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Abstract Current theories of the nonlinear static and dynamic dielectric suscepti-
bilities of polar fluids subjected to strongAC andDC electric fields are reviewedwith
specific emphasis on those extending Debye’s theory of linear dielectric relaxation of
an assembly of polar molecules. The inclusion of intermolecular interactions in this
theory as well as nonlinear dielectric relaxation in the presence of time-dependent
fields is discussed. In particular, we emphasize the role played by intermolecular
interactions in the determination of the macroscopic dielectric properties of a polar
fluid via microscopic calculations, in both the linear and nonlinear responses.

1 Introduction

A well-founded microscopic theory of the electric polarization (both static and
dynamic) of polar fluids is essential to understanding many dielectric and electro-
optical relaxation phenomena and as such was initiated by Debye [1]. He first calcu-
lated the static susceptibility of an assembly of noninteracting rigid dipoles obtaining
a result which is essentially a replica of Langevin’s theory of paramagnetism and so
is called the Langevin–Debye theory. He then extended the calculation to include the
linear dielectric susceptibility of noninteracting polar molecules subjected to a weak
AC electric field, which unlike the static situation poses a nonequilibrium problem.
In order to accomplish this, he treated the effects of the heat bath surrounding a
dipole via the rotational diffusion model. This is based on a generalization of Ein-
stein’s 1905 [2] theory of the translational Brownian motion [3] to rotation on the
unit sphere and to include the effects of a weak AC field applied along an axis chosen
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as the Z-axis. Thus, in the dynamical Debye theory as with that of Einstein, inertial
effects are negligible and the rotation of the molecule is described by a random walk
over small angular orientations. Later, his original calculation was generalized (using
perturbation theory) to cover nonlinear phenomena in polar dielectrics subjected to
strong AC and indeed other external fields [4–6]. As specific examples, we cite both
the dynamic Kerr and nonlinear dielectric effects [4–8]. In particular, in nonlin-
ear dielectric relaxation, depending on the particular form of the stimulus chosen,
additional terms in the fundamental, third, etc., harmonic appear in the polarization
response [5–7], which have been confirmed by experiment [4, 9–12]. Furthermore,
the dynamical Debye theory has also been extended (by exact numerical solution
using matrix continued fractions) to include nonlinear effects in arbitrarily large
external fields [13–16]. Nevertheless, assemblies of noninteracting dipoles are still
assumed implying that the Debye theory and its extensions may not be used for
dense dipolar systems, where intermolecular interactions are significant. Although
the treatment of the latter is much more involved, several methods are still avail-
able. For example, the dielectric relaxation of polar nematic liquid crystals may be
regarded as the rotational Brownian motion in the Maier–Saupe uniaxial anisotropy
potential [17, 18], leading to an Arrhenius-like escape over a barrier process due to
the shuttling action of the rotational Brownian motion giving rise to reversal of a
dipole occurring in all the dynamical responses. Such a mechanism was first identi-
fied by Kramers [19] in the context of the translational Brownian motion, and was
recognized by Debye in the context of normal dispersion and absorption in solids.
The method comprises the static mean field approach. However, such a treatment,
although of restricted applicability because it ignores local order effects, is eas-
ily visualized and permits quantitative evaluation of dielectric parameters. Thus, it
qualitatively demonstrates the effect of intermolecular interaction on these, an effect
which must be included for the purpose of comparison with experimental data [20].
Yet another advantage is that it also yields the nonlinear response of assemblies of
noninteracting uniaxial single-domain ferromagnetic particles [21]. Unfortunately,
the static mean field method still ignores dynamical effects due to intermolecular
interactions.

In contrast, the dynamical mean field method reveals dynamical effects due to
intermolecular interactions manifesting themselves at the nonlinear response level
only [22]. These novel predictions are interesting as they are qualitatively similar
to observations of supercooled polar liquid nonlinear dielectric response measure-
ments, namely non-monotonic behavior of the nonlinear response moduli, without
corresponding modification of the linear response at low frequencies.

A succinct account of nonlinear dielectric effects in liquids has recently been
given by Richert [23], who emphasized the growing importance of such measure-
ments in so far as they can characterize many polar fluids in various states. Here, we
review nonlinear dielectric response calculations based on further developments of
the Debye theory which are accomplished by generalizing it to include both strong
electric fields and intermolecular interactions. The chapter is organized as follows: in
Sects. 2 and 3, we review the methods used in [7] for the nonlinear dynamic dielec-
tric susceptibilities of a gas of noninteracting dipoles subjected to strong DC and AC
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electric fields. Next twomean fieldmodels of interaction are described in Sects. 4 and
5, while Sect. 6 is devoted to internal field corrections. These are the only corrections
needed as a dielectric liquid always occupies the entire empty space between the elec-
trodes of the measuring device. The depolarizing field effect is first discussed. Next,
Sect. 7 shows how to include both static and dynamical intermolecular correlations.

2 Nonlinear Dielectric Response of Noninteracting Polar
Molecules to a Strong AC Electric Field

We consider the nonlinear AC (alternating current) stationary response of an assem-
bly of noninteracting polar molecules (electric dipoles) undergoing rotational Brow-
nian motion due to the heat bath and also acted upon by a strong external AC field
E(t). Moreover, we suppose without loss of generality that E is directed along the
Z-axis of the laboratory coordinate system so that axial symmetry is preserved. This
treatment is a simple extension of the work of Debye and is essentially due to Coffey
and Paranjape [7]. The starting point of the theory is the rotational diffusion equation
(the Smoluchowski equation, a particular form of the Fokker–Planck equation) due
to Debye for the surface distribution function of the dipole orientations on the unit
sphere when embedded in a heat bath, viz.,

2τD
∂W

∂t
� 1

sin ϑ

∂

∂ϑ

[
sin ϑ

(
∂W

∂ϑ
+ βW

∂V

∂ϑ

)]
. (1)

In Eq. (1) TD � ς / (2kT ) is the rotational diffusion time also called the Debye
relaxation time, and expresses the given fluctuation–dissipation relation which exists
between the magnitude of the Brownian Schwankung of the angle ϑ and the tem-
perature T and friction constant ς , i.e., ϑ2/ (4δt) � kT/ς . Here β � (kT )−1, k is
Boltzmann’s constant, ϑ is the angle a (tagged) dipole moment makes with the exter-
nally applied uniform electric field E (t), W (ϑ, t) is the surface probability density
of orientations of a dipole, and V (ϑ, t) is the potential of axially symmetric applied
external torques. Here, it is simply that of the interaction of a dipole with the electric
field, namely

V (ϑ, t) � −μE (t) cosϑ, (2)

whereμ is the dipole moment of a molecule, and E (t) is the amplitude of the electric
field. The polarization in the field direction is then

P (t) � ρ0μ

π∫
0

cosϑ W (ϑ, t) sin ϑdϑ. (3)
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Equation (3) is evaluated via the statistical moment method, which consists in
expanding W (ϑ, t) as a series of Legendre polynomials Pn (cosϑ) [24], i.e.

W (ϑ, t) �
∞∑
n�0

(
n +

1

2

)
fn (t) Pn (cosϑ), (4)

and then using the recurrence and orthogonality properties of the Pn , thereby yielding
an infinite hierarchy of differential-recurrence relations for the statistical moments
fn (t), viz.,

2τD
n (n + 1)

ḟn (t) + fn (t) � ξ (t)

2n + 1

[
fn−1 (t) − fn+1 (t)

]
, n > 0 (5)

Here f0 � 1, ξ (t) � βμE (t) and Eq. (3) by orthogonality can be rewritten using
Eq. (4) as

P (t) � ρ0μ f1 (t) . (6)

Now, even for strong electric field intensities, ξ (t) < 1, thus the hierarchy of
Eq. (5) may be solved by iterating a perturbation series, yielding

fn (t) � f (0)
n +

∞∑
k�1

f (k)
n (t), (7)

where the superscript (k) indicates the desired order in the field strength, yielding
the perturbed equations

n (n + 1) f (0)
n � 0, (8)

2τD
n (n + 1)

ḟ (k)
n (t) + f (k)

n (t) � ξ (t)

2n + 1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]
, (9)

The hierarchy of recurrence Eq. (9) is solved subjected to the initial condition
f (k)
n (−∞) � 0 since we are interested in the steady-state regime only. Now, the

solution of Eq. (8) is obvious since it is a simple algebraic equation. Thus f (0)
n � 0

for all n �� 0. Moreover, f (0)
0 � f0 � 1 and f (k)

0 � 0, k > 0. Hence, the linear
response of the polarization is given explicitly by f (1)

1 (t), that is

f (1)
1 (t) � 1

3τD

t∫
−∞

e− t−t1
τD ξ (t1) dt1. (10)

Since f (1)
n (−∞) � 0, we have

f (1)
n (t) � 0, n �� 1 (11)
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Likewise, we have the quadratic response functions f (2)
n (t), viz.,

f (2)
n (t) � 0, n �� 2, (12)

and

f (2)
2 (t) � 1

5τ 2
D

t∫
−∞

t2∫
−∞

e− 3(t−t2)
τD ξ (t2) e

− t2−t1
τD ξ (t1) dt1dt2. (13)

Moreover, via Eq. (9) for n � 1 and k � 3, we have the cubic polarization
dynamical response, viz.,

f (3)
1 (t) � − 1

15τ 3
D

t∫
−∞

t3∫
−∞

t2∫
−∞

e− t−t3
τD ξ (t3) e

− 3(t3−t2)
τD ξ (t2) e

− t2−t1
τD ξ (t1) dt1dt2dt3 (14)

Now, specializing to the pure AC field E (t) � E0 cosωt so that ξ (t) � ξ0 cosωt
with ξ0 � βμE0, the polarization Eq. (6) can be written as

P (t) � P (1) (t) + P (3) (t) ,

where P (1) (t) is the linear polarization response given by

P (1) (t) � ρ0μξ0

3
(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt) , (15)

which is the result of Debye, while the cubic polarization P (3) (t) is

P(3) (t) � ρ0μξ30

60
(
1 + ω2τ 2D

) (
9 + 4ω2τ 2D

)
{(

13ω2τ 2D − 27
)
cosωt − 2ωτD

(
21 + ω2τ 2D

)
sinωt

3
(
1 + ω2τ 2D

)

+

(
17ω2τ 2D − 3

)
cos 3ωt + 2ωτD

(
3ω2τ 2D − 7

)
sin 3ωt(

1 + 9ω2τ 2D

)
}

. (16)

This equation represents one of the most important results of the nonlinear Debye
theory, demonstrating that for strong AC field amplitudes, the linear response (15) is
corrected by the first term in the right-hand side of Eq. (16), while the second term
predicts the existence of a third harmonic in the polarization response. This result
was confirmed experimentally 20 years after its publication [12]. When ω � 0,
P (t) � Ps is time-independent and is given by the two first terms in the Taylor
expansion of the Langevin function, viz.,

Ps � ρ0μ

(
ξ0

3
− ξ 3

0

45

)
, (17)
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The treatment described here must be further refined if the electric field comprises
both a DC part and an AC part, since then the static conditions are no longer given
by Eq. (8). This is the subject of the next section.

