
Chapter 7

SURROGATE MODELS

7.1 Introduction

A Taylor series expansion of a function allows us to approximate a func-
tion f(x) at any point x, based solely on information about the function
at a single point xi. Here, information about the function implies zero
order, first order, second order and higher order information of the func-
tion at xi. The higher the order of information included in a Taylor series
representation of a function, the higher the accuracy of the approxima-
tion distant from xi. However, higher order information for multivariate
functions grows exponentially in dimensionality, i.e. the gradient vector
constitutes n values, the Hessian matrix is expressed by n2 values and
the 3rd derivative is comprised of n3 values. In practice, zero order and
first order information about a problem is usually computable and con-
venient to store, while second order information is usually not readily
available for engineering problems and needs to be inferred from first
order information as described in Section 2.4.

Surrogate modelling offers an alternative approach to Taylor series
for constructing approximations of functions. Instead of constructing
approximations based on ever higher and higher order information at a
single point, surrogate modelling approximates functions using lower
order informationatnumerouspoints in thedomainof interest. Theadvan-
tage of such an approach is that it is (i) computationally inexpensive to

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 7

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77586-9_7&domain=pdf
http://dx.doi.org/10.1007/978-3-319-77586-9_2


252 CHAPTER 7

approximate zero and first order information of the function at addi-
tional points in the domain, and that (ii) lower order information can
be computed in parallel on distributed computing platforms. Hence,
the approximation functions can be exhaustively optimized, while the
computationally demanding evaluations of the actual function can be
distributed over multiple cores and computers. It is not surprising that
surrogate modelling is the preferred strategy to solve computationally
demanding multidisciplinary engineering design problems as highlighted
by Forrester et al. (2008). However, as information grows exponentially
with the order of information for a multivariate problem, so too does
the design space grow exponentially with problem dimensionality. This
is referred to as, the curse of dimensionality, as phrased by Bellman
(1957). This limits surrogate modelling to lower-dimensional problems
in the same way that Taylor series approximations are limited to lower
order information for higher-dimensional problems.

Formally, a surrogate model approximates a non-linear function f(x),
when information about f(x) is known at m discrete locations xi, i =
1, . . . , m. The information is usually limited to zero order information,
i.e. only function values as described by Hardy (1971, 1990); Franke
(1982); Dyn et al. (1986); Khuri and Mukhopadhyay (2010). More
recently both zero and first order information have been considered more
readily in the construction of surrogate models, Hardy (1975, 1990);
Morris et al. (1993); Chung and Alonso (2001); Lauridsen et al. (2002).
Lastly, Wilke (2016) proposed the construction of surrogate models using
only first order information. This allows for smooth surrogate approx-
imations of piecewise smooth discontinuous functions as will be shown
at the end of this chapter.

7.2 Radial basis surrogate models

A number of surrogate models are available to approximate a non-linear
function f(x). Hardy (1971) pioneered radial basis functions by approx-
imating a non-linear function, f(x), as a linear combination of p cho-
sen non-linear basis functions φj(x,xj

c), j = 1, . . . , p, that are centered
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around p spatial points xj
c, which is conveniently expressed by

f(x) ≈
p∑

j=1

wjφj(x,xj
c) = f̃(x). (7.1)

The non-linear basis functions, φj(x,xj
c), j = 1, . . . , p, are usually cho-

sen to be of identical form but centered around distinct spatial points
xj

c. For examples of radial basis functions refer to Table 7.1. Typically
Figures 7.1 (a) and (b) depict three basis functions centered about three
points in a two-dimensional design domain.

(a) (b)

Figure 7.1: Illustration of three radial basis functions centered around
three spatial locations, namely, x1 = −1.5 and x2 = −3, x1 = 1.25 and
x2 = 3, and x1 = 4 and x2 = 3

A significant benefit of this approach is that all the non-linearity of
f(x) is approximated by the non-linear basis functions φj(x), while the
approximation is linear in the weights wj that need to be estimated.
Hence, wj can be obtained by merely solving a linear problem.

