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Preface to the second
edition

The first edition (2005) of Practical Mathematical Optimization has
proved to be a rigorous yet practical introduction to the fundamental
principles of mathematical optimization. As stated in the preface to the
first edition also included in this new edition, the aim of the text was to
equip the reader with the basic theory and algorithms to allow for the
solution of practical problems with confidence and in an informed way.

However, since the publication of the first edition more than a decade
ago, the complexity of and computing requirements for the solution of
mathematical optimization problems have significantly increased. The
accessibility and definition of computing platforms have expanded by
huge proportions. The fundamental physical limitations on speeding up
central processing units have spurred on the advancement of multi-core
computing environments that now regularly include graphical processing
units. The diversity of software platforms is ever expanding with new
domain and computing specific software platforms being released weekly.
This edition addresses these recent advancements together with novel
ideas already touched on in the first edition that have since matured
considerably. They include the handling of noise in objective functions
and gradient-only optimization strategies introduced and discussed in
the first edition. In order to assist in the coverage of further develop-
ments in this area, and in particular of recent work in the application of
mainly gradient-only methods to piecewise smooth discontinuous objec-
tive functions, it is a pleasure to welcome as co-author for this edition
the younger colleague, Daniel N. Wilke.
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viii PREFACE SECOND EDITION

This second edition of Practical Mathematical Optimization now takes
account of the above recent developments and aims to bring this text
up to date. Thus, this book now includes a new and separate chap-
ter dedicated to advanced gradient-only formulated solution strategies
for optimizing noisy objective functions, specifically piecewise smooth
discontinuous objective functions, for which solution formulations and
strategies are thoroughly covered. A comprehensive set of alternative
solution strategies are presented that include gradient-only line search
methods and gradient-only approximations. The application of these
strategies is illustrated by application to well-motivated example prob-
lems. Also new to this edition is a dedicated chapter on the construction
of surrogate models using only zero-order information, zero- and first-
order information, and only first-order information. The latter approach
being particularly effective in constructing smooth surrogates for discon-
tinuous functions.

A further addition is a chapter dedicated to numerical computation
which informs students and practicing scientists and engineers on ways
to easily setup and solve problems without delay. In particular, the
scientific computing language Python is introduced, which is available
on almost all computing platforms ranging from dedicated servers and
desktops to smartphones. Thus, this book is accompanied by a Python
module pmo, which makes all algorithms presented in this book easily
accessible as it follows the well-known scipy.optimize.minimize con-
vention. The module is designed to allow and encourage the reader to
include their own optimization strategies within a simple, consistent, and
systematic framework. The benefit to graduate students and researchers
is evident, as various algorithms can be tested and compared with ease
and convenience.

To logically accommodate the new material, this edition has been restruc-
tured into two parts. The basic optimization theory that covers intro-
ductory optimization concepts and definitions, search techniques for
unconstrained minimization, and standard methods for constrained opti-
mization is covered in the first five chapters to form Part I. This part
contains a chapter of detailed worked-out example problems, while other
chapters in Part I are supplemented by example problems and exercises
that can be done by hand using only pen, paper, and a calculator. In
Part II, the focus shifts to computer applications of relatively new and
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mainly gradient-based numerical strategies and algorithms that are cov-
ered over four chapters. A dedicated computing chapter using Python
is included as the final chapter of Part II, and the reader is encouraged
to consult this chapter as required to complete the exercises in the pre-
ceding three chapters. The chapters in Part II are also supplemented by
numerical exercises that are specifically designed so as to encourage the
students to plan, execute, and reflect on numerical investigations. In
summary, the twofold purpose of these questions is to allow the reader,
in the first place, to gain a deeper understanding of the conceptual mate-
rial presented and, secondly, to assist in developing systematic and scien-
tific numerical investigative skills that are so crucial for the modern-day
researcher, scientist, and engineer.

Jan Snyman and Nico Wilke
Pretoria
30 January 2018



Preface to the first edition

It is intended that this book is used in senior- to graduate-level semester
courses in optimization, as offered in mathematics, engineering, com-
puter science, and operations research departments. Hopefully, this book
will also be useful to practicing professionals in the workplace.

The contents of this book represent the fundamental optimization mate-
rial collected and used by the author, over a period of more than twenty
years, in teaching Practical Mathematical Optimization to undergradu-
ate as well as graduate engineering and science students at the University
of Pretoria. The principal motivation for writing this work has not been
the teaching of mathematics per se, but to equip students with the nec-
essary fundamental optimization theory and algorithms, so as to enable
them to solve practical problems in their own particular principal fields
of interest, be it physics, chemistry, engineering design, or business eco-
nomics. The particular approach adopted here follows from the author’s
own personal experiences in doing research in solid-state physics and in
mechanical engineering design, where he was constantly confronted by
problems that can most easily and directly be solved via the judicious
use of mathematical optimization techniques. This book is, however, not
a collection of case studies restricted to the above-mentioned specialized
research areas, but is intended to convey the basic optimization princi-
ples and algorithms to a general audience in such a way that, hopefully,
the application to their own practical areas of interest will be relatively
simple and straightforward.

Many excellent and more comprehensive texts on practical mathemati-
cal optimization have of course been written in the past, and I am much
indebted to many of these authors for the direct and indirect influence

xi



xii PREFACE FIRST EDITION

their work has had in the writing of this monograph. In the text, I
have tried as far as possible to give due recognition to their contri-
butions. Here, however, I wish to single out the excellent and possibly
underrated book of D. A. Wismer and R. Chattergy (1978), which served
to introduce the topic of nonlinear optimization to me many years ago,
and which has more than casually influenced this work.

With so many excellent texts on the topic of mathematical optimiza-
tion available, the question can justifiably be posed: Why another book
and what is different here? Here, I believe, for the first time in a rel-
atively brief and introductory work, due attention is paid to certain
inhibiting difficulties that can occur when fundamental and classical
gradient-based algorithms are applied to real-world problems. Often
students, after having mastered the basic theory and algorithms, are
disappointed to find that due to real-world complications (such as the
presence of noise and discontinuities in the functions, the expense of
function evaluations, and an excessive large number of variables), the
basic algorithms they have been taught are of little value. They then
discard, for example, gradient-based algorithms and resort to alternative
non-fundamental methods. Here, in Chapter 4 (now Chapter 6) on new
gradient-based methods, developed by the author and his co-workers,
the above-mentioned inhibiting real-world difficulties are discussed, and
it is shown how these optimization difficulties may be overcome without
totally discarding the fundamental gradient-based approach.

The reader may also find the organization of the material in this book
somewhat novel. The first three chapters present the basic theory, and
classical unconstrained and constrained algorithms, in a straightforward
manner with almost no formal statement of theorems and presentation
of proofs. Theorems are of course of importance, not only for the more
mathematically inclined students, but also for practical people inter-
ested in constructing and developing new algorithms. Therefore, some
of the more important fundamental theorems and proofs are presented
separately in Chapter 6 (now Chapter 5). Where relevant, these theo-
rems are referred to in the first three chapters. Also, in order to prevent
cluttering, the presentation of the basic material in Chapters 1 to 3
is interspersed with very few worked-out examples. Instead, a gener-
ous number of worked-out example problems are presented separately
in Chapter 5 (now Chapter 4), in more or less the same order as the

http://dx.doi.org/10.1007/978-3-319-77586-9_4
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_5
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_3
http://dx.doi.org/10.1007/978-3-319-77586-9_5
http://dx.doi.org/10.1007/978-3-319-77586-9_4
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presentation of the corresponding theory given in Chapters 1 to 3. The
separate presentation of the example problems may also be convenient
for students who have to prepare for the inevitable tests and examina-
tions. The instructor may also use these examples as models to easily
formulate similar problems as additional exercises for the students, and
for test purposes.

Although the emphasis of this work is intentionally almost exclusively
on gradient-based methods for nonlinear problems, this book will not
be complete if only casual reference is made to the simplex method
for solving linear programming (LP) problems (where of course use is
also made of gradient information in the manipulation of the gradient
vector c of the objective function, and the gradient vectors of the con-
straint functions contained in the matrix A). It was therefore decided to
include, as Appendix A, a short introduction to the simplex method for
LP problems. This appendix introduces the simplex method along the
lines given by Chvatel (1983) in his excellent treatment of the subject.

The author gratefully acknowledges the input and constructive com-
ments of the following colleagues to different parts of this work: Nielen
Stander, Albert Groenwold, Ken Craig, and Danie de Kock. A spe-
cial word of thanks goes to Alex Hay. Not only did he significantly
contribute to the contents of Chapter 4 (now Chapter 6), but he also
helped with the production of most of the figures and in the final editing
of the manuscript. Thanks also to Craig Long who assisted with final
corrections and to Alna van der Merwe who typed the first LATEX draft.

Jan Snyman
Pretoria
31 May 2004

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_3
http://dx.doi.org/10.1007/978-3-319-77586-9_4
http://dx.doi.org/10.1007/978-3-319-77586-9_6
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Chapter 1

INTRODUCTION

1.1 What is mathematical optimization?

Formally, Mathematical Optimization is the process of

(i) the formulation and

(ii) the solution of a constrained optimization problem of the general
mathematical form:

minimize
w.r.t. x

f(x), x = [x1, x2, . . . , xn]T ∈ R
n

subject to the constraints:

gj(x) ≤ 0, j = 1, 2, . . . , m
hj(x) = 0, j = 1, 2, . . . , r

(1.1)

where f(x), gj(x) and hj(x) are scalar functions of the real column
vector x.

The continuous components xi of x = [x1, x2, . . . , xn]T are called the
(design) variables, f(x) is the objective function, gj(x) denotes the respec-
tive inequality constraint functions and hj(x) the equality constraint
functions.

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 1
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The optimum vector x that solves problem (1.1) is denoted by x∗ with
corresponding optimum function value f(x∗). If no constraints are spec-
ified, the problem is called an unconstrained minimization problem.

Mathematical Optimization is often also called Nonlinear Programming,
Mathematical Programming or Numerical Optimization. In more gen-
eral terms Mathematical Optimization may be described as the science
of determining the best solutions to mathematically defined problems,
which may be models of physical reality or of manufacturing and man-
agement systems. In the first case solutions are sought that often cor-
respond to minimum energy configurations of general structures, from
molecules to suspension bridges, and are therefore of interest to Science
and Engineering. In the second case commercial and financial consider-
ations of economic importance to Society and Industry come into play,
and it is required to make decisions that will ensure, for example, max-
imum profit or minimum cost.

The history of the Mathematical Optimization, where functions of many
variables are considered, is relatively short, spanning roughly only 70
years. At the end of the 1940s the very important simplex method
for solving the special class of linear programming problems was devel-
oped. Since then numerous methods for solving the general optimization
problem (1.1) have been developed, tested, and successfully applied to
many important problems of scientific and economic interest. There is no
doubt that the advent of the computer was essential for the development
of these optimization methods. However, in spite of the proliferation of
optimization methods, there is no universal method for solving all opti-
mization problems. According to Nocedal and Wright (1999): “. . . there
are numerous algorithms, each of which is tailored to a particular type of
optimization problem. It is often the user’s responsibility to choose an
algorithm that is appropriate for the specific application. This choice
is an important one; it may determine whether the problem is solved
rapidly or slowly and, indeed, whether the solution is found at all.” In
a similar vein Vanderplaats (1998) states that “The author of each algo-
rithm usually has numerical examples which demonstrate the efficiency
and accuracy of the method, and the unsuspecting practitioner will often
invest a great deal of time and effort in programming an algorithm,
only to find that it will not in fact solve the particular problem being
attempted. This often leads to disenchantment with these techniques
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that can be avoided if the user is knowledgeable in the basic concepts of
numerical optimization.” With these representative and authoritative
opinions in mind, and also taking into account the present authors’ per-
sonal experiences in developing algorithms and applying them to design
problems in mechanics, this text has been written to provide a brief but
unified introduction to optimization concepts and methods. In addition,
an overview of a set of novel algorithms, developed by the authors and
their students at the University of Pretoria over the past thirty years, is
also given.

The emphasis of this book is almost exclusively on gradient-based meth-
ods. This is for two reasons. (i) The authors believe that the introduc-
tion to the topic of mathematical optimization is best done via the clas-
sical gradient-based approach and (ii), contrary to the current popular
trend of using non-gradient methods, such as genetic algorithms (GA’s),
simulated annealing, particle swarm optimization and other evolutionary
methods, the authors are of the opinion that these search methods are, in
many cases, computationally too expensive to be viable. The argument
that the presence of numerical noise and multiple minima disqualify the
use of gradient-based methods, and that the only way out in such cases
is the use of the above mentioned non-gradient search techniques, is not
necessarily true. It is the experience of the authors that, through the
judicious use of gradient-based methods, problems with numerical noise
and multiple minima may be solved, and at a fraction of the compu-
tational cost of search techniques such as genetic algorithms. In this
context Chapter 6, dealing with the new gradient-based methods devel-
oped by the first author and gradient-only methods developed by the
authors in Chapter 8, are especially important. The presentation of the
material is not overly rigorous, but hopefully correct, and should pro-
vide the necessary information to allow scientists and engineers to select
appropriate optimization algorithms and to apply them successfully to
their respective fields of interest.

Many excellent and more comprehensive texts on practical optimiza-
tion can be found in the literature. In particular the authors wish to
acknowledge the works of Wismer and Chattergy (1978), Chvatel (1983),
Fletcher (1987), Bazaraa et al. (1993), Arora (1989), Haftka and Gürdal
(1992), Rao (1996), Vanderplaats (1998), Nocedal and Wright (1999)
and Papalambros and Wilde (2000).

http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_8
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1.2 Objective and constraint functions

The values of the functions f(x), gj(x) and hj(x) at any point x =
[x1, x2, . . . , xn]T , may in practice be obtained in different ways:

(i) from analytically known formulae, e.g. f(x) = x2
1 + 2x2

2 + sin x3;

(ii) as the outcome of some complicated computational process, e.g.
g1(x) = a(x)− amax, where a(x) is the stress, computed by means
of a finite element analysis, at some point in a structure, the design
of which is specified by x; or

(iii) from measurements taken of a physical process, e.g. h1(x) = T (x)−
T0, where T (x) is the temperature measured at some specified
point in a reactor, and x is the vector of operational settings.

The first two ways of function evaluation are by far the most common.
The optimization principles that apply in these cases, where computed
function values are used, may be carried over directly to also be applica-
ble to the case where the function values are obtained through physical
measurements.

Much progress has been made with respect to methods for solving differ-
ent classes of the general problem (1.1). Sometimes the solution may be
obtained analytically, i.e. a closed-form solution in terms of a formula
is obtained.

In general, especially for n > 2, solutions are usually obtained numeri-
cally by means of suitable algorithms (computational recipes).

Expertise in the formulation of appropriate optimization problems of
the form (1.1), through which an optimum decision can be made, is
gained from experience. This exercise also forms part of what is gener-
ally known as the mathematical modelling process. In brief, attempting
to solve real-world problems via mathematical modelling requires the
cyclic performance of the four steps depicted in Figure 1.1. The main
steps are: 1) the observation and study of the real-world situation asso-
ciated with a practical problem, 2) the abstraction of the problem by
the construction of a mathematical model, that is described in terms of
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Practical implication and
evaluation of x∗(p):

Refinement of model?
Adjustment of p?

(design) variables – vector x
fixed parameters – vector p
mathematical model:
Construction/refinement of

4

1

2

3

x∗(p)

Optimization algorithms
Mathematical methods and computer programs

Real-world practical problem

Mathematical solution to model:

Figure 1.1: The mathematical modelling process

preliminary fixed model parameters p, and variables x, the latter to be
determined such that model performs in an acceptable manner, 3) the
solution of a resulting purely mathematical problem, that requires an
analytical or numerical parameter dependent solution x∗(p), and 4) the
evaluation of the solution x∗(p) and its practical implications. After step
4) it may be necessary to adjust the parameters and refine the model,
which will result in a new mathematical problem to be solved and eval-
uated. It may be required to perform the modelling cycle a number of
times, before an acceptable solution is obtained. More often than not,
the mathematical problem to be solved in 3) is a mathematical opti-
mization problem, requiring a numerical solution. The formulation of an
appropriate and consistent optimization problem (or model) is probably
the most important, but unfortunately, also the most neglected part of
Practical Mathematical Optimization.

This book gives a very brief introduction to the formulation of opti-
mization problems, and deals with different optimization algorithms in
greater depth. Since no algorithm is generally applicable to all classes of
problems, the emphasis is on providing sufficient information to allow for
the selection of appropriate algorithms or methods for different specific
problems.
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x∗ x

f(x)

Figure 1.2: Function of single variable with optimum at x∗

1.3 Basic optimization concepts

1.3.1 Simplest class of problems:
Unconstrained one-dimensional minimization

Consider the minimization of a smooth, i.e. continuous and twice con-
tinuously differentiable (C2) function of a single real variable, i.e. the
problem:

minimize
x

f(x), x ∈ R, f ∈ C2. (1.2)

With reference to Figure 1.2, for a strong local minimum, it is required
to determine a x∗ such that f(x∗) < f(x) for all x.

Clearly x∗ occurs where the slope is zero, i.e. where

f ′(x) =
df(x)
dx

= 0,

which corresponds to the first order necessary condition. In addition
non-negative curvature is necessary at x∗, i.e. it is required that the
second order condition

f ′′(x) =
d2f(x)

dx2
> 0

must hold at x∗ for a strong local minimum.

A simple special case is where f(x) has the simple quadratic form:

f(x) = ax2 + bx + c. (1.3)
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Since the minimum occurs where f ′(x) = 0, it follows that the closed-
form solution is given by

x∗ = − b

2a
, provided f ′′(x∗) = 2a > 0. (1.4)

If f(x) has a more general form, then a closed-form solution is in general
not possible. In this case, the solution may be obtained numerically via
the Newton-Raphson algorithm:

Given an approximation x0, iteratively compute:

xi+1 = xi − f ′(xi)
f ′′(xi)

; i = 0, 1, 2, . . . (1.5)

Hopefully lim
i→∞

xi = x∗, i.e. the iterations converge, in which case a

sufficiently accurate numerical solution is obtained after a finite number
of iterations.

1.3.2 Contour representation of a function of two vari-
ables (n = 2)

Consider a function f(x) of two variables, x = [x1, x2]T . The locus of
all points satisfying f(x) = c = constant, forms a contour in the x1 −x2

plane. For each value of c there is a corresponding different contour.

Figure 1.3 depicts the contour representation for the example f(x) =
x2
1 + 2x2

2.

In three dimensions (n = 3), the contours are surfaces of constant func-
tion value. In more than three dimensions (n > 3) the contours are, of
course, impossible to visualize. Nevertheless, the contour representation
in two-dimensional space will be used throughout the discussion of opti-
mization techniques to help visualize the various optimization concepts.

Other examples of 2-dimensional objective function contours are shown
in Figures 1.4 to 1.6.
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Figure 1.4: General quadratic function
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-15

Boundary of
feasible region

551 01
-5 -10

g(x) = 0

(infeasible region)
g(x) > 0

(feasible region)
g(x) < 0

x2

x1

Figure 1.7: Contours within feasible and infeasible regions

1.3.3 Contour representation of constraint functions

1.3.3.1 Inequality constraint function g(x)

The contours of a typical inequality constraint function g(x), in g(x) ≤
0, are shown in Figure 1.7. The contour g(x) = 0 divides the plane into
a feasible region and an infeasible region.

More generally, the boundary is a surface in three dimensions and a
so-called “hyper-surface” if n > 3, which of course cannot be visualised.

1.3.3.2 Equality constraint function h(x)

Here, as shown in Figure 1.8, only the line h(x) = 0 is a feasible contour.
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Figure 1.8: Feasible contour of equality constraint

f = 0
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f = 10

f = 15
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unconstrained
minimum

g(x) < 0

g(x) > 0

(feasible region)

(infeasible region)

x∗; f(x∗) = 12
(constrained minimum)

g(x) = 0

Figure 1.9: Contour representation of inequality constrained problem

1.3.4 Contour representations of constrained optimiza-
tion problems

1.3.4.1 Representation of inequality constrained problem

Figure 1.9 graphically depicts the inequality constrained problem:

min f(x)
such that g(x) ≤ 0.
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f = 0

f = 5

f = 10

f = 15

f = 20

unconstrained
minimum

h(x) < 0

h(x) > 0

(infeasible region)

(infeasible region)

x∗; f(x∗) = 12
(constrained minimum)

h(x) = 0
(feasible line (surface))

Figure 1.10: Contour representation of equality constrained problem

x 1 − x

r
b

Figure 1.11: Wire divided into two pieces with x1 = x and x2 = 1 − x

1.3.4.2 Representation of equality constrained problem

Figure 1.10 graphically depicts the equality constrained problem:

min f(x)
such that h(x) = 0.

1.3.5 Simple example illustrating the formulation and
solution of an optimization problem

Problem: A length of wire 1 meter long is to be divided into two pieces,
one in a circular shape and the other into a square as shown in Figure
1.11. What must the individual lengths be so that the total area is a
minimum?
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Formulation 1

Set length of first piece = x, then the area is given by f(x) = πr2 + b2.
Since r = x

2π and b = 1−x
4 it follows that

f(x) = π

(
x2

4π2

)
+

(1 − x)2

16
.

The problem therefore reduces to an unconstrained minimization prob-
lem:

minimize f(x) = 0.1421x2 − 0.125x + 0.0625.

Solution of Formulation 1

The function f(x) is quadratic, therefore an analytical solution is given
by the formula x∗ = − b

2a (a > 0):

x∗ = − −0.125
2(0.1421)

= 0.4398 m,

and
1 − x∗ = 0.5602 m with f(x∗) = 0.0350 m2.

Formulation 2

Divide the wire into respective lengths x1 and x2 (x1 + x2 = 1). The
area is now given by

f(x) = πr2 + b2 = π

(
x2
1

4π2

)
+

(x2

4

)2
= 0.0796x2

1 + 0.0625x2
2.

Here the problem reduces to an equality constrained problem:

minimize f(x) = 0.0796x2
1 + 0.0625x2

2

such that h(x) = x1 + x2 − 1 = 0.

Solution of Formulation 2

This constrained formulated problem is more difficult to solve. The
closed-form analytical solution is not obvious and special constrained
optimization techniques, such as the method of Lagrange multipliers to
be discussed later, must be applied to solve the constrained problem
analytically. The graphical solution is sketched in Figure 1.12.
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x2

1

1

f = 0.0350

x1

x1 + x2 = 1

x∗ = (0.4398, 0.5602)

Figure 1.12: Graphical solution of Formulation 2

1.3.6 Maximization

The maximization problem: max
x

f(x) can be cast in the standard form

(1.1) by observing that max
x

f(x) = − min
x

{−f(x)} as shown in Figure

1.13. Therefore in applying a minimization algorithm set F (x) = −f(x).

Also if the inequality constraints are given in the non-standard form:
gj(x) ≥ 0, then set g̃j(x) = −gj(x). In standard form the problem then
becomes:

minimize F (x) such that g̃j(x) ≤ 0.

Once the minimizer x∗ is obtained, the maximum value of the original
maximization problem is given by −F (x∗).

1.3.7 The special case of Linear Programming

A very important special class of the general optimization problem arises
when both the objective function and all the constraints are linear func-
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xx∗

−f(x)

f(x)

Figure 1.13: Maximization problem transformed to minimization prob-
lem

tions of x. This is called a Linear Programming problem and is usually
stated in the following form:

min
x

f(x) = cTx

such that (1.6)
Ax ≤ b; x ≥ 0

where c is a real n-vector and b is a real m-vector, and A is a m×n real
matrix. A linear programming problem in two variables is graphically
depicted in Figure 1.14.

Special methods have been developed for solving linear programming
problems. Of these the most famous are the simplex method proposed
by Dantzig in 1947 (Dantzig 1963) and the interior-point method (Kar-
markar 1984). A short introduction to the simplex method, according
to Chvatel (1983), is given in Appendix A.

1.3.8 Scaling of design variables

In formulating mathematical optimization problems, great care must be
taken to ensure that the scale of the variables are more or less of the same
order. If not, the formulated problem may be relatively insensitive to
the variations in one or more of the variables, and any optimization algo-
rithm will struggle to converge to the true solution, because of extreme
distortion of the objective function contours as result of the poor scaling.
In particular it may lead to difficulties when selecting step lengths and
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feasible region

x∗

linear constraints

c

direction of
increase in

x1

x2

f(x)

Figure 1.14: Graphical representation of a two-dimensional linear pro-
gramming problem

calculating numerical gradients. Scaling difficulties often occur where
the variables are of different dimension and expressed in different units.
Hence it is good practice, if the variable ranges are very large, to scale
the variables so that all the variables will be dimensionless and vary
between 0 and 1 approximately. For scaling the variables, it is necessary
to establish an approximate range for each of the variables. For this,
take some estimates (based on judgement and experience) for the lower
and upper limits. The values of the bounds are not critical. Another
related matter is the scaling or normalization of constraint functions.
This becomes necessary whenever the values of the constraint functions
differ by large magnitudes.

1.4 Further mathematical concepts

1.4.1 Convexity

A line through the points x1 and x2 in R
n is the set

L = {x∣∣x = x1 + λ(x2 − x1), for all λ ∈ R}. (1.7)
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x1

x2

x(λ)

O

x(λ) = x1 + λ(x2 − x1)

Figure 1.15: Representation of a point on the straight line through x1

and x2

convex non-convex

x2 x2

x1x1

Figure 1.16: Examples of a convex and a non-convex set

Equivalently for any point x on the line there exists a λ such that x may
be specified by x = x(λ) = λx2 + (1 − λ)x1 as shown in Figure 1.15.

1.4.1.1 Convex sets

A set X is convex if for all x1, x2 ∈ X it follows that

x = λx2 + (1 − λ)x1 ∈ X for all 0 ≤ λ ≤ 1.

If this condition does not hold the set is non-convex (see Figure 1.16).
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1.4.1.2 Convex functions

Given two points x1 and x2 in R
n, then any point x on the straight line

connecting them (see Figure 1.15) is given by

x = x(λ) = x1 + λ(x2 − x1), 0 < λ < 1. (1.8)

A function f(x) is a convex function over a convex set X if for all x1, x2

in X and for all λ ∈ [0, 1]:

f(λx2 + (1 − λ)x1) ≤ λf(x2) + (1 − λ)f(x1). (1.9)

The function is strictly convex if < applies. Concave functions are sim-
ilarly defined.

Consider again the line connecting x1 and x2. Along this line, the func-
tion f(x) is a function of the single variable λ:

F (λ) = f(x(λ)) = f(x1 + λ(x2 − x1)). (1.10)

This is equivalent to F (λ) = f(λx2 +(1−λ)x1), with F (0) = f(x1) and
F (1) = f(x2). Therefore (1.9) may be written as

F (λ) ≤ λF (1) + (1 − λ)F (0) = Fint

where Fint is the linearly interpolated value of F at λ as shown in Figure
1.17.

Graphically f(x) is convex over the convex set X if F (λ) has the convex
form shown in Figure 1.17 for any two points x1 and x2 in X.

1.4.2 Gradient vector of f(x)

For a function f(x) ∈ C2 there exists, at any point x a vector of first
order partial derivatives, or gradient vector:

∇f(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x1
(x)

∂f

∂x2
(x)

...
∂f

∂xn
(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.11)
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F (λ)

Fint

F (λ)

0 1

d2F
dλ2 > 0

λ

Figure 1.17: Convex form of F (λ)

∇f

∇f

∇f
∇f

Figure 1.18: Directions of the gradient vector

It can easily be shown that if the function f(x) is smooth, then at
the point x the gradient vector ∇f(x) is always perpendicular to the
contours (or surfaces of constant function value) and is in the direction
of maximum increase of f(x), as depicted in Figure 1.18.
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1.4.3 Hessian matrix of f(x)

If f(x) is twice continuously differentiable then at the point x there
exists a matrix of second order partial derivatives or Hessian matrix:

H(x) =
{

∂2f

∂xi∂xj
(x)

}
= ∇2f(x) (1.12)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x2
1

(x)
∂2f

∂x1∂x2
(x) . . .

∂2f

∂x2∂x1
(x)

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂x2
n

(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly H(x) is a n × n symmetrical matrix.

1.4.3.1 Test for convexity of f(x)

If f(x) ∈ C2 is defined over a convex set X, then it can be shown
(see Theorem 5.1.3 in Chapter 5) that if H(x) is positive-definite for all
x ∈ X, then f(x) is strictly convex over X.

To test for convexity, i.e. to determine whether H(x) is positive-definite
or not, apply Sylvester’s Theorem or any other suitable numerical method
(Fletcher 1987). For example, a convenient numerical test for positive-
definiteness at x is to show that all the eigenvalues for H(x) are positive.

1.4.4 The quadratic function in R
n

The quadratic function in n variables may be written as

f(x) = 1
2x

TAx + bTx + c (1.13)

where c ∈ R, b is a real n-vector and A is a n × n real matrix that can
be chosen in a non-unique manner. It is usually chosen symmetrical in

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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which case it follows that

∇f(x) = Ax + b; H(x) = A. (1.14)

The function f(x) is called positive-definite if A is positive-definite since,
by the test in Section 1.4.3.1, a function f(x) is convex if H(x) is
positive-definite.

1.4.5 The directional derivative of f(x) in the direction u

It is usually assumed that ‖u‖ = 1. Consider the differential:

df =
∂f

∂x1
dx1 + · · · +

∂f

∂xn
dxn = ∇T f(x)dx. (1.15)

A point x on the line through x′ in the direction u is given by x =
x(λ) = x′ + λu, and for a small change dλ in λ, dx = udλ. Along this
line F (λ) = f(x′ + λu) and the differential at any point x on the given
line in the direction u is therefore given by dF = df = ∇T f(x)udλ. It
follows that the directional derivative at x in the direction u is

dF (λ)
dλ

=
df(x)
dλ

∣∣∣∣
u

= ∇T f(x)u. (1.16)

1.5 Unconstrained minimization

In considering the unconstrained problem: min
x

f(x), x ∈ X ⊆ R
n, the

following questions arise:

(i) what are the conditions for a minimum to exist,

(ii) is the minimum unique,

(iii) are there any relative minima?

Figure 1.19 (after Farkas and Jarmai 1997) depicts different types of
minima that may arise for functions of a single variable, and for functions
of two variables in the presence of inequality constraints. Intuitively,
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Figure 1.19: Types of minima
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with reference to Figure 1.19, one feels that a general function may have
a single unique global minimum, or it may have more than one local
minimum. The function may indeed have no local minimum at all, and
in two dimensions the possibility of saddle points also comes to mind.
Thus, in order to answer the above questions regarding the nature of
any given function more analytically, it is necessary to give more precise
meanings to the above mentioned notions.

1.5.1 Global and local minima; saddle points

1.5.1.1 Global minimum

x∗ is a global minimum over the set X if f(x) ≥ f(x∗) for all x ∈ X ⊂
R

n.

1.5.1.2 Strong local minimum

x∗ is a strong local minimum if there exists an ε > 0 such that

f(x) > f(x∗) for all {x∣∣‖x − x∗‖ < ε}
where || · || denotes the Euclidean norm. This definition is sketched in
Figure 1.20.

1.5.1.3 Test for unique local global minimum

It can be shown (see Theorems 5.1.4 and 5.1.5 in Chapter 5) that if f(x)
is strictly convex over X, then a strong local minimum is also the global
minimum.

The global minimizer can be difficult to find since the knowledge of
f(x) is usually only local. Most minimization methods seek only a local
minimum. An approximation to the global minimum is obtained in prac-
tice by the multi-start application of a local minimizer from randomly
selected different starting points in X. The lowest value obtained after
a sufficient number of trials is then taken as a good approximation to
the global solution (see Snyman and Fatti 1987; Groenwold and Snyman

http://dx.doi.org/10.1007/978-3-319-77586-9_5
http://dx.doi.org/10.1007/978-3-319-77586-9_5
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f(x)

x2

ε

x∗ = [x∗
1, x∗

2]
x2

Figure 1.20: Graphical representation of the definition of a local mini-
mum

2002). If, however, it is known that the function is strictly convex over
X, then only one trial is sufficient since only one local minimum, the
global minimum, exists.

1.5.1.4 Saddle points

f(x) has a saddle point at x =
[

x0

y0

]
if there exists an ε > 0 such that

for all x, ‖x − x0‖ < ε and all y, ‖y − y0‖ < ε: f(x,y0) ≤ f(x0,y0) ≤
f(x0,y).

A contour representation of a saddle point in two dimensions is given in
Figure 1.21.

1.5.2 Local characterization of the behaviour of a multi-
variable function

It is assumed here that f(x) is a smooth function, i.e., that it is a twice
continuously differentiable function (f(x) ∈ C2). Consider again the
line x = x(λ) = x′ + λu through the point x′ in the direction u.
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x

y

−− [x0, y0]

+

+

Figure 1.21: Contour representation of saddle point

Along this line a single variable function F (λ) may be defined:

F (λ) = f(x(λ)) = f(x′ + λu).

It follows from (1.16) that

dF (λ)
dλ

=
df(x(λ))

dλ

∣∣∣∣
u

= ∇T f(x(λ))u = g(x(λ)) = G(λ)

which is also a single variable function of λ along the line x = x(λ) =
x′ + λu.

Thus similarly it follows that

d2F (λ)
dλ2

=
dG(λ)

dλ
=

dg(x(λ))
dλ

∣∣∣∣
u

= ∇T g(x(λ))u

= ∇T
(∇T f(x(λ))u

)
u

= uTH(x(λ))u.

Summarising: the first and second order derivatives of F (λ) with respect
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to λ at any point x = x(λ) on any line (any u) through x′ is given by

dF (λ)
dλ

= ∇T f(x(λ))u, (1.17)

d2F (λ)
dλ2

= uTH(x(λ))u (1.18)

where x(λ) = x′ + λu and F (λ) = f(x(λ)) = f(x′ + λu).

These results may be used to obtain Taylor’s expansion for a multi-
variable function. Consider again the single variable function F (λ)
defined on the line through x′ in the direction u by F (λ) = f(x′ + λu).
It is known that the Taylor expansion of F (λ) about 0 is given by

F (λ) = F (0) + λF ′(0) + 1
2λ

2F ′′(0) + . . . (1.19)

With F (0) = f(x′), and substituting expressions (1.17) and (1.18) for
respectively sF ′(λ) and F ′′(λ) at λ = 0 into (1.19) gives

F (λ) = f(x′ + λu) = f(x′) + ∇T f(x′)λu + 1
2λuTH(x′)λu + . . .

Setting δ = λu in the above gives the expansion:

f(x′ + δ) = f(x′) + ∇T f(x′)δ + 1
2δ

TH(x′)δ + . . . (1.20)

Since the above applies for any line (any u) through x′, it represents
the general Taylor expansion for a multi-variable function about x′. If
f(x) is fully continuously differentiable in the neighbourhood of x′ it
can be shown that the truncated second order Taylor expansion for a
multi-variable function is given by

f(x′ + δ) = f(x′) + ∇T f(x′)δ + 1
2δ

TH(x′ + θδ)δ (1.21)

for some θ ∈ [0, 1]. This expression is important in the analysis of the
behaviour of a multi-variable function at any given point x′.

1.5.3 Necessary and sufficient conditions for a strong
local minimum at x∗

In particular, consider x′ = x∗ a strong local minimizer. Then for any
line (any u) through x′ the behaviour of F (λ) in a neighbourhood of x∗

is as shown in Figure 1.22, with minimum at at λ = 0.
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F (λ)

λ0

Figure 1.22: Behaviour of F (λ) near λ = 0

Clearly, a necessary first order condition that must apply at x∗ (corre-
sponding to λ = 0) is that

dF (0)
dλ

= ∇T f(x∗)u = 0, for all u �= 0. (1.22)

It can easily be shown that this condition also implies that necessarily
∇f(x∗) = 0.

A necessary second order condition that must apply at x∗ is that

d2F (0)
dλ2

= uTH(x∗)u > 0, for all u �= 0. (1.23)

Conditions (1.22) and (1.23) taken together are also sufficient conditions
(i.e. those that imply) for x∗ to be a strong local minimum if f(x) is
continuously differentiable in the vicinity of x∗. This can easily be shown
by substituting these conditions in the Taylor expansion (1.21).

Thus in summary, the necessary and sufficient conditions for x∗ to be a
strong local minimum are:

∇f(x∗) = 0
H(x∗) positive-definite.

(1.24)

In the argument above it has implicitly been assumed that x∗ is an
unconstrained minimum interior to X. If x∗ lies on the boundary of X
(see Figure 1.23) then

dF (0)
dλ

≥ 0, i.e. ∇T f(x∗)u ≥ 0 (1.25)

for all allowable directions u, i.e. for directions such that x∗ + λu ∈ X
for arbitrary small λ > 0.
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F (λ)

λ

X

x∗
u

Figure 1.23: Behaviour of F (λ) for all allowable directions of u

Conditions (1.24) for an unconstrained strong local minimum play a very
important role in the construction of practical algorithms for uncon-
strained optimization.

1.5.3.1 Application to the quadratic function

Consider the quadratic function:

f(x) = 1
2x

TAx + bTx + c.

In this case the first order necessary condition for a minimum implies
that

∇f(x) = Ax + b = 0.

Therefore a candidate solution point is

x∗ = −A−1b. (1.26)

If the second order necessary condition also applies, i.e. if A is positive-
definite, then x∗ is a unique minimizer.

1.5.4 General indirect method for computing x∗

The general indirect method for determining x∗ is to solve the system
of equations ∇f(x) = 0 (corresponding to the first order necessary
condition in (1.24)) by some numerical method, to yield all stationary
points. An obvious method for doing this is Newton’s method. Since
in general the system will be non-linear, multiple stationary points are
possible. These stationary points must then be further analysed in order
to determine whether or not they are local minima.
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1.5.4.1 Solution by Newton’s method

Assume x∗ is a local minimum and xi an approximate solution, with
associated unknown error δ such that x∗ = xi + δ. Then by applying
Taylor’s theorem and the first order necessary condition for a minimum
at x∗ it follows that

0 = ∇f(x∗) = ∇f(xi + δ) = ∇f(xi) + H(xi)δ + O‖δ‖2.
If xi is a good approximation then δ

.= Δ, the solution of the linear
system H(xi)Δ + ∇f(xi) = 0, obtained by ignoring the second order
term in δ above. A better approximation is therefore expected to be
xi+1 = xi + Δ which leads to the Newton iterative scheme: Given an
initial approximation x0, compute

xi+1 = xi − H−1(xi)∇f(xi) (1.27)

for i = 0, 1, 2, . . . Hopefully lim
i→∞

xi = x∗.

1.5.4.2 Example of Newton’s method applied to a quadratic
problem

Consider the unconstrained problem:

minimize f(x) = 1
2x

TAx + bTx + c.

In this case the first iteration in (1.27) yields

x1 = x0 − A−1(Ax0 + b) = x0 − x0 − A−1b = −A−1b

i.e. x1 = x∗ = −A−1b in a single step (see (1.26)). This is to be
expected since in this case no approximation is involved and thus Δ = δ.

1.5.4.3 Difficulties with Newton’s method

Unfortunately, in spite of the attractive features of the Newton method,
such as being quadratically convergent near the solution, the basic New-
ton method as described above does not always perform satisfactorily.
The main difficulties are:
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Figure 1.24: Graphical representation of Newton’s iterative scheme for
a single variable

(i) the method is not always convergent, even if x0 is close to x∗, and

(ii) the method requires the computation of the Hessian matrix at each
iteration.

The first of these difficulties may be illustrated by considering Newton’s
method applied to the one-dimensional problem: solve f ′(x) = 0. In
this case the iterative scheme is

xi+1 = xi − f ′(xi)
f ′′(xi)

= φ(xi), for i = 0, 1, 2, . . . (1.28)

and the solution corresponds to the fixed point x∗ where x∗ = φ(x∗).
Unfortunately in some cases, unless x0 is chosen to be exactly equal
to x∗, convergence will not necessarily occur. In fact, convergence is
dependent on the nature of the fixed point function φ(x) in the vicin-
ity of x∗, as shown for two different φ functions in Figure 1.24. With
reference to the graphs Newton’s method is: yi = φ(xi), xi+1 = yi for
i = 0, 1, 2, . . . . Clearly in the one case where |φ′(x)| < 1 convergence
occurs, but in the other case where |φ′(x)| > 1 the scheme diverges.

In more dimensions the situation may be even more complicated. In
addition, for a large number of variables, difficulty (ii) mentioned above
becomes serious in that the computation of the Hessian matrix repre-
sents a major task. If the Hessian is not available in analytical form,
use can be made of automatic differentiation techniques to compute it,
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or it can be estimated by means of finite differences. It should also be
noted that in computing the Newton step in (1.27) a n×n linear system
must be solved. This represents further computational effort. There-
fore in practice the simple basic Newton method is not recommended.
To avoid the convergence difficulty use is made of a modified Newton
method, in which a more direct search procedure is employed in the
direction of the Newton step, so as to ensure descent to the minimum
x∗. The difficulty associated with the computation of the Hessian is
addressed in practice through the systematic update, from iteration to
iteration, of an approximation of the Hessian matrix. These improve-
ments to the basic Newton method are dealt with in greater detail in
the next chapter.

1.6 Test functions

The efficiency of an algorithm is studied using standard functions with
standard starting points x0. The total number of functions evaluations
required to find the minimizer x∗ is usually taken as a measure of the
efficiency of the algorithm.

1.6.1 Unconstrained

Some classical unconstrained minimization test functions from (Rao
1996) are listed below.

1. Rosenbrock’s parabolic valley:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2; x0 =
[ −1.2

1.0

]
x∗ =

[
1
1

]
.

2. Quadratic function:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2; x0 =
[

0
0

]
x∗ =

[
1
3

]
.

3. Powell’s quartic function:

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4;
x0 = [3,−1, 0, 1]T ; x∗ = [0, 0, 0, 0]T .
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4. Fletcher and Powell’s helical valley:

f(x) = 100
(
(x3 − 10θ(x1, x2))

2

+
(√

x2
1 + x2

2 − 1
)2

)
+ x2

3;

where 2πθ(x1, x2) =

⎧⎨
⎩

arctan
x2

x1
if x1 > 0

π + arctan
x2

x1
if x1 < 0

x0 = [−1, 0, 0]T ; x∗ = [1, 0, 0]T .

5. A non-linear function of three variables:

f(x) = − 1

1 + (x1 − x2)2
− sin

(
1

2
πx2x3

)
− exp

(
−

(
x1 + x3

x2
− 2

)2
)

;

x0 = [0, 1, 2]T ; x∗ = [1, 1, 1]T .

6. Freudenstein and Roth function:

f(x) = (−13 + x1 + ((5 − x2)x2 − 2)x2)2

+(−29 + x1 + ((x2 + 1)x2 − 14)x2)2;
x0 = [0.5,−2]T ; x∗ = [5, 4]T ; x∗

local = [11.41 . . . ,−0.8968 . . .]T .

7. Powell’s badly scaled function:

f(x) = (10 000x1x2 − 1)2 + (exp(−x1) + exp(−x2) − 1.0001)2;
x0 = [0, 1]T ; x∗ = [1.098 . . . × 10−5, 9.106 . . .]T .

8. Brown’s badly scaled function:

f(x) = (x1 − 106)2 + (x2 − 2 × 10−6)2 + (x1x2 − 2)2;
x0 = [1, 1]T ; x∗ = [106, 2 × 10−6]T .

9. Beale’s function:

f(x) = (1.5 − x1(1 − x2))2 + (2.25 − x1(1 − x2
2))

2

+(2.625 − x1(1 − x3
2))

2;
x0 = [1, 1]T ; x∗ = [3, 0.5]T .
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10. Wood’s function:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2 + 90(x4 − x2
3)

2 + (1 − x3)2

+10(x2 + x4 − 2)2 + 0.1(x2 − x4)2

x0 = [−3, −1, −3, −1]T ; x∗ = [1, 1, 1, 1]T .

1.6.2 Constrained

Some classical constrained minimization test problems from Hock and
Schittkowski (1981) are listed below.

1. Hock & Schittkowski Problem 1:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

such that
x2 ≥ −1.5

x0 =
[ −2

1

]
x∗ =

[
1
1

]
λ∗ = 0

2. Hock & Schittkowski Problem 2:

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

such that
x2 ≥ 1.5

x0 =
[ −2

1

]
x∗ =

[
1.2243707487363527
1.5000000000000000

]
λ∗ = 200

3. Hock & Schittkowski Problem 6:

f(x) = (1 − x1)2

such that
10(x2 − x2

1) = 0

x0 =
[ −1.2

1

]
x∗ =

[
1
1

]
λ∗ = 0.4
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4. Hock & Schittkowski Problem 7:

f(x) = ln(1 + x2
1) − x2

such that
(1 + x2

1)
2 + x2

2 − 4 = 0

x0 =
[

2
2

]
x∗ =

[
0√
3

]
λ∗ = 3.15

5. Hock & Schittkowski Problem 10:

f(x) = x1 − x2

such that
−3x2

1 + 2x1x2 − x2
2 + 1 ≥ 0

x0 =
[ −10

10

]
x∗ =

[
0
1

]
λ∗ = 1.0

6. Hock & Schittkowski Problem 18:

f(x) = 0.01x2
1 + x2

2

such that
x1x2 − 25 ≥ 0
x2
1 + x2

2 − 25 ≥ 0
2 ≤ x1 ≤ 50
2 ≤ x2 ≤ 50

x0 =
[

2
2

]
x∗ =

[ √
250√
2.5

]
λ∗ = 0.079

7. Hock & Schittkowski Problem 27:

f(x) = 0.01(x1 − 1)2 + (x2 − x2
1)

2

such that
x1 + x2

3 + 1 = 0

x0 =

⎡
⎣ 2

2
2

⎤
⎦ x∗ =

⎡
⎣ −1

1
0

⎤
⎦ λ∗ = 2
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8. Hock & Schittkowski Problem 42:

f(x) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + (x4 − 4)2

such that
x1 − 2 = 0
x2
3 + x2

4 − 2 = 0

x0 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ x∗ =

⎡
⎢⎢⎣

2
2

0.6
√

2
0.8

√
2

⎤
⎥⎥⎦ λ∗

max = 7.07, λ∗
min = 3.54

9. Hock & Schittkowski Problem 66:

f(x) = 0.2x3 − 0.8x1

such that
x2 − exp(x1) ≥ 0
x3 − exp(x2) ≥ 0
0 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100
0 ≤ x3 ≤ 10

x0 =

⎡
⎣ 0

1.05
2.9

⎤
⎦ x∗ =

⎡
⎣ 0.1841264879

1.202167873
3.327322322

⎤
⎦ λ∗

max = 0.096, λ∗
min = 0.096

10. Hock & Schittkowski Problem 104:

f(x) = 0.4x0.67
1 x−0.67

7 + 0.4x0.67
2 x−0.67

8 + 10 − x1 − x2

such that
1 − 0.0588x5x7 − 0.1x1 ≥ 0
1 − 0.0588x6x8 − 0.1x1 − 0.1x2 ≥ 0
1 − 4x3x

−1
5 − 2x−0.71

3 x−1
5 − 0.0588x−1.3

3 x7 ≥ 0
1 − 4x4x

−1
6 − 2x−0.71

4 x−1
6 − 0.0588x−1.3

4 x8 ≥ 0
1 ≤ f(x) ≤ 4.2
1 ≤ xi ≤ 10, i = 1, . . . , 8

x0 =
[

6, 3, 0.4, 0.2, 6, 6, 1, 0.5
]T

x∗ = [6.465114, 2.232709, 0.6673975, 0.5957564,
5.932676, 5.527235, 1.013322, 0.4006682]T

λ∗
max = 1.87, λ∗

min = 0.043
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1.7 Exercises

1.7.1 Sketch the graphical solution to the following problem:

minx f(x) = (x1 − 2)2 + (x2 − 2)2

such that x1 + 2x2 = 4; x1 ≥ 0; x2 ≥ 0.

In particular indicate the feasible region:

F = {(x1, x2)
∣∣x1 + 2x2 = 4; x1 ≥ 0; x2 ≥ 0}

and the solution point x∗.

1.7.2 Show that x2 is a convex function.

1.7.3 Show that the sum of convex functions is also convex.

1.7.4 Determine the gradient vector and Hessian matrix of the Rosen-
brock function given in Section 1.6.1.

1.7.5 Write the quadratic function f(x) = x2
1 + 2x1x2 + 3x2

2 in the
standard matrix-vector notation. Is f(x) positive-definite?

1.7.6 Write each of the following objective functions in standard form:

f(x) = 1
2x

TAx + bTx + c.

(i) f(x) = x2
1+2x1x2+4x1x3+3x2

2+2x2x3+5x2
3+4x1−2x2+3x3.

(ii) f(x) = 5x2
1+12x1x2−16x1x3+10x2

2−26x2x3+17x2
3−2x1−

4x2 − 6x3.

(iii) f(x) = x2
1 − 4x1x2 + 6x1x3 + 5x2

2 − 10x2x3 + 8x2
3.

1.7.7 Determine the definiteness of the following quadratic form:

f(x) = x2
1 − 4x1x2 + 6x1x3 + 5x2

2 − 10x2x3 + 8x2
3. (1.29)

1.7.8 Approximate the Rosenbrock function given in Section 1.6.1
using a first order Taylor series expansion around x0. Com-
pute the accuracy of the approximation at x = x0 + Δx, with
Δx = [0, 1.0]T.
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1.7.9 Approximate the Rosenbrock function given in Section 1.6.1
using a second order Taylor series expansion around x0. Com-
pute the accuracy of the approximation at x = x0 + Δx, with
Δx = [0, 1.0]T.

1.7.10 Compute the directional derivatives for the Rosenbrock function
given in Section 1.6.1 at x0 along the following three directions

u1 = [1, 0],
u2 = [0, 1],

u3 = [
1√
2
,

1√
2
].

Compare the first two computed directional derivatives to the
components of the gradient vector. What conclusions can you
draw.

1.7.11 Clearly state which of the directions computed in Exercise 1.7.10
are descent directions, i.e. directions along which the function
will decrease for small positive steps along the direction.

1.7.12 Propose a descent direction of unit length that would result in
the largest directional derivative magnitude at x0.

1.7.13 Compute the eigenvalues and eigenvectors for the computed A
matrices in Exercise 1.7.6.

1.7.14 Determine whether the A matrices computed in Exercise 1.7.6
are positive-definite, negative-definite or indefinite.

1.7.15 Compare the associated eigenvalue for each computed eigenvec-
tor ui in Exercise 1.7.13 against the second derivative of the
univariate function f(λ) = (x0 + λui)TA(x0 + λui) and draw
concrete conclusions.

1.7.16 Consider the following constrained optimization problem

minx f(x) = x4
1 − 6x3

1 + 9x2
1 + x4

2 − 0.5x3
2 + 0.0625x2

2,
such that
x1 ≥ 0,
x2 ≤ 0.
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Utilizing only transformation of variables reformulate the con-
strained minimization problem as an unconstrained minimiza-
tion problem.

1.7.17 Given the function f(x) and the non-linear variable scaling
z(x) = G(x) that transforms the domain, x ∈ Rn, to the
domain, z ∈ Rn, with inverse relation x(z) = G−1(z) trans-
forming z back to the x domain. By substituting x(z) into f(x)
we obtain f(z). Utilize the chain rule to derive the expression
for computing ∇zf(z).

1.7.18 Perform the first five Newton steps in solving the Rosenbrock
function listed in Section 1.6.1.

1.7.19 Perform the first five Newton steps in solving the Quadratic
function listed in Section 1.6.1.

1.7.20 Perform the first five Newton steps in solving the Freudenstein
and Roth function listed in Section 1.6.1.

1.7.21 Perform the first five Newton steps in solving the Powell’s badly
scaled function listed in Section 1.6.1.

1.7.22 Perform the first five Newton steps in solving the Brown’s badly
scaled function listed in Section 1.6.1.

1.7.23 Perform the first five Newton steps in solving the Beale’s func-
tion listed in Section 1.6.1.



Chapter 2

LINE SEARCH DESCENT
METHODS FOR
UNCONSTRAINED
MINIMIZATION

2.1 General line search descent algorithm for
unconstrained minimization

Over the last 40 years many powerful direct search algorithms have
been developed for the unconstrained minimization of general func-
tions. These algorithms require an initial estimate to the optimum point,
denoted by x0. With this estimate as starting point, the algorithm gen-
erates a sequence of estimates x0, x1, x2, . . . , by successively searching
directly from each point in a direction of descent to determine the next
point. The process is terminated if either no further progress is made,
or if a point xk is reached (for smooth functions) at which the first
necessary condition in (1.24), i.e. ∇f(x) = 0 is sufficiently accurately
satisfied, in which case x∗ ∼= xk. It is usually, although not always,
required that the function value at the new iterate xi+1 be lower than
that at xi.

© Springer International Publishing AG, part of Springer Nature 2018
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An important sub-class of direct search methods, specifically suitable for
smooth functions, are the so-called line search descent methods. Basic to
these methods is the selection of a descent direction ui+1 at each iterate
xi that ensures descent at xi in the direction ui+1, i.e. it is required that
the directional derivative in the direction ui+1 be negative:

df(xi)
dλ

∣
∣
∣
∣
ui+1

= ∇T f(xi)ui+1 < 0. (2.1)

The general structure of such descent methods is given below.

2.1.1 General structure of a line search descent method

1. Given starting point x0 and positive tolerances ε1, ε2 and ε3, set
i = 1.

2. Select a descent direction ui (see descent condition (2.1)).

3. Perform a one-dimensional line search in direction ui: i.e.

min
λ

F (λ) = min
λ

f(xi−1 + λui)

to give minimizer λi.

4. Set xi = xi−1 + λiui.

5. Test for convergence:

if ‖xi − xi−1‖ < ε1, or ‖∇f(xi)‖ < ε2, or |f(xi) − f(xi−1)| < ε3,
then stop and x∗ ∼= xi,

else go to Step 6.

6. Set i = i + 1 and go to Step 2.

In testing for termination in step 5, a combination of the stated termi-
nation criteria may be used, i.e. instead of or, and may be specified. The
structure of the above descent algorithm is depicted in Figure 2.1. Dif-
ferent descent methods, within the above sub-class, differ according to
the way in which the descent directions ui are chosen. Another impor-
tant consideration is the method by means of which the one-dimensional
line search is performed.
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u1
u2

u3

x∗

x0

x1

x2 x3

Figure 2.1: Sequence of line search descent directions and steps

2.2 One-dimensional line search

Clearly, in implementing descent algorithms of the above type, the one-
dimensional minimization problem:

min
λ

F (λ), λ ∈ R (2.2)

is an important sub-problem. Here the minimizer is denoted by λ∗, i.e.

F (λ∗) = min
λ

F (λ).

Many one-dimensional minimization techniques have been proposed and
developed over the years. These methods differ according to whether
they are to be applied to smooth functions or poorly conditioned func-
tions. For smooth functions interpolation methods, such as the quadratic
interpolation method of Powell (1964) and the cubic interpolation algo-
rithm of Davidon (1959), are the most efficient and accurate meth-
ods. For poorly conditioned functions, bracketing methods, such as the
Fibonacci search method (Kiefer 1957), which is optimal with respect to
the number of function evaluations required for a prescribed accuracy,
and the golden section method (Walsh 1975), which is near optimal
but much simpler and easier to implement, are preferred. Here Pow-
ell’s quadratic interpolation method and the golden section method, are
respectively presented as representative of the two different approaches
that may be adopted to one-dimensional minimization.
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bλ2λ1a λ∗

Figure 2.2: Unimodal function F (λ) over interval [a, b]

2.2.1 Golden section method

It is assumed that F (λ) is unimodal over the interval [a, b], i.e. that it has
a minimum λ∗ within the interval and that F (λ) is strictly descending
for λ < λ∗ and strictly ascending for λ > λ∗, as shown in Figure 2.2.

Note that if F (λ) is unimodal over [a, b] with λ∗ in [a, b], then to deter-
mine a sub-unimodal interval, at least two evaluations of F (λ) in [a, b]
must be made as indicated in Figure 2.2.

If F (λ2) > F (λ1) ⇒ new unimodal interval = [a, λ2], and set b = λ2 and
select new λ2; otherwise new unimodal interval = [λ1, b] and set a = λ1

and select new λ1.

Thus, the unimodal interval may successively be reduced by inspecting
values of F (λ1) and F (λ2) at interior points λ1 and λ2.

The question arises: How can λ1 and λ2 be chosen in the most eco-
nomic manner, i.e. such that a least number of function evaluations are
required for a prescribed accuracy (i.e. for a specified uncertainty inter-
val)? The most economic method is the Fibonacci search method. It is
however a complicated method. A near optimum and more straightfor-
ward method is the golden section method. This method is a limiting
form of the Fibonacci search method. Use is made of the golden ratio
r when selecting the values for λ1 and λ2 within the unimodal interval.
The value of r corresponds to the positive root of the quadratic equation:
r2 + r − 1 = 0, thus r =

√
5−1
2 = 0.618034.
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r2L0 rL0

b

rL0 r2L0

λ2 = a + rL0λ1 = a + r2L0

a

Figure 2.3: Selection of interior points λ1 and λ2 for golden section
search

The details of the selection procedure are as follows. Given initial uni-
modal interval [a, b] of length L0, then choose interior points λ1 and λ2

as shown in Figure 2.3.

Then, if F (λ1) > F (λ2) ⇒ new [a, b] = [λ1, b] with new interval length
L1 = rL0, and

if F (λ2) > F (λ1) ⇒ new [a, b] = [a, λ2] also with L1 = rL0.

The detailed formal algorithm is stated below.

2.2.1.1 Basic golden section algorithm

Given interval [a, b] and prescribed accuracy ε; then set i = 0; L0 = b−a,
and perform the following steps:

1. Set λ1 = a + r2L0; λ2 = a + rL0.

2. Compute F (λ1) and F (λ2); set i = i + 1.

3. If F (λ1) > F (λ2) then

set a = λ1; λ1 = λ2; Li = (b − a); and λ2 = a + rLi,

else

set b = λ2; λ2 = λ1; Li = (b − a); and λ1 = a + r2Li.

4. If Li < ε then

set λ∗ =
b + a

2
; compute F (λ∗) and stop,

else go to Step 2.
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Note that only one function evaluation is required in each iteration in
Step 2 after the first one, as one of the interior points is inherited from
the former iteration.

2.2.2 Powell’s quadratic interpolation algorithm

In Powell’s method successive quadratic interpolation curves are fitted
to function data giving a sequence of approximations of the minimum
point λ∗.

λ∗λ1 λ2λ0 λm

p2(λ)
F (λ)

Figure 2.4: Approximate minimum λm via quadratic curve fitting

With reference to Figure 2.4, the basic idea is the following. Given three
data points {(λi, F (λi)), i = 1, 2, 3}, then the interpolating quadratic
polynomial through these points p2(λ) is given by

p2(λ) = F (λ0) + F [λ0, λ1](λ − λ0) + F [λ0, λ1, λ2](λ − λ0)(λ − λ1) (2.3)

where F [ , ] and F [ , , ] respectively denote the first order and second
order divided differences.

The turning point of p2(λ) occurs where the slope is zero, i.e. where

dp2
dλ

= F [λ0, λ1] + 2λF [λ0, λ1, λ2] − F [λ0, λ1, λ2](λ0 + λ1) = 0

which gives the turning point λm as

λm =
F [λ0, λ1, λ2](λ0 + λ1) − F [λ0, λ1]

2F [λ0, λ1, λ2]
∼= λ∗ (2.4)
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with the further condition that for a minimum the second derivative
must be non-negative, i.e. F [λ0, λ1, λ2] > 0.

The detailed formal algorithm is as follows.

2.2.2.1 Powell’s interpolation algorithm

Given starting point λ0, step size h, tolerance ε and maximum step size
H; perform following steps:

1. Compute F (λ0) and F (λ0 + h).

2. If F (λ0) < F (λ0 + h) evaluate F (λ0 − h),

else evaluate F (λ0 + 2h). (The three initial values of λ so chosen
constitute the initial set (λ0, λ1, λ2) with corresponding function
values F (λi), i = 0, 1, 2.)

3. Compute turning point λm by formula (2.4) and test for minimum
or maximum.

4. If λm a minimum point and |λm−λn| > H, where λn is the nearest
point to λm, then discard the point furthest from λm and take a
step of size H from the point with lowest value in direction of
descent, and go to Step 3;

if λm a maximum point, then discard point nearest λm and take
a step of size H from the point with lowest value in the direction
of descent and go to Step 3;

else continue.

5. If |λm − λn| < ε then F (λ∗) ∼= min[F (λm), F (λn)] and stop,

else continue.

6. Discard point with highest F value and replace it by λm; go to
Step 3

Note: It is always safer to compute the next turning point by interpola-
tion rather than by extrapolation. Therefore in Step 6: if the maximum
value of F corresponds to a point which lies alone on one side of λm,
then rather discard the point with highest value on the other side of λm.
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u

∇f

x

Figure 2.5: Search direction u relative to gradient vector at x′

2.3 First order line search descent methods

Line search descent methods (see Section 2.1.1), that use the gradient
vector ∇f(x) to determine the search direction for each iteration, are
called first order methods because they employ first order partial deriva-
tives of f(x) to compute the search direction at the current iterate. The
simplest and most famous of these methods is the method of steepest
descent, first proposed by Cauchy in 1847.

2.3.1 The method of steepest descent

In this method the direction of steepest descent is used as the search
direction in the line search descent algorithm given in section 2.1.1. The
expression for the direction of steepest descent is derived below.

2.3.1.1 The direction of steepest descent

At x′ we seek a unit vector u (here understood as a vector of length
one), such that for F (λ) = f(x′ + λu), the directional derivative

df(x′)
dλ

∣
∣
∣
∣
u

=
dF (0)

dλ
= ∇T f(x′)u

assumes a minimum value with respect to all possible choices for u at
x′ (see Figure 2.5).
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By Schwartz’s inequality:

∇T f(x′)u ≥ −‖∇f(x′)‖‖u‖ = −‖∇f(x′)‖ = least value.

Clearly for the particular choice u =
−∇f(x′)
‖∇f(x′)‖ the directional derivative

at x′ is given by

dF (0)
dλ

= −∇T f(x′)
∇f(x′)

‖∇f(x′)‖ = −‖∇f(x′)‖ = least value.

Thus this particular choice for the unit vector corresponds to the direc-
tion of steepest descent.

The search direction
u =

−∇f(x)
‖∇f(x)‖ (2.5)

is called the normalized steepest descent direction at x.

2.3.1.2 Steepest descent algorithm

Given x0, do for iteration i = 1, 2, . . . until convergence:

1. set ui =
−∇f(xi−1)
‖∇f(xi−1)‖

2. set xi = xi−1 + λiui where λi is such that

F (λi) = f(xi−1 + λiui) = min
λ

f(xi−1 + λui) (line search).

2.3.1.3 Characteristic property

Successive steepest descent search directions can be shown to be orthog-
onal. Consider the line search through xi−1 in the direction ui to give
xi. The condition for a minimum at λi, i.e. for optimal descent, is

df(xi−1 + λiui)
dλ

∣
∣
∣
∣
ui

=
dF (λi)

dλ

∣
∣
∣
∣
ui

= ∇T f(xi)ui = 0

and with ui+1 = − ∇f(xi)
‖∇f(xi)‖ it follows that ui+1T ui = 0 as shown in

Figure 2.6.
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xi−1

xi

ui

ui+1

−∇f(xi)

Figure 2.6: Orthogonality of successive steepest descent search directions

2.3.1.4 Convergence criteria

In practice the algorithm is terminated if some convergence criterion
is satisfied. Usually termination is enforced at iteration i if one, or a
combination, of the following criteria is met:

(i) ‖xi − xi−1‖ < ε1

(ii) ‖∇f(xi)‖ < ε2

(iii) |f(xi) − f(xi−1)| < ε3.

where ε1, ε2 and ε3 are prescribed small positive tolerances.

2.3.1.5 Conditions for sufficient improvement

The associated computational cost of performing the exact line searches
for the steepest descent method, and indeed for the first order line search
descent methods in general, has driven the development of conditions
that economically indicate sufficient improvement along a search direc-
tion (Armijo (1966); Wolfe (1969, 1971)). The aim of these conditions
are to ensure that the step sizes λi are neither too large so as to diverge,
or too small so as to make insufficient progress along a search direction
ui.

The following four conditions have successfully been employed in the
past to update step sizes:
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1. Improvement:
f(xi−1 + λiui) ≤ f(xi−1),

2. Armijo:

f(xi−1 + λiui) ≤ f(xi−1) + c1λiuiT∇f(xi−1),

3. Curvature:

c2uiT∇f(xi−1) ≤ uiT∇f(xi−1 + λiui),

4. Strong curvature:

|uiT∇f(xi−1 + λiui)| ≤ c3|uiT∇f(xi−1)|,

with c1, c2 and c3 required to be selected as non-negative parame-
ters. These parameters control the degree to which the conditions are
enforced. The second and third conditions are collectively referred to as
the Wolfe conditions, while the second and fourth conditions designate
the strong Wolfe conditions.

Although these conditions do not bespeak a line search strategy per se,
they do act as additional tests to indicate whether a proposed step length
signifies sufficient improvement. Hence, they can be used in termination
strategies for first order line searches.

