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Preface

The 21st European Conference on Genetic Programming (EuroGP) took place in the
historical central building of the University of Parma, via Universitá 1, Parma, Italy,
April 4–6, 2018.

Genetic programming (GP) is a unique field of research. It uses the principles of
Darwinian evolution, already well-known in genetic algorithms and other areas of
evolutionary computation, to approach problems in the synthesis, improvement, and
repair of computer programs. The universality of computer programs, and their
importance in so many areas of our lives, means that the automation of these tasks is an
exceptionally ambitious challenge with far-reaching implications. It has attracted a very
large number of researchers and a vast amount of theoretical and practical contributions
are available by consulting the GP bibliography1.

Since the first EuroGP event in Paris in 1998, EuroGP has been the only conference
exclusively devoted to the evolutionary generation of computer programs. Indeed,
EuroGP represents the single largest venue at which GP results are published. It plays
an important role in the success of the field, by serving as a forum for expressing new
ideas, meeting fellow researchers, and initiating collaborations. It attracts scholars from
all over the world. In a friendly and welcoming atmosphere authors present the latest
advances in the field, also presenting GP-based solutions to complex real-world
problems.

EuroGP 2018 received 36 submissions from around world. The papers underwent a
rigorous double-blind peer review process, each being reviewed by at least three
members of the international Program Committee.

The members of the Program Committee encountered an exceptionally high stan-
dard this year, with papers proposing innovative and disruptive ideas. Among the
papers presented in this volume, 11 were accepted for full-length oral presentation
(30.6% acceptance rate) and eight for short talks (52.8% acceptance rate for both
categories of papers combined). Authors of both categories of papers also had the
opportunity to present their work in poster sessions.

The wide range of topics in this volume reflects the current state of research in the
field. Thus, we see topics and applications including analysis of feature importance for
metabolomics, semantic methods, evolution of Boolean networks, generation of
redundant features, ensembles of GP models, automatic design of grammatical repre-
sentations, GP and neuroevolution, visual reinforcement learning, evolution of deep
neural networks, evolution of graphs, and scheduling in heterogeneous networks.

Together with three other co-located evolutionary computation conferences
(EvoCOP 2018, EvoMusArt 2018, and EvoApplications 2018), EuroGP 2018 was part
of the Evo* 2018 event. This meeting could not have taken place without the help of

1 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html.



many people. The EuroGP Organizing Committee is particularly grateful to the
following.

– SPECIES, the Society for the Promotion of Evolutionary Computation in Europe
and Its Surroundings, aiming to promote evolutionary algorithmic thinking within
Europe and beyond, and more generally to promote inspiration of parallel algo-
rithms derived from natural processes.

– The high-quality and diverse EuroGP Program Committee. Each year the members
give freely of their time and expertise, in order to maintain high standards in
EuroGP and provide constructive feedback to help authors improve their papers.

– Marc Schoenauer of Inria-Saclay, France, for his continued hosting and maintaining
of the MyReview conference management system.

– Stefano Cagnoni, Monica Mordonini, and the local organizing team from the
University of Parma, Italy.

– Pablo García-Sánchez (University of Cádiz, Spain) for the Evo* 2018 publicity and
website.

– Our invited speakers, Una May O’Reilly and Penousal Machado, who gave
inspiring, enlightening, and entertaining keynote talks.

– The Evo* coordinators: Anna I Esparcia-Alcázar, from Universitat Politècnica de
València, Spain, and Jennifer Willies.

April 2018 Mauro Castelli
Lukas Sekanina
Mengjie Zhang

Stefano Cagnoni
Pablo García-Sánchez

VI Preface
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Using GP Is NEAT: Evolving
Compositional Pattern Production

Functions

Filipe Assunção(B), Nuno Lourenço,
Penousal Machado, and Bernardete Ribeiro

CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal
{fga,naml,machado,bribeiro}@dei.uc.pt

Abstract. The success of Artificial Neural Networks (ANNs) highly
depends on their architecture and on how they are trained. However,
making decisions regarding such domain specific issues is not an easy
task, and is usually performed by hand, through an exhaustive trial-
and-error process. Over the years, researches have developed and pro-
posed methods to automatically train ANNs. One example is the Hyper-
NEAT algorithm, which relies on NeuroEvolution of Augmenting Topolo-
gies (NEAT) to create Compositional Pattern Production Networks
(CPPNs). CPPNs are networks that encode the mapping between neu-
ron positions and the synaptic weight of the ANN connection between
those neurons. Although this approach has obtained some success, it
requires meticulous parameterisation to work properly. In this article
we present a comparison of different Evolutionary Computation meth-
ods to evolve Compositional Pattern Production Functions: structures
that have the same goal as CPPNs, but that are encoded as functions
instead of networks. In addition to NEAT three methods are used to
evolve such functions: Genetic Programming (GP), Grammatical Evolu-
tion, and Dynamic Structured Grammatical Evolution. The results show
that GP is able to obtain competitive performance, often surpassing the
other methods, without requiring the fine tuning of the parameters.

Keywords: Compositional Pattern Production Functions
NeuroEvolution of Augmenting Topologies · Genetic Programming
Grammatical Evolution · Dynamic Structured Grammatical Evolution

1 Introduction

Artificial Neural Networks (ANNs) are hard to train. A lot of algorithmic design
choices are involved, and learning is often tuned using an iterative, and cumber-
some, trial-and-error process. One of the major decisions is selecting the learning
algorithm to use, along with all the needed parameters, which, in turn, have to
be optimised. The majority of the learning algorithms are gradient-descent and,
as such, have a high probability of becoming trapped in local optima.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-77553-1_1
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4 F. Assunção et al.

One of the goals of NeuroEvolution (NE) is the automatisation of learning
in ANNs. To that end, NE applies Evolutionary Computation (EC) applies to
search and tune the best solutions for the values of the weights and bias of
ANNs. There are many approaches to that end: evolve the learning algorithm
parameters, the actual learning rules, or directly tune the weights and bias values
of the networks. The approach adopted in this paper is based on the premise
that the network’s weights follow some pattern that can be learned. Assuming
that this pattern exists, it may be easier to evolve a function that outputs the
weights of the connections between nodes than evolving the weights directly.

HyperNEAT [19] is based on the use of NeuroEvolution of Augmenting
Topologies (NEAT) [20] to evolve Compositional Pattern Production Networks
(CPPNs), which are structurally similar to ANNs, and are used as a means to
encode the weights of a network. At a high level, CPPNs are a function that,
given the position of two neurons, outputs the synaptic weight of the connection
between the two given neurons. As such, and since a CPPN can be seen as a
function mapping the coordinates of a pair of nodes into a weight, instead of
evolving CPPNs one can use conventional EC techniques, such as GP, to evolve
functions to the same task. Such functions are known as Compositional Pattern
Production Functions (CPPFs) [7]. Since, in essence, CPPNs are CPPFs that
use the representation adopted by NEAT, from here on we will refer to both as
CPPFs except when it is necessary to make a distinction. Thus, a CPPF evolved
by NEAT is actually a CPPN.

In the current work we apply different methods to the optimisation of CPPFs.
More precisely, we optimise CPPFs using NEAT, Genetic Programming (GP),
Grammatical Evolution (GE), and Dynamic Structured Grammatical Evolution
(DSGE). We test these approaches in two different problems: a visual discrim-
ination, and a line following task. Each problem has two setups of different
complexity. The results show that GP consistently obtains the best results.

The remainder of the paper is organised as follows. In Sect. 2 we introduce
works related with the evolutionary training of ANNs. Then, in Sect. 3, we detail
the specifications of CPPFs and of each approach that is going to be used to
evolve them. In Sect. 4 experiments are conducted and the results analysed. To
end, in Sect. 5, conclusions are drawn, and future work is addressed.

2 Related Work

The use of Evolutionary Algorithms (EAs) to promote learning in ANNs not
only avoids the need for manual tuning, but also reduces the risk of getting stuck
in local optima: instead of a having a single solution, we have a population of
solutions that is evolved. Each candidate solution encodes a trained network and
their quality is determined according to the performance on a specific task. There
are many approaches to the evolutionary learning of ANNs; they can be divided
into three groups: optimisation of the (i) learning algorithm parameters [12,17];
(ii) learning rules [5,18]; or (iii) weights and bias values [3,8,10,21].

Despite the high number of works on the automatic training of ANNs, in
the current paper our focus is on approaches that evolve the learning rules.
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Fig. 1. Example of an image generated by HyperNEAT (left), and NEvAr (right).

More particularly, we are interested in the methods that explore the spatial
regularity of the networks. HyperNEAT [19] aims at evolving CPPNs, which can
be described as similar to ANNs (in structural terms). CPPNs are able to capture
and encode patterns and correlations among network weights. To promote the
evolution of the CPPNs it is possible to use NEAT [20]. NEAT was primarily
designed as a NE approach for the optimisation of the topology and weights
of ANNs; but, since CPPNs are structurally similar to ANNs they can also be
evolved by NEAT.

Looking closely at HyperNEAT, what is actually evolved is a function that
given spatial data provides an output. For example, one of the first applications
of HyperNEAT was Picbreeder [1] – a web platform for evolving images collab-
oratively. In Picbreeder, the evolved CPPNs take as input two arguments: x, y,
which are the coordinates of a pixel in the image; the output is the intensity.
Before Picbreeder there were similar systems that aimed at evolving images; one
of such methods is NEvAr [15]. The main difference between the two approaches
relies on the mechanism used to evolve the function that generates the pixel
value: while in Picbreeder the authors rely NEAT, in NEvAr tree-based GP is
used to evolve a function, as in common symbolic regression approaches.

The fact that NEAT and GP have been applied to the evolution of functions
to generate images is not within the scope of the current work; however it illus-
trates how both approaches can produce similar results in terms of the images
that are generated (check Fig. 1). Additionally, both approaches have already
been used in the evolution of functions that map the position of any pair of
two nodes into a weight value, i.e., a rule that defines what are the weights
of a target network. Stanley et al. trained multiple neuronal controllers using
NEAT [20]; Buk et al. followed the same rationale but using GP [7]. The results
of [7] show that using GP or NEAT it is possible to find adequate solutions;
however, convergence seems to be faster with GP.

3 Generation of CPPFs

The main goal of the current work is to compare the performance of differ-
ent approaches in the evolution of CPPFs for the training of ANNs. Figure 2
depicts the interaction between evolution, the generated CPPFs and the sub-
strate, which is the network that is trained to solve a specific problem. Four
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CPPF Substrate

NEAT

GP

GE

DSGE

x1, y1
x2, y2

weight(x1, y1, x2, y2)

Fig. 2. Overview of the current work, evidencing the interaction between the CPPFs
and the substrate.

different approaches are tested: NEAT, GP, GE, and DSGE. These are briefly
described in Sects. 3.1, 3.2, 3.3, and 3.4, respectively. CPPFs are functions with
4 inputs: x1, y1, x2, y2, which similarly to HyperNEAT, are the positions of
the neurons in the substrate. The substrate is the ANN that is used to solve
the problem at hand. It is a grid of neurons, with a fixed number of inputs and
outputs that varies according to the problem to be solved. To know the weights
of the connections between the neurons in the substrate we need to query the
evolved CPPF; if it returns a value above a defined threshold then the connec-
tion between the input neurons ((x1, y1) and (x2, y2)) exists and the synaptic
weight is the one returned by the CPPF; conversely, if the value is bellow the
threshold, the connection does not exist.

3.1 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [20] is a NE approach, where
each candidate solution encodes an entire network as a list of neurons along with
the connections between them. Whilst the majority of other NE approaches
initialise the population at random, in NEAT evolution starts from a minimal
structure, i.e., initial networks are composed of no hidden-nodes, and thus the
input nodes are directly connected to the output nodes. Other novel aspects
of NEAT include innovation protection techniques and speciation. In its vanilla
form the only genetic operator that is applied to generate offspring is mutation,
which aims at changing any node or structural property of a network.

CPPNs are structurally similar to ANNs, and thus it is possible to evolve
them using NEAT and its principles. As such, the target of evolution is a network
structure, with four inputs and one output, where the activation function of each
node is selected from a defined set, and the connections are evolved and have a
weight associated to it, as in ANNs. This approach is known as HyperNEAT [19].
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3.2 Tree-Based Genetic Programming

In its standard form Genetic Programming (GP) [13] encodes the solutions as
trees, where the inner nodes represent functions and leaves represent terminals.
The crossover operator exchanges sub-trees between parents; mutation acts sim-
ilarly to the crossover operator: a random sub-tree of the individual that is to
be mutated is replaced by another valid one.

There are several approaches where GP is used to evolve learning rules of
ANNs (e.g. [5,18]). GP is well-known for its results in symbolic regression tasks.
Typically this assumes evaluating the evolved individuals for different input val-
ues. Likewise, the evolution of CPPFs (or CPPNs using HyperNEAT) involves
the evaluation of the individuals for all pairs of neurons. The difference is that
while in symbolic regression one typically compares the output values with the
desired ones, in the evolution of CPPFs one does not know the desired value
and, therefore, fitness is assigned according to the performance of the network
on a given task. Due to the similarities between symbolic regression and CPPF
evolution we consider GP to be a natural choice for this task, and we expect it
to be able of discovering effective functions that encode the substrate weights.

3.3 Grammatical Evolution

Grammatical Evolution (GE) [16] uses an indirect encoding to represent solu-
tions as derivations of a user-defined grammar. One of the advantages of this
type of approaches is that they are easily generalisable to deal with different
domains, just requiring the change of the grammar production rules. Candidate
solutions are encoded as a linear sequence of integers, where each integer rep-
resents the possibility to further expand a given non-terminal symbol. To that
end, the mathematical modulus operation is used, and the expansion possibility
is equal to the integer modulus the number of possibilities for expanding the
current non-terminal symbol. In GE both mutation and crossover genetic oper-
ators are used; mutation randomly changes an integer to another one; one-point
crossover is used.

Like in GP, the majority of the works concern the evolution of the weights
of the networks (e.g. [2]). Due to its similarities with GP we will focus on the
generation of CPPFs.

3.4 Dynamic Structured Grammatical Evolution

Dynamic Structured Grammatical Evolution (DSGE) [4,14] is another grammar-
based GP approach. The main difference between GE and DSGE relies on the
way the genotype is encoded. While in GE a single list of integers is used, in
DSGE there is a list of integers for each non-terminal symbol. This encapsula-
tion of the genetic material promotes locality, in the sense that there is a direct
association between the non-terminal symbols and the integers used for their
mapping. In addition, the modulus is no longer needed, thus avoiding the redun-
dancy issue commonly pointed out as a disadvantage of GE. In DSGE only the
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non-terminal symbols that are used are encoded, and consequently the variation
operators are applied to integers that are effectively used in the genotype to
phenotype mapping.

To promote evolution crossover and mutation are applied; bit-mask crossover
is used, where codons (i.e., the set of integers associated to a specific non-terminal
symbol) are changed between two parents; the mutation operator is a standard
per gene point mutation. For the same reason than in GP and GE we will tackle
the evolution of CPPFs using DSGE.

4 Experiments

We conduct experiments with the four evolutionary methodologies described
above: NEAT, GP, GE, and DSGE. The objective of the the experiments is
the evolution of CPPFs for the training of neuronal controllers for solving two
specific tasks, which are described next.

4.1 Problems Description

The experiments are conducted in two different tasks: (i) visual discrimination;
and (ii) line following. We selected these problems because they are common
benchmarks used by HyperNEAT. Moreover, its performance has been thor-
oughly studied, and it is possible to compare the approaches without introducing
any problem dependency bias. In the upcoming sub-sections we briefly describe
the tasks, and the structure of the substrates that are used to solve them.

Visual Discrimination

This problem was one of the first to be used to demonstrate the effectiveness of
HyperNEAT [19]. The objective of this visual computation task is to distinguish
between two different objects – a target and a distractor – independently of their
positions in a field. We test the evolution of CPPFs for two different setups. The
two setups have the same input dimensions: a 11 × 11 image, but the targets
and distractors differ. In the big-little setup the target is a 3× 3 square, and the
distractor is a 1 × 1 square:

targetsquare =

⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦, distractorsquare =

[
1
]
.

To increase the complexity of the task, we then experiment with a triangular
target and distractor, which have the same dimensions, but are mirrored (triup-
down setup):

targettriangle =

⎡
⎣

1 0 0
1 1 0
1 1 1

⎤
⎦, distractortriangle =

⎡
⎣

1 1 1
0 1 1
0 0 1

⎤
⎦.
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Fig. 3. Line following task. On the left the road that the agent must follow. On the
right the same road path with different friction areas.

The identification of the target shape is performed by a neuronal controller,
which is trained using a CPPF. To identify the shape, the trained network must
generate the highest activation at the center of the target shape. Therefore the
goal of evolution is the minimisation of the distance between the response pro-
vided by the network and the target center (underlined 1 in the target matrices).
To further complexify the problem, as in [7], the positions of the distractor are
set at random. This makes the fitness function non-deterministic, which means
that two consecutive evaluations can provide two different fitness values.

For this task, the CPPFs receive 6 inputs: additionally to the usual coordi-
nates of the nodes x1, y1, x2, y2, there are also two delta values x1 − x2, and
y1 − y2 (as in [6]). The substrate consists of a sandwich network [19], i.e., the
input layer is directly connected to the output layer, and both have the same
size (in this case 121 neurons, one for each pixel of the image).

Line Following

In the line following task [9] the goal is to evolve the controllers of an agent so
that it can effectively navigate a road, i.e., follow a line at maximum speed. The
map is made of regions with different friction rates, and thus the agent should
strive to steer in those with the lowest resistance. Two setups are tested: in the
first one all regions except the road have the same friction rate (Fig. 3, left); on
the second there are regions of different friction (marked as the darker stripes
on the right side of Fig. 3). The regions outside the road have a friction that is
5 times higher than on the road.

The agent is a robot with two wheels and 5 sensors, each with a range of
3 pixels. The sensors are placed to the front of the agent, and provide a read
of the characteristics of the field within range. The substrate is a feedforward
network with 15 inputs (which are fed with the sensors data), a hidden-layer,
and 2 outputs (that control each of the wheels).

The evolved CPPFs receive the standard 4 inputs, but have 3 outputs, each
responsible for encoding a function that represents the weights of a specific part
of the substrate: input to output, hidden-connections, and output layer bias.
When evolving CPPNs there is no problem in having three different functions,
each represented by a different output neuron. However, to accomplish the same
with CPPFs authors typically evolve three different functions simultaneously
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Table 1. Experimental parameters.

Parameter Value
Number of runs 30

Number of generations 250 / 100
Population size 100

Elite size 1%
Tournament size 3

NEAT Parameter Value
Weight range (-3, 3)

Minimum weight 0.3
Add node probability 0.03

Add connection probability 0.1
Mutate weight probability 0.8
Reset weight probability 0.1

Reenable connection probability 0.01
Disable connection probability 0.01

Mutate bias probability 0.2
Mutate node type probability 0.2

Std weight mutation 0.2
Std bias mutation 0.5

GP Parameter Value
Crossover probability 0.9
Mutation probability 0.1
Maximum tree-depth 17
GE Parameter Value

Codon size 127
Wrapping 2

Crossover probability 0.9
Mutation probability 0.05
DSGE Parameter Value
Crossover probability 0.9
Mutation probability 1/codon size

Maximum recursivity 17

(as in [7]). We followed a different direction, and evolve a single function that
outputs a vector of size 3. This can be easily accomplished by using a function set
that operates on vectors and scalars (the multiplication of two vectors performs
the dot product; the same happens for division; the trigonometric operations
are applied to each one of the components of the vector); and random constants
which are vectors of size 3. This approach has also been used in NEvAr [15].

4.2 Experimental Setup

To promote a fair comparison, we adopted and adapted the vanilla implemen-
tations of each of the evolutionary engines, which are easily found in public
repositories1. Table 1 details the parameterisation of the different algorithms.
For the two benchmarks and respective setups the parameters are the same,
except for the number of generations of each run, which is 250 for the visual
discrimination task setups, and 100 for line following.

For the grammar-based approaches (GE and DSGE) we use the grammar of
Fig. 4. This grammar is capable of generating CPPFs that provide the weights
for the substrate based on multiple inputs; for the visual discrimination task x1,
y1, x2, y2, d1, and d2: the first 4 are the positions of the neurons in the substrate

1 NEAT – https://github.com/noio/peas [6].
GP – https://github.com/DEAP/deap.
GE – https://github.com/jmmcd/ponyge.
DSGE – https://github.com/nunolourenco/dsge.

https://github.com/noio/peas
https://github.com/DEAP/deap
https://github.com/jmmcd/ponyge
https://github.com/nunolourenco/dsge
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<expr> ::=<expr><op><expr>

|<var>

|<preop> (<expr>)

<var> ::=x1 | y1 |x2 | y2
| d1 | d2
|<float>

<preop> ::= + | − | ∗ | /
<preop> ::= sin | −
<float> ::= − <first>.<number><number>

|<first>.<number><number>

<first> ::= 0 | 1 | 2
<number> ::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Fig. 4. Grammar used for evolving CPPFs with GE and DSGE. For the line following
task in the <var> rule the terminal symbols d1 and d2 are removed from the grammar,
and the last expansion possibility of <var> is replaced by [<float>,<float>,<float>].

and the last are the deltas, x1 −x2 and y1 −y2, respectively. In the line following
task the deltas are not considered.

We decided to use function sets that are commonly used in conjunction
with each one of the approaches. As such, when evolving CPPFs – with tree
or grammar-based GP – for the visual discrimination tasks we consider a simple
function set: sin, addition, subtraction, multiplication, and division. The termi-
nals are the ones used by the grammar of Fig. 4, i.e., the inputs of the CPPF, and
random float values that may range between −3 to 3. In NEAT the nodes of the
network can use the following activation functions: sin, bound, linear, gaussian,
sigmoid, and absolute value. When evolving CPPFs for the line following tasks,
the function set is expanded in order to handle vectors and the random constants
become random vectors of size 3. No changes are required to the function set of
NEAT.

4.3 Experimental Analysis

In each experiment we perform 30 independent evolutionary runs so that we
can understand the behaviour of the methods in each of the tested problems
and setups. We analyse fitness evolution and convergence speed. In addition, a
statistical analysis is performed to assess if any of the approaches is statistically
superior to the others in terms of the quality of the evolved solutions.

Visual Discrimination

In the visual discrimination task the goal is to reduce the distance to the center
of the target shape, and consequently fitness is to be minimised; recall that the
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Fig. 5. Evolution of the best individuals across generations in the visual discrimination
task for the big-little (left) and triup-down (right) setups. Results are averages of 30
independent runs.
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Fig. 6. Analysis of the fitness of the best solutions of the visual discrimination task
using box plots. On the left the big-little setup, and on the right the triup-down.

fitness function is not deterministic, and thus the fitness of the same individual
evaluated multiple times can vary. Figure 5 depicts, for both setups, the evolution
of fitness across generations. The results are averages of the 30 best solutions,
one from each of the evolutionary runs. These charts show that with any of
the evolutionary engines evolution is promoted and there is convergence. The
difference in the setups complexity is noticeable by the analysis of the difference
in the fitness scales: in both setups the average fitness of the best solutions starts
approximately from the same point, but in the big-little setup it is capable of
reaching much lower values than in the triup-down setup. Having the target
and distractor shapes with the same size but mirrored makes the problem too
challenging for an appropriate function capable of encoding the weights of the
substrate to be found in the given number of generations.

