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Abstract. The success of Artificial Neural Networks (ANNs) highly
depends on their architecture and on how they are trained. However,
making decisions regarding such domain specific issues is not an easy
task, and is usually performed by hand, through an exhaustive trial-
and-error process. Over the years, researches have developed and pro-
posed methods to automatically train ANNs. One example is the Hyper-
NEAT algorithm, which relies on NeuroEvolution of Augmenting Topolo-
gies (NEAT) to create Compositional Pattern Production Networks
(CPPNs). CPPNs are networks that encode the mapping between neu-
ron positions and the synaptic weight of the ANN connection between
those neurons. Although this approach has obtained some success, it
requires meticulous parameterisation to work properly. In this article
we present a comparison of different Evolutionary Computation meth-
ods to evolve Compositional Pattern Production Functions: structures
that have the same goal as CPPNs, but that are encoded as functions
instead of networks. In addition to NEAT three methods are used to
evolve such functions: Genetic Programming (GP), Grammatical Evolu-
tion, and Dynamic Structured Grammatical Evolution. The results show
that GP is able to obtain competitive performance, often surpassing the
other methods, without requiring the fine tuning of the parameters.
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1 Introduction

Artificial Neural Networks (ANNs) are hard to train. A lot of algorithmic design
choices are involved, and learning is often tuned using an iterative, and cumber-
some, trial-and-error process. One of the major decisions is selecting the learning
algorithm to use, along with all the needed parameters, which, in turn, have to
be optimised. The majority of the learning algorithms are gradient-descent and,
as such, have a high probability of becoming trapped in local optima.
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One of the goals of NeuroEvolution (NE) is the automatisation of learning
in ANNs. To that end, NE applies Evolutionary Computation (EC) applies to
search and tune the best solutions for the values of the weights and bias of
ANNs. There are many approaches to that end: evolve the learning algorithm
parameters, the actual learning rules, or directly tune the weights and bias values
of the networks. The approach adopted in this paper is based on the premise
that the network’s weights follow some pattern that can be learned. Assuming
that this pattern exists, it may be easier to evolve a function that outputs the
weights of the connections between nodes than evolving the weights directly.

HyperNEAT [19] is based on the use of NeuroEvolution of Augmenting
Topologies (NEAT) [20] to evolve Compositional Pattern Production Networks
(CPPNs), which are structurally similar to ANNs, and are used as a means to
encode the weights of a network. At a high level, CPPNs are a function that,
given the position of two neurons, outputs the synaptic weight of the connection
between the two given neurons. As such, and since a CPPN can be seen as a
function mapping the coordinates of a pair of nodes into a weight, instead of
evolving CPPNs one can use conventional EC techniques, such as GP, to evolve
functions to the same task. Such functions are known as Compositional Pattern
Production Functions (CPPFs) [7]. Since, in essence, CPPNs are CPPFs that
use the representation adopted by NEAT, from here on we will refer to both as
CPPFs except when it is necessary to make a distinction. Thus, a CPPF evolved
by NEAT is actually a CPPN.

In the current work we apply different methods to the optimisation of CPPFs.
More precisely, we optimise CPPFs using NEAT, Genetic Programming (GP),
Grammatical Evolution (GE), and Dynamic Structured Grammatical Evolution
(DSGE). We test these approaches in two different problems: a visual discrim-
ination, and a line following task. Each problem has two setups of different
complexity. The results show that GP consistently obtains the best results.

The remainder of the paper is organised as follows. In Sect. 2 we introduce
works related with the evolutionary training of ANNs. Then, in Sect. 3, we detail
the specifications of CPPFs and of each approach that is going to be used to
evolve them. In Sect. 4 experiments are conducted and the results analysed. To
end, in Sect. 5, conclusions are drawn, and future work is addressed.

2 Related Work

The use of Evolutionary Algorithms (EAs) to promote learning in ANNs not
only avoids the need for manual tuning, but also reduces the risk of getting stuck
in local optima: instead of a having a single solution, we have a population of
solutions that is evolved. Each candidate solution encodes a trained network and
their quality is determined according to the performance on a specific task. There
are many approaches to the evolutionary learning of ANNs; they can be divided
into three groups: optimisation of the (i) learning algorithm parameters [12,17];
(ii) learning rules [5,18]; or (iii) weights and bias values [3,8,10,21].

