
Chapter 8

GRADIENT-ONLY
SOLUTION STRATEGIES

8.1 Introduction

As outlined in Section 1.1, mathematical optimization is the systematic
process of finding a best solution, generally subject to some constraints,
to a problem based on a mathematical model. Here the model is con-
structed in such a way that the solution we seek often corresponds to a
quantity that minimizes some multi-dimensional scalar function which
is the outcome of the model. Specifically in this chapter we restrict
ourselves to unconstrained optimization problems. Thus formally the
process now becomes (i) the formulation of the model f(x) and (ii) the
minimization of f(x):

minimize
x

f(x), x = [x1, x2, . . . , xn]T ∈ R
n,

where f(x) is a scalar function of the real column vector x. Care is
usually taken during the mathematical modelling and numerical com-
putation of the scalar function f(x) to ensure that it is smooth and twice
continuously differentiable. As highlighted in Section 6.5, the presence
of numerical noise in the objective function is sometimes an unintended
consequence of the complicated numerical nature frequently associated
with the computation of the output function of a multi-disciplinary
design optimization model. Numerical noise can also be the conse-

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 8

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77586-9_8&domain=pdf
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_6

274 CHAPTER 8

quence of a deliberate computational savings strategy employed by a
design engineer.

To elaborate, consider for example the computational cost associated
with integrating a system of partial differential equations that is required
to construct the objective function for some design optimization prob-
lem. For each chosen design vector x, the numerical integration may
require the solution of a finite element model. The associated compu-
tational cost to solve the finite element model is directly related to the
number of elements used to discretize the spatial domain over which the
integration needs to be performed. Not unexpectedly, more elements
places higher demands on computing resources at the added benefit of
reducing the discretization error which results in more accurate solu-
tions. This clear trade-off between time to solution and solution accu-
racy may be exploited with care in the design optimization process. A
concrete demonstration of this is given by the adaptive remeshing strat-
egy proposed by Wilke et al. (2013a). In this strategy the accuracy of
each analysis is increased as the optimizer converges towards an opti-
mum when conducting structural shape optimization. A complication
of this strategy is however that because of the initial rough meshing the
computed piece-wise smooth objective function is discontinuous. This
complication requires a significant adaptation in both (i) the formula-
tion and (ii) the solution strategy to solve the successive approximate
discontinuous mathematical optimization problem to the real continuous
underlying problem.

This chapter is dedicated to explore alternative formulations and solu-
tion strategies when specifically dealing with piece-wise smooth discon-
tinuous objective functions (Wilke et al. (2013b)). In essence, this chap-
ter elaborates and formalizes the concepts and ideas introduced and
hinted to in Section 6.5, that includes the handling of noisy objective
functions and the use of gradient-only optimization strategies.

http://dx.doi.org/10.1007/978-3-319-77586-9_6

GRADIENT-ONLY OPTIMIZATION PROBLEM 275

8.2 Piece-wise smooth step discontinuous func-
tions

Nowadays, the computation of the objective function routinely requires
the integration of a system of differential or partial differential equations.
The inherent numerical nature of modern mathematical optimization
often allows for the same mathematical model to be solved using different
numerical methods (Strang (2007)). Applying care usually renders the
same optimum when optimizing the computed objective function with
different numerical methods. This observation is valid when the resulting
discretization error (Strang (2007)) of the various numerical methods
are (i) comparable, (ii) small, and (iii) varies smoothly and continuously
between designs.

Failure to meet the first two criteria may still result in numerically com-
puted continuous and smooth objective functions but may render inac-
curate approximations of the optimum of the mathematical optimization
problem. Consequently, the computed optima for the different methods
may differ significantly as a direct result of large or non-comparable
discretization errors for the various numerical methods used in com-
puting the objective functions. Lastly, failing to conform to the third
criterion results in piece-wise smooth discontinuous objective functions,
where the size of the discontinuity decreases as the discretization error
reduces. Hence, by ensuring that the discretization error is negligible
both (i) smoothness of the objective function and (ii) accuracy in the
determination of the optimum to the underlying mathematical model is
ensured. This may however place an unattainable computational burden
on available computing resources.

To illustrate these concepts consider the Lotka-Volterra system of first
order, non-linear, differential equations:

dz(t)
dt

= (1 − λ)z(t) − βz(t)y(t) (8.1)

dy(t)
dt

= δz(t)y(t) − γy(t), (8.2)

which was first proposed to model auto-catalytic chemical reactions
(Yorke and W.N. Anderson (1973)). Two initial conditions z(0) = z0

and y(0) = y0 completes the formulation. Given that β = 0.3, δ = γ = 1

276 CHAPTER 8

and z0 = y0 = 0.9, the entire response of the system depends solely on
λ. In addition, given that at t = 8 the actual values of the two functions
z(8) = z̃ and y(8) = ỹ are known, we can construct an inverse problem
in which we aim to find λ such that z(8) ≈ z̃ and y(8) ≈ ỹ. The sum of
the errors squared w.r.t. λ (Strang (2007)) is a convenient unconstrained
optimization problem that defines this inverse problem, with the sum of
the errors squared objective function given by

E(λ) = (z(t = 8, λ) − z̃)2 + (y(t = 8, λ) − ỹ)2. (8.3)

In particular, accept the accurate global optimum to be λ∗ = 0.5 com-
puted using a forward Euler integration scheme (Strang (2007)) for
50 000 equal time steps between 0 and 8 seconds to define z̃ and ỹ.
Computing the objective function and respective derivative using now
only 10 000 equal time steps, values are obtained as depicted in Fig-
ures 8.1 (a)–(b) for λ between 0 and 1. Clearly the figures indicate
that the accurate optimum λ∗ and computed global optimum λo in the
figures closely coincide with λo ≈ λ∗ = 0.5. There is no apparent differ-
ence since the discretization error is negligible whether computing the
objective function using 50 000 or 10 000 equally spaced time steps.
However when computing the objective function using only 30 equally
spaced time steps gives an apparent global optimum λo ≈ 0.56 that is
significantly different from the accepted global optimum λ∗ = 0.5. This
is clear from Figures 8.2 (a)–(b) for which the objective function and its
derivative plotted for λ ranging between 0.4 to 0.8. Also of interest is
that the computed objective function and its derivative still appears to
be continuous and smooth.

Instead of considering only fixed time steps, an integration scheme where
the number of time steps varies for different values of λ could be con-
sidered. This is reminiscent of adaptive time stepping strategies often
employed to solve systems of differential equations (Strang (2007)). As
illustration, consider a time stepping strategy that selects a random
number of time steps for each λ from a defined distribution around
a mean number of time steps, μ. In particular, for μ = 30 consider
the number of time steps varying between 27 and 33 with an equal
probability. When computing the objective function using between 27
and 33 randomly varying time steps gives an apparent global optimum
λo ≈ 0.56 that is significantly different from the accepted global opti-
mum λ∗ = 0.5. In addition, the inherent step discontinuous nature of

GRADIENT-ONLY OPTIMIZATION PROBLEM 277

(a) (b)

Figure 8.1: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0 to 1. In the
numerical integration done in computing the function values for each
plotted value of λ, 10 000 equally spaced time steps, over the time inter-
val 0 to 8 seconds, were used. The figures show that the apparent global
optimum λo ≈ 0.5 closely coincides with the accepted accurate global
optimum λ∗ = 0.5

(a) (b)

Figure 8.2: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0.4 to 0.8. In
the numerical integration done in computing the function values for
each plotted value of λ, only 30 equally spaced time steps, over the time
interval 0 to 8 seconds, were used. The figures show that the apparent
global optimum λo ≈ 0.56 significantly differs from the accepted accurate
global optimum λ∗ = 0.5

278 CHAPTER 8

both the objective function and respective derivative function is evident
from Figures 8.3 (a) and (b). The additional complications that the step
discontinuities introduce to the minimization of E(λ), is at first glance
disconcerting.

