
Geometric Crossover in Syntactic Space

João Macedo1,2(B) , Carlos M. Fonseca2 , and Ernesto Costa2

1 ISR, Department of Electrical and Computer Engineering,
University of Coimbra, 3030 290 Coimbra, Portugal
2 CISUC, Department of Informatics Engineering,
University of Coimbra, 3030 290 Coimbra, Portugal

{jmacedo,cmfonsec,ernesto}@dei.uc.pt

Abstract. This paper presents a geometric crossover operator for Tree-
Based Genetic Programming that acts on the syntactic space, where each
expression tree is represented in prefix notation. The proposed operator
is compared to the standard subtree crossover on a symbolic regression
problem, on the Santa Fe Ant Trail and on a classification problem.
Statistically validated results show that the individuals produced using
this method are significantly smaller than those produced by the subtree
crossover, and have similar or better performance in the target tasks.
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1 Introduction

Geometric variation operators have been available for Genetic Algorithms (GA)
for some time now [1]. They are representation-independent operators based
on a distance on the search space interpreted as a metric space. The geometric
description of the variation operators uses the notions of line segment (crossover)
and ball (mutation). In the case of the crossover operator, the resulting offspring
is on a shortest path, i.e., line segment, linking its parents. In the case of muta-
tion, the resulting individual is in the neighbourhood of the original individual,
i.e., within a ball centred on the individual and with a given radius, which defines
the magnitude of the mutation. More formally, considering a given distance d
defined over the search space, and provided that the parent individuals A and
B are different, a geometric crossover operator will produce an offspring O such
that d(A,B) = d(A,O) + d(O,B).

Uniform crossover is an instance of a geometric operator devised for GAs. As
an example, consider the binary strings: A = 00000 and B = 11111. One possible
offspring generated by uniform crossover could be: O = 10101. Considering the
Hamming distance as the metric we have, d(A,O) = 3, d(O,B) = 2, d(A,B) = 5.
This example can be easily modified to accommodate other types of search spaces,
the only requirement being the definition of an appropriate distance between
individuals.
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Moraglio [1] introduced abstract definitions of geometric crossover and muta-
tion operators that are independent of the individuals’ representation. One such
operator is Geometric Uniform Crossover, UX. In this operator, all individu-
als between the parents have equal probability of being an offspring. Using this
and other definitions, Moraglio showed that it is possible to devise geometric
variation operators for different representations, e.g., binary strings, real value
vectors and permutations.

Constructing a geometric variation operator for expression-trees, a structure
commonly used in Genetic Programming (GP), is not straightforward, as it is not
clear what a suitable distance would be. Moreover, making a small modification
to the genotype of a GP individual may lead to a big change in its behaviour.
This is known as the low-locality problem inherent to the representation of GP
individuals [2].

Moraglio and Poli [3] have provided a theoretical study on how homologous
crossover is geometric. When using homologous crossover, the topologies of both
trees are compared, and the common rooted structures are found. Then, genetic
material from the common regions is exchanged. One point crossover [4] is a spe-
cial case of homologous crossover. With this operator, only one node is selected
from the common region of each parent and the subtrees rooted by them are
exchanged. Despite having been proposed some time ago, these operators never
achieved much popularity. The fact that the alignment of the parent trees is a
time-consuming task may be one of the reasons for their lack of usage. Another
reason may be that, with extremely different trees, the common region may be
very small, leading to very big syntactic changes which, together with the low-
locality inherent to this tree representation, may have a great impact on the
semantics of the offspring, possibly leading to their death.