Despite the high number of works on the automatic training of ANNs, in
the current paper our focus is on approaches that evolve the learning rules.
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Fig. 1. Example of an image generated by HyperNEAT (left), and NEvAr (right).

More particularly, we are interested in the methods that explore the spatial
regularity of the networks. HyperNEAT [19] aims at evolving CPPNs, which can
be described as similar to ANNs (in structural terms). CPPNs are able to capture
and encode patterns and correlations among network weights. To promote the
evolution of the CPPNs it is possible to use NEAT [20]. NEAT was primarily
designed as a NE approach for the optimisation of the topology and weights
of ANNs; but, since CPPNs are structurally similar to ANNs they can also be
evolved by NEAT.

Looking closely at HyperNEAT, what is actually evolved is a function that
given spatial data provides an output. For example, one of the first applications
of HyperNEAT was Picbreeder [1] – a web platform for evolving images collab-
oratively. In Picbreeder, the evolved CPPNs take as input two arguments: x, y,
which are the coordinates of a pixel in the image; the output is the intensity.
Before Picbreeder there were similar systems that aimed at evolving images; one
of such methods is NEvAr [15]. The main difference between the two approaches
relies on the mechanism used to evolve the function that generates the pixel
value: while in Picbreeder the authors rely NEAT, in NEvAr tree-based GP is
used to evolve a function, as in common symbolic regression approaches.

The fact that NEAT and GP have been applied to the evolution of functions
to generate images is not within the scope of the current work; however it illus-
trates how both approaches can produce similar results in terms of the images
that are generated (check Fig. 1). Additionally, both approaches have already
been used in the evolution of functions that map the position of any pair of
two nodes into a weight value, i.e., a rule that defines what are the weights
of a target network. Stanley et al. trained multiple neuronal controllers using
NEAT [20]; Buk et al. followed the same rationale but using GP [7]. The results
of [7] show that using GP or NEAT it is possible to find adequate solutions;
however, convergence seems to be faster with GP.

3 Generation of CPPFs

The main goal of the current work is to compare the performance of differ-
ent approaches in the evolution of CPPFs for the training of ANNs. Figure 2
depicts the interaction between evolution, the generated CPPFs and the sub-
strate, which is the network that is trained to solve a specific problem. Four
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Fig. 2. Overview of the current work, evidencing the interaction between the CPPFs
and the substrate.

different approaches are tested: NEAT, GP, GE, and DSGE. These are briefly
described in Sects. 3.1, 3.2, 3.3, and 3.4, respectively. CPPFs are functions with
4 inputs: x1, y1, x2, y2, which similarly to HyperNEAT, are the positions of
the neurons in the substrate. The substrate is the ANN that is used to solve
the problem at hand. It is a grid of neurons, with a fixed number of inputs and
outputs that varies according to the problem to be solved. To know the weights
of the connections between the neurons in the substrate we need to query the
evolved CPPF; if it returns a value above a defined threshold then the connec-
tion between the input neurons ((x1, y1) and (x2, y2)) exists and the synaptic
weight is the one returned by the CPPF; conversely, if the value is bellow the
threshold, the connection does not exist.

3.1 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [20] is a NE approach, where
each candidate solution encodes an entire network as a list of neurons along with
the connections between them. Whilst the majority of other NE approaches
initialise the population at random, in NEAT evolution starts from a minimal
structure, i.e., initial networks are composed of no hidden-nodes, and thus the
input nodes are directly connected to the output nodes. Other novel aspects
of NEAT include innovation protection techniques and speciation. In its vanilla
form the only genetic operator that is applied to generate offspring is mutation,
which aims at changing any node or structural property of a network.

CPPNs are structurally similar to ANNs, and thus it is possible to evolve
them using NEAT and its principles. As such, the target of evolution is a network
structure, with four inputs and one output, where the activation function of each
node is selected from a defined set, and the connections are evolved and have a
weight associated to it, as in ANNs. This approach is known as HyperNEAT [19].
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3.2 Tree-Based Genetic Programming

In its standard form Genetic Programming (GP) [13] encodes the solutions as
trees, where the inner nodes represent functions and leaves represent terminals.
The crossover operator exchanges sub-trees between parents; mutation acts sim-
ilarly to the crossover operator: a random sub-tree of the individual that is to
be mutated is replaced by another valid one.

