
Chapter 1

INTRODUCTION

1.1 What is mathematical optimization?

Formally, Mathematical Optimization is the process of

(i) the formulation and

(ii) the solution of a constrained optimization problem of the general
mathematical form:

minimize
w.r.t. x

f(x), x = [x1, x2, . . . , xn]T ∈ R
n

subject to the constraints:

gj(x) ≤ 0, j = 1, 2, . . . , m
hj(x) = 0, j = 1, 2, . . . , r

(1.1)

where f(x), gj(x) and hj(x) are scalar functions of the real column
vector x.

The continuous components xi of x = [x1, x2, . . . , xn]T are called the
(design) variables, f(x) is the objective function, gj(x) denotes the respec-
tive inequality constraint functions and hj(x) the equality constraint
functions.
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The optimum vector x that solves problem (1.1) is denoted by x∗ with
corresponding optimum function value f(x∗). If no constraints are spec-
ified, the problem is called an unconstrained minimization problem.

Mathematical Optimization is often also called Nonlinear Programming,
Mathematical Programming or Numerical Optimization. In more gen-
eral terms Mathematical Optimization may be described as the science
of determining the best solutions to mathematically defined problems,
which may be models of physical reality or of manufacturing and man-
agement systems. In the first case solutions are sought that often cor-
respond to minimum energy configurations of general structures, from
molecules to suspension bridges, and are therefore of interest to Science
and Engineering. In the second case commercial and financial consider-
ations of economic importance to Society and Industry come into play,
and it is required to make decisions that will ensure, for example, max-
imum profit or minimum cost.

The history of the Mathematical Optimization, where functions of many
variables are considered, is relatively short, spanning roughly only 70
years. At the end of the 1940s the very important simplex method
for solving the special class of linear programming problems was devel-
oped. Since then numerous methods for solving the general optimization
problem (1.1) have been developed, tested, and successfully applied to
many important problems of scientific and economic interest. There is no
doubt that the advent of the computer was essential for the development
of these optimization methods. However, in spite of the proliferation of
optimization methods, there is no universal method for solving all opti-
mization problems. According to Nocedal and Wright (1999): “. . . there
are numerous algorithms, each of which is tailored to a particular type of
optimization problem. It is often the user’s responsibility to choose an
algorithm that is appropriate for the specific application. This choice
is an important one; it may determine whether the problem is solved
rapidly or slowly and, indeed, whether the solution is found at all.” In
a similar vein Vanderplaats (1998) states that “The author of each algo-
rithm usually has numerical examples which demonstrate the efficiency
and accuracy of the method, and the unsuspecting practitioner will often
invest a great deal of time and effort in programming an algorithm,
only to find that it will not in fact solve the particular problem being
attempted. This often leads to disenchantment with these techniques
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that can be avoided if the user is knowledgeable in the basic concepts of
numerical optimization.” With these representative and authoritative
opinions in mind, and also taking into account the present authors’ per-
sonal experiences in developing algorithms and applying them to design
problems in mechanics, this text has been written to provide a brief but
unified introduction to optimization concepts and methods. In addition,
an overview of a set of novel algorithms, developed by the authors and
their students at the University of Pretoria over the past thirty years, is
also given.

The emphasis of this book is almost exclusively on gradient-based meth-
ods. This is for two reasons. (i) The authors believe that the introduc-
tion to the topic of mathematical optimization is best done via the clas-
sical gradient-based approach and (ii), contrary to the current popular
trend of using non-gradient methods, such as genetic algorithms (GA’s),
simulated annealing, particle swarm optimization and other evolutionary
methods, the authors are of the opinion that these search methods are, in
many cases, computationally too expensive to be viable. The argument
that the presence of numerical noise and multiple minima disqualify the
use of gradient-based methods, and that the only way out in such cases
is the use of the above mentioned non-gradient search techniques, is not
necessarily true. It is the experience of the authors that, through the
judicious use of gradient-based methods, problems with numerical noise
and multiple minima may be solved, and at a fraction of the compu-
tational cost of search techniques such as genetic algorithms. In this
context Chapter 6, dealing with the new gradient-based methods devel-
oped by the first author and gradient-only methods developed by the
authors in Chapter 8, are especially important. The presentation of the
material is not overly rigorous, but hopefully correct, and should pro-
vide the necessary information to allow scientists and engineers to select
appropriate optimization algorithms and to apply them successfully to
their respective fields of interest.

Many excellent and more comprehensive texts on practical optimiza-
tion can be found in the literature. In particular the authors wish to
acknowledge the works of Wismer and Chattergy (1978), Chvatel (1983),
Fletcher (1987), Bazaraa et al. (1993), Arora (1989), Haftka and Gürdal
(1992), Rao (1996), Vanderplaats (1998), Nocedal and Wright (1999)
and Papalambros and Wilde (2000).

http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_8
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1.2 Objective and constraint functions

The values of the functions f(x), gj(x) and hj(x) at any point x =
[x1, x2, . . . , xn]T , may in practice be obtained in different ways:

(i) from analytically known formulae, e.g. f(x) = x2
1 + 2x2

2 + sin x3;

(ii) as the outcome of some complicated computational process, e.g.
g1(x) = a(x)− amax, where a(x) is the stress, computed by means
of a finite element analysis, at some point in a structure, the design
of which is specified by x; or

(iii) from measurements taken of a physical process, e.g. h1(x) = T (x)−
T0, where T (x) is the temperature measured at some specified
point in a reactor, and x is the vector of operational settings.

