
Chapter 6

NEW GRADIENT-BASED
TRAJECTORY AND
APPROXIMATION
METHODS

6.1 Introduction

6.1.1 Why new algorithms?

In spite of the mathematical sophistication of classical gradient-based
algorithms, certain inhibiting difficulties remain when these algorithms
are applied to real-world problems. This is particularly true in the field
of engineering, where unique difficulties occur that have prevented the
general application of gradient-based mathematical optimization tech-
niques to design problems.

Optimization difficulties that arise are:

(i) the functions are often very expensive to evaluate, requiring, for
example, the time-consuming finite element analysis of a struc-
ture, the simulation of the dynamics of a multi-body system, or a

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 6

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77586-9_6&domain=pdf

198 CHAPTER 6

computational fluid dynamics (CFD) simulation,

(ii) the existence of noise, numerical or experimental, in the functions,

(iii) the presence of discontinuities in the functions,

(iv) multiple local minima, requiring global optimization techniques,

(v) the existence of regions in the design space where the functions
are not defined, and

(vi) the occurrence of an extremely large number of design variables,
disqualifying, for example, the SQP method.

6.1.2 Research at the University of Pretoria

All the above difficulties have been addressed in research done at the
University of Pretoria over the past twenty years. This research has led
to, amongst others, the development of the new optimization algorithms
and methods listed in the subsections below.

6.1.2.1 Unconstrained optimization

(i) The leap-frog dynamic trajectory method: LFOP (Snyman 1982,
1983),

(ii) a conjugate-gradient method with Euler-trapezium steps in which
a novel gradient-only line search method is used: ETOP (Snyman
1985), and

(iii) a steepest-descent method applied to successive spherical quadratic
approximations: SQSD (Snyman and Hay 2001).

6.1.2.2 Direct constrained optimization

(i) The leap-frog method for constrained optimization, LFOPC (Sny-
man 2000), and

(ii) the conjugate-gradient method with Euler-trapezium steps and
gradient-only line searches, applied to penalty function formula-
tions of constrained problems: ETOPC (Snyman 2005).

NEW GRADIENT-BASED METHODS 199

6.1.2.3 Approximation methods

(i) A feasible descent cone method applied to successive spherical
quadratic sub-problems: FDC-SAM(Stander and Snyman1993; Sny-
man and Stander 1994, 1996; De Klerk and Snyman 1994), and

(ii) the leap-frog method (LFOPC) applied to successive spherical
quadratic sub-problems: Dynamic-Q (Snyman et al. 1994; Snyman
and Hay 2002).

6.1.2.4 Methods for global unconstrained optimization

(i) A multi-start global minimization algorithm with dynamic search
trajectories: SF-GLOB (Snyman and Fatti 1987), and

(ii) a modified bouncing ball trajectory method for global optimization:
MBB (Groenwold and Snyman 2002).

All of the above methods developed at the University of Pretoria are
gradient-based, and have the common and unique property, for gradient-
based methods, that no explicit objective function line searches are
required.

In this chapter the LFOP/C unconstrained and constrained algorithms
are discussed in detail. This is followed by the presentation of the SQSD
method, which serves as an introduction to the Dynamic-Q approxima-
tion method. Next the ETOP/C algorithms are introduced, with special
reference to their ability to deal with the presence of severe noise in the
objective function, through the use of a gradient-only line search tech-
nique. Finally the SF-GLOB and MBB stochastic global optimization
algorithms, which use dynamic search trajectories, are presented and
discussed.

6.2 The dynamic trajectory optimization
method

The dynamic trajectory method for unconstrained minimization (Sny-
man 1982, 1983) is also known as the “leap-frog” method. It has been

200 CHAPTER 6

modified (Snyman 2000) to handle constraints via a penalty function
formulation of the constrained problem. The outstanding characteris-
tics of the basic method are:

(i) it uses only function gradient information ∇f ,

(ii) no explicit line searches are performed,

(iii) it is extremely robust, handling steep valleys, and discontinuities
and noise in the objective function and its gradient vector, with
relative ease,

(iv) the algorithm seeks relatively low local minima and can therefore
be used as the basic component in a methodology for global opti-
mization, and

(v) when applied to smooth and near quadratic functions, it is not as
efficient as classical methods.

6.2.1 Basic dynamic model

Assume a particle of unit mass in a n-dimensional conservative force field
with potential energy at x given by f(x), then at x the force (acceleration
a) on the particle is given by:

a = ẍ = −∇f(x) (6.1)

from which it follows that for the motion of the particle over the time
interval [0, t]:

1
2‖ẋ(t)‖2 − 1

2‖ẋ(0)‖2 = f(x(0)) − f(x(t)) (6.2)

or
T (t) − T (0) = f(0) − f(t) (6.3)

where T (t) represents the kinetic energy of the particle at time t. Thus
it follows that

f(t) + T (t) = constant (6.4)

i.e. conservation of energy along the trajectory. Note that along the
particle trajectory the change in the function f , Δf = −ΔT , and there-
fore, as long as T increases, f decreases. This is the underlying principle
on which the dynamic leap-frog optimization algorithm is based.

NEW GRADIENT-BASED METHODS 201

6.2.2 Basic algorithm for unconstrained problems
(LFOP)

The basic elements of the LFOP method are as listed in Algorithm 6.1.
A detailed flow chart of the basic LFOP algorithm for unconstrained
problems is given in Figure 6.1.

Algorithm 6.1 LFOP algorithm

1. Given f(x) and starting point x(0) = x0, compute the dynamic
trajectory of the particle by solving the initial value problem:

ẍ(t) = − ∇f(x(t))

with ẋ(0) = 0; and x(0) = x0. (6.5)

2. Monitor v(t) = ẋ(t), clearly as long as T = 1
2‖v(t)‖2 increases,

f(x(t)) decreases as desired.

3. When ‖v(t)‖ decreases, i.e. when the particle moves uphill, apply
some interfering strategy to gradually extract energy from the par-
ticle so as to increase the likelihood of its descent, but not so that
descent occurs immediately.

4. In practice the numerical integration of the initial value prob-
lem (6.5) is done by the “leap-frog” method: compute for k =
0, 1, 2, . . . , and given time step Δt:

xk+1 = xk + vkΔt

vk+1 = vk + ak+1Δt

where
ak = −∇f(xk) and v0 = 1

2a
0Δt,

to ensure an initial step if a0 �= 0.

A typical interfering strategy is to continue the trajectory when
‖vk+1‖ ≥ ‖vk‖, otherwise set vk = 1

4(vk+1 + vk), xk+1 = 1
2(xk+1 + xk)

to compute the new vk+1 and then continue.

202 CHAPTER 6

In addition, Snyman (1982, 1983) introduced additional heuristics to
determine a suitable initial time step Δt, to allow for the magnification
and reduction of Δt, and to control the magnitude of the step Δx =
xk+1 − xk by setting a step size limit δ along the computed trajectory.
The recommended magnitude of δ is δ ≈ 1

10

√
n × (maximum variable

range).

6.2.3 Modification for constrained problems (LFOPC)

The code LFOPC (Snyman 2000) applies the unconstrained optimiza-
tion algorithm LFOP to a penalty function formulation of the con-
strained problem (see Section 3.1) in 3 phases (see Algorithm 6.2).

Algorithm 6.2 LFOPC algorithm

Phase 0:
Given some x0, then with overall penalty parameter ρ = ρ0, apply LFOP
to the penalty function P (x, ρ0) to give x∗(ρ0).
Phase 1:
With x0 := x∗(ρ0) and ρ := ρ1, where ρ1 � ρ0, apply LFOP to P (x, ρ1)
to give x∗(ρ1) and identify the set of active constraints Ia, such that
gia(x∗(ρ1)) > 0 for ia ∈ Ia.
Phase 2:
With x0 := x∗(ρ1) use LFOP to minimize

Pa(x, ρ1) =
r∑

i=1

ρ1h
2
i (x) +

∑

ia∈Ia

ρ1g
2
ia(x)

to give x∗.

For engineering problems (with convergence tolerance εx = 10−4) the
choice ρ0 = 10 and ρ1 = 100 is recommended. For extreme accuracy
(εx = 10−8), use ρ0 = 100 and ρ1 = 104.

6.2.3.1 Example

Minimize f(x) = x2
1+2x2

2 suchthatg(x) = −x1−x2+1 ≤ 0withstarting
point x0 = [3, 1]T by means of the LFOPC algorithm. Use ρ0 = 1.0 and
ρ1 = 10.0. The computed solution is depicted in Figure 6.2.

http://dx.doi.org/10.1007/978-3-319-77586-9_3

NEW GRADIENT-BASED METHODS 203

ix = 0

Δt = Δt/2
id = 0

vk+1 = 0
k = k + 1
ixm = 1

ix = ix + 1
xk+2 = (xk+1 + xk)/2

vk+1 > vk

ak+1ak > 0

id > idm

is = is + 1
p = 1

x∗ = xk+1ak+1 εg

xk+1 − xk < εx

k > kmax

vk+1 = vk + ak+1Δt
ak+1 = −∇f(xk+1)

is = 0

ix ≤ ixm

x0, δ, kmax
εx, εg

ix = 0 ixm = 2
is = 0 ism = 3
id = 0 idm = 5

p = 1 k = −1
δt = 0.001

k = k + 1
Δxk = vk Δt

Δxk < δ

id = id + 1

vk = δvk
Δt vk

r = 1 − 80εx/δ
vk = (vk + rvk−1)/4
xk = (xk + xk−1)/2

Δt = Δt/2
is = 0

p = p + δt

id = 0

Δt = pΔt

a0 = −∇f(x0)

v0 = a0Δt

Δt = δ
5 ∇f(x0)

xk+1 = xk + vkΔt

vk+1 = (vk+1 + vk)/4
k = k + 1

is < ism

yes

yes

yes

yes

yes

yes

yes

yes

yes

Figure 6.1: Flowchart of the LFOP unconstrained minimization algo-
rithm

204 CHAPTER 6

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

1.5

2

2
4

4

6

6

8

8

8

10

10

2

12
(3,1)

(a)

x1

x
2

constraint

feasible region

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5

0.5

0.5

1

1

1

1.5

1.5

2

(b)

x1

x
2

x∗(ρ0)

constraint

feasible region

0.6 0.62 0.64 0.66 0.68 0.7
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36
(c)

x1

x
2

x∗(ρ1)

x∗

constraint

feasible
region

Figure 6.2: The (a) complete LFOPC trajectory for example problem
6.2.3.1, with x0 = [3, 1]T , and magnified views of the final part of the
trajectory shown in (b) and (c), giving x∗ ≈ [0.659, 0.341]T

NEW GRADIENT-BASED METHODS 205

6.3 The spherical quadratic steepest descent
method

6.3.1 Introduction

In this section an extremely simple gradient only algorithm (Snyman
and Hay 2001) is proposed that, in terms of storage requirement (only 3
n-vectors need be stored) and computational efficiency, may be consid-
ered as an alternative to the conjugate gradient methods. The method
effectively applies the steepest descent (SD) method to successive simple
spherical quadratic approximations of the objective function in such a
way that no explicit line searches are performed in solving the minimiza-
tion problem. It is shown that the method is convergent when applied to
general positive-definite quadratic functions. The method is tested by
its application to some standard and other test problems. On the evi-
dence presented the new method, called the SQSD algorithm, appears to
be reliable and stable and performs very well when applied to extremely
ill-conditioned problems.

6.3.2 Classical steepest descent method revisited

Consider the following unconstrained optimization problem:

min f(x), x ∈ R
n (6.6)

where f is a scalar objective function defined on R
n, the n-dimensional

real Euclidean space, and x is a vector of n real components x1, x2, . . . , xn.
It isassumedthatf isdifferentiablesothatthegradientvector∇f(x)exists
everywhere inR

n. The solution is denoted by x∗.

The steepest descent (SD) algorithm for solving problem (6.6) may then
be stated as follows:

It can be shown that if the steepest descent method is applied to a
general positive-definite quadratic function of the form f(x) = 1

2x
TAx+

bTx + c, then the sequence
{
f(xk)

} → f(x∗). Depending, however, on
the starting point x0 and the condition number of A associated with the
quadratic form, the rate of convergence may become extremely slow.

206 CHAPTER 6

Algorithm 6.3 SD algorithm

Initialization: Specify convergence tolerances εg and εx, select starting
point x0. Set k := 1 and go to main procedure.
Main procedure:

1. If
∥∥∇f(xk−1)

∥∥ < εg, then set x∗ ∼= xc = xk−1 and stop; otherwise
set uk := −∇f(xk−1).