The usual approach to address numerical step discontinuities is to
increase the computational cost associated with each analysis with the
aim of reducing the magnitudes of the step discontinuities. This is illus-
trated in Figures 8.4 (a)–(d), in which (a) and (b) indicate the resulting
computed objective function and corresponding derivative function when
the number of time steps are randomly selected with an equal proba-
bility between 54 and 66 for the computation for each λ, while (c) and
(d) depicts the same but with the number of time steps now randomly
selected with equal probability between 108 and 132. Clearly the mag-
nitudes of these numerical step discontinuities decrease as the number
of randomly selected time steps increases. Thus in practice the number
of time steps may be increased until the step discontinuity magnitudes
are small enough so as to not cause complications when minimization
strategies are applied. In addition, the progression of the apparent global
optimum λo to the accepted global optimum λ∗ is also evident as the
number of random selected time steps, for the computation of the objec-
tive function for each λ, is increased.

Another source of discontinuities in design optimization problems are
discontinuities which are as a result of a sudden change in the physical
response of a model as the design vector changes, hereafter referred to
as physical discontinuities. Examples of physical discontinuities include
the onset or breakdown of shock waves between designs in fluid dynamic
applications (Homescu and Navon (2003)), or the inherent chaotic nature
of dynamic strain ageing during plastic deformation (Sarkar et al. (2007))
that may abruptly change as the design vectors vary. Physical discon-
tinuities are distinct from the numerically induced step discontinuities
discussed above. Numerically induced step discontinuities are due to
abrupt changes in the discretization error between design vectors. It is
important to distinguish between physical and numerical step disconti-
nuities as the complications that arise from their presence may need to
be addressed differently.

Physical discontinuities are consequences of the underlying physics being
modelled and need to be considered as they relate to actual information

GRADIENT-ONLY OPTIMIZATION PROBLEM 279

(a) (b)

Figure 8.3: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0 to 1. In the
numerical integration over the time interval 0 to 8 seconds done for
each plotted λ, the number of equally spaced time steps were randomly
selected between 27 and 33. were used. The figures again show that
the apparent global optimum λo ≈ 0.56 differs significantly from the
accepted accurate global optimum λ∗ = 0.5. The piece-wise smooth
step discontinuous nature of both the objective and derivative functions
is evident

about the nature of the problem under consideration. Hence, physical
discontinuities need to be resolved and, indeed, a significant effort has
been made to explore their presence and impact in terms of a design
optimization problem (Smith and Gilbert (2007)). On the other hand,
as demonstrated for the example error function problem, numerical
step discontinuities are a consequence of the numerical solution strategy
employed to solve an underlying mathematical model, and if significantly
present in the computed objective function they may hide the underly-
ing physical nature of the problem under consideration. Thus, ideally
we would wish for sufficient computational accuracy so that numeri-
cal step discontinuities are effectively eliminated and may be ignored,
allowing for the underlying physical trends present in the problem to
drive an optimizer towards the solution of an optimization problem.
The remainder of this chapter is dedicated to addressing the compli-
cations arising from numerical step discontinuities in such a way that
piece-wise smooth discontinuous objective functions can still be opti-
mized, efficiently and robustly. The main emphasis will therefore be

280 CHAPTER 8

(a) (b)

(c) (d)

Figure 8.4: (a),(c) Error function E(λ) and (b),(d) corresponding deriva-
tive function dE(λ)

dλ plotted against values of λ ranging from 0 to 1 for
respectively 54–66 and 108–132 randomly selected time steps computed
for each λ. The numerical integration is conducted over the time inter-
val 0 to 8 seconds. The figures show that the magnitude of the step
discontinuities decreases as the number of randomly selected time steps
increases. In addition, the apparent global optimum λo draws closer
to the accepted accurate global optimum λ∗ = 0.5 as the number of
randomly selected time steps for each λ increases

on computational minimization procedures and strategies that allow for
overcoming the presence of step discontinuities in piece-wise smooth step
discontinuous objective functions. In addition, a gradient-only problem
formulation is included that defines the underlying problem that is con-
sistent with what the optimization procedures and strategies considered
in this chapter actually solves.

GRADIENT-ONLY OPTIMIZATION PROBLEM 281

8.3 Computational minimization procedures

Consideration is now given to different formulations and approaches to
compute the unconstrained minimum of the model function f(x), which
represents the first step in the overall mathematical optimization pro-
cess. Although the minimization is generally viewed as the systematic
searching of the design space to find at least a local minimum, alter-
native approaches and solution strategies are at our disposal that may
simplify the complexities arising from the presence of numerical step
discontinuities in f(x).

To aid the discussion consider Figures 8.5 (a)–(d) that depict the error
function E(λ) and corresponding derivative function dE(λ)

dλ plotted
against values of λ ranging from 0.5 to 0.6. The error function and
corresponding derivative function in Figures 8.5 (a) and (b) respectively
are computed using a fixed number of time steps, while they are com-
puted using a randomly selected number of time steps in Figures 8.5 (c)
and (d). In particular the numerical integration done, over the time
interval 0 to 8 seconds, for each plotted value of λ uses either 30 equally
spaced time steps or a randomly selected number of time steps between
27 and 33. Instead of now focusing on the difference between the appar-
ent global minimum λo ≈ 0.56 and accepted global minimum λ∗ = 0.5,
attention is specifically given to determine the apparent global minimum.

Consider Figure 8.5 (a) that depicts a smooth objective function. Con-
ventional zero- or first order gradient based search minimization meth-
ods covered in the previous chapters can be used to accurately solve this
optimization problem. An alternative second order approach may be to
apply the so-called optimality criteria, i.e. the necessary and sufficient
conditions to find all points with zero first derivative and corresponding
positive second derivative to determine candidate points for the global
minimum. The indicated horizontal line, in Figure 8.5 (b), determines
the level-set of a derivative of magnitude zero. As the gradient is increas-
ing with an increase in λ the second derivative is positive. It is clear
that in this case (a) the minimization formulation and application of the
optimality criteria would recover the same apparent minimum over the
indicated λ domain.

282 CHAPTER 8

(a) (b)

(c) (d)

Figure 8.5: (a),(c) Error function E(λ) and (b),(d) corresponding deriva-
tive function dE(λ)

dλ plotted against values of λ ranging from 0.5 to 0.6
using respectively a fixed time step (a)–(b) and randomly selected time
step (c)–(d) strategy. In particular the numerical integration done for
each plotted value of λ uses respectively either 30 equally spaced time
steps or 27–33 randomly selected time steps, over the time interval 0 to
8 seconds

The difference between the two approaches is more evident when multi-
ple local minima occur. In this case the application of a zero to first order
minimization approach will clearly terminate at a local minimum (not
necessary the global minimum), whereas the application of optimality
criteria may reveal all local minima including the global minimum, irre-
spective of their associated function values, as candidate solutions to the
problem. Thus the implication for the two solution approaches changes
significantly when applied to the piece-wise smooth step discontinuous
function and related derivative function, depicted in Figures 8.5 (c) and

GRADIENT-ONLY OPTIMIZATION PROBLEM 283

(d). It is evident that the application of either minimization strategy
now poses additional challenges. The economically computed objec-
tive function, as result of the introduction of step discontinuities, has
become highly multi-modal with the presence of numerous local min-
ima. In the real world the difficulties in the application of the above
two conventional approaches to step discontinuous functions become so
daunting that it often leads to the justification and employment of com-
putationally demanding evolutionary approaches (Arnold (2002)), over
more efficient gradient based strategies. By inspection of Figure 8.5 (d)
it is clear that the second order optimality criteria approach would not
suffice as there is no λ for which the derivative is close to 0. It is caution-
ary noted that the two points with the smallest derivative magnitude is
around λ ≈ 0.56 and λ ≈ 0.58, while the apparent global minimum is
around λo ≈ 0.57. This may have significant implications for solution
strategies that aim to find points where the derivative is close to zero.