The first two ways of function evaluation are by far the most common.
The optimization principles that apply in these cases, where computed
function values are used, may be carried over directly to also be applica-
ble to the case where the function values are obtained through physical
measurements.

Much progress has been made with respect to methods for solving differ-
ent classes of the general problem (1.1). Sometimes the solution may be
obtained analytically, i.e. a closed-form solution in terms of a formula
is obtained.

In general, especially for n > 2, solutions are usually obtained numeri-
cally by means of suitable algorithms (computational recipes).

Expertise in the formulation of appropriate optimization problems of
the form (1.1), through which an optimum decision can be made, is
gained from experience. This exercise also forms part of what is gener-
ally known as the mathematical modelling process. In brief, attempting
to solve real-world problems via mathematical modelling requires the
cyclic performance of the four steps depicted in Figure 1.1. The main
steps are: 1) the observation and study of the real-world situation asso-
ciated with a practical problem, 2) the abstraction of the problem by
the construction of a mathematical model, that is described in terms of
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Real-world practical problem

Mathematical solution to model:

Figure 1.1: The mathematical modelling process

preliminary fixed model parameters p, and variables x, the latter to be
determined such that model performs in an acceptable manner, 3) the
solution of a resulting purely mathematical problem, that requires an
analytical or numerical parameter dependent solution x∗(p), and 4) the
evaluation of the solution x∗(p) and its practical implications. After step
4) it may be necessary to adjust the parameters and refine the model,
which will result in a new mathematical problem to be solved and eval-
uated. It may be required to perform the modelling cycle a number of
times, before an acceptable solution is obtained. More often than not,
the mathematical problem to be solved in 3) is a mathematical opti-
mization problem, requiring a numerical solution. The formulation of an
appropriate and consistent optimization problem (or model) is probably
the most important, but unfortunately, also the most neglected part of
Practical Mathematical Optimization.

This book gives a very brief introduction to the formulation of opti-
mization problems, and deals with different optimization algorithms in
greater depth. Since no algorithm is generally applicable to all classes of
problems, the emphasis is on providing sufficient information to allow for
the selection of appropriate algorithms or methods for different specific
problems.
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x∗ x

f(x)

Figure 1.2: Function of single variable with optimum at x∗

1.3 Basic optimization concepts

1.3.1 Simplest class of problems:
Unconstrained one-dimensional minimization

Consider the minimization of a smooth, i.e. continuous and twice con-
tinuously differentiable (C2) function of a single real variable, i.e. the
problem:

minimize
x

f(x), x ∈ R, f ∈ C2. (1.2)

With reference to Figure 1.2, for a strong local minimum, it is required
to determine a x∗ such that f(x∗) < f(x) for all x.

Clearly x∗ occurs where the slope is zero, i.e. where

f ′(x) =
df(x)
dx

= 0,

which corresponds to the first order necessary condition. In addition
non-negative curvature is necessary at x∗, i.e. it is required that the
second order condition

f ′′(x) =
d2f(x)

dx2
> 0

must hold at x∗ for a strong local minimum.

A simple special case is where f(x) has the simple quadratic form:

f(x) = ax2 + bx + c. (1.3)
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Since the minimum occurs where f ′(x) = 0, it follows that the closed-
form solution is given by

x∗ = − b

2a
, provided f ′′(x∗) = 2a > 0. (1.4)

If f(x) has a more general form, then a closed-form solution is in general
not possible. In this case, the solution may be obtained numerically via
the Newton-Raphson algorithm:

Given an approximation x0, iteratively compute:

xi+1 = xi − f ′(xi)
f ′′(xi)

; i = 0, 1, 2, . . . (1.5)

Hopefully lim
i→∞

xi = x∗, i.e. the iterations converge, in which case a

sufficiently accurate numerical solution is obtained after a finite number
of iterations.

1.3.2 Contour representation of a function of two vari-
ables (n = 2)

Consider a function f(x) of two variables, x = [x1, x2]T . The locus of
all points satisfying f(x) = c = constant, forms a contour in the x1 −x2

plane. For each value of c there is a corresponding different contour.

Figure 1.3 depicts the contour representation for the example f(x) =
x2
1 + 2x2

2.

In three dimensions (n = 3), the contours are surfaces of constant func-
tion value. In more than three dimensions (n > 3) the contours are, of
course, impossible to visualize. Nevertheless, the contour representation
in two-dimensional space will be used throughout the discussion of opti-
mization techniques to help visualize the various optimization concepts.

Other examples of 2-dimensional objective function contours are shown
in Figures 1.4 to 1.6.
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Figure 1.7: Contours within feasible and infeasible regions

1.3.3 Contour representation of constraint functions

1.3.3.1 Inequality constraint function g(x)

The contours of a typical inequality constraint function g(x), in g(x) ≤
0, are shown in Figure 1.7. The contour g(x) = 0 divides the plane into
a feasible region and an infeasible region.

More generally, the boundary is a surface in three dimensions and a
so-called “hyper-surface” if n > 3, which of course cannot be visualised.

1.3.3.2 Equality constraint function h(x)

Here, as shown in Figure 1.8, only the line h(x) = 0 is a feasible contour.
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Figure 1.9: Contour representation of inequality constrained problem

1.3.4 Contour representations of constrained optimiza-
tion problems

1.3.4.1 Representation of inequality constrained problem

Figure 1.9 graphically depicts the inequality constrained problem:

min f(x)
such that g(x) ≤ 0.
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Figure 1.10: Contour representation of equality constrained problem

x 1 − x

r
b

Figure 1.11: Wire divided into two pieces with x1 = x and x2 = 1 − x

1.3.4.2 Representation of equality constrained problem

Figure 1.10 graphically depicts the equality constrained problem:

min f(x)
such that h(x) = 0.

