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Abstract. The paper describes a novel multi-objective evolutionary
algorithm implementation that generates short musical ideas consist-
ing of a melody and abstract harmonization, developed in tandem. The
system is capable of creating these ideas based on provided material
or autonomously. Three automated fitness features were adapted to the
model to evaluate the generated music during evolution, and a fourth
was developed to ensure harmonic progression. Four rhythmical pattern
matching features were also developed. 21 pieces of music, produced by
the system under various configurations, were evaluated in a user study.
The results indicate that the system is capable of composing musical
ideas that are subjectively interesting and pleasant, but not consistently.

1 Introduction

The first usage of computers for algorithmic music composition is generally
accepted to have been the Illiac suite [1] in the 1950s. Since then, a wide range
of techniques have been applied to composition. Rule-based systems, stochas-
tic methods, grammar-based methods, neural networks, and population-based
methods have all been utilized. With the emergence of cheap computing power,
processing units are readily available, but the inspiration needed to compose is
not always there. Even for a person with the skillset to create compositions,
the ability to constantly re-invent themselves and produce new and interesting
music can be elusive. Computer aided compositional tools such as the Vox Populi
system [2] are, and have been, used as a source of inspiration for composers. Sys-
tems have been designed to perform a wide range of compositional and musical
tasks, such as generating melodies, harmonization, counterpoint, improvisation,
arranging, and in some cases like Melomics and Iamus [3], the ability to create
fully fledged compositions aimed at orchestral performances in concert halls.

McCormack [4] defined a set of five open questions for research in algorith-
mic composition, specifically in evolutionary music. His second open question is
formulated as: “To devise formalized fitness functions that are capable of measur-
ing human aesthetic properties of phenotypes. These functions must be machine
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representable and practically computable.” This is still an important issue [5].
Critique has been made towards artefacts generated by evolutionary systems,
in terms of having little structure. Defining fitness features that attempt to
stimulate the emergence of patterns is one goal of the present work. Further-
more, systems that are able to generate both melody and harmonziation most
commonly do these two tasks sequentially, and by different modules in hybrid
systems. Implementing an evolutionary system that has the ability to co-evolve
melody and harmonization is novel and the main goal of the paper.

An overview of the state-of-art in algorithmic composition is presented in
Sect. 2. Section 3 describes the implemented algorithm, including minor modifi-
cations to the Non-dominated Sorting Genetic Algorithm II [6], genotype repre-
sentation, genetic operators and fitness functions. In Sect. 4, the various configu-
rations for how the music was generated is presented. Section 5 describes a user
survey to evaluate the generated music. Finally, Sect. 6 contains a discussion of
the results, followed by conclusions and suggestions for future work.

2 Related Work

The use of evolutionary algorithms (EAs) within algorithmic composition,
and computer aided composition, first appeared in the early 90s. Some of them
were fully automated [7,8], but were solving simple thematic bridging problems,
in essence formulated as a puzzle, or toy problem, where the fitness function just
was a distance measure to a pre-defined solution. In the following years, systems
were developed for various compositional tasks with a variety of automated fit-
ness functions. Marques et al. [9] composed polyphonic pieces, Papadopoulus and
Wiggins [10] did jazz improvisation, and Johnson et al. [11] composed melodies.
All these implementations used a fitness function that was a weighted sum of
features. Towsey et al. [12] provided a description of a set of features to analyse
musical pieces of various styles, but no generative implementation was presented.

Fully automated fitness functions have been a point of much research and dis-
cussion [4,5,13]. It has even been suggested using no fitness function at all [14].
Freitas and Guimarães [15] proposed this as a means to circumvent the artistic
constraints that fitness functions impose. As a consequence, much of the domain
knowledge previously found in the fitness function is moved into the genetic oper-
ators, the representation, and the initial population to ensure that the produced
material is acceptable. Another way of introducing originality and diversity to
the system-produced artefacts is using multi-objective fitness functions. This has
been applied to harmonization [16,17] and melodic composition [18]. All of the
three aforementioned papers use two contradicting functions, one for consonance
and one for dissonance. This results in a musical trade-off between the two func-
tions. Compositions made by these systems are said to have a broader language
of expression, producing subjectively interesting compositions.

