing.tu-bs.de

Abstract. Algorithms with operations on large regular data structures
such as image processing can be highly accelerated when executed as
hardware tasks in an FPGA fabric. The Dynamic Partial Reconfigura-
tion (DPR) feature of new SRAM-based FPGA families allows a dynamic
swapping and replacement of hardware tasks during runtime. Particu-
larly embedded systems with processing chains that change over time
or that are too large to be implemented in an FPGA fabric in parallel,
benefit from DPR. In this paper we present a complete framework for
hardware acceleration using DPR in the microkernel based Genode OS.
This makes the DPR feature available not only for the high-performance
computing field, but also for safety-critical applications. The new frame-
work is evaluated for an exemplary imaging application running on a
Xilinx Zynq-7000 SoC.

1 Introduction

Dynamic Partial Reconfiguration (DPR) is a promising feature of new SRAM-
based FPGAs to increase the overall processing power of a system. It allows to
offload software tasks and process them as hardware tasks within the FPGA fab-
ric. Computation-intensive algorithms as needed e.g. for computer vision systems
yield high acceleration rates when executed in hardware [1]. Without DPR, all
hardware tasks needed at some point during runtime, have to be instantiated con-
currently in a static FPGA design. Due to limited resources available, only a few
tasks could be migrated to hardware. DPR now allows to time-share resources
of the FPGA by swapping hardware tasks in reconfigurable regions. Therefore,
it combines the performance gain of hardware acceleration with the flexibility of
software tasks. Furthermore, complex processing pipelines that would not fit in
one static FPGA design can now be implemented for sequential execution.

Robotic applications and embedded systems in general have strict require-
ments regarding the utilized operating system in matters of real-time, safety
and reliability. The Genode OS [2] targets safety-critical applications because it
enforces a strong isolation between software components. For that reason, it has
been decided to use Genode OS in various research projects. Specifically, the
Controlling Concurrent Change (CCC) project [3] investigates mechanisms for

c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 283–293, 2018.
https://doi.org/10.1007/978-3-319-77610-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_21&domain=pdf

284 A. Dörflinger et al.

an automated integration of embedded systems. In this context, the stringent
fault isolation and separation of concerns provided by Genode OS is used to
border the effects of each sub-component on the overall system.

The DPR feature has been investigated in CCC for adapting a given platform
to different operation scenarios, e.g. a car driving on a highway/in a city/parking.
Hardware accelerators suitable for the current scenario are loaded into the FPGA
fabric during runtime. This extends the utilization of DPR to mixed-critical
systems. So far, the utilization of DPR has been limited to the high-performance
computing field, and therefore safety- and reliability requirements have not been
covered yet. Safety-critical applications require the reconfiguration process to be
controlled from within an OS with appropriate real-time and reliability features,
for which Genode OS might be suitable in future. In this paper we present,
how the DPR feature can be made available for Genode OS running on a hybrid
CPU-FPGA SoC device. A framework has been developed to dispatch tasks from
software and execute them hardware-accelerated in the FPGA fabric of the SoC.
Real-time aspects of DPR are discussed.

The rest of this paper is organized as follows: the principles of Genode OS
are introduced in Sect. 2. Section 3 gives an overview of DPR support in other
operating systems. Subsequently the hardware- (Sect. 4) and software architec-
ture (Sect. 5) for using DPR in Genode OS are described. In Sect. 6, the newly
developed framework is evaluated for an exemplary imaging application running
on a Xilinx Zynq-7000 SoC.

2 Genode OS

The Genode OS framework [2] is a novel operating system approach, which is
able to master complexity by applying a strict organizational structure to all soft-
ware components including device drivers, system services and applications. Its
continuing development takes place as a community-driven open source project.

2.1 Microkernel Based System Policy

A kernel of a modern operating system, such as the Linux kernel, manages
resources, accesses the hardware, controls user processes, and more. Hence, it
requires the privilege to control the whole machine. The high functional require-
ments and the broad range of existing hardware causes such a kernel to grow
huge, by which it is impossible to fully avoid safety and security leaks that could
corrupt the proper operation of the whole system. An isolation of concurrently
running user applications can be provided by executing them within a dedi-
cated address space and allowing interaction with other user applications only
via mechanisms provided by the kernel. Microkernel-based systems use this tech-
nique also for device drivers, file systems, and other typical kernel-level services.
Therefore, the effect of a bug-prone component is locally restricted. Further-
more, a microkernel enforces CPU time scheduling and can grant guaranteed
processing time to user processes. No unprivileged system component is able to

Hardware Acceleration in Genode OS Using DPR 285

violate such guarantees. Therefore, a microkernel can safely execute sensitive
applications, unprivileged system services, and large untrusted applications side
by side on one machine.

To make the approach of fault isolation and separation of concerns effec-
tive, all those unprivileged components must be appropriately organized. A pol-
icy must be provided by some instance because typical microkernels implement
only mechanisms. This would be possible with a central policy management
component controlled by a specially-privileged administrator. The complexity
and manageability of a centralized policy, however, depends on the scale of the
system. To overcome this problem, Genode OS extends the microkernel idea by
decomposing also the system policy and imposes a strict organizational struc-
ture onto each part of the system. Processes are organized as a tree and child
processes are created out of the resources of their respective parent. When cre-
ating a child process, a parent fully defines the virtual environment in which the
new process gets executed. The child, in turn, can further create children from
its assigned resources, thereby creating an arbitrary structured subsystem. Each
parent maintains full control over the subsystems it created and defines their
inter-relationship, for example by selectively permitting communication between
them or by assigning physical resources. The parent-child interface is the same
at each hierarchy level, which makes this organizational approach recursively
applicable.

2.2 Component Communication

The basic communication between components takes place via services using
Remote Procedure Call (RPC). In order to provide a service, a component needs
to create an RPC object implementing the so-called root interface, which offers
functions for creating and destroying sessions of the service. Then, the compo-
nent has to inform its parent about it by an announce function, which takes the
service name and the capability for the service’s root interface as arguments.
The counterpart of the service announcement is the creation of a session by a
client which issues a session request to its parent. Along with the session call,
the client specifies the type of the service and a number of session arguments.
As a result of the session request, the client expects to obtain a capability to an
RPC object that implements the session interface of the requested service.

3 Related Work

The approach of developing efficient embedded CPU-FPGA based systems with
DPR has already been studied in some researches. [4] discusses the reconfigura-
tion management on the Xilinx Zynq-7000 platform at application level without
the use of any operating system. Another approach used a custom ARM-specified
microkernel on a partial reconfigurable FPGA platform to dynamically manage
reconfigurable HW accelerators and SW tasks by developing a specific scheduling
mechanism [5]. Based on this, the ability to dispatch hardware tasks to virtual

286 A. Dörflinger et al.

machines hosted by the microkernel was integrated [6]. In [7], a PowerPC was
used to exchange reconfigurable engines representing different image processing
algorithms for driving assistant systems. There are also approaches to design new
interface structures to either increase the performance [8] or reduce the resource
requirements [9]. Another work describes a dynamic and partial reconfigurable
system using a Zynq-7000 SoC with Linux and demonstrates, that acceptable
delays for the configuration process can be achieved in that constellation [10]. In
spite of all investigation efforts on DPR for CPU-FPGA based systems, there is
no solution for doing this in Genode OS, yet. By implementing DPR for Genode
OS, hardware acceleration can be applied for safety-critical applications which
require strong isolation of software components.

4 Reconfigurable Hardware

Hardware tasks are hosted and run within separate reconfigurable regions of the
FPGA fabric. These regions need to be embedded in a static logic that provides
the infrastructure for communication etc. While the static logic is configured at
startup and remains unchanged thereafter, the configuration of hardware tasks
can be written into reconfigurable regions through the Processor Configuration
Access Port (PCAP) during runtime. Other alternative configuration ports (such
as ICAP, SelectMAP, Serial, and JTAG) are available in the Zynq-7000 SoC, but
have drawbacks regarding bandwidth or accessibility. With a bandwidth of up to
3.2Gb/s, the PCAP allows fast reconfiguration times.

The resulting architecture for a hardware accelerated CPU-FPGA SoC
design is depicted in Fig. 1. The architecture targets Xilinx Zynq-7000 or Zynq-
UltraScale+ devices with a Processing System (PS) and Programmable Logic
(PL). Hardware accelerated algorithms are implemented for the FPGA fabric
and can be placed in one or more available reconfigurable regions. Configuration-
and status data is communicated over the AXI Lite Interconnect and attached
to a general purpose AXI port (AXI GP).

Each reconfigurable region connects to an AXI Stream Interconnect network
which allows flexible streaming of data to any endpoint. This allows to stream
the output of one reconfigurable region directly to the input of another region,
and datapaths with multiple hardware tasks to be executed sequentially can
be set up. DMA (or Video DMA for image processing applications) IP-cores
translate between the streaming- and memory mapped communication. For a
fast transfer of processing data, a high performance AXI port (AXI HP) is used
between the PS and PL.

As different hardware tasks generally have very diverse demands of FPGA
resources, the definition of appropriate reconfigurable region sizes is a sophisti-
cated problem. In order to distribute the FPGA resources between all reconfig-
urable regions for a given set of hardware tasks efficiently, we use an algorithm
introduced by us in [11].

Hardware Acceleration in Genode OS Using DPR 287

Fig. 1. Hardware accelerated CPU-FPGA SoC design.

Fig. 2. Loading bitstreams from a file system to DDR memory.

5 Reconfiguration Software

5.1 Loading Partial Bitstreams

For an autonomous operation of an embedded system, all partial bitstreams need
to be stored in non-volatile memory. Similar to [12], all bitstreams are copied
from non-volatile memory to DDR memory during the boot sequence. Hence,
partial bitstreams can be accessed rapidly and reconfiguration times are kept
short. This task is executed by the bitstream loader component in Genode OS.
For each partial bitstream, it requests a read-only dataspace (ROM session)
which is served by a file system containing the corresponding .bit files. Once the
ROM session is created, Genode OS maps the bitstream to the private memory of
the bitstream loader component. The bitstream loader also keeps track of meta-
data for each bitstream, such as its physical address, size, region, and contained
hardware task. Figure 2 depicts the principle process of loading bitstreams to
DDR memory.

5.2 Accessing the Configuration Port

Once a reconfiguration process is triggered, the partial bitstream needs to be
written into the FPGA fabric. This is handled by the device configuration inter-
face (DevC, [13]), which moves the bitstream data from DDR memory to the

288 A. Dörflinger et al.

5

10

15

Bitstream Size [kByte]

R
ec

on
fig

ur
at

io
n

Ti
m

e
[m

s]

0
2000150010005000

60

80

100

120

140

Bitstream Size [kByte]
Th

ro
ug

hp
ut

 [M
B

yt
e/

s]

40
2000150010005000

Fig. 3. Reconfiguration times and throughput for different bitstream sizes.

PCAP using DMA. A DevC driver has been developed for Genode OS. It pro-
vides address and size of the bitstream to the DevC component, enables the
PCAP port, and handles the PCAP interrupt which indicates the completion of
a bitstream transfer.

Important performance metrics of the DevC driver are reconfiguration times,
which are measured for various bitstream sizes ranging from 100 kByte to
2MByte. As depicted in Fig. 3, the reconfiguration time scales accurately with
the bitstream size. The slope of reconfiguration time to bitstream size is lim-
ited by DDR memory and the PCAP bandwidth. The initialization time of the
DevC component for each reconfiguration process is independent of bitstream
size and causes the throughput to drop for small bitstreams copied to the PL.
The throughput saturates at about 130MByte/s for large bitstreams, which is
below the PCAP bandwidth. Still, when compared to a Linux-based reference
design provided by Xilinx [14] using the same FPGA device and identical PCAP
clock, the reconfiguration speed achieved with the new Genode OS DevC driver
is about twice as fast for a bitstream of a medium size of 734 kByte.