3 Nonlinear Dielectric Response in Superimposed AC
and DC Electric Fields

The basic equation is still the rotational Smoluchowski Eq. (1) as given by Debye,
with polarization given by Eq. (3) or (6), save that

V (ϑ, t) � −μ (ES + E0 cosωt) cosϑ, (18)

where ES is the static electric field amplitude, also supposed uniform and applied in
the direction of the AC field. The differential-recurrence relations (5) now become

2τD
n (n + 1)

ḟn (t) + fn (t) � ξS + ξ (t)

2n + 1

[
fn−1 (t) − fn+1 (t)

]
, n > 0. (19)

Where ξS � βμES.
We further assume that all transients due to the (sudden) application of the DC

field ES have disappeared, so that the assembly of dipoles has reached equilibrium
in the absence of the AC field. Furthermore, starting from this configuration which
represents the stationary state of the system before E0 cosωt is applied, we then
consider the new stationary state (i.e., all transient effects due to the application of
E0 cosωt have also disappeared) obtained in the presence of both fields. Hence, we
can also use the perturbation expansion, Eq. (7) yielding the perturbation equations

n (n + 1) f (0)
n � n (n + 1) ξS

2n + 1

[
f (0)
n−1 − f (0)

n+1

]
, (20)

2τD
n(n+1)

d
dt f

(k)
n (t) + f (k)

n (t) � ξS
2n+1

[
f (k)
n−1 (t) − f (k)

n+1 (t)
]

+ ξ(t)
2n+1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]
.

(21)

Equation (20) can be solved using continued fractions, allowing one to express
the static moments as ratios of modified Bessel functions [3]. However, we avoid this
here because we can use the condition ξS < 1, yielding a perturbation expansion of
all the f (k)

n (t) in terms of the powers of the DC field strength. Thus, we write, in an
obvious notation

f (0)
n �

∞∑
q�0

f (0,q)
n , (22)
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f (k)
n (t) �

∞∑
q�0

f (k,q)
n (t). (23)

Thus, the perturbation Eqs. (20) and (21) become
(
f (0,0)
0 � f (0)

0 � f0 � 1
)
,

n (n + 1) f (0,q)
n � n (n + 1) ξS

2n + 1

[
f (0,q−1)
n−1 − f (0,q−1)

n+1

]
, (24)

2τD
n(n+1) ḟ

(k,q)
n (t) + f (k,q)

n (t) � ξS
2n+1

[
f (k,q−1)
n−1 (t) − f (k,q−1)

n+1 (t)
]

+ ξ(t)
2n+1

[
f (k−1,q)

n−1 (t) − f (k−1,q)

n+1 (t)
]
, k > 0.

(25)

The polarization response to third order in the field strength is

P (t) � P (1) (t) + P (2) (t) + P (3) (t) , (26)

where

P (1) (t) � ρ0μ
(
f (1,0)
1 (t) + f (0,1)

1

)
(27)

is the linear polarization response, while

P (2) (t) � ρ0μ
(
f (2,0)
1 (t) + f (1,1)

1 (t) + f (0,2)
1

)
, (28)

is the quadratic polarization response (expected to vanish), and finally

P (3) (t) � ρ0μ
(
f (3,0)
1 (t) + f (2,1)

1 (t) + f (1,2)
1 (t) + f (0,3)

1

)
(29)

is the cubic polarization response. The nonlinear polarization (26) is explicitly deter-
mined by solving Eq. (24) up to q � 3. For q � 0, we have n (n + 1) f (0,0)

n � 0
implying f (0,0)

n � 0, n �� 0. For q � 1, Eq. (24) become

n (n + 1) f (0,1)
n � n (n + 1) ξS

2n + 1

[
f (0,0)
n−1 − f (0,0)

n+1

]
, (30)

with nonvanishing solution

f (0,1)
1 � ξS

3
. (31)

which is the first term in the Taylor expansion of the Langevin function. For q � 2,
we have

n (n + 1) f (0,2)
n � n (n + 1) ξS

2n + 1

[
f (0,1)
n−1 − f (0,1)

n+1

]
, (32)
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with solution

f (0,2)
2 � ξ 2

S

15
. (33)

which is the first term in the Taylor expansion of 〈P2〉0. Finally, for q � 3, we have

n (n + 1) f (0,3)
n � n (n + 1) ξS

2n + 1

[
f (0,2)
n−1 − f (0,2)

n+1

]
, (34)

so that

f (0,3)
1 � − ξ 3

S

45
, f (0,3)

3 � ξ 3
S

105
, (35)

as expected.
Next, we evaluate f (1,0)

1 (t), the linear response to the AC field. Obviously, we
see that f (1,0)

n (t) � 0 save for n � 1, thus Eq. (25) becomes

τD ḟ (1,0)
1 (t) + f (1,0)

1 (t) � ξ (t)

3
, (36)

with steady-state solution the Debye response, viz.,

f (1,0)
1 (t) � ξ0

3
(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt) . (37)

Thus the linear polarization is

P (1) (t) � ρ0μ

3

[
ξS +

ξ0(
1 + ω2τ 2

D

) (cosωt + ωτD sinωt)

]
. (38)

This result is physically acceptable, since in the linear response approximation,
the steady-state DC and AC responses simply superimpose.

We now calculate the quadratic polarization response (28). Clearly, f (0,2)
1 � 0 by

our earlier arguments, while the two remaining functions in Eq. (28) must satisfy the
differential equations

τD ḟ (1,1)
1 (t) + f (1,1)

1 (t) � 0,

τD ḟ (2,0)
1 (t) + f (2,0)

1 (t) � 0,

with steady-state solutions f (1,1)
1 (t) � 0 and f (2,0)

1 (t) � 0. Therefore, as expected,

P (2) (t) � 0. (39)
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Finally, we evaluate P (3) (t) as given by Eq. (29). We already have f (0,3)
1 since it

is given by Eq. (35). The three remaining functions satisfy

τD ḟ (3,0)
1 (t) + f (3,0)

1 (t) � −ξ (t)

3
f (2,0)
2 (t) , (40)

τD ḟ (2,1)
1 (t) + f (2,1)

1 (t) � −ξS

3
f (2,0)
2 (t) − ξ (t)

3
f (1,1)
2 (t) , (41)

τD ḟ (1,2)
1 (t) + f (1,2)

1 (t) � −ξS

3
f (1,1)
2 (t) − ξ (t)

3
f (0,2)
2 . (42)

The determination of f (3,0)
1 (t), f (2,1)

1 (t) and f (1,2)
1 (t) requires knowledge of

f (2,0)
2 (t) and f (1,1)

2 (t) which satisfy

τD ḟ (2,0)
2 (t) + 3 f (2,0)

2 (t) � 3ξ (t)

5
f (1,0)
1 (t) , (43)

τD ḟ (1,1)
2 (t) + 3 f (1,1)

2 (t) � 3ξS
5

f (1,0)
1 (t) +

3ξ (t)

5
f (0,1)
1 . (44)

We infer that the DCfield does not affect the 3ω component of the nonlinear polar-
ization in the cubic response approximation, due to Eq. (37) and because f (3,0)

1 (t) is
the sole term in the nonlinear polarization containing 3ω terms. Equations (40)–(44)
then yield

f (3,0)
1 (t) � ξ30

60
(
1 + ω2τ 2D

) (
9 + 4ω2τ 2D

)
{(

13ω2τ 2D − 27
)
cosωt − 2ωτD

(
21 + ω2τ 2D

)
sinωt

3
(
1 + ω2τ 2D

)

+

(
17ω2τ 2D − 3

)
cos 3ωt + 2ωτD

(
3ω2τ 2D − 7

)
sin 3ωt(

1 + 9ω2τ 2D

)
}

, (45)

i.e., the original Coffey–Paranjape result, and along with this the additional terms

f (2,1)1 (t) � − ξ20 ξS
90

(
27 + 7ω2τ2D

)
(
1 + ω2τ2D

) (
9 + ω2τ2D

)

+
ξ20 ξS
30

(
8ω6τ6D + 62ω4τ4D + 153ω2τ2D − 81

)
cos 2ωt(

1 + ω2τ2D

) (
9 + ω2τ2D

) (
1 + 4ω2τ2D

) (
9 + 4ω2τ2D

)

_
2ξ20 ξS
15

ωτD

(
4ω4τ4D + 22ω2τ2D + 63

)
sin 2ωt(

1 + ω2τ2D

) (
9 + ω2τ2D

) (
1 + 4ω2τ2D

) (
9 + 4ω2τ2D

) , (46)

f (1,2)1 (t) � − ξ0ξ2S
45

(
27 + ω2τ2D − 2ω4τ4D

)
cosωt + ωτD

(
42 + 19ω2τ2D + ω4τ4D

)
sinωt

(
1 + ω2τ2D

)2 (
9 + ω2τ2D

) . (47)

Furthermore, for ω � 0, we have

P (3) (t) � −ρ0μ (ξ0 + ξS)
3

45
. (48)

This is simply the second term of the Taylor expansion for the Langevin function
with two superimposed DC fields.
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Now, Eqs. (45)–(47) should be commented upon. First, on inspection of Eq. (46),
application of a DC field in addition to an AC one causes a 2ω harmonic term to
appear on the resulting DC response. This nonlinear frequency-dependent effect is
completely different, however, from that due to the dynamicKerr effect because there,
an AC field alone is required to create a frequency-dependent DC term (the square
law nonlinearity rectifies the applied field). Nevertheless, the qualitative frequency
behavior is the same for both phenomena. Second, on inspection of Eq. (45), an
extra term oscillating at the fundamental is superimposed on the pure AC response.
Third, these formulas pertainwith obvious changes in notation tomagnetic relaxation
of blocked ferrofluids [3]. Finally, we see that the DC field does not affect the third
harmonic term at all at this level of approximation. However, if the pentic response is
considered, the fundamental and the third harmonic will also be affected. In contrast
to the original Coffey–Paranjape formulas, these results have been obtained only
recently [25].