1.3.5 Simple example illustrating the formulation and
solution of an optimization problem

Problem: A length of wire 1 meter long is to be divided into two pieces,
one in a circular shape and the other into a square as shown in Figure
1.11. What must the individual lengths be so that the total area is a
minimum?
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Formulation 1

Set length of first piece = x, then the area is given by f(x) = πr2 + b2.
Since r = x

2π and b = 1−x
4 it follows that

f(x) = π

(
x2

4π2

)
+

(1 − x)2

16
.

The problem therefore reduces to an unconstrained minimization prob-
lem:

minimize f(x) = 0.1421x2 − 0.125x + 0.0625.

Solution of Formulation 1

The function f(x) is quadratic, therefore an analytical solution is given
by the formula x∗ = − b

2a (a > 0):

x∗ = − −0.125
2(0.1421)

= 0.4398 m,

and
1 − x∗ = 0.5602 m with f(x∗) = 0.0350 m2.

Formulation 2

Divide the wire into respective lengths x1 and x2 (x1 + x2 = 1). The
area is now given by

f(x) = πr2 + b2 = π

(
x2
1

4π2

)
+

(x2

4

)2
= 0.0796x2

1 + 0.0625x2
2.

Here the problem reduces to an equality constrained problem:

minimize f(x) = 0.0796x2
1 + 0.0625x2

2

such that h(x) = x1 + x2 − 1 = 0.

Solution of Formulation 2

This constrained formulated problem is more difficult to solve. The
closed-form analytical solution is not obvious and special constrained
optimization techniques, such as the method of Lagrange multipliers to
be discussed later, must be applied to solve the constrained problem
analytically. The graphical solution is sketched in Figure 1.12.
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Figure 1.12: Graphical solution of Formulation 2

1.3.6 Maximization

The maximization problem: max
x

f(x) can be cast in the standard form

(1.1) by observing that max
x

f(x) = − min
x

{−f(x)} as shown in Figure

1.13. Therefore in applying a minimization algorithm set F (x) = −f(x).

Also if the inequality constraints are given in the non-standard form:
gj(x) ≥ 0, then set g̃j(x) = −gj(x). In standard form the problem then
becomes:

minimize F (x) such that g̃j(x) ≤ 0.

Once the minimizer x∗ is obtained, the maximum value of the original
maximization problem is given by −F (x∗).

1.3.7 The special case of Linear Programming

A very important special class of the general optimization problem arises
when both the objective function and all the constraints are linear func-
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xx∗

−f(x)

f(x)

Figure 1.13: Maximization problem transformed to minimization prob-
lem

tions of x. This is called a Linear Programming problem and is usually
stated in the following form:

min
x

f(x) = cTx

such that (1.6)
Ax ≤ b; x ≥ 0

where c is a real n-vector and b is a real m-vector, and A is a m×n real
matrix. A linear programming problem in two variables is graphically
depicted in Figure 1.14.

Special methods have been developed for solving linear programming
problems. Of these the most famous are the simplex method proposed
by Dantzig in 1947 (Dantzig 1963) and the interior-point method (Kar-
markar 1984). A short introduction to the simplex method, according
to Chvatel (1983), is given in Appendix A.

1.3.8 Scaling of design variables

In formulating mathematical optimization problems, great care must be
taken to ensure that the scale of the variables are more or less of the same
order. If not, the formulated problem may be relatively insensitive to
the variations in one or more of the variables, and any optimization algo-
rithm will struggle to converge to the true solution, because of extreme
distortion of the objective function contours as result of the poor scaling.
In particular it may lead to difficulties when selecting step lengths and
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Figure 1.14: Graphical representation of a two-dimensional linear pro-
gramming problem

calculating numerical gradients. Scaling difficulties often occur where
the variables are of different dimension and expressed in different units.
Hence it is good practice, if the variable ranges are very large, to scale
the variables so that all the variables will be dimensionless and vary
between 0 and 1 approximately. For scaling the variables, it is necessary
to establish an approximate range for each of the variables. For this,
take some estimates (based on judgement and experience) for the lower
and upper limits. The values of the bounds are not critical. Another
related matter is the scaling or normalization of constraint functions.
This becomes necessary whenever the values of the constraint functions
differ by large magnitudes.

1.4 Further mathematical concepts

1.4.1 Convexity

A line through the points x1 and x2 in R
n is the set

L = {x∣∣x = x1 + λ(x2 − x1), for all λ ∈ R}. (1.7)
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Figure 1.15: Representation of a point on the straight line through x1

and x2

convex non-convex

x2 x2

x1x1

Figure 1.16: Examples of a convex and a non-convex set

Equivalently for any point x on the line there exists a λ such that x may
be specified by x = x(λ) = λx2 + (1 − λ)x1 as shown in Figure 1.15.

1.4.1.1 Convex sets

A set X is convex if for all x1, x2 ∈ X it follows that

x = λx2 + (1 − λ)x1 ∈ X for all 0 ≤ λ ≤ 1.