Musical Interactive Genetic Algorithms (MIGAs) are EAs where the fitness
function is replaced by a human evaluator who ranks the solutions in some fash-
ion. The next generation of individuals is then produced based on the human
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evaluation. Nelson [19] described a very simple MIGA for generating rhythmic
patterns over short melodies, where the generated music just contained the pres-
ence or absence of sound. The most notable MIGA is Biles’ GenJam [20], which
improvises jazz solos. During the interactive fitness evaluation of the composed
music, the user simply responds with a good or bad evaluation, and the system
learns from this. A common problem for interactive genetic algorithms is user
fatigue. Evaluating the candidate solutions for each generation can be extremely
time consuming. Biles hence tried to eliminate the human evaluator in GenJam.
First he unsuccesfully attempted to replace the human element with a trained
neural network [21], but then successfully completely removed the fitness func-
tion [14]. The musical acceptability was ensured by programming the knowledge
previously found in the fitness function into the genetic operators, as well as
presenting a good initial population.

Recently, focus has been directed to the encoding between genotype and phe-
notype. Given a complex search space, random mutation are unlikely to make
similar musical figures appear in the artefacts. The Melomics system [3] con-
tributed an “evo-devo” approach, whereby the system’s genotype has an indi-
rect encoding, which during the development phase expands the genome into a
more advanced piece of music, enabling Melomics to deliberately develop themes,
global structure and alter motifs. Due to the inherent strengths and weaknesses
of different approaches, all previously mentioned techniques have at some point
been hybridized. Two such hybrid systems are HARMONET [22] and its fur-
ther development MELONET [23]. HARMONET has a 3-layered architecture,
enabling it to compose 4-part chorales. The first layer is a neural network that
extracts harmonic information from a melody. This information is then fed to a
rule-based layer that creates a chord progression for the melody. The third layer
arranges a 4-part harmonization for the melody. MELONET adds a fourth layer,
another neural network that creates melodic variations for the voices, to make
the produced artefact more interesting to the listener.

Evolutionary algorithms lend themselves very well to hybridization. The sys-
tem introduced by Bell [24] uses an interactive evolutionary algorithm to evolve
Markov chains that write melodies with accompanying text. Each genome is
developed into three first-order chains, one for melody, one for rhythm and one
for harmonization. Thywissen [25] designed an algorithm where generative gram-
mars are evolved, while Khalifa et al. [26] used grammars as a part of the fitness
function. Phon et al. [27] programmed a genetic algorithm for harmonization,
with some of the genetic operators following explicit rules, instead of random
mutations. NEUROGEN [28] used ANNs trained on a corpus as a fitness func-
tion to emulate the musical style found input data, while Chen and Miiku-
lainen [29] evolved recurrent neural networks for melody generation. MetaCom-
pose [30] incorporates both melody generation and harmonization. It composes
autonomously and not based on any musical material. Chord progressions are
generated by a random walk through a directed graph; a melody is then created
for the chords through a multi-objective evolutionary algorithm, supported by
a probability driven module for rhythms and accompaniment.
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3 Multiple-Objective EA Implementation

Evolutionary algorithms (EAs) are inspired by the process of biological evolution,
and try to optimize a solution with regards to some objective or environment.
The algorithm is in essence a parallel heuristic search, performed by maintaining
and developing several potential solutions at once. The algorithm combines and
mutates these solutions in an effort to converge towards a global minimum or
maximum, an optimal solution, with regards to a fitness function. In the stan-
dard EA the fitness function assigns a single numerical value to the phenotypes;
however, in Multiple-Objective Evolutionary Algorithms (MOEAs), the pheno-
types are evaluated by more than one fitness function, called objectives, and thus
have more than one fitness value. This enables the algorithm to work towards
multiple, and sometimes conflicting, goals. The result is a trade-off between the
objectives, unless some solution exists where all objectives can be maximized.

The non-dominated sorting genetic algorithm (NSGA) is a multiple-objective
evolutionary algorithm that uses Pareto dominance and Pareto optimality, from
game theory, to rank the individuals in a population. A solution is Pareto dom-
inated if there exists another solution where one fitness value is better, and the
remaining features are not worse. A solution is Pareto optimal if it is not Pareto
dominated by any other solution. The present system is an implementation of
NSGA-II [6], which improves the run-time of NSGA from O(MN3) to O(MN2),
where M is the number of objectives and N the population size. NSGA-II also
supports elitism to improve fitness faster and a mechanism called crowding dis-
tance, which preserves diversity when exploring the state space.