4 Account of Interactions via a Mean Field Potential

We shall now treat intermolecular interactions via a mean field static potential. The
basic idea has been alluded to by Fröhlich [26], and relies on the Ansatz that inter-
molecular interactions may be represented by a (mean field) symmetric double-well
potential. Thus, away of including them in the dynamical Eq. (1) is to choose a poten-
tial exhibiting two wells in a cycle of the motion. Then, guided by the work of Maier
and Saupe [17] at equilibrium and Martin, Meier and Saupe [17] for time-dependent
situations in nematic liquid crystals, we merely rewrite V (ϑ, t) as

V (ϑ, t) � K sin2 ϑ − μ (ES + E (t)) cosϑ, (49)

where K represents an intermolecular interaction strength. We remark that disparate
physical problems can be modeled using Eqs. (1) and (49), e.g., the nonlinear relax-
ation of (noninteracting)magnetic nanoparticles, with application tomagnetic hyper-
thermia and information storage, or equally well the dielectric relaxation of polar
nematic liquid crystals. Numerical and analytical calculations have been undertaken
recently [27], which we now summarize.

The electric polarization is still given by Eq. (3), however, the differential-
recurrence relations become [3]

2τD
n(n+1) ḟn (t) +

[
1 − 2σ

(2n−1)(2n+3)

]
fn (t) � ξS+ξ(t)

2n+1

[
fn−1 (t) − fn+1 (t)

]

+2σ
[

(n−1)
(2n−1)(2n+1) fn−2 (t) − (n+2)

(2n+1)(2n+3) fn+2 (t)
]
,

(50)
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where σ � βK . Again specializing to a pure AC field, we seek the solution of
Eq. (50) as a perturbation series in the AC field amplitude (cf. Eq. 7), so yielding the
perturbed equations

2τD
n(n+1) ḟ

(k)
n (t) + f (k)

n (t) � ξS
2n+1

[
f (k)
n−1 (t) − f (k)

n+1 (t)
]

+ ξ(t)
2n+1

[
f (k−1)
n−1 (t) − f (k−1)

n+1 (t)
]

+2σ
[

n−1
(2n−1)(2n+1) f

(k)
n−2 (t) − n+2

(2n+1)(2n+3) f
(k)
n+2 (t)

]
, k > 0,

(51)

with the stationary values

f (0)
n � Z−1

π∫
0

Pn (cosϑ) e−σ sin2 ϑ+ξS cosϑ sin ϑdϑ, (52)

and the partition function

Z �
π∫

0

e−σ sin2 ϑ+ξS cosϑ sin ϑdϑ. (53)

However, it is no longer possible to solve the hierarchy of Eq. (51) by simple
straightforward iteration, because of the mathematical complexity caused by the
coupling between the seven kinds of terms involved. Nevertheless, as demonstrated
in [27], wemay formally solve these equations by writing them inmatrix form. Thus,
we introduce the column vectors in which the n dependence is subsumed,

c(0) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0)
1

f (0)
2

...

f (0)
n

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, c(k) (t) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (k)
1 (t)

f (k)
2 (t)

...

f (k)
n (t)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, k > 0. (54)

Hence, Eq. (51) become the forced matrix differential equations

τD ċ(1) (t) + Ac(1) (t) � ξ (t) c1, (55)

τD ċ(k) (t) + Ac(k) (t) � ξ (t)Bc(k−1) (t) , (56)

where
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c1 � 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ Bc(0). (57)

The matrix elements of the time-independent system matrix A and driving force
matrix B in Eqs. (55)–(57) are thus given by

(A)nm � n (n + 1)

2

(
− 2σ (n − 1)

(2n − 1) (2n + 1)
δnm+2 +

[
1 − 2σ

(2n − 1) (2n + 3)

]
δnm

+
ξS

2n + 1
(δnm−1 − δnm+1) +

2σ (n + 2)

(2n + 1) (2n + 3)
δnm−2

)
, (58)

(B)nm � n (n + 1)

2 (2n + 1)
(δnm+1 − δnm−1) (59)

(δnm isKronecker’s delta). The solution of thematrix Eqs. (55) and (56) is obtained
by quadratures. We have, as in the scalar case, with c(k) (−∞) � 0, k > 0,

c(1) (t) � 1

τD

t∫
−∞

ξ
(
t ′
)
e−A t−t ′

τD c1dt ′, (60)

while

c(k) (t) � 1

τD

t∫
−∞

ξ
(
t ′
)
e−A t−t ′

τD Bc(k−1)
(
t ′
)
dt ′, k > 1. (61)

Next, iterating Eq. (61) twice yields vector-valued time-ordered integral repre-
sentations of the vector quadratic and cubic responses analogous to the scalar case.
We have

c(2) (t) � 1

τ 2
D

t∫
−∞

t ′∫
−∞

ξ
(
t ′
)
ξ
(
t ′′
)
e−A t−t ′

τD Be−A t ′−t ′′
τD c1dt ′′dt ′, (62)

c(3) (t) � 1

τ 3
D

t∫
−∞

t ′∫
−∞

t ′′∫
−∞

ξ
(
t ′
)
ξ
(
t ′′
)
ξ
(
t ′′′

)
e−A t−t ′

τD Be−A t ′−t ′′
τD Be−A t ′′−t ′′′

τD c1dt ′′′dt ′′dt ′

(63)
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Furthermore, for ξ (t) � ξ0 cosωt , Eqs. (61), (62), and (63) can bewritten in forms
suitable for numerical computational purposes [27]. We have from Eqs. (61)–(63):

c(1) (t) � ξ0Re
[
ϕ

(1)
1 (ω) eiωt

]
, (64)

c(2) (t) � ξ 2
0

2
Re

[
ϕ

(2)
0 (ω) + �

(2)
2 (2ω)ϕ

(2)
0 (ω) e2iωt

]
, (65)

c(3) (t) � ξ 3
0

4
Re

{(
2Re

[
�

(3)
1 (ω)

]
ϕ

(2)
0 (ω) + �

(3)
1 (ω)�

(2)
2 (2ω) ϕ

(2)
0 (ω)

)
eiωt

+ �
(3)
1 (3ω) �

(2)
2 (2ω)ϕ

(2)
0 (ω) e3iωt

}
,

,

(66)

where

ϕ
(1)
1 (ω) � G (ω) c1, ϕ

(2)
0 (ω) � A−1Bϕ

(1)
1 (ω) , (67)

�
(2)
2 (ω) � G (ω)A, �

(3)
1 (ω) � G (ω)B, (68)

G (ω) � (A + iωτDI)−1 , (69)

and I is the identity matrix. In writing Eqs. (64)–(69), we have supposed that the
transition matrix exp (At) satisfies the condition

lim
t→−∞ eAt � 0, (70)

because all the eigenvalues of the system matrix A are real and positive due to
the properties of the Smoluchowski operator [28]. Furthermore, the vectors ϕ

(1)
1 (ω)

and ϕ
(2)
0 (ω) in Eq. (67) can also be written as linear and second-order nonlinear

generalized normalized susceptibilities Xn1 (ω) and X (2)
n0 (ω), viz.,

ϕ
(1)
1 (ω) �

⎛
⎜⎜⎜⎜⎜⎝

χ11X11 (ω)

χ21X21 (ω)

χ31X31 (ω)

...

⎞
⎟⎟⎟⎟⎟⎠

, ϕ
(2)
0 (ω) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ12X
(2)
10 (ω)

χ22X
(2)
20 (ω)

χ32X
(2)
30 (ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(71)

with Xn1 (0) � 1 and X (2)
n0 (0) � 1, while χn1 �

[
ϕ

(1)
1 (0)

]
n
and χn2 �[

�
(3)
1 (0)ϕ

(2)
0 (0)

]
n
are the corresponding static susceptibilities.

Although the foregoing matrix solutions facilitate numerical evaluation of non-
linear responses, they do not permit a qualitative understanding of the relaxation
dynamics. These can be qualitatively understood however via the so-called two-
mode approximation, originating in the large separation of the timescales of the fast
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intra-well and slow over-barrier (or inter-well) relaxation modes in the asymmetric
double-well mean field potential (i.e., Eq. 49) with E (t) � 0). Here, we simply write
down these two-mode approximations for the first and second-order responses and
deduce from them the cubic one. Details can be found in [27].

It has become well established in the last two decades [3, 29] that the linear AC
response to of dipolar systems undergoing (overdamped) rotational Brownianmotion
in a field of force essentially comprises two processes, namely

(a) A slow Arrhenius over-barrier relaxation process, with the same timescale for
all linear response functions, which is represented here by the slowest decaying
eigenvalue of the transition matrix exp (−At) � L−1

[
(sI + A)−1

]
, where L−1

denotes the inverse Laplace transform,
(b) A fast intra-well relaxation process which is not thermally activated and is near

degenerate, with a characteristic timescale depending on the order of the linear
response function considered.