If this condition does not hold the set is non-convex (see Figure 1.16).
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1.4.1.2 Convex functions

Given two points x1 and x2 in R
n, then any point x on the straight line

connecting them (see Figure 1.15) is given by

x = x(λ) = x1 + λ(x2 − x1), 0 < λ < 1. (1.8)

A function f(x) is a convex function over a convex set X if for all x1, x2

in X and for all λ ∈ [0, 1]:

f(λx2 + (1 − λ)x1) ≤ λf(x2) + (1 − λ)f(x1). (1.9)

The function is strictly convex if < applies. Concave functions are sim-
ilarly defined.

Consider again the line connecting x1 and x2. Along this line, the func-
tion f(x) is a function of the single variable λ:

F (λ) = f(x(λ)) = f(x1 + λ(x2 − x1)). (1.10)

This is equivalent to F (λ) = f(λx2 +(1−λ)x1), with F (0) = f(x1) and
F (1) = f(x2). Therefore (1.9) may be written as

F (λ) ≤ λF (1) + (1 − λ)F (0) = Fint

where Fint is the linearly interpolated value of F at λ as shown in Figure
1.17.

Graphically f(x) is convex over the convex set X if F (λ) has the convex
form shown in Figure 1.17 for any two points x1 and x2 in X.

1.4.2 Gradient vector of f(x)

For a function f(x) ∈ C2 there exists, at any point x a vector of first
order partial derivatives, or gradient vector:

∇f(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x1
(x)

∂f

∂x2
(x)

...
∂f

∂xn
(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.11)
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d2F
dλ2 > 0

λ

Figure 1.17: Convex form of F (λ)

∇f

∇f

∇f
∇f

Figure 1.18: Directions of the gradient vector

It can easily be shown that if the function f(x) is smooth, then at
the point x the gradient vector ∇f(x) is always perpendicular to the
contours (or surfaces of constant function value) and is in the direction
of maximum increase of f(x), as depicted in Figure 1.18.
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1.4.3 Hessian matrix of f(x)

If f(x) is twice continuously differentiable then at the point x there
exists a matrix of second order partial derivatives or Hessian matrix:

H(x) =
{

∂2f

∂xi∂xj
(x)

}
= ∇2f(x) (1.12)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x2
1

(x)
∂2f

∂x1∂x2
(x) . . .

∂2f

∂x2∂x1
(x)

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂x2
n

(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly H(x) is a n × n symmetrical matrix.

1.4.3.1 Test for convexity of f(x)

If f(x) ∈ C2 is defined over a convex set X, then it can be shown
(see Theorem 5.1.3 in Chapter 5) that if H(x) is positive-definite for all
x ∈ X, then f(x) is strictly convex over X.

To test for convexity, i.e. to determine whether H(x) is positive-definite
or not, apply Sylvester’s Theorem or any other suitable numerical method
(Fletcher 1987). For example, a convenient numerical test for positive-
definiteness at x is to show that all the eigenvalues for H(x) are positive.

1.4.4 The quadratic function in R
n

The quadratic function in n variables may be written as

f(x) = 1
2x

TAx + bTx + c (1.13)

where c ∈ R, b is a real n-vector and A is a n × n real matrix that can
be chosen in a non-unique manner. It is usually chosen symmetrical in

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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which case it follows that

∇f(x) = Ax + b; H(x) = A. (1.14)

The function f(x) is called positive-definite if A is positive-definite since,
by the test in Section 1.4.3.1, a function f(x) is convex if H(x) is
positive-definite.

1.4.5 The directional derivative of f(x) in the direction u

It is usually assumed that ‖u‖ = 1. Consider the differential:

df =
∂f

∂x1
dx1 + · · · +

∂f

∂xn
dxn = ∇T f(x)dx. (1.15)

A point x on the line through x′ in the direction u is given by x =
x(λ) = x′ + λu, and for a small change dλ in λ, dx = udλ. Along this
line F (λ) = f(x′ + λu) and the differential at any point x on the given
line in the direction u is therefore given by dF = df = ∇T f(x)udλ. It
follows that the directional derivative at x in the direction u is

dF (λ)
dλ

=
df(x)
dλ

∣∣∣∣
u

= ∇T f(x)u. (1.16)

1.5 Unconstrained minimization

In considering the unconstrained problem: min
x

f(x), x ∈ X ⊆ R
n, the

following questions arise:

(i) what are the conditions for a minimum to exist,

(ii) is the minimum unique,

(iii) are there any relative minima?

Figure 1.19 (after Farkas and Jarmai 1997) depicts different types of
minima that may arise for functions of a single variable, and for functions
of two variables in the presence of inequality constraints. Intuitively,



24 CHAPTER 1

x∗

local minima

global minimum
x∗ x

unique global
minimum

x
no minimum

x

x1

local minimum

global minimum

feasible
region

x1

x1

local minimum

global minimum

feasible
region

region
feasible

local minimum

global minimum

x2 x2

f(x)

x2
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with reference to Figure 1.19, one feels that a general function may have
a single unique global minimum, or it may have more than one local
minimum. The function may indeed have no local minimum at all, and
in two dimensions the possibility of saddle points also comes to mind.
Thus, in order to answer the above questions regarding the nature of
any given function more analytically, it is necessary to give more precise
meanings to the above mentioned notions.

1.5.1 Global and local minima; saddle points

1.5.1.1 Global minimum

x∗ is a global minimum over the set X if f(x) ≥ f(x∗) for all x ∈ X ⊂
R

n.

1.5.1.2 Strong local minimum

x∗ is a strong local minimum if there exists an ε > 0 such that

f(x) > f(x∗) for all {x∣∣‖x − x∗‖ < ε}
where || · || denotes the Euclidean norm. This definition is sketched in
Figure 1.20.