2. Let λk be such that f(xk−1 +λkuk) = minλ f(xk−1 +λuk) subject
to λ ≥ 0 {line search step}.

3. Set xk := xk−1 + λkuk; if
∥∥xk − xk−1

∥∥ < εx, then x∗ ∼= xc = xk

and stop; otherwise set k := k + 1 and go to Step 1.

It is proposed here that for general functions f(x), better overall per-
formance of the steepest descent method may be obtained by applying
it successively to a sequence of very simple quadratic approximations of
f(x). The proposed modification, named here the spherical quadratic
steepest descent (SQSD) method, remains a first order method since only
gradient information is used with no attempt being made to construct
the Hessian of the function. The storage requirements therefore remain
minimal, making it ideally suitable for problems with a large number of
variables. Another significant characteristic is that the method requires
no explicit line searches.

6.3.3 The SQSD algorithm

In the SQSD approach, given an initial approximate solution x0, a
sequence of spherically quadratic optimization subproblems P [k], k =
0, 1, 2, . . . is solved, generating a sequence of approximate solutions xk+1.
More specifically, at each point xk the constructed approximate subprob-
lem is P [k]:

min
x

f̃k(x) (6.7)

where the approximate objective function f̃k(x) is given by

f̃k(x) = f(xk) + ∇T f(xk)(x − xk) +
1
2
(x − xk)TCk(x − xk) (6.8)

NEW GRADIENT-BASED METHODS 207

and Ck = diag(ck, ck, . . . , ck) = ckI. The solution to this problem will
be denoted by x∗k, and for the construction of the next subproblem
P [k + 1], xk+1 := x∗k.

For the first subproblem the curvature c0 is set to c0 :=
∥∥∇f(x0)

∥∥ /ρ,
where ρ > 0 is some arbitrarily specified step limit. Thereafter, for
k ≥ 1, ck is chosen such that f̃(xk) interpolates f(x) at both xk and
xk−1. The latter conditions imply that for k = 1, 2, . . .

ck :=
2

[
f(xk−1) − f(xk) − ∇T f(xk)(xk−1 − xk)

]

‖xk−1 − xk‖2 . (6.9)

Clearly the identical curvature entries along the diagonal of the Hessian,
mean that the level surfaces of the quadratic approximation f̃k(x), are
indeed concentric hyper-spheres. The approximate subproblems P [k]
are therefore aptly referred to as spherical quadratic approximations.

It is now proposed that for a large class of problems the sequence
x0,x1, . . . will tend to the solution of the original problem (6.6), i.e.

lim
k→∞

xk = x∗. (6.10)

For subproblems P [k] that are convex, i.e. ck > 0, the solution occurs
where ∇f̃k(x) = 0, that is where

∇f(xk) + ckI(x − xk) = 0. (6.11)

The solution to the subproblem, x∗k is therefore given by

x∗k = xk − ∇f(xk)
ck

. (6.12)

Clearly the solution to the spherical quadratic subproblem lies along a
line through xk in the direction of steepest descent. The SQSD method
may formally be stated in the form given in Algorithm 6.4.

Step size control is introduced in Algorithm 6.4 through the specification
of a step limit ρ and the test for

∥∥xk − xk−1
∥∥ > ρ in Step 2 of the main

procedure. Note that the choice of c0 ensures that for P [0] the solution
x1 lies at a distance ρ from x0 in the direction of steepest descent.
Also the test in Step 3 that ck < 0, and setting ck := 10−60 where
this condition is true ensures that the approximate objective function is
always positive-definite.

208 CHAPTER 6

Algorithm 6.4 SQSD algorithm

Initialization: Specify convergence tolerances εg and εx, step limit ρ > 0
and select starting point x0. Set c0 :=

∥∥∇f(x0)
∥∥ /ρ. Set k := 1 and go

to main procedure.
Main procedure:

1. If
∥∥∇f(xk−1)

∥∥ < εg, then x∗ ∼= xc = xk−1 and stop; otherwise set

xk := xk−1 − ∇f(xk−1)
ck−1

.

2. If
∥∥xk − xk−1

∥∥ > ρ, then set

xk := xk − ρ
∇f(xk−1)

‖∇f(xk−1)‖ ;

if
∥∥xk − xk−1

∥∥ < εx, then x∗ ∼= xc = xk and stop.

3. Set

ck :=
2

[
f(xk−1) − f(xk) − ∇T f(xk)(xk−1 − xk)

]

‖xk−1 − xk‖2 ;

if ck < 0 set ck := 10−60.

4. Set k := k + 1 and go to Step 1 for next iteration.

NEW GRADIENT-BASED METHODS 209

6.3.4 Convergence of the SQSD method

An analysis of the convergence rate of the SQSD method, when applied
to a general positive-definite quadratic function, affords insight into the
convergence behavior of the method when applied to more general func-
tions. This is so because for a large class of continuously differentiable
functions, the behavior close to local minima is quadratic. For quadratic
functions the following theorem may be proved.

6.3.4.1 Theorem

The SQSD algorithm (without step size control) is convergent when
applied to the general quadratic function of the form f(x) = 1

2x
TAx +

bTx, where A is a n × n positive-definite matrix and b ∈ R
n.

Proof. Begin by considering the bivariate quadratic function, f(x) =
x2

1 + γx2
2, γ ≥ 1 and with x0 = [α, β]T . Assume c0 > 0 given, and

for convenience in what follows set c0 = 1/δ, δ > 0. Also employ the
notation fk = f(xk).

Application of the first step of the SQSD algorithm yields

x1 = x0 − ∇f0

c0
= [α(1 − 2δ), β(1 − 2γδ)]T (6.13)

and it follows that
∥∥x1 − x0

∥∥2 = 4δ2(α2 + γ2β2) (6.14)

and
∇f1 = [2α(1 − 2δ), 2γβ(1 − 2γδ)]T . (6.15)

For the next iteration the curvature is given by

c1 =
2[f0 − f1 − ∇T f1(x0 − x1)]

‖x0 − x1‖2 . (6.16)

Utilizing the information contained in (6.13)–(6.15), the various entries
in expression (6.16) are known, and after substitution c1 simplifies to

c1 =
2(α2 + γ3β2)
α2 + γ2β2

. (6.17)

210 CHAPTER 6

In the next iteration, Step 1 gives

x2 = x1 − ∇f1

c1
. (6.18)

And after the necessary substitutions for x1, ∇f1 and c1, given by (6.13),
(6.15) and (6.17) respectively, (6.18) reduces to

x2 = [α(1 − 2δ)μ1, β(1 − 2γδ)ω1]T (6.19)

where

μ1 = 1 − 1 + γ2β2/α2

1 + γ3β2/α2
(6.20)

and

ω1 = 1 − γ + γ3β2/α2

1 + γ3β2/α2
. (6.21)

Clearly if γ = 1, then μ1 = 0 and ω1 = 0. Thus by (6.19) x2 = 0 and
convergence to the solution is achieved within the second iteration.

Now for γ > 1, and for any choice of α and β, it follows from (6.20) that

0 ≤ μ1 < 1 (6.22)

which implies from (6.19) that for the first component of x2:
∣∣∣x(2)

1

∣∣∣ = |α(1 − 2δ)μ1| < |α(1 − 2δ)| =
∣∣∣x(1)

1

∣∣∣ (6.23)

or introducing α notation (with α0 = α), that

|α2| = |μ1α1| < |α1|. (6.24)

{Note: because c0 = 1/δ > 0 is chosen arbitrarily, it cannot be said that
|α1| < |α0|. However α1 is finite.}
The above argument, culminating in result (6.24), is for the two iter-
ations x0 → x1 → x2. Repeating the argument for the sequence of
overlapping pairs of iterations x1 → x2 → x3; x2 → x3 → x4; . . ., it
follows similarly that |α3| = |μ2α2| < |α2|; |α4| = |μ3α3| < |α3|; . . .,
since 0 ≤ μ2 < 1; 0 ≤ μ3 < 1; . . ., where the value of μk is determined
by (corresponding to equation (6.20) for μ1):

μk = 1 − 1 + γ2β2
k−1/α2

k−1

1 + γ3β2
k−1/α2

k−1

. (6.25)

NEW GRADIENT-BASED METHODS 211

Thus in general
0 ≤ μk < 1 (6.26)

and
|αk+1| = |μkαk| < |αk|. (6.27)

For large positive integer m it follows that

|αm| = |μm−1αm−1| = |μm−1μm−2αm−2| = |μm−1μm−2 · · ·μ1α1| (6.28)

and clearly for γ > 0, because of (6.26)

lim
m→∞ |αm| = 0. (6.29)

Now for the second component of x2 in (6.19), the expression for ω1,
given by (6.21), may be simplified to

ω1 =
1 − γ

1 + γ3β2/α2
. (6.30)

Also for the second component:

x
(2)
2 = β(1 − 2γδ)ω1 = ω1x

(1)
2 (6.31)

or introducing β notation
β2 = ω1β1. (6.32)

The above argument is for x0 → x1 → x2 and again, repeating it for the
sequence of overlapping pairs of iterations, it follows more generally for
k = 1, 2, . . ., that

βk+1 = ωkβk (6.33)

where ωk is given by

ωk =
1 − γ

1 + γ3β2
k−1/α2

k−1

. (6.34)

Since by (6.29), |αm| → 0, it follows that if |βm| → 0 as m → ∞, the
theorem is proved for the bivariate case. Make the assumption that |βm|

212 CHAPTER 6

does not tend to zero, then there exists a finite positive number ε such
that

|βk| ≥ ε (6.35)

for all k. This allows the following argument:

|ωk| =

∣∣∣∣∣
1 − γ

1 + γ3β2
k−1/α2

k−1

∣∣∣∣∣ ≤
∣∣∣∣∣

1 − γ

1 + γ3ε2/α2
k−1

∣∣∣∣∣ =

∣∣∣∣∣
(1 − γ)α2

k−1

α2
k−1 + γ3ε2

∣∣∣∣∣ . (6.36)

Clearly since by (6.29) |αm| → 0 as m → ∞, (6.36) implies that also
|ωm| → 0. This result taken together with (6.33) means that |βm| → 0
which contradicts the assumption above. With this result the theorem
is proved for the bivariate case.

Although the algebra becomes more complicated, the above argument
can clearly be extended to prove convergence for the multivariate case,
where

f(x) =
n∑

i=1

γix
2
i , γ1 = 1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γn. (6.37)

Finally since the general quadratic function

f(x) =
1
2
xTAx + bTx, A positive − definite (6.38)

may be transformed to the form (6.37), convergence of the SQSD method
is also ensured in the general case. �

It is important to note that, the above analysis does not prove that ‖xk −
x∗‖ is monotonically decreasing with k, neither does it necessarily follow
that monotonic descent in the corresponding objective function values
f(xk), is guaranteed. Indeed, extensive numerical experimentation with
quadratic functions show that, although the SQSD trajectory rapidly
approaches the minimum, relatively large spike increases in f(xk) may
occur after which the trajectory quickly recovers on its path to x∗. This
happens especially if the function is highly elliptical (poorly scaled).

6.3.5 Numerical results and conclusion

The SQSD method is now demonstrated by its application to some test
problems. For comparison purposes the results are also given for the

NEW GRADIENT-BASED METHODS 213

standard SD method and both the Fletcher-Reeves (FR) and Polak-
Ribiere (PR) conjugate gradient methods. The latter two methods are
implemented using the CG+ Fortran conjugate gradient program of
Gilbert and Nocedal (1992). The CG+ implementation uses the line
search routine of Moré and Thuente (1994). The function and gradient
values are evaluated together in a single subroutine. The SD method is
applied using CG+ with the search direction modified to the steepest
descent direction. The Fortran programs were run on a 266 MHz
Pentium 2 computer using double precision computations.

The standard (refs. Rao 1996; Snyman 1985; Himmelblau 1972; Manevich
1999) and other test problems used are listed in Section 6.3.6 and the
results are given in Tables 6.1 and 6.2. The convergence tolerances applied
throughout are εg = 10−5 and εx = 10−8, except for the extended homoge-
neous quadratic function with n = 50000 (Problem 12) and the extremely
ill-conditioned Manevich functions (Problems 14). For these problems the
extreme tolerances εg

∼= 0(= 10−75) and εx = 10−12, are prescribed
in an effort to ensure very high accuracy in the approximation xc to x∗.
For each method the number of function-cum-gradient-vector evaluations
(Nfg) are given. For theSQSDmethod thenumber of iterations is the same
as Nfg. For the other methods the number of iterations (N it) required for
convergence, and which corresponds to the number of line searches exe-
cuted, are also listed separately. In addition the relative error (Er) in opti-
mum function value, defined by

Er =
∣∣∣∣
f(x∗) − f(xc)
1 + |f(x∗)|

∣∣∣∣ (6.39)

where xc is the approximation to x∗ at convergence, is also listed. For
the Manevich problems, with n ≥ 40, for which the other (SD, FR and
PR) algorithms fail to converge after the indicated number of steps,
the infinite norm of the error in the solution vector (I∞), defined by
‖x∗ − xc‖∞ is also tabulated. These entries, given instead of the relative
error in function value (Er), are made in italics.