Thus, we write for the general matrix elements of the linear response

f (1)
n (t) � ξ0χn1Re

[
Xn1 (ω) eiωt

]
, (72)

where the scalar representations of χn1 and Xn1 (ω) are [3]

χn1 � 〈Pn P1〉0 − 〈Pn〉0 〈P1〉0 , (73)

Xn1 (ω) � �n1

1 + iω/λ1
+

1 − �n1

1 + iωτ
(n1)
W

. (74)

Here, �n1 is the weight of the thermally activated process specific to the func-
tion f (1)

n (t), and τ
(n1)
W is the timescale of the short time near degenerate intra-well

processes also specific to the function f (1)
n (t). These parameters are defined by [3]

�n1 � τn1/τ
(n1)
eff − 1

λ1τn1 − 2 +
(
λ1τ

(n1)
eff

)−1 , (75)

τ
(n1)
W � τ

(n1)
eff

λ1τn1 − 1

λ1τ
(n1)
eff − 1

, (76)

where in terms of low and high frequency limits of the generalized linear suscepti-
bility

τn1 � lim
ω→0

(ωχn1)
−1 Im

([
ϕ

(1)
1 (ω)

]
n

)
, (77)

τ
(n1)
eff � lim

ω→∞
χn1

ω
Im

([
ϕ

(1)
1 (ω)

]
n

)−1
(78)
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The quadratic response functions f (2)
n (t) can also be represented in similar scalar

fashion using the two-mode approximation. For example, we cite f (2)
1 (t) for the

polarization of the quadratic nonlinear response that is given by

f (2)
1 (t) � ξ 2

0

2
χ12Re

[
X (2)
10 (ω) + X12 (2ω) X (2)

10 (ω) e2iωt
]
, (79)

where

X (2)
10 (ω) � �10

1 + iω/λ1
+

1 − �10

1 + iωτ
(10)
W

, (80)

X ′(2)
10 (ω) � �′

10

1 + iω/λ1
+

1 − �′
10

1 + iωτ
(10)
W

(81)

X12 (ω) � �12

1 + iωτ12
+

1 − �12

1 + iωτ
(12)
W

(82)

The parameters �10 and τ
(10)
W can be evaluated via

�10 � τ10/τ
eff
10 − 1

λ1τ10 − 2 +
(
λ1τ

eff
10

)−1 , (83)

τ
(10)
W � τ

(10)
eff

λ1τ10 − 1

λ1τ
(10)
eff − 1

, (84)

where the characteristic times τ10 and τ
(10)
eff are determined by

τ10 � lim
ω→0

(ωχ12)
−1 Im

([
ϕ

(2)
0 (ω)

]
1

)
, (85)

τ
(10)
eff � lim

ω→∞
χ12

ω
Im

([
ϕ

(2)
0 (ω)

]
1

)−1
(86)

However, unlike Eqs. (75) and (76), analytic equations for the parameters �′
10,

τ
′(10)
W , �12, τ12 and τ

(12)
W are unknown. Therefore, in Eqs. (81) and (82), they are

treated as adjustable. In this way, the cubic polarization response f (3)
1 (t) can be

rewritten as

f (3)
1 (t) � ξ 3

0

4
χ13Re

{(
2Re [X13 (ω)] X ′(2)

10 (ω) + X13 (ω) X12 (ω) X ′(2)
10 (ω)

)
eiωt

+ X13 (3ω) X12 (2ω) X ′(2)
10 (ω) e3iωt

}
(87)

with X ′(2)
10 (ω) given by Eq. (81) and

X13 (ω) � �13

1 + iω/λ1
+

1 − �13

1 + iωτ
(13)
W

, (88)



50 P. M. Déjardin et al.

Fig. 1 (Color on line) Real
(a) and imaginary (b) parts
of the linear susceptibility
F (1)
1 (ω) � χ11X11 (ω)

versus the normalized
frequency ωτD for various
DC field amplitudes ξ0 with
anisotropy parameter
σ � 10. Solid lines: the
matrix solution. Symbols:
the two-mode approximation

(a)

(b)

where �13 and τ
(13)
W are again adjustable parameters.

As indicated by Figs. 1 and 2, the two-mode approximation formulas yield excel-
lent agreement with the exact numerical solution obtained via various matrix meth-
ods. The introduction of a distribution of relaxation times in the above calculations is
discussed in [27]. The treatment as outlined may be used to any order in perturbation
theory in the field strength. Thus, it may directly be applied both to nonlinear dielec-
tric relaxation of polar nematic liquid crystals and to nonlinear magnetic relaxation
of noninteracting single-domain ferromagnetic particles, and indeed to all polar sys-
tems where the interaction field is static. However, if this field is replaced by a mean
field accounting for the dynamics of the dipole, then pronounced new features appear
which are revealed in the nonlinear response only. We now review these.

5 Dynamical Mean Field Effects in the Nonlinear Dielectric
Response

Here, dynamical effects due to interactions are accounted for in first approximation,
as inspired by Berne [30]. He, by solving the Poisson equation with natural boundary
conditions, demonstrated that the collective tumbling of an assembly of interacting
dipoles was described by a nonlinear Fokker–Planck equation, where the orienta-
tional pair distribution function is systematically unity. Consequently, the potential
has dynamical features related to the time-dependent orientational probability den-
sity. The Fokker–Planck (Smoluchowski) Eq. (1) is formally unchanged, however V
is now replaced by

V (ϑ, t) � Us (ϑ, t) + Vint (ϑ, t) , (89)
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(a)

(c)

(b)

(d)

Fig. 2 (Color on line) Modulus of a the DC component of the nonlinear dielectric response∣∣∣F (2)
1,0 (ω)

∣∣∣, b the second harmonic component of the nonlinear dielectric response
∣∣∣F (2)

1,2 (ω)

∣∣∣, c the
fundamental component of that response

∣∣∣F (3)
1,1 (ω)

∣∣∣, and d the third harmonic component
∣∣∣F (3)

1,3 (ω)

∣∣∣
versus ωτD for various DC field amplitudes ξ0 with σ � 10. Solid lines: matrix solution. Symbols:
two-mode approximation using the fitting parameters as described in the text

where Us in Eq. (89) as usual contains the orientational terms due to the externally
applied fields, while in the dipolar approximation [22], the interaction field is repre-
sented by

Vint (ϑ, t) � 4πρ0μ
2

3
cosϑ f1 (t) . (90)

Under these conditions, we may write

βV (ϑ, t) � −ξ (t) cosϑ + λ cosϑ f1 (t) , (91)

where

λ � 4πβρ0μ
2/3 (92)

is 4π times the linear Langevin susceptibility of an ideal gas of dipoles. Thus, using
Eqs. (1) and (91), we have the intrinsically nonlinear differential-recurrence relations
as opposed to the linear result Eq. (5)



52 P. M. Déjardin et al.

2τD
n(n + 1)

ḟn (t) + fn (t) � 1

2n + 1
[ξ (t) − λ f1 (t)]

[
fn−1 (t) − fn+1 (t)

]
. (93)

The perturbation expansion (7) to cubic order in the field strength then yields the
scheme

f (0)n � λ f (0)1
2n + 1

[
f (0)n+1 − f (0)n−1

]
, (94)

2τD ḟ (1)n (t)

n (n + 1)
+ f (1)n (t) � ξ (t) − λ f (1)1 (t)

2n + 1

[
f (0)n−1 − f (0)n+1

]
+

λ f (0)1
2n + 1

[
f (1)n+1 (t) − f (1)n−1 (t)

]
, (95)

2τD ḟ (2)n (t)

n (n + 1)
+ f (2)n (t) � ξ (t) − λ f (1)1 (t)

2n + 1

[
f (1)n−1 (t) − f (1)n+1 (t)

]
+

λ f (2)1 (t)

2n + 1

[
f (0)n+1 − f (0)n−1

]

+
λ f (0)1
2n + 1

[
f (2)n+1 (t) − f (2)n−1 (t)

]
, (96)

and

2τD ḟ (3)
n (t)

n (n + 1)
+ f (3)

n (t) � ξ (t) − λ f (1)
1 (t)

2n + 1

[
f (2)
n−1 (t) − f (2)

n+1 (t)
]
+

λ f (3)
1 (t)

2n + 1

[
f (0)
n+1 − f (0)

n−1

]

+
λ f (2)

1 (t)

2n + 1

[
f (1)
n+1 (t) − f (1)

n−1 (t)
]
+

λ f (0)
1

2n + 1

[
f (3)
n+1 (t) − f (3)

n−1 (t)
]
. (97)

We desire f (1)
1 (t) and f (3)

1 (t). Thus [22] we have, specializing to a pure AC field

f (1)
1 (t) � ξ0

[
α

′(1)
1 (ω) cosωt + α

′′(1)
1 (ω) sinωt

]
(98)

with

α
′(1)
1 (ω) � 1

(3 + λ)(1 + ω2τ 2
1 )

, (99)

α
′′(1)
1 (ω) � ωτ1

(3 + λ)(1 + ω2τ 2
1 )

, (100)

and

τ1 � 3τD
3 + λ

. (101)

Clearly, the linear response to the AC stimulus in the dynamical mean field picture
is still essentially of Debye type. In contrast, however, the nonlinear response f (3)

1 (t)
is now given by

f (3)
1 (t) � ξ30

[
α

′(1)
3 (ω) cosωt + α

′′(1)
3 (ω) sinωt + α

′(3)
3 (ω) cos 3ωt + α

′′(3)
3 (ω) sin 3ωt

]
, (102)

where

α
′(1)
3 (ω) � − 3

20

(3 + λ)2 (4λ − 39) ω4τ41 + (378 + 522λ + 51λ2)ω2τ21 + 729

(3 + λ)4 [81 + 4 (3 + λ)2 ω2τ21 ](1 + ω2τ21 )
3

, (103)

α
′′(1)
3 (ω) �

ωτ1

{
81 (2λ − 21) + 3 (3 + λ)

[
(λ (λ − 45) − 198) − (3 + λ)2 ω2τ21

]
ω2τ21

}

10(3 + λ)4
(
81 + 4 (3 + λ)4 ω2τ21

) (
1 + ω2τ21

)3 , (104)
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Fig. 3 Normalized modulus of the normalized nonlinear response 3ω component A(3)
3 (ωτ1) �

1
α

′(3)
3 (0)

√(
α

′(3)
3 (ωτ1)

)2
+
(
α

′′(3)
3 (ωτ1)

)2
as a function of ωτ 1 for various λ. Note that α

′(3)
3 (0) ∝

(3 + λ)−4, i.e., decreases upon cooling. The value λ � 0 is the Coffey–Paranjape result

α
′(3)
3 (ω) �

9
[
(3 + λ)2 (51 + 20λ)ω6τ61 + 3 (279 − 4λ (λ (6 + λ) − 21)) ω4τ41 − 3 (λ (78 + λ) − 99) ω2τ21 − 81

]

20 (3 + λ)4
[
81 + 4 (3 + λ)2 ω2τ21

] [
1 + ω2τ21

]3 [
1 + 9ω2τ21

] (105)

α
′′(3)
3 (ω) �

9ωτ1

{
9 (2λ − 21) +

(
λ3 − 243λ − 297

)
ω2τ21 − 3 (3 + λ)

[
(3 + λ (19 + 4λ)) − (3 + λ)2 ω2τ21

]
ω4τ41

}

10 (3 + λ)4
[
81 + 4 (3 + λ)2 ω2τ21

] [
1 + ω2τ21

]3 [
1 + 9ω2τ21

] (106)

For λ � 0, these formulas become the usual nonlinear response of noninteracting
dipoles to alternating electric fields. However, cf. Figures 3 and 4, they strongly
deviate from the known results for large interactions, thereby revealing pronounced
dynamical effects due to intermolecular interactions, which must be investigated
via nonlinear response measurements. In particular, the humped-back shape of the
nonlinear response moduli found at large λ reveals the non-monotonic behavior of
that response for interacting molecules.