A third approach is now proposed that consistently interprets the
derivative information presented in Figures 8.5 (b) and (d). This third
approach, that may be called gradient-only minimization, follows from
defining descent for a function along a search direction by directional
derivatives that are negative, while ascent is associated with directional
derivatives that are positive, with the directional derivative computed as
the projection of the gradient vector onto the search direction. Instead
of associating a candidate local minimum along a search direction as
a point at which the directional derivative is zero, we associate a local
minimum with a point where the directional derivative changes in sign
from negative to positive. It is important to note that this defines a local
minimum and not merely a candidate local minimum, since the second
order information is incorporated by requiring the directional derivative
to change from negative to positive. By inspection of Figure 8.5 (d) it is
clear that by interpreting descent of the function indirectly by requiring
the directional derivative to be negative and the minimum by a sign
change in the directional derivative, from negative to positive, results in
a robust minimization strategy for step discontinuous functions.

284 CHAPTER 8

8.4 Overview of discontinuities

Before we proceed with an in depth investigation into gradient-only
minimization strategies for piece-wise smooth step discontinuous func-
tions (also known as semi-continuous functions), some background on
discontinuities in general is required. To assist the discussion consider
Figure 8.6 (a)–(d) that depicts four types of discontinuities for univariate
functions f(x) at x = s. They are respectively an infinite (or asymp-
totic) discontinuity, a removable discontinuity, an endpoint discontinuity
and lastly a step (or jump) discontinuity.

(a) (b)

(c) (d)

Figure 8.6: Four discontinuity types namely, (a) an infinite (or asymp-
totic) discontinuity, (b) a removable discontinuity, (c) an endpoint dis-
continuity and (d) a step (or jump) discontinuity

Figure 8.6 (a) indicates that an infinite discontinuity, at s, is usu-
ally the result of vertical asymptotes present at s, with the function

GRADIENT-ONLY OPTIMIZATION PROBLEM 285

unbounded as x approaches s. Therefore, both the left-hand limit,
limx→s− f(x) = +∞, and right-hand limit, limx→s+ f(x) = +∞, indi-
cate an unbounded response of the function. This type of discontinu-
ity is usually the result of the behaviour of an underlying mathemati-
cal model and therefore inherent to the characteristics of a problem to
be solved i.e. they can be seen as physical discontinuities. Examples
include the Stokes phenomenon present in the solution of differential
equations (Meyer (1989)) and the asymptotic Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between magnetic impurities in graphene
(Klier et al. (2014)).

In some instances both one-sided limits exist and are equal, given by
limx→s− f(x) = limx→s+ f(x) = L, but the function at x = s does not
correspond to the value of the limits, that is f(s) = R �= L, as illus-
trated in Figure 8.6 (b). This is referred to as a removable discontinuity,
since the discontinuity can simply be removed by redefining the function
f(s) = limx→s− f(x) = L at x = s.

An end-point discontinuity exists in cases where one of the one-sided
limits does not exist, as depicted in Figure 8.6 (c). In this case only
the right-hand limit exists, that is limx→s+ f(x) = R, while the left-
hand limit is not defined. This type of discontinuity is often associated
with mathematical models that cannot be evaluated over non-physical
domains, e.g. non-positive mass. This type of discontinuity is again
associated with physical discontinuities.

Consider the step or jump discontinuity, at x = s, in Figure 8.6 (d).
Here, both one-sided limits exist and are finite. However, the one-
sided limits, at x = s, have different values as the left-hand limit,
limx→s− f(x) = L, differs from the right-hand limit, limx→s+ f(x) =
R �= L. As demonstrated in previous sections, numerical inconsistencies
as design vectors vary are a significant source of this type of discon-
tinuity. However, not all step discontinuities are necessarily problem-
atic using classical minimization strategies. We distinguish between two
types of step discontinuities. Namely those that are consistent with the
function trend, and those that are inconsistent with the function trend,
as shown respectively in Figures 8.7 (a) and (b).

Consistent discontinuities do not hamper descent while inconsistent dis-
continuities result in a local minimum. However, the related derivative

286 CHAPTER 8

function in both cases indicates only descent as the sign of the derivative
along x remains negative over the depicted domain. This is an impor-
tant distinction as a gradient-only minimization strategy would ignore
a local minimum due to an inconsistent discontinuity, thereby improv-
ing the robustness of a minimization strategy, as opposed to a classical
minimization strategy that may aim to resolve such a local minimum.

Note that other combinations of function trends and step discontinu-
ities result in either local minima or local maxima that are consistently
indicated when considering either only the function or only the corre-
sponding derivative of the function. In addition to the discontinuity
type, the semi-continuity of f is indicated using a double empty/filled
circle convention in Figure 8.7 (a)–(b). First, a filled circle indicates that
f(s) is defined as indicated, while an empty circle indicates no function
value is defined as indicated. Lower semi-continuity is represented by
the filled/empty circle pairs annotated 1, i.e. the filled circle is always
associated with the lower function value, in turn, upper semi-continuity
is represented by the empty/filled circle pairs annotated 2, i.e. the filled
circle is always associated with the higher function value at the discon-
tinuity. This distinction allows for an explicit treatment of the defined
function at a discontinuity, which will become evident as we treat deriva-
tives and gradients associated with semi-continuous functions in more
detail.

8.5 Derivatives and gradients of step discontin-
uous functions

Semi-continuous functions are not everywhere differentiable, as the
derivative at step discontinuities is not defined. However, computa-
tionally the derivatives and gradients are everywhere computable since
the analysis is per se restricted to the part of the objective function to
the left, or right of a step discontinuity along a search direction. Refer-
ence to the derivative of a semi-continuous function therefore requires a
rigorous treatment of limits and derivatives to allow for a new definition
of what is implied with a derivative at a step discontinuity.

GRADIENT-ONLY OPTIMIZATION PROBLEM 287

(a) (b)

Figure 8.7: Lower and upper semi-continuous univariate functions for (a)
a consistent step discontinuity, and (b) an inconsistent step discontinuity,
where the semi-continuity is indicated using a double empty/filled circle
convention. The empty/filled circle pairs annotated, 1, are lower semi-
continuous, whereas, empty/filled circle pairs annotated, 2, are upper
semi-continuous function representations

For a univariate function f(x), the limit at x = a exists if (i) both the
left-hand limit, limx→a− f(x) = L, and right-hand limit, limx→a+ f(x) =
limx→s+ f(x) = R, exist, and (ii) the left-hand and right-hand limits are
equal, that is L = R. It follows from the limit definition of the derivative

f ′(x) =
df(x)
dx

= lim
Δx→0

f(x + Δx) − f(x)
Δx

, (8.4)

that the derivative at x = a is only defined if the limit at x = a is defined.
However, as treated in Section 8.4, both the left-hand and right-hand
limits exist at a step discontinuity but the limits are not equal, implying
that the derivative function is not everywhere defined.