5.3 Hardware Scheduler

The hardware scheduler knows which hardware task can be placed in which
reconfigurable region. Once it receives an incoming request for a hardware task,
it checks if the task is already configured in any reconfigurable region and sus-
pended. If true, it returns access to the corresponding region to the requesting
software component. If the task is not configured in any region yet, it tries to
place it in a free region. For Genode OS, such a hardware scheduler has been
developed. Up to now, it serves incoming requests in FCFS order. In future it is
planned to implement an intelligent scheduling strategy and algorithm. Depend-
ing on well predictable reconfiguration times, execution times, and deadlines,

Hardware Acceleration in Genode OS Using DPR 289

Fig. 4. SW component instantiation graphs for a processing chain fully implemented
in SW and HW accelerated.

the hardware scheduler can select a requested hardware task which fits best for
the next reconfiguration.

The reconfiguration time of a task can be accurately predicted as it is a func-
tion of bitstream size. No other dependencies such as interfering memory access
have been observed. Hence, the reconfiguration time can be upper bounded when
considered in a real-time application. However, a task might get blocked once its
region is occupied. In order to meet given real-time requirements, the scheduler
is responsible for guaranteeing an upper bound for blocking times. The currently
implemented FCFS scheduler does not satisfy this requirement and further work
needs to be done on this topic.

5.4 Hardware Acceleration

The top part of Fig. 4 depicts the software component instantiation graph of a
processing chain with three Processing Elements (PEs) implemented in software.
Such a processing chain could be part of an image processing application. Each
PE may require 1..n data inputs and generate 1..m data outputs. Multiple tasks
can be connected in parallel or serially. In Genode OS, a software component
can access its source data by reading from one ore more read-only dataspace(s)
or ROM session(s). Respectively, the software component writes the already
processed destination data to one or more RAM dataspace(s), which can be
accessed by the following component as a ROM session again.

Now some computation intensive PEs are identified and should be accelerated
in hardware. In the example given, PE 1 and PE 3 can be accelerated and the
resulting software component instantiation graph is given in the bottom part of
Fig. 4. Hardware tasks receive their source data from a network on chip and also
transmit their results over the same communication medium. Therefore each

290 A. Dörflinger et al.

input dataspace needs to be converted into a stream before passing it to the
hardware task. This is handled by the rom dma component. It initializes a DMA
engine that moves the input data from DDR memory to a network on chip, e.g.
the AXI stream. The dma rom component works analogously and copies stream
data to a dataspace in DDR memory.

The rom dma and dma rom software components have been developed
together with Genode OS drivers for the Xilinx AXI DMA IP-core [15]. Also,
its variants rom vdma and vdma rom using the Xilinx AXI Video DMA IP-Core
[16] are available for imaging applications.

The execution of PEs is triggered every time the data of an input ROM
session gets updated. The software PE receives a notification of this event and
starts processing the input data. Once it is done, it signals a notification to the
proceeding PE.

For hardware accelerated designs, this forward signaling needs to be
extended, because hardware modules need to be reconfigured and initialized
before starting execution. The following signaling policy, as depicted in Fig. 5, is
implemented:

Fig. 5. Signaling policy.

1. The first component in line (here rom dma) receives a notification that its
input ROM has been updated. It forwards the notification to the next com-
ponent in line.

2. All intermediate components in line (here hw accelerator) forward the
notification.

3. The last component in line (here dma rom) initializes itself and signals acti-
vate to the preceding component. By doing this, it informs the preceding
component that it is ready to stream data.

4. All intermediate components in line initialize themselves, which includes
reconfiguration of hardware modules, and forward the activate notification.
They are now ready to process data.

5. The rom dma component initializes itself and starts streaming data by exe-
cuting a DMA transaction.

6. On a hardware interrupt indicating the end of data processing, all hardware
accelerators release their reconfigurable region.

7. On the same hardware interrupt, the next component is notified that newly
processed data is available.

Hardware Acceleration in Genode OS Using DPR 291

6 Exemplary Use Case and Evaluation

In order to verify the proper functionality of the new hardware acceleration
framework for Genode OS and to produce realistic benchmark results, we set
up the following exemplary use case. A stereo-vision system offers two operation
modes in order to satisfy the requirements of different applications such as object
recognition. Firstly, a high frame rate mode can be selected that is capable of
providing images with a frame rate of up to 60 fps. Secondly, the high-quality
mode runs additionally a rectification algorithm on each image. However, in this
mode only a frame rate of 30 fps can be achieved. In both operation modes, a
debayering algorithm converts the camera sensor data to RGB format. Both the
debayering- and the rectification algorithm have been implemented as IP-cores
for hardware acceleration.

Two reconfigurable regions are available for hosting hardware acceleration
modules. The high frame rate requires a debayering IP-core to be placed in each
region, so that sensor data from the left- and right camera eye may be processed
in parallel. This operation mode emphasizes the advantage of hardware acceler-
ation, as two debayering tasks can be executed in parallel, while an execution
in software would force the tasks to be scheduled one after the other. The high-
quality mode configures one debayering and one rectification IP-core; sensor data
from the left- and right camera eye are processed sequentially in each hardware
component. Figure 6 depicts the hardware task graph for both operation modes.

Fig. 6. Hardware task graph for high-quality and high frame rate operation modes.

For comparison, both algorithms are executed in software using the OpenCV
implementation and run on one ARM Cortex-A9 core of the Zynq-7000 clocked
with 667MHz. Execution times for the tasks accelerated in hardware are mea-
sured for a 100MHz clocking of the hardware modules in the FPGA fabric.
Table 1 shows the results for the software- and hardware implementation of
both algorithms executed stand-alone and serially one after the other. As the
debayering- and rectification algorithms have no input-dependent branches, the
measured execution times are very deterministic with a scatter of less than
0.2ms. All tests process images with a resolution of 1280 × 960 pixels.

The hardware acceleration of the debayering algorithm yields a speedup fac-
tor of about 2; the more complex rectification algorithm of about 14. When
executed one after the other, the performance gain is increased even more.

292 A. Dörflinger et al.

Table 1. Execution times

Task SW impl. HW impl. Bitstream size Reconf. time

Debayer 28 ms 14 ms 521 kByte 6 ms

Rectify 212 ms 15 ms 1992 kByte 16 ms

Debayer + rectify 241 ms 15 ms 2513 kByte 22 ms

In software, both algorithms are executed sequentially, hence the execution times
of debayering and rectification add up. In hardware, a stream of pixels is pro-
cessed in a pipelined manner and therefore the overall execution time does not
increase compared to a stand-alone execution of the debayering- or rectification
algorithm.

The cost for switching the operation mode correlates to the reconfiguration
time of one debayering or rectification module. As the debayering module has a
quite small footprint in the FPGA fabric and therefore fits into a reconfigurable
region with smaller bitstream size, its reconfiguration time is shorter. In this
presented use case, exchanging a hardware module requires a reconfiguration
time on a scale of its hardware execution time. To be still efficient, the number
of reconfigurations needs to be minimized by a smart scheduling algorithm. The
given use case drops one image when switching between one operation mode and
the other, however only a few occurrences of these operation mode change are
expected.

7 Conclusion

In this paper, we presented the implementation of hardware acceleration using
DPR in Genode OS. For an exemplary imaging algorithm, the performance of
the new framework has been evaluated. It has been showed, that the hardware
acceleration yields high speedup factors while reconfiguration times are kept
low. The new availability of DPR for Genode OS allows this feature to be used
in safety-critical applications with strict requirements for real-time and isola-
tion. Computation intensive algorithms implemented in Genode OS, such as in
the Controlling Concurrent Change project, can now easily be accelerated in
hardware.

So far, the functionality of the DPR feature in Genode OS has been verified
using simple application examples. In future, we will add an intelligent hard-
ware task scheduling for arbitrary complex applications and further performance
increase.

Acknowledgment. This work is part of the DFG Research Group FOR 1800 “Con-
trolling Concurrent Change”. Funding for the Institute of Computer and Network
Engineering (IDA) was provided under grant number MI 1172/3-1.

Hardware Acceleration in Genode OS Using DPR 293

References

1. Lomuscio, A., Cardarilli, G.C., Nannarelli, A., Re, M.: A hardware framework
for on-chip FPGA acceleration. In: 2016 International Symposium on Integrated
Circuits (ISIC), pp. 1–4, December 2016

2. Genode Labs: Genode OS framework. http://genode.org/. Accessed 12 October
2017

3. TUBS.digital: Controlling concurrent change. http://ccc-project.org/. Accessed 26
October 2017

4. Vipin, K., Fahmy, S.A.: A high speed open source controller for FPGA partial
reconfiguration. In: 2012 International Conference on Field-Programmable Tech-
nology, pp. 61–66, December 2012

5. Xia, T., Prévotet, J.C., Nouvel, F.: Microkernel dedicated for dynamic partial
reconfiguration on ARM-FPGA platform. ACM SIGBED Rev. 11(4), 31–36 (2015)

6. Xia, T., Prévotet, J.C., Nouvel, F.: Mini-nova: a lightweight ARM-based virtu-
alization microkernel supporting dynamic partial reconfiguration. In: 2015 IEEE
International Parallel and Distributed Processing Symposium Workshops, pp. 71–
80, May 2015

7. Claus, C., Stechele, W., Herkersdorf, A.: Autovision - a run-time reconfigurable
MPSoC architecture for future driver assistance systems. IT Inf. Technol. 49, 181–
187 (2007)

8. Claus, C., Zhang, B., Stechele, W., Braun, L., Hubner, M., Becker, J.: A
multi-platform controller allowing for maximum dynamic partial reconfiguration
throughput. In: 2008 International Conference on Field Programmable Logic and
Applications, pp. 535–538, September 2008

9. Hübner, M., Göhringer, D., Noguera, J., Becker, J.: Fast dynamic and partial
reconfiguration data path with low hardware overhead on Xilinx FPGAs. In: IEEE
International Symposium on Parallel Distributed Processing, Workshops and Ph.D.
Forum (IPDPSW), pp. 1–8, April 2010

10. Kadi, M.A., Rudolph, P., Göhringer, D., Hübner, M.: Dynamic and partial reconfig-
uration of Zynq 7000 under Linux. In: International Conference on Reconfigurable
Computing and FPGAs (ReConFig), pp. 1–5, December 2013

11. Dörflinger, A., Fiethe, B., Michalik, H., Fekete, S.P., Keldenich, P., Scheffer, C.:
Resource-efficient dynamic partial reconfiguration on FPGAs for space instru-
ments. In: 2017 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pp. 24–31, July 2017

12. Xilinx Inc.: Partial reconfiguration of a hardware accelerator on Zynq-7000 All
programmable SoC devices, XAPP1159. v1.0 edn (2013)

13. Xilinx Inc.: Zynq-7000 all programmable SoC TRM, UG585. v1.11 edn (2016)
14. Kohn, C.: Partial reconfiguration of a hardware accelerator with Vivado design

suite for Zynq-7000 AP SoC processor. Xilinx Inc. v1.1 edn (2015)
15. Xilinx Inc.: AXI DMA LogiCORE IP Product Guide, PG021. v7.1 edn (2017)
16. Xilinx Inc.: AXI Video Direct Memory Access LogiCORE IP Product Guide,

PG020. v6.2 edn (2016)

http://genode.org/
http://ccc-project.org/

Large Scale Computing

Do Iterative Solvers Benefit
from Approximate Computing?