2.3.1.6 Gradients by finite differences

As analytical sensitivities are not always accessible for computation,
it would be convenient to compute sensitivities numerically using finite
differences. Often the components of the gradient vector may be approx-
imated by forward finite differences:

∂f(x)
∂xj

∼= Δf(x)
δj

=
f(x + δj) − f(x)

δj
(2.6)
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δj

Δf(x)
δj

10−10 10−8 10−6 10−4 10−2

Figure 2.7: Sensitivity of finite difference approximation to δj

where δj = [0, 0, . . . δj , 0, . . . , 0]T , δj > 0 in the j-th position.

Usually δj ≡ δ for all j = 1, 2, . . . , n. A typically choice is δ = 10−6. If
however “numerical noise” is present in the computation of f(x), spe-
cial care should be taken in selecting δj . This may require doing some
numerical experiments such as, for example, determining the sensitiv-
ity of approximation (2.6) to the value of δj , for each j. Typically the
sensitivity graph obtained is as depicted in Figure 2.7, and for the imple-
mentation of the optimization algorithm a value for δj should be chosen
which corresponds to a point on the plateau as shown in Figure 2.7. Bet-
ter approximations, at of course greater computational expense, may be
obtained through the use of central finite differences.

In elaborating on the nature of Figure 2.7, consider the conventional
finite difference approximation schemes for f ′(x) that can be derived
from the one-dimensional Taylor series expansion around x,

f(x + δ) = f(x) + δf ′(x) + δ2
f ′′(x)

2
+ higher order terms, (2.7)

by making appropriate choices for δ. Clearly the forward difference
approximation is of order O(δ), while the central difference scheme,
recovered by subtracting the backward difference expansion from the
forward difference expansion is of order O(δ2) results in the improved
accuracy of the latter method.

An additional error is present in the numerical finite difference compu-
tations, namely the subtraction error as a result of finite precision arith-
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metic. This is a direct result of subtracting two finite values f(x − δj)
and f(x) to recover a small difference. The smaller the step size, the
larger the subtraction error. Consequently some numerical experimenta-
tion requiring function evaluations are usually required to find a suitable
step size.

The complex-step method, originally proposed by Lyness and Moler
(1967) and popularized by Squire and Trapp (1998) and Martins et al.
(2001), avoids the subtraction between two finite values when computing
derivatives, and thus it has no subtraction error. The implication is that
there is no increase in the sensitivity error as the step size is reduced.
The advantage of the complex-step method is that extremely small step
sizes δ can be taken, e.g. δ = 10−20 is not uncommon in order to reduce
the Taylor series truncation error to be negligible. Thus numerical sen-
sitivities can be computed that is as accurate as numerically evaluated
analytical sensitivities.

The complex-step method is based on the complex Taylor series expan-
sion of an analytic function f(x) using a complex step iδ,

f(x + iδ) = f(x) + iδf ′(x) − δ2
f ′′(x)

2
+ higher order terms. (2.8)

By neglecting the higher order terms and equating the imaginary parts
(Im) on both sides of (2.8), the complex-step derivative approximation,

f ′(x) ≈ Im[f(x + iδ)]
δ

,

is obtained as a second order accurate derivative approximation to f ′(x).
It is important to note that the complex-step method requires double
the amount of computer memory as complex numbers require a real
and imaginary part to be stored. In addition, some modifications to
software may be required to correctly compute the complex derivatives
as outlined by Martins et al. (2003).

Since directional derivatives are computed by projecting the gradient
vector, ∇f(x), onto a chosen search direction u, they can be computed
efficiently using finite difference strategies. The directional derivative
can be computed by taking a single finite difference step along a search
direction u, that is, evaluating f at x + iδuu. Hence, one complex
step is sufficient to compute the directional derivative as opposed to
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Figure 2.8: Orthogonal zigzagging behaviour of the steepest descent
method

computing the gradient vector ∇f(x) and then projecting it onto the
search direction u, i.e. by computing the product uT∇f(x).

2.3.2 Conjugate gradient methods

In spite of its local optimal descent property, the method of steep-
est descent often performs poorly, following a zigzagging path of ever
decreasing steps. This results in slow convergence and becomes extreme
when the problem is poorly scaled, i.e. when the contours are extremely
elongated. This poor performance is mainly due to the fact that the
method enforces successive orthogonal search directions (see Section
2.3.1.3) as shown in Figure 2.8. Although, from a theoretical point of
view, the method can be proved to be convergent, in practice the method
may not effectively converge within a finite number of steps. Depending
on the starting point, this poor convergence also occurs when applying
the method to positive-definite quadratic functions.

There is, however, a class of first order line search descent methods,
known as conjugate gradient methods, for which it can be proved that
whatever the scaling, a method from this class will converge exactly in a
finite number of iterations when applied to a positive-definite quadratic
function, i.e. to a function of the form

f(x) = 1
2x

TAx + bTx + c (2.9)
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where c ∈ R, b is a real n-vector and A is a positive-definite n × n
real symmetric matrix. Methods that have this property of quadratic
termination are highly rated, because they are expected to also perform
well on other non-quadratic functions in the neighbourhood of a local
minimum. This is so, because by the Taylor expansion (1.21), it can be
seen that many general differentiable functions approximate the form
(2.9) near a local minimum.

2.3.2.1 Mutually conjugate directions

Two vectors u, v �= 0 are defined to be orthogonal if the scalar product
uTv = (u,v) = 0. The concept of mutual conjugacy may be defined
in a similar manner. Two vectors u, v �= 0, are defined to be mutually
conjugate with respect to the matrix A in (2.9) if uTAv = (u,Av) = 0.
Note that A is a positive-definite symmetric matrix.

It can also be shown (see Theorem 5.5.1 in Chapter 5) that if the set of
vectors ui, i = 1, 2, . . . , n are mutually conjugate, then they form a basis
in R

n, i.e. any x ∈ R
n may be expressed as

x =
n∑

i=1

τiui (2.10)

where

τi =
(ui,Ax)
(ui,Aui)

. (2.11)

2.3.2.2 Convergence theorem for mutually conjugate
directions

Suppose ui, i = 1, 2, . . . , n are mutually conjugate with respect to
positive-definite A, then the optimal line search descent method in Sec-
tion 2.1.1, using ui as search directions, converges to the unique mini-
mum x∗ of f(x) = 1

2x
TAx + bTx + c in less than or equal to n steps.

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_5
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Proof:

If x0 the starting point, then after i iterations:

xi = xi−1 + λiui = xi−2 + λi−1ui−1 + λiui = . . .

= x0 +
i∑

k=1

λkuk. (2.12)

The condition for optimal descent at iteration i is

dF (λi)
dλ

=
df(xi−1 + λiui)

dλ

∣
∣
∣
∣
ui

= [ui, ∇f(xi−1 + λiui)] = 0

= [ui, ∇f(xi)] = 0

i.e.

0 = (ui,Axi + b)

=

(

ui,A

(

x0 +
i∑

k=1

λkuk

)

+ b

)

= (ui,Ax0 + b) + λi(ui,Aui)

because ui, i = 1, 2, . . . , n are mutually conjugate, and thus

λi = −(ui,Ax0 + b)/(ui,Aui). (2.13)

Substituting (2.13) into (2.12) above gives

xn = x0 +
n∑

i=1

λiui = x0 −
n∑

i=1

(ui,Ax0 + b)ui

(ui,Aui)

= x0 −
n∑

i=1

(ui,Ax0)ui

(ui,Aui)
−

n∑

i=1

(ui,A(A−1b))ui

(ui,Aui)
.

Now by utilizing (2.10) and (2.11) it follows that

xn = x0 − x0 − A−1b = −A−1b = x∗.

The implication of the above theorem for the case n = 2 and where
mutually conjugate line search directions u1 and u2 are used, is depicted
in Figure 2.9.
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x0

x1
u2

u1

x2 = x∗

Figure 2.9: Quadratic termination of the conjugate gradient method in
two steps for the case n = 2

2.3.2.3 Determination of mutually conjugate directions

How can mutually conjugate search directions be found? One way
is to determine all the eigenvectors ui, i = 1, 2, . . . , n of A. For A
positive-definite, all the eigenvectors are mutually orthogonal and since
Aui = μiui where μi is the associated eigenvalue, it follows directly
that for all i �= j that (ui,Auj) = (ui, μjuj) = μj(ui,uj) = 0, i.e. the
eigenvectors are mutually conjugate with respect to A. It is, however,
not very practical to determine mutually conjugate directions by finding
all the eigenvectors of A, since the latter task in itself represents a com-
putational problem of magnitude equal to that of solving the original
unconstrained optimization problem via any other numerical algorithm.
An easier method for obtaining mutually conjugate directions, is by
means of the Fletcher-Reeves formulæ (Fletcher and Reeves 1964).

2.3.2.4 The Fletcher-Reeves directions

The Fletcher-Reeves directions ui, i = 1, 2, . . . , n, that are listed below,
can be shown (see Theorem 5.5.3 in Chapter 5) to be mutually conjugate
with respect to the matrix A in the expression for the quadratic function
in (2.9) (for which ∇f(x) = Ax + b). The explicit directions are:

u1 = −∇f(x0)

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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and for i = 1, 2, . . . , n − 1

ui+1 = −∇f(xi) + βiui (2.14)

where xi = xi−1 + λiui, and λi corresponds to the optimal descent step
in iteration i, and

βi =
‖∇f(xi)‖2

‖∇f(xi−1)‖2 . (2.15)

The Polak-Ribiere directions are obtained if, instead of using (2.15), βi

is computed using

βi =
(∇f(xi) − ∇f(xi−1))T ∇f(xi)

‖∇f(xi−1)‖2 . (2.16)

If f(x) is quadratic it can be shown (Fletcher 1987) that (2.16) is equiv-
alent to (2.15).

2.3.2.5 Formal Fletcher-Reeves conjugate gradient algorithm
for general functions

Given x0 perform the following steps:

1. Compute ∇f(x0) and set u1 = −∇f(x0).

2. For i = 1, 2, . . . , n do:

2.1 set xi = xi−1 + λiui where λi such that

f(xi−1 + λiui) = min
λ

f(xi−1 + λui) (line search),

2.2 compute ∇f(xi),
2.3 if convergence criteria satisfied, then stop and x∗ ∼= xi, else

go to Step 2.4.
2.4 if 1 ≤ i ≤ n − 1, ui+1 = −∇f(xi) + βiui with βi given by

(2.15).

3. Set x0 = xn and go to Step 2 (restart).

If βi is computed by (2.16) instead of (2.15) the method is known as the
Polak-Ribiere method.
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2.3.2.6 Simple illustrative example

Apply the Fletcher-Reeves method to minimize

f(x) = 1
2x

2
1 + x1x2 + x2

2

with x0 = [10, −5]T .

Solution:

Iteration 1:

∇f(x) =
[

x1 + x2

x1 + 2x2

]

and therefore u1 = −∇f(x0) =
[ −5

0

]

.

x1 = x0 + λu1 =
[

10 − 5λ
−5

]

and

F (λ) = f(x0 + λu1) = 1
2(10 − 5λ)2 + (10 − 5λ)(−5) + 25.

For optimal descent

dF
dλ (λ) = df

dλ

∣
∣
∣
u1

= −5(10 − 5λ) + 25 = 0 (line search).

This gives λ1 = 1, x1 =
[

5
−5

]

and ∇f(x1) =
[

0
−5

]

.

Iteration 2:

u2 = −∇f(x1)+
‖∇f(x1)‖2
‖∇f(x0)‖2u

1 = −
[

0
−5

]

+ 25
25

[ −5
0

]

=
[ −5

5

]

.

x2 = x1 + λu2 =
[

5
−5

]

+ λ

[ −5
5

]

=
[

5(1 − λ)
−5(1 − λ)

]

and

F (λ) = f(x1 + λu2) = 1
2 [25(1 − λ)2 − 50(1 − λ)2 + 50(1 − λ)2].

Again for optimal descent

dF
dλ (λ) = df

dλ

∣
∣
∣
u2

= −25(1 − λ) = 0 (line search).

This gives λ2 = 1, x2 =
[

0
0

]

and ∇f(x2) =
[

0
0

]

. Therefore stop.
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x1 x0

x2 = x∗ x1

x2

105

-5

Figure 2.10: Convergence of Fletcher-Reeves method for illustrative
example

The two iteration steps are shown in Figure 2.10.

2.4 Second order line search descent methods

These methods are based on Newton’s method (see Section 1.5.4.1) for
solving ∇f(x) = 0 iteratively: Given x0, then

xi = xi−1 − H−1(xi−1)∇f(xi−1), i = 1, 2, . . . (2.17)

As stated in Chapter 1, the main characteristics of this method are:

1. In the neighbourhood of the solution it may converge very fast.
In fact, it has the very desirous property of being quadratically
convergent if it converges. Unfortunately convergence is not guar-
anteed and it may sometimes diverge, even from close to the solu-
tion.

2. The implementation of the method requires that H(x) be evalu-
ated at each step.

3. To obtain the Newton step, Δ = xi − xi−1 it is also necessary
to solve a n × n linear system H(x)Δ = −∇f(x) at each itera-

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
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tion. This is computationally very expensive for large n, since an
order n3 multiplication operations are required to solve the system
numerically.

2.4.1 Modified Newton’s method

To avoid the problem of convergence (point 1. above), the computed
Newton step Δ is rather used as a search direction in the general line
search descent algorithm given in Section 2.1.1. Thus at iteration i:
select ui = Δ = −H−1(xi−1)∇f(xi−1), and minimize in that direction
to obtain a λi such that

f(xi−1 + λiui) = min
λ

f(xi−1 + λui)

and then set xi = xi−1 + λiui.

2.4.2 Quasi-Newton methods

To avoid the above mentioned computational problems (2. and 3.), meth-
ods have been developed in which approximations of H−1 are applied at
each iteration. Starting with an approximation G0 to H−1 for the first
iteration, the approximation is updated after each line search. An exam-
ple of such a method is the Davidon-Fletcher-Powell (DFP) method.

2.4.2.1 DFP quasi-Newton method

The structure of this (rank-1 update) method (Fletcher 1987) is as fol-
lows.

1. Choose x0 and set G0 = I.

2. Do for iteration i = 1, 2, . . . , n:

2.1 set xi = xi−1 + λiui, where ui = −Gi−1∇f(xi−1) and λi is
such that f(xi−1 + λiui) = min

λ
f(xi−1 + λui), λi ≥ 0 (line

search),
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2.2 if stopping criteria satisfied then stop, x∗ ∼= xi,

2.3 set vi = λiui and
set yi = ∇f(xi) − ∇f(xi−1),

2.4 set

Gi = Gi−1 + Ai + Bi (rank 1-update) (2.18)

where Ai =
viviT

viTyi
, Bi =

−Gi−1yi(Gi−1yi)T

yiTGi−1yi
.

3. Set x0 = xn; G0 = Gn (or G0 = I), and go to Step 2 (restart).

2.4.2.2 Characteristics of DFP method

1. The method does not require the evaluation of H or the explicit
solution of a linear system.

2. If Gi−1 is positive-definite then so is Gi (see Theorem 5.6.1).

3. If Gi is positive-definite then descent is ensured at xi because

df(xi)
dλ

∣
∣
∣
∣
ui+1

= ∇T f(xi)ui+1

= −∇T f(xi)Gi∇f(xi) < 0, for all ∇f(x) �= 0.

4. The directions ui, i = 1, 2, . . . , n are mutually conjugate for a
quadratic function with A positive-definite (see Theorem 5.6.2).
The method therefore possesses the desirable property of quadratic
termination (see Section 2.3.2).

5. For quadratic functions: Gn = A−1 (see again Theorem 5.6.2).

2.4.2.3 The BFGS method

The state-of-the-art quasi-Newton method is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method developed during the early 1970s
(see Fletcher 1987). This method uses a more complicated rank-2 update

http://dx.doi.org/10.1007/978-3-319-77586-9_5
http://dx.doi.org/10.1007/978-3-319-77586-9_5
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formula for H−1. For this method the update formula to be used in Step
2.4 of the algorithm given in Section 2.4.2.1 becomes

Gi = Gi−1 +
[

1 +
yiTGi−1yi

viTyi

] [
viviT

viTyi

]

−
[
viyiTGi−1 + Gi−1yiviT

viTyi

]

.

(2.19)

2.5 Zero order methods and computer
optimization subroutines

This chapter would not be complete without mentioning something
about the large number of so-called zero order methods that have been
developed. These methods are called such because they neither use first
order nor second order derivative information, but only function values,
i.e. only zero order derivative information.

Figure 2.11: Example of some of the downhill simplex method steps
which includes (a) computing the centroid, xi

O, using all vertices exclud-
ing the worst vertex, i.e. vertex with highest function value, followed by
(b) reflecting the worst vertex to compute the reflection point xi

R

Zero order methods are of the earliest methods and many of them
are based on rough and ready ideas with few theoretical background.
Although these ad hoc methods are, as one may expect, much slower
and computationally much more expensive than the higher order meth-
ods, they are usually reliable and easy to program. One of the most
successful of these methods is the downhill simplex method of Nelder
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Figure 2.12: Example of some of the downhill simplex method steps.
Since the reflection point computed in Figure 2.11 had the lowest func-
tion value an (a) expansion point, xi

E , is computed and (b) the simplex
updated, the vertices sorted and the next centroid, xi+1

O , computed

and Mead (1965), also known as Nelder-Mead. This method should not
be confused with Dantzig’s simplex method for linear programming.

The downhill simplex method first initializes a simplex with n+1 vertices
in n-dimensional space, as depicted in Figure 2.11(a) for n = 2. After
initialization, the vertices are ordered according to their function values
from low to high. Confirming that the convergence criteria have not been
met allows for the first n vertices to be used to compute the centroid as
indicated by xi

O in Figure 2.11(a). This is followed by the first simplex
operator, namely reflection of the worst point (n+1)th over the centroid
to obtain the reflection point xi

R as illustrated in Figure 2.11(b). Based
on the function value of the reflection point, the next operator is deter-
mined as listed in Algorithm 2.5. In this example, the function value at
the reflection point is lower than the best computed point so far, which
requires us to compute an expansion point, xi

E , following Step 4 as listed
and depicted in Figure 2.12(a). Since the function value at the expan-
sion point is higher than the function value at the reflection point, the
reflection point is kept by replacing the (n + 1)th vertex with it. Again
the points are ordered and convergence of the algorithm checked. There-
after the centroid for the new simplex, xi+1

O , is computed as depicted in
Figure 2.12(b) in accordance with Step 2 of the listed algorithm. The
general framework of the downhill simplex method that includes con-
traction and shrinking, in addition to reflection and expansion already
explained, is given in Algorithm 2.5.
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Algorithm 2.5 Nelder-Mead derivative free heuristic search method

Initialization: Select real constants ρR > 0, ρE > 1, 0 ≤ ρC ≤ 0.5 and
0 ≤ ρS ≤ 1. Select the maximum number of iterations imax and convergence
tolerance ε > 0. Set i := 1, and initialize the initial simplex by randomly
generating n + 1 vectors xi

1, . . . ,x
i
n+1 in the n-dimensional design space and

evaluate the function at the n+1 simplex vertices. Perform the following steps:

1. Order: Order the vertices according to their function values:

f(xi
1) ≤ f(xi

2) ≤ · · · ≤ f(xi
n+1)

If ‖xi
1 − xi

n+1‖ ≤ ε then x∗ := xi
1 and stop, else go to Step 2.

2. Centroid: Compute the centroid xi
O of the first n vertices, i.e. the

(n + 1)th vertex is excluded:

xi
O =

1
n

n∑

j=1

xi
j .

3. Reflection: Compute the reflected point:

xi
R = xi

O + ρR(xi
O − xi

n+1).

If, f(xi
O) ≤ f(xi

R) < f(xi
n) then set xi

n+1 := xi
R, set i := i + 1 and go to

Step 1, else if f(xi
R) < f(xi

O) go to Step 4, otherwise go to Step 5.

4. Expansion: Compute the expansion point:

xi
E = xi

O + ρE(xi
O − xi

n+1).

If f(xi
E) < f(xi

R) then set xi
n+1 := xi

E else set xi
n+1 := xi

R. Set i := i+1
and go to Step 1.

5. Contraction: Compute the contraction point:

xi
C = xi

O + ρC(xi
O − xi

n+1).

If f(xi
C) < f(xi

n+1) then set xi
n+1 := xi

C , set i := i+1 and go to Step 1,
otherwise go to Step 6.

6. Shrinkage: Shrink all the points except the best point:

xi
j = xi

1 + ρS(xi
j − xi

1), j = 2, . . . , n + 1,

set i := i + 1 and go to Step 1.
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Another very powerful and popular method that only uses function val-
ues is the multi-variable method of Powell (1964). This method gen-
erates mutually conjugate directions by performing sequences of line
searches in which only function evaluations are used. For this method
Theorem 2.3.2.2 applies and the method therefore possesses the prop-
erty of quadratic termination. The basic procedure of Powell’s method
is outlined in Algorithm 2.6.

Algorithm 2.6 Powell’s derivative free conjugate direction method

Initialization: For an n-dimensional problem, choose a starting point
x0 and n search directions uk, k = 1, . . . , n. The initial directions are
usually chosen as the Cartesian coordinate directions u1 = e1, . . . ,un =
en. Select ε > 0 and set l := 1. Perform the following steps:

1. Minimize in n search directions: Set x1 := x0. For each
k = 1, . . . , n, find λk such that

f(xk + λkuk) = min
λ

f(xk + λuk)

and update xk+1 := xk + λkuk.

2. Update n search directions: For each k = 1, . . . , n − 1, set
uk := uk+1 and finally set un := xn+1−x1. Check for convergence:
‖xn+1 − x1‖ ≤ ε, if satisfied then set x∗ := xn+1 and stop,
else set l := l + 1, x0 := xn+1 and go to Step 3.

3. If l is divisible by n + 1 then reinitialize the search directions to
the Cartesian coordinate directions u1 = e1, . . . ,un = en. Go to
Step 1.

Amongst the more recently proposed and modern zero order methods,
the method of simulated annealing and the so-called genetic algorithms
(GA’s) are the most prominent (see for example, Haftka and Gürdal
1992). Other zero order methods include Differential Evolution pro-
posed by Storn and Price (1997), Basin Hopping proposed by Wales and
Doye (1997) and the contribution by Kennedy and Eberhart (1995) the
so-called Particle Swarm Optimization Algorithm. A strongly interact-
ing dynamic particle swarm variant of this method has been proposed
by Kok and Snyman (2008).
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Computer programs are commercially available for all the unconstrained
optimization methods presented in this chapter. Most of the algorithms
may, for example, be found in the Matlab Optimization Toolbox and in
the IMSL and NAG mathematical subroutine libraries. In Chapter 9
we cover most of the algorithms using the scipy.optimize module in
Python, which includes Nelder-Mead, Powell’s method and Basin Hop-
ping.

2.6 Exercises

2.6.1 Apply the golden section method and Powell’s quadratic inter-
polation method to the problems below. Compare their respec-
tive performances with regard to the number of function evalu-
ations required to attain the prescribed accuracies.

(i) minimize F (λ) = λ2 + 2e−λ over [0, 2] with ε = 0.01.

(ii) maximize F (λ) = λ cos(λ) over [0, π/2] with ε = 0.001.

(iii) minimize F (λ) = 4(λ − 7)/(λ2 + λ − 2) over [−1.9; 0.9] using
up to 10 function evaluations.

(iv) minimize F (λ) = λ4 − 20λ3 + 0.1λ over [0; 20] with ε = 10−5.

2.6.2 Plot the functions and derivatives for the problems given in
(i)–(iv). Indicate the [0, λ] interval that satisfies each of the four
conditions for sufficient improvement in Section 2.3.1.5, taking
a step from λ = 0 and using c1 = 0.5, c2 = 0.5 and c3 = 0.5 for
conditions for 2, 3 and 4 respectively.

2.6.3 Reconsidering Exercise 2.6.2, would the interval increase or
decrease if c1 is increased?

2.6.4 Reconsidering Exercise 2.6.2, would the interval increase or
decrease if c2 is increased?

2.6.5 Reconsidering Exercise 2.6.2, would the interval increase or
decrease if c3 is increased?

2.6.6 Apply one step of Powell’s method to the problems listed in
(i)–(iv) and determine whether the Wolfe conditions are satisfied
using c1 = 0.2 and c2 = 0.8.

http://dx.doi.org/10.1007/978-3-319-77586-9_9
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2.6.7 For the Quadratic function in Section 1.6.1, how many itera-
tions would Newton’s method, and the BFGS using exact line
searches, respectively require to solve the problem?

2.6.8 Compute the gradient vector about x0 using the forward, back-
ward and central difference schemes by guessing appropriate
step sizes for the Rosenbrock function listed in Section 1.6.1.

2.6.9 Derive the central finite difference formula and show that it is
second order accurate.

2.6.10 Show that the eigenvectors of the Hessian matrix are orthogo-
nal?

2.6.11 The steepest descent method with exact line searches is expected
to converge in less than n, n or more than n iterations when
optimizing a

(i) general quadratic function of dimension n,

(ii) general non-linear function of dimension n, and

(iii) spherical quadratic function of dimension n.

2.6.12 A conjugate gradient method with exact line searches is expected
to converge in less than n, n or more than n iterations when
optimizing a

(i) general quadratic function of dimension n,

(ii) general non-linear function of dimension n, and

(iii) spherical quadratic function of dimension n.

2.6.13 A Quasi-Newton method with exact line searches is expected
to converge in less than n, n or more than n iterations when
optimizing a

(i) general quadratic function of dimension n,

(ii) general non-linear function of dimension n, and

(iii) spherical quadratic function of dimension n.

2.6.14 The modified Newton’s method with exact line searches is
expected to converge in less than n, n or more than n itera-
tions when optimizing a

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
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(i) general quadratic function of dimension n,

(ii) general non-linear function of dimension n, and

(iii) spherical quadratic function of dimension n.



Chapter 3

STANDARD METHODS
FOR CONSTRAINED
OPTIMIZATION

3.1 Penalty function methods for constrained
minimization

Consider the general constrained optimization problem:

minimize
x

f(x)

such that gj(x) ≤ 0 j = 1, 2, . . . , m (3.1)
hj(x) = 0 j = 1, 2, . . . , r.

The most simple and straightforward approach to handling constrained
problems of the above form is to apply a suitable unconstrained opti-
mization algorithm to a penalty function formulation of constrained
problem (3.1).

3.1.1 The penalty function formulation

A penalty function formulation of the general constrained problem (3.1)
is

minimize
x

P (x)

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 3
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where

P (x, ρ, β) = f(x) +
r∑

j=1

ρjh
2
j (x) +

m∑

j=1

βjg
2
j (x) (3.2)

and where the components of the penalty parameter vectors ρ and β
are given by

ρj � 0; βj =
{

0 if gj(x) ≤ 0
μj � 0 if gj(x) > 0.

The latter parameters, ρj and βj , are called penalty parameters, and
P (x, ρ, β) the penalty function. The solution to this unconstrained min-
imization problem is denoted by x∗(ρ, β), where ρ and β denote the
respective vectors of penalty parameters.

Often ρj ≡ constant ≡ ρ, for all j, and also μj ≡ ρ for all j such that
gj(x) > 0. Thus P in (3.2) is denoted by P (x, ρ) and the correspond-
ing minimum by x∗(ρ). It can be shown that under normal continuity
conditions the lim

ρ→∞ x∗(ρ) = x∗. Typically the overall penalty parameter

ρ is set at ρ = 104 if the constraints functions are normalized in some
sense.

3.1.2 Illustrative examples

Consider the following two one-dimensional constrained optimization
problems:

(a) min f(x)
such that h(x) = x − a = 0,

then P (x) = f(x) + ρ(x − a)2;

and

(b) min f(x)
such that g(x) = x − b ≤ 0,

then P (x) = f(x) + β(x − b)2.

The penalty function solutions to these two problems are as depicted in
Figures 3.1 (a) and (b). The penalty function method falls in the class
of external methods because it converges externally from the infeasible
region.
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f(x)

P (x)

x∗(ρ)

f(x)

P (x)

x∗ = a
x∗(ρ)

P (x) = f(x) + ρ(x − a)2 P (x) = f(x) + β(x − b)2

(a) (b)

x∗ = b

Figure 3.1: Behaviour of penalty function for one-dimensional (a) equal-
ity constrained, and (b) inequality constrained minimization problems

3.1.3 Sequential unconstrained minimization technique
(SUMT)

Unfortunately the penalty function method becomes unstable and inef-
ficient for very large ρ if high accuracy is required. This is because
rounding errors result in the computation of unreliable descent direc-
tions. If second order unconstrained minimization methods are used
for the minimization of P (x, ρ), then the associated Hessian matrices
become ill-conditioned and again the method is inclined to break down.
A remedy to this situation is to apply the penalty function method to
a sequence of sub-problems, starting with moderate penalty parameter
values, and successively increasing their values for the sub-problems.
The details of this approach (SUMT) is as follows.

SUMT algorithm:

1. Choose tolerances ε1 and ε2, starting point x0 and initial overall
penalty parameter value ρ0, and set k = 0.

2. Minimize P (x, ρk) by any unconstrained optimization algorithm
to give x∗(ρk).
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3. If (for k > 0) the convergence criteria are satisfied: STOP

i.e. stop if ‖x∗(ρk) − x∗(ρk−1)‖ < ε1

and/or |P (x∗(ρk−1) − P (x∗(ρk))| < ε2,

else

set ρk+1 = cρk, c > 1 and x0 = x∗(ρk),

set k = k + 1 and go to Step 2.

Typically choose ρ0 = 1 and c = 10.

3.1.4 Simple example

Consider the constrained problem:

min f(x) = 1
3(x1 + 1)3 + x2

such that
1 − x1 ≤ 0; −x2 ≤ 0.

The problem is depicted in Figure 3.2.

Define the penalty function:

P (x, ρ) = 1
3(x1 + 1)3 + x2 + ρ(1 − x1)2 + ρx2

2.

(Of course the ρ only comes into play if the corresponding constraint is
violated.) The penalty function solution may now be obtained analyti-
cally as follows.

The first order necessary conditions for an unconstrained minimum of
P are

∂P

∂x1
= (x1 + 1)2 − 2ρ(1 − x1) = 0 (3.3)

∂P

∂x2
= 1 + 2ρx2 = 0. (3.4)

From (3.4): x∗
2(ρ) = − 1

2ρ

and from (3.3): x2
1 + 2(1 + ρ)x1 + 1 − 2ρ = 0.
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Figure 3.2: Contour representation of objective function and feasible
region for simple example

Solving the quadratic equation and taking the positive root gives

x∗
1(ρ) = −(1 + ρ) + (1 + ρ)

(
1 +

(2ρ − 1)
(1 + ρ)2

)1/2

.

Clearly lim
ρ→∞ x∗

2(ρ) = 0 and lim
ρ→∞ x∗

1(ρ) = 1 (where use has been made of

the expansion (1+ε)1/2 = 1+ 1
2ε+. . . ) giving x∗ = [1, 0]T , as one expects

from Figure 3.2. Here the solution to the penalty function formulated
problem has been obtained analytically via the first order necessary con-
ditions. In general, of course, the solution is obtained numerically by
applying a suitable unconstrained minimization algorithm.
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3.2 Classical methods for constrained optimiza-
tion problems

3.2.1 Equality constrained problems and the Lagrangian
function

Consider the equality constrained problem:

minimize f(x)
such that hj(x) = 0, j = 1, 2, . . . , r < n.

(3.5)

In 1760 Lagrange transformed this constrained problem to an uncon-
strained problem via the introduction of so-called Lagrange multipliers
λj , j = 1, 2, . . . , r in the formulation of the Lagrangian function:

L(x, λ) = f(x) +
r∑

j=1

λjhj(x) = f(x) + λTh(x). (3.6)

The necessary conditions for a constrained minimum of the above equal-
ity constrained problem may be stated in terms of the Lagrangian func-
tion and the Lagrange multipliers.

3.2.1.1 Necessary conditions for an equality constrained min-
imum

Let the functions f and hj ∈ C1 then, on the assumption that the n × r
Jacobian matrix

∂h(x∗)
∂x

= [∇h1(x∗), ∇h2(x∗), . . . ]

is of rank r, the necessary conditions for x∗ to be a constrained internal
local minimum of the equality constrained problem (3.5) is that x∗ cor-
responds to a stationary point (x∗, λ∗) of the Lagrangian function, i.e.
that a vector λ∗ exists such that

∂L

∂xi
(x∗, λ∗) = 0, i = 1, 2, . . . , n

(3.7)
∂L

∂λj
(x∗, λ∗) = 0, j = 1, 2, . . . , r.
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For a formal proof of the above, see Theorem 5.2.1.

3.2.1.2 The Lagrangian method

Note that necessary conditions (3.7) represent n+r equations in the n+r
unknowns x∗

1, x
∗
2, . . . , x

∗
n, λ∗

1, . . . , λ
∗
r . The solutions to these, in general

non-linear equations, therefore give candidate solutions x∗ to problem
(3.5). This indirect approach to solving the constrained problem is illus-
trated in solving the following simple example problem.

3.2.1.3 Example

minimize f(x) = (x1 − 2)2 + (x2 − 2)2

such that h(x) = x1 + x2 − 6 = 0.

First formulate the Lagrangian:

L(x, λ) = (x1 − 2)2 + (x2 − 2)2 + λ(x1 + x2 − 6).

By the Theorem in Section 3.2.1.1 the necessary conditions for a con-
strained minimum are

∂L

∂x1
= 2(x1 − 2) + λ = 0

∂L

∂x2
= 2(x2 − 2) + λ = 0

∂L

∂λ
= x1 + x2 − 6 = 0.

Solving these equations gives a candidate point: x∗
1 = 3, x∗

2 = 3, λ∗ = −2
with f(x∗) = 2. This solution is depicted in Figure 3.3.

3.2.1.4 Sufficient conditions

In general the necessary conditions (3.7) are not sufficient to imply a
constrained local minimum at x∗. A more general treatment of the suf-
ficiency conditions is however very complicated and will not be discussed

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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Figure 3.3: Graphical solution to example problem 3.2.1.3

here. It can, however, be shown that if over the whole domain of inter-
est, f(x) is convex, and hj(x) convex or concave depending on whether
the corresponding Lagrange multiplier λ∗

j is positive or negative, then
conditions (3.7) indeed constitute sufficiency conditions. More generally,
this is also true if the Hessian of the Lagrange function with respect to
x is positive-definite at (x∗, λ∗). In these cases the local constrained
minimum is unique and represents the global minimum.

3.2.1.5 Saddle point of the Lagrangian function

Assume

(i) f(x) has a constrained minimum at x∗ (with associated λ∗) and

(ii) that if λ is chosen in the neighbourhood of λ∗, then L(x, λ) has a
local minimum with respect to x in the neighbourhood of x∗.

The latter assumption can be expected to be true if the Hessian matrix
of L with respect to x at (x∗, λ∗) is positive-definite.

It can be shown (see Theorem 5.2.2) that if (i) and (ii) applies then
L(x, λ) has a saddle point at (x∗, λ∗). Indeed it is a degenerate saddle

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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Figure 3.4: Saddle point of Lagrangian function L = x2 + λ(x − 1)

point since

L(x, λ∗) ≥ L(x∗, λ∗) = L(x∗, λ).

Consider the example:

minimize f(x) = x2 such that h(x) = x − 1 = 0.

With L = x2 + λ(x − 1) it follows directly that x∗ = 1 and λ∗ = −2.

Since along the straight line asymptotes through (x∗, λ∗), ΔL = 0 for
changes Δx and Δλ, it follows that

[Δx Δλ]
[

2 1
1 0

] [
Δx
Δλ

]
= 0, or

Δx(Δx + Δλ) = 0.

The asymptotes therefore are the lines through (x∗, λ∗) with Δx = 0,
and Δλ

Δx = −1 respectively, as shown in Figure 3.4, i.e. the lines x = 1
and λ = −x − 1.

In general, if it can be shown that candidate point (x∗, λ∗) is a saddle
point of L, then the Hessian of the Lagrangian with respect to x, HL,
at the saddle point is positive-definite for a constrained minimum.
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3.2.1.6 Special case: quadratic function with linear equality
constraints

From a theoretical point of view, an important application of the
Lagrangian method is to the minimization of the positive-definite
quadratic function:

f(x) = 1
2x

TAx + bTx + c (3.8)

subject to the linear constraints

Cx = d.

Here A is a n × n positive-definite matrix and C a r × n constraint
matrix, r < n, b is a n-vector and d a r-vector.

In this case the Lagrangian is

L(x, λ) = 1
2x

TAx + bTx + c + λT (Cx − d)

and the necessary conditions (3.7) for a constrained minimum at x∗ is
the existence of a vector λ∗ such that

∇xL(x∗, λ∗) = Ax∗ + b + CT λ∗ = 0

∇λL(x∗, λ∗) = Cx∗ − d = 0

i.e. [
A CT

C 0

] [
x∗

λ∗

]
=

[ −b
d

]
. (3.9)

The solution to this linear system is given by
[

x∗

λ∗

]
= M−1

[ −b
d

]
where M =

[
A CT

C 0

]
.

3.2.1.7 Inequality constraints as equality constraints

Consider the more general problem:

minimize f(x)
such that gj(x) ≤ 0, j = 1, 2, . . . , m (3.10)

hj(x) = 0, j = 1, 2, . . . , r.
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The inequality constraints may be transformed to equality constraints
by the introduction of so-called auxiliary variables θj , j = 1, 2, . . . , m:

gj(x) + θ2
j = 0.

Since gj(x) = −θ2
j ≤ 0 for all j, the inequality constraints are automat-

ically satisfied.

The Lagrangian method for equality constrained problems may now be
applied, where

L(x, θ, λ, μ) = f(x) +
m∑

j=1

λj(gj(x) + θ2
j ) +

r∑

j=1

μjhj(x) (3.11)

and λj and μj denote the respective Lagrange multipliers.

From (3.7) the associated necessary conditions for a minimum at x are

∂L

∂xi
=

∂f(x)
∂xi

+
m∑

j=1

λj
∂gj(x)

∂xi
+

r∑

j=1

μj
∂hj(x)

∂xi
= 0, i = 1, 2, . . . , n

∂L

∂θj
= 2λjθj = 0, j = 1, 2, . . . , m

∂L

∂λj
= gj(x) + θ2

j = 0, j = 1, 2, . . . , m (3.12)

∂L

∂μj
= hj(x) = 0, j = 1, 2, . . . , r.

The above system (3.12) represents a system of n+2m+r simultaneous
non-linear equations in the n+2m+r unknowns x, θ, λ and μ. Obtain-
ing the solutions to system (3.12) yields candidate solutions x∗ to the
general optimization problem (3.10). The application of this approach
is demonstrated in the following example.

3.2.1.8 Example

Minimize f(x) = 2x2
1 − 3x2

2 − 2x1

such that x2
1 + x2

2 ≤ 1 by making use of auxiliary variables.
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Introduce auxiliary variable θ such that

x2
1 + x2

2 − 1 + θ2 = 0

then
L(x, θ, λ) = 2x2

1 − 3x2
2 − 2x1 + λ(x2

1 + x2
2 − 1 + θ2).

The necessary conditions at the minimum are

∂L

∂x1
= 4x1 − 2 + 2λx1 = 0 (3.13)

∂L

∂x2
= −6x2 + 2λx2 = 0 (3.14)

∂L

∂θ
= 2λθ = 0 (3.15)

∂L

∂λ
= x2

1 + x2
2 − 1 + θ2 = 0. (3.16)

As first choice in (3.15), select λ = 0 which gives x1 = 1/2, x2 = 0, and
θ2 = 3/4.

Since θ2 > 0 the problem is unconstrained at this point. Further since

H =
[

4 0
0 −6

]
is non-definite the candidate point x0 corresponds to

a saddle point where f(x0) = −0.5.

Select as second choice in (3.15),

θ = 0 which gives x2
1 + x2

2 − 1 = 0 (3.17)

i.e. the constraint is active. From (3.14) it follows that for x2 �= 0, λ = 3,
and substituting into (3.13) gives x1 = 1/5 and from (3.17): x2 =
±√

24/5 = ±0.978 which give the two possibilities: x∗ =
(

1
5 ,

√
24
5

)
,

f(x∗) = −3.189 and x∗ =
(

1
5 , −√

24
5

)
, with f(x∗) = −3.189.

Also the choice θ = 0 with x2 = 0, gives x1 = ±1. These two points
correspond to maxima with respective function values f = 4 and f = 0.

3.2.1.9 Directions of asymptotes at a saddle point x0

If, in the example above, the direction of an asymptote at saddle point
x0 is denoted by the unit vector u = [u1, u2]T . Then for a displacement
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Figure 3.5: Directions of asymptotes at a saddle point x0

Δx = u along the asymptote the change in the function value is Δf = 0.
It follows from the Taylor expansion that

Δf = f(x0 + Δx) − f(x0) = uT ∇f(x0) + 1
2u

THu = 0

for step Δx = u at saddle point x0. Since H =
[

4 0
0 −6

]
and

∇f(x0) = 0, it follows that 2u2
1 − 3u2

2 = 0 and also, since ‖u‖ = 1:
u2

1 + u2
2 = 1.

Solving for u1 and u2 in the above gives

u1 = ±
√

3
5 ; u2 = ±

√
2
5

which, taken in combinations, correspond to the directions of the four
asymptotes at the saddle point x0, as shown in Figure 3.5.
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3.2.2 Classical approach to optimization with inequality
constraints: the KKT conditions

Consider the primal problem (PP):

minimize f(x)
such that gj(x) ≤ 0, j = 1, 2, . . . , m. (3.18)

Define again the Lagrangian:

L(x, λ) = f(x) +
m∑

j=1

λjgj(x). (3.19)

Karush (1939) and Kuhn and Tucker (1951) independently derived the
necessary conditions that must be satisfied at the solution x∗ of the
primary problem (3.18). These conditions are generally known as the
KKT conditions which are expressed in terms of the Lagrangian L(x, λ).

3.2.2.1 The KKT necessary conditions for an inequality con-
strained minimum

Let the functions f and gj ∈ C1, and assume the existence of Lagrange
multipliers λ∗, then at the point x∗, corresponding to the solution of the
primal problem (3.18), the following conditions must be satisfied:

∂f

∂xi
(x∗) +

m∑

j=1

λ∗
j

∂gj

∂xi
(x∗) = 0, i = 1, 2, . . . , n

gj(x∗) ≤ 0, j = 1, 2, . . . , m

(3.20)
λ∗

jgj(x∗) = 0, j = 1, 2, . . . , m

λ∗
j ≥ 0, j = 1, 2, . . . , m.

For a formal proof of the above see Theorem 5.3.1. It can be shown,
that the KKT conditions also constitute sufficient conditions (those that
imply that) for x∗ to be a constrained minimum, if f(x) and the gj(x)
are all convex functions.

Let x∗ be a solution to problem (3.18), and suppose that the KKT con-
ditions (3.20) are satisfied. If now gk(x∗) = 0 for some k ∈ {1, 2, . . . , m},

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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then the corresponding inequality constraint k is said to be active and
binding at x∗, if the corresponding Lagrange multiplier λ∗

k ≥ 0. It is
strongly active if λ∗

k > 0, and weakly active if λ∗
k = 0. However, if for

some candidate KKT point x̄, gk(x̄) = 0 for some k, and all the KKT
conditions are satisfied except that the corresponding Lagrange multi-
plier λ̄k < 0, then the inequality constraint k is said to be inactive, and
must be deleted from the set of active constraints at x̄.

3.2.2.2 Constraint qualification

It can be shown that the existence of λ∗ is guaranteed if the so-called
constraint qualification is satisfied at x∗, i.e. if a vector h ∈ R

n exists
such that for each active constraint j at x∗

∇T gj(x∗)h < 0 (3.21)

then λ∗ exists.

The constraint qualification (3.21) is always satisfied

(i) if all the constraints are convex and at least one x exists within
the feasible region, or

(ii) if the rank of the Jacobian of all active and binding constraints at
x∗ is maximal, or

(iii) if all the constraints are linear.

3.2.2.3 Illustrative example

Minimize f(x) = (x1 − 2)2 + x2
2

such that x1 ≥ 0, x2 ≥ 0, (1 − x1)3 ≥ x2.

A minimum is attained at the point x∗
1 = 1, x∗

2 = 0 where

g1(x∗) = −x∗
1 < 0, g2(x∗) = −x∗

2 = 0 and g3(x∗) = x∗
2 − (1 − x∗

1)
3 = 0

and therefore g2 and g3 are active at x∗.
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x1

x2

∇g3

∇g2

20

1 feasibleregion

x∗

1

Figure 3.6: Failure of constraint qualification

At this point

∇g2 =
[

0
−1

]
, ∇g3 =

[
0
1

]

giving ∇g2 = −∇g3 at x∗ as shown in Figure 3.6.

Thus no vector h exists that satisfies the constraint qualification (3.21).
Therefore the application of KKT theory to this problem will break
down since no λ∗ exists.

Also note that the Jacobian of the active constraints at x∗ = [1, 0]T :

∂g
∂x

(x∗) =

⎡

⎢⎣

∂g2

∂x1

∂g3

∂x1
∂g2

∂x2

∂g3

∂x2

⎤

⎥⎦ =
[

0 0
−1 1

]

is of rank 1 < 2, and therefore not maximal which also indicates that
λ∗ does not exist, and therefore the problem cannot be analysed via the
KKT conditions.

3.2.2.4 Simple example of application of KKT conditions

Minimize f(x) = (x1 − 1)2 + (x2 − 2)2

such that x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2 and x2 − x1 = 1.
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In standard form the constraints are:

−x1 ≤ 0, −x2 ≤ 0, x1 + x2 − 2 ≤ 0, and x2 − x1 − 1 = 0

and the Lagrangian, now including the equality constraint with Lagrange
multiplier μ as well:

L(x, λ, μ) = (x1 − 1)2 + (x2 − 2)2 + λ3(x1 + x2 − 2)− λ1x1 − λ2x2 + μ(x2 − x1 − 1).

The KKT conditions are

2(x1 − 1) + λ3 − λ1 − μ = 0; 2(x2 − 2) + λ3 − λ2 + μ = 0
−x1 ≤ 0; −x2 ≤ 0; x1 + x2 − 2 ≤ 0; x2 − x1 − 1 = 0

λ3(x1 + x2 − 2) = 0; λ1x1 = 0; λ2x2 = 0
λ1 ≥ 0; λ2 ≥ 0; λ3 ≥ 0.

In general, the approach to the solution is combinatorial. Try different
possibilities and test for contradictions. One possible choice is λ3 �= 0
that implies x1 + x2 − 2 = 0. This together with the equality constraint
gives

x∗
1 = 1

2 , x∗
2 = 3

2 , λ∗
3 = 1, λ∗

1 = λ∗
2 = 0, μ∗ = 0 and f(x∗) = 1

2 .

This candidate solution satisfies all the KKT conditions and is indeed
the optimum solution. Why? The graphical solution is depicted in
Figure 3.7.

3.3 Saddle point theory and duality

3.3.1 Saddle point theorem

If the point (x∗, λ∗), with λ∗ ≥ 0, is a saddle point of the Lagrangian
associated with the primal problem (3.18), then x∗ is a solution of the
primal problem. For a proof of this statement see Theorem 5.4.2 in
Chapter 5.

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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Figure 3.7: Graphical solution to example problem in 3.2.2.4

3.3.2 Duality

Define the dual function:

h(λ) = min
x

L(x, λ). (3.22)

Note that the minimizer x∗(λ) does not necessarily satisfy g(x) ≤ 0,
and indeed the minimum may not even exist for all λ.

Defining the set
D = {λ|h(λ) ∃ and λ ≥ 0} (3.23)

allows for the formulation of the dual problem (DP):

maximize
λ∈D

h(λ) (3.24)

which is equivalent to
{

max
λ∈D

(min
x

L(x, λ))
}

.

3.3.3 Duality theorem

The point (x∗, λ∗), with λ∗ ≥ 0, is a saddle point of the Lagrangian
function of the primal problem (PP), defined by (3.18), if and only if:
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L

x

λ

(x∗, λ∗)L∗ = f(x∗) = h(λ∗)

Figure 3.8: Schematic representation of saddle point solution to PP

(i) x∗ is a solution to the primal problem (PP),

(ii) λ∗ is a solution to the dual problem (DP), and

(iii) f(x∗) = h(λ∗).

A schematic representation of this theorem is given in Figure 3.8 and a
formal proof is given in listed Theorem 5.4.4 in Chapter 5.

3.3.3.1 Practical significance of the duality theorem

The implication of the Duality Theorem is that the PP may be solved
by carrying out the following steps:

1. If possible, solve the DP separately to give λ∗ ≥ 0, i.e. solve an
essentially unconstrained problem.

2. With λ∗ known solve the unconstrained problem: min
x

L(x, λ∗) to

give x∗ = x∗(λ∗).

3. Test whether (x∗, λ∗) satisfy the KKT conditions.

3.3.3.2 Example of the application of duality

Consider the problem:
minimize f(x) = x2

1 + 2x2
2 such that x1 + x2 ≥ 1.

http://dx.doi.org/10.1007/978-3-319-77586-9_5
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Here the Lagrangian is

L(x, λ) = x2
1 + 2x2

2 + λ(1 − x1 − x2).

For a given λ the necessary conditions for min
x

L(x, λ) at x∗(λ) are

∂L

∂x1
= 2x1 − λ = 0 ⇒ x1 = x∗

1(λ) = λ
2

∂L

∂x2
= 4x2 − λ = 0 ⇒ x2 = x∗

2(λ) = λ
4 .

Note that x∗(λ) is a minimum since the Hessian of the Lagrangian with

respect to x, HL =
[

2 0
0 4

]
is positive-definite.

Substituting the minimizing values (i.t.o. λ) into L gives

L(x∗(λ), λ) = h(λ) =
(

λ
2

)2
+ 2

(
λ
4

)2
+ λ

(
1 − λ

2 − λ
4

)

i.e. the dual function is h(λ) = −3
8λ2 + λ.

Now solve the DP: max
λ

h(λ).

The necessary condition for a for maximum is dh
dλ = 0, i.e.

−3
4λ + 1 = 0 ⇒ λ∗ = 4

3 > 0 (a maximum since d2h
dλ2 = −3

4 < 0).

Substituting λ∗ in x∗(λ) above gives

x∗
1 = 2

3 ; x∗
2 = 1

3 ⇒ f(x∗) = 2
3 = h(λ∗).

and since (x∗, λ∗), with λ∗ = 4
3 > 0, clearly satisfies the KKT conditions,

it indeed represents the optimum solution.

The dual approach is an important method in some structural optimiza-
tion problems (Fleury 1979). It is also employed in the development of
the augmented Lagrange multiplier method to be discussed later.

3.4 Quadratic programming

The problem of minimizing a positive-definite quadratic function subject
to linear constraints, dealt with in Section 3.2.1.6, is a special case of
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Figure 3.9: The solution of the QP problem: may be an interior point
or lie on the boundary of the feasible region

a quadratic programming (QP) problem. Consider now a more general
case of a QP problem with inequality constraints:

minimize f(x) = 1
2x

TAx + bTx + c

subject to
Cx ≤ d (3.25)

where C is a m × n matrix and d is a m-vector.

The solution point may be an interior point or may lie on the boundary
of the feasible region as shown for the two-dimensional case in Figure 3.9.

If the solution point is an interior point then no constraints are active,
and x∗ = x0 = −A−1b as shown in the figure.

The QP problem is often an important sub-problem to be solved when
applying modern methods to more general problems (see the discussion
of the SQP method later).

3.4.1 Active set of constraints

It is clear (see Section 3.2.1.6) that if the set of constraints active at x∗

is known, then the problem is greatly simplified. Suppose the active set
at x∗ is known, i.e. cjx∗ = dj for some j ∈ {1, 2, . . . , m}, where cj here



92 CHAPTER 3

x2

x1

feasible

x0

(3)

a

c

v

u

region

(1)

(2)

w

b

Figure 3.10: Graphical illustration of the method of Theil and Van de
Panne

denotes the 1 × n matrix corresponding to the jth row of C. Represent
this active set in matrix form by C′x = d′. The solution x∗ is then
obtained by minimizing f(x) over the set {x|C′x = d′}. Applying the
appropriate Lagrange theory (Section 3.2.1.6), the solution is obtained
by solving the linear system:

[
A C′T

C′ 0

] [
x∗

λ∗

]
=

[ −b∗

d′

]
. (3.26)

In solving the QP the major task therefore lies in the identification of
the active set of constraints.

3.4.2 The method of Theil and Van de Panne

The method of Theil and van de Panne (1961) is a straightforward
method for identifying the active set. A description of the method, after
Wismer and Chattergy (1978), for the problem graphically depicted in
Figure 3.10 is now given.

Let V [x] denote the set of constraints violated at x. Select as initial
candidate solution the unconstrained minimum x0 = A−1b. Clearly for
the example sketched in Figure 3.10, V [x0] = {1, 2, 3}. Therefore x0
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is not the solution. Now consider, as active constraint (set S1), each
constraint in V [x0] separately, and let x[S1] denote the corresponding
minimizer:

S1 = {1} ⇒ x[S1] = a ⇒ V [a] = {2, 3} �= φ (not empty)
S1 = {2} ⇒ x[S1] = b ⇒ V [b] = {3} �= φ

S1 = {3} ⇒ x[S1] = c ⇒ V [c] = {1, 2} �= φ.

Since all the solutions with a single active constraint violate one or more
constraints, the next step is to consider different combinations S2 of two
simultaneously active constraints from V [x0]:

S2 = {1, 2} ⇒ x[S2] = u ⇒ V [u] = φ

S2 = {1, 3} ⇒ x[S2] = w ⇒ V [w] = {2}
S2 = {2, 3} ⇒ x[S2] = v ⇒ V [v] = φ.

Since both V [u] and V [v] are empty, u and v are both candidate solu-
tions. Apply the KKT conditions to both u and v separately, to deter-
mine which point is the optimum one. Assume it can be shown, from
the solution of (3.26) that for u: λ1 < 0 (which indeed is apparently
so from the geometry of the problem sketched in Figure 3.10), then it
follows that u is non-optimal. hand, assume it can be shown that for v:
λ2 > 0 and λ3 > 0 (which is evidently the case in the figure), then v is
optimum, i.e. x∗ = v.

3.4.2.1 Explicit example

Solve by means of the method of Theil and van de Panne the following
QP problem:

minimize f(x) = 1
2x2

1 − x1x2 + x2
2 − 2x1 + x2

such that
x1 ≥ 0; x2 ≥ 0; x1 + x2 ≤ 3; 2x1 − x2 ≤ 4.

In matrix form f(x) is given by f(x) = 1
2x

TAx + bTx, with A =[
1 −1

−1 2

]
and b = [−2, 1]T .
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Figure 3.11: Graphical solution to explicit example 3.4.2.1

The unconstrained solution is x0 = A−1b = [3, 1]T . Clearly V [x0] =
{1, 2} and therefore x0 is not the solution. Continuing, the method
yields:

S1 = {1} ⇒ x[S1] = a ⇒ V [a] = {2} �= φ

S1 = {2} ⇒ x[S1] = b ⇒ V [b] = {1} �= φ

S2 = {1, 2} ⇒ x[S2] = c ⇒ V [c] = φ, where c =
[

7
3 , 2

3

]T
.

Applying the KKT conditions to c establishes the optimality of c since
λ1 = λ2 = 1

9 > 0.

3.5 Modern methods for constrained optimiza-
tion

The most established gradient-based methods for constrained optimiza-
tion are

(i) gradient projection methods (Rosen 1960, 1961),

(ii) augmented Lagrangian multiplier methods (see Haftka and Gürdal
1992), and
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x

x + αs

{x|Ax − b = 0}

Figure 3.12: Schematic representation of the subspace {x|Ax − b = 0}

(iii) successive or sequential quadratic programming (SQP) methods
(see Bazaraa et al. 1993).

All these methods are largely based on the theory already presented
here. SQP methods are currently considered to represent the state-of-
the-art gradient-based approach to the solution of constrained optimiza-
tion problems.

3.5.1 The gradient projection method

3.5.1.1 Equality constrained problems

The gradient projection method is due to Rosen (1960, 1961). Consider
the linear equality constrained problem:

minimize f(x)
such that Ax − b = 0 (3.27)

where A is a r × n matrix, r < n and b a r-vector.

The gradient projection method for solving (3.27) is based on the fol-
lowing argument.

Assume that x′ is feasible, i.e. Ax′−b = 0 in Figure 3.12. A direction s,
(‖s‖ = 1) is sought such that a step αs (α > 0) from x′ in the direction
s also gives a feasible point, i.e. A(x′ + αs) − b = 0. This condition
reduces to

As = 0. (3.28)
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Also since ‖s‖ = 1, it also follows that

1 − sT s = 0. (3.29)

It is now required that s be chosen such that it corresponds to the
direction which gives the steepest descent at x′ subject to satisfying the
constraints specified by (3.28) and (3.29). This requirement is equivalent
to determining a s such that the directional derivative at x′:

R(s) =
dF (0)

dα

∣∣∣∣
s

= ∇T f(x′)s (3.30)

is minimized with respect to s, where F (α) = f(x′ + αs).

Applying the classical Lagrange theory for minimizing a function sub-
ject to equality constraints, requires the formulation of the following
Lagrangian function:

L(s, λ, λ0) = ∇T f(x′)s + λTAs + λ0(1 − sT s) (3.31)

where the variables s = [s1, s2, . . . , sn]T correspond to the direction
cosines of s. The Lagrangian necessary conditions for the constrained
minimum are

∇sL = ∇f(x′) + AT λ − 2λ0s = 0 (3.32)
∇λL = As = 0 (3.33)

∇λ0L = (1 − sT s) = 0. (3.34)

Equation (3.32) yields

s =
1

2λ0
(∇f(x′) + AT λ). (3.35)

Substituting (3.35) into (3.34) gives

1 =
1

4λ2
0

(∇f(x′) + AT λ)T (∇f(x′) + AT λ)

and thus
λ0 = ±1

2
‖∇f(x′) + AT λ‖. (3.36)

Substituting (3.36) into (3.35) gives s = ±(∇f(x′) + AT λ)/‖∇f(x′) +
AT λ‖.
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x s
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−ATλ/

Figure 3.13: Schematic representation of projected direction of steepest
descent s

For maximum descent, choose the negative sign as shown in Figure 3.13.
This also ensures that the Hessian of the Lagrangian with respect to s
is positive-definite (sufficiency condition) which ensures that R(s) in
(3.30) indeed assumes a minimum value with respect to s. Thus the
constrained (projected) direction of steepest descent is chosen as

s = −(∇f(x′) + AT λ)/‖∇f(x′) + AT λ‖. (3.37)

It remains to solve for λ. Equations (3.33) and (3.37) imply A(∇f(x′)+
AT λ) = 0. Thus if s �= 0, then AAT λ = −A∇f(x′) with solution

λ = −(AAT )−1A∇f(x′). (3.38)

The direction s, called the gradient projection direction, is therefore
finally given by

s = −(I − AT (AAT )−1A)∇f(x′)/‖∇f(x′) + AT λ‖. (3.39)

A projection matrix is defined by

P = (I − AT (AAT )−1A). (3.40)

The un-normalized gradient projection search vector u, that is used in
practice, is then simply

u = −P∇f(x′). (3.41)
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3.5.1.2 Extension to non-linear constraints

Consider the more general problem:

minimize f(x)
such that hi(x) = 0, i = 1, 2, . . . , r, (3.42)

or in vector form h(x) = 0, where the constraints may be non-linear.

Linearize the constraint functions hi(x) at the feasible point x′, by the
truncated Taylor expansions:

hi(x) = hi(x′ + (x − x′)) ∼= hi(x′) + ∇T hi(x′)(x − x′)

which allows for the following approximations of the constraints:

∇T hi(x′)(x − x′) = 0, i = 1, 2, . . . , r (3.43)

in the neighbourhood of x′, since the hi(x′) = 0. This set of linearized
constraints may be written in matrix form as

[
∂h(x′)

∂x

]T

x − b = 0

where

b =
[
∂h(x′)

∂x

]T

x′. (3.44)

The linearized problem at x′ therefore becomes

minimize f(x) such that Ax − b = 0 (3.45)

where A =
[
∂h(x′)

∂x

]T

and b =
[
∂h(x′)

∂x

]T

x′.

Since the problem is now linearized, the computation of the gradient
projection direction at x′ is identical to that before, i.e.:

u=P(x′)∇f(x′), but the projection matrix P(x′) = (I−AT (AAT )−1A)

is now dependent on x′, since Ais given by
[
∂h(x′)

∂x

]T

.

For an initial feasible point x0(= x′), a new point in the gradient pro-
jection direction of descent u1 = −P(x0)∇f(x0), is x1 = x0 + α1u1 for
step size α1 > 0 as shown in Figure 3.14.
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Figure 3.14: Schematic representation of correction steps when applying
the gradient projection method to nonlinear constrained problems

In general, h(x1) �= 0, and a correction step must be calculated: x1 →
x1. How is this correction step computed? Clearly (see Figure 3.14), the
step should be such that its projection at x1 is zero, i.e. P(x1)(x1−x1) =
0 and also h(x1) = 0. These two conditions imply that

(I − AT (AAT )−1A)(x1 − x1) = 0

with A evaluated at x1, which gives

x1 ∼= x1 − AT (AAT )−1h(x1) (3.46)

as the correction step, where use was made of the expression h(x) ∼=
Ax − b for both h(x1) and h(x1) and of the fact that h(x1) = 0.

Since the correction step is based on an approximation it may have to
be applied repeatedly until h(x1) is sufficiently small. Having found a
satisfactory x1, the procedure is repeated successively for k = 2, 3, . . .
to give x2, x3, . . . , until P(xk)∇f(xk) ∼= 0.

3.5.1.3 Example problem

Minimize f(x) = x2
1 + x2

2 + x2
3

such that h(x) = x1 + x2 + x3 = 1

with initial feasible point x0 = [1, 0, 0]T .

First evaluate the projection matrix P = I − AT (AAT )−1A.
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Here A = [1 1 1], AAT = 3 and (AAT )−1 = 1
3 , thus giving

P =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ − 1
3

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ = 1
3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦

The gradient vector is ∇f(x) =

⎡

⎣
2x1

2x2

2x3

⎤

⎦ giving at x0, ∇f(x) =

⎡

⎣
2
0
0

⎤

⎦.

The search at direction at x0 is therefore given by

−P∇f(x0) = −1
3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦

⎡

⎣
2
0
0

⎤

⎦ = −1
3

⎡

⎣
4

−2
−2

⎤

⎦ = 2
3

⎡

⎣
−2

1
1

⎤

⎦

or more conveniently, for this example, choose the search direction sim-

ply as u =

⎡

⎣
−2

1
1

⎤

⎦.

For a suitable value of λ the next point is given by

x1 = x0 + λ

⎡

⎣
−2

1
1

⎤

⎦ =

⎡

⎣
1 − 2λ

λ
λ

⎤

⎦ .

Substituting the above in f(x1) = f(x0 + λu) = F (λ) = (1 − 2λ)2 +
λ2 + λ2, it follows that for optimal descent in the direction u:

dF

dλ
= −2(1 − 2λ)2 + 2λ + 2λ = 0 ⇒ λ = 1

3

which gives
x1 =

[
1
3 , 1

3 , 1
3

]T
, ∇f1(x1) =

[
2
3 , 2

3 , 2
3

]T

and

P∇f(x1) = 1
3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ 2
3

⎡

⎣
1
1
1

⎤

⎦ = 2
9

⎡

⎣
0
0
0

⎤

⎦ = 0.

Since the projection of the gradient vector at x1 is zero, it is the optimum
point.
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3.5.1.4 Extension to linear inequality constraints

Consider the case of linear inequality constraints:

Ax − b ≤ 0 (3.47)

where A is a m × n matrix and b a m-vector, i.e. the individual con-
straints are of the form

gj(x) = ajx − bj ≤ 0, j = 1, 2, . . . , m ,

where aj denotes the 1 × n matrix corresponding to the jth row of A.
Suppose at the current point xk, r(≤ m) constraints are enforced, i.e.
are active. Then a set of equality constraints, corresponding to the active
constraints in (3.47) apply at xk, i.e. Arxk − br = 0, where Ar and br

correspond to the set of r active constraints in (3.47).

Now apply the gradient projection method as depicted in Figure 3.15
where the recursion is as follows:

uk+1 = −P(xk)∇f(xk) and xk+1 = xk + αk+1uk+1

where
f(xk + αk+1uk+1) = min

α
f(xk + αuk+1). (3.48)

Two possibilities may arise:

(i) No additional constraint is encountered along uk+1 before xk+1 =
xk + αk+1uk+1. Test whether P∇f(xk+1) = 0. If so then x∗ =
xk+1, otherwise set uk+2 = −P(xk+1)∇f(xk+1) and continue.

(ii) If an additional constraint is encountered before xk+1 = xk +
αk+1uk+1 at xk+1, (see Figure 3.15), then set xk+1 = xk+1 and
add new constraint to active set, with associated matrix Ar+1.
Compute new P and set uk+2 = −P(xk+1)∇f(xk+1). Continue
this process until for some active set at xp, P∇f(xp) = 0.