NSGA-II differs from the standard EA in how it compares fitness values
between individuals. In the standard EA, where there is only one fitness value,
the individual with the higher fitness value could be considered better. In NSGA-
II, a rank is assigned each individual in a population based on Pareto optimality.
The ranking is computed by finding the non-dominated individuals and remov-
ing them from the population. Some individuals that were previously dominated
then become non-dominated. This is done iteratively until there are no more
individuals left in the population. The rank assigned to an individual is the iter-
ation it was removed from the population. The non-dominated solutions removed
in the first iteration obtain rank 1, the solutions removed in the second iteration
obtain rank 2, and so on. When doing parent selection, tournament selection
is used and the ranks are compared. If two individuals with the same rank are
to be compared, the tie is resolved by comparing the crowding distance. This
is in essence a measure of how close an individual is to its closest neighbours
in the fitness landscape. The bigger the crowding distance, the more unique the
solution is within a rank. By selecting individuals with a high crowding distance,
genetic diversity is maintained in the population. Newly generated individuals
are merged with the current population before ranking is performed. The popu-
lation can then be trimmed with regards to a maximum population size. This is
how elitism is supported, as individuals from previous generations will survive if
they have a high enough rank to remain in the population during adult selection.



Co-evolving Melodies and Harmonization 243

During preliminary tests of the algorithm, the performance of the ranking
scheme collapsed when four objectives were used. 100% of the population would
be ranked to the first front, meaning that they were all Pareto optimal, but still
far from the true Pareto front. When this happens, there is an extreme selection
pressure, and exploration of the search is hampered. Deb [31] describes this as
a phenomenon that occurs when there are many fitness functions. This prob-
lem also occurred even if genetically identical phenotypes were removed from
the population before ranking. Many remaining phenotypes would still have the
same fitness value, despite being genetically very different. This implementation
therefore employs a scheme that eliminates fitness duplicates to lessen the genetic
drift, as described by Aguirre and Tanaka [32], to improve the performance when
there are epistatic interactions in genomes. Since notes in the melody are evalu-
ated in relation to consecutive and preceding notes, as well as the harmonization,
employing this scheme improves the convergence of the algorithm by limiting the
genetic drift. For parent selection, a binary tournament selection with an 80%
chance to keep the highest ranked individual was adopted.

Since melody and harmony are evolved simultaneously, some global con-
straints are put on the domain. In particular, a diatonic key must be set to
ensure that the harmonic domain is consistent between individuals of the popu-
lation. If this is not done, crossover operators are likely to change the harmonic
and melodic context to the point of reverting progress.

3.1 Genotypes and Phenotype

The genotype consists of two separate parts. One for the melody and the other
for the harmonization. Representing the music this way allows the algorithm to
optimize either one separately during run-time, or both simultaneously.

A flexible representation of the melody genotype is implemented to allow
the exploration of a large melodic space, enabling the algorithm to represent a
variety of musical expressions and to develop as many different musical ideas
as possible. Some implementations, such as GenJam [20], use a database of
melodic figures to map the resulting genotype into a melody. Such a database is
not part of this architecture. Instead, efforts were made to put as little musical
knowledge as possible into the representation, by allowing occurrences of what
can be considered as “errors” in certain musical paradigms. The model of Jeong
and Ahn [18] is very flexible, and is used as a baseline for the implemented
model. A measure of music is divided into fractions, and each fraction represents
a time-step, or a beat. Each step is occupied by an integer value that represents
one of three things: either a pitch, a rest, or a hold. A rest means the absence of
anything played, and a pitch value means that a new note of the corresponding
pitch starts, analogous to striking a key on the piano. A hold means that the
previous note, a pause or a pitch, is held from the previous step. The minimal
time-step used in this model is a 1

16 note, which results in twice as many time-
steps per measure compared to the representation used by Jeong and Ahn. The
representation also supports repeating pitches, and leaps of any size, within the
defined range of allowed pitches. In order to produce melodies that are easy
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Fig. 1. Example harmony gene, in this case a C major triad chord.

to sing, the range of pitches employed is 65–85, corresponding to the integer-
pitch mapping defined in MIDI [33]. Hence, the representable pitches are in the
range from F4 to C#6, and the total number of different representable melody
genotypes n, of length x measures, is n = 2216x.

Harmonization is defined by chords, where a new chord appears at the first
beat of every measure. Each chord contains at least three notes, with an optional
fourth note that is a flavour note allowing chords to be built with a more musi-
cally advanced expression, compared to what is possible with only three pitches.
In the harmony genotype, each chord is represented as a vector of four bytes,
with each byte holding a value in the range [−1, 11]. The integers ≥ 0 represent
a pitch, and −1 represents absence of a pitch (in case only three notes are used).
An example of the genotype can be found in Fig. 1. In this representation, a 0
translates into a musical pitch of C, and following a chromatic scale, a 2 will
represent an D, and so on. The total number of different representable harmony
genotypes n, of length x measures, is therefore n = (12 · 113)x.