7.2.1 Zero order only radial basis surrogate models

Solving for the weights wj , j = 1, . . . , p from only zero order (zo) infor-
mation requires the function, f(xj), to be evaluated at least for m ≥ p
distinct designs xj , j = 1, . . . , m. The response surface f̃(x) is then
required to recover the actual function value at the xj , j = 1, . . . , m
designs, i.e. f̃(xj) ≈ f(xj). By choosing the number of designs and
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basis functions to be equal, i.e. m = p, we recover an interpolation
surface, i.e. f̃(xj) = f(xj), j = 1, . . . , m,. When we have fewer basis
functions than design vectors, i.e. p < m, we recover a regression surface
f̃(xj) ≈ f(xj), j = 1, . . . , m, that requires a least squares problem to
be solved to recover the weights. In general interpolation surfaces are
preferred when only a few design vectors are available, while regression
surfaces are favoured when the design domain is densely sampled.

In general, by choosing p basis functions and m design vectors, results
in p unknowns to be solved from m equations

f(x1) =
p∑

j=1

wjφj(x1,xj
c) = f̃(x1)

f(x2) =
p∑

j=1

wjφj(x2,xj
c) = f̃(x2)

... (7.2)

f(xm) =
p∑

j=1

wjφj(xm,xj
c) = f̃(xm).

This can be rewritten in block matrix form

Rzowzo = rzo, (7.3)

with

Rzo =

⎡

⎢⎣
φ1(x1,x1

c) φ2(x1,x2
c) . . . φm(x1,xp

c)
...
φ1(xm,x1

c) φ2(xm,x2
c) . . . φm(xm,xp

c)

⎤

⎥⎦ ,

wzo =

⎡

⎢⎢⎢⎣

wzo
1

wzo
2

...
wzo

p

⎤

⎥⎥⎥⎦ , rzo =

⎡

⎢⎣
f(x1)
...
f(xm)

⎤

⎥⎦ ,

to obtain an m by p linear system of equations. For p = m the system
can be solved directly. However, p < m yields an overdetermined system
of equations to be solved in a least squares sense. This is achieved by
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pre-multiplying (7.3) by RT
zo to obtain the following p × p linear system

of equations

RT
zoRzowzo = RT

zor
zo, (7.4)

from which wzo can be solved for.

For convenience, when choosing p = m, the m designs xj , j = 1, . . . , m
are usually chosen to coincide with the p basis function centers, i.e.
xj

c = xj , j = 1, . . . , m.

7.2.2 Combined zero and first order radial basis surrogate
models

Solving for the weights wj , j = 1, . . . , p from both zero and first order
information, i.e. mixed order (mo), requires the function, f(xj), and
gradient of the function, ∇f(xj), to be evaluated at m distinct designs
xj , j = 1, . . . , m. The response surface f̃(x) is then required to recover
the actual function value and gradient at the xj , j = 1, . . . , m designs,
i.e. f̃(xj) ≈ f(xj) and ∇f̃(xj) ≈ ∇f(xj). By choosing m designs for
p = m basis functions we recover a regression surface, i.e. f̃(xj) ≈
f(xj), j = 1, . . . , m, and ∇f̃(xj) ≈ ∇f(xj), j = 1, . . . , m. A least
squares problem is then to be solved to recover the weights.

In general, by choosing p basis functions and m design vectors, each of
dimension n, we now have p unknowns to be solved for from m(n + 1)
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equations:

f(x1) =
p∑

j=1

wjφj(x1,xj
c) = f̃(x1),

∇f(x1) =
p∑

j=1

wj
∂φj(x1,xj

c)
∂x

= ∇f̃(x1),

f(x2) =
p∑

j=1

wjφj(x2,xj
c) = f̃(x2),

∇f(x2) =
p∑

j=1

wj
∂φj(x2,xj

c)
∂x

= ∇f̃(x2),

... (7.5)

f(xm) =
p∑

j=1

wjφj(xm,xj
c) = f̃(xm),

∇f(xm) =
p∑

j=1

wj
∂φj(xm,xj

c)
∂x

= ∇f̃(xm),

which can be rewritten in block matrix form to obtain

Rmowmo = rmo, (7.6)

with

Rmo =

⎡

⎢⎢⎢⎢⎢⎢⎣

φ1(x1,x1
c) φ2(x1,x2

c) . . . φm(x1,xp
c)

∂φ1(x1,x1
c)

∂x
∂φ2(x1,x2

c)
∂x . . . ∂φm(x1,xp

c )
∂x

...
φ1(xm,x1

c) φ2(xm,x2
c) . . . φm(xm,xp

c)
∂φ1(xm,x1

c)
∂x

∂φ2(xm,x2
c)

∂x . . . ∂φm(xm,xp
c )

∂x

⎤

⎥⎥⎥⎥⎥⎥⎦
,

wmo =

⎡

⎢⎢⎢⎣

w1

w2
...
wp

⎤

⎥⎥⎥⎦ , rmo =

⎡

⎢⎢⎢⎢⎢⎣

f(x1)
∇f(x1)
...
f(xm)
∇f(xm)

⎤

⎥⎥⎥⎥⎥⎦
,
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to obtain a m(n + 1) by p overdetermined linear system of equations.
The overdetermined system of equations can be solved in a least squares
sense by pre-multiplying (7.6) by RT

mo to obtain the following p×p linear
system of equations

RT
moRmowmo = RT

mor
mo, (7.7)

from which wmo can be solved for.