An Evaluation Study Considering
Orthogonal Approximation Methods

Michael Bromberger1(B), Markus Hoffmann1, and Robin Rehrmann2

1 Computer Architecture and Parallel Processing,
Karlsruhe Institute of Technology, Karlsruhe, Germany

bromberger@kit.edu
2 Database Technology Group, Technische Universität Dresden,

Dresden, Germany

Abstract. Employing algorithms of scientific computing often comes in
hand with finding a trade-off between accuracy and performance. Novel
parallel hardware and algorithms only slightly improve these issues due
to the increasing size of the problems. While high accuracy is inevitable
for most problems, there are parts in scientific computing that allow us to
introduce approximation. Therefore, in this paper we give answers to the
following questions: (1) Can we exploit different approximate computing
strategies in scientific computing? (2) Is there a strategy to combine
approaches? To answer these questions, we apply different approximation
strategies to a widely used iterative solver for linear systems of equations.
We show the advantages and the limits of each strategy and a way to
configure a combination of strategies according to a given relative error.
Combining orthogonal strategies as an overall concept gives us significant
opportunities to increase the performance.

1 Introduction

Scientific computing poses a difficult challenge for people from different domains,
especially in order to find a suitable trade-off between desired solution quality
and computational effort. Even the high parallel capabilities of todays hardware
and novel parallel algorithms do not lead to a significant reduction of these
challenges because of the increasing dimensions of current problems. Hence, we
rely on new ways to find suitable methods to overcome the aforementioned issues.

In recent years, the idea of an approximate computing (AC) paradigm has
been gaining high attention in computer science [11]. A consideration of current
applications, such as Recognition, Mining, and Synthesis (RMS) concludes that
these applications have an inherent resilience against computational errors [8].
Trading off internal or external accuracy of an application allows the hardware,
the programmer, or the user to improve other design goals like performance or
energy consumption [3]. There already exists a wide variety of AC approaches
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 297–310, 2018.
https://doi.org/10.1007/978-3-319-77610-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_22&domain=pdf

298 M. Bromberger et al.

on different layers of the compute stack [11,21]. Additionally, there is quite some
effort to control the degree of approximation according to given constraints [3].

In contrast, high accuracy is often inevitable for scientific computing. Hence,
at first glance, it seems counterproductive to marry AC with scientific comput-
ing. However, there is already some successful work that introduces AC into
scientific computing [2,17–19,22,23]. They mostly analyze the influence of data
type precision on the accuracy. Asynchronous parallelization methods, which
can be compared with relaxed synchronization, are well-known in numerics and
show a high efficiency on GPUs [1]. But these works lack a schematic evaluation
of AC on different parts inside a scientific application. Therefore, this paper is
a first step to apply a holistic evaluation of AC on a widely used algorithm in
scientific computing. This gives us the knowledge, where it is possible to apply
AC and how we can combine orthogonal methods.

1.1 Current Status

AC approaches can be grouped according to the compute stack. Here, we order
the approaches in the following:

– Task Layer approaches comprise skipping tasks, relaxing synchronization
points [13], or exploiting approximate parallel patterns [15]. There exist run-
time approaches that select a task from different approximate versions [3].

– Algorithmic Layer methods use the concept of loop perforation [21] or loop
tiling [15]. Others rely on an automatic transformation of the code into a
neural network. Sampling the input data offers a further way. Additionally,
there are automatic ways to reason about the required data type.

– Architecture Layer approaches introduce AC into the hardware architec-
ture. This includes neural processing units, approximated memory compo-
nents [10], or entire designs that integrated dynamic accuracy and voltage
scaling. Programmers can use such components through an extended ISA.

– Hardware Layer approaches [11] often deal with approximating process-
ing units. This also includes providing different hardware-supported data
types [6], i.e. exploit precision scaling.

Previous work shows that considering various levels and introducing different
AC methods result in an enormous benefit [12]. However, such an orthogonal
view is missing for scientific applications.

1.2 Methodology of the Evaluation

As previous work shows that AC can be beneficial for scientific computation,
we analyze the usage of orthogonal AC methods for the Jacobi method. Firstly,
we assemble representative input data for our evaluation (see Sect. 2). Then,
we select suitable and promising AC approaches for our evaluation in Sect. 3. To
note, we analyze the applicability and combination of orthogonal AC approaches,
but we do not provide a run-time approach that controls the quality. However,

Do Iterative Solvers Benefit from Approximate Computing? 299

there already exist such approaches that can be used to control a combination of
AC methods [11]. Our systematic evaluation compares the different approaches
regarding their execution times and the relative error as described in Sect. 4. This
evaluation aims to answer the following questions: How big is the influence of
well-known AC methods on the accuracy of a scientific algorithm? Is it possible
to combine AC methods to improve other design parameters while keeping an
acceptable accuracy?

1.3 Main Findings

Based on the outcome of our experiments, the following conclusions can be
drawn:

– Conclusion 1: There exist further AC approaches besides precision scal-
ing which are useful for scientific computing. Loop tiling and loop trunca-
tion enable a programmer to trade-off accuracy for performance for the syn-
chronous and parallelized Jacobi algorithm. Additionally, an approximation
parameter that specifies the degree of relaxed synchronization poses an oppor-
tunity to find an optimal configuration point for accuracy and performance.

– Conclusion 2: Combining orthogonal AC methods leads to configuration
points that cannot not be reached by a single method. Hence, this combination
outperforms single methods regarding accuracy and performance. We show
that coupling up to five AC methods is possible for the Jacobi method.

– Conclusion 3: Using a simple greedy-based algorithm, we can find suitable
parameter values for the orthogonal AC methods. A user can state a desired
relative error that is tolerable for the solution of the Jacobi method. Then, the
algorithm finds the best possible performance for that given error by tuning
the AC parameter.

2 Mathematical Background and Data Generation

A common task within scientific computing is numerically solving partial dif-
ferential equations (PDEs). This is typically done by transforming the basic
problem into a large scaled system of (linear) equations [9]. The finite element
method, for example, transfers a weak formulation of the PDE directly into a
system of linear equations:

Ax = b, (1)

where xi are the coefficients of a linear combination of basis functions for an
appropriate function space, which approximate the solution of the PDE. Depend-
ing on the set of basis functions, the original problem, and the given approxima-
tion of the observed area, A has different characteristics including high dimen-
sionality. Wisely selecting the basis functions leads to a sparse A. Hence, Krylow
subspace methods are ideal candidates for solving the problem (1) [14]. Lowering
the conditional number of A results in a higher convergence for those methods.
This is accomplished by multiplying a suitable matrix B with A [20]. One method

300 M. Bromberger et al.

to find a suitable B, the so-called preconditioning matrix, is a factorization of
A based on its characteristics. A widely usable factorization is the incomplete
LU -factorization [5]:

A ≈ LU = B−1, (2)

where L and U are lower and upper triangle matrices, respectively. As for per-
formance reasons B is embedded within the Krylow subspace method by multi-
plying it with a basis vector vm of the actual Krylow subspace Vm, new systems
of equations have to be computed:

Bvm = y ⇔ LUy = vm ⇔ Lỹ = vm, Uy = ỹ. (3)

Because L and U are sparse but triangle matrices, typically solvers based on
splitting methods like the Jacobi method are used to solve the inner systems [5].

The main challenge now is to solve these inner systems (3) very efficiently
to keep the performance benefit due to fewer iterations of the Krylow subspace
method. An important fact to note is that the accuracy of the solution of the
inner systems only affects the convergence rate, hence it does not affect the
solution of the outer method. To note, there are some important mathematical
properties for solvers and preconditioning methods. First of all, the precondi-
tioning operator B has to be invariable over the whole iteration process for most
Krylow subspace methods [14]. Manipulating the updating process of the inner
solver may change the operator from one iteration to another. However, methods
such as FGMRES allow us to adapt the preconditioners per iteration [14].

The second problem is the convergence of the inner solver. Having a spectral
radius ρ of L and U smaller than unity results in a secured convergence [4].
Although this requirement on ρ might not be fulfilled for all matrices assembled
from discretization of PDEs and incomplete factorization, there are large and
relevant classes of problems with resulting triangular matrices that can be solved
by matrix splitting based solving methods.

Now, we take a look at the generation of the test data. The basic problem
that we use is an inhomogeneous Poisson’s problem with homogeneous boundary
conditions on the unit square. The discretization is done with a five-point-stencil
and the finite difference method. The resulting system of equations is diagonally
dominant, irreducible, and can be easily scaled to any useful dimension. A is
also sparse, symmetric, and positive definite. We use the Jacobi method as inner
solver. The right side vm of (3) is a set of vectors that are created as residu-
als within a performed CG method. To avoid misunderstandings, we would like
to emphasize that we are only investigating the influence of AC on the Jacobi
method. Therefore, we are only solving the resulting inner systems for evaluation
purposes, but we are not trying to precondition the CG method. As mentioned
before, the CG method needs an invariable preconditioning operator which is
violated by our methods. Considering the influence on the preconditioning qual-
ity, for instance using FGMRES is left for future work.

Do Iterative Solvers Benefit from Approximate Computing? 301

3 Approximation Computing Methods

The selection of the considered approximation methods is inspired by two things.
Firstly, we want to evaluate orthogonal methods which can be applied concur-
rently. Secondly, we decide to use approaches that seem promising and have a
high standing in the approximate computing domain. Moreover, each of them
have shown great success on different applications. Our selection of methods is
shown in Table 1. Each of these methods offers different parameters that influ-
ence the trade-off between different design goals like accuracy and performance.
We describe the meaning of each parameter in this section. Moreover, we state
the useful approximation parameters.

Table 1. Overview about the considered approximation methods.

Level Approaches Description Evaluation

Thread Relaxed synchronisation Section 3.1 Section 4.4

Data Loop perforation, Loop tiling, and Loop skipping Section 3.2 Section 4.3

Data type Precision scaling and approximate memory Section 3.3 Section 4.2

Input approximation Input data approximation Section 3.4 Section 4.5

3.1 Relaxed Synchronization

Relaxed synchronization is a way to reduce the synchronization overhead intro-
duced for a parallel execution [13]. It means that some synchronization points
are intentionally violated to improve performance. However, relaxed synchro-
nization can hamper the accuracy of the result. Hence, programmers have to
take care where relaxed synchronization is viable. Barriers or synchronizations
that assure to read the most recent data are good points to introduce relaxation.

For our evaluation, we use an algorithmic-specific relaxation, which are often
called asynchronous methods in numerics. The used relaxation is based on a work
of Anzt et al. [1]. Normally, a given starting vector is updated within each step
of the Jacobi method which can be done in parallel but needs synchronization at
the end of the iteration. The idea behind the relaxation is to subdivide entries
of the vector in groups of a given size. Only all members of the same group are
synchronized at the end of the iteration step but synchronizations between two
different groups are relaxed. Anzt showed that this relaxation may lead to great
speedups on GPUs. Additionally, convergence is proven for the asynchronous
Jacobi method [7]. The number of groups present the approximation parameter.

3.2 Sampling

Here, we present approaches that influence the loop behavior of an algorithm.
On one side, there are approaches on this level that can be considered as sam-
pling approaches. They decide which items of the input data are used for the

302 M. Bromberger et al.

for i ← 0 to n − 1,
i+=steps do

result = do work();
end

(a) Loop perforation.

for i ← 0 to
(n − steps), i++ do

result = do work();
end

(b) Loop truncation.

for i ← 0 to n − 1, i+=steps do
result[i] = do work(input[i]);
for j ← 1 to steps − 1, j++ do

result[i+j] = result[i];
end

end

(c) Loop tiling.

Fig. 1. Used approximation methods on the data level (sampling approaches).

computation. On the other side, we count approaches to this level that earlier
stops the execution of an iterative algorithm. Figure 1 shows the schematic of
these approaches.