Both genotypes employ direct representations, so no explicit developmental
method or phenotype is required. However, for optimization reasons a phenotype
representation is employed to aid in the evaluation of the generated music. The
developmental method iterates through the genotype and creates a variety of
structs. These contain information about pitch and rest positions, durations and
intervals, and mostly serve as indices utilized by the fitness functions.

3.2 Genetic Operators

As the system has two different data structures in the genotype (for melody and
harmony), two different sets of mutation operators are needed. In addition, the
algorithm incorporates a set of crossover operators in which both harmonization
and melody are crossed over together, since they are heavily interdependent.
Note that the application of these operators intentionally may produce genotypes
that not necessarily make musical sense: the operators must be able to create
unfit offspring in order provide alternatives to the fitness function.

One, and only one, of five possible melodic mutation operators is always
applied during offspring creation, while restricted so that a pause cannot follow a
pause or a held pause. The five melodic operators are: Note Mode generates a new
value at a randomly selected time-step in the melody genome, either by copying
the pitch value from the previous note or, if not applicable, choosing it at random.
Random Pitch generates a random pitch value at a random position in the
genotype. Pitch Modulation changes a randomly selected pitch by x semitones,
where x ∈ [−4, 4] and x �= 0. If modulation puts a pitch outside of the valid
defined range, the modulation is performed in the other direction, by changing
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the sign of the modulation. Note Position selects a random pitch or rest in the
genotype, and moves it by a random amount of time-steps x, where x ∈ [−16, 16]
and x �= 0. Duplication causes the largest changes in the genome. It selects a
random half measure, with a starting bound restricted to the beginning or middle
of a measure, and overwrites another half measure in the genome with the same
values, so that repetition of patterns occur by intention, and not by chance.

Similarly, there are three harmonic mutation operators: Chord Change
changes the entire chord with regards to the musical key. It selects a random
root pitch for the chord, within the scale of the provided key, and derives a triad
native to the scale of the key. The operator might also add a flavour note, with
a 50% chance, which will always be the appropriate seventh in regards to the
root pitch and the scale. Chord Pitch normally modulates a random pitch in a
random chord by a semitone up or down, but if the fourth pitch of the selected
chord is chosen, a random pitch is inserted if the fourth pitch is absent, while if
a pitch is present, it has a 50% chance to be set to the silent value, otherwise
it will be modulated like a normal pitch. Chord Swap swaps the position of two
randomly selected chords in the genotype.

The algorithm employs two different crossover operators that are applied
during offspring creation by a 50% chance. In single point crossover, two genomes
are spliced together with the splicing points selected at random, and restricted
to being at the start of a measure. The same splicing point is used for both
genotypes. Single measure crossover copies a measure from one genome to the
other and is in essence a dual point crossover operator, with restrictions so that
the splicing points are always placed at the start and end of the same measure.

3.3 Fitness Objectives

To evaluate the phenotypes, the implementation uses four different fitness objec-
tives: melodic local and global objectives, harmonization and harmonic progres-
sion objectives. Each objective has a different purpose and evaluates a different
aspect of the generated music.

The Melodic Local Objective is based on one of the fitness functions
described by Wu et al. [34]. It is concerned with the tonality of the melody, the
relation of pitches to the given key, and the interrelation of pitches within a
measure. The objective is designed with the intention that melodies generated
by the algorithm sound harmonic and pleasant. In this objective, a pitch can
be defined as: a chord pitch (and non-harmonic) if it occurs within the chord of
the given measure, regardless of whether the pitch occurs in the provided key or
not; a scale pitch (also non-harmonic) if it occurs within the given scale, or key;
any other pitch is a non-scale pitch. Further, a pitch that is not classified as a
chord pitch is categorized if certain conditions are met. A passing tone is a pitch
that is initiated by a step from a chord tone, and resolved by a step in the same
direction to another chord tone. A neighbour tone is a pitch that is initiated by
a step from a chord tone, and resolved by a step to the same chord tone. The
sum of passing tones and neighbour tones are labeled ornament tones.
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The objective scores assigned to each phenotype are based on nine conditions.
The first six give a score of +1, if the condition is met: Non-harmonic Pitches <
Chord Pitches, Passing Tones ≤ Scale Pitches, Neighbour Tones ≤ Scale Pitches,
Non-scale Pitches ≤ Ornament Pitches, Ornament Pitches ≤ Scale Pitches, and
if the first pitch is a chord pitch. The last three conditions instead deduct points:
−1 for each unresolved non-scale pitch within the measure, (−x − 7) : x > 7,
and −13 : x = 13, where xi is the semitone distance of each interval in the
measure. The maximum score obtainable by this objective per measure is thus
6. In the special case that no pitches are present in a measure, a score of 0 is
assigned. Hence empty measures could initially score higher than (penalized)
random measures; however, empty measures will be penalized by their pitch
frequency in the Melodic Global Objective below. The total score of a phenotype
is the sum of the scores assigned to each measure.

