
Evolving the Topology of Large Scale
Deep Neural Networks

Filipe Assunção(B) , Nuno Lourenço , Penousal Machado ,
and Bernardete Ribeiro

CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal
{fga,naml,machado,bribeiro}@dei.uc.pt

Abstract. In the recent years Deep Learning has attracted a lot of
attention due to its success in difficult tasks such as image recognition
and computer vision. Most of the success in these tasks is merit of Con-
volutional Neural Networks (CNNs), which allow the automatic con-
struction of features. However, designing such networks is not an easy
task, which requires expertise and insight. In this paper we introduce
DENSER, a novel representation for the evolution of deep neural net-
works. In concrete we adapt ideas from Genetic Algorithms (GAs) and
Grammatical Evolution (GE) to enable the evolution of sequences of lay-
ers and their parameters. We test our approach in the well-known image
classification CIFAR-10 dataset. The results show that our method:
(i) outperforms previous evolutionary approaches to the generations of
CNNs; (ii) is able to create CNNs that have state-of-the-art performance
while using less prior knowledge (iii) evolves CNNs with novel topolo-
gies, unlikely to be designed by hand. For instance, the best performing
CNN obtained during evolution has an unexpected structure using six
consecutive dense layers. On the CIFAR-10 the best model reports an
average error of 5.87% on test data.
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1 Introduction

Machine Learning (ML) enables machines to learn from large volumes of data,
where often there is the need to pre-process the data in order to extract fea-
tures. To do that, it is required expert knowledge about the problem domain,
and then we have to manually design a model that can learn the data patterns.
Deep Learning (DL) avoids this by building models that are aimed at learning a
representation of the data, thus reducing the amount of required domain knowl-
edge. But, DL models tend to require deep Artificial Neural Networks (ANNs)
so that the learning of the problem features is effective. Nonetheless, DL has
been successfully applied in many domains, such as, computer vision [7,18,23],
speech recognition [6,11], or machine translation [33].
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 19–34, 2018.
https://doi.org/10.1007/978-3-319-77553-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77553-1_2&domain=pdf
http://orcid.org/0000-0002-0915-8475
http://orcid.org/0000-0002-2154-0642
http://orcid.org/0000-0002-6308-6484
http://orcid.org/0000-0002-9770-7672


20 F. Assunção et al.

An example of a deep network, which is often used for object recognition is
VGG, introduced by Simonyan and Zisserman in [25]. VGG is a 16 to 19 deep
Convolutional Neural Network (CNN), which has pushed the boundaries on the
ImageNet Challenge 2014. CNNs, as other DL models, involve a large number
of design choices. For instance, one needs to decide on the number of layers,
the type of layers, and the parameterisation of the multiple receptive fields that
compose it such as the number of filters, stride, or filter sizes. Everyday these
models get more and more complex and optimising all the involved parameters is
becoming an increasingly arduous task. For that reason, researchers have focused
their efforts on automating the design of deep networks. The current work is a
step forward in this line of research.

In this article in propose DENSER, a novel representation that is capable of
searching for adequate topologies (and the learning hyper-parameters) of CNNs.
Although in the current paper we only apply it to the evolution of CNNs, we
argue that the proposed method can be applied to different network structures.
By combining the principles of a standard Genetic Algorithm (GA) with Gram-
matical Evolution (GE) [20] we allow the direct evolution of a sequential list of
layers, where the parameter values of each layer are encapsulated in a position
of the GA genotype, facilitating the application of the genetic operators. In this
way we can reuse the method for different network structures and domains, as
we only need to change the underlying grammar. We test the proposed approach
on an image classification dataset, namely the CIFAR-10 dataset. The results
reveal that our method is able to find competitive CNNs, often superior to others
reported in the literature. In concrete, the CNN that obtains the best perfor-
mance on training data, has an accuracy of 94.13%, i.e., an error of 5.87% on
test data.