Loop perforation (see Fig. 1a) is a well-known technique of AC on the software
level [21]. The idea is to reduce the execution time of a loop by skipping iterations
in between. Depending on the actual loop this essentially results in sampling the
input or output. In addition, it is sometimes worth to adapt the final result, for
instance using scaling for a summation of an array. Let us assume, that we only
use half of the values of the sum, then multiplying the result with two can be
useful. The perforation rate is the approximation parameter.

Loop truncation (see Fig. 1b) is a method that drops the last iterations of a
loop. Here, the approximation parameter specifies the number of dropped iter-
ations. Such an approach is especially useful for iterative methods. Iterative
methods are commonly used in numerical mathematics. They perform a com-
putation in such a way that they calculate a sequence of approximate solutions
that ideally converge to the exact solution.

Loop tiling (see Fig. 1c) assumes that near located elements of an input have
similar values [15]. Hence, it only calculates some iterations of the loop and
assigns nearby outputs to the already calculated value. This actually forms a
tile structure of the output. The tile size presents the approximation parameter.

3.3 On the Data Type Level

Typically, numerical algorithms rely on floating-point operations performed on
the executing hardware. Many approaches in AC present designs that deal with
arithmetic units, which also includes floating-point units. These approaches can
be roughly grouped into two general approaches.

Do Iterative Solvers Benefit from Approximate Computing? 303

One deals with the precision of the operations itself [11]. This is achieved by
precision scaling or by redesigning a processing unit in an approximate way. This
leads to more efficient hardware designs regarding power consumption, latency,
or area. The other approaches deal with approximate memory which may affect
the accuracy of involved operands [10]. In general, approximate memories can
lead to indeterministic stored data.

To include those approaches in our evaluation, we adapt floating-point oper-
ations within the algorithm. The first group is simulated by truncating bits
of the significand (called precision scaling). The approximation parameter
states the number of truncated bits. For the second, we introduce random bits
for those less significant bits. However, this means that each memory access
is affected. Therefore, we perform additional experiments, where we introduce
errors according to different realistic error rates of an approximate memory [10].

3.4 Input Data Approximation

We consider a method that approximates the input data. In our test case, this
can be done by taking influence to the ILU factorization as this specifies the
resulting system of equations, hence the input data of the Jacobi method.

Using a sparsity pattern it is possible to specify entries of L or U that are set
to zero. Therefore, the operations within the Jacobi method are reduced. The
challenge is to decide which entry has the least impact on the accuracy of the
Jacobi method as this is most likely the best entry to remove next.

Taking a look at the updating process of the Jacobi method it is obvious that
for us the best element of L or U to remove is either the one matching to the
entry of y from (3) closest to zero or the one which is closest to zero itself, both
with the restriction not to remove the diagonals of the matrices. As y is unknown
while computing the ILU factorization, the latter method is the one of choice.
To keep the original structure of the matrices as long as possible, we additionally
decide to give removing priority to the leftmost (rightmost) element of a row.
Hence, it results in removing these elements first. We exploit the number of
removed entries as the approximation parameter.

4 Experiments

We apply the described methods above to an iterative and parallel Jacobi solver
individually. Additionally, we consider a combination of several AC methods. We
run all the experiments on a AMD Opteron 6128 processor providing 64 GB of
main memory. A synchronous and parallel version of the Jacobi solver executed
using 32 threads is our base line. We parallelize over matrix rows. The parallel
algorithm requires 130.1 ms for a matrix dimension of 10242 and 631.2 ms for a
dimension of 20482. If not otherwise mentioned, we set the iteration count to
10. Stopping the iterative method after 10 iterations results in a relative error
of roughly 10−4 compared to the exact solution independent from the matrix
dimension d.

304 M. Bromberger et al.

4.1 Evaluation Metrics

For the accuracy, we calculate the relative error

Erel =
||x − x̃||2

||x||2 ,

where x is the solution vector of the base line and x̃ the solution of the approx-
imate version. Moreover, we measure the performance stated as execution time
if possible. In other cases, we include realistic numbers from the literature.

4.2 Influence of Approximate Computing on the Data Type Level

In this section, we investigate how the internal data type precision impacts the
accuracy of the solution vector. Since we cannot perform these experiments on
current hardware, we use an emulation scheme to evaluate the influence of preci-
sion. The reason is that current hardware does not provide other floating-point
data types apart from float or double in general. We consider two well-known
AC methods: precision scaling and approximate memory. Figure 2a shows the
impact of these methods on the relative error. We vary the number of influenced
precision bits of the significands from 53 to 0. We can see that for the given linear
system, the most of the least significant bits of the significand play a minor role
for the accuracy. Moreover, the results are more or less independent from the
matrix dimension d and the way how we influence the data type precision. 13 bits
are enough to have almost no additional error compared to the base line. Having
less than roughly 8 correct bits leads to an exponential increase in the relative
error. However, according to literature it is not very likely that all memory reads
are affected by approximation. It actually depends on how this approximation
method is implemented. A common way is to increase the refresh cycle time of
a DDR memory bank, which can significantly save energy. Depending on this

Fig. 2. Influence of the data type precision on the accuracy.

Do Iterative Solvers Benefit from Approximate Computing? 305

increase the error rate of getting wrong results from the memory also raises. For
some realistic values, we consider how this error rate impacts the accuracy of the
Jacobi solver, see Fig. 2b. Even if we have relatively high error rates, for instance
1.3 × 10−4, the influence on the accuracy is not drastic. Such an approximate
memory approach decreases the power required for refresh up to 25% having an
error rate of 1.3 × 10−4 [10]. Getting the actual performance or energy gain is
very difficult, since it would require to build such a hardware and to evaluate
the wanted metrics. Here, we show the potential of the reduction in precision
bits.

4.3 Analysis of Approximate Computing Loop Strategies

A common method in AC is to adapt the execution of iterations for a loop. This
essentially leads to skipping iterations or a sampling scheme on the input data.
Figure 3 shows the impact of loop perforation and loop tiling for different approx-
imation parameters (called steps in Fig. 1). The method loop perforation is
not applicable at all for the considered algorithm, since the error exponentially
increases with the approximation parameter. In contrast, loop tiling works
quite well. Especially, small values for the approximation parameter still lead to
small errors. We can see an influence of the dimension on the accuracy for loop
tiling. A smaller dimension shows a higher error behavior.

Fortunately, the execution time significantly decreases for small parameter
values. Larger values have no further considerable benefit regarding the execution
time. The rationale behind is that at a certain point the synchronization overhead
of the parallelization and other parts of the algorithm, where the AC methods
have no effect, have the main impact on the execution time.

loop truncation is a natural way to approximate iterative methods. It just
stops the iterative method before it converges. Figure 4 shows the accuracy and

Fig. 3. Influence of loop perforation and loop tiling (Measurements are overlapping for
loop perforation).

306 M. Bromberger et al.

Fig. 4. Influence of loop truncation regarding accuracy and performance (Measure-
ments for accuracy are overlapping).

execution time for different stop points. A stop point specifies the number of
allowed iterations. Again the relative error is almost independent from the matrix
dimension. The error exponentially decreases with the iterations at the beginning
and then requires some time to converge. The execution time for large dimensions
scales roughly linearly with the number of iterations. For small dimensions, the
synchronization overhead is quite high.

To sum up, loop perforation is not a useful approach for the Jacobi
method. Regarding the error and performance, loop truncation provides the
best solution in general. However, loop tiling can be a useful method for larger
allowed relative errors.

4.4 Accuracy Degradation Caused by Relaxed Synchronization

In the following experiment (see Fig. 5a), we investigate the influence of relaxed
synchronization on the accuracy of the result vector. A higher number of blocks
states that more synchronizations are relaxed during the execution. The relax-
ation method introduces a small error until the number of blocks is larger than
the number of available cores, in our case 25 = 32. At this point, we can see
a high increase of the relative error. In contrast, the optimal point regarding
performance is reached when the number of blocks is roughly eight times the
number of cores. The curves show similar behavior for different matrix dimen-
sions, but the relative error is smaller for the larger dimensions. The performance
gain is more significant for larger matrix dimensions.

Do Iterative Solvers Benefit from Approximate Computing? 307

Fig. 5. Consideration of relaxed synchronization and input approximation on the
Jacobi method (We are aware of the strange time measurements but unfortunately
it is unclear where the oscillation comes from. However, they are reproduceable).

4.5 Input Approximation

Instead of using approximation in the algorithm itself, one can adapt the input
data. Therefore, we remove certain inputs according to a method described
in Sect. 3.4. The approximation parameter presents an offset which specifies the
rows of the input matrix that will be affected. For instance, 20 means that
we influence each 20th row. In general, affecting fewer rows leads to a reduc-
tion of the error. Until a parameter value of 20, this reduction is exponential
(see Fig. 5b). Afterwards, the error decreases slowly.

However, we cannot see that removing certain inputs have a clear influence
on the execution time. There are strong variations in the execution time which
means that they are independent from the approximation parameter. According
to these results, we draw the conclusion that input approximation is not useful
for our test case.

4.6 Putting Everything Together

Now, we are able to combine multiple and orthogonal AC methods. According to
the results so far, we include loop truncation, loop tiling, relaxed synchro-
nization and precision scaling. All of them have an approximation parameter
that can be tuned. We set these approximation parameter values according to
a given relative error, which represents our constraint. To find a good configu-
ration of parameter values that satisfies these constraints, we exploit a known
greedy algorithm [16] based on steepest ascent hill climbing. For the first test, we
exclude precision scaling, since we cannot make performance measurements for
this method. Then, the task of the greedy algorithm is to find the parameter val-
ues which offers the best performance under the given error constraint. We adapt

308 M. Bromberger et al.

Fig. 6. Considering multiple orthogonal approximation methods for the Jacobi method.
Parameter set (TI|RS|TR|PS) TI: loop tiling, RS: relaxed synchronization, TR: loop
truncation, PS: precision scaling

approximation parameters in a way that higher values present a more aggres-
sive approximation level. The results are shown for different error constraints
in Fig. 6a. As we can see, the configuration algorithm tunes the parameter of all
three orthogonal methods. Hence, the combination of methods is beneficial to
reach good performance points for different error constraints. Allowing a relative
error of 1%, we get a performance improvement of roughly 300% compared to
the 32 threaded basis version. Moreover, a 10% allowed error leads to almost a
speed-up of 6.

For the found configuration points, we further consider the potential of preci-
sion scaling, see Fig. 6b. All configurations enable us to further introduce AC on
the data type level. This allows a hardware designer to approximate hardware
arithmetic units for the algorithm under test. Additionally, another possibility
is to include approximate DRAM according to Sect. 4.2 as fifth parameter.

4.7 Discussion

Taking a look on our results, we see that not only a single AC strategy can
be useful in terms of scientific computing, but also a combination of strategies,
especially in the context of preconditioning, where high accuracy is unnecessary
in most cases. Moreover, it is possible to estimate tolerable computing errors.
Hence, we are sure, that it is possible to reduce computation times for the inner
solver dramatically by reducing accuracy to a reasonable degree. Of course, we
are aware that accompanying quality loss of the preconditioning method can
result in lower convergence rates for the Krylow subspace method. But the results
of the combined AC strategies show that remarkable speed-ups can be gained
with careful accuracy reductions.

Do Iterative Solvers Benefit from Approximate Computing? 309

Based on our results we want to use a flexible Krylow subspace method, like
FGMRES, in combination with a set of AC strategies for the preconditioning
method adjusted with a tunable accuracy parameter. Although we have not mea-
sured the quality of the preconditioning method yet, we think that this setting
will lead to great speed-ups for the whole preconditioned solver. Additionally,
further AC strategies, like reformulating the ILU solver into an iterative method
and skipping iterations, which does not influence the speed of the Jacobi method
but the quality of the preconditioning method, can be added easily.