7.2.3 First order only radial basis surrogate models

Solving for the weights wj , j = 1, . . . , p from only first order (fo) or
gradient only information requires that the gradient ∇f(x) of the non-
linear function to be evaluated at m distinct designs xj , j = 1, . . . , m.
The response surface f̃(x) is then required to recover the actual gradient
at the xj , j = 1, . . . , m designs, i.e. ∇f̃(xj) ≈ ∇f(xj). By choosing m
designs and p = m basis functions we recover an interpolation surface
for the gradient, i.e. ∇f̃(xj) = ∇f(xj), j = 1, . . . , m, only for univariate
functions.

In general, higher-dimensional functions result in regression response
surfaces, i.e. ∇f̃(xj) ≈ ∇f(xj), since we only have p = m weights to
recover m × n = mn gradient components, where n is the dimension of
the design vector. The resulting mn equations

∇f(x1) =
p∑

j=1

wj
∂φj(x1,xj

c)
∂x

= ∇f̃(x1)

∇f(x2) =
p∑

j=1

wj
∂φj(x2,xj

c)
∂x

= ∇f̃(x2)

... (7.8)

∇f(xm) =
p∑

j=1

wj
∂φj(xm,xj

c)
∂x

= ∇f̃(xm),

can be rewritten in block matrix form to obtain

Rfowfo = rfo, (7.9)
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with

Rfo =

⎡

⎢⎢⎣

∂φ1(x1,x1
c)

∂x
∂φ2(x1,x2

c)
∂x . . . ∂φm(x1,xp

c )
∂x

...
∂φ1(xm,x1

c)
∂x

∂φ2(xm,x2
c)

∂x . . . ∂φm(xm,xp
c )

∂x

⎤

⎥⎥⎦ ,

wfo =

⎡

⎢⎢⎢⎣

w1

w2
...
wp

⎤

⎥⎥⎥⎦ , rfo =

⎡

⎢⎣
∇f(x1)
...
∇f(xm)

⎤

⎥⎦ ,

giving an mn by m overdetermined linear system of equations. This
overdetermined system of equations can be solved in a least squares
sense by pre-multiplying (7.9) by RT

fo to obtain the following m × m
linear system of equations

RT
foRfowfo = RT

for
fo, (7.10)

from which wfo is to be solved for. However, RT
foRfo is singular as

an approximated surrogate from first order only information has infinite
representations since any constant added to the surrogate leaves the
gradient of the surrogate unchanged. This can be addressed by adding
at least one equation that enforces the function value at a design to
(7.10). Alternatively the minimum norm solution for the least squares
system (7.10) can be computed. For convenience, the m designs xj , j =
1, . . . , m are usually chosen to coincide with the chosen p = m basis
function centers, i.e. xj

c = xj , j = 1, . . . , m.

7.3 Basis functions

Numerous radial basis functions φj(rj)(x) have been proposed with the
most popular global support basis functions listed in Table 7.1. The
shape parameter ε is in general unknown and needs to be determined
as will be discussed in the next section. Smooth basis functions are
preferred when constructing surrogate models for optimization applica-
tions, as they are everywhere differentiable. A preferred choice is the
Gaussian basis function,

φj(x,xj
c) = φj(rj(x)) = e(−εrj(x)

2). (7.11)
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Name Abbreviation Equation
Gaussian GA φj(rj(x)) = e−εrj(x)

2

Exponential EXP φj(rj(x)) = e−εrj(x)

Multiquadric MQ φj(rj(x)) =
√

1 + (εrj(x))2

Inverse quadratic IQ φj(rj(x)) = 1
1+(εrj(x))2

Inverse multiquadric IMQ φj(rj(x)) = 1√
1+(εrj(x))2

Table 7.1: Radial basis functions φj(rj(x)) with rj(x) = ‖x − xj‖

The gradient is given by

∇φj(rj(x)) =
∂φj

∂rj

∂rj

∂x
=

(
−2εrje

(−εr2j )
) (

1
2rj

2(x − xj
c)

)
, (7.12)

and tends to 0 as rj(x) → 0. However, as (7.12) is prone to numerical
instabilities as rj(x) → 0, it is required to apply L’Hospital’s rule to
ensure that numerically ∇φj(rj(x)) indeed evaluates to 0 at rj(x

j
c).