How do we know that if P∇f(xk) = 0 occurs, that all the identified
constraints are active? The answer is given by the following argument.
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xk uk+1

−∇f(xk)
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feasible
region

Figure 3.15: Representation of the gradient projection method for linear
inequality constraints

If P∇f(xk) = 0 it implies that (I −AT (AAT )−1A)∇f(xk) = 0 which,
using expression (3.38), is equivalent to ∇f(xk)+AT λ=0, i.e. ∇f(xk)+∑

λi∇gi(xk) = 0 for all i ∈ Ia = set of all active constraints. This
expression is nothing else but the KKT conditions for the optimum at
xk, provided that λi ≥ 0 for all i ∈ Ia. Now, if P∇f(xk) = 0 occurs,
then if λi < 0 for some i, remove the corresponding constraint from the
active set. In practice remove the constraint with the most negative
multiplier, compute the new projection matrix P, and continue.

3.5.2 Multiplier methods

These methods combine the classical Lagrangian method with the
penalty function approach. In the Lagrangian approach, the minimum
point of the constrained problem coincides with a stationary point
(x∗, λ∗) of the Lagrangian function which, in general, is difficult to deter-
mine analytically. On the other hand, in the penalty function approach,
the constrained minimum approximately coincides with the minimum of
the penalty function. If, however, high accuracy is required, the problem
becomes ill-conditioned.

In the multiplier methods (see Bertsekas 1976) both approaches are com-
bined to give an unconstrained problem which is not ill-conditioned.
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As an introduction to the multiplier method consider the equality con-
strained problem:

minimize f(x)
such that hj(x) = 0, j = 1, 2, . . . , r. (3.49)

The augmented Lagrange function L is introduced as

L(x, λ, ρ) = f(x) +
r∑

j=1

λjhj(x) + ρ
r∑

j=1

h2
j (x). (3.50)

If all the multipliers λj are chosen equal to zero, L becomes the usual
external penalty function. On the other hand, if all the stationary val-
ues λ∗

j are available, then it can be shown (Fletcher 1987) that for any
positive value of ρ, the minimization of L(x, λ∗, ρ) with respect to x
gives the solution x∗ to problem (3.49). This result is not surprising,
since it can be shown that the classical Lagrangian function L(x, λ) has
a saddle point at (x∗, λ∗).

The multiplier methods are based on the use of approximations of the
Lagrange multipliers. If λk is a good approximation to λ∗, then it is
possible to approach the optimum through the unconstrained minimiza-
tion of L(x, λk, ρ) without using large values of ρ. The value of ρ must
only be sufficiently large to ensure that L has a local minimum point
with respect to x rather than simply a stationary point at the optimum.

How is the approximation to the Lagrange multiplier vector λk obtained?
To answer this question, compare the stationary conditions with respect
to x for L (the augmented Lagrangian) with those for L (the classical
Lagrangian) at x∗.

For L:

∂L
∂xi

=
∂f

∂xi
+

r∑

j=1

(λk
j + 2ρhj)

∂hj

∂xj
= 0, i = 1, 2, . . . , n. (3.51)

For L:
∂L

∂xi
=

∂f

∂xi
+

r∑

j=1

λ∗
j

∂hj

∂xj
= 0, i = 1, 2, . . . , n. (3.52)
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The comparison clearly indicates that as the minimum point of L tends
to x∗ that

λk
j + 2ρhj → λ∗

j . (3.53)

This observation prompted Hestenes (1969) to suggest the following
scheme for approximating λ∗. For a given approximation λk, k =
1, 2, . . . , minimize L(x, λk, ρ) by some standard unconstrained mini-
mization technique to give a minimum x∗k. The components of the
new estimate to λ∗, as suggested by (3.53), is then given by

λ∗
j

∼= λk+1
j = λk

j + 2ρhj(x∗k). (3.54)

The value of the penalty parameter ρ(= ρk) may also be adjusted iter-
atively.

3.5.2.1 Example

Minimize f(x) = x2
1 + 10x2

2 such that h(x) = x1 + x2 − 4 = 0.

Here L = x2
1 + 10x2

2 + λ(x1 + x2 − 4) + ρ(x1 + x2 − 4)2.

The first order necessary conditions for a constrained minimum with
respect to x for any given values of λ and ρ are

2x1 + λ + 2ρ(x1 + x2 − 4) = 0
20x2 + λ + 2ρ(x1 + x2 − 4) = 0

from which it follows that

x1 = 10x2 =
−5λ + 40ρ

10 + 11ρ
.

Taking λ1 = 0 and ρ1 = 1 gives x∗1 = [1.905, 0.1905]T and h(x∗1) =
−1.905.

Using the approximation scheme (3.54) for λ∗ gives λ2=0+2(1)(−1.905)=
− 3.81.

Now repeat the minimization of L with λ2 = −3.81 and ρ2 = 10. This
gives x∗2 = [3.492, 0.3492]T and h(x∗2) = −0.1587, resulting in the new
approximation: λ3 = −3.81 + 2(10)(−0.1587) = −6.984.
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Using λ3 in the next iteration with ρ3 = 10 gives x∗3 = [3.624, 0.3624]T ,
h(x∗3) = 0.0136, which shows good convergence to the exact solution
[3.6363, 0.3636]T without the need for increasing ρ.

3.5.2.2 The multiplier method extended to inequality con-
straints

The multiplier method can be extended to apply to inequality con-
straints (Fletcher 1975).

Consider the problem:

minimize f(x)
such that gj(x) ≤ 0, j = 1, 2, . . . , m. (3.55)

Here the augmented Lagrangian function is

L(x, λ, ρ) = f(x) + ρ
m∑

j=1

〈
λj

2ρ
+ gj(x)

〉2

(3.56)

where 〈a〉 = max(a, 0).

In this case, the stationary conditions at x∗ for the augmented and
classical Lagrangians are respectively

∂L
∂xi

=
∂f

∂xi
+ 2ρ

m∑

j=1

〈
λj

2ρ
+ gj

〉
∂gj

∂xi
= 0, i = 1, 2, . . . , n (3.57)

and
∂L

∂xi
=

∂f

∂xi
+

m∑

j=1

λ∗
j

∂gj

∂xi
= 0, i = 1, 2, . . . , n. (3.58)

The latter classical KKT conditions require in addition that λ∗
jgj(x∗) =

0, j = 1, 2, . . . , m.

A comparison of conditions (3.57) and (3.58) leads to the following iter-
ative approximation scheme for λ∗:

λ∗
j

∼= λk+1
j = 〈λk

j + 2ρkgj(x∗k)〉 (3.59)

where x∗k minimizes L(x, λk, ρk).
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3.5.2.3 Example problem with inequality constraint

Minimize f(x) = x2
1 + 10x2

2 such that g(x) = 4 − x1 − x2 ≤ 0.

Here L(x, λ, ρ) = x2
1 + 10x2

2 + ρ

〈
λ

2ρ
+ (4 − x1 − x2)

〉2

.

Now perform the unconstrained minimization of L with respect to x for
given λ and ρ. This is usually done by some standard method such
as Fletcher-Reeves or BFGS but here, because of the simplicity of the
illustrative example, the necessary conditions for a minimum are used,
namely:

∂L
∂x1

= 2x1 − 〈λ + 2ρ(4 − x1 − x2)〉 = 0 (3.60)

∂L
∂x2

= 20x2 − 〈λ + 2ρ(4 − x1 − x2)〉 = 0. (3.61)

Clearly
x1 = 10x2 (3.62)

provided that 〈 〉 is nonzero. Substituting x2 = 0.1x1 into (3.60) gives

x1 =
5λ + 40ρ

10 + 11ρ
. (3.63)

Successive iterations can now be performed as shown below.

Iteration 1: Use λ1 = 0 and ρ1 = 1, then (3.63) and (3.62) imply

x∗1
1 = 1.9048 and x∗1

2 = 0.19048.

The new value λ2 for the Lagrange multiplier determined via (3.59) is
λ2 = 〈λ1 + 2ρ1(4 − x∗1

1 − x∗1
2 )〉 = 3.8095.

Iteration 2: Now with λ2 = 3.8095 choose ρ2 = 10 which gives

x∗2
1 = 3.4921, x∗2

2 = 0.34921 and λ3 = 〈λ2+2ρ2(4−x∗2
1 −x∗2

2 )〉 = 6.9842.

Iteration 3: Using the current value λ3 for the Lagrange multiplier and
ρ = 10 for the penalty, the iterations proceed as follows:
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Iteration x∗k
1 x∗k

2 λk+1

3 3.6243 0.36243 → 7.2488
4 3.6354 0.36354 → 7.2707
5 3.6363 0.36363 → 7.2725.

Thus the iterative procedure converges satisfactorily to the numerical
approximate solution: x∗ = [3.6363, 0.36363]T .

3.5.3 Sequential quadratic programming (SQP)

The SQP method is based on the application of Newton’s method to
determine x∗ and λ∗ from the KKT conditions of the constrained opti-
mization problem. It can be shown (see Bazaraa et al. 1993) that
the determination of the Newton step is equivalent to the solution of
a quadratic programming (QP) problem.

Consider the general problem:

minimize f(x)
such that gj(x) ≤ 0; j = 1, 2, . . . , m (3.64)

hj(x) = 0; j = 1, 2, . . . , r.

It can be shown (Bazaraa et al. 1993) that given estimates (xk, λk, μk),
k = 0, 1, . . . , of the solution and the respective Lagrange multipliers
values, with λk ≥ 0, then the Newton step s of iteration k+1, such that
xk+1 = xk + s is given by the solution to the following k-th QP problem:

QP-k (xk, λk, μk): Minimize with respect to s:

F (s) = f(xk) + ∇T f(xk)s + 1
2s

THL(xk)s

such that

g(xk) +
[
∂g(xk)

∂x

]T

s ≤ 0 (3.65)

and

h(xk) +
[
∂h(xk)

∂x

]T

s = 0
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and where g = [g1, g2, . . . , gm]T , h = [h1, h2, . . . , hr]T and the Hessian
of the classical Lagrangian with respect to x is

HL(xk) = ∇2f(xk) +
m∑

j=1

λk
j ∇2gj(xk) +

r∑

j=1

μk
j ∇2hj(xk).

Note that the solution of QP-k does not only yield step s, but also the
Lagrange multipliers λk+1 and μk+1 via the solution of equation (3.26)
in Section 3.4. Thus with xk+1 = xk + s we may construct the next QP
problem: QP-k + 1.

The solution of successive QP problems is continued until s = 0. It can
be shown that if this occurs, then the KKT conditions of the original
problem (3.64) are satisfied.

In practice, since convergence from a point far from the solution is not
guaranteed, the full step s is usually not taken. To improve convergence,
s is rather used as a search direction in performing a line search mini-
mization of a so-called merit or descent function. A popular choice for
the merit function is (Bazaraa et al. 1993):

FE(x) = f(x) + γ

(
m∑

i=1

max{0, gi(x)} +
r∑

i=1

|hi(x)|
)

(3.66)

where γ ≥ max{λ1, λ2, . . . , λm, |μ1|, . . . , |μr|}.

Note that it is not advisable here to use curve fitting techniques for the
line search since the function is non-differentiable. More stable methods,
such as the golden section method, are therefore preferred.

The great advantage of the SQP approach, above the classical Newton
method, is that it allows for a systematic and natural way of selecting
the active set of constraints and in addition, through the use of the merit
function, the convergence process may be controlled.

3.5.3.1 Example

Solve the problem below by means of the basic SQP method, using
x0 = [0, 1]T and λ0 = 0.
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Minimize f(x) = 2x2
1 + 2x2

2 − 2x1x2 − 4x1 − 6x2

such that

g1(x) = 2x2
1 − x2 ≤ 0

g2(x) = x1 + 5x2 − 5 ≤ 0
g3(x) = −x1 ≤ 0
g4(x) = −x2 ≤ 0.

Since ∇f(x) =
[

4x1 − 2x2 − 4
4x2 − 2x1 − 6

]
it follows that ∇f(x0) =

[ −6
−2

]
.

Thus with λ0 = 0, HL =
[

4 −2
−2 4

]
and it follows from (3.65) that

the starting quadratic programming problem is:

QP-0: Minimize with respect to s:

F (s) = −4 − 6s1 − 2s2 + 1
2(4s2

1 + 4s2
2 − 4s1s2)

such that

−1 − s2 ≤ 0, s1 + 5s2 ≤ 0
−s1 ≤ 0, and − 1 − s2 ≤ 0

where s = [s1, s2]T .

The solution to this QP can be obtained via the method described in Sec-
tion 3.4, which firstly shows that only the second constraint is active, and
then obtains the solution by solving the corresponding equation (3.26)
giving s = [1.1290, −0.2258]T and λ1 = [0, 1.0322, 0, 0]T and therefore
x1 = x0 + s = [1.1290, 0.7742]T which completes the first iteration.

The next quadratic program QP-1 can now be constructed. It is left
to the reader to perform the further iterations. The method, because it
is basically a Newton method, converges rapidly to the optimum x∗ =
[0.6589, 0.8682]T .
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3.6 Exercises

3.6.1 Solve for all the points satisfying the KKT conditions for the
problem:

minimize f(x) = (x1 − 4)2 + (x2 − 6)2

such that
g1(x) = x1 + x2 ≤ 12,
g2(x) = x1 ≤ 6,
g3(x) = −x1 ≤ 0,
g4(x) = −x2 ≤ 0.

3.6.2 Sketch the solution(s) to Exercise 3.6.1 and identify the optimum.

3.6.3 Given the problem

minimize f(x) = x3
1 − 6x2

1 + 11x1 + x3

such that
g1(x) = x2

1 + x2
2 − x2

3 ≤ 0,
g2(x) = 4 − x2

1 − x2
2 − x2

3 ≤ 0,
g3(x) = x3 − 5 ≤ 0,
g4(x) = x1 ≥ 0,
g5(x) = x2 ≥ 0,
g6(x) = x3 ≥ 0.

Formulate an approximate linear programming problem about the
point x = [1, 1, 1]T.

3.6.4 For the problem given in Exercise 3.6.3, formulate an approximate
quadratic programming problem about the point x = [1, 1, 1].

3.6.5 Transform the problem in Exercise 3.6.3 to an unconstrained opti-
mization problem using a penalty function formulation.

3.6.6 Consider the following primal problem:

minimize (x − 1)2,
such that

2x − 1 = 0.

Give the Lagrangian dual problem.
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3.6.7 Solve the primal and dual problems in Exercise 3.6.6 and compare
their respective solutions with each other.

3.6.8 Consider the problem:

minimize f(x) = (x1 − 2)2 + (x2 − 2)2,
such that

h(x) = x1 + x2 − 6 = p,

for which the optimum can be expressed as f∗(x∗(p)) = f∗(p)
with optimal Lagrange multiplier λ∗(p). Confirm numerically that
f∗(p) ≈ f∗(0) − λ∗(0)p for p = 0.1.

3.6.9 Consider the problem:

minimize f(x) = 2x2
1 − 3x2

2 − 2x1,
such that

g(x) = x2
1 + x2

2 − 1 ≤ q,

for which the optimum can be expressed as f∗(x∗(q)) = f∗(q)
with optimal Lagrange multiplier λ∗(q). Confirm numerically that
f∗(q) ≈ f∗(0) − λ∗(0)q for q = −0.1.

3.6.10 How does the scaling the objective function influence the value
of the Lagrange multiplier, and inversely how does the scaling
of the constraint function influence the value of the Lagrange
multiplier.

3.6.11 Consider the constrained maximization problem:

f(x) = xTAx, s.t. xTx = 1,

for the symmetric matrix A, would a bounded solution exist
with the constraint xTx = 1 omitted in the formulation.

3.6.12 For symmetric matrix A, show that the solution x∗ to the con-
strained maximization problem:

f(x) = xTAx, s.t. xTx = 1,

is the unit eigenvector corresponding to the maximum eigen-
value of A.
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3.6.13 Consider the symmetric matrix A with known unit eigenvector
u1 corresponding to the maximum eigenvalue of A. Formulate a
constrained optimization problem that would solve for the unit
eigenvector associated with the second highest eigenvalue of A.



Chapter 4

BASIC EXAMPLE
PROBLEMS

An extensive set of worked-out example optimization problems are pre-
sented in this chapter. They demonstrate the application of the basic
concepts and methods introduced and developed in the previous three
chapters. The reader is encouraged to attempt each problem separately
before consulting the given detailed solution. This set of example prob-
lems is not only convenient for students to test their understanding of
basic mathematical optimization, but also provides models for easily
formulating additional optimization exercises.

4.1 Introductory examples

Problem 4.1.1

Sketch the geometrical solution to the optimization problem:

minimize f(x) = 2x2 − x1

subject to g1(x) = x2
1 + 4x2

2 − 16 ≤ 0,

g2(x) = (x1 − 3)2 + (x2 − 3)2 − 9 ≤ 0
and x1 ≥ 0 and x2 ≥ 0.

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 4
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x2

4−4

−2

2

x1

(3, 3)

g1(x) ≤ 0

g2(x) ≤ 0

∇f = [−1, 2]T

x∗
feasible region

f(x) =constant

Figure 4.1: Solution to problem 4.1.1

In particular sketch the contours of the objective function and the con-
straint curves. Indicate the feasible region and the position of the opti-
mum x∗ and the active constraint(s).

The solution to this problem is indicated in Figure 4.1.

Problem 4.1.2

Consider the function f(x) = 100(x2 − x2
1)

2 + (1 − x1)2.

(i) Compute the gradient vector and the Hessian matrix.

(ii) Let x∗ = [1, 1]T . Show that ∇f(x) = 0 and that x∗ is indeed a
strong local minimum.

(iii) Is f(x) a convex function? Justify your answer.
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Solution

(i)

∇f(x) =
[

200(x2 − x2
1)(−2x1) − 2(1 − x1)

200(x2 − x2
1)

]

=
[ −400x2x1 + 400x3

1 − 2 + 2x1

200x2 − 200x2
1

]

H(x) =

⎡
⎣ −400x2 + 1200x2

1 + 2
... −400x1

−400x1
... 200

⎤
⎦ .

(ii) ∇f(x) = 0 implies that

−400x2x1 + 400x3
1 − 2 + 2x1 = 0 (4.1)

200x2 − 200x2
1 = 0. (4.2)

From (4.2) x2 = x2
1, and substituting into (4.1) yields

−400x3
1 + 400x3

1 − 2 − 2x1 = 0

giving x1 = 1 and x2 = 1 which is the unique solution.

Therefore at x∗ = [1, 1]T :

H(x∗) =
[

802 −400
−400 200

]
,

and since the leading principal minors α1 = 802 > 0, and α2 =
detH(x∗) = 400 > 0, it follows by Sylvester’s theorem that H(x)
is positive-definite at x∗ (see different equivalent definitions for
positive definiteness that can be checked for, for example Fletcher
(1987)). Thus x∗ = [1, 1]T is a strong local minimum since the
necessary and sufficient conditions in (1.24) are both satisfied at
x∗.

(iii) By inspection, if x1 = 0 and x2 = 1 then H =
[ −398 0

0 200

]
and

the determinant of the Hessian matrix is less than zero and H is
not positive-definite at this point. Since by Theorem 5.1.2, f(x)
is convex over a set X if and only if H(x) is positive semi-definite
for all x in X, it follows that f(x) is not convex in this case.

http://dx.doi.org/10.1007/978-3-319-77586-9_1
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Problem 4.1.3

Determine whether or not the following function is convex:

f(x) = 4x2
1 + 3x2

2 + 5x2
3 + 6x1x2 + x1x3 − 3x1 − 2x2 + 15.

Solution

The function f(x) is convex if and only if the Hessian matrix H(x) is
positive semi-definite at every point x.

Here ∇f(x) =

⎡
⎣ 8x1 + 6x2 − 3 + x3

6x2 + 6x1 − 2
10x3 + x1

⎤
⎦ and H(x) =

⎡
⎣ 8 6 1

6 6 0
1 0 10

⎤
⎦.

The principal minors are:

α1 = 8 > 0, α2 =
∣∣∣∣ 8 6

6 6

∣∣∣∣ = 12 > 0 and α3 = |H| = 114 > 0.

Thus by Sylvester’s theorem H(x) is positive-definite and thus f(x) is
convex.

Problem 4.1.4

Determine all the stationary points of

f(x) = x3
1 + 3x1x

2
2 − 3x2

1 − 3x2
2 + 4.

Classify each point according to whether it corresponds to maximum,
minimum or saddle point.

Solution

The first order necessary condition for a stationary point is that

∇f =
[

3x2
1 + 3x2

2 − 6x1

6x1x2 − 6x2

]
= 0

from which it follows that 6x2(x1 − 1) = 0.

Therefore either x2 = 0 or x1 = 1 which respectively give:

3x2
1 − 6x1 = 0

3x1(x1 − 2) = 0
x1 = 0; x1 = 2

or
3 + 3x2

2 − 6 = 0
x2
2 = 1

x2 = ±1.
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Therefore the stationary points are: (0; 0), (2; 0); (1; 1), (1;−1).

The nature of these stationary points may be determined by substituting

their coordinates into the Hessian matrix H(x) =
[

6x1 − 6 6x2

6x2 6x1 − 6

]

and applying Sylvester’s theorem.

The results are listed below.

Point Hessian Minors Nature of H Type

(0; 0)
[ −6 0

0 −6

]
α1 < 0
α2 > 0

negative-definite maximum

(2; 0)
[

6 0
0 6

]
α1 > 0
α2 > 0

positive-definite minimum

(1; 1)
[

0 6
6 0

]
α1 = 0
α2 < 0

indefinite saddle

(1; −1)
[

0 −6
−6 0

]
α1 = 0
α2 < 0

indefinite saddle

Problem 4.1.5

Characterize the stationary points of f(x) = x3
1 + x3

2 + 2x2
1 + 4x2

2 + 6.

Solution

First determine gradient vector ∇f(x) and consider ∇f(x) = 0:

3x2
1 + 4x1 = x1(3x1 + 4) = 0

3x2
2 + 8x2 = x2(3x2 + 8) = 0.

The solutions are: (0, 0);
(
0, −8

3

)
;
(−4

3 , 0
)
;
(−4

3 , −8
3

)
.

To determine the nature of the stationary points substitute their coor-
dinates in the Hessian matrix:

H(x) =
[

6x1 + 4 0
0 6x2 + 8

]

and study the principal minors α1 and α2 for each point:
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Point x α1 α2 Nature of H(x) Type f(x)

(0, 0) 4 32 positive-definite minimum 6

(
0, −8

3

)
4 −32 indefinite saddle 15.48

(−4
3 , 0

) −4 −32 indefinite saddle 7.18

(−4
3 , −8

3

) −4 32 negative-definite maximum 16.66

Problem 4.1.6

Minimize f(x) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 by means of the
basic Newton method. Use initial estimate x0 = [0, 0]T for the
minimizer.

Solution

∇f(x) =
[

1 + 4x1 + 2x2

−1 + 2x1 + 2x2

]

H(x) =
{

∂2f

∂xi∂xj

}
=

[
4 2
2 2

]
; H−1 =

⎡
⎣

1
2 −1

2

−1
2 1

⎤
⎦ .

First Newton iteration:
x1 = x0 − H−1∇f(x0)

=
[

0
0

]
−

⎡
⎣

1
2 −1

2

−1
2 1

⎤
⎦

[
1

−1

]
=

[ −1
3
2

]

and

∇f(x1) =

⎡
⎣ 1 + 4(−1) + 2

(
3
2

)

−1 + 2(−1) + 2
(
3
2

)
⎤
⎦ =

[
0
0

]
.

Therefore since H is positive-definite for all x, the sufficient conditions
(1.24) for a strong local minimum at x1 are satisfied and the global
minimum is x∗ = x1.

Problem 4.1.7

Minimize f(x) = 3x2
1 − 2x1x2 + x2

2 + x1 by means of the basic Newton
method using x0 = [1, 1]T .

http://dx.doi.org/10.1007/978-3-319-77586-9_1
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Solution

∇f(x) =

⎡
⎢⎣

∂f
∂x1

∂f
∂x2

⎤
⎥⎦ =

[
6x1 − 2x2 + 1

−2x1 + 2x2

]

H(x) =
[

6 −2
−2 2

]
; and H−1 =

⎡
⎣

1
4

1
4

1
4

3
4

⎤
⎦ .

First Newton iteration:

x1 =
[

1
1

]
− H−1

[
6 − 2 + 1
−2 + 2

]

=
[

1
1

]
−

⎡
⎣

1
4

1
4

1
4

3
4

⎤
⎦

[
5
0

]
=

⎡
⎣ 1 − 5

4

1 − 5
4

⎤
⎦ =

⎡
⎣ −1

4

−1
4

⎤
⎦ .

With ∇f(x1) = 0 and H positive-definite the necessary and sufficient
conditions (1.24) are satisfied at x1 and therefore the global minimum
is given by

x∗ =
[
−1

4
, −1

4

]T

and f(x∗) = −0.125.

4.2 Line search descent methods

Problem 4.2.1

Minimize F (λ) = −λ cos λ over the interval
[
0, π

2

]
by means of the golden

section method.

Solution

The golden ratio is r = 0.618 and F (0) = F (π
2 ) = 0.

0 0.5999 0.9707 π/2

−0.4951 −0.5482
L0 = π/2

F = 0

Figure 4.2

http://dx.doi.org/10.1007/978-3-319-77586-9_1
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The first two interior points are: rL0 = 0.9707 and r2L0 = 0.5999 with
function values: F (0.9707) = −0.5482 and F (0.5999) = −0.4951.

Next new point = 0.5999 + rL1 = 1.200 with F (1.200) = −0.4350.

0.5999 0.9707 1.200 π/2

−0.5482 −0.4350F = −0.4951
L1 = 0.9707

Figure 4.3

Next new point = 0.5999 + r2L2 = 0.8292 with F (0.8292) = −0.5601.

0.5999 0.8292 0.9708 1.200

−0.5601 −0.5482F = −0.4951
L2 = 0.6000

−0.4350

Figure 4.4

Next new point = 0.5999 + r2L3 = 0.7416 with F (0.7416) = −0.5468.

0.6 0.7416 0.8292 0.9708

−0.5468 −0.5601F = −0.4951
L3 = 0.3708

−0.5482

Figure 4.5

Next new point = 0.7416 + rL4 = 0.8832 with F (0.8832) = −0.5606.

0.7416 0.8292 0.8832 0.9708

−0.5601 −0.5606F = −0.5468
L4 = 0.2292

−0.5482

Figure 4.6

The uncertainty interval is now [0.8282; 0.9708]. Stopping here gives
λ∗ ∼= 0.9 (midpoint of interval) with F (λ∗) ∼= −0.5594 which is taken as
the approximate minimum after only 7 function evaluations (indeed the
actual λ∗ = 0.8603 gives F (λ∗) = −0.5611).
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Problem 4.2.2

Minimize the function
F (λ) = (λ − 1)(λ + 1)2, where λ is a single real variable, by means
of Powell’s quadratic interpolation method. Choose λ0 = 0 and use
h = 0.1. Perform only two iterations.

Solution

Set up difference table:

λ

0
0.1
0.2

λ
(1)
m = 0.392

λ
(2)
m = 0.336

F (λ)
-1
-1.089
-1.152
-1.178

F [ , ]

-0.890
-0.630
-0.135

F [ , , ]

1.300
1.694

Turning point λm given by λm =
F [ , , ](λ0 + λ1) − F [ , ]

2F [ , , ]
:

First iteration:

λ(1)
m =

1.3(0.1) + 0.89
2(1.3)

= 0.392

Second iteration:

λ(2)
m =

1.694(0.3) + 0.63
2(1.694)

= 0.336.

Problem 4.2.3

Apply two steps of the steepest descent method to the minimization of
f(x) = x1 − x2 + 2x2

1 + 2x1x2 + x2
2.

Use as starting point x0 = [0, 0]T .

Solution

∇f(x) =
[

1 + 4x1 + 2x2

−1 + 2x1 + 2x2

]
.

Step 1

The first steepest descent direction u1 = −∇f(x0) =
[ −1

1

]
.
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Here it is convenient not to normalize.

The minimizer along the direction u1 is given by

x1 = x0 + λ1u1 =
[ −λ1

λ1

]
.

To find λ1, minimize with respect to λ the one variable function:

F (λ) = f(x0 + λu1) = −λ − λ + 2λ2 − 2λ2 + λ2.

The necessary condition for a minimum is dF
dλ = 2λ−2 = 0 giving λ1 = 1

and with d2F (λ1)
dλ2 = 2 > 0, λ1 indeed corresponds to the minimum of

F (λ), and x1 =
[ −1

1

]
.

Step 2

The next steepest descent direction is

u2 = −∇f(x1) =
[

1
1

]

and

x2 = x1 + λ2u2 =
[ −1 + λ2

1 + λ2

]
.

To minimize in the direction of u2 consider

F (λ) = f(x1+λu2) = (−1+λ)−(1+λ)+2(λ−1)2+2(λ−1)(λ+1)+(λ+1)2

and apply the necessary condition

dF

dλ
= 10λ − 2 = 0.

This gives λ2 = 1
5 and with d2F (λ2)

d2λ
= 10 > 0 (minimum) it follows that

x2 =

⎡
⎣ −1 + 1

5

1 + 1
5

⎤
⎦ =

[ −0.8
1.2

]
.

Problem 4.2.4

Apply two steps of the steepest descent method to the minimization of
f(x) = (2x1 − x2)2 + (x2 + 1)2 with x0 =

[
5
2 , 2

]T .
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Solution
Step 1

∇f(x) =
[

4(2x1 − x2)
4x2 − 4x1 + 2

]
,

giving ∇f(x0) =
[

4(5 − 2)
8 − 4(52) + 2

]
=

[
12
0

]
.

After normalizing, the first search direction is u1 =
[ −1

0

]
and x1 =[

5
2 − λ1

2

]
. Now minimize with respect to λ:

F (λ) = f(x0 + λu1) =
(
2

(
5
2 − λ

) − 2
)2 + (2 + 1)2 = (3 − 2λ)2 + 9.

The necessary condition dF
dλ = 0 gives λ1 = 3

2 , and with d2F
dλ2 (λ1) > 0

ensuring a minimum, it follows that

x1 =
[

5
2 − 3

2
2

]
and ∇f(x1) =

[
4(2 − 2)

8 − 4 + 2

]
=

[
0
6

]
.

Step 2

New normalized steepest descent direction: u2 =
[

0
−1

]
, thus x2 =[

1
2 − λ2

]
.

In the direction of u2:

F (λ) = f(x1 + λu2) = λ2 + (3 − λ)2.

Setting dF
dλ = 2λ − 2(3 − λ) = 0 gives λ2 = 3

2 and since d2F
dλ2 (λ2) > 0 a

minimum is ensured, and therefore

x2 =
[

1
2 − 3

2

]
=

[
1
1
2

]
.

Problem 4.2.5

Apply the Fletcher-Reeves method to the minimization of

f(x) = (2x1 − x2)2 + (x2 + 1)2 with x0 =
[
5
2 , 2

]T
.
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Solution
The first step is identical to that of the steepest descent method given
for Problem 4.2.4,

∇f(x) =
[

4(2x1 − x2)
4x2 − 4x1 + 2

]
,

giving u1 = −∇f(x0) = [−12, 0]T .

For the second step the Fletcher-Reeves search direction becomes

u2 = −∇f(x1) +
‖∇f(x1)‖2
‖∇f(x0)‖2u

1.

Using the data from the first step in Problem 4.2.4, the second search
direction becomes

u2 =
[

0
−6

]
+ 36

144

[ −12
0

]
=

[ −3
−6

]

and

x2 = x1 + λ2u2 =
[

1
2

]
−

[
3λ2

6λ2

]
=

[
1 − 3λ2

2 − 6λ2

]
.

In the direction u2:

F (λ) = (2(1 − 3λ) − 2 + 6λ)2 + (2 − 6λ + 1)2 = (3 − 6λ)2

and the necessary condition for a minimum is

dF

dλ
= −12(3 − 6λ) = 0 giving λ2 = 1

2

and thus with d2F (λ2)
dλ2 = 36 > 0:

x2 =

⎡
⎣ 1 − 3

2

2 − 6
2

⎤
⎦ =

[ −1
2

−1

]

with

∇f(x2) =
[

4
(
2

(−1
2

) − 1(−1)
)

4(−1) − 4
(−1

2

)
+ 2

]
=

[
0
0

]
.

Since ∇f(x2) = 0 and H =
[

8 −4
−4 4

]
is positive-definite, x2 = x∗.
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Problem 4.2.6

Minimize F (x) = x1−x2+2x2
1+2x1x2+x2

2 by using the Fletcher-Reeves
method.
Use as starting point x0 = [0, 0]T .

Solution

Step 1

∇f(x) =
[

1 + 4x1 + 2x2

−1 + 2x1 + 2x2

]
, x0 = [0, 0]T ,

∇f(x0) =
[

1
−1

]
, u1 = −∇f(x0) =

[ −1
1

]
and x1 = x0 + λ1u1 =[ −λ1

λ1

]
.

Therefore

F (λ) = f(x0 + λu1) = −λ − λ + 2λ2 − 2λ2 + λ2 = λ2 − 2λ

and dF
dλ = 2λ − 2 = 0 giving λ1 = 1 and with d2F (λ1)

dλ2 = 2 > 0 ensuring a
minimum, it follows that x1 = [−1, 1]T .

Step 2

∇f(x1) =
[ −1

−1

]

u2 = −∇f(x1) +
‖∇f(x1)‖2
‖∇f(x0)‖2u

1 =
[

1
1

]
+ 2

2

[ −1
1

]
=

[
0
2

]

x2 =
[ −1

1

]
+ λ2

[
0
2

]
= [−1, 1 + 2λ2]T .

Thus

F (λ) = −1−(1+2λ)+2(−1)2+2(−1)(1+2λ)+(1+2λ)2 = 4λ2−2λ−1

with dF
dλ = 8λ − 2 = 0 giving λ2 = 1

4 and therefore, with d2F
dλ2 = 8 > 0:

x2 =
[ −1

1

]
+

1
4

[
0
2

]
= [−1, 1.5]T .



126 CHAPTER 4

This results in

∇f(x2) =
[

1 − 4 + 2(1.5)
−1 − 2 + 2(1.5)

]
= [0, 0]T

and since H is positive-definite, the optimum solution is x∗ = x2 =
[−1, 1.5]T .

Problem 4.2.7

Minimize f(x) = x2
1 − x1x2 + 3x2

2 with x0 = (1, 2)T by means of the
Fletcher-Reeves method.

Solution

∇f(x) =
[

2x1 − x2

6x2 − x1

]
.

Step 1

Since ∇f(x0) =
[

2(1) − 2
6(2) − 1

]
=

[
0
11

]
, u1 = −∇f(x0) = [0, −11]T

and

x1 = [1, 2]T + λ1[0, −11]T .

This results in

F (λ) = 1 − 1(2 − 11λ) + 3(2 − 11λ)2

with
dF

dλ
= 11 + 6(2 − 11λ)(−11) = 0 giving λ1 = 1

6 .

Thus, with d2F (λ1)
dλ2 > 0: x1 = [1, 2]T + 1

6 [0, −11]T =
[
1, 1

6

]T .

Step 2

∇f(x1) =
[

11
6
0

]
and thus

u2 = −∇f(x1) +
‖∇f(x1)‖2
‖∇f(x0)‖2 u1 =

[ −11
6

0

]
+ 1

36

[
0

−11

]
=

⎡
⎣ −11

6

−11
36

⎤
⎦

giving

x2 = x1 + λ2u2 =
[

1
1
6

]
− λ2

⎡
⎣

11
6

11
36

⎤
⎦ =

⎡
⎣

(
1 − λ2

11
6

)
1
6

(
1 − λ2

11
6

)
⎤
⎦
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Thus

F (λ) =
(
1 − 11

6 λ
)2 − 1

6

(
1 − 11

6 λ
)2 + 3

36

(
1 − 11

6 λ
)2

=
(
1 − 1

6 + 1
12

) (
1 − 11

6 λ
)2

and dF
dλ = 11

6

(
1 − 11

6 λ
) (−11

6

)
= 0 gives λ2 = 6

11 , and with d2F (λ2)
dλ2 > 0

gives x2 = [0, 0]T . With ∇f(x2) = 0, and since H is positive-definite
for all x, this is the optimal solution.

Problem 4.2.8

Obtain the first updated matrix G1 when applying the DFP method to
the minimization
of f(x) = 4x2

1 − 40x1 + x2
2 − 12x2 + 136 with starting point

x0 = [8, 9]T .

Solution

Factorizing f(x) gives f(x) = 4(x1 − 5)2 + (x2 − 6)2 and ∇f(x) =[
8x1 − 40
2x2 − 12

]
.

Step 1

Choose G0 = I, then for x0 = [8, 9]T , ∇f(x0) = [24, 6]T .

u1 = −I∇f(x0) = −
[

24
6

]

and x1 = x0 + λ2u1 =
[

8 − 24λ2

9 − 6λ2

]
.

The function to be minimized with respect to λ is

F (λ) = f(x0 + λu1) = 4(8 − 24λ − 5)2 + (9 − 6λ − 6)2.

The necessary condition for a minimum, dF
dλ = −8(24)(3−24λ)+2(−6)(3−

6λ) = 0 yields λ1 = 0.1308 and thus with d2F (λ1)
dλ2 > 0:

x1 =
[

8 − 0.1308(24)
9 − 0.1308(6)

]
=

[
4.862
8.215

]
with ∇f(x1) =

[ −1.10
4.43

]
.
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The DFP update now requires the following quantities:

v1 = λ1u1 = x1 − x0 =
[

4.862 − 8
8.215 − 9

]
=

[ −3.14
−0.785

]

and y1 = ∇f(x1) − ∇f(x0) =
[ −25.10

−1.57

]

giving v1Ty1 = [−3.14, −0.785]
[ −25.10

−1.57

]
= 80.05

and y1Ty1 = [(25.10)2 + (−1.57)2] = 632.47

to be substituted in the update formula (2.18):

G1 = G0 +
v1v1T

v1Ty1
− y1y1T

y1Ty1

=
[

1 0
0 1

]
+ 1

80.05

[ −3.14
−0.785

]
[−3.14; −0.785]

− 1
632.47

[ −25.10
−1.57

]
[−25.10; −1.57]

=
[

1 0
0 1

]
+ 1

80.05

[
9.860 2.465
2.465 0.6161

]
− 1

632.47

[
630.01 3941
39.41 2.465

]

=
[

0.127 −0.032
−0.032 1.004

]
.

Problem 4.2.9

Determine the first updated matrix G1 when applying the DFP method
to the minimization of f(x) = 3x2

1 − 2x1x2 + x2
2 + x1 with x0 = [1, 1]T .

Solution

∇f(x) =
[

6x1 − 2x2 + 1
−2x1 + 2x2

]
.

Step 1

∇f(x0) = [5, 0]T and G0 = I which results in

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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x1 = x0 + λ1u1 = x0 − λ1G0∇f(x0) =
[

1
1

]
− λ1

[
1 0
0 1

] [
5
0

]
=[

1 − 5λ1

1

]
.

For the function F (λ) = 3(1−5λ)2−2(1−5λ)+1+(1−5λ) the necessary
condition for a minimum is ∂F

dλ = 6(1 − 5λ)(−5) + 10 − 5 = 0, which

gives λ1 = 25
150 = 1

6 , and since d2F (λ1)
dλ2 > 0:

x1 =
[

1 − 5
6

1

]
=

[
1
6
1

]

and v1 = x1 − x0 =
[

1
6
1

]
−

[
1
1

]
=

[ −5
6
0

]
,

with y1 = ∇f(x1) − ∇f(x0) =
[

6
(
1
6

) − 2 + 1
−2

(
1
6

)
+ 2

]
−

[
5
0

]
=

[ −5
5
3

]
.

It follows that

v1v1T =
[ −5

6
0

] [−5
6 , 0

]
=

[
25
36 0
0 0

]
, v1Ty1 =

[−5
6 , 0

] [ −5
5
3

]
= 25

6 ,

y1y1T =
[ −5

5
3

] [−5, 5
3

]
=

⎡
⎣ 25 −25

3

−25
3

25
9

⎤
⎦

and y1Ty1 =
[−5, 5

3

] [ −5
5
3

]
= 25 + 25

9 = 250
9 .

In the above computations G0 has been taken as G0 = I.

Substituting the above results in the update formula (2.18) yields G1 as

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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follows:

G1 = G0 + A1 + B1

=
[

1 0
0 1

]
+ 6

25

[
25
36 0
0 1

]
− 9

250

⎡
⎣ 25 −25

3

−25
3

25
9

⎤
⎦

=
[

1 0
0 1

]
+

[
1
6 0
0 1

]
− 9

10

⎡
⎣ 1 −1

3

−1
3

1
9

⎤
⎦

=

⎡
⎣

7
9 − 9

10
3
10

3
10

9
10

⎤
⎦ =

⎡
⎣

4
15

3
10

3
10

9
10

⎤
⎦ .

Comparing G1 with H−1 =

⎡
⎣

1
4

1
4

1
4

1
4

⎤
⎦ shows that after only one itera-

tion a reasonable approximation to the inverse has already been obtained.

Problem 4.2.10

Apply the DFP-method to the minimization f(x) = x1 − x2 + 2x2
1 +

2x1x2 + x2
2 with starting point x0 = [0, 0]T .

Solution

Step 1

G0 = I =
[

1 0
0 1

]
and ∇f(x0) =

[
1 + 4x1 + 2x2

−1 + 2x1 + 2x2

]
=

[
1

−1

]
gives

u1 = −G0∇f(x0) = −I
[

1
−1

]
=

[ −1
1

]
and thus

x1 = x0 + λ1u1 =
[ −λ1

λ1

]
.

Thus F (λ) = λ2 − 2λ, and dF
dλ = 0 yields λ1 = 1, and with d2F (λ1)

dλ2 > 0:

x1 =
[ −1

1

]
and ∇f(x1) =

[ −1
−1

]
.
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Now, using v1 =
[ −1

1

]
and y1 = ∇f(x1) − ∇f(x0) =

[ −2
0

]

in the update formula (2.18), gives

A1 =
v1v1T

v1Ty1
=

[ −1
1

]
[−1 1]

2
= 1

2

[
1 −1

−1 1

]
, and since G0y1 = y1:

B1 = −y1y1T

y1Ty1
= −1

4

[
4 0
0 0

]
.

Substitute the above in (2.18):

G1 = G0 + A1 + B1 =
[

1 0
0 1

]
+ 1

2

[
1 −1

−1 1

]
− 1

4

[
4 0
0 0

]

=

⎡
⎣

1
2 −1

2

−1
2

3
2

⎤
⎦ .

Step 2

New search direction u2 = −G1∇f(x1) = −
⎡
⎣

1
2 −1

2

−1
2

3
2

⎤
⎦

[ −1
−1

]
=

[
0
1

]
and therefore

x2 =
[ −1

1

]
+ λ2

[
0
1

]
= [−1, 1 + λ2]T .

Minimizing F (λ) = −1 − (1 + λ) + 2 − 2(1 + λ) + (1 + λ)2 implies

dF
dλ = −1 − 2 + 2(1 + λ) = 0 which gives λ2 = 1

2 .

Thus, since d2F (λ2)
dλ2 > 0, the minimum is given by x2 =

[ −1
1

]
+

1
2

[
0
1

]
=

[ −1
3
2

]
with ∇f(x2) =

[
0
0

]
and therefore x2 is optimal.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
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4.3 Standard methods for constrained
optimization

4.3.1 Penalty function problems

Problem 4.3.1.1

An alternative interpretation to Problem 3.5.1.3 is to determine the
shortest distance from the origin to the plane x1 +x2 +x3 = 1 by means
of the penalty function method.

Solution

Notice that the problem is equivalent to the problem:

minimize f(x) = x2
1 + x2

2 + x2
3 such that x1 + x2 + x3 = 1.

The appropriate penalty function is P = x2
1+x2

2+x2
3+ρ(x1+x2+x3−1)2.

The necessary conditions at an unconstrained minimum of P are
∂P

∂x1
= 2x1 + 2ρ(x1 + x2 + x3 − 1) = 0

∂P

∂x2
= 2x2 + 2ρ(x1 + x2 + x3 − 1) = 0

∂P

∂x3
= 2x3 + 2ρ(x1 + x2 + x3 − 1) = 0.

Clearly x1 = x2 = x3, and it follows that x1 = −ρ(3x1 − 1), i.e.

x1(ρ) = ρ
1+3ρ = 1

3+ 1
ρ

and lim
ρ→∞x1(ρ) = 1

3 .

The shortest distance is therefore=
√

x2
1 + x2

2 + x2
3 =

√
3(13)

2 = 1√
3
.

Problem 4.3.1.2

Apply the penalty function method to the problem:

minimize f(x) = (x1 − 1)2 + (x2 − 2)2

such that

h(x) = x2 − x1 − 1 = 0, g(x) = x1 + x2 − 2 ≤ 0, −x1 ≤ 0, −x2 ≤ 0.
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Solution

The appropriate penalty function is

P = (x1−1)2+(x2−2)2+ρ(x2−x1−1)2+β1(x1+x2−2)2+β2x
2
1+β3x

2
2

where ρ � 0 and βj = ρ if the corresponding inequality constraint is
violated, otherwise βj = 0.

Clearly the unconstrained minimum [1, 2]T violates the constraint g(x) ≤
0, therefore assume that x is in the first quadrant but outside the feasible
region, i.e. β1 = ρ. The penalty function then becomes

P = (x1 − 1)2 + (x2 − 2)2 + ρ(x2 − x1 − 1)2 + ρ(x1 + x2 − 2)2.

The necessary conditions at the unconstrained minimum of P are:

∂P

∂x1
= 2(x1 − 1) − 2ρ(x2 − x1 − 1) + 2ρ(x2 + x1 − 2) = 0

∂P

∂x2
= 2(x2 − 1) + 2ρ(x2 − x1 − 1) + 2ρ(x2 + x1 − 2) = 0.

The first condition is x1(2+4ρ)− 2− 2ρ = 0, from which it follows that

x1(ρ) =
2ρ + 2
4ρ + 2

=
2 + 2

ρ

4 + 2
ρ

and lim
ρ→∞x1(ρ) = 1

2 .

The second condition is x2(2 + 4ρ) − 4 − 6ρ = 0, which gives

x2(ρ) =
6ρ + 4
4ρ + 2

=
6 + 4

ρ

4 + 2
ρ

and lim
ρ→∞x2(ρ) = 3

2 .

The optimum is therefore x∗ = [12 ,
3
2 ]

T .

Problem 4.3.1.3

Apply the penalty function method to the problem:

minimize f(x) = x2
1 + 2x2

2 such that g(x) = 1 − x1 − x2 ≤ 0.

Solution

The penalty function is P = x2
1 + 2x2

2 + β(1 − x1 − x2)2. Again the
unconstrained minimum clearly violates the constraint, therefore assume
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the constraint is violated in the penalty function, i.e. β = ρ. The
necessary conditions at an unconstrained minimum of P are

∂P

∂x1
= 2x1 − 2ρ(1 − x1 − x2) = 0

∂P

∂x2
= 4x2 − 2ρ(1 − x1 − x2) = 0.

These conditions give x1 = 2x2, and solving further yields

x2(ρ) =
2ρ

4 + 6ρ
=

2ρ

ρ
(
4
ρ + 6

) and thus lim
ρ→∞x2(ρ) = x∗

2 = 1
3 , and also

x∗
1 = 2

3 .

Problem 4.3.1.4

Minimize f(x) = 2x2
1 + x2

2 such that g(x) = 5 − x1 + 3x2 ≤ 0 by means
of the penalty function approach.

Solution

The unconstrained solution, x∗
1 = x∗

2 = 0, violates the constraint, there-
fore it is active and P becomes P = 2x2

1 + x2
2 + ρ(5 − x1 + 3x2)2 with

the necessary conditions for an unconstrained minimum:

∂P

∂x1
= 4x1 − 2ρ(5 − x1 + 3x2) = 0

∂P

∂x2
= 2x2 + 6ρ(5 − x1 + 3x2) = 0.

It follows that x2 = −6x1 and substituting into the first condition yields

x1(ρ) =
10ρ

4 + 38ρ
=

10ρ

ρ
(
4
ρ + 38

) and lim
ρ→∞x1(ρ) = x∗

1 = 10
38 = 0.2632. This

gives x∗
2 = −1.5789 with f(x∗) = 2.6316.
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4.3.2 The Lagrangian method applied to
equality constrained problems

Problem 4.3.2.1

Determine the minima and maxima of f(x) = x1x2, such that
x2
1 + x2

2 = 1, by means of the Lagrangian method.

Solution

Here L = x1x2 + λ(x2
1 + x2

2 − 1) and therefore the stationary conditions
are

∂L

∂x1
= x2 + 2x1λ = 0, x2 = −2x1λ

∂L

∂x2
= x1 + 2x2λ = 0, x1 = −2x2λ.

From the equality it follows that 1 = x2
1 + x2

2 = 4x2
1λ

2 + 4x2
2λ

2 = 4λ2

giving λ = ±1
2 .

Choosing λ = 1
2 gives x2 = −x1, 2x2

1 = 1, and x1 = ± 1√
2
.

This results in the possibilities:

x1 = 1√
2
, x2 = − 1√

2
⇒ f∗ = −1

2

or

x1 = − 1√
2
, x2 = 1√

2
⇒ f∗ = −1

2 .

Alternatively choosing λ = −1
2 gives x2 = x1, 2x2

1 = 1, and x1 = ± 1√
2

and the possibilities:

x1 = 1√
2
, x2 = 1√

2
⇒ f∗ = 1

2

or

x1 = − 1√
2
, x2 = − 1√

2
⇒ f∗ = 1

2 .

These possibilities are sketched in Figure 4.7.
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−1

−1

1

1 x1

x2

x1x2 = 1
2

x2
1 + x2

2 = 1

Figure 4.7

Problem 4.3.2.2

Determine the dimensions, radius r and height h, of the solid cylinder
of minimum total surface area which can be cast from a solid metallic
sphere of radius r0.

Solution

This problem is equivalent to: minimize f(r, h) = 2πrh+2πr2 such that
πr2h = 4

3πr30.

The Lagrangian is L(r, h, λ) = −2πrh − 2πr2 + λ(πr2h − 4
3πr30). The
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necessary conditions for stationary points are

∂L

∂r
= −2πh − 4πr + λ2πrh = 0

∂L

∂h
= −2πr + λπr2 = 0

∂L

∂λ
= πr2h − 4

3πr30 = 0.

The second condition gives λπr2 = 2πr, i.e. λ = 2
r , and substituting in

the first condition yields r = h
2 . Substituting this value in the equality

gives πr22r − 4
3πr30 = 0, i.e.

r = r0(23)
1
3 , h = 2r0(23)

1
3 and λ = 2

r .

Problem 4.3.2.3

Minimize f(x) = −2x1 − x2 − 10 such that h(x) = x1 − 2x2
2 − 3 = 0.

Show whether or not the candidate point, obtained via the Lagrangian
method, is indeed a constrained minimum.

Solution

L(x, λ) = −2x1 − x2 − 10 + λ(x1 − 2x2
2 − 3)

and the necessary stationary conditions are

∂L

∂x1
= −2 + λ = 0,

∂L

∂x2
= −1 − 4λx2 = 0

∂L

∂λ
= x1 − 2x2

2 − 3 = 0.

Solving gives the candidate point λ∗ = 2, x∗
2 = −1

8 , x∗
1 = 3.03 with

f(x∗) = −16.185.

To prove that this point, x∗ = [3.03, −1
8 ]

T , indeed corresponds to a
minimum requires the following argument. By Taylor, for any step Δx
compatible with the constraint, i.e. h(x) = 0, it follows that

f(x∗ + Δx) = f(x∗) + ∇T f(x∗)Δx (4.3)
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and h(x∗ + Δx) = h(x∗) + ∇T h(x∗)Δx + 1
2ΔxT ∇2h(x∗)Δx = 0.

The latter equation gives

0 = [1, −4x2]
[

Δx1

Δx2

]
+1

2 [Δx1Δx2]
[

0 0
0 −4

] [
Δx1

Δx2

]
, i.e.

Δx1 = 4x2Δx2 + 2Δx2
2 (4.4)

and (4.3) gives

Δf = [−2 − 1]
[

Δx1

Δx2

]
= −2Δx1 − Δx2. (4.5)

Substituting (4.4) into (4.5) results in Δf = −2(4x2Δx2 + 2Δx2
2) −

Δx2 and setting x2 = x∗
2 = 1

8 gives Δf(x∗) = Δx2 − 4Δx2
2 − Δx2 =

−4Δx2
2 < 0 for all Δx2. Thus x∗ is not a minimum, but in fact a

constrained maximum. In fact this problem does not have a minimum
as it is unbounded.

Problem 4.3.2.4

Minimize f(x) = 3x2
1 + x2

2 + 2x1x2 + 6x1 + 2x2 such that h(x) = 2x1 −
x2 − 4 = 0. Show that the candidate point you obtain is indeed a local
constrained minimum.

Solution

The Lagrangian is given by

L(x, λ) = 3x2
1 + x2

2 + 2x1x2 + 6x1 + 2x2 + λ(2x1 − x2 − 4)

and the associated necessary stationary conditions are

∂L

∂x1
= 6x1 + 2x2 + 6 + 2λ = 0

∂L

∂x2
= 2x2 + 2x1 + 2 − λ = 0

∂L

∂λ
= 2x1 − x2 − 4 = 0.

Solving gives x∗
1 = 7

11 , x∗
2 = −30

11 , λ∗ = −24
11 .

To prove that the above point indeed corresponds to a local minimum,
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the following further argument is required. Here

∇f =
[

6x1 + 2x2 + 6
2x2 + 2x1 + 2

]
, ∇h =

[
2

−1

]
, ∇2h = 0 and H =

[
6 2
2 2

]

is positive-definite. Now for any step Δx compatible with the constraint
h(x) = 0 it follows that the changes in the constraint function and
objective function are respectively given by

Δh = ∇T hΔx = [2 − 1]
[

Δx1

Δx2

]
= 2Δx1 −Δx2 = 0, i.e. 2Δx1 = Δx2

(4.6)
and

Δf = ∇T f(x∗)Δx + 1
2ΔxTH(x∗)Δx. (4.7)

Also since ∇f(x∗) = 24
11

[
2

−1

]
, the first term in (4.7) may be written

as

∇T f(x∗)Δx = 24
11 [2, −1]

[
Δx1

Δx2

]
= 24

11(2Δx1 − Δx2) = 0 (from (4.6)).

Finally, substituting the latter expression into (4.7) gives, for any step
Δx at x∗ compatible with the constraint, the change in function value
as Δf = 0+ 1

2ΔxTH(x∗)Δx > 0 since H is positive-definite. The point
x∗ is therefore a strong local constrained minimum.

Problem 4.3.2.5

Maximize f = xyz such that
(

x
a

)2 +
(y

b

)2 +
(

z
c

)2 = 1.

Solution
L = xyz + λ

((
x
a

)2 +
(y

b

)2 +
(

z
c

)2 − 1
)

with necessary conditions:

∂L

∂x
= yz + 2λ

x

a2
= 0

∂L

∂y
= xz + 2λ

y

b2
= 0

∂L

∂z
= xy + 2λ

z

c2
= 0.

Solving the above together with the given equality, yields λ = −3
2xyz,

x = 1√
3
a, y = 1√

3
b and z = 1√

3
c, and thus f∗ = 1

3
√
3
abc.
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Problem 4.3.2.6

Minimize (x1 − 1)3 + (x2 − 1)2 + 2x1x2 such that x1 + x2 = 2.

Solution

With h(x) = x1 + x2 − 2 = 0 the Lagrangian is given by

L(x, λ) = (x1 − 1)3 + (x2 − 1)2 + 2x1x2 + λ(x1 + x2 − 2)

with necessary conditions:

∂L

∂x1
= 3(x1 − 1)2 + 2x2 + λ = 0

∂L

∂x2
= 2(x2 − 1) + 2x1 + λ = 0

x1 + x2 = 2.

Solving gives λ∗ = −2 and the possible solutions

x∗
1 = 1, x∗

2 = 1 or x∗
1 = 5

3 , x∗
2 = 1

3 .

Analysis of the solutions:

For any Δx consistent with the constraint:

Δh = 0 = ∇T hΔx = [1, 1]
[

Δx1

Δx2

]
, i.e. Δx1 + Δx2 = 0

and

Δf = ∇T fΔx + 1
2ΔxH(x)Δx where x = x∗ + θΔx, 0 ≤ θ ≤ 1.

For both candidate points x∗ above, ∇T f = [2, 2] and thus: ∇T fΔx =
2(Δx1 + Δx2) = 0. Considering only ΔxH(x)Δx, it is clear that as
Δx → 0, x → x∗, and Δf > 0 if H(x∗) is positive-definite.

H =
[

6(x1 − 1) 2
2 2

]
and thus at x∗ = [1, 1]T , H =

[
0 2
2 2

]
is not

positive-definite, and at x∗ =
[
5
3 ,

1
3

]T , H =
[

4 2
2 2

]
is positive-definite.

Therefore the point x∗ =
[
5
3 ,

1
3

]T is a strong local constrained minimum.
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Problem 4.3.2.7

Determine the dimensions of a cylindrical can of maximum volume sub-
ject to the condition that the total surface area be equal to 24π. Show
that the answer indeed corresponds to a maximum. (x1 = radius, x2 =
height)

Solution

The problem is equivalent to:

minimize f(x1, x2) = −πx2
1x2 such that 2πx2

1 + 2πx1x2 = A0 = 24π.

Thus with h(x) = 2πx2
1 +2πx1x2 − 24π = 0 the appropriate Lagrangian

is
L(x, λ) = −πx2

1x2 + λ(2πx2
1 + 2πx1x2 − 24π)

with necessary conditions for a local minimum:

∂L

∂x1
= −2πx1x2 + 4πλx1 + 2πλx2 = 0

∂L

∂x2
= −πx2

1 + 2πλx1 = 0

and h(x) = 2πx2
1 + 2πx1x2 − 24π = 0.

Solving gives x∗
1 = 2, x∗

2 = 4 with λ∗ = 1 and f∗ = −16π.

Analysis of the solution:

At x∗ for change Δx compatible with the constraint it is required to
show that

Δf = ∇T fΔx + 1
2ΔxTHΔx > 0 (4.8)

in the limit as Δx → 0 and h(x∗ + Δx) = 0.

For f(x) at x∗ the gradient vector and Hessian are given by

∇f =
[ −2πx1x2

−πx2
1

]
= −4π

[
4
1

]
and

H =
[ −2πx2 −2πx1

−2πx1 0

]
=

[ −8π −4π
−4π 0

]
.
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For satisfaction of the constraint: Δh = ∇T hΔx + 1
2ΔxT ∇2hΔx = 0,

i.e.
∇T hΔx = −1

2ΔxT ∇2hΔx (4.9)

with ∇h =
[

4πx1 + 2πx2

2πx1

]
= 4π

[
4
1

]

and where ∇2h =
[

4π 2π
2π 0

]
. Now clearly ∇h = −∇f at the candi-

date point.

It therefore follows that ∇fTΔx = −∇T hΔx = 1
2ΔxT ∇2hΔx.

Substituting in (4.8):

Δf = 1
2ΔxT (∇2h + H)Δx

= 1
2ΔxT

[ −4π −2π
−2π 0

]
Δx = −π[Δx1 Δx2]

[
2 1
1 0

] [
Δx1

Δx2

]

= −π[2Δx2
1 + 2Δx1Δx2].

From (4.9) in the limit as Δx → 0, Δx2 = −4Δx1, and thus

Δf = −π[2Δx2
1 + 2Δx1(−4Δx1)] = 6πΔx2

1 > 0, as expected for a
constrained local minimum.

Problem 4.3.2.8

Minimize f(x) = x2
1+x2

2+· · ·+x2
n such that h(x) = x1+x2+· · ·+xn−1 =

0.

Solution

The Lagrangian is

L = (x2
1 + x2

2 + · · · + x2
n) + λ(x1 + x2 + · · · + xn − 1)

with necessary conditions:

∂L

∂xi
= 2xi + λ = 0, i = 1, . . . , n.

Thus
n∑

i=1

2xi + nλ = 0 ⇒ λ = − 2
n and

2xi − 2
n = 0 ⇒ xi = 1

n , i = 1, 2, . . . , n.
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Therefore the distance =
√

f(x∗) =
√

n
n2 = 1√

n
.

Test for a minimum at x∗:

Δf = ∇T f(x∗)Δx + 1
2ΔxTH(x)Δx and ∇T f = [2x1, . . . , 2xn]T

and H(x̄) = 2

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ which is positive-definite, Δf > 0 if

∇f(x∗)Δx ≥ 0.

For Δx such that Δh = ∇T hΔx = 0, gives Δx1 +Δx2 + · · ·+Δxn = 0.

Thus ∇T f(x∗)Δx = 2[x∗
1, . . . , x

∗
n]TΔx = 2

n(Δx1+Δx2+ · · ·+Δxn) = 0
and therefore x∗ is indeed a constrained minimum.

Problem 4.3.2.9

Minimize x2
1 + x2

2 + x2
3 such that x1 + 3x2 + 2x3 − 12 = 0.

Solution
L = x2

1 + x2
2 + x2

3 + λ(x1 + 3x2 + 2x3 − 12)
∂L

∂x1
= 2x1 + λ = 0

∂L

∂x2
= 2x2 + 3λ = 0

∂L

∂x3
= 2x3 + 2λ = 0

x1 + 3x2 + 2x3 = 12

with solution: λ∗ = −12
7 , x∗

1 = 6
7 , x∗

2 = 18
7 , x∗

3 = 12
7 with f∗ = 10.286.

Test Δf for all Δx compatible with the constraint: Δf=∇fTΔx +

1
2ΔxTHΔx, ∇f=[2x1, 2x2, 2x3]T , H=

⎡
⎣ 2 0

2
0 2

⎤
⎦ positive-definite

and

Δh = ∇T hΔx + 1
2ΔxT ∇2hΔx = 0, ⇒ Δx1 + 3Δx2 + 2Δx3 = 0.

Therefore
Δf(x∗) = 2x∗

1Δx1 + 2x∗
2Δx2 + 2x∗

3Δx3 + 1
2ΔxTHΔx

= 26
7 (Δx1 + 3Δx2 + 2Δx3) + 1

2ΔxTHΔx = 0 + 1
2ΔxTHΔx > 0.
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Thus x∗ is indeed a local minimum.

4.3.3 Solution of inequality constrained problems
via auxiliary variables

Problem 4.3.3.1

Consider the problem:

Minimize f(x) = x2
1 + x2

2 − 3x1x2 such that x2
1 + x2

2 − 6 ≤ 0.

Solution

Introducing an auxiliary variable θ, the problem is transformed to an
equality constrained problem with x2

1+x2
2−6+θ2 = 0. Since θ2 ≥ 0 the

original equality constraint is satisfied for all values of θ for which the
new equality constraint is satisfied. Solve the new equality constrained
problem with additional variable θ by the Lagrange method:

L(x, θ, λ) = x2
1 + x2

2 − 3x1x2 + λ(x2
1 + x2

2 − 6 + θ2)

with necessary conditions:

∂L

∂x1
= 2x1 − 3x2 + 2λx1 = 0

∂L

∂x2
= 2x2 − 3x1 + 2λx2 = 0

∂L

∂θ
= 2θλ = 0

∂L

∂λ
= x2

1 + x2
2 − 6 + θ2 = 0.

The third equation implies three possibilities:

(i) λ = 0, θ 
= 0, ⇒ x∗
1 = x∗

2 = 0, θ2 = 6 and f(x) = 0.

(ii) θ = 0, λ 
= 0, then from the first two conditions:

2λ = −2 + 3x2
x1

= −2 + 3x1
x2

⇒ x2
1 = x2

2.

Thus x1 = ±x2 and from the last condition it follows that x1 =
±√

3.



BASIC EXAMPLE PROBLEMS 145

Choosing x∗
1 = −x∗

2 gives f(x∗) = 15, and choosing x∗
1 = x∗

2 =
±√

3 gives f(x∗) = −3.

(iii) θ = 0 and λ = 0 leads to a contradiction.

The constrained minimum therefore corresponds to case (ii) above.

Problem 4.3.3.2

Minimize f(x) = 2x2
1 − 3x2

2 − 2x1 such that x2
1 + x2

2 ≤ 1.

Solution

Introduce auxiliary variable θ such that x2
1+x2

2+θ2 = 1. The Lagrangian
is then

L(x, θ) = 2x2
1 − 3x2

2 − 2x1 + λ(x2
1 + x2

2 + θ2 − 1)

and the necessary conditions for a minimum:

∂L

∂x1
= 4x1 − 2 + 2λx1 = 0,

∂L

∂x2
= −6x2 + 2λx2 = 0,

∂L

∂θ
= 2λθ = 0

and x2
1 + x2

2 + θ2 = 1.