5 Conclusion and Future Directions

In this paper, we considered orthogonal approximate computing (AC) meth-
ods and how they influence the accuracy and performance trade-off of a scien-
tific computing algorithm. All methods were experimentally investigated for the
Jacobi method performing on realistic data. Hence, we applied the first exten-
sive, holistic, and schematic evaluation of AC on a scientific algorithm. While
single methods already can be seen as useful, a combination of them results
in a much higher gain. For instance, allowing 1% relative error we achieve an
acceleration of 3 compared to the parallel version of Jacobi (32 threads).

For future work it is mandatory to extend the test setting to the complete
Krylow subspace method to measure the effects of AC methods on the quality of
the preconditioning. With this enlarged setting, the usefulness of the presented
methods can be considered in a broader spectrum.

References

1. Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for precon-
ditioning. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS,
vol. 9233, pp. 650–661. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48096-0 50

2. Anzt, H., Dongarra, J., Quintana-Ort́ı, E.S.: Adaptive precision solvers for sparse
linear systems. In: Proceedings of the 3rd International Workshop on Energy Effi-
cient Supercomputing, p. 2. ACM (2015)

3. Baek, W., Chilimbi, T.: Green: a framework for supporting energy-conscious pro-
gramming using controlled approximation. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2010)

4. Bagnara, R.: A unified proof for the convergence of Jacobi and Gauss Seidel meth-
ods. SIAM Rev. 37, 93–97 (1995)

5. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput.
Phys. 182, 418–477 (2002)

6. Bromberger, M., Heuveline, V., Karl, W.: Reducing energy consumption of data
transfers using runtime data type conversion. In: Hannig, F., Cardoso, J.M.P.,
Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J. (eds.) ARCS 2016. LNCS,
vol. 9637, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30695-7 18

7. Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2, 199–222
(1969)

https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1007/978-3-319-30695-7_18
https://doi.org/10.1007/978-3-319-30695-7_18

310 M. Bromberger et al.

8. Chippa, V., Chakradhar, S., Roy, K., Raghunathan, A.: Analysis and characteriza-
tion of inherent application resilience for approximate computing. In: Proceedings
of the 50th Annual Design Automation Conference, DAC 2013, pp. 113:1–113:9.
ACM, New York (2013)

9. Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-88706-5

10. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: saving DRAM
refresh-power through critical data partitioning. ACM SIGPLAN Not. 47(4), 213–
224 (2012)

11. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
(CSUR) 48, 62:1–62:33 (2016)

12. Raha, A., Venkataramani, S., Raghunathan, V., Raghunathan, A.: Energy-efficient
reduce-and-rank using input-adaptive approximations. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 25(2), 462–475 (2017)

13. Renganarayana, L., Srinivasan, V., Nair, R., Prener, D.: Programming with relaxed
synchronization. In: Proceedings of the 2012 ACM Workshop on Relaxing Synchro-
nization for Multicore and Manycore Scalability, pp. 41–50. ACM (2012)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS, Boston (1996)
15. Samadi, M., Jamshidi, D.A., Lee, J., Mahlke, S.: Paraprox: pattern-based approxi-

mation for data parallel applications. ACM SIGARCH Comput. Archit. News 42,
35–50 (2014)

16. Samadi, M., Lee, J., Jamshidi, D.A., Hormati, A., Mahlke, S.: SAGE: self-
tuning approximation for graphics engines. In: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 13–24. ACM
(2013)

17. Schaffner, M., Gurkaynak, F.K., Smolic, A., Kaeslin, H., Benini, L.: An approxi-
mate computing technique for reducing the complexity of a direct-solver for sparse
linear systems in real-time video processing. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2014)

18. Schöll, A., Braun, C., Wunderlich, H.J.: Applying efficient fault tolerance to enable
the preconditioned conjugate gradient solver on approximate computing hardware.
In: 2016 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 21–26. IEEE (2016)

19. Schöll, A., Braun, C., Wunderlich, H.J.: Energy-efficient and error-resilient iterative
solvers for approximate computing. In: Proceedings of the 23rd IEEE International
Symposium on On-Line Testing and Robust System Design (IOLTS 2017), pp.
237–239 (2017)

20. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. School of Computer Science, Carnegie Mellon University,
Pittsburgh, August 1994

21. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE 2011, pp. 124–134. ACM, New York (2011)

22. Zhang, Q., Tian, Y., Wang, T., Yuan, F., Xu, Q.: Approxeigen: an approximate
computing technique for large-scale eigen-decomposition. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp. 824–830.
IEEE Press (2015)

23. Zhang, Q., Yuan, F., Ye, R., Xu, Q.: Approxit: an approximate computing frame-
work for iterative methods. In: Proceedings of the 51st Annual Design Automation
Conference, pp. 1–6. ACM (2014)

https://doi.org/10.1007/978-3-540-88706-5

A Flexible FPGA-Based Inference
Architecture for Pruned Deep

Neural Networks

Thorbjörn Posewsky1 and Daniel Ziener2(B)

1 Ibeo Automotive Systems GmbH, Hamburg, Germany
2 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

daniel.ziener@fau.de

Abstract. In this paper, we present an architecture for embedded
FPGA-based deep neural network inference which is able to handle
pruned weight matrices. Pruning of weights and even entire neurons
reduces the amount of data and calculations significantly, thus improving
enormously the efficiency and performance of the neural network infer-
ence in embedded devices. By using an HLS approach, the architecture
is easily extendable and highly configurable with a free choice of param-
eters like the number of MAC units or the used activation function. For
large neural networks, our approach competes with at least compara-
ble performance as state-of-the-art x86-based software implementations
while only using 10% of the energy.

1 Introduction and Motivation

For more and more people, Deep Neural Networks (DNNs) have become a sub-
stantial part of their daily life. Applications like image classification [22] or speech
recognition [20] are used by millions on their wearables, smartphones, or tablets.
This applies not only to mobile computing, it also holds true for related areas
like robotics or autonomous vehicles. Yet, these emerging areas have different
power requirements and lack processing power in contrast to high-performance
computing which is more often associated with deep learning techniques.

In order to achieve state-of-the-art and beyond classification rates in tasks like
object recognition, the number of artificial neurons and layers in DNNs has grown
to ever new records in the past years. Despite a significantly increased demand
for computational power, the size needed to store such networks has similarly
increased. For embedded devices, this is particularly challenging since memory is
typically a scarce resource and, more importantly, the access to off-chip memories
represents the dominating factor when considering the energy consumption [13].
Hence, to lower both DNN inference time and energy-consumption, this work
focuses on techniques that reduce the amount of data to be transferred.

The technique investigated in this work, now known as pruning, represents a
form of DNN compression [13,17]. Pruning reduces the number of synaptic con-
nections to adjacent neurons such that the overall amount of weights is reduced.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Berekovic et al. (Eds.): ARCS 2018, LNCS 10793, pp. 311–323, 2018.
https://doi.org/10.1007/978-3-319-77610-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77610-1_23&domain=pdf

312 T. Posewsky and D. Ziener

Most importantly, pruning is often able to eliminate a significant portion of these
connections without or with just minor accuracy drops for, i.e., classification
tasks. Due to the reduced amount of weights, less data needs to be transferred
and less calculations are needed in the hardware. Correspondingly, accelerators
are able to compute DNNs much faster. Currently, only a very limited number
of previous works exist that consider dedicated hardware support for pruned
DNNs [11,12].

As previously mentioned, deep learning can generally be used for many
embedded computing applications. The inference efficiency of such embedded
solutions plays a pivotal role and is highly dependent on the right hardware
architecture for the application-specific neural network architecture. To support
a wide area of different networks and, therefore, applications, we use an FPGA-
based high level synthesis (HLS) [15] approach in order to design a very efficient
hardware by rapidly exploring different design parameters, like the number of
MAC units or different activation functions. In this paper, we show how a flexible
streaming architecture for arbitrarily pruned DNNs can be designed as opposed
to designs with partially or completely embedded parameters. We focus partic-
ularly on an efficient inference of fully-connected DNNs since these layers are
the most memory-intensive and build the foundation for all of today’s most
successful network kinds.

The rest of this paper is organized as follows: Sect. 2 gives an overview
of related work. The concept and architecture of our accelerator is explained
in Sects. 3 and 4, respectively. Section 5 continues with experimental results.
Finally, Sect. 6 concludes the work and highlights future research directions.

2 Related Work

Recently, many accelerator designs for Convolutional Neural Networks (CNNs)
were introduced. CNNs are often found in image and video recognition systems
and typically use a series of kernels or convolution matrices prior to the above
mentioned fully-connected network architecture [21]. One example for such an
accelerator is given in [10]. Since the number of parameters for convolution matri-
ces is typically only a fraction of the weights of fully-connected network layers,
the exploitable compute parallelism is usually greater and thus favors hardware
accelerators. However, while such a design and many others (e.g., [8]) are very
effective for convolutional layers, their internal buffers and routing elements are
not optimized for fully-connected or compressed networks.

An FPGA-based DNN inference architecture that specifically addresses fully-
connected layers is presented in [19]. Additionally, the approach enables the reuse
of previously transferred weight matrices across multiple input samples, which is
referred to as batch processing. Both techniques, the one presented in this work
and the one in [19], reduce data transfers for the inference of fully-connected
DNNs significantly but are conceptually orthogonal.

A third important type of networks is known as Recurrent Neural Network
(RNN) [21]. RNNs allow the processing of input sequences through cyclical con-
nections in the network architecture. Like fully-connected layers, these networks

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 313

are typically memory bound and thus make a parallel execution more difficult.
Consequently, corresponding designs are less frequent. However, an early app-
roach for a state-of-the-art RNN, called LSTMs, which uses the same FPGA as
this work, is shown in [3] and their results are accordingly compared to ours in
Sect. 5.

The theoretical foundation for pruning and, thus, our accelerator was intro-
duced by LeCun et al. in [17]. Originally, it was used to improve generalization
and speed of learning in shallow network architectures. However, Han et al. [13]
recently revived the technique for DNNs and were able to reduce the number of
connections by a factor between 9x and 13x. A corresponding ASIC design with
large on-chip memories for the remaining parameters after pruning and quantiza-
tion (without Huffamn encoding) is given in [12]. As discussed later, our acceler-
ator utilizes a similar format, presented in [24], for the resulting sparse matrices
(e.g., after pruning) but does not embed parameters for specific DNNs on-chip.
Instead, we propose a streaming architecture for arbitrary DNNs. Very recently
their approach was further extended to support LSTMs for speech recognition
on high-performance FPGAs [11].

3 Concept

A typical neural network contains several layers j = 1 . . . L. A layer j itself
consists of sj neurons. Fully-connected layers in DNNs are characterized by a
bipartite graph of neuron connections between two adjacent layers j and j + 1
for 1 ≤ j ≤ L − 1. For the rest of this work, we will specify the architecture of
these networks through the number of neurons sj in each layer, e.g., s0 × s1 × s2
for a L = 3 layer network. The synaptic strength of a connection is modeled
through a scalar value w

(j)
i,k called weight that represents the connection to the

i-th neuron in layer j + 1 from the k-th neuron in layer j. A transition from
layer j to the next layer j + 1 involves a weight matrix W (j) where w

(j)
i,k are the

components and the outputs a
(j)
k of connecting neurons in the layer j. The result

of each neuron a
(j+1)
i is computed by the following functions:

a
(j+1)
i = ϕ(z(j+1)

i), z
(j+1)
i =

sj∑

k=0

w
(j)
i,k · a

(j)
k

A variety of different types of activation functions ϕ are known in neural
network literature. For example, while before the deep learning era the so called
sigmoid function was found most frequently, today’s most successful implemen-
tations usually deploy Rectified Linear Units (ReLU) [18] or variations of it [6].