7.3.1 Shape parameter

The shape parameter ε needs to be estimated. It determines the radius
of the domain over which the basis function has significant influence.
For example, consider the Gaussian basis function (7.11), for ε chosen
large and unit rj , −εr2j evaluates to a large negative value of which the
exponential is close to zero. Consequently, the larger ε the smaller the
domain over which the basis function has a significant influence. The
choice of ε is therefore of utmost importance, with smaller ε preferred,
but choosing ε too small will result in severe numerical ill-conditioning
for finite precision computing.
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(a) (b)

Figure 7.2: (a) Two-dimensional quadratic function evaluated at (b)
nine points in the two-dimensional design domain

(a) (b) (c)

Figure 7.3: Radial basis approximation surfaces constructed using (a)
ε = 100, (b) ε = 10−1 and (c) ε = 10−5

Consider the construction of zero-order Gaussian radial basis surrogate
approximations of the quadratic function, f(x) = x2

1 +10x2
2, depicted in

Figure 7.2 (a) that is evaluated at nine points as shown in Figure 7.2 (b).

The construction done for three values of ε are depicted in Figures 7.3 (a)–
(c). The results clearly indicate the influence of the shape parameter on
the constructed radial basis function approximation surfaces. Choosing ε
too large results in locally compact support that fails to capture smooth
trends over large domains as shown in Figure 7.3 (a). Ill-conditioning is
evident in Figure 7.3 (c) in which the numerical solution for the weights
have broken down resulting in severe noise. Lastly, choosing an appro-
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priate shape parameter gives the ability to capture the actual function
using spatially distributed information as illustrated in Figure 7.3 (b).

In general, ε is computed using k-fold cross validation (Kohavi (1995)).
In k-fold cross validation the m design vectors are randomly partitioned
into k equal sized subsets, i.e. each subset containing m

k design vectors.
Of the k subsets, the first is retained to test the model (test subset),
while the union of the remaining k − 1 subsets (the training subsets) is
used to construct the response surface. Once, the response surface has
been constructed, using only the training subset, the model is used to
predict the response at the design vectors in the test subset. Since the
responses at the designs in the test subset are known an error can be
computed that captures the difference between the predicted and actual
response. Here, the sum of the difference squared is usually computed.
This process is repeated by choosing the next subset as the test subset,
while the union of the remaining k − 1 subsets again define the training
subset until all subsets have been used as a test subset, i.e. this process
is repeated k times. All the errors over the k test subsets are averaged
to define the k-fold cross validation error (k-CVE). The k-CVE is then
computed for different choices of ε to find the ε∗ that minimizes k-CVE
error. Afterwards, ε∗ is used to construct the surrogate, usually using
all m points. A typical choice for k is between 5 and 20, while choosing
k = m results in leave-one-out cross validation (LOOCV). This forms the
basis for the predicted residual error sum of squares (PRESS) statistic
proposed by Allen (1974).

The process of constructing surrogate models using the k-CVE is listed
in Algorithm 7.1.

7.4 Numerical examples

To demonstrate the implications and utility of using only zero or only
first order information in constructing surrogate models, consider the
two test functions depicted in Figure 7.4 (a) and (b). They are the
smooth continuous quadratic function

f(x) =
n∑

i=1

10i−1x2
i−1, (7.13)
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Algorithm 7.1 Radial basis surrogate model.

Initialization: Select a radial basis function and associated initial
shape parameter ε0. Choose an integer value for k and select the num-
ber of design vectors m (a multiple of k) in the design of experiments.
Randomly partition the m design vectors into k subsets of equal size.
These k subsets are then used to compute the k-fold cross validation
error (k-CVE). Set l = 0 and perform the following steps:

1. Design of Experiments: Identify m design vectors xi, i =
1, . . . , m.

2. Evaluate Designs: For each design, compute the function value
fi = f(xi), i = 1, . . . m and/or gradient vector ∇f i = ∇f(xi), i =
1, . . . m.