Krawiec and Lichocki [5] proposed the Approximately Geometric Semantic
Crossover (SX). They consider the semantics of a GP individual as the set of
input-output mappings created by it. Based on this idea, they propose a binary
variation operator that tries to approximate a geometric crossover in semantic
space by producing an offspring that has a behaviour as close as possible to the
linear combination of the semantics of its parents. This is done by applying mul-
tiple times a usual crossover operator to the parents, creating a set of candidate
offspring. The semantics of the created offspring is assessed and compared to
those of the parents. The resulting offspring is one with the closest semantics to
both parents. This approach has several drawbacks. Firstly, it does not guaran-
tee that the individuals created are on a shortest path between their parents.
As the authors point out, there is a low probability of producing semantically
geometric offspring, depending on the parents, the crossover operator, the ter-
minal and function sets, and the size of the set of candidate offspring. Secondly,
the evaluation of the many GP individuals produced usually becomes a time
consuming process. Thus, the execution time of the algorithm is expected to
increase proportionally to the size of the generated sets of candidate offspring.

Moraglio et al. [6] further developed the idea of geometric variation operators
in semantic space, and later proposed Geometric Semantic Genetic Programming
(GSGP), where the crossover operation consists of making a weighted average
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of both parents. More formally, the crossover operation is defined by:

o = α · p1 + (1 − α) · p2,

where o denotes the offspring, p1 and p2 are the parent individuals, and α is a ran-
dom value sampled uniformly from the interval [0, 1]. This operation guarantees
that the semantics of the generated individual, i.e., its input-output mapping,
is a blend of the semantics of both its parents. GSGP offers the advantage of,
under certain conditions, inducing a unimodal fitness function over the seman-
tic space, which makes the search process much easier. Also, by acting on the
semantic space, geometric semantic crossover controls how much the behaviour
of the individual is changed. Conversely due to the low locality of the tree-based
representation, making modifications at the syntactic level often leads to large
modifications to the semantics of the individuals, which may deem them unfit
and prevent them from surviving into the next generations. However, GSGP
is not without its faults, the most significant being the exponential growth of
the individuals, which makes it unfeasible to employ this method for a large
number of generations. Vanneschi et al. [7] propose a different, more efficient
implementation that remedies this problem, but does not solve it.

A different approach to the development of geometric operators for GP would
be to adopt a simpler individual representation and, like the traditional variation
operators, act on the syntactic space. There are already some works on Evolu-
tionary Algorithms (EAs) that use an alternative representation to encode the
individuals. Brameier and Banzhaf [8] describe Linear Genetic Programming,
which uses a linear representation of the individuals to evolve computer pro-
grams. Another work that represents the individuals linearly is Gene Expression
Programming (GEP) [9]. The genotype of GEP individuals is represented by
a string that can be decoded into more complex structures, such as expression
trees, graphs and neural networks. The notation used for the genotypes is the
sequence of nodes visited during a breadth-first traversal of the phenotype. The
length of the genotypes is fixed and chosen a priori for all individuals. GEP
is able to evolve different individuals using various types of functions, which
may have different arities. In order to guarantee their validity, each genotype is
divided into head and tail. While the head may contain functions and terminal
symbols, the tail must contain only terminal symbols. The sizes of the head and
tail are pre-computed to ensure that even in the presence of a head composed
only of functions with maximum arity, the tail is long enough to generate a
valid individual. A consequence of this is that there will often exist redundant
genes at the end of the tail. As an example, consider that the genotype of an
individual is Q*+−abcd, where the head contains Q*+−, and the tail contains
abcd. Figure 1 depicts the phenotype of this individual. However, the genotype
Q*+−abcdefgh would lead to the same phenotype, with the genes in bold not
being decoded. The individuals are evolved using a set of variation operators
that are not known to be geometric. The GEP author claims that the advantage
of this method lies in using a simple representation that is easy to manipulate,
and yet originates complex structures.
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Fig. 1. Phenotype of an individual evolved by GEP. Figure extracted from [9].

In this paper, we propose a geometric crossover operator for GP that acts on
the syntactic space. We use a linear, prefix representation of the GP individu-
als with no redundant genes. This way, we can avoid tree alignment algorithms
and, instead, rely on string edit distances between the individuals. We compute
the longest common subsequence of the parents, and use the result to make a
controlled modification in one of the parents producing an offspring that lies
in between those parents in the syntactic, i.e., genotype, space. The proposed
operator is compared to the standard subtree crossover on a symbolic regression
problem, on the Santa Fe Ant Trail and on a classification problem. Statistically
validated results show that the individuals produced using this method are sig-
nificantly smaller than those produced by subtree crossover, and have equivalent
or better performance on the target tasks.