This finding is in marked contrast to that of the previous section, where the modu-
lus of the nonlinear response ismonotonic for all interaction strengths. Now, recalling
that the mean field approximation is a poor representation of long range intermolec-
ular interactions, shorter interaction ranges could be modeled using the model under
discussion by superimposing a P2 (cosϑ) f2 (t) term in the interaction potential (90).
This Ansatz then leads to aMartin–Maier–Saupe-type model as pertains to dielectric
relaxation of polar nematic liquid crystals. In particular, as the amplitude of the P2
term is increased, the humped-back shape disappears, implying that Eqs. (103)–(106)
can represent at best the “trivial” contribution to Ladieu’s toy model of nonlinear
dielectric relaxation of supercooled liquids [31]. This conclusion may be drawn
because according to the present theory, on decreasing the temperature, the humped-
back behavior of the nonlinear response spectrum vanishes, while experimental data
on glycerol exhibit the opposite behavior [22, 32]. Finally, quantitative comparison
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Fig. 4 Normalized modulus of the ω nonlinear polarizability component A(1)
3 (ωτ1) �

1
α

′(1)
3 (0)

√(
α

′(1)
3 (ωτ1)

)2
+
(
α

′′(1)
3 (ωτ1)

)2
as a function of ωτ 1 for various λ. Note that α

′(1)
3 (0) ∝

(3 + λ)−4, i.e., decreases upon cooling. λ � 0 is the Coffey–Paranjape result

of Eqs. (103)–(106) with experiment implies that we are using them for−3 < λ ≤ 3,
meaning that they can now only pertain to low densities. This behavior agrees with
that expected from the mean field (or random phase) approximation [33], although
that occasionally predicts a large density effect. Consequently, the only feasible way
to treat dynamical effects of the intermolecular interactions in the above calculation
is to abandon the mean field approximation entirely so that intermolecular orien-
tational correlations can be fully included. This task is much more involved and is
beyond the scope of our review.

6 Depolarizing Field and Internal Field

First, we recall various electrostatic concepts, e.g., the depolarizing and internal
fields, as they may be important in explaining experimental data. We start with
the depolarizing field. As much as possible, we loosely follow Brown’s excellent
presentation of the subject [34].

(a) The depolarizing field.

Consider a capacitor polarized due to a constant voltage imposed between its
electrodes in vacuo.Consequently, an electric fieldEvac exists between the electrodes.
However, insertion of a dielectric will cause a decrease in the voltage between the
electrodes (with respect to the field measured in vacuo). The origin of the decrease
is that polarization charges (of opposite signs) appear at the surfaces of the dielectric
which interface with the electrodes in order to ensure global electro-neutrality of the
overall structure (capacitor+dielectric). Consequently, one says that the dielectric is
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polarized, and the electric field inside the dielectric Ed has an opposite direction to
that of Evac. Hence, the overall electric field between the plates is decreased, thereby
explaining the voltage decrease due to the insertion of the dielectric, hence the name
“depolarizing field” for Ed [35]. Standard electrostatics shows that the depolarizing
field Ed is systematically proportional to the polarization vector of the substance,
and points in an opposite direction to that of the polarization vector of the dielectric.
Moreover, Ed depends on the sample shape. Thus

Ed � − ↔
Dp · P, (107)

where
↔
Dp is the depolarization tensor. The total field inside the dielectric (called the

Maxwell field) is then E � Evac +Ed, and the various electric susceptibilities as well
as the linear and nonlinear permittivities in electromagnetic theory are defined with
respect to this field. For example, in the linear case in the AC regime, we have

P(1) (ω) � ←→
χ

(1)
(ω) · E (ω) , (108)

where ←→
χ

(1)
(ω) is the linear susceptibility Cartesian tensor. For a macroscopic

spherical isotropic sample, this tensor becomes a scalar so that the linear polarization
can be linked to the vacuum field Evac, e.g., for a pure AC field in vacuo, we have

P(1) (ω) � 3

4π

(
4πχ(1) (ω)

3 + 4πχ(1) (ω)

)
· Evac. (109)

Since it is believed that the linear susceptibility (and therefore the linear complex
permittivity) of a sample is an intensive quantity, determining it under the assumption
of a specific shape is relatively unimportant since calculations for two different
shapes lead to the same expression [22, 36]. In particular, the expression for the
linear complex permittivity is the same both for an infinite thin dielectric sheet and
for a sphere, yielding [22, 36]

ε (ω) − 1 � 4πχ(1) (ω) � λ

1 + iωτD
, (110)

where λ is given by Eq. (92). This equation yields in particular the Langevin–De-
bye equation for an assembly of purely polar molecules ε (0) − 1 � λ in the static
regime. Now, the nonlinear susceptibilities may depend on the sample shape; how-
ever, if a liquid completely fills the vacuum between the electrodes, such corrections
are unnecessary, because then the applied field coincides with the Maxwell field.
However, for strongly polar liquids, the Langevin–Debye equation ε (0) − 1 � λ

noticeably disagrees with experiment, if the actual value of the dipole moment is
used. This is also true for any trivial modification of this equation. An explanation of
this discrepancy was given by Lorentz. He conjectured that a typical molecule in a
dense system does not experience the applied field as a consequence of the discrete
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nature of matter, instead it experiences that field plus the sum of the electric fields
due to all the other molecules, thus automatically leading to the concept of internal
or local field.

(b) The internal field.

We have seen that this field was introduced into the literature by Lorentz. Fur-
thermore, it is a convenient tool in the classical microscopic theory of dielectrics
[36] because at the molecular level, matter can no longer be regarded as continu-
ous. Although, strictly speaking, the calculation of this field should be quantum-
mechanical, nevertheless the translational and rotational motion of the molecules
does not depart markedly from classical behavior. Thus, we will continue with
the classical treatment, and again following Brown’s discussion [34], excluding the
motion of atoms or ions within the molecules.

By definition, the internal field E� is the field at the position of a specific (tagged)
molecule due to all charges except those attached to that molecule. Now, although
writing a general expression for the polarization (i.e., a macroscopic quantity) in
microscopic terms is relatively straightforward (i.e., the statistical average of the
vector sum of all molecular dipoles times the number of molecules per unit volume
or concentration), it is not at all simple to relate the internal field E� to the Maxwell
field E, or even to its average value [34]. Only for solutions of polar molecules in
nonpolar solvents is this distinction unimportant and then only in the simplest cases
can such a relation be established. These have been considered in detail by Lorentz
and later by Onsager.

(i) Outline of the Lorentz method for E� for polar dielectrics

We proceed as follows [34]: we construct a macroscopic sphere of radius R
(i.e., large with respect to intermolecular distances, but small with respect to the
overall macroscopic size of our sample), with center taken as the location of a typical
molecule where the local field is calculated. The local field can then be divided into
two parts: that due to matter outside the sphere Eout and that due to matter inside it
Ein. Under quite general conditions, we have from electrostatics

Eout � E +
4πP
3

. (111)

The computation of Ein is more difficult, as it must account in some way for the
spatial arrangement of the molecules near the (tagged) one at which E� is calculated.
Lorentz showed, assuming that the molecules are arranged at the sites of a simple
cubic lattice, that

Ein � 0. (112)

Hence, if the molecules near our (tagged) one are also situated at the sites of such
a lattice, Lorentz finds that
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E� � Ein + Eout � E +
4πP
3

. (113)

If the arrangement differs from the simple cubic one, then we have

E� � E +
4πP
3

+ Ein, (114)

whereEin is unknown. For a dielectric consisting of purely polarmolecules, Eq. (113)
leads to the Debye–Lorentz equation of state, viz.

ε − 1

ε + 2
� λ

3
, (115)

where ε � ε (0). Since λ ∝ T−1, Eq. (115) predicts a transition from an unpolarized
to a spontaneous polarized state at a finite temperature. For water in particular, this
temperature coincides with room temperature, therefore giving rise to a fundamental
criterion whereby Eqs. (113) and (115) must be rejected for polar dielectric liquids
with large dielectric constants. Finally, Eq. (114) is not used in practice because of
the extreme difficulty in evaluating Ein.

(ii) Outline of Onsager’s method of calculating E� for polar dielectrics.