The possibilities are:

either (i) λ = 0, θ 
= 0 or (ii) λ 
= 0, θ = 0 or (iii) λ = 0 and θ = 0.
Considering each possibility in turn gives the following:

(i) λ = 0 ⇒ x∗
1 = 1

2 , x∗
2 = 0, θ∗2 = 3

4 and f(x∗
1, x

∗
2) = −1

2 .

(ii) θ = 0 ⇒ x2
1 + x2

2 = 1; 4x1 − 2 + 2λx1 = 0; x2(−6 + 2λ) = 0
giving firstly for x∗

2 = 0 ⇒ x∗
1 = ±1; λ∗ = −1; −3 and f∗(1, 0) =

0; f∗(−1, 0) = 4, or secondly for λ∗ = 3 it follows that x∗
1 = 1

5 and

x∗
2 = ±

√
24
25 , for which in both cases f∗ = −3.2.

(iii) leads to a contradiction.

Inspection of the alternatives above gives the global minima at x∗
1 = 1

5

and x∗
2 = ±

√
24
25 with f∗ = −3.2 and maximum at x∗

1 = −1, x∗
2 = 0,

with f∗ = 4.
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Problem 4.3.3.3

Maximise f(x) = −x2
1 + x1x2 − 2x2

2 + x1 + x2 such that 2x1 + x2 ≤ 1,
by using auxiliary variables.

Solution

Here solve the minimization problem: min
x

f = x2
1 −x1x2 +2x2

2 −x1 −x2

such that 1 − 2x1 − x2 ≥ 0.

Introducing an auxiliary variable it follows that

L(x, θ) = x2
1 − x1x2 + 2x2

2 − x1 − x2 + λ(1 − 2x1 − x2 − θ2)

with necessary conditions:

∂L

∂x1
= 2x1 − x2 − 1 − 2λ = 0

∂L

∂x2
= −x1 + 4x2 − 1 − λ = 0

∂L

∂θ
= −2λθ = 0

∂L

∂λ
= 1 − 2x1 − x2 − θ2 = 0.

The possibilities are:

(i) λ = 0 and θ 
= 0 ⇒ 2x1 −x2 −1 = 0 and −x1 +4x2 −1 = 0, giving
x1 = 5

7 and x2 = 3
7 . Substituting in the equality 1−2x1−x2−θ2 =

0 ⇒ θ2 = −6
7 < 0, which is not possible for θ real.

(ii) θ = 0 and λ 
= 0 gives 1 − 2x1 − x2 = 0 and solving together
with the first two necessary conditions gives x∗

2 = 3
11 , x∗

1 = 4
11 and

λ∗ = − 3
11 .

4.3.4 Solution of inequality constrained problems via the
Karush-Kuhn-Tucker conditions

Problem 4.3.4.1

Minimize f(x) = 3x1 + x2

subject to g(x) = x2
1 + x2

2 − 5 ≤ 0.
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Solution

For L(x, λ) = 3x1 + x2 + λ(x2
1 + x2

2 − 5) the KKT conditions are:

∂L

∂x1
= 3 + 2λx1 = 0

∂L

∂x2
= 1 + 2λx2 = 0

x2
1 + x2

2 − 5 ≤ 0
λ(x2

1 + x2
2 − 5) = 0

λ ≥ 0.

From λ(x2
1 + x2

2 − 5) = 0 it follows that either λ = 0 or x2
1 + x2

2 − 5 = 0.

If λ = 0 then the first two conditions are not satisfied and therefore
λ 
= 0 and we have the equality x2

1 + x2
2 − 5 = 0. It now follows that

x1 = − 3
2λ and x2 = − 1

2λ .

Substituting these values into the equality yields(− 3
2λ

)2 +
(− 1

2λ

)2 = 5,

which implies that λ∗ = +
√

1
2 > 0. The optimal solution is thus x∗

1 =

− 3√
2
, x∗

2 = − 1√
2

with f(x∗) = − 10√
2
. By inspection, one could argue

that no interior optimum can exist since the objective function is linear.

Problem 4.3.4.2

Minimize x2
1+x2

2−14x1−6x2−7 such that x1+x2 ≤ 2 and x1+2x2 ≤ 3.

Solution

L(x, λ) = x2
1 + x2

2 − 14x1 − 6x2 − 7 + λ1(x1 + x2 − 2) + λ2(x1 + 2x2 − 3)

with KKT conditions:
∂L

∂x1
= 2x1 − 14 + λ1 + λ2 = 0

∂L

∂x2
= 2x2 − 6 + λ1 + 2λ2 = 0

λ1(x1 + x2 − 2) = 0
λ2(x1 + 2x2 − 3) = 0

λ ≥ 0.
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The possibilities are:

(i) The choice λ1 
= 0 and λ2 
= 0 gives

x1+x2−2 = 0, x1+2x2−3 = 0 ⇒ x2 = 1, x1 = 1, with f = −25.

Both constraints are satisfied but λ2 = −8 < 0 with λ2 = 20.

(ii) λ1 
= 0 and λ2 = 0 gives x1 + x2 − 2 = 0 and

2x1 − 14 + λ1 = 0
2x2 − 6 + λ1 = 0

which yield

λ1 = 8 ≥ 0 and x1 = 3, x2 = −1, with f = −33

and both constraints are satisfied.

(iii) λ1 = 0 and λ2 
= 0 gives x1 + 2x2 − 3 = 0 and it follows that

λ2 = 4 ≥ 0 and x1 = 5, x2 = −1, with f = −45. However, the
first constraint is violated.

(iv) The final possibility λ1 = λ2 = 0 gives x1 = 7 and x2 = 3 with
f = −65 but both the first and second constraints are violated.

The unique optimum solution is therefore given by possibility (ii).

Problem 4.3.4.3

Minimize f(x) = x2
1 + x2

2 − 4x1 − 6x2 + 13 such that x1 + x2 ≥ 7 and
x1 − x2 ≤ 2.

Solution

We note that in this case the KKT conditions are also sufficient since
the problem is convex.

L(x, λ) = (x2
1 +x2

2 −4x1 −6x2 +13)+λ1(−x1 −x2 +7)+λ2(x1 −x2 −2)
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with KKT conditions:

∂L

∂x1
= 2x1 − 4 − λ1 + λ2 = 0

∂L

∂x2
= 2x2 − 6 − λ1 − λ2 = 0

λ1(−x1 − x2 + 7) = 0
λ2(x1 − x2 − 2) = 0

λ ≥ 0.

The possibilities are:

(i) λ1 = λ2 = 0 ⇒ x1 = 2, x2 = 3 with x1 + x2 = 2 + 3 < 7 and
thus the first constraint is not satisfied.

(ii) λ1 
= 0, λ2 = 0 ⇒ 2x1 − 4 − λ1 = 0, 2x2 − 6 − λ1 = 0 and
x1 − x2 + 1 = 0.

The above implies −x1 − x2 + 7 = 0, λ2 = 0, λ1 = 2, x2 = 4,
x1 = 3 with f = 2. This point satisfies all the KKT conditions
and is therefore a local minimum.

(iii) λ1 = 0 and λ2 
= 0 ⇒ 2x1 − 4 + λ2 = 0, 2x2 − 6 − λ2 = 0,
2x1 + 2x2 − 10 = 0, x1 − x2 − 2 = 0 and solving yields

x1 = 7
2 , λ1 = 0, x2 = 3

2 and λ2 = −3.

This point violates the condition that λ2 ≥ 0, and is therefore not
a local minimum.

(iv) λ1 
= 0 and λ2 
= 0 ⇒ 2x1−4−λ1+λ2 = 0, 2x2−6−λ1−λ2 = 0,
and −x1 − x2 + 7 = 0, and x1 − x2 − 2 = 0 ⇒ x2 = 5

2 , x1 = 9
2

with λ1 = 2 and λ2 = −3 < 0 which violates the condition λ ≥ 0.

The unique optimum solution therefore corresponds to possibility (ii),
i.e. x∗

1 = 3, λ∗
1 = 2, x∗

2 = 4, λ∗
2 = 0 with f∗ = 2.

Problem 4.3.4.4

Minimize x2
1 + 2(x2 + 1)2 such that −x1 + x2 = 2, −x1 − x2 − 1 ≤ 0.
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Solution

Here the Lagrangian is given by

L(x, λ, μ) = x2
1 + 2(x2 + 1)2 + λ(−x1 − x2 − 1) + μ(−x1 + x2 − 2)

with KKT conditions:

∂L

∂x1
= 2x1 − λ − μ = 0

∂L

∂x2
= 4(x2 + 1) − λ + μ = 0

−x1 + x2 − 2 = 0
−x1 − x2 − 1 ≤ 0

λ(−x1 − x2 − 1) = 0
λ ≥ 0.

Possibilities:

(i) λ 
= 0 ⇒ −x1 − x2 − 1 = 0 and with −x1 + x2 − 2 = 0 ⇒
x1 = −3

2 , x2 = 1
2 . Substituting into the first two conditions give

λ = 3
2 and μ = −9

2 , and thus all conditions are satisfied.

(ii) λ = 0 ⇒ 2x1−μ = 0 and 4x2+4+μ = 0 giving 2x1+4x2+4 = 0
and with −x1 + x2 − 2 = 0 it follows that x2 = 0 and x1 = −2.
However, −x1 − x2 − 1 = 1 which does not satisfy the inequality.

Case (i) therefore represents the optimum solution with f∗ = 27
4 .

Problem 4.3.4.5

Determine the shortest distance from the origin to the set defined by:

4 − x1 − x2 ≤ 0, 5 − 2x1 − x2 ≤ 0.

Solution

L(x, λ) = x2
1 + x2

2 + λ1(4 − x1 − x2) + λ2(5 − 2x1 − x2)
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with KKT conditions:

∂L

∂x1
= 2x1 − λ1 − 2λ2 = 0

∂L

∂x2
= 2x2 − λ1 − λ2 = 0

λ1g1 + λ2g2 = 0
λ1, λ2 ≥ 0.

The possibilities are:

(i) λ1 = λ2 = 0 ⇒ x1 = x2 = 0 and both constraints are violated.

(ii) λ1 = 0, λ2 
= 0 ⇒ 5 − 2x1 − x2 = 0 which gives x2 = 1, x1 = 2
and λ2 = 2 > 0, but this violates constraint g1.

(iii) λ1 
= 0, λ2 = 0 ⇒ x1 = x2 = 2 and λ1 = 4 > 0.

(iv) λ1 
= 0, λ2 
= 0 ⇒ g1 = 0 and g2 = 0 which implies that
λ2 = −4 < 0, x1 = 1, x2 = 3 which violates the non-negativity
condition on λ2.

The solution x∗ therefore corresponds to case (iii) with shortest distance
=

√
8.

Problem 4.3.4.6

Minimize x2
1 + x2

2 − 2x1 − 2x2 + 2

such that −2x1 − x2 + 4 ≤ 0 and −x1 − 2x2 + 4 ≤ 0.

Solution

L(x, λ) = x2
1+x2

2−2x1−2x2+2+λ1(−2x1−x2+4)+λ2(−x1−2x2+4)
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with KKT conditions:

∂L

∂x1
= 2x1 − 2 − 2λ1 − λ2 = 0

∂L

∂x2
= 2x2 − 2 − λ1 − 2λ2 = 0

g1 = −2x1 − x2 + 4 ≤ 0
g2 = −x1 − 2x2 + 4 ≤ 0

λ1g1 = 0; λ2g2 = 0
λ1 ≥ 0; λ2 ≥ 0.

The fifth conditions give the following possibilities:

(i) λ1 = λ2 = 0 ⇒ 2x1 − 2 = 0, 2x2 − 2 = 0, x1 = x2 = 1, not valid
since both g1 and g2 > 0.

(ii) λ1 = 0 and g2 = 0 ⇒ 2x1 − 2 − λ2 = 0, 2x2 − 2 − 2λ2 = 0 and
−x1 − 2x2 + 4 = 0 which yield

x1 = 6
5 , x2 = 7

5 , λ2 = 2
5 > 0

but, not valid since g1 = 0.2 > 0.

(iii) g1 = 0, λ2 = 0 ⇒ 2x1 − 2 − 2λ1 = 0, 2x2 − 2 − λ1 = 0 which
together with g1 = 0 give x1 = 7

5 , x2 = 6
5 and λ1 = 2

5 > 0, but not
valid since g2 = 0.2 > 0.

(iv) g1 = g2 = 0 ⇒ x1 = x2 = 4
3 , λ1 = λ2 = 2

9 > 0.

Since (iv) satisfies all the conditions it corresponds to the optimum solu-
tion with f(x∗) = 2

9 .

Problem 4.3.4.7

Minimize
(
x1 − 9

4

)2 + (x2 − 2)2

such that g1(x) = x2
1 − x2 ≤ 0, g2(x) = x1 + x2 − 6 ≤ 0, and x1, x2 ≥ 0.

Is the point x =
(
3
2 ,

9
4

)
a local minimum?

Solution

L(x, λ) =
(
x1 − 9

4

)2+(x2−2)2+λ1(x2
1−x2)+λ2(x1+x2−6)−λ3x1−λ4x2
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with KKT conditions:

∂L

∂x1
= 2

(
x1 − 9

4

)
+ 2λ1x1 + λ2 − λ3 = 0

∂L

∂x2
= 2(x2 − 2) − λ1 + λ2 − λ4 = 0

g1 ≤ 0 and g2 ≤ 0
−x1 ≤ 0 and − x2 ≤ 0

λ1(x2
1 − x2) = 0; λ2(x1 + x2 − 6) = 0

λ3x1 = 0; λ4x2 = 0
λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0.

At x =
(
3
2 ,

9
4

)
, x1 and x2 
= 0 ⇒ λ3 = λ4 = 0 and g1 =

(
3
2

)2 − 9
4 = 0

and g2 = 3
2 + 9

4 − 6 = 15
4 − 6 < 0 and thus λ2 = 0.

Also from the first condition it follows that since 2
(
3
2 − 9

4

)
+ 2λ1

3
2 = 0

that λ1 = 1
2 > 0. This value also satisfies the second condition.

Since x satisfies all the KKT conditions, and all the constraints are
convex, it is indeed the global constrained optimum.

Problem 4.3.4.8

Minimize x2
1 + x2

2 − 8x1 − 10x2 such that 3x1 + 2x2 − 6 ≤ 0.

Solution

L(x, λ) = x2
1 + x2

2 − 8x1 − 10x2 + λ(3x1 + 2x2 − 6)

with KKT conditions:

∂L

∂x1
= 2x1 − 8 + 3λ = 0

∂L

∂x2
= 2x2 − 10 + 2λ = 0

λ(3x1 + 2x2 − 6) = 0.

The possibilities are:

(i) λ = 0 then x1 = 4 and x2 = 5 giving 3x1 + 2x2 − 6 = 16 > 0 and
thus this point is not valid.
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(ii) 3x1 + 2x2 − 6 = 0 then λ = 32
13 and x1 = 4

13 , x2 = 33
13 .

Thus the solution corresponds to case (ii).

Problem 4.3.4.9

Minimize f(x) = x2
1 − x2 such that x1 ≥ 1, x2

1 + x2
2 ≤ 26.

Solution

L(x, λ) = x2
1 − x2 + λ1(1 − x1) + λ2(x2

1 + x2
2 − 26)

with KKT conditions:

∂L

∂x1
= 2x1 − λ1 + 2λ2x2 = 0

∂L

∂x2
= −1 + 2λ2x2 = 0

λ1(1 − x1) = 0
λ2(x2

1 + x2
2 − 26) = 0

x2
1 + x2

2 − 26 ≤ 0
1 − x1 ≤ 0

λ1 ≥ 0; λ2 ≥ 0.

Investigate the possibilities implied by the third and fourth conditions.

By inspection the possibility 1 − x1 = 0 and x2
1 + x2

2 − 26 = 0 yields
x1 = 1; x2 = 5. This gives λ2 = 1

10 > 0 and λ1 = 2 > 0 which satisfies
the last condition. Thus all the conditions are now satisfied. Since
f(x) and all the constraints functions are convex the conditions are also
sufficient and x∗ = [1, 5]T with f(x∗) = −4 is a constrained minimum.

4.3.5 Solution of constrained problems via
the dual problem formulation

Problem 4.3.5.1

Minimize x2
1 + 2x2

2 such that x2 ≥ −x1 + 2.
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Solution

The constraint in standard form is 2 − x1 − x2 ≤ 0 and the Lagrangian
therefore:

L(x, λ) = x2
1 + 2x2

2 + λ(2 − x1 − x2).

For a given value of λ the stationary conditions are

∂L

∂x1
= 2x1 − λ = 0

∂L

∂x2
= 4x2 − λ = 0

giving x1 = λ
2 and x2 = λ

4 . Since the Hessian of L, HL is positive-definite
the solution corresponds to a minimum.

Substituting the solution into L gives the dual function:

h(λ) = λ2

4 + λ2

8 + λ
(
2 − λ

2 − λ
4

)
= −3

8λ
2 + 2λ.

Since d2h
dλ2 < 0 the maximum occurs where dh

dλ = −6
8λ+2 = 0, i.e. λ∗ = 8

3
with

h(λ∗) = −3
8

(
8
3

)2 + 2
(
8
3

)
= 8

3 .

Thus x∗ =
(
4
3 ,

2
3

)T with f(x∗) = 8
3 .

Problem 4.3.5.2

Minimize x2
1 + x2

2 such that 2x1 + x2 ≤ −4.

Solution
L(x, λ) = x2

1 + x2
2 + λ(2x1 + x2 + 4)

and the necessary conditions for a minimum with respect to x imply

∂L

∂x1
= 2x1 + 2λ = 0

and
∂L

∂x2
= 2x2 + λ = 0

giving x1 = −λ and x2 = −λ
2 . Since HL is positive-definite the solution

is indeed a minimum with respect to x. Substituting in L gives

h(λ) = −5
4λ

2 + 4λ.
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Since d2h
dλ2 = −5

2 < 0 the maximum occurs where dh
dλ = −5

2λ + 4 = 0, i.e.
where λ∗ = 8

5 > 0 and f(x∗) = h(λ∗) = 16
5 .

The solution is thus x∗
1 = −8

5 ; x∗
2 = −4

5 which satisfies the KKT condi-
tions.

Problem 4.3.5.3

Minimize 2x2
1 + x2

2 such that x1 + 2x2 ≥ 1.

Solution
L(x, λ) = 2x2

1 + x2
2 + λ(1 − x1 − 2x2)

with stationary conditions

∂L

∂x1
= 4x1 − λ = 0

∂L

∂x2
= 2x2 − 2λ = 0

giving x1 = λ
4 and x2 = λ. Since HL is positive-definite the solution is

a minimum and

h(λ) = 1
8λ

2 + λ2 + λ − 1
4λ

2 − 2λ2 = −9
8λ

2 + λ.

Since d2h
dλ2 < 0 the maximum occurs where dh

dλ = −9
4λ + 1 = 0, i.e. λ = 4

9
and since λ > 0, it follows that λ is an element of the duality function
set D defined by equation (3.23).

Thus

h(λ∗) = −9
8

(
4
9

)2 + 4
9 = 2

9

and x∗
1 = 1

4

(
4
9

)
= 1

9 , x∗
2 = 4

9 .

Test: f(x∗) = 2
(
1
9

)2 +
(
4
9

)2 = 2
81 + 16

81 = 18
81 = 2

9 = h(λ∗).

Problem 4.3.5.4

Minimize (x1 − 1)2 + (x2 − 2)2 such that x1 − x2 ≤ 1 and x1 + x2 ≤ 2.

Solution

L(x, λ) = (x1 − 1)2 + (x2 − 2)2 + λ1(x1 − x2 − 1) + λ2(x1 + x2 − 2)

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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and it follows that for a fixed choice of λ = [λ1, λ2]T the stationary
conditions are:

∂L

∂x1
= 2(x1 − 1) + λ1 + λ2 = 0

∂L

∂x2
= 2(x2 − 2) − λ1 + λ2 = 0

which give x1 = 1− 1
2(λ1 +λ2) and x2 = 2+ 1

2(λ1 −λ2). HL =
[

2 0
0 2

]

is positive-definite and therefore the solution is a minimum with respect
to x. Substituting the solution into L gives

h(λ) = −λ2
1
2 − λ2

2
2 + λ2.

The necessary conditions for a maximum are

∂h

∂λ1
= −2λ1

2 = 0, i.e. λ∗
1 = 0

∂h

∂λ2
= −2λ2

2 + 1 = 0, i.e. λ∗
2 = 1

and since the Hessian of h with respect to λ is given by Hh=
[ −1 0

0 −1

]

which is negative-definite the solution indeed corresponds to a maxi-
mum, with h(λ∗) = 1

2 = f(x∗) and thus x∗
1 = 1

2 and x∗
2 = 3

2 .

4.3.6 Quadratic programming problems

Problem 4.3.6.1

Minimize f(x) = x2
1 + x2

2 + x2
3 such that h1(x) = x1 + x2 + x3 = 0 and

h2(x) = x1 + 2x2 + 3x3 − 1 = 0.

Solution

Here, for the equality constrained problem the solution is obtained via
the Lagrangian method with

L(x, λ) = x2
1 + x2

2 + x2
3 + λ1(x1 + x2 + x3) + λ2(x1 + 2x2 + 3x3 − 1).
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The necessary conditions for a minimum give:

∂L

∂x1
= 2x1 + λ1 + λ2 = 0, x1 = −1

2(λ1 + λ2)

∂L

∂x2
= 2x2 + λ1 + 2λ2 = 0, x2 = −1

2(λ1 + 2λ2)

∂L

∂x3
= 2x3 + λ1 + 3λ2 = 0, x3 = −1

2(λ1 + 3λ2).

Substituting into the equality constraints gives:

−
(

λ1+λ2
2 + λ1+2λ2

2 + λ1+3λ2
2

)
= 0, i.e. λ1 + 2λ2 = 0

and

1
2(λ1 + λ2) + (λ1 + 2λ2) + 3

2(λ1 + 3λ2) = −1, i.e. 3λ1 + 7λ2 = −1.

Solving for the λ’s: λ2 = −1 and λ1 = 2.

The candidate solution is therefore: x∗
1 = −1

2 , x∗
2 = 0, x∗

3 = 1
2 .

For the further analysis:

f(x + Δx) = f(x) + ∇T fΔx + 1
2ΔxHΔx

where ∇f = (2x1, 2x2, 2x3)T and thus ∇f(x∗) = [−1, 0, 1]T and H =⎡
⎣ 2 0 0

0 2 0
0 0 2

⎤
⎦ is positive-definite.

For changes consistent with the constraints:

0 = Δh1 = ∇T h1Δx + 1
2ΔxT ∇2h1Δx, with ∇h1 =

⎡
⎣ 1

1
1

⎤
⎦

0 = Δh2 = ∇T h2Δx + 1
2ΔxT ∇2h2Δx, with ∇h2 =

⎡
⎣ 1

2
3

⎤
⎦ .

It follows that Δx1+Δx2+Δx3 = 0 and Δx1+2Δx2+3Δx3 = 0 giving
−Δx1 + Δx3 = 0 and thus

Δf(x∗) = −Δx1 + Δx3 + 1
2ΔxTHΔx = 1

2ΔxTHΔx ≥ 0.
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The candidate point x∗ above is therefore a constrained minimum.

Problem 4.3.6.2

Minimize f(x) = −2x1−6x2+x2
1−2x1x2+2x2

2 such that x1 ≥ 0, x2 ≥ 0
and g1(x) = x1 + x2 ≤ 2 and g2(x) = −x1 + 2x2 ≤ 2.

Solution

In matrix form the problem is:

minimize f(x) = 1
2x

TAx + bTx where A =
[

2 −2
−2 4

]
, b =

[ −2
−6

]

subject to the specified linear constraints.

First determine the unconstrained minimum:

x∗ = −A−1b = −1
4

[
4 2
2 2

] [ −2
−6

]
=

[
5
4

]
.

Test for violation of constraints:

x1, x2 > 0, x1 + x2 = 9 > 2; −x1 + 2x2 = −5 + 8 = 3 > 2.

Thus two constraints are violated. Considering each separately active
assume firstly that x1 + x2 = 2. For this case L = f(x) + λg1(x) =
1
2x

TAx + bTx + λ(x1 + x2 − 2). The necessary conditions are:

⎡
⎣ A 1

1
1 1 0

⎤
⎦

[
x
λ

]
=

[ −b
2

]
,

i.e. solve ⎡
⎣ 2 −2 1

−2 4 1
1 1 0

⎤
⎦

⎡
⎣ x1

x2

λ

⎤
⎦ =

⎡
⎣ 2

6
2

⎤
⎦ .

Let D be the determinant of the linear system matrix and Di be the
determinant of the linear system matrix with the ith column replaced
by the right-hand side column vector. This, by Cramer’s rule, gives
x1 = D1

D = 4
5 ; x2 = D2

D = 6
5 and λ = D3

D = 14
5 > 0, and therefore

x1, x2 > 0 and − x1 + 2x2 = −4
5 + 2.6

5 = 8
5 < 2.
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Thus with all the constraints satisfied and λ > 0 the KKT sufficient con-
ditions apply and x∗ =

[
4
5 ;

6
5

]
is a local constrained minimum. Indeed,

since the problem is convex it is in fact the global minimum and no
further investigation is required.

Problem 4.3.6.3

Minimize f(x) = x2
1 + 4x2

2 − 2x1 + 8x2 such that 5x1 + 2x2 ≤ 4 and
x1, x2 ≥ 0.

Solution

Try various possibilities and test for satisfaction of the KKT conditions.

(i) For the unconstrained solution: solve ∇f(x) = 0, i.e. 2x1 −2 = 0,
8x2 + 8 = 0 giving x1 = 1; x2 = −1 which violates the second
non-negativity constraint.

(ii) Setting x2 = 0 results in x1 = 1 which violates the constraint
5x1 + 2x2 ≤ 4.

(iii) Similarly, setting x1 = 0 results in x2 = −1, which violates the
second non-negativity constraint.

(iv) Setting 5x1 + 2x2 = 4 active gives

L(x, λ) = x2
1 + 4x2

2 − 2x1 + 8x2 + λ(5x1 + 2x2 − 4)

with necessary conditions:

∂L

∂x1
= 2x1 − 2 + 5λ = 0

∂L

∂x2
= 8x2 + 8 + 2λ = 0

∂L

∂λ
= 5x1 + 2x2 − 4 = 0.

Solving gives λ = − 1
13 , x1 = 1.92 and x2 = −0.98 < 0, which also

violates a non-negativity constraint.

(v) Now setting x2 = 0 in addition to 5x1 + 2x2 − 4 = 0 results in an
additional term −λ2x2 in L giving

∂L

∂x1
= 2x1 − 2 + 5λ1 = 0 and

∂L

∂λ
= 8x2 + 8 + 2λ1 − λ2 = 0.
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Solving together with the equalities gives x1 = 4
5 ; x2 = 0 which

satisfies all the constraints and with λ1 = 2
25 > 0 and λ2 = 4

25 > 0.

(vi) Finally setting x1 = 0 and 5x1 + 2x2 − 4 = 0 leads to the solution
x1 = 0, x2 = 2 but with both associated λ’s negative.

Thus the solution corresponds to case (v) i.e.:

x1 = 4
5 , x2 = 0 with f∗ = −24

25 .

Problem 4.3.6.4

Minimize f(x) = 1
2x

TAx+bTx, A =
[

1 −1
−1 2

]
, b =

[ −2
1

]
such

that

x1, x2 ≥ 0
x1 + x2 ≤ 3

2x1 − x2 ≤ 4.

Solution

First determine the unconstrained minimum:

x0 = −A−1b = −
[

2 1
1 1

] [ −2
1

]
=

[
3
1

]

x1, x2 > 0, x1 + x2 = 3 + 1 = 4 > 3 (constraint violation), and
2x1 − x2 = 5 > 4 (constraint violation). Now consider the violated
constraints separately active.

Firstly for x1 + x2 − 3 = 0 the Lagrangian is

L(x, λ) = 1
2x

TAx + bTx + λ(x1 + x2 − 3)

with necessary conditions:
⎡
⎣ A 1

1
1 1 0

⎤
⎦

[
x
λ

]
=

⎡
⎣ 2

−1
3

⎤
⎦ , i.e.

⎡
⎣ 1 −1 1

−1 2 1
1 1 0

⎤
⎦

⎡
⎣ x1

x2
λ

⎤
⎦ =

⎡
⎣ 2

−1
3

⎤
⎦ .

The solution of which is given by Cramer’s rule:

x1 = D1
D = −12

−5 = 2.4, x2 = D2
D = −3

−5 = 0.6 and λ = D3
D = −1

−5 = 0.2.
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This solution, however violates the last inequality constraint.

Similarly, setting 2x1 −x2 −4 = 0 gives the solution

⎡
⎣ x1

x2

λ

⎤
⎦ =

⎡
⎣ 2.4

0.8
0.2

⎤
⎦,

which violates the first constraint.

Finally try both constraints simultaneously active. This results in a
system of four linear equations in four unknowns, the solution of which
(do self) is x1 = 21

3 , x2 = 2
3 and λ1 = λ2 = 0.11 > 0, which satisfies the

KKT conditions. Thus x∗ =
[
21
3 ,

2
3

]T with f(x∗) = 1.8.

4.3.7 Application of the gradient projection method

Problem 4.3.7.1

Apply the gradient projection method to the following problem:

minimize f(x) = x2
1 + x2

2 + x2
3 − 2x1

such that 2x1 + x2 + x3 = 7; x1 + x2 + 2x3 = 6 and given initial starting
point x0 = [2, 2, 1]T . Perform the minimization for the first projected
search direction only.

Solution

P =
(
I − AT (AAT )−1A

)
, A =

[
2 1 1
1 1 2

]
,

AAT =
[

6 5
5 6

]
,

(
AAT

)−1
= 1

11

[
6 −5

−5 6

]
,

(
AAT

)−1
A = 1

11

[
6 −5

−5 6

] [
2 1 1
1 1 2

]
= 1

11

[
7 1 −4

−4 1 7

]
,

AT
(
AAT

)−1
A = 1

11

⎡
⎣ 2 1

1 1
1 2

⎤
⎦

[
7 1 −4

−4 1 7

]
= 1

11

⎡
⎣ 10 3 −1

3 2 3
−1 3 10

⎤
⎦ .

It now follows that

P = 1
11

⎡
⎣ 1 −3 1

−3 9 −3
1 −3 1

⎤
⎦ and ∇f(x0) =

⎡
⎣ 2

4
2

⎤
⎦ .
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This gives the projected steepest descent direction as −P∇f=− 1
11

⎡
⎣−8

24
−8

⎤
⎦

and therefore select the descent search direction as u1 = [1, −3, 1]T .

Along the line through x0 in the direction u1, x is given by

x = x0 + λ

⎡
⎣ 1

−3
1

⎤
⎦ =

⎡
⎣ 2 + λ

2 − 3λ
1 + λ

⎤
⎦ and

f(x0 + λu) = F (λ) = (2 + λ)2 + (2 − 3λ)2 + (1 + λ)2 − 2(2 + λ).

For a minimum dF
dλ = 2(2 + λ) − 6(2 − 3λ) + 2(1 + λ) − 2 = 0, which

gives λ1 = 4
11 . Thus the next iterate is

x1 =
(
2 + 4

11 ; 2 − 12
11 ; 1 + 4

11

)T =
(
2 4
11 ;

10
11 ; 1

4
11

)T
.

Problem 4.3.7.2

Apply the gradient projection method to the minimization of

f(x) = x2
1 + x2

2 − 2x1 − 4x2 such that h(x) = x1 + 4x2 − 5 = 0

with starting point x0 = [1; 1]T .

Solution

The projection matrix is P = I − AT (AAT )−1A.

Here A = [1 4] and therefore

P =
[

1 0
0 1

]
−

[
1
4

](
[1 4]

[
1
4

])−1

[1 4] = 1
17

[
16 −4
−4 1

]
.

With ∇f(x0) =
[

2x0
1 − 2

2x0
2 − 4

]
=

[
0

−2

]
the search direction is

u1 = −P∇f(x0) = − 1
17

[
16 −4
−4 1

] [
0

−2

]
= − 1

17

[
8

−2

]

or more conveniently u1 =
[ −4

1

]
.



164 CHAPTER 4

Thus x = x0 + λu1 =
[

1 − 4λ
1 + λ

]
for the line search. Along the search

line

F (λ) = (1 − 4λ)2 + (1 + λ)2 − 2(1 − 4λ) + 4(1 + λ) = 17λ2 − 2λ − 4

with minimum occurring where dF
dλ = 34λ − 2 = 0, giving λ1 = 1

17 .

Thus x1 = x0 + 1
17u

1 =
[

1
1

]
+ 1

17

[ −4
1

]
=

[
0.7647
1.0588

]
.

Next, compute u2 = −P∇f(x1)=− 1
17

[
16 −4
−4 1

] [
0.4706
1.8824

]
=

[
0.0
0.0

]
.

Since the projected gradient equals 0, the point x1 is the optimum x∗,
with f(x∗) = −4.059.

4.3.8 Application of the augmented Lagrangian method

Problem 4.3.8.1

Minimize f(x) = 6x2
1 + 4x1x2 + 3x2

2 such that h(x) = x1 + x2 − 5 = 0,
by means of the augmented Lagrangian multiplier method.

Solution

Here L(x, λ, ρ) = 6x2
1 + 4x1x2 + 3x2

2 + λ(x1 + x2 − 5) + ρ(x1 + x2 − 5)2

with necessary conditions for a stationary point:

∂L
∂x1

= 0 ⇒ x1(12 + 2ρ) + x2(4 + 2ρ) = 10ρ − λ

∂L
∂x2

= 0 ⇒ x1(4 + 2ρ) + x2(6 + 2ρ) = 10ρ − λ.

With ρ = 1 the above become 14x1 + 6x2 = 10 − λ = 6x1 + 8x2 and it
follows that

x2 = 4x1 and x1 = 10−λ
38 .

The iterations now proceed as follows.

Iteration 1: λ1 = 0

x1 = 10
38 = 0.2632, x2 = 1.0526
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h = x1 + x2 − 5 = 0.2632 + 1.0526 − 5 = −3.6842

and for the next iteration

λ2 = λ1 + 2ρh = 0 + (2)(1)(−3.6842) = −7.3684.

Iteration 2:
x1 = 10−λ

38 = 10+7.3684
38 = 0.4571

and it follows that x2 = 1.8283 and thus h = 0.4571 + 1.8283 − 5 =
−2.7146 with the next multiplier value given by

λ3 = λ2 + (2)(1)h = −7.3684 + 2(−2.7146) = −12.7978.

Iteration 3:

Now increase ρ to 10; then x1 = 100−λ
128 and x2 = 4x1.

Thus x1 = 100+12.7978
128 = 0.8812 and x2 = 3.5249 with

λ4 = −12.7978 + 2(10)(−0.5939) = −24.675.

Iteration 4:

x1 = 100+24.675
128 = 0.9740, x2 = 3.8961 with λ5 = −27.27.

Iteration 5: Iteration 5 gives x1 = 0.9943, x2 = 3.9772 with λ6 = −27.84
and rapid convergence is obtained to the solution x∗ = [1, 4]T .

4.3.9 Application of the sequential quadratic program-
ming method

Problem 4.3.9.1

Minimize f(x) = 2x2
1 +2x2

2 − 2x1x2 − 4x1 − 6x2, such that h(x) = 2x2
1 −

x2 = 0 by means of the SQP method and starting point x0 = [0, 1]T .

Solution
Here L(x, λ) = f(x) + λh(x) and the necessary conditions for a station-
ary point are

∂L

∂x1
= 4x1 − 2x2 − 4 + λ4x1 = 0

∂L

∂x2
= 4x2 − 2x1 − 6 − λ = 0

h(x) = 2x2
1 − x2 = 0.
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This system of non-linear equations may be written in vector form as
c(X) = 0, where X = [x1, x2, λ]T . If an approximate solution (xk, λk)
to this system is available a possible improvement may be obtained by
solving the linearized system via Newton’s method:

[
∂c
∂x

]T [
x − xk

λ − λk

]
= −c(xk, λk),

where ∂c
∂x is the Jacobian of the system c.

In detail this linear system becomes
⎡
⎣ 4 −2 4x1

−2 4 −1
4x1 −1 0

⎤
⎦

⎡
⎣ x − xk

λ − λk

⎤
⎦ = −

⎡
⎣ c1

c2
c3

⎤
⎦

and for the approximation x0 = [0, 1]T and λ0 = 0, the system may be
written as ⎡

⎣ 4 −2 0
−2 4 −1

0 −1 0

⎤
⎦

⎡
⎣ s1

s2
Δλ

⎤
⎦ = −

⎡
⎣ −6

−2
−1

⎤
⎦

which has the solution s1 = 1, s2 = −1 and Δλ = −8. Thus after the
first iteration x1

1 = 0 + 1 = 1, x1
2 = 1 − 1 = 0 and λ1 = 0 − 8 = −8.

The above Newton step is equivalent to the solution of the following
quadratic programming (QP) problem set up at x0 = [0, 1]T with λ0 = 0
(see Section 3.5.3):

minimize F (s) = 1
2s

T

[
4 −2

−2 4

]
s+[−6 −2]s−4 such that s2+1 = 0.

Setting s2 = −1 gives F (s) = F (s1) = 2s21 − 4s1 − 2 with minimum at
s1 = 1. Thus after the first iteration x1

1 = s1 = 1 and x1
2 = s2 + 1 = 0,

giving x1 = [1, 0]T , which corresponds to the Newton step solution.

Here, in order to simplify the computation, λ is not updated. Con-
tinue by setting up the next QP: with f(x1) = −2; ∇f(x1) = [0, −8]T ;
h(x1) = 2; ∇h(x1) = [4, −1]T the QP becomes:

minimize F (s) =
1
2
sT

[
4 −2

−2 4

]
s + [0, −8]s − 2

= 2s21 − 2s1s2 + 2s22 − 8s2 − 2
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with constraint

h(s) = [4, −1]
[

s1
s2

]
+ 2 = 0

= 4s1 − s2 + 2 = 0.

Substituting s2 = 4s1+2 in F (s) results in the unconstrained minimiza-
tion of the single variable function:

F (s1) = 26s21 − 4s1 − 10.

Setting dF
ds1

= 52s1 − 4 = 0, gives s1 = 0.07692 and s2 = 2.30769. Thus
x2 = [1 + s1, 0 + s2] = [1.07692, 2.30769]T . Continuing in this manner
yields x3 = [1.06854, 2.2834]T and x4 = [1.06914, 2.28575]T , which repre-
sents rapid convergence to the exact optimum x∗ = [1.06904, 2.28569]T ,
with f(x∗) = −10.1428. Substituting x∗ into the necessary conditions
for a stationary point of L, gives the value of λ∗ = 1.00468.



Chapter 5

SOME BASIC
OPTIMIZATION
THEOREMS

5.1 Characterization of functions and minima

Theorem 5.1.1

If f(x) is a differentiable function over the convex set X ⊆ R
n then f(x)

is convex over X if and only if

f(x2) ≥ f(x1) + ∇T f(x1)(x2 − x1) (5.1)

for all x1, x2 ∈ X.

Proof

If f(x) is convex over X then by the definition (1.9), for all x1, x2 ∈ X
and for all λ ∈ (0, 1]

f(λx2 + (1 − λ)x1) ≤ λf(x2) + (1 − λ)f(x1) (5.2)

i.e.
f(x1 + λ(x2 − x1)) − f(x1)

λ
≤ f(x2) − f(x1). (5.3)
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Taking the limit as λ → 0 it follows that

df(x1)
dλ

∣
∣
∣
∣
x2−x1

≤ f(x2) − f(x1). (5.4)

The directional derivative on the left hand side may also, by (1.16) be
written as

df(x1)
dλ

∣
∣
∣
∣
x2−x1

= ∇T f(x)(x2 − x1). (5.5)

Substituting (5.5) into (5.4) gives f(x2) ≥ f(x1) + ∇T f(x1)(x2 − x1),
i.e. (5.1) is true.

Conversely, if (5.1) holds, then for x = λx2 + (1 − λ)x1 ∈ X, λ ∈ (0, 1]:

f(x2) ≥ f(x) + ∇T f(x)(x2 − x) (5.6)

f(x1) ≥ f(x) + ∇T f(x)(x1 − x). (5.7)

Multiplying (5.6) by λ and (5.7) by (1 − λ) and adding gives

λf(x2)+(1−λ)f(x1)−f(x) ≥ ∇T f(x)(λ(x2−x)+(1−λ)(x1−x)) = 0

since λ(x2 − x) + (1 − λ)(x1 − x) = 0 and it follows that

f(x) = f(λx2 + (1 − λ)x1) ≤ λf(x2) + (1 − λ)f(x1),

i.e. f(x) is convex and the theorem is proved. �

(Clearly if f(x) is to be strictly convex, the strict inequality > applies
in (5.1).)

Theorem 5.1.2

If f(x) ∈ C2 over an open convex set X ⊆ R
n, then f(x) is convex if

and only if H(x) is positive semi-definite for all x ∈ X.

Proof

If H(x) is positive semi-definite for all x ∈ X, then for all x1, x2 in X
it follows by the Taylor expansion (1.21) that

f(x2) = f(x1 + (x2 − x1)) = f(x1) + ∇T f(x1)(x2 − x1)
+ 1

2(x
2 − x1)TH(x̄)(x2 − x1)

(5.8)

http://dx.doi.org/10.1007/978-3-319-77586-9_1
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where x̄ = x1+θ(x2−x1)), θ ∈ [0, 1]. Since H(x) is positive semi-definite
it follows directly from (5.8) that f(x2) ≥ f(x1) + ∇T f(x1)(x2 − x1)
and therefore by Theorem 5.1.1 f(x) is convex.

Conversely if f(x) is convex, then from (5.1) for all x1, x2 in X

f(x2) ≥ f(x1) + ∇T f(x1)(x2 − x1). (5.9)

Also the Taylor expansion (5.8) above applies, and comparison of (5.8)
and (5.9) implies that

1
2
(x2 − x1)TH(x̄)(x2 − x1) ≥ 0. (5.10)

Clearly since (5.10) must apply for all x1, x2 in X and since x̄ is assumed
to vary continuously with x1, x2, (5.10) must be true for any x̄ in X, i.e.
H(x) is positive semi-definite for all x ∈ X, which concludes the proof.
�

Theorem 5.1.3

If f(x) ∈ C2 over an open convex set X ⊆ R
n, then if the Hessian matrix

H(x) is positive-definite for all x ∈ X, then f(x) is strictly convex over
X.

Proof

For any x1, x2 in X it follows by the Taylor expansion (1.21) that

f(x2) = f(x1 + (x2 − x1))

= f(x1) + ∇T f(x1)(x2 − x1) +
1
2
(x2 − x1)TH(x̄)(x2 − x1)

where x̄ = x1 + θ(x2 − x1), θ ∈ [0, 1]. Since H(x) is positive-definite it
follows directly that f(x2) > f(x1) + ∇T f(x1)(x2 − x1) and therefore
by Theorem 5.1.1 f(x) is strictly convex and the theorem is proved. �

Theorem 5.1.4

If f(x) ∈ C2 over the convex set X ⊆ R
n and f(x) is convex over X,

then any interior local minimum of f(x) is a global minimum.

Proof
If f(x) is convex then by (5.1):

f(x2) ≥ f(x1) + ∇T f(x1)(x2 − x1)

http://dx.doi.org/10.1007/978-3-319-77586-9_1
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for all x1, x2 ∈ X. In particular for any point x2 = x and in particular
x1 = x∗ an interior local minimum, it follows that

f(x) ≥ f(x∗) + ∇T f(x∗)(x − x∗).

Since the necessary condition ∇T f(x∗) = 0 applies at x∗, the above
reduces to f(x) ≥ f(x∗) and therefore x∗ is a global minimum. �

Theorem 5.1.5

More generally, let f(x) be strictly convex on the convex set X, but
f(x) not necessarily ∈ C2, then a strict local minimum is the global
minimum.

Proof

Let x0 be the strict local minimum in a δ-neighbourhood and x∗ the
global minimum, x0, x∗ ∈ X and assume that x0 �= x∗. Then there
exists an ε, 0 < ε < δ, with f(x) > f(x0) for all x such that ‖x−x0‖ < ε.

A convex combination of x0 and x∗ is given by

x̂ = λx∗ + (1 − λ)x0.

Note that if λ → 0 then x̂ → x0.

As f(x) is strictly convex it follows that

f(x̂) < λf(x∗) + (1 − λ)f(x0) ≤ f(x0) for all λ ∈ (0, 1).

In particular this holds for λ arbitrarily small and hence for λ such that
‖x̂(λ) − x0‖ < ε. But as x0 is the strict local minimum

f(x̂) > f(x0) for all x̂ with ‖x̂ − x0‖ < ε.

This contradicts the fact that

f(x̂) < f(x0)

that followed from the convexity and the assumption that x0 �= x∗. It
follows therefore that x0 ≡ x∗ which completes the proof. �
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5.2 Equality constrained problem

Theorem 5.2.1

In problem (3.5), let f and hj ∈ C1 and assume that the Jacobian matrix
[
∂h(x∗)

∂x

]

is of rank r. Then the necessary conditions for a interior local

minimum x∗ of the equality constrained problem (3.5) is that x∗ must
coincide with the stationary point (x∗, λ∗) of the Lagrange function L,
i.e. that there exits a λ∗ such that

∂L

∂xi
(x∗, λ∗) = 0, i = 1, 2, . . . , n;

∂L

∂λj
(x∗, λ∗) = 0, j = 1, 2, . . . , r.

Note: Here the elements of the Jacobian matrix are taken as
[
∂h
∂x

]

ij

=

∂hj

∂xi
, i.e.

[
∂h
∂x

]

= [∇h1, ∇h2, . . . ,∇hr].

Proof

Since f and hj ∈ C1, it follows for an interior local minimum at x = x∗,
that

df = ∇T f(x∗)dx = 0 (5.11)

since df ≥ 0 for dx and for −dx, for all perturbations dx which are
consistent with the constraints, i.e. for all dx such that

dhj = ∇T hj(x∗)dx = 0, j = 1, 2, . . . , r. (5.12)

Consider the Lagrange function

L(x, λ) = f(x) +
r∑

j=1

λjhj(x).

The differential of L is given by

dL = df +
r∑

j=1

λjdhj

and it follows from (5.11) and (5.12) that at x∗

dL =
∂L

∂x1
dx1 +

∂L

∂x2
dx2 + · · · +

∂L

∂xn
dxn = 0 (5.13)

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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for all dx such that h(x) = 0, i.e. h(x∗ + dx) = 0.

Choose Lagrange multipliers λj , j = 1, . . . , r such that at x∗

∂L

∂xj
(x∗, λ) =

∂f

∂xj
(x∗) +

[
∂h
∂xj

(x∗)
]T

λ = 0, j = 1, 2, . . . , r. (5.14)

The solution of this system provides the vector λ∗. Here the r variables,
xj , j = 1, 2, . . . , r, may be any appropriate set of r variables from the
set xi, i = 1, 2, . . . , n. A unique solution for λ∗ exists as it is assumed

that
[
∂h(x∗)

∂x

]

is of rank r. It follows that (5.13) can now be written as

dL =
∂L

∂xr+1
(x∗, λ∗)dxr+1 + · · · +

∂L

∂xn
(x∗, λ∗)dxn = 0. (5.15)

Again consider the constraints hj(x) = 0, j = 1, 2, . . . , r. If these equa-
tions are considered as a system of r equations in the unknowns x1,
x2, . . . , xr, these dependent unknowns can be solved for in terms of
xr+1, . . . , xn. Hence the latter n − r variables are the independent
variables. For any choice of these independent variables, the other
dependent variables x1, . . . , xr, are determined by solving h(x) =
[h1(x), h2(x), . . . , hr(x)]T = 0. In particular xr+1 to xn may by var-
ied one by one at x∗, and it follows from (5.15) that

∂L

∂xj
(x∗, λ∗) = 0, j = r + 1, . . . , n

and, together with (5.14) and the constraints h(x) = 0, it follows that
the necessary conditions for an interior local minimum can be written
as

∂L

∂xi
(x∗, λ∗) = 0, i = 1, 2, . . . , n

∂L

∂λj
(x∗, λ∗) = 0, j = 1, 2, . . . , r (5.16)

or
∇xL(x∗, λ∗) = 0 and ∇λL(x∗, λ∗) = 0.

�

Note that (5.16) provides n + r equations in the n + r unknowns x∗
1,

x∗
2, . . . , x∗

n, λ∗
1, . . . , λ∗

r . The solutions of these, in general non-linear,
equations will be candidate solutions for problem (3.5).

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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As a general rule, if possible, it is advantageous to solve explicitly for
any of the variables in the equality constraints in terms of the others, so
as to reduce the number of variables and constraints in (3.5).

Note on the existence of λ∗

Up to this point it has been assumed that λ∗ does indeed exist. In
Theorem 5.2.1 it is assumed that the equations

∂L

∂xj
(x∗, λ) = 0

apply for a certain appropriate set of r variables from the set xi, i =
1, 2, . . . , n. Thus λ may be solved for to find λ∗, via the linear system

∂f

∂xj
(x∗) +

[
∂h
∂xj

]T

λ = 0, j = 1, 2, . . . , r.

This system can be solved if there exists a r × r submatrix Hr ⊂ [
∂h
∂x

]∗
,

evaluated at x∗, such that Hr is non-singular. This is the same as
requiring that

[
∂h
∂x

]∗
be of rank r at the optimal point x∗. This result is

interesting and illuminating but, for obvious reasons, of little practical
value. It does, however, emphasise the fact that it may not be assumed
that multipliers will exist for every problem.

Theorem 5.2.2

If it is assumed that:

(i) f(x) has a bounded local minimum at x∗ (associated with this
minimum there exists a λ∗ found by solving (5.16)); and

(ii) if λ is chosen arbitrarily in the neighbourhood of λ∗ then L(x, λ)
has a local minimum x0 with respect to x in the neighbourhood
of x∗,

then for the classical equality constrained minimization problem (3.5),
the Lagrange function L(x, λ) has a saddle point at (x∗, λ∗). Note that
assumption (ii) implies that

∇xL(x0, λ) = 0

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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and that a local minimum may indeed be expected if the Hessian matrix
of L is positive-definite at (x∗, λ∗).

Proof

Consider the neighbourhood of (x∗, λ∗). As a consequence of assumption
(ii), applied with λ = λ∗ (x0 = x∗), it follows that

L(x, λ∗) ≥ L(x∗, λ∗) = f(x∗) = L(x∗, λ). (5.17)

The equality on the right holds as h(x∗) = 0. The relationship (5.17)
shows that L(x, λ) has a degenerate saddle point at (x∗, λ∗); for a regular
saddle point it holds that

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ).

�

Theorem 5.2.3

If the above assumptions (i) and (ii) in Theorem 5.2.2 hold, then it
follows for the bounded minimum x∗, that

f(x∗) = max
λ

(

min
x

L(x, λ)
)

.

Proof

From (ii) it is assumed that for a given λ the

min
x

L(x, λ) = h(λ) (the dual function)

exists, and in particular for λ = λ∗

min
x

L(x, λ∗) = h(λ∗) = f(x∗) (from (ii) x0 = x∗).

Let X denote the set of points such that h(x) = 0 for all x ∈ X. It
follows that

min
x∈X

L(x, λ) = min
x∈X

f(x) = f(x∗) = h(λ∗) (5.18)

and

h(λ) = min
x

L(x, λ) ≤ min
x∈X

L(x, λ) = min
x∈X

f(x) = f(x∗) = h(λ∗).

(5.19)
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Hence h(λ∗) is the maximum of h(λ). Combining (5.18) and (5.19)
yields that

f(x∗) = h(λ∗) = max
λ

h(λ) = max
λ

(

min
x

L(x, λ)
)

which completes the proof. �

5.3 Karush-Kuhn-Tucker theory

Theorem 5.3.1

In the problem (3.18) let f and gi ∈ C1, and given the existence of
the Lagrange multipliers λ∗, then the following conditions have to be
satisfied at the point x∗ that corresponds to the solution of the primal
problem (3.18):

∂f

∂xj
(x∗) +

m∑

i=1

λ∗
i

∂gi

∂xj
(x∗) = 0, j = 1, 2, . . . , n

gi(x∗) ≤ 0, i = 1, 2, . . . , m

λ∗
i gi(x∗) = 0, i = 1, 2, . . . , m (5.20)

λ∗
i ≥ 0, i = 1, 2, . . . , m

or in more compact notation:

∇xL(x∗, λ∗) = 0

∇λL(x∗, λ∗) ≤ 0

λ∗Tg(x∗) = 0
λ∗ ≥ 0.

These conditions are known as the Karush-Kuhn-Tucker (KKT) station-
ary conditions.

Proof

First convert the inequality constraints in (3.18) into equality constraints
by introducing the slack variables si:

gi(x) + si = 0, i = 1, 2, . . . , m (5.21)
si ≥ 0.

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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Define the corresponding Lagrange function

L(x, s, λ) = f(x) +
m∑

i=1

λi(gi(x) + si).

Assume that the solution to (3.18) with the constraints (5.21) is given
by x∗, s∗.

Now distinguish between the two possibilities:

(i) Let s∗
i > 0 for all i. In this case the problem is identical to the

interior minimization problem with equality constraints which is
solved using Lagrange multipliers. Here there are m additional
variables s1, s2, . . . , sm. Hence the necessary conditions for the
minimum are

∂L

∂xj
(x∗, s∗, λ∗) =

∂f

∂xj
(x∗) +

m∑

i=1

λ∗
i

∂gi

∂xj
(x∗) = 0, j = 1, . . . , n

∂L

∂si
(x∗, s∗, λ∗) = λ∗

i = 0, i = 1, . . . , m.

As s∗
i > 0, it also follows that gi(x∗) < 0 and with the fact that

λ∗
i = 0 this yields

λ∗
i gi(x∗) = 0.

Consequently all the conditions of the theorem hold for the case
s∗
i > 0 for all i.

(ii) Let s∗
i = 0 for i = 1, 2, . . . , p and s∗

i > 0 for i = p + 1, . . . , m.

In this case the solution may be considered to be the solution of
an equivalent minimization problem with the following equality
constraints:

gi(x) = 0, i = 1, 2, . . . , p

gi(x) + si = 0, i = p + 1, . . . , m.

Again apply the regular Lagrange theory and it follows that

∂L

∂xj
(x∗, s∗, λ∗) =

∂f

∂xj
(x∗) +

m∑

i=1

λ∗
i

∂gi

∂xj
(x∗) = 0, j = 1, . . . , n

∂L

∂si
(x∗, s∗, λ∗) = λ∗

i = 0, i = p + 1, . . . , m.

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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As gi(x∗) = 0 for i = 1, 2, . . . , p it follows that

λ∗
i gi(x∗) = 0, i = 1, 2, . . . , m.

Obviously
gi(x∗) < 0, i = p + 1, . . . , m

and since gi(x∗) = 0 for i = 1, 2, . . . , p it follows that

gi(x∗) ≤ 0, i = 1, 2, . . . , m.

However, no information concerning λ∗
i , i = 1, . . . , p is available.

This information is obtain from the following additional argument.

Consider feasible changes from x∗, s∗ in all the variables x1, . . . ,
xn, s1, . . . , sm. Again consider m of these as dependent vari-
ables and the remaining n as independent variables. If p ≤ n then
s1, s2, . . . , sp can always be included in the set of independent vari-
ables. (Find λ∗ by putting the partial derivatives of L at x∗, s∗

with respect to the dependent variables, equal to zero and solving
for λ∗.)

As dsi > 0 (s∗
i = 0) must apply for feasible changes in the indepen-

dent variables s1, s2, . . . , sp, it follows that in general for changes
which are consistent with the equality constraints, that

df ≥ 0, (See Remark 2 below.)

for changes involving s1, . . . , sp. Thus if these independent vari-
ables are varied one at a time then, since all the partial derivatives
of L with respect to the dependent variables must be equal to zero,
that

df =
∂L

∂si
(x∗, λ∗)dsi = λ∗

i dsi ≥ 0, i = 1, 2, . . . , p.

As dsi > 0 it follows that λi ≥ 0, i = 1, 2, . . . , p. Thus, since it has
already been proved that λ∗

i = 0, i = p + 1, . . . , m, it follows that
indeed λ∗

i ≥ 0, i = 1, 2, . . . , m.

This completes the proof of the theorem. �

Remark 1 Obviously, if an equality constraint hk(x) = 0 is also pre-
scribed explicitly, then sk does not exist and nothing is known of the

sign of λ∗
k as

∂L

∂sk
does not exist.
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Exercise Give a brief outline of how you will obtain the necessary
conditions if the equality constraints hj(x) = 0, j = 1, 2, . . . , r are added
explicitly and L is defined by L = f + λTg + μTh.

Remark 2 The constraints (5.21) imply that for a feasible change
dsi > 0 there will be a change dx from x∗ and hence

df = ∇T fdx ≥ 0.

If the condition dsi > 0 does not apply, then a negative change dsi < 0,
equal in magnitude to the positive change considered above, would result
in a corresponding change −dx and hence df = ∇T f(−dx) ≥ 0, i.e.
df = ∇T fdx ≤ 0. This is only possible if ∇T fdx = 0, and consequently
in this case df = 0.

Remark 3 It can be shown (not proved here) that the KKT sta-
tionary conditions are indeed necessary and sufficient conditions for a
strong constrained global minimum at x∗, if f(x) and gi(x) are convex
functions. This is not surprising because for a convex function, a local
unconstrained minimum is also the global minimum.

Remark 4 Also note that if p > n (see possibility (ii) of the proof)
then it does not necessarily follow that λi ≥ 0 for i = 1, 2, . . . , p, i.e. the
KKT conditions do not necessarily apply.

5.4 Saddle point conditions

Two drawbacks of the Kuhn-Tucker stationary conditions are that in
general they only yield necessary conditions and that they apply only if
f(x) and the gi(x) are differentiable. These drawbacks can be removed
by formulating the Karush-Kuhn-Tucker conditions in terms of the sad-
dle point properties of L(x, λ). This is done in the next two theorems.

Theorem 5.4.1

A point (x∗, λ∗) with λ∗ ≥ 0 is a saddle point of the Lagrange function
of the primal problem (3.18) if and only if the following conditions hold:

1. x∗ minimizes L(x, λ∗) over all x;

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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2. gi(x∗) ≤ 0, i = 1, 2, . . . , m;

3. λ∗
i gi(x∗) = 0, i = 1, 2, . . . , m.

Proof

If (x∗, λ∗) is a saddle point, then L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗). First
prove that if (x∗, λ∗) is a saddle point with λ∗ ≥ 0, then conditions 1.
to 3. hold.

The right hand side of the above inequality yields directly that x∗ min-
imizes L(x, λ∗) over all x and the first condition is satisfied.

By expanding the left hand side:

f(x∗) +
m∑

i=1

λigi(x∗) ≤ f(x∗) +
m∑

i=1

λ∗
i gi(x∗)

and hence
r∑

i=1

(λi − λ∗
i )gi(x∗) ≤ 0 for all λ ≥ 0.

Assume that gi(x∗) > 0. Then a contradiction is obtain for arbitrarily
large λi, and it follows that the second condition, gi(x∗) ≤ 0, holds.

In particular for λ = 0 it follows that

m∑

i=1

−λ∗
i gi(x∗) ≤ 0 or

m∑

i=1

λ∗
i gi(x∗) ≥ 0.

But for λ∗ ≥ 0 and gi(x∗) ≤ 0 it follows that

m∑

i=1

λ∗
i gi(x∗) ≤ 0.

The only way both inequalities can be satisfied is if

m∑

i=1

λ∗
i gi(x∗) = 0

and as each individual term is non positive the third condition,
λ∗

i gi(x∗) = 0, follows.
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Now proceed to prove the converse, i.e. that if the three conditions of
the theorem hold, then L(x∗, λ∗) has a saddle point at (x∗, λ∗).

The first condition implies that L(x∗, λ∗) ≤ L(x, λ∗) which is half of the
definition of a saddle point. The rest is obtained from the expansion:

L(x∗, λ) = f(x∗) +
m∑

i=1

λigi(x∗).

Now as g(x∗) ≤ 0 and λ ≥ 0 it follows that L(x∗, λ) ≤ f(x∗) =

L(x∗, λ∗) since, from the third condition,
m∑

i=1

λ∗
i gi(x∗) = 0.

This completes the proof of the converse. �

Theorem 5.4.2

If the point (x∗, λ∗) is a saddle point, λ∗ ≥ 0, of the Lagrange function
associated with the primal problem, then x∗ is the solution of the primal
problem.

Proof

If (x∗, λ∗) is a saddle point the previous theorem holds and the inequality
constraints are satisfied at x∗. All that is required additionally is to show
that f(x∗) ≤ f(x) for all x such that g(x) ≤ 0. From the definition of
a saddle point it follows that

f(x∗) +
m∑

i=1

λ∗
i gi(x∗) ≤ f(x) +

m∑

i=1

λ∗
i gi(x)

for all x in the neighbourhood of x∗. As a consequence of condition 3.
of the previous theorem, the left hand side is f(x∗) and for any x such

that gi(x) ≤ 0, it holds that
m∑

i=1

λ∗
i gi(x) ≤ 0 and hence it follows that

f(x∗) ≤ f(x) for all x such that g(x) ≤ 0, with equality at x = x∗.

This completes the proof. �

The main advantage of these saddle point theorems is that necessary
conditions are provided for solving optimization problems which are nei-
ther convex nor differentiable. Any direct search method can be used
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to minimize L(x, λ∗) over all x. Of course the problem remains that we
do not have an a priori value for λ∗. In practice it is possible to obtain
estimates for λ∗ using iterative techniques, or by solving the so called
dual problem.

Theorem 5.4.3

The dual function h(λ) ≤ f(x) for all x that satisfy the constraints
g(x) ≤ 0 for all λ ∈ D. (Hence the dual function yields a lower bound
for the function f(x) with g(x) ≤ 0.)

Proof

Let X = {x|g(x) ≤ 0}, then

h(λ) = min
x

L(x, λ), λ ∈ D

≤ min
x∈X

L(x, λ)

≤ f(x) +
m∑

i=1

λigi(x), x ∈ X

≤ f(x), x ∈ X, λ ∈ D.

�

The largest lower bound is attained at maxh(λ), λ ∈ D.

Theorem 5.4.4 (Duality Theorem)

The point (x∗, λ∗) with λ∗ ≥ 0 is a saddle point of the Lagrange function
of the primal problem if and only if

1. x∗ is a solution of the primal problem;

2. λ∗ is a solution of the dual problem;

3. f(x∗) = h(λ∗).

Proof

First assume that L(x, λ) has a saddle point at (x∗, λ∗) with λ∗ ≥ 0.
Then from Theorem 5.4.2 it follows that x∗ is a solution of the primal
problem and 1. holds.
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By definition:
h(λ) = min

x
L(x, λ).

From Theorem 5.4.1 it follows that x∗ minimizes L(x, λ∗) over all x,
thus

h(λ∗) = f(x∗) +
m∑

i=1

λ∗
i gi(x∗)

and as λ∗
i gi(x∗) = 0 it follows that

h(λ∗) = f(x∗)

which is condition 3.

Also by Theorem 5.4.1 g(x∗) ≤ 0, and it has already been shown in
Theorem 5.4.3 that

h(λ) ≤ f(x) for all x ∈ {x|g(x) ≤ 0}
and thus in particular h(λ) ≤ f(x∗) = h(λ∗). Consequently h(λ∗) =
max
λ∈D

h(λ) and condition 2. holds.

Conversely, prove that if conditions 1. to 3. hold, then L(x, λ) has a
saddle point at (x∗, λ∗), with λ∗ ≥ 0, or equivalently that the conditions
of Theorem 5.4.1 hold.

As x∗ is a solution of the primal problem, the necessary conditions

g(x∗) ≤ 0

hold, which is condition 2. of Theorem 5.4.1.

Also, as λ∗ is a solution of the dual problem, λ∗ ≥ 0. It is now shown
that x∗ minimizes L(x, λ∗).

Make the contradictory assumption, i.e. that there exists a point x̂ �= x∗

such that
L(x̂, λ∗) < L(x∗, λ∗).

By definition:

h(λ∗) = L(x̂, λ∗) = f(x̂) +
m∑

i=1

λ∗
i gi(x̂)

< f(x∗) +
m∑

i=1

λ∗
i gi(x∗)
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but from condition 3.: h(λ∗) = f(x∗) and consequently
m∑

i=1

λ∗
i gi(x∗) > 0

which contradicts the fact that λ∗ ≥ 0 and g(x∗) ≤ 0; hence x̂ = x∗

and x∗ minimizes L(x, λ∗) and condition 1. of Theorem 5.4.1 holds.

Also, as

h(λ∗) = f(x∗) +
m∑

i=1

λ∗
i gi(x∗)

and h(λ∗) = f(x∗) by condition 3., it follows that:
m∑

i=1

λ∗
i gi(x∗) = 0.

As each individual term is non positive the third condition of Theorem
5.4.1 holds: λ∗

i gi(x∗) = 0.