The remainder of the document is organised as follows. In Sect. 2 we survey
NeuroEvolution (NE) works, with special focus on those targeting the evolution
of deep structures. Next, in Sect. 3, we introduce our approach, detailing how
we combine the principles of GAs with GE. Experimental results are reported
in Sect. 4. To end, in Sect. 5 conclusions are drawn, and future work and open
questions are addressed.

2 State of the Art

When designing learning models, an exhaustive trial-and-error process is often
followed in an attempt to discover which is the configuration that performs best.
In particular, and focusing our attention on ANNs (shallow or deep), decisions
have to be made considering the topology and weights/learning parameters of
the networks. For that reason, the approaches that try to automatically tune
the networks are grouped according to the aspects of the network they try to
optimise: (i) learning; (ii) structure; (iii) learning and topology.

Several iterative, non-evolutionary approaches, have already been success-
fully applied to the optimisation of ANNs (e.g., [8]). In the vast majority of
these methods only a solution is being optimised, and consequently it is likely
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that the search procedure will become trapped in local optima. In addition,
the aim is often to find the simplest solution; however, the simplest solution is
not necessarily the one that performs best, or is even the one that is easiest to
train [2].

The use of Evolutionary Computation (EC) techniques to optimise ANNs
defines NeuroEvolution (NE). In NE, the population of candidate solutions that
is evolved throughout generations represents ANNs for solving a specific task.
The quality of the candidate solutions is measured on how well the encoded
networks perform when solving the problem.

The application of Evolutionary Algorithms (EAs) to the optimisation of the
learning of fixed network topologies can happen at different levels. The most
simple strategy consists of the use of EAs to optimise the hyper-parameters.
Examples of such approaches are described by Kim et al. [13], and Parra
et al. [22], focusing on the optimisation of the multiple parameters of the Back-
Propagation (BP) algorithm (and its variants). An alternative to evolving the
hyper-parameters consists on evolving the actual learning rules that are used for
updating the synaptic weights [24]. A particular example of such approaches are
those based on the evolution of composition pattern producing functions, i.e.,
functions that given the position of two neurons in a grid are able to generate
the weight associated with that connection [3,28].

If on the one hand, optimising the parameters of the learning algorithms is
a difficult task, it is also true that the majority of the learning algorithms have
a gradient-descent nature, and as such, are susceptible to become trapped in a
local optimum. Using a population-based search heuristic (such as EAs) is a way
to minimise the impact of this issue; to that end, the weights and bias values of
ANNs can be directly evolved.

There are various NE works on the search for the appropriate weights and
bias values. Usually, the values of the weights are encoded linearly, i.e., a lin-
ear sequence of bits [31] or real-values [4], each representing a specific con-
nection; or using a matrix representation [12]. It is also important to mention
approaches specifically designed for tuning the weights of ANNs, such as Cooper-
ative Synapse NeuroEvolution (CoSyNE) [9], as well as those that more generally
aim at optimising real-values, e.g., G3PCX [5].

When focusing on the development of NE approaches for training ANNs the
topology of the networks is often fixed. Notwithstanding, as previously stated,
defining the topology is also a laborious process, which requires domain expertise
and multiple attempts. The NE methods that tune the structure of networks can
be partitioned into three groups, according to how they address the optimisation
task: (i) connection; (ii) node; or (iii) layer-based.

In connection-based encodings, the majority of the approaches optimise the
connections that are used in a large, a-priori, defined network [15,21]. However,
this limits the search space, disabling the exploration of alternative network
structures that are not considered in the pre-defined network. On the other
hand, node-based approaches have as base-unit of evolution each single neuron
and the connections from and to that neuron. Consequently, they are the most
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flexible type of approach in what respects the exploration of the search space,
as they allow the creation of any sort of structure or node network. Exam-
ples of well-known node-based approaches are: EPNET [32], Symbiotic, Adap-
tive Neuro-Evolution (SANE) [19], or NeuroEvolution of Augmenting Topologies
(NEAT) [29].