The Melodic Global Objective is based on the high-level melodic features
found in Towsey et al. [12], developed for compositional and analytical purposes
of monophonic melodies. The objective analyses an entire melody, and gives a
more global evaluation of the melody, based on 18 different statistical features,
as normalized values (see AppendixA). Features 1–7 and 9–13 are taken directly
from [12]. All of the features from the paper were initially implemented. The
pattern features, except pitch and timing repetitions, were discarded through
qualitative evaluation. Towsey et al. also excluded these features, as they had
very large standard deviations. The features that were developed to replace them
are features 15–18, and are all based on pattern matching. Other features such
as dissonant intervals are covered by the melodic local objective described above.
Each feature is scored by proximity, given as 1 − |x − y| : x, y ∈ [0, 1] where x
is the feature value of the phenotype and y is a target value provided to the
algorithm. The final score assigned to the phenotype by this fitness objective is
the sum of all feature scores, resulting in a maximum score of 18.

The representation for the harmonization, often referred to as chords, sup-
ports every possible chord that can be created with four pitches. The Harmo-
nization Objective attempts to stabilize the chords vertically, based on the
melody and the musical key within each measure, by building triads that belong
to the key. It also allows the presence of a fourth pitch in the chord, but does
not encourage it. The Harmonization Objective is largely based on the simplicity
fitness objective of Freitas and Guimarães [16]. The difference in feature values
and features in this system is due to the absence of a corresponding dissonance
function. The final score for a phenotype is the summed score of eight conditions
for each chord (shown in AppendixB), with a maximum achievable score of 0.

The Harmonic Progression Objective can be considered as a horizontal,
or global, objective for the harmonies generated by the algorithm. While the
harmonization objective attempts to establish triads in regards to the melody
within a measure, this objective rewards, or punishes, chords based on their
relation to chords in the other measures of the phenotype. It establishes harmonic
variety by punishing excessive repetitions of any chord, as well as enforcing a
global variety of distinct chord roots (the conditions and scores are given in
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AppendixC). It is a necessary function, which will greatly influence the music;
however, the weights currently assigned can be seen as a starting gambit and are
mainly grounded in the authors’ intuitions. Some simple rules for how certain
chords should be resolved by the following chord are also implemented. The
maximum achievable score for this feature is 0.

4 Experiment Design

The algorithm (implemented in Java) was run with maximum population size =
1000 and maximum generation count of 3000 using 17 different configurations to
generate a total of 21 artefacts. The various configurations are determined by the
set of target values for the Global Fitness Objective, the supplied genetic material
for deriving the initial population, whether randomly generated individuals were
used for initialization or not, and variations of genotype lengths. These parameter
values were found to be fitting during preliminary test runs of the algorithm,
in terms of convergence to a set of near optimal solutions. In several cases a
single optimal solution was evolved that obtained the maximum possible score
in all fitness objectives, a perfect score. The transformation of the phenotypes
into something that would be audibly presentable to the human evaluators was
done by translating the generated melodies and chord progressions into MIDI.
Using Cubase 5, a digital audio workstation, each melody and chord progression
was played by a sampled piano at 120 beats per minute. No performance data
was added. Regarding the genetic operators, there is a defined probability, in
this case 50%, that exactly one crossover operator will be applied, and there will
always be exactly on mutation operator applied. The probabilities of selecting a
specific crossover operator were 66% for Single Point Crossover vs 34% for Single
Measure Crossover, while the mutation probabilities were defined as 15% each
for Note Mode, Random Pitch, Pitch Modulation, Chord Change and Chord
Pitch; 10% for Chord Swap; and 7.5% for Note Position and Duplication.

With each run of the algorithm, a single produced artefact was chosen for
evaluation in the survey. In the case that a single individual was non-dominated,
it was selected for the survey. If the algorithm did not converge on a single
solution after 3000 generations, but rather a Pareto front with several rank 1
phenotypes in it, the phenotype was selected purely on achieved fitness scores.
A consequence of this methodology is that one or more features in the Melodic
Global Objective might not be identical to the target value, for two possible
reasons. Either the solution converged on a local maxima in the fitness landscape,
or a target value for at least one feature in the objective contradicts a rule or
condition in one of the other fitness functions.