We therefore supplement the definition of a derivative to define the
associated derivative, f ′A(x), that is given by either the left deriva-
tive or right derivative whenever the limit and therefore derivative does
not exist, otherwise it is defined by the derivative when the limit does
exist. Let f : X ⊂ R → R be a piece-wise smooth real univariate
step-discontinuous function that is everywhere defined. The associated
derivative f ′A(x) for f(x) at a point x is given by the derivative of f(x)
at x when f(x) is differentiable at x. The associated derivative, f ′A , for

288 CHAPTER 8

f(x) non-differentiable at x, is given by the left derivative of f(x):

f ′−(x) =
df−(x)

dx
= lim

Δx−→0

f(x + Δx) − f(x)
Δx

, (8.5)

when x is associated with the piece-wise continuous section of the func-
tion to the left of the discontinuity, otherwise it is given by the right
derivative of f(x):

f ′+(x) =
df+(x)

dx
= lim

Δx+→0

f(x + Δx) − f(x)
Δx

. (8.6)

The associated derivative is therefore everywhere defined when piece-
wise smooth step discontinuous functions are considered. This implies
that f : (a, b) ⊂ R → R for which f(x) and f ′A(x) are uniquely defined
for every x ∈ (a, b) is said to have a strictly negative associated derivative
on (a, b) if f ′A(x) < 0, ∀ x ∈ (a, b), e.g. see Figure 8.7 (a) and (b).
Conversely, f(x) is said to have a strictly positive associated derivative
on (a, b) if f ′A(x) > 0, ∀ x ∈ (a, b).

Similarly for multi-variate functions we define the associated gradient
∇Af(x), by letting f : X ⊂ R

n → R be a piece-wise continuous function
that is everywhere defined. The associated gradient ∇Af(x) for f(x) at
a point x is given by the gradient of f(x) at x when f(x) is differentiable
at x. The associated gradient ∇Af(x) for f(x) non-differentiable at x
is defined as the vector of partial derivatives with each partial deriva-
tive defined by its corresponding associated derivative. It follows that
the associated gradient reduces to the gradient of a function when it is
everywhere differentiable.

Similarly, to recognizing the lower and upper semi-continuity of a uni-
variate function as highlighted in Figures 8.7 (a) and (b), we now con-
sider the semi-continuous nature of the associated derivative for such
functions. The associated derivative can be related to a univariate func-
tion or the directional derivative of a multivariate function. For example
the associated directional derivative along a normalized direction u ∈ R

n

is lower semi-continuous at x ∈ X, if

F ′A(λ) = ∇A
Tf(x)u ≤ lim inf

λ→0±
∇A

Tf(x + λu)u, λ ∈ R, (8.7)

as depicted in Figure 8.8 (b), with the related function, depicted in
Figure 8.8 (a), which is also lower semi-continuous. An upper semi-
continuous associated directional derivative at x ∈ X along a normalized

GRADIENT-ONLY OPTIMIZATION PROBLEM 289

(a) (b)

(c) (d)

(e) (f)

Figure 8.8: (a) Lower semi-continuous function and (b) associated
derivative, (c) upper semi-continuous function and (d) associated deriva-
tive, and (e) upper semi-continuous function with (f) pseudo-continuous
associated derivative

290 CHAPTER 8

direction u ∈ R
n is defined by

F ′A(λ) = ∇A
Tf(x)u ≥ lim sup

λ→0±
∇A

Tf(x + λu)u, λ ∈ R, (8.8)

depicted in Figure 8.8 (d) with the related function depicted in Fig-
ure 8.8 (c). Lastly, the associated directional derivative along a nor-
malized direction u ∈ R

n is pseudo-continuous at a step discontinuity,
x ∈ R

n, if it is both upper and lower semi-continuous as demonstrated
in Figures 8.8 (e) and (f).

8.5.1 Associated gradients by finite differences

The associated gradient can be computed analytically by direct differen-
tiation of the equations that numerically evaluate the objective function
(Strang (2007)). Recall that step discontinuities are due to changes in
the discretization of the numerical scheme used to evaluate the objec-
tive function as the design vector changes, while the computed analytical
sensitivity is associated with a given discretization for a specific design.

(a) (b)

Figure 8.9: Finite difference step, δ, over (a) a lower semi-continuous
and (b) an upper semi-continuous function with inconsistent step dis-
continuities

Without loss of generality, we first limit the discussion to a single direc-
tional derivative F ′(λ) as the gradient vector, ∇f(x), is comprised of
directional derivatives aligned with the Cartesian directions. First, con-
sider the finite difference strategies outlined in Section 2.3.1.6, applied

http://dx.doi.org/10.1007/978-3-319-77586-9_2

GRADIENT-ONLY OPTIMIZATION PROBLEM 291

here to an upper or lower step discontinuous function with an inconsis-
tent step discontinuity. For the lower semi-continuous function, F (λ),
depicted in Figure 8.9 (a) we estimate only the sign of the derivative at
λ2 using the forward (FD), backward (BD) and central difference (CD)
schemes, which gives

(
dF (λ2)

dλ

)
FD

≈ F (λ2+δ)−F (λ2)
δ = F3−F2

λ3−λ2
> 0,(

dF (λ2)
dλ

)
BD

≈ f(λ2)−f(λ2−δ)
δ = F2−F1

λ2−λ1
< 0,(

dF (λ2)
dλ

)
CD

≈ F (λ2+δ)−F (λ2−δ)
2δ = F3−F1

λ3−λ1
< 0,

(8.9)

whereas for the upper semi-continuous function in Figure 8.9 (b) the
sign of the derivative at λ2 is estimated as follows:

(
dF (λ2)

dλ

)
FD

≈ F (λ2+δ)−F (λ2)
δ = F3−F2

λ3−λ2
< 0,(

dF (λ2)
dλ

)
BD

≈ F (λ2)−F (λ2−δ)
δ = F2−F1

λ2−λ1
> 0,(

dF (λ2)
dλ

)
CD

≈ F (λ2+δ)−F (λ2−δ)
2δ = F3−F1

λ3−λ1
< 0.

(8.10)

It is evident that finite differences over inconsistent step discontinuities
are problematic resulting in inconsistencies not only in the magnitude of
the derivative but also the signs of the computed derivatives. Here, the
problem is that an actual finite difference step, δ, is taken over the step
discontinuity. This then results in inconsistent estimates of the deriva-
tive. Although not always practical or possible, the step discontinuity
can be removed by forcing the numerical computation scheme to only
have smooth variations in the discretization error whilst computing the
derivatives.

The complex-step method circumvents the above issues related to con-
ventional finite difference strategies by only taking finite difference steps
of δi in the imaginary plane. The implication is that no step over a dis-
continuity is ever taken to compute the derivative even at a discontinuity
(Wilke and Kok (2014)). As discussed in Section 2.3.1.6, the complex-
step method has the additional advantages of allowing for much smaller
finite difference steps to be taken as it is not susceptible to a subtraction
error.

http://dx.doi.org/10.1007/978-3-319-77586-9_2

292 CHAPTER 8

To demonstrate our arguments, consider the following simple piece-wise
linear step discontinuous function:

f(x) =
{

x < 1 : −2x − 0.5
x ≥ 1 : −2x

. (8.11)

with analytical associated derivative of f ′(x) = −2. The choice for
a piece-wise linear function implies the Taylor series approximation is
exact for all schemes. Hence, the truncation error is exactly zero for all
finite difference schemes on each section of the piece-wise linear function.
Any error that varies as a function of the step size is due to the numerical
errors introduced by the subtraction of two numbers or the influence of
the discontinuity errors.

Mathematically, the derivative is not defined at x = 1. However, the
associated derivative of this function is continuous and −2 everywhere,
including at x = 1. Computing the derivative with the complex-step
method yields exactly −2 everywhere, including x = 1, allowing a full
field computation of the derivative of a discontinuous function. The
computed sensitivity difference for the forward difference scheme varies
between ≈ 10−16 and ≈ 100 as the step size is decreased from 100 to
10−20. In turn, the computed sensitivity difference for both the back-
ward and central difference schemes vary between ≈ 10−1 and ≈ 1015 as
the step size is decreased from 100 to 10−20. Hence, the difference in mag-
nitude increases as the step size decreases, in addition to the derivative
having the wrong sign. Therefore extending the numerical computation
of the components of the associated gradient vector ∇Af(x), namely
∂Af(x)
∂Axj

, j = 1, . . . , n, follows by complex-step differences:

∂Af(x)
∂Axj

∼= Im[f(x + iδj)]
δj

, (8.12)

where δj = [0, 0, . . . δj , 0, . . . , 0]T , δj > 0 in the j-th position.