As already alluded to above, the Lorentz method of calculating ε for polar sub-
stances must be rejected. Now, Onsager [37] remarked (full details are available in
[39]) that the effect of long range dipole–dipole interactions is not accounted for
properly in Lorentz’s computation of E�. In effect, he modified Lorentz’s method to
include the effects of the surroundings of the tagged molecule of permanent dipole
moment μ on the local field at this molecule. In order to calculate ε, he used a model
originally proposed by Bell [38] for a spherical dipolar molecule embedded in a
dielectric. This model is a rigid point dipole situated at the center of a macroscopic
empty spherical cavity of radius a in a dielectric continuumwith permittivity equal to
the bulk permittivity ε. The radius of the cavity is determined from the close-packing
condition

4πρ0a3

3
� 1,

so that the volume of the cavity is that available to each molecule. Now the dipole μ

itself creates a dipolar field that polarizes the surroundings. The resulting polarization
of the surroundings in turn induces a uniform field in the cavity which is called the
reaction field R. For a spherical cavity, the uniform field R has the same direction
as the dipole moment in the cavity (if the cavity is not spherical, this is not so), thus,
for purely polar molecules, Onsager can write R � f μ. Furthermore, if a uniform
electric fieldE is imposed on the dielectric by external sources, standard electrostatics
[35] shows that the field in the empty cavity (i.e., with no dipole in it) is not equal to
E. This field is called the cavity field G and for a spherical cavity, is collinear with



58 P. M. Déjardin et al.

E, so that we have G � gE. Then Onsager writes the overall field in the spherical
cavity in the presence of E and the tagged dipole μ due to the surroundings as

E� � G + R � gE + f μ, (116)

The coefficients g and f can be calculated via electrostatics [35]. For a spherical
cavity of radius a in an infinite dielectric, we have (details in [39, 47])

g � 3ε

2ε + 1
, f � 2 (ε − 1)

(2ε + 1) a3
. (117)

Now, at equilibrium, the reaction field gives rise to zero torque on the tagged dipole
because the term −μ · R contributes only a constant to its orientational potential
energy. Then, by equating the macroscopic polarization from electrostatics with that
obtained via statistical mechanics, Onsager finds (in the linear regime)

(ε − 1)E � λgE. (118)

Thus, by using Eq. (117), we have Onsager’s equation describing dielectrics con-
sisting of pure polar molecules, viz.,

(ε − 1) (2ε + 1)

3ε
� λ. (119)

For polar and isotropically polarizable molecules, Eq. (119) is only slightly mod-
ified. Using ε∞ � n2 (where n is the refractive index of the medium) and the
Lorenz–Lorentz equation [39], Onsager finds

(ε − ε∞) (2ε + ε∞)

ε (ε∞ + 2)2
� λ

3
. (120)

Equation (120) may be used to determine the permittivity of assemblies of pure
polar molecules. However, for water at 25 °C, Eq. (120) yields ε ≈ 30, while the
experimental value is 78.5. Nevertheless, Onsager’s method has the great advantage
of removing the unphysical ferroelectric Curie point predicted by the Lorentz–Debye
formula (115). The lack of full agreement with the experimental value of ε suggests
that Eq. (120) should be improved.

(iii) The Kirkwood–Fröhlich formula for the relative permittivity

Onsager’s Eq. (120) was generalized by Kirkwood [40] to a cavity containing
a very large number of interacting molecules and he obtained in so doing a much
more acceptable value for the relative permittivity of water. However, Fröhlich [39]
presented a more systematic derivation valid for all assemblies of polar molecules,
which may be summarized as follows. We regard our entire macroscopic specimen
as a very large sphere of radius b placed in a uniform field and select from it a smaller
yet still macroscopic sphere of radius a, such as a << b. The inner sphere is treated
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on a microscopic basis (i.e., via statistical mechanics), while the large surrounding
shell is treated as a continuous dielectric medium, i.e., on a macroscopic basis. The
entire system (inner sphere + surroundings) is assumed to obey the laws of classical
statistical mechanics. Regarding the inner sphere, the total dipole moment of an
ensemble of N charges is

M (X) �
N∑
i�1

eiri , (121)

where ri is the displacement of charge number i and ei is its charge. Now, an atom or
molecule contains several elementary charges (s in total) and X is the ensemble of
the associated displacements ri . Following Fröhlich, we term an atom or molecule
of the inner sphere a cell and label such a cell j, and assume that each cell makes the
same contribution to the polarization in the direction of the applied field E inside
the shell. The dipole moment of the cell j is, applying Eq. (121) to the cell j

m
(
x j

) �
s∑

k�1

e jkr jk (122)

with obvious notations. Then, the total dipole moment of the inner sphere comprising
N cells is

M (X) �
N∑
j�1

m
(
x j

) �
N∑
j�1

s∑
k�1

e jkr jk (123)

Now the mean total dipole moment of the inner sphere in the direction of E is

〈M · e〉 � 1

Z

π∫
0

∫
N

(M (X) · e) e−βU (X,E) sin ϑdXdϑ, (124)

where U (X,E) is the potential energy of the system of molecules inside the inner
sphere in the presence of E, ϑ is the angle between M and E, e is a unit vector in
the direction of E, and Z is the partition function defined by

Z �
π∫

0

∫
N

e−βU (X,E) sin ϑdXdϑ.

Hence, in the linear approximation in E, we have (details in [39])

〈M · e〉 � 3ε

2ε + 1

β

3

〈
M2

〉
0 , (125)
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where
〈
M2

〉
0 is the mean square value of the dipole moment of the inner sphere in the

absence of the electric field. By equating the (macroscopic) polarization obtained
via electrostatics with that given by Eq. (125), we then have

(ε − 1) (2ε + 1)

3ε
� 4πβ

3υ

〈
M2

〉
0 , (126)

where υ is the volume of the dielectric. The last equation is a perfectly general result,
and is the equation of state for linear dielectrics. Put succinctly, it yields ε in terms
of the mean square fluctuations of the dipole moment of a macroscopic spherical
specimen of the dielectric embedded in a large volume of the same dielectric. These
fluctuations in the dipole moment are the total fluctuations from all causes, because
in the dielectric several mechanisms of polarization may be operative [39].

Equation (126) may further be specialized to identify a specific mechanism,
namely the contribution of the displacement (or distortional) polarization to the total
dipole moment of a molecule, which is the sum of the permanent and the induced
dipolemoment. This postulate assumes that the contribution of this mechanism to the
permittivity may be treated by separating the overall polarization into a systematic
term essentially due to the permanent dipoles of the molecules and a term due to
the elastic displacement of all charges. For simplicity, the latter mechanism is then
treated on a continuous basis, assuming that for this mechanism only the inner sphere
is filled with material having static relative permittivity ε∞. The sum of the cavity
and reaction fields yields

E� � 3εE
2ε + ε∞

+
2 (ε − ε∞)

a3 (2ε + ε∞)
M, (127)

plus the field of the dipoleM. Since both the dipole and the reaction fields contribute
only a constant to the orientational potential energy, Eq. (126) becomes (details again
in [39])

(ε − ε∞) (2ε + ε∞)

3ε
� 4πβ

〈
M2

〉
0

3υ
. (128)

Now, the evaluation of the static permittivity from Eq. (128) requires the calcu-
lation of

〈
M2

〉
0. On using Eq. (123) and confining ourselves to terms linear in E, we

have

〈
M2

〉
0 �

N∑
j�1

Z−1
0

∫
N

m
(
x j

) · M (X) e−βU (X,0)dX, (129)

where

Z0 �
∫
N

e−βU (X,0)dX
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is the partition function in the absence of the external field. On introducing the
notation

dX j � dx1 . . . dx j−1dx j+1 . . . dxN

so that

dX � dX jdx j ,

we can rewrite Eq. (129) with some algebra as

〈
M2

〉
0 �

N∑
j�1

∫
j

dx jm
(
x j

) ·

∫
N−1

M (X) e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j

∫
N
e−βU (X,0)dX

.

Next, by introducing the probability p
(
x j

)
of finding the jth cell with the set of

displacements x j

p
(
x j

) �

∫
N−1

e−βU (X,0)dX j

∫
N
e−βU (X,0)dX

and m∗ (x j
)
the mean moment of the sphere given that its jth cell has a set of fixed

displacements x j so that

m∗ (x j
) �

∫
N−1

M (X) e−βU (X,0)dX j

∫
N−1

e−βU (X,0)dX j
,

one may express the mean square dipole fluctuations
〈
M2

〉
0 as a sum of statistical

averages over the jth cell only. In other words, we have

〈
M2

〉
0 �

N∑
j�1

∫
j

dx jm
(
x j

) · m∗ (x j
)
p
(
x j

)
dx j . (130)

Next, it may be shown from electrostatics [41] that the dipole moment induced
in a sphere by a dipole residing in a cavity in that sphere is independent of the size
of the latter. This result is extremely important because ε is an intensive quantity
(therefore independent of the size and shape of the dielectric, and the calculations
are easiest for spherical shapes). This result is true even if the cavity is not concentric
with the surrounding spherical shell, so that the precise location of the cavity in the
dielectric is unimportant provided it is taken as spherical. Next, let m∗

s denote the
dipole moment of a sphere surrounding the jth cell. Thus, if m∗

s can be obtained by
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treating the jth cell as a point dipole in a spherical cavity surrounded by a continuous
dielectric, then

m∗
s � m∗,

where by definition m∗ is the dipole moment of the entire sphere. Thus, we have

m∗ � m,

so that Eq. (128) reduces to Onsager’s Eq. (120). Therefore, we must assume that
m∗ �� m, since Onsager’s equation does not predict ε quantitatively, meaning that
it is impossible to treat the jth cell as a point dipole surrounded by a continuous
dielectric. In other words, m∗ �� m if and only if

– The shape of the jth cell differs from that of a sphere, a hypothesis that we do not
make, otherwise the electrostatic part of the calculation becomes very difficult,

– The region surrounding the jth cell cannot be treated on a macroscopic basis, a
hypothesis that wewill maintain in our calculation of ε because thenwe can handle
the surroundings of the jth cell by the methods of (classical) statistical mechanics.

Furthermore, an important consequence of all the electrostatic considerations
made above is that m∗ is independent of the position of the jth cell as long as this
cell is so far removed from the bounding surface of the dielectric so that it allows
its interaction with the outside to be treated on a macroscopic basis. Of course, for
an infinite dielectric, this last condition is always true. Bearing in mind all the above
hypotheses, we have

〈
M2

〉
0 � N

〈
m · m∗〉

0 ,

since each cell contributes equally to the polarization. Consequently, Eq. (128)
becomes

(ε − ε∞) (2ε + ε∞)

3ε
� 4πβρ0

3

〈
m · m∗〉

0 . (131)

In this equation, ρ0 � N/υ is the number of cells per unit volume of the dielectric,
andm andm∗ now refer to nonelectronic displacements. Having derived Eq. (131),
we can obtain the so-called Kirkwood–Fröhlich equation by first choosing the cell
j in such a way that it contains only one dipolar molecule of dipole moment μ,
meaning that the orientations of the dipoles are the only variables. We now define

m∗ � μ∗, (132)

where μ∗ is the average dipole moment of the sphere when the tagged dipole μ is
held in a fixed orientation. Now, in a liquid, in the absence of an applied field, all
dipolar directions are equivalent therefore
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〈
m · m∗〉

0 � 〈
μ · μ∗〉

0

and we must also have

〈
μ · μ∗〉

0 � μ · μ∗. (133)

Finally, if the interactions with nearest neighbors only are considered, then μ∗
is the sum of the moment μ of the tagged dipole held in a fixed orientation relative
to its neighbors and the average of the sum of the moments of its nearest neighbors.
Hence, if z represents the average number of nearest neighbors, we have

μ · μ∗ � μ2
(
1 + z 〈cos γ 〉Av

) � μ2gK ,

where γ is the angle between neighboring dipoles, and gK is called the Kirkwood
correlation factor, so that Eq. (128) becomes

(ε − ε∞) (2ε + ε∞)

3ε
� 4πρ0μ

2gK
3kT

. (134)

Furthermore, the value of the dipole moment to be used in Eq. (134) is the dipole
moment of amolecule embedded in amediumof dielectric constant ε∞. Thismoment
is related to the vacuum moment by the equation [39]

μ � ε∞ + 2

3
μg, (135)

where μg is the dipole moment of the molecule in vacuo. Hence, by combining
Eqs. (134) and (135), we finally have the Kirkwood–Fröhlich equation, viz.,

(ε − ε∞) (2ε + ε∞)

ε (ε∞ + 2)2
� λgK

3
. (136)

By accounting for nearest neighbor contributions as described above, Kirkwood
obtained ε � 67 for water at 25 °C, a far more acceptable value. By including both
nearest and next-nearest neighbors in the evaluation of gK , Oster and Kirkwood
[42] found ε � 78.5, in excellent agreement with experiment. Now, we describe
the generalization of the Kirkwood–Fröhlich equation to the frequency-dependent
(complex) permittivity in the linear approximation.