Although node-based approaches make the search less restricted and unbi-
ased, they also make it more difficult to search for deep networks, which can be
made of thousands or even millions of nodes. That is the reason why the major-
ity of the works focusing on the generation of deep structures use the layers as
base unit of evolution. Coevolution DeepNEAT (CoDeepNEAT) [16] combines
the ideas behind SANE and NEAT for the evolution of deep networks, where two
populations of modules and blueprints are evolved simultaneously. Following the
same line of research, in CGP-NN [30] Cartesian Genetic Programming is used
in the evolution of the architecture of CNNs. However, instead of promoting the
automatic discovery of the most appropriate modules, they are defined a-priori,
and only their combination and placement is evolved.

3 Proposed Approach

To promote the evolution of the structure and parameters of the ANNs we
propose a novel representation, called DENSER (Deep Evolutionary Network
StructurEd Representation), that combines the basic principles of GAs with
Dynamic Structured Grammatical Evolution (DSGE) [1]. The sequence of layers
is encoded using the GA, and the parameterisation of each layer using DSGE.
By doing this, we are able to evolve networks where the genetic material of each
layer is kept together, and therefore the manipulation of the solutions is easier,
since there is a one-to-one mapping between the layers and their parameters.

In the upcoming sub-sections we further detail the representation used, the
genetic operators, and how the generated networks are evaluated, respectively
in Sects. 3.1, 3.2 and 3.3.

3.1 Representation

Each candidate solution encodes the structure of a single ANN by means of an
ordered linear structure, where each position is a functional unit of the network,
i.e., a layer. It is also possible to evolve the learning algorithm that should be
used to train the network and its hyper-parameters. The motivation to promote
a layer-based evolution rather than node or connection-based is related with the
desire to tackle challenging problems, which often require deep networks. Such
structures have a large number of neurons and connections, which makes their
optimisation using a low level representation hard to accomplish.

To facilitate the application of the approach to different network structures
and layer types we encode each layer similarly to DSGE, meaning that evolution
acts on grammatical derivations. As a results the genotype of each position of
the GA (which represents a layer) is encoded as a list of genes, each of them
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responsible for keeping the expansion possibilities for specific non-terminal sym-
bols of the grammar. In addition to the standard DSGE genotype we introduce
a special coding block to deal with integer and float values. This block is repre-
sented in the grammar in the form of [variable name, variable type, number of
values, minimum value, maximum value]. An example of their use in a grammar
can be found in Fig. 1. At the genotypic level, the block values are kept together
with the integers encoding the non-terminal expansion possibilities.

<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]

[stride,int,1,1,3]<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::=merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5] [stride,int,1,1,3]<padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid
<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc<activation> [num-units,int,1,128,2048<bias>

<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True

| bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Fig. 1. Example grammar for the encoding of CNNs.

The combination of a GA with DSGE not only makes the approach easily
generalisable, but also enables the incorporation of domain knowledge. To define
the allowed structure of the networks (i.e., the allowed sequence of layers) the
method requires the definition of a list of tuples, where each index of the list
indicates the valid grammar starting symbols (for that layer) along with the min-
imum and maximum number of layers of that type. For example, for searching
CNNs the following structure can be specified: [(features, 1, 10), (classification,
1, 2), (softmax, 1, 1), (learning, 1, 1)]. Using the previous example and the
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grammar of Fig. 1, the search space encompasses networks that are formed by
at least one and up to ten convolution or pooling layers (that can be placed
in any order). These first convolution and pooling layers are followed by one
or two fully-connected ones, and then by an output layer. The output layer is
usually encoded as a fully-connected layer with a specific number of neurons
corresponding to the number of classes of the problem. On top of the definition
of the network topology we also allow the learning parameters to be optimised.

Figure 2 depicts an example of the genotype of a candidate solution, based
on the grammar of Fig. 1 and on the GA structure introduced above: [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)]. As previously
explained, the candidate solution has two genotypic levels: (i) the GA level
which defines the structure, and points out to the grammar non-terminal symbol
that is to be used as the start symbol; and (ii) the DSGE level that stores the
ordered sequence of integers encoding the expansion possibilities for each specific
non-terminal, and the real-values needed by the networks. Figure 3 presents the
phenotype corresponding to the layer which has the DSGE genotype detailed in
Fig. 2.