8.6 Gradient-only line search descent methods

Gradient-only line search descent methods closely follow the structure of
line search descent methods treated in Chapter 2. Following the general
six-step structure, outlined in Chapter 2, for line search descent methods,
we outline gradient-only line search descent methods as follows:

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2

GRADIENT-ONLY OPTIMIZATION PROBLEM 293

Algorithm 8.1 Gradient-only line search descent framework.

Initialization: Select tolerance ε1 > 0. Select the maximum number
of iterations imax and perform the following steps:

1. Given x0, set i := 1.

2. Select a descent direction ui (see descent condition (2.1)).

3. Perform a one-dimensional gradient-only line search in direction
ui: i.e. find λi that designates a sign change from negative to
positive in the directional derivative:

F ′(λ) = ∇Tf(xi−1 + λui)ui,

to indirectly compute the minimizer, λi.

4. Set xi = xi−1 + λiui.

5. Convergence test: if ‖xi − xi−1‖ < ε1 or i > imax, then stop
and x∗ ∼= xi, else go to Step 6.

6. Set i = i + 1 and go to Step 2.

We turn our attention to the third step, which requires the minimum
along the search direction to be indirectly resolved by finding a sign
change in the derivative from negative to positive, as opposed to, by
direct minimization of the function.

8.6.1 One-dimensional gradient-only line search

Clearly, in implementing the gradient-only descent algorithms as out-
lined above, requires the univariate problem along direction ui to be
solved:

Find λi that designates a sign change from negative to positive in the
directional derivative:

F
′
(λ) = ∇Tf(xi−1 + λui),ui,

to indirectly compute the minimizer, λi.

http://dx.doi.org/10.1007/978-3-319-77586-9_2

294 CHAPTER 8

The problem of finding a sign change in the directional derivative, F
′
(λ),

is closely related to a one-dimensional root finding problem, which is usu-
ally conducted in two phases (Wilke et al. (2013b)). First by bracketing
a sign change and then secondly by reducing the bracket size to refine
the location of the sign change.

8.6.1.1 Gradient-only exact line searches

The bracketing phase only requires two points, as two points uniquely
define a sign change from a negative directional derivative to a posi-
tive directional derivative. Given some user specified parameter, h, this
bracket can be achieved by evaluating the directional derivative at

λi = ih + h, i = 0, 1, 2, . . . ,

until a sign change from negative to positive is located. Alternatively,
instead of using fixed interval sizes between consecutive points, the inter-
val sizes between consecutive points can be increased:

λi =
i∑

k=0

hak, i = 0, 1, 2, . . . ,

where h is an initial interval step size and a the interval growth param-
eter. Choosing a ≈ 1.618 recovers the bracketing strategy often used for
the popular golden section method used in line search descent (Arora
(2004)).

Once an interval has been bracketed, with lower bound λ0
L and upper

bound λ0
U , that isolates a sign change in the directional derivative from

negative to positive, that is F ′A(λ0
L) < 0 and F ′A(λ0

U) > 0, the interval
is reduced to isolate the sign change within a specified tolerance ε.

The interval reduction can be done using a standard bisection approach
by evaluating the directional derivative in the middle of successively
bracketed intervals. Thus starting with k = 1 set middle value for

λk−1
M = λk−1

U +λk−1
L

2 to give F ′A(λk−1
M).

If F ′A(λk−1
M) < 0 then

1. set λk
L = λk−1

M , and

GRADIENT-ONLY OPTIMIZATION PROBLEM 295

2. set λk
U = λk−1

U ,

while if, F ′A(λk−1
M) > 0, then

1. set λk
L = λk−1

L , and

2. set λk
U = λk−1

M .

This process is repeated, for k = 1, 2, . . . , until λk
U−λk

L
2 < ε.

Note that the gradient-only bi-section interval is reduced by 50% every
iteration, while the most efficient line search descent interval strategy,
namely the golden section method, only reduces the interval by 38.2% at
every iteration. Since the bracketed interval is efficiently reduced using
interval bi-section, it is preferable to opt for a bracketing strategy for
which the interval between successive points increases.

8.6.2 Conditions for sufficient improvement

Similar to the conditions for sufficient improvement discussed in Sec-
tion 2.3.1.5, there are gradient-only conditions that can be utilized to
indicate sufficient improvement and that can be used as a termination
criteria for a line search strategy. Consider the following conditions that
may be imposed on the step λiui in the direction ui during the line
search:

1. Predefined:

λi = di, where di is prescribed at step i

2. Descent:
uiT∇f(xi + λiui) ≤ 0,

3. Curvature:
c1uiT∇f(xi) ≤ uiT∇f(xi + λiui),

4. Strong curvature:

|uiT∇f(xi + λiui)| ≤ c2|uiT∇f(xi)|,

http://dx.doi.org/10.1007/978-3-319-77586-9_2

296 CHAPTER 8

5. Upper curvature:

uiT∇f(xi + λiui) ≤ c3|uiT∇f(xi)|,

with c1, c2 and c3 required to be selected as non-negative parame-
ters. These parameters control the degree to which the conditions are
enforced. The simplest condition is a predefined strategy in which the
step length evolution di is chosen a priori before the start of the opti-
mization run and only depends on the iteration number i as detailed by
Bertsekas (2015). A constant step length is popular amongst subgradi-
ent methods originally introduced by Shor et al. (1985). The other three
strategies aims to assimilate information about the problem to inform
step lengths. That is the step length depends on the gradient at the
current point and the current search direction.

The descent condition ensures that the search direction remains a
descent direction at the update. The disadvantage of such a condition
is that the sign change is only approached from the left side. The cur-
vature condition attempts to rectify this but may result in updates that
are too large as any positive directional derivative satisfies this condi-
tion. The strong curvature condition in turn limits the largest update
step size but do require the magnitude of the directional derivative to
diminish as c2 is reduced. This is sufficient for problems that are smooth
in the vicinity of the optimum, whereas, it may be problematic at dis-
continuous solutions, i.e. it may be possible that no point along a search
direction satisfies this condition. The upper curvature condition ensures
that an update always exists, however, small step sizes also satisfy this
condition. This can be circumvented by combining this condition with
another condition that limits the minimum step size, e.g. using an a
priori step length strategy.

8.7 Gradient-only sequential approximate opti-
mization

In sequential approximate optimization (SAO) methods, the approxi-
mation functions used can easily be formulated using truncated second
order Taylor expansions following Snyman and Hay (2001) and Groen-
wold et al. (2007). For the purposes of gradient-only optimization we

GRADIENT-ONLY OPTIMIZATION PROBLEM 297

aim here to approximate the gradient of a function ∇f(x) around some
current iterate xi to be given by

∇f̃ i(x) = ∇f(xi) + Hi(x − xi), (8.13)

where, according to Wilke et al. (2010), some approximation of the cur-
vature Hi using only gradient information at iteration i is required.
Approximations for Hi are usually obtained by requiring the gradient
to be recovered at the previous iteration, i − 1, where the gradient had
been computed. Given the well-known secant equation,

∇f i(xi−1) = ∇f(xi) + Hi(xi−1 − xi),

Hi(xi−1 − xi) = ∇f i(xi−1) − ∇f(xi),

HiΔxi−1 = Δ∇f i−1,

(8.14)

where Hi in general requires n2 components to be solved or n2−n
2 + n

components for a symmetric Hi, where symmetry is guaranteed for twice
continuously differentiable functions. Hence, to uniquely solve for Hi

requires n2 linear equations, but each gradient vector only contributes
n equations towards the system of linear equations. Generalizing the
secant equation results in the following system of equations from which
to solve for Hi,

Hi

[
Δxi−1, . . . ,Δxi−k

]
=

[
Δ∇f i−1, . . . ,Δ∇f i−k

]
.