The 17 different experimental configurations covered two versions of ran-
domly generated individuals used in generating the initial population (0 resp.
10 individuals), three different counts of total measures in the developed phe-
notypes (8, 12 and 16), and four different target value configurations for the 18
features in the Melodic Global Objective fitness function. Further, the provided
data differ in two ways: a single piece of music was, or was not, provided to the
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algorithm; and either a melody or a chord progression, and a varying amount
of randomly generated phenotypes could be supplied. A total of six different
pieces of material was provided: three pieces of simple music was used, and split
into melody and harmonization. The music pieces consisted of eight bars of the
verse from “She Loves You” by The Beatles, the twelve measure verse of Britney
Spears’ “...Baby One More Time”, and eight measures from the theme of the
children’s march “Over the Hills and Far Away” by Percy Aldridge Grainger,
that are frequently used as a first lesson for piano students. Of the four target
value configurations for the global melodic fitness function features, one set of
target values was defined by the authors, as it qualitatively produced satisfying
phenotypes during development of the fitness functions. The other three config-
urations were obtained by analysing the melodies of the three music pieces1.

5 Results

A quantitative online study was performed to evaluate the generated artefacts.
The main goal was to evaluate how different configurations, and achieved fitness
values, impact how the musical ideas are perceived by a human audience. Par-
ticipants of the survey were presented one artefact generated by the system at a
time and asked to evaluate and score it on three criteria: pleasantness, interest-
ingness and randomness. The assignable values in each criterion were integers
on a scale from 1 to 5, where 1 was defined as the lowest possible value and
5 the highest. The terms were not explicitly described to the participant, but
antonyms were provided. Respectively unpleasant, boring and structured. The
artefacts themselves were also referred to as musical ideas, as they are not fully
produced or arranged pieces of music.

93 participants contributed to the survey, with 35 of them evaluating all 21
artefacts. A total of 884 evaluations were made. The average number of evalua-
tions per artefact was 42. The participants were initially asked to describe their
relationship to music (e.g., consumer, musician, hobby musician, composer and
producer). Pieces in the survey were all presented in a random order, to elimi-
nate possible biases on the artefacts presented last in the survey due to fatigue.
Randomizing the order of presentation also helps getting a uniform distribution
of data, if many participants do not complete the survey.

The aggregated average values (and standard deviations) for all artefacts
were: Pleasant: 3.256± 1.079. Interesting: 3.048± 1.140. Random: 2.550± 1.152.

Grouping the results from the survey based on their fitness configuration
class, pleasantness does not show big variations. All fitness configuration scored
slightly above 3 in terms of pleasantness, which is the absolute neutral in terms of
the scale used for scoring. In terms of interestingness, the configurations based on
“hits” outperformed the other two, which are respectively made up of arbitrary
numbers and of a very simple child song theme, which has very few notes, a
very small pitch range, and very simple rhythms. The child song also scored the
lowest of all configurations in terms of randomness.
1 For some examples of the produced music, see http://bit.ly/2DzbFzf.

http://bit.ly/2DzbFzf
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If the results are grouped by their seed material class, some interesting num-
bers appear. In terms of previous research [15], the genetic material provided
for initialization has a profound impact on the output of the algorithm. In this
grouping, the class that is provided melodies for generating the initial population
does indeed score highest in both pleasantness and interestingness, and the low-
est in randomness. This class consists of 6 artefacts, where all of them converged
to a single solution. Investigating the class grouping by random seeds showed
the lowest amount of differentiation in scores between the configurations. This
is interesting as it implies that the algorithm is able to reach similar solutions
regardless of noise in the starting material.

11 of the 21 runs of the algorithm converged on a single non-dominated phe-
notype. Five of these converged to a single fitness perfect solution. All of these
artefacts were created by seeding a melody and hence had a perfect score in
the global melody objective. Looking at pattern feature correlations, features
15–18 in the global melody objective are the pattern matching features devel-
oped for this work. While feature 18, the positional rest measure repetitions
feature, shows no sign of correlation, the other three do. Feature 15, 16 and
17, have a statistically significant correlation to the interestingness score at a
99.5% confidence interval. Feature 15 and 17 have a statistically significant cor-
relation to randomness at a 95% confidence interval. Feature 15 and 16, Whole
Measure Distinctness and Half Measure Distinctness, respectively, correlate pos-
itively with interestingness, which means the more distinct patterns appear, the
more interesting the pieces are perceived. It is doubtful that this correlation is of
a linear nature, but within the range of values for the fitness features obtained
by the artefacts it might be. All the feature scores were below 0.5. Feature 17,
positional rhythmic measure repetitions, has a negative correlation to both inter-
estingness and randomness, which is confusing. When feature 17 gets close to
its maximum value, it means that a very rigid structure is observed, where the
exact rhythmical patterns are repeated at given positions later in the piece.