1.5.1.3 Test for unique local global minimum

It can be shown (see Theorems 5.1.4 and 5.1.5 in Chapter 5) that if f(x)
is strictly convex over X, then a strong local minimum is also the global
minimum.

The global minimizer can be difficult to find since the knowledge of
f(x) is usually only local. Most minimization methods seek only a local
minimum. An approximation to the global minimum is obtained in prac-
tice by the multi-start application of a local minimizer from randomly
selected different starting points in X. The lowest value obtained after
a sufficient number of trials is then taken as a good approximation to
the global solution (see Snyman and Fatti 1987; Groenwold and Snyman

http://dx.doi.org/10.1007/978-3-319-77586-9_5
http://dx.doi.org/10.1007/978-3-319-77586-9_5
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f(x)

x2

ε

x∗ = [x∗
1, x∗

2]
x2

Figure 1.20: Graphical representation of the definition of a local mini-
mum

2002). If, however, it is known that the function is strictly convex over
X, then only one trial is sufficient since only one local minimum, the
global minimum, exists.

1.5.1.4 Saddle points

f(x) has a saddle point at x =
[

x0

y0

]
if there exists an ε > 0 such that

for all x, ‖x − x0‖ < ε and all y, ‖y − y0‖ < ε: f(x,y0) ≤ f(x0,y0) ≤
f(x0,y).

A contour representation of a saddle point in two dimensions is given in
Figure 1.21.

1.5.2 Local characterization of the behaviour of a multi-
variable function

It is assumed here that f(x) is a smooth function, i.e., that it is a twice
continuously differentiable function (f(x) ∈ C2). Consider again the
line x = x(λ) = x′ + λu through the point x′ in the direction u.
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x

y

−− [x0, y0]

+

+

Figure 1.21: Contour representation of saddle point

Along this line a single variable function F (λ) may be defined:

F (λ) = f(x(λ)) = f(x′ + λu).

It follows from (1.16) that

dF (λ)
dλ

=
df(x(λ))

dλ

∣∣∣∣
u

= ∇T f(x(λ))u = g(x(λ)) = G(λ)

which is also a single variable function of λ along the line x = x(λ) =
x′ + λu.

Thus similarly it follows that

d2F (λ)
dλ2

=
dG(λ)

dλ
=

dg(x(λ))
dλ

∣∣∣∣
u

= ∇T g(x(λ))u

= ∇T
(∇T f(x(λ))u

)
u

= uTH(x(λ))u.

Summarising: the first and second order derivatives of F (λ) with respect
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to λ at any point x = x(λ) on any line (any u) through x′ is given by

dF (λ)
dλ

= ∇T f(x(λ))u, (1.17)

d2F (λ)
dλ2

= uTH(x(λ))u (1.18)

where x(λ) = x′ + λu and F (λ) = f(x(λ)) = f(x′ + λu).

These results may be used to obtain Taylor’s expansion for a multi-
variable function. Consider again the single variable function F (λ)
defined on the line through x′ in the direction u by F (λ) = f(x′ + λu).
It is known that the Taylor expansion of F (λ) about 0 is given by

F (λ) = F (0) + λF ′(0) + 1
2λ

2F ′′(0) + . . . (1.19)

With F (0) = f(x′), and substituting expressions (1.17) and (1.18) for
respectively sF ′(λ) and F ′′(λ) at λ = 0 into (1.19) gives

F (λ) = f(x′ + λu) = f(x′) + ∇T f(x′)λu + 1
2λuTH(x′)λu + . . .

Setting δ = λu in the above gives the expansion:

f(x′ + δ) = f(x′) + ∇T f(x′)δ + 1
2δ

TH(x′)δ + . . . (1.20)

Since the above applies for any line (any u) through x′, it represents
the general Taylor expansion for a multi-variable function about x′. If
f(x) is fully continuously differentiable in the neighbourhood of x′ it
can be shown that the truncated second order Taylor expansion for a
multi-variable function is given by

f(x′ + δ) = f(x′) + ∇T f(x′)δ + 1
2δ

TH(x′ + θδ)δ (1.21)

for some θ ∈ [0, 1]. This expression is important in the analysis of the
behaviour of a multi-variable function at any given point x′.

1.5.3 Necessary and sufficient conditions for a strong
local minimum at x∗

In particular, consider x′ = x∗ a strong local minimizer. Then for any
line (any u) through x′ the behaviour of F (λ) in a neighbourhood of x∗

is as shown in Figure 1.22, with minimum at at λ = 0.
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F (λ)

λ0

Figure 1.22: Behaviour of F (λ) near λ = 0

Clearly, a necessary first order condition that must apply at x∗ (corre-
sponding to λ = 0) is that

dF (0)
dλ

= ∇T f(x∗)u = 0, for all u �= 0. (1.22)

It can easily be shown that this condition also implies that necessarily
∇f(x∗) = 0.

A necessary second order condition that must apply at x∗ is that

d2F (0)
dλ2

= uTH(x∗)u > 0, for all u �= 0. (1.23)

Conditions (1.22) and (1.23) taken together are also sufficient conditions
(i.e. those that imply) for x∗ to be a strong local minimum if f(x) is
continuously differentiable in the vicinity of x∗. This can easily be shown
by substituting these conditions in the Taylor expansion (1.21).

Thus in summary, the necessary and sufficient conditions for x∗ to be a
strong local minimum are:

∇f(x∗) = 0
H(x∗) positive-definite.