(iv) The dynamical equation for the linear complex permittivity

Any theory of the linear complex permittivity ε (ω) of polar fluids must include
the effect of the local field at the dynamical level. This calculation is much more
involved than its static counterpart, because the dynamics of the internal field are
generally unknown [39] and in addition are a function of ε (ω), i.e., the property one
is trying to calculate. However, we may proceed in a general sense by establishing a
relation between the time-dependent dipolemoment of the dielectric and the complex
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permittivity. The dipole moment induced in a dielectric body induced by a very small
time-dependent external electric field is, at any time (assuming that both quasi-
electrostatics and linear response obtain)

M (t) �
t∫

0

E (t − x)
da

dx
(x) dx, (137)

where a (t) is the step response of the body and E (t) � 0 for t < 0. Following
Scaife [41], we introduce the aftereffect function b (t) defined by

b (t) �
{
a (∞) − a (t) (t > 0)

0 (t < 0)
, (138)

so that the polarizability α (ω) of the body is given by

α (ω) �
∞∫
0

ȧ (t) e−iωtdt � −
∞∫
0

ḃ (t) e−iωtdt . (139)

We must now relate a (t) (or b (t)) to the induced time-dependent dipole moment
M (t). This is accomplished by via the fluctuation–dissipation theorem which we
explain as follows. First, we remark that by applying the Kramers–Kronig relations
to α (ω) � α′ (ω) − iα′′ (ω), viz.,

α′ (ω) � 2

π

∞∫
0

zα′′ (z)
z2 − ω2

dz, α′′ (ω) � − 2

π

∞∫
0

ωα′ (z)
z2 − ω2

dz,

we have, at zero frequency

α′ (0) � 2

π

∞∫
0

α′′ (ω)

ω
dω � β

3

〈
M2

〉
0 . (140)

Now, denoting time averages by an overbar, we have by ergodicity

〈
M2

〉
0 � M2 � lim

T ′→∞
1

T ′

T ′/2∫
−T ′/2

M (t) · M (t) dt

However, by the Parseval–Plancherel theorem, we must also have
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〈
M2

〉
0 � 1

2π

∞∫
−∞

lim
T ′→∞

∣∣∣M̃ (ω) · M̃∗ (−ω)

∣∣∣
T ′ dω � 1

2π

∞∫
−∞

SM (ω) dω, (141)

where the star denotes the complex conjugate, the tilde denotes the Fourier transform
of M(t), i.e.,

M̃ (ω) �
T ′/2∫

−T ′/2

M (t) e−iωtdt, T ′ → ∞,

and SM (ω) is by definition the spectral density of the fluctuations of the dipole M.
Hence via Eqs. (140) and (141), we then have the fluctuation–dissipation theorem
(FDT),

6α′′ (ω) � βωSM (ω) . (142)

Thus, we have related the dissipative part α′′ (ω) of the frequency-dependent
complex polarizability to the spectral density of the spontaneous fluctuations in the
dipole moment at equilibrium of the dielectric body. In deriving the FDT, we have
asserted that macroscopic fluctuations decay according to macroscopic laws.

Now, on introducing the autocorrelation function of the dipole CM (t) defined by

CM (t) � lim
T ′→∞

1

T ′

T ′/2∫
−T ′/2

M
(
t − t ′

) · M (
t ′
)
dt ′ � M (t − t ′) · M (t ′). (143)

so that by theWiener–Khintchine theorem [3],CM (t) and SM (ω) are Fourier cosine
transform pairs, hence recalling that CM (t) is even in time and SM (ω) is even in
frequency we have

CM (t) � 1

π

∞∫
0

SM (ω) cos (ωt) dω � 6

πβ

∞∫
0

α′′ (ω)

ω
cos (ωt) dω (144)

In writing the foregoing equation, we have used the FDT Eq. (142). Thus, by
Fourier inversion, Eq. (144) obviously yields α′′ (ω) in terms of the Fourier cosine
transform of the aftereffect function b (t), viz.,

α′′ (ω) � βω

3

∞∫
0

CM (t) cos (ωt) dt � ω

∞∫
0

b (t) cos (ωt) dt

where we have used Eq. (139). Thus b (t) and M (t) are related via



66 P. M. Déjardin et al.

3b (t) � βCM (t) (145)

Now, by ergodicity and stationarity in time, we also have

CM (t) � 〈M (0) · M (t)〉0 .

Thus, the polarizability may be expressed in terms of the total dipole moment
fluctuations as

α (ω) � β

3

⎧⎨
⎩
〈
M2

〉
0 − iω

∞∫
0

〈M (0) · M (t)〉0 e−iωtdt

⎫⎬
⎭ . (146)

This is the commonly known Kubo relation generalizing that of Fröhlich at zero
frequency, viz., α′ (0) � β

〈
M2

〉
0 /3 to the frequency-dependent case, as obtained

using the new method of Scaife [47]. Furthermore Scaife (see [47], Chap. 7,
Eq. (7.217) has also shown by means of rather involved calculations that Eq. (128)
may be generalized to the frequency-dependent case yielding

[ε (ω) − ε∞] [2ε∗ (ω) + ε∞] [2ε (ω) + 1]

ε (ω) [2ε∗ (ω) + 1] (ε∞ + 2)2
� 4πα (ω)

3υ
. (147)

Here, we have separated the displacement polarization mechanism as before, and
α (ω) is the polarizability of a sphere in vacuo (i.e., calculated by means of classical
statistical mechanics). Any further calculation necessitates a detailed investigation
of the dynamics of the fluctuation phenomena at the microscopic level.

In this context, Nee and Zwanzig [43] included the fact that in the time-dependent
situation the reaction field R lags behind the dipole. Thus, they obtained, for the
dynamicalOnsagermodel (i.e., ignoring dynamical correlations) the Fatuzzo–Mason
equation [44], viz.,

[ε (ω) − ε∞] [2ε (ω) + ε∞]

3λε (ω)
� 1

1 − iωτD − (
1 − ε∞

ε

) (
ε(ω)−ε

2ε(ω)+ε∞

) . (148)

Hence, they were able to reproduce the experimental complex permittivity of
glycerol at −60 °C. However, their derivation of Eq. (148) is open to objection. In
effect, when a dipole rotates, it produces a time-dependent field outside the cavity,
and energy is dissipated to the surroundings because of dielectric loss. Therefore,
the dipole moment slows down: this is dielectric friction. This frictional effect is in
addition to the local effects of van der Waals forces, which are usually represented
by the frictional term in the Langevin equation [3]. The problem is then to determine
how dielectric friction combines with the Stokes–Einstein friction of the rotational
Brownian motion [39]. Therefore, the most rigorous treatment of the linear complex
permittivity to date is that of Scaife, Eq. (147) [47].

https://doi.org/10.1007/978-3-319-77574-6_7
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(v) The nonlinear static susceptibilities and the local field

The range of validity of both the Onsager and the Kirkwood–Fröhlich equations
has been described in Fröhlich’s own words [39]: a molecule occupies a sphere of
radius a, its polarizability is isotropic and no saturation effects can take place. In
other words, provided the external field is small and static, the above treatment of the
local field holds. If the field is increased so that the dielectric behaves nonlinearly, all
the above treatment must be revisited. Here, we summarize the inclusion of internal
field effects on nonlinear susceptibilities. Thus, we briefly review the main results
already obtained for the cubic dielectric increment of polar fluids. In this context,
Onsager mentions that his local field formula (116) is not suitable for estimating
nonlinear effects due to strong electric fields. The reason for that is in the absence of
free charges, the electric displacement vector D obeys the Maxwell equation:

∇ · D � 0, (149)

while the Maxwell field obeys the irrotational condition

∇ × E � 0 (150)

so that E � −∇�, where � is the electrostatic potential. However, Eqs. (149) and
(150) cannot be solved without a constitutive equation linking D and E, which for
nonlinear dielectrics is

D � εR
(
E2)E. (151)

Furthermore, we are interested in the cubic dielectric increment only, thus wemay
expand the field-dependent permittivity εR

(
E2

)
as

εR
(
E2

) ≈ ε
(
1 − κE2

)
, (152)

where κ is the relative cubic nonlinear dielectric increment and ε is the constant
linear permittivity as before. Now, it is found [45] that κ is of the order of 10−18

m2/V2 and is usually positive (normal saturation), however, negative values have
also been observed (anomalous saturation) [45–47]. By analogy with the Langevin
theory of paramagnetism, the phenomenon described by Eq. (152) is called dielectric
saturation. From Eqs. (149)–(152), we see that the electrostatic potential� no longer
satisfies Laplace’s equation, instead satisfying [45]

(
1 − κ (∇�)2

)∇2� � κ (∇� · ∇) (∇�)2 (153)

The details of the approximate perturbative solution of the nonlinear Eq. (153) are
given elsewhere [45], and may be summarized as follows. Because of the smallness
of κ , one may seek the solution of Eq. (153) by perturbation methods, i.e., we may
write
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� � �(0) + κ �(1). (154)