<features> <features> <features> <classification> <softmax> <learning>

<features> <pooling> <pooling-type> <padding>

[{DSGE: 0, 
     GA: {
       kernel-size: 4,
       stride: 2}}]

[{DSGE: 1, 
     GA: {}}]

[{DSGE: 1, 
     GA: {}}]

[{DSGE: 0, 
     GA: {}}]

Fig. 2. Example of the genotype of a candidate solution that encodes a CNN.

Layer type: pooling
Pooling func.: max
Kernel size: 4 x 4
Stride: 2 x 2
Padding: same

... ...

Fig. 3. Phenotype corresponding to the layer specified in Fig. 2.

3.2 Genetic Operators

To promote the evolution of the candidate solutions we rely on crossover and
mutation operators specifically designed for the manipulation of ANNs.
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Crossover

One of the advantages of having two genotypic levels is that the outer level
encodes each layer separately. Since the genetic material is encapsulated, devising
efficient crossover operators becomes easier. Based on the nature of the genotype,
we developed two crossover operators, which are applied probabilistically, each
having the same likelihood (i.e., 50%).

Before describing the crossover operators we need to define the notion of
module. In this context, the term module does not refer to a set of layers that
can be replicated multiple times, but is rather the set of layers that belongs
to the same GA structural index. For example, in the above example of a GA
structure, the module (features, 1, 10) is composed by all those layers that have
their derivation starting with the same non-terminal symbol features. The two
crossover operators are applied at different levels: one changes layers within a
specific layer module, while the other swaps entire modules between individuals.

<features1,A> <features2,A> <classification1,A> <classification2,A> <softmax1,A> <learning1,A>

<features1,B> <classification2,B> <classification3,B> <softmax1,B> <learning1,B><classification1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

<features1,A> <features2,A> <classification1,A> <classification2,B> <softmax1,A>

<features1,B> <classification1,B> <classification2,A> <softmax3,B> <learning1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

<classification3,B> <learning1,A>

cut-point

<features1,A> <features2,A>

<classification1,A> <classification2,A> <softmax1,A>

<learning1,A>

<features1,B>

<classification2,B> <classification3,B> <softmax1,B>

<learning1,B>

<classification1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

Parent A:

Parent B:

One-point offspring:

Bit-mask offspring:

Fig. 4. Example of the introduced crossover operators. The example focuses on the GA
level of the genotype. For the bit-mask crossover the mask is 1001, which is associated
to the features, classification, softmax and learning modules, respectively.

The first operator is based on the principle that each layer has its genetic
material encapsulated. Hence, we designed a crossover operator, that generates
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two offspring by crossing the layers that belong to the same module of two parents
(chosen by tournament selection). The same module in different parents can
have a distinct number of layers; to deal with that the cutting point is randomly
generated considering the individual that has less layers in the module.

The other crossover operator is loosely based on the uniform operator for
binary representations, and acts upon the modules swapping them between indi-
viduals. Figure 4 shows an example of the application of the crossover operators.

Mutation

The operators that work at the GA level aim at manipulating the layers and
their parameters. For this purpose we developed the following operators:

Add layer – a new layer is generated at random with the initial symbol for the
grammatical derivation being the one of the module where the layer will be
placed. This operator can only be applied in modules where the maximum
number of layers has not been reached yet;

Replicate layer – similar to the previous mutation operator, but instead of
generating a new random layer uses one that is already in the genotype and
copies it into another position of the module. This copy is done by reference,
which means that if at any given time the layer or some of its parameters are
changed, the modifications are propagated to their replicas;

Remove layer – deletes a random layer from a given module. It is only possible
to remove a layer if after removal the number of layers in that module is still
above the minimum threshold.

The previous operators act only at a macro level, and thus do not change the
parameters of the layers. This is accomplished at the DSGE level:

Grammatical mutation – as in standard DSGE, an expansion possibility is
replaced by another valid one;

Integer mutation – an integer block is replaced by a new one, where the
integers are generated at random, within the allowed range;

Float mutation – similar to the integer mutation, but where instead of ran-
domly generating new values, a Gaussian perturbation is applied.