The rest of this paper is organised as follows: Sect. 2 describes the proposed
recombination operator, Sect. 3 presents the experimental setup, Sect. 4 presents
and discusses the experimental results obtained and Sect. 5 presents the conclu-
sions and provides some insight into the future work.

2 Geometric Crossover on the Syntactic Space

We propose to perform a geometric crossover operation between two GP indi-
viduals in the syntactic space. The genotype of each individual is a string that
encodes an expression tree in prefix notation. There are no redundant genes.
The crossover operation aligns the genomes of the two parents and performs
the necessary operations so that one becomes more similar to the other. In our
implementation, the alignment is performed by computing the Longest Common
Subsequence. The modifications are made by inserting or deleting pairs of sym-
bols of different types, i.e., a terminal and a non-terminal symbol, or by deleting
a symbol and inserting another one of the same type. The distance between the
two parent individuals is the number of operations that convert one individual
into the other.

A flow chart of the crossover operator is depicted on Fig. 2. We start by
using a dynamic programming algorithm to compute the Longest Common Sub-
sequence between two parent individuals, A and B, obtaining a matrix C. This
matrix contains the information about the common and non-common genetic
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Fig. 2. Geometric crossover operator.

material to A and B. Using that information, Algorithm 1 (LCS MASKS), con-
structs two modification masks MA, MB . These masks contain the aligned sym-
bols from the longest common subsequence, along with blank spaces denoting
the locations where insertions and deletions must be made, and the non-common
symbols marked for deletion or insertion. Using these masks, it is possible to
make a copy of the parent A more similar to parent B by inserting and/or delet-
ing genetic material. The resulting offspring O is chosen randomly from the set of
valid candidate individuals resulting from each of those operations. This can be
repeated for a number of steps, in order to generate individuals farther from the
first parent (and closer to the second one). In that case, the previously chosen
individual takes the place of A and MA and MB are replaced by M ′

A and M ′
B ,

respectively, which are updated versions that reflect the operations performed.

2.1 String Edit Distance

The string edit distance is a family of metrics that reflect the number of oper-
ations needed to transform a string A into a string B. The Longest Common
Subsequence (LCS) [10] is the longest possibly non consecutive subsequence
that is common to both strings. From it, it is possible to compute the distance
between the two strings, i.e., the number of operations required to modify the
non-common symbols from the two strings. We refer the interested reader to
[11], where a dynamic programming algorithm to compute the LCS is presented.
This algorithm outputs a matrix C that holds in each position (i, j) the length
of the longest common subsequence contained up to the character i of string A
and character j of string B. After the algorithm terminates, a longest common
subsequence can be obtained by going through the matrix C from the bottom
right cell to the upper left cell. A symbol in position (i, j) is part of a longest
common subsequence if C[i][j] = C[i − 1][j − 1] + 1 and C[i][j] �= C[i − 1][j],
C[i][j] �= C[i][j − 1].

2.2 Crossover Operator

The proposed geometric crossover operator (GSynGP) works by modifying a
copy of the first parent, A, to make it more similar to the second parent, B,
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Algorithm 1. Modification masks generated from the Longest Common Sub-
sequence.