3. Trial Surrogate model: For ε = εl construct k trial surrogate
models by solving for w from (7.4), (7.7) or (7.10) using succes-
sively, each of the k subsets containing m

k design vectors as the test
subset, and the union of the remaining k − 1 subsets as training
set. For each of the k surrogate models use its corresponding test
set and compute the test set error. Then compute the k-CVE as
the average of the k test set errors.

4. Update εl:

(a) Set l := l + 1

(b) Update εl using a minimization strategy to reduce the k-CVE.

(c) If εl has converged within an acceptable tolerance then set
ε∗ = εl and go to Step 5, else go to Step 3.

5. Construct Surrogate Model: Construct the surrogate model
by solving for w from (7.4), (7.7) or (7.10) using ε = ε∗. Instead
of only using the training set of design vectors it is often advised
to use all m design vectors to construct the final surrogate model.
A typical choice for k is between 5 and 20.

depicted in Figure 7.4 (a) with n = 2, and the piece-wise smooth step
discontinuous quadratic function

f(x) =
n∑

i=2

10i−2x2
i−2 + 10i−1x2

i−1 + a(sign(xi−2))−
b(sign(xi−1)) + c(sign(xi−2))(sign(xi−1)) (7.14)
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depicted in Figure 7.4 (b) with n = 2, a = 100, b = 50 and c = 133.
It is important to note that the piece-wise smooth step discontinuous
quadratic function is the same quadratic function given by (7.13) with
step discontinuities imposed that are controlled by the coefficients a, b
and c. Hence, the first associated partial derivatives w.r.t. x1 and x2 for
both the smooth quadratic function and step discontinuous quadratic
function are the same and respectively depicted in Figures 7.4 (c) and (d).
The functions are evaluated at 3 × 3 designs as depicted in
Figure 7.2 (b) to obtain the zero or first order information required
to construct the surrogate models. Gaussian radial basis functions are
used in the models and k = m is specified for computing the CVE. Only
zero order information or only first order information are considered.

The constructed zero order only and first order only (with the exception
of enforcing f = 0 at x1 = 0, x2 = 0) surrogate models for the smooth
quadratic function are depicted in Figures 7.5 (a) and (b). In addition,
the first order partial derivatives w.r.t. x1 and x2 of the surrogate models
are respectively depicted in Figures 7.6 (a) and (b) and Figures 7.6 (c)
and (d) over the domain −5 to 5 for both variables.

It is evident that the two constructed surfaces, depicted in Figures 7.5 (a)
and (b), are nearly identical. Similarly, the estimated first order partial
derivatives for the zero order only and first order only constructed surro-
gate models w.r.t. x1 and x2 are respectively depicted in Figures 7.6 (a)
and (b) and Figures 7.6 (c) and (d). The approximated partial deriva-
tives are nearly identical to the actual partial derivatives depicted in
Figures 7.4 (c) and (d).

For the piece-wise smooth step discontinuous quadratic function, the
constructed zero order only and first order only (with the exception of
enforcing f = 0 at x1 = 0, x2 = 0) surrogate models are depicted in
Figures 7.7 (a) and (b). In addition, the first order partial derivatives
w.r.t. x1 and x2 of the surrogate models are respectively depicted in Fig-
ures 7.8 (a) and (b) and Figures 7.8 (c) and (d) over the domain −5 to
5 for both variables. The approximated associated partial derivatives of
the zero order only surrogate model differs significantly from the actual
associated partial derivatives depicted in Figures 7.4 (c) and (d). How-
ever, the associated partial derivatives of the first order only approxi-
mated surrogate model is nearly identical to the actual associated partial
derivatives. Similarly, the zero order only constructed surrogate model
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(a) (b)

(c) (d)

Figure 7.4: Surface of (a) the smooth quadratic function given by (7.13),
and (b) the piece-wise smooth step discontinuous quadratic function
given by (7.14). In addition, the first associated partial derivatives w.r.t.
x1 and x2 for both functions are the same and respectively depicted in
(c) and (d), with the full set of identified designs points indicated by
white circles

differs significantly from both the actual smooth quadratic function and
the piece-wise smooth step discontinuous function respectively depicted
in Figures 7.4 (a) and (b). In contrast, the first order only constructed
surrogate model is nearly identical to the actual smooth quadratic func-
tion, demonstrating that the step discontinuities are effectively ignored
when only first order information is considered.