As the three conditions of Theorem 5.4.1 are satisfied it is concluded
that (x∗, λ∗) is a saddle point of L(x, λ) and the converse is proved. �

5.5 Conjugate gradient methods

Let u and v be two non-zero vectors in R
n. Then they are mutually

orthogonal if uTv = (u,v) = 0. Let A be an n × n symmetric positive-
definite matrix. Then u and v are mutually conjugate with respect to
A if u and Av are mutually orthogonal, i.e.

uTAv = (u,Av) = 0. (5.22)

Let A be a square matrix. A has an eigenvalue λ and an associated
eigenvector x if for x �= 0, Ax = λx. It can be shown that if A is
positive-definite and symmetric and x and y are distinct eigenvectors,
then they are mutually orthogonal, i.e.

(x,y) = 0 = (y,x).

Since (y,Ax) = (y, λx) = λ(y,x) = 0, it follows that the eigenvectors
of a positive-definite matrix A are mutually conjugate with respect to
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A. Hence, given positive-definite matrix A , there exists at least one
pair of mutually conjugate directions with respect to this matrix. It is
now shown that a set of mutually conjugate vectors in R

n forms a basis
and thus spans R

n.

Theorem 5.5.1

Let ui, i = 1, 2, . . . , n be a set of vectors in R
n which are mutually

conjugate with respect to a given symmetric positive-definite matrix A.
Then for each x ∈ R

n it holds that

x =
n∑

i=1

λiui where λi =
(ui,Ax)
(ui,Aui)

.

Proof

Consider the linear combination
∑n

i=1 αiui = 0. Then

A
(∑n

i=1 αiui
)

=
∑n

i=1 αiAui = 0.

Since the vectors ui are mutually conjugate with respect to A it follows
that

(uk,A(
∑n

i=1 αiui)) = αk(uk,Auk) = 0.

Since A is positive-definite and uk �= 0 it follows that
(

uk,Auk
) �= 0,

and thus αk = 0, k = 1, 2, . . . , n. The set ui, i = 1, 2, . . . , n thus forms
a linear independent set of vectors in R

n which may be used as a basis.
Thus for any x in R

n there exists a unique set λi, i = 1, 2, . . . , n such
that

x =
n∑

i=1

λiui. (5.23)

Now since the ui are mutually conjugate with respect to A it follows
that (ui,Ax) = (λiui,Aui) giving

λi =
(ui,Ax)
(ui,Aui)

(5.24)

which completes the proof. �

The following lemma is required in order to show that the Fletcher-
Reeves directions given by u1 = −∇f(x0) and formulae (2.14) and
(2.15) are mutually conjugate. For convenience here and in what follows,

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2


SOME THEOREMS 187

we also use the notation gk ≡ ∇f(xk) for the gradient vector. Here g
should not be confused with the inequality constraint vector function
used elsewhere.

Lemma 5.5.2

Let u1, u2, . . . , un be mutually conjugate directions with respect to A
along an optimal descent path applied to f(x) given by (2.9). Then

(uk,gi) = 0, k = 1, 2, . . . , i; 1 ≤ i ≤ n.

Proof

For optimal decrease at step k it is required that

(uk, ∇f(xk)) = 0, k = 1, 2, . . . , i.

Also

∇f(xi) = Axi + b

=

⎛

⎝Axk + A
i∑

j=k+1

λjuj

⎞

⎠ + b

= ∇f(xk) +
i∑

j=k+1

λj(Auj)

and thus

(uk, ∇f(xi)) = (uk, ∇f(xk)) +
i∑

j=k+1

λj(uk,Auj) = 0

which completes the proof. �

Theorem 5.5.3

The directions ui, i = 1, 2, . . . , n of the Fletcher-Reeves algorithm given
in Section 2.3.2.4 are mutually conjugate with respect to A of f(x) given
by (2.9).

Proof

The proof is by induction.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
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First, u1 and u2 are mutually conjugate:

(u2,Au1) = −
(

(g1 + β1g0),A(x1 − x0) 1
λ1

)

= −
(

(g1 + β1g0), (g1 − g0) 1
λ1

)

= − 1
λ1

(‖g1‖2 − β1‖g0‖2)

= 0.

Now assume that u1, u2, . . . , ui are mutually conjugate, i.e.

(uk,Auj) = 0, k �= j, k, j ≤ i.

It is now required to prove that (uk,Aui+1) = 0 for k = 1, 2, . . . , i.

First consider −(gk,gi) for k = 1, 2, . . . , i − 1:

−(gk,gi) = (−gk + βkuk,gi) from Lemma 5.5.2
= (uk+1,gi) = 0 also from Lemma 5.5.2.

Hence
(gk,gi) = 0, k = 1, 2, . . . , i − 1. (5.25)

Now consider (uk,Aui+1) for k = 1, 2, . . . , i − 1:

(uk,Aui+1) = −(uk,Agi − βiAui)
= −(uk,Agi) from the induction assumption
= −(gi,Auk)

= −
(

gi,A
xk − xk−1

λk

)

= − 1
λk

(gi,gk − gk−1) = 0 from (5.25).

Hence
(uk,Aui+1) = 0, k = 1, 2, . . . , i − 1. (5.26)

All that remains is to prove that (ui,Aui+1) = 0 which implies a βi

such that
(ui,A(−gi + βiui)) = 0,

i.e.
−(ui,Agi) + βi(ui,Aui) = 0
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or

βi =
(gi,Aui)
(ui,Aui)

. (5.27)

Now

(gi,Aui) = 1
λi

(gi, (Axi − xi−1))

= 1
λi

(gi,gi − gi−1)

= 1
λi

‖gi‖2

and

(ui,Aui) = 1
λi

(ui,A(xi − xi−1))

= 1
λi

(ui,gi − gi−1)

= − 1
λi

(ui,gi−1) from Lemma 5.5.2

= − 1
λi

(−gi−1 + βi−1ui−1,gi−1)

= 1
λi

‖gi−1‖2.

Thus from (5.27) it is required that βi =
‖gi‖2

‖gi−1‖2 which agrees with the

value prescribed by the Fletcher-Reeves algorithm. Consequently

(ui,Aui+1) = 0.

Combining this result with (5.26) completes the proof. �

5.6 DFP method

The following two theorems concern the DFP algorithm. The first the-
orem shows that it is a descent method.

Theorem 5.6.1

If Gi is positive-definite and Gi+1 is calculated using (2.18) then Gi+1

is also positive-definite.

Proof
If Gi is positive-definite and symmetric then there exists a matrix Fi

such that FT
i Fi = Gi, and

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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(x,Gi+1x) = (x,Gix) +
(vj ,x)2

(yj ,vj)
− (x,Giyj)2

(yj ,Giyj)
, j = i + 1

=
(pi,pi)(qi,qi) − (pi,qi)2

(qi,qi)
+

(vj ,x)2

(yj ,vj)

where pi = Fix and qi = Fiyj .

If x �= θyj for some scalar θ, it follows from the Schwartz inequality that
the first term is strictly positive.

For the second term it holds for the denominator that

(yj ,vj) = (gj − gj−1,vj)
= −(gj−1,vj)
= λj(gj−1,Gj−1gj−1)
= λi+1(gi,Gigi) > 0 (λi+1 > 0 and Gi positive-definite)

and hence if x �= θyj the second term is non-negative and the right hand
side is strictly positive.

Else, if x = θyj , the first term is zero and we only have to consider the
second term:

(vj ,x)2

(yj ,vj)
=

θ2(yj ,vj)2

(yj ,vj)
= θ2(yj ,vj)
= λi+1θ

2(gi,Gigi) > 0.

This completes the proof. �

The theorem above is important as it guarantees descent.

For any search direction uk+1:

df

dλ
(xk + λuk+1) = gkTuk+1.

For the DFP method, uk+1 = −Gkgk and hence at xk(λ = 0):

df

dλ
= −gkTGkgk.



SOME THEOREMS 191

Consequently, if Gk is positive-definite, descent is guaranteed at xk, for
gk �= 0.

Theorem 5.6.2

If the DFP method is applied to a quadratic function of the form given
by (2.9), then the following holds:

(i) (vi,Avj) = 0, 1 ≤ i < j ≤ k, k = 2, 3, . . . , n

(ii) GkAvi = vi, 1 ≤ i ≤ k, k = 1, 2, . . . , n

where the vectors that occur in the DFP algorithm (see Section 2.4.2.1)
are defined by:

xi+1 = xi + λi+1ui+1, i = 0, 1, 2, . . .

ui+1 = −Gigi

vi+1 = λi+1ui+1

yi+1 = gi+1 − gi.

Proof

The proof is by induction. The most important part of the proof, the
induction step, is presented. (Prove the initial step yourself. Property
(ii) will hold for k = 1 if G1Av1 = v1. Show this by direct substitution.
The first case (v1,Av2) = 0 in (i) corresponds to k = 2 and follows from
the fact that (ii) holds for k = 1. That (ii) also holds for k = 2, follows
from the second part of the induction proof given below.)

Assume that (i) and (ii) hold for k. Then it is required to show that
they also hold for k + 1.

First part: proof that (i) is true for k + 1. For the quadratic function:

gk = b + Axk = b + Axi + A
k∑

j=i+1

vj .

Now consider:

(vi,gk) = (vi,gi) +
k∑

j=i+1

(vi,Avj) = 0, 1 ≤ i ≤ k.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
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The first term on the right is zero from the optimal descent property
and the second term as a consequence of the induction assumption that
(i) holds for k.

Consequently, with vk+1 = λk+1uk+1 = −λk+1Gkgk it follows that

(vi,Avk+1) = −λk+1(vi,AGkgk) = −λk+1(GkAvi,gk), λk+1 > 0.

Hence
(vi,Avk+1) = −λk+1(vi,gk) = 0

as a consequence of the induction assumption (ii) and the result above.

Hence with (vi,Avk+1) = 0, property (i) holds for k + 1.

Second part: proof that (ii) holds for k + 1. Furthermore

(yk+1,GkAvi) = (yk+1,vi) for i ≤ k from assumption (ii)
= (gk+1 − gk,vi)
= (A(xk+1 − xk),vi)
= (Avk+1,vi)
= (vi,Avk+1) = 0 from the first part.

Using the update formula, it follows that

Gk+1Avi = GkAvi +
vk+1(vk+1)TAvi

(vk+1)Tvk+1
− (Gkyk+1)(Gkyk+1)TAvi

(yk+1)TGkyk+1

= GkAvi (because (vi,Avk+1) = 0, (yk+1,GkAvi) = 0)
= vi for i ≤ k from assumption (ii).

It is still required to show that Gk+1Avk+1 = vk+1. This can be done,
as for the initial step where it was shown that G1Av1 = v1, by direct
substitution. �

Thus it was shown that vk, k = 1, . . . , n are mutually conjugate with
respect to A and therefore they are linearly independent and form a basis
for Rn. Consequently the DFP method is quadratically terminating with
gn = 0. Property (ii) also implies that Gn = A−1.

A final interesting result is the following theorem.
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Theorem 5.6.3
If the DFP method is applied to f(x) given by (2.9),
then

A−1 =
n∑

i=1

Ai.

Proof

In the previous proof it was shown that the vi vectors , i = 1, 2, . . . , n,
are mutually conjugate with respect to A. They therefore form a basis
in R

n. Also

Ai =
viviT

viTyi
=

viviT

viT (gi − gi−1)
=

viviT

viTAvi
.

Let

B =
n∑

i=1

Ai =
n∑

i=1

viviT

viTAvi
.

Then

BAx =
n∑

i=1

viviT

viTAvi
Ax =

n∑

i=1

viTAx
viTAvi

vi = x

as a consequence of Theorem 5.5.1.

This result holds for arbitrary x ∈ R
n and hence BA = I where I is the

identity matrix, and it follows that

B =
n∑

i=1

Ai = A−1.

�

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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Gradient-based algorithms



Chapter 6

NEW GRADIENT-BASED
TRAJECTORY AND
APPROXIMATION
METHODS

6.1 Introduction

6.1.1 Why new algorithms?

In spite of the mathematical sophistication of classical gradient-based
algorithms, certain inhibiting difficulties remain when these algorithms
are applied to real-world problems. This is particularly true in the field
of engineering, where unique difficulties occur that have prevented the
general application of gradient-based mathematical optimization tech-
niques to design problems.

Optimization difficulties that arise are:

(i) the functions are often very expensive to evaluate, requiring, for
example, the time-consuming finite element analysis of a struc-
ture, the simulation of the dynamics of a multi-body system, or a

© Springer International Publishing AG, part of Springer Nature 2018
J.A. Snyman and D.N. Wilke, Practical Mathematical Optimization,
Springer Optimization and Its Applications 133,
https://doi.org/10.1007/978-3-319-77586-9 6
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computational fluid dynamics (CFD) simulation,

(ii) the existence of noise, numerical or experimental, in the functions,

(iii) the presence of discontinuities in the functions,

(iv) multiple local minima, requiring global optimization techniques,

(v) the existence of regions in the design space where the functions
are not defined, and

(vi) the occurrence of an extremely large number of design variables,
disqualifying, for example, the SQP method.

6.1.2 Research at the University of Pretoria

All the above difficulties have been addressed in research done at the
University of Pretoria over the past twenty years. This research has led
to, amongst others, the development of the new optimization algorithms
and methods listed in the subsections below.

6.1.2.1 Unconstrained optimization

(i) The leap-frog dynamic trajectory method: LFOP (Snyman 1982,
1983),

(ii) a conjugate-gradient method with Euler-trapezium steps in which
a novel gradient-only line search method is used: ETOP (Snyman
1985), and

(iii) a steepest-descent method applied to successive spherical quadratic
approximations: SQSD (Snyman and Hay 2001).

6.1.2.2 Direct constrained optimization

(i) The leap-frog method for constrained optimization, LFOPC (Sny-
man 2000), and

(ii) the conjugate-gradient method with Euler-trapezium steps and
gradient-only line searches, applied to penalty function formula-
tions of constrained problems: ETOPC (Snyman 2005).
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6.1.2.3 Approximation methods

(i) A feasible descent cone method applied to successive spherical
quadratic sub-problems: FDC-SAM(Stander and Snyman1993; Sny-
man and Stander 1994, 1996; De Klerk and Snyman 1994), and

(ii) the leap-frog method (LFOPC) applied to successive spherical
quadratic sub-problems: Dynamic-Q (Snyman et al. 1994; Snyman
and Hay 2002).

6.1.2.4 Methods for global unconstrained optimization

(i) A multi-start global minimization algorithm with dynamic search
trajectories: SF-GLOB (Snyman and Fatti 1987), and

(ii) a modified bouncing ball trajectory method for global optimization:
MBB (Groenwold and Snyman 2002).

All of the above methods developed at the University of Pretoria are
gradient-based, and have the common and unique property, for gradient-
based methods, that no explicit objective function line searches are
required.

In this chapter the LFOP/C unconstrained and constrained algorithms
are discussed in detail. This is followed by the presentation of the SQSD
method, which serves as an introduction to the Dynamic-Q approxima-
tion method. Next the ETOP/C algorithms are introduced, with special
reference to their ability to deal with the presence of severe noise in the
objective function, through the use of a gradient-only line search tech-
nique. Finally the SF-GLOB and MBB stochastic global optimization
algorithms, which use dynamic search trajectories, are presented and
discussed.

6.2 The dynamic trajectory optimization
method

The dynamic trajectory method for unconstrained minimization (Sny-
man 1982, 1983) is also known as the “leap-frog” method. It has been
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modified (Snyman 2000) to handle constraints via a penalty function
formulation of the constrained problem. The outstanding characteris-
tics of the basic method are:

(i) it uses only function gradient information ∇f ,

(ii) no explicit line searches are performed,

(iii) it is extremely robust, handling steep valleys, and discontinuities
and noise in the objective function and its gradient vector, with
relative ease,

(iv) the algorithm seeks relatively low local minima and can therefore
be used as the basic component in a methodology for global opti-
mization, and

(v) when applied to smooth and near quadratic functions, it is not as
efficient as classical methods.

6.2.1 Basic dynamic model

Assume a particle of unit mass in a n-dimensional conservative force field
with potential energy at x given by f(x), then at x the force (acceleration
a) on the particle is given by:

a = ẍ = −∇f(x) (6.1)

from which it follows that for the motion of the particle over the time
interval [0, t]:

1
2‖ẋ(t)‖2 − 1

2‖ẋ(0)‖2 = f(x(0)) − f(x(t)) (6.2)

or
T (t) − T (0) = f(0) − f(t) (6.3)

where T (t) represents the kinetic energy of the particle at time t. Thus
it follows that

f(t) + T (t) = constant (6.4)

i.e. conservation of energy along the trajectory. Note that along the
particle trajectory the change in the function f , Δf = −ΔT , and there-
fore, as long as T increases, f decreases. This is the underlying principle
on which the dynamic leap-frog optimization algorithm is based.
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6.2.2 Basic algorithm for unconstrained problems
(LFOP)

The basic elements of the LFOP method are as listed in Algorithm 6.1.
A detailed flow chart of the basic LFOP algorithm for unconstrained
problems is given in Figure 6.1.

Algorithm 6.1 LFOP algorithm

1. Given f(x) and starting point x(0) = x0, compute the dynamic
trajectory of the particle by solving the initial value problem:

ẍ(t) = − ∇f(x(t))

with ẋ(0) = 0; and x(0) = x0. (6.5)

2. Monitor v(t) = ẋ(t), clearly as long as T = 1
2‖v(t)‖2 increases,

f(x(t)) decreases as desired.

3. When ‖v(t)‖ decreases, i.e. when the particle moves uphill, apply
some interfering strategy to gradually extract energy from the par-
ticle so as to increase the likelihood of its descent, but not so that
descent occurs immediately.

4. In practice the numerical integration of the initial value prob-
lem (6.5) is done by the “leap-frog” method: compute for k =
0, 1, 2, . . . , and given time step Δt:

xk+1 = xk + vkΔt

vk+1 = vk + ak+1Δt

where
ak = −∇f(xk) and v0 = 1

2a
0Δt,

to ensure an initial step if a0 �= 0.

A typical interfering strategy is to continue the trajectory when
‖vk+1‖ ≥ ‖vk‖, otherwise set vk = 1

4(vk+1 + vk), xk+1 = 1
2(xk+1 + xk)

to compute the new vk+1 and then continue.
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In addition, Snyman (1982, 1983) introduced additional heuristics to
determine a suitable initial time step Δt, to allow for the magnification
and reduction of Δt, and to control the magnitude of the step Δx =
xk+1 − xk by setting a step size limit δ along the computed trajectory.
The recommended magnitude of δ is δ ≈ 1

10

√
n × (maximum variable

range).

6.2.3 Modification for constrained problems (LFOPC)

The code LFOPC (Snyman 2000) applies the unconstrained optimiza-
tion algorithm LFOP to a penalty function formulation of the con-
strained problem (see Section 3.1) in 3 phases (see Algorithm 6.2).

Algorithm 6.2 LFOPC algorithm

Phase 0:
Given some x0, then with overall penalty parameter ρ = ρ0, apply LFOP
to the penalty function P (x, ρ0) to give x∗(ρ0).
Phase 1:
With x0 := x∗(ρ0) and ρ := ρ1, where ρ1 � ρ0, apply LFOP to P (x, ρ1)
to give x∗(ρ1) and identify the set of active constraints Ia, such that
gia(x∗(ρ1)) > 0 for ia ∈ Ia.
Phase 2:
With x0 := x∗(ρ1) use LFOP to minimize

Pa(x, ρ1) =
r∑

i=1

ρ1h
2
i (x) +

∑

ia∈Ia

ρ1g
2
ia(x)

to give x∗.

For engineering problems (with convergence tolerance εx = 10−4) the
choice ρ0 = 10 and ρ1 = 100 is recommended. For extreme accuracy
(εx = 10−8), use ρ0 = 100 and ρ1 = 104.

6.2.3.1 Example

Minimize f(x) = x2
1+2x2

2 suchthatg(x) = −x1−x2+1 ≤ 0withstarting
point x0 = [3, 1]T by means of the LFOPC algorithm. Use ρ0 = 1.0 and
ρ1 = 10.0. The computed solution is depicted in Figure 6.2.

http://dx.doi.org/10.1007/978-3-319-77586-9_3
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ix = 0

Δt = Δt/2
id = 0

vk+1 = 0
k = k + 1
ixm = 1

ix = ix + 1
xk+2 = (xk+1 + xk)/2

vk+1 > vk

ak+1ak > 0

id > idm

is = is + 1
p = 1

x∗ = xk+1ak+1 εg

xk+1 − xk < εx

k > kmax

vk+1 = vk + ak+1Δt
ak+1 = −∇f(xk+1)

is = 0

ix ≤ ixm

x0, δ, kmax
εx, εg

ix = 0 ixm = 2
is = 0 ism = 3
id = 0 idm = 5

p = 1 k = −1
δt = 0.001

k = k + 1
Δxk = vk Δt

Δxk < δ

id = id + 1

vk = δvk
Δt vk

r = 1 − 80εx/δ
vk = (vk + rvk−1)/4
xk = (xk + xk−1)/2

Δt = Δt/2
is = 0

p = p + δt

id = 0

Δt = pΔt

a0 = −∇f(x0)

v0 = a0Δt

Δt = δ
5 ∇f(x0)

xk+1 = xk + vkΔt

vk+1 = (vk+1 + vk)/4
k = k + 1

is < ism

yes

yes

yes

yes

yes

yes

yes

yes

yes

Figure 6.1: Flowchart of the LFOP unconstrained minimization algo-
rithm
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Figure 6.2: The (a) complete LFOPC trajectory for example problem
6.2.3.1, with x0 = [3, 1]T , and magnified views of the final part of the
trajectory shown in (b) and (c), giving x∗ ≈ [0.659, 0.341]T
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6.3 The spherical quadratic steepest descent
method

6.3.1 Introduction

In this section an extremely simple gradient only algorithm (Snyman
and Hay 2001) is proposed that, in terms of storage requirement (only 3
n-vectors need be stored) and computational efficiency, may be consid-
ered as an alternative to the conjugate gradient methods. The method
effectively applies the steepest descent (SD) method to successive simple
spherical quadratic approximations of the objective function in such a
way that no explicit line searches are performed in solving the minimiza-
tion problem. It is shown that the method is convergent when applied to
general positive-definite quadratic functions. The method is tested by
its application to some standard and other test problems. On the evi-
dence presented the new method, called the SQSD algorithm, appears to
be reliable and stable and performs very well when applied to extremely
ill-conditioned problems.

6.3.2 Classical steepest descent method revisited

Consider the following unconstrained optimization problem:

min f(x), x ∈ R
n (6.6)

where f is a scalar objective function defined on R
n, the n-dimensional

real Euclidean space, and x is a vector of n real components x1, x2, . . . , xn.
It isassumedthatf isdifferentiablesothatthegradientvector∇f(x)exists
everywhere inR

n. The solution is denoted by x∗.

The steepest descent (SD) algorithm for solving problem (6.6) may then
be stated as follows:

It can be shown that if the steepest descent method is applied to a
general positive-definite quadratic function of the form f(x) = 1

2x
TAx+

bTx + c, then the sequence
{
f(xk)

} → f(x∗). Depending, however, on
the starting point x0 and the condition number of A associated with the
quadratic form, the rate of convergence may become extremely slow.
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Algorithm 6.3 SD algorithm

Initialization: Specify convergence tolerances εg and εx, select starting
point x0. Set k := 1 and go to main procedure.
Main procedure:

1. If
∥∥∇f(xk−1)

∥∥ < εg, then set x∗ ∼= xc = xk−1 and stop; otherwise
set uk := −∇f(xk−1).

2. Let λk be such that f(xk−1 +λkuk) = minλ f(xk−1 +λuk) subject
to λ ≥ 0 {line search step}.

3. Set xk := xk−1 + λkuk; if
∥∥xk − xk−1

∥∥ < εx, then x∗ ∼= xc = xk

and stop; otherwise set k := k + 1 and go to Step 1.

It is proposed here that for general functions f(x), better overall per-
formance of the steepest descent method may be obtained by applying
it successively to a sequence of very simple quadratic approximations of
f(x). The proposed modification, named here the spherical quadratic
steepest descent (SQSD) method, remains a first order method since only
gradient information is used with no attempt being made to construct
the Hessian of the function. The storage requirements therefore remain
minimal, making it ideally suitable for problems with a large number of
variables. Another significant characteristic is that the method requires
no explicit line searches.

6.3.3 The SQSD algorithm

In the SQSD approach, given an initial approximate solution x0, a
sequence of spherically quadratic optimization subproblems P [k], k =
0, 1, 2, . . . is solved, generating a sequence of approximate solutions xk+1.
More specifically, at each point xk the constructed approximate subprob-
lem is P [k]:

min
x

f̃k(x) (6.7)

where the approximate objective function f̃k(x) is given by

f̃k(x) = f(xk) + ∇T f(xk)(x − xk) +
1
2
(x − xk)TCk(x − xk) (6.8)
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and Ck = diag(ck, ck, . . . , ck) = ckI. The solution to this problem will
be denoted by x∗k, and for the construction of the next subproblem
P [k + 1], xk+1 := x∗k.

For the first subproblem the curvature c0 is set to c0 :=
∥∥∇f(x0)

∥∥ /ρ,
where ρ > 0 is some arbitrarily specified step limit. Thereafter, for
k ≥ 1, ck is chosen such that f̃(xk) interpolates f(x) at both xk and
xk−1. The latter conditions imply that for k = 1, 2, . . .

ck :=
2

[
f(xk−1) − f(xk) − ∇T f(xk)(xk−1 − xk)

]

‖xk−1 − xk‖2 . (6.9)

Clearly the identical curvature entries along the diagonal of the Hessian,
mean that the level surfaces of the quadratic approximation f̃k(x), are
indeed concentric hyper-spheres. The approximate subproblems P [k]
are therefore aptly referred to as spherical quadratic approximations.

It is now proposed that for a large class of problems the sequence
x0,x1, . . . will tend to the solution of the original problem (6.6), i.e.

lim
k→∞

xk = x∗. (6.10)

For subproblems P [k] that are convex, i.e. ck > 0, the solution occurs
where ∇f̃k(x) = 0, that is where

∇f(xk) + ckI(x − xk) = 0. (6.11)

The solution to the subproblem, x∗k is therefore given by

x∗k = xk − ∇f(xk)
ck

. (6.12)

Clearly the solution to the spherical quadratic subproblem lies along a
line through xk in the direction of steepest descent. The SQSD method
may formally be stated in the form given in Algorithm 6.4.

Step size control is introduced in Algorithm 6.4 through the specification
of a step limit ρ and the test for

∥∥xk − xk−1
∥∥ > ρ in Step 2 of the main

procedure. Note that the choice of c0 ensures that for P [0] the solution
x1 lies at a distance ρ from x0 in the direction of steepest descent.
Also the test in Step 3 that ck < 0, and setting ck := 10−60 where
this condition is true ensures that the approximate objective function is
always positive-definite.
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Algorithm 6.4 SQSD algorithm

Initialization: Specify convergence tolerances εg and εx, step limit ρ > 0
and select starting point x0. Set c0 :=

∥∥∇f(x0)
∥∥ /ρ. Set k := 1 and go

to main procedure.
Main procedure:

1. If
∥∥∇f(xk−1)

∥∥ < εg, then x∗ ∼= xc = xk−1 and stop; otherwise set

xk := xk−1 − ∇f(xk−1)
ck−1

.

2. If
∥∥xk − xk−1

∥∥ > ρ, then set

xk := xk − ρ
∇f(xk−1)

‖∇f(xk−1)‖ ;

if
∥∥xk − xk−1

∥∥ < εx, then x∗ ∼= xc = xk and stop.

3. Set

ck :=
2

[
f(xk−1) − f(xk) − ∇T f(xk)(xk−1 − xk)

]

‖xk−1 − xk‖2 ;

if ck < 0 set ck := 10−60.

4. Set k := k + 1 and go to Step 1 for next iteration.
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6.3.4 Convergence of the SQSD method

An analysis of the convergence rate of the SQSD method, when applied
to a general positive-definite quadratic function, affords insight into the
convergence behavior of the method when applied to more general func-
tions. This is so because for a large class of continuously differentiable
functions, the behavior close to local minima is quadratic. For quadratic
functions the following theorem may be proved.

6.3.4.1 Theorem

The SQSD algorithm (without step size control) is convergent when
applied to the general quadratic function of the form f(x) = 1

2x
TAx +

bTx, where A is a n × n positive-definite matrix and b ∈ R
n.

Proof. Begin by considering the bivariate quadratic function, f(x) =
x2

1 + γx2
2, γ ≥ 1 and with x0 = [α, β]T . Assume c0 > 0 given, and

for convenience in what follows set c0 = 1/δ, δ > 0. Also employ the
notation fk = f(xk).

Application of the first step of the SQSD algorithm yields

x1 = x0 − ∇f0

c0
= [α(1 − 2δ), β(1 − 2γδ)]T (6.13)

and it follows that
∥∥x1 − x0

∥∥2 = 4δ2(α2 + γ2β2) (6.14)

and
∇f1 = [2α(1 − 2δ), 2γβ(1 − 2γδ)]T . (6.15)

For the next iteration the curvature is given by

c1 =
2[f0 − f1 − ∇T f1(x0 − x1)]

‖x0 − x1‖2 . (6.16)

Utilizing the information contained in (6.13)–(6.15), the various entries
in expression (6.16) are known, and after substitution c1 simplifies to

c1 =
2(α2 + γ3β2)
α2 + γ2β2

. (6.17)
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In the next iteration, Step 1 gives

x2 = x1 − ∇f1

c1
. (6.18)

And after the necessary substitutions for x1, ∇f1 and c1, given by (6.13),
(6.15) and (6.17) respectively, (6.18) reduces to

x2 = [α(1 − 2δ)μ1, β(1 − 2γδ)ω1]T (6.19)

where

μ1 = 1 − 1 + γ2β2/α2

1 + γ3β2/α2
(6.20)

and

ω1 = 1 − γ + γ3β2/α2

1 + γ3β2/α2
. (6.21)

Clearly if γ = 1, then μ1 = 0 and ω1 = 0. Thus by (6.19) x2 = 0 and
convergence to the solution is achieved within the second iteration.

Now for γ > 1, and for any choice of α and β, it follows from (6.20) that

0 ≤ μ1 < 1 (6.22)

which implies from (6.19) that for the first component of x2:
∣∣∣x(2)

1

∣∣∣ = |α(1 − 2δ)μ1| < |α(1 − 2δ)| =
∣∣∣x(1)

1

∣∣∣ (6.23)

or introducing α notation (with α0 = α), that

|α2| = |μ1α1| < |α1|. (6.24)

{Note: because c0 = 1/δ > 0 is chosen arbitrarily, it cannot be said that
|α1| < |α0|. However α1 is finite.}
The above argument, culminating in result (6.24), is for the two iter-
ations x0 → x1 → x2. Repeating the argument for the sequence of
overlapping pairs of iterations x1 → x2 → x3; x2 → x3 → x4; . . ., it
follows similarly that |α3| = |μ2α2| < |α2|; |α4| = |μ3α3| < |α3|; . . .,
since 0 ≤ μ2 < 1; 0 ≤ μ3 < 1; . . ., where the value of μk is determined
by (corresponding to equation (6.20) for μ1):

μk = 1 − 1 + γ2β2
k−1/α2

k−1

1 + γ3β2
k−1/α2

k−1

. (6.25)
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Thus in general
0 ≤ μk < 1 (6.26)

and
|αk+1| = |μkαk| < |αk|. (6.27)

For large positive integer m it follows that

|αm| = |μm−1αm−1| = |μm−1μm−2αm−2| = |μm−1μm−2 · · ·μ1α1| (6.28)

and clearly for γ > 0, because of (6.26)

lim
m→∞ |αm| = 0. (6.29)

Now for the second component of x2 in (6.19), the expression for ω1,
given by (6.21), may be simplified to

ω1 =
1 − γ

1 + γ3β2/α2
. (6.30)

Also for the second component:

x
(2)
2 = β(1 − 2γδ)ω1 = ω1x

(1)
2 (6.31)

or introducing β notation
β2 = ω1β1. (6.32)

The above argument is for x0 → x1 → x2 and again, repeating it for the
sequence of overlapping pairs of iterations, it follows more generally for
k = 1, 2, . . ., that

βk+1 = ωkβk (6.33)

where ωk is given by

ωk =
1 − γ

1 + γ3β2
k−1/α2

k−1

. (6.34)

Since by (6.29), |αm| → 0, it follows that if |βm| → 0 as m → ∞, the
theorem is proved for the bivariate case. Make the assumption that |βm|
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does not tend to zero, then there exists a finite positive number ε such
that

|βk| ≥ ε (6.35)

for all k. This allows the following argument:

|ωk| =

∣∣∣∣∣
1 − γ

1 + γ3β2
k−1/α2

k−1

∣∣∣∣∣ ≤
∣∣∣∣∣

1 − γ

1 + γ3ε2/α2
k−1

∣∣∣∣∣ =

∣∣∣∣∣
(1 − γ)α2

k−1

α2
k−1 + γ3ε2

∣∣∣∣∣ . (6.36)

Clearly since by (6.29) |αm| → 0 as m → ∞, (6.36) implies that also
|ωm| → 0. This result taken together with (6.33) means that |βm| → 0
which contradicts the assumption above. With this result the theorem
is proved for the bivariate case.

Although the algebra becomes more complicated, the above argument
can clearly be extended to prove convergence for the multivariate case,
where

f(x) =
n∑

i=1

γix
2
i , γ1 = 1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γn. (6.37)

Finally since the general quadratic function

f(x) =
1
2
xTAx + bTx, A positive − definite (6.38)

may be transformed to the form (6.37), convergence of the SQSD method
is also ensured in the general case. �

It is important to note that, the above analysis does not prove that ‖xk −
x∗‖ is monotonically decreasing with k, neither does it necessarily follow
that monotonic descent in the corresponding objective function values
f(xk), is guaranteed. Indeed, extensive numerical experimentation with
quadratic functions show that, although the SQSD trajectory rapidly
approaches the minimum, relatively large spike increases in f(xk) may
occur after which the trajectory quickly recovers on its path to x∗. This
happens especially if the function is highly elliptical (poorly scaled).

6.3.5 Numerical results and conclusion

The SQSD method is now demonstrated by its application to some test
problems. For comparison purposes the results are also given for the
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standard SD method and both the Fletcher-Reeves (FR) and Polak-
Ribiere (PR) conjugate gradient methods. The latter two methods are
implemented using the CG+ Fortran conjugate gradient program of
Gilbert and Nocedal (1992). The CG+ implementation uses the line
search routine of Moré and Thuente (1994). The function and gradient
values are evaluated together in a single subroutine. The SD method is
applied using CG+ with the search direction modified to the steepest
descent direction. The Fortran programs were run on a 266 MHz
Pentium 2 computer using double precision computations.

The standard (refs. Rao 1996; Snyman 1985; Himmelblau 1972; Manevich
1999) and other test problems used are listed in Section 6.3.6 and the
results are given in Tables 6.1 and 6.2. The convergence tolerances applied
throughout are εg = 10−5 and εx = 10−8, except for the extended homoge-
neous quadratic function with n = 50000 (Problem 12) and the extremely
ill-conditioned Manevich functions (Problems 14). For these problems the
extreme tolerances εg

∼= 0(= 10−75) and εx = 10−12, are prescribed
in an effort to ensure very high accuracy in the approximation xc to x∗.
For each method the number of function-cum-gradient-vector evaluations
(Nfg) are given. For theSQSDmethod thenumber of iterations is the same
as Nfg. For the other methods the number of iterations (N it) required for
convergence, and which corresponds to the number of line searches exe-
cuted, are also listed separately. In addition the relative error (Er) in opti-
mum function value, defined by

Er =
∣∣∣∣
f(x∗) − f(xc)
1 + |f(x∗)|

∣∣∣∣ (6.39)

where xc is the approximation to x∗ at convergence, is also listed. For
the Manevich problems, with n ≥ 40, for which the other (SD, FR and
PR) algorithms fail to converge after the indicated number of steps,
the infinite norm of the error in the solution vector (I∞), defined by
‖x∗ − xc‖∞ is also tabulated. These entries, given instead of the relative
error in function value (Er), are made in italics.

Inspection of the results shows that the SQSD algorithm is consistently
competitive with the other three methods and performs notably well for
large problems. Of all the methods the SQSD method appears to be the
most reliable one in solving each of the posed problems. As expected,
because line searches are eliminated and consecutive search directions are
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Prob. # n SQSD Steepest Descent

ρ Nfg Er Nfg N it Er/I∞

1 3 1 12 3.E-14 41 20 6.E-12
2 2 1 31 1.E-14 266 131 9.E-11
3 2 1 33 3.E-08 2316 1157 4.E-08

4 2 0.3 97 1.E-15 > 20000 3.E-09

5(a) 3 1 11 1.E-12 60 29 6.E-08
5(b) 3 1 17 1.E-12 49 23 6.E-08

6 4 1 119 9.E-09 > 20000 2.E-06

7 3 1 37 1.E-12 156 77 3.E-11
8 2 10 39 1.E-22 12050* 6023* 26*

9 2 0.3 113 5.E-14 6065 3027 2.E-10

10 2 1 43 1.E-12 1309 652 1.E-10
11 4 2 267 2.E-11 16701 8348 4.E-11
12 20 1.E+04 58 1.E-11 276 137 1.E-11

200 1.E+04 146 4.E-12 2717 1357 1.E-11

2000 1.E+04 456 2.E-10 > 20000 2.E-08

20000 1.E+04 1318 6.E-09 > 10000 8.E+01
50000 1.E+10 4073 3.E-16 > 10000 5.E+02

13 10 0.3 788 2.E-10 > 20000 4.E-07
100 1 2580 1.E-12 > 20000 3.E+01
300 1.73 6618 1.E-10 > 20000 2.E+02

600 2.45 13347 1.E-11 > 20000 5.E+02
1000 3.16 20717 2.E-10 > 30000 9.E+02

14 20 1 3651 2.E-27 > 20000 9.E-01

10 3301 9.E-30
40 1 13302 5.E-27 > 30000 1.E+00

10 15109 2.E-33

60 1 19016 7.E-39 > 30000 1.E+00

10 16023 6.E-39
100 1 39690 1.E-49 > 50000 1.E+00

10 38929 3.E-53

200 1 73517 5.E-81 > 100000 1.E+00

10 76621 4.E-81

* Convergence to a local minimum with f(xc) = 48.9.

Table 6.1: Performance of the SQSD and SD optimization algorithms
when applied to the test problems listed in Section 6.3.6



NEW GRADIENT-BASED METHODS 215

Prob. # n Fletcher-Reeves Polak-Ribiere

Nfg N it Er/I∞ Nfg N it Er/I∞

1 3 7 3 0$ 7 3 0$
2 2 30 11 2.E-11 22 8 2.E-12
3 2 45 18 2.E-08 36 14 6.E-11
4 2 180 78 1.E-11 66 18 1.E-14

5(a) 3 18 7 6.E-08 18 8 6.E-08
5(b) 3 65 31 6.E-08 26 11 6.E-08
6 4 1573 783 8.E-10 166 68 3.E-09
7 3 132 62 4.E-12 57 26 1.E-12
8 2 72* 27* 26* 24* 11* 26*
9 2 56 18 5.E-11 50 17 1.E-15
10 2 127 60 6.E-12 30 11 1.E-11
11 4 193 91 1.E-12 99 39 9.E-14
12 20 42 20 9.E-32 42 20 4.E-31

200 163 80 5.E-13 163 80 5.E-13
2000 530 263 2.E-13 530 263 2.E-13
20000 1652 825 4.E-13 1652 825 4.E-13
50000 3225 1161 1.E-20 3225 1611 1.E-20

13 10 > 20000 2.E-02 548 263 4.E-12
100 > 20000 8.E+01 1571 776 2.E-12
300 > 20000 3.E+02 3253 1605 2.E-12
600 > 20000 6.E+02 5550 2765 2.E-12
1000 > 30000 1.E+03 8735 4358 2.E-12

14 20 187 75 8.E-24 1088 507 2.E-22
40 > 30000 1.E+00 > 30000 1.E+00
60 > 30000 1.E+00 > 30000 1.E+00
100 > 50000 1.E+00 > 50000 1.E+00
200 > 100000 1.E+00 > 100000 1.E+00

* Convergence to a local minimum with f(xc) = 48.9; $ Solution to machine accuracy.

Table 6.2: Performance of the FR and PR algorithms when applied to
the test problems listed in Section 6.3.6
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no longer forced to be orthogonal, the new method completely overshad-
ows the standard SD method. What is much more gratifying, however, is
the performance of the SQSD method relative to the well-established and
well-researched conjugate gradient algorithms. Overall the new method
appears to be very competitive with respect to computational efficiency
and, on the evidence presented, remarkably stable.

In the implementation of the SQSD method to highly non-quadratic and
non-convex functions, some care must however be taken in ensuring that
the chosen step limit parameter ρ, is not too large. A too large value may
result in excessive oscillations occurring before convergence. Therefore
a relatively small value, ρ = 0.3, was used for the Rosenbrock problem
with n = 2 (Problem 4). For the extended Rosenbrock functions of
larger dimensionality (Problems 13), correspondingly larger step limit
values (ρ =

√
n/10) were used with success.

For quadratic functions, as is evident from the convergence analysis of
Section 6.3.4, no step limit is required for convergence. This is borne
out in practice by the results for the extended homogeneous quadratic
functions (Problems 12), where the very large value ρ = 104 was used
throughout, with the even more extreme value of ρ = 1010 for n = 50000.
The specification of a step limit in the quadratic case also appears to
have little effect on the convergence rate, as can be seen from the results
for the ill-conditioned Manevich functions (Problems 14), that are given
for both ρ = 1 and ρ = 10. Here convergence is obtained to at least
11 significant figures accuracy (‖x∗ − xc‖∞ < 10−11) for each of the
variables, despite the occurrence of extreme condition numbers, such as
1060 for the Manevich problem with n = 200.

The successful application of the new method to the ill-conditioned
Manevich problems, and the analysis of the convergence behavior for
quadratic functions, indicate that the SQSD algorithm represents a pow-
erful approach to solving quadratic problems with large numbers of vari-
ables. In particular, the SQSD method can be seen as an unconditionally
convergent, stable and economic alternative iterative method for solv-
ing large systems of linear equations, ill-conditioned or not, through the
minimization of the sum of the squares of the residuals of the equations.
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6.3.6 Test functions used for SQSD

Minimize f(x):

1. f(x) = x2
1 + 2x2

2 + 3x2
3 − 2x1 − 4x2 − 6x3 + 6, x0 = [3, 3, 3]T , x∗ =

[1, 1, 1]T , f(x∗) = 0.0.

2. f(x) = x4
1 − 2x2

1x2 + x2
1 + x2

2 − 2x1 + 1, x0 = [3, 3]T , x∗ =
[1, 1]T , f(x∗) = 0.0.

3. f(x) = x4
1−8x3

1+25x2
1+4x2

2−4x1x2−32x1+16, x0 = [3, 3]T , x∗ =
[2, 1]T , f(x∗) = 0.0.

4. f(x) = 100(x2 − x2
1)

2 + (1 − x1)2, x0 = [−1.2, 1]T , x∗ =
[1, 1]T , f(x∗) = 0.0 (Rosenbrock’s parabolic valley, Rao 1996).

5. f(x) = x4
1 + x3

1 − x1 + x4
2 − x2

2 + x2 + x2
3 − x3 + x1x2x3, (Zlobec’s

function, Snyman 1985):

(a) x0 = [1, −1, 1]T and

(b) x0 = [0, 0, 0]T , x∗ = [0.57085597, −0.93955591, 0.76817555]T ,
f(x∗) = −1.91177218907.

6. f(x) = (x1+10x2)2+5(x3−x4)2+(x2−2x3)4+10(x1−x4)4, x0 =
[3, −1, 0, 1]T , x∗ = [0, 0, 0, 0]T , f(x∗) = 0.0 (Powell’s quartic func-
tion, Rao 1996).

7. f(x) = −
{

1
1+(x1−x2)2

+ sin
(

1
2πx2x3

)
+ exp

[
−

(
x1+x3

x2
− 2

)2
]}

,

x0 = [0, 1, 2]T ,x∗ = [1, 1, 1]T , f(x∗) = −3.0 (Rao 1996).

8. f(x) = {−13+x1 +[(5−x2)x2 −2]x2}2 +{−29+x1 +[(x2 +1)x2 −
14]x2}2, x0 = [1/2, −2]T , x∗ = [5, 4]T , f(x∗) = 0.0 (Freudenstein
and Roth function, Rao 1996).

9. f(x) = 100(x2 − x3
1)

2 + (1 − x1)2, x0 = [−1.2, 1]T , x∗ = [1, 1]T ,
f(x∗) = 0.0 (cubic valley, Himmelblau 1972).

10. f(x) = [1.5 − x1(1 − x2)]2 + [2.25 − x1(1 − x2
2)]

2 + [2.625 − x1(1 −
x3

2)]
2, x0 = [1, 1]T , x∗ = [3, 1/2]T , f(x∗) = 0.0 (Beale’s function,

Rao 1996).
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11. f(x) = [10(x2 − x2
1)]

2 + (1 − x1)2 + 90(x4 − x2
3)

2 + (1 − x3)2 +
10(x2 + x4 − 2)2 + 0.1(x2 − x4)2, x0 = [−3, 1, −3, −1]T , x∗ =
[1, 1, 1, 1]T , f(x∗) = 0.0 (Wood’s function, Rao 1996).

12. f(x) =
∑n

i=1 ix2
i , x0 = [3, 3, . . . , 3]T , x∗ = [0, 0, . . . , 0]T , f(x∗) =

0.0 (extended homogeneous quadratic functions).

13. f(x)=
∑n−1

i=1 [100(xi+1−x2
i )

2+(1−xi)2],x0 =[−1.2, 1, −1.2, 1, . . .]T ,
x∗ = [1, 1, . . . , 1]T , f(x∗) = 0.0 (extended Rosenbrock functions,
Rao 1996).

14. f(x) =
∑n

i=1(1−xi)2/2i−1, x0 = [0, 0, . . . , 0]T , x∗ = [1, 1, . . . , 1]T ,
f(x∗) = 0.0 (extended Manevich functions, Manevich 1999).

6.4 The Dynamic-Q optimization algorithm

6.4.1 Introduction

An efficient constrained optimization method is presented in this sec-
tion. The method, called the Dynamic-Q method (Snyman and Hay
2002), consists of applying the dynamic trajectory LFOPC optimization
algorithm (see Section 6.2) to successive quadratic approximations of
the actual optimization problem. This method may be considered as an
extension of the unconstrained SQSD method, presented in Section 6.3,
to one capable of handling general constrained optimization problems.

Due to its efficiency with respect to the number of function evaluations
required for convergence, the Dynamic-Q method is primarily intended
for optimization problems where function evaluations are expensive.
Such problems occur frequently in engineering applications where time
consuming numerical simulations may be used for function evaluations.
Amongst others, these numerical analyses may take the form of a com-
putational fluid dynamics (CFD) simulation, a structural analysis by
means of the finite element method (FEM) or a dynamic simulation
of a multibody system. Because these simulations are usually expen-
sive to perform, and because the relevant functions may not be known
analytically, standard classical optimization methods are normally not
suited to these types of problems. Also, as will be shown, the storage
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requirements of the Dynamic-Q method are minimal. No Hessian infor-
mation is required. The method is therefore particularly suitable for
problems where the number of variables n is large.

6.4.2 The Dynamic-Q method

Consider the general nonlinear optimization problem:

min
x

f(x); x = [x1, x2, . . . , xn]T ∈ R
n

subject to (6.40)
gj(x) ≤0; j = 1, 2, . . . , p

hk(x) =0; k = 1, 2, . . . , q

where f(x), gj(x) and hk(x) are scalar functions of x.

In the Dynamic-Q approach, successive subproblems P [i], i = 0, 1, 2, . . .
are generated, at successive approximations xi to the solution x∗, by
constructing spherically quadratic approximations f̃(x), g̃j(x) and h̃k(x)
to f(x), gj(x) and hk(x). These approximation functions, evaluated at
a point xi, are given by

f̃(x) = f(xi) + ∇T f(xi)(x − xi) +
1
2
(x − xi)TA(x − xi)

g̃j(x) = gj(xi) + ∇T gj(xi)(x − xi)

+
1
2
(x − xi)TBj(x − xi), j = 1, . . . , p (6.41)

h̃k(x) = hk(xi) + ∇T hk(xi)(x − xi)

+
1
2
(x − xi)TCk(x − xi), k = 1, . . . , q

with the Hessian matrices A, Bj and Ck taking on the simple forms

A = diag(a, a, . . . , a) = aI

Bj = bjI (6.42)
Ck = ckI.

Clearly the identical entries along the diagonal of the Hessian matrices
indicate that the approximate subproblems P [i] are indeed spherically
quadratic.
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For the first subproblem (i = 0) a linear approximation is formed by
setting the curvatures a, bj and ck to zero. Thereafter a, bj and ck

are chosen so that the approximating functions (6.41) interpolate their
corresponding actual functions at both xi and xi−1. These conditions
imply that for i = 1, 2, 3, . . .

a =
2

[
f(xi−1) − f(xi) − ∇T f(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 (6.43)

bj =
2

[
gj(xi−1) − gj(xi) − ∇T gj(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 , j = 1, . . . , p

ck =
2

[
hk(xi−1) − hk(xi) − ∇T hk(xi)(xi−1 − xi)

]

‖xi−1 − xi‖2 , k = 1, . . . , q.

If the gradient vectors ∇T f , ∇T gj and ∇T hk are not known analytically,
they may be approximated from functional data by means of first-order
forward finite differences.

The particular choice of spherically quadratic approximations in the
Dynamic-Q algorithm has implications on the computational and stor-
age requirements of the method. Since the second derivatives of the
objective function and constraints are approximated using function and
gradient data, the O(n2) calculations and storage locations, which would
usually be required for these second derivatives, are not needed. The
computational and storage resources for the Dynamic-Q method are
thus reduced to O(n). At most, 4 + p + q + r + s n-vectors need be
stored (where p, q, r and s are respectively the number of inequality
and equality constraints and the number of lower and upper limits of
the variables). These savings become significant when the number of
variables becomes large. For this reason it is expected that the Dynamic-
Q method is well suited, for example, to engineering problems such as
structural optimization problems where a large number of variables are
present.

In many optimization problems, additional bound constraints of the
form k̂i ≤ xi ≤ ǩi occur. Constants k̂i and ǩi respectively represent
lower and upper bounds for variable xi. Since these constraints are of
a simple form (having zero curvature), they need not be approximated
in the Dynamic-Q method and are instead explicitly treated as special
linear inequality constraints. Constraints corresponding to lower and
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upper limits are respectively of the form

ĝl(x) = k̂vl − xvl ≤ 0, l = 1, 2, . . . , r ≤ n (6.44)
ǧm(x) = xwm − ǩwm ≤ 0, m = 1, 2, . . . , s ≤ n

where vl ∈ Î = (v1, v2, . . . , vr) the set of r subscripts corresponding to
the set of variables for which respective lower bounds k̂vl are prescribed,
and wm ∈ Ǐ = (w1, w2, . . . , ws) the set of s subscripts corresponding
to the set of variables for which respective upper bounds ǩwm are pre-
scribed. The subscripts vl and wm are used since there will, in general,
not be n lower and upper limits, i.e. usually r �= n and s �= n.

In order to obtain convergence to the solution in a controlled and stable
manner, move limits are placed on the variables. For each approximate
subproblem P [i] this move limit takes the form of an additional single
inequality constraint

gρ(x) =
∥∥x − xi

∥∥2 − ρ2 ≤ 0 (6.45)

where ρ is an appropriately chosen step limit and xi is the solution to
the previous subproblem.

The approximate subproblem, constructed at xi, to the optimization
problem (6.40) (plus bound constraints (6.44) and move limit (6.45)),
thus becomes P [i]:

min
x

f̃(x), x = [x1, x2, ..., xn]T ∈ R
n

subject to
g̃j(x) ≤ 0, j = 1, 2, . . . , p

h̃k(x) = 0, k = 1, 2, . . . , q (6.46)
ĝl(x) ≤ 0, l = 1, 2, . . . , r

ǧm(x) ≤ 0, m = 1, 2, . . . , s

gρ(x) =
∥∥x − xi

∥∥2 − ρ2 ≤ 0

with solution x∗i. The Dynamic-Q algorithm is given by Algorithm 6.5.
In the Dynamic-Q method the subproblems generated are solved using
the dynamic trajectory, or “leap-frog” (LFOPC) method of Snyman
(1982, 1983) for unconstrained optimization applied to penalty func-
tion formulations (Snyman et al. 1994; Snyman 2000) of the constrained
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Algorithm 6.5 Dynamic-Q algorithm

Initialization: Select starting point x0 and move limit ρ. Set i := 0.
Main procedure:

1. Evaluate f(xi), gj(xi) and hk(xi) as well as ∇f(xi), ∇gj(xi) and
∇hk(xi). If termination criteria are satisfied set x∗ = xi and stop.

2. Construct a local approximation P [i] to the optimization problem
at xi using expressions (6.41) to (6.43).

3. Solve the approximated subproblem P [i] (given by (6.46)) using
the constrained optimizer LFOPC with x0 := xi (see Section 6.2)
to give x∗i.

4. Set i := i + 1, xi := x∗(i−1) and return to Step 1.

problem. A brief description of the LFOPC algorithm is given in Section
6.2.

The LFOPC algorithm possesses a number of outstanding characteris-
tics, which makes it highly suitable for implementation in the Dynamic-
Q methodology. The algorithm requires only gradient information and
no explicit line searches or function evaluations are performed. These
properties, together with the influence of the fundamental physical prin-
ciples underlying the method, ensure that the algorithm is extremely
robust. This has been proven over many years of testing (Snyman 2000).
A further desirable characteristic related to its robustness, and the main
reason for its application in solving the subproblems in the Dynamic-Q
algorithm, is that if there is no feasible solution to the problem, the
LFOPC algorithm will still find the best possible compromised solution.
The Dynamic-Q algorithm thus usually converges to a solution from an
infeasible remote point without the need to use line searches between
subproblems, as is the case with SQP. The LFOPC algorithm used by
Dynamic-Q is identical to that presented in Snyman (2000) except for
a minor change to LFOP which is advisable should the subproblems
become effectively unconstrained.
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6.4.3 Numerical results and conclusion

The Dynamic-Q method requires very few parameter settings by the
user. Other than convergence criteria and specification of a maximum
number of iterations, the only parameter required is the step limit ρ. The
algorithm is not very sensitive to the choice of this parameter, however,
ρ should be chosen of the same order of magnitude as the diameter of
the region of interest. For the problems listed in Table 6.3 a step limit
of ρ = 1 was used except for problems 72 and 106 where step limits
ρ =

√
10 and ρ = 100 were used respectively.

Given specified positive tolerances εx, εf and εc, then at step i termina-
tion of the algorithm occurs if the normalized step size

∥∥xi − xi−1
∥∥

1 + ‖xi‖ < εx (6.47)

or if the normalized change in function value
∣∣f i − fbest

∣∣
1 + |fbest| < εf (6.48)

where fbest is the lowest previous feasible function value and the current
xi is feasible. The point xi is considered feasible if the absolute value of
the violation of each constraint is less than εc. This particular function
termination criterion is used since the Dynamic-Q algorithm may at
times exhibit oscillatory behavior near the solution.

In Table 6.3, for the same starting points, the performance of the
Dynamic-Q method on some standard test problems is compared to
results obtained for Powell’s SQP method as reported by Hock and Schit-
tkowski (1981). The problem numbers given correspond to the problem
numbers in Hock and Schittkowski’s book. For each problem, the actual
function value fact is given, as well as, for each method, the calculated
function value f∗ at convergence, the relative function error

Er =
|fact − f∗|
1 + |fact| (6.49)

and the number of function-gradient evaluations (Nfg) required for
convergence. In some cases it was not possible to calculate the relative
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Prob. # n fact SQP Dynamic-Q

Nfg f∗ Er Nfg f∗ Er

2 2 5.04E-02 16∼ 2.84E+01 2.70E+01 7* 4.94E+00 <1.00E-08

10 2 -1.00E+00 12 -1.00E+00 5.00E-08 13 -1.00E+00 <1.00E-08

12 2 -3.00E+01 12 -3.00E+01 <1.00E-08 9 -3.00E+01 <1.00E-08

13 2 1.00E+00 45 1.00E+00 5.00E-08 50$ 9.59E-01 2.07E-02

14 2 1.39E+00 6 1.39E+00 8.07E-09 5 1.39E+00 7.86E-07

15 2 3.07E+02 5 3.07E+02 <1.00E-08 15* 3.60E+02 5.55E-07

16 2 2.50E-01 6* 2.31E+01 <1.00E-08 5* 2.31E+01 <1.00E-08

17 2 1.00E+00 12 1.00E+00 <1.00E-08 16 1.00E+00 <1.00E-08

20 2 3.82E+01 20 3.82E+01 4.83E-09 4* 4.02E+01 <1.00E-08

22 2 1.00E+00 9 1.00E+00 <1.00E-08 3 1.00E+00 <1.00E-08

23 2 2.00E+00 7 2.00E+00 <1.00E-08 5 2.00E+00 <1.00E-08

24 2 -1.00E+00 5 -1.00E+00 <1.00E-08 4 -1.00E+00 1.00E-08

26 3 0.00E+00 19 4.05E-08 4.05E-08 27 1.79E-07 1.79E-07

27 3 4.00E-02 25 4.00E-02 1.73E-08 28 4.00E-02 9.62E-10

28 3 0.00E+00 5 2.98E-21 2.98E-21 12 7.56E-10 7.56E-10

29 3 -2.26E+01 13 -2.26E+01 8.59E-11 11 -2.26E+01 8.59E-11

30 3 1.00E+00 14 1.00E+00 <1.00E-08 5 1.00E+00 <1.00E-08

31 3 6.00E+00 10 6.00E+00 <1.00E-08 10 6.00E+00 1.43E-08

32 3 1.00E+00 3 1.00E+00 <1.00E-08 4 1.00E+00 <1.00E-08

33 3 -4.59E+00 5* -4.00E+00 <1.00E-08 3* -4.00E+00 <1.00E-08

36 3 -3.30E+03 4 -3.30E+03 <1.00E-08 15 -3.30E+03 <1.00E-08

45 5 1.00E+00 8 1.00E+00 <1.00E-08 7 1.00E+00 1.00E-08

52 5 5.33E+00 8 5.33E+00 5.62E-09 12 5.33E+00 1.02E-08

55 6 6.33E+00 1∼ 6.00E+00 4.54E-02 2* 6.66E+00 1.30E-09

56 7 -3.46E+00 11 -3.46E+00 <1.00E-08 20 -3.46E+00 6.73E-08

60 3 3.26E-02 9 3.26E-02 3.17E-08 11 3.26E-02 1.21E-09

61 3 -1.44E+02 10 -1.44E+02 1.52E-08 10 -1.44E+02 1.52E-08

63 3 9.62E+02 9 9.62E+02 2.18E-09 6 9.62E+02 2.18E-09

65 3 9.54E-01 11∼ 2.80E+00 9.47E-01 9 9.54E-01 2.90E-08

71 4 1.70E+01 5 1.70E+01 1.67E-08 6 1.70E+01 1.67E-08

72 4 7.28E+02 35 7.28E+02 1.37E-08 30 7.28E+02 1.37E-08

76 4 -4.68E+00 6 -4.68E+00 3.34E-09 8 -4.68E+00 3.34E-09

78 5 -2.92E+00 9 -2.92E+00 2.55E-09 6 -2.92E+00 2.55E-09

80 5 5.39E-02 7 5.39E-02 7.59E-10 6 5.39E-02 7.59E-10

81 5 5.39E-02 8 5.39E-02 1.71E-09 12 5.39E-02 1.90E-10

100 7 6.80E+02 20 6.80E+02 <1.00E-08 16 6.80E+02 1.46E-10

104 8 3.95E+00 19 3.95E+00 8.00E-09 42 3.95E+00 5.26E-08

106 8 7.05E+03 44 7.05E+03 1.18E-05 79 7.05E+03 1.18E-05

108 9 -8.66E-01 9* -6.97E-01 1.32E-02 26 -8.66E-01 3.32E-09

118 15 6.65E+02 ∼ ∼ ∼ 38 6.65E+02 3.00E-08

Svan 21 2.80E+02 150 2.80E+02 9.96E-05 93 2.80E+02 1.59E-06

* Converges to a local minimum - listed Er relative to function value at local minimum;
∼ Fails; $ Terminates on maximum number of steps.

Table 6.3: Performance of the Dynamic-Q and SQP optimization algo-
rithms
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function error due to rounding off of the solutions reported by Hock and
Schittkowski. In these cases the calculated solutions were correct to at
least eight significant digits. For the Dynamic-Q algorithm, convergence
tolerances of εf = 10−8 on the function value, εx = 10−5 on the step size
and εc = 10−6 for constraint feasibility, were used. These were chosen
to allow for comparison with the reported SQP results.

The result for the 12-corner polytope problem of Svanberg (1999) is
also given. For this problem the results given in the SQP columns are
for Svanberg’s Method of Moving Asymptotes (MMA). The recorded
number of function evaluations for this method is approximate since
the results given correspond to 50 outer iterations of the MMA, each
requiring about 3 function evaluations.

A robust and efficient method for nonlinear optimization, with minimal
storage requirements compared to those of the SQP method, has been
proposed and tested. The particular methodology proposed is made
possible by the special properties of the LFOPC optimization algorithm
(Snyman 2000), which is used to solve the quadratic subproblems. Com-
parison of the results for Dynamic-Q with the results for the SQP method
show that equally accurate results are obtained with comparable number
of function evaluations.

6.5 A gradient-only line search method for con-
jugate gradient methods

6.5.1 Introduction

Many engineering design optimization problems involve numerical com-
puter analyses via, for example, FEM codes, CFD simulations or the
computer modeling of the dynamics of multi-body mechanical systems.
The computed objective function is therefore often the result of a com-
plex sequence of calculations involving other computed or measured
quantities. This may result in the presence of numerical noise in the
objective function so that it exhibits non-smooth trends as design param-
eters are varied. It is well known that this presence of numerical
noise in the design optimization problem inhibits the use of classical
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and traditional gradient-based optimization methods that employ line
searches, such as for example, the conjugate gradient methods. The
numerical noise may prevent or slow down convergence during opti-
mization. It may also promote convergence to spurious local optima.
The computational expense of the analyses, coupled to the convergence
difficulties created by the numerical noise, is in many cases a significant
obstacle to performing multidisciplinary design optimization.

In addition to the anticipated difficulties when applying the conjugate
gradient methods to noisy optimization problems, it is also known that
standard implementations of conjugate gradient methods, in which con-
ventional line search techniques have been used, are less robust than
one would expect from their theoretical quadratic termination property.
Therefore the conjugate gradient method would, under normal circum-
stances, not be preferred to quasi-Newton methods (Fletcher 1987). In
particular severe numerical difficulties arise when standard line searches
are used in solving constrained problems through the minimization of
associated penalty functions. However, there is one particular advan-
tage of conjugate gradient methods, namely the particular simple form
that requires no matrix operations in determining the successive search
directions. Thus, conjugate gradient methods may be the only meth-
ods which are applicable to large problems with thousands of variables
(Fletcher 1987), and are therefore well worth further investigation.

In this section a new implementation (ETOPC) of the conjugate gra-
dient method (both for the Fletcher-Reeves and Polak-Ribiere versions
(see Fletcher 1987) is presented for solving constrained problems. The
essential novelty in this implementation is the use of a gradient-only line
search technique originally proposed by the author (Snyman 1985), and
used in the ETOP algorithm for unconstrained minimization. It will be
shown that this implementation of the conjugate gradient method, not
only easily overcomes the accuracy problem when applied to the mini-
mization of penalty functions, but also economically handles the problem
of severe numerical noise superimposed on an otherwise smooth under-
lying objective function.
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6.5.2 Formulation of optimization problem

Consider again the general constrained optimization problem:

min
x

f(x), x = [x1, x2, x3, . . . , xn]T ∈ Rn (6.50)

subject to the inequality and equality constraints:

gj(x) ≤ 0, j = 1, 2, . . . , m (6.51)
hj(x) = 0, j = 1, 2, . . . , r

where the objective function f(x), and the constraint functions gj(x) and
hj(x), are scalar functions of the real column vector x. The optimum
solution is denoted by x∗, with corresponding optimum function value
f(x∗).

The most straightforward way of handling the constraints is via the
unconstrained minimization of the penalty function:

P (x) = f(x) +
r∑

j=1

ρjh
2
j (x) +

m∑

j=1

βjg
2
j (x) (6.52)

where ρj � 0, βj = 0 if gj(x) ≤ 0, and βj = μj � 0 if gj(x) > 0.

Usually ρj = μj = μ � 0 for all j, with the corresponding penalty
function being denoted by P (x, μ).

