
Genetic Programming Hyper-Heuristic
with Cooperative Coevolution for

Dynamic Flexible Job Shop Scheduling

Daniel Yska, Yi Mei(B), and Mengjie Zhang

Victoria University of Wellington, Wellington, New Zealand
{daniel.yska,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Flexible Job Shop Scheduling (FJSS) problem has many real-
world applications such as manufacturing and cloud computing, and thus
is an important area of study. In real world, the environment is often
dynamic, and unpredicted job orders can arrive in real time. Dynamic
FJSS consists of challenges of both dynamic optimisation and the FJSS
problem. In Dynamic FJSS, two kinds of decisions (so-called routing
and sequencing decisions) are to be made in real time. Dispatching rules
have been demonstrated to be effective for dynamic scheduling due to
their low computational complexity and ability to make real-time deci-
sions. However, it is time consuming and strenuous to design effective
dispatching rules manually due to the complex interactions between
job shop attributes. Genetic Programming Hyper-heuristic (GPHH) has
shown success in automatically designing dispatching rules which are
much better than the manually designed ones. Previous works only
focused on standard job shop scheduling with only the sequencing deci-
sions. For FJSS, the routing rule is set arbitrarily by intuition. In this
paper, we explore the possibility of evolving both routing and sequenc-
ing rules together and propose a new GPHH algorithm with Cooperative
Co-evolution. Our results show that co-evolving the two rules together
can lead to much more promising results than evolving the sequencing
rule only.

Keywords: Job Shop Scheduling · Genetic Programming
Hyper-heuristics · Cooperative Co-evolution

1 Introduction

In the modern industrial world, processing and manufacturing are global indus-
tries which are central to the economies of virtually every country. In a large
factory setting, the efficient allocation of jobs to machines is therefore an
extremely important concept that businesses must consider to increase through-
put, decrease costs and increase profitability [15]. In a virtual setting, the idea of
the efficient allocation of jobs to machines can also be applied to cloud resources.
There are further applications to be found in timetabling, sports scheduling,
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 306–321, 2018.
https://doi.org/10.1007/978-3-319-77553-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77553-1_19&domain=pdf

GPHH with Cooperative Coevolution for Dynamic FJSS 307

health care scheduling and crew scheduling. This study of the allocation of jobs
to machines is therefore a hugely important and relevant area of study to create
more efficient outcomes in the modern world, saving time and resources.

In the Job Shop Scheduling (JSS) problem, there is a set of jobs to be com-
pleted, and a set of machines which can process the jobs [27]. A solution to this
problem is an ordered schedule of assignments of jobs to machines, so that all
jobs are completed. These schedules are optimised relative to some objective,
such as minimising the makespan and flowtime.

Flexible JSS (FJSS) problem is an extension of JSS. In JSS, each job oper-
ation only has one candidate machine to process it. In contrast, an operation
of a job may have multiple candidate machines (options) in FJSS. As a result,
FJSS involves allocating job operations to machines (i.e. routing problem) as
well as selecting jobs from the queue of an idle machine to be processed next
(i.e. sequencing problem). This makes FJSS more challenging than JSS.

FJSS is NP-hard since it has JSS as its special case (where all the opera-
tions have only one candidate machine). Thus, traditional optimisation methods
such as branch-and-bound [18] is applicable when the problem size is not large.
In this case, heuristic search methods such as simulated annealing [34], tabu
search [26] and genetic algorithm [35] show promise in finding reasonably good
solutions in a short time. However, in real world, the environment is usually
dynamic, and unpredicted jobs can arrive at any time. The decisions made about
which job to be processed next must be able to factor in the changing state of
the system quickly and computationally cheaply. Therefore traditional optimisa-
tion techniques are infeasible for dynamic JSS due to their high computational
complexity.

Dispatching Rules (DRs) have been used extensively in JSS (e.g. [3]) due to
their computational efficiency. Whenever a machine becomes idle, a DR calcu-
lates a priority value for each job waiting in its queue and selects the most prior
job to process next. Such computation is carried out at each decision point (e.g.
when a machine becomes idle) and can be done efficiently. A variety of DRs
have been designed manually to handle different scenarios. An overview of the
manually designed DRs can be found in [30].