There are several approaches where GP is used to evolve learning rules of
ANNs (e.g. [5,18]). GP is well-known for its results in symbolic regression tasks.
Typically this assumes evaluating the evolved individuals for different input val-
ues. Likewise, the evolution of CPPFs (or CPPNs using HyperNEAT) involves
the evaluation of the individuals for all pairs of neurons. The difference is that
while in symbolic regression one typically compares the output values with the
desired ones, in the evolution of CPPFs one does not know the desired value
and, therefore, fitness is assigned according to the performance of the network
on a given task. Due to the similarities between symbolic regression and CPPF
evolution we consider GP to be a natural choice for this task, and we expect it
to be able of discovering effective functions that encode the substrate weights.

3.3 Grammatical Evolution

Grammatical Evolution (GE) [16] uses an indirect encoding to represent solu-
tions as derivations of a user-defined grammar. One of the advantages of this
type of approaches is that they are easily generalisable to deal with different
domains, just requiring the change of the grammar production rules. Candidate
solutions are encoded as a linear sequence of integers, where each integer rep-
resents the possibility to further expand a given non-terminal symbol. To that
end, the mathematical modulus operation is used, and the expansion possibility
is equal to the integer modulus the number of possibilities for expanding the
current non-terminal symbol. In GE both mutation and crossover genetic oper-
ators are used; mutation randomly changes an integer to another one; one-point
crossover is used.

Like in GP, the majority of the works concern the evolution of the weights
of the networks (e.g. [2]). Due to its similarities with GP we will focus on the
generation of CPPFs.

3.4 Dynamic Structured Grammatical Evolution

Dynamic Structured Grammatical Evolution (DSGE) [4,14] is another grammar-
based GP approach. The main difference between GE and DSGE relies on the
way the genotype is encoded. While in GE a single list of integers is used, in
DSGE there is a list of integers for each non-terminal symbol. This encapsula-
tion of the genetic material promotes locality, in the sense that there is a direct
association between the non-terminal symbols and the integers used for their
mapping. In addition, the modulus is no longer needed, thus avoiding the redun-
dancy issue commonly pointed out as a disadvantage of GE. In DSGE only the
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non-terminal symbols that are used are encoded, and consequently the variation
operators are applied to integers that are effectively used in the genotype to
phenotype mapping.

To promote evolution crossover and mutation are applied; bit-mask crossover
is used, where codons (i.e., the set of integers associated to a specific non-terminal
symbol) are changed between two parents; the mutation operator is a standard
per gene point mutation. For the same reason than in GP and GE we will tackle
the evolution of CPPFs using DSGE.

4 Experiments

We conduct experiments with the four evolutionary methodologies described
above: NEAT, GP, GE, and DSGE. The objective of the the experiments is
the evolution of CPPFs for the training of neuronal controllers for solving two
specific tasks, which are described next.

4.1 Problems Description

The experiments are conducted in two different tasks: (i) visual discrimination;
and (ii) line following. We selected these problems because they are common
benchmarks used by HyperNEAT. Moreover, its performance has been thor-
oughly studied, and it is possible to compare the approaches without introducing
any problem dependency bias. In the upcoming sub-sections we briefly describe
the tasks, and the structure of the substrates that are used to solve them.

Visual Discrimination

This problem was one of the first to be used to demonstrate the effectiveness of
HyperNEAT [19]. The objective of this visual computation task is to distinguish
between two different objects – a target and a distractor – independently of their
positions in a field. We test the evolution of CPPFs for two different setups. The
two setups have the same input dimensions: a 11 × 11 image, but the targets
and distractors differ. In the big-little setup the target is a 3× 3 square, and the
distractor is a 1 × 1 square:

targetsquare =

⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦, distractorsquare =

[
1
]
.