Central to the application of the conjugate gradient method to penalty
function formulated problems presented here, is the use of an uncon-
ventional line search method for unconstrained minimization, proposed
by the author, in which no function values are explicitly required (Sny-
man 1985). Originally this gradient-only line search method was applied
to the conjugate gradient method in solving a few very simple uncon-
strained problems. For somewhat obscure reasons, given in the original
paper (Snyman 1985) and briefly hinted to in this section, the combined
method (novel line search plus conjugate gradient method) was called
the ETOP (Euler-Trapezium Optimizer) algorithm. For this historical
reason, and to avoid confusion, this acronym will be retained here to
denote the combined method for unconstrained minimization. In sub-
sequent unreported numerical experiments, the author was successful in
solving a number of more challenging practical constrained optimization
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problems via penalty function formulations of the constrained prob-
lem, with ETOP being used in the unconstrained minimization of the
sequence of penalty functions. ETOP, applied in this way to constrained
problems, was referred to as the ETOPC algorithm. Accordingly this
acronym will also be used here.

6.5.3 Gradient-only line search

The line search method used here, and originally proposed by the author
(Snyman 1985) uses no explicit function values. Instead the line search
is implicitly done by using only two gradient vector evaluations at two
points along the search direction and assuming that the function is near-
quadratic along this line. The essentials of the gradient-only line search,
for the case where the function f(x) is unconstrained, are as follows.
Given the current design point xk at iteration k and next search direction
vk+1, then compute

xk+1 = xk + vk+1τ (6.53)

where τ is some suitably chosen positive parameter. The step taken in
(6.53) may be seen as an “Euler step”. With this step given by

Δxk = xk+1 − xk = vk+1τ (6.54)

the line search in the direction vk+1 is equivalent to finding x∗k+1 defined
by

f(x∗k+1) = min
λ

f(xk + λΔxk). (6.55)

These steps are depicted in Figure 6.3.

It was indicated in Snyman (1985) that for the step xk+1 = xk + vk+1τ
the change in function value Δfk, in the unconstrained case, can be
approximated without explicitly evaluating the function f(x). Here a
more formal argument is presented via the following lemma.

6.5.3.1 Lemma 1

For a general quadratic function, the change in function value, for the
step Δxk = xk+1 − xk = vk+1τ is given by:

Δfk = −〈vk+1,
1
2
(ak + ak+1)τ〉 (6.56)
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xk

x∗k+2
x∗k+1

xk+1 = xk + vk+1τ

x∗k+3

xk+3

xk+2

Figure 6.3: Successive steps in line search procedure

where ak = −∇f(xk) and 〈 , 〉 denotes the scalar product.

Proof :

In general, by Taylor’s theorem:

f(xk+1) − f(xk) = 〈xk+1 − xk, ∇f(xk)〉 +
1
2
〈Δxk,H(xa)Δxk〉

and

f(xk+1) − f(xk) = 〈xk+1 − xk, ∇f(xk+1)〉 − 1
2
〈Δxk,H(xb)Δxk〉

where xa = xk + θ0Δxk, xb = xk + θ1Δxk and both θ0 and θ1 in the
interval [0, 1], and where H(x) denotes the Hessian matrix of the general
function f(x). Adding the above two expressions gives:

f(xk+1) − f(xk) =
1
2
〈xk+1 − xk, ∇f(xk) + ∇f(xk+1)〉

+
1
4
〈Δxk, [H(xa) − H(xb)]Δxk〉.

If f(x) is quadratic then H(x) is constant and it follows that

Δfk = f(xk+1) − f(xk) = −〈vk+1,
1
2
(ak + ak+1)τ〉
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xk+1
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F (λ) = f(xk + λΔxk)

Figure 6.4: Approximation of minimizer x∗k+1 in the direction vk+1

where ak = ∇f(xk), which completes the proof. �

By using expression (6.56) the position of the minimizer x∗k+1 (see Fig-
ure 6.4), in the direction vk+1, can also be approximated without any
explicit function evaluation. This conclusion follows formally from the
second lemma given below. Note that in (6.56) the second quantity in
the scalar product corresponds to an average vector given by the “trapez-
ium rule”. This observation together with the remark following equation
(6.53), gave rise to the name “Euler-trapezium optimizer (ETOP)” when
applying this line search technique in the conjugate gradient method.

6.5.3.2 Lemma 2

For f(x) a positive-definite quadratic function the point x∗k+1 defined
by f(x∗k+1) = minλ f(xk + λΔxk) is given by

x∗k+1 = xk +
1
2
θΔxk (6.57)

where

θ = ρ/(〈vk+1,
1
2
(ak + ak+1)τ〉 + ρ) and ρ = −〈Δxk,ak〉. (6.58)
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Proof :

First determine θ such that

f(xk + θΔxk) = f(xk).

By Taylor’s expansion:

f(xk+1) − f(xk) = ρ +
1
2
〈Δxk,HΔxk〉, i.e.,

1
2
〈Δxk,HΔxk〉 = Δfk − ρ

which gives for the step θΔx:

f(xk + θΔxk) − f(xk) = θρ +
1
2
θ2〈Δxk,HΔxk〉 = θρ + θ2(Δfk − ρ).

For both function values to be the same, θ must therefore satisfy:

0 = θ(ρ + θ(Δfk − ρ))

which has the non-trivial solution:

θ = −ρ/(Δfk − ρ).

Using the expression for Δfk given by Lemma 1, it follows that:

θ = ρ/(〈vk+1,
1
2
(ak + ak+1)τ〉 + ρ)

and by the symmetry of quadratic functions that

x∗k+1 = xk +
1
2
θΔxk.

�

Expressions (6.57) and (6.58) may of course also be used in the general
non-quadratic case, to determine an approximation to the minimizer
x∗k+1 in the direction vk+1, when performing successive line searches
using the sequence of descent directions, vk+1, k = 1, 2, . . . Thus in
practice, for the next (k+1)-th iteration, set xk+1 := x∗k+1, and with the
next selected search direction vk+2 proceed as above, using expressions
(6.57) and (6.58) to find x∗k+2 and then set xk+2 := x∗k+2. Continue
iterations in this way, with only two gradient vector evaluations done
per line search, until convergence is obtained.
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In summary, explicit function evaluations are unnecessary in the above
line search procedure, since the two computed gradients along the search
direction allow for the computation of an approximation (6.56) to the
change in objective function, which in turn allows for the estimation of
the position of the minimum along the search line via expressions (6.57)
and (6.58), based on the assumption that the function is near quadratic
in the region of the search.

6.5.3.3 Heuristics

Of course in general the objective function may not be quadratic and
positive-definite. Additional heuristics are therefore required to ensure
descent, and to see to it that the step size (corresponding to the param-
eter τ between successive gradient evaluations, is neither too small nor
too large. The details of these heuristics are as set out below.

(i) In the case of a successful step having been taken, with Δfk com-
puted via (6.56) negative, i.e. descent, and θ computed via (6.58)
positive, i.e. the function is locally strictly convex, as shown in
Figure 6.4, τ is increased by a factor of 1.5 for the next search
direction.

(ii) It may turn out that although Δfk computed via (6.56) is negative,
that θ computed via (6.58) is also negative. The latter implies that
the function along the search direction is locally concave. In this
case set θ := −θ in computing x∗k+1 by (6.57), so as to ensure
a step in the descent direction, and also increase τ by the factor
1.5 before computing the step for the next search direction using
(6.53).

(iii) It may happen that Δfk computed by (6.56) is negative and
exactly equal to ρ, i.e. Δfk − ρ = 0. This implies zero curva-
ture with θ = ∞ and the function is therefore locally linear. In
this case enforce the value θ = 1. This results in the setting, by
(6.57), of x∗k+1 equal to a point halfway between xk and xk+1. In
this case τ is again increased by the factor of 1.5.

(iv) If both Δfk and θ are positive, which is the situation depicted in
Figure 6.4, then τ is halved before the next step.
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(v) In the only outstanding and unlikely case, should it occur, where
Δfk is positive and θ negative, τ is unchanged.

(vi) For usual unconstrained minimization the initial step size param-
eter selection is τ = 0.5.

The new gradient-only line search method may of course be applied to
any line search descent method for the unconstrained minimization of a
general multi-variable function. Here its application is restricted to the
conjugate gradient method.

6.5.4 Conjugate gradient search directions and SUMT

The search vectors used here correspond to the conjugate gradient direc-
tions (Bazaraa et al. 1993). In particular for k = 0, 1, . . ., the search
vectors are

vk+1 = (−∇f(xk) + βk+1vk/τ)τ = sk+1τ (6.59)

where sk+1 denote the usual conjugate gradient directions, β1 = 0 and
for k > 0:

βk+1 = ‖∇f(xk)‖2/‖∇f(xk−1)‖2 (6.60)

for the Fletcher-Reeves implementation, and for the Polak-Ribiere ver-
sion:

βk+1 = 〈∇f(xk) − ∇f(xk−1), ∇f(xk)〉/‖∇f(xk−1)‖2. (6.61)

As recommended by Fletcher (1987), the conjugate gradient algorithm
is restarted in the direction of steepest descent when k > n.

For the constrained problem the unconstrained minimization is of course
applied to successive penalty function formulations P (x) of the form
shown in (6.52), using the well known Sequential Unconstrained Mini-
mization Technique (SUMT) (Fiacco and McCormick 1968). In SUMT,
for j = 1, 2, . . ., until convergence, successive unconstrained minimiza-
tions are performed on successive penalty functions P (x) = P (x, μ(j))
in which the overall penalty parameter μ(j) is successively increased:
μ(j+1) := 10μ(j). The corresponding initial step size parameter is set at
τ = 0.5/μ(j) for each sub problem j. This application of ETOP to the



234 CHAPTER 6

constrained problem, via the unconstrained minimization of successive
penalty functions, is referred to as the ETOPC algorithm. In practice,
if analytical expressions for the components of the gradient of the objec-
tive function are not available, they may be calculated with sufficient
accuracy by finite differences. However, when the presence of severe
noise is suspected, the application of the gradient-only search method
with conjugate gradient search directions, requires that central finite dif-
ference approximations of the gradients be used in order to effectively
smooth out the noise. In this case relatively excessive perturbations δxi

in xi must be used, which in practice may typically be of the order of
0.1 times the range of interest!

In the application of ETOPC a limit Δm, is in practice set to the max-
imum allowable magnitude Δ∗ of the step Δ∗ = x∗k+1 − xk. If Δ∗ is
greater than Δm, then set

xk+1 := xk + (x∗k+1 − xk)Δm/Δ∗ (6.62)

and restart the conjugate gradient procedure, with x0 := xk+1, in the
direction of steepest descent. If the maximum allowable step is taken n
times in succession, then Δm is doubled.

6.5.5 Numerical results

The proposed new implementation of the conjugate gradient method
(both the Fletcher- Reeves and Polak-Ribiere versions) is tested here
using 40 different problems arbitrarily selected from the famous set of
test problems of Hock and Schittkowski (1981). The problem numbers
(Pr. #) in the tables, correspond to the numbering used in Hock and
Schittkowski. The final test problem, (12-poly), is the 12 polytope prob-
lem of Svanberg (1995, 1999). The number of variables (n) of the test
problems ranges from 2 to 21 and the number of constraints (m plus
r) per problem, from 1 to 59. The termination criteria for the ETOPC
algorithm are as follows:

(i) Convergence tolerances for successive approximate sub-problems
within SUMT: εg for convergence on the norm of the gradient
vector, i.e. terminate if ‖∇P (x∗k+1, μ)‖ < εg , and εx for con-
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vergence on average change of design vector: i.e. terminate if
1
2‖x∗k+1 − x∗k−1‖ < εx.

(ii) Termination of the SUMT procedure occurs if the absolute value
of the relative difference between the objective function values at
the solution points of successive SUMT problems is less than εf .

6.5.5.1 Results for smooth functions with no noise

For the initial tests no noise is introduced. For high accuracy require-
ments (relative error in optimum objective function value to be less than
10−8), it is found that the proposed new conjugate gradient implemen-
tation performs as robust as, and more economical than, the traditional
penalty function implementation, FMIN, of Kraft and Lootsma reported
in Hock and Schittkowski (1981). The detailed results are as tabulated
in Table 6.4. Unless otherwise indicated the algorithm settings are:
εx = 10−8, εg = 10−5, Δm = 1.0, εf = 10−8, μ(1) = 1.0 and iout = 15,
where iout denotes the maximum number of SUMT iterations allowed.
The number of gradient vector evaluations required by ETOPC for the
different problems are denoted by nge (note that the number of explicit
function evaluations is zero), and the relative error in function value at
convergence to the point xc is denoted by rf , which is computed from

rf = |f(x∗) − f(xc)|/(|f(x∗)| + 1). (6.63)

For the FMIN algorithm only the number of explicit objective function
evaluations nfe are listed, together with the relative error rf at conver-
gence. The latter method requires, in addition to the number of function
evaluations listed, a comparable number of gradient vector evaluations,
which is not given here (see Hock and Schittkowski 1981).

6.5.5.2 Results for severe noise introduced in the objective
function

Following the successful implementation for the test problems with no
noise, all the tests were rerun, but with severe relative random noise
introduced in the objective function f(x) and all gradient components
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Fletcher-Reeves Polak-Ribiere FMIN

Pr. # n m r nge rf nge rf nfe rf
1 2 1 - 100 < 10−14 103 < 10−13 549 < 10−8

2 2 1 - 290 < 10−8 318 < 10−8 382 1 × 10−8

10 2 1 - 231 < 10−9 247 < 10−9 289 7 × 10−8

12 2 1 - 163 < 10−10 184 < 10−10 117 1 × 10−8

13[1] 2 3 - 4993[2] 0.028 4996[2] 0.034 1522 0.163

14 2 1 1 214 < 10−10 200 < 10−10 232 2 × 10−7

15 2 3 - 699 < 10−9 632 < 10−9 729 4 × 10−7

16 2 5 - 334 < 10−9 284 < 10−7 362 1 × 10−8

17 2 5 - 218 < 10−9 209 < 10−9 541 1 × 10−8

20[3] 2 5 - 362 < 10−9 375 < 10−9 701 4 × 10−6

22 2 2 - 155 < 10−9 202 < 10−9 174 1 × 10−7

23 2 9 - 257 < 10−9 244 < 10−9 423 6 × 10−6

24 2 5 - 95 < 10−11 163 2 × 10−6 280 2 × 10−8

26 3 - 1 78 < 10−8 100 2 × 10−8 182 1 × 10−8

27 3 - 1 129 < 10−8 115 < 10−8 173 1 × 10−8

28 3 - 1 17 < 10−28 17 < 10−28 23 < 10−8

29 3 1 - 254 < 10−10 267 < 10−10 159 < 10−8

30 3 7 - 115 < 10−10 124 < 10−10 1199 4 × 10−8

31 3 7 1 309 < 10−9 274 < 10−9 576 < 10−8

32 3 7 1 205 < 10−10 207 < 10−10 874 < 10−8

33[3] 3 6 - 272[3] < 10−10 180 < 10−10 672[3] 3 × 10−7

36 3 7 - 336 < 10−12 351 < 10−10 263 2 × 10−6

45 5 10 - 175 < 10−10 150 < 10−10 369 < 10−8

52 5 - 3 403 < 10−9 388 < 10−9 374 < 10−8

55[3] 6 8 6 506 < 10−9 488 < 10−9 581[3] 3 × 10−8

56 7 - 4 316 6 × 10−8 289 7 × 10−8 446 < 10 − 8
60 3 6 1 198 < 10−10 189 < 10−10 347 1 × 10 − 8

61 3 - 2 205 < 10−10 201 < 10−10 217 < 10 − 8
63 3 3 2 205 < 10−10 208 < 10−10 298 < 10 − 8
65 3 7 - 179 < 10−8 198 < 10−10 - fails

71 4 9 1 493 < 10−9 536 < 10−9 1846 5 × 10−3

72[4] 4 10 - 317 < 10−10 298 < 10−10 1606 5 × 10−2

76 4 7 - 224 < 10−10 227 < 10−10 424 < 10−8

78 5 - 3 261 < 10−10 264 < 10−10 278 < 10−8

80 5 10 3 192 < 10−11 194 < 10−11 1032 2 × 10−8

81[5] 5 10 3 138 < 10−11 158 < 10−10 1662 5 × 10−7

106[6] 8 22 - 6060 5 × 10−6 6496 3 × 10−5 - fails

108 9 14 - 600 < 10−10 519 < 10−10 984 7 × 10−5

118[7] 15 29 - 1233 < 10−8 1358 < 10−8 - fails

12-poly[7] 21 22 - 844 < 10−9 1478 < 10−9 - -

[1]Constraint qualification not satisfied. [2]Termination on maximum number of steps.
[3]Convergence to local minimum. [4]μ(0) = 1.0, Δm = 1.0. [5]μ(0) = 102. [6]Δm = 102.
[7]Gradients by central finite differences, δxi = 10−6, εx = 10−6.

Table 6.4: The respective performances of the new conjugate gradi-
ent implementation ETOPC and FMIN for test problems with no noise
introduced
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computed by central finite differences. The influence of noise is investi-
gated for two cases, namely, for a variation of the superimposed uni-
formly distributed random noise as large as (i) 5% and (ii) 10% of
(1 + |f(x∗)|), where x∗ is the optimum of the underlying smooth prob-
lem. The detailed results are shown in Table 6.5. The results are listed
only for the Fletcher-Reeves version. The results for the Polak- Ribiere
implementation are almost identical. Unless otherwise indicated the
algorithm settings are: δxi = 1.0, εg = 10−5, Δm = 1.0, εf = 10−8,
μ(0) = 1.0 and iout = 6, where iout denotes the maximum number of
SUMT iterations allowed. For termination of sub-problem on step size,
εx was set to εx := 0.005

√
n for the initial sub-problem. Thereafter it is

successively halved for each subsequent sub-problem.

The results obtained are surprisingly good with, in most cases, fast con-
vergence to the neighbourhood of the known optimum of the underlying
smooth problem. In 90% of the cases regional convergence was obtained
with relative errors rx < 0.025 for 5% noise and rx < 0.05 for 10% noise,
where

rx = ‖x∗ − xc‖/(‖x∗‖ + 1) (6.64)

and xc denotes the point of convergence. Also in 90% of the test prob-
lems the respective relative errors in final objective function values were
rf < 0.025 for 5% noise and rf < 0.05 for 10% noise, where rf is as
defined in (6.63).

6.5.6 Conclusion

The ETOPC algorithm performs exceptionally well for a first order
method in solving constrained problems where the functions are smooth.
For these problems the gradient only penalty function implementation
of the conjugate gradient method performs as well, if not better than
the best conventional implementations reported in the literature, in pro-
ducing highly accurate solutions.

In the cases where severe noise is introduced in the objective function,
relatively fast convergence to the neighborhood of x∗, the solution of
the underlying smooth problem, is obtained. Of interest is the fact that
with the reduced accuracy requirement associated with the presence of
noise, the number of function evaluations required to obtain sufficiently
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5% noise 10% noise

Pr. # nmr nge rf rx nge rf rx
1 2 1 - 54 0.035 5× 10−3 54 0.06 5× 10−3

2 2 1 - 80 2× 10−3 2× 10−3 87 9× 10−3 2× 10−3

10 2 1 - 120 0.02 0.022 160 0.048 0.023
12 2 1 - 99 0.018 8× 10−2 232 0.006 0.011
13 2 3 - 394 0.079 0.044 187 0.189 0.095
14 2 1 1 138 0.025 6× 10−4 126 0.041 6× 10−4

15 2 3 - 152 6× 10−5 2× 10−5 154 0.006 8× 10−5

16[1] 2 5 - 250 0.128 0.13 175 0.135 0.16
17 2 5 - 84 0.012 7× 10−6 77 0.041 3× 10−4

20 2 5 - 89 0.009 2× 10−5 105 0.001 2× 10−5

22 2 2 - 75 0.01 4× 10−5 86 0.035 9× 10−5

23 2 9 - 103 0.008 9× 10−4 100 0.005 7× 10−4

24 2 5 - 75 0.0095 4× 10−5 137 0.014 3× 10−5

26 3 - 1 63 0.019 2× 10−3 71 0.04 3× 10−3

27 3 - 1 159 0.015 0.014 132 0.022 0.036
28 3 - 1 46 0.018 6× 10−3 49 0.009 0.025
29 3 1 - 232 0.013 0.01 251 0.046 0.015
30 3 7 - 52 0.025 4× 10−3 72 0.043 6× 10−3

31 3 7 1 123 0.015 9× 10−4 183 0.031 0.013
32 3 7 1 89 0.006 4× 10−3 107 0.031 5× 10−3

33 3 6 - 183 0.016 0.035 83 0.026 3× 10−3

36[2] 3 7 - 177 0.018 6× 10−5 179 0.01 8× 10−5

45 5 10 - 122 0.0013 9× 10−4 92 0.009 4× 10−5

52 5 - 3 239 0.019 0.042 318 0.041 0.071
55 6 8 6 137 0.016 5× 10−3 188 0.041 4× 10−3

56 7 - 4 166 0.012 0.014 144 0.03 0.038
60 3 6 1 95 0.021 0.071 83 0.018 0.033

61[2] 3 - 2 105 0.019 2× 10−3 83 0.026 9× 10−4

63[2] 3 3 2 198 0.02 8× 10−3 652 0.016 0.06
65 3 7 - 94 4× 10−3 3× 10−3 106 0.012 0.003
71 4 9 1 164 0.021 0.022 143 0.021 0.035
72 4 10 - 454 0.01 0.025 578 0.005 0.094
76 4 7 - 131 0.022 0.002 148 0.012 0.041
78 5 - 3 87 0.011 0.004 88 0.037 0.002
80 5 10 3 92 0.011 0.025 105 0.005 0.02

81[3] 5 10 3 39 0.017 0.032 47 0.012 0.031

106[4] 8 22 - 6016 0.023 0.088 8504 0.038 0.113

108[2] 9 14 - 113 0.017 0.04 140 0.04 0.025

118[2] 15 29 - 395 0.012 0.041 371 0.049 0.1

12-poly[2] 21 22 - 476 0.012 0.065 607 0.047 0.1

[1]δxi = 10−1. [2]δxi = 10. [3]μ(0) = 102 [4]δxi = 103,Δm = 102.

Table 6.5: Performance of ETOPC for test problems with severe noise
introduced
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accurate solutions in the case of noise, is on the average much less than
that necessary for the high accuracy solutions for smooth functions. As
already stated, ETOPC yields in 90% of the cases regional convergence
with relative errors rx < 0.025 for 5% noise, and rx < 0.05 for 10%
noise. Also in 90% of the test problems the respective relative errors
in the final objective function values are rf < 0.025 for 5% noise and
rf < 0.05 for 10% noise. In the other 10% of the cases the relative errors
are also acceptably small. These accuracies are more than sufficient for
multidisciplinary design optimization problems where similar noise may
be encountered.

6.6 Global optimization using dynamic search
trajectories

6.6.1 Introduction

The problem of globally optimizing a real valued function is inherently
intractable (unless hard restrictions are imposed on the objective func-
tion) in that no practically useful characterization of the global optimum
is available. Indeed the problem of determining an accurate estimate of
the global optimum is mathematically ill-posed in the sense that very
similar objective functions may have global optima very distant from
each other (Schoen 1991). Nevertheless, the need in practice to find a
relative low local minimum has resulted in considerable research over
the last decade to develop algorithms that attempt to find such a low
minimum, e.g. see Törn and Zilinskas (1989).

The general global optimization problem may be formulated as follows.
Given a real valued objective function f(x) defined on the set x ∈ D in
R

n, find the point x∗ and the corresponding function value f∗ such that

f∗ = f(x∗) = minimum {f(x)|x ∈ D} (6.65)

if such a point x∗ exists. If the objective function and/or the feasible
domain D are non-convex, then there may be many local minima which
are not global.

If D corresponds to all Rn the optimization problem is unconstrained.
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Alternatively, simple bounds may be imposed, with D now correspond-
ing to the hyper box (or domain or region of interest) defined by

D = {x|� ≤ x ≤ u} (6.66)

where � and u are n-vectors defining the respective lower and upper
bounds on x.

From a mathematical point of view, Problem (6.65) is essentially unsolv-
able, due to a lack of mathematical conditions characterizing the global
optimum, as opposed to the local optimum of a smooth continuous func-
tion, which is characterized by the behavior of the problem function
(Hessians and gradients) at the minimum (Arora et al. 1995) (viz. the
Karush-Kuhn-Tucker conditions). Therefore, the global optimum f∗

can only be obtained by an exhaustive search, except if the objective
function satisfies certain subsidiary conditions (Griewank 1981), which
mostly are of limited practical use (Snyman and Fatti 1987). Typically,
the conditions are that f should satisfy a Lipschitz condition with known
constant L and that the search area is bounded, e.g. for all x, x̄ ∈ X

|f(x) − f(x̄)| ≤ L‖x − x̄‖. (6.67)

So called space-covering deterministic techniques have been developed
(Dixon et al. 1975) under these special conditions. These techniques are
expensive, and due to the need to know L, of limited practical use.

Global optimization algorithms are divided into two major classes
(Dixon et al. 1975): deterministic and stochastic (from the Greek word
stokhastikos, i.e. ‘governed by the laws of probability’). Deterministic
methods can be used to determine the global optimum through exhaus-
tive search. These methods are typically extremely expensive. With the
introduction of a stochastic element into deterministic algorithms, the
deterministic guarantee that the global optimum can be found is relaxed
into a confidence measure. Stochastic methods can be used to assess the
probability of having obtained the global minimum. Stochastic ideas are
mostly used for the development of stopping criteria, or to approximate
the regions of attraction as used by some methods (Arora et al. 1995).

The stochastic algorithms presented herein, namely the Snyman-Fatti
algorithm and the modified bouncing ball algorithm (Groenwold and
Snyman 2002), both depend on dynamic search trajectories to minimize
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the objective function. The respective trajectories, namely the motion
of a particle of unit mass in a n-dimensional conservative force field,
and the trajectory of a projectile in a conservative gravitational field,
are modified to increase the likelihood of convergence to a low local
minimum.

6.6.2 The Snyman-Fatti trajectory method

The essentials of the original SF algorithm (Snyman and Fatti 1987)
using dynamic search trajectories for unconstrained global minimization
will now be discussed. The algorithm is based on the local algorithms
presented by Snyman (1982, 1983). For more details concerning the
motivation of the method, its detailed construction, convergence theo-
rems, computational aspects and some of the more obscure heuristics
employed, the reader is referred to the original paper and also to the
more recent review article by Snyman and Kok (2009).

6.6.2.1 Dynamic trajectories

In the SF algorithm successive sample points xj , j = 1, 2, ..., are selected
at random from the box D defined by (6.66). For each sample point xj ,
a sequence of trajectories T i, i = 1, 2, ..., is computed by numerically
solving the successive initial value problems:

ẍ(t) = −∇f(x(t))

x(0) = xi
0 ; ẋ(0) = ẋi

0.
(6.68)

This trajectory represents the motion of a particle of unit mass in a n-
dimensional conservative force field, where the function to be minimized
represents the potential energy.

Trajectory T i is terminated when x(t) reaches a point where f(x(t))
is arbitrarily close to the value f(xi

0) while moving “uphill”, or more
precisely, if x(t) satisfies the conditions

f(x(t)) > f(xi
0) − εu

and ẋ(t)T ∇f(x(t)) > 0
(6.69)
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where εu is an arbitrary small prescribed positive value.

An argument is presented in Snyman and Fatti (1987) to show that
when the level set

{
x|f(x) ≤ f(xi

0)
}

is bounded and ∇f(xi
0) �= 0, then

conditions (6.69) above will be satisfied at some finite point in time.

Each computed step along trajectory T i is monitored so that at ter-
mination the point xi

m at which the minimum value was achieved is
recorded together with the associated velocity ẋi

m and function value
f i

m. The values of xi
m and ẋi

m are used to determine the initial values
for the next trajectory T i+1. From a comparison of the minimum values
the best point xi

b, for the current j over all trajectories to date is also
recorded. In more detail the minimization procedure for a given sample
point xj , in computing the sequence xi

b, i = 1, 2, ..., is as follows.

Algorithm 6.6 Minimization Procedure MP1

1. For given sample point xj , set x1
0 := xj and compute T 1 subject

to ẋ1
0 := 0 ; record x1

m, ẋ1
m and f1

m ; set x1
b := x1

m and i := 2,

2. compute trajectory T i with xi
0 := 1

2

(
xi−1

0 + xi−1
b

)
and ẋi

0 :=
1
2 ẋ

i−1
m , record xi

m, ẋi
m and f i

m,

3. if f i
m < f(xi−1

b ) then xi
b := xi

m ; else xi
b := xi−1

b ,

4. set i := i + 1 and go to 2.

In the original paper (Snyman and Fatti 1987) an argument is presented
to indicate that under normal conditions on the continuity of f and
its derivatives, xi

b will converge to a local minimum. Procedure MP1,
for a given j, is accordingly terminated at step Algorithm 6.6 above if
||∇f(xi

b)|| ≤ ε, for some small prescribed positive value ε, and xi
b is taken

as the local minimizer xj
f , i.e. set xj

f := xi
b with corresponding function

value f j
f := f(xj

f ).

Reflecting on the overall approach outlined above, involving the compu-
tation of energy conserving trajectories and the minimization procedure,
it should be evident that, in the presence of many local minima, the prob-
ability of convergence to a relative low local minimum is increased. This
one expects because, with a small value of εu (see conditions (6.69)), it
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is likely that the particle will move through a trough associated with a
relative high local minimum, and move over a ridge to record a lower
function value at a point beyond. Since we assume that the level set
associated with the starting point function is bounded, termination of
the search trajectory will occur as the particle eventually moves to a
region of higher function values.

6.6.3 The modified bouncing ball trajectory method

The essentials of the modified bouncing ball algorithm using dynamic
search trajectories for unconstrained global minimization are now pre-
sented. The algorithm is in an experimental stage, and details con-
cerning the motivation of the method, its detailed construction, and
computational aspects will be presented in future.

6.6.3.1 Dynamic trajectories

In the MBB algorithm successive sample points xj , j = 1, 2, ..., are
selected at random from the box D defined by (6.66). For each sample
point xj , a sequence of trajectory steps Δxi and associated projection
points xi+1, i = 1, 2, ..., are computed from the successive analytical
relationships (with x1 := xj and prescribed V01 > 0):

Δxi = V0iti cos θi∇f(xi)/||∇f(xi)|| (6.70)

where

θi = tan−1(||∇f(xi)||) +
π

2
, (6.71)

ti =
1
g

[
V0i sin θi +

{
(V0i sin θi)2 + 2gh(xi)

}1/2
]
, (6.72)

h(xi) = f(xi) + k (6.73)

with k a constant chosen such that h(x) > 0 ∀ x ∈ D, g a positive
constant, and

xi+1 = xi + Δxi. (6.74)

For the next step, select V0i+1 < V0i . Each step Δxi represents the
ground or horizontal displacement obtained by projecting a particle in a
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vertical gravitational field (constant g) at an elevation h(xi) and speed
V0i at an inclination θi. The angle θi represents the angle that the
outward normal n to the hypersurface represented by y = h(x) makes,
at xi in n + 1 dimensional space, with the horizontal. The time of flight
ti is the time taken to reach the ground corresponding to y = 0.

More formally, the minimization trajectory for a given sample point
xj and some initial prescribed speed V0 is obtained by computing the
sequence xi, i = 1, 2, ..., as follows.

Algorithm 6.7 Minimization Procedure MP2

1. For given sample point xj , set x1 := xj and compute trajectory
step Δx1 according to (6.70)–(6.73) and subject to V01 := V0;
record x2 := x1 + Δx1, set i := 2 and V02 := αV01 (α < 1).

2. Compute Δxi according to (6.70)–(6.73) to give xi+1 := xi +Δxi,
record xi+1 and set V0i+1 := αV0i .

3. Set i := i + 1 and go to 2.

In the vicinity of a local minimum x̂ the sequence of projection points
xi, i = 1, 2, ..., constituting the search trajectory for starting point xj

will converge since Δxi → 0 (see (6.70)). In the presence of many local
minima, the probability of convergence to a relative low local minimum
is increased, since the kinetic energy can only decrease for α < 1.

Procedure MP2, for a given j, is successfully terminated if ||∇f(xi)|| ≤ ε
for some small prescribed positive value ε, or when αV i

0 < βV 1
0 , and xi

is taken as the local minimizer xj
f with corresponding function value

f j
f := h(xj

f ) − k.

Clearly, the condition αV i
0 < βV 1

0 will always occur for 0 < β < α and
0 < α < 1.

MP2 can be viewed as a variant of the steepest descent algorithm. How-
ever, as opposed to steepest descent, MP2 has (as has MP1) the ability
for ‘hill-climbing’, as is inherent in the physical model on which MP2 is
based (viz., the trajectories of a bouncing ball in a conservative gravita-
tional field.) Hence, the behavior of MP2 is quite different from that of
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steepest descent and furthermore, because of it’s physical basis, it tends
to seek local minima with relative low function values and is therefore
suitable for implementation in global searches, while steepest descent is
not.

For the MBB algorithm, convergence to a local minimum is not proven.
Instead, the underlying physics of a bouncing ball is exploited. Unsuc-
cessful trajectories are terminated, and do not contribute to the prob-
abilistic stopping criterion (although these points are included in the
number of unsuccessful trajectories ñ). In the validation of the algo-
rithm the philosophy adopted here is that the practical demonstration
of convergence of a proposed algorithm on a variety of demanding test
problems may be as important and convincing as a rigorous mathemat-
ical convergence argument.

Indeed, although for the steepest descent method convergence can be
proven, in practice it often fails to converge because effectively an infinite
number of steps is required for convergence.

6.6.4 Global stopping criterion

The above methods require a termination rule for deciding when to end
the sampling and to take the current overall minimum function value f̃ ,
i.e.

f̃ = minimum
{

f j
f , over all j to date

}
(6.75)

as an approximation of the global minimum value f∗.

Define the region of convergence of the dynamic methods for a local
minimum x̂ as the set of all points x which, used as starting points for
the above procedures, converge to x̂. One may reasonably expect that in
the case where the regions of attraction (for the usual gradient-descent
methods, see Dixon et al. 1976) of the local minima are more or less
equal, that the region of convergence of the global minimum will be
relatively increased.

Let Rk denote the region of convergence for the above minimization
procedures MP1 and MP2 of local minimum x̂k and let αk be the asso-
ciated probability that a sample point be selected in Rk. The region of
convergence and the associated probability for the global minimum x∗
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are denoted by R∗ and α∗ respectively. The following basic assumption,
which is probably true for many functions of practical interest, is now
made. Basic assumption:

α∗ ≥ αk for all local minima x̂k. (6.76)

The following theorem may be proved.

6.6.4.1 Theorem (Snyman and Fatti 1987)

Let r be the number of sample points falling within the region of con-
vergence of the current overall minimum f̃ after ñ points have been
sampled. Then under the above assumption and a statistically non-
informative prior distribution the probability that f̃ corresponds to f∗

may be obtained from

Pr
[
f̃ = f∗

]
≥ q(ñ, r) = 1 − (ñ + 1)!(2ñ − r)!

(2ñ + 1)!(ñ − r)!
. (6.77)

On the basis of this theorem the stopping rule becomes: STOP when
Pr

[
f̃ = f∗

]
≥ q∗, where q∗ is some prescribed desired confidence level,

typically chosen as 0.99.

Proof :

We present here an outline of the proof of (6.77), and follow closely the
presentation in Snyman and Fatti (1987). (We have since learned that
the proof can be shown to be a generalization of the procedure proposed
by Zielińsky 1981.) Given ñ∗ and α∗, the probability that at least one
point, ñ ≥ 1, has converged to f∗ is

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (1 − α∗)ñ . (6.78)

In the Bayesian approach, we characterize our uncertainty about the
value of α∗ by specifying a prior probability distribution for it. This
distribution is modified using the sample information (namely, ñ and
r) to form a posterior probability distribution. Let p∗(α∗|ñ, r) be the
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posterior probability distribution of α∗. Then,

Pr[ñ∗ ≥ 1|ñ, r] =
∫ 1

0

[
1 − (1 − α∗)ñ

]
p∗(α∗|ñ, r)dα∗

= 1 −
∫ 1

0
(1 − α∗)ñp∗(α∗|ñ, r)dα∗. (6.79)

Now, although the r sample points converge to the current overall mini-
mum, we do not know whether this minimum corresponds to the global
minimum of f∗. Utilizing (6.76), and noting that (1−α)ñ is a decreasing
function of α, the replacement of α∗ in the above integral by α yields

Pr[ñ∗ ≥ 1|ñ, r] ≥
∫ 1

0

[
1 − (1 − α)ñ

]
p(α|ñ, r)dα . (6.80)

Now, using Bayes theorem we obtain

p(α|ñ, r) =
p(r|α, ñ)p(α)

∫ 1
0 p(r|α, ñ)p(α)dα

. (6.81)

Since the ñ points are sampled at random and each point has a proba-
bility α of converging to the current overall minimum, r has a binomial
distribution with parameters α and ñ. Therefore

p(r|α, ñ) =
(

ñ

r

)
αr(1 − α)ñ−r . (6.82)

Substituting (6.82) and (6.81) into (6.80) gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 −
∫ 1
0 αr(1 − α)2ñ−rp(α)dα
∫ 1
0 αr(1 − α)ñ−rp(α)dα

. (6.83)

A suitable flexible prior distribution p(α) for α is the beta distribution
with parameters a and b. Hence,

p(α) = [1/β(a, b)] αa−1(1 − α)b−1, 0 ≤ α ≤ 1. (6.84)

Using this prior distribution gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 − Γ(ñ + a + b) Γ(2ñ − r + b)
Γ(2ñ + a + b) Γ(ñ − r + b)

= 1 − (ñ + a + b − 1)! (2ñ − r + b − 1)!
(2ñ + a + b − 1)! (ñ − r + b − 1)!

.
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Assuming a prior expectation of 1, (viz. a = b = 1), we obtain

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (ñ + 1)! (2ñ − r)!
(2ñ + 1)! (ñ − r)!

,

which is the required result. �

6.6.5 Numerical results

No. Name ID n Ref.

1 Griewank G1 G1 2 Törn and Zilinskas; Griewank
2 Griewank G2 G2 10 Törn and Zilinskas; Griewank
3 Goldstein-Price GP 2 Törn and Zilinskas; Dixon and Szegö
4 Six-hump Camelback C6 2 Törn and Zilinskas; Branin
5 Shubert, Levi No. 4 SH 2 Lucidl and Piccioni
6 Branin BR 2 Törn and Zilinskas; Branin and Hoo
7 Rastrigin RA 2 Törn and Zilinskas
8 Hartman 3 H3 3 Törn and Zilinskas; Dixon and Szegö
9 Hartman 6 H6 6 Törn and Zilinskas; Dixon and Szegö
10 Shekel 5 S5 4 Törn and Zilinskas; Dixon and Szegö
11 Shekel 7 S7 4 Törn and Zilinskas; Dixon and Szegö
12 Shekel 10 S10 4 Törn and Zilinskas; Dixon and Szegö

Table 6.6: The test functions

SF - This Study SF - Previous MBB
No. ID Nf (r/ñ)b (r/ñ)w Nf r/ñ Nf (r/ñ)b (r/ñ)w
1 G1 4199 6/40 6/75 1606 6/20 2629 5/8 6/23
2 G2 25969 6/84 6/312 26076 6/60 19817 6/24 6/69
3 GP 2092 4/4 5/12 668 4/4 592 4/4 5/10
4 C6 426 4/4 5/9 263 4/4 213 4/4 5/10
5 SH 8491 6/29 6/104 — — 1057 5/7 6/26
6 BR 3922 4/4 5/12 — — 286 4/4 5/6
7 RA 4799 6/67 6/117 — — 1873 4/4 6/42
8 H3 933 4/4 5/8 563 5/6 973 5/9 6/29
9 H6 1025 4/4 5/10 871 5/8 499 4/4 5/9
10 S5 1009 4/4 6/24 1236 6/17 2114 5/8 6/39
11 S7 1057 5/8 6/37 1210 6/17 2129 6/16 6/47
12 S10 845 4/4 6/31 1365 6/20 1623 5/7 6/39

Table 6.7: Numerical results
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Test Function
Method BR C6 GP RA SH H3
TRUST 55 31 103 59 72 58
MBB 25 29 74 168 171 24

Table 6.8: Cost (Nf ) using a priori stopping condition

The test functions used are tabulated in Table 6.6, and tabulated numer-
ical results are presented in Tables 6.7 and 6.8. In the tables, the
reported number of function values Nf are the average of 10 independent
(random) starts of each algorithm.

Unless otherwise stated, the following settings were used in the SF algo-
rithm (see Snyman and Fatti 1987): γ = 2.0, α = 0.95, ε = 10−2,
ω = 10−2, δ = 0.0, q∗ = 0.99, and Δt = 1.0. For the MBB algorithm,
α = 0.99, ε = 10−4, and q∗ = 0.99 were used. For each problem, the ini-
tial velocity V0 was chosen such that Δx1 was equal to half the ‘radius’
of the domain D. A local search strategy was implemented with varying
α in the vicinity of local minima.

In Table 6.7, (r/ñ)b and (r/ñ)w respectively indicate the best and worst
r/ñ ratios (see equation (6.77)), observed during 10 independent opti-
mization runs of both algorithms. The SF results compare well with the
previously published results by Snyman and Fatti, who reported values
for a single run only. For the Shubert, Branin and Rastrigin functions,
the MBB algorithm is superior to the SF algorithm. For the Shekel
functions (S5, S7 and S10), the SF algorithm is superior. As a result
of the stopping criterion (6.77), the SF and MBB algorithms found the
global optimum between 4 and 6 times for each problem.

The results for the trying Griewank functions (Table 6.7) are encourag-
ing. G1 has some 500 local minima in the region of interest, and G2
several thousand. The values used for the parameters are as specified,
with Δt = 5.0 for G1 and G2 in the SF-algorithm. It appears that both
the SF and MBB algorithms are highly effective for problems with a
large number of local minima in D, and problems with a large number
of design variables.

In Table 6.8 the MBB algorithm is compared with the deterministic
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TRUST algorithm (Barhen et al. 1997). Since the TRUST algorithm
was terminated when the global approximation was within a specified
tolerance of the (known) global optimum, a similar criterion was used for
the MBB algorithm. The table reveals that the two algorithms compare
well. Note however that the highest dimension of the test problems used
in Barhen et al. (1997) is 3. It is unclear if the deterministic TRUST
algorithm will perform well for problems of large dimension, or problems
with a large number of local minima in D.

In conclusion, the numerical results indicate that both the Snyman-Fatti
trajectory method and the modified bouncing ball trajectory method
are effective in finding the global optimum efficiently. In particular,
the results for the trying Griewank functions are encouraging. Both
algorithms appear effective for problems with a large number of local
minima in the domain, and problems with a large number of design
variables. A salient feature of the algorithms is the availability of an
apparently effective global stopping criterion.
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SURROGATE MODELS

7.1 Introduction

A Taylor series expansion of a function allows us to approximate a func-
tion f(x) at any point x, based solely on information about the function
at a single point xi. Here, information about the function implies zero
order, first order, second order and higher order information of the func-
tion at xi. The higher the order of information included in a Taylor series
representation of a function, the higher the accuracy of the approxima-
tion distant from xi. However, higher order information for multivariate
functions grows exponentially in dimensionality, i.e. the gradient vector
constitutes n values, the Hessian matrix is expressed by n2 values and
the 3rd derivative is comprised of n3 values. In practice, zero order and
first order information about a problem is usually computable and con-
venient to store, while second order information is usually not readily
available for engineering problems and needs to be inferred from first
order information as described in Section 2.4.

Surrogate modelling offers an alternative approach to Taylor series
for constructing approximations of functions. Instead of constructing
approximations based on ever higher and higher order information at a
single point, surrogate modelling approximates functions using lower
order informationatnumerouspoints in thedomainof interest. Theadvan-
tage of such an approach is that it is (i) computationally inexpensive to

© Springer International Publishing AG, part of Springer Nature 2018
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approximate zero and first order information of the function at addi-
tional points in the domain, and that (ii) lower order information can
be computed in parallel on distributed computing platforms. Hence,
the approximation functions can be exhaustively optimized, while the
computationally demanding evaluations of the actual function can be
distributed over multiple cores and computers. It is not surprising that
surrogate modelling is the preferred strategy to solve computationally
demanding multidisciplinary engineering design problems as highlighted
by Forrester et al. (2008). However, as information grows exponentially
with the order of information for a multivariate problem, so too does
the design space grow exponentially with problem dimensionality. This
is referred to as, the curse of dimensionality, as phrased by Bellman
(1957). This limits surrogate modelling to lower-dimensional problems
in the same way that Taylor series approximations are limited to lower
order information for higher-dimensional problems.

Formally, a surrogate model approximates a non-linear function f(x),
when information about f(x) is known at m discrete locations xi, i =
1, . . . , m. The information is usually limited to zero order information,
i.e. only function values as described by Hardy (1971, 1990); Franke
(1982); Dyn et al. (1986); Khuri and Mukhopadhyay (2010). More
recently both zero and first order information have been considered more
readily in the construction of surrogate models, Hardy (1975, 1990);
Morris et al. (1993); Chung and Alonso (2001); Lauridsen et al. (2002).
Lastly, Wilke (2016) proposed the construction of surrogate models using
only first order information. This allows for smooth surrogate approx-
imations of piecewise smooth discontinuous functions as will be shown
at the end of this chapter.

7.2 Radial basis surrogate models

A number of surrogate models are available to approximate a non-linear
function f(x). Hardy (1971) pioneered radial basis functions by approx-
imating a non-linear function, f(x), as a linear combination of p cho-
sen non-linear basis functions φj(x,xj

c), j = 1, . . . , p, that are centered
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around p spatial points xj
c, which is conveniently expressed by

f(x) ≈
p∑

j=1

wjφj(x,xj
c) = f̃(x). (7.1)

The non-linear basis functions, φj(x,xj
c), j = 1, . . . , p, are usually cho-

sen to be of identical form but centered around distinct spatial points
xj

c. For examples of radial basis functions refer to Table 7.1. Typically
Figures 7.1 (a) and (b) depict three basis functions centered about three
points in a two-dimensional design domain.

(a) (b)

Figure 7.1: Illustration of three radial basis functions centered around
three spatial locations, namely, x1 = −1.5 and x2 = −3, x1 = 1.25 and
x2 = 3, and x1 = 4 and x2 = 3

A significant benefit of this approach is that all the non-linearity of
f(x) is approximated by the non-linear basis functions φj(x), while the
approximation is linear in the weights wj that need to be estimated.
Hence, wj can be obtained by merely solving a linear problem.

7.2.1 Zero order only radial basis surrogate models

Solving for the weights wj , j = 1, . . . , p from only zero order (zo) infor-
mation requires the function, f(xj), to be evaluated at least for m ≥ p
distinct designs xj , j = 1, . . . , m. The response surface f̃(x) is then
required to recover the actual function value at the xj , j = 1, . . . , m
designs, i.e. f̃(xj) ≈ f(xj). By choosing the number of designs and
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basis functions to be equal, i.e. m = p, we recover an interpolation
surface, i.e. f̃(xj) = f(xj), j = 1, . . . , m,. When we have fewer basis
functions than design vectors, i.e. p < m, we recover a regression surface
f̃(xj) ≈ f(xj), j = 1, . . . , m, that requires a least squares problem to
be solved to recover the weights. In general interpolation surfaces are
preferred when only a few design vectors are available, while regression
surfaces are favoured when the design domain is densely sampled.

In general, by choosing p basis functions and m design vectors, results
in p unknowns to be solved from m equations

f(x1) =
p∑

j=1

wjφj(x1,xj
c) = f̃(x1)

f(x2) =
p∑

j=1

wjφj(x2,xj
c) = f̃(x2)

... (7.2)

f(xm) =
p∑

j=1

wjφj(xm,xj
c) = f̃(xm).

This can be rewritten in block matrix form

Rzowzo = rzo, (7.3)

with

Rzo =

⎡

⎢⎣
φ1(x1,x1

c) φ2(x1,x2
c) . . . φm(x1,xp

c)
...
φ1(xm,x1

c) φ2(xm,x2
c) . . . φm(xm,xp

c)

⎤

⎥⎦ ,

wzo =

⎡

⎢⎢⎢⎣

wzo
1

wzo
2

...
wzo

p

⎤

⎥⎥⎥⎦ , rzo =

⎡

⎢⎣
f(x1)
...
f(xm)

⎤

⎥⎦ ,

to obtain an m by p linear system of equations. For p = m the system
can be solved directly. However, p < m yields an overdetermined system
of equations to be solved in a least squares sense. This is achieved by
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pre-multiplying (7.3) by RT
zo to obtain the following p × p linear system

of equations

RT
zoRzowzo = RT

zor
zo, (7.4)

from which wzo can be solved for.

For convenience, when choosing p = m, the m designs xj , j = 1, . . . , m
are usually chosen to coincide with the p basis function centers, i.e.
xj

c = xj , j = 1, . . . , m.

7.2.2 Combined zero and first order radial basis surrogate
models

Solving for the weights wj , j = 1, . . . , p from both zero and first order
information, i.e. mixed order (mo), requires the function, f(xj), and
gradient of the function, ∇f(xj), to be evaluated at m distinct designs
xj , j = 1, . . . , m. The response surface f̃(x) is then required to recover
the actual function value and gradient at the xj , j = 1, . . . , m designs,
i.e. f̃(xj) ≈ f(xj) and ∇f̃(xj) ≈ ∇f(xj). By choosing m designs for
p = m basis functions we recover a regression surface, i.e. f̃(xj) ≈
f(xj), j = 1, . . . , m, and ∇f̃(xj) ≈ ∇f(xj), j = 1, . . . , m. A least
squares problem is then to be solved to recover the weights.

In general, by choosing p basis functions and m design vectors, each of
dimension n, we now have p unknowns to be solved for from m(n + 1)
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equations:

f(x1) =
p∑

j=1

wjφj(x1,xj
c) = f̃(x1),

∇f(x1) =
p∑

j=1

wj
∂φj(x1,xj

c)
∂x

= ∇f̃(x1),

f(x2) =
p∑

j=1

wjφj(x2,xj
c) = f̃(x2),

∇f(x2) =
p∑

j=1

wj
∂φj(x2,xj

c)
∂x

= ∇f̃(x2),

... (7.5)

f(xm) =
p∑

j=1

wjφj(xm,xj
c) = f̃(xm),

∇f(xm) =
p∑

j=1

wj
∂φj(xm,xj

c)
∂x

= ∇f̃(xm),

which can be rewritten in block matrix form to obtain

Rmowmo = rmo, (7.6)

with

Rmo =

⎡

⎢⎢⎢⎢⎢⎢⎣

φ1(x1,x1
c) φ2(x1,x2

c) . . . φm(x1,xp
c)

∂φ1(x1,x1
c)

∂x
∂φ2(x1,x2

c)
∂x . . . ∂φm(x1,xp

c )
∂x

...
φ1(xm,x1

c) φ2(xm,x2
c) . . . φm(xm,xp

c)
∂φ1(xm,x1

c)
∂x

∂φ2(xm,x2
c)

∂x . . . ∂φm(xm,xp
c )

∂x

⎤

⎥⎥⎥⎥⎥⎥⎦
,

wmo =

⎡

⎢⎢⎢⎣

w1

w2
...
wp

⎤

⎥⎥⎥⎦ , rmo =

⎡

⎢⎢⎢⎢⎢⎣

f(x1)
∇f(x1)
...
f(xm)
∇f(xm)

⎤

⎥⎥⎥⎥⎥⎦
,
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to obtain a m(n + 1) by p overdetermined linear system of equations.
The overdetermined system of equations can be solved in a least squares
sense by pre-multiplying (7.6) by RT

mo to obtain the following p×p linear
system of equations

RT
moRmowmo = RT

mor
mo, (7.7)

from which wmo can be solved for.

7.2.3 First order only radial basis surrogate models

Solving for the weights wj , j = 1, . . . , p from only first order (fo) or
gradient only information requires that the gradient ∇f(x) of the non-
linear function to be evaluated at m distinct designs xj , j = 1, . . . , m.
The response surface f̃(x) is then required to recover the actual gradient
at the xj , j = 1, . . . , m designs, i.e. ∇f̃(xj) ≈ ∇f(xj). By choosing m
designs and p = m basis functions we recover an interpolation surface
for the gradient, i.e. ∇f̃(xj) = ∇f(xj), j = 1, . . . , m, only for univariate
functions.

In general, higher-dimensional functions result in regression response
surfaces, i.e. ∇f̃(xj) ≈ ∇f(xj), since we only have p = m weights to
recover m × n = mn gradient components, where n is the dimension of
the design vector. The resulting mn equations

∇f(x1) =
p∑

j=1

wj
∂φj(x1,xj

c)
∂x

= ∇f̃(x1)

∇f(x2) =
p∑

j=1

wj
∂φj(x2,xj

c)
∂x

= ∇f̃(x2)

... (7.8)

∇f(xm) =
p∑

j=1

wj
∂φj(xm,xj

c)
∂x

= ∇f̃(xm),

can be rewritten in block matrix form to obtain

Rfowfo = rfo, (7.9)
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with

Rfo =

⎡

⎢⎢⎣

∂φ1(x1,x1
c)

∂x
∂φ2(x1,x2

c)
∂x . . . ∂φm(x1,xp

c )
∂x

...
∂φ1(xm,x1

c)
∂x

∂φ2(xm,x2
c)

∂x . . . ∂φm(xm,xp
c )

∂x

⎤

⎥⎥⎦ ,

wfo =

⎡

⎢⎢⎢⎣

w1

w2
...
wp

⎤

⎥⎥⎥⎦ , rfo =

⎡

⎢⎣
∇f(x1)
...
∇f(xm)

⎤

⎥⎦ ,

giving an mn by m overdetermined linear system of equations. This
overdetermined system of equations can be solved in a least squares
sense by pre-multiplying (7.9) by RT

fo to obtain the following m × m
linear system of equations

RT
foRfowfo = RT

for
fo, (7.10)

from which wfo is to be solved for. However, RT
foRfo is singular as

an approximated surrogate from first order only information has infinite
representations since any constant added to the surrogate leaves the
gradient of the surrogate unchanged. This can be addressed by adding
at least one equation that enforces the function value at a design to
(7.10). Alternatively the minimum norm solution for the least squares
system (7.10) can be computed. For convenience, the m designs xj , j =
1, . . . , m are usually chosen to coincide with the chosen p = m basis
function centers, i.e. xj

c = xj , j = 1, . . . , m.

7.3 Basis functions

Numerous radial basis functions φj(rj)(x) have been proposed with the
most popular global support basis functions listed in Table 7.1. The
shape parameter ε is in general unknown and needs to be determined
as will be discussed in the next section. Smooth basis functions are
preferred when constructing surrogate models for optimization applica-
tions, as they are everywhere differentiable. A preferred choice is the
Gaussian basis function,

φj(x,xj
c) = φj(rj(x)) = e(−εrj(x)

2). (7.11)
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Name Abbreviation Equation
Gaussian GA φj(rj(x)) = e−εrj(x)

2

Exponential EXP φj(rj(x)) = e−εrj(x)

Multiquadric MQ φj(rj(x)) =
√

1 + (εrj(x))2

Inverse quadratic IQ φj(rj(x)) = 1
1+(εrj(x))2

Inverse multiquadric IMQ φj(rj(x)) = 1√
1+(εrj(x))2

Table 7.1: Radial basis functions φj(rj(x)) with rj(x) = ‖x − xj‖

The gradient is given by

∇φj(rj(x)) =
∂φj

∂rj

∂rj

∂x
=

(
−2εrje

(−εr2j )
) (

1
2rj

2(x − xj
c)

)
, (7.12)

and tends to 0 as rj(x) → 0. However, as (7.12) is prone to numerical
instabilities as rj(x) → 0, it is required to apply L’Hospital’s rule to
ensure that numerically ∇φj(rj(x)) indeed evaluates to 0 at rj(x

j
c).

7.3.1 Shape parameter

The shape parameter ε needs to be estimated. It determines the radius
of the domain over which the basis function has significant influence.
For example, consider the Gaussian basis function (7.11), for ε chosen
large and unit rj , −εr2j evaluates to a large negative value of which the
exponential is close to zero. Consequently, the larger ε the smaller the
domain over which the basis function has a significant influence. The
choice of ε is therefore of utmost importance, with smaller ε preferred,
but choosing ε too small will result in severe numerical ill-conditioning
for finite precision computing.
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(a) (b)

Figure 7.2: (a) Two-dimensional quadratic function evaluated at (b)
nine points in the two-dimensional design domain

(a) (b) (c)

Figure 7.3: Radial basis approximation surfaces constructed using (a)
ε = 100, (b) ε = 10−1 and (c) ε = 10−5

Consider the construction of zero-order Gaussian radial basis surrogate
approximations of the quadratic function, f(x) = x2

1 +10x2
2, depicted in

Figure 7.2 (a) that is evaluated at nine points as shown in Figure 7.2 (b).

The construction done for three values of ε are depicted in Figures 7.3 (a)–
(c). The results clearly indicate the influence of the shape parameter on
the constructed radial basis function approximation surfaces. Choosing ε
too large results in locally compact support that fails to capture smooth
trends over large domains as shown in Figure 7.3 (a). Ill-conditioning is
evident in Figure 7.3 (c) in which the numerical solution for the weights
have broken down resulting in severe noise. Lastly, choosing an appro-
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priate shape parameter gives the ability to capture the actual function
using spatially distributed information as illustrated in Figure 7.3 (b).

In general, ε is computed using k-fold cross validation (Kohavi (1995)).
In k-fold cross validation the m design vectors are randomly partitioned
into k equal sized subsets, i.e. each subset containing m

k design vectors.
Of the k subsets, the first is retained to test the model (test subset),
while the union of the remaining k − 1 subsets (the training subsets) is
used to construct the response surface. Once, the response surface has
been constructed, using only the training subset, the model is used to
predict the response at the design vectors in the test subset. Since the
responses at the designs in the test subset are known an error can be
computed that captures the difference between the predicted and actual
response. Here, the sum of the difference squared is usually computed.
This process is repeated by choosing the next subset as the test subset,
while the union of the remaining k − 1 subsets again define the training
subset until all subsets have been used as a test subset, i.e. this process
is repeated k times. All the errors over the k test subsets are averaged
to define the k-fold cross validation error (k-CVE). The k-CVE is then
computed for different choices of ε to find the ε∗ that minimizes k-CVE
error. Afterwards, ε∗ is used to construct the surrogate, usually using
all m points. A typical choice for k is between 5 and 20, while choosing
k = m results in leave-one-out cross validation (LOOCV). This forms the
basis for the predicted residual error sum of squares (PRESS) statistic
proposed by Allen (1974).

The process of constructing surrogate models using the k-CVE is listed
in Algorithm 7.1.

7.4 Numerical examples

To demonstrate the implications and utility of using only zero or only
first order information in constructing surrogate models, consider the
two test functions depicted in Figure 7.4 (a) and (b). They are the
smooth continuous quadratic function

f(x) =
n∑

i=1

10i−1x2
i−1, (7.13)
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Algorithm 7.1 Radial basis surrogate model.

Initialization: Select a radial basis function and associated initial
shape parameter ε0. Choose an integer value for k and select the num-
ber of design vectors m (a multiple of k) in the design of experiments.
Randomly partition the m design vectors into k subsets of equal size.
These k subsets are then used to compute the k-fold cross validation
error (k-CVE). Set l = 0 and perform the following steps:

1. Design of Experiments: Identify m design vectors xi, i =
1, . . . , m.

2. Evaluate Designs: For each design, compute the function value
fi = f(xi), i = 1, . . . m and/or gradient vector ∇f i = ∇f(xi), i =
1, . . . m.

3. Trial Surrogate model: For ε = εl construct k trial surrogate
models by solving for w from (7.4), (7.7) or (7.10) using succes-
sively, each of the k subsets containing m

k design vectors as the test
subset, and the union of the remaining k − 1 subsets as training
set. For each of the k surrogate models use its corresponding test
set and compute the test set error. Then compute the k-CVE as
the average of the k test set errors.

4. Update εl:

(a) Set l := l + 1

(b) Update εl using a minimization strategy to reduce the k-CVE.

(c) If εl has converged within an acceptable tolerance then set
ε∗ = εl and go to Step 5, else go to Step 3.

5. Construct Surrogate Model: Construct the surrogate model
by solving for w from (7.4), (7.7) or (7.10) using ε = ε∗. Instead
of only using the training set of design vectors it is often advised
to use all m design vectors to construct the final surrogate model.
A typical choice for k is between 5 and 20.

depicted in Figure 7.4 (a) with n = 2, and the piece-wise smooth step
discontinuous quadratic function

f(x) =
n∑

i=2

10i−2x2
i−2 + 10i−1x2

i−1 + a(sign(xi−2))−
b(sign(xi−1)) + c(sign(xi−2))(sign(xi−1)) (7.14)
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depicted in Figure 7.4 (b) with n = 2, a = 100, b = 50 and c = 133.
It is important to note that the piece-wise smooth step discontinuous
quadratic function is the same quadratic function given by (7.13) with
step discontinuities imposed that are controlled by the coefficients a, b
and c. Hence, the first associated partial derivatives w.r.t. x1 and x2 for
both the smooth quadratic function and step discontinuous quadratic
function are the same and respectively depicted in Figures 7.4 (c) and (d).
The functions are evaluated at 3 × 3 designs as depicted in
Figure 7.2 (b) to obtain the zero or first order information required
to construct the surrogate models. Gaussian radial basis functions are
used in the models and k = m is specified for computing the CVE. Only
zero order information or only first order information are considered.

The constructed zero order only and first order only (with the exception
of enforcing f = 0 at x1 = 0, x2 = 0) surrogate models for the smooth
quadratic function are depicted in Figures 7.5 (a) and (b). In addition,
the first order partial derivatives w.r.t. x1 and x2 of the surrogate models
are respectively depicted in Figures 7.6 (a) and (b) and Figures 7.6 (c)
and (d) over the domain −5 to 5 for both variables.

It is evident that the two constructed surfaces, depicted in Figures 7.5 (a)
and (b), are nearly identical. Similarly, the estimated first order partial
derivatives for the zero order only and first order only constructed surro-
gate models w.r.t. x1 and x2 are respectively depicted in Figures 7.6 (a)
and (b) and Figures 7.6 (c) and (d). The approximated partial deriva-
tives are nearly identical to the actual partial derivatives depicted in
Figures 7.4 (c) and (d).

For the piece-wise smooth step discontinuous quadratic function, the
constructed zero order only and first order only (with the exception of
enforcing f = 0 at x1 = 0, x2 = 0) surrogate models are depicted in
Figures 7.7 (a) and (b). In addition, the first order partial derivatives
w.r.t. x1 and x2 of the surrogate models are respectively depicted in Fig-
ures 7.8 (a) and (b) and Figures 7.8 (c) and (d) over the domain −5 to
5 for both variables. The approximated associated partial derivatives of
the zero order only surrogate model differs significantly from the actual
associated partial derivatives depicted in Figures 7.4 (c) and (d). How-
ever, the associated partial derivatives of the first order only approxi-
mated surrogate model is nearly identical to the actual associated partial
derivatives. Similarly, the zero order only constructed surrogate model
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(a) (b)

(c) (d)

Figure 7.4: Surface of (a) the smooth quadratic function given by (7.13),
and (b) the piece-wise smooth step discontinuous quadratic function
given by (7.14). In addition, the first associated partial derivatives w.r.t.
x1 and x2 for both functions are the same and respectively depicted in
(c) and (d), with the full set of identified designs points indicated by
white circles

differs significantly from both the actual smooth quadratic function and
the piece-wise smooth step discontinuous function respectively depicted
in Figures 7.4 (a) and (b). In contrast, the first order only constructed
surrogate model is nearly identical to the actual smooth quadratic func-
tion, demonstrating that the step discontinuities are effectively ignored
when only first order information is considered.

It is evident that the zero order only and first order only constructed
surrogate functions differ significantly in approximating both the func-
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(a) (b)

Figure 7.5: (a) Zero order only and (b) first order only constructed
response surfaces for the smooth quadratic function

tion value and associated gradient of the actual piece-wise smooth step
discontinuous function. The zero order constructed surrogate function
poorly represents both the function and associated gradients of the piece-
wise smooth step discontinuous function. It is only the approximated
associated gradients of the first order constructed surrogate function
that is consistent with the actual associated gradient of the piece-wise
smooth step discontinuous function. The result, when only first order
information is considered to construct a surrogate, is a smooth surro-
gate that is consistent with the first order information of the piece-wise
smooth step discontinuous function. As will be pointed out in Chapter 8,
this is ideal when the step discontinuities are numerical artefacts that
need to be ignored. The effectiveness of first order only constructed
surrogates to ignore or filter out step discontinuities is remarkable and
an important aspect to consider when constructing surrogates for dis-
continuous functions. The resulting smooth surrogate function that is
approximated from only first order information can then be optimized
using conventional gradient based approaches.

http://dx.doi.org/10.1007/978-3-319-77586-9_8
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(a) (b)

(c) (d)

Figure 7.6: First order partial derivatives w.r.t. x1 and x2 respectively
computed from the constructed (a),(c) zero order only surrogate model
and (b),(d) first order only surrogate model for the smooth quadratic
function. The sampled designs are indicated by white circles

7.5 Exercises

The reader is encouraged to employ a convenient computing environ-
ment to complete the exercises. With Python being freely available it is
recommended to be used as outlined in Chapter 9.