On the hardware side, modern FPGAs typically offer a rich set of DSP and
RAM resources within their fabric that can be used to process these networks.
However, compared to the depth and layer size of deep neural networks, these
resources are no longer sufficient for a full and direct mapping the way it was
often done in previous generations of neural network accelerators. For example,

314 T. Posewsky and D. Ziener

given a network with L = 7 layers and architecture 784 × 2500 × 2000 × 1500 ×
1000×500×10 that was proposed in [5]. The network weights need approximately
22 MB if each weight is encoded using 16 bits. Compared to FPGA platforms
like the Zynq, where even the largest device is limited to a total BRAM size of
less than 3.3 MB [27] (i.e. 26.5 Mb≈ 3.3 MB for the Z7100 device), a complete
mapping with all neurons and weights directly onto the FPGA is no longer
possible.

Modern and deep neural networks are usually partitioned into smaller sec-
tions in order to process them on embedded FPGAs platforms. We refer to a
section as a certain number m of neurons in a given layer j with m ≤ sj+1 that
can be processed in parallel through our hardware coprocessor with m individ-
ual processing units. Each processing unit is responsible for the transfer function
of exactly one neuron in each section. Each processing unit may consists of r
different computation resources, e.g., multipliers which are able to consume r
weights as inputs in parallel for the calculation of the transfer function.

When comparing the size of the input data (sj values), the output data (m
values), and in particular the weights (≈sj × m values), it can be seen that the
transfer of the weight matrix is very costly. In order to reduce the amount of
data to transfer from the memory and for calculation, it is possible to remove
some connections entirely. After some initial iterations of the training phase,
small weights which are below a certain threshold δ can be set to zero:

w
(j)
i,k < δ

following
=====⇒
iterations

w
(j)
i,k := 0

Subsequently, these pruned weights are kept at zero and the remaining weights
are refined in the following iterations of the training phase. While this can poten-
tially reduce the accuracy if too many weights are pruned, it was shown that over
90% of the weights in fully-connected layers of common CNNs can be pruned
without noticeable accuracy drops [13].

Since weights with the value zero neither influence the result of the transfer
nor the result of the activation function, these weights don’t have to be stored
in memory, transferred to the compute units, or used in computations. However,
by pruning weights, the weight matrix becomes sparse and the hardware needs
to be designed in a way that the involved calculations are computed efficiently.

4 Architecture

We have implemented our design with support for pruned DNNs on Xilinx’s
Zynq-7000 All Programmable SoC platform [27] and using Xilinx Vivado HLS.
The flexible HLS approach allows us to quickly elaborate the best performing
architecture for a given neural network architecture. For example, the number
of processing units m and the number of MAC units per unit r can be freely
configured during design time. Moreover, the size and format of the weights and
the kind of activation function can be easily exchanged. Furthermore, the design
time is drastically reduced and our approach is easily extensible to support new

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 315

kinds of neurons, activation functions, or complete network architectures. An
visualization of the overall accelerator structure and all related Zynq peripherals
is shown in Fig. 1.

Fig. 1. Overview of our DNN accelerator with the Zynq processing system (PS) on
the left and the custom accelerator inside the programmable logic (PL) on the right.
The connecting PS-PL interfaces are shown in between. In addition, four DMA mas-
ter peripherals are used for the weight transfer. All major connections that cross the
boundary of our actual DNN accelerator are indicated as dashed lines.

The accelerator has an internal memory hierarchy that is used to store input
and output activations for the currently calculated layer (controllable and acces-
sible via software through the GP ports). While the input for the first layer needs
to be copied by the ARM cores, the inputs for the following layers are always
outputs of previous layers and thus computed and stored inside the memory
hierarchy.

The Matrix Coprocessor computes the transfer function, i.e., the weighted
sum of inputs z

(j)
i . This involves matrix-vector operations that are mainly imple-

mented with multiply-accumulate units (MACs) by using DSP slices. We use a
fixed point data format, known as Q7.8, that consists of one sign bit, seven
integer bits and eight fractional bits. Although there exist first results that use
fewer bits for both weights and activations (e.g., between 1 and 8 bits) [7], 16
bits are, as of today, the most frequently used bit-width. For the DNN inference,
this format is proven to be almost as accurate as single precision floating point
weights [4,9,10], whereas weight encodings with very few bits (e.g., 1 or 2 bits)
suffer from comparable low accuracy [23]. Note that multiplications use 16 bits,

316 T. Posewsky and D. Ziener

while the subsequent accumulation is done with 32 bits. This ensures that the
input of the activation function is provided with full precision (e.g., Q15.16).

Compared to a design without pruning support where it is sufficient to trans-
fer a sequence of weights and the dimension of the matrix operation, pruning
requires additional metadata that gives information about the actual position
of a weight w

(j)
i,k within the matrix W (j). We use a format similar to [12] that

represents individual rows of the sparse weight matrices using tuples of (wl, zwl
)

entries, with l = 0 . . . (1 − q
(j)
prune,k) · sj − 1. Here, wl encodes a remaining weight

after pruning and zwl
denotes the number of preceding zeros that come before

wl in the corresponding row. The number of remaining weights after pruning
is sj · (1 − q

(j)
prune,k), where q

(j)
prune,k is the pruning factor of row k of the weight

matrix W (j). The overall pruning factor q
(j)
prune of the weight matrix W (j) can be

calculated with

q(j)prune =
1

sj+1
·
sj+1−1∑

k=0

q
(j)
prune,k.

Opposed to [12], we do not separate the weights and zeros into two 1-dimensional
arrays and store them in on-chip tables, but rather pack a certain number r of
consecutive (wl, zwl

) tuples into one data word (cf. [26]). In our architecture
we use r = 3 tuples, encode wl with the Q7.8 format, and represent zwl

as an
unsigned integer with 5 bits. Using these parameters, a row

(0, −1.5, 0, 0, +0.3, −0.17, 0, 0, 0, +1.1, 0, 0, −0.2, 0, +0.1, . . .)

is encoded into the following sequence of 64 bit data words

−1.5 1 +0.3 2 −0.17 0 +1.1 3 −0.2 2 +0.1 1 . . .
data word 0 data word 1

If zwl would require more than 5 bits, e.g. more than 31 consecutive weights
were pruned, we instead use multiple tuples with (wl, zwl) = (0, 31) until the last
tuple of the sequence holds the condition zwl < 31. Note that the encoding of a
data word uses only 63 bit from the available 64 bit. The advantage is that the
data is memory aligned to the 64 bit border which eases the memory access. The
corresponding overhead per weight compared to non-pruning implementations
is qoverhead = 64 bit/(3 × 16 bit) = 1.33.

Compared to other sparse matrix encodings that, for example, use separate
vectors for the absolute row and column pointers [24], this format works well for
streaming architectures since it directly combines both the weight and its relative
position in one stream. This means that it does not require synchronization for,
e.g., weight and multiple index streams. Since the structure of pruned weight
matrices is not as homogeneous as their dense counterparts, the datapath of a
corresponding streaming architecture must be design to handle sparse matrices
in order to avoid pipeline stalls (see Fig. 2).

Therefore, the coprocessor needs to calculate the address of the input acti-
vation a

(j)
k for the current weight. This input address is potentially different for

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 317

Fig. 2. Datapath for the computation of sparse rows in pruned DNNs. This example
presumes a pipeline word with r tuples, each containing a weight and the number
of zeros before it. In order to avoid delays when fetching the input activation that
corresponds to a given weight, the BRAMs in the I/O memory are also duplicated r
times, such that each multiplier has its own memory port. By combining m of these
datapath instances, m neurons can be computed in parallel (i.e., m rows of the sparse
matrix). In such cases, an IP that merges the activations of different rows must be
connected with the I/O memories (indicated through the dashed lines).

every row which makes a parallel distribution of the inputs impractical. There-
fore, each of the m parallel sparse row coprocessors has it own I/O memory unit.
This means that the I/O memory and the coprocessors are replicated m times.
The offset calculation IP computes theses addresses for all r weights iteratively
using the previously computed and stored offset oreg, the number of non-zero
weights before wl and the zero fields zwl

from the pipeline word:

addressi = oreg + i +
i∑

k=0

zwk
, i = 0 . . . r − 1

Having computed the addresses, the coprocessor can multiply the weights and
retrieve input activations and subsequently accumulate the partial sums. How-
ever, in order to retrieve the weights in parallel and avoid multiple cycles for a
sequential fetching of the individual activations, the input memory needs r read
ports. Given that RAM resources in current FPGA technologies usually do not
provide more than two memory ports, the I/O memory stores both input and
output activations in r redundant BRAM copies. When m neurons should be
computed in parallel, this redundancy is even increased to m ·r copies since each
of the m coprocessors needs r individual read ports. If the calculated addressi

318 T. Posewsky and D. Ziener

surpasses the stored number of inputs sj , the calculation of the current transfer
function z

(j+1)
i is finalized, the result is handed over to the activation function,

and the corresponding processing unit starts calculating the following trans-
fer function z

(j+1)
i+m . After the activation function, a merger IP (not depicted in

Fig. 2) distributes the computed output activations of the m neurons to all I/O
memories (second port of the BRAM crossbar).

5 Experimental Results

To evaluate and verify the so far discussed concept, we have implemented our
accelerator on an embedded platform and compared them with different config-
urations against miscellaneous software platforms. We chose the Zynq Evalua-
tion and Development Board [2], short ZedBoard, for the implementation of our
designs. The design uses two clock domains: the memory interface (e.g., Zynq
high performance ports and DMAs) is clocked with 133 MHz and the remaining
processing IPs use a 100 MHz clock (fpu). Due to the limited amount of 4 high
performance ports on the Zynq, our design utilizes only m = 4 coprocessors
with r = 3 MAC units. This results in a total utilization of only 12 MACs. By
using an HLS design flow, the design time was cut down to approximately 8
person weeks. In comparison, an earlier design (see [19]) with a similar complex-
ity needed about 24 person weeks by using a standard RTL-based design flow
(using VHDL). Furthermore, a substantial amount of the previously mentioned
time for the HLS-based design was spent in creating a suitable testbench that is
capable of loading arbitrary networks and transforming the weight matrices in
the internal representation for the actual processing.

Throughput Evaluation: For a fair comparison of both hardware and soft-
ware, we have trained different fully-connected neural network architectures with
multiple real-world data set. As many before us, we use the MNIST database
of handwritten digits [16] as the first benchmark. In addition, we have also per-
formed all tests with a second benchmark that deals with the subject of recog-
nizing human activities (HAR) of daily living through smartphone sensors [1].
We have also tested multiple neural network architectures which are taken or
inspired from current research in the field. For example, the smaller network
for MNIST was proposed in [14] while the larger one is an artificially extended
version of that architecture with four additional hidden layers.

In our evaluation, the hardware competes against a software implementation
that we have tested on an embedded (i.e., the ZedBoard without FPGA use),
a notebook and, a desktop machine. The notebook uses an Intel Core i7-5600U
dual core processor with 2.6–3.2 GHz, 4096 KB L3 cache, and 8192 MB single
channel DDR3 memory. The desktop CPU is an Intel Core i7-4790 quad core
with 3.6–4.0 GHz, 8192 KB L3 cache, and 16384 MB dual channel DDR3 memory.
The peak memory throughput is 12.8 GB/s for the laptop and 25.6 GB/s for the
desktop system. The ZedBoard has only a memory throughput of 4.2 GB/s.

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 319

Furthermore, all presented processors feature some variant of a vector exten-
sion to accelerate floating-point intensive calculations through parallelism on
instruction level. In order to get the best runtime result on all presented plat-
forms, we use the BLAS [25] library for the software inference of the DNNs.
Xilinx’s bare-metal layer is used for the ZedBoard whereas both the notebook
and the desktop machine use Linux-based operating systems. By default, bare-
metal uses only one core for the software execution. The throughput results for
the DNN inference on all software implementations and our hardware platform
are depicted in Table 1.