(8.15)

Consequently, by requiring k = n unique gradient vectors to be recov-
ered at the n previous iterates results in a linear system of equations that
can be uniquely solved to yield Hi. However, choosing k < n results in
an underdetermined system of equations to be solved, which can be reg-
ularized by requiring a minimum norm solution to Hi. Alternatively,
instead of solving for the full Hi, a form for Hi can be assumed that
requires less components to be solved for. Here, different assumptions
regarding the form of Hi results in different assumptions on the curva-
ture of the problem, and ultimately different approximation strategies.
Typical forms include a constant diagonal Hessian matrix that implies
constant curvature (also known as spherical approximations), general

298 CHAPTER 8

diagonal Hessian matrix implies that changes in curvature are aligned
with the Cartesian coordinate axes (subset of separable problems), full
non-symmetric Hessian matrix and a full symmetric Hessian matrix that
assumes second order continuity.

Once Hi is approximated the current subproblem i is constructed and
solved analytically since the subproblem is continuous by construction;
the minimizer of subproblem i follows from setting the gradient of (8.13)
equal to 0 to give the update

xi∗ = xi − (Hi)−1∇f(xi), (8.16)

which can be solved from Hi(xi∗ − xi) = −∇f(xi). Solving a linear
system may be computationally demanding when large systems are to
be considered. Extending on the discussion in Section 2.3.2, this compu-
tational burden can be avoided when the inverse Hessian Gi = (Hi)−1

is directly approximated. This then merely requires a matrix vector
product

xi∗ = xi − Gi∇f(xi) (8.17)

to compute the update.

A general framework of gradient-only sequential approximation algo-
rithms is listed in Algorithm 8.2.

8.7.1 Constant diagonal Hessian matrix approximations

Assuming the curvature can be described by a constant diagonal Hes-
sian matrix results in a spherical approximation of the Hessian, which is
approximated by a single scalar. As highlighted by Gould et al. (2005)
this allows for a sparse description well suited for high-dimensional opti-
mization problems. Hence, the approximate Hessian or curvature is of
the form Hi = ciI, with ci a scalar, and I the identity matrix. This gives

∇f̃ i(x) = ∇f(xi) + ci(x − xi), (8.18)

with the scalar curvature ci unknown.

At x = xi, the gradient of the function ∇f and the gradient of the
approximation function ∇f̃ match exactly. The approximate Hessian

http://dx.doi.org/10.1007/978-3-319-77586-9_2

GRADIENT-ONLY OPTIMIZATION PROBLEM 299

Algorithm 8.2 Gradient-only sequential approximation algorithm.

Initialization: Given x0, select the real constant ε > 0 and initial
curvature c0 > 0. Select the maximum number of iterations imax. Set
H0 = I or G0 = I. Set i := 0 and perform the following steps:

1. Gradient evaluation: Compute ∇f(xi).

2. Approximate optimization: Construct a local approximate
subproblem (8.13) at xi using an appropriate approximation to
Hi (or Gi) obtained from only gradient information. Solve this
subproblem analytically via (8.16) (or (8.17)) to arrive at a new
candidate solution xi∗.

3. Move to the new iterate: Set xi+1 := xi∗.

4. Convergence test: if ‖xi+1 − xi‖ ≤ ε, OR i = imax, stop.

5. Initiate an additional outer loop: Set i := i + 1 and go to
Step 1.

Hi of the approximation f̃ is chosen to match additional information.
ci is obtained by matching the gradient vector at xi−1. Since only a
single free parameter ci is available, the n components of the respective
gradient vectors are matched in a least square sense. The least squares
error is given by

Ei = (∇f̃ i(xi−1) − ∇f(xi−1))T(∇f̃ i(xi−1) − ∇f(xi−1)), (8.19)

which, after substitution of (8.18) into (8.19), gives

Ei = (∇f(xi) + ci(xi−1 − xi) − ∇f(xi−1))T

(∇f(xi) + ci(xi−1 − xi) − ∇f(xi−1)). (8.20)

Minimization of the least squares error Ei w.r.t. ci then gives

dEi

dci
= (∇f(xi) + ci(xi−1 − xi)

− ∇f(xi−1))T(xi−1 − xi)

+ (xi−1 − xi)T(∇f(xi)

+ ci(xi−1 − xi) − ∇f(xi−1)) = 0, (8.21)

300 CHAPTER 8

hence

ci =
(xi−1 − xi)T(∇f(xi−1) − ∇f(xi))

(xi−1 − xi)T(xi−1 − xi)
. (8.22)

The approximation (8.18) can be enforced to be strictly convex by
enforcing ci = max(β, ci), with β > 0 small and prescribed.

8.7.2 Diagonal Hessian matrix approximations

A more general separable approximation is obtained by allowing the
Hessian matrix to develop into a diagonal matrix allowing for n coeffi-
cients to be solved for. Hence, the approximate Hessian or curvature is
of the form Di, with D signifying a diagonal matrix. This gives

∇f̃ i(x) = ∇f(xi) + Di(x − xi), (8.23)

with Dijk , j = k unknown for all j = 1, . . . , n and k = 1, . . . , n, while
Dijk = 0 for j �= k.

At x = xi, the gradients of the function f and the gradient of the approx-
imation function ∇f̃ match exactly. Again, the approximate Hessian Di

of the approximation f̃ is chosen to match additional information. Di

is obtained by matching the gradient vector at xi−1. Since Di has n
unknowns that are separable, the n components of the gradient vector
are matched exactly,

∇f(xi−1) = ∇f(xi) + Di(xi−1 − xi), (8.24)

with each component solved for independently

Dijj =
∇fj(xi−1) − ∇fj(xi)

(xi−1
j − xi

j)
, j = 1, . . . , n. (8.25)

8.7.3 Symmetric Hessian matrix approximations

Instead of approximating the entire Hi at every iteration, every itera-
tion can add information to a previous approximation Hi−1. Following
conventional Quasi-Newton derivations consider the following Hessian
update scheme

Hi = Hi−1 + ΔHi−1. (8.26)

GRADIENT-ONLY OPTIMIZATION PROBLEM 301

The rank of the incremental update ΔHi−1 depends on the number of
difference gradient vectors enforced per iteration. Assuming, ΔHi−1 =
ai−1

(
bi−1

)T, which is a rank-1 update, then by substituting ΔHi−1 =
ai−1

(
bi−1

)T into (8.14) we obtain

HiΔxi−1 =
(
Hi−1 + ai−1

(
bi−1

)T
)

Δxi−1 = Δ∇f i−1, (8.27)

from which ai−1 can be solved

ai−1 =
Δ∇f i−1

(bi−1)TΔxi−1
− Hi−1Δxi−1

(bi−1)TΔxi−1
. (8.28)

Reconstructing Hi from (8.26) and (8.28) we obtain

Hi = Hi−1 +

(
Δ∇f i−1

(bi−1)TΔxi−1
− HiΔxi−1

(bi−1)TΔxi−1

)
(
bi−1

)T
, (8.29)

with bi−1 free to be chosen. By choosing bi−1 = (Δ∇f i−1−Hi−1Δxi−1)
symmetry is enforced

Hi =Hi−1+(
(Δ∇f i−1 − Hi−1Δxi−1)(Δ∇f i−1 − Hi−1Δxi−1)T

(Δ∇f i−1 − Hi−1Δxi−1)TΔxi−1)

)
, (8.30)

which yields the symmetric rank-1 update investigated by Conn et al.
(1991), subject to starting with an initial symmetric matrix H0.