7.4.1 Consider some non-linear function f(x, c) that is linear w.r.t.
some parametrization c = [c0, c1, . . . , cr]. For example consider
the quadratic function

f(x, c) = c5x
2
1 + c4x

2
2 + c3x1x2 + c2x1 + c1x2 + c0,

http://dx.doi.org/10.1007/978-3-319-77586-9_9
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(a) (b)

Figure 7.7: (a) Zero order only and (b) first order only constructed
response surfaces for the piece-wise smooth step discontinuous quadratic
function

that is non-linear in x but linear in c. For unknown c = c∗,
given k observations f(x0, c∗), f(x1, c∗) . . . , f(xk, c∗) for known
x0,x1, . . . ,xk and with k > r. Formulate an unconstrained
minimization problem, using matrix notation, that estimates c∗

from the information of k observations.

7.4.2 Derive the general first order optimality criterion that solves for
c∗ for the formulation presented in Problem 7.4.1.

7.4.3 Equation 7.15 represents 12 scalar observations f i = f(xi, c∗), i =
1, . . . , 12 that depends on two variables x1 and x2.

i xi
1 xi

2 f i

1 −3 −3 9
2 −1.5 −3 8
3 0 −3 7
4 1.5 −3 6
5 −3 0 0.5
6 −1.5 0 1.0
7 0 0 1.25
8 1.5 0 1.5
9 −3 3 6

10 −1.5 3 7
11 0 3 8
12 1.5 3 9

(7.15)
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(a) (b)

(c) (d)

Figure 7.8: First order partial derivatives w.r.t. x1 and x2 respectively
computed from the constructed (a),(c) zero order only surrogate model
and (b),(d) first order only surrogate model for the piece-wise smooth
step discontinuous quadratic function. The sampled designs are indi-
cated by white circles and the colorbar scale limited to the minimum
and maximum values of the actual associated partial derivatives

Fit the following quadratic function

f(x, c) = c5x
2
1 + c4x

2
2 + c3x1x2 + c2x1 + c1x2 + c0, (7.16)

to the data in Equation 7.15 using the optimal criterion derived
in Exercise 7.4.2.

7.4.4 For Exercise 7.4.3 present, in a detailed discussion, all the veri-
fications you can envisage to ensure that it was indeed correctly
solved.
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7.4.5 Verify the solution in Exercise 7.4.3 by outlining and conducting
a numerical study that perturbs the optimal solution.

7.4.6 Verify the solution in Exercise 7.4.3 by outlining and conducting
a numerical study that solves the formulated problem iteratively
using an appropriate minimization algorithm.

7.4.7 Instead of using the f i given in Equation 7.15, evaluate the func-
tion f(x) = 13x2

1+11x2
2+7x1x2+5x1+3 at the designs listed in

Equation 7.15. What do you expect the solution for c0, c1, . . . , c5
to be, and motivate your answer by a detailed discussion of your
reasoning.

7.4.8 Conduct a numerical study that investigates the validity of your
expectation in Exercise 7.4.7.

7.4.9 Higher order polynomials compute higher order powers of designs
of x that may lead to numerically very large numbers and ulti-
mately to ill-conditioning of the system to be solved. Pro-
pose an appropriate scaling of x that would eliminate such ill-
conditioning.

7.4.10 Given two Gaussian representations, φ1(r) = e−εr2 and φ2(r) =

e− r2

ε . Discuss the implication of increasing ε on the size of the
effect of the domain covered by φ1(r) and φ2(r) respectively.

7.4.11 Utilize the function Rbf in the module scipy.interpolate to
construct a zero order only radial basis surrogate model of the
quadratic function in Exercise 7.4.7 using the Gaussian basis
function. Note that Rbf returns a function object that takes
the same number of inputs as the dimensionality of the prob-
lem, where each entry is a list of values for a coordinate at
which to evaluate the constructed RBF function. The basis
function can be selected by assigning the string gaussian to
the parameter function of the function object, and the shape
parameter by assigning a value to the parameter epsilon. Type
help(Rbf) for additional information and note the usage of the
shape parameter ε in the Gaussian formulation.

7.4.12 Optimize the actual quadratic function given in Exercise 7.4.7
using 100 random starting guesses between −1.5 and 1.5 for both
x1 and x2 using a zero and first order algorithm of your choice.
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Repeat the optimization using the same initial starting guesses,
but this time optimize the RBF approximation to the quadratic
function constructed in Exercise 7.4.11. Critically compare the
solutions obtained.

7.4.13 Repeat Exercise 7.4.12 but increase the bounds for the initial
starting guesses from −1.5 and 1.5 to (i) −15 and 15, and to (ii)
−150 and 150 respectively and critically compare the solutions
obtained as well as pointing out the cause of any evident changes
in the results.

7.4.14 Repeat Exercise 7.4.12 but use the Exponential basis function
given by φ(r) = e−εr (Python code exp(-(r*self.epsilon))).
Critically compare the solutions obtained as well as pointing out
the cause of any evident changes in the results.

7.4.15 Given the Gaussian radial basis function φ(r(x)) = e−εr(x)2),
and the Exponential radial basis function φ(r(x)) = e−εr(x).
Plot the functions and critically discuss any expected implica-
tions of the smoothness of the basis function on the performance
of gradient based optimization strategies. Which basis function
would you prefer for gradient based optimization strategies?

7.4.16 Consider the Gaussian basis function given in (7.11). Conduct
a numerical study that identifies the observed ill-conditioning
of Rzo as ε gets smaller, and the absence of ill-conditioning as ε
gets larger.

7.4.17 Given a two-dimensional function defined over the domain −1
and 1 for x1, and −100 and 100 for x2. Discuss the potential
problems associated with constructing an RBF surrogate model
over such a domain. Detail a potential solution strategy.

7.4.18 Conduct a numerical investigation that highlights the poten-
tial difficulties associated with Exercise 7.4.17 and that demon-
strates the potential benefits of the solution strategy proposed
in Exercise 7.4.17.

7.4.19 Write your own Python code to construct a zero order only
radial basis surrogate model for a function of n dimensions. Test
your code on the quadratic function given in Exercise 7.4.7, and
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compare your RBF approximation against scipy.interpolate.
Rbf for equivalent shape parameters.

7.4.20 Approximate the gradient vector of the quadratic function
given in Exercise 7.4.7. Use the radial basis surrogate model
constructed in Exercise 7.4.19 at 100 random designs over the
domain defined by the design of experiments. Compute the aver-
age error for each component of the gradient vector at the 100
random designs.

7.4.21 Write your own Python code to construct a combined zero and
first order radial basis surrogate model for a function of n
dimensions. Test your code on the quadratic function given in
Exercise 7.4.7.



Chapter 8

GRADIENT-ONLY
SOLUTION STRATEGIES

8.1 Introduction

As outlined in Section 1.1, mathematical optimization is the systematic
process of finding a best solution, generally subject to some constraints,
to a problem based on a mathematical model. Here the model is con-
structed in such a way that the solution we seek often corresponds to a
quantity that minimizes some multi-dimensional scalar function which
is the outcome of the model. Specifically in this chapter we restrict
ourselves to unconstrained optimization problems. Thus formally the
process now becomes (i) the formulation of the model f(x) and (ii) the
minimization of f(x):

minimize
x

f(x), x = [x1, x2, . . . , xn]T ∈ R
n,

where f(x) is a scalar function of the real column vector x. Care is
usually taken during the mathematical modelling and numerical com-
putation of the scalar function f(x) to ensure that it is smooth and twice
continuously differentiable. As highlighted in Section 6.5, the presence
of numerical noise in the objective function is sometimes an unintended
consequence of the complicated numerical nature frequently associated
with the computation of the output function of a multi-disciplinary
design optimization model. Numerical noise can also be the conse-

© Springer International Publishing AG, part of Springer Nature 2018
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quence of a deliberate computational savings strategy employed by a
design engineer.

To elaborate, consider for example the computational cost associated
with integrating a system of partial differential equations that is required
to construct the objective function for some design optimization prob-
lem. For each chosen design vector x, the numerical integration may
require the solution of a finite element model. The associated compu-
tational cost to solve the finite element model is directly related to the
number of elements used to discretize the spatial domain over which the
integration needs to be performed. Not unexpectedly, more elements
places higher demands on computing resources at the added benefit of
reducing the discretization error which results in more accurate solu-
tions. This clear trade-off between time to solution and solution accu-
racy may be exploited with care in the design optimization process. A
concrete demonstration of this is given by the adaptive remeshing strat-
egy proposed by Wilke et al. (2013a). In this strategy the accuracy of
each analysis is increased as the optimizer converges towards an opti-
mum when conducting structural shape optimization. A complication
of this strategy is however that because of the initial rough meshing the
computed piece-wise smooth objective function is discontinuous. This
complication requires a significant adaptation in both (i) the formula-
tion and (ii) the solution strategy to solve the successive approximate
discontinuous mathematical optimization problem to the real continuous
underlying problem.

This chapter is dedicated to explore alternative formulations and solu-
tion strategies when specifically dealing with piece-wise smooth discon-
tinuous objective functions (Wilke et al. (2013b)). In essence, this chap-
ter elaborates and formalizes the concepts and ideas introduced and
hinted to in Section 6.5, that includes the handling of noisy objective
functions and the use of gradient-only optimization strategies.

http://dx.doi.org/10.1007/978-3-319-77586-9_6


GRADIENT-ONLY OPTIMIZATION PROBLEM 275

8.2 Piece-wise smooth step discontinuous func-
tions

Nowadays, the computation of the objective function routinely requires
the integration of a system of differential or partial differential equations.
The inherent numerical nature of modern mathematical optimization
often allows for the same mathematical model to be solved using different
numerical methods (Strang (2007)). Applying care usually renders the
same optimum when optimizing the computed objective function with
different numerical methods. This observation is valid when the resulting
discretization error (Strang (2007)) of the various numerical methods
are (i) comparable, (ii) small, and (iii) varies smoothly and continuously
between designs.

Failure to meet the first two criteria may still result in numerically com-
puted continuous and smooth objective functions but may render inac-
curate approximations of the optimum of the mathematical optimization
problem. Consequently, the computed optima for the different methods
may differ significantly as a direct result of large or non-comparable
discretization errors for the various numerical methods used in com-
puting the objective functions. Lastly, failing to conform to the third
criterion results in piece-wise smooth discontinuous objective functions,
where the size of the discontinuity decreases as the discretization error
reduces. Hence, by ensuring that the discretization error is negligible
both (i) smoothness of the objective function and (ii) accuracy in the
determination of the optimum to the underlying mathematical model is
ensured. This may however place an unattainable computational burden
on available computing resources.

To illustrate these concepts consider the Lotka-Volterra system of first
order, non-linear, differential equations:

dz(t)
dt

= (1 − λ)z(t) − βz(t)y(t) (8.1)

dy(t)
dt

= δz(t)y(t) − γy(t), (8.2)

which was first proposed to model auto-catalytic chemical reactions
(Yorke and W.N. Anderson (1973)). Two initial conditions z(0) = z0

and y(0) = y0 completes the formulation. Given that β = 0.3, δ = γ = 1
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and z0 = y0 = 0.9, the entire response of the system depends solely on
λ. In addition, given that at t = 8 the actual values of the two functions
z(8) = z̃ and y(8) = ỹ are known, we can construct an inverse problem
in which we aim to find λ such that z(8) ≈ z̃ and y(8) ≈ ỹ. The sum of
the errors squared w.r.t. λ (Strang (2007)) is a convenient unconstrained
optimization problem that defines this inverse problem, with the sum of
the errors squared objective function given by

E(λ) = (z(t = 8, λ) − z̃)2 + (y(t = 8, λ) − ỹ)2. (8.3)

In particular, accept the accurate global optimum to be λ∗ = 0.5 com-
puted using a forward Euler integration scheme (Strang (2007)) for
50 000 equal time steps between 0 and 8 seconds to define z̃ and ỹ.
Computing the objective function and respective derivative using now
only 10 000 equal time steps, values are obtained as depicted in Fig-
ures 8.1 (a)–(b) for λ between 0 and 1. Clearly the figures indicate
that the accurate optimum λ∗ and computed global optimum λo in the
figures closely coincide with λo ≈ λ∗ = 0.5. There is no apparent differ-
ence since the discretization error is negligible whether computing the
objective function using 50 000 or 10 000 equally spaced time steps.
However when computing the objective function using only 30 equally
spaced time steps gives an apparent global optimum λo ≈ 0.56 that is
significantly different from the accepted global optimum λ∗ = 0.5. This
is clear from Figures 8.2 (a)–(b) for which the objective function and its
derivative plotted for λ ranging between 0.4 to 0.8. Also of interest is
that the computed objective function and its derivative still appears to
be continuous and smooth.

Instead of considering only fixed time steps, an integration scheme where
the number of time steps varies for different values of λ could be con-
sidered. This is reminiscent of adaptive time stepping strategies often
employed to solve systems of differential equations (Strang (2007)). As
illustration, consider a time stepping strategy that selects a random
number of time steps for each λ from a defined distribution around
a mean number of time steps, μ. In particular, for μ = 30 consider
the number of time steps varying between 27 and 33 with an equal
probability. When computing the objective function using between 27
and 33 randomly varying time steps gives an apparent global optimum
λo ≈ 0.56 that is significantly different from the accepted global opti-
mum λ∗ = 0.5. In addition, the inherent step discontinuous nature of
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(a) (b)

Figure 8.1: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0 to 1. In the
numerical integration done in computing the function values for each
plotted value of λ, 10 000 equally spaced time steps, over the time inter-
val 0 to 8 seconds, were used. The figures show that the apparent global
optimum λo ≈ 0.5 closely coincides with the accepted accurate global
optimum λ∗ = 0.5

(a) (b)

Figure 8.2: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0.4 to 0.8. In
the numerical integration done in computing the function values for
each plotted value of λ, only 30 equally spaced time steps, over the time
interval 0 to 8 seconds, were used. The figures show that the apparent
global optimum λo ≈ 0.56 significantly differs from the accepted accurate
global optimum λ∗ = 0.5
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both the objective function and respective derivative function is evident
from Figures 8.3 (a) and (b). The additional complications that the step
discontinuities introduce to the minimization of E(λ), is at first glance
disconcerting.

The usual approach to address numerical step discontinuities is to
increase the computational cost associated with each analysis with the
aim of reducing the magnitudes of the step discontinuities. This is illus-
trated in Figures 8.4 (a)–(d), in which (a) and (b) indicate the resulting
computed objective function and corresponding derivative function when
the number of time steps are randomly selected with an equal proba-
bility between 54 and 66 for the computation for each λ, while (c) and
(d) depicts the same but with the number of time steps now randomly
selected with equal probability between 108 and 132. Clearly the mag-
nitudes of these numerical step discontinuities decrease as the number
of randomly selected time steps increases. Thus in practice the number
of time steps may be increased until the step discontinuity magnitudes
are small enough so as to not cause complications when minimization
strategies are applied. In addition, the progression of the apparent global
optimum λo to the accepted global optimum λ∗ is also evident as the
number of random selected time steps, for the computation of the objec-
tive function for each λ, is increased.

Another source of discontinuities in design optimization problems are
discontinuities which are as a result of a sudden change in the physical
response of a model as the design vector changes, hereafter referred to
as physical discontinuities. Examples of physical discontinuities include
the onset or breakdown of shock waves between designs in fluid dynamic
applications (Homescu and Navon (2003)), or the inherent chaotic nature
of dynamic strain ageing during plastic deformation (Sarkar et al. (2007))
that may abruptly change as the design vectors vary. Physical discon-
tinuities are distinct from the numerically induced step discontinuities
discussed above. Numerically induced step discontinuities are due to
abrupt changes in the discretization error between design vectors. It is
important to distinguish between physical and numerical step disconti-
nuities as the complications that arise from their presence may need to
be addressed differently.

Physical discontinuities are consequences of the underlying physics being
modelled and need to be considered as they relate to actual information
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(a) (b)

Figure 8.3: (a) Error function E(λ) and corresponding (b) derivative
function dE(λ)

dλ plotted against values of λ ranging from 0 to 1. In the
numerical integration over the time interval 0 to 8 seconds done for
each plotted λ, the number of equally spaced time steps were randomly
selected between 27 and 33. were used. The figures again show that
the apparent global optimum λo ≈ 0.56 differs significantly from the
accepted accurate global optimum λ∗ = 0.5. The piece-wise smooth
step discontinuous nature of both the objective and derivative functions
is evident

about the nature of the problem under consideration. Hence, physical
discontinuities need to be resolved and, indeed, a significant effort has
been made to explore their presence and impact in terms of a design
optimization problem (Smith and Gilbert (2007)). On the other hand,
as demonstrated for the example error function problem, numerical
step discontinuities are a consequence of the numerical solution strategy
employed to solve an underlying mathematical model, and if significantly
present in the computed objective function they may hide the underly-
ing physical nature of the problem under consideration. Thus, ideally
we would wish for sufficient computational accuracy so that numeri-
cal step discontinuities are effectively eliminated and may be ignored,
allowing for the underlying physical trends present in the problem to
drive an optimizer towards the solution of an optimization problem.
The remainder of this chapter is dedicated to addressing the compli-
cations arising from numerical step discontinuities in such a way that
piece-wise smooth discontinuous objective functions can still be opti-
mized, efficiently and robustly. The main emphasis will therefore be
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(a) (b)

(c) (d)

Figure 8.4: (a),(c) Error function E(λ) and (b),(d) corresponding deriva-
tive function dE(λ)

dλ plotted against values of λ ranging from 0 to 1 for
respectively 54–66 and 108–132 randomly selected time steps computed
for each λ. The numerical integration is conducted over the time inter-
val 0 to 8 seconds. The figures show that the magnitude of the step
discontinuities decreases as the number of randomly selected time steps
increases. In addition, the apparent global optimum λo draws closer
to the accepted accurate global optimum λ∗ = 0.5 as the number of
randomly selected time steps for each λ increases

on computational minimization procedures and strategies that allow for
overcoming the presence of step discontinuities in piece-wise smooth step
discontinuous objective functions. In addition, a gradient-only problem
formulation is included that defines the underlying problem that is con-
sistent with what the optimization procedures and strategies considered
in this chapter actually solves.
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8.3 Computational minimization procedures

Consideration is now given to different formulations and approaches to
compute the unconstrained minimum of the model function f(x), which
represents the first step in the overall mathematical optimization pro-
cess. Although the minimization is generally viewed as the systematic
searching of the design space to find at least a local minimum, alter-
native approaches and solution strategies are at our disposal that may
simplify the complexities arising from the presence of numerical step
discontinuities in f(x).

To aid the discussion consider Figures 8.5 (a)–(d) that depict the error
function E(λ) and corresponding derivative function dE(λ)

dλ plotted
against values of λ ranging from 0.5 to 0.6. The error function and
corresponding derivative function in Figures 8.5 (a) and (b) respectively
are computed using a fixed number of time steps, while they are com-
puted using a randomly selected number of time steps in Figures 8.5 (c)
and (d). In particular the numerical integration done, over the time
interval 0 to 8 seconds, for each plotted value of λ uses either 30 equally
spaced time steps or a randomly selected number of time steps between
27 and 33. Instead of now focusing on the difference between the appar-
ent global minimum λo ≈ 0.56 and accepted global minimum λ∗ = 0.5,
attention is specifically given to determine the apparent global minimum.

Consider Figure 8.5 (a) that depicts a smooth objective function. Con-
ventional zero- or first order gradient based search minimization meth-
ods covered in the previous chapters can be used to accurately solve this
optimization problem. An alternative second order approach may be to
apply the so-called optimality criteria, i.e. the necessary and sufficient
conditions to find all points with zero first derivative and corresponding
positive second derivative to determine candidate points for the global
minimum. The indicated horizontal line, in Figure 8.5 (b), determines
the level-set of a derivative of magnitude zero. As the gradient is increas-
ing with an increase in λ the second derivative is positive. It is clear
that in this case (a) the minimization formulation and application of the
optimality criteria would recover the same apparent minimum over the
indicated λ domain.
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(a) (b)

(c) (d)

Figure 8.5: (a),(c) Error function E(λ) and (b),(d) corresponding deriva-
tive function dE(λ)

dλ plotted against values of λ ranging from 0.5 to 0.6
using respectively a fixed time step (a)–(b) and randomly selected time
step (c)–(d) strategy. In particular the numerical integration done for
each plotted value of λ uses respectively either 30 equally spaced time
steps or 27–33 randomly selected time steps, over the time interval 0 to
8 seconds

The difference between the two approaches is more evident when multi-
ple local minima occur. In this case the application of a zero to first order
minimization approach will clearly terminate at a local minimum (not
necessary the global minimum), whereas the application of optimality
criteria may reveal all local minima including the global minimum, irre-
spective of their associated function values, as candidate solutions to the
problem. Thus the implication for the two solution approaches changes
significantly when applied to the piece-wise smooth step discontinuous
function and related derivative function, depicted in Figures 8.5 (c) and
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(d). It is evident that the application of either minimization strategy
now poses additional challenges. The economically computed objec-
tive function, as result of the introduction of step discontinuities, has
become highly multi-modal with the presence of numerous local min-
ima. In the real world the difficulties in the application of the above
two conventional approaches to step discontinuous functions become so
daunting that it often leads to the justification and employment of com-
putationally demanding evolutionary approaches (Arnold (2002)), over
more efficient gradient based strategies. By inspection of Figure 8.5 (d)
it is clear that the second order optimality criteria approach would not
suffice as there is no λ for which the derivative is close to 0. It is caution-
ary noted that the two points with the smallest derivative magnitude is
around λ ≈ 0.56 and λ ≈ 0.58, while the apparent global minimum is
around λo ≈ 0.57. This may have significant implications for solution
strategies that aim to find points where the derivative is close to zero.

A third approach is now proposed that consistently interprets the
derivative information presented in Figures 8.5 (b) and (d). This third
approach, that may be called gradient-only minimization, follows from
defining descent for a function along a search direction by directional
derivatives that are negative, while ascent is associated with directional
derivatives that are positive, with the directional derivative computed as
the projection of the gradient vector onto the search direction. Instead
of associating a candidate local minimum along a search direction as
a point at which the directional derivative is zero, we associate a local
minimum with a point where the directional derivative changes in sign
from negative to positive. It is important to note that this defines a local
minimum and not merely a candidate local minimum, since the second
order information is incorporated by requiring the directional derivative
to change from negative to positive. By inspection of Figure 8.5 (d) it is
clear that by interpreting descent of the function indirectly by requiring
the directional derivative to be negative and the minimum by a sign
change in the directional derivative, from negative to positive, results in
a robust minimization strategy for step discontinuous functions.
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8.4 Overview of discontinuities

Before we proceed with an in depth investigation into gradient-only
minimization strategies for piece-wise smooth step discontinuous func-
tions (also known as semi-continuous functions), some background on
discontinuities in general is required. To assist the discussion consider
Figure 8.6 (a)–(d) that depicts four types of discontinuities for univariate
functions f(x) at x = s. They are respectively an infinite (or asymp-
totic) discontinuity, a removable discontinuity, an endpoint discontinuity
and lastly a step (or jump) discontinuity.

(a) (b)

(c) (d)

Figure 8.6: Four discontinuity types namely, (a) an infinite (or asymp-
totic) discontinuity, (b) a removable discontinuity, (c) an endpoint dis-
continuity and (d) a step (or jump) discontinuity

Figure 8.6 (a) indicates that an infinite discontinuity, at s, is usu-
ally the result of vertical asymptotes present at s, with the function
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unbounded as x approaches s. Therefore, both the left-hand limit,
limx→s− f(x) = +∞, and right-hand limit, limx→s+ f(x) = +∞, indi-
cate an unbounded response of the function. This type of discontinu-
ity is usually the result of the behaviour of an underlying mathemati-
cal model and therefore inherent to the characteristics of a problem to
be solved i.e. they can be seen as physical discontinuities. Examples
include the Stokes phenomenon present in the solution of differential
equations (Meyer (1989)) and the asymptotic Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between magnetic impurities in graphene
(Klier et al. (2014)).

In some instances both one-sided limits exist and are equal, given by
limx→s− f(x) = limx→s+ f(x) = L, but the function at x = s does not
correspond to the value of the limits, that is f(s) = R �= L, as illus-
trated in Figure 8.6 (b). This is referred to as a removable discontinuity,
since the discontinuity can simply be removed by redefining the function
f(s) = limx→s− f(x) = L at x = s.

An end-point discontinuity exists in cases where one of the one-sided
limits does not exist, as depicted in Figure 8.6 (c). In this case only
the right-hand limit exists, that is limx→s+ f(x) = R, while the left-
hand limit is not defined. This type of discontinuity is often associated
with mathematical models that cannot be evaluated over non-physical
domains, e.g. non-positive mass. This type of discontinuity is again
associated with physical discontinuities.

Consider the step or jump discontinuity, at x = s, in Figure 8.6 (d).
Here, both one-sided limits exist and are finite. However, the one-
sided limits, at x = s, have different values as the left-hand limit,
limx→s− f(x) = L, differs from the right-hand limit, limx→s+ f(x) =
R �= L. As demonstrated in previous sections, numerical inconsistencies
as design vectors vary are a significant source of this type of discon-
tinuity. However, not all step discontinuities are necessarily problem-
atic using classical minimization strategies. We distinguish between two
types of step discontinuities. Namely those that are consistent with the
function trend, and those that are inconsistent with the function trend,
as shown respectively in Figures 8.7 (a) and (b).

Consistent discontinuities do not hamper descent while inconsistent dis-
continuities result in a local minimum. However, the related derivative
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function in both cases indicates only descent as the sign of the derivative
along x remains negative over the depicted domain. This is an impor-
tant distinction as a gradient-only minimization strategy would ignore
a local minimum due to an inconsistent discontinuity, thereby improv-
ing the robustness of a minimization strategy, as opposed to a classical
minimization strategy that may aim to resolve such a local minimum.

Note that other combinations of function trends and step discontinu-
ities result in either local minima or local maxima that are consistently
indicated when considering either only the function or only the corre-
sponding derivative of the function. In addition to the discontinuity
type, the semi-continuity of f is indicated using a double empty/filled
circle convention in Figure 8.7 (a)–(b). First, a filled circle indicates that
f(s) is defined as indicated, while an empty circle indicates no function
value is defined as indicated. Lower semi-continuity is represented by
the filled/empty circle pairs annotated 1, i.e. the filled circle is always
associated with the lower function value, in turn, upper semi-continuity
is represented by the empty/filled circle pairs annotated 2, i.e. the filled
circle is always associated with the higher function value at the discon-
tinuity. This distinction allows for an explicit treatment of the defined
function at a discontinuity, which will become evident as we treat deriva-
tives and gradients associated with semi-continuous functions in more
detail.

8.5 Derivatives and gradients of step discontin-
uous functions

Semi-continuous functions are not everywhere differentiable, as the
derivative at step discontinuities is not defined. However, computa-
tionally the derivatives and gradients are everywhere computable since
the analysis is per se restricted to the part of the objective function to
the left, or right of a step discontinuity along a search direction. Refer-
ence to the derivative of a semi-continuous function therefore requires a
rigorous treatment of limits and derivatives to allow for a new definition
of what is implied with a derivative at a step discontinuity.
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(a) (b)

Figure 8.7: Lower and upper semi-continuous univariate functions for (a)
a consistent step discontinuity, and (b) an inconsistent step discontinuity,
where the semi-continuity is indicated using a double empty/filled circle
convention. The empty/filled circle pairs annotated, 1, are lower semi-
continuous, whereas, empty/filled circle pairs annotated, 2, are upper
semi-continuous function representations

For a univariate function f(x), the limit at x = a exists if (i) both the
left-hand limit, limx→a− f(x) = L, and right-hand limit, limx→a+ f(x) =
limx→s+ f(x) = R, exist, and (ii) the left-hand and right-hand limits are
equal, that is L = R. It follows from the limit definition of the derivative

f ′(x) =
df(x)
dx

= lim
Δx→0

f(x + Δx) − f(x)
Δx

, (8.4)

that the derivative at x = a is only defined if the limit at x = a is defined.
However, as treated in Section 8.4, both the left-hand and right-hand
limits exist at a step discontinuity but the limits are not equal, implying
that the derivative function is not everywhere defined.

We therefore supplement the definition of a derivative to define the
associated derivative, f ′A(x), that is given by either the left deriva-
tive or right derivative whenever the limit and therefore derivative does
not exist, otherwise it is defined by the derivative when the limit does
exist. Let f : X ⊂ R → R be a piece-wise smooth real univariate
step-discontinuous function that is everywhere defined. The associated
derivative f ′A(x) for f(x) at a point x is given by the derivative of f(x)
at x when f(x) is differentiable at x. The associated derivative, f ′A , for
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f(x) non-differentiable at x, is given by the left derivative of f(x):

f ′−(x) =
df−(x)

dx
= lim

Δx−→0

f(x + Δx) − f(x)
Δx

, (8.5)

when x is associated with the piece-wise continuous section of the func-
tion to the left of the discontinuity, otherwise it is given by the right
derivative of f(x):

f ′+(x) =
df+(x)

dx
= lim

Δx+→0

f(x + Δx) − f(x)
Δx

. (8.6)

The associated derivative is therefore everywhere defined when piece-
wise smooth step discontinuous functions are considered. This implies
that f : (a, b) ⊂ R → R for which f(x) and f ′A(x) are uniquely defined
for every x ∈ (a, b) is said to have a strictly negative associated derivative
on (a, b) if f ′A(x) < 0, ∀ x ∈ (a, b), e.g. see Figure 8.7 (a) and (b).
Conversely, f(x) is said to have a strictly positive associated derivative
on (a, b) if f ′A(x) > 0, ∀ x ∈ (a, b).

Similarly for multi-variate functions we define the associated gradient
∇Af(x), by letting f : X ⊂ R

n → R be a piece-wise continuous function
that is everywhere defined. The associated gradient ∇Af(x) for f(x) at
a point x is given by the gradient of f(x) at x when f(x) is differentiable
at x. The associated gradient ∇Af(x) for f(x) non-differentiable at x
is defined as the vector of partial derivatives with each partial deriva-
tive defined by its corresponding associated derivative. It follows that
the associated gradient reduces to the gradient of a function when it is
everywhere differentiable.

Similarly, to recognizing the lower and upper semi-continuity of a uni-
variate function as highlighted in Figures 8.7 (a) and (b), we now con-
sider the semi-continuous nature of the associated derivative for such
functions. The associated derivative can be related to a univariate func-
tion or the directional derivative of a multivariate function. For example
the associated directional derivative along a normalized direction u ∈ R

n

is lower semi-continuous at x ∈ X, if

F ′A(λ) = ∇A
Tf(x)u ≤ lim inf

λ→0±
∇A

Tf(x + λu)u, λ ∈ R, (8.7)

as depicted in Figure 8.8 (b), with the related function, depicted in
Figure 8.8 (a), which is also lower semi-continuous. An upper semi-
continuous associated directional derivative at x ∈ X along a normalized
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(a) (b)

(c) (d)

(e) (f)

Figure 8.8: (a) Lower semi-continuous function and (b) associated
derivative, (c) upper semi-continuous function and (d) associated deriva-
tive, and (e) upper semi-continuous function with (f) pseudo-continuous
associated derivative
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direction u ∈ R
n is defined by

F ′A(λ) = ∇A
Tf(x)u ≥ lim sup

λ→0±
∇A

Tf(x + λu)u, λ ∈ R, (8.8)

depicted in Figure 8.8 (d) with the related function depicted in Fig-
ure 8.8 (c). Lastly, the associated directional derivative along a nor-
malized direction u ∈ R

n is pseudo-continuous at a step discontinuity,
x ∈ R

n, if it is both upper and lower semi-continuous as demonstrated
in Figures 8.8 (e) and (f).

8.5.1 Associated gradients by finite differences

The associated gradient can be computed analytically by direct differen-
tiation of the equations that numerically evaluate the objective function
(Strang (2007)). Recall that step discontinuities are due to changes in
the discretization of the numerical scheme used to evaluate the objec-
tive function as the design vector changes, while the computed analytical
sensitivity is associated with a given discretization for a specific design.

(a) (b)

Figure 8.9: Finite difference step, δ, over (a) a lower semi-continuous
and (b) an upper semi-continuous function with inconsistent step dis-
continuities

Without loss of generality, we first limit the discussion to a single direc-
tional derivative F ′(λ) as the gradient vector, ∇f(x), is comprised of
directional derivatives aligned with the Cartesian directions. First, con-
sider the finite difference strategies outlined in Section 2.3.1.6, applied

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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here to an upper or lower step discontinuous function with an inconsis-
tent step discontinuity. For the lower semi-continuous function, F (λ),
depicted in Figure 8.9 (a) we estimate only the sign of the derivative at
λ2 using the forward (FD), backward (BD) and central difference (CD)
schemes, which gives

(
dF (λ2)

dλ

)
FD

≈ F (λ2+δ)−F (λ2)
δ = F3−F2

λ3−λ2
> 0,(

dF (λ2)
dλ

)
BD

≈ f(λ2)−f(λ2−δ)
δ = F2−F1

λ2−λ1
< 0,(

dF (λ2)
dλ

)
CD

≈ F (λ2+δ)−F (λ2−δ)
2δ = F3−F1

λ3−λ1
< 0,

(8.9)

whereas for the upper semi-continuous function in Figure 8.9 (b) the
sign of the derivative at λ2 is estimated as follows:

(
dF (λ2)

dλ

)
FD

≈ F (λ2+δ)−F (λ2)
δ = F3−F2

λ3−λ2
< 0,(

dF (λ2)
dλ

)
BD

≈ F (λ2)−F (λ2−δ)
δ = F2−F1

λ2−λ1
> 0,(

dF (λ2)
dλ

)
CD

≈ F (λ2+δ)−F (λ2−δ)
2δ = F3−F1

λ3−λ1
< 0.

(8.10)

It is evident that finite differences over inconsistent step discontinuities
are problematic resulting in inconsistencies not only in the magnitude of
the derivative but also the signs of the computed derivatives. Here, the
problem is that an actual finite difference step, δ, is taken over the step
discontinuity. This then results in inconsistent estimates of the deriva-
tive. Although not always practical or possible, the step discontinuity
can be removed by forcing the numerical computation scheme to only
have smooth variations in the discretization error whilst computing the
derivatives.

The complex-step method circumvents the above issues related to con-
ventional finite difference strategies by only taking finite difference steps
of δi in the imaginary plane. The implication is that no step over a dis-
continuity is ever taken to compute the derivative even at a discontinuity
(Wilke and Kok (2014)). As discussed in Section 2.3.1.6, the complex-
step method has the additional advantages of allowing for much smaller
finite difference steps to be taken as it is not susceptible to a subtraction
error.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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To demonstrate our arguments, consider the following simple piece-wise
linear step discontinuous function:

f(x) =
{

x < 1 : −2x − 0.5
x ≥ 1 : −2x

. (8.11)

with analytical associated derivative of f ′(x) = −2. The choice for
a piece-wise linear function implies the Taylor series approximation is
exact for all schemes. Hence, the truncation error is exactly zero for all
finite difference schemes on each section of the piece-wise linear function.
Any error that varies as a function of the step size is due to the numerical
errors introduced by the subtraction of two numbers or the influence of
the discontinuity errors.

Mathematically, the derivative is not defined at x = 1. However, the
associated derivative of this function is continuous and −2 everywhere,
including at x = 1. Computing the derivative with the complex-step
method yields exactly −2 everywhere, including x = 1, allowing a full
field computation of the derivative of a discontinuous function. The
computed sensitivity difference for the forward difference scheme varies
between ≈ 10−16 and ≈ 100 as the step size is decreased from 100 to
10−20. In turn, the computed sensitivity difference for both the back-
ward and central difference schemes vary between ≈ 10−1 and ≈ 1015 as
the step size is decreased from 100 to 10−20. Hence, the difference in mag-
nitude increases as the step size decreases, in addition to the derivative
having the wrong sign. Therefore extending the numerical computation
of the components of the associated gradient vector ∇Af(x), namely
∂Af(x)
∂Axj

, j = 1, . . . , n, follows by complex-step differences:

∂Af(x)
∂Axj

∼= Im[f(x + iδj)]
δj

, (8.12)

where δj = [0, 0, . . . δj , 0, . . . , 0]T , δj > 0 in the j-th position.

8.6 Gradient-only line search descent methods

Gradient-only line search descent methods closely follow the structure of
line search descent methods treated in Chapter 2. Following the general
six-step structure, outlined in Chapter 2, for line search descent methods,
we outline gradient-only line search descent methods as follows:

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
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Algorithm 8.1 Gradient-only line search descent framework.

Initialization: Select tolerance ε1 > 0. Select the maximum number
of iterations imax and perform the following steps:

1. Given x0, set i := 1.

2. Select a descent direction ui (see descent condition (2.1)).

3. Perform a one-dimensional gradient-only line search in direction
ui: i.e. find λi that designates a sign change from negative to
positive in the directional derivative:

F ′(λ) = ∇Tf(xi−1 + λui)ui,

to indirectly compute the minimizer, λi.

4. Set xi = xi−1 + λiui.

5. Convergence test: if ‖xi − xi−1‖ < ε1 or i > imax, then stop
and x∗ ∼= xi, else go to Step 6.

6. Set i = i + 1 and go to Step 2.

We turn our attention to the third step, which requires the minimum
along the search direction to be indirectly resolved by finding a sign
change in the derivative from negative to positive, as opposed to, by
direct minimization of the function.

8.6.1 One-dimensional gradient-only line search

Clearly, in implementing the gradient-only descent algorithms as out-
lined above, requires the univariate problem along direction ui to be
solved:

Find λi that designates a sign change from negative to positive in the
directional derivative:

F
′
(λ) = ∇Tf(xi−1 + λui),ui,

to indirectly compute the minimizer, λi.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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The problem of finding a sign change in the directional derivative, F
′
(λ),

is closely related to a one-dimensional root finding problem, which is usu-
ally conducted in two phases (Wilke et al. (2013b)). First by bracketing
a sign change and then secondly by reducing the bracket size to refine
the location of the sign change.

8.6.1.1 Gradient-only exact line searches

The bracketing phase only requires two points, as two points uniquely
define a sign change from a negative directional derivative to a posi-
tive directional derivative. Given some user specified parameter, h, this
bracket can be achieved by evaluating the directional derivative at

λi = ih + h, i = 0, 1, 2, . . . ,

until a sign change from negative to positive is located. Alternatively,
instead of using fixed interval sizes between consecutive points, the inter-
val sizes between consecutive points can be increased:

λi =
i∑

k=0

hak, i = 0, 1, 2, . . . ,

where h is an initial interval step size and a the interval growth param-
eter. Choosing a ≈ 1.618 recovers the bracketing strategy often used for
the popular golden section method used in line search descent (Arora
(2004)).

Once an interval has been bracketed, with lower bound λ0
L and upper

bound λ0
U , that isolates a sign change in the directional derivative from

negative to positive, that is F ′A(λ0
L) < 0 and F ′A(λ0

U ) > 0, the interval
is reduced to isolate the sign change within a specified tolerance ε.

The interval reduction can be done using a standard bisection approach
by evaluating the directional derivative in the middle of successively
bracketed intervals. Thus starting with k = 1 set middle value for

λk−1
M = λk−1

U +λk−1
L

2 to give F ′A(λk−1
M ).

If F ′A(λk−1
M ) < 0 then

1. set λk
L = λk−1

M , and
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2. set λk
U = λk−1

U ,

while if, F ′A(λk−1
M ) > 0, then

1. set λk
L = λk−1

L , and

2. set λk
U = λk−1

M .

This process is repeated, for k = 1, 2, . . . , until λk
U−λk

L
2 < ε.

Note that the gradient-only bi-section interval is reduced by 50% every
iteration, while the most efficient line search descent interval strategy,
namely the golden section method, only reduces the interval by 38.2% at
every iteration. Since the bracketed interval is efficiently reduced using
interval bi-section, it is preferable to opt for a bracketing strategy for
which the interval between successive points increases.

8.6.2 Conditions for sufficient improvement

Similar to the conditions for sufficient improvement discussed in Sec-
tion 2.3.1.5, there are gradient-only conditions that can be utilized to
indicate sufficient improvement and that can be used as a termination
criteria for a line search strategy. Consider the following conditions that
may be imposed on the step λiui in the direction ui during the line
search:

1. Predefined:

λi = di, where di is prescribed at step i

2. Descent:
uiT∇f(xi + λiui) ≤ 0,

3. Curvature:
c1uiT∇f(xi) ≤ uiT∇f(xi + λiui),

4. Strong curvature:

|uiT∇f(xi + λiui)| ≤ c2|uiT∇f(xi)|,

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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5. Upper curvature:

uiT∇f(xi + λiui) ≤ c3|uiT∇f(xi)|,

with c1, c2 and c3 required to be selected as non-negative parame-
ters. These parameters control the degree to which the conditions are
enforced. The simplest condition is a predefined strategy in which the
step length evolution di is chosen a priori before the start of the opti-
mization run and only depends on the iteration number i as detailed by
Bertsekas (2015). A constant step length is popular amongst subgradi-
ent methods originally introduced by Shor et al. (1985). The other three
strategies aims to assimilate information about the problem to inform
step lengths. That is the step length depends on the gradient at the
current point and the current search direction.

The descent condition ensures that the search direction remains a
descent direction at the update. The disadvantage of such a condition
is that the sign change is only approached from the left side. The cur-
vature condition attempts to rectify this but may result in updates that
are too large as any positive directional derivative satisfies this condi-
tion. The strong curvature condition in turn limits the largest update
step size but do require the magnitude of the directional derivative to
diminish as c2 is reduced. This is sufficient for problems that are smooth
in the vicinity of the optimum, whereas, it may be problematic at dis-
continuous solutions, i.e. it may be possible that no point along a search
direction satisfies this condition. The upper curvature condition ensures
that an update always exists, however, small step sizes also satisfy this
condition. This can be circumvented by combining this condition with
another condition that limits the minimum step size, e.g. using an a
priori step length strategy.

8.7 Gradient-only sequential approximate opti-
mization

In sequential approximate optimization (SAO) methods, the approxi-
mation functions used can easily be formulated using truncated second
order Taylor expansions following Snyman and Hay (2001) and Groen-
wold et al. (2007). For the purposes of gradient-only optimization we
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aim here to approximate the gradient of a function ∇f(x) around some
current iterate xi to be given by

∇f̃ i(x) = ∇f(xi) + Hi(x − xi), (8.13)

where, according to Wilke et al. (2010), some approximation of the cur-
vature Hi using only gradient information at iteration i is required.
Approximations for Hi are usually obtained by requiring the gradient
to be recovered at the previous iteration, i − 1, where the gradient had
been computed. Given the well-known secant equation,

∇f i(xi−1) = ∇f(xi) + Hi(xi−1 − xi),

Hi(xi−1 − xi) = ∇f i(xi−1) − ∇f(xi),

HiΔxi−1 = Δ∇f i−1,

(8.14)

where Hi in general requires n2 components to be solved or n2−n
2 + n

components for a symmetric Hi, where symmetry is guaranteed for twice
continuously differentiable functions. Hence, to uniquely solve for Hi

requires n2 linear equations, but each gradient vector only contributes
n equations towards the system of linear equations. Generalizing the
secant equation results in the following system of equations from which
to solve for Hi,

Hi

[
Δxi−1, . . . ,Δxi−k

]
=

[
Δ∇f i−1, . . . ,Δ∇f i−k

]
.

(8.15)

Consequently, by requiring k = n unique gradient vectors to be recov-
ered at the n previous iterates results in a linear system of equations that
can be uniquely solved to yield Hi. However, choosing k < n results in
an underdetermined system of equations to be solved, which can be reg-
ularized by requiring a minimum norm solution to Hi. Alternatively,
instead of solving for the full Hi, a form for Hi can be assumed that
requires less components to be solved for. Here, different assumptions
regarding the form of Hi results in different assumptions on the curva-
ture of the problem, and ultimately different approximation strategies.
Typical forms include a constant diagonal Hessian matrix that implies
constant curvature (also known as spherical approximations), general
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diagonal Hessian matrix implies that changes in curvature are aligned
with the Cartesian coordinate axes (subset of separable problems), full
non-symmetric Hessian matrix and a full symmetric Hessian matrix that
assumes second order continuity.

Once Hi is approximated the current subproblem i is constructed and
solved analytically since the subproblem is continuous by construction;
the minimizer of subproblem i follows from setting the gradient of (8.13)
equal to 0 to give the update

xi∗ = xi − (Hi)−1∇f(xi), (8.16)

which can be solved from Hi(xi∗ − xi) = −∇f(xi). Solving a linear
system may be computationally demanding when large systems are to
be considered. Extending on the discussion in Section 2.3.2, this compu-
tational burden can be avoided when the inverse Hessian Gi = (Hi)−1

is directly approximated. This then merely requires a matrix vector
product

xi∗ = xi − Gi∇f(xi) (8.17)

to compute the update.

A general framework of gradient-only sequential approximation algo-
rithms is listed in Algorithm 8.2.

8.7.1 Constant diagonal Hessian matrix approximations

Assuming the curvature can be described by a constant diagonal Hes-
sian matrix results in a spherical approximation of the Hessian, which is
approximated by a single scalar. As highlighted by Gould et al. (2005)
this allows for a sparse description well suited for high-dimensional opti-
mization problems. Hence, the approximate Hessian or curvature is of
the form Hi = ciI, with ci a scalar, and I the identity matrix. This gives

∇f̃ i(x) = ∇f(xi) + ci(x − xi), (8.18)

with the scalar curvature ci unknown.

At x = xi, the gradient of the function ∇f and the gradient of the
approximation function ∇f̃ match exactly. The approximate Hessian

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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Algorithm 8.2 Gradient-only sequential approximation algorithm.

Initialization: Given x0, select the real constant ε > 0 and initial
curvature c0 > 0. Select the maximum number of iterations imax. Set
H0 = I or G0 = I. Set i := 0 and perform the following steps:

1. Gradient evaluation: Compute ∇f(xi).

2. Approximate optimization: Construct a local approximate
subproblem (8.13) at xi using an appropriate approximation to
Hi (or Gi) obtained from only gradient information. Solve this
subproblem analytically via (8.16) (or (8.17)) to arrive at a new
candidate solution xi∗.

3. Move to the new iterate: Set xi+1 := xi∗.

4. Convergence test: if ‖xi+1 − xi‖ ≤ ε, OR i = imax, stop.

5. Initiate an additional outer loop: Set i := i + 1 and go to
Step 1.

Hi of the approximation f̃ is chosen to match additional information.
ci is obtained by matching the gradient vector at xi−1. Since only a
single free parameter ci is available, the n components of the respective
gradient vectors are matched in a least square sense. The least squares
error is given by

Ei = (∇f̃ i(xi−1) − ∇f(xi−1))T(∇f̃ i(xi−1) − ∇f(xi−1)), (8.19)

which, after substitution of (8.18) into (8.19), gives

Ei = (∇f(xi) + ci(xi−1 − xi) − ∇f(xi−1))T

(∇f(xi) + ci(xi−1 − xi) − ∇f(xi−1)). (8.20)

Minimization of the least squares error Ei w.r.t. ci then gives

dEi

dci
= (∇f(xi) + ci(xi−1 − xi)

− ∇f(xi−1))T(xi−1 − xi)

+ (xi−1 − xi)T(∇f(xi)

+ ci(xi−1 − xi) − ∇f(xi−1)) = 0, (8.21)
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hence

ci =
(xi−1 − xi)T(∇f(xi−1) − ∇f(xi))

(xi−1 − xi)T(xi−1 − xi)
. (8.22)

The approximation (8.18) can be enforced to be strictly convex by
enforcing ci = max(β, ci), with β > 0 small and prescribed.

8.7.2 Diagonal Hessian matrix approximations

A more general separable approximation is obtained by allowing the
Hessian matrix to develop into a diagonal matrix allowing for n coeffi-
cients to be solved for. Hence, the approximate Hessian or curvature is
of the form Di, with D signifying a diagonal matrix. This gives

∇f̃ i(x) = ∇f(xi) + Di(x − xi), (8.23)

with Dijk , j = k unknown for all j = 1, . . . , n and k = 1, . . . , n, while
Dijk = 0 for j �= k.

At x = xi, the gradients of the function f and the gradient of the approx-
imation function ∇f̃ match exactly. Again, the approximate Hessian Di

of the approximation f̃ is chosen to match additional information. Di

is obtained by matching the gradient vector at xi−1. Since Di has n
unknowns that are separable, the n components of the gradient vector
are matched exactly,

∇f(xi−1) = ∇f(xi) + Di(xi−1 − xi), (8.24)

with each component solved for independently

Dijj =
∇fj(xi−1) − ∇fj(xi)

(xi−1
j − xi

j)
, j = 1, . . . , n. (8.25)

8.7.3 Symmetric Hessian matrix approximations

Instead of approximating the entire Hi at every iteration, every itera-
tion can add information to a previous approximation Hi−1. Following
conventional Quasi-Newton derivations consider the following Hessian
update scheme

Hi = Hi−1 + ΔHi−1. (8.26)
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The rank of the incremental update ΔHi−1 depends on the number of
difference gradient vectors enforced per iteration. Assuming, ΔHi−1 =
ai−1

(
bi−1

)T, which is a rank-1 update, then by substituting ΔHi−1 =
ai−1

(
bi−1

)T into (8.14) we obtain

HiΔxi−1 =
(
Hi−1 + ai−1

(
bi−1

)T
)

Δxi−1 = Δ∇f i−1, (8.27)

from which ai−1 can be solved

ai−1 =
Δ∇f i−1

(bi−1)TΔxi−1
− Hi−1Δxi−1

(bi−1)TΔxi−1
. (8.28)

Reconstructing Hi from (8.26) and (8.28) we obtain

Hi = Hi−1 +

(
Δ∇f i−1

(bi−1)TΔxi−1
− HiΔxi−1

(bi−1)TΔxi−1

)
(
bi−1

)T
, (8.29)

with bi−1 free to be chosen. By choosing bi−1 = (Δ∇f i−1−Hi−1Δxi−1)
symmetry is enforced

Hi =Hi−1+(
(Δ∇f i−1 − Hi−1Δxi−1)(Δ∇f i−1 − Hi−1Δxi−1)T

(Δ∇f i−1 − Hi−1Δxi−1)TΔxi−1)

)
, (8.30)

which yields the symmetric rank-1 update investigated by Conn et al.
(1991), subject to starting with an initial symmetric matrix H0.

8.7.4 Symmetric inverse Hessian matrix approximations

Approximating the inverse Hessian Gi allows for the search direction to
be computed using a matrix-vector multiplication as opposed to solving
a linear system of equations. Gi can be approximated incrementally
by adding information per iteration to a previous approximation Gi−1.
Consider the following inverse Hessian update scheme

Gi = Gi−1 + ΔGi−1, (8.31)

substituted into (8.14) and restructured to reflect the inverse Hessian,
we obtain

Δxi−1 = (Gi−1 + ΔGi−1) Δ∇f i−1. (8.32)
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Assume ΔGi−1 = ai−1
(
bi−1

)T, which when substituted into (8.32) gives

Δxi−1 = Gi−1Δ∇f i−1 + ai−1
((

bi−1
)TΔ∇f i−1

)
, (8.33)

from which ai−1 is isolated to obtain

ai−1 =
Δxi−1

(bi−1)TΔ∇f i−1
− Gi−1Δ∇f i−1

(bi−1)TΔ∇f i−1
. (8.34)

Rewriting (8.31) in terms of only bi−1 gives

Gi = Gi−1 +

(
Δxi−1

(bi−1)TΔ∇f i−1
− Gi−1Δ∇f i−1

(bi−1)TΔ∇f i−1

)
(
bi−1

)T
. (8.35)

By choosing
(
bi−1

)T = (Δxi−1 − Gi−1Δ∇f i−1) and substituting the
result into (8.35) we obtain

Gi+1 = Gi +
(

(Δxi − GiΔ∇f i)(Δxi − GiΔ∇f i)T

(Δxi − GiΔ∇f i)TΔ∇f i)

)
, (8.36)

yielding a symmetric update. This specific update was developed by
Fletcher and Powell (1963) and is an adaptation of an original procedure
first proposed by Davidon (1959).

8.7.5 Non-symmetric inverse Hessian matrix approxima-
tions

More generally the Hessian matrix can be approximated as a non-
symmetric Hessian matrix approximation. In this section we demonstrate
that conventional conjugate gradient directions imply a non-symmetric
Hessian matrix. Using the conventional starting point for conjugate
gradient directions as outlined in Section 2.3.2, we express a new search
direction ui as a linear combination of the gradient descent vector com-
puted at the current minimum point xi, and the previous search direc-
tion ui−1. This then gives

ui = −∇f(xi) + βiui−1, (8.37)

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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for which we now only have to solve for the scalar βi such that ui

is indeed mutually conjugate to the other search directions w.r.t. an
assumed matrix Hi. The proposed update formula by Fletcher and
Reeves (1964) is given by

βi =
∇Tf(xi)∇f(xi)

∇Tf(xi−1)∇f(xi−1)
, (8.38)

with Polak and Ribiere (1969) proposing an alternative conjugate gra-
dient update

βi =
∇Tf(xi)

(∇f(xi) − ∇f(xi−1)
)

∇Tf(xi−1)∇f(xi−1)
. (8.39)

Substituting (8.38) into (8.37) we obtain

xi+1 = xi + λi

(
−∇f(xi) +

∇Tf(xi)∇f(xi)
∇Tf(xi−1)∇f(xi−1)

ui−1

)
. (8.40)

By factoring ∇f(xi) out of the (8.40) we obtain

xi+1 = xi + λi

(
−I +

∇ui−1∇Tf(xi)
∇Tf(xi−1)∇f(xi−1)

)
∇f(xi). (8.41)

By comparing (8.16) with (8.41), we see that (8.41) approximates the
inverse of the Hessian matrix

(Hi)
−1 = λi

(
I − ∇ui−1∇Tf(xi)

∇Tf(xi−1)∇f(xi−1)

)
, (8.42)

which by inspection reveals that (Hi)
−1 is not symmetric, since ∇ui−1 �=

∇f(xi), which implies that Hi is also not symmetric.

8.7.6 Trust Region Methods and Conservatism

Strategies are required to ensure that sequential approximate optimiza-
tion methods will terminate and converge. A priority therefore is to
ensure that the constructed approximation yields a sufficiently accurate
solution. Towards this aim Goldfeld et al. (1966) proposed restricting
the step size based on the validity of the approximation over a domain,
which was later coined by Sorensen (1982) as the well-known trust region
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methods. As a modern alternative to trust region methods, conservatism
was proposed by Svanberg (2002). Conservatism requires each proposed
update to be feasible as well as an improvement to the previous iterate.
The benefit of both approaches is that strong convergence characteris-
tics of the sequential approximation approaches can be proved albeit for
often highly restricted classes of functions.

In an effort to enforce conservatism within the context of gradient-only
approaches, Wilke et al. (2010) suggested that the directional derivative
of the actual problem at the proposed approximate solution along the
update step direction should be negative. At iterate i, the proposed
solution xi∗ is obtained by taking the update step xi∗ − xi from the
previous solution xi. This update represents descent of f(x) along the
direction xi∗ − xi if

∇Tf(xi∗)(xi∗ − xi) ≤ ∇Tf̃(xi∗)(xi∗ − xi) = 0. (8.43)

Accordingly, any gradient-only approximation may be defined as con-
servative if (8.43) holds.

This gradient-only definition of conservatism is similar in intent to that
of Svanberg’s function value based definition that requires that the func-
tion value f(xi∗) improve on that of the previous iterate. In the gradient-
only approach only updates xi∗ for which the genuine quality measure,

∇Tf(xi∗)(xi∗ − xi),

is less than or equal to the approximated quality measure

∇Tf̃(xi∗)(xi∗ − xi),

are accepted. Although no formal proofs are presented here, Wilke et al.
(2013b) showed that this definition of conservatism guarantees conver-
gence for certain classes of functions, e.g. smooth convex functions. It is
also important to note that for non-smooth and discontinuous functions
in general this definition falls short, and is not sufficient to guarantee
convergence. It is important to note that, although strong theoretical
evidence is lacking, this gradient-only definition of conservatism suffices
in general to achieve convergence for practical engineering problems. In
sequential approximate optimization, termination and convergence may
be affected through this notion of conservatism. Therefore the minimizer
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Algorithm 8.3 Affecting conservatism in gradient-only sequential
approximate optimization using constant diagonal (8.18) Hessian matrix
approximations.

Initialization: Given x0, select the real constant ε > 0, initial curvature
c0 > 0 and conservatism parameter γ > 1. Select the maximum number
of iterations imax. Set i := 0, l := 0 and perform the following steps:

1. Gradient evaluation: Compute ∇f(xi).

2. Approximate optimization: Construct local approximate sub-
problem (8.18) at xi. Solve this subproblem analytically, to arrive
at xi∗.

3. Evaluation: Compute ∇f(xi∗).

4. Test if xi∗ is acceptable: if (8.43) is satisfied, go to Step 6.

5. Initiate an inner loop to effect conservatism:

(a) Set l := l + 1.

(b) Set ci := γci.

(c) Goto Step 2.

6. Move to the new iterate: Set xi+1 := xi∗.

7. Convergence test: if ‖xi+1 − xi‖ ≤ ε, OR i = imax, stop.

8. Initiate an additional outer loop: Set i := i + 1 and go to
Step 1.

of the subproblem xi∗ is accepted i.e. xi+1 := xi∗ only if xi∗ is found to
be a gradient-only conservative point. This modification to the gradient-
only sequential approximate optimization is listed Algorithm 8.3.
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8.8 Gradient-only optimization problem

An important consideration for a holistic understanding of gradient-only
approaches, is to understand the characteristics of the designs to which
gradient-only strategies converge. This would allow us to better differen-
tiate gradient-only strategies from conventional minimization strategies
when step discontinuous functions are considered. We therefore formally
define the underlying optimization problem that is consistent with solu-
tion strategies that only consider gradient-only information.

Reconsider the derivatives presented in Figures 8.5 (b) and (d), that
depict the smooth and piece-wise smooth step discontinuous derivative
responses when the same problem is numerically integrated using differ-
ent numerical strategies. Although conventional interpretations of the
smooth derivative function highlights the design with zero slope and
the lack thereof for the step discontinuous derivative function, there is
a consistent interpretation between the smooth and step discontinuous
derivative functions depicted in Figures 8.5 (b) and (d). This interpre-
tation acknowledges that the smooth and step discontinuous derivative
functions both change sign from negative to positive only once as λ
increases. Therefore, if we define this point as the solution to the opti-
mization problem then we have (i) a unique solution that is defined
for both derivative functions based solely on first order information and
(ii) the solution defines a minimum when estimated from only first order
information as second order (curvature) information is implied by requir-
ing the sign to change from negative to positive with increasing λ.

As illustration of (ii), consider Figure 8.5 (d). The sign change from
negative to positive as λ increases is at λ∗

g ≈ 0.57. Consider any point,
λv to the left of λ∗

g i.e. λv < λ∗
g, then the direction is given by dv =

λv − λ∗
g < 0. The directional derivative is given by the projection of

the derivative dE(λv)
dλ computed at λv onto dv, i.e. by dv

dE(λv)
dλ . Since

dE(λv)
dλ < 0 for λv < λ∗

g, the directional derivative is positive. Similarly,
the directional derivative for λv to the right of λ∗

g i.e. λv > λ∗
g is also only

positive. This implies that first order information estimates the function
value to only increase irrespective of the direction of departure from λ∗

g.
In contrast, when considering Figures 8.5 (a) and (c) it is evident that
the function decreases but only as a result of step discontinuities and
not because of the trends of the piece-wise smooth sections indicating
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descent. We define λ∗
g as a strict non-negative associated gradient (or

derivative) projection point (Wilke et al. (2013b)). This requires the
directional derivative at any point λv to be positive, where λv is in the
vicinity of λ∗

g, and the direction defined by λv − λ∗
g.

In general, given a real-valued function f : X ⊂ R
n → R, the gen-

eral unconstrained gradient-only optimization problem is to find a non-
negative associated gradient projection point x∗

g ∈ X such that for every
u ∈ {y ∈ R

n | ‖y‖ = 1} there exists a real number ru > 0 for which the
following holds:

∇A
Tf(x∗

g + λu)u ≥ 0 ∀ λ ∈ (0, ru].

This allows us to determine distinct candidate solutions to an uncon-
strained gradient-only optimization problem. It is important to note
that when multiple candidate solutions exist additional information may
be required, after obtaining these solutions using only first order infor-
mation, in order to uniquely obtain the best solution.

8.9 Exercises

The reader is encouraged to employ a convenient computing environ-
ment to complete the exercises. With Python being freely available it is
recommended to be used as outlined in Chapter 9.

8.9.1 Consider the Lotka-Volterra system with unknown parameter λ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= z(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, using 50 000 equally spaced time steps. Given z(8) =
0.722962 and y(8) = 1.110567 plot the sum of the errors squared
objective function given in (8.3) for λ between 0 and 1 using 101
equally spaced points.

http://dx.doi.org/10.1007/978-3-319-77586-9_9
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8.9.2 Consider the Lotka-Volterra systemwith unknownparameterλ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= z(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second inter-
val, that starts with 50 equally spaced time steps and adding
10 time steps every time the computation is done for a new λ.
Given z(8) = 0.722962 and y(8) = 1.110567 plot the sum of the
errors squared objective function given in (8.3) for λ between 0
and 1 using 101 equally spaced points.

8.9.3 Optimize the problem outlined in Exercise 8.9.1 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.4 Optimize the problem outlined in Exercise 8.9.2 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.5 Critically compare the results obtained in Exercises 8.9.3 and
8.9.4.

8.9.6 Consider the Lotka-Volterra system with unknown parameters
λ and δ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, using 50 000 equally spaced time steps. Given z(8) =
0.722962 and y(8) = 1.110567 plot the sum of the errors squared
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objective function given in (8.3) for λ between 0 and 1 and δ
between 0.5 and 1.5 using 101 equally spaced points.

8.9.7 Consider the Lotka-Volterra system with unknown parameters
λ and δ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, that starts with 50 equally spaced time steps and adding
10 time steps every time the computation is done for a new
(λ, δ) pair. Given z(8) = 0.722962 and y(8) = 1.110567 plot the
sum of the errors squared objective function given in (8.3) for
λ between 0 and 1 and δ between 0.5 and 1.5 using 101 equally
spaced points.

8.9.8 Optimize the problem outlined in Exercise 8.9.6 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.9 Optimize the problem outlined in Exercise 8.9.7 using the Golden
section strategy and the gradient-only bisection approach using
100 random starts each. Use the same random starting points
for the two line search strategies. Compare the obtained results
in terms of the apparent optimal λ, required number of function
and derivative evaluations to solve the problem 100 times.

8.9.10 Consider the Lotka-Volterra system with four unknown param-
eters λ, δ, β and γ :

dz(z, y, t)
dt

= (1 − λ)z(t) − βz(t)y(t)

dy(z, y, t)
dt

= δz(t)y(t) − γy(t),
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with the two initial conditions z(0) = 0.9 and y(0) = 0.9 inte-
grated using the forward Euler scheme, over an eight second
interval, that starts with 50 equally spaced time steps. For
every 10 evaluations of a (λ, δ, β, γ) increase the number of time
steps by 10. Given z(8) = 0.722962 and y(8) = 1.110567 solve
the problem to find the optimal (λ, β, δ and γ) using random
starting points between 0 and 1 for, λ and β, and between 0.5
and 1.5 for δ and γ.

8.9.11 Construct two third order polynomial approximations of the
objective in Exercise 8.9.1. For the first approximation use only
zero order information, while for the second approximation use
only first order information. Compare the two approximations
with each other.

8.9.12 Construct two third order polynomial approximations of the
objective in Exercise 8.9.2. For the first approximation use only
zero order information, while for the second approximation use
only first order information. Compare the two approximations
with each other.

8.9.13 Optimize the piece-wise smooth step discontinuous quadratic
function given by (7.14) for n = 2 using a gradient-only sym-
metric Hessian matrix approximation. Compare the obtained
optimum against the graphical solution of the problem.

8.9.14 Optimize the piece-wise smooth step discontinuous quadratic
function given by (7.14) for n = 4 using a gradient-only sym-
metric Hessian matrix approximation.

8.9.15 Compare the symmetric Hessian matrix approximation in Exer-
cises 8.9.13 and 8.9.14 against the actual Hessian of the piece-
wise smooth step discontinuous quadratic function.

http://dx.doi.org/10.1007/978-3-319-77586-9_7
http://dx.doi.org/10.1007/978-3-319-77586-9_7


Chapter 9

PRACTICAL
COMPUTATIONAL
OPTIMIZATION USING
PYTHON

9.1 Introduction to Python

Python is a general purpose computer programming language. An expe-
rienced programmer in any procedural computer language can learn
Python very quickly. Python is remarkable in that it is designed to
allow new programmers to efficiently master programming. The choice
of including Anaconda Python for application of our mathematical pro-
gramming concepts is motivated by the fact that Anaconda Python sup-
ports both symbolic and numerical mathematical operations as part of
the installation. Python allows for an intuitive engagement with numer-
ical computations. It is freely available and allows for additional func-
tionality to be developed and extended. All algorithms in this text
are made available in Python so as to allow the reader the use of the
developed algorithms from the onset. This chapter is not an exhaustive
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treatise on Python and programming in general, but rather the mini-
mum subset of Python required to implement formulated optimization
problems and to solve them.