Fig. 2. Example of generated music
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The sentiments collected from the optional comments in the survey can pro-
vide some interesting opinions. Enjoyment and appreciation of music is a very
subjective experience. A self-labeled “Consumer” left a comment on the last
question: “Not that much good music”, and had consistently given scores below
2 for pleasantness and interestingness. Another participant commented on the
piece shown in Fig. 2: “Some weird melody beats... Some times very standard, but
other times suddenly weird.”, and scored it 4 in randomness, but rated it at 5 in
interestingness and 4 in pleasing. By looking at the sheet music, you can see that
it has some unusual rhythmical phrasings in measure two and three, which are
also not repeated later in the piece. This sentiment is somewhat re-iterated by
another participant who wrote: “First 10 seconds sound like an intro, but after
that is a bit more expected”. Pieces that were generated without melodic seeds,
sported rhythmical phrases that were critiqued at times. This was, however, not
always the case. A comment on another piece stated: “Very good melody line.
Nice rhythm on that.” A possible cause of this is that the features that measure
rhythms do not reward good rhythmical phrases, nor punish bad ones.

6 Discussion

In terms of novelty, systems within algorithmic composition that make both
harmonization and melody is not unprecedented. Evolutionary algorithms that
generate either melodies or harmonization are fairly common, but developing
both in tandem is not common. Developing a multiple-objective evolutionary
algorithm (MOEA) for co-evolving melody and harmonization provided quite
a few obstacles. Simply making the algorithm converge on a set of solutions
that were acceptable to humans proved challenging. The state space of possible
solutions for genotypes of eight measures is of size 10205 in magnitude, and 10410

for 16 measures. This is caused by developing both melody and harmonization
at the same time, as the state space grows multiplicatively. For eight measures of
melody exclusively, the state space is 34 orders of magnitude smaller than when
combined with a harmonization. Also the use of 1

16 notes increases the state
space tremendously. The size of the state space could be dramatically reduced
by only allowing notes of 1

8 or bigger. However, supporting such a large state
space is necessary to allow a wide range of musical expressions. Allowing the
algorithm to create such a huge variety of phenotypes can aid in evaluation of
fitness functions on a general basis, in relation to human perception of music.
If the algorithm is capable of representing what could be considered as “bad
music”, it is possible to validate fitness functions and features if they guide the
search towards what is considered “good” solutions, or “good music.”

Having to apply the step of the algorithm that removes fitness duplicates
is something that could be considered a weakness of the implementation, as it
confines the algorithm to explore a relatively small part of the state space on any
given run. If several equal best solutions in a maxima exist, only one will be kept.
Removing genetically identical phenotypes, instead of fitness identical, might be
more desirable. It would also allow the algorithm to escape local maxima more
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frequently. However, this was not computationally feasible while working with
four fitness objectives. Not eliminating fitness duplicates also has the benefit of
providing options to anyone who is using the algorithm. Having a set of slightly
different solutions, that are considered equally good, could provide any user of
the implementation with more ideas, more inspiration. While the algorithm did
generate pieces of music that were appreciated by participants of the study,
it was not able to do so consistently. The results proved to be slightly more
pleasant and interesting when melodic material was provided for initialization,
but no evidence was found as to conclude why. An hypothesis is that provided
material provides a scaffolding for the algorithm to work with, especially in terms
of phrasing. However, the system does not evaluate phrasing explicitly in any of
its fitness functions, which leaves room for improvement.

Integrating four fitness functions on a new model spurred quite a few unfore-
seen interactions between the fitness functions and the model. The most apparent
problem with co-evolving melody and harmonization was the lack of harmonic
context needed by the individual fitness objectives. Pitches that are outside of
the musical key are not punished in the melodic harmonic objective, as long as
the same pitch occurs in the chord of the measure. The same is also true for the
harmonization objective, where a non-scale pitch in a chord is not punished if
it occurs in the melody. The result of this interaction was that both the melody
and harmonization disregarded the musical key it was supposed to compose in,
and generated very atonal pieces.