3.3 Evaluation

The evaluation of the network is divided into two different steps: (i) the mapping
from the genotype to the phenotype; and (ii) the training of the generated ANN.

To decode the genotype, the outer level of each candidate solution is traversed
linearly. Remember that the outer level (which corresponds to the GA genotype)
is where the initial start symbol for expanding the grammatical derivations of
the layers is stored. The grammatical genotype is decoded similarly to DSGE:
the integers encoding the expansion possibilities of each non-terminal symbol are
used only once sequentially. The main difference is that when the expansion of
the non-terminal symbol hits a block that represents an integer or float value the
corresponding integer or float value is read from the grammatical GA genotype.
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To train the evolved networks we used Keras, running on top of TensorFlow.
The dataset used to validate our approach is partitioned into three disjoint sets:

Train – used to train the network using the defined or evolved learning param-
eters. The parameters vary depending on the used learning algorithm;

Validation – used to evaluate the performance of the network during evolution;
Test – kept aside from the evolutionary process, and used to evaluate the per-

formance of the best models on unseen data, so we can better understand
their generalisation ability.

Each network is trained during 10 epochs, and the fitness is the best performance
on the validation set on the 10 epochs. Data augmentation is used, namely,
padding, horizontal flips, and random crops. A more detailed explanation of the
data augmentation approach followed can be found in [30].

4 Experimentation

To test the approach we conducted experiments on the evolution of CNNs for the
classification of the CIFAR-10 dataset (further detailed in Sect. 4.1). The exper-
imental setup used is described in Sect. 4.2, and the analysis of the experimental
results is carried out in Sect. 4.3.

4.1 Problem Description

The CIFAR-10 dataset [14] is composed of images of 10 disjoint classes, namely:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. For each
class there are 6000 cases, making a total of 60000 instances. Each instance is a
32×32 RGB colour image. The goal is to train a CNN that can correctly identify
the class of each sample, maximising the accuracy of the object recognition task.

4.2 Experimental Setup

Table 1 shows the parameters used in the experiments. As discussed before, each
network is trained during 10 epochs, using the backpropagation learning algo-
rithm, and a learning rate of 0.01. Fitness is measured using the validation set.
After the evolutionary cycle, and to further tune the best generated models, we
merge the train and validation sets, so that more data is available for training
the best topologies found; the networks are trained during 400 epochs with the
same learning rate policy. The test data is not changed, and is used to measure
the final performance of the best networks found during evolution.

The topology of the evolved networks is constrained to the following GA
structure: [(features, 1, 30), (classification, 1, 10), (softmax, 1, 1)], and the exper-
iments are conducted with a grammar similar to the one presented in Fig. 1. This
way, we allow the evolution of networks that can have up to 40 hidden-layers:
up to 30 convolution or pooling layers followed by at most 10 fully-connected lay-
ers. We use the same data augmentation strategy of [30]: each training instance
is applied a padding of 4; then we randomly crop the padded image to 32 × 32,
followed by random horizontal flipping.
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Table 1. Experimental parameters.

Evolutionary engine parameter Value

Number of runs 10

Number of generations 100

Population size 100

Crossover rate 70%

Mutation rate 30%

Tournament size 3

Elite size 1%

Dataset parameter Value

Train set 42500 instances

Validation set 7500 instances

Test set 10000 instances

Data augmentation parameter Value

Padding 4

Random crop 4

Horizontal flipping 50%

4.3 Experimental Analysis

Figure 5 depicts the evolution of the average fitness and number of layers of
the best CNNs across generations. A brief perusal of the results indicates that
evolution is occurring, and solutions tend to converge around the 80th genera-
tion. Two different and contradictory behaviours are observable. From the start
of evolution and until approximately the 60th generation an increase in perfor-
mance is accompanied by a decrease in the number of layers; this changes from
the 60th generation until the last generation where an increase in performance
is followed by an increase in the number of hidden-layers of the best networks.
To support this analysis we compute the correlation between the average fitness
values of the best individuals and the average number of layers, per generation.