Only selected output of listed codes is presented in this chapter. The
premise of withholding the output of some of the Python programs is
to encourage an active participation by the reader when reading this
chapter.

9.1.1 Installing Anaconda Python

Anaconda Python is freely available by following the link [https://www.
continuum.io/downloads].

Simply follow the installation instructions and use either Spyder or
Jupyter-Notebooks to write and execute your Python programs. All
developed programmingmaterial ismade available asPython fileswith file
extensions .py as well as Jupyter-Notebooks with file extensions .ipynb.

9.2 Overview

Python is known as an object-orientated programming language which
for our purposes implies that every symbol, number, vector, matrix or
function we create is an object, where objects have functions that per-
form specific operations on that object. For example the Python code for
computing the following numerical calculation with complex numbers:

1 complex number = 4 + 9 j + 12 j − 3

returns 1+21j as an answer and assigns it the name complex number.
By typing complex number followed by a dot (.) and pressing the TAB
key presents the following list of operations:

complex_number.conjugate
complex_number.imag
complex_number.real

Typing complex number.conjugate() returns 1-21j, whereas the imag-
inary component is accessible by typing complex number.imag to return

https://www.continuum.io/downloads
https://www.continuum.io/downloads
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the imaginary part of the complex number and complex number.real
to return the real part. Hence, an object is both the data as well as
relevant functions that operate on it combined into a single package.

Python as a stand-alone language has only limited functionality which
Anaconda Python extends with additional capability through modules.
Modules are objects that store functions without any data. Modules
need to be imported into memory, whereafter the functionality can be
accessed using the . followed by the TAB strategy. Consider the following
two approaches to import cos and sin from the module math:

1 import math as m
2 pr in t (m. cos ( 3 . 1 4 ) )

or alternatively:

1 from math import cos , s i n
2 pr in t ( s i n ( 3 . 1 4 ) )

Modules may also include submodules that in turn store functions. Con-
sider the function rand that is available in the submodule random stored
inside the module numpy:

1 from numpy . random import rand
2 pr in t ( rand ( ) )

Once a module, submodule, function or object has been loaded into
memory, additional information is available via the help(.) function.
Examples include help(numpy) and help(rand). After reading the
available help for the rand function it is clear that an array of five
random numbers is generated by:

1 pr in t ( rand (5 ) )

A vector of numbers can be stored as a list of numbers using square
brackets and separating numbers by commas:

1 l i s t number s = [ 1 , 4 , 9 , 25 , 36 ]

or as a numpy array of numbers by supplying a list of numbers as input
to the numpy.array function:

1 from numpy import array
2 array numbers = array ( [ 1 , 4 , 9 , 25 , 3 6 ] )
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The difference between the list and numpy array is that the list of num-
bers has limited support for mathematical operations. For example
adding two lists results in the two lists being concatenated, while mul-
tiplication between two lists is not defined. Multiplying a list by an
integer n concatenates the list with it self n times. In turn, a numpy
array supports element-wise operations, i.e. multiplying two arrays of
equal length results in an array in which corresponding elements are
multiplied with each other. Adding two arrays results in corresponding
elements being added together. Individual entries in a list or numpy
array can be accessed using square brackets that encapsulates the index
number that follows the name of the list or array, e.g. array numbers[0]
returns the first value stored in the array. Thus the index number cor-
responding to the first entry in the array is 0, while for the second entry
in the array the index number is 1, and for the third entry the index is
2, etc.

The plot function in the submodule matplotlib.pyplot allows for
visualization of both lists and arrays as illustrated by the following two
plots:

1 import matp lo t l i b . pyplot as p l t
2 p l t . f i g u r e (1 )
3 p l t . p l o t ( l i s t number s )
4 p l t . show ( )
5

6 p l t . f i g u r e (2 )
7 p l t . p l o t ( array numbers )
8 p l t . show ( )

where the function plt.figure(.) specifies a figure on which a plot
can be drawn using plt.plot(.), with the figure then being displayed
by plt.show().

The standard Python modules we will be considering in this chapter are

1. math - numeric Python using scalars,

2. sympy - symbolic Python,

3. scipy - scientific Python,

4. numpy - numeric Python using arrays,
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5. matplotlib - Mat lab plotting library for numerical plotting with
arrays.

In addition, especially to accompany the new algorithms developed in this
book, we make available the Python module pmo that can be electronically
downloaded fromSpringerExtraMaterials (extras.springer.com/2018).

9.2.1 Basic Arithmetic

1. Multiplication

1 pr in t (3∗5)

2. Division

1 pr in t (3/5)

3. Power

1 pr in t (3∗∗5)

9.3 Symbolic Mathematics

In addition to numeric computations, Python allows for symbolic com-
putations to be conducted. This allows for analytical operations such as
differentiation and integration to be performed using Python. Consider
the one-dimensional quadratic function

F (λ) = λ2, (9.1)

which can easily be visualised using symbolic mathematics in the sympy
package. We first need to define a variable using the function symbols.
We can then define a symbolic function that we can then plot over a
specified domain using the following code:

1 from sympy import symbols
2 from sympy . p l o t t i n g import p l o t
3

http://extras.springer.com/2018
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4 L = symbols ( ’L ’ )
5 F = L∗∗2
6

7 p lo t (F , ( L , 1 , 6 ) )

The result of the two-dimensional visualisation function plot is depicted
in Figure 9.1.

Figure 9.1: Symbolic Python plot of univariate quadratic function

In addition to visualizing univariate functions sympy supports the visu-
alization of two-dimensional functions. Consider the two-dimensional
Rosenbrock function

f(x) = 100(x2
0 − x1)2 + (x0 − 1)2. (9.2)

We first need to define variables using the function symbols followed by
a symbolic representation of the Rosenbrock function that we can then
plot over a specified domain using the following code:

1 from sympy import symbols
2 from sympy . p l o t t i n g import p lot3d
3

4 x0 , x1 = symbols ( ’ x0 , x1 ’ )
5 f = 100∗( x0∗∗2 − x1 ) ∗∗2 + (x0−1)∗∗2
6

7 plot3d ( f , ( x0 , −1 .5 ,2) , ( x1 , −0 .5 ,3) )
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The result of the three-dimensional visualisation function plot3d is
depicted in Figure 9.2.

Figure 9.2: Symbolic Python plotted Rosenbrock function

9.3.1 Differentiation

The gradient vector and Hessian matrix of the defined Rosenbrock func-
tion can subsequently be computed using the symbolic differentiation
function diff as follows:

1 from sympy import symbols , d i f f
2

3 x0 , x1 = symbols ( ’ x0 , x1 ’ )
4 f = 100∗( x0∗∗2 − x1 ) ∗∗2 + (x0−1)∗∗2
5

6 pr in t ( ’ F i r s t p a r t i a l d e r i v a t i v e ’ , d i f f ( f , x0 ) )
7 pr in t ( ’ Second p a r t i a l d e r i v a t i v e ’ , d i f f ( f , x1 ) )
8

9 pr in t ( ’ Hess ian matrix d/dx0 ( df /dx0 ) ’ , d i f f ( f , x0 , x0 ) )
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10 pr in t ( ’ Hess ian matrix d/dx1 ( df /dx1 ) ’ , d i f f ( f , x1 , x1 ) )
11 pr in t ( ’ Hess ian matrix d/dx1 ( df /dx0 ) ’ , d i f f ( f , x0 , x1 ) )
12 pr in t ( ’ Hess ian matrix d/dx0 ( df /dx1 ) ’ , d i f f ( f , x1 , x0 ) )

Since the Hessian is symmetric for twice continuously differentiable func-
tions, the last two computed elements of the Hessian matrix are equal.

The function derive by array in sympy allows us to compute the gra-
dient vector and Hessian matrix in more compact form as follows:

1 from sympy import symbols , d i f f , d e r i ve by ar ray ,
p r e t t y p r i n t

2

3 x0 , x1 = symbols ( ’ x0 , x1 ’ )
4 f = 100∗( x0∗∗2 − x1 ) ∗∗2 + (x0−1)∗∗2
5 x = [ x0 , x1 ]
6

7 grad f = de r i v e by a r r ay ( f , x )
8 he s s i an = de r i v e by a r r ay ( gradf , x )
9

10 pr in t ( ’The grad i ent vec to r i s : ’ )
11 p r e t t y p r i n t ( grad f )
12

13 pr in t ( ’The Hess ian matrix i s : ’ )
14 p r e t t y p r i n t ( he s s i an )

The usage of pretty print allows for the gradient vector and Hessian
matrix to be displayed in the more readable format:

9.3.2 Numerical Evaluation

The symbolic expression for the Rosenbrock function can numerically
be evaluated using the substitution function subs as follows:

1 pr in t ( ’ Rosenbrock func t i on eva luated at x0=5,x1=1 g i v e s ’ , f .
subs ({ x0 : 5 , x1 : 1} ) )
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2 pr in t ( ’ Rosenbrock func t i on eva luated at x0=1,x1=1 g i v e s ’ , f .
subs ({ x0 : 0 , x1 : 0} ) )

The statement name1:value1,name2:value2 is referred to as a dictio-
nary in Python. The name is used to conveniently identify the associated
value. For example:

1 mydict = { ’ va lue1 ’ : 2 . 7 3 , ’ va lue2 ’ : 3 . 1 4}
2 pr in t ( ’The value a s s o c i a t ed with value2 i s ’ , mydict [ ’ va lue2 ’ ] )

prints the value 3.14 to the screen.

Alternatively, the function lambdify in sympy can be used to construct
a numerical function from a symbolic expression, by specifying the sym-
bols in the expression that need to be supplied as input to the function,
as follows:

1 from sympy import symbols , d i f f , d e r i ve by ar ray ,
p r e t t y p r i n t , lambdify

2

3 x0 , x1 = symbols ( ’ x0 , x1 ’ )
4 f = 100∗( x0∗∗2 − x1 ) ∗∗2 + (x0−1)∗∗2
5 x = [ x0 , x1 ]
6

7 grad f = de r i v e by a r r ay ( f , x )
8 he s s i an = de r i v e by a r r ay ( gradf , x )
9

10 f numer ic = lambdify ( ( x0 , x1 ) , f )
11 gradf numer ic = lambdify ( ( x0 , x1 ) , g rad f )
12 hess ian numer i c = lambdify ( ( x0 , x1 ) , he s s i an )
13

14 pr in t ( ’ Rosenbrock func t i on eva luated at x0=5,x1=1 g i v e s ’ ,
f numer ic (5 , 1 ) )

15

16 pr in t ( ’ Gradient o f the Rosenbrock func t i on eva luated at x0=5,
x1=1 g i v e s ’ , g radf numer ic (5 , 1 ) )

17

18 pr in t ( ’ Hess ian o f the Rosenbrock func t i on eva luated at x0=5,
x1=1 g i v e s ’ , he s s ian numer i c (5 , 1 ) )

9.3.3 Optimality Criteria

Conveniently the module sympy allows us to solve symbolic systems of
equations. This capability allows us to find the roots of the gradient
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vector of a function, i.e. solve optimization problems using an optimality
criteria approach.

For example, the necessary condition for a minimum of the Rosenbrock
function is computed from the following code:

1 from sympy import symbols , d i f f , s o l v e
2

3 x0 , x1 = symbols ( ’ x0 , x1 ’ )
4

5 f = 100∗( x0∗∗2 − x1 ) ∗∗2 + (x0−1)∗∗2
6

7 dfdx0 = d i f f ( f , x0 )
8 dfdx1 = d i f f ( f , x1 )
9

10 s o l u t i o n = so l v e ( [ dfdx0 , dfdx1 ] , [ x0 , x1 ] )
11

12 pr in t ( ’The grad i ent vec to r i s ze ro at the po int : ’ , s o l u t i o n )

which gives the solution:

(’The gradient vector is zero at the point’, [(1, 1)])

9.4 Numerical Linear Algebra

In addition to symbolic computations in Python, the numerical Python
module numpy and the scientific Python module scipy make a powerful
collection of numerical strategies available.

The support for vectors and matrices are limited to arrays . Linear
algebra operations are accessible via functions within the numpy and
scipy modules. For example, dot allows you to compute the inner
product between two arrays, subject to the correspondence of the two
dimensions of the two arrays. Also, solve under numpy.linalg allows
for the solution of a linear system of equations. The application of these
modules is illustrated by the following numerical examples.

Consider the vector

b = [12.5, 37.5, 120]T ,
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and matrix

A =

⎡
⎣

2 1 0
1 2 1
0 1 2

⎤
⎦ .

We can compute the solution to Ax = b as follows:

1 from numpy import array
2 from numpy . l i n a l g import s o l v e
3

4 b = array ( [ 1 2 . 5 , 3 7 . 5 , 1 2 0 ] )
5 A = array ( [ [ 2 , 1 , 0 ] , [ 1 , 2 , 1 ] , [ 0 , 1 , 2 ] ] )
6

7 x = so l v e (A, b)
8

9 pr in t ( ’The s o l u t i o n i s ’ , x )

In turn, by multiplying the computed solution x with the corresponding
A matrix, the solution can be confirmed:

1 from numpy import dot
2 pr in t ( ’A∗x ’ , dot (A, x ) , ’ i s indeed equal to b ’ )

The solution is unique as the number of equations equals the number of
unknowns, in addition to A being full rank.

We can confirm that A is full rank by computing the rank, determinant
or eigenvalues of the matrix:

1 from numpy . l i n a l g import matrix rank , det , e i g
2

3 pr in t ( ’Rank o f A i s ’ , matr ix rank (A) )
4

5 pr in t ( ’ Determinant o f A i s ’ , det (A) )
6

7 EigenValues , EigenVectors = e i g (A)
8 pr in t ( ’ E igenva lues o f A are ’ , EigenValues )
9 pr in t ( ’ Product o f EigenValues are ’ , prod ( EigenValues ) )

9.4.1 Overdetermined system of equations

Consider the following overdetermined system of equations Cx = d
where

d = [12.5, 37.5, 120, 55]T ,
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and the matrix C given by

C =

⎡
⎢⎢⎣

2 1 0
1 2 1
0 1 2
0 1 1

⎤
⎥⎥⎦ .

We may accept a solution that minimizes some error of the system and
can thus be considered superior to any other arbitrary solution. The
difference

e = Cx − d, (9.3)

can be used to compute an appropriate error function by taking the
difference squared:

eTe = (xTCT − dT)(Cx − d) (9.4)
= xTCTCx − 2xTCTd + dTd. (9.5)

The first order necessary condition for a minimum is obtained by dif-
ferentiating (9.5) w.r.t. x, which gives the minimum error solution by
solving the following linear system:

CTCx = CTd. (9.6)

The Python code for solving this linear system is given by

1 from numpy import array , dot
2 from numpy . l i n a l g import s o l v e
3

4 d = array ( [ 1 2 . 5 , 3 7 . 5 , 1 2 0 , 5 5 ] )
5 C = array ( [ [ 2 , 1 , 0 ] , [ 1 , 2 , 1 ] , [ 0 , 1 , 2 ] , [ 0 , 1 , 1 ] ] )
6

7 CTC = dot (C. t ranspose ( ) ,C)
8 CTd = dot (C. t ranspose ( ) ,d )
9

10 x = so l v e (CTC,CTd)
11

12 pr in t ( ’The s o l u t i o n that minimizes the e r r o r i s ’ , x )

The quality of the solution can be assessed by

1 e = dot (C, x )−d
2 eTe = dot ( e , e )
3 pr in t ( ’Cx i s ’ , dot (C, x ) , ’ which should be ’ ,d , ’ the e r r o r squared

i s ’ , eTe )
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The solution is indeed confirmed to be a minimum since CTC is positive-
definite:

1 from numpy . l i n a l g import e i g
2 EigenValues , EigenVectors = e i g (CTC)
3 pr in t ( ’ Second order s u f f i c i e n c y : Pos i t i ve−d e f i n i t e with

e i g enva lu e s ’ , EigenValues )

which confirms the second order necessary condition.

9.4.2 Underdetermined system of equations

Consider the following underdetermined system of equations Zx = y
that has an infinite number of solutions, and where

y = [12.5, 37.5]T

and the matrix Z given by

Z =
[

2 1 0
1 2 1

]
.

Since we have three unknowns to satisfy only two equations we have an
infinite number of solutions. We can formulate an optimization prob-
lem, the solution of which gives preference of one solution over others.
Enforcing preference for a particular solution is referred to as homoge-
nization. Here we choose to prefer solution vectors with shorter length
over those with longer lengths, i.e. that given by the solution to the
following optimization problem:

minimize
w.r.t. x

1
2
xTx,

subject to the constraints:
Zx = y. (9.7)

The Lagrangian for the equality constrained problem is given by

1
2
xTx + λT(Zx − y), (9.8)
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from which the necessary KKT conditions follow:

dL

dx
= x + ZTλ = 0, (9.9)

dL

dλ
= Zx − y = 0. (9.10)

Consider (9.9) pre-multiplied by Z to obtain

Zx + ZZTλ = 0. (9.11)

Since Zx = y, it follows that we can solve for λ independent of x:

λ = −(ZZT)−1y. (9.12)

From (9.9) and (9.12) we finally obtain the minimum norm solution

x = ZT(ZZT)−1y. (9.13)

Thus the minimum norm solution in Python for the problem is given by

1 from numpy import array , dot
2 from numpy . l i n a l g import s o l v e
3

4 y = array ( [ 1 2 . 5 , 3 7 ] )
5 Z = array ( [ [ 2 , 1 , 0 ] , [ 1 , 2 , 1 ] ] )
6

7 ZZT = dot (Z , Z . t ranspose ( ) )
8 RHS = so l v e (ZZT, y )
9

10 x = dot (Z . t ranspose ( ) ,RHS)
11

12 pr in t ( ’The s o l u t i o n with the minimum length i s ’ , x )
13

14 pr in t ( ’Zx i s ’ , dot (Z , x ) , ’ which corresponds to ’ , y )

9.5 Numerical Functions

Python offers two ways to define numerical functions that can repre-
sent multidimensional scalar objective and constraint functions. This is
in addition to converting symbolic expressions into numerical functions
using lambdify as discussed in Section 9.3.2.
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Order of Info. Constraints

Algorithm Identifier Section 0th 1st 2nd Bnd. L. N.L.
Nelder-Mead ’nelder-mead’ 2.5 �
Powell ’powell’ 2.5 �
Conj. Grad. ’cg’ 2.3.2 � �
BFGS ’bfgs’ 2.4.2.3 � �
Dogleg Trust ’dogleg’ � � �
Newton CG Trust ’ncg-trust’ � � �
Truncated Newton ’tnc’ � � �
Lim. Mem. BFGS ’l-bfgs-b’ � � �
COBYLA ’cobyla’ App.A � � �
SLSQP ’slsqp’ � � � � �

Table 9.1: Available minimization algorithms for the function minimize
under scipy.optimize

Firstly, using the def keyword followed by the name of the function
and :. The computation inside the function is defined by the TAB
indented Python code. The function returns whatever is specified after
the return keyword. It is important to note, that the input is an array,
where the first entry in the array is defined by index 0. For example, the
function that defines the two-dimensional Rosenbrock function is given
by

1 de f rosenbrock (x ) :
2 f unc t i onva lue = 100∗( x [ 0 ]∗∗2 − x [ 1 ] ) ∗∗2 + (x [0 ] −1) ∗∗2
3 re turn func t i onva lue

The defined Rosenbrock function can then be evaluated at any point as
follows:

1 from numpy import array
2 rosen11 = rosenbrock ( array [ 1 , 1 ] )
3 pr in t ( rosen11 )

Secondly, Python offers lambda functions to quickly define explicit func-
tions of limited complexity (single line functions) as follows:

1 rosenbrock = lambda x : 100∗( x [ 0 ]∗∗2 − x [ 1 ] ) ∗∗2 + (x [0 ] −1) ∗∗2

The lambda constructed rosenbrock function can then be evaluated:

1 from numpy import array
2 rosen00 = rosenbrock ( array [ 0 , 0 ] )
3 pr in t ( rosen00 )

http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
http://dx.doi.org/10.1007/978-3-319-77586-9_2
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9.6 Optimization Algorithms

The scientific Python module scipy offers a number of optimization
algorithms under scipy.optimize using the minimize function. The
algorithms available through the minimize function are presented in
Table 9.1, which list the algorithm name, the identifier, the section where
it is presented, the order of information that is used and whether it can
handle bound (Bnd.), linear (L.) and non-linear (N.L.) constraints.

The minimize function requires the following inputs:

minimize(fun, x0, args=(), method=None, jac=None, hess=None,
hessp=None, bounds=None, constraints=(), tol=None,
callback=None, options=None)

The full documentation for minimize can be obtained via:
1 from sc ipy . opt imize import minimize
2 help ( minimize )

9.6.1 Unconstrained minimization

Consider the minimization of the already defined two-dimensional Rosen-
brock function from the starting point x0 = [5, 3] using the BFGS algo-
rithm without supplying the analytical gradient vector:

1 x0 = array ( [ 5 , 3 ] )
2 r e s u l t = minimize ( rosenbrock , x0 , method=’ b fg s ’ )
3 pr in t ( r e s u l t )

that gives the following result:

fun: 6.9100079296177365e-12
hess_inv: array([[ 0.49979588, 0.99962071],
[ 0.99962071, 2.00429513]])
jac: array([ -6.92288171e-05, 3.71612185e-05])
message: ’Desired error not necessarily achieved due to

precision loss.’
nfev: 632
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nit: 58
njev: 155
status: 2
success: False
x: array([ 0.99999807, 0.99999632])

At convergence, the function value is given by the fun keyword, the esti-
mated inverse of the Hessian matrix given by hess inv and the gradient
vector by jac, with jac in reference to the Jacobian used to designate
all first order partial derivatives of the function. Additionally, a message
(message) is supplied stating that the desired error may not necessar-
ily have been achieved due to precision loss resulting in unsuccessful
convergence as indicated by the success:false and also the status:2
feedback. Note that the integer related to the status feedback is solver
specific, while the accompanied message describes the meaning of the
feedback. On closer inspection it is evident that the culprit is the gra-
dient vector at the solution not satisfying the first order optimality cri-
terion to within the default tolerances. Since no analytical expression
for the gradient vector was supplied it had to be computed using finite
differences resulting in the precision loss stated in the accompanied mes-
sage. The required number of iterations (nit) were 58, but the required
number of function evaluations were 632 (nfev), which averages to 11
function evaluations per iteration. A total number of 155 gradient esti-
mations (njev) were computed using finite differences which largely con-
tributed to the high number of required function evaluations. When the
gradient is not supplied it is estimated by conventional finite differences,
which increasingly affects the associated computational cost adversely
as the dimension of the problem increases.

The number of required function evaluations and numerical accuracy of
the results can be drastically improved on by supplying the Jacobian
function with analytical gradients as follows:

1 de f g rad i en t ro s enbrock (x ) :
2 dfdx0 = 400∗x [ 0 ] ∗ ( x [ 0 ] ∗∗2 − x [ 1 ] ) + 2∗x [ 0 ] − 2
3 dfdx1 = −200∗x [ 0 ] ∗∗2 + 200∗x [ 1 ]
4 re turn array ( [ dfdx0 , dfdx1 ] )
5

6 x0 = array ( [ 5 , 3 ] )
7 r e s u l t = minimize ( rosenbrock , x0 , method=’ b fg s ’ , j a c=

grad i en t ro s enbrock )
8 pr in t ( r e s u l t )
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which gives the following output:

fun: 9.94483975531609e-19
hess_inv: array([[ 0.4998457 , 0.99969658],
[ 0.99969658, 2.00440351]])
jac: array([ 1.09322507e-08, -4.49452386e-09])
message: ’Optimization terminated successfully.’
nfev: 76
nit: 56
njev: 76
status: 0
success: True
x: array([ 1., 1.])

The required number of function values decreased to 76 over 56 iterations
by supplying the analytical gradient for the Rosenbrock function. In
addition, the first order optimality criterion is satisfied within the default
tolerance at the solution as the gradient vector is much more accurately
resolved as indicated by jac.

The function check grad under scipy.optimize allows for easy verifi-
cation of analytical gradients by automatically verifying it against built-
in finite difference schemes at a specified point:

1 point = array ( [ 3 , 2 ] )
2 pr in t ( ’ Gradient check : D i f f e r e n c e i s ’ , check grad ( rosenbrock ,

g rad i ent ro senbrock , po int ) )

which confirms the user supplied gradient function with the following
output:

Gradient check: Difference is 6.103515625e-05

Instead of analytically computing the gradient vector or relying on
Python’s built-in finite difference schemes, an accurate numerical finite
difference scheme, such as the complex-step method see Section 2.3.1.6,
can be used to explicitly compute the gradient vector:

1 import numpy as np
2 rosenbrock = lambda x : 100∗( x [ 0 ]∗∗2 − x [ 1 ] ) ∗∗2 + (x [0 ] −1) ∗∗2

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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3

4 de f f i n i t e d i f f e r e n c e r o s e n b r o c k (x ) :
5 dfdx = [ ]
6 de l t a = 1E−20
7

8 f o r i in range ( l en (x ) ) :
9 s tep = ze ro s ( l en (x ) , dtype=np . complex )

10 s tep [ i ] = complex (0 , d e l t a )
11 dfdx . append (np . imag ( rosenbrock (x+step ) ) / de l t a )
12

13 re turn array ( dfdx )
14

15 x0 = array ( [ 5 , 3 ] )
16 r e s u l t = minimize ( rosenbrock , x0 , method=’ b fg s ’ , j a c=

f i n i t e d i f f e r e n c e r o s e n b r o c k )
17 pr in t ( r e s u l t )

which gives the following output:

fun: 1.4496363359720043e-18
hess_inv: array([[ 0.4998082 , 0.99962102],
[ 0.99962102, 2.00425127]])
jac: array([ 9.94697170e-09, -3.78443943e-09])
message: ’Optimization terminated successfully.’
nfev: 76
nit: 56
njev: 76
status: 0
success: True
x: array([ 1., 1.])

Clearly this only required 76+2×76 = 228 function evaluations instead
of the 632 when utilizing the built-in conventional finite difference
schemes. As pointed out in Section 2.3.1.6, this illustrates the bene-
fit of not having to resolve the step length in the complex-step method,
while still computing numerically accurate sensitivities.

http://dx.doi.org/10.1007/978-3-319-77586-9_2
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9.6.2 Constrained minimization

Consider the following constrained optimization problem:

minimize f(x) = 2x2 − x1

subject to
g1(x) = x2

1 + 4x2
2 − 16 ≤ 0,

g2(x) = (x1 − 3)2 + (x2 − 3)2 − 9 ≤ 0
and x1 ≥ 0 and x2 ≥ 0.

We aim to solve this problem using sequential least squares quadratic
programming SLSQP, that is available in the function minimize.

The objective function is defined keeping in mind that the Python array
index numbers start at 0. Hence vector entry x1 maps to x[0] and x2

maps to x[1] that defines the objective as follows:
1 f = lambda x : 2∗x [ 1 ] − x [ 0 ]

Next, the constraint functions need to be constructed inside a dictionary.
Before we proceed it is important to note that minimize requires the
inequality constraints to be defined in the form gi(x) ≥ 0, i = 1, . . . , m.
This differs from the usual convention, used in this book, that states
inequality constraints in the form gi(x) ≤ 0, i = 1, . . . , m. Fortunately
constraints cast in this form can quickly be rewritten in the required
minimize form by multiplying each constraint by −1 to obtain −gi(x) ≥
0, i = 1, . . . , m.

Each constraint needs to be defined as a dictionary with the following
keywords:

1. ’type’ that defines the constraint type as either an equality con-
straint (’eq’) or inequality constraint (’ineq’),

2. ’fun’ defines the constraint function hi(x) or gi(x) depending on
the ’type’, and

3. optional ’jac’ defines the Jacobian of the constraint function.

Multiple constraints are then assembled into a list of dictionaries as
follows:
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1 cons = [{ ’ type ’ : ’ ineq ’ ,
2 ’ fun ’ : lambda x : −x [ 0 ] ∗∗2 − 4∗x [ 1 ] ∗∗2 + 16} ,
3 { ’ type ’ : ’ ineq ’ ,
4 ’ fun ’ : lambda x : −(x [ 0 ] − 3) ∗∗2 − ( x [ 1 ] − 3) ∗∗2 + 9} ]

In addition the bound constraints are defined per dimension given the
upper and lower bounds per list. The lower bound is 0 and the upper
bound unspecified. Hence we define per dimension the bound constraints
as [0,None], that are assembled into a list of lists for both dimensions
as follows:

1 bounds = [ [ 0 , None ] , [ 0 , None ] ]

We can now choose an initial starting point and solve the defined prob-
lem without supplying analytical gradients:

1 x0 = array ( [ 1 , 1 ] )
2 r e s u l t = minimize ( f , x0 , c on s t r a i n t s=cons , bounds=bounds , method=

’SLSQP ’ )
3 pr in t ( r e s u l t )

to obtain the following output:

fun: -3.6527011374767544
jac: array([-1., 2.])
message: ’Optimization terminated successfully.’
nfev: 24
nit: 6
njev: 6
status: 0
success: True
x: array([ 3.98608288, 0.16669087])

By evaluating the constraints the feasibility of the solution can be veri-
fied.

Alternatively, analytical gradients can be made available to reduce the
computational requirements:

1 de f grad f ( x ) :
2 re turn array ( [ −1 ,2 ] )
3
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4 de f gradg0 (x ) :
5 re turn array ([−2∗x [0] , −8∗x [ 1 ] ] )
6

7 de f gradg1 (x ) :
8 re turn array ([−2∗(x [0 ] −3) ,−2∗(x [1 ] −3) ] )
9

10 cons = ({ ’ type ’ : ’ ineq ’ , ’ fun ’ : lambda x : −x [ 0 ] ∗∗2 − 4 ∗ x
[ 1 ]∗∗2 + 16 , ’ j a c ’ : gradg0 } ,

11 { ’ type ’ : ’ ineq ’ , ’ fun ’ : lambda x : −(x [ 0 ] − 3) ∗∗2 −(x [ 1 ] − 3)
∗∗2 +9, ’ j a c ’ : gradg1 })

12

13 x0 = array ( [ 1 , 1 ] )
14 r e s u l t = minimize ( f , x0 , j a c=gradf , c on s t r a i n t s=cons , bounds=

bounds , method=’SLSQP ’ )
15 pr in t ( r e s u l t )

that gives the following output:

fun: -3.6527011374831222
jac: array([-1., 2.])
message: ’Optimization terminated successfully.’
nfev: 6
nit: 6
njev: 6
status: 0
success: True
x: array([ 3.98608288, 0.16669087])

Additional information and example problems are available via:
1 from sc ipy . opt imize import minimize
2 help ( minimize )

9.7 Practical Mathematical Optimization
(PMO) Algorithms

The optimization algorithms presented in this book are freely available
via Springer and distributed under the module name pmo. These novel
algorithms are well suited for noisy and discontinuous optimization prob-
lems and are implemented to be compatible and consistent with the
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scipy.optimize.minimize framework. The benefit being that once a
problem has been constructed it can easily be solved using the already
supported algorithms in minimize or those supplied with this book, i.e.
via the module pmo. This supplements the methods available for solving
challenging optimization problems.

A summary of the pmo algorithms, including their associated function
names and reference to relevant sections in this book, are listed in
Table 9.2. For each algorithm inside pmo a description of the settings to
be supplied are available via the help function. Previously algorithms
were identified within minimize by supplying a relevant string identifier
for the method keyword. The algorithms supplied in pmo can be used
by specifying the function object for the method keyword instead of a
string identifier as demonstrated in the following Python code to solve
the constrained optimization problem presented in Section 9.6.2:

1 from numpy import array
2 from sc ipy . opt imize import minimize
3 import pmo
4

5 f = lambda x : 2∗x [ 1 ] − x [ 0 ]
6

7 de f grad f ( x ) :
8 re turn array ( [ −1 ,2 ] )
9

10 de f gradg0 (x ) :
11 re turn array ([−2∗x [0] , −8∗x [ 1 ] ] )
12

13 de f gradg1 (x ) :
14 re turn array ([−2∗(x [0 ] −3) ,−2∗(x [1 ] −3) ] )
15

16 bounds = [ [ 0 , None ] , [ 0 , None ] ]
17

18 cons = ({ ’ type ’ : ’ ineq ’ , ’ fun ’ : lambda x : −x [ 0 ] ∗∗2 − 4 ∗ x
[ 1 ]∗∗2 + 16 , ’ j a c ’ : gradg0 } ,

19 { ’ type ’ : ’ ineq ’ , ’ fun ’ : lambda x : −(x [ 0 ] − 3) ∗∗2 −(x [ 1 ] − 3)
∗∗2 +9, ’ j a c ’ : gradg1 })

20

21 x0 = array ( [ 1 , 1 ] )
22

23 r e s u l t = minimize ( f , x0 , j a c=gradf , c on s t r a i n t s=cons , bounds=
bounds , method=pmo . dynq )

24 pr in t ( r e s u l t )

to obtain the following output:
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fun: -3.6527010947260279
jac: array([-1, 2])
nfev: 8
nit: 6
njev: 7
success: True
x: array([ 3.98608287, 0.16669089])

Additional information on the argument settings is available for each algo-
rithmusing the help function, e.g. help(pmo.dynq), help(pmo.etopc).

Note that method=pmo.dynq sets the keyword method equal to the func-
tion object for Dynamic-Q, pmo.dynq in the pmo module. This is in
contrast to the string identifier for the built-in algorithms as for exam-
ple ’SLSQP’:

1 r e s u l t = minimize ( f , x0 , j a c=gradf , c on s t r a i n t s=cons , bounds=
bounds , method=’SLSQP ’ )

which gives the following result:

fun: -3.6527011374831222
jac: array([-1., 2.])
message: ’Optimization terminated successfully.’
nfev: 6
nit: 6
njev: 6
status: 0
success: True
x: array([ 3.98608288, 0.16669087])

9.7.1 User defined Algorithms

Included in the pmo module is a template code that allows users to
implement their own algorithms. The example algorithm supplied within
the template merely takes a constant step length along the normalized
steepest descent direction until the maximum number of iterations has
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Algorithmic Information Order of Information Constraints

Name Identifier Section Zero First Second Bound Lin. Nonlin.

LFOPC ’lfopc’ 6.2.3 � � � � �
ETOPC ’etopc’ 6.5 � � � � �
SQSD ’sqsd’ 6.3 � �
Dynamic-Q ’dynq’ 6.4 � � � � �
Snyman-Fatti ’sfglob’ 6.6.2 � �
GO-SSA ’gossa’ 8.7.1 �
GO-SDA ’gosda’ 8.7.2 �
GO-BFGS ’gobfgs’ 8.7.4 �

Table 9.2: Available pmo algorithms for the function minimize under
scipy.optimize

been reached, i.e. given x0,

xk+1 = xk − constant
∇f(xk)

‖∇f(xk)‖ , k = 0, 1, 2, . . . , kmax. (9.14)

The function template follows the same structure as the standard sup-
ported optimizers in scipy.optimize.minimize, which allows the algo-
rithms implemented via the template to be used with minimal modifi-
cations using minimize.

However, before we proceed to the details of the template function,
some additional understanding of functions in Python is required. Infor-
mation is supplied to the specified optimizer in minimize as keyword
inputs with the exception of the objective function and initial guess.
For example, in the previous sections the function object that computes
the gradient vector was specified as input to minimize using the jac
keyword with appropriate algorithm name as a string. This object is
then supplied to the optimizer specified using the method keyword using
the jac keyword. Some algorithms may require specific information
to be specified relevant only to that optimizer. Hence the number of
required keyword arguments that have to be supplied to minimize and
that are then passed down to the optimizer may differ from method to
method. Python allows us to handle these instances by using a spe-
cial input to the function namely **kwargs, which stands for variable
keyword arguments. All keyword arguments supplied to the function
are stored as a dictionary with the keyword followed by the assigned
object during the function call. Here **kwargs comes in handy allow-
ing for any number of keyword arguments to be specified, while the

http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_6
http://dx.doi.org/10.1007/978-3-319-77586-9_8
http://dx.doi.org/10.1007/978-3-319-77586-9_8
http://dx.doi.org/10.1007/978-3-319-77586-9_8
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algorithm will extract only the required keywords from the dictionary
or assign default values when not specified. Consequently, all required
information first needs to be extracted from the kwargs dictionary or
default values assigned when they are not listed. The use of the tem-
plate is illustrated by the following code:

1 from numpy import ones
2 from numpy . l i n a l g import norm
3 from sc ipy . opt imize import OptimizeResult
4

5 de f template ( funct ion , x ,∗∗ kwargs ) :
6 # Begin ex t r a c t i on o f keyword in fo rmat ion or a s s i gn d e f a u l t s
7 i f ’ j a c ’ in kwargs :
8 grad f = kwargs [ ’ j a c ’ ]
9 e l s e :

10 pr in t ( ’ Jacobian r equ i r ed ’ )
11 re turn −1
12

13 i f ’kmax ’ in kwargs :
14 kmax = kwargs [ ’kmax ’ ]
15 e l s e :
16 kmax = 1000
17

18 i f ’ x t o l ’ in kwargs :
19 x to l = kwargs [ ’ x t o l ’ ]
20 e l s e :
21 x to l = 1E−8
22

23 i f ’ s t ep l eng th ’ in kwargs :
24 s t ep l eng th = kwargs [ ’ s t ep l eng th ’ ]
25 e l s e :
26 s t ep l eng th = 0.01
27 # End ex t r a c t i on o f keyword in fo rmat ion
28

29 # I n i t i a l i z e the i t e r a t i o n counter
30 k = 0
31 # I n i t i a l i z e a fake update in x
32 de l tax = x + 2∗ x to l
33

34 # Condi t iona l loop un t i l maximum number o f i t e r a t i o n s
35 # have been reached
36 whi le k <= kmax and np . l i n a l g . norm( de l tax ) > x to l :
37 grad i en t = grad f ( x ) #Evaluate g rad i en t vec to r
38 # Update the des ign vec to r
39 de l tax = −s t ep l eng th ∗ grad i en t
40 x = x + de l tax
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41 # Increment the i t e r a t i o n counter
42 k = k + 1
43

44 F = func t i on (x )
45 # Return OptimizeResult with s e l e c t e d f i e l d s s p e c i f i e d
46 re turn OptimizeResult ( fun=F, x=x , n i t=k , su c c e s s=(k > 0) )

The output is defined by the scipy.optimize.OptimizeResult object.
The default output has the following thirteen attributes with object
types indicated after the colon:

Attributes

----------

x : ndarray

The solution of the optimization.

success : bool

Whether or not the optimizer exited successfully.

status : int

Termination status of the optimizer. Its value depends on the

underlying solver. Refer to ‘message‘ for details.

message : str

Description of the cause of the termination.

fun, jac, hess: ndarray

Values of objective function, its Jacobian and its Hessian (if

available). The Hessians may be approximations, see the documentation

of the function in question.

hess_inv : object

Inverse of the objective function’s Hessian; may be an approximation.

Not available for all solvers. The type of this attribute may be

either np.ndarray or scipy.sparse.linalg.LinearOperator.

nfev, njev, nhev : int

Number of evaluations of the objective functions and of its

Jacobian and Hessian.

nit : int

Number of iterations performed by the optimizer.

maxcv : float

The maximum constraint violation.

By using the template code with appropriate new functions users can
efficiently expand their collection of optimizers.
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9.8 Exercises

9.8.1 Compute the analytical gradient for all the test functions listed
in Section 1.6.1 using the sympy module.

9.8.2 Confirm that the necessary first order condition is satisfied for
each test function in Section 1.6.1 at the given solution x∗.

9.8.3 Write a Python function that computes the analytical Hessian
matrix given the analytical expression for an objective function
as a sympy object and list of variables as inputs to the Python
function.

9.8.4 Compute the analytical Hessian matrices for all the test func-
tions listed in Section 1.6.1.

9.8.5 Confirm that the necessary second order condition is satisfied
for each test function in Section 1.6.1 at the given solution x∗.

9.8.6 Approximate Powell’s badly scaled function in Section 1.6.1 using
a first order Taylor series expansion about x0. Estimate the aver-
age accuracy of the approximation for the designs on the unit
circle centered around x0.

9.8.7 Approximate Powell’s badly scaled function in Section 1.6.1 using
a second order Taylor series expansion about x0. Estimate the
average accuracy of the approximation for the designs on the
unit circle centered around x0.

9.8.8 Solve for all the eigenvalues and vectors for each of the com-
puted A matrices in Exercise 1.7.6, using the eig function in the
numpy.linalg module.

9.8.9 Setup and solve the constrained problem

max
x

f(x) = xTAx, such that xTx = 1,

for each of the computed A matrices in Exercise 1.7.6.

9.8.10 Critically compare the maximum eigenvalues and associated
eigenvectors obtained in Exercise 9.8.8 against the optimal design
vectors and function values obtained when maximizing f(x) =
xTAx in Exercises 9.8.9.

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
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9.8.11 Compute the numerical gradient at x0 for all the test functions
given in Section 1.6.1 using the complex-step method.

9.8.12 Compute the gradient vector at x0 using the forward, backward,
central and complex-step finite difference schemes using appro-
priate step sizes for each test function in Section 1.6.1. Discuss
the accuracy of the various finite difference schemes.

9.8.13 Determine the optimal step size for computing the gradient vec-
tor using the forward, backward, central and complex-step finite
difference schemes for each test function in Section 1.6. Note
that the same step size should be used for all the components
of the gradient vector. Compare the optimal step sizes of the
various finite difference schemes on the various problems with
each other as well as their respective accuracies.

9.8.14 Determine the optimal step size for computing each component
of the gradient vector using the forward, backward, central and
complex-step finite difference schemes for Wood’s function in
Section 1.6. Compare the optimal step sizes of the various finite
difference schemes on the various components of the gradient
vector with each other as well as their accuracies. Determine
the additional accuracy of each finite difference scheme when
allowing each component to have a different optimal step size.

9.8.15 Plot the univariate function f(x) = 5x2 sin(x) between −2 and 2.

9.8.16 Consider the initial value problem presented by Burden et al.
(2015):

dz(z, t)
dt

= z − t2 + 1,

with initial condition z(0) = 0.5 integrated using the forward
Euler integration scheme with 1 000 equally spaced time steps
between 0 and 2 seconds. The forward Euler integration scheme,
as outlined by Burden et al. (2015), is given by

z̃0 = z(0),

z̃i+1 = z̃i + Δt
dz(z̃i, ti)

dt
, i = 0, 1, 2, . . .

where the ·̃ signifies an approximation and superscript i the time
step number.

http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
http://dx.doi.org/10.1007/978-3-319-77586-9_1
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9.8.17 Consider the Lotka-Volterra system (see Section 8.2) with
unknown parameter λ:

dz(z, y, t)
dt

= (1 − λ)z(t) − 0.3z(t)y(t)

dy(z, y, t)
dt

= z(t)y(t) − y(t),

with the two initial conditions z(0) = 0.9 and y(0) = 0.9. Inte-
grate the system using the forward Euler integration scheme with
50 000 time steps between 0 and 8 seconds. Given that for the
optimal choice of λ = λ∗ that z(8, λ∗) = 0.722962 and y(8, λ∗) =
1.110567, construct and plot a scalar error that indicates the dif-
ference to the optimal response for values of λ between 0 and 1
using 101 equally spaced points.

9.8.18 How many iterations do you expect the BFGS algorithm to take to
minimizethefollowingquadraticfunction,f(x) =

∑10
i=1 i(xi−i)2?

Solve this problem using the scipy.optimize implemented BFGS
algorithmusing 100 random initial designs over the domain−15 ≤
xi ≤ 15, i = 1, . . . , 10 and compare the expected against actual
number of iterations.

9.8.19 Modify the template function in the module pmo to implement
your own BFGS algorithm. Minimize the quadratic problem in
Exercise 9.9.19 and compare the performance of your algorithm
with the results in Exercise 9.8.19 for the same initial starting
points.

9.8.20 For each computed eigenvector ui in Exercise 9.8.8 plot the uni-
variate function f(λ) = (x0 + λui)TA(x0 + λui) for 0 ≤ λ ≤ 2
and x0 = [0, 0 , . . . , 0].

http://dx.doi.org/10.1007/978-3-319-77586-9_8
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THE SIMPLEX METHOD
FOR LINEAR
PROGRAMMING
PROBLEMS

A.1 Introduction

This introduction to the simplex method is along the lines given by
Chvatel (1983).

Here consider the maximization problem:

maximize Z = cTx

such that Ax ≤ b, A an m × n matrix (A.1)
xi ≥ 0, i = 1, 2, ..., n.

Note that Ax ≤ b is equivalent to
∑n

i=1 ajixi ≤ bj , j = 1, 2, ...,m.

Introduce slack variables xn+1, xn+2, ..., xn+m ≥ 0 to transform the

© Springer International Publishing AG, part of Springer Nature 2018
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inequality constraints to equality constraints:

a11x1 + . . . + a1nxn + xn+1 = b1

a21x1 + . . . + a2nxn + xn+2 = b2
... (A.2)

am1x1 + . . . + amnxn + xn+m = bm

or
[A; I]x = b

where x = [x1, x2, ..., xn+m]T ,b = [b1, b2, ..., bm]T , and x1, x2, ..., xn ≥ 0
are the original decision variables and xn+1, xn+2, ..., xn+m ≥ 0 the slack
variables.

Now assume that bi ≥ 0 for all i, To start the process an initial feasible
solution is then given by:

xn+1 = b1

xn+2 = b2
...

xn+m = bm

with x1 = x2 = · · · = xn = 0.

In this case we have a feasible origin.

We now write system (A.2) in the so called standard tableau format:

xn+1 = b1 − a11x1 − . . . − a1nxn ≥ 0
xn+2 = b2 − a21x1 − . . . − a2nxn ≥ 0

... (A.3)
xn+m = bm − am1x1 − . . . − amnxn ≥ 0

Z = c1x1 + c2x2 + . . . + cnxn

The left side contains the basic variables, in general �= 0, and the right
side the nonbasic variables, all = 0. The last line Z denotes the objective
function (in terms of nonbasic variables).
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In a more general form the tableau can be written as

xB1 = b1 − a11xN1 − . . . − a1nxNn ≥ 0
xB2 = b2 − a21xN1 − . . . − a2nxNn ≥ 0

... (A.4)
xBm = bm − am1xN1 − . . . − amnxNn ≥ 0

Z = cN1xN1 + cN2xN2 + . . . + cNnxNn

The ≥ at the right serves to remind us that xBj ≥ 0 is a necessary
condition, even when the values of xNi change from their zero values.

xB = vector of basic variables and xN = vector of nonbasic variables
represent a basic feasible solution.

A.2 Pivoting to increase the objective function

Clearly if any cNp > 0, then Z increases if we increase xNp, with the
other xNi = 0, i �= p. Assume further that cNp > 0 and cNp ≥ cNi, i =
1, 2, ..., n, then we decide to increase xNp. But xNp can not be increased
indefinitely because of the constraint xB ≥ 0 in tableau (A.4). Every
entry i in the tableau, with aip > 0, yields a constraint on xNp of the
form:

0 ≤ xNp ≤ bi
aip

= di, i = 1, 2, ...,m. (A.5)

Assume now that i = k yields the strictest constraint, then let xBk = 0
and xNp = dk. Now xBk(= 0) is the outgoing variable (out of the base),
and xNp = dk(�= 0) the incoming variable. The k-th entry in tableau
(A.4) changes to

xNp = dk −
∑

i�=k

akixNi − akkxBk (A.6)

with aki = aki/akp, akk = 1/akp.

Replace xNp by (A.6) in each of the remaining m − 1 entries in tableau
(A.4) as well as in the objective function Z. With (A.6) as the first
entry this gives the new tableau in terms of the new basic variables:

xB1, xB2, . . . , xNp, ..., xBm (left side) �= 0
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and nonbasic variables:

xN1, xN2, . . . , xBk, . . . , xNn (right side) = 0.

As xNp has increased with dk, the objective function has also increased
by cNpdk. The objective function (last) entry is thus of the form

Z = cNpdk + cN1xN1 + cN2xN2 + · · · + cNmxNm

where the xNi now denotes the new nonbasic variables and cNi the new
associated coefficients. This completes the first pivoting iteration.

Repeat the procedure above until a tableau is obtain such that

Z = Z∗ + cN1xN1 + · · · + cNmxNm with cNi ≤ 0, i = 1, 2, ...,m.

The optimal value of the objective function is then Z = Z∗ (no further
increase is possible).

A.3 Example

maximize Z = 5x1 + 4x2 + 3x3 such that

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0.

This problem has a feasible origin. Introduce slack variables x4, x5 and
x6 and then the first tableau is given by:

I:

x4 = 5 − 2x1 − 3x2 − x3 ≥ 0 x1 ≤ 5/2(s)
x5 = 11 − 4x1 − x2 − 2x3 ≥ 0 x1 ≤ 11/4
x6 = 8 − 3x1 − 4x2 − 2x3 ≥ 0 x1 ≤ 8/3
Z = 5x1 + 4x2 + 3x3

Here 5 > 0 and 5 > 4 > 3. Choose thus x1 as incoming variable. To find
the outgoing variable, calculate the constraints on x1 for all the entries
(see right side). The strictest (s) constraint is given by the first entry,
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and thus the outgoing variable is x4. The first entry in the next tableau
is

x1 = 5
2 − 3

2x2 − 1
2x3 − 1

2x4.

Replace this expression for x1 in all other entries to find the next tableau:

x1 = 5
2 − 3

2x2 − 1
2x3 − 1

2x4 ≥ 0
x5 = 11 − 4(52 − 3

2x2 − 1
2x3 − 1

2x4) − x2 − 2x3 ≥ 0
x6 = 8 − 3(52 − 3

2x2 − 1
2x3 − 1

2x4) − x4x2 − 2x3 ≥ 0

Z = 5(52 − 3
2x2 − 1

2x3 − 1
2x4) + 4x2 + 3x3

After simplification we obtain the second tableau in standard format:

II:

x1 = 5
2 − 3

2x2 − 1
2x3 − 1

2x4 ≥ 0 x3 ≤ 5
x5 = 1 + 5x2 + 2x4 ≥ 0 no bound
x6 = 1

2 + 1
2x2 − 1

2x3 + 3
2x4 ≥ 0 x3 ≤ 1(s)

Z = 25
5 − 7

2x2 + 1
2x3 − 5

2x4

This completes the first iteration. For the next step it is clear that x3
is the incoming variable and consequently the outgoing variable is x6.
The first entry for the next tableau is thus x3 = 1+x2 +3x4 −2x6 (3-rd
entry in previous tableau).

Replace this expression for x3 in all the remaining entries of tableau II.
After simplification we obtain the third tableau:

III:

x3 = 1 + x2 + 3x4 − 2x6 ≥ 0
x1 = 2 − 2x2 − 2x4 + x6 ≥ 0
x5 = 1 + 5x2 + 2x4 ≥ 0
Z = 13 − 3x2 − x4 − x6

In the last entry all the coefficients of the nonbasic variables are negative.
Consequently it is not possible to obtain a further increase in Z by
increasing one of the nonbasic variables. The optimal value of Z is thus
Z∗ = 13 with

x∗
1 = 2 ; x∗

2 = 0 ; x∗
3 = 1.
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Assignment A.1

Solve by using the simplex method:

maximize z = 3x1 + 2x2 + 4x3 such that

x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7
x1, x2, x3 ≥ 0.

A.4 The auxiliary problem for problem with
infeasible origin

In the previous example it is possible to find the solution using the
simplex method only because bi > 0 for all i and an initial solution
xi = 0, i = 1, 2, ..., n with xn+j = bj , j = 1, 2, ...,m was thus feasible,
that is, the origin is a feasible initial solution.

If the LP problem does not have a feasible origin we first solve the so
called auxiliary problem:

Phase 1:

maximize W = −x0

such that
∑n

i=1 ajixi − x0 ≤ bj , j = 1, 2, ...,m (A.7)
xi ≥ 0, i = 0, 1, 2, ..., n

where x0 is called the new artificial variable. By setting xi = 0 for
i = 1, 2, ..., n and choosing x0 large enough, we can always find a feasible
solution.

The original problem clearly has a feasible solution if and only if the
auxiliary problem has a feasible solution with x0 = 0 or, in other words,
the original problem has a feasible solution if and only if the optimal
value of the auxiliary problem is zero. The original problem is now
solved using the simplex method, as described in the previous sections.
This solution is called Phase 2.
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A.5 Example of auxiliary problem solution

Consider the LP:

maximize Z = x1 − x2 + x3 such that

2x1 − x2 + x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1
x1, x2, x3 ≥ 0.

Clearly this problem does not have a feasible origin.

We first perform Phase 1:

Consider the auxiliary problem:

maximize W = −x0 such that

2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1
x0, x1, x2, x3 ≥ 0.

Introduce the slack variables x4, x5 and x6, which gives the tableau (not
yet in standard form):

x4 = 4 − 2x1 + x2 − 2x3 + x0 ≥ 0 x0 ≥ −4
x5 = −5 − 2x1 + 3x2 − x3 + x0 ≥ 0 x0 ≥ 5(s)
x6 = −1 + x1 − x2 + 2x3 + x0 ≥ 0 x0 ≥ 1
W = − x0

This is not in standard form as x0 on the right is not zero. With x1 =
x2 = x3 = 0 then x4, x5, x6 ≥ 0 if x0 ≥ max{−4; 5; 1}.

Choose x0 = 5, as prescribed by the second (strictest) entry. This gives
x5 = 0, x4 = 9 and x6 = 4. Thus x0 is a basic variable (�= 0) and x5 a
nonbasic variable. The first standard tableau can now be write as
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I:

x0 = 5 + 2x1 − 3x2 + x3 + x5 ≥ 0 x2 ≤ 5
3

x4 = 9 − 2x2 − x3 + x5 ≥ 0 x2 ≤ 9
2

x6 = 4 + 3x1 − 4x2 + 3x3 + x5 ≥ 0 x2 ≤ 1(s)
W = −5 − 2x1 + 3x2 − x3 − x5

Now apply the simplex method. From the last entry it is clear that W
increases as x2 increases. Thus x2 is the incoming variable. With the
strictest bound x2 ≤ 1 as prescribed by the third entry the outgoing
variable is x6. The second tableau is given by:

II:

x2 = 1+ 0.75x1+ 0.75x3+ 0.25x5− 0.25x6≥ 0 no bound
x0 = 2− 0.25x1− 1.25x3+ 0.25x5− 0.75x6≥ 0 x3 ≤ 8

5 (s)
x4 = 7− 1.5x1− 2.5x3+ 0.5x5+ 0.5x6≥ 0 x3 ≤ 14

5
W = −2+ 0.25x1+ 1.25x3− 0.25x5− 0.75x6

The new incoming variable is x3 and the outgoing variable x0. Perform
the necessary pivoting and simplify. The next tableau is then given by:

III:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6 − 0.8x0 ≥ 0
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 − 0.6x0 ≥ 0
x4 = 3 − x1 − x6 + 2x0 ≥ 0
W = − x0

As the coefficients of x0 in the last entry is negative, no further increase
in W is possible. Also, as x0 = 0, the solution

x1 = 0; x2 = 2.2; x3 = 1.6; x4 = 3; x5 = 0; x6 = 0

corresponds to a feasible solution of the original problem. This means
that the first phase has been completed.

The initial tableau for Phase 2 is simply the above tableau III without
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the x0 terms and with the objective function given by:

Z = x1 − x2 + x3

= x1 − (2.2 + 0.6x1 + 0.4x5 + 0.2x6) + (1.6 − 0.2x1 + 0.2x5 + 0.6x6)
= −0.6 + 0.2x1 − 0.2x5 + 0.4x6

in terms of nonbasic variables.

Thus the initial tableau for the original problem is:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6 ≥ 0 no bound
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 ≥ 0 no bound
x4 = 3 − x1 − x6 ≥ 0 x6 ≤ 3(s)
Z = −0.6 + 0.2x1 − 0.2x5 + 0.4x6

Perform the remaining iterations to find the final solution (the next
incoming variable is x6 with outgoing variable x4).

Assignment A.2

Solve the following problem using the two phase simplex method:

maximize Z = 3x1 + x2 such that

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 4
x1, x2 ≥ 0.

A.6 Degeneracy

A further complication that may occur is degeneracy. It is possible
that there is more than one candidate outgoing variable. Consider, for
example, the following tableau:
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x4 = 1 − 2x3 ≥ 0 x3 ≤ 1
2(s)

x5 = 3 − 2x1 + 4x2 − 6x3 ≥ 0 x3 ≤ 1
2(s)

x6 = 2 + x1 − 3x2 − 4x3 ≥ 0 x3 ≤ 1
2(s)

Z = 2x1 − x2 + 8x3

With x3 the incoming variable there are three candidates, x4, x5 and x6,
for outgoing variable. Choose arbitrarily x4 as the outgoing variable.
Then the tableau is:

x3 = 0.5 − 0.5x4 ≥ 0 no bound on x1

x5 = − 2x1 + 4x2 + 3x4 ≥ 0 x1 ≤ 0(s)
x6 = x1 − 3x2 + 2x4 ≥ 0 x1 ≤ 0(s)
Z = 4 + 2x1 − x2 − 4x4

This tableau differs from the previous tableaus in one important way:
two basic variables have the value zero. A basic feasible solution for
which one or more of the basic variables are zero, is called a degenerate
solution. This may have bothersome consequences. For example, for the
next iteration in our example, with x1 as the incoming variable and x5
the outgoing variable there is no increase in the objective function. Such
an iteration is called a degenerate iteration. Test the further application
of the simplex method to the example for yourself. Usually the stalemate
is resolved after a few degenerate iterations and the method proceeds to
the optimal solution.

In some, very exotic, cases it may happen that the stalemate is not resolved
and the method gets stuck in an infinite loop without any progress
towards a solution. So called cycling then occurs. More information on this
phenomenon can be obtained in the book by Chvatel (1983).

A.7 The revised simplex method

The revised simplex method (RSM) is equivalent to the ordinary simplex
method in terms of tableaus except that matrix algebra is used for the
calculations and that the method is, in general, faster for large and
sparse systems. For these reasons modern computer programs for LP
problems always use the RSM.
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We introduce the necessary terminology and then give the algorithm for
an iteration of the RSM. From an analysis of the RSM it is clear that the
algorithm corresponds in essence with the tableau simplex method. The
only differences occur in the way in which the calculations are performed
to obtain the incoming and outgoing variables, and the new basic feasible
solution. In the RSM two linear systems are solved in each iteration. In
practice special factorizations are applied to find these solutions in an
economic way. Again see Chvatel (1983).

Consider the LP problem:

maximize Z = cTx (A.8)

such that Ax ≤ b, A m × n and x ≥ 0.

After introducing the slack variables the constraints can be written as:

Ãx = b, x ≥ 0 (A.9)

where x includes the slack variables.

Assume that a basic feasible solution is available. Then, if xB denotes
the m basic variables, and xN the n nonbasic variables, (A.9) can be
written as:

Ãx = [ABAN ]
[

xB

xN

]

= b

or
ABxB + ANxN = b (A.10)

where AB is an m × m and AN an m × n matrix.

The objective function Z can be written as

Z = cTBxB + cTNxN (A.11)

where cB and cN are respectively the basic and nonbasic coefficients.

It can be shown that AB is always non-singular. It thus follows that

xB = A−1
B b − A−1

B ANxN . (A.12)

Expression (A.12) clearly corresponds, in matrix form, to the first m
entries of the ordinary simplex tableau, while the objective function
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entry is given by

Z = cTBxB + cTNxN

= cTB
(
A−1

B b − A−1
B ANxN

)
+ cTNxN

= cTBA
−1
B b +

(
cTN − cTBA

−1
B AN

)
xN .

Denote the basis matrix AB by B. The complete tableau is then given
by

xB =

x∗
B

︷ ︸︸ ︷
B−1b−B−1ANxN ≥ 0

Z = cTBB
−1b

︸ ︷︷ ︸
Z∗

+
(
cTN − cTBB

−1AN

)
xN

(A.13)

We now give the RSM in terms of the matrix notation introduced above.
A careful study of the algorithm will show that this corresponds exactly
to the tableau method which we developed by way of introduction.

A.8 An iteration of the RSM

(Chvatal, 1983)

Step 1: Solve the following system:

yTB = cTB. This gives yT = cTBB
−1.

Step 2: Choose an incoming column. This is any column a of AN such
that yTa is less than the corresponding component of cN .
(
See (A.13): Z = Z∗ + (cTN − yTAN )xN

)

If no such column exists, the current solution is optimal.

Step 3: Solve the following system:

Bd = a. This gives d = B−1a.

(From (A.13) it follows that xB = x∗
B − dt ≥ 0, where t is the value of

the incoming variable).

Step 4: Find the largest value of t such that

x∗
B − td ≥ 0.
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If no such t exists, then the problem is unbounded; otherwise at least
one component of x∗

B −td will equal zero and the corresponding variable
is the outgoing variable.

Step 5: Set the incoming variable, (the new basic variable), equal to t
and the other remaining basis variables

x∗
B := x∗

B − td

and exchange the outgoing column in B with the incoming column a in
AN .
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L.C.W. Dixon and G.P. Szegö. The global optimization problem: An
introduction. In L.C.W. Dixon and G.P. Szegö, editors, Towards
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R.T. Haftka and Z. Gürdal. Elements of Structural Optimization.
Kluwer, Dortrecht, 1992.

R.L. Hardy. Multiquadric equations of topography and other irregular
surfaces. Journal of Geophysical Research, 76:1905–1915, 1971.

R.L. Hardy. Research results in the application of multiquadric equations
to surveying and mapping problems. Surveying and Mapping, 35:321–
332, 1975.

R.L. Hardy. Theory and applications of the multiquadric-biharmonic
method 20 years of discovery 1968–1988. Computers & Mathematics
with Applications, 19:163–208, 1990.

M.R. Hestenes. Multiplier and gradient methods. Journal of Optimiza-
tion Theory and Applications, 4:303–320, 1969.

D.M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill, New
York, 1972.

W. Hock and K. Schittkowski. Lecture Notes in Economics and Math-
ematical Systems. No 187: Test examples for nonlinear programming
codes. Springer-Verlag, Berlin, Heidelberg, New York, 1981.

C. Homescu and I.M. Navon. Optimal control of flow with discontinu-
ities. Journal of Computational Physics, 187:660–682, 2003.

N. Karmarkar. A new polynomial time algorithm for linear program-
ming. Combinatorica, 4:373–395, 1984.



BIBLIOGRAPHY 359

W. Karush. Minima of functions of several variables with inequalities as
side conditions. Master’s thesis, Department of Mathematics, Univer-
sity of Chicago, 1939.

J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Pro-
ceedings of the IEEE International Conference on Neural Networks,
pages 1942–1948, 1995.

A.I. Khuri and S. Mukhopadhyay. Response surface methodology. Wiley
Interdisciplinary Reviews: Computational Statistics, 2:128–149, 2010.

J. Kiefer. Optimal sequential search and approximation methods under
minimum regularity conditions. SIAM Journal of Applied Mathemat-
ics, 5:105–136, 1957.

N. Klier, S. Shallcross, and O. Pankratov. Asymptotic discontinuities in
the RKKY interaction in the graphene Bernal bilayer. Physical Review
B, 90:245118, 2014.

R.J. Kohavi. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence–Volume 2, IJCAI’95, pages
1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

S. Kok and J.A. Snyman. A strongly interacting dynamic particle swarm
optimization method. Journal of Artificial Evolution and Applica-
tions, 2008:1–9, 2008.

H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman,
editor, Proceedings of the Second Berkeley Simposium on Mathemati-
cal Statistics and Probability. University of California Press, 1951.

S. Lauridsen, R. Vitali, F. van Keulen, R.T. Haftka, and J.I. Mad-
sen. Response surface approximation using gradient information. In
Fourth World Congress on Structural and Multidisciplinary Optimiza-
tion, Dalian, China, 2002.

S. Lucidl and M. Piccioni. Random tunneling by means of acceptance-
rejection sampling for global optimization. Journal of Optimization
Theory and Applications, 62:255–277, 1989.



360 BIBLIOGRAPHY

J. Lyness and C. Moler. Numerical Differentiation of Analytic Functions.
SIAM Journal of Numerical Analysis, 4:202–210, 1967.

A.I. Manevich. Perfection of the conjugate directions method for uncon-
strained minimization problems. In G.I.N. Rozvany and N. Olhoff,
editors, Proceedings of the Third World Congress of Structural and
Multidisciplinary Optimization, Buffalo, New York, 1999. WCSMO.

J.R.R.A. Martins, P. Sturdza, and J.J. Alonso. The connection between
the complex-step derivative approximation and algorithmic differenti-
ation. 39th AIAA Aerospace Sciences Meeting and Exhibit, 921:1–11,
2001.

J.R.R.A. Martins, P. Sturdza, and J.J. Alonso. The complex-step deriva-
tive approximation. ACM Transactions on Mathematical Software,
29:245–262, 2003.

R.E. Meyer. A simple explanation of the Stokes phenomenon. SIAM
Review, 31:435–445, 1989.
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