Here, �(0) is the solution of Laplace’s equation while �(1) is the perturbed part
of the electrostatic potential because the dielectric is no longer linear. Including the
effect of the polarizability of the molecules, we then find that the Kirkwood–Fröhlich
equation is modified to (details in [45])

ε − ε∞ �
(

3ε

2ε + ε∞

)
4πβ

〈
M2

〉
0

3υ
+ 2κε

(
2ε − 5ε∞
(2ε + ε∞)4

)
(4π)3 β

〈
M4

〉
0

15υ3

+
(4π)2 κε (ε∞ − 1)

〈
M2

〉
0

(2ε + 1) υ2

[
2

3

2ε − 5ε∞
(2ε + ε∞)3

− 32πβε

5 (2ε + ε∞)4

〈
M4

〉
0

υ
〈
M2

〉
0

]
,

(155)

while the nonlinear dielectric increment is

�ε

E2
� κε � − 4πβ3

90υQ

(
2ε + 1

2ε + ε∞

)(
3ε

2ε + ε∞

)3 (
3
〈
M4

〉
0 − 5

〈
M2

〉2
0

)
(156)

where �ε is the absolute nonlinear dielectric increment, and

Q � 1 +
1

5

(ε∞ − 1)
(
28ε3 − 66ε2ε∞ − 60εε2∞ − 37ε3∞

)

(2ε + ε∞)4

+
4πβ

〈
M2

〉
0

15υ (2ε + ε∞)5

{(
28ε3 − 66ε2ε∞ − 60εε2∞ − 37ε3∞

)
(2ε + 1) −54ε (ε∞ − 1)

(
4ε2 + 2εε∞ + 3ε2∞

)}

+
(4π)2 β2

(
9
〈
M4

〉
0

− 5
〈
M2

〉2
0

)

75υ2 (2ε + ε∞)6

{
6ε2 (ε∞ − 1) (2ε − 5ε∞) −ε (2ε + 1)

(
4ε2 − 8εε∞ + 13ε2∞

)}

+ 3
(4π)3 β3ε2

(
3
〈
M6

〉
0

− 5
〈
M2

〉2
0

〈
M4

〉
0

)

25υ3 (2ε + ε∞)7

(
4ε2 − 18εε∞ + 10ε − 5ε∞

)
. (157)

Now, the extra terms in the modified Kirkwood–Fröhlich Eq. (155) can usually
be ignored in practice, especially for liquids with large permittivity. In contrast, the
expression for the nonlinear dielectric increment cannot be simplified. Here, it is
impossible to proceed without a statistical model allowing the calculation of the
statistical averages in Eqs. (156) and (157).

Other attempts to calculate �ε/E2 were made before that of Coffey and Scaife.
Following an earlier remark of Van Vleck [48], a first calculation of the nonlinear
dielectric increment was attempted by Thiébaut [49], assuming that intermolecular
correlations are negligible. Orientational correlations were included in the formula
derived with the assumptions of Van Vleck by Kielich [50] before Thiébaut’s work,
then later by Barriol and Greffe [51], and Böttcher [46], with the result

�ε

E2
� κε � 4πρ0β

3μ4

45

ε4 (ε∞ + 2)4

(2ε + ε∞)2
(
2ε2 + ε2∞

) RS, (158)
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where

RS � 3
〈
M4

〉
0 − 5

〈
M2

〉2
0

2ρ0υμ4
(159)

is called the Piekara–Kielich correlation factor [46, 50], which also arises in the
Coffey–Scaife formula. However, unlike the Kirkwood factor, RS may be negative
or positive, indicating that an anomalous saturation effect may on occasion dominate
the normal saturation effect. Now, Van Vleck’s derivation [48] assumes that

εR
(
E2

) ≈ ε
(
1 − κE (0)2

)
, (160)

where E(0) � −∇�(0) is the field existing in a linear dielectric. However, as already
pointed out by Onsager and later by Brown [34], no logical grounds exist for making
this assumption about a nonlinear dielectric and then replacing εR

(
E2

)
by εR

(
E (0)2

)
both in the cavity and reaction field factors (117), because this is equivalent to assum-
ing that the dielectric is linear in the overall sense, despite the fact that one is
attempting to calculate a nonlinear property. Hence, one cannot merely assume that
Eq. (160) holds for a nonlinear dielectric. A more complete theoretical discussion
is given in [45].

Now, although Eq. (160) is, stricto sensu, incorrect, comparison of Eq. (158) with
experiment (with Rs � 1) shows that agreement may sometimes be achieved, espe-
cially in substances where the Kirkwood correlation factor has value 1 [45]. Marked
differences between the Thiébaut [49] and Coffey–Scaife formulas and experimental
data occur occasionally [45], nevertheless the disagreement arises for both formulas
from the same sources of uncertainty, namely, either experimental errors or the lack
of accounting for orientational correlations. Thus, Eq. (156) demonstrates clearly
that the local field manifests itself quite differently for the relative permittivity and
for the nonlinear cubic dielectric increment.

Regarding dynamical susceptibilities, all we may anticipate is that the single
dielectric increment splits in two dynamical responses: one at the fundamental and
one at the third harmonic.

7 A Perspective: The Dean-Kawasaki Approach

As alluded to previously, it is very difficult, if not impossible, to calculate the dynam-
ics of the internal field exactly. Nevertheless, the various correlation effects may still
be calculated by using a specificmany-bodymethod, comprising the Dean-Kawasaki
method [52, 53]. The latter naturally extends Berne’s approach [54] so far as themean
field approximation is relaxed. For simplicity, we consider an assembly of dipoles
that are distributed at random however with positions fixed in space so that only the
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rotational degrees of freedom are relevant. The stochastic equation describing the
collective tumbling of the dipoles is then [53]

2τD
∂ρ

∂t
(u, t) � ∇u ·

[
βρ (u, t)∇u

δF

δρ
(u, t) + γ (u, t)

]
, (161)

where γ (u, t) is a randomGaussianwhite noise vector fieldwith statistical properties

γ (u, t) � 0, (162)

γi (u, t) γ j (u′, t) � τ−1
D ρ (u, t)δi jδ

(
u − u′) δ

(
t − t ′

)
, (i, j) � x, y, z. (163)

Here, the overbar denotes an average over the distribution of the realizations of
the noise field γ, δi j is Kronecker’s delta while δ

(
u − u′) and δ

(
t − t ′

)
are Dirac

delta functions, ρ is defined by

ρ (u, t) �
N∑
i�1

δ (u − ui (t)), (164)

ui (t) is the orientation of dipole i with dynamics governed by its individual
rotational Langevin equation, F � F [ρ] is a free energy functional and is also
a (stochastic) functional of ρ (the compact notation δF/δρ holds for a functional
derivative taken in the usualway for deterministic quantities). If only pair interactions
are retained, the free energy functional F for a pure species may be restricted to just
an entropic term, a field orientational term and (long range) pair intermolecular
interactions, viz.,

F [ρ] (t) � kT
∫

ρ (u, t) ln ρ (u, t) du − μE (t)
∫

(u · e) ρ (u, t) du

+
1

2

∫ ∫
ρ (u, t)Um

(
u,u′) ρ

(
u′, t

)
dudu′, (165)

where Um
(
u,u′) is the interaction energy for a single pair of dipoles. By defining

the orientational one-body and pair densities W and W2 by the equations

ρ (u, t) � W (u, t) , ρ (u, t) ρ (u′, t) � W2
(
u,u′, t

)
, (166)

and averaging Eq. (161) over the distribution of the realizations of the noise field,
we have the partial integrodifferential equation

2τD
∂W

∂t
(u, t) � ∇u · [∇uW (u, t) + βW (u, t)∇uVi (u)]

+ β∇u ·
∫

∇uUm
(
u,u′)W2

(
u,u′, t

)
du′, (167)
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where Vi (u, t) � −μE (t) (u · e) is the mean electrostatic orientational energy
due to the molecular field (i.e., the orientational electrostatic energy as seen by a
molecule). As written, Eq. (167) is just a rotational Fokker–Planck (Smoluchowski)
equation forced by pair interactions. However, it may also be regarded as a nonlinear
integrodifferential equation forW the orientational single-body density, becauseW2

may be written in most general form as

W2
(
u,u′, t

) � W (u, t)W
(
u′, t

)
g
(
u,u′, t

)
,

where g
(
u,u′, t

)
is the dynamical orientational pair distribution function. In particu-

lar, Eq. (167) has been used to evaluate the temperature dependence of the dielectric
constant of water and methanol, giving satisfactory agreement between the Kirk-
wood–Fröhlich formula and experimental data without any fitting parameter [55].
Thus, it appears that higher nonlinear correlation factors could also be computed
with this method.

8 Conclusion

Wehave reviewed a number of methods for the calculation of the linear and nonlinear
polarization responses to externally applied fields, both for noninteracting and inter-
acting molecules. In this way, we have emphasized the role that may be played by
dynamical interaction effects and the possible importance of the internal field effects
in these nonlinear responses. In particular, we have given a simple method whereby
thermally activated effects could be included in the theory. Moreover, we have also
indicated how dynamical effects due to intermolecular interactions may alter the
nonlinear polarizability spectra without affecting the linear response. The inclusion
of internal field effects in these nonlinear spectra is absolutely nontrivial and is left
for future investigation. Here, we have accounted for intermolecular interactions at
the mean field level only, thereby effectively neglecting intermolecular interactions.
However, we have also indicated how the collective tumbling of the dipolar system
may be treated on the basis of the Dean-Kawasaki formalism, because this allows the
inclusion of static and dynamic correlations at the molecular level. This formalism
is essentially equivalent to the Bogolyubov–Born–Green–Kirkwood–Yvon formal-
ism [33] treatment by diffusion processes, in which inertial effects are neglected
completely. In effect, the short-range van der Waals forces are accounted for using
a white noise approximation in the manner of Langevin [3], while the long range
forces are treated explicitly. In particular, the Dean-Kawasaki formalism is able to
reproduce the nonlinear integrodifferential equation obeyed by the equilibrium pair
distribution function [32], in turn reducing to the Born–Green equation [33] when
the Kirkwood superposition principle is used. Therefore, for the purpose of mod-
eling long range interaction potentials, the various correlation factors occurring in
Eqs. (136) and (156) can be computed. These tasks are left for future research.
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