To increase the complexity of the task, we then experiment with a triangular
target and distractor, which have the same dimensions, but are mirrored (triup-
down setup):

targettriangle =

⎡
⎣

1 0 0
1 1 0
1 1 1

⎤
⎦, distractortriangle =

⎡
⎣

1 1 1
0 1 1
0 0 1

⎤
⎦.
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Fig. 3. Line following task. On the left the road that the agent must follow. On the
right the same road path with different friction areas.

The identification of the target shape is performed by a neuronal controller,
which is trained using a CPPF. To identify the shape, the trained network must
generate the highest activation at the center of the target shape. Therefore the
goal of evolution is the minimisation of the distance between the response pro-
vided by the network and the target center (underlined 1 in the target matrices).
To further complexify the problem, as in [7], the positions of the distractor are
set at random. This makes the fitness function non-deterministic, which means
that two consecutive evaluations can provide two different fitness values.

For this task, the CPPFs receive 6 inputs: additionally to the usual coordi-
nates of the nodes x1, y1, x2, y2, there are also two delta values x1 − x2, and
y1 − y2 (as in [6]). The substrate consists of a sandwich network [19], i.e., the
input layer is directly connected to the output layer, and both have the same
size (in this case 121 neurons, one for each pixel of the image).

Line Following

In the line following task [9] the goal is to evolve the controllers of an agent so
that it can effectively navigate a road, i.e., follow a line at maximum speed. The
map is made of regions with different friction rates, and thus the agent should
strive to steer in those with the lowest resistance. Two setups are tested: in the
first one all regions except the road have the same friction rate (Fig. 3, left); on
the second there are regions of different friction (marked as the darker stripes
on the right side of Fig. 3). The regions outside the road have a friction that is
5 times higher than on the road.

The agent is a robot with two wheels and 5 sensors, each with a range of
3 pixels. The sensors are placed to the front of the agent, and provide a read
of the characteristics of the field within range. The substrate is a feedforward
network with 15 inputs (which are fed with the sensors data), a hidden-layer,
and 2 outputs (that control each of the wheels).

The evolved CPPFs receive the standard 4 inputs, but have 3 outputs, each
responsible for encoding a function that represents the weights of a specific part
of the substrate: input to output, hidden-connections, and output layer bias.
When evolving CPPNs there is no problem in having three different functions,
each represented by a different output neuron. However, to accomplish the same
with CPPFs authors typically evolve three different functions simultaneously
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Table 1. Experimental parameters.

Parameter Value
Number of runs 30

Number of generations 250 / 100
Population size 100

Elite size 1%
Tournament size 3

NEAT Parameter Value
Weight range (-3, 3)

Minimum weight 0.3
Add node probability 0.03

Add connection probability 0.1
Mutate weight probability 0.8
Reset weight probability 0.1

Reenable connection probability 0.01
Disable connection probability 0.01

Mutate bias probability 0.2
Mutate node type probability 0.2

Std weight mutation 0.2
Std bias mutation 0.5

GP Parameter Value
Crossover probability 0.9
Mutation probability 0.1
Maximum tree-depth 17
GE Parameter Value

Codon size 127
Wrapping 2

Crossover probability 0.9
Mutation probability 0.05
DSGE Parameter Value
Crossover probability 0.9
Mutation probability 1/codon size

Maximum recursivity 17

(as in [7]). We followed a different direction, and evolve a single function that
outputs a vector of size 3. This can be easily accomplished by using a function set
that operates on vectors and scalars (the multiplication of two vectors performs
the dot product; the same happens for division; the trigonometric operations
are applied to each one of the components of the vector); and random constants
which are vectors of size 3. This approach has also been used in NEvAr [15].

4.2 Experimental Setup

To promote a fair comparison, we adopted and adapted the vanilla implemen-
tations of each of the evolutionary engines, which are easily found in public
repositories1. Table 1 details the parameterisation of the different algorithms.
For the two benchmarks and respective setups the parameters are the same,
except for the number of generations of each run, which is 250 for the visual
discrimination task setups, and 100 for line following.