Table 1. Throughput comparison of our hardware design with pruning support and
software inference on three different systems. Execution times are averaged over the
size of the used test set and given in samples per milliseconds (ms). The best results
for both hardware designs and all software runs are highlighted.

MNIST a HAR b

Device Configuration 4-layer netw. 8-layer netw. 4-layer netw. 6-layer netw.
1,275,200 3,835,200 1,035,000 5,473,800
Parameters Parameters Parameters Parameters

Hardware-based processing

Pruning factor 0.72 0.78 0.88 0.94

HW design 12 MACs 0.439 1.072 0.161 0.420

Software-based processingc

ARM #Threads: 1 16.151 48.603 13.120 70.240
Cortex-A9

Intel Core #Threads: 1 0.285 1.603 0.223 2.246
i7-5600U #Threads: 2 0.221 1.555 0.144 2.220

#Threads: 4 0.247 1.591 0.182 2.417

Intel Core #Threads: 1 0.118 0.917 0.114 1.406
i7-4790 #Threads: 4 0.057 0.569 0.045 1.205

#Threads: 8 0.065 0.687 0.055 1.491
a

Network architectures: 784 × 800 × 800 × 10 and 784 × 800 × 800 × 800 × 800 × 800 × 800 × 10
b

Network architectures: 561 × 1200 × 300 × 6 and 561 × 2000 × 1500 × 750 × 300 × 6
c

Software calculations are performed using the IEEE 754 floating point single precision format and using BLAS. The
i7-4790 utilizes dual channel memory whereas the others only use single channel.

On the software side, we see the fastest inference for the desktop machine
with a utilization of 4 threads and dual channel memory. On both the mobile
and desktop CPU, the execution times depend mostly on the network size and,
more precisely, on the matrix sizes of the individual layers. While the matrices of
both 4-layer networks fit completely into the CPU caches and thus enable faster
execution times, the tables are turned for matrices of the deep learning era. For
example, the 6-layer HAR network with a 2000 × 1500 matrix represents such
a typical fully-connected layer. Here, the hardware, despite its five times slower
memory interface, clearly outperforms all software implementations.

Furthermore, we compared our approach with a related FPGA-based neu-
ral network accelerator. A fair and direct comparison is only possible with
approaches that supply results for fully-connected DNNs or RNNs (RNNs have

320 T. Posewsky and D. Ziener

only slightly more weights due to neuron feedback connections). However, when
considering only fully-connected layers, our approach clearly outperforms related
work like, for example, a recent RNN approach on the ZedBoard [3]. The authors
claim an overall throughput of 388.8 MOps/s. With our approach, we reach a
throughput of 0.8 GOps/s (only counting MAC operations). However, compared
with non-pruned approaches, this is equivalent to 3.83 MOps/1.07 ms = 3.58
GOps/s and 5.47 MOps/0.42 ms = 13.02 GOps/s, respectively (i.e., the non-
pruned weight matrix is used as the number of operations, see Table 1).

Energy Efficiency: For determining the energy consumption, we measured
the system power for processing the 8-layer neural network and the idle power
for all platforms (see Table 2). The overall power consumption on the ZedBoard
is evaluated by measuring the average input voltage and the voltage drop on a
shunt resistor. Whereas, the average power of the x86-based systems is measured
on the primary side of the power supply with an ampere and volt meter. Besides
the idle and processing power, the energy consumption with (Overall Energy)
and without (Dynamic Energy) idle power consumption is shown in Table 2.

Table 2. Energy consumption comparison of our hardware design and three processors
(network: MNIST 8-layer).

Device Configuration Power Overall Dynamic
(W) Energy (mJ) Energy (mJ)

ZedBoard idle 2.4 — —
HW (m = 4) 4.1 4.4 1.8
SW BLAS 3.8 184.7 68.0

Intel Core idle 8.9 — —
i7-5600U #Threads: 1 20.7 33.2 18.9

#Threads: 2 22.6 35.1 21.3
#Threads: 4 24.9 39.6 25.5

Intel Core idle 41.4 — —
i7-4790 #Threads: 1 65.8 63.9 22.4

#Threads: 4 82.3 46.8 23.3
#Threads: 8 81.8 56.2 27.8

Comparing our hardware configuration with pure software approaches, an
overall energy efficiency improvement of almost factor 10 can be achieved. Com-
pared to a competing LSTM design [11], our pruning approach is about factor
1.8 more energy efficient using their network with 3248128 weights and their
pruning factor of qprune = 0.888 (1.9 mJ for our approach and 3.4 mJ for their
approach).

Accuracy Evaluation: The objective for the training with pruning was a max-
imum accuracy deviation of 1.5% in correctly predicted samples. All networks
discussed in the throughput evaluation (i.e., Sect. 5) meet this objective and
deliver an accuracy very similar to their non-pruned counterparts (most deviate
less than 0.5%).

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 321

Table 3. Accuracy evaluation in percentage of correctly predicted test set samples
depending on the overall pruning factor qprune of the network

MNISTa HARb

Number of parameters 4-layer netw.

1,275,200

parameters

8-layer netw.

3,835,200

parameters

4-layer netw.

1,035,000

parameters

6-layer netw.

5,473,800

parameters

Best non-pruned accuracy 98.3 95.9

Pruning factor 0.72 0.78 0.88 0.94

Accuracy 98.27 97.62 94.14 95.72
aNetwork architectures: 784 × 800 × 800 × 10 and 784 × 800 × 800 × 800 × 800 × 800 × 800 × 10
bNetwork architectures: 561 × 1200 × 300 × 6 and 561 × 2000 × 1500 × 750 × 300 × 6

A detailed comparison of accuracy and pruning percentage is shown in
Table 3.

6 Conclusions

In this paper, we present a flexible architecture for an FPGA-based embedded
SoC that is able to accelerate the inference of previously learned and arbitrary
pruned fully-connected deep neural networks. This architecture enables the infer-
ence of today’s huge networks on energy-constrained embedded devices. By using
pruning, the size of external memory as well as the amount of data to be trans-
ferred can be significantly reduced which increases the energy efficiency and
performance. An application and network-specific design can be easily achieved
by using HLS in order to increase the abstraction level of the design entry. The
resulting architecture has a comparable performance with state-of-the-art desk-
top and server processors for large networks. However, only a fraction of energy
is needed which enables new applications for embedded systems, even on battery
powered devices. Future works on this topic might further increase the through-
put and energy efficiency by combining pruning with batch processing [19] into
one architecture.

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: 21th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, ESANN 2013, April 2013

2. Avnet Inc.: ZedBoard Hardware User’s Guide, v2.2 edn, January 2014
3. Chang, A.X.M., Martini, B., Culurciello, E.: Recurrent neural networks hardware

implementation on FPGA. arXiv preprint arXiv:1511.05552 (2015)
4. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: Diannao: a

small-footprint high-throughput accelerator for ubiquitous machine-learning. In:
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2014, pp. 269–284.
ACM, New York (2014)

http://arxiv.org/abs/1511.05552

322 T. Posewsky and D. Ziener

5. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple
neural nets excel on handwritten digit recognition. CoRR abs/1003.0358 (2010)

6. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by Exponential Linear Units (ELUs). CoRR abs/1511.07289 (2015)

7. Courbariaux, M., Bengio, Y.: BinaryNet: Training deep neural networks with
weights and activations constrained to +1 or −1. CoRR abs/1602.02830 (2016)

8. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod,
P., Talay, S.: Large-scale FPGA-based convolutional networks. In: Bekkerman,
R., Bilenko, M., Langford, J. (eds.) Scaling up Machine Learning: Parallel and
Distributed Approaches. Cambridge University Press, Cambridge (2011)

9. Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., LeCun, Y.: Neu-
flow: a runtime-reconfigurable dataflow processor for vision. In: Proceedings of
Embedded Computer Vision Workshop (ECVW 2011) (2011, invited paper)

10. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s mobile
coprocessor for deep neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 696–701, June 2014

11. Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang,
Y., Yang, H., Dally, W.J.: ESE: efficient speech recognition engine with compressed
LSTM on FPGA. CoRR abs/1612.00694 (2016)

12. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.:
EIE: efficient inference engine on compressed deep neural network. CoRR
abs/1602.01528 (2016)

13. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and Huffman coding. CoRR abs/1510.00149
(2015)

14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
ArXiv e-prints, March 2015

15. Koch, D., Hannig, F., Ziener, D. (eds.): FPGAs for Software Programmers.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26408-0

16. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database (2014).
http://yann.lecun.com/exdb/mnist/

17. LeCun, Y., Denker, J.S., Solla, S., Howard, R.E., Jackel, L.D.: Optimal Brain Dam-
age. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems
(NIPS 1989), vol. 2. Morgan Kaufman, Denver (1990)

18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-2010), pp. 807–814 (2010)

19. Posewsky, T., Ziener, D.: Efficient deep neural network acceleration through
FPGA-based batch processing. In: Proceedings of the International Conference on
Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, December
2016

20. Sainath, T.N., Kingsbury, B., Ramabhadran, B., Fousek, P., Novak, P., Mohamed,
A.: Making deep belief networks effective for large vocabulary continuous speech
recognition. In: Proceedings of the ASRU (2011)

21. Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR
abs/1404.7828 (2014)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

23. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P.H.W., Jahre,
M., Vissers, K.A.: FINN: a framework for fast, scalable binarized neural network
inference. CoRR abs/1612.07119 (2016)

https://doi.org/10.1007/978-3-319-26408-0
http://yann.lecun.com/exdb/mnist/

A Flexible FPGA-Based Inference Architecture for Pruned DNNs 323

24. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. Ph.D. the-
sis, University of California, Berkeley (2003)

25. Xianyi, Z., et al.: OpenBLAS, March 2011. http://www.openblas.net. Accessed 02
Mar 2016

26. Xilinx Inc.: Designing Protocol Processing Systems with Vivado High-Level Syn-
thesis, v1.0.1 edn, August 2014

27. Xilinx Inc.: Zynq-7000 All Programmable SoC Overview, v1.9 edn, January 2016

http://www.openblas.net

Author Index

Abera, Solomon 225
Al-Ars, Zaid 255
Albers, Mark 283
Amslinger, Rico 155
Ando, Hideki 211
Attwood, Andrew 99

Balakrishnan, M. 225
Bromberger, Michael 297
Bruguier, Florent 168

Chidai, Yasumasa 211
Concatto, Caroline 99

Dörflinger, Alexander 283
Doshi, Kshitij A. 181

Effler, T. Chad 181
Eitschberger, Patrick 3

Fey, Dietmar 85
Fiethe, Björn 283
France-Pillois, Maxime 57
Freitag, Johannes 45
Frieb, Martin 112

Gamatié, Abdoulaye 168
Goodacre, John 99
Goshima, Masahiro 211
Grigore, Nicolae Bogdan 269

Haas, Florian 155
Hamann, Heiko 31
Herglotz, Christian 85
Herkersdorf, Andreas 139
Hoffmann, Markus 297
Holmbacka, Simon 3
Hoozemans, Joost 255
Howard, Adam P. 181

Izuoka, Kojiro 211

Jantz, Michael R. 181

Kaup, André 85
Keller, Jörg 3
Koch, Dirk 269
Kritikakis, Charalampos 269
Kulkarni, Prasad A. 181
Kumar, Anshul 225

Lant, Joshua 99
Lösch, Achim 73
Lujan, Mikel 99

Martin, Jérôme 57
Massari, Giuseppe 239
Michalik, Harald 283
Mische, Jörg 112

Navaridas, Javier 99
Novo, David 168

Pascual, Jose A. 99
Péneau, Pierre-Yves 168
Perner, Cora 127
Piatka, Christian 155
Platzner, Marco 73
Posewsky, Thorbjörn 311