(1.24)

In the argument above it has implicitly been assumed that x∗ is an
unconstrained minimum interior to X. If x∗ lies on the boundary of X
(see Figure 1.23) then

dF (0)
dλ

≥ 0, i.e. ∇T f(x∗)u ≥ 0 (1.25)

for all allowable directions u, i.e. for directions such that x∗ + λu ∈ X
for arbitrary small λ > 0.
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F (λ)

λ

X

x∗
u

Figure 1.23: Behaviour of F (λ) for all allowable directions of u

Conditions (1.24) for an unconstrained strong local minimum play a very
important role in the construction of practical algorithms for uncon-
strained optimization.

1.5.3.1 Application to the quadratic function

Consider the quadratic function:

f(x) = 1
2x

TAx + bTx + c.

In this case the first order necessary condition for a minimum implies
that

∇f(x) = Ax + b = 0.

Therefore a candidate solution point is

x∗ = −A−1b. (1.26)

If the second order necessary condition also applies, i.e. if A is positive-
definite, then x∗ is a unique minimizer.

1.5.4 General indirect method for computing x∗

The general indirect method for determining x∗ is to solve the system
of equations ∇f(x) = 0 (corresponding to the first order necessary
condition in (1.24)) by some numerical method, to yield all stationary
points. An obvious method for doing this is Newton’s method. Since
in general the system will be non-linear, multiple stationary points are
possible. These stationary points must then be further analysed in order
to determine whether or not they are local minima.
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1.5.4.1 Solution by Newton’s method

Assume x∗ is a local minimum and xi an approximate solution, with
associated unknown error δ such that x∗ = xi + δ. Then by applying
Taylor’s theorem and the first order necessary condition for a minimum
at x∗ it follows that

0 = ∇f(x∗) = ∇f(xi + δ) = ∇f(xi) + H(xi)δ + O‖δ‖2.
If xi is a good approximation then δ

.= Δ, the solution of the linear
system H(xi)Δ + ∇f(xi) = 0, obtained by ignoring the second order
term in δ above. A better approximation is therefore expected to be
xi+1 = xi + Δ which leads to the Newton iterative scheme: Given an
initial approximation x0, compute

xi+1 = xi − H−1(xi)∇f(xi) (1.27)

for i = 0, 1, 2, . . . Hopefully lim
i→∞

xi = x∗.

1.5.4.2 Example of Newton’s method applied to a quadratic
problem

Consider the unconstrained problem:

minimize f(x) = 1
2x

TAx + bTx + c.

In this case the first iteration in (1.27) yields

x1 = x0 − A−1(Ax0 + b) = x0 − x0 − A−1b = −A−1b

i.e. x1 = x∗ = −A−1b in a single step (see (1.26)). This is to be
expected since in this case no approximation is involved and thus Δ = δ.

1.5.4.3 Difficulties with Newton’s method

Unfortunately, in spite of the attractive features of the Newton method,
such as being quadratically convergent near the solution, the basic New-
ton method as described above does not always perform satisfactorily.
The main difficulties are:
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y = x

x∗0

y = φ(x)y

y0

y1

y2

x0 x1 x2 x

y = x
y = φ(x)

xx0x1x2x30

y1

y2

y0

y

divergeconverge

x∗

Figure 1.24: Graphical representation of Newton’s iterative scheme for
a single variable

(i) the method is not always convergent, even if x0 is close to x∗, and

(ii) the method requires the computation of the Hessian matrix at each
iteration.

The first of these difficulties may be illustrated by considering Newton’s
method applied to the one-dimensional problem: solve f ′(x) = 0. In
this case the iterative scheme is

xi+1 = xi − f ′(xi)
f ′′(xi)

= φ(xi), for i = 0, 1, 2, . . . (1.28)

and the solution corresponds to the fixed point x∗ where x∗ = φ(x∗).
Unfortunately in some cases, unless x0 is chosen to be exactly equal
to x∗, convergence will not necessarily occur. In fact, convergence is
dependent on the nature of the fixed point function φ(x) in the vicin-
ity of x∗, as shown for two different φ functions in Figure 1.24. With
reference to the graphs Newton’s method is: yi = φ(xi), xi+1 = yi for
i = 0, 1, 2, . . . . Clearly in the one case where |φ′(x)| < 1 convergence
occurs, but in the other case where |φ′(x)| > 1 the scheme diverges.

In more dimensions the situation may be even more complicated. In
addition, for a large number of variables, difficulty (ii) mentioned above
becomes serious in that the computation of the Hessian matrix repre-
sents a major task. If the Hessian is not available in analytical form,
use can be made of automatic differentiation techniques to compute it,
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or it can be estimated by means of finite differences. It should also be
noted that in computing the Newton step in (1.27) a n×n linear system
must be solved. This represents further computational effort. There-
fore in practice the simple basic Newton method is not recommended.
To avoid the convergence difficulty use is made of a modified Newton
method, in which a more direct search procedure is employed in the
direction of the Newton step, so as to ensure descent to the minimum
x∗. The difficulty associated with the computation of the Hessian is
addressed in practice through the systematic update, from iteration to
iteration, of an approximation of the Hessian matrix. These improve-
ments to the basic Newton method are dealt with in greater detail in
the next chapter.

1.6 Test functions

The efficiency of an algorithm is studied using standard functions with
standard starting points x0. The total number of functions evaluations
required to find the minimizer x∗ is usually taken as a measure of the
efficiency of the algorithm.