It is evident that the zero order only and first order only constructed
surrogate functions differ significantly in approximating both the func-
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(a) (b)

Figure 7.5: (a) Zero order only and (b) first order only constructed
response surfaces for the smooth quadratic function

tion value and associated gradient of the actual piece-wise smooth step
discontinuous function. The zero order constructed surrogate function
poorly represents both the function and associated gradients of the piece-
wise smooth step discontinuous function. It is only the approximated
associated gradients of the first order constructed surrogate function
that is consistent with the actual associated gradient of the piece-wise
smooth step discontinuous function. The result, when only first order
information is considered to construct a surrogate, is a smooth surro-
gate that is consistent with the first order information of the piece-wise
smooth step discontinuous function. As will be pointed out in Chapter 8,
this is ideal when the step discontinuities are numerical artefacts that
need to be ignored. The effectiveness of first order only constructed
surrogates to ignore or filter out step discontinuities is remarkable and
an important aspect to consider when constructing surrogates for dis-
continuous functions. The resulting smooth surrogate function that is
approximated from only first order information can then be optimized
using conventional gradient based approaches.

http://dx.doi.org/10.1007/978-3-319-77586-9_8
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(a) (b)

(c) (d)

Figure 7.6: First order partial derivatives w.r.t. x1 and x2 respectively
computed from the constructed (a),(c) zero order only surrogate model
and (b),(d) first order only surrogate model for the smooth quadratic
function. The sampled designs are indicated by white circles

7.5 Exercises

The reader is encouraged to employ a convenient computing environ-
ment to complete the exercises. With Python being freely available it is
recommended to be used as outlined in Chapter 9.

7.4.1 Consider some non-linear function f(x, c) that is linear w.r.t.
some parametrization c = [c0, c1, . . . , cr]. For example consider
the quadratic function

f(x, c) = c5x
2
1 + c4x

2
2 + c3x1x2 + c2x1 + c1x2 + c0,

http://dx.doi.org/10.1007/978-3-319-77586-9_9
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(a) (b)

Figure 7.7: (a) Zero order only and (b) first order only constructed
response surfaces for the piece-wise smooth step discontinuous quadratic
function

that is non-linear in x but linear in c. For unknown c = c∗,
given k observations f(x0, c∗), f(x1, c∗) . . . , f(xk, c∗) for known
x0,x1, . . . ,xk and with k > r. Formulate an unconstrained
minimization problem, using matrix notation, that estimates c∗

from the information of k observations.

7.4.2 Derive the general first order optimality criterion that solves for
c∗ for the formulation presented in Problem 7.4.1.

7.4.3 Equation 7.15 represents 12 scalar observations f i = f(xi, c∗), i =
1, . . . , 12 that depends on two variables x1 and x2.

i xi
1 xi

2 f i

1 −3 −3 9
2 −1.5 −3 8
3 0 −3 7
4 1.5 −3 6
5 −3 0 0.5
6 −1.5 0 1.0
7 0 0 1.25
8 1.5 0 1.5
9 −3 3 6

10 −1.5 3 7
11 0 3 8
12 1.5 3 9

(7.15)
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(a) (b)

(c) (d)

Figure 7.8: First order partial derivatives w.r.t. x1 and x2 respectively
computed from the constructed (a),(c) zero order only surrogate model
and (b),(d) first order only surrogate model for the piece-wise smooth
step discontinuous quadratic function. The sampled designs are indi-
cated by white circles and the colorbar scale limited to the minimum
and maximum values of the actual associated partial derivatives

Fit the following quadratic function

f(x, c) = c5x
2
1 + c4x

2
2 + c3x1x2 + c2x1 + c1x2 + c0, (7.16)

to the data in Equation 7.15 using the optimal criterion derived
in Exercise 7.4.2.

7.4.4 For Exercise 7.4.3 present, in a detailed discussion, all the veri-
fications you can envisage to ensure that it was indeed correctly
solved.
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7.4.5 Verify the solution in Exercise 7.4.3 by outlining and conducting
a numerical study that perturbs the optimal solution.

7.4.6 Verify the solution in Exercise 7.4.3 by outlining and conducting
a numerical study that solves the formulated problem iteratively
using an appropriate minimization algorithm.

7.4.7 Instead of using the f i given in Equation 7.15, evaluate the func-
tion f(x) = 13x2

1+11x2
2+7x1x2+5x1+3 at the designs listed in

Equation 7.15. What do you expect the solution for c0, c1, . . . , c5
to be, and motivate your answer by a detailed discussion of your
reasoning.