Rachuj, Sebastian 85
Rehrmann, Robin 297
Reichenbach, Marc 85
Rheindt, Sven 139
Rousseau, Frédéric 57

Sassatelli, Gilles 168
Schenk, Andreas 139
Schneider, K. 195
Schoeberl, Martin 18

Senftleben, M. 195
Shioya, Ryota 211
Srivatsa, Akshay 139
Stegmeier, Alexander 112

Terraneo, Federico 239
Torres, Lionel 168

Uhrig, Sascha 45
Ungerer, Theo 112, 155

van Straten, Jeroen 255

Weis, Sebastian 155
Wiens, Alex 73
Wild, Thomas 139
Wong, Stephan 255

Zanella, Michele 239
Zhou, Tong 181
Ziener, Daniel 311
Zoni, Davide 239

326 Author Index

	Preface
	Organization
	Biologically-Inspired Massively-Parallel Computation (Keynote Talk)
	Contents
	Embedded Systems
	Trade-Off Between Performance, Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph Scheduling
	1 Introduction
	2 The Trade-Off Problem
	3 Fault Tolerant and Energy Efficient Scheduling
	3.1 Previous Approach
	3.2 Extensions

	4 Runtime System
	4.1 System Check Tool
	4.2 Scheduler and User Preferences
	4.3 Runtime System

	5 Power Model
	5.1 Model Validation
	5.2 Real-World Evaluation

	6 Experimental Results
	7 Conclusions
	References

	Lipsi: Probably the Smallest Processor in the World
	1 Introduction
	2 Related Work
	3 The Lipsi Design
	3.1 The Datapath
	3.2 The Instruction Set
	3.3 Implementation and Assembly in Hardware
	3.4 Simulation and Testing
	3.5 Developing a Processor

	4 Evaluation and Discussion
	4.1 Resource Consumption
	4.2 The Smallest Processor?
	4.3 A Lipsi Manycore Processor
	4.4 Lipsi in Teaching
	4.5 Source Access

	5 Conclusion
	References

	Superlinear Scalability in Parallel Computing and Multi-robot Systems: Shared Resources, Collaboration, and Network Topology
	1 Introduction
	1.1 Superlinear Performance in Multi-robot Systems
	1.2 Universal Scalability Law

	2 Unified Interpretation Across Fields of Research
	3 Results
	3.1 Stick Pulling: Shared Resources and Collaboration
	3.2 Parallel Optimization: Network Topologies and Information Flow

	4 Discussion and Conclusion
	References

	Multicore Systems
	Closed Loop Controller for Multicore Real-Time Systems
	1 Introduction
	2 Related Work
	3 Closed Performance Control Loop
	3.1 Basic Fingerprinting
	3.2 Pulse Width Modulated Interferences
	3.3 Closed Loop Controller

	4 Evaluation
	4.1 PWM Effectiveness
	4.2 Closed Loop Controller

	5 Conclusion
	References

	Optimization of the GNU OpenMP Synchronization Barrier in MPSoC
	1 Introduction
	2 Related Work
	3 The GNU OpenMP Synchronization Barrier Mechanism
	3.1 Code Parallelization and Synchronization
	3.2 Active Wait and GNU OpenMP Policy

	4 Experimentation Environment
	4.1 TSAR Manycore Architecture
	4.2 Evaluation Platform
	4.3 A Non Intrusive Measurement Tool Chain

	5 Active Wait Optimization for GNU OpenMP Synchronization Barrier
	5.1 Barrier Mechanism Measurements and Study
	5.2 Optimization Proposal
	5.3 Micro-benchmark Results
	5.4 Performances Evaluation on the NAS Benchmark IS Application

	6 Conclusion
	References

	Analysis and Optimization
	Ampehre: An Open Source Measurement Framework for Heterogeneous Compute Nodes
	1 Introduction
	2 Architecture and Components of Ampehre
	2.1 Extended PAPI Library
	2.2 Ampehre Library API
	2.3 Ampehre Tools

	3 Example: Measuring Energy on CPU and GPU
	4 Balancing Accuracy and Overhead
	5 Availability and Extensibility of Ampehre
	6 Conclusion
	References

	A Hybrid Approach for Runtime Analysis Using a Cycle and Instruction Accurate Model
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Analyzing the Program
	3.2 Running the Simulation

	4 Evaluation
	4.1 Metric
	4.2 Results

	5 Conclusion
	References

	On-chip and Off-chip Networks
	A CAM-Free Exascalable HPC Router for Low-Energy Communications
	1 Introduction
	2 Related Work
	3 ExaNeSt System Architecture
	3.1 Router Architecture
	3.2 Routing Algorithms

	4 Evaluation
	4.1 Experimental Setup
	4.2 Area
	4.3 Power Consumption
	4.4 Performance

	5 Conclusions and Future Work
	References

	Lightweight Hardware Synchronization for Avoiding Buffer Overflows in Network-on-Chips
	1 Introduction
	2 Related Work and Background
	3 Synchronization Concept
	4 Hardware Supported ready Synchronization
	4.1 Hardware Implementation
	4.2 New Instructions
	4.3 Impact of Ready Synchronization on Hardware Size

	5 Evaluation
	5.1 Comparison of Ready Synchronization in Software and Hardware
	5.2 Execution Times
	5.3 Impact on Hardware Costs

	6 Conclusion
	References

	-1Network Optimization for Safety-Critical Systems Using Software-Defined Networks
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Experimental Setup
	4.1 Assumptions
	4.2 Baseline

	5 Numerical Results and Discussion
	5.1 Standard Networks
	5.2 Critical Networks

	6 Conclusion and Future Work
	References

	CaCAO: Complex and Compositional Atomic Operations for NoC-Based Manycore Platforms
	1 Introduction
	2 Related Work
	3 Complex and Compositional Atomic Operations
	3.1 Comparison of the Synchronization Primitives () and ()
	3.2 CaCAO Approach ()

	4 Implementation Aspects
	5 Experimental Setup and Results
	6 Conclusion and Future Work
	References

	Memory Models and Systems
	Redundant Execution on Heterogeneous Multi-cores Utilizing Transactional Memory
	1 Introduction
	2 Related Work
	3 Transaction-Based Redundant Execution Model
	3.1 Loosely-Coupled Redundancy with Checkpoints
	3.2 Extension of HTM to Support Fault Tolerance
	3.3 Heterogeneous Redundant Systems

	4 Evaluation
	5 Conclusion
	References

	Improving the Performance of STT-MRAM LLC Through Enhanced Cache Replacement Policy
	1 Introduction
	2 Related Work
	3 Motivation and Approach
	3.1 Motivational Example
	3.2 Writes Operations at Last-Level Cache
	3.3 Cache Replacement Policy

	4 Experimental Results
	4.1 Environment Setup
	4.2 Results

	5 Conclusion and Perspectives
	References

	On Automated Feedback-Driven Data Placement in Multi-tiered Memory
	1 Introduction
	2 Related Work
	3 Feedback-Driven Data Placement for Hybrid Memories
	3.1 Allocation Site Partitioning
	3.2 Profile-Guided Management

	4 Implementation Details
	4.1 Associating Memory Usage Profiles with Program Allocation Sites
	4.2 Hybrid Memory Management

	5 Experimental Framework
	5.1 Simulation Platform
	5.2 Benchmarks Description

	6 Evaluation
	6.1 Baseline Configurations
	6.2 Static Application Guidance
	6.3 Adaptive Application Guidance
	6.4 Comparison with OS/Architectural Reactive Profiling
	6.5 Performance Summary

	7 Conclusions and Future Work
	References

	Operational Characterization of Weak Memory Consistency Models
	1 Introduction
	2 Related Work
	3 View-Based Definitions of Memory Consistency Models
	3.1 Local Consistency
	3.2 Cache Consistency (CC)
	3.3 Pipelined-RAM (PRAM) Consistency
	3.4 Sequential Consistency (SC)

	4 Operational Definitions of Memory Consistency Models
	4.1 Basic Components
	4.2 Reference Machine for Local Consistency
	4.3 Reference Machine for Cache Consistency
	4.4 Reference Machine for PRAM Consistency
	4.5 Reference Machine for Sequential Consistency
	4.6 Implementation of Reference Machines

	5 Conclusions and Future Work
	References

	Energy Efficient Systems
	A Tightly Coupled Heterogeneous Core with Highly Efficient Low-Power Mode
	1 Introduction
	2 Existing TCHC Architecture
	2.1 Composite Core
	2.2 Front-End Execution Architecture

	3 Dual-Mode Front-End Execution Architecture
	3.1 Implementation of LP Mode
	3.2 Switching from HP to LP Mode
	3.3 Switching from LP to HP Mode
	3.4 Execution Correctness
	3.5 LP Mode Utilization
	3.6 Hardware Cost

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References

	Performance-Energy Trade-off in CMPs with Per-Core DVFS
	1 Introduction
	2 Related Work
	3 Model Construction Methodology
	3.1 Contention Metrics
	3.2 Data Collection
	3.3 Building the Model
	3.4 Application of the Model

	4 Comparison of Machine Learning Algorithms
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Analysis of the Results

	6 Conclusion
	References

	Towards Fine-Grained DVFS in Embedded Multi-core CPUs
	1 Introduction
	2 Related Works
	3 Fine-Grained DVFS
	3.1 DVFS Points Extension
	3.2 Overhead Characterization

	4 Experimental Results
	4.1 DVFS Points Extension
	4.2 Overhead Characterization

	5 Conclusions
	References

	Partial Reconfiguration
	Evaluating Auto-adaptation Methods for Fine-Grained Adaptable Processors
	1 Introduction
	2 Approach
	2.1 Target Processor
	2.2 Proposed Auto-adapting Method

	3 Implementation
	3.1 Common
	3.2 Window-Based Monitoring
	3.3 BTCB
	3.4 Phase Change Annotations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	HLS Enabled Partially Reconfigurable Module Implementation
	1 Introduction
	2 Related Work
	3 Model
	4 Bounding Box Generation
	4.1 Overview
	4.2 Generation

	5 Case Study
	5.1 Maxeler System and Dataflow
	5.2 Static System
	5.3 Implemented Modules
	5.4 Mitigation Strategies

	6 Conclusion
	References

	Hardware Acceleration in Genode OS Using Dynamic Partial Reconfiguration
	1 Introduction
	2 Genode OS
	2.1 Microkernel Based System Policy
	2.2 Component Communication

	3 Related Work
	4 Reconfigurable Hardware
	5 Reconfiguration Software
	5.1 Loading Partial Bitstreams
	5.2 Accessing the Configuration Port
	5.3 Hardware Scheduler
	5.4 Hardware Acceleration

	6 Exemplary Use Case and Evaluation
	7 Conclusion
	References

	Large Scale Computing
	Do Iterative Solvers Benefit from Approximate Computing? An Evaluation Study Considering Orthogonal Approximation Methods
	1 Introduction
	1.1 Current Status
	1.2 Methodology of the Evaluation
	1.3 Main Findings

	2 Mathematical Background and Data Generation
	3 Approximation Computing Methods
	3.1 Relaxed Synchronization
	3.2 Sampling
	3.3 On the Data Type Level
	3.4 Input Data Approximation

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Influence of Approximate Computing on the Data Type Level
	4.3 Analysis of Approximate Computing Loop Strategies
	4.4 Accuracy Degradation Caused by Relaxed Synchronization
	4.5 Input Approximation
	4.6 Putting Everything Together
	4.7 Discussion

	5 Conclusion and Future Directions
	References

	A Flexible FPGA-Based Inference Architecture for Pruned Deep Neural Networks
	1 Introduction and Motivation
	2 Related Work
	3 Concept
	4 Architecture
	5 Experimental Results
	6 Conclusions
	References

	Author Index