8.7.4 Symmetric inverse Hessian matrix approximations

Approximating the inverse Hessian Gi allows for the search direction to
be computed using a matrix-vector multiplication as opposed to solving
a linear system of equations. Gi can be approximated incrementally
by adding information per iteration to a previous approximation Gi−1.
Consider the following inverse Hessian update scheme

Gi = Gi−1 + ΔGi−1, (8.31)

substituted into (8.14) and restructured to reflect the inverse Hessian,
we obtain

Δxi−1 = (Gi−1 + ΔGi−1) Δ∇f i−1. (8.32)

302 CHAPTER 8

Assume ΔGi−1 = ai−1
(
bi−1

)T, which when substituted into (8.32) gives

Δxi−1 = Gi−1Δ∇f i−1 + ai−1
((

bi−1
)TΔ∇f i−1

)
, (8.33)

from which ai−1 is isolated to obtain

ai−1 =
Δxi−1

(bi−1)TΔ∇f i−1
− Gi−1Δ∇f i−1

(bi−1)TΔ∇f i−1
. (8.34)

Rewriting (8.31) in terms of only bi−1 gives

Gi = Gi−1 +

(
Δxi−1

(bi−1)TΔ∇f i−1
− Gi−1Δ∇f i−1

(bi−1)TΔ∇f i−1

)
(
bi−1

)T
. (8.35)

By choosing
(
bi−1

)T = (Δxi−1 − Gi−1Δ∇f i−1) and substituting the
result into (8.35) we obtain

Gi+1 = Gi +
(

(Δxi − GiΔ∇f i)(Δxi − GiΔ∇f i)T

(Δxi − GiΔ∇f i)TΔ∇f i)

)
, (8.36)

yielding a symmetric update. This specific update was developed by
Fletcher and Powell (1963) and is an adaptation of an original procedure
first proposed by Davidon (1959).

8.7.5 Non-symmetric inverse Hessian matrix approxima-
tions

More generally the Hessian matrix can be approximated as a non-
symmetric Hessian matrix approximation. In this section we demonstrate
that conventional conjugate gradient directions imply a non-symmetric
Hessian matrix. Using the conventional starting point for conjugate
gradient directions as outlined in Section 2.3.2, we express a new search
direction ui as a linear combination of the gradient descent vector com-
puted at the current minimum point xi, and the previous search direc-
tion ui−1. This then gives

ui = −∇f(xi) + βiui−1, (8.37)

http://dx.doi.org/10.1007/978-3-319-77586-9_2

GRADIENT-ONLY OPTIMIZATION PROBLEM 303

for which we now only have to solve for the scalar βi such that ui

is indeed mutually conjugate to the other search directions w.r.t. an
assumed matrix Hi. The proposed update formula by Fletcher and
Reeves (1964) is given by

βi =
∇Tf(xi)∇f(xi)

∇Tf(xi−1)∇f(xi−1)
, (8.38)

with Polak and Ribiere (1969) proposing an alternative conjugate gra-
dient update

βi =
∇Tf(xi)

(∇f(xi) − ∇f(xi−1)
)

∇Tf(xi−1)∇f(xi−1)
. (8.39)

Substituting (8.38) into (8.37) we obtain

xi+1 = xi + λi

(
−∇f(xi) +

∇Tf(xi)∇f(xi)
∇Tf(xi−1)∇f(xi−1)

ui−1

)
. (8.40)

By factoring ∇f(xi) out of the (8.40) we obtain

xi+1 = xi + λi

(
−I +

∇ui−1∇Tf(xi)
∇Tf(xi−1)∇f(xi−1)

)
∇f(xi). (8.41)

By comparing (8.16) with (8.41), we see that (8.41) approximates the
inverse of the Hessian matrix

(Hi)
−1 = λi

(
I − ∇ui−1∇Tf(xi)

∇Tf(xi−1)∇f(xi−1)

)
, (8.42)

which by inspection reveals that (Hi)
−1 is not symmetric, since ∇ui−1 �=

∇f(xi), which implies that Hi is also not symmetric.

8.7.6 Trust Region Methods and Conservatism

Strategies are required to ensure that sequential approximate optimiza-
tion methods will terminate and converge. A priority therefore is to
ensure that the constructed approximation yields a sufficiently accurate
solution. Towards this aim Goldfeld et al. (1966) proposed restricting
the step size based on the validity of the approximation over a domain,
which was later coined by Sorensen (1982) as the well-known trust region

304 CHAPTER 8

methods. As a modern alternative to trust region methods, conservatism
was proposed by Svanberg (2002). Conservatism requires each proposed
update to be feasible as well as an improvement to the previous iterate.
The benefit of both approaches is that strong convergence characteris-
tics of the sequential approximation approaches can be proved albeit for
often highly restricted classes of functions.

In an effort to enforce conservatism within the context of gradient-only
approaches, Wilke et al. (2010) suggested that the directional derivative
of the actual problem at the proposed approximate solution along the
update step direction should be negative. At iterate i, the proposed
solution xi∗ is obtained by taking the update step xi∗ − xi from the
previous solution xi. This update represents descent of f(x) along the
direction xi∗ − xi if

∇Tf(xi∗)(xi∗ − xi) ≤ ∇Tf̃(xi∗)(xi∗ − xi) = 0. (8.43)

Accordingly, any gradient-only approximation may be defined as con-
servative if (8.43) holds.

This gradient-only definition of conservatism is similar in intent to that
of Svanberg’s function value based definition that requires that the func-
tion value f(xi∗) improve on that of the previous iterate. In the gradient-
only approach only updates xi∗ for which the genuine quality measure,

∇Tf(xi∗)(xi∗ − xi),

is less than or equal to the approximated quality measure

∇Tf̃(xi∗)(xi∗ − xi),

are accepted. Although no formal proofs are presented here, Wilke et al.
(2013b) showed that this definition of conservatism guarantees conver-
gence for certain classes of functions, e.g. smooth convex functions. It is
also important to note that for non-smooth and discontinuous functions
in general this definition falls short, and is not sufficient to guarantee
convergence. It is important to note that, although strong theoretical
evidence is lacking, this gradient-only definition of conservatism suffices
in general to achieve convergence for practical engineering problems. In
sequential approximate optimization, termination and convergence may
be affected through this notion of conservatism. Therefore the minimizer

GRADIENT-ONLY OPTIMIZATION PROBLEM 305

Algorithm 8.3 Affecting conservatism in gradient-only sequential
approximate optimization using constant diagonal (8.18) Hessian matrix
approximations.

Initialization: Given x0, select the real constant ε > 0, initial curvature
c0 > 0 and conservatism parameter γ > 1. Select the maximum number
of iterations imax. Set i := 0, l := 0 and perform the following steps:

1. Gradient evaluation: Compute ∇f(xi).

2. Approximate optimization: Construct local approximate sub-
problem (8.18) at xi. Solve this subproblem analytically, to arrive
at xi∗.

3. Evaluation: Compute ∇f(xi∗).

4. Test if xi∗ is acceptable: if (8.43) is satisfied, go to Step 6.

5. Initiate an inner loop to effect conservatism:

(a) Set l := l + 1.

(b) Set ci := γci.

(c) Goto Step 2.

6. Move to the new iterate: Set xi+1 := xi∗.

7. Convergence test: if ‖xi+1 − xi‖ ≤ ε, OR i = imax, stop.

8. Initiate an additional outer loop: Set i := i + 1 and go to
Step 1.

of the subproblem xi∗ is accepted i.e. xi+1 := xi∗ only if xi∗ is found to
be a gradient-only conservative point. This modification to the gradient-
only sequential approximate optimization is listed Algorithm 8.3.