Inspection of the results shows that the SQSD algorithm is consistently
competitive with the other three methods and performs notably well for
large problems. Of all the methods the SQSD method appears to be the
most reliable one in solving each of the posed problems. As expected,
because line searches are eliminated and consecutive search directions are

214 CHAPTER 6

Prob. # n SQSD Steepest Descent

ρ Nfg Er Nfg N it Er/I∞

1 3 1 12 3.E-14 41 20 6.E-12
2 2 1 31 1.E-14 266 131 9.E-11
3 2 1 33 3.E-08 2316 1157 4.E-08

4 2 0.3 97 1.E-15 > 20000 3.E-09

5(a) 3 1 11 1.E-12 60 29 6.E-08
5(b) 3 1 17 1.E-12 49 23 6.E-08

6 4 1 119 9.E-09 > 20000 2.E-06

7 3 1 37 1.E-12 156 77 3.E-11
8 2 10 39 1.E-22 12050* 6023* 26*

9 2 0.3 113 5.E-14 6065 3027 2.E-10

10 2 1 43 1.E-12 1309 652 1.E-10
11 4 2 267 2.E-11 16701 8348 4.E-11
12 20 1.E+04 58 1.E-11 276 137 1.E-11

200 1.E+04 146 4.E-12 2717 1357 1.E-11

2000 1.E+04 456 2.E-10 > 20000 2.E-08

20000 1.E+04 1318 6.E-09 > 10000 8.E+01
50000 1.E+10 4073 3.E-16 > 10000 5.E+02

13 10 0.3 788 2.E-10 > 20000 4.E-07
100 1 2580 1.E-12 > 20000 3.E+01
300 1.73 6618 1.E-10 > 20000 2.E+02

600 2.45 13347 1.E-11 > 20000 5.E+02
1000 3.16 20717 2.E-10 > 30000 9.E+02

14 20 1 3651 2.E-27 > 20000 9.E-01

10 3301 9.E-30
40 1 13302 5.E-27 > 30000 1.E+00

10 15109 2.E-33

60 1 19016 7.E-39 > 30000 1.E+00

10 16023 6.E-39
100 1 39690 1.E-49 > 50000 1.E+00

10 38929 3.E-53

200 1 73517 5.E-81 > 100000 1.E+00

10 76621 4.E-81

* Convergence to a local minimum with f(xc) = 48.9.

Table 6.1: Performance of the SQSD and SD optimization algorithms
when applied to the test problems listed in Section 6.3.6

NEW GRADIENT-BASED METHODS 215

Prob. # n Fletcher-Reeves Polak-Ribiere

Nfg N it Er/I∞ Nfg N it Er/I∞

1 3 7 3 0$ 7 3 0$
2 2 30 11 2.E-11 22 8 2.E-12
3 2 45 18 2.E-08 36 14 6.E-11
4 2 180 78 1.E-11 66 18 1.E-14

5(a) 3 18 7 6.E-08 18 8 6.E-08
5(b) 3 65 31 6.E-08 26 11 6.E-08
6 4 1573 783 8.E-10 166 68 3.E-09
7 3 132 62 4.E-12 57 26 1.E-12
8 2 72* 27* 26* 24* 11* 26*
9 2 56 18 5.E-11 50 17 1.E-15
10 2 127 60 6.E-12 30 11 1.E-11
11 4 193 91 1.E-12 99 39 9.E-14
12 20 42 20 9.E-32 42 20 4.E-31

200 163 80 5.E-13 163 80 5.E-13
2000 530 263 2.E-13 530 263 2.E-13
20000 1652 825 4.E-13 1652 825 4.E-13
50000 3225 1161 1.E-20 3225 1611 1.E-20

13 10 > 20000 2.E-02 548 263 4.E-12
100 > 20000 8.E+01 1571 776 2.E-12
300 > 20000 3.E+02 3253 1605 2.E-12
600 > 20000 6.E+02 5550 2765 2.E-12
1000 > 30000 1.E+03 8735 4358 2.E-12

14 20 187 75 8.E-24 1088 507 2.E-22
40 > 30000 1.E+00 > 30000 1.E+00
60 > 30000 1.E+00 > 30000 1.E+00
100 > 50000 1.E+00 > 50000 1.E+00
200 > 100000 1.E+00 > 100000 1.E+00

* Convergence to a local minimum with f(xc) = 48.9; $ Solution to machine accuracy.

Table 6.2: Performance of the FR and PR algorithms when applied to
the test problems listed in Section 6.3.6

216 CHAPTER 6

no longer forced to be orthogonal, the new method completely overshad-
ows the standard SD method. What is much more gratifying, however, is
the performance of the SQSD method relative to the well-established and
well-researched conjugate gradient algorithms. Overall the new method
appears to be very competitive with respect to computational efficiency
and, on the evidence presented, remarkably stable.

In the implementation of the SQSD method to highly non-quadratic and
non-convex functions, some care must however be taken in ensuring that
the chosen step limit parameter ρ, is not too large. A too large value may
result in excessive oscillations occurring before convergence. Therefore
a relatively small value, ρ = 0.3, was used for the Rosenbrock problem
with n = 2 (Problem 4). For the extended Rosenbrock functions of
larger dimensionality (Problems 13), correspondingly larger step limit
values (ρ =

√
n/10) were used with success.

For quadratic functions, as is evident from the convergence analysis of
Section 6.3.4, no step limit is required for convergence. This is borne
out in practice by the results for the extended homogeneous quadratic
functions (Problems 12), where the very large value ρ = 104 was used
throughout, with the even more extreme value of ρ = 1010 for n = 50000.
The specification of a step limit in the quadratic case also appears to
have little effect on the convergence rate, as can be seen from the results
for the ill-conditioned Manevich functions (Problems 14), that are given
for both ρ = 1 and ρ = 10. Here convergence is obtained to at least
11 significant figures accuracy (‖x∗ − xc‖∞ < 10−11) for each of the
variables, despite the occurrence of extreme condition numbers, such as
1060 for the Manevich problem with n = 200.

The successful application of the new method to the ill-conditioned
Manevich problems, and the analysis of the convergence behavior for
quadratic functions, indicate that the SQSD algorithm represents a pow-
erful approach to solving quadratic problems with large numbers of vari-
ables. In particular, the SQSD method can be seen as an unconditionally
convergent, stable and economic alternative iterative method for solv-
ing large systems of linear equations, ill-conditioned or not, through the
minimization of the sum of the squares of the residuals of the equations.

NEW GRADIENT-BASED METHODS 217

6.3.6 Test functions used for SQSD

Minimize f(x):

1. f(x) = x2
1 + 2x2

2 + 3x2
3 − 2x1 − 4x2 − 6x3 + 6, x0 = [3, 3, 3]T , x∗ =

[1, 1, 1]T , f(x∗) = 0.0.

2. f(x) = x4
1 − 2x2

1x2 + x2
1 + x2

2 − 2x1 + 1, x0 = [3, 3]T , x∗ =
[1, 1]T , f(x∗) = 0.0.

3. f(x) = x4
1−8x3

1+25x2
1+4x2

2−4x1x2−32x1+16, x0 = [3, 3]T , x∗ =
[2, 1]T , f(x∗) = 0.0.

4. f(x) = 100(x2 − x2
1)

2 + (1 − x1)2, x0 = [−1.2, 1]T , x∗ =
[1, 1]T , f(x∗) = 0.0 (Rosenbrock’s parabolic valley, Rao 1996).

5. f(x) = x4
1 + x3

1 − x1 + x4
2 − x2

2 + x2 + x2
3 − x3 + x1x2x3, (Zlobec’s

function, Snyman 1985):

(a) x0 = [1, −1, 1]T and

(b) x0 = [0, 0, 0]T , x∗ = [0.57085597, −0.93955591, 0.76817555]T ,
f(x∗) = −1.91177218907.

6. f(x) = (x1+10x2)2+5(x3−x4)2+(x2−2x3)4+10(x1−x4)4, x0 =
[3, −1, 0, 1]T , x∗ = [0, 0, 0, 0]T , f(x∗) = 0.0 (Powell’s quartic func-
tion, Rao 1996).

7. f(x) = −
{

1
1+(x1−x2)2

+ sin
(

1
2πx2x3

)
+ exp

[
−

(
x1+x3

x2
− 2

)2
]}

,

x0 = [0, 1, 2]T ,x∗ = [1, 1, 1]T , f(x∗) = −3.0 (Rao 1996).

8. f(x) = {−13+x1 +[(5−x2)x2 −2]x2}2 +{−29+x1 +[(x2 +1)x2 −
14]x2}2, x0 = [1/2, −2]T , x∗ = [5, 4]T , f(x∗) = 0.0 (Freudenstein
and Roth function, Rao 1996).

9. f(x) = 100(x2 − x3
1)

2 + (1 − x1)2, x0 = [−1.2, 1]T , x∗ = [1, 1]T ,
f(x∗) = 0.0 (cubic valley, Himmelblau 1972).

10. f(x) = [1.5 − x1(1 − x2)]2 + [2.25 − x1(1 − x2
2)]

2 + [2.625 − x1(1 −
x3

2)]
2, x0 = [1, 1]T , x∗ = [3, 1/2]T , f(x∗) = 0.0 (Beale’s function,

Rao 1996).

218 CHAPTER 6

11. f(x) = [10(x2 − x2
1)]

2 + (1 − x1)2 + 90(x4 − x2
3)

2 + (1 − x3)2 +
10(x2 + x4 − 2)2 + 0.1(x2 − x4)2, x0 = [−3, 1, −3, −1]T , x∗ =
[1, 1, 1, 1]T , f(x∗) = 0.0 (Wood’s function, Rao 1996).

12. f(x) =
∑n

i=1 ix2
i , x0 = [3, 3, . . . , 3]T , x∗ = [0, 0, . . . , 0]T , f(x∗) =

0.0 (extended homogeneous quadratic functions).

13. f(x)=
∑n−1

i=1 [100(xi+1−x2
i)

2+(1−xi)2],x0 =[−1.2, 1, −1.2, 1, . . .]T ,
x∗ = [1, 1, . . . , 1]T , f(x∗) = 0.0 (extended Rosenbrock functions,
Rao 1996).

14. f(x) =
∑n

i=1(1−xi)2/2i−1, x0 = [0, 0, . . . , 0]T , x∗ = [1, 1, . . . , 1]T ,
f(x∗) = 0.0 (extended Manevich functions, Manevich 1999).

6.4 The Dynamic-Q optimization algorithm

6.4.1 Introduction

An efficient constrained optimization method is presented in this sec-
tion. The method, called the Dynamic-Q method (Snyman and Hay
2002), consists of applying the dynamic trajectory LFOPC optimization
algorithm (see Section 6.2) to successive quadratic approximations of
the actual optimization problem. This method may be considered as an
extension of the unconstrained SQSD method, presented in Section 6.3,
to one capable of handling general constrained optimization problems.

Due to its efficiency with respect to the number of function evaluations
required for convergence, the Dynamic-Q method is primarily intended
for optimization problems where function evaluations are expensive.
Such problems occur frequently in engineering applications where time
consuming numerical simulations may be used for function evaluations.
Amongst others, these numerical analyses may take the form of a com-
putational fluid dynamics (CFD) simulation, a structural analysis by
means of the finite element method (FEM) or a dynamic simulation
of a multibody system. Because these simulations are usually expen-
sive to perform, and because the relevant functions may not be known
analytically, standard classical optimization methods are normally not
suited to these types of problems. Also, as will be shown, the storage

NEW GRADIENT-BASED METHODS 219

requirements of the Dynamic-Q method are minimal. No Hessian infor-
mation is required. The method is therefore particularly suitable for
problems where the number of variables n is large.

6.4.2 The Dynamic-Q method

Consider the general nonlinear optimization problem:

min
x

f(x); x = [x1, x2, . . . , xn]T ∈ R
n

subject to (6.40)
gj(x) ≤0; j = 1, 2, . . . , p

hk(x) =0; k = 1, 2, . . . , q

where f(x), gj(x) and hk(x) are scalar functions of x.