1: function LCS MASKS(A,B,C)
2: MA,MB ← []
3: i ← len(C) − 1
4: j ← len(C[0]) − 1
5: while i >= 1 or j >= 1 do
6: if i > 0 and j > 0 and C[i − 1][j − 1] = C[i][j] then
7: MA ← get symbol(A[i − 1], function set)
8: MB ← get symbol(B[j − 1], function set)
9: i ← i − 1

10: j ← j − 1
11: else if i > 0 and C[i − 1][j] = C[i][j] then
12: MA ← get symbol(A[i − 1], function set)
13: MB ←’ ’
14: i ← i − 1
15: else if j > 0 and C[i][j − 1] = C[i][j] then
16: MA ← ’ ’
17: MB ← get symbol(B[j − 1], function set)
18: j ← j − 1
19: else if i > 0 and j > 0 and C[i − 1][j − 1] = C[i][j] − 1 then
20: MA ← A[i − 1]
21: MB ← B[j − 1]
22: i ← i − 1
23: j ← j − 1

24: return reverse(MA), reverse(MB)

by inserting and/or removing nodes while preserving the syntactic validity of
the intermediate individuals. It starts by computing the LCS to determine the
similarity between the two parent individuals (A,B). That information is con-
tained in matrix C. Then, using matrix C, Algorithm 1 (LCS MASKS) computes
two modification masks, MA and MB , that contain the symbols in the longest
common subsequence, as well as those that must be modified and blank spaces
denoting locations that must be filled. In other words, Algorithm 1 computes
an alignment of the two parent strings. The masks are created by going through
matrix C, aligning the common genetic material and inserting blank spaces or
markers in the positions where symbols must be added or removed from A. The
markers are provided by function get symbol, which returns the symbol passed
as a parameter along with a prefix to denote whether it belongs to the terminal
(T ) or function set (F ). As an example, consider two parent individuals A:
/ − ∗/bcaa ∗ aa and B: ∗b/cb. A possible LCS between them is ∗bc. The masks
produced by Algorithm 1 are:

MA: F /, F −, ∗, F /, b, ’ ’, c, T a, T a, F ∗, T a, T a
MB : ’ ’, ’ ’, ∗, ’ ’, b, F /, c, ’ ’, ’ ’, ’ ’, ’ ’, T b
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where, the symbols in MA that have the prefixes T and F are not present in
the individual B, and must be deleted. The symbols with those prefixes present
in MB represent genetic material that must be inserted into A. The locations
for insertions are marked by blank spaces in MA, and the locations for deletions
are marked by blank spaces in MB .

Algorithm 2. Geometric Syntactic Crossover Operator

1: function Crossover(MA,MB)
2: candidates ← []
3: if ’F ’ in MA and ’T ’ in MA then
4: candidates ← candidates ∪ delete(MA,MB , function set)

5: if not’ F ’ in MA and ’T ’ in MA then
6: candidates ← candidates ∪ replaceT (MA,MB , function set)

7: if ’F ’ in MB and ’T ’ in MB then
8: candidates ← candidates ∪ insert(MA,MB , function set)

9: if ’F ’ in MB and ’F ’ in MA then
10: candidates ← candidates ∪ replaceF (MA,MB , function set)

11: return random(candidates)

The remaining steps of the crossover operator, presented in Algorithm 2, con-
sist simply in checking four conditions and performing the corresponding opera-
tions, where appropriate. The four possible operations are: inserting a function
and a terminal (Algorithm 3), removing a function and a terminal (Algorithm 4),
removing a terminal and inserting another one and removing a function and
inserting another one (Algorithm 5). The operation of deleting a terminal and
inserting another one is identical to what is presented in Algorithm 5, with the
difference that F should read T and function set should read terminal set. The
function all combinations() returns all pairs of symbols to be tested in each case,
that is, in Algorithm 3, the combinations of all function and terminal symbols

Algorithm 3. Insertion of a function and a terminal symbol

1: function Insert(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (f, t) ← random(combs)
5: MA[t] ← MB [t]
6: MA[f ] ← MB [f ]
7: if check indiv(MA, function set) then return MA

8: else
9: MA[t] ←’ ’

10: MA[f ] ←’ ’

11: return MA
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that are present in B and absent in A; in Algorithm 4, all pairs of terminal and
function symbols that are present in A and absent in B and; for the operations
of deleting and inserting symbols of the same type, all pairs of symbols of the
desired type that are present in one parent and absent in the other one.