7.4.8 Conduct a numerical study that investigates the validity of your
expectation in Exercise 7.4.7.

7.4.9 Higher order polynomials compute higher order powers of designs
of x that may lead to numerically very large numbers and ulti-
mately to ill-conditioning of the system to be solved. Pro-
pose an appropriate scaling of x that would eliminate such ill-
conditioning.

7.4.10 Given two Gaussian representations, φ1(r) = e−εr2 and φ2(r) =

e− r2

ε . Discuss the implication of increasing ε on the size of the
effect of the domain covered by φ1(r) and φ2(r) respectively.

7.4.11 Utilize the function Rbf in the module scipy.interpolate to
construct a zero order only radial basis surrogate model of the
quadratic function in Exercise 7.4.7 using the Gaussian basis
function. Note that Rbf returns a function object that takes
the same number of inputs as the dimensionality of the prob-
lem, where each entry is a list of values for a coordinate at
which to evaluate the constructed RBF function. The basis
function can be selected by assigning the string gaussian to
the parameter function of the function object, and the shape
parameter by assigning a value to the parameter epsilon. Type
help(Rbf) for additional information and note the usage of the
shape parameter ε in the Gaussian formulation.

7.4.12 Optimize the actual quadratic function given in Exercise 7.4.7
using 100 random starting guesses between −1.5 and 1.5 for both
x1 and x2 using a zero and first order algorithm of your choice.
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Repeat the optimization using the same initial starting guesses,
but this time optimize the RBF approximation to the quadratic
function constructed in Exercise 7.4.11. Critically compare the
solutions obtained.

7.4.13 Repeat Exercise 7.4.12 but increase the bounds for the initial
starting guesses from −1.5 and 1.5 to (i) −15 and 15, and to (ii)
−150 and 150 respectively and critically compare the solutions
obtained as well as pointing out the cause of any evident changes
in the results.

7.4.14 Repeat Exercise 7.4.12 but use the Exponential basis function
given by φ(r) = e−εr (Python code exp(-(r*self.epsilon))).
Critically compare the solutions obtained as well as pointing out
the cause of any evident changes in the results.

7.4.15 Given the Gaussian radial basis function φ(r(x)) = e−εr(x)2),
and the Exponential radial basis function φ(r(x)) = e−εr(x).
Plot the functions and critically discuss any expected implica-
tions of the smoothness of the basis function on the performance
of gradient based optimization strategies. Which basis function
would you prefer for gradient based optimization strategies?

7.4.16 Consider the Gaussian basis function given in (7.11). Conduct
a numerical study that identifies the observed ill-conditioning
of Rzo as ε gets smaller, and the absence of ill-conditioning as ε
gets larger.

7.4.17 Given a two-dimensional function defined over the domain −1
and 1 for x1, and −100 and 100 for x2. Discuss the potential
problems associated with constructing an RBF surrogate model
over such a domain. Detail a potential solution strategy.

7.4.18 Conduct a numerical investigation that highlights the poten-
tial difficulties associated with Exercise 7.4.17 and that demon-
strates the potential benefits of the solution strategy proposed
in Exercise 7.4.17.

7.4.19 Write your own Python code to construct a zero order only
radial basis surrogate model for a function of n dimensions. Test
your code on the quadratic function given in Exercise 7.4.7, and



SURROGATE MODELS 271

compare your RBF approximation against scipy.interpolate.
Rbf for equivalent shape parameters.

7.4.20 Approximate the gradient vector of the quadratic function
given in Exercise 7.4.7. Use the radial basis surrogate model
constructed in Exercise 7.4.19 at 100 random designs over the
domain defined by the design of experiments. Compute the aver-
age error for each component of the gradient vector at the 100
random designs.

7.4.21 Write your own Python code to construct a combined zero and
first order radial basis surrogate model for a function of n
dimensions. Test your code on the quadratic function given in
Exercise 7.4.7.


	7 SURROGATE MODELS
	7.1 Introduction
	7.2 Radial basis surrogate models
	7.2.1 Zero order only radial basis surrogate models
	7.2.2 Combined zero and first order radial basis surrogate models
	7.2.3 First order only radial basis surrogate models

	7.3 Basis functions
	7.3.1 Shape parameter

	7.4 Numerical examples
	7.5 Exercises