In the Dynamic-Q approach, successive subproblems P [i], i = 0, 1, 2, . . .
are generated, at successive approximations xi to the solution x∗, by
constructing spherically quadratic approximations f̃(x), g̃j(x) and h̃k(x)
to f(x), gj(x) and hk(x). These approximation functions, evaluated at
a point xi, are given by

f̃(x) = f(xi) + ∇T f(xi)(x − xi) +
1
2
(x − xi)TA(x − xi)

g̃j(x) = gj(xi) + ∇T gj(xi)(x − xi)

+
1
2
(x − xi)TBj(x − xi), j = 1, . . . , p (6.41)

h̃k(x) = hk(xi) + ∇T hk(xi)(x − xi)

+
1
2
(x − xi)TCk(x − xi), k = 1, . . . , q

with the Hessian matrices A, Bj and Ck taking on the simple forms

A = diag(a, a, . . . , a) = aI

Bj = bjI (6.42)
Ck = ckI.

Clearly the identical entries along the diagonal of the Hessian matrices
indicate that the approximate subproblems P [i] are indeed spherically
quadratic.

220 CHAPTER 6

For the first subproblem (i = 0) a linear approximation is formed by
setting the curvatures a, bj and ck to zero. Thereafter a, bj and ck

are chosen so that the approximating functions (6.41) interpolate their
corresponding actual functions at both xi and xi−1. These conditions
imply that for i = 1, 2, 3, . . .

a =
2

[
f(xi−1) − f(xi) − ∇T f(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 (6.43)

bj =
2

[
gj(xi−1) − gj(xi) − ∇T gj(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 , j = 1, . . . , p

ck =
2

[
hk(xi−1) − hk(xi) − ∇T hk(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 , k = 1, . . . , q.

If the gradient vectors ∇T f , ∇T gj and ∇T hk are not known analytically,
they may be approximated from functional data by means of first-order
forward finite differences.

The particular choice of spherically quadratic approximations in the
Dynamic-Q algorithm has implications on the computational and stor-
age requirements of the method. Since the second derivatives of the
objective function and constraints are approximated using function and
gradient data, the O(n2) calculations and storage locations, which would
usually be required for these second derivatives, are not needed. The
computational and storage resources for the Dynamic-Q method are
thus reduced to O(n). At most, 4 + p + q + r + s n-vectors need be
stored (where p, q, r and s are respectively the number of inequality
and equality constraints and the number of lower and upper limits of
the variables). These savings become significant when the number of
variables becomes large. For this reason it is expected that the Dynamic-
Q method is well suited, for example, to engineering problems such as
structural optimization problems where a large number of variables are
present.

In many optimization problems, additional bound constraints of the
form k̂i ≤ xi ≤ ǩi occur. Constants k̂i and ǩi respectively represent
lower and upper bounds for variable xi. Since these constraints are of
a simple form (having zero curvature), they need not be approximated
in the Dynamic-Q method and are instead explicitly treated as special
linear inequality constraints. Constraints corresponding to lower and

NEW GRADIENT-BASED METHODS 221

upper limits are respectively of the form

ĝl(x) = k̂vl − xvl ≤ 0, l = 1, 2, . . . , r ≤ n (6.44)
ǧm(x) = xwm − ǩwm ≤ 0, m = 1, 2, . . . , s ≤ n

where vl ∈ Î = (v1, v2, . . . , vr) the set of r subscripts corresponding to
the set of variables for which respective lower bounds k̂vl are prescribed,
and wm ∈ Ǐ = (w1, w2, . . . , ws) the set of s subscripts corresponding
to the set of variables for which respective upper bounds ǩwm are pre-
scribed. The subscripts vl and wm are used since there will, in general,
not be n lower and upper limits, i.e. usually r �= n and s �= n.

In order to obtain convergence to the solution in a controlled and stable
manner, move limits are placed on the variables. For each approximate
subproblem P [i] this move limit takes the form of an additional single
inequality constraint

gρ(x) =
∥∥x − xi

∥∥2 − ρ2 ≤ 0 (6.45)

where ρ is an appropriately chosen step limit and xi is the solution to
the previous subproblem.

The approximate subproblem, constructed at xi, to the optimization
problem (6.40) (plus bound constraints (6.44) and move limit (6.45)),
thus becomes P [i]:

min
x

f̃(x), x = [x1, x2, ..., xn]T ∈ R
n

subject to
g̃j(x) ≤ 0, j = 1, 2, . . . , p

h̃k(x) = 0, k = 1, 2, . . . , q (6.46)
ĝl(x) ≤ 0, l = 1, 2, . . . , r

ǧm(x) ≤ 0, m = 1, 2, . . . , s

gρ(x) =
∥∥x − xi

∥∥2 − ρ2 ≤ 0

with solution x∗i. The Dynamic-Q algorithm is given by Algorithm 6.5.
In the Dynamic-Q method the subproblems generated are solved using
the dynamic trajectory, or “leap-frog” (LFOPC) method of Snyman
(1982, 1983) for unconstrained optimization applied to penalty func-
tion formulations (Snyman et al. 1994; Snyman 2000) of the constrained

222 CHAPTER 6

Algorithm 6.5 Dynamic-Q algorithm

Initialization: Select starting point x0 and move limit ρ. Set i := 0.
Main procedure:

1. Evaluate f(xi), gj(xi) and hk(xi) as well as ∇f(xi), ∇gj(xi) and
∇hk(xi). If termination criteria are satisfied set x∗ = xi and stop.

2. Construct a local approximation P [i] to the optimization problem
at xi using expressions (6.41) to (6.43).

3. Solve the approximated subproblem P [i] (given by (6.46)) using
the constrained optimizer LFOPC with x0 := xi (see Section 6.2)
to give x∗i.

4. Set i := i + 1, xi := x∗(i−1) and return to Step 1.

problem. A brief description of the LFOPC algorithm is given in Section
6.2.

The LFOPC algorithm possesses a number of outstanding characteris-
tics, which makes it highly suitable for implementation in the Dynamic-
Q methodology. The algorithm requires only gradient information and
no explicit line searches or function evaluations are performed. These
properties, together with the influence of the fundamental physical prin-
ciples underlying the method, ensure that the algorithm is extremely
robust. This has been proven over many years of testing (Snyman 2000).
A further desirable characteristic related to its robustness, and the main
reason for its application in solving the subproblems in the Dynamic-Q
algorithm, is that if there is no feasible solution to the problem, the
LFOPC algorithm will still find the best possible compromised solution.
The Dynamic-Q algorithm thus usually converges to a solution from an
infeasible remote point without the need to use line searches between
subproblems, as is the case with SQP. The LFOPC algorithm used by
Dynamic-Q is identical to that presented in Snyman (2000) except for
a minor change to LFOP which is advisable should the subproblems
become effectively unconstrained.

NEW GRADIENT-BASED METHODS 223

6.4.3 Numerical results and conclusion

The Dynamic-Q method requires very few parameter settings by the
user. Other than convergence criteria and specification of a maximum
number of iterations, the only parameter required is the step limit ρ. The
algorithm is not very sensitive to the choice of this parameter, however,
ρ should be chosen of the same order of magnitude as the diameter of
the region of interest. For the problems listed in Table 6.3 a step limit
of ρ = 1 was used except for problems 72 and 106 where step limits
ρ =

√
10 and ρ = 100 were used respectively.

Given specified positive tolerances εx, εf and εc, then at step i termina-
tion of the algorithm occurs if the normalized step size

∥∥xi − xi−1
∥∥

1 + ‖xi‖ < εx (6.47)

or if the normalized change in function value
∣∣f i − fbest

∣∣
1 + |fbest| < εf (6.48)

where fbest is the lowest previous feasible function value and the current
xi is feasible. The point xi is considered feasible if the absolute value of
the violation of each constraint is less than εc. This particular function
termination criterion is used since the Dynamic-Q algorithm may at
times exhibit oscillatory behavior near the solution.

In Table 6.3, for the same starting points, the performance of the
Dynamic-Q method on some standard test problems is compared to
results obtained for Powell’s SQP method as reported by Hock and Schit-
tkowski (1981). The problem numbers given correspond to the problem
numbers in Hock and Schittkowski’s book. For each problem, the actual
function value fact is given, as well as, for each method, the calculated
function value f∗ at convergence, the relative function error

Er =
|fact − f∗|
1 + |fact| (6.49)

and the number of function-gradient evaluations (Nfg) required for
convergence. In some cases it was not possible to calculate the relative

224 CHAPTER 6

Prob. # n fact SQP Dynamic-Q

Nfg f∗ Er Nfg f∗ Er

2 2 5.04E-02 16∼ 2.84E+01 2.70E+01 7* 4.94E+00 <1.00E-08

10 2 -1.00E+00 12 -1.00E+00 5.00E-08 13 -1.00E+00 <1.00E-08

12 2 -3.00E+01 12 -3.00E+01 <1.00E-08 9 -3.00E+01 <1.00E-08

13 2 1.00E+00 45 1.00E+00 5.00E-08 50$ 9.59E-01 2.07E-02

14 2 1.39E+00 6 1.39E+00 8.07E-09 5 1.39E+00 7.86E-07

15 2 3.07E+02 5 3.07E+02 <1.00E-08 15* 3.60E+02 5.55E-07

16 2 2.50E-01 6* 2.31E+01 <1.00E-08 5* 2.31E+01 <1.00E-08

17 2 1.00E+00 12 1.00E+00 <1.00E-08 16 1.00E+00 <1.00E-08

20 2 3.82E+01 20 3.82E+01 4.83E-09 4* 4.02E+01 <1.00E-08

22 2 1.00E+00 9 1.00E+00 <1.00E-08 3 1.00E+00 <1.00E-08

23 2 2.00E+00 7 2.00E+00 <1.00E-08 5 2.00E+00 <1.00E-08

24 2 -1.00E+00 5 -1.00E+00 <1.00E-08 4 -1.00E+00 1.00E-08

26 3 0.00E+00 19 4.05E-08 4.05E-08 27 1.79E-07 1.79E-07

27 3 4.00E-02 25 4.00E-02 1.73E-08 28 4.00E-02 9.62E-10

28 3 0.00E+00 5 2.98E-21 2.98E-21 12 7.56E-10 7.56E-10

29 3 -2.26E+01 13 -2.26E+01 8.59E-11 11 -2.26E+01 8.59E-11

30 3 1.00E+00 14 1.00E+00 <1.00E-08 5 1.00E+00 <1.00E-08

31 3 6.00E+00 10 6.00E+00 <1.00E-08 10 6.00E+00 1.43E-08

32 3 1.00E+00 3 1.00E+00 <1.00E-08 4 1.00E+00 <1.00E-08

33 3 -4.59E+00 5* -4.00E+00 <1.00E-08 3* -4.00E+00 <1.00E-08

36 3 -3.30E+03 4 -3.30E+03 <1.00E-08 15 -3.30E+03 <1.00E-08

45 5 1.00E+00 8 1.00E+00 <1.00E-08 7 1.00E+00 1.00E-08

52 5 5.33E+00 8 5.33E+00 5.62E-09 12 5.33E+00 1.02E-08

55 6 6.33E+00 1∼ 6.00E+00 4.54E-02 2* 6.66E+00 1.30E-09

56 7 -3.46E+00 11 -3.46E+00 <1.00E-08 20 -3.46E+00 6.73E-08

60 3 3.26E-02 9 3.26E-02 3.17E-08 11 3.26E-02 1.21E-09

61 3 -1.44E+02 10 -1.44E+02 1.52E-08 10 -1.44E+02 1.52E-08

63 3 9.62E+02 9 9.62E+02 2.18E-09 6 9.62E+02 2.18E-09

65 3 9.54E-01 11∼ 2.80E+00 9.47E-01 9 9.54E-01 2.90E-08

71 4 1.70E+01 5 1.70E+01 1.67E-08 6 1.70E+01 1.67E-08

72 4 7.28E+02 35 7.28E+02 1.37E-08 30 7.28E+02 1.37E-08

76 4 -4.68E+00 6 -4.68E+00 3.34E-09 8 -4.68E+00 3.34E-09

78 5 -2.92E+00 9 -2.92E+00 2.55E-09 6 -2.92E+00 2.55E-09

80 5 5.39E-02 7 5.39E-02 7.59E-10 6 5.39E-02 7.59E-10

81 5 5.39E-02 8 5.39E-02 1.71E-09 12 5.39E-02 1.90E-10

100 7 6.80E+02 20 6.80E+02 <1.00E-08 16 6.80E+02 1.46E-10

104 8 3.95E+00 19 3.95E+00 8.00E-09 42 3.95E+00 5.26E-08

106 8 7.05E+03 44 7.05E+03 1.18E-05 79 7.05E+03 1.18E-05

108 9 -8.66E-01 9* -6.97E-01 1.32E-02 26 -8.66E-01 3.32E-09

118 15 6.65E+02 ∼ ∼ ∼ 38 6.65E+02 3.00E-08

Svan 21 2.80E+02 150 2.80E+02 9.96E-05 93 2.80E+02 1.59E-06

* Converges to a local minimum - listed Er relative to function value at local minimum;
∼ Fails; $ Terminates on maximum number of steps.

Table 6.3: Performance of the Dynamic-Q and SQP optimization algo-
rithms

NEW GRADIENT-BASED METHODS 225

function error due to rounding off of the solutions reported by Hock and
Schittkowski. In these cases the calculated solutions were correct to at
least eight significant digits. For the Dynamic-Q algorithm, convergence
tolerances of εf = 10−8 on the function value, εx = 10−5 on the step size
and εc = 10−6 for constraint feasibility, were used. These were chosen
to allow for comparison with the reported SQP results.

The result for the 12-corner polytope problem of Svanberg (1999) is
also given. For this problem the results given in the SQP columns are
for Svanberg’s Method of Moving Asymptotes (MMA). The recorded
number of function evaluations for this method is approximate since
the results given correspond to 50 outer iterations of the MMA, each
requiring about 3 function evaluations.

A robust and efficient method for nonlinear optimization, with minimal
storage requirements compared to those of the SQP method, has been
proposed and tested. The particular methodology proposed is made
possible by the special properties of the LFOPC optimization algorithm
(Snyman 2000), which is used to solve the quadratic subproblems. Com-
parison of the results for Dynamic-Q with the results for the SQP method
show that equally accurate results are obtained with comparable number
of function evaluations.

6.5 A gradient-only line search method for con-
jugate gradient methods

6.5.1 Introduction

Many engineering design optimization problems involve numerical com-
puter analyses via, for example, FEM codes, CFD simulations or the
computer modeling of the dynamics of multi-body mechanical systems.
The computed objective function is therefore often the result of a com-
plex sequence of calculations involving other computed or measured
quantities. This may result in the presence of numerical noise in the
objective function so that it exhibits non-smooth trends as design param-
eters are varied. It is well known that this presence of numerical
noise in the design optimization problem inhibits the use of classical

226 CHAPTER 6

and traditional gradient-based optimization methods that employ line
searches, such as for example, the conjugate gradient methods. The
numerical noise may prevent or slow down convergence during opti-
mization. It may also promote convergence to spurious local optima.
The computational expense of the analyses, coupled to the convergence
difficulties created by the numerical noise, is in many cases a significant
obstacle to performing multidisciplinary design optimization.

In addition to the anticipated difficulties when applying the conjugate
gradient methods to noisy optimization problems, it is also known that
standard implementations of conjugate gradient methods, in which con-
ventional line search techniques have been used, are less robust than
one would expect from their theoretical quadratic termination property.
Therefore the conjugate gradient method would, under normal circum-
stances, not be preferred to quasi-Newton methods (Fletcher 1987). In
particular severe numerical difficulties arise when standard line searches
are used in solving constrained problems through the minimization of
associated penalty functions. However, there is one particular advan-
tage of conjugate gradient methods, namely the particular simple form
that requires no matrix operations in determining the successive search
directions. Thus, conjugate gradient methods may be the only meth-
ods which are applicable to large problems with thousands of variables
(Fletcher 1987), and are therefore well worth further investigation.

In this section a new implementation (ETOPC) of the conjugate gra-
dient method (both for the Fletcher-Reeves and Polak-Ribiere versions
(see Fletcher 1987) is presented for solving constrained problems. The
essential novelty in this implementation is the use of a gradient-only line
search technique originally proposed by the author (Snyman 1985), and
used in the ETOP algorithm for unconstrained minimization. It will be
shown that this implementation of the conjugate gradient method, not
only easily overcomes the accuracy problem when applied to the mini-
mization of penalty functions, but also economically handles the problem
of severe numerical noise superimposed on an otherwise smooth under-
lying objective function.

NEW GRADIENT-BASED METHODS 227

6.5.2 Formulation of optimization problem

Consider again the general constrained optimization problem:

min
x

f(x), x = [x1, x2, x3, . . . , xn]T ∈ Rn (6.50)

subject to the inequality and equality constraints:

gj(x) ≤ 0, j = 1, 2, . . . , m (6.51)
hj(x) = 0, j = 1, 2, . . . , r

where the objective function f(x), and the constraint functions gj(x) and
hj(x), are scalar functions of the real column vector x. The optimum
solution is denoted by x∗, with corresponding optimum function value
f(x∗).

The most straightforward way of handling the constraints is via the
unconstrained minimization of the penalty function:

P (x) = f(x) +
r∑

j=1

ρjh
2
j (x) +

m∑

j=1

βjg
2
j (x) (6.52)

where ρj � 0, βj = 0 if gj(x) ≤ 0, and βj = μj � 0 if gj(x) > 0.

Usually ρj = μj = μ � 0 for all j, with the corresponding penalty
function being denoted by P (x, μ).

Central to the application of the conjugate gradient method to penalty
function formulated problems presented here, is the use of an uncon-
ventional line search method for unconstrained minimization, proposed
by the author, in which no function values are explicitly required (Sny-
man 1985). Originally this gradient-only line search method was applied
to the conjugate gradient method in solving a few very simple uncon-
strained problems. For somewhat obscure reasons, given in the original
paper (Snyman 1985) and briefly hinted to in this section, the combined
method (novel line search plus conjugate gradient method) was called
the ETOP (Euler-Trapezium Optimizer) algorithm. For this historical
reason, and to avoid confusion, this acronym will be retained here to
denote the combined method for unconstrained minimization. In sub-
sequent unreported numerical experiments, the author was successful in
solving a number of more challenging practical constrained optimization

228 CHAPTER 6

problems via penalty function formulations of the constrained prob-
lem, with ETOP being used in the unconstrained minimization of the
sequence of penalty functions. ETOP, applied in this way to constrained
problems, was referred to as the ETOPC algorithm. Accordingly this
acronym will also be used here.

6.5.3 Gradient-only line search

The line search method used here, and originally proposed by the author
(Snyman 1985) uses no explicit function values. Instead the line search
is implicitly done by using only two gradient vector evaluations at two
points along the search direction and assuming that the function is near-
quadratic along this line. The essentials of the gradient-only line search,
for the case where the function f(x) is unconstrained, are as follows.
Given the current design point xk at iteration k and next search direction
vk+1, then compute

xk+1 = xk + vk+1τ (6.53)

where τ is some suitably chosen positive parameter. The step taken in
(6.53) may be seen as an “Euler step”. With this step given by

Δxk = xk+1 − xk = vk+1τ (6.54)

the line search in the direction vk+1 is equivalent to finding x∗k+1 defined
by

f(x∗k+1) = min
λ

f(xk + λΔxk). (6.55)

These steps are depicted in Figure 6.3.

It was indicated in Snyman (1985) that for the step xk+1 = xk + vk+1τ
the change in function value Δfk, in the unconstrained case, can be
approximated without explicitly evaluating the function f(x). Here a
more formal argument is presented via the following lemma.

6.5.3.1 Lemma 1

For a general quadratic function, the change in function value, for the
step Δxk = xk+1 − xk = vk+1τ is given by:

Δfk = −〈vk+1,
1
2
(ak + ak+1)τ〉 (6.56)

NEW GRADIENT-BASED METHODS 229

xk

x∗k+2
x∗k+1

xk+1 = xk + vk+1τ

x∗k+3

xk+3

xk+2

Figure 6.3: Successive steps in line search procedure

where ak = −∇f(xk) and 〈 , 〉 denotes the scalar product.

Proof :

In general, by Taylor’s theorem:

f(xk+1) − f(xk) = 〈xk+1 − xk, ∇f(xk)〉 +
1
2
〈Δxk,H(xa)Δxk〉

and

f(xk+1) − f(xk) = 〈xk+1 − xk, ∇f(xk+1)〉 − 1
2
〈Δxk,H(xb)Δxk〉

where xa = xk + θ0Δxk, xb = xk + θ1Δxk and both θ0 and θ1 in the
interval [0, 1], and where H(x) denotes the Hessian matrix of the general
function f(x). Adding the above two expressions gives:

f(xk+1) − f(xk) =
1
2
〈xk+1 − xk, ∇f(xk) + ∇f(xk+1)〉

+
1
4
〈Δxk, [H(xa) − H(xb)]Δxk〉.

If f(x) is quadratic then H(x) is constant and it follows that

Δfk = f(xk+1) − f(xk) = −〈vk+1,
1
2
(ak + ak+1)τ〉

230 CHAPTER 6

0 θ 1

xk

1
2θ

xk+1

x∗k+1

F (λ) = f(xk + λΔxk)

Figure 6.4: Approximation of minimizer x∗k+1 in the direction vk+1

where ak = ∇f(xk), which completes the proof. �

By using expression (6.56) the position of the minimizer x∗k+1 (see Fig-
ure 6.4), in the direction vk+1, can also be approximated without any
explicit function evaluation. This conclusion follows formally from the
second lemma given below. Note that in (6.56) the second quantity in
the scalar product corresponds to an average vector given by the “trapez-
ium rule”. This observation together with the remark following equation
(6.53), gave rise to the name “Euler-trapezium optimizer (ETOP)” when
applying this line search technique in the conjugate gradient method.

6.5.3.2 Lemma 2

For f(x) a positive-definite quadratic function the point x∗k+1 defined
by f(x∗k+1) = minλ f(xk + λΔxk) is given by

x∗k+1 = xk +
1
2
θΔxk (6.57)

where

θ = ρ/(〈vk+1,
1
2
(ak + ak+1)τ〉 + ρ) and ρ = −〈Δxk,ak〉. (6.58)

NEW GRADIENT-BASED METHODS 231

Proof :

First determine θ such that

f(xk + θΔxk) = f(xk).

By Taylor’s expansion:

f(xk+1) − f(xk) = ρ +
1
2
〈Δxk,HΔxk〉, i.e.,

1
2
〈Δxk,HΔxk〉 = Δfk − ρ

which gives for the step θΔx:

f(xk + θΔxk) − f(xk) = θρ +
1
2
θ2〈Δxk,HΔxk〉 = θρ + θ2(Δfk − ρ).

For both function values to be the same, θ must therefore satisfy:

0 = θ(ρ + θ(Δfk − ρ))

which has the non-trivial solution:

θ = −ρ/(Δfk − ρ).

Using the expression for Δfk given by Lemma 1, it follows that:

θ = ρ/(〈vk+1,
1
2
(ak + ak+1)τ〉 + ρ)

and by the symmetry of quadratic functions that

x∗k+1 = xk +
1
2
θΔxk.

�

Expressions (6.57) and (6.58) may of course also be used in the general
non-quadratic case, to determine an approximation to the minimizer
x∗k+1 in the direction vk+1, when performing successive line searches
using the sequence of descent directions, vk+1, k = 1, 2, . . . Thus in
practice, for the next (k+1)-th iteration, set xk+1 := x∗k+1, and with the
next selected search direction vk+2 proceed as above, using expressions
(6.57) and (6.58) to find x∗k+2 and then set xk+2 := x∗k+2. Continue
iterations in this way, with only two gradient vector evaluations done
per line search, until convergence is obtained.

232 CHAPTER 6

In summary, explicit function evaluations are unnecessary in the above
line search procedure, since the two computed gradients along the search
direction allow for the computation of an approximation (6.56) to the
change in objective function, which in turn allows for the estimation of
the position of the minimum along the search line via expressions (6.57)
and (6.58), based on the assumption that the function is near quadratic
in the region of the search.

6.5.3.3 Heuristics

Of course in general the objective function may not be quadratic and
positive-definite. Additional heuristics are therefore required to ensure
descent, and to see to it that the step size (corresponding to the param-
eter τ between successive gradient evaluations, is neither too small nor
too large. The details of these heuristics are as set out below.

(i) In the case of a successful step having been taken, with Δfk com-
puted via (6.56) negative, i.e. descent, and θ computed via (6.58)
positive, i.e. the function is locally strictly convex, as shown in
Figure 6.4, τ is increased by a factor of 1.5 for the next search
direction.

(ii) It may turn out that although Δfk computed via (6.56) is negative,
that θ computed via (6.58) is also negative. The latter implies that
the function along the search direction is locally concave. In this
case set θ := −θ in computing x∗k+1 by (6.57), so as to ensure
a step in the descent direction, and also increase τ by the factor
1.5 before computing the step for the next search direction using
(6.53).

(iii) It may happen that Δfk computed by (6.56) is negative and
exactly equal to ρ, i.e. Δfk − ρ = 0. This implies zero curva-
ture with θ = ∞ and the function is therefore locally linear. In
this case enforce the value θ = 1. This results in the setting, by
(6.57), of x∗k+1 equal to a point halfway between xk and xk+1. In
this case τ is again increased by the factor of 1.5.

(iv) If both Δfk and θ are positive, which is the situation depicted in
Figure 6.4, then τ is halved before the next step.

NEW GRADIENT-BASED METHODS 233

(v) In the only outstanding and unlikely case, should it occur, where
Δfk is positive and θ negative, τ is unchanged.

(vi) For usual unconstrained minimization the initial step size param-
eter selection is τ = 0.5.

The new gradient-only line search method may of course be applied to
any line search descent method for the unconstrained minimization of a
general multi-variable function. Here its application is restricted to the
conjugate gradient method.

6.5.4 Conjugate gradient search directions and SUMT

The search vectors used here correspond to the conjugate gradient direc-
tions (Bazaraa et al. 1993). In particular for k = 0, 1, . . ., the search
vectors are

vk+1 = (−∇f(xk) + βk+1vk/τ)τ = sk+1τ (6.59)

where sk+1 denote the usual conjugate gradient directions, β1 = 0 and
for k > 0:

βk+1 = ‖∇f(xk)‖2/‖∇f(xk−1)‖2 (6.60)

for the Fletcher-Reeves implementation, and for the Polak-Ribiere ver-
sion:

βk+1 = 〈∇f(xk) − ∇f(xk−1), ∇f(xk)〉/‖∇f(xk−1)‖2. (6.61)

As recommended by Fletcher (1987), the conjugate gradient algorithm
is restarted in the direction of steepest descent when k > n.

For the constrained problem the unconstrained minimization is of course
applied to successive penalty function formulations P (x) of the form
shown in (6.52), using the well known Sequential Unconstrained Mini-
mization Technique (SUMT) (Fiacco and McCormick 1968). In SUMT,
for j = 1, 2, . . ., until convergence, successive unconstrained minimiza-
tions are performed on successive penalty functions P (x) = P (x, μ(j))
in which the overall penalty parameter μ(j) is successively increased:
μ(j+1) := 10μ(j). The corresponding initial step size parameter is set at
τ = 0.5/μ(j) for each sub problem j. This application of ETOP to the

234 CHAPTER 6

constrained problem, via the unconstrained minimization of successive
penalty functions, is referred to as the ETOPC algorithm. In practice,
if analytical expressions for the components of the gradient of the objec-
tive function are not available, they may be calculated with sufficient
accuracy by finite differences. However, when the presence of severe
noise is suspected, the application of the gradient-only search method
with conjugate gradient search directions, requires that central finite dif-
ference approximations of the gradients be used in order to effectively
smooth out the noise. In this case relatively excessive perturbations δxi

in xi must be used, which in practice may typically be of the order of
0.1 times the range of interest!

In the application of ETOPC a limit Δm, is in practice set to the max-
imum allowable magnitude Δ∗ of the step Δ∗ = x∗k+1 − xk. If Δ∗ is
greater than Δm, then set

xk+1 := xk + (x∗k+1 − xk)Δm/Δ∗ (6.62)

and restart the conjugate gradient procedure, with x0 := xk+1, in the
direction of steepest descent. If the maximum allowable step is taken n
times in succession, then Δm is doubled.

6.5.5 Numerical results

The proposed new implementation of the conjugate gradient method
(both the Fletcher- Reeves and Polak-Ribiere versions) is tested here
using 40 different problems arbitrarily selected from the famous set of
test problems of Hock and Schittkowski (1981). The problem numbers
(Pr. #) in the tables, correspond to the numbering used in Hock and
Schittkowski. The final test problem, (12-poly), is the 12 polytope prob-
lem of Svanberg (1995, 1999). The number of variables (n) of the test
problems ranges from 2 to 21 and the number of constraints (m plus
r) per problem, from 1 to 59. The termination criteria for the ETOPC
algorithm are as follows:

(i) Convergence tolerances for successive approximate sub-problems
within SUMT: εg for convergence on the norm of the gradient
vector, i.e. terminate if ‖∇P (x∗k+1, μ)‖ < εg , and εx for con-

NEW GRADIENT-BASED METHODS 235

vergence on average change of design vector: i.e. terminate if
1
2‖x∗k+1 − x∗k−1‖ < εx.

(ii) Termination of the SUMT procedure occurs if the absolute value
of the relative difference between the objective function values at
the solution points of successive SUMT problems is less than εf .

6.5.5.1 Results for smooth functions with no noise

For the initial tests no noise is introduced. For high accuracy require-
ments (relative error in optimum objective function value to be less than
10−8), it is found that the proposed new conjugate gradient implemen-
tation performs as robust as, and more economical than, the traditional
penalty function implementation, FMIN, of Kraft and Lootsma reported
in Hock and Schittkowski (1981). The detailed results are as tabulated
in Table 6.4. Unless otherwise indicated the algorithm settings are:
εx = 10−8, εg = 10−5, Δm = 1.0, εf = 10−8, μ(1) = 1.0 and iout = 15,
where iout denotes the maximum number of SUMT iterations allowed.
The number of gradient vector evaluations required by ETOPC for the
different problems are denoted by nge (note that the number of explicit
function evaluations is zero), and the relative error in function value at
convergence to the point xc is denoted by rf , which is computed from

rf = |f(x∗) − f(xc)|/(|f(x∗)| + 1). (6.63)

For the FMIN algorithm only the number of explicit objective function
evaluations nfe are listed, together with the relative error rf at conver-
gence. The latter method requires, in addition to the number of function
evaluations listed, a comparable number of gradient vector evaluations,
which is not given here (see Hock and Schittkowski 1981).

6.5.5.2 Results for severe noise introduced in the objective
function

Following the successful implementation for the test problems with no
noise, all the tests were rerun, but with severe relative random noise
introduced in the objective function f(x) and all gradient components

236 CHAPTER 6

Fletcher-Reeves Polak-Ribiere FMIN

Pr. # n m r nge rf nge rf nfe rf
1 2 1 - 100 < 10−14 103 < 10−13 549 < 10−8

2 2 1 - 290 < 10−8 318 < 10−8 382 1 × 10−8

10 2 1 - 231 < 10−9 247 < 10−9 289 7 × 10−8

12 2 1 - 163 < 10−10 184 < 10−10 117 1 × 10−8

13[1] 2 3 - 4993[2] 0.028 4996[2] 0.034 1522 0.163

14 2 1 1 214 < 10−10 200 < 10−10 232 2 × 10−7

15 2 3 - 699 < 10−9 632 < 10−9 729 4 × 10−7

16 2 5 - 334 < 10−9 284 < 10−7 362 1 × 10−8

17 2 5 - 218 < 10−9 209 < 10−9 541 1 × 10−8

20[3] 2 5 - 362 < 10−9 375 < 10−9 701 4 × 10−6

22 2 2 - 155 < 10−9 202 < 10−9 174 1 × 10−7

23 2 9 - 257 < 10−9 244 < 10−9 423 6 × 10−6

24 2 5 - 95 < 10−11 163 2 × 10−6 280 2 × 10−8

26 3 - 1 78 < 10−8 100 2 × 10−8 182 1 × 10−8

27 3 - 1 129 < 10−8 115 < 10−8 173 1 × 10−8

28 3 - 1 17 < 10−28 17 < 10−28 23 < 10−8

29 3 1 - 254 < 10−10 267 < 10−10 159 < 10−8

30 3 7 - 115 < 10−10 124 < 10−10 1199 4 × 10−8

31 3 7 1 309 < 10−9 274 < 10−9 576 < 10−8

32 3 7 1 205 < 10−10 207 < 10−10 874 < 10−8

33[3] 3 6 - 272[3] < 10−10 180 < 10−10 672[3] 3 × 10−7

36 3 7 - 336 < 10−12 351 < 10−10 263 2 × 10−6

45 5 10 - 175 < 10−10 150 < 10−10 369 < 10−8

52 5 - 3 403 < 10−9 388 < 10−9 374 < 10−8

55[3] 6 8 6 506 < 10−9 488 < 10−9 581[3] 3 × 10−8

56 7 - 4 316 6 × 10−8 289 7 × 10−8 446 < 10 − 8
60 3 6 1 198 < 10−10 189 < 10−10 347 1 × 10 − 8

61 3 - 2 205 < 10−10 201 < 10−10 217 < 10 − 8
63 3 3 2 205 < 10−10 208 < 10−10 298 < 10 − 8
65 3 7 - 179 < 10−8 198 < 10−10 - fails

71 4 9 1 493 < 10−9 536 < 10−9 1846 5 × 10−3

72[4] 4 10 - 317 < 10−10 298 < 10−10 1606 5 × 10−2

76 4 7 - 224 < 10−10 227 < 10−10 424 < 10−8

78 5 - 3 261 < 10−10 264 < 10−10 278 < 10−8

80 5 10 3 192 < 10−11 194 < 10−11 1032 2 × 10−8

81[5] 5 10 3 138 < 10−11 158 < 10−10 1662 5 × 10−7

106[6] 8 22 - 6060 5 × 10−6 6496 3 × 10−5 - fails

108 9 14 - 600 < 10−10 519 < 10−10 984 7 × 10−5

118[7] 15 29 - 1233 < 10−8 1358 < 10−8 - fails

12-poly[7] 21 22 - 844 < 10−9 1478 < 10−9 - -

[1]Constraint qualification not satisfied. [2]Termination on maximum number of steps.
[3]Convergence to local minimum. [4]μ(0) = 1.0, Δm = 1.0. [5]μ(0) = 102. [6]Δm = 102.
[7]Gradients by central finite differences, δxi = 10−6, εx = 10−6.

Table 6.4: The respective performances of the new conjugate gradi-
ent implementation ETOPC and FMIN for test problems with no noise
introduced

NEW GRADIENT-BASED METHODS 237

computed by central finite differences. The influence of noise is investi-
gated for two cases, namely, for a variation of the superimposed uni-
formly distributed random noise as large as (i) 5% and (ii) 10% of
(1 + |f(x∗)|), where x∗ is the optimum of the underlying smooth prob-
lem. The detailed results are shown in Table 6.5. The results are listed
only for the Fletcher-Reeves version. The results for the Polak- Ribiere
implementation are almost identical. Unless otherwise indicated the
algorithm settings are: δxi = 1.0, εg = 10−5, Δm = 1.0, εf = 10−8,
μ(0) = 1.0 and iout = 6, where iout denotes the maximum number of
SUMT iterations allowed. For termination of sub-problem on step size,
εx was set to εx := 0.005

√
n for the initial sub-problem. Thereafter it is

successively halved for each subsequent sub-problem.

The results obtained are surprisingly good with, in most cases, fast con-
vergence to the neighbourhood of the known optimum of the underlying
smooth problem. In 90% of the cases regional convergence was obtained
with relative errors rx < 0.025 for 5% noise and rx < 0.05 for 10% noise,
where

rx = ‖x∗ − xc‖/(‖x∗‖ + 1) (6.64)

and xc denotes the point of convergence. Also in 90% of the test prob-
lems the respective relative errors in final objective function values were
rf < 0.025 for 5% noise and rf < 0.05 for 10% noise, where rf is as
defined in (6.63).

6.5.6 Conclusion

The ETOPC algorithm performs exceptionally well for a first order
method in solving constrained problems where the functions are smooth.
For these problems the gradient only penalty function implementation
of the conjugate gradient method performs as well, if not better than
the best conventional implementations reported in the literature, in pro-
ducing highly accurate solutions.

In the cases where severe noise is introduced in the objective function,
relatively fast convergence to the neighborhood of x∗, the solution of
the underlying smooth problem, is obtained. Of interest is the fact that
with the reduced accuracy requirement associated with the presence of
noise, the number of function evaluations required to obtain sufficiently

238 CHAPTER 6

5% noise 10% noise

Pr. # nmr nge rf rx nge rf rx
1 2 1 - 54 0.035 5× 10−3 54 0.06 5× 10−3

2 2 1 - 80 2× 10−3 2× 10−3 87 9× 10−3 2× 10−3

10 2 1 - 120 0.02 0.022 160 0.048 0.023
12 2 1 - 99 0.018 8× 10−2 232 0.006 0.011
13 2 3 - 394 0.079 0.044 187 0.189 0.095
14 2 1 1 138 0.025 6× 10−4 126 0.041 6× 10−4

15 2 3 - 152 6× 10−5 2× 10−5 154 0.006 8× 10−5

16[1] 2 5 - 250 0.128 0.13 175 0.135 0.16
17 2 5 - 84 0.012 7× 10−6 77 0.041 3× 10−4

20 2 5 - 89 0.009 2× 10−5 105 0.001 2× 10−5

22 2 2 - 75 0.01 4× 10−5 86 0.035 9× 10−5

23 2 9 - 103 0.008 9× 10−4 100 0.005 7× 10−4

24 2 5 - 75 0.0095 4× 10−5 137 0.014 3× 10−5

26 3 - 1 63 0.019 2× 10−3 71 0.04 3× 10−3

27 3 - 1 159 0.015 0.014 132 0.022 0.036
28 3 - 1 46 0.018 6× 10−3 49 0.009 0.025
29 3 1 - 232 0.013 0.01 251 0.046 0.015
30 3 7 - 52 0.025 4× 10−3 72 0.043 6× 10−3

31 3 7 1 123 0.015 9× 10−4 183 0.031 0.013
32 3 7 1 89 0.006 4× 10−3 107 0.031 5× 10−3

33 3 6 - 183 0.016 0.035 83 0.026 3× 10−3

36[2] 3 7 - 177 0.018 6× 10−5 179 0.01 8× 10−5

45 5 10 - 122 0.0013 9× 10−4 92 0.009 4× 10−5

52 5 - 3 239 0.019 0.042 318 0.041 0.071
55 6 8 6 137 0.016 5× 10−3 188 0.041 4× 10−3

56 7 - 4 166 0.012 0.014 144 0.03 0.038
60 3 6 1 95 0.021 0.071 83 0.018 0.033

61[2] 3 - 2 105 0.019 2× 10−3 83 0.026 9× 10−4

63[2] 3 3 2 198 0.02 8× 10−3 652 0.016 0.06
65 3 7 - 94 4× 10−3 3× 10−3 106 0.012 0.003
71 4 9 1 164 0.021 0.022 143 0.021 0.035
72 4 10 - 454 0.01 0.025 578 0.005 0.094
76 4 7 - 131 0.022 0.002 148 0.012 0.041
78 5 - 3 87 0.011 0.004 88 0.037 0.002
80 5 10 3 92 0.011 0.025 105 0.005 0.02

81[3] 5 10 3 39 0.017 0.032 47 0.012 0.031

106[4] 8 22 - 6016 0.023 0.088 8504 0.038 0.113

108[2] 9 14 - 113 0.017 0.04 140 0.04 0.025

118[2] 15 29 - 395 0.012 0.041 371 0.049 0.1

12-poly[2] 21 22 - 476 0.012 0.065 607 0.047 0.1

[1]δxi = 10−1. [2]δxi = 10. [3]μ(0) = 102 [4]δxi = 103,Δm = 102.

Table 6.5: Performance of ETOPC for test problems with severe noise
introduced

NEW GRADIENT-BASED METHODS 239

accurate solutions in the case of noise, is on the average much less than
that necessary for the high accuracy solutions for smooth functions. As
already stated, ETOPC yields in 90% of the cases regional convergence
with relative errors rx < 0.025 for 5% noise, and rx < 0.05 for 10%
noise. Also in 90% of the test problems the respective relative errors
in the final objective function values are rf < 0.025 for 5% noise and
rf < 0.05 for 10% noise. In the other 10% of the cases the relative errors
are also acceptably small. These accuracies are more than sufficient for
multidisciplinary design optimization problems where similar noise may
be encountered.

6.6 Global optimization using dynamic search
trajectories

6.6.1 Introduction

The problem of globally optimizing a real valued function is inherently
intractable (unless hard restrictions are imposed on the objective func-
tion) in that no practically useful characterization of the global optimum
is available. Indeed the problem of determining an accurate estimate of
the global optimum is mathematically ill-posed in the sense that very
similar objective functions may have global optima very distant from
each other (Schoen 1991). Nevertheless, the need in practice to find a
relative low local minimum has resulted in considerable research over
the last decade to develop algorithms that attempt to find such a low
minimum, e.g. see Törn and Zilinskas (1989).

The general global optimization problem may be formulated as follows.
Given a real valued objective function f(x) defined on the set x ∈ D in
R

n, find the point x∗ and the corresponding function value f∗ such that

f∗ = f(x∗) = minimum {f(x)|x ∈ D} (6.65)

if such a point x∗ exists. If the objective function and/or the feasible
domain D are non-convex, then there may be many local minima which
are not global.

If D corresponds to all Rn the optimization problem is unconstrained.

240 CHAPTER 6

Alternatively, simple bounds may be imposed, with D now correspond-
ing to the hyper box (or domain or region of interest) defined by

D = {x|� ≤ x ≤ u} (6.66)

where � and u are n-vectors defining the respective lower and upper
bounds on x.

From a mathematical point of view, Problem (6.65) is essentially unsolv-
able, due to a lack of mathematical conditions characterizing the global
optimum, as opposed to the local optimum of a smooth continuous func-
tion, which is characterized by the behavior of the problem function
(Hessians and gradients) at the minimum (Arora et al. 1995) (viz. the
Karush-Kuhn-Tucker conditions). Therefore, the global optimum f∗

can only be obtained by an exhaustive search, except if the objective
function satisfies certain subsidiary conditions (Griewank 1981), which
mostly are of limited practical use (Snyman and Fatti 1987). Typically,
the conditions are that f should satisfy a Lipschitz condition with known
constant L and that the search area is bounded, e.g. for all x, x̄ ∈ X

|f(x) − f(x̄)| ≤ L‖x − x̄‖. (6.67)

So called space-covering deterministic techniques have been developed
(Dixon et al. 1975) under these special conditions. These techniques are
expensive, and due to the need to know L, of limited practical use.

Global optimization algorithms are divided into two major classes
(Dixon et al. 1975): deterministic and stochastic (from the Greek word
stokhastikos, i.e. ‘governed by the laws of probability’). Deterministic
methods can be used to determine the global optimum through exhaus-
tive search. These methods are typically extremely expensive. With the
introduction of a stochastic element into deterministic algorithms, the
deterministic guarantee that the global optimum can be found is relaxed
into a confidence measure. Stochastic methods can be used to assess the
probability of having obtained the global minimum. Stochastic ideas are
mostly used for the development of stopping criteria, or to approximate
the regions of attraction as used by some methods (Arora et al. 1995).

The stochastic algorithms presented herein, namely the Snyman-Fatti
algorithm and the modified bouncing ball algorithm (Groenwold and
Snyman 2002), both depend on dynamic search trajectories to minimize

NEW GRADIENT-BASED METHODS 241

the objective function. The respective trajectories, namely the motion
of a particle of unit mass in a n-dimensional conservative force field,
and the trajectory of a projectile in a conservative gravitational field,
are modified to increase the likelihood of convergence to a low local
minimum.

6.6.2 The Snyman-Fatti trajectory method

The essentials of the original SF algorithm (Snyman and Fatti 1987)
using dynamic search trajectories for unconstrained global minimization
will now be discussed. The algorithm is based on the local algorithms
presented by Snyman (1982, 1983). For more details concerning the
motivation of the method, its detailed construction, convergence theo-
rems, computational aspects and some of the more obscure heuristics
employed, the reader is referred to the original paper and also to the
more recent review article by Snyman and Kok (2009).

6.6.2.1 Dynamic trajectories

In the SF algorithm successive sample points xj , j = 1, 2, ..., are selected
at random from the box D defined by (6.66). For each sample point xj ,
a sequence of trajectories T i, i = 1, 2, ..., is computed by numerically
solving the successive initial value problems:

ẍ(t) = −∇f(x(t))

x(0) = xi
0 ; ẋ(0) = ẋi

0.
(6.68)

This trajectory represents the motion of a particle of unit mass in a n-
dimensional conservative force field, where the function to be minimized
represents the potential energy.

Trajectory T i is terminated when x(t) reaches a point where f(x(t))
is arbitrarily close to the value f(xi

0) while moving “uphill”, or more
precisely, if x(t) satisfies the conditions

f(x(t)) > f(xi
0) − εu

and ẋ(t)T ∇f(x(t)) > 0
(6.69)

242 CHAPTER 6

where εu is an arbitrary small prescribed positive value.

An argument is presented in Snyman and Fatti (1987) to show that
when the level set

{
x|f(x) ≤ f(xi

0)
}

is bounded and ∇f(xi
0) �= 0, then

conditions (6.69) above will be satisfied at some finite point in time.

Each computed step along trajectory T i is monitored so that at ter-
mination the point xi

m at which the minimum value was achieved is
recorded together with the associated velocity ẋi

m and function value
f i

m. The values of xi
m and ẋi

m are used to determine the initial values
for the next trajectory T i+1. From a comparison of the minimum values
the best point xi

b, for the current j over all trajectories to date is also
recorded. In more detail the minimization procedure for a given sample
point xj , in computing the sequence xi

b, i = 1, 2, ..., is as follows.

Algorithm 6.6 Minimization Procedure MP1

1. For given sample point xj , set x1
0 := xj and compute T 1 subject

to ẋ1
0 := 0 ; record x1

m, ẋ1
m and f1

m ; set x1
b := x1

m and i := 2,

2. compute trajectory T i with xi
0 := 1

2

(
xi−1

0 + xi−1
b

)
and ẋi

0 :=
1
2 ẋ

i−1
m , record xi

m, ẋi
m and f i

m,

3. if f i
m < f(xi−1

b) then xi
b := xi

m ; else xi
b := xi−1

b ,

4. set i := i + 1 and go to 2.

In the original paper (Snyman and Fatti 1987) an argument is presented
to indicate that under normal conditions on the continuity of f and
its derivatives, xi

b will converge to a local minimum. Procedure MP1,
for a given j, is accordingly terminated at step Algorithm 6.6 above if
||∇f(xi

b)|| ≤ ε, for some small prescribed positive value ε, and xi
b is taken

as the local minimizer xj
f , i.e. set xj

f := xi
b with corresponding function

value f j
f := f(xj

f).

Reflecting on the overall approach outlined above, involving the compu-
tation of energy conserving trajectories and the minimization procedure,
it should be evident that, in the presence of many local minima, the prob-
ability of convergence to a relative low local minimum is increased. This
one expects because, with a small value of εu (see conditions (6.69)), it

NEW GRADIENT-BASED METHODS 243

is likely that the particle will move through a trough associated with a
relative high local minimum, and move over a ridge to record a lower
function value at a point beyond. Since we assume that the level set
associated with the starting point function is bounded, termination of
the search trajectory will occur as the particle eventually moves to a
region of higher function values.

6.6.3 The modified bouncing ball trajectory method

The essentials of the modified bouncing ball algorithm using dynamic
search trajectories for unconstrained global minimization are now pre-
sented. The algorithm is in an experimental stage, and details con-
cerning the motivation of the method, its detailed construction, and
computational aspects will be presented in future.

6.6.3.1 Dynamic trajectories

In the MBB algorithm successive sample points xj , j = 1, 2, ..., are
selected at random from the box D defined by (6.66). For each sample
point xj , a sequence of trajectory steps Δxi and associated projection
points xi+1, i = 1, 2, ..., are computed from the successive analytical
relationships (with x1 := xj and prescribed V01 > 0):

Δxi = V0iti cos θi∇f(xi)/||∇f(xi)|| (6.70)

where

θi = tan−1(||∇f(xi)||) +
π

2
, (6.71)

ti =
1
g

[
V0i sin θi +

{
(V0i sin θi)2 + 2gh(xi)

}1/2
]
, (6.72)

h(xi) = f(xi) + k (6.73)

with k a constant chosen such that h(x) > 0 ∀ x ∈ D, g a positive
constant, and

xi+1 = xi + Δxi. (6.74)

For the next step, select V0i+1 < V0i . Each step Δxi represents the
ground or horizontal displacement obtained by projecting a particle in a

244 CHAPTER 6

vertical gravitational field (constant g) at an elevation h(xi) and speed
V0i at an inclination θi. The angle θi represents the angle that the
outward normal n to the hypersurface represented by y = h(x) makes,
at xi in n + 1 dimensional space, with the horizontal. The time of flight
ti is the time taken to reach the ground corresponding to y = 0.

More formally, the minimization trajectory for a given sample point
xj and some initial prescribed speed V0 is obtained by computing the
sequence xi, i = 1, 2, ..., as follows.

Algorithm 6.7 Minimization Procedure MP2

1. For given sample point xj , set x1 := xj and compute trajectory
step Δx1 according to (6.70)–(6.73) and subject to V01 := V0;
record x2 := x1 + Δx1, set i := 2 and V02 := αV01 (α < 1).

2. Compute Δxi according to (6.70)–(6.73) to give xi+1 := xi +Δxi,
record xi+1 and set V0i+1 := αV0i .

3. Set i := i + 1 and go to 2.

In the vicinity of a local minimum x̂ the sequence of projection points
xi, i = 1, 2, ..., constituting the search trajectory for starting point xj

will converge since Δxi → 0 (see (6.70)). In the presence of many local
minima, the probability of convergence to a relative low local minimum
is increased, since the kinetic energy can only decrease for α < 1.

Procedure MP2, for a given j, is successfully terminated if ||∇f(xi)|| ≤ ε
for some small prescribed positive value ε, or when αV i

0 < βV 1
0 , and xi

is taken as the local minimizer xj
f with corresponding function value

f j
f := h(xj

f) − k.

Clearly, the condition αV i
0 < βV 1

0 will always occur for 0 < β < α and
0 < α < 1.

MP2 can be viewed as a variant of the steepest descent algorithm. How-
ever, as opposed to steepest descent, MP2 has (as has MP1) the ability
for ‘hill-climbing’, as is inherent in the physical model on which MP2 is
based (viz., the trajectories of a bouncing ball in a conservative gravita-
tional field.) Hence, the behavior of MP2 is quite different from that of

NEW GRADIENT-BASED METHODS 245

steepest descent and furthermore, because of it’s physical basis, it tends
to seek local minima with relative low function values and is therefore
suitable for implementation in global searches, while steepest descent is
not.

For the MBB algorithm, convergence to a local minimum is not proven.
Instead, the underlying physics of a bouncing ball is exploited. Unsuc-
cessful trajectories are terminated, and do not contribute to the prob-
abilistic stopping criterion (although these points are included in the
number of unsuccessful trajectories ñ). In the validation of the algo-
rithm the philosophy adopted here is that the practical demonstration
of convergence of a proposed algorithm on a variety of demanding test
problems may be as important and convincing as a rigorous mathemat-
ical convergence argument.

Indeed, although for the steepest descent method convergence can be
proven, in practice it often fails to converge because effectively an infinite
number of steps is required for convergence.

6.6.4 Global stopping criterion

The above methods require a termination rule for deciding when to end
the sampling and to take the current overall minimum function value f̃ ,
i.e.

f̃ = minimum
{

f j
f , over all j to date

}
(6.75)

as an approximation of the global minimum value f∗.

Define the region of convergence of the dynamic methods for a local
minimum x̂ as the set of all points x which, used as starting points for
the above procedures, converge to x̂. One may reasonably expect that in
the case where the regions of attraction (for the usual gradient-descent
methods, see Dixon et al. 1976) of the local minima are more or less
equal, that the region of convergence of the global minimum will be
relatively increased.

Let Rk denote the region of convergence for the above minimization
procedures MP1 and MP2 of local minimum x̂k and let αk be the asso-
ciated probability that a sample point be selected in Rk. The region of
convergence and the associated probability for the global minimum x∗

246 CHAPTER 6

are denoted by R∗ and α∗ respectively. The following basic assumption,
which is probably true for many functions of practical interest, is now
made. Basic assumption:

α∗ ≥ αk for all local minima x̂k. (6.76)

The following theorem may be proved.

6.6.4.1 Theorem (Snyman and Fatti 1987)

Let r be the number of sample points falling within the region of con-
vergence of the current overall minimum f̃ after ñ points have been
sampled. Then under the above assumption and a statistically non-
informative prior distribution the probability that f̃ corresponds to f∗

may be obtained from

Pr
[
f̃ = f∗

]
≥ q(ñ, r) = 1 − (ñ + 1)!(2ñ − r)!

(2ñ + 1)!(ñ − r)!
. (6.77)

On the basis of this theorem the stopping rule becomes: STOP when
Pr

[
f̃ = f∗

]
≥ q∗, where q∗ is some prescribed desired confidence level,

typically chosen as 0.99.

Proof :

We present here an outline of the proof of (6.77), and follow closely the
presentation in Snyman and Fatti (1987). (We have since learned that
the proof can be shown to be a generalization of the procedure proposed
by Zielińsky 1981.) Given ñ∗ and α∗, the probability that at least one
point, ñ ≥ 1, has converged to f∗ is

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (1 − α∗)ñ . (6.78)

In the Bayesian approach, we characterize our uncertainty about the
value of α∗ by specifying a prior probability distribution for it. This
distribution is modified using the sample information (namely, ñ and
r) to form a posterior probability distribution. Let p∗(α∗|ñ, r) be the

NEW GRADIENT-BASED METHODS 247

posterior probability distribution of α∗. Then,

Pr[ñ∗ ≥ 1|ñ, r] =
∫ 1

0

[
1 − (1 − α∗)ñ

]
p∗(α∗|ñ, r)dα∗

= 1 −
∫ 1

0
(1 − α∗)ñp∗(α∗|ñ, r)dα∗. (6.79)

Now, although the r sample points converge to the current overall mini-
mum, we do not know whether this minimum corresponds to the global
minimum of f∗. Utilizing (6.76), and noting that (1−α)ñ is a decreasing
function of α, the replacement of α∗ in the above integral by α yields

Pr[ñ∗ ≥ 1|ñ, r] ≥
∫ 1

0

[
1 − (1 − α)ñ

]
p(α|ñ, r)dα . (6.80)

Now, using Bayes theorem we obtain

p(α|ñ, r) =
p(r|α, ñ)p(α)

∫ 1
0 p(r|α, ñ)p(α)dα

. (6.81)

Since the ñ points are sampled at random and each point has a proba-
bility α of converging to the current overall minimum, r has a binomial
distribution with parameters α and ñ. Therefore

p(r|α, ñ) =
(

ñ

r

)
αr(1 − α)ñ−r . (6.82)

Substituting (6.82) and (6.81) into (6.80) gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 −
∫ 1
0 αr(1 − α)2ñ−rp(α)dα
∫ 1
0 αr(1 − α)ñ−rp(α)dα

. (6.83)

A suitable flexible prior distribution p(α) for α is the beta distribution
with parameters a and b. Hence,

p(α) = [1/β(a, b)] αa−1(1 − α)b−1, 0 ≤ α ≤ 1. (6.84)

Using this prior distribution gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 − Γ(ñ + a + b) Γ(2ñ − r + b)
Γ(2ñ + a + b) Γ(ñ − r + b)

= 1 − (ñ + a + b − 1)! (2ñ − r + b − 1)!
(2ñ + a + b − 1)! (ñ − r + b − 1)!

.

248 CHAPTER 6

Assuming a prior expectation of 1, (viz. a = b = 1), we obtain

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (ñ + 1)! (2ñ − r)!
(2ñ + 1)! (ñ − r)!

,

which is the required result. �

6.6.5 Numerical results

No. Name ID n Ref.

1 Griewank G1 G1 2 Törn and Zilinskas; Griewank
2 Griewank G2 G2 10 Törn and Zilinskas; Griewank
3 Goldstein-Price GP 2 Törn and Zilinskas; Dixon and Szegö
4 Six-hump Camelback C6 2 Törn and Zilinskas; Branin
5 Shubert, Levi No. 4 SH 2 Lucidl and Piccioni
6 Branin BR 2 Törn and Zilinskas; Branin and Hoo
7 Rastrigin RA 2 Törn and Zilinskas
8 Hartman 3 H3 3 Törn and Zilinskas; Dixon and Szegö
9 Hartman 6 H6 6 Törn and Zilinskas; Dixon and Szegö
10 Shekel 5 S5 4 Törn and Zilinskas; Dixon and Szegö
11 Shekel 7 S7 4 Törn and Zilinskas; Dixon and Szegö
12 Shekel 10 S10 4 Törn and Zilinskas; Dixon and Szegö

Table 6.6: The test functions

SF - This Study SF - Previous MBB
No. ID Nf (r/ñ)b (r/ñ)w Nf r/ñ Nf (r/ñ)b (r/ñ)w
1 G1 4199 6/40 6/75 1606 6/20 2629 5/8 6/23
2 G2 25969 6/84 6/312 26076 6/60 19817 6/24 6/69
3 GP 2092 4/4 5/12 668 4/4 592 4/4 5/10
4 C6 426 4/4 5/9 263 4/4 213 4/4 5/10
5 SH 8491 6/29 6/104 — — 1057 5/7 6/26
6 BR 3922 4/4 5/12 — — 286 4/4 5/6
7 RA 4799 6/67 6/117 — — 1873 4/4 6/42
8 H3 933 4/4 5/8 563 5/6 973 5/9 6/29
9 H6 1025 4/4 5/10 871 5/8 499 4/4 5/9
10 S5 1009 4/4 6/24 1236 6/17 2114 5/8 6/39
11 S7 1057 5/8 6/37 1210 6/17 2129 6/16 6/47
12 S10 845 4/4 6/31 1365 6/20 1623 5/7 6/39

Table 6.7: Numerical results

NEW GRADIENT-BASED METHODS 249

Test Function
Method BR C6 GP RA SH H3
TRUST 55 31 103 59 72 58
MBB 25 29 74 168 171 24

Table 6.8: Cost (Nf) using a priori stopping condition

The test functions used are tabulated in Table 6.6, and tabulated numer-
ical results are presented in Tables 6.7 and 6.8. In the tables, the
reported number of function values Nf are the average of 10 independent
(random) starts of each algorithm.

Unless otherwise stated, the following settings were used in the SF algo-
rithm (see Snyman and Fatti 1987): γ = 2.0, α = 0.95, ε = 10−2,
ω = 10−2, δ = 0.0, q∗ = 0.99, and Δt = 1.0. For the MBB algorithm,
α = 0.99, ε = 10−4, and q∗ = 0.99 were used. For each problem, the ini-
tial velocity V0 was chosen such that Δx1 was equal to half the ‘radius’
of the domain D. A local search strategy was implemented with varying
α in the vicinity of local minima.

In Table 6.7, (r/ñ)b and (r/ñ)w respectively indicate the best and worst
r/ñ ratios (see equation (6.77)), observed during 10 independent opti-
mization runs of both algorithms. The SF results compare well with the
previously published results by Snyman and Fatti, who reported values
for a single run only. For the Shubert, Branin and Rastrigin functions,
the MBB algorithm is superior to the SF algorithm. For the Shekel
functions (S5, S7 and S10), the SF algorithm is superior. As a result
of the stopping criterion (6.77), the SF and MBB algorithms found the
global optimum between 4 and 6 times for each problem.

The results for the trying Griewank functions (Table 6.7) are encourag-
ing. G1 has some 500 local minima in the region of interest, and G2
several thousand. The values used for the parameters are as specified,
with Δt = 5.0 for G1 and G2 in the SF-algorithm. It appears that both
the SF and MBB algorithms are highly effective for problems with a
large number of local minima in D, and problems with a large number
of design variables.

In Table 6.8 the MBB algorithm is compared with the deterministic

250 CHAPTER 6

TRUST algorithm (Barhen et al. 1997). Since the TRUST algorithm
was terminated when the global approximation was within a specified
tolerance of the (known) global optimum, a similar criterion was used for
the MBB algorithm. The table reveals that the two algorithms compare
well. Note however that the highest dimension of the test problems used
in Barhen et al. (1997) is 3. It is unclear if the deterministic TRUST
algorithm will perform well for problems of large dimension, or problems
with a large number of local minima in D.

In conclusion, the numerical results indicate that both the Snyman-Fatti
trajectory method and the modified bouncing ball trajectory method
are effective in finding the global optimum efficiently. In particular,
the results for the trying Griewank functions are encouraging. Both
algorithms appear effective for problems with a large number of local
minima in the domain, and problems with a large number of design
variables. A salient feature of the algorithms is the availability of an
apparently effective global stopping criterion.

	6 NEW GRADIENT-BASED TRAJECTORY AND APPROXIMATION METHODS
	6.1 Introduction
	6.1.1 Why new algorithms?
	6.1.2 Research at the University of Pretoria

	6.2 The dynamic trajectory optimization method
	6.2.1 Basic dynamic model
	6.2.2 Basic algorithm for unconstrained problems (LFOP)
	6.2.3 Modification for constrained problems (LFOPC)

	6.3 The spherical quadratic steepest descent method
	6.3.1 Introduction
	6.3.2 Classical steepest descent method revisited
	6.3.3 The SQSD algorithm
	6.3.4 Convergence of the SQSD method
	6.3.5 Numerical results and conclusion
	6.3.6 Test functions used for SQSD

	6.4 The Dynamic-Q optimization algorithm
	6.4.1 Introduction
	6.4.2 The Dynamic-Q method
	6.4.3 Numerical results and conclusion

	6.5 A gradient-only line search method for conjugate gradient methods
	6.5.1 Introduction
	6.5.2 Formulation of optimization problem
	6.5.3 Gradient-only line search
	6.5.4 Conjugate gradient search directions and SUMT
	6.5.5 Numerical results
	6.5.6 Conclusion

	6.6 Global optimization using dynamic search trajectories
	6.6.1 Introduction
	6.6.2 The Snyman-Fatti trajectory method
	6.6.3 The modified bouncing ball trajectory method
	6.6.4 Global stopping criterion
	6.6.5 Numerical results