Nonetheless, for both setups, in terms of fitness, the results reported by
NEAT and GP are superior to those of the grammar-based methods. To better
analyse the quality of the generated solutions we use box plots, focusing on the
distribution of the quality of the best individuals from each evolutionary run
(see Fig. 6). From the box plots it is possible to see that GE has the worse
performance. Focusing on each of the setups individually, in the case of the
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Table 2. Graphical overview of the statistical results of the visual discrimination
experiments with effect sizes for the big-little (left) and triup-down (right) setups.

NEAT GP GE DSGE
NEAT ∼ +++ +++
GP ∼ +++ ++
GE ∼ ∼ ∼

DSGE ∼ ∼ ∼

NEAT GP GE DSGE
NEAT ∼ +++ ∼
GP ∼ +++ ∼
GE ∼ ∼ ∼

DSGE ∼ ∼ ++

Fig. 7. The left and right figures represent the activations generated by one of the
best solutions (discovered using GP), for each of the setups: big-little and triup-down,
respectively.

big-little setup NEAT and GP have a close median, with GP having a slightly
superior dispersion. For the triup-down setup NEAT and GP also have roughly
the same median, but the dispersion is lower in GP. GP has more outliers, but
these outliers correspond to runs that achieve better solutions. Looking at the
DSGE performance, in the big-little setup it performs worse than NEAT or GP,
and in the triup-down setup it has a similar performance, but larger dispersion.

The analysis of the generated solutions reveals that, for the big-little setup,
NEAT, GP, GE, and DSGE generate perfect solutions in 5, 8, 3, and 0 out
of the 30 runs, respectively. So, despite GP having a slightly higher median
and dispersion in the fitness values, it is the approach that finds solutions with a
perfect performance most often. In the triup-down setup, no approach is capable
of finding a perfect solution.

To better understand if any of the approaches is superior to the others we
conduct a statistical study. To check if the samples follow a Normal Distribution
we use the Kolmogorov-Smirnov and Shapiro-Wilk tests, with a significance
level of α = 0.05. The tests reveal that the data does not follow a normal
distribution and, as such, a non-parametric test (Mann-Whitney U, α = 0.05)
is used to perform the pairwise comparison of the approaches (with Bonferroni
correction). Table 2 presents a graphical overview of the results of the statistical
analysis: ∼ indicates no statistical difference, and + that the approach in the row
is statistically better than the one in the column. The effect size is a measure
that quantifies the strength of a phenomenon (larger values mean a stronger
effect), and is denoted by the number of + signals, where +, ++ and +++
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correspond, respectively, to low (0.1 ≤ r < 0.3), medium (0.3 ≤ r < 0.5) and large
(r ≥ 0.5) effect sizes. The statistical results show that it is not possible to point
out a single approach as the best one; there are no differences between NEAT
and GP. GE is surpassed by all other approaches, and DSGE is outperformed
in the triup-down setup, but has the same performance as NEAT and GP in the
big-little.

Figure 7 presents examples of one of the best solutions (for each setup) regard-
ing the activations that are generated for the identification of the target shapes:
darker colours mean higher activation values. As perceptible, in the big-little
setup the target shape is correctly identified; in the triup-down the trained net-
work fails to identify the target shape, and is activated by parts of the target
and distractor shapes.

Line Following

Contrary to the visual discrimination task, the goal of the line following task
is the maximisation of the average speed of a robot in a road navigation task,
i.e., maximise the distance travelled in a fixed amount of time (3000 time steps).
As before, we start by analysing the evolution of fitness across generations (see
Fig. 8). GE is the approach that takes the largest number of generations to
converge, reaching the lowest results. Conversely, NEAT, GP, and DSGE are
the methods that generate the best solutions, with GP outperforming the other
two in the easy and hard setups. The box plots allow stronger conclusions than
before (see Fig. 9); while in the visual discrimination task NEAT or GP were not
superior in the two setups, in the line following task it is perceptible that GP
performs better than the remaining approaches in the easy and hard setups, i.e.,
despite having a few outliers GP has a median that is higher than those of the
remaining approaches, and the interquartile range is smaller, meaning that the
results are more consistent.

GenerationGeneration
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Fig. 8. Evolution of the best individuals across generations in the line following task
for the easy (left) and hard (right) setups. Results are averages of 30 independent runs.

To strengthen our analysis, we perform a statistical analysis of the results.
The results are reported in Table 3, using the same graphical representation of
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Fig. 9. Analysis of the fitness of the best solutions of the line following task using box
plots. On the left the easy setup, and on the right the hard.

Table 3. Graphical overview of the statistical results of the line following experiments
with effect sizes for the easy (left) and hard (right) setups.

NEAT GP GE DSGE
NEAT ∼ +++ ∼
GP +++ +++ ++
GE ∼ ∼ ∼

DSGE +++ ∼ +++

NEAT GP GE DSGE
NEAT ∼ +++ +++
GP +++ +++ +++
GE ∼ ∼ ∼

DSGE ∼ ∼ +++

the statistical analysis of the visual discrimination task. A brief perusal of the
results shows that GP clearly outperforms the other approaches in the easy and
hard setups. In fact, the effect size is always large, except in what concerns the
comparison between GP and DSGE for the easy setup.

An example of the best models navigating in each of the setups is depicted
in Fig. 10. The line marks the path followed by the robot. In the easy setup it
is clear that the robot is capable of travelling through the road without any
difficulty, never leaving the predefined path. The same cannot be stated for the
hard setup, where the regions of different friction make learning more challenging

Fig. 10. The left and right figures represent an example of one of the best solutions
(found using GP) for the easy and hard setups, respectively.
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to the point that none of the evolved models is capable of completing an entire
lap on the track in the given execution time; in fact the vast majority of them
depict a behaviour similar to the one presented in the example, i.e., they leave
the marked path and are unable of getting back to it.

Discussion

Summing up the previous results, we conclude that in the visual discrimination
task no approach is superior to the remaining ones. The analysis of the results
present in both the evolution and box plots shows that GP and NEAT have a
similar performance. The statistical tests also confirm that there are no mean-
ingful differences between the two approaches. Nevertheless, it is possible to say
that GP is more effective, since it discovers perfect solutions most often, i.e.,
solutions with a distance of 0 to the target shape. On the big-little GP discovers
perfect solutions 8 times out of 30 runs, and NEAT, GE, and DSGE discover
perfect solutions in 5, 2, and 0 runs, respectively.

In the line following task GP outperforms all the other approaches considered
in the comparison, which is clearly perceptible by the analysis of the box plots,
where the fitness of GP is superior and the quality of the results consistent.

The performance of the grammar-based approaches is fairly disappointing
in comparison with the remaining methods, which was an unexpected result. A
possible explanation pertains the way float constants are created, which makes
the search space larger. While in NEAT and GP the floats are just one terminal,
in the grammar-based methods there is the need to associate an expansion pos-
sibility to each of the integers of the floats (which have a fixed precision). This
might be mitigated by allowing both grammar-based approaches to perform a
larger number of evaluations.

Based on the experiments conducted, it is possible to state that GP has better
overall performance than NEAT. Additionally, GP requires far less parameteri-
sation, without compromising the end results.

5 Conclusions and Future Work

ANNs are difficult to train, mainly due to the gradient-descent nature of the
majority of the learning algorithms, and because of the complexity in setting
the hyper-parameters required by the learning algorithms. Therefore, practi-
tioners investigate methods that automatically search for the best weights of the
networks. Some of these works focus on the automatic generation of learning
rules that can map the network connections into appropriate weights and bias.
HyperNEAT is an example of one of such approaches, and it is based on the use
of NEAT to promote the evolution of CPPNs.

In this article we compare different evolutionary methods for the genera-
tion of CPPFs. Our research hypothesis is that it is possible to replace NEAT
in HyperNEAT by a simpler method, that requires far less parameters, with-
out compromising the overall quality of the obtained results. To validate our
hypothesis, we apply NEAT, GP, GE and DSGE to the evolution of CPPFs in
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two benchmarks commonly used in HyperNEAT experiments: visual discrimina-
tion and line following, each having two setups that vary in complexity.

The experimental results, supported by statistical analysis, confirm our
research hypothesis, i.e., they show that using tree-based GP it is possible to
evolve effective CPPFs that, for the considered tasks, outperform the CPPFs
discovered by the other methods, including NEAT. This result is somewhat sur-
prising, specially taking into consideration that we used a vanilla implementation
of GP and resorted to a basic and generic function set. As such we consider that
these results pave the way for the application of GP approaches to the evolution
of CPPFs, creating opportunities for the application of more sophisticated GP
approaches to this type of tasks.

Future work will focus in four different research directions: (i) applying these
approaches to a wider set of problems in order to assess the generality of the
conclusions and identify problem specific limitations and strengths of different
approaches; (ii) study the impact of the function and terminal sets in evolu-
tion; (iii) test how the compared approaches behave in terms of scalability; and
(iv) expand the comparison to non-vanilla implementations and graph-based
evolutionary methods, such as Cartesian Genetic Programming, which may be
suitable for the evolution of CPPFs [11].
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Abstract. In the recent years Deep Learning has attracted a lot of
attention due to its success in difficult tasks such as image recognition
and computer vision. Most of the success in these tasks is merit of Con-
volutional Neural Networks (CNNs), which allow the automatic con-
struction of features. However, designing such networks is not an easy
task, which requires expertise and insight. In this paper we introduce
DENSER, a novel representation for the evolution of deep neural net-
works. In concrete we adapt ideas from Genetic Algorithms (GAs) and
Grammatical Evolution (GE) to enable the evolution of sequences of lay-
ers and their parameters. We test our approach in the well-known image
classification CIFAR-10 dataset. The results show that our method:
(i) outperforms previous evolutionary approaches to the generations of
CNNs; (ii) is able to create CNNs that have state-of-the-art performance
while using less prior knowledge (iii) evolves CNNs with novel topolo-
gies, unlikely to be designed by hand. For instance, the best performing
CNN obtained during evolution has an unexpected structure using six
consecutive dense layers. On the CIFAR-10 the best model reports an
average error of 5.87% on test data.

Keywords: Convolutional Neural Networks · Deep Neural Networks
Genetic Algorithm · Dynamic Structured Grammatical Evolution

1 Introduction

Machine Learning (ML) enables machines to learn from large volumes of data,
where often there is the need to pre-process the data in order to extract fea-
tures. To do that, it is required expert knowledge about the problem domain,
and then we have to manually design a model that can learn the data patterns.
Deep Learning (DL) avoids this by building models that are aimed at learning a
representation of the data, thus reducing the amount of required domain knowl-
edge. But, DL models tend to require deep Artificial Neural Networks (ANNs)
so that the learning of the problem features is effective. Nonetheless, DL has
been successfully applied in many domains, such as, computer vision [7,18,23],
speech recognition [6,11], or machine translation [33].
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An example of a deep network, which is often used for object recognition is
VGG, introduced by Simonyan and Zisserman in [25]. VGG is a 16 to 19 deep
Convolutional Neural Network (CNN), which has pushed the boundaries on the
ImageNet Challenge 2014. CNNs, as other DL models, involve a large number
of design choices. For instance, one needs to decide on the number of layers,
the type of layers, and the parameterisation of the multiple receptive fields that
compose it such as the number of filters, stride, or filter sizes. Everyday these
models get more and more complex and optimising all the involved parameters is
becoming an increasingly arduous task. For that reason, researchers have focused
their efforts on automating the design of deep networks. The current work is a
step forward in this line of research.

In this article in propose DENSER, a novel representation that is capable of
searching for adequate topologies (and the learning hyper-parameters) of CNNs.
Although in the current paper we only apply it to the evolution of CNNs, we
argue that the proposed method can be applied to different network structures.
By combining the principles of a standard Genetic Algorithm (GA) with Gram-
matical Evolution (GE) [20] we allow the direct evolution of a sequential list of
layers, where the parameter values of each layer are encapsulated in a position
of the GA genotype, facilitating the application of the genetic operators. In this
way we can reuse the method for different network structures and domains, as
we only need to change the underlying grammar. We test the proposed approach
on an image classification dataset, namely the CIFAR-10 dataset. The results
reveal that our method is able to find competitive CNNs, often superior to others
reported in the literature. In concrete, the CNN that obtains the best perfor-
mance on training data, has an accuracy of 94.13%, i.e., an error of 5.87% on
test data.

The remainder of the document is organised as follows. In Sect. 2 we survey
NeuroEvolution (NE) works, with special focus on those targeting the evolution
of deep structures. Next, in Sect. 3, we introduce our approach, detailing how
we combine the principles of GAs with GE. Experimental results are reported
in Sect. 4. To end, in Sect. 5 conclusions are drawn, and future work and open
questions are addressed.

2 State of the Art

When designing learning models, an exhaustive trial-and-error process is often
followed in an attempt to discover which is the configuration that performs best.
In particular, and focusing our attention on ANNs (shallow or deep), decisions
have to be made considering the topology and weights/learning parameters of
the networks. For that reason, the approaches that try to automatically tune
the networks are grouped according to the aspects of the network they try to
optimise: (i) learning; (ii) structure; (iii) learning and topology.

Several iterative, non-evolutionary approaches, have already been success-
fully applied to the optimisation of ANNs (e.g., [8]). In the vast majority of
these methods only a solution is being optimised, and consequently it is likely



Evolving the Topology of Large Scale Deep Neural Networks 21

that the search procedure will become trapped in local optima. In addition,
the aim is often to find the simplest solution; however, the simplest solution is
not necessarily the one that performs best, or is even the one that is easiest to
train [2].

The use of Evolutionary Computation (EC) techniques to optimise ANNs
defines NeuroEvolution (NE). In NE, the population of candidate solutions that
is evolved throughout generations represents ANNs for solving a specific task.
The quality of the candidate solutions is measured on how well the encoded
networks perform when solving the problem.

The application of Evolutionary Algorithms (EAs) to the optimisation of the
learning of fixed network topologies can happen at different levels. The most
simple strategy consists of the use of EAs to optimise the hyper-parameters.
Examples of such approaches are described by Kim et al. [13], and Parra
et al. [22], focusing on the optimisation of the multiple parameters of the Back-
Propagation (BP) algorithm (and its variants). An alternative to evolving the
hyper-parameters consists on evolving the actual learning rules that are used for
updating the synaptic weights [24]. A particular example of such approaches are
those based on the evolution of composition pattern producing functions, i.e.,
functions that given the position of two neurons in a grid are able to generate
the weight associated with that connection [3,28].

If on the one hand, optimising the parameters of the learning algorithms is
a difficult task, it is also true that the majority of the learning algorithms have
a gradient-descent nature, and as such, are susceptible to become trapped in a
local optimum. Using a population-based search heuristic (such as EAs) is a way
to minimise the impact of this issue; to that end, the weights and bias values of
ANNs can be directly evolved.

There are various NE works on the search for the appropriate weights and
bias values. Usually, the values of the weights are encoded linearly, i.e., a lin-
ear sequence of bits [31] or real-values [4], each representing a specific con-
nection; or using a matrix representation [12]. It is also important to mention
approaches specifically designed for tuning the weights of ANNs, such as Cooper-
ative Synapse NeuroEvolution (CoSyNE) [9], as well as those that more generally
aim at optimising real-values, e.g., G3PCX [5].

When focusing on the development of NE approaches for training ANNs the
topology of the networks is often fixed. Notwithstanding, as previously stated,
defining the topology is also a laborious process, which requires domain expertise
and multiple attempts. The NE methods that tune the structure of networks can
be partitioned into three groups, according to how they address the optimisation
task: (i) connection; (ii) node; or (iii) layer-based.

In connection-based encodings, the majority of the approaches optimise the
connections that are used in a large, a-priori, defined network [15,21]. However,
this limits the search space, disabling the exploration of alternative network
structures that are not considered in the pre-defined network. On the other
hand, node-based approaches have as base-unit of evolution each single neuron
and the connections from and to that neuron. Consequently, they are the most
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flexible type of approach in what respects the exploration of the search space,
as they allow the creation of any sort of structure or node network. Exam-
ples of well-known node-based approaches are: EPNET [32], Symbiotic, Adap-
tive Neuro-Evolution (SANE) [19], or NeuroEvolution of Augmenting Topologies
(NEAT) [29].

Although node-based approaches make the search less restricted and unbi-
ased, they also make it more difficult to search for deep networks, which can be
made of thousands or even millions of nodes. That is the reason why the major-
ity of the works focusing on the generation of deep structures use the layers as
base unit of evolution. Coevolution DeepNEAT (CoDeepNEAT) [16] combines
the ideas behind SANE and NEAT for the evolution of deep networks, where two
populations of modules and blueprints are evolved simultaneously. Following the
same line of research, in CGP-NN [30] Cartesian Genetic Programming is used
in the evolution of the architecture of CNNs. However, instead of promoting the
automatic discovery of the most appropriate modules, they are defined a-priori,
and only their combination and placement is evolved.

3 Proposed Approach

To promote the evolution of the structure and parameters of the ANNs we
propose a novel representation, called DENSER (Deep Evolutionary Network
StructurEd Representation), that combines the basic principles of GAs with
Dynamic Structured Grammatical Evolution (DSGE) [1]. The sequence of layers
is encoded using the GA, and the parameterisation of each layer using DSGE.
By doing this, we are able to evolve networks where the genetic material of each
layer is kept together, and therefore the manipulation of the solutions is easier,
since there is a one-to-one mapping between the layers and their parameters.

In the upcoming sub-sections we further detail the representation used, the
genetic operators, and how the generated networks are evaluated, respectively
in Sects. 3.1, 3.2 and 3.3.

3.1 Representation

Each candidate solution encodes the structure of a single ANN by means of an
ordered linear structure, where each position is a functional unit of the network,
i.e., a layer. It is also possible to evolve the learning algorithm that should be
used to train the network and its hyper-parameters. The motivation to promote
a layer-based evolution rather than node or connection-based is related with the
desire to tackle challenging problems, which often require deep networks. Such
structures have a large number of neurons and connections, which makes their
optimisation using a low level representation hard to accomplish.

To facilitate the application of the approach to different network structures
and layer types we encode each layer similarly to DSGE, meaning that evolution
acts on grammatical derivations. As a results the genotype of each position of
the GA (which represents a layer) is encoded as a list of genes, each of them
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responsible for keeping the expansion possibilities for specific non-terminal sym-
bols of the grammar. In addition to the standard DSGE genotype we introduce
a special coding block to deal with integer and float values. This block is repre-
sented in the grammar in the form of [variable name, variable type, number of
values, minimum value, maximum value]. An example of their use in a grammar
can be found in Fig. 1. At the genotypic level, the block values are kept together
with the integers encoding the non-terminal expansion possibilities.

<features> ::=<convolution>

|<pooling>

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,1,5]

[stride,int,1,1,3]<padding><activation><bias>

<batch-normalisation><merge-input>

<batch-normalisation> ::= batch-normalisation:True

| batch-normalisation:False

<merge-input> ::=merge-input:True

|merge-input:False

<pooling> ::=<pool-type> [kernel-size,int,1,1,5] [stride,int,1,1,3]<padding>

<pool-type> ::= layer:pool-avg

| layer:pool-max

<padding> ::= padding:same

| padding:valid
<classification> ::=<fully-connected>

<fully-connected> ::= layer:fc<activation> [num-units,int,1,128,2048<bias>

<activation> ::= act:linear

| act:relu
| act:sigmoid

<bias> ::= bias:True

| bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True

<learning> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]

Fig. 1. Example grammar for the encoding of CNNs.

The combination of a GA with DSGE not only makes the approach easily
generalisable, but also enables the incorporation of domain knowledge. To define
the allowed structure of the networks (i.e., the allowed sequence of layers) the
method requires the definition of a list of tuples, where each index of the list
indicates the valid grammar starting symbols (for that layer) along with the min-
imum and maximum number of layers of that type. For example, for searching
CNNs the following structure can be specified: [(features, 1, 10), (classification,
1, 2), (softmax, 1, 1), (learning, 1, 1)]. Using the previous example and the
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grammar of Fig. 1, the search space encompasses networks that are formed by
at least one and up to ten convolution or pooling layers (that can be placed
in any order). These first convolution and pooling layers are followed by one
or two fully-connected ones, and then by an output layer. The output layer is
usually encoded as a fully-connected layer with a specific number of neurons
corresponding to the number of classes of the problem. On top of the definition
of the network topology we also allow the learning parameters to be optimised.

Figure 2 depicts an example of the genotype of a candidate solution, based
on the grammar of Fig. 1 and on the GA structure introduced above: [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)]. As previously
explained, the candidate solution has two genotypic levels: (i) the GA level
which defines the structure, and points out to the grammar non-terminal symbol
that is to be used as the start symbol; and (ii) the DSGE level that stores the
ordered sequence of integers encoding the expansion possibilities for each specific
non-terminal, and the real-values needed by the networks. Figure 3 presents the
phenotype corresponding to the layer which has the DSGE genotype detailed in
Fig. 2.

<features> <features> <features> <classification> <softmax> <learning>

<features> <pooling> <pooling-type> <padding>

[{DSGE: 0, 
     GA: {
       kernel-size: 4,
       stride: 2}}]

[{DSGE: 1, 
     GA: {}}]

[{DSGE: 1, 
     GA: {}}]

[{DSGE: 0, 
     GA: {}}]

Fig. 2. Example of the genotype of a candidate solution that encodes a CNN.

Layer type: pooling
Pooling func.: max
Kernel size: 4 x 4
Stride: 2 x 2
Padding: same

... ...

Fig. 3. Phenotype corresponding to the layer specified in Fig. 2.

3.2 Genetic Operators

To promote the evolution of the candidate solutions we rely on crossover and
mutation operators specifically designed for the manipulation of ANNs.
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Crossover

One of the advantages of having two genotypic levels is that the outer level
encodes each layer separately. Since the genetic material is encapsulated, devising
efficient crossover operators becomes easier. Based on the nature of the genotype,
we developed two crossover operators, which are applied probabilistically, each
having the same likelihood (i.e., 50%).

Before describing the crossover operators we need to define the notion of
module. In this context, the term module does not refer to a set of layers that
can be replicated multiple times, but is rather the set of layers that belongs
to the same GA structural index. For example, in the above example of a GA
structure, the module (features, 1, 10) is composed by all those layers that have
their derivation starting with the same non-terminal symbol features. The two
crossover operators are applied at different levels: one changes layers within a
specific layer module, while the other swaps entire modules between individuals.

<features1,A> <features2,A> <classification1,A> <classification2,A> <softmax1,A> <learning1,A>

<features1,B> <classification2,B> <classification3,B> <softmax1,B> <learning1,B><classification1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

<features1,A> <features2,A> <classification1,A> <classification2,B> <softmax1,A>

<features1,B> <classification1,B> <classification2,A> <softmax3,B> <learning1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

<classification3,B> <learning1,A>

cut-point

<features1,A> <features2,A>

<classification1,A> <classification2,A> <softmax1,A>

<learning1,A>

<features1,B>

<classification2,B> <classification3,B> <softmax1,B>

<learning1,B>

<classification1,B>

Features Classification Softmax Learning

Features Classification Softmax Learning

Parent A:

Parent B:

One-point offspring:

Bit-mask offspring:

Fig. 4. Example of the introduced crossover operators. The example focuses on the GA
level of the genotype. For the bit-mask crossover the mask is 1001, which is associated
to the features, classification, softmax and learning modules, respectively.

The first operator is based on the principle that each layer has its genetic
material encapsulated. Hence, we designed a crossover operator, that generates
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two offspring by crossing the layers that belong to the same module of two parents
(chosen by tournament selection). The same module in different parents can
have a distinct number of layers; to deal with that the cutting point is randomly
generated considering the individual that has less layers in the module.

The other crossover operator is loosely based on the uniform operator for
binary representations, and acts upon the modules swapping them between indi-
viduals. Figure 4 shows an example of the application of the crossover operators.

Mutation

The operators that work at the GA level aim at manipulating the layers and
their parameters. For this purpose we developed the following operators:

Add layer – a new layer is generated at random with the initial symbol for the
grammatical derivation being the one of the module where the layer will be
placed. This operator can only be applied in modules where the maximum
number of layers has not been reached yet;

Replicate layer – similar to the previous mutation operator, but instead of
generating a new random layer uses one that is already in the genotype and
copies it into another position of the module. This copy is done by reference,
which means that if at any given time the layer or some of its parameters are
changed, the modifications are propagated to their replicas;

Remove layer – deletes a random layer from a given module. It is only possible
to remove a layer if after removal the number of layers in that module is still
above the minimum threshold.

The previous operators act only at a macro level, and thus do not change the
parameters of the layers. This is accomplished at the DSGE level:

Grammatical mutation – as in standard DSGE, an expansion possibility is
replaced by another valid one;

Integer mutation – an integer block is replaced by a new one, where the
integers are generated at random, within the allowed range;

Float mutation – similar to the integer mutation, but where instead of ran-
domly generating new values, a Gaussian perturbation is applied.

3.3 Evaluation

The evaluation of the network is divided into two different steps: (i) the mapping
from the genotype to the phenotype; and (ii) the training of the generated ANN.

To decode the genotype, the outer level of each candidate solution is traversed
linearly. Remember that the outer level (which corresponds to the GA genotype)
is where the initial start symbol for expanding the grammatical derivations of
the layers is stored. The grammatical genotype is decoded similarly to DSGE:
the integers encoding the expansion possibilities of each non-terminal symbol are
used only once sequentially. The main difference is that when the expansion of
the non-terminal symbol hits a block that represents an integer or float value the
corresponding integer or float value is read from the grammatical GA genotype.
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To train the evolved networks we used Keras, running on top of TensorFlow.
The dataset used to validate our approach is partitioned into three disjoint sets:

Train – used to train the network using the defined or evolved learning param-
eters. The parameters vary depending on the used learning algorithm;

Validation – used to evaluate the performance of the network during evolution;
Test – kept aside from the evolutionary process, and used to evaluate the per-

formance of the best models on unseen data, so we can better understand
their generalisation ability.

Each network is trained during 10 epochs, and the fitness is the best performance
on the validation set on the 10 epochs. Data augmentation is used, namely,
padding, horizontal flips, and random crops. A more detailed explanation of the
data augmentation approach followed can be found in [30].

4 Experimentation

To test the approach we conducted experiments on the evolution of CNNs for the
classification of the CIFAR-10 dataset (further detailed in Sect. 4.1). The exper-
imental setup used is described in Sect. 4.2, and the analysis of the experimental
results is carried out in Sect. 4.3.

4.1 Problem Description

The CIFAR-10 dataset [14] is composed of images of 10 disjoint classes, namely:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. For each
class there are 6000 cases, making a total of 60000 instances. Each instance is a
32×32 RGB colour image. The goal is to train a CNN that can correctly identify
the class of each sample, maximising the accuracy of the object recognition task.

4.2 Experimental Setup

Table 1 shows the parameters used in the experiments. As discussed before, each
network is trained during 10 epochs, using the backpropagation learning algo-
rithm, and a learning rate of 0.01. Fitness is measured using the validation set.
After the evolutionary cycle, and to further tune the best generated models, we
merge the train and validation sets, so that more data is available for training
the best topologies found; the networks are trained during 400 epochs with the
same learning rate policy. The test data is not changed, and is used to measure
the final performance of the best networks found during evolution.

The topology of the evolved networks is constrained to the following GA
structure: [(features, 1, 30), (classification, 1, 10), (softmax, 1, 1)], and the exper-
iments are conducted with a grammar similar to the one presented in Fig. 1. This
way, we allow the evolution of networks that can have up to 40 hidden-layers:
up to 30 convolution or pooling layers followed by at most 10 fully-connected lay-
ers. We use the same data augmentation strategy of [30]: each training instance
is applied a padding of 4; then we randomly crop the padded image to 32 × 32,
followed by random horizontal flipping.
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Table 1. Experimental parameters.

Evolutionary engine parameter Value

Number of runs 10

Number of generations 100

Population size 100

Crossover rate 70%

Mutation rate 30%

Tournament size 3

Elite size 1%

Dataset parameter Value

Train set 42500 instances

Validation set 7500 instances

Test set 10000 instances

Data augmentation parameter Value

Padding 4

Random crop 4

Horizontal flipping 50%

4.3 Experimental Analysis

Figure 5 depicts the evolution of the average fitness and number of layers of
the best CNNs across generations. A brief perusal of the results indicates that
evolution is occurring, and solutions tend to converge around the 80th genera-
tion. Two different and contradictory behaviours are observable. From the start
of evolution and until approximately the 60th generation an increase in perfor-
mance is accompanied by a decrease in the number of layers; this changes from
the 60th generation until the last generation where an increase in performance
is followed by an increase in the number of hidden-layers of the best networks.
To support this analysis we compute the correlation between the average fitness
values of the best individuals and the average number of layers, per generation.

Fig. 5. Evolution of the fitness (left) and number of layers (right) of the best individuals
across generations. Results are averages of 10 independent runs.



Evolving the Topology of Large Scale Deep Neural Networks 29

The Pearson correlation reports a coefficient of −0.7166 (moderate negative cor-
relation) for the correlation between the two metrics before the 60th generation;
after the 60th generation the coefficient is 0.9204 (strong positive correlation).

This analysis reveals an apparent contradiction, that is explained after the
fact that in the first generation the randomly generated solutions have a large
number of layers (approximately 15.6), which correspond to very deep networks.
However, since the numeric parameters of each layer are set at random, they
would hardly provide any meaningful results. As evolution proceeds and opti-
mises the numeric values, the best solutions can steadily increase the number of
layers to improve their performance. This indicates that it may be advantageous
to start the evolutionary process with shallower networks.

Fig. 6. Evolution of the fitness (left) and number of layers (right) of the overall popu-
lation across generations. Results are averages of 10 independent runs.

In addition to analysing the best evolved solutions we also inspect the over-
all quality of the population. Figure 6 shows the evolution of the fitness, and
number of layers, across generations at the population level. The conclusions are
in line with those reported for the analysis of the best solutions, however the
change in behaviour occurs earlier, around the 25th generation. Before the 25th
generation the Pearson correlation reports a coefficient of −0.89 (strong negative
correlation), and after a coefficient of 0.8801 (strong positive correlation). The
change in behaviour happens earlier than when considering only the best solu-
tions because in the first generations the population has many low performing
solutions that are quickly discarded.

The fittest network found during evolution (in terms of validation accuracy)
is represented in Fig. 7. As it can be observed, several lambda layers exit. This
is due to the fact that the employed grammar allows merging the output of
the convolution layers (Conv2D) with the input, using the Add layer. When
the number of channels to be merged is different, we pad the one that has less
channels, using the Keras Lambda layer. When the signals do not have the same
width and height we down-sample the largest one, by applying max pooling.

The most puzzling characteristic of the evolved network is the importance
and number of the fully-connected (i.e., dense) layers that are used at the end of
the topology. Other approaches on the evolution of CNNs tend to disregard fully-
connected layers, and focus only on convolution and pooling layers. We tried to
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input_1: InputLayer

max_pooling2d_1: MaxPooling2D

conv2d_1: Conv2Dlambda_1: Lambda

add_1: Add

activation_1: Activation

conv2d_2: Conv2D

activation_2: Activation

conv2d_3: Conv2D lambda_2: Lambda

add_2: Add

activation_3: Activation

conv2d_4: Conv2D

add_3: Add

activation_4: Activation

conv2d_5: Conv2D

activation_5: Activation

max_pooling2d_2: MaxPooling2D

conv2d_6: Conv2D

add_4: Add

lambda_3: Lambda

activation_6: Activation

max_pooling2d_3: MaxPooling2D

conv2d_7: Conv2D

add_5: Add

lambda_4: Lambda

activation_7: Activation

conv2d_8: Conv2D

add_6: Add

lambda_5: Lambda

activation_8: Activation

conv2d_9: Conv2D

add_7: Add

lambda_6: Lambda

activation_9: Activation

max_pooling2d_4: MaxPooling2D

flatten_1: Flatten

dense_1: Dense

dense_2: Dense

dense_3: Dense

dense_4: Dense

dense_5: Dense

dense_6: Dense

Fig. 7. Topology of the best network during evolution.
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remove some of the fully-connected layers, and preliminary results show that the
performance of the network degenerated. Moreover, to the best of our knowledge,
the sequential use of a such large number of dense layers is unprecedented, and
it is fair to say that a human would never think of such topology, which makes
this evolutionary outcome remarkable.

Once the evolutionary process is completed, the best network found in each
run, i.e. the one obtaining the highest fitness value, is re-trained 5 times, with
different initial weights. These networks are selected according to their accu-
racy on the validation set, to ensure that we have an unbiased selection. The
results regarding accuracy reported bellow are averages of these 5 trains for each
network.

First, we train the networks with the same learning rate policy used in evo-
lution, but during 400 epochs. With this setup we obtain, on average, a classifi-
cation accuracy of 88.41% (error of 11.59%) on the test set. To further enhance
the accuracy of the networks we adopt the strategy described by Snoek et al.
in [26], i.e., for each instance of the test set we generate 100 augmented images.
The label assigned by the model is the class that has the maximum average
confidence value on the 100 generated augmented images. Following this valida-
tion approach the average accuracy on the test set of the best evolved networks
increases to 89.93% (10.07% of error).

Although the average accuracy of the fittest models seems low when com-
pared with state of the art approaches, the accuracy of the fittest network is
slightly higher: 92.70% (an error of 7.30%). To investigate if it is possible to
increase the performance of the fittest networks we re-train them using the same
strategy of CGP-CNN [30]. We use a varying learning rate: it starts at 0.01; on
the 5th epoch it is increased to 0.1; by the 250th epoch it is decreased to 0.01;
and finally at the 375th it is reduced to 0.001. With the previous training pol-
icy the average accuracy of the fittest network increases to 93.38%. Finally, this
accuracy is further improved if we follow the guidelines from [26], and perform
data augmentation on the test data: 94.13%, i.e., an error of 5.87%, which is a
highly competitive result.

Obviously, in an ideal scenario, all the training strategies described above
would be used during evolution, however it is unfeasible to do so, since it would
require immense computational power. Thus, the experimental results indicate
that it is possible to obtain competitive results using evolutionary means and
that it is possible to do so with limited computational resources, using a low
number of training epochs (10) during evolution.

Table 2 shows a comparison with the best results reported by other methods.
An analysis of the results shows that DENSER (i.e., our approach) is the one
that reports the lowest error. The number of trainable parameters is much higher
in our methodology because we allow the placement of fully-connected layers in
the evolved CNNs. In addition to the increase in performance, our approach
attains these results without any prior knowledge about the domain. Whilst in
CGP-CNN the authors have to define fixed modules of layers that are placed
and connected by the evolutionary algorithm to form a CNNs, we do not require
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Table 2. Comparison of the best results obtained by different methods on the CIFAR-
10 dataset. The error rate is measured on the test set. The number of parameters is
the number of values that need to be tuned during training.

Method Error rate Number of parameters

CoDeepNEAT [29] 7.3% –

Snoek et al. [26] 6.37% –

CGP-CNN (ConvSet) [30] 6.75% 1.52 × 106

CGP-CNN (ResSet) [30] 5.98% 1.68 × 106

DENSER 5.87% 10.81 × 106

any definition of modules, which implies that the algorithm must discover the
appropriate sequence of layers to construct effective networks.

5 Conclusions and Future Work

The definition of the structure and parameterisation of learning models is a hard
and time consuming task. This problem is even more pressing when dealing with
deep architectures, where the high number of layers makes the tuning task more
difficult to accomplish by hand. To this end several evolutionary methods that
seek to automatically solve this issue have been proposed.

In this article we combine two evolutionary methods: GAs and GE. With
this combination we are able to evolve linear sequences of layers, where each
layer is encoded using a grammar-based approach. Consequently the genetic
material associated with each layer is encapsulated, making it easier to apply
genetic operators to the candidate solutions. The use of a grammar to specify
how the layers are encoded makes the approach easily adaptable to other network
structures, layer types and domains.

The experimental results confirm the effectiveness of the approach, which out-
performs CGP-CNN [30], CoDeepNEAT [29] and the work by Snoek et al. [26],
without resorting to prior knowledge. As such, DENSER is, currently, the most
successful method for automatic construction of networks in CIFAR-10 dataset.
Moreover, its performance is only surpassed by [10,17,27], which resort to prior
knowledge.

As future work we intend to further test our approach, performing more
experiments to ensure the quality and consistency of the results. Moreover, we
plan to evaluate the performance on other classification tasks, to assess the
generality of the proposed method.
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Abstract. Rule-based graph programming is a deep and rich topic. We
present an approach to exploiting the power of graph programming as
a representation and as an execution medium in an evolutionary algo-
rithm (EGGP). We demonstrate this power in comparison with Cartesian
Genetic Programming (CGP), showing that it is significantly more effi-
cient in terms of fitness evaluations on some classic benchmark problems.
We hypothesise that this is due to its ability to exploit the full graph
structure, leading to a richer mutation set, and outline future work to test
this hypothesis, and to exploit further the power of graph programming
within an EA.

1 Introduction

Representation is crucial in computer science, and an important specific rep-
resentation is the graph. Graphs are used in a wide range of applications and
algorithms, see for example [4,5,22]. In evolutionary algorithms (EAs), graphs
are used in some applications, but are usually encoded in a linear genome, with
the genome undergoing mutation and crossover, and a later “genotype to phe-
notype mapping” used to decode the linear genome into a graph structure. For
example in Cartesian Genetic Programming (CGP) [12,14], the connections of
feed forward networks are encoded in a linear genome. NEAT [23,24] provides
a linear encoding of ANNs which are seen as graph structures. Trees (a subset
of more general graphs) are also used in EAs. Grammatical Evolution [15,21]
uses a linear genome of integers to indirectly encode programs. Genetic Pro-
gramming [6,7] is unusual for an EA: rather than using a linear genome, it
typically directly manipulates abstract syntax trees. Poli [19,20] uses a ‘graph
on a grid’ representation: the underlying structure is a graph, but the nodes are
constrained to lie on discrete grid points. MOIST [8] proposes using trees with
multiple output nodes and sharing to extend traditional genetic programming
to domains where problems have multiple, related outputs. Pereira et al. [16]
represent Turing machines as graphs encoded in a linear genome, and develop a
crossover operator based on the structure of the underlying graph.

There are arguments for and against linear genomes representing graphs.
Linear genomes are standard in EAs, and they can exploit the knowledge about

T. Atkinson—Supported by a Doctoral Training Grant from the Engineering and
Physical Sciences Research Council (EPSRC) in the UK.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 35–51, 2018.
https://doi.org/10.1007/978-3-319-77553-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77553-1_3&domain=pdf
http://orcid.org/0000-0002-5036-3358
http://orcid.org/0000-0002-1148-822X
http://orcid.org/0000-0003-3146-5401


36 T. Atkinson et al.

evolutionary operators. However, they can hide the underlying structure of the
problem, and can have biases in the effect of the evolutionary operators. There
may be advantages in evolving graphs directly, rather than via linear genome
encodings or 2D grid encodings, and defining mutation operators that respect
the graph structure. Direct graph transformation has deep theoretical under-
pinnings, and has become increasingly accessible through efficient graph pro-
gramming languages such as GP2 [2,17]. GP 2 enables high-level problem solv-
ing in the domain of graphs, freeing programmers from handling low-level data
structures. It has a simple syntax whose basic computational units are graph
transformation rules which can be graphically edited. Also, GP 2 comes with a
concise operational semantics to facilitate formal reasoning on programs.

Here we exploit an extension to GP 2 [1] that has probabilistic elements to
support EA applications. We perform experiments of evolving graphs directly,
and compare the results with experiments previously done with CGP. Using
graph transformations, we write evolutionary operators as graph transformation
rules, and we calculate fitness in the same context. Our results indicate that
direct evolution can be significantly more efficient (significantly fewer fitness
function evaluations) than basic CGP, due to the increased number of mutations
available, allowing more effective exploration of the search landscape.

The paper is organised as follows. In Sect. 2 we overview Graph Programming.
In Sect. 3 we describe how we have incorporated an EA into graph programming
(EGGP). In Sect. 4 we compare our EGGP setup with Cartesian Genetic Pro-
gramming (CGP). In Sect. 5 we describe benchmark experiments, and in Sect. 6
provide the results, demonstrating that EGGP is significantly more efficient, in
terms of fitness evaluations, than vanilla CGP. In Sect. 7 we draw conclusions
and outline future work in examining the reasons for this improvement.

2 Graph Programming

This section is a (very) brief introduction to the graph programming language
GP2; see [18] for a detailed account of the syntax and semantics of the language.
A graph program consists of declarations of graph transformation rules and a
main command sequence controlling the application of the rules. Graphs are
directed and may contain loops and parallel edges. The rules operate on host
graphs whose nodes and edges are labelled with integers, character strings or
lists of integers and strings. Variables in rules are of type int, char, string,
atom or list, where atom is the union of int and string. Atoms are considered
as lists of length one, hence integers and strings are also lists. For example, in
Fig. 1, the list variables a, c and e are used as edge labels while b and d serve
as node labels. The small numbers attached to nodes are identifiers that specify
the correspondence between the nodes in the left and the right graph of the rule.

Besides carrying list expressions, nodes and edges can be marked. For exam-
ple, in the program of Fig. 3, blue and red node marks are used to prevent the
rule mutateEdge from creating a cycle.

The principal programming constructs in GP2 are conditional graph-trans-
formation rules labelled with expressions. The program in Fig. 1 applies the
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single rule link as long as possible to a host graph. In general, any subprogram
can be iterated with the postfix operator “!”. Applying link amounts to non-
deterministically selecting a subgraph of the host graph that matches link’s
left graph, and adding to it an edge from node 1 to node 3 provided there is
no such edge (with any label). The application condition where not edge(1,3)
ensures that the program terminates and extends the host graph with a minimal
number of edges. Rule matching is injective and involves instantiating variables
with concrete values. We remark that GP2’s inherent non-determinism is useful
as many graph problems are naturally multi-valued, for example the computation
of a shortest path or a minimum spanning tree.

Fig. 1. A GP 2 program computing the transitive closure of a graph.

Given any graph G, the program in Fig. 1 produces the smallest transitive
graph that results from adding unlabelled edges to G (A graph is transitive if
for each directed path from a node v1 to another node v2, there is an edge
from v1 to v2.). In general, the execution of a program on a host graph may
result in different graphs, fail, or diverge. The semantics of a program P maps
each host graph to the set of all possible outcomes [17]. GP 2 is computationally
complete in that every computable function on graphs can be programmed [18].
Commands not used in this paper are the non-deterministic application of a set
of rules and various branching commands.

While rule matching in GP2 is non-deterministic, the refined language P-GP
2 (for Probabilistic GP2 ) selects a match for a rule uniformly at random [1]. This
language has been used to obtain the results described in the rest of this paper.

3 Evolving Graphs by Graph Programming (EGGP)

3.1 Representation

Our approach uses the following representation of individual solutions. An indi-
vidual I over function set F = {f1, f2, ...fn} is a directed graph containing a set
Vi of input nodes which have no outgoing edges and a set Vo of output nodes
which have one outgoing edge and no incoming edges. Each non-input and non-
output node is associated with some function in F . For simplicity we assume
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that all functions in F (and the fitness function) operate on a single domain.
EGGP individuals are defined in Definition 1.

Further, for each function node v labelled with a function f of arity n, v has
outgoing edges e1, ..., en such that for i = 1, ..., n, a(ei) = i. Then a provides
the order in which to pass v’s inputs to f , resolving ambiguity for asymmetric
functions. We assume acyclic graphs in this work, and hence an individual I
represents a solution as a network, where each node computes a function on
its inputs (which are given by its outgoing edges). We refer to acyclic EGGP
individuals as being “feed-forward”.

Definition 1 (EGGP Individual). An EGGP Individual over function set F
is a directed graph I = {V,E, s, t, l, a, Vi, Vo} where V is a finite set of nodes
and E is a finite set of edges. s : E → V is a function associating each edge
with its source. t : E → V is a function associating each edge with its target.
Vi ⊆ V is a set of input nodes. Each node in Vi has no outgoing edges and is
not associated with a function. Vo ⊆ V is a set of output nodes. Each node in Vo

has one outgoing edge, no incoming edges and is not associated with a function.
l : V → F labels every “function node” that is not in Vi ∪ Vo with a function in
F . a : E → Z labels every edge with a positive integer.

Such a representation may contain neutral material; nodes to which there
is no path from any output and therefore do not contribute to the function-
ality of the solution. This is a direct encoding, and the conversion from geno-
type to phenotype is given by simply removing material which does not con-
tribute to any output. We present an example individual in Fig. 2. This indi-
vidual is both feed-forward and satisfies the arities of its associated function set

Fig. 2. An example EGGP Individual for a binary logic problem.
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F = {OR, AND, NOR} This individual has two input nodes, labeled i1 and
i2, and two output nodes, labeled o1 and o2. Neutral material, which does not
contribute to the phenotype of the individual, is coloured gray. Edge labels are
omitted for visual clarity, and is unambiguous for this example as all of the
functions in F are symmetrical.

3.2 Atomic Mutations

We describe two point mutations for an EGGP individual that appear maximally
simplistic; changing the function associated with a node and changing a single
input to a node.

Fig. 3. Mutating an edge of an EGGP individual while preserving feed-forwardness
using a graph program.

As we assume that individuals are feed-forward in this work we require a
mutation that respects this constraint. A point mutation of a node’s input edge
while maintaining feed-forwardness is shown in Fig. 3. Firstly an edge to mutate
is chosen and marked, with uniform probability, with pickEdge and then all
nodes which have a path to the source of the chosen edge are marked using
markOutput!. The edge is then mutated to target some unmarked node, chosen
with uniform probability, using mutateEdge, and clearly there cannot be a cycle
introduced as the earlier steps of the mutation have not marked that node and
therefore that node does not have a path to the source of the chosen edge. Finally,
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Fig. 4. Mutating the function of an EGGP individual’s node to some function fy.
fx is the existing function of the node being mutated, and an equivalent rule can be
constructed for each function in the function set.

we unmark all marked nodes using the unmark rule. Using the given mutation,
we are able to mutate an individual while respecting feed-forwardness without
applying any restraints to the individual or the mutation, by transforming the
individual using a graph program.

A point mutation of a node’s function is shown in Fig. 4. Here node 1 has
its function updated to some function fy ∈ F . This operator clearly preserves
feed-forwardness as it introduces no new edges. In this work we deal with func-
tion sets with fixed, common arities. However, this may not always be desirable,
for example when attempting symbolic regression over a function set containing
both addition and sin operators. In the C-based library for Cartesian Genetic
Programming this is overcome by simply using the first few inputs for lower
arity functions [26], but in EGGP this would prevent some feed-forward pre-
serving mutations when a node appears to contribute to the input of another
but in truth does not. Although we do not address this issue in this work, we
propose that it would be possible to add and delete input edges when mutating
a node’s function to maintain correct function arities, while also maintaining
feed-forwardness when adding those new input edges in a similar manner to the
algorithm for edge mutations given in Fig. 3.

3.3 Evolutionary Algorithm

Crossover between EGGP individuals is not obvious as there is no apparent rela-
tionship between the nodes and edges of any two individual solutions. It might
be possible to use historical markers, as used in the graph-based neuroevolu-
tion algorithm NEAT [24], or some other approach, but this is not attempted in
this work. Without a crossover operator, it is natural to consider single-survivor
evolutionary algorithms. As we intend to benchmark against Cartesian Genetic
Programming in Sect. 5, we propose the use of the evolutionary algorithm most
commonly used with it, the 1 + λ evolutionary algorithm shown in Fig. 5. This
algorithm is an extended form of Random Hill Climbing, where in each gen-
eration λ new individuals are generated by mutating the sole surviving parent
from the previous generation. Additionally, we allow a new individual with equal
fitness to its parent to replace its parent in the next generation, facilitating the
phenomena of “neutral drift”. Propagating changes in the genotype which result
in neutral changes in the phenotype is known to positively influence the perfor-
mance of CGP [13] and we see no obvious reason why this would not also be the
case in EGGP.
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Fig. 5. The 1 + λ evolutionary algorithm with neutral drift enabled.

3.4 Parameters

Use of the EGGP representation and the 1 + λ algorithm is parameterised by
the following items:

• mr: the mutation rate. Nodes and edges have no particular order in EGGP,
and the order in which feed-forward edges are mutated may influence the
availability of future mutations. We therefore opt to generate the number of
node mutations and edge mutations to apply to the individual using binomial
distributions (simulating one probabilistic mutation for each node or edge)
and then distribute these mutations across the individual at random.

• λ: the number of individuals to generate in each generation of the 1 + λ
algorithm.

• F : A function set. The maximum arity of functions in F is used to specify
the number of input edges associated with each function node.

• n: the number of function nodes to use in each individual.
• p: the number of inputs that each individual should have to interface with

the fitness function (|Vi| = p).
• q: the number of outputs that each individual should have to interface with

the fitness function (|Vo| = q).
• A fitness function used to evaluate each individual.

4 Relation to Cartesian Genetic Programming

4.1 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a type of evolutionary algorithm in
which individuals are represented as linear sequences of genes corresponding to
a directed acyclic graph. Each gene is an integer representing either (1) where a
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node gets its inputs from or (2) the function of a node. These nodes are ordered so
that all input connections must respect that ordering, preventing cycles. When
evolving over a function set where each function takes 2 inputs, there are 3
genes for each node in the individual; 2 representing each of the node’s inputs,
and 1 representing the node’s function. Outputs are represented as single genes
describing the node in the individual which corresponds to that output. These
connection genes (nodes’ input genes and the singular output genes) point to
other nodes based on their index in the ordering.

An example genotype-phenotype mapping is given in Fig. 6. Here an individ-
ual consisting of 3 nodes over a function set of arity 2, 1 input and 1 output
is represented by 10 genes. These genes decode into the shown directed acyclic
graph. In CGP individuals may be seen as a grid of nr rows and nc columns; a
node in a certain column may use any node from any row in an earlier column
as an input. Hence the total n = nr × nc nodes are ordered under a ≤ operator.
The example shown in Fig. 6 is a single row instance of CGP.

Fig. 6. The genotype-phenotype mapping of a simple CGP individual consisting of 1
input, 3 nodes and 1 output and arity 2. Each node is represented by 3 genes; the first
2 describe the indices of the node’s inputs (starting at index 0 for the individual’s input
i) and the third describing the node’s function. Function indices 0, 1 and 2 correspond
to AND, OR and NOR respectively. The final gene describes the index of the node
used by the individual’s output o.

4.2 Comparison to EGGP

Here we demonstrate that EGGP provides a richer representation than CGP:

• For a fixed number of nodes n and function set F , any CGP individual can
be represented as an EGGP individual, whereas the converse may not always
hold when the number of rows in a CGP individual is greater than one.

• Any order-preserving CGP mutation can be represented as a feed-forward
preserving mutation in EGGP, whereas some feed-forward preserving muta-
tions may not be order-preserving nor valid in the CGP framework.
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Fig. 7. A feed-forward preserving edge mutation. An edge (red) directed from node 2
to node 1 is replaced with an edge (blue) directed to node 3. This mutation produces
a valid circuit but is impossible in CGP as it does not preserve order. (Color figure
online)

Firstly, consider the genotype-phenotype decoding of a CGP individual. Here
we have clearly defined sets of input, output and function nodes. Additionally
each function node is associated with some function from the function set, and
there are ordered input connections (edges) from each function node to its inputs.
Clearly this decoded individual can be treated as an EGGP individual fitting
Definition 1. Conversely, consider the case where nr > 1. Then there is the trivial
counter example of an EGGP individual with a solution depth greater than nc

(as n > nc) which clearly cannot be expressed as a CGP individual limited to
depth nc.

We now consider mutations available over a CGP individual in comparison
to those for an EGGP individual where feed-forward preserving mutations are
used. Clearly, as each order preserving mutation is feed-forward preserving, any
valid mutation for the CGP individual is available for its EGGP equivalent.
However, consider the example shown in Fig. 7. Here a feed-forward mutation,
connecting node 3 to node 4 is available in the EGGP setting but is not order
preserving so is impossible in the CGP setting. Additionally, the semantic change
that has occurred here, where an active node has been inserted between two
adjacent active nodes is a type of phenotype growth that is impossible in CGP.
Hence every mutation available in CGP is available in EGGP for an equivalent
individual but the converse may not be true.

Therefore the landscape described by EGGP over the same function set and
number of nodes is a generalisation of that described by CGP, with all individual
solutions and viable mutations available, alongside further individual solutions
and mutations that were previously unavailable.

4.3 Ordered EGGP (O-EGGP)

To demonstrate whether any differences in performance between EGGP and
CGP arise from the freedom of mutation using feed-forward preserving, rather
than order-preserving, input mutations, we compare performance against an
ordered variant of EGGP, called Ordered EGGP.
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Each node in an O-EGGP individual is associated with an order in an analo-
gous manner to CGP. Node function mutations from EGGP are used, but input
mutations are order-preserving rather than feed-forward preserving. Hence the
same set of mutation operators, with the same probability distribution over
their outcomes, is available for equivalent O-EGGP and CGP individuals. This
approach simulates the landscape and search process of CGP under identical
conditions, so should produce identical results to an equivalent CGP imple-
mentation. By also benchmarking O-EGGP we demonstrate that it is EGGP’s
free graphical representation and the associated more general ability to mutate
input connections with respect to preserving feed-forwardness that yields higher
quality results.

5 Benchmarking

To benchmark EGGP we compare against basic CGP and O-EGGP for a set of
Digital Circuit problems taken from [28], which are used in comparisons between
CGP and its Embedded variant ECGP. We produce our own CGP benchmark
results, which are roughly in line with those available in [28], by using the C-
based CGP library [26]. The set of Digital Circuit problems studied is given in
Table 1; we study bit adders, bit multipliers and even-parity circuits of various
sizes alongside a 3:8-Bit de-multiplexer and a 4 × 1-Bit comparator (see [28] for
details). As many of these circuits are typically constructed manually using XOR
gates, we use the function set {AND,OR,NAND,NOR} to artificially increase
the difficulty of these problems. We use the number of incorrect bits produced by
a candidate solution in comparison to the full truth table of the given problem
as the fitness function.

Table 1. Digital Circuit benchmark problems.

Digital Circuit Number of inputs Number of outputs

1-bit adder (1-Add) 3 2

2-bit adder (2-Add) 5 3

3-bit adder (3-Add) 7 4

2-bit multiplier (2-Mul) 4 4

3-bit multiplier (3-Mul) 6 6

3:8-bit de-multiplexer (DeMux) 6 6

4× 1-bit comparator (Comp) 4 18

3-bit Even Parity (3-EP) 3 1

4-bit Even Parity (4-EP) 4 1

5-bit Even Parity (5-EP) 5 1

6-bit Even Parity (6-EP) 6 1

7-bit Even Parity (7-EP) 7 1
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Each algorithm is run 100 times, with a maximum generation cap of
20,000,000; every run in each case successfully produced a result with the excep-
tion of the 3-Mul for CGP, which produced a correct solution in 99% of cases.
In all 3 benchmarks, 100 nodes are used for each individual. Following conven-
tional wisdom for CGP, we use a mutation rate of 4% for CGP and O-EGGP
benchmarks. Additionally, a single row of nodes is used in each of these cases
(nr = 1). However, from our observations EGGP works better with a lower
mutation rate, so for EGGP benchmarks we use 1%. An investigation of how
mutation rate influences the performance in EGGP is left for future work. The
1 + λ algorithm is used in all 3 cases, with λ = 4. Due to time constraints, O-
EGGP is only benchmarked on easier problems; 1-Add, 2-Add, 2-Mul, DeMux,
3-EP, 4-EP and 5-EP. We argue that if the results from these benchmarks are
in line with the CGP benchmark results we may extrapolate that O-EGGP is
indeed simulating CGP. In this case the two distinguishing factors between the
EGGP and CGP benchmarks are the use of mutation operator (feed-forward
preserving vs. order preserving) and mutation rate (1% vs. 4%).

To provide comparisons, we use the following metrics; median number of
evaluations (ME), median absolute deviation (MAD; median of the absolute
deviation from the evaluation median ME), and interquartile range (IQR). The
number of evaluations taken for each run is calculated as the number of gener-
ations used multiplied by the total population size (1 + λ = 5). The hypotheses
we investigate for these benchmarks are:

1. EGGP performs significantly better than CGP on the same problems under
similar conditions. This hypothesis, if validated, would demonstrate the value
of our approach.

2. O-EGGP does not perform significantly better or worse than CGP on the
same problems under identical conditions. This hypothesis, if validated, would
indicate that the possible factors influencing EGGP’s greater performance for
the first hypothesis would be reduced to the use of the feed-forward mutation
operator and the mutation rate.

6 Results

Here we present results from our benchmarking experiments. Digital circuit
results for EGGP and CGP are given in Table 2; results for O-EGGP on a
smaller benchmark suite are given in Table 3.

To test for statistical significance we use the two-tailed Mann-Whitney U
test [10], which (essentially) tests the null hypothesis that two distributions have
the same medians (the non-parametric analogue of the t-test applicable only to
normally distributed data). In the case where we get a statistically significant
result (p < 0.05), we also calculate the effect size, using the non-parametric
Vargha-Delaney A Test [27].

Comparing EGGP to CGP in Table 2, we find no significant improvement of
EGGP over CGP for small problems (1-Add, 2-Mul). Indeed, for 2-Mul CGP
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Table 2. Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect size from the
Vargha-Delaney A test is shown; large effect sizes (A > 0.71) are shown in bold. The
values for CGP on the 3-Mul problem include the single failed run.

Problem EGGP CGP p A

ME MAD IQR ME MAD IQR

1-Add 5, 723 3, 020 7, 123 6, 018 3, 312 7, 768 0.62 –

2-Add 74, 633 32, 863 66, 018 180, 760 88, 558 198, 595 10−15 0.82

3-Add 275, 180 114, 838 298, 250 2, 161, 378 957, 035 1, 837, 942 10−31 0.97

2-Mul 14, 118 5, 553 12, 955 10, 178 5, 258 14, 459 0.018 0.60

3-Mul 1, 241, 880 437, 210 829, 223 15, 816, 940 7, 948, 870 19, 987, 744 10−34 0.99

DeMux 16, 763 4, 710 9, 210 20, 890 6, 845 14, 063 0.013 0.60

Comp 262, 660 84, 248 174, 185 1, 148, 823 425, 758 1, 012, 149 10−31 0.97

3-EP 2, 755 1, 558 4, 836 4, 365 2, 530 5, 345 0.038 0.58

4-EP 13, 920 5, 803 11, 629 22, 690 11, 835 24, 340 10−6 0.69

5-EP 34, 368 15, 190 30, 054 106, 735 55, 615 126, 063 10−18 0.86

6-EP 83, 053 33, 273 66, 611 485, 920 248, 150 535, 793 10−3 0.97

7-EP 197, 575 61, 405 131, 215 1, 828, 495 843, 655 1, 860, 773 10−33 0.99

significantly outperforms EGGP (p < 0.05), albeit with a small effect size (0.56 <
A < 0.64). As the problems get larger and harder we find significant (p <
0.05) improvement of EGGP over CGP in all cases. The effect size is small
(0.56 < A < 0.64) for the 3:8-Bit De-Mux and 3-Bit Even Parity, and medium
(0.64 < A < 0.71) for 4-EP. We find highly significant (p < 0.001) improvements
along with large effect sizes (0.71 < A) on all other problems, including the most
difficult problems: 3-Add, 3-Mul, 4× 1-Bit Comparator and 7-Bit Even Parity.
So there is a clear progression of increasing improvement with problem difficulty.

We visualise some highly significant results as box-plots, with raw data over-
layed and jittered, in Fig. 8. For each of the named problems, it can be clearly
seen that EGGP’s interquartile range shares no overlap with CGP’s, highlight-
ing the significance of the improvement made. Overall, we see these results to
validate our first hypothesis that EGGP performs significantly better than CGP
when addressing the same harder problems, although we note that no significant
improvement is made for simpler problems.

When comparing O-EGGP to CGP in Table 3, we find no significant differ-
ence between either approach on any of the problems in the smaller benchmark
set. The results show similar numbers of median evaluations (ME) in each case,
and produce p values indicating no significant difference between the samples.
We believe that these findings support our hypothesis that O-EGGP does not
perform significantly better or worse than CGP on identical problems under iden-
tical conditions. As O-EGGP theoretically simulates CGP, this indicates that we
can consider the differences between the runs of EGGP and O-EGGP, namely
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Fig. 8. Box-plots with data overlayed for the following highly significant results; (A) 3-
Bit Adder, (B) 3-Bit Multiplier, (C) 4× 1-Bit Comparator and (D) 7-Bit Even Parity.
Overlayed data is jittered for visual clarity.



48 T. Atkinson et al.

feed-forward preserving mutations and mutation rate, as the major contributors
to the differences in performance shown in Table 2.

Table 3. Results from Digital Circuit benchmarks for O-EGGP on a smaller bench-
mark suite. The p value is from the two-tailed Mann-Whitney significance test com-
paring against CGP; no result is statistically significant (α = 0.05).

Problem O-EGGP p

ME MAD IQR

1-Add 6, 253 3, 610 9036 0.66

2-Add 193, 753 109, 420 239, 133 0.95

2-Mul 13, 930 7, 905 19, 104 0.12

DeMux 21, 406 5, 115 10, 065 0.66

3-EP 3, 903 2, 315 4, 831 0.64

4-EP 23, 360 11, 893 21, 865 0.84

5-EP 121, 820 51, 150 107, 868 0.56

Further, we suggest that the significant differences in results would not be
resolved by tuning the mutation rate parameter. Therefore we turn our atten-
tion to the feed-forward preserving input mutation operator. As shown in Fig. 7,
feed-forward preserving mutations may insert nodes between nodes that would be
considered adjacent in the CGP framework. This allows a subgraph of the solu-
tion to grow and change in previously unavailable manners. Performing function-
ally equivalent mutations with order preserving input mutations might require
the construction of an entirely new subgraph in the neutral component of the
individual which is then activated. We propose that the former mutation is
more likely to occur than the sequence of mutations required to achieve the lat-
ter. Therefore where those unavailable mutations are “good” mutations in the
sense of the fitness function, better performance will be achieved by using them
directly. A future investigation into the quality of the neighborhood when using
the feed-forward preserving mutation would clarify this hypothesis.

Additionally, this ability to insert material from anywhere in the individual
that preserves feed-forwardness allows various neutral drifts to occur in the active
component, even between nodes that would be considered adjacent in the CGP
framework. For example, a connection using node x as input could be replaced
by the semantically equivalent AND(x, x), for the function set used here. The
insertion of that AND gate would then allow new mutations in the active com-
ponent; for example changing its function, or mutating one of its inputs. Similar
neutral mutations exist in this domain, such as the insertion of double nega-
tions using NAND gates. Additionally, the reverses of these transformations are
also possible, freeing up genetic material to be used elsewhere. How useful these
neutral mutations in the active component are is left for future work.
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7 Conclusion and Future Work

We have proposed graphs as a fundamental representation for evolutionary algo-
rithms and in particular the use of rule-based graph programming as a means to
perform mutations. We have developed an algorithm, Evolving Graphs by Graph
Programming, and demonstrated significantly improved performance on a suite
of classic benchmark problems in comparison to CGP. We have demonstrated an
ordered variant of EGGP, O-EGGP, that simulates and produces similar results
to CGP, to support our hypothesis that the feed-forward preserving input muta-
tion leads to improved performance. We believe this sets a clear precedent for
future work on evolutionary algorithms using graphs as a fundamental represen-
tation and graph programming as a mechanism for transforming them.

There are a number of directions in which this work may be built upon. Fur-
ther investigation into the value of the feed-forward preserving mutation operator
and how the phenotype is able to change under it is necessary. If our hypothesis
that neutral mutations in the active component are useful is confirmed, it may
then be possible to force similar neutral mutations by encoding equivalence laws
for a given domain as graph programming mutations, such as logical equiva-
lence laws for circuits [11] or the ZX-calculus’s equivalence rules for quantum
graphs [3]. Additionally, a study of whether strict adherence to function arities
for function sets with varying arities is helpful, as discussed in Sect. 3.2, may
be worthwhile. In the present work we have avoided crossover operators, but a
thorough investigation into how graphs can be usefully recombined would be of
interest. Existing ideas such as history-based crossover [23] and subgraph swap-
ping [9,16] offer potential inspiration. We note the possibility of transferring the
active component of one individual into the neutral component of another to
be reabsorbed via future mutations (in a manner analogous to horizontal gene
transfer in bacteria [25]), a mechanism made possible by the lack of constraint
on our representation.
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gramming. In: Bäck, T. (ed.) Proceedings of the International Conference on
Genetic Algorithms, pp. 346–353. Morgan Kaufmann (1997)

20. Poli, R.: Parallel distributed genetic programming. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 403–431. McGraw-Hill (1999)

21. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

22. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer, London (2008).
https://doi.org/10.1007/978-1-84800-070-4

23. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving
neural network topologies. In: Proceedings of the Annual Conference on Genetic
and Evolutionary Computation (GECCO), pp. 569–577. Morgan Kaufmann Pub-
lishers Inc. (2002)

https://doi.org/10.1007/3-540-48885-5_8
https://doi.org/10.1007/3-540-48885-5_8
https://doi.org/10.1007/978-3-540-71605-1_32
https://doi.org/10.1007/978-3-319-20883-1_1
https://doi.org/10.1007/978-3-319-20883-1_1
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.4204/EPTCS.82.1
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-1-84800-070-4


Evolving Graphs by Graph Programming 51

24. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

25. Syvanen, M., Kado, C.I.: Horizontal Gene Transfer. Academic Press, London (2001)
26. Turner, A.J., Miller, J.F.: Introducing a cross platform open source Cartesian

Genetic Programming library. Genet. Program Evolvable Mach. 16(1), 83–91
(2015)

27. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

28. Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in Cartesian
Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule,
T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24650-3 17

https://doi.org/10.1007/978-3-540-24650-3_17


Pruning Techniques for Mixed Ensembles
of Genetic Programming Models

Mauro Castelli1, Ivo Gonçalves2,3,
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Pólo 2, 3030-290 Coimbra, Portugal

icpg@dei.uc.pt
3 CISUC, Department of Informatics Engineering, University of Coimbra,

3030-290 Coimbra, Portugal
4 Dipartimento di Informatica, Sistemistica e Comunicazione,
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Abstract. The objective of this paper is to define an effective strat-
egy for building an ensemble of Genetic Programming (GP) models.
Ensemble methods are widely used in machine learning due to their fea-
tures: they average out biases, they reduce the variance and they usually
generalize better than single models. Despite these advantages, building
ensemble of GP models is not a well-developed topic in the evolution-
ary computation community. To fill this gap, we propose a strategy that
blends individuals produced by standard syntax-based GP and individ-
uals produced by geometric semantic genetic programming, one of the
newest semantics-based method developed in GP. In fact, recent liter-
ature showed that combining syntax and semantics could improve the
generalization ability of a GP model. Additionally, to improve the diver-
sity of the GP models used to build up the ensemble, we propose different
pruning criteria that are based on correlation and entropy, a commonly
used measure in information theory. Experimental results, obtained over
different complex problems, suggest that the pruning criteria based on
correlation and entropy could be effective in improving the generalization
ability of the ensemble model and in reducing the computational burden
required to build it.

1 Introduction

In the last few years, effort was dedicated to the definition and analysis of meth-
ods to exploit semantic awareness in GP [1], where the term semantics generally
refers to the behavior of a program when executed on a set of training cases.
Semantics-based methods provide a new conceptual view on GP and were suc-
cessfully used to solve complex problems over different domains [2,3]. However,
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standard syntax-based GP is also capable of obtaining competitive results in dif-
ferent fields [4,5]. In both cases, the application of a GP algorithm is generally
performed with the objective of obtaining a final model able to fit the training
data as best as possible. So far, a little research effort was dedicated to the con-
struction of ensemble models based on GP [6] and this is somehow surprisingly
considering the vast amount of literature where the advantages of ensemble meth-
ods are reported [7]. To formally define an ensemble model let us refer to a stan-
dard symbolic regression problem since this is the kind of application addressed
in this study. In symbolic regression, the goal is to search for the symbolic expres-
sion f(x) that best fits a particular training set T = {(x1, y1), . . . , (xn, yn)} of
n input/output pairs with xi ∈ R

n and yi ∈ R. An ensemble of regression mod-
els is a set of symbolic expressions whose individual predictions are combined
(typically by considering their median or a weighted sum) to predict the target
yi. Interestingly, ensembles are often much more accurate than the individual
predictors that make them up [7]. The main reasons can be summarized as fol-
lows: (1) a learning algorithm performs a search in a space H of hypotheses to
identify the best hypothesis in the space. When the number of training data is
too small compared to the size of the hypothesis space, the learning algorithm
can return different hypotheses in H and all of them present an error on the
training instances. In such a situation, an ensemble can reduce the bias toward
a particular hypothesis simply by considering different hypothesis and return-
ing a prediction based on the predictions of all the hypothesis that made up
the ensemble. (2) In the large part of the problems addressed by using machine
learning techniques, the target function f cannot be represented by any of the
hypotheses in H. In this case, an ensemble can expand the space of representable
hypothesis by considering weighted sums of hypotheses drawn from H.

One of the main reasons for the poor attention dedicated to ensembles in the
GP literature may be related to the fact that, since its inception, GP was consid-
ered a time-consuming process due to the computational complexity required by
the evaluation of the fitness function. While this issue is not critical for semantics-
based GP [8,9] and despite the availability of effective hardware that nowadays
allows to perform fast parallel computations, the construction of ensemble mod-
els based on GP has not received the attention it deserves.

To answer this call, this study presents a method to effectively build ensem-
bles of GP models. The method is designed in such a way to overcome the main
limitations of the typical approach used for building an ensemble model, where
different parallel GP populations are evolved and the final ensemble will be
composed of the best models returned by each one of the these populations. In
fact, while this approach is the predominant one across the literature [7,10], it is
important to consider several issues that have a negative impact on the ensemble
model developed with such an approach. One of the most important issues is the
one related with generalization. Generalization refers to the ability of a model
to perform well on unseen examples. This is a critical aspect of a model and the
interest in studying generalization in GP has been recently increasing [9,11–18].
Its importance is related to the fact that, typically, the final user of a model
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wants to obtain satisfactory performance on new instances of the problem at
hand, while the performance on the training cases is generally irrelevant. For
this reason, this study takes into account different approaches that we expect
to be beneficial in increasing the generalization ability of the ensemble model.
The first idea comes from recent literature [19,20] where authors demonstrated
that a blend of individuals created with standard syntax-based GP (STGP) and
Geometric Semantic Genetic Programming (GSGP) results in a model with a
better generalization ability with respect to the use of only one kind of solutions.
With this in mind, to build the ensemble of GP models we run in parallel dif-
ferent GP populations, where some of them are evolved using STGP and others
are evolved using GSGP (as done in [20]). One of the hypotheses of this study is
that a blend of STGP and GSGP is beneficial (in terms of generalization) also
in building an ensemble of GP models.

The second idea is related to the fact that running all the populations for a
given number of generations may result in an unwanted behavior, where all the
evolved individuals are semantically similar (i.e., they produce approximately
the same outputs for all the different training cases). In such a situation, there
would be a little advantage in using an ensemble with respect to the usage of
a single model. In fact, as reported in [21] an ensemble should be composed
of models that are accurate and diverse. In this context, two models are said
to be diverse if they make different errors on new data. It is only in this way
that it would be possible to achieve a better generalization ability with respect
to the one achievable by considering a single model. To take into account this
relevant aspect, the strategy presented in this work will evolve different parallel
populations while some of them are removed by using different similarity-based
pruning criteria. The criteria that are considered in this study are based on the
level of entropy and correlation of the best models available in the populations.
The use of these pruning criteria should guarantee some sort of diversity among
the models used to build up the ensemble.

The paper is structured as follows: Sect. 2 briefly presents some previous stud-
ies related to the definition of ensemble models. Section 3 presents the strategy
developed in this study to build an ensemble of GP models and the similarity-
based criteria we defined. Section 4 contains the experimental study, including
a presentation of the used test problems and of the experimental settings and
a discussion of the obtained results. Finally, Sect. 5 concludes the paper and
suggests possible avenues for future work.

2 Related Work

This section presents recent contributions related GSGP as well as existing stud-
ies involving ensemble models and GP.

The use of ensemble models and GP presents only a few contributions in the
literature. One of the first studies dates back to 2000 when a study about the
decomposition of regression error into bias and variance terms to provide insight
into the generalization capability of modelling methods was proposed [6]. After
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an introduction to bias/variance decomposition of mean squared error, authors
showed how ensemble methods such as bagging [22] and boosting [23] can reduce
the generalization error in GP. Bagging and boosting were considered in the
context of ensemble models for GP in [24]. In their work, authors presented an
extension of GP by means of resampling techniques. By considering bagging and
boosting, they manipulated the training data in order to improve the learning
algorithm. In their work they extended GP by dividing a whole population into
a set of sub-populations, each of which is evolved by using the bagging and
boosting methods. Best individuals of each sub-population participate in voting
to give a prediction on the unseen data. The performance of their approach was
discussed and authors also showed the beneficial effect of the proposed technique
in reducing bloat with respect to the standard GP algorithm. A study related
to the suitability of EC techniques in building ensemble models for classification
tasks was presented in [25], where authors presented the so-called Evolutionary
Ensemble Learning (EEL) approach. The objective of the study was twofold: on
one side they defined a new fitness function inspired by co-evolution to enforce
the classifier diversity. Additionally, a new selection criterion based on the clas-
sification margin is proposed. The new selection criterion is used to extract the
classifier ensemble from the final population or incrementally along the evolu-
tion. In the experimental phase, they showed the suitability of their approach
when compared to a single-hypothesis evolutionary learning process.

Besides the aforementioned theoretical studies, ensemble models and GP
were used to solve complex real-world problems, mainly related to classification
tasks. In [26] authors demonstrated the suitability of GP as a base classifier algo-
rithm in building ensembles for large-scale data classification. In particular, they
showed that an ensemble of GP individuals is able to significantly outperform its
counterparts built upon base classifiers that were trained with decision tree and
logistic regression. Authors also claimed that the superiority of GP ensemble is
partly attributed to the higher diversity, both in terms of the functional form
as well as with respect to the variables defining the models, among the base
classifiers upon which it was built on. In the same context of large-scale data
classification, an extension of cellular genetic programming for data classification
(CGPC) to induce an ensemble of predictors is presented in [27]. In their work
authors developed two algorithms based on bagging and boosting and compared
their performance with the one of CGPC. Results showed that the proposed
approaches are able to deal with large datasets that do not fit in main memory,
also producing better classification accuracy with respect to standard CGPC.
The same authors proposed the use of GP ensemble for distributed intrusion
detection systems [28]. The algorithm runs on a distributed hybrid multi-island
model-based environment to monitor security-related activity within a network.
Experiments showed the validity of the approach when compared to standard
techniques for the task at hand. Other applications of ensemble methods to GP
includes the use of querying-by-committee methods [29,30] and of a divide-and-
conquer strategy, in which ax solution need to work well only on a subset of the
entire training set [31,32].
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With respect to ensembles of regression models, a quite recent contribution
was proposed in [33]. The idea explored by the authors was to generate several
regression models by concurrently executing multiple independent instances of
a GP and, subsequently to analyze several strategies for fusing predictions from
the multiple regression models. The study considered only small datasets due
to memory constraints, but authors were able to draw interesting conclusions
about the suitability of their approach in producing accurate predictions. Our
study will differ from the one described in [33] in several ways: we do not put
any constraint on the size of the datasets, we will consider models produced
by different GP algorithms (blend of STGP and GSGP) and we define and use
different similarity-based criteria that, by taking into account the information
related to all the populations evolved, aim at improving the generalization ability
of the final ensemble as well as reducing the computational effort. Hence, in
the experiments described in this contribution and as explained in Sect. 3, the
populations evolved are not independent of each other.

As reported in Sect. 1, one idea exploited in this study is to build an ensemble
that consists of a blend of individuals produced by STGP and GSGP. GSGP is
one of the newest methods to directly include semantic awareness in the search
process [34]. The interested reader is referred to [1] for a description of the
concept of semantics and its uses in GP, while [34,35] present the semantic
operators for GP used in this paper. Despite the plethora of studies investigating
the role of semantics, this is still a hot topic in the field of GP. Particularly
interesting with respect to our study is the work proposed in [19]. In their work,
authors defined a simple yet effective algorithm for the initialization of a GP
population inspired by the biological phenomenon of demes despeciation (i.e.
the combination of demes of previously distinct species into a new population).
In synthesis, the initial population of GP is created using the best individuals of a
set of separate subpopulations, or demes, some of which run STGP and the others
GSGP for few generations. Experimental results showed that this initialization
technique outperforms GP with the traditional ramped half-and-half algorithm
on six complex symbolic regression applications. Even more interesting, by using
the proposed initialization technique, the GP process produces individuals with a
better generalization ability than the ones obtained by initializing the population
with the traditional ramped half-and-half algorithm. Hence, to construct the GP-
based ensemble we build upon this idea and we expect to obtain a final ensemble
with a better generalization ability with respect to its counterparts, where only
STGP or GSGP are considered.

3 Method

This section describes the proposed system for building GP-based ensemble mod-
els. The main idea is to provide a pruning method to reduce the number of popu-
lations in an ensemble when they are exploring similar regions of the search space
and, in some sense, they are possibly wasting computational effort to perform
the same work two times. Therefore, we need a measure of similarity among solu-
tions that allows the pruning procedure to take place. After each generation, all
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the best solutions for all the populations that are part of the ensemble are pair-
wise compared and, if two of them are deemed too similar, the worst performing
one (in terms of fitness) is removed and the one remaining is now weighted more
when calculating the semantics of the ensemble (that is a weighted sum of the
semantics of the best solutions).

Formally, let P1, . . . , Pn be n populations, and let I1, . . . , In be their best
individuals each one having semantics s(Ii). Each population has associated a
weight wi (all the weights are equal to 1 after initialization) and the semantics
of the entire ensemble is given by 1

n

∑n
i=1 wis(Ii). After each generation, a sub-

routine D(Ii, Ij) that calculates the similarity between Ii and Ij is called for
each of the best individuals of the populations. Since many similarity measures
returns a real value measuring how similar the two individuals are, we obtain
a Boolean answer by comparing the similarity measure with a threshold. After
that, if True is returned (i.e., Ii and Ij are similar), the fitness f(Ii) and f(Ij)
are compared and the population corresponding to the worst fitness is removed.
For example, if f(Ij) is the worst fitness, then Pj is removed from the ensemble
and Pi will increase its weight from wi to wi +wj . The main aspect that governs
this process is the subroutine D(Ii, Ij), and we are going to describe four differ-
ent implementations of it based on two different notions of semantic similarity:
entropy and correlation.

3.1 Correlation-Based Similarity

The idea of a correlation-based similarity is to consider two semantics as similar
if the correlation among them is above a certain threshold. Let s(Ii) and s(Ij) be
two semantics, i.e., two semantic vectors, and let ρi,j be the Pearson correlation
coefficient among them. Its value varies between −1 (negative correlation) to 1
(positive correlation). If the correlation is higher than 0.5 we consider the two
individual similar enough. This threshold was selected after a preliminary tuning
phase, where different values were tested across the benchmarks considered.

A variation of this method introduces a probability of being considered simi-
lar enough when the correlation coefficient goes above the threshold. The proba-
bility for s(Ii) and s(Ij) to be considered equal is set to ρi,j (i.e., if D(s(Ii), s(Ij))
is greater than the threshold value, then true is returned with probability ρi,j).
This will reduce the expected number of populations that will be removed from
the ensemble while still assuring that very similar ones (i.e., with the correlation
coefficient near one) will almost surely be removed.

3.2 Entropy-Based Similarity

The entropy-based similarity is based on the idea that, if two semantics are
similar, it should be possible to infer the outputs of one based on the other, This
is possible even if the relation is more complex (non-linear) than the one that
can be captured by using the linear correlation coefficient. Given two semantics
s(Ii) and s(Ij), we will denote their mutual entropy by H(i, j) and their mutual
information by I(i, j). Notice that to compute these values we need to provide



58 M. Castelli et al.

discrete data, which is not the case for the semantics of GP individuals under
regression problems. Therefore, we discretize them using

√
n equally-sized bins,

with n the length of the semantic vectors, and counting the number of elements
that are present in each bin.

The similarity measure is based on the variation of information, that is,
the metric d(i, j) = H(i, j) − I(i, j). To normalize it between 0 and 1 we use
D(i, j) = d(i,j)

H(i,j) . This distance will be close to 1 if the two semantics are dissimilar
and close to 0 otherwise. As a threshold the value 0.5 was chosen. Thus, two
semantics with distance lower than 0.5 are considered similar enough. Also in
this case, the threshold was selected after a preliminary tuning phase, where
different values were tested.

As with the correlation-based similarity, it is possible to introduce a proba-
bilistic variation, in which a population is selected for deletion with probability
1 − D(i, j) when D(i, j) < 0.5.

4 Experimental Settings and Results

Five datasets were considered for testing the performance of the GP-based
ensemble. These datasets were already considered in previous GP studies. Hence,
we summarize their main properties in Table 1 by reporting the number of inde-
pendent variables, the name of the problem and a reference where readers may
find detailed descriptions of the datasets. In these experimental phase, bench-
marks with real-world data were chosen to establish the suitability of the pro-
posed methods in a real-world setting.

Table 1. Description of the test problems. For each dataset, the number of features
(independent variables) and the number of instances (observations) are reported.

Dataset # Features # Instances

Airfoil [36] 5 1502

Concrete [37] 8 1029

Protein Plasma Binding Level (PPB) [38] 626 131

Slump [39] 9 102

Yacht [40] 6 307

The objectives of the experiment are the following:

– to show that the pruning criteria can effectively remove some of the existing
populations;

– that the removal of populations is performed in a way that does not deterio-
rate performance;

– that the pruning criteria perform better than simply randomly removing pop-
ulations or selecting a smaller ensemble size.
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Here, the notion of being better can be interpreted in two ways: either a perfor-
mance improvement with respect to fitness or comparable fitness values obtained
using a smaller number of populations. That is, the proposed pruning criteria
either improve the results or reduce the computational burden.

The ensembles are composed, at the beginning, of 20 populations, half of
them will evolve by using STGP and the other half by using GSGP. To generate
the training set, for each run a global training set consisting of 70% of the
problem instances was selected. The remaining 30% was used as the test set.
From the training set, each population in the ensemble was provided with a
local training set consisting of the same number of observations but obtained
by randomly sampling with replacement from the global training set. This was
performed for each of the 30 runs.

The following methods were compared:

– Standard. No deletion of populations.
– Random. Each population has a probability of 0.001 of being removed at

each generation. At least one population will always remain.
– Half. At the start, half of the populations are selected (one half of them using

STGP and the other half using GSGP) and no further deletion occurs.
– Correlation. The correlation-based similarity is used in the pruning.
– Correlation-prob. The probabilistic variation of the correlation-based sim-

ilarity is used in the pruning.
– Entropy. The entropy-based similarity is used in the pruning.
– Entropy-prob. The probabilistic variation of the entropy-based similarity is

used in the pruning.

The general parameters of the system are summarized in Table 2. The values
of the parameters were selected taking into account the values already used in
existing literature, where the datasets considered in this study were already used
as benchmarks. For the sake of brevity, we report only the results obtained on the
test set and avoid reporting the global training set results. To test the statistical
significance of the results, we have used the single tailed Mann-Whitney U-test
with the alternative hypothesis that the first series of fitness values is lower
(i.e., better) than the second series. As a threshold for the p-value we selected
α = 0.05.

Table 3 show the results of the statistical tests, where the entry in row i and
column j is the p-value of the Mann-Whitney U-test where the technique in the
i-th row is compared against the one in the j-th column. A value less then 0.05
(highlighted in bold) indicates that we have accepted the alternative hypothesis
and, thus, the i-th method produces lower (i.e., better) fitness values than the
j-th one on the test data. Figures 2, 3, 4, 5 and 6 show, for the test problems
considered, the fitness on the test set for the different methods. The average size
of the ensemble across all generations and all runs is shown in Fig. 1.

The results on the airfoil dataset (Fig. 2 and Table 3) show that the standard
ensemble method is the best performer. All the four proposed methods, however,
perform better than simply halving or randomly removing populations from
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Table 2. Parameters used in the experiments

Parameter Value

Runs 30

Generations 1000

Population size 200

Training - Testing division 70% - 30%

Fitness Root Mean Squared Error

Crossover probability 0.6

Mutation probability 0.3

Tree initialization Ramped Half-and-Half, maximum depth 6

Function set +, −, *, and protected /

Terminal set Input variables, no constants

Parent selection Tournament of size 4

Elitism Best individual always survives

Maximum tree depth None

Ensemble size 20 (10 STGP and 10 STGP)
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Fig. 1. The average number of populations in the ensemble for the considered methods

the ensemble. Figure 1 shows that those results were obtained while using, on
average, about half of the populations than the standard method.

For the concrete dataset (Fig. 3 and Table 3), the standard method and all
the four proposed methods perform in a similar way. Using only half of the
populations or randomly removing them produces worse results. In this case, the
two correlation-based methods also use about half of the populations employed
by the standard method.

For the PPB dataset (Fig. 4 and Table 3) the correlation-based methods
return the lowest (i.e., better) fitness but the difference is not statistically signifi-
cant when compared to the standard and entropy-based methods. The other two
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Fig. 2. The average fitness at the last generation in the airfoil dataset. The error bars
are one standard deviation in length.
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Fig. 3. The average fitness at the last generation in the concrete dataset. The error
bars are one standard deviation in length.

methods are the worst performers. The best results are obtained by using quite
a high number of populations for all the proposed methods. This might indicate
that the PPB problem is well-suited to be solved with ensemble techniques and
that additional populations help in producing better results.

The slump dataset (Fig. 5 and Table 3) has the standard and the entropy-
based methods as the best performers. The worst performers are the correlation-
based methods which, in this case, also employ a very low number of populations.

The yacht dataset (Fig. 6 and Table 3) is interesting since it provides an exam-
ple in which two of the proposed methods, namely the correlation-based ones,
perform the worse, while the entropy-based remains on-par with the standard
method at the price of removing only a few populations.

To conclude this section, it is important to discuss the competitive advantage
in considering a blend of STGP and GSGP. To evaluate this aspect, we compared
the performance of the ensemble model built considering a blend of STGP and
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Fig. 4. The average fitness at the last generation in the PPB dataset. The error bars
are one standard deviation in length.
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Fig. 5. The average fitness at the last generation in the slump dataset. The error bars
are one standard deviation in length.
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Fig. 6. The average fitness at the last generation in the yacht dataset. The error bars
are one standard deviation in length.
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Table 3. p-values for the statistical tests on the airfoil, concrete, PPB, slump, and
yacht datasets (from top to bottom).

airfoil standard random half corr. pr.-corr. entr. pr.-entr.

standard 0.000 0.000 0.000 0.000 0.0000 0.001

random 1.000 0.886 1.000 1.000 1.000 1.000

half 1.000 0.117 1.000 1.000 1.000 1.000

correlation 1.000 0.000 0.000 0.677 0.996 0.999

prob-correlation 1.000 0.000 0.000 0.329 0.990 0.998

entropy 1.000 0.000 0.000 0.004 0.010 0.735

prob-entropy 1.000 0.000 0.000 0.001 0.002 0.270

concrete standard random half corr. pr.-corr. entr. pr.-entr.

standard 0.000 0.000 0.190 0.156 0.432 0.476

random 1.000 0.720 0.999 0.999 1.000 1.000

half 1.000 0.285 0.999 0.999 1.000 1.000

correlation 0.814 0.001 0.001 0.456 0.749 0.777

prob-correlation 0.848 0.001 0.002 0.550 0.802 0.814

entropy 0.573 0.000 0.000 0.255 0.202 0.527

prob-entropy 0.529 0.000 0.000 0.228 0.190 0.479

PPB standard random half corr. pr.-corr. entr. pr.-entr.

standard 0.050 0.034 0.685 0.695 0.418 0.424

random 0.952 0.591 0.971 0.974 0.927 0.931

half 0.967 0.415 0.984 0.984 0.953 0.956

correlation 0.321 0.030 0.016 0.529 0.241 0.260

prob-correlation 0.310 0.027 0.017 0.476 0.232 0.241

entropy 0.588 0.075 0.048 0.763 0.772 0.509

prob-entropy 0.582 0.071 0.045 0.745 0.763 0.497

slump standard random half corr. pr.-corr. entr. pr.-entr.

standard 0.056 0.129 0.013 0.002 0.468 0.421

random 0.946 0.630 0.156 0.053 0.929 0.927

half 0.874 0.375 0.114 0.028 0.851 0.844

correlation 0.987 0.848 0.889 0.246 0.985 0.984

prob-correlation 0.998 0.949 0.973 0.759 0.997 0.997

entropy 0.538 0.073 0.152 0.015 0.003 0.441

prob-entropy 0.585 0.075 0.159 0.017 0.003 0.565

yacht standard random half corr. pr.-corr. entr. pr.-entr.

standard 0.050 0.022 0.013 0.027 0.468 0.479

random 0.952 0.398 0.370 0.381 0.946 0.949

half 0.979 0.608 0.421 0.515 0.972 0.972

correlation 0.987 0.636 0.585 0.650 0.983 0.985

prob-correlation 0.974 0.625 0.491 0.356 0.968 0.969

entropy 0.538 0.056 0.029 0.018 0.033 0.509

prob-entropy 0.527 0.053 0.029 0.016 0.032 0.497
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GSGP without pruning, against the ones obtained by considering only STGP
and only GSGP. The results achieved on the five benchmarks (not reported
here due to the page limit) show that no statistically significant difference exists
with respect to the performance of the considered ensemble models on unseen
instances. While this result seems to contradict recent studies (e.g., [19]), a
deeper analysis is needed. In particular, it would be interesting to study how
the number of models in the final ensemble affects the generalization ability of
the three systems (only STGP, only GSGP, blend of STGP and GSGP) and to
analyze the impact of the pruning techniques on the generalization error. Despite
the fact that no statistically significant differences can be noticed, using a blend
of STGP and GSGP might still be important and non detrimental: results show
that the diversity of the model is generally greater than the one observable by
considering a pool of individuals obtained with only GSGP (or STGP) and,
additionally, the pruning criteria can determine what are the populations and
models that should evolve. Hence, it might be advisable to use both GP systems
to evolve the weak models and to let the pruning criteria to select the one
needed to create a competitive ensemble model. As for the advantage in term
of runtime and number of fitness evaluations, it is important to notice that a
pruning method that, for example, reduces on average the number of distinct
populations used by one third, also reduces the number of fitness evaluations by
one third and, since the computation of the similarity is usually not the most
computationally intensive part of the GP algorithm, a similar improvement is
reflected in the reduction of the runtime.

5 Conclusions

Machine learning literature has deeply investigated ensemble models, reporting
their advantages with respect to the use of a weak learner. In particular, ensem-
ble models are characterized by different features that could improve the perfor-
mance of a learning technique: they are able to reduce the variance, the average
out biases, they can cover a larger area of the hypothesis space with respect to
a single model, and they generally present a better generalization than a single
model. Nonetheless, ensemble models were not deeply investigated in the field
of GP. This paper answered this call by proposing a strategy to build ensemble
models by using genetic programming. Two different GP versions are taken into
account: standard syntax-based GP (STGP) and a GP system (GSGP) able to
directly include semantic awareness in the search process by using geometric
semantic operators.

The main objective of the study was to understand whether an ensemble
model made of a blend of GP individuals evolved by both STGP and GSGP can
be effectively pruned using different criteria based on correlation and entropy.
These criteria are used to avoid the construction of an ensemble where weak
learners are semantically too similar. In fact, as existing literature suggested, an
ensemble model should be made of accurate and diverse models. The strategies
developed were tested over different benchmark problems already considered in
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the GP literature. Results are interesting and, while they do not allow to draw
a general conclusion about the superiority of a criterion with respect to the
other ones, they show that considering a similarity criterion when constructing
a GP ensemble can help in maintaining the generalization ability of the resulting
model while reducing the computational effort.

This work represents a preliminary study and several future works are
planned: first of all, a study aimed at determining the optimal number of weak
learners for optimizing the performance of the ensemble over unseen data rep-
resent a priority. This would allow practitioners to use the system without the
need to determine the number of weak learners, a parameter that has an impact
on the performance of the ensemble. Furthermore, the design of pruning criteria
that are parameter independent is an important future work to save the user the
time required for tuning them. Additionally, it would be interesting to pursue the
study of the interaction between syntax and semantics in GP, a very important
topic in the field, that is still not well understood.
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16. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique
for overfitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec,
K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 218–229.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29139-5 19
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Abstract. The emerging and fast-developing field of metabolomics
examines the abundance of small-molecule metabolites in body fluids to
study the cellular processes related to how the human body responds to
genetic and environmental perturbations. Considering the complexity of
metabolism, metabolites and their represented cellular processes can cor-
relate and synergistically contribute to a phenotypic status. Genetic pro-
gramming (GP) provides advanced analytical instruments for the inves-
tigation of multifactorial causes of metabolic diseases. In this article,
we analyzed a population-based metabolomics dataset on osteoarthritis
(OA) and developed a Linear GP (LGP) algorithm to search classifi-
cation models that can best predict the disease outcome, as well as to
identify the most important metabolic markers associated with the dis-
ease. The LGP algorithm was able to evolve prediction models with high
accuracies especially with a more focused search using a reduced feature
set that only includes potentially relevant metabolites. We also identified
a set of key metabolic markers that may improve our understanding of
the biochemistry and pathogenesis of the disease.

Keywords: Metabolomics · Osteoarthritis · Biomarker discovery
Genetic programming · Classification

1 Introduction

Systems biology is an emerging research field that takes a holistic approach to
modeling complex biological systems rather than examining different levels of
biological systems separately [1–3]. It requires collaborative efforts from disci-
plines including biomedicine, statistics, and computer science. Systems biology
approaches embrace the complexity of biological systems and focus on modeling
the interactions among multiple components including genome, transcriptome,
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proteome, and metabolome [4–6]. By integrating a variety of “omics” data, sys-
tems biology for human disease studies aims at better understanding the patho-
genesis of common diseases, discovering biomarkers that can help predict early
disease onset, progression, and severity, and identifying new drug targets [7,8].

Integrative data analysis and mining for systems biology often include hun-
dreds to thousands of variables such as genes, proteins, and metabolites [9], in
order to find the most relevant biomarkers that can explain a specific pheno-
type or disease. Most conventional tools adopt a univariate analysis strategy
and examine one variable at a time on its individual association with the dis-
ease. This may overlook the intertwined relationships among multiple variables
that contribute to the disease. Thus, retooling for systems biology is needed such
that a large set of variables can be analyzed simultaneously on their synergistic
effects [10,11]. However, the high dimensionality has imposed both methodolog-
ical and computational challenges since learning algorithms that can model the
complex non-linear relationships of multiple variables are yet to be explored,
and searching combinations of variables becomes prohibitive as the search space
grows exponentially with the number of variables.

Machine learning and heuristic search algorithms, including principal com-
ponent analysis [12], artificial neural networks [13], and random forest [14], have
seen increasing and successful applications in omics data mining for biomarker
discovery. However, despite a few attempts [15,16], genetic programming, as a
powerful learning and modeling algorithm, has not caught up with other com-
parable algorithms in wide applications.

Genetic programming (GP) holds great potentials for systems biology
research. First, it can construct highly non-linear models of multiple variables
(features) that can best predict a phenotypic or disease outcome using arithmetic
functions, Boolean functions, and conditional statements. Second, the selection
of relevant features in a model classifier is achieved automatically in GP. This
feature selection process is embedded in model construction such that the inclu-
sion of a feature is decided based on the classification performance of the model.
Such an automatic and embedded feature selection mechanism distinguishes GP
from many approaches that select features and construct classification models
in separate steps. Third, the stochastic population-based search property of evo-
lutionary algorithms allows to generate multiple best classification models. This
provides a diverse set of classification models for subsequent interpretation and
feature importance analysis.

In this study, we use a GP algorithm, specifically a Linear GP representation,
to train classification models and to identify key biomarkers for metabolomics,
in order to demonstrate the power of GP in the coming era of systems biology
and big biomedical data research.

Recent developments in the field of metabolomics provide an array of new
tools for the study of human diseases. A large number of small-molecule metabo-
lites from body fluids or tissues can be quantitatively detected simultaneously,
which promises an immense potential for early diagnosis, therapy monitoring
and understanding the pathogenesis of complex diseases [17]. Metabolites are



70 T. Hu et al.

intermediate and end products of various cellular processes and their levels of
concentration serve as a good indicator of a sequence of biological systems in
response to genetic and environmental influences. This can, in turn, help us
better understand the diseases and develop new drug treatments.

We use population-based metabolomics data where two phenotypically dis-
tinguished individuals, i.e., diseased cases and healthy controls, are recruited and
their blood samples are collected to measure the concentration levels of a variety
of metabolites. Classification models are then evolved and trained using GP algo-
rithm. We adopt a two-round design where GP uses the full set of metabolites
in the initial round of model exploration and selects a subset of potentially more
relevant metabolites for the second round of more focused search. The impor-
tance of metabolites in terms of their contribution to the disease is then assessed
based on their occurrence frequencies in the final best classification models.

2 Methods

2.1 Metabolomics Data on Osteoarthritis

Osteoarthritis (OA) is a slowly progressive joint disease and is the most common
form of arthritis. It occurs when the protective cartilage on the ends of bones
breaks down often because of mechanical stress or biochemical alterations. It
causes a substantial morbidity and disability in the elderly populations, and
imposes a great economic burden on our society [18,19]. Despite high prevalence
and societal impact, there is no medication that can cure it, or reverse or halt
the disease progression, partly because its pathogenesis is still unclear and there
is no reliable method that can be used for early OA diagnosis.

In this study, we used a OA metabolomics dataset from the Newfoundland
Osteoarthritis Study (NFOAS) [20,21]. The goal of the NFOAS is to identify
novel genetic, epigenetic, and biochemical markers for OA, in order to better
understand the diseases and to develop new drug treatment. In the NFOAS, knee
OA patients who underwent a total knee replacement surgery due to primary OA
were recruited. Healthy controls were selected from volunteering participants.

Both cases and controls were from the same source population. Knee OA
diagnosis was made based on the American College of Rheumatology clinical
criteria for the classification of idiopathic OA of the knee [22] and the judgment
of the attending orthopedic surgeons. Controls were individuals without self-
reported family doctor diagnosed knee OA based on their medical information
collected by a self-administered questionnaire. A total number of 153 OA cases
and 236 healthy controls were collected.

Blood samples were collected after at least 8 hours of fasting and plasma
was separated from blood using the standard protocol. Metabolic profiling was
performed on plasma using the Waters XEVO TQ MS system (Waters Limited,
Mississauga, Ontario, Canada) coupled with Biocrates AbsoluteIDQ p180 kit,
which measures 186 metabolites including 90 glycerophospholipids, 40 acylcar-
nitines (1 free carnitine), 21 amino acids, 19 biogenic amines, 15 sphingolipids
and 1 hexose (above 90 percent is glucose). The details of the 186 metabolites
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and the metabolic profiling method were described in a previous publication [23].
Over 90% of the metabolites (167/186) were successfully determined in each
sample.

The study protocol was approved by the Health Research Ethics Authority
(HREA) of Newfoundland and Labrador with reference number 11.311 and a
written consent was obtained from all the participants.

We followed a two-stage design and divided the samples randomly into discov-
ery and replication datasets, such that our genetic programming algorithm can
be applied separately to the two datasets and only the key features (metabo-
lites) successfully replicated were reported. Since samples were collected and
their metabolite concentrations were measured in various batches, certain biases
can exist when samples from different batched were compared. We performed
batch corrections to remove such biases by multiplying each metabolite con-
centration value by the ratio of the overall mean and the batch mean for that
metabolite. In addition, age and BMI are known factors correlated with OA.
Therefore, the residual of a linear regression using attributes age and BMI was
applied to remove any partial correlations as a result of those two factors, and to
adjust the data for subsequent analysis. Finally, each metabolite concentration
value was normalized to zero mean and unit variance across the population.

2.2 Linear Genetic Programming Algorithm

Linear genetic programming (LGP) encodes evolutionary individuals as imper-
ative programs that are executed sequentially [24]. Although LGP follows a lin-
ear instructional structure, it is very powerful and capable of modeling complex
nonlinear relationships among multiple attributes. Comparing to the more tra-
ditional representation of trees, such an instructional structure of LGP enables
fast execution and thus speedy fitness evaluation. Therefore, LGP has gained
increasing popularity being applied to a variety of modeling and classification
problems [25–27].

In the current study, an instruction of an LGP program can be either an
assignment statement or a conditional statement. An assignment statement
manipulates values stored in calculation registers by applying arithmetic opera-
tions such as addition, subtraction, multiplication, division, and the exponential
function. We use if-then statements to change the flow of program execution
by skipping one subsequent instruction when the condition in the if statement
is false.

Feature registers contain input values of corresponding variables from data
samples, and calculation registers are used to enhance the computational capac-
ity of LGP programs. A feature register can only serve as an operand on the
right-hand side of an assignment statement, while a calculation register can be
used as an operand or a return on the left-hand side of an assignment statement.
The calculation register r[0] is designated as the output register, and its final
stored value is the outcome of the entire program. Since we consider a classifica-
tion problem in the current study, the Sigmoid function will be applied to r[0].
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If S(r[0]) is greater than or equal to 0.5, the sample is predicted as diseased
(class one), otherwise, the sample is predicted as healthy (class zero).

Therefore, an LGP program represents a classification model that takes a
data sample with a set of feature values (metabolite concentration levels) as
input, and outputs the predicted class status (diseased or healthy) of this sample.
An example LGP program with eight instructions is given below.

if r[1]> r[5]
then r[0] = r[7] + 5

r[4] = r[2] / r[0]
if r[0] > 4

then if r[3] < 10
then r[6] = r[3] - r[5]

r[2] = r[5] * r[5]
r[0] = r[2] + r[7]

At the initial generation, a population of LGP programs is generated ran-
domly. The fitness of each program is evaluated using mean classification error
(MCE), computed as the average number of incorrectly classified training sam-
ples. A set of programs are chosen as parents based on their fitness, and variation
operators, including mutation and recombination, are applied to them. A micro
mutation alters an element of a randomly picked instruction, i.e., replacing a
return or an operand register by a randomly generated one or replacing the
operator. A macro mutation deletes a randomly chosen instruction or inserts a
randomly generated instruction. Recombination swaps segments of instructions
of two parent programs. Survival selection picks fitter programs to form the pop-
ulation for the next generation. Such an evolution process iterates for a certain
number of generations, and the program with the lowest MCE at the end is
output as the final best model of a run.

In our study, the LGP algorithm is implemented using the Julia programming
language [28]. The main parameters used in the implementation are shown in
Table 1. A five-fold cross-validation strategy was used to prevent overfitting. That
is, the data samples are randomly divided into five partitions, and each partition
serves as the testing set once while the remaining four partitions are input to
the LGP algorithm as the training set. Therefore, for each implementation, the
algorithm produces five best classification models based on the five testing sets.

2.3 Full vs. Focused Feature Analysis

The goal of our metabolomics study is to identify key metabolites that can
best explain the phenotypic class, i.e., diseased or healthy. The importance of a
metabolite (feature), can be assessed by computing its occurrence frequency in
the best classification models found by the LGP algorithm. Such an occurrence
frequency measures how often a feature appears in the final outcome model of
an LGP run, and thus reflects its contribution to the correct classification of the
disease status.
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Table 1. LGP parameter configurations for classification on metabolomics data.

Fitness function Mean classification error (MCE)

Program length [1, 500]

Number of calculation registers 150

Operator set {+,−,×,÷, xy, if <, if >}
Constant set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Population size 500

Mutation rate 0.1

Mutation operators Micro and macro to effective instructions

Crossover rate 0.9

Parent selection Tournament with size 16

Survival selection Truncation

Number of generations 500

Number of runs 200

For the first round of analysis, the LGP algorithm is run using the full fea-
ture set of 167 metabolites on both the discovery and replication datasets using
200 distinct seed values for the random number generator. Each run gives five
different best classification models as a result of the five-fold cross-validation.
Therefore, our implementation produces a total of 1000 best classification
models.

We investigate the resulting classification models by calculating various
statistics of the fitness (MCE) values, sensitivity, specificity and area under the
curve (AUC) as computed on the testing fold for each run. In addition, we
inspect the models by counting how often each of the 167 metabolites appears
as a predictive variable in the set of 1000 best models.

Note that although a total of 167 metabolites are measured in the OA
metabolomics data, not all of them are relevant to the disease. In machine learn-
ing, removing irrelevant features can speed up the training process and improve
the prediction accuracy of the models [29]. Therefore, we perform the second
round of analysis by only using a focused subset of metabolites. The focused
subset of metabolites is defined as the metabolites that have occurrence fre-
quencies higher than the average among all 167 metabolites. We re-run the LGP
algorithm using such focused feature sets on both the discovery and replication
datasets, and investigate if reducing the number of features can improve the
prediction performance.

3 Results

3.1 Best Models Found Using Full Feature Set

First, we investigate the 1000 best models found by the LGP algorithm on the
discovery dataset using the full set of 167 metabolites. The statistics of the
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Table 2. Statistics of the classification performance of the 1000 best models (discovery,
full feature set).

MCE Sensitivity Specificity AUC

Mean 0.367 0.684 0.584 0.663

Median 0.367 0.667 0.600 0.667

Min 0.067 0.200 0.200 0.320

Max 0.667 1.000 0.933 0.947

Std dev 0.095 0.146 0.142 0.110

5% confidence 0.181 0.398 0.305 0.447

95% confidence 0.553 0.970 0.862 0.879

Table 3. Statistics of the classification performance of the 1000 best models (replica-
tion, full feature set).

MCE Sensitivity Specificity AUC

Mean 0.357 0.685 0.601 0.664

Median 0.367 0.667 0.600 0.664

Min 0.100 0.267 0.067 0.309

Max 0.667 1.000 1.000 0.960

Std dev 0.103 0.140 0.169 0.118

5% confidence 0.156 0.411 0.271 0.432

95% confidence 0.558 0.958 0.932 0.895

classification performance of those 1000 best models are shown in Table 2. The
best classifier can achieve a mean classification error (MCE) as low as 0.067, and
the area under the curve (AUC) as 0.947. This demonstrates the effectiveness of
using the LGP algorithm to train a classifier for metabolomics studies.

We look at the distributions of the fitness (MCE) and the number of effec-
tive features of those 1000 best models (Fig. 1). The majority of those 1000 best
models have an MCE in the range of [0.3, 0.5]. A feature is effective if it takes a
role modifying the value stored in the output register when the LGP program,
i.e., classification model, is executed to make a prediction. Although any subsets
of those 167 metabolites can be chosen by a classification model, the LGP algo-
rithm selects the most relevant features as the result of the evolutionary learning
process. The majority of those 1000 best models have between 25 and 40 effective
features. Figure 2 shows that the fitness and the number of effective features are
not correlated (Spearman’s correlation test ρ = 0.044 with a significance level
p = 0.16).

The same analysis is then repeated on the replication dataset, and the statis-
tics of the classification performance of the 1000 best models found by LGP
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Fig. 1. Distributions of (a) the fitness and (b) the number of effective features for the
1000 best models (discovery, full feature set).

are shown in Table 3. We see that using the discovery and replication datasets
achieve comparable classification performance.

3.2 Best Models Found Using Focused Feature Sets

For the second round of analysis, we reduce the feature set and only provide a
more relevant subset of features to the LGP algorithm in order to perform a more
focused classification model construction. In our study, the relevance, or impor-
tance, of a metabolite is assessed using its occurrence frequency in the 1000 best
models, i.e., the number of times a metabolite appears in the 1000 best models
as an effective feature. We follow the intuition that if a metabolite appears often
in the evolved best models, it may play an important role explaining the disease.

Figure 3(a) shows the distribution of metabolite occurrence frequency in the
1000 best models using the discovery dataset. The majority of metabolites have
occurrence frequencies between 170 and 220. The mean of the distribution is
193.562, and we use that as the threshold to select the focused feature set. That
is, the focused feature set only includes 75 metabolites that have occurrence
frequencies higher than or equal to the average value of 193.562. The distribu-
tion of metabolite occurrence frequency in the best models using the replication
dataset is shown in Fig. 4(a). The mean of the distribution is 191.898, and simi-
larly, we use it as the threshold to select the replication focused feature set with
60 metabolites for the second round of analysis.

The statistics of the classification performance using focused feature sets are
shown in Tables 4 and 5 for the discovery and replication datasets respectively.
Comparing to Tables 2 and 3, we can see that the classification performance is
improved by examining all statistics. Specifically, the average MCE is reduced
from 0.367 to 0.317 and the average AUC is improved from 0.663 to 0.714 for
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Fig. 2. Correlation of the fitness and the number of effective features in the best pre-
diction models (discovery, full feature set). Each data point represents one of the 1000
best classification models found by LGP. The solid line provides a visual guide on the
correlation between the fitness and the number of effective features.

discovery dataset, and from 0.357 to 0.286 and from 0.664 to 0.740 for repli-
cation dataset respectively. The improvement of the classification performance
by reducing the feature set indicates that our LGP algorithm is able to identify
important and relevant metabolites that can better explain the disease of OA.

Moreover, the best classifier among the 1000 evolved models can achieve an
MCE as low as 0.067 and an AUC as high as 0.971 for the discovery dataset
and 0.067 and 1 for the replication dataset respectively. Given the complexity of
the disease, this suggests the effectiveness of using the LGP algorithm to infer
the underlying highly non-linear interacting relationships of multiple metabolites
that are associated with the disease.

3.3 Identification of Key Metabolic Markers

The goal of our informatics study is to provide a list of important metabolites for
future biological validation, such that we can better understand the etiology of
the disease and better design its drug treatments. To estimate the importance of
each metabolite, we examine its occurrence frequency in both the discovery and
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Fig. 3. Distributions of feature occurrence frequency in the 1000 best models on (a)
the full set of 167 features and (b) the focused set of 75 features (discovery). In (a),
the vertical dashed line represents the mean of the distribution.

Fig. 4. Distributions of feature occurrence frequency in the 1000 best models on (a)
the full set of 167 features and (b) the focused set of 60 features (replication). In (a),
the vertical dashed line represents the mean of the distribution.

replication datasets. Figures 3(b) and 4(b) show the distributions of metabolite
occurrence frequencies in both datasets in the second round of a more focused
classification model construction using reduced feature sets. Comparing to using
the full feature sets (Figs. 3(a) and 4(a)), there are more metabolites having
much higher occurrence frequencies in the best models. The explanation could
be that by removing irrelevant features, our LGP algorithm is able to pick up
more important features through a more focused search.



78 T. Hu et al.

Table 4. Statistics of the classification performance of the 1000 best models (discovery,
focused feature set).

MCE Sensitivity Specificity AUC

Mean 0.317 0.732 0.635 0.714

Median 0.333 0.733 0.667 0.718

Min 0.067 0.267 0.200 0.353

Max 0.600 1.000 1.000 0.971

Std dev 0.088 0.137 0.135 0.103

5% confidence 0.144 0.464 0.370 0.512

95% confidence 0.490 0.999 0.899 0.917

Table 5. Statistics of the classification performance of the 1000 best models (replica-
tion, focused feature set).

MCE Sensitivity Specificity AUC

Mean 0.286 0.751 0.678 0.740

Median 0.267 0.733 0.667 0.744

Min 0.067 0.267 0.067 0.244

Max 0.600 1.000 1.000 1.000

Std dev 0.102 0.135 0.169 0.118

5% confidence 0.086 0.487 0.348 0.509

95% confidence 0.485 1.015 1.009 0.971

Recall that the discovery focused feature set has 75 metabolites, and the
replication focused feature set has 60. We make the union set of those two (98
metabolites) and assign the occurrence frequency as zero for those metabolites
that do not appear in the opposite set. That is, if a metabolite A only appears
in the discovery focused feature set, we treat A’s occurrence frequency as zero in
replication. We then show the occurrence frequencies of those metabolites in the
union set of discovery and replication (Fig. 5) in order to identify key metabolites
whose importance can be both discovered and replicated.

By using a threshold of 0.3 on both axes, we identify 17 key metabolites
at the right-upper corner of the scatter plot (Fig. 5). Those 17 key metabolites
include the ones that have been reported previously with a strong association
with the disease of OA, as well as the ones that haven’t been linked to the dis-
ease in the literature yet but hold great potentials improving our understanding
of the disease. Those new discoveries are particularly interesting since with fur-
ther biological validation, they could help identify metabolic processes that are
potentially related to the disease. The biology of those 17 key metabolites will
be explained in more detail in the Discussion section.
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Fig. 5. Scatter plot of normalized metabolite occurrence frequencies in the best models
using the focused feature sets. Each data point represents a metabolite. The x-axis is its
occurrence frequency in the discovery dataset, and the y-axis is that in the replication
dataset. Dashed lines define a set of 17 key metabolites that have higher occurrence
frequencies in both datasets comparing to the rest of the features.

4 Discussion

The advancing of biomedical and computational technologies has brought about
a new era for systems biology research, where abundant and various types of data
become available for quantitative analysis for us to better understand the biology
of living systems. The underlying causes of complex human diseases are often
multifactorial such that intelligent learning algorithms are needed to identify
the combinations of the most relevant biomarkers from hundreds to thousands
of biological variables.

Machine learning techniques are often employed for modeling the complex
non-linear relationships of combinations of biomarkers and the disease outcome,
thanks to their robust heuristic search and learning abilities. However, genetic
programming (GP), positioned at the intersection of machine learning and evo-
lutionary computing, has not seen wide applications in systems biology.
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In this study, we designed an informatics framework of using a Linear GP
(LGP) algorithm to construct classification models and to identify key features
for metabolomics studies on the disease of osteoarthritis (OA). Metabolomics
is a newly emerging field that looks at the abundance of large sets of metabo-
lites in the human body to study their represented biological processes that are
associated with diseases or responses to drug treatment. Given the complexity
of metabolism, we speculate that metabolites are associated with the disease in
terms of high-dimensional interactions rather than individual effects. The LGP
algorithm was able to infer such interactions by constructing highly non-linear
symbolic models, as well as ranking features based on their occurrence frequen-
cies in the classification models that can best predict the disease outcome.

We designed a two-round analysis scheme where the full feature set was used
to train LGP models at first, and then the subset of more important features
was used for a more focused model search. It was observed that the classification
performance was significantly improved using the reduced feature set compar-
ing with using the full feature set (Tables 2, 3, 4 and 5). Moreover, by ranking
metabolites based on their occurrence frequencies in the best prediction mod-
els, we were able to identify 17 metabolites considered important in both of the
independent discovery and replication datasets (Fig. 5). Those 17 metabolites
include both known metabolic markers in the disease of OA and novel findings.

Arginine (Arg) and its pathway related metabolites, such as ornithine (Orn),
have been identified to be associated with OA in a previous analysis using tra-
ditional methods including pairwise comparison and regression technique [30].
Similarly, branched chain amino acids such as leucine (Leu), several acylcar-
nitines and phosphatidylcholines identified in the current analysis were also
reported previously to be associated with OA [31–33] or OA classification [34].
Importantly, the current analysis identified several novel metabolic markers that
were otherwise missed by using traditional analytic methods. Taurine is the
most abundant free amino acid in humans, and may play an important role in
inflammation associated with oxidative stress [35], which has been implicated in
the pathogenesis of OA [36]. Taurine has been reported to be associated with
rheumatoid arthritis [37], suggesting taurine might be a novel marker to moni-
tor disease progression of OA but not a diagnosis. Nitrotyrosine (Nitro-Tyr) is
also associated with oxidative damage and has been found to be associated with
aging and the development of OA in cartilage samples from both monkeys and
humans [38]. Kynurenine pathway from tryptophan generates compounds which
can act on glutamate receptors in peripheral tissues or modulate free radical
activity and have been implicated in rheumatoid arthritis [39]. Together, these
novel findings suggest the involvement of oxidative stress associated metabolic
pathways in OA. Further investigations in independent cohorts are warranted to
confirm these findings.

Our study demonstrates the power of a GP algorithm in complex classifica-
tion model search and automatic feature selection for systems biology research.
We have entered a golden era for bioinformatics research where large volumes
of data that capture the different levels of biological systems are becoming
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available and are in need of intelligent and powerful learning algorithms that
embrace the complexity of biological systems. We hope this small step can
encourage more interdisciplinary communications between evolutionary comput-
ing and biomedicine and more explorations on the research front of evolutionary
algorithm applications.
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Abstract. Recently, feature selection has become an increasingly
important area of research due to the surge in high-dimensional datasets
in all areas of modern life. A plethora of feature selection algorithms
have been proposed, but it is difficult to truly analyse the quality of a
given algorithm. Ideally, an algorithm would be evaluated by measuring
how well it removes known bad features. Acquiring datasets with such
features is inherently difficult, and so a common technique is to add syn-
thetic bad features to an existing dataset. While adding noisy features is
an easy task, it is very difficult to automatically add complex, redundant
features. This work proposes one of the first approaches to generating
redundant features, using a novel genetic programming approach. Initial
experiments show that our proposed method can automatically create
difficult, redundant features which have the potential to be used for cre-
ating high-quality feature selection benchmark datasets.

Keywords: Genetic programming · Feature creation
Feature construction · Feature selection · Mutual information
Evolutionary computation

1 Introduction

Feature Selection (FS) techniques aim to remove features from a dataset which
are less useful than others. [1] Removing such features can improve the results
of the data mining task being performed on the dataset, as well as making the
results and/or model produced more interpretable and less complex. Features
that should be removed are usually categorised as irrelevant or redundant fea-
tures [2].

Irrelevant (or noisy) features are those which add little or no meaningful value
to a dataset. In the worst case, an irrelevant feature may actually mislead the
data mining process, when it contradicts the information given by other “correct”
features. Removing such features reduces the search space of the data mining
task, generally improving performance [1]. Redundant features (r.fs) share a high
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amount of information overlap with other features. Removing r.fs can simplify
the solutions found (as only one of a set of r.fs is needed), while again reducing
the search space of the data mining task [2]. In certain cases, results may also
be improved by reducing the bias towards a set of very similar features.

Many FS algorithms have been proposed, which are usually evaluated based
on how well they can reduce the feature set size, while maintaining (or improving)
the results of the data mining task. One technique used to compare FS algorithms
is to purposefully add “bad” features to a dataset, so that a FS algorithm can be
evaluated based on how well it removes those known bad features. Introducing
irrelevant features to a dataset is quite straightforward—choose some stochas-
tic noise generator, and generate a number of noisy features. Introducing r.fs,
however, is much trickier, as discussed below.

Perhaps the most naive way of creating a r.f (Y) from a given source feature
(X) is to multiply each feature value of X by some multiple α, such that the ith

value of Y is computed as Yi = αXi. By varying α, one can easily generate any
given number of r.fs based on X. A particularly straightforward method is to
simply duplicate features (i.e. let α = 1)—but these are trivial to remove. To
make the redundancy weaker, one can introduce some bias (β) such as adding a
constant value to each Yi, e.g. Yi = αXi + β. However, such approaches have a
number of serious limitations.

The above types of r.fs have very simple redundancies that do not represent
realistic interactions between features in real data mining problems. For exam-
ple, in a dataset of people, two potential features may be an individual’s age and
income. It is generally true that the older a person, the more they earn, and so
we may expect these features to be linearly redundant. However, a child is likely
to have no income regardless of their exact age, and a pensioner is likely to have
a similar income to others aged over 65. While these two features are certainly
partially redundant, the interaction is clearly more complex. In most datasets,
the redundancy between two features tend to be even more complex still. Remov-
ing r.fs that have linear redundancies is also quite a trivial FS problem, and so is
not an adequate challenge for non-trivial FS algorithms. For example, a greedy
algorithm which uses Pearson’s correlation can easily find groups of linearly-
redundant features by measuring the correlation of each feature to those already
selected.

There is hence an obvious need to have methods available to generate r.fs
with (arbitrarily) complex interactions in order to benchmark FS methods more
effectively. There has been very little work in the literature that has investigated
how to automatically generate non-trivial r.fs. One common method that is
used to automatically create functions to perform a particular task is Genetic
Programming (GP), an Evolutionary Computation (EC) technique which evolves
tree-like functions (programs) with a flexible structure. We believe that GP has
the potential to evolve functions to produce r.fs, by taking a source feature as
the program’s input, and producing a r.f as the program’s output.
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1.1 Goals

In this paper, we propose the first approach to automatically generating r.fs,
using Genetic Programming for Redundant Feature Creation (GPRFC). The
proposed method uses GP to automatically generate functions to produce new
r.fs from a given source feature, by using a multi-tree GP representation with a
Mutual Information (MI)-based fitness function. This paper will:

– Introduce a novel multi-tree GP representation for automatically evolving
multiple redundant features from a source feature.

– Formulate an appropriate fitness function for evolving high-quality redundant
features, using mutual information as a proxy for measuring redundancy.

– Provide evidence that the redundant features created are non-trivial and
highly redundant.

– Analyse a sample of the created redundant features to investigate how their
design may introduce redundancy.

2 Background

This section will introduce some core concepts of feature manipulation and
mutual information, and briefly discuss some related work.

2.1 Feature Manipulation

Feature manipulation is the act of purposefully altering the feature set of a
dataset in order to improve the outcomes of a machine learning task. The two
most common categories of feature manipulation are feature selection (FS) and
construction (FC) [1]. FS attempts to select an optimal subset of features in
order to improve performance and decrease complexity, whereas FC improves
performance by creating new, more powerful high-level features which combine
multiple features in some way.

EC algorithms have seen significant success recently in their application to
FS and FC problems, due to their ability to search a large search space effectively
[3,4]. In particular, Particle Swarm Optimisation (PSO) and Genetic Algorithms
(GA) have been widely used for FS, whereas tree-based GP has seen significant
use in FC due to its dynamic model structure and ability to apply a variety of
functions to the feature set.

2.2 Mutual Information

Mutual Information (MI) [5] is an important concept in the field of Information
Theory. MI is used as a way to measure the amount of information shared by
two variables (or features). In this way, it is a measure of the mutual dependence
of two variables, and is one way to measure how redundant one feature is with
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respect to another—the higher the MI, the more redundant the features are said
to be. MI is formalised as follows:

MI(X,Y ) = H(X) + H(Y ) − H(X,Y ) (1)

where the entropy of a feature X, H(X), is defined as:

H(X) = −
∑

x∈X

p(x) × log2 p(x) (2)

and the joint entropy of two features, X,Y , is:

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) × log2 p(x, y) (3)

Equation 1 can be expanded as follows:

MI(X,Y ) = −
∑

x∈X,y∈Y

p(x, y) × log2
p(x, y)
p(x)(y)

(4)

The above definition of MI assumes that the two features have discrete values;
in the case of continuous features (such as in this work), the below definition
applies:

MI(X,Y ) =
∫

X

∫

Y

p(x, y) × log2
p(x, y)
p(x)(y)

dx dy (5)

Calculating the MI of two continuous features requires knowing the marginal
and joint probability density functions (pdf ) of the two features. In practice,
this is infeasible, as the feature values for a given feature can be thought of as
only a sample of the underlying pdf [6]. As such, a number of MI estimators
have been proposed for estimating the MI of two continuous features. One ven-
erable method uses a nearest-neighbour estimation approach, which compares
the similarity of neighbours for each instance across the two dimensions X and
Y to gauge the strength of the relationship between X and Y [6]. We use this
approach, implemented in the Java Information Dynamics Toolkit (JIDT) [7],
in this work.

2.3 Related Work

As this is the first work to propose the use of an EC algorithm to automatically
evolve redundant features, there is no directly related work to discuss. Instead,
we will briefly survey the use of GP for FC, since this is the most related area
of research to the ideas proposed in this paper.

A variety of tree-based GP approaches to FC have been proposed, including
for problems such as classification and clustering [8,9]. Most work uses a repre-
sentation where a single GP tree produces a single constructed feature, as the
output of the tree. The input to the tree is generally the set of features, and an
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optional random value input. This representation has been extended so that mul-
tiple features may be constructed in a single GP individual, commonly using a
multi-tree representation [9,10]. Other representations have also been proposed
[4], including using multiple sub-trees as a set of constructed features [8,11],
using specially-tailored node designs [12], cooperative co-evolutionary GP [13],
and even by performing multiple GP runs (each producing a single constructed
feature) [14]. These works share similarity with this paper in that they perform
a transformation of the original feature space, but they do so in order to improve
the performance of a data mining task, rather than to perform feature creation.

3 The Proposed Method: GPRFC

This section details the proposed method for automatically generating redundant
features, including the GP representation, fitness function, and other important
considerations made when designing the method.

3.1 Genetic Programming Representation

In this work we use a multi-tree GP representation, where each GP individual
contains n distinct trees rather than a single tree. Each tree in an individual
represents a single mapping (function) from the source feature (X), to a new
redundant feature (Y ). Using a multi-tree representation allows us to generate
multiple r.fs per source feature, while encouraging each r.f to be distinct (less
redundant) from each other r.f. By generating a variety of r.fs, we increase the
diversity of the types of redundancies between the source and redundant features.
For example, a r.f Y1 may have a polynomial relationship with X, whereas a
second r.f Y2 could have an exponential or trigonometric relationship—both Y1

and Y2 are highly redundant with X, but less redundant with each other. This
behaviour is encouraged by the fitness function, which will be discussed in more
detail in Sect. 3.3.

3.2 Function and Terminal Sets

We use only a single terminal in this work: the source feature, X. We purpose-
fully do not use a random value input (unlike many GP works), as such a value
is unlikely to meaningfully increase MI, and increases the search space unneces-
sarily.

In designing the function and terminal sets, it is important to have a wide
range of operators with distinct behaviours, so that a variety of redundancy
relationships can be constructed in different trees. Based on this, we use a range
of different arithmetic, trigonometric, and conditional operators as follows:

– Unary operators (taking one input): sin(a), tan(a), tanh(a), log(a), ea,
√

a,
a2, a3, −a. We purposefully exclude cos(a) due to its similarity to sin(a).
While a2 and a3 can be easily constructed in a GP tree, we include them as
useful “building blocks”.
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– Binary operators (with two inputs): a + b, a × b, max(a, b), min(a, b), ab.
We exclude a − b and a ÷ b as they are the complements of addition and
multiplication, and as they were found to negatively affect the learning process
by easily producing constant values (i.e. X − X = 0, X ÷ X = 1).

– A single ternary operator, if , which outputs the second input if the first
input is non-negative and the third input otherwise. This operator, in addition
to max and min, allows complex conditional behaviour and non-continuous
functions to be generated.

3.3 Fitness Function

Our proposed fitness function is based on the concept of Mutual Information,
a measure of the dependency between two features. We use MI as a proxy to
measure the redundancy of a generated feature: if the MI between the source and
generated feature is high, the generated feature is said to be highly redundant.
Hence, the MI between the source and each generated feature/tree should be
maximised. In addition, we choose to minimise the MI between each pair
of generated features. In doing so, we implicitly encourage a set of r.fs that
are redundant in different ways to be generated—for example, if two r.fs both
had linear redundancies with the source feature, they would also have a high
MI between them. This decision automatically increases the complexity of the
generated r.fs, which should also make them harder for FS algorithms to remove.
We describe the formulation of the fitness function in detail below.

Let X be the source feature, I be the GP individual whose fitness is being
measured, which contains a set of trees (T ), where n is the number of trees.
Let the “baseline” MI, Ψ (used as a normalisation factor), be defined as the
output of the MI estimation algorithm for Ψ = MI(X,X). In measuring the
quality of I, we consider the minimum MI between any X and any r.f (called
minSourceMI), as well as the maximum mean MI between any r.f and all other
r.fs (called maxSharedMI). The quality of I is measured by how much more
redundant the r.fs are with X than with each other, defined as follows:

minSourceMI = min
t∈T

MI(X, t)
Ψ

(6)

maxSharedMI = max
t∈T

∑
y∈T,y �=t

MI(t,y)
Ψ

n − 1
(7)

QualityI = minSourceMI − maxSharedMI (8)

While this quality measure is expected to be suitable as a fitness function, it
does not consider that having a minSourceMI below a certain threshold means
that the r.fs produced are in fact not very redundant at all. In addition, gener-
ally a lower minSourceMI leads to a higher potential fitness, making the fitness
function biased towards creating a set of r.fs which are very unrelated to each
other, and only weakly related to the source feature. To remedy this, we intro-
duce an additional component to the fitness function for when the minSourceMI
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is below some threshold, Θ, where Θ is the minimum “acceptable” redundancy
between a r.f and X. In other words, individuals not meeting this criteria can
be thought of as infeasible solutions. For these infeasible solutions, we do not
consider the shared MI between r.fs to be important, as at least one of the r.fs
is not acceptable. To encourage increasing the redundancy of each r.f in this
scenario (i.e. encouraging the solution towards becoming feasible), we penalise
individuals based on the mean MI between the source and each r.f:

PenaltyI =
−1

meanSourceMI
(9)

meanSourceMI =
∑

t∈T
MI(X,t)

Ψ

n
(10)

This penalty function is designed as such so that the higher the mean-
SourceMI, the lower the penalty applied. Our fitness function is then the com-
bination of these two functions:

FitnessI =

{
QualityI , if minSourceMI ≥ Θ

PenaltyI , otherwise
(11)

As the Penalty term of the fitness function is constrained to be less than 0,
an individual with minSourceMI ≥ Θ will nearly always be better than one that
does not meet the Θ threshold. As our measurements of MI are normalised by
Ψ , the threshold Θ can be chosen (roughly) from the range [0, 1], where a value
of Θ = 0 corresponds to all r.fs being independent to X, and a value of Θ = 1
corresponding to all r.fs being perfectly redundant with X. In practice, we found
a Θ in the range [0.6, 0.7] was a good choice for n = 5.

3.4 Further Considerations

A number of other factors had to be addressed in order to achieve good results
with the proposed method. These are discussed in turn below.

To improve the consistency of the GP method, the source feature was scaled
so that all values fall in the range [0, 1]. However, this meant that at least one
source feature value would be exactly 0. An input of 0 to the GP tree was found
to significantly affect training as it would often result in multiplication or division
by 0 within the tree. The common occurrence of dividing by 0 was particularly
troublesome, as it meant the tree would not produce a valid output, making the
whole individual invalid. To remedy this, we added a small weighting to each
feature value, of size ε, such that all feature values lie in [0 + ε, 1 + ε]. In this
work, we setting found ε = 1 × 10−3 to be suitable.

While the above scaling approach is expected to work well on artificially-
generated datasets, it does not address an issue with many real-world classifica-
tion datasets: duplicate feature values. Consider the example of a (real-world)
dataset where a feature takes values in {1, 2, 3, 4}. Given there are only 4 unique
inputs to a GP tree, the tree may only produce (at most) 4 unique outputs.
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This greatly limits the ability of GP to learn to create multiple distinct r.fs as
only very “coarse” r.fs can be generated (with low complexity). To address this
performance limitation, we add a small amount of stochastic noise (using a con-
stant seed) to each source feature value, so that each feature value is likely to
be distinct. This is essentially equivalent to changing the input of the GP tree
to be X + δ, where δ is a small value which is consistent for a given value of X.
As before, we ensure δ is strictly positive. The feature values are hence in the
range [0 + δ, 1 + δ], where we defined δ to be a random number between 0.001ε
and ε. In both the above approaches, we still evaluate the MI between a r.f and
X (i.e. when computing the fitness function) using the original (i.e. unscaled)
feature values, to ensure we measure the true redundancy.

In addition to scaling the source feature, we also scale the constructed redun-
dant features to lie in [0, 1]. This serves two purposes: it ensures the r.fs have
“sensible” ranges, and so can be more easily visualised, and it also means they
have the same range as the source feature, which is important for many algo-
rithms such as k-nearest neighbour, k-means clustering etc. Finally, the redun-
dant features are rounded to 5 decimal places, to prevent GP from evolving
very sensitive features whose precision may be lost when saved to file or used in
another algorithm.

Other Parameter Settings: We use a relatively high max tree depth of 15
and mutation rate of 40% (with crossover of 60%). Using a high max tree depth
was found to encourage more complex trees to be formed, which tended to pro-
duce more complex features. Evaluating the larger trees is not significantly more
costly, as the computation of MI is the most expensive part of the fitness evalua-
tion. 40% mutation was used to encourage the generation of more diverse trees—
however, crossover is still important to ensure that useful function “building
blocks” are passed between different GP individuals. The population size was
set to 1,024, and top-10 elitism was used, as standard. In this work, we used
n = 5 trees as it was found to produce a reasonable balance between making a
large number of r.fs and making highly diverse r.fs. Decreasing n will produce
r.fs which are less redundant to each other, whereas increasing n will give more,
but less distinct r.fs. Θ was set to 0.7 in this work based on empirical results.

4 Experiment Design

We tested the proposed GPRFC approach on a number of popular datasets,
as listed in Table 1. These datasets include three classification datasets from
the UCI repository [15], two of which are quite simple and easy to classify well
(Iris and Wine), whereas the third (Vehicle) is more challenging. We also use
two synthetic clustering datasets (10d10cE and 10d40cE), which have 10 and 40
clusters respectively and are generated using an Ellipsoidal cluster generator [16].
The datasets chosen all have a reasonably small number of features to reduce
the number of GP runs required. For each dataset, 5 r.fs are created per source
feature, to give a result of d + 5d = 6d features for d source features. As the
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Table 1. Datasets used in the experiments.

Name No. Features No. Instances No. Classes/Clusters

Iris 4 150 3

Wine 13 178 3

Vehicle 18 846 4

10d10cE 10 2903 10

10d40cE 10 2023 40

feature creation approach uses GP, it is stochastic, and so at least 30 runs were
performed on each dataset.

To evaluate the created r.fs, we used the classifiers, clusterers, and feature
selection algorithms provided by the WEKA [17] package. We selected four varied
and popular classifiers: the J48 Decision Tree (DT) algorithm, k-nearest neigh-
bour (KNN, with k = 3), Naive Bayes (NB), and the Sequential Minimal Opti-
misation implementation of the Support Vector Machine (SVM). For clustering,
we use 3 different varieties of clustering algorithms: k-means++, agglomerative
clustering (the average-link variant), and the Expectation Maximisation (EM)
algorithm.

5 Results and Discussion

As there are no known redundant feature creation methods which use a guided
search to automatically find good r.fs, we are unable to directly compare GPRFC
to a known baseline. Instead, we directly evaluate the quality of the r.fs created
across the datasets in terms of the fitness achieved. We also investigate how the
addition of the r.fs affects the performance of some common classification and
clustering algorithms, and how well some simple feature selection algorithms are
able to identify (and remove) the added r.fs, in order to evaluate the suitability
of the proposed method for creating benchmark datasets.

5.1 Fitness

Table 2 shows the performance of GPRFC in terms of the average fitness achieved
across the tested datasets. GPRFC achieves a high fitness on two of the three
classification datasets: Iris and Vehicle. A mean fitness of 0.351 on Vehicle indi-
cates that the typical created r.f is 35.1% more redundant with the source feature
than the other created r.fs, for example, 75.1% MI with the source feature vs
only 40% MI with the other created r.fs. The performance on the two synthetic
clustering datasets is not as strong, but the created r.fs are still clearly more
redundant with the source feature than each other.

In general, it appears that datasets containing fewer instances tend to have
a higher standard deviation—perhaps as the fitness is more sensitive to any one
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Table 2. Fitness achieved by GPRFC across all features on each dataset. Standard
deviation is taken across the means for each feature. At least 30 runs were performed
per feature per dataset.

Dataset Mean Std. Dev.

Iris 0.333 0.082

Wine 0.203 0.055

Vehicle 0.351 0.041

10d10c 0.106 0.010

10d40c 0.141 0.006

single feature value being altered during the evolutionary process. The fitness
across the Iris dataset, which has the highest standard deviation, is shown in
Table 3 for each feature. This table clearly shows that F2 has a much lower mean
fitness than the other features, and so gives a high standard deviation on the
Iris dataset. It is not obvious as to why GPRFC can learn more effectively on
certain features. One explanation may be that as GPRFC produces functions
that transform the feature space, features that have very dense feature value
distributions are harder to transform with a high level of granularity, and so
harder to optimise. However, further investigation is needed.

Table 3. Fitness achieved by GPRFC across 30 runs on the Iris dataset.

Feature Mean Std. Dev.

F0 0.362 0.050

F1 0.398 0.036

F2 0.213 0.029

F3 0.359 0.053

5.2 Classification Performance

The performance of a number of classifiers on the original datasets compared
to the datasets with added r.fs (“augmented datasets”) are shown in Table 4.
In general, performance is very consistent between the original and augmented
datasets—in most cases, dropping by 2–3%, or holding steady. Given that redun-
dant features aren’t inherently misleading to a classifier, it makes sense that
performance may not drop much – though the classification model produced
will certainly be more complex. Two major exceptions to this are on the KNN
classifier, which had a decrease of around 5% and 11% accuracy on Iris and
Vehicle respectively. This is likely due to the created r.fs not having the same
distances between instances’ feature values as the source features had. As KNN is
a distance-based classifier, any addition of features which transform the feature
space non-linearly will directly alter the distances between instances. Testing on
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Table 4. Test classification accuracy on each of the datasets before (“Original”) and
after (“Augmented”) the created r.fs were added. Each of the 30 runs of GPRFC
produced one augmented dataset—hence, the mean and standard deviation accuracy
on these 30 augmented datasets are reported. A split of 70% training to 30% test was
used.

Method Iris Wine Vehicle

Original Augmented Original Augmented Original Augmented

DT 0.978 0.956± 0.004 0.981 0.977± 0.017 0.709 0.692± 0.025

KNN 1.000 0.947± 0.035 0.962 0.961± 0.028 0.720 0.613± 0.029

NB 0.978 0.964± 0.018 1.000 0.979± 0.018 0.465 0.490± 0.025

SVM 0.978 0.968± 0.020 0.981 0.974± 0.016 0.740 0.715± 0.018

more difficult or datasets with many more features may show a bigger decrease
in performance, as the search space may become complex/large enough to bet-
ter challenge classification algorithms. The small increase in performance on the
Vehicle dataset with NB is not statistically significant.

5.3 Clustering Performance

The performance of three clustering algorithms on the original and augmented
datasets was investigated, with the results shown in Table 5. As with the classi-
fication datasets, there is generally little change in performance—in fact, perfor-
mance appears to slightly increase when adding the created r.fs. However, the
clusters produced are more complex and less interpretable—with 6d features per
instance compared to only d in the original datasets.

5.4 Feature Selection Results

Feature Ranking: A common technique used in supervised feature selection
is to measure how well a given feature can be used to predict the class label

Table 5. Adjusted Rand Index of the clusters produced on each of the datasets before
(“Original”) and after (“Augmented”) the created r.fs were added. Each of the 30
runs of GPRFC produced one augmented dataset—hence, the mean and standard
deviation accuracy on these 30 augmented datasets are reported. k-means++ and EM
are stochastic algorithms and so the mean of 30 runs per augmented dataset was used.

Method 10d10cE 10d40cE

Original Augmented Original Augmented

k-means++ 0.548 0.558± 0.023 0.445 0.491± 0.019

Agglomerative 0.495 0.528± 0.064 0.276 0.309± 0.046

EM 0.588 0.606± 0.014 0.433 0.520± 0.011
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for a set of instances. Information Gain (IG) [5] is often used as a metric to
measure this, using similar principles to MI. To see how “confusing” our created
r.fs may to be a FS algorithm, we ranked the features of the median and best
result of applying GPRFC to the Iris dataset, using IG as shown in Table 6. We
use the Iris dataset as our example as it has the fewest features, and so can
be analysed most easily. The majority of created r.fs have similar rankings to
their source features, with the top half of the ranks taken by F2 and F3, and
the bottom half by F0 and F1. This is unsurprising—given that the created r.fs
share a high amount of information with the source features, they are likely to
also have a similar ability to predict the class label. However, the r.fs do have
small variances in their IG value compared to their source features: for example,
on the median result, F2 has an IG of 1.418, and its r.fs have IG values between
0.864 and 1.367. On the best result, F2c and F2e actually have better IG than
the source feature; F2’s r.fs range in IG value from 0.827 to 1.456. These results
indicate that while the created r.fs clearly share information with their source

Table 6. Features ranked by Information Gain (with respect to the class label) on the
augmented datasets created by the median (a) and best (b) runs of GPRFC.
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features, they are still different enough that their redundancy is non-trivial to
identify and they are likely to have an effect on the classification task.

Using a FS Algorithm: To further investigate how suitable the created r.fs
are for benchmarking FS algorithms, we applied a basic FS algorithm to the
same two augmented Iris datasets. We used the canonical Sequential Floating
Forward Search (SFFS) [18], which is an extension to the Sequential Forward
Search (SFS) algorithm. SFS starts with no features selected, and iteratively
adds the best of the remaining unselected features, until performance is not
improved by adding the next feature. SFFS follows the same procedure, but also
performs a backwards search after each addition of a new feature. That is, it
repetitively removes the worst feature in the selected subset, until performance
is not improved by removing an additional feature. This floating search helps to
avoid the FS algorithm from getting stuck in local optima, and makes SFFS one
of the most commonly used deterministic FS algorithms.

In this work, we used a wrapper method where the SVM algorithm is used
to classify the dataset for a given feature subset, and the accuracy of the results
is used as the performance of the selected features. We use the SVM classifier
as it had the highest performance in Table 4. Our SFFS implementation used a
training set to train the SVM, and a validation set to test the performance of the
SVM on unseen data. The performance of the validation set is the performance
of the selected features during training. Finally, we use a separate unseen test
set to measure the quality of the final selected features on unseen data. The
training, validation, and test sets are 60%, 20% and 20% of the shuffled dataset
respectively.

On the median dataset (for Iris), this FS method selects features [F2b,F3]
with a test accuracy rate of 0.933. On the best dataset, [F0,F1a,F3] are selected
with an accuracy of 0.967. On the original dataset, the FS method selects only
F3, with an accuracy of 0.967. While the obtained classification accuracy on the
augmented datasets is similar, the FS method clearly selects extraneous features,
which gives a more complex model than that of when only a single feature is
selected on the original dataset.

Given that obtaining good performance on Iris is easy, and so FS is also
relatively easy, we performed a similar experiment on the Vehicle dataset to see
if different behaviour occurs on a harder, higher-dimensional problem. On the
original 18-dimensional vehicle dataset, the SFFS method (as described above)
selects 12 features: [F0,F2,F5,F7,F8,F9,F10,F12,F13,F16,F17], with a test accu-
racy of 0.710. On the median augmented dataset however, it selects 7 features:
[F3,F9b,F12d,F12e,F13,F17,F17e] with a test accuracy of only 0.473. The FS
method has clearly struggled to find a good set of features, as it selects multiple
redundant features while also failing to select many features that were selected in
the original dataset. Furthermore, the training accuracy was reasonable similar
for both datasets (0.769 and 0.686 for the original and augmented respectively),
indicating that the created r.fs were able to mislead the FS algorithm well enough
to prevent a well-generalised classifier from being produced. Further investigation



Generating Redundant Features 97

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
0

F
0a

:

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
0

F
0b

:
0.
76

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
0

F
0c

:
0.
75

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
0

F
0d

:
0.
74

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
0

F
0e

:
0.
74

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
1

F
1a

:

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
1

F
1b

:
0.
8

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
1

F
1c

:
0.
93

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
1

F
1d

:
0.
86

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
1

F
1e

:
0.
83

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
2

F
2a

:

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
2

F
2b

:
0.
77

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
2

F
2c

:
0.
77

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
2

F
2d

:
0.
8

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
2

F
2e

:
0.
77

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
3

F
3a

:

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
3

F
3b

:
0.
79

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
3

F
3c

:
0.
74

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
3

F
3d

:
0.
75

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

F
3

F
3e

:
0.
81

F
ig
.
1
.
S
o
u
rc

e
F
ea

tu
re

(x
-a

x
is

)
p
lo

tt
ed

a
g
a
in

st
th

e
fi
v
e

r.
fs

(y
-a

x
is

)
fo

r
ea

ch
o
f
F
0

(1
st

ro
w

)
to

F
3

(4
th

ro
w

)
o
n

Ir
is

.
T

h
e

y
-a

x
is

ti
tl

e
is

th
e

n
a
m

e
o
f
ea

ch
r.

f
a
n
d

it
s

so
u
rc

e
M

I.
P
o
in

ts
a
re

co
lo

u
re

d
re

d
,
g
re

en
,
o
r

b
lu

e
to

in
d
ic

a
te

th
ey

b
el

o
n
g

to
th

e
se

to
sa

,
v
er

si
co

lo
r,

o
r

v
ir

g
in

ic
a

cl
a
ss

es
re

sp
ec

ti
v
el

y.
A

sm
a
ll

a
m

o
u
n
t

o
f
ji
tt

er
is

a
d
d
ed

to
ea

ch
p
o
in

t
to

d
is

ti
n
g
u
is

h
ov

er
la

p
p
in

g
p
o
in

ts
.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)



98 A. Lensen et al.

is needed to provide more quantitative evidence that GPRFC produces r.fs that
make difficult benchmark datasets, but the preliminary results are a promising
sign that the proposed method has potential.

6 Further Analysis

While we have shown that GPRFC is able to automatically produce a set of
redundant features that have high MI with an original feature, it is not yet
obvious how it is able to do so. To investigate this aspect, we plotted the created
features against the original features for each of the 4 features on the Iris dataset,
using the median result of the 30 runs of GPRFC. We choose to analyse Iris as
it is the dataset with the smallest feature set. These plots are shown in Fig. 1.

The most striking observation of these plots is that the functions produced by
GPRFC are incredibly varied—in fact, nearly every plot has a distinct appear-
ance. The functions are also clearly complex, with no linear relationships appar-
ent. A few functions are somewhat recognisable: for example, F2a (similar to a
sine wave), F2b (a power curve), and F2d (a polynomial). The function evolved
for F0a is similar in appearance to a sigmoid function, despite the sigmoid not
being directly in the function set. Many of the remaining functions are more dif-
ficult to classify, as they either appear to have a number of different components
(e.g. F0b, F3b), or have a majority of instances at a similar scale (e.g. F0e, F1b,
F3a, F3c).

While generally each set of r.fs for a given source feature appear to be quite
distinct, F3a and F3c appear to be very similar. This behaviour is counter-
intuitive, as the fitness function directly penalises a r.f being similar to other r.fs
for the same source feature. Indeed, F3a and F3c have a MI of 0.83—however,
they each have very low MI (a maximum of 0.14) with the other r.fs (F3b/d/e),
which means their average shared MI is still very low, at 0.34. The two trees
corresponding to these two features are very similar (see Fig. 2). This issue may
be alleviated by adapting the fitness function to consider the worst-case: that
is, what is the highest value a given r.f shares with another r.f?

F3a = (pow (+ (exp (sqrt

(cube X)))

(neg (log X))) (tan (exp (+ (log X) (mul X X)))))

F3c = (pow (+ (exp (sqrt

(sqrt (tan (square (square (max (sin (exp X)) (sin X))))))))

(neg (log X))) (tan (exp (+ (log X) (mul X X)))))

Fig. 2. The example trees produced by GPRFC for F3a and F3c. The entire first and
third lines are shared by both trees.
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7 Conclusion

This paper proposed the first approach to automatically evolving redundant
features, using a Genetic Programming approach with a multi-tree represen-
tation, and a novel mutual information-based fitness function. The proposed
GPRFC method was shown to generate high-quality and complex redundant
features which are suitable for augmenting existing datasets for use in testing
feature selection algorithms. We showed that good and interesting results could
be achieved on both supervised and unsupervised problems. This paper repre-
sents the first piece of work in this area, but it already demonstrates the consid-
erable potential of GP for this task. We hope that others in the GP community
share our optimism, and we expect GP to ultimately be able to generate good
benchmark data sets that can be used to test FS methods in data mining tasks
such as classification, clustering and regression.

As GP has not been used for this sort of task previously, there is a num-
ber of different extensions that could be researched in the future. There is cer-
tainly scope for refining the fitness function further, in order to produce even
more complex and distinct sets of r.fs. This work considered only one-to-one
feature redundancies—the source feature to each of the r.fs in turn. More diffi-
cult/complex feature redundancy relationships could be formed by using a mul-
tivariate mutual information approach, where a set of multiple source features
are used to create a set of r.fs, i.e. many-to-many redundancies. The GP repre-
sentation could also be refined further, by investigating more rigorously which
function set is most suitable to produce good r.fs, and evaluating how the number
of trees used is best determined.

Acknowledgement. The authors would like to thank Tony Butler-Yeoman for his
help in developing the initial ideas, and suggestions throughout the development of
this work.
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Abstract. A long-standing problem in Evolutionary Computation con-
sists in how to choose an appropriate representation for the solutions. In
this work we investigate the feasibility of synthesizing a representation
automatically, for the large class of problems whose solution spaces can
be defined by a context-free grammar. We propose a framework based
on a form of meta-evolution in which individuals are candidate repre-
sentations expressed with an ad hoc language that we have developed
to this purpose. Individuals compete and evolve according to an evo-
lutionary search aimed at optimizing such representation properties as
redundancy, locality, uniformity of redundancy.

We assessed experimentally three variants of our framework on estab-
lished benchmark problems and compared the resulting representations
to human-designed representations commonly used (e.g., classical Gram-
matical Evolution). The results are promising in the sense that the
evolved representations indeed exhibit better properties than the human-
designed ones. Furthermore, while those improved properties do not
result in a systematic improvement of search effectiveness, some of the
evolved representations do improve search effectiveness over the human-
designed baseline.

Keywords: Genotype-phenotype mapping · Grammatical evolution
Meta-evolution

1 Introduction

The choice of the representation of individuals in an Evolutionary Algorithm
(EA) has been a central point in the field of Evolutionary Computation since its
inception [22,29]. In many cases, that choice has been guided a priori by analo-
gies with the biology, in which researchers looked for inspiration while designing
their artificial evolutionary systems, on the assumption that Nature eventually
succeeded as an effective search method [34]. On the other hand, the impact of
the representation on the EA search effectiveness has also been widely studied
a posteriori. In this respect, a common and well established practice consists in
investigating any possible relationship between properties of the representation
c© Springer International Publishing AG, part of Springer Nature 2018
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such as, e.g., redundancy and locality [15,23,31], and higher level properties of
the EA, e.g., neutrality [3] and evolvability [14].

Despite these efforts, it is fair to claim that both approaches (a priori and a
posteriori) failed in clearly determining if and when a representation can guaran-
tee the search effectiveness of an EA: copying from the Nature does not necessar-
ily lead to a good design [7,30] and there is not a clear view of which properties
actually explain a good or a poor search effectiveness [1]. Indeed, the debate
is still lively, with arguments ranging from (deemed) misuse of Nature analo-
gies [35] to experimental-based (counter-)evidences [24] and outcomes includ-
ing guidelines for the design of a representation [34] or directions for future
research [29].

A case of particular interest is the one of indirect representations, i.e., those in
which each individual is represented by means of a genotype and a phenotype and
a mapping function exists for mapping the former to the latter. Practical moti-
vations for choosing an indirect representation include the possibility of using
standard genetic operators—whose behavior is well known—and, at the same
time, tackling problems for which specific constraints act on the solutions (i.e.,
phenotypes). Moreover, indirect representations do have a counterpart in biol-
ogy, where the form of living organisms depends on the result of a transcription
process operating on encoded genetic material. Finally, indirect representation
properties can be easily defined and studied both analytically and experimentally
basing on the mapping function.

One of the most used EAs based on an indirect representation is Grammatical
Evolution (GE) [25], a form of grammar-based Genetic Programming (GP) [10],
which captures all the three aspects of indirect representations described above.
First, GE allows tackling the large class of problems in which constraints on the
solutions may be expressed by means of a context-free grammar (CFG). Sec-
ond, according to its inventors, the overall GE framework was directly inspired
by Nature [17]. Third, the properties of the GE genotype-phenotype mapping
function have been widely studied [11,31,32]: indeed, those properties eventually
served as main goals while designing new GE variants, essentially consisting in
new mapping functions which were shown to be more effective than the original
approach [9,12].

In this work, we attempt to provide new insights on the long-standing, under-
current topic of the choice of the representation. To this end, we consider the
broad class of EAs corresponding to grammar-based GP and propose a novel
approach for the automatic design of a representation driven by an evolution-
ary search aimed at optimizing the representation properties. Our proposal thus
tries, in a sense, to merge the a priori and a posteriori approaches.

Our contribution consists of the following: (a) we define a class of represen-
tations in which the genotype is a variable-length bit string and the phenotype
is a valid string w.r.t. a user-provided grammar; (b) we propose an evolution-
ary framework for searching the aforementioned space of representations; (c) we
experimentally investigate the ability of the proposed framework to generate rep-
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resentations whose properties and search effectiveness are better than existing,
established representations.

In detail, the class of representations is defined by a genotype-phenotype
mapping function template whose variable parts are described with a language
which we defined by means of a CFG. The mapping function template and the
language are such that: (i) any representation in the resulting class is a valid
genotype-phenotype mapping function—i.e., any input bit string is mapped to
a valid phenotype in a finite number of steps; (ii) it is possible to express such
existing and established representations as the original GE mapping [25] and
the recently proposed HGE and WHGE [12]. Having defined the search space
in terms of a CFG, we use a grammar-based evolutionary search method (CFG-
GP [36]) which we augmented using a diversity promotion strategy in order to
improve search effectiveness [13]. For driving the search, we use a fitness function
measuring to which degree an individual (i.e., a genotype-phenotype mapping
function) exhibits such mapping properties as redundancy, locality, uniformity
of redundancy. We compute those measures on a large amount of mappings
obtained from a sample grammar and a set of randomly generated genotypes.

We investigated 3 search variants differing in the fitness definition and opti-
mization strategy (i.e., single-objective vs. multi-objective). We assessed each
obtained representation experimentally not only in terms of the mapping prop-
erties, but also in terms of higher level EA properties (diversity) and of the
search effectiveness achieved on a small set of benchmark problems previously
used in the literature for assessing GE and its variants. The results are promis-
ing as some of the automatically generated representations are better than the
existing ones. Although our findings do not imply that automatically-designed
representations may fully surrogate carefully human-designed representations,
they further corroborate the importance of representation properties and might
ignite new research in the novel field of “self-evolving” evolutionary algorithms.

The remainder of the paper is organized as follows. In Sect. 2, we briefly sur-
vey the state-of-the-art. In Sect. 3, we introduce our genotype-phenotype map-
ping function template and the related CFG for describing its variable parts.
In Sect. 4, we describe which are the properties we use to drive the evolution
of the mapping function and how we compute them. In Sect. 5, we present and
discuss the results of our experimental evaluation. Finally, in Sect. 6, we draw
the conclusions.

2 Related Work

Broadly speaking, our proposal is a form of meta-evolution [6] (also known as
hyper-heuristic [20] or self-adaptation [26]), where parts of an EA are chosen or
tuned according to a second-level evolutionary search. In most cases, the liter-
ature focuses on specific EA parameters which can be optimized, rather than
designed from scratch—e.g., mutation and crossover rate in Genetic Seman-
tic Programming [2] or trial vector and control parameters in Differential Evo-
lution [21]. The application of evolutionary computation to evolve (online or
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offline) components, rather than parameter values, of an EA is instead still
believed to be in its infancy [29], in particular for representation and varia-
tion operators. For the former, the scarcity of research results may be explained
by its hardness, as observed by De Jong [5]: “perhaps the most difficult and least
understood area of EA design is that of adapting its internal representation.”

Concerning the evolution of operators, the authors of [8] show how they
evolved a general purpose mutation operator for Evolutionary Programming
which outperforms existing operators on classes of functions (i.e., problems); they
also experimentally show that a mutation operator evolved for a specific problem
is better than a general purpose evolved operator. A similar goal is aimed at in [4],
where a framework for the online evolution of the operators, together with the
solutions, is proposed: as in the previously cited work, operators are represented
as trees and evolved using GP. Similarly to the present work, [4] considers also
other EA properties (diversity) other than search effectiveness as a criterion of
analysis.

Concerning the automatic design or adaptation of representations, a proposal
is presented in [28], where genotype-phenotype mapping for continuous opti-
mization problems is considered. The authors show, using a proof-of-concept
self-adaptation mechanism, that feed-forward neural networks can be used to
represent and improve a genotype-phenotype mapping, also for problems of real-
istic complexity. Similarly to our work, the authors carefully consider redundancy
and locality in their analysis.

Another view on automatic design of representation is given by [27], which
again addresses the class of real-valued optimization problems: here, the repre-
sentation is the way in which the real values are encoded using a bit string. With
the premise that they focused only on (few) synthetic problems, due to the high
computational costs implied by meta-evolution, the authors find that an evolved
representation may improve the classical Gray encoding.

Also relevant w.r.t. our work are some proposals concerning grammar-based
GP in which the grammar itself is evolved (or improved) online, during the
evolution [18,38]. Despite the evolution of a new, general purpose representation
was not among the goals of the cited papers (they rather attempt to discover
more knowledge about the problem defined by the user-provided grammar by
improving the grammar itself), they somehow demonstrate how a representation
can change while still enforcing the problem-specific constraints on the solutions.
In conclusion, to the best of our knowledge, our work is the first attempt of
evolving a general purpose representation for a large class of problems, as the
one addressable with grammar-based GP.

3 Representation Template

We consider a family of EAs with an indirect representation where the genotype
ĝ is a variable-length bit string and the phenotype p̂ is a string of a language
L(G) defined by a CFG G = (N,T, s0, R), where: N is the set of non-terminal
symbols, T is the set of terminal symbols (with T ∩N = ∅), s0 ∈ N is the starting
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symbol, and R is the set of production rules. We do not pose any constraint on
components of the EA other than the representation (e.g., selection criteria for
reproduction of removal of individuals, initialization). It is worth to note that
many significant and widely used variants of GE (beyond its original version)
belong to this family of EAs (e.g., πGE [16], HGE and WHGE [12]).

We define a representation template, i.e., a template of a mapping between
a variable-length bit string (genotype) and a string in L(G) (phenotype), as
follows. The mapping is based on the notion of derivation tree of a symbol s in
N ∪ T . Such a tree is rooted at s and the children of each non-terminal node
s′ ∈ N are symbols (in the proper order) of one of the derivation options for s′

in G. The derivation tree is constructed with the algorithm specified below. The
mapping occurs in two steps: the input genotype ĝ is mapped to a derivation tree
of the initial symbol s0 of G; the corresponding phenotype p̂ is then obtained by
concatenating, from the left to the right, the leaf nodes of the derivation tree.

Construction of a derivation tree is performed by a function Map(s, g, d),
where s is a symbol of T ∪ N , g is a bit string, and d ∈ N

+ ∪ {0} is a posi-
tive number. This function essentially consists in three key steps: (i) choose one
derivation option among the ones available for s, by invoking function Choose();
(ii) obtain from g several bit strings, by invoking function Divide(); (iii) recur-
sively call itself for each symbol in the chosen derivation option, with the symbol,
one of the bit strings previously obtained, a counter d + 1 of recursion depth as
input parameters.

Functions Choose() and Divide() are parameters of Map() and their sig-
nature includes a bit string as input argument. Their domain consists of all the
functions that can be defined by a language described in Sect. 3.1 that we devel-
oped. The search space for representations, thus, essentially consists in all the
possible implementations for Choose() and Divide().

The mapping of ĝ to a derivation tree of s0 is done by invoking Map(s0, ĝ, 0).
The corresponding phenotype p̂ is then obtained by concatenating the leaf nodes
of the derivation tree.

In details, Map() is shown in Fig. 1 and works as follows. If s is a terminal
node, the tree composed by a single node s is returned by Map(s, g, d), regardless
of the values of g and d. Otherwise, the following steps are performed.

1. The derivation rule rs for the input argument s is obtained.
2. A vector e ∈ R

|rs| is built, where each element ej is the product of the
expressiveness of all the symbols in the jth option of rs. The expressiveness
of a symbol s′ (denoted by Expressiveness(s′) in Fig. 1) is a measure of
the expressive power of s′: we quantify expressiveness with the number of
different derivation trees which can be obtained from s′. We limit the counting