1.6.1 Unconstrained

Some classical unconstrained minimization test functions from (Rao
1996) are listed below.

1. Rosenbrock’s parabolic valley:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2; x0 =
[ −1.2

1.0

]
x∗ =

[
1
1

]
.

2. Quadratic function:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2; x0 =
[

0
0

]
x∗ =

[
1
3

]
.

3. Powell’s quartic function:

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4;
x0 = [3,−1, 0, 1]T ; x∗ = [0, 0, 0, 0]T .
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4. Fletcher and Powell’s helical valley:

f(x) = 100
(
(x3 − 10θ(x1, x2))

2

+
(√

x2
1 + x2

2 − 1
)2

)
+ x2

3;

where 2πθ(x1, x2) =

⎧⎨
⎩

arctan
x2

x1
if x1 > 0

π + arctan
x2

x1
if x1 < 0

x0 = [−1, 0, 0]T ; x∗ = [1, 0, 0]T .

5. A non-linear function of three variables:

f(x) = − 1

1 + (x1 − x2)2
− sin

(
1

2
πx2x3

)
− exp

(
−

(
x1 + x3

x2
− 2

)2
)

;

x0 = [0, 1, 2]T ; x∗ = [1, 1, 1]T .

6. Freudenstein and Roth function:

f(x) = (−13 + x1 + ((5 − x2)x2 − 2)x2)2

+(−29 + x1 + ((x2 + 1)x2 − 14)x2)2;
x0 = [0.5,−2]T ; x∗ = [5, 4]T ; x∗

local = [11.41 . . . ,−0.8968 . . .]T .

7. Powell’s badly scaled function:

f(x) = (10 000x1x2 − 1)2 + (exp(−x1) + exp(−x2) − 1.0001)2;
x0 = [0, 1]T ; x∗ = [1.098 . . . × 10−5, 9.106 . . .]T .

8. Brown’s badly scaled function:

f(x) = (x1 − 106)2 + (x2 − 2 × 10−6)2 + (x1x2 − 2)2;
x0 = [1, 1]T ; x∗ = [106, 2 × 10−6]T .

9. Beale’s function:

f(x) = (1.5 − x1(1 − x2))2 + (2.25 − x1(1 − x2
2))

2

+(2.625 − x1(1 − x3
2))

2;
x0 = [1, 1]T ; x∗ = [3, 0.5]T .
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10. Wood’s function:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2 + 90(x4 − x2
3)

2 + (1 − x3)2

+10(x2 + x4 − 2)2 + 0.1(x2 − x4)2

x0 = [−3, −1, −3, −1]T ; x∗ = [1, 1, 1, 1]T .

1.6.2 Constrained

Some classical constrained minimization test problems from Hock and
Schittkowski (1981) are listed below.

1. Hock & Schittkowski Problem 1:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

such that
x2 ≥ −1.5

x0 =
[ −2

1

]
x∗ =

[
1
1

]
λ∗ = 0

2. Hock & Schittkowski Problem 2:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

such that
x2 ≥ 1.5

x0 =
[ −2

1

]
x∗ =

[
1.2243707487363527
1.5000000000000000

]
λ∗ = 200

3. Hock & Schittkowski Problem 6:

f(x) = (1 − x1)2

such that
10(x2 − x2

1) = 0

x0 =
[ −1.2

1

]
x∗ =

[
1
1

]
λ∗ = 0.4
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4. Hock & Schittkowski Problem 7:

f(x) = ln(1 + x2
1) − x2

such that
(1 + x2

1)
2 + x2

2 − 4 = 0

x0 =
[

2
2

]
x∗ =

[
0√
3

]
λ∗ = 3.15

5. Hock & Schittkowski Problem 10:

f(x) = x1 − x2

such that
−3x2

1 + 2x1x2 − x2
2 + 1 ≥ 0

x0 =
[ −10

10

]
x∗ =

[
0
1

]
λ∗ = 1.0

6. Hock & Schittkowski Problem 18:

f(x) = 0.01x2
1 + x2

2

such that
x1x2 − 25 ≥ 0
x2
1 + x2

2 − 25 ≥ 0
2 ≤ x1 ≤ 50
2 ≤ x2 ≤ 50

x0 =
[

2
2

]
x∗ =

[ √
250√
2.5

]
λ∗ = 0.079

7. Hock & Schittkowski Problem 27:

f(x) = 0.01(x1 − 1)2 + (x2 − x2
1)

2

such that
x1 + x2

3 + 1 = 0

x0 =

⎡
⎣ 2

2
2

⎤
⎦ x∗ =

⎡
⎣ −1

1
0

⎤
⎦ λ∗ = 2
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8. Hock & Schittkowski Problem 42:

f(x) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + (x4 − 4)2

such that
x1 − 2 = 0
x2
3 + x2

4 − 2 = 0

x0 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ x∗ =

⎡
⎢⎢⎣

2
2

0.6
√

2
0.8

√
2

⎤
⎥⎥⎦ λ∗

max = 7.07, λ∗
min = 3.54

9. Hock & Schittkowski Problem 66:

f(x) = 0.2x3 − 0.8x1

such that
x2 − exp(x1) ≥ 0
x3 − exp(x2) ≥ 0
0 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100
0 ≤ x3 ≤ 10