Algorithm 4. Deletion of a function and a terminal symbol

1: function Delete(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (f, t) ← random(combs)
5: v ← [MA[f ],MA[t]]
6: MA[t] ←’ ’
7: MA[f ] ←’ ’
8: if check indiv(MA, function set) then return MA

9: else
10: MA[t] ← v[1]
11: MA[f ] ← v[0]

12: return MA

An individual is then selected from the set of valid generated individuals.
These operations create an individual that is one step away from the first parent.
In order to create offspring at different distances from each parent, Algorithm 2
may be iterated over a number of times, with the resulting individual of one
iteration taking the place of A in the following iteration. For example, if the
operator is applied twice, on the first iteration it will be applied to parents A
and B, outputting an offspring O1. In the second iteration, the offspring O1 will
take the place of A in the crossover, creating the individual O2. In general, in an
iteration where all operations are possible, the offspring created only has a 25%
chance of becoming larger than its parent. That growth will only by 2 nodes
and, at most, by one depth level.

An individual is valid if it can be converted into a valid expression tree,
without any exceeding genes. It is also possible to test this validity without
converting the string into the corresponding tree. Consider a counter c, that
holds the number of necessary terminal symbols for an individual to be valid.
For an empty string, c = 1, i.e., a terminal symbol is required in order to create
a valid individual. To test an individual, start with c = 1 and go through the
string. Increment c for each function symbol read, and decrement it for each
terminal read. If c reaches 0 and there are still unread symbols, the individual
has redundant genes and, thus, is invalid. On the other hand, if the string ends
and c > 0, the individual can not be converted into a valid tree. In the given
example, two valid candidates for offspring are:
1. / − ∗/bcaaa, obtained by removing the last ∗ and one of the marked a from

A
2. / − ∗/b/caaaa, obtained by removing the last ∗ from A and inserting the /

from B
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Algorithm 5. Deletion of a function and insertion of another function symbol

1: function ReplaceF(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (fb, fa) ← random(combs)
5: if MA[fb] =’ ’ then
6: MA[fb] ← MB [fb]
7: v ← MA[fa]
8: MA[fa] ← ’ ’
9: if check indiv(MA, function set) then return MA

10: else
11: MA[fb] ←’ ’
12: MA[fa] ← v

13: else if ’F ’ in MA[fb] then
14: MA[fb] ← MB [fb]
15: else
16: v ← MA[fa]
17: MA[fa] ← MB [fb]
18: if check indiv(MA, function set) then return MA

19: else
20: MA[fa] ← v

21: return MA

Table 1. Parameters of the SGP.

Parameter Value

Population size 400

Elite size 1

Tournament size 10

Maximum tree depth 10

Generations 1000

Crossover rate 0.7

Mutation rate 0.3

Number of immigrants 120

3 Experimental Setup

In order to assess the usefulness of the proposed approach, we performed 30
independent runs on a Symbolic Regression problem, on the Santa Fe Ant Trail
and on a Classification problem, comparing the performance of the proposed
approach to that of Standard Genetic Programming (SGP). In the following, we
shall refer to the geometric syntactic approach as GSynGP.
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3.1 Standard Genetic Programming Algorithm

We implemented a version of SGP using subtree crossover and two types of muta-
tion: point mutation and subtree crossover with a randomly generated individual.
Point mutation selects one symbol from the genotype and replaces it by another
of the same type. The initial population is created using the method known as
ramped-half-and-half [12]. The parents are selected using tournaments and sur-
vivor selection is generational, with an elite individual. In order to maintain a
diverse population throughout the run, at each generation a set of immigrant
individuals are introduced into the population. These immigrants have a 50%
chance of being elitist or randomly generated. Elitist immigrants are mutated
copies of a good quality individual that is selected from the population by tour-
nament. The random immigrants are generated using the ramped-half-and-half
method. The parameters used for this algorithm are presented on Table 1.