7 Conclusion

A novel approach to generating musical material with a multi-objective evolu-
tionary algorithm was implemented, along with a set of 43 fitness measures split
into four objectives. The implementation was then used to produce 21 pieces
of music with different configurations that were evaluated in a user study. The
system is not able to consistently write music that is perceived by everyone to be
aesthetically good. The best results were achieved when some melodic material
was supplied during the initialization phase. Features that evaluate rhythmical
phrasing is lacking in the fitness functions, and the performance of the system
could possibly improve by introducing new features that guide the search of the
algorithm towards good rhythmical phrasing. While the implementation shows
that it is feasible to develop both harmonization and melodies in parallel with
an evolutionary algorithm, the benefits of doing so are not prominent besides
the ability for both harmonization and melody to adapt to each other during
generation. Due to the large search space and relatively high amount of fitness
objectives, computational viability was hard to achieve. To do this, only short
musical ideas were developed, and a scheme for removing duplicates in the popu-
lation was implemented, which might not be desirable. Overall the algorithm will
probably never write any musical masterpiece, but evaluations made by partici-
pants of the study indicate that some of the generated pieces were subjectively
enjoyable. This suggests that the implementation could be useful in terms of



252 O. Olseng and B. Gambäck

computer assisted composition. In the future, efforts could be made to develop
fitness features that concern melodic phrases, especially rhythms. Toussaint [35]
suggests ways of generating “good” musical rhythms, and Toussaint et al. [36]
give a variety of features and concepts that could be adopted.

Appendix A: Melodic Global Objective,
feature descriptions

1. Pitch Variety: The ratio of distinct pitches to notes.
2. Pitch Range: The semitone difference between the highest and the lowest

pitch in the melody, divided by the maximum range possible in the model
(here: 20).

3. Step Movement: The number of intervals that are of step distance, divided
the total number of intervals.

4. Non-Scale Pitch Quanta: The number of notes outside the scale, divided by
the total number of notes.

5. Contour Stability: The proportion of consecutive intervals that follow in the
same direction. Two consecutive intervals incorporate three pitches and if
all the three notes (ignoring rests) are of the same pitch, it is counted as
moving in the same direction.

6. Contour Direction: The sum, measured in semitones, of all rising intervals
divided by the (absolute) sum of all intervals.

7. Pitch Frequency: The ratio of notes with pitches, to total time-steps.
8. Rest Frequency: The ratio of notes that are rests, to total time-steps.
9. Rest Density: The proportion of silent time-steps.

10. Rhythmic Variety: The degree of 16 distinct note durations (16th to whole
note) used.

11. Syncopation: The proportion of syncopated notes (i.e., notes with duration
≥ one beat, that start off the beat defined by the time-signature).

12. Repeated Pitches: The ratio of intervals of 0 semitones (in consecutive
pitches), to the total number of intervals.

13. Repeated Timings: The proportion of consecutive pitches (i.e., ignoring rests)
with the same duration.

14. On-Beat Pitch Coverage: The ratio of beats that contain pitch notes.
15. Distinct Whole Measure Patterns: The ratio of distinct whole measure

rhythmical patterns.
16. Distinct Half-Measure Patterns: The ratio of distinct half-measure rhythmi-

cal patterns.
17. Positional Rhythmic Measure Repetitions: Number of positional repetitions

(a measure repeated either directly, two measures later, or four measures
later; rests are ignored).

18. Positional Rest Measure Repetitions: same as 17, but for rests (pitches are
ignored).

In 17 and 18, the last four measures are only checked against the previous four,
and not between themselves.
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Appendix B: Harmonization Objective,
conditions and scores

−50 if the chord root is not a pitch within the key.
−40 if there is no major or minor third in the chord, in relation to the chord
root.
−10 if no perfect fifth is present in the chord (a diminished fifth is not punished
if it falls naturally within the scale, i.e., if it is a 2nd step root chord in a minor
key or 7th step root chord in a major.)
−5 for a unison that is not of the root pitch; a triad unison is punished harder
(−10).
−20 if any of the pitches is in a semitone distance to any other note in the chord
(this condition is ignored in case the pitch is considered a meaningful seventh).
−10 for dissonant pitches (that do not belong in the triad chord specified by the
chord root).
−30 for invalid pitches (pitches not found in the chord, or in the melody within
the measure the chord is played; a major third is not considered dissonant, nor
invalid, if it appears within a dominant chord in a minor key).
+10 for a meaningful seventh, i.e., one resolved by a step in the following chord.

Appendix C: Harmonic Progression Objective,
conditions and scores

−30 if the first chord in is not the tonic chord.
−20 if a phenotype contains no chord with a 5th step root, a dominant.
−20 if the chord following a dominant chord is not a tonic chord.
−10 for an unresolved diminished chord and −20 for an unresolved X7 chord.
−20 if the same chord root appears in three consecutive positions.
If a chord is repeated in the position eight measures after, the phenotype is
rewarded by x− 8 : x > 8, where x is the amount of measures in the phenotype.
If a phenotype does not have a predefined number of distinct chord roots, it is
punished by |y − x| · −1 : x, y ∈ [1, 11], where x is the number of distinct chord
roots in the phenotype and y the target value.
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