Fig. 5. Evolution of the fitness (left) and number of layers (right) of the best individuals
across generations. Results are averages of 10 independent runs.
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The Pearson correlation reports a coefficient of −0.7166 (moderate negative cor-
relation) for the correlation between the two metrics before the 60th generation;
after the 60th generation the coefficient is 0.9204 (strong positive correlation).

This analysis reveals an apparent contradiction, that is explained after the
fact that in the first generation the randomly generated solutions have a large
number of layers (approximately 15.6), which correspond to very deep networks.
However, since the numeric parameters of each layer are set at random, they
would hardly provide any meaningful results. As evolution proceeds and opti-
mises the numeric values, the best solutions can steadily increase the number of
layers to improve their performance. This indicates that it may be advantageous
to start the evolutionary process with shallower networks.

Fig. 6. Evolution of the fitness (left) and number of layers (right) of the overall popu-
lation across generations. Results are averages of 10 independent runs.

In addition to analysing the best evolved solutions we also inspect the over-
all quality of the population. Figure 6 shows the evolution of the fitness, and
number of layers, across generations at the population level. The conclusions are
in line with those reported for the analysis of the best solutions, however the
change in behaviour occurs earlier, around the 25th generation. Before the 25th
generation the Pearson correlation reports a coefficient of −0.89 (strong negative
correlation), and after a coefficient of 0.8801 (strong positive correlation). The
change in behaviour happens earlier than when considering only the best solu-
tions because in the first generations the population has many low performing
solutions that are quickly discarded.

The fittest network found during evolution (in terms of validation accuracy)
is represented in Fig. 7. As it can be observed, several lambda layers exit. This
is due to the fact that the employed grammar allows merging the output of
the convolution layers (Conv2D) with the input, using the Add layer. When
the number of channels to be merged is different, we pad the one that has less
channels, using the Keras Lambda layer. When the signals do not have the same
width and height we down-sample the largest one, by applying max pooling.

The most puzzling characteristic of the evolved network is the importance
and number of the fully-connected (i.e., dense) layers that are used at the end of
the topology. Other approaches on the evolution of CNNs tend to disregard fully-
connected layers, and focus only on convolution and pooling layers. We tried to
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input_1: InputLayer

max_pooling2d_1: MaxPooling2D

conv2d_1: Conv2Dlambda_1: Lambda

add_1: Add

activation_1: Activation

conv2d_2: Conv2D

activation_2: Activation

conv2d_3: Conv2D lambda_2: Lambda

add_2: Add

activation_3: Activation

conv2d_4: Conv2D

add_3: Add

activation_4: Activation

conv2d_5: Conv2D

activation_5: Activation

max_pooling2d_2: MaxPooling2D

conv2d_6: Conv2D

add_4: Add

lambda_3: Lambda

activation_6: Activation

max_pooling2d_3: MaxPooling2D

conv2d_7: Conv2D

add_5: Add

lambda_4: Lambda

activation_7: Activation

conv2d_8: Conv2D

add_6: Add

lambda_5: Lambda

activation_8: Activation

conv2d_9: Conv2D

add_7: Add

lambda_6: Lambda

activation_9: Activation

max_pooling2d_4: MaxPooling2D

flatten_1: Flatten

dense_1: Dense

dense_2: Dense

dense_3: Dense

dense_4: Dense

dense_5: Dense

dense_6: Dense

Fig. 7. Topology of the best network during evolution.
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remove some of the fully-connected layers, and preliminary results show that the
performance of the network degenerated. Moreover, to the best of our knowledge,
the sequential use of a such large number of dense layers is unprecedented, and
it is fair to say that a human would never think of such topology, which makes
this evolutionary outcome remarkable.

Once the evolutionary process is completed, the best network found in each
run, i.e. the one obtaining the highest fitness value, is re-trained 5 times, with
different initial weights. These networks are selected according to their accu-
racy on the validation set, to ensure that we have an unbiased selection. The
results regarding accuracy reported bellow are averages of these 5 trains for each
network.

First, we train the networks with the same learning rate policy used in evo-
lution, but during 400 epochs. With this setup we obtain, on average, a classifi-
cation accuracy of 88.41% (error of 11.59%) on the test set. To further enhance
the accuracy of the networks we adopt the strategy described by Snoek et al.
in [26], i.e., for each instance of the test set we generate 100 augmented images.
The label assigned by the model is the class that has the maximum average
confidence value on the 100 generated augmented images. Following this valida-
tion approach the average accuracy on the test set of the best evolved networks
increases to 89.93% (10.07% of error).

Although the average accuracy of the fittest models seems low when com-
pared with state of the art approaches, the accuracy of the fittest network is
slightly higher: 92.70% (an error of 7.30%). To investigate if it is possible to
increase the performance of the fittest networks we re-train them using the same
strategy of CGP-CNN [30]. We use a varying learning rate: it starts at 0.01; on
the 5th epoch it is increased to 0.1; by the 250th epoch it is decreased to 0.01;
and finally at the 375th it is reduced to 0.001. With the previous training pol-
icy the average accuracy of the fittest network increases to 93.38%. Finally, this
accuracy is further improved if we follow the guidelines from [26], and perform
data augmentation on the test data: 94.13%, i.e., an error of 5.87%, which is a
highly competitive result.

Obviously, in an ideal scenario, all the training strategies described above
would be used during evolution, however it is unfeasible to do so, since it would
require immense computational power. Thus, the experimental results indicate
that it is possible to obtain competitive results using evolutionary means and
that it is possible to do so with limited computational resources, using a low
number of training epochs (10) during evolution.

Table 2 shows a comparison with the best results reported by other methods.
An analysis of the results shows that DENSER (i.e., our approach) is the one
that reports the lowest error. The number of trainable parameters is much higher
in our methodology because we allow the placement of fully-connected layers in
the evolved CNNs. In addition to the increase in performance, our approach
attains these results without any prior knowledge about the domain. Whilst in
CGP-CNN the authors have to define fixed modules of layers that are placed
and connected by the evolutionary algorithm to form a CNNs, we do not require



32 F. Assunção et al.

Table 2. Comparison of the best results obtained by different methods on the CIFAR-
10 dataset. The error rate is measured on the test set. The number of parameters is
the number of values that need to be tuned during training.

Method Error rate Number of parameters

CoDeepNEAT [29] 7.3% –

Snoek et al. [26] 6.37% –

CGP-CNN (ConvSet) [30] 6.75% 1.52 × 106

CGP-CNN (ResSet) [30] 5.98% 1.68 × 106

DENSER 5.87% 10.81 × 106

any definition of modules, which implies that the algorithm must discover the
appropriate sequence of layers to construct effective networks.

5 Conclusions and Future Work

The definition of the structure and parameterisation of learning models is a hard
and time consuming task. This problem is even more pressing when dealing with
deep architectures, where the high number of layers makes the tuning task more
difficult to accomplish by hand. To this end several evolutionary methods that
seek to automatically solve this issue have been proposed.

In this article we combine two evolutionary methods: GAs and GE. With
this combination we are able to evolve linear sequences of layers, where each
layer is encoded using a grammar-based approach. Consequently the genetic
material associated with each layer is encapsulated, making it easier to apply
genetic operators to the candidate solutions. The use of a grammar to specify
how the layers are encoded makes the approach easily adaptable to other network
structures, layer types and domains.

The experimental results confirm the effectiveness of the approach, which out-
performs CGP-CNN [30], CoDeepNEAT [29] and the work by Snoek et al. [26],
without resorting to prior knowledge. As such, DENSER is, currently, the most
successful method for automatic construction of networks in CIFAR-10 dataset.
Moreover, its performance is only surpassed by [10,17,27], which resort to prior
knowledge.

As future work we intend to further test our approach, performing more
experiments to ensure the quality and consistency of the results. Moreover, we
plan to evaluate the performance on other classification tasks, to assess the
generality of the proposed method.
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