3.2 Geometric Syntactic Approach

This algorithm uses the same parameters as those used for the SGP, differing only
in the crossover operator employed, which has been described in Algorithm 2.
Due to the low-locality problem inherent to expression trees in GP, we are not
interested in making modifications that are too disruptive. However, we are still
interested in generating individuals that have different distances to each parent.
For these reasons, the crossover operator is performed for a random number of
steps, which is uniformly sampled from {1, 2, 3}.

3.3 Symbolic Regression

Dataset. The performance of the two algorithms is assessed on a dataset gener-
ated using Eq. 1, as proposed by Keijzer [13]. The dataset contains 50 randomly
generated points, with x1, x2 sampled uniformly from the interval [−10, 10].

y = x4
1 − x3

1 +
x2

2

2
− x2 (1)

Terminal and Function Sets. The SGP and the GSynGP use the same ter-
minal and function sets. For this problem, the terminal set is composed only of
the variables from the dataset (i.e., x1, x2) and the function set is composed of
the basic arithmetic functions (i.e., +,−, ∗, /). / stands for protected division,
where x/0 = 1.

Fitness Evaluation. The fitness of each individual was assessed using the
Mean Squared Error (MSE), as defined in Eq. 2, thus making this a minimisation
problem.

MSE =
∑N

i=1(Ŷi − Yi)2

N
(2)

where N is the number of samples, Ŷi is the ith predicted value and Yi is the
corresponding target value.
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3.4 Santa Fe Ant Trail

The Santa Fe Ant Trail is a path planning benchmark problem where an artificial
ant must follow a deceptive trail collecting food pellets. We used the traditional
version of this problem, as used by Koza in [12]. The map is a 32× 32 toroidal
grid with 89 food pellets. The ant starts facing east, at the upper left cell. The
simulation ends when the ant completes 400 moves.

Terminal and Function Sets. The SGP and the geometric approach use the
same terminal and function sets. For this problem, the terminal set is composed
of the basic actions of the ant {left, right,move}, where left and right rotate the
ant 900 in each direction and move makes it move forward one cell. The function
set is composed of the functions ifFoodAhead and Progn2. Both functions have
an arity of 2. Function ifFoodAhead checks if there is a food pellet directly in
front of the ant and, if there is, executes its first argument, otherwise executes the
second argument. Progn2 is a progression function that executes both arguments
in sequence.

Fitness Evaluation. The fitness of each individual is measured as the number
of food pellets eaten by the ant, within the 400 steps limit. Thus, this is a
maximisation problem.

3.5 Classification

In order to understand how our approach performs in real world problems, we
decided to test it in a classification problem with real data. The chosen dataset is
the Wisconsin Breast Cancer [14], available at the UCI repository. It is a binary
classification problem that aims at determining whether a sample, described by
30 features, represents a benign or malign tumour. This dataset has 569 samples,
from which, on the beginning of each run, the algorithm chose 70% to be used
to evolve the individuals. As the dataset was unbalanced, prior to this split a
balancing of the data was made, by randomly discarding samples of the larger
class until both had an equal amount of examples. Thus, the balanced dataset
was left with 424 samples, from which 296 were used in the evolutionary process.

Terminal and Function Sets. As before, both the SGP and the GSynGP use
the same terminal and function sets. The terminal set is composed only of the
variables from the dataset (i.e., x1, x2, ..., x30) and the function set is composed
of the basic arithmetic functions (i.e., +,−, ∗, /).

Fitness Evaluation. The performance of each individual was measured with
the F1-Score, a commonly used criterion in classification problems. As the Santa
Fe Ant Trail, this is a maximisation problem.
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4 Experimental Results

For each problem, we characterise each algorithm according to three features:
the fitness of the best individual at the end of each run, and the average depth
and average number of nodes of the individuals in the population, also at the end
of each run. The results were validated using statistical tests, at a significance
level α = 0.05. The results of those tests are presented on Tables 2 and 3.