306 CHAPTER 8

8.8 Gradient-only optimization problem

An important consideration for a holistic understanding of gradient-only
approaches, is to understand the characteristics of the designs to which
gradient-only strategies converge. This would allow us to better differen-
tiate gradient-only strategies from conventional minimization strategies
when step discontinuous functions are considered. We therefore formally
define the underlying optimization problem that is consistent with solu-
tion strategies that only consider gradient-only information.

Reconsider the derivatives presented in Figures 8.5 (b) and (d), that
depict the smooth and piece-wise smooth step discontinuous derivative
responses when the same problem is numerically integrated using differ-
ent numerical strategies. Although conventional interpretations of the
smooth derivative function highlights the design with zero slope and
the lack thereof for the step discontinuous derivative function, there is
a consistent interpretation between the smooth and step discontinuous
derivative functions depicted in Figures 8.5 (b) and (d). This interpre-
tation acknowledges that the smooth and step discontinuous derivative
functions both change sign from negative to positive only once as λ
increases. Therefore, if we define this point as the solution to the opti-
mization problem then we have (i) a unique solution that is defined
for both derivative functions based solely on first order information and
(ii) the solution defines a minimum when estimated from only first order
information as second order (curvature) information is implied by requir-
ing the sign to change from negative to positive with increasing λ.

As illustration of (ii), consider Figure 8.5 (d). The sign change from
negative to positive as λ increases is at λ∗

g ≈ 0.57. Consider any point,
λv to the left of λ∗

g i.e. λv < λ∗
g, then the direction is given by dv =

λv − λ∗
g < 0. The directional derivative is given by the projection of

the derivative dE(λv)
dλ computed at λv onto dv, i.e. by dv

dE(λv)
dλ . Since

dE(λv)
dλ < 0 for λv < λ∗

g, the directional derivative is positive. Similarly,
the directional derivative for λv to the right of λ∗

g i.e. λv > λ∗
g is also only

positive. This implies that first order information estimates the function
value to only increase irrespective of the direction of departure from λ∗

g.
In contrast, when considering Figures 8.5 (a) and (c) it is evident that
the function decreases but only as a result of step discontinuities and
not because of the trends of the piece-wise smooth sections indicating

GRADIENT-ONLY OPTIMIZATION PROBLEM 307

descent. We define λ∗
g as a strict non-negative associated gradient (or

derivative) projection point (Wilke et al. (2013b)). This requires the
directional derivative at any point λv to be positive, where λv is in the
vicinity of λ∗

g, and the direction defined by λv − λ∗
g.

In general, given a real-valued function f : X ⊂ R
n → R, the gen-

eral unconstrained gradient-only optimization problem is to find a non-
negative associated gradient projection point x∗

g ∈ X such that for every
u ∈ {y ∈ R

n | ‖y‖ = 1} there exists a real number ru > 0 for which the
following holds:

∇A
Tf(x∗

g + λu)u ≥ 0 ∀ λ ∈ (0, ru].

This allows us to determine distinct candidate solutions to an uncon-
strained gradient-only optimization problem. It is important to note
that when multiple candidate solutions exist additional information may
be required, after obtaining these solutions using only first order infor-
mation, in order to uniquely obtain the best solution.

8.9 Exercises

The reader is encouraged to employ a convenient computing environ-
ment to complete the exercises. With Python being freely available it is
recommended to be used as outlined in Chapter 9.

8.9.1 Consider the Lotka-Volterra system with unknown parameter λ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= z(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, using 50 000 equally spaced time steps. Given z(8) =
0.722962 and y(8) = 1.110567 plot the sum of the errors squared
objective function given in (8.3) for λ between 0 and 1 using 101
equally spaced points.

http://dx.doi.org/10.1007/978-3-319-77586-9_9

308 CHAPTER 8

8.9.2 Consider the Lotka-Volterra systemwith unknownparameterλ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= z(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second inter-
val, that starts with 50 equally spaced time steps and adding
10 time steps every time the computation is done for a new λ.
Given z(8) = 0.722962 and y(8) = 1.110567 plot the sum of the
errors squared objective function given in (8.3) for λ between 0
and 1 using 101 equally spaced points.

8.9.3 Optimize the problem outlined in Exercise 8.9.1 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.4 Optimize the problem outlined in Exercise 8.9.2 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.5 Critically compare the results obtained in Exercises 8.9.3 and
8.9.4.

8.9.6 Consider the Lotka-Volterra system with unknown parameters
λ and δ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, using 50 000 equally spaced time steps. Given z(8) =
0.722962 and y(8) = 1.110567 plot the sum of the errors squared

GRADIENT-ONLY OPTIMIZATION PROBLEM 309

objective function given in (8.3) for λ between 0 and 1 and δ
between 0.5 and 1.5 using 101 equally spaced points.

8.9.7 Consider the Lotka-Volterra system with unknown parameters
λ and δ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, that starts with 50 equally spaced time steps and adding
10 time steps every time the computation is done for a new
(λ, δ) pair. Given z(8) = 0.722962 and y(8) = 1.110567 plot the
sum of the errors squared objective function given in (8.3) for
λ between 0 and 1 and δ between 0.5 and 1.5 using 101 equally
spaced points.

8.9.8 Optimize the problem outlined in Exercise 8.9.6 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.9 Optimize the problem outlined in Exercise 8.9.7 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.10 Consider the Lotka-Volterra system with four unknown param-
eters λ, δ, β and γ :

dz(z, y, t)
dt

= (1 − λ)z(t) − βz(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − γy(t),

310 CHAPTER 8

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, that starts with 50 equally spaced time steps. For
every 10 evaluations of a (λ, δ, β, γ) increase the number of time
steps by 10. Given z(8) = 0.722962 and y(8) = 1.110567 solve
the problem to find the optimal (λ, β, δ and γ) using random
starting points between 0 and 1 for, λ and β, and between 0.5
and 1.5 for δ and γ.

8.9.11 Construct two third order polynomial approximations of the
objective in Exercise 8.9.1. For the first approximation use only
zero order information, while for the second approximation use
only first order information. Compare the two approximations
with each other.

8.9.12 Construct two third order polynomial approximations of the
objective in Exercise 8.9.2. For the first approximation use only
zero order information, while for the second approximation use
only first order information. Compare the two approximations
with each other.

8.9.13 Optimize the piece-wise smooth step discontinuous quadratic
function given by (7.14) for n = 2 using a gradient-only sym-
metric Hessian matrix approximation. Compare the obtained
optimum against the graphical solution of the problem.

8.9.14 Optimize the piece-wise smooth step discontinuous quadratic
function given by (7.14) for n = 4 using a gradient-only sym-
metric Hessian matrix approximation.

8.9.15 Compare the symmetric Hessian matrix approximation in Exer-
cises 8.9.13 and 8.9.14 against the actual Hessian of the piece-
wise smooth step discontinuous quadratic function.

http://dx.doi.org/10.1007/978-3-319-77586-9_7
http://dx.doi.org/10.1007/978-3-319-77586-9_7

	8 GRADIENT-ONLY SOLUTION STRATEGIES
	8.1 Introduction
	8.2 Piece-wise smooth step discontinuous functions
	8.3 Computational minimization procedures
	8.4 Overview of discontinuities
	8.5 Derivatives and gradients of step discontinuous functions
	8.5.1 Associated gradients by finite differences

	8.6 Gradient-only line search descent methods
	8.6.1 One-dimensional gradient-only line search
	8.6.2 Conditions for sufficient improvement

	8.7 Gradient-only sequential approximate optimization
	8.7.1 Constant diagonal Hessian matrix approximations
	8.7.2 Diagonal Hessian matrix approximations
	8.7.3 Symmetric Hessian matrix approximations
	8.7.4 Symmetric inverse Hessian matrix approximations
	8.7.5 Non-symmetric inverse Hessian matrix approximations
	8.7.6 Trust Region Methods and Conservatism

	8.8 Gradient-only optimization problem
	8.9 Exercises