For the grammar-based approaches (GE and DSGE) we use the grammar of
Fig. 4. This grammar is capable of generating CPPFs that provide the weights
for the substrate based on multiple inputs; for the visual discrimination task x1,
y1, x2, y2, d1, and d2: the first 4 are the positions of the neurons in the substrate

1 NEAT – https://github.com/noio/peas [6].
GP – https://github.com/DEAP/deap.
GE – https://github.com/jmmcd/ponyge.
DSGE – https://github.com/nunolourenco/dsge.

https://github.com/noio/peas
https://github.com/DEAP/deap
https://github.com/jmmcd/ponyge
https://github.com/nunolourenco/dsge
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<expr> ::=<expr><op><expr>

|<var>

|<preop> (<expr>)

<var> ::=x1 | y1 |x2 | y2
| d1 | d2
|<float>

<preop> ::= + | − | ∗ | /
<preop> ::= sin | −
<float> ::= − <first>.<number><number>

|<first>.<number><number>

<first> ::= 0 | 1 | 2
<number> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Fig. 4. Grammar used for evolving CPPFs with GE and DSGE. For the line following
task in the <var> rule the terminal symbols d1 and d2 are removed from the grammar,
and the last expansion possibility of <var> is replaced by [<float>,<float>,<float>].

and the last are the deltas, x1 −x2 and y1 −y2, respectively. In the line following
task the deltas are not considered.

We decided to use function sets that are commonly used in conjunction
with each one of the approaches. As such, when evolving CPPFs – with tree
or grammar-based GP – for the visual discrimination tasks we consider a simple
function set: sin, addition, subtraction, multiplication, and division. The termi-
nals are the ones used by the grammar of Fig. 4, i.e., the inputs of the CPPF, and
random float values that may range between −3 to 3. In NEAT the nodes of the
network can use the following activation functions: sin, bound, linear, gaussian,
sigmoid, and absolute value. When evolving CPPFs for the line following tasks,
the function set is expanded in order to handle vectors and the random constants
become random vectors of size 3. No changes are required to the function set of
NEAT.

4.3 Experimental Analysis

In each experiment we perform 30 independent evolutionary runs so that we
can understand the behaviour of the methods in each of the tested problems
and setups. We analyse fitness evolution and convergence speed. In addition, a
statistical analysis is performed to assess if any of the approaches is statistically
superior to the others in terms of the quality of the evolved solutions.

Visual Discrimination

In the visual discrimination task the goal is to reduce the distance to the center
of the target shape, and consequently fitness is to be minimised; recall that the
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Fig. 5. Evolution of the best individuals across generations in the visual discrimination
task for the big-little (left) and triup-down (right) setups. Results are averages of 30
independent runs.
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Fig. 6. Analysis of the fitness of the best solutions of the visual discrimination task
using box plots. On the left the big-little setup, and on the right the triup-down.

fitness function is not deterministic, and thus the fitness of the same individual
evaluated multiple times can vary. Figure 5 depicts, for both setups, the evolution
of fitness across generations. The results are averages of the 30 best solutions,
one from each of the evolutionary runs. These charts show that with any of
the evolutionary engines evolution is promoted and there is convergence. The
difference in the setups complexity is noticeable by the analysis of the difference
in the fitness scales: in both setups the average fitness of the best solutions starts
approximately from the same point, but in the big-little setup it is capable of
reaching much lower values than in the triup-down setup. Having the target
and distractor shapes with the same size but mirrored makes the problem too
challenging for an appropriate function capable of encoding the weights of the
substrate to be found in the given number of generations.

Nonetheless, for both setups, in terms of fitness, the results reported by
NEAT and GP are superior to those of the grammar-based methods. To better
analyse the quality of the generated solutions we use box plots, focusing on the
distribution of the quality of the best individuals from each evolutionary run
(see Fig. 6). From the box plots it is possible to see that GE has the worse
performance. Focusing on each of the setups individually, in the case of the
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Table 2. Graphical overview of the statistical results of the visual discrimination
experiments with effect sizes for the big-little (left) and triup-down (right) setups.

NEAT GP GE DSGE
NEAT ∼ +++ +++
GP ∼ +++ ++
GE ∼ ∼ ∼

DSGE ∼ ∼ ∼

NEAT GP GE DSGE
NEAT ∼ +++ ∼
GP ∼ +++ ∼
GE ∼ ∼ ∼

DSGE ∼ ∼ ++

Fig. 7. The left and right figures represent the activations generated by one of the
best solutions (discovered using GP), for each of the setups: big-little and triup-down,
respectively.

big-little setup NEAT and GP have a close median, with GP having a slightly
superior dispersion. For the triup-down setup NEAT and GP also have roughly
the same median, but the dispersion is lower in GP. GP has more outliers, but
these outliers correspond to runs that achieve better solutions. Looking at the
DSGE performance, in the big-little setup it performs worse than NEAT or GP,
and in the triup-down setup it has a similar performance, but larger dispersion.

The analysis of the generated solutions reveals that, for the big-little setup,
NEAT, GP, GE, and DSGE generate perfect solutions in 5, 8, 3, and 0 out
of the 30 runs, respectively. So, despite GP having a slightly higher median
and dispersion in the fitness values, it is the approach that finds solutions with a
perfect performance most often. In the triup-down setup, no approach is capable
of finding a perfect solution.

To better understand if any of the approaches is superior to the others we
conduct a statistical study. To check if the samples follow a Normal Distribution
we use the Kolmogorov-Smirnov and Shapiro-Wilk tests, with a significance
level of α = 0.05. The tests reveal that the data does not follow a normal
distribution and, as such, a non-parametric test (Mann-Whitney U, α = 0.05)
is used to perform the pairwise comparison of the approaches (with Bonferroni
correction). Table 2 presents a graphical overview of the results of the statistical
analysis: ∼ indicates no statistical difference, and + that the approach in the row
is statistically better than the one in the column. The effect size is a measure
that quantifies the strength of a phenomenon (larger values mean a stronger
effect), and is denoted by the number of + signals, where +, ++ and +++
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correspond, respectively, to low (0.1 ≤ r < 0.3), medium (0.3 ≤ r < 0.5) and large
(r ≥ 0.5) effect sizes. The statistical results show that it is not possible to point
out a single approach as the best one; there are no differences between NEAT
and GP. GE is surpassed by all other approaches, and DSGE is outperformed
in the triup-down setup, but has the same performance as NEAT and GP in the
big-little.

Figure 7 presents examples of one of the best solutions (for each setup) regard-
ing the activations that are generated for the identification of the target shapes:
darker colours mean higher activation values. As perceptible, in the big-little
setup the target shape is correctly identified; in the triup-down the trained net-
work fails to identify the target shape, and is activated by parts of the target
and distractor shapes.

Line Following

Contrary to the visual discrimination task, the goal of the line following task
is the maximisation of the average speed of a robot in a road navigation task,
i.e., maximise the distance travelled in a fixed amount of time (3000 time steps).
As before, we start by analysing the evolution of fitness across generations (see
Fig. 8). GE is the approach that takes the largest number of generations to
converge, reaching the lowest results. Conversely, NEAT, GP, and DSGE are
the methods that generate the best solutions, with GP outperforming the other
two in the easy and hard setups. The box plots allow stronger conclusions than
before (see Fig. 9); while in the visual discrimination task NEAT or GP were not
superior in the two setups, in the line following task it is perceptible that GP
performs better than the remaining approaches in the easy and hard setups, i.e.,
despite having a few outliers GP has a median that is higher than those of the
remaining approaches, and the interquartile range is smaller, meaning that the
results are more consistent.

GenerationGeneration

F
itn

es
s

F
itn

es
s

Fig. 8. Evolution of the best individuals across generations in the line following task
for the easy (left) and hard (right) setups. Results are averages of 30 independent runs.

To strengthen our analysis, we perform a statistical analysis of the results.
The results are reported in Table 3, using the same graphical representation of
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Fig. 9. Analysis of the fitness of the best solutions of the line following task using box
plots. On the left the easy setup, and on the right the hard.

Table 3. Graphical overview of the statistical results of the line following experiments
with effect sizes for the easy (left) and hard (right) setups.

NEAT GP GE DSGE
NEAT ∼ +++ ∼
GP +++ +++ ++
GE ∼ ∼ ∼

DSGE +++ ∼ +++

NEAT GP GE DSGE
NEAT ∼ +++ +++
GP +++ +++ +++
GE ∼ ∼ ∼

DSGE ∼ ∼ +++

the statistical analysis of the visual discrimination task. A brief perusal of the
results shows that GP clearly outperforms the other approaches in the easy and
hard setups. In fact, the effect size is always large, except in what concerns the
comparison between GP and DSGE for the easy setup.

An example of the best models navigating in each of the setups is depicted
in Fig. 10. The line marks the path followed by the robot. In the easy setup it
is clear that the robot is capable of travelling through the road without any
difficulty, never leaving the predefined path. The same cannot be stated for the
hard setup, where the regions of different friction make learning more challenging

Fig. 10. The left and right figures represent an example of one of the best solutions
(found using GP) for the easy and hard setups, respectively.
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to the point that none of the evolved models is capable of completing an entire
lap on the track in the given execution time; in fact the vast majority of them
depict a behaviour similar to the one presented in the example, i.e., they leave
the marked path and are unable of getting back to it.

Discussion

Summing up the previous results, we conclude that in the visual discrimination
task no approach is superior to the remaining ones. The analysis of the results
present in both the evolution and box plots shows that GP and NEAT have a
similar performance. The statistical tests also confirm that there are no mean-
ingful differences between the two approaches. Nevertheless, it is possible to say
that GP is more effective, since it discovers perfect solutions most often, i.e.,
solutions with a distance of 0 to the target shape. On the big-little GP discovers
perfect solutions 8 times out of 30 runs, and NEAT, GE, and DSGE discover
perfect solutions in 5, 2, and 0 runs, respectively.

In the line following task GP outperforms all the other approaches considered
in the comparison, which is clearly perceptible by the analysis of the box plots,
where the fitness of GP is superior and the quality of the results consistent.

The performance of the grammar-based approaches is fairly disappointing
in comparison with the remaining methods, which was an unexpected result. A
possible explanation pertains the way float constants are created, which makes
the search space larger. While in NEAT and GP the floats are just one terminal,
in the grammar-based methods there is the need to associate an expansion pos-
sibility to each of the integers of the floats (which have a fixed precision). This
might be mitigated by allowing both grammar-based approaches to perform a
larger number of evaluations.

Based on the experiments conducted, it is possible to state that GP has better
overall performance than NEAT. Additionally, GP requires far less parameteri-
sation, without compromising the end results.

5 Conclusions and Future Work

ANNs are difficult to train, mainly due to the gradient-descent nature of the
majority of the learning algorithms, and because of the complexity in setting
the hyper-parameters required by the learning algorithms. Therefore, practi-
tioners investigate methods that automatically search for the best weights of the
networks. Some of these works focus on the automatic generation of learning
rules that can map the network connections into appropriate weights and bias.
HyperNEAT is an example of one of such approaches, and it is based on the use
of NEAT to promote the evolution of CPPNs.

In this article we compare different evolutionary methods for the genera-
tion of CPPFs. Our research hypothesis is that it is possible to replace NEAT
in HyperNEAT by a simpler method, that requires far less parameters, with-
out compromising the overall quality of the obtained results. To validate our
hypothesis, we apply NEAT, GP, GE and DSGE to the evolution of CPPFs in
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two benchmarks commonly used in HyperNEAT experiments: visual discrimina-
tion and line following, each having two setups that vary in complexity.

The experimental results, supported by statistical analysis, confirm our
research hypothesis, i.e., they show that using tree-based GP it is possible to
evolve effective CPPFs that, for the considered tasks, outperform the CPPFs
discovered by the other methods, including NEAT. This result is somewhat sur-
prising, specially taking into consideration that we used a vanilla implementation
of GP and resorted to a basic and generic function set. As such we consider that
these results pave the way for the application of GP approaches to the evolution
of CPPFs, creating opportunities for the application of more sophisticated GP
approaches to this type of tasks.

Future work will focus in four different research directions: (i) applying these
approaches to a wider set of problems in order to assess the generality of the
conclusions and identify problem specific limitations and strengths of different
approaches; (ii) study the impact of the function and terminal sets in evolu-
tion; (iii) test how the compared approaches behave in terms of scalability; and
(iv) expand the comparison to non-vanilla implementations and graph-based
evolutionary methods, such as Cartesian Genetic Programming, which may be
suitable for the evolution of CPPFs [11].
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