4.1 Symbolic Regression

We start by applying the Kolmogorov-Smirnov test to the data, in order to
be able to decide whether we should apply parametric or non-parametric tests.
The results of this test show that the data for the average depth and average
number of nodes of the individuals of both algorithms follow normal distribu-
tions, with p > 0.05, whereas the fitness data follows non-normal distributions
(p < 0.05). As we have two sets of paired samples per feature, we apply the
Wilcoxon Rank-Sum test to the data that follow non-normal distributions, i.e.,
to the fitness data, and the Paired Samples T-Test to the data of the average
number of nodes and average depth. Both tests were applied as SGP-GSynGP.
For the fitness data, the Wilcoxon test shows that there are no statistically sig-
nificant differences between the performances of the individuals evolved by each

Table 2. Kolmogorov-Simrnov test applied to the data of the three problems.

Symbolic regression Santa Fe Ant Trail Classification

Depth Size Fitness Depth Size Fitness Depth Size Fitness

SGP Z 0.88 0.74 1.64 0.65 0.47 1.51 0.79 0.93 0.75

p 0.416 0.648 0.006 0.794 0.979 0.014 0.556 0.358 0.628

GSynGP Z 0.83 0.93 1.37 2.00 2.26 2.41 1.40 1.74 0.75

p 0.498 0.358 0.035 0.0 0.0 0.0 0.028 0.003 0.628

Table 3. Wilcoxon applied to the fitness of the Symbolic Regression problem, to all
data of the Santa Fe Ant Trail and to the average size and depth data of the Classifi-
cation. Paired Samples T-Test applied to the data of the average depth and size of the
Symbolic Regression problem and to the fitness data of the Classification problem.

Symbolic regression Santa Fe Ant Trail Classification

Wilcox. (Dep. T) Depth Size Fitness Depth Size Fitness Depth Size Fitness

Z (t) 14.11 3.40 −1.22 −4.78 −4.78 −3.15 −4.62 −4.78 −1.16

p 0.0 0.0 0.221 0.0 0.0 0.002 0.0 0.0 0.257

P Ranks (SGP ) 119.34 4149.04 15 30 30 3 28 30 0.96

N Ranks (GSynGP ) 13.12 108.02 15 0 0 18 2 0 0.97

Effect size 0.934 0.931 −0.223 −0.873 −0.873 −0.575 −0.843 −0.873 0.211
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algorithm. However, the Paired Samples T-Test revealed that the geometric app-
roach evolved significantly smaller individuals, both in depth and in number of
nodes (both p = 0.0), with large effect sizes of respectively 0.934 and 0.931.
Analysing the average values, SGP evolved individuals with an average depth
of 119.34 levels and an average size of 4149.04 nodes. The geometric syntactic
approach, on the other hand, evolved much smaller individuals, with an average
depth of 13.12 levels (only 3.12 levels higher than the maximum depth of the
initial individuals) and an average size of 108.02 nodes.

4.2 Santa Fe Ant Trail

This section describes the analysis of the data collected on the Santa Fe Ant
Trail. The Kolmogorov-Smirnov test yielded p < 0.05 for the data of all three
features of the geometric approach. For that reason, we applied the Wilcoxon
test to the data of the three features, in a SGP-GSynGP manner. It yielded
p = 0.0 for the two features related to the size of the evolved individuals, leading
us to conclude that the geometric approach evolved significantly smaller indi-
viduals, with a large effect size of −0.873. In fact, the individuals evolved by
the SGP had an average depth of 107,60 levels and an average size of 3450.31
nodes, while those evolved by the GSynGP had an average depth of 10.94 and
an average size of 61.05 nodes. Regarding the fitness of the best individuals,
the Wilcoxon test output a p-value of 0.002, which lets us know that there are
statistically significant differences between the performance of the individuals of
each algorithm. Moreover, the 18 negative ranks found by this test lead us to
conclude that the geometric approach evolved individuals that perform signif-
icantly better in this task than those evolved by the SGP, with a large effect
size of −0.575. On average, the individuals evolved by the SGP collected 77.87
food pellets, while those evolved by the GSynGP collected 86.77, out of the 89
available in the world.