x0 =

⎡
⎣ 0

1.05
2.9

⎤
⎦ x∗ =

⎡
⎣ 0.1841264879

1.202167873
3.327322322

⎤
⎦ λ∗

max = 0.096, λ∗
min = 0.096

10. Hock & Schittkowski Problem 104:

f(x) = 0.4x0.67
1 x−0.67

7 + 0.4x0.67
2 x−0.67

8 + 10 − x1 − x2

such that
1 − 0.0588x5x7 − 0.1x1 ≥ 0
1 − 0.0588x6x8 − 0.1x1 − 0.1x2 ≥ 0
1 − 4x3x

−1
5 − 2x−0.71

3 x−1
5 − 0.0588x−1.3

3 x7 ≥ 0
1 − 4x4x

−1
6 − 2x−0.71

4 x−1
6 − 0.0588x−1.3

4 x8 ≥ 0
1 ≤ f(x) ≤ 4.2
1 ≤ xi ≤ 10, i = 1, . . . , 8

x0 =
[

6, 3, 0.4, 0.2, 6, 6, 1, 0.5
]T

x∗ = [6.465114, 2.232709, 0.6673975, 0.5957564,
5.932676, 5.527235, 1.013322, 0.4006682]T

λ∗
max = 1.87, λ∗

min = 0.043
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1.7 Exercises

1.7.1 Sketch the graphical solution to the following problem:

minx f(x) = (x1 − 2)2 + (x2 − 2)2

such that x1 + 2x2 = 4; x1 ≥ 0; x2 ≥ 0.

In particular indicate the feasible region:

F = {(x1, x2)
∣∣x1 + 2x2 = 4; x1 ≥ 0; x2 ≥ 0}

and the solution point x∗.

1.7.2 Show that x2 is a convex function.

1.7.3 Show that the sum of convex functions is also convex.

1.7.4 Determine the gradient vector and Hessian matrix of the Rosen-
brock function given in Section 1.6.1.

1.7.5 Write the quadratic function f(x) = x2
1 + 2x1x2 + 3x2

2 in the
standard matrix-vector notation. Is f(x) positive-definite?

1.7.6 Write each of the following objective functions in standard form:

f(x) = 1
2x

TAx + bTx + c.

(i) f(x) = x2
1+2x1x2+4x1x3+3x2

2+2x2x3+5x2
3+4x1−2x2+3x3.

(ii) f(x) = 5x2
1+12x1x2−16x1x3+10x2

2−26x2x3+17x2
3−2x1−

4x2 − 6x3.

(iii) f(x) = x2
1 − 4x1x2 + 6x1x3 + 5x2

2 − 10x2x3 + 8x2
3.

1.7.7 Determine the definiteness of the following quadratic form:

f(x) = x2
1 − 4x1x2 + 6x1x3 + 5x2

2 − 10x2x3 + 8x2
3. (1.29)

1.7.8 Approximate the Rosenbrock function given in Section 1.6.1
using a first order Taylor series expansion around x0. Com-
pute the accuracy of the approximation at x = x0 + Δx, with
Δx = [0, 1.0]T.
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1.7.9 Approximate the Rosenbrock function given in Section 1.6.1
using a second order Taylor series expansion around x0. Com-
pute the accuracy of the approximation at x = x0 + Δx, with
Δx = [0, 1.0]T.

1.7.10 Compute the directional derivatives for the Rosenbrock function
given in Section 1.6.1 at x0 along the following three directions

u1 = [1, 0],
u2 = [0, 1],

u3 = [
1√
2
,

1√
2
].

Compare the first two computed directional derivatives to the
components of the gradient vector. What conclusions can you
draw.

1.7.11 Clearly state which of the directions computed in Exercise 1.7.10
are descent directions, i.e. directions along which the function
will decrease for small positive steps along the direction.

1.7.12 Propose a descent direction of unit length that would result in
the largest directional derivative magnitude at x0.

1.7.13 Compute the eigenvalues and eigenvectors for the computed A
matrices in Exercise 1.7.6.

1.7.14 Determine whether the A matrices computed in Exercise 1.7.6
are positive-definite, negative-definite or indefinite.

1.7.15 Compare the associated eigenvalue for each computed eigenvec-
tor ui in Exercise 1.7.13 against the second derivative of the
univariate function f(λ) = (x0 + λui)TA(x0 + λui) and draw
concrete conclusions.

1.7.16 Consider the following constrained optimization problem

minx f(x) = x4
1 − 6x3

1 + 9x2
1 + x4

2 − 0.5x3
2 + 0.0625x2

2,
such that
x1 ≥ 0,
x2 ≤ 0.
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Utilizing only transformation of variables reformulate the con-
strained minimization problem as an unconstrained minimiza-
tion problem.

1.7.17 Given the function f(x) and the non-linear variable scaling
z(x) = G(x) that transforms the domain, x ∈ Rn, to the
domain, z ∈ Rn, with inverse relation x(z) = G−1(z) trans-
forming z back to the x domain. By substituting x(z) into f(x)
we obtain f(z). Utilize the chain rule to derive the expression
for computing ∇zf(z).

1.7.18 Perform the first five Newton steps in solving the Rosenbrock
function listed in Section 1.6.1.

1.7.19 Perform the first five Newton steps in solving the Quadratic
function listed in Section 1.6.1.

1.7.20 Perform the first five Newton steps in solving the Freudenstein
and Roth function listed in Section 1.6.1.

1.7.21 Perform the first five Newton steps in solving the Powell’s badly
scaled function listed in Section 1.6.1.

1.7.22 Perform the first five Newton steps in solving the Brown’s badly
scaled function listed in Section 1.6.1.

1.7.23 Perform the first five Newton steps in solving the Beale’s func-
tion listed in Section 1.6.1.
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