Manually designing DRs is time consuming and very demanding on domain
expertise. The existing manually designed rules tend to be overly simplistic,
with plenty of literature showing that many manually designed rules only per-
form well for certain objectives and in certain job shops [17,29,31]. Recently,
Genetic Programming Hyper-heuristics (GPHH) has been successfully applied
to automatically designing (evolving) DRs for scheduling [5,19,20,23], and the
evolved DRs are much more effective than the manually designed DRs. How-
ever, the existing works mainly focused on evolving the sequencing rules, i.e.
the rules selecting the operations from the queue of the idle machine to process
next. The routing rule (i.e. the rule to select a candidate machine to process the
given operation) is normally specified intuitive (e.g. selecting the machine with
the least waiting time in [32]). Such simple routing rules are by no means the
best and there is a potential to design routing rules that cooperates with the

308 D. Yska et al.

sequencing rules better in the given scheduling scenario. This motivates us to
evolve the sequencing and routing rules simultaneously. To this end, we adopt
the Cooperative Co-evolution (CC) [28] framework, which is a natural frame-
work to evolve multiple components together. It has also been applied in JSS
for co-evolving the DR and due date assignment rule [24].

1.1 Goals

In this paper, we aim to find more promising routing and sequencing rules for
FJSS. Specifically, we aim to achieve the following research objectives.

1. Compare between different manually designed routing rules on different FJSS
scenarios to understand which manually designed routing rule performs the
best in general.

2. Propose a GP with Cooperative Co-evolution (called CCGP) for co-evolving
the routing and sequencing rules simultaneously.

3. Compare CCGP with the GP that evolves sequencing rule with pre-specified
routing rule (called SeqGP) to evaluate the performance of CCGP.

4. Conduct analysis on the characteristics of the rules evolved by CCGP to gain
new knowledge about the structure of the effective routing rules for FJSS.

1.2 Organisation

The rest of the paper is organised as follows: Sect. 2 gives the problem description
and related work. Then, the proposed CCGP is proposed in Sect. 3. Experiment
studies are carried out in Sects. 4 and 5. Finally, Sect. 6 gives the conclusions
and future work.

2 Background

2.1 Flexible Job Shop Scheduling

FJSS is to process a set of jobs J = {J1, . . . , Jn} with a set of machines
M = {M1, . . . ,Mm}. Each job Jj has an arrival time t0(Jj) and a sequence of
operations O1,j , . . . , Olj ,j . Each operation Oi,j has a set of candidate machines
πi,j ⊆ M. It can be processed by any machine πi,j,k ∈ πi,j . The duration of pro-
cessing operation Oi,j with machine πi,j,k is δi,j,k. One cannot start processing
an operation until its preceding operations have been completed. Each machine
can process at most one operation at a time, and each operation is processed by
exactly one machine without interruption. The goal of FJSS is to find a feasible
schedule to optimise some objective(s). The commonly considered JSS objectives
include minimising the makespan (Cmax), total flowtime (

∑
Cj), total weighted

tardiness (
∑

wjTj), number of tardy jobs, etc. [27].
JSS is a special case of FJSS, where for each operation Oi,j , |πi,j | = 1. In

other words, each operation can be processed by only one machine. In this case,
no routing decision needs to be made.

GPHH with Cooperative Coevolution for Dynamic FJSS 309

2.2 Related Work

The FJSS problem was first identified by Brucker and Schlie [6] in 1990, where
a solution of a polynomial algorithm was suggested to solve each of the routing
and sequencing sub-problems for a two job system. Early studies focused on
finding FJSS solutions using traditional optimisation approaches. Brandimarte
[4] proposed using a hierarchical method to minimise the makespan for a FJSS
system. In his work, he used a two-level tabu search algorithm in combination
with the decomposition of FJSS into routing and job shop scheduling sub prob-
lems. In his work, Brandimarte also created a class of flexible job shops that
would become used as a benchmark by future researchers [2]. Norman and Bean
[25] developed a genetic algorithm with random key representation, elitist repro-
duction, immigration mutation as well as Bernoulli crossover to solve the FJSS
problem with the objective of minimising total tardiness. In 2002, Kacem et al.
[16] proposed a hybrid approach for solving the FJSS problem, using localisa-
tion for the routing component, and three manually designed dispatching rules
for the sequencing component. An advanced genetic algorithm was proposed for
evolving arrangements of jobs and machines.

In recent decades, hyper-heuristics [7] have attracted more and more research
attention, as they can find heuristics (i.e. dispatching rules in JSS) rather than
solutions, and thus are more flexible and scalable. More importantly, the evolved
heuristics can handle dynamic environment much more effectively than tradi-
tional (re-)optimisation approaches. In 2001, Dimopoulos and Zalzala [9] used
GP to evolve dispatching rules for JSS, for single machine scheduling with a
terminal set of scheduling attributes (processing time, due date, number of jobs,
release time, etc.) with a standard function set. These evolved dispatching rules
performed well and were better than traditional manually designed rules even
for unseen and large instances. Then in 2006, Geiger et al. [10] presented a
learning system which combined GP with a simulation model for an industrial
facility. This proposed GP method creates a rule assigned priority to jobs on
a single machine in both static and dynamic environments. This paper quickly
produced many dispatching rules which rivalled results produced by rules found
in past decades. A method for evolving dispatching rules for multiple machines
was proposed, which used modified genetic operators. Miyashita [22] in 2000
developed an automatic method of evolved customised dispatching rules for a
JSS environment, using GP. In his work, he considered the JSS problem as being
a multi-agent problem, where each agent represents a resource (machine or work
station). This multi-agent model was explored using GP, and produced good
results, however prior knowledge of the JSS environment was required. This
limits the application of this work to only static environments.

In 2007, Tay and Ho [33] proposed a GP method to evolve dispatching rules
for a FJSS environment which were optimised for multiple objectives. These
multiple objectives were treated as a single objective by linearly combined their
objective functions. The proposed GP method can be thought of as a prior-
ity function which calculated the priority of operations in the queue of a single
machine, based on static and dynamic attributes in the job shop. The dispatching

310 D. Yska et al.

rules evolved outperformed other manually designed dispatching rules, although
the use of machine attributes was not considered. This system was assessed
later in 2010 by Hildebrandt et al. [12] which showed that in some dynamic JSS
instances, the evolved rules by Tay and Ho [33] performed only slightly better
than the earliest release date rule, and worse the than shortest processing time
rule, which are very simplistic. Hildebrandt et al. [12] then used GP to evolve
dispatching rules in four simulations (all with 10 machines, with a combina-
tion of two utilisation levels and two job types) for the single objective of mean
flow time. Their evolved rules were robust, performing very well in both differ-
ent environments (50 machines with varying processing time distributions) and
the original training environments. In 2014, Nguyen et al. [24] used cooperative
coevolution GP to evolve due date assignment rules and dispatching rules, for
multi-objective JSS. In this work, Nguyen et al. showed that the evolved schedul-
ing policies performed very well on unseen simulation scenarios, given different
shop settings. In 2016, Mei et al. [21] used GP to evolve dispatching rules for
JSS for a single objective. Feature selection was then performed on the terminal
set of the dispatching rules, removing extraneous terminal attributes and reduc-
ing the problem search space. This led to significantly better dispatching rules
evolved by GP on both training and test instances.

3 Genetic Programming with Cooperative Co-evolution

The pseudo-code of the proposed CCGP is described in Algorithm 1. In the
proposed CCGP, there are two subpopulations Pr = {Pr,1, Pr,2, . . . } and
Ps = {Ps,1, Ps,2, . . . }, where Pr stands for the population of routing rules
and Ps stands for the population of sequencing rules. In addition, a context
vector cv = (cvr, cvs) is maintained for fitness evaluation. At first, the two
populations are randomly initialised by ramp half-and-half method, and the
context vector is randomly initialised from the populations. Then, at each gen-
eration, the routing rules and sequencing rules are evolved separately using
the crossover/mutation/reproduction operator of GP. Then, each newly gen-
erated rule is evaluated by the evaluate(·) method. Finally, the context vector
is updated by replacing the routing and sequencing components with the best
individuals in the corresponding population, if they have better fitness values. In
the minimisation case in FJSS (e.g. makespan and flowtime are to be minimised),
a smaller fitness value is better.

The fitness evaluation procedure is given in Algorithm 2. It takes a routing
rule pr, a sequencing rule ps, and a set of FJSS instances Itrain (i.e. training set),
and returns a fitness value. For each training instance, it constructs a discrete
event simulation based on the instance, the routing and sequencing rules, and
run the simulation to generate a schedule.

At the beginning of the simulation, all machines are idle, and there may be
some initial jobs ready to be processed (ready time 0). In the dynamic FJSS
scenarios, unpredicted job arrival events are generated randomly as well. Then
online decisions are made as follows until all the jobs have been completed.

GPHH with Cooperative Coevolution for Dynamic FJSS 311

Algorithm 1. Pseudo-code of the proposed CCGP

1 Randomly initialise Pr and Ps by ramp half-and-half;
2 cvr ← Pr,1, cvs ← Ps,1; // arbitrarily initialise context vector

3 while Stopping criteria not met do
// Evolve the routing rules

4 P′
r ← elite(Pr); // copy the elites to the new population

5 while |P′
r| < popsize do

6 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Pr;

7 Add the generated offspring(s) to P′
r;

8 end
// Evolve the sequencing rules

9 P′
s ← elite(Ps); // copy the elites to the new population

10 while |P′
s| < popsize do

11 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Ps;

12 Add the generated offspring(s) to P′
s;

13 end
// fitness evaluation

14 foreach p ∈ P′
r do fit(p) ← evaluate(p, cvs, Itrain);

15 foreach p ∈ P′
s do fit(p) ← evaluate(cvr, p, Itrain);

16 Pr ← P′
r, Ps ← P′

s; // update subpopulations

// update context vector

17 cv′
r ← arg minp∈Pr fit(p), cv

′
s ← arg minp∈Ps fit(p);

18 if fit(cv′
r) < fit(cvr) then cvr ← cv′

r;
19 if fit(cv′

s) < fit(cvs) then cvs ← cv′
s;

20 end
21 return cv = (cvr, cvs);

– Whenever a job becomes ready to be processed, if its next operation has only
one candidate machine, then place the job into the queue of the candidate
machine. Otherwise, apply the routing rule to select the machine to process
the job, and place the job to the queue of the selected machine.

– Whenever a machine is idle and its queue is not empty, apply the sequencing
rule to select the next job from the queue, and start processing the next job.

A simulation essentially generates a schedule (with starting and finishing
time of each job). Then, we can calculate the normalised objective value (e.g.
makespan and flowtime) of the schedule. Finally, the fitness value is set to the
average value of all the normalised objective values (line 7). Here, the normali-
sation (line 5) is with respect to a reference value obj∗(I), which can be set to
either the best known (lower bound of) objective value of the instance, or the
objective value obtained by applying benchmark routing and sequencing rules.

As shown in Algorithm 1 (lines 14 and 15), for evaluating a routing (sequenc-
ing) rule, it is combined with the sequencing (routing) component of the context
vector so that the discrete event simulation in Algorithm 2 can be constructed.

312 D. Yska et al.

Algorithm 2. evaluate(pr, ps, Itrain)

Input: A routing rule pr, a sequencing rule ps, a set of FJSS instances Itrain

Output: A fitness value
1 f ← 0;
2 foreach I ∈ Itrain do
3 Construct a discrete event simulation based on pr, ps and I;
4 Generate a schedule S(pr, ps, I) by running the discrete event simulation;

5 f ← f + obj(S(pr,ps,I))
obj∗(I)

; // normalisation cross instances

6 end
7 return f/|Itrain|; // average over the training set

4 Experiment Settings

To evaluate the proposed CCGP, we conducted experiments on both static and
dynamic FJSS datasets. The static instances are commonly used in the evalu-
ation of FJSS methods [2], and their lower and upper bounds of makespan are
known. Specifically, there are 4 static FJSS datasets, namely the Barnes dataset
[1], Brandimarte dataset [4], Dauzere dataset [8] and Hurink dataset [14]. The
Barnes dataset consists of 21 instances with 10 or 15 jobs. Each job has 11
to 18 operations, and each operation has 1.07–1.3 candidate machines. Thus,
the Barnes dataset is small and has relatively low flexibility. The Brandimarte
dataset has 10 small sized instances (no more than 20 jobs and 15 machines,
each job has 5–15 operations) and medium flexibility (each operation has 2–6
machine options). The Dauzere dataset consists of 18 instances with similar size
and flexibility as the Brandimarte dataset. There are 66 instances in the Hurink
dataset, which can be divided into 4 subsets with increasing flexibility, namely
sdata, edata, rdata and vdata. The sdata instances are essentially JSS instances,
as no operation can be processed by more than one machine. In the most flexible
vdata instances, all the operations can be processed by multiple machines.

For dynamic simulation, the configuration is given in Table 1, which has been
used in previous studies (e.g. [11,20]).

The parameter setting of CCGP is standard, as given in Table 2. The ter-
minal set of CCGP is described in Table 3. The terminals are adapted from the
JSS terminals proposed in [20]. The terminals involving the future operations
(e.g. NPT and WKR) are modified to take into account the machine-dependent
processing times. For each future operation, the processing time is set to the
median processing time of all the options.

The function set of CCGP is set to {+,−, ∗, /,min,max}, where “/” is the
protected division that returns 1 if divided by 0. The “min” and “max” operators
take two arguments, and return the minimal (maximal) value between them.

In the experiment, we will compare CCGP with the GP counterpart with
routing rule fixed to the Least Work in Queue (LWQ) rule, and evolving the
sequencing rule only. For the sake of convenience, the counterpart will be denoted
as SeqGP hereafter. For fair comparison, the population size of SeqGP is set to

GPHH with Cooperative Coevolution for Dynamic FJSS 313

1024 so that the number of fitness evaluations per generation is the same as
CCGP. All the other parameters are the same for SeqGP and CCGP.

Table 1. The dynamic JSS simulation system configuration.

Parameter Value

#machines 10

#jobs (#warmup jobs) 5000 (1000)

#operations per job Uniform discrete distribution between 1 and 10

#Machines per operation Uniform discrete distribution between 1 and 10

Job arrival process Poisson process

Utilisation level {0.85, 0.95}
Processing time Uniform discrete distribution between 1 and 99

Job weights 20% with weight 1, 60% with weight 2, 20% with weight 4

Table 2. The parameter setting of CCGP.

Parameter Value

Number of subpopulations 2

Subpulation size (popsize) 512

Maximal depth 8

Crossover/Mutation/Reproduction rates 80%/15%/5%

Parent selection Tournament selection with size 7

Elitism 2 best individuals

Number of generations 51

Table 3. The terminal set of CCGP.

Notation Description

NIQ Number of Operations in a Machine’s Queue

WIQ Work In a Machine’s Queue

MWT Waiting Time of a Machine

PT Processing Time of an Operation on a given Machine

NPT Median Processing Time for the Next Operation on Machine options

OWT The Waiting Time of an Operation

WKR Median Amount of Work Remaining for a Job

NOR The Number of Operations Remaining in a Job

W Weight of a Job

TIS Time In System

314 D. Yska et al.

5 Results and Discussions

5.1 Comparing Manually Designed Routing Rules for SeqGP

SeqGP requires a pre-specified routing rule for evaluating the evolved sequencing
rules. In existing studies, only the least waiting time assignment routing rule was
considered [13,32] without investigating whether it is the best routing rule. In
this paper, we first compare a set of commonly used manually designed routing
rules on the static FJSS instances to identify the best routing rule for SeqGP.

Specifically, four manually designed routing rules are taken into account in
the comparison. They are described as follows:

1. Least Work in Queue (LWQ): select the machine with the least work (total
processing time) in its queue;

2. Least Queue Size (LQS): select the machine with the least queue size (number
of operations in the queue);

3. Earliest Ready Time (ERT): select the machine that will become ready (idle)
the earliest;

4. Shortest Busy Time (SBT): select the machine with the shortest busy time
so far.

Among the above routing rules, the ERT is essentially the same as the least
waiting time rule used in previous studies (e.g. [13,32]).

For each routing rule, the SeqGP with that routing rule was run on each
static instance for 30 times (except the 66 Hurink-sdata instances, which are
essentially JSS instances). Then, a routing rule is considered as a “winner” of
an instance if it achieved the best mean makespan over the 30 runs (there may
be multiple winners). Then, we compare the number of instances where each
routing rule was a winner.

Table 4 shows the number of instances in each static dataset where each
routing rule was a winner. It can be seen that LWQ was a winner for most
instances (127 out of 247), followed by ERT. More specifically, the advantage of
ERT over LWQ was only on the Barnes dataset, which was the very inflexible.
As the flexibility increases, the advantage of LWQ becomes more obvious.

The findings in this subsection is interesting as it identifies LWQ as a better
routing rule than ERT, which has been used in previous studies, for static FJSS.
In subsequent experiments, we set LWQ as the fixed routing rule for SeqGP.

5.2 Optimisation Performance on Static Instances

The first set of experiments aims to verify the optimisation performance of
SeqGP and CCGP on the static FJSS instances, without a training and test
(generalisation) process. This way, one can investigate the effectiveness of
(co-)evolving dispatching rules as compared to directly optimising FJSS
solutions.

For the static instances, the objective is to minimise the makespan. For each
static instance, CCGP and SeqGP were run 30 times independently, and the

GPHH with Cooperative Coevolution for Dynamic FJSS 315

Table 4. The number of instances in each static dataset where each compared routing
rule was a winner.

Dataset #Instances LWQ LQS ERT SBT

Barnes 21 0 0 13 8

Brandimarte 10 8 0 2 2

Dauzere 18 16 0 1 1

Hurink-edata 66 31 3 27 9

Hurink-rdata 66 39 0 27 0

Hurink-vdata 66 33 0 33 0

Total 247 127 3 103 20

normalised makespans (makespan over the known lower bound) of the best rules
were recorded. In addition, two manually designed sequencing rules, i.e. First-
Come-First-Serve (FCFS) and Shortest Processing Time (SPT), are also taken
into comparison.

Table 5 shows the summary of the compared algorithms over 30 independent
runs for the static datasets. FCFS and SPT are deterministic rules. Therefore,
for each dataset, the average normalised makespan value cross all the instances
of that dataset is shown. SeqGP and CCGP are stochastic algorithms. Therefore,
for each dataset, the mean and standard deviation over the 30 runs are given. In
addition, for each instance, Wilcoxon rank sum test with significance level of 0.05
was conducted between the 30 results obtained by CCGP and SeqGP. Then, for
each dataset, the numbers of instances that CCGP performed significantly better
than SeqGP (“W”), comparable with SeqGP (“D”), and significantly worse than
SeqGP (“L”) are given.

Table 5. The normalised makespan (MK/LB) with respect to lower bound of the
compared algorithms over 30 independent runs for the static datasets.

Dataset #Instances FCFS SPT SeqGP CCGP W-D-L

Barnes 21 1.270 1.238 1.079(0.0021) 1.065(0.0026) 15-6-0

Brandimarte 10 1.431 1.501 1.229(0.0042) 1.062(0.0045) 8-2-0

Dauzere 18 1.244 1.227 1.086(0.0012) 1.061(0.0019) 16-2-0

Hurink-edata 66 1.247 1.241 1.070(0.0009) 1.048(0.0014) 50-15-1

Hurink-rdata 66 1.271 1.292 1.123(0.0012) 1.062(0.0014) 64-2-0

Hurink-vdata 66 1.312 1.324 1.215(0.0005) 1.019(0.0008) 64-2-0

From Table 5, it is obvious that both SeqGP and CCGP dramatically out-
performed the manually designed rules (FCFS and SPT). In addition, CCGP
performed much better than SeqGP. Overall, FCFS and SPT obtained solutions

316 D. Yska et al.

which are 25%–50% worse than the lower bound. SeqGP obtained solutions that
are 7%–23% worse than the lower bound. All the solutions obtained by CCGP
are less than 7% worse than the lower bound. The most obvious advantage of
CCGP over SeqGP occurred on the Brandimarte and Hurink-vdata datasets,
which have reasonable large problem sizes and flexibility.

More specifically, CCGP statistically significantly outperformed SeqGP on
most static instances (e.g. 64 out of 66 of the Hurink-rdata and Hurink-vdata
instances). CCGP was defeated by SeqGP on only one Hurink-edata instance
out of the total 247 static instances. This clearly demonstrates the advantage of
CCGP over SeqGP on solving static FJSS instances.

Figure 1 shows the convergence curves of SeqGP and CCGP on three repre-
sentative instances (the ribbon is the standard deviation over the 30 runs), on
which CCGP performed significantly better than, worse than, and comparable
with SeqGP. All the other instances showed similar patterns. From the figure,
it is clear that CCGP started from a much higher makespan due to the ran-
dom initial routing rule. Then, it converged very fast, and achieved local optima
within 20 generations.

Fig. 1. The convergence curves of the makespan of the 30 runs of SeqGP and CCGP.

Finally, CCGP can obtain solutions that are less than 7% worse than the
lower bound, which can be seen as a promising optimisation performance for
static FJSS instances.

5.3 Generalisation Performance on Dynamic Instances

The experiments in the dynamic environment is to examine the generalisation
performance of SeqGP and CCGP. We consider 2 utilisation levels (0.85 and
0.95) and 3 objectives in the dynamic environment. Specifically, we consider
minimising (1) mean flowtime (Fmean), (2) max flowtime (Fmax) and (3) mean
weighted flowtime (MWF). This results in 3 × 2 = 6 scenarios. For each scenario,
SeqGP and CCGP were run 30 times independently over a training set. The
training set consists of a single dynamic FJSS simulation. To improve gener-
alisation, the random seed for generating the training simulation changes per

GPHH with Cooperative Coevolution for Dynamic FJSS 317

generation. After the training process, the best rule of the last generation is
then tested on an unseen test set to evaluate its test performance. The test set
consists of 50 dynamic simulations using the same configurations as the training
set, but different random seeds.

For the dynamic simulations, the lower bound objective values are unknown.
Therefore, the normalisation is with respect to the objective value obtained by
a benchmark dispatching rule (routing plus sequencing rules). Here, the bench-
mark routing rule is fixed to LWQ for all the scenarios. The benchmark sequenc-
ing rule is specified depending on the scenario. Based on our preliminary work
[20], we set the benchmark sequencing rule to FCFS for the scenarios minimising
Fmax, to SPT for the scenarios minimising Fmean, and to WSPT for the scenarios
minimising MWF.

Figure 2 shows the convergence curves of the test fitness obtained by SeqGP
and CCGP over the 6 dynamic scenarios. From the figure, it is obvious that
CCGP significantly outperformed SeqGP in all the 6 scenarios. The Wilcoxon
rank sum test with significance level of 0.05 also confirmed the significance. The
convergence curves of CCGP are almost always below the curves of SeqGP. For
the scenarios minimising Fmean and MWF, CCGP successfully initialised much
more effective routing rules even from the first generation.

Fig. 2. The convergence curves of the test fitness obtained by SeqGP and CCGP.

Figure 3 shows the convergence curves of the size of the sequencing rules
obtained by SeqGP and CCGP. It can be seen that the two algorithms have
similar convergence curves in terms of sequencing rule size, i.e. evolving routing
rules does not seem to make the sequencing rule simpler or more complex.

318 D. Yska et al.

Fig. 3. The convergence curves of the sequencing rule size obtained by SeqGP and
CCGP.

In order to show the generalisation of SeqGP and CCGP, Fig. 4 shows the
training fitness versus test fitness scatter plot based on the 30 final results of
SeqGP and CCGP. From the figure, it is clear that both the training and test
fitnesses of CCGP were much better than that of SeqGP. The generalisation
of both algorithms are similar in terms of the correlation between training and
test fitnesses. The generalisation of CCGP is poorer for the scenarios minimising
Fmax than other scenarios. This may be because Fmax is a maximum function,
which is not so smooth as the other objectives which are based on average as
the sample size grows. Overall, the generalisation of CCGP is promising, as the
test fitness is very consistent with the training fitness. On the other hand, one
can see that for the dynamic scenarios with Fmean and MWF and low utilisation
level (0.85), the pre-specified routing rule restricted the search space too much
so that the evolved sequencing rules perform almost the same as the benchmark
sequencing rules in both training and test instances.

5.4 Rule Analysis

Equation 1 shows an example routing rule evolved by CCGP for the scenario
〈MWF, 0.95〉.

min{NIQ × PT,WIQ} +
W

MWT × PT
− min{MWT × W,NIQ × NOR}. (1)

It mainly consists of three components. The first component min{NIQ ×
PT,WIQ} is similar to WIQ, i.e. the number of operations in queue times

GPHH with Cooperative Coevolution for Dynamic FJSS 319

Fig. 4. The training fitness versus test fitness scatter plot based on the 30 final results
of SeqGP and CCGP.

the processing time of an operation is similar to the total processing time in
queue. The second and third terms show that the routing rule prefers machines
with larger MWT, i.e. the earliest available machine (MWT = current time −
machine ready time). This preference is more obvious if the current job has a
larger weight. That is, the routing rule tries to finish the more important jobs as
early as possible. In summary, CCGP can automatically evolve routing rules that
contain sensible patterns consistent with intuition for making routing decisions.

6 Conclusions and Future Work

This paper is the very first piece of work to co-evolving routing and sequencing
rules simultaneously for dynamic FJSS, and significantly extends the previous
work on both static and dynamic FJSS. Through comprehensive experiments,
we had several interesting findings. First, we found that the commonly used
pre-specified routing rule is not the best one for static FJSS. We found a bet-
ter routing rule, which is LWQ (least work in queue). Then, we developed the
GPHH with the routing rule fixed to LWQ (named SeqGP), and the Cooperative
Co-evolution GP (CCGP) that co-evolves the routing and sequencing rules simul-
taneously. The results show that CCGP performed much better than SeqGP in
both static and dynamic scenarios. This demonstrates that the routing rules
evolved by CCGP are much better than the rules that are manually designed
and fixed in SeqGP. In other words, there is a great potential to find much more
effective routing rules for FJSS, especially in the dynamic environment.

In the future, we will focus on further improving the effectiveness of CCGP. In
this paper, only a baseline CC framework is adopted. We will consider incorpo-
rating other domain specific strategies such as feature selection and construction
to improve the effectiveness and efficiency of the GP search.

320 D. Yska et al.

References

1. Barnes, J.W., Chambers, J.B.: Solving the job shop scheduling problem with tabu
search. IIE Trans. 27(2), 257–263 (1995)

2. Behnke, D., Geiger, M.J.: Test instances for the flexible job shop scheduling prob-
lem with work centers. Technical report, Helmut Schmidt Universitat, January
2012

3. Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of dispatch-
ing rules for manufacturing job shop operations. Int. J. Prod. Res. 20(1), 27–45
(1982)

4. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search.
Ann. Oper. Res. 41, 157–183 (1993)

5. Branke, J., Nguyen, S., Pickardt, C., Zhang, M.: Automated design of production
scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016)

6. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

7. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–
1724 (2013)

8. Dauzere-Peres, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper.
Res. 70, 281–306 (1997)

9. Dimopoulos, C., Zalzala, A.: Invesigating the use of genetic programming for a
classic one-machine scheduling problem. Adv. Eng. Softw. 32, 489–498 (2001)

10. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: an autonomous learning approach. J. Sched. 9, 7–34 (2006)

11. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

12. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios–a genetic programming approach. In: Proceed-
ings of the 12th Annual Conference on Genetic and Evolutionary Computation
Conference (2010)

13. Ho, N.B., Tay, J.C.: Genace: an efficient cultural algorithm for solving the flexible
job-shop problem. In: IEEE Congress on Evolutionary Computation, vol. 2, pp.
1759–1766. IEEE (2004)

14. Hurink, J., Jurisch, B., Thole, M.: Tabu search for the job-shop scheduling problem
with multi-purpose machines. Oper. Res. Spektrum 15(4), 205–215 (1994)

15. Jones, A., Rabelo, L.C., Sharawi, A.T.: Survey of job shop scheduling techniques.
In: Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley &
Sons, New York (1999)

16. Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans.
Syst. Man Cybern. 32(1), 1–13 (2002)

17. Kiran, A.S.: Simulation studies in job shop scheduling - I a survey. Comput. Ind.
Eng. 8(2), 87–93 (1984)

18. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

19. Mei, Y., Nguyen, S., Xue, B., Zhang, M.: An efficient feature selection algorithm
for evolving job shop scheduling rules with genetic programming. IEEE Trans.
Emerg. Top. Comput. Intell. 1(5), 339–353 (2017)

GPHH with Cooperative Coevolution for Dynamic FJSS 321

20. Mei, Y., Nguyen, S., Zhang, M.: Evolving time-invariant dispatching rules in job
shop scheduling with genetic programming. In: McDermott, J., Castelli, M., Sekan-
ina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
147–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 10

21. Mei, Y., Zhang, M., Nyugen, S.: Feature selection in evolving job shop dispatching
rules with genetic programming. In: GECCO (2016)

22. Miyashita, K.: Job-shop scheduling with GP. In: Genetic and Evolutionary Com-
putation Conference (2000)

23. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

24. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolu-
tion genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2014)

25. Norman, B.A., Bean, J.C.: A genetic algorithm methodology for complex schedul-
ing problems. Nav. Res. Logist. 46(2), 199–211 (1999)

26. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Manag. Sci. 42(6), 797–813 (1996)

27. Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. Springer, New York
(2012)

28. Potter, M.A., Jong, K.A.D.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Compt. 8, 1–29 (2000)

29. Ramasesh, R.: Dynamic job shop scheduling: a survey of simulation research.
Omega 18(1), 43–57 (1990)

30. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job
shop scheduling problem under different flow time- and tardiness-related objective
functions. Int. J. Prod. Res. 50(15), 4255–4270 (2012)

31. Subramaniam, V., Ramesh, T., Lee, G.K., Wong, Y.S., Hong, G.S.: Job shop
scheduling with dynamic fuzzy selection of dispatching rules. Int. J. Adv. Manuf.
Technol. 16, 759–764 (2000)

32. Tay, J., Ho, N.: Evolving dispatching rules using genetic programming for solv-
ing multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473
(2008)

33. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Technical report, Evolutionary
and Complex Systems Program, School of Computer Engineering, Nanyang Tech-
nological University (2007)

34. van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by sim-
ulated annealing. Oper. Res. 40(1), 113–125 (1992)

35. Zhang, G., Gao, L., Shi, Y.: An effective genetic algorithm for the flexible job-shop
scheduling problem. Expert Syst. Appl. 38(4), 3563–3573 (2011)

https://doi.org/10.1007/978-3-319-55696-3_10

	Genetic Programming Hyper-Heuristic with Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling
	1 Introduction
	1.1 Goals
	1.2 Organisation

	2 Background
	2.1 Flexible Job Shop Scheduling
	2.2 Related Work

	3 Genetic Programming with Cooperative Co-evolution
	4 Experiment Settings
	5 Results and Discussions
	5.1 Comparing Manually Designed Routing Rules for SeqGP
	5.2 Optimisation Performance on Static Instances
	5.3 Generalisation Performance on Dynamic Instances
	5.4 Rule Analysis

	6 Conclusions and Future Work
	References