4.3 Classification

In the classification problem, the results of the Kolmogorov-Smirnov test do not
allow us to reject the null hypothesis that the fitness data follow normal distri-
butions. For that reason, we applied the Paired Samples T-Test which revealed
no statistically significant differences, with the individuals evolved by the SGP
achieving an average F1-Score of 0.96 and those evolved by the GSynGP achieving
0.97. Carrying on to assess the average size of the individuals in the last popula-
tions of each algorithm, the results of the Kolmogorov-Smirnov, allow us to assume
that the data of the SGP follows a normal distribution, while the data for the
GSynGP does not. For that reason, we applied the Wilcoxon test, which yielded
significant differences (p=0.00) and, with all ranks being positive, it shows that the
individuals evolved by the SGP are significantly larger, with an average number
of nodes of 5278.39, while those evolved by the GSynGP have an average size of
283.98 nodes. Finally, the Kolmogorov-Smirnov test yielded the same results for
the average depth as it did for the average size. Applying a Wilcoxon test to the
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depth data, we conclude that the individuals evolved by the SGP are significantly
deeper (p=0.0), with a large effect size of −0.843. The individuals evolved by the
SGP have an average depth of 122.54 levels, while those evolved by the GSynGP
have an average depth of 26.86 levels.

4.4 Population Diversity

We now focus on studying the diversity of the individuals from the population in
each generation. We repeated the experiments without using immigrants, as they
are an artificial method of increasing the population diversity. Due to space and
time constraints, we focused on a single benchmark problem, the Santa Fe Ant
Trail, and reduced the population size to 50 individuals. The tournament size was
reduced to 3, as this is expected to increase the population diversity. The other
parameters remained unchanged from the previous experiments.

Figure 3 presents the distances between each pair of parent individuals
evolved by the SGP (left) and the GSynGP (right), sampled with a 50 genera-
tions period. Each distance is represented by a blue circle with high transparency.
Thus, darker circles represent many pairs of parents with equal distances. At the
beginning of the experiments, both algorithms present similar diversity (note the
different scales). However, over time, the SGP seems to achieve a much greater
diversity than the GSynGP. This is due to bloat. Bloated populations contain
individuals with more diverse genotypes, but that diversity does not necessarily
transfer into different behaviours. Moreover, over the entire run there are very
large individuals in the population that result in big differences between the
parents. However, these individuals are usually unable to survive many gener-
ations, leading the population to converge on a set of more similar individuals.
The GSynGP behaves differently, gradually converging its population into a
good quality area of the search space, with the most different individuals being
phased out over the generations. However, this does not necessarily mean that
the population has completely lost its diversity, as the parents of the last pop-
ulation still have an average distance of approximately 6.8 operations and a

Fig. 3. Distances between each pair of parent individuals of the SGP (left) and
GSynGP (right), sampled with a period of 50 generations.
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standard deviation of 5.8. The bloat present in the populations of the SGP leads
to more diverse populations in the genotype space, with the pairs of parents of
the last population having an average distance of 1151 operations and a standard
deviation of roughly 1095.3.

5 Conclusions

This work presented a novel geometric crossover operator that acts on the syn-
tactic space of expression trees. The method was implemented and compared to
SGP on problems from the domains of symbolic regression, path planning and
classification. Our approach was able to consistently evolve smaller individuals
than the SGP, both in size and depth. This reduction in size of the individuals
does not imply a loss in quality, as our approach outperformed the SGP in the
only test problem where there were statistically significant differences. The diver-
sity experiments showed that the geometric operator led the population into a
good quality region of the search space, without completely loosing its diversity.
SGP seemed to have a much more diverse population, but that diversity was due
to bloat. Future work includes adapting this approach to function sets containing
symbols with different arities. Moreover, the crossover implementation should be
improved to avoid having to test individuals after each insertion and/or deletion
pair before a more thorough experimental study is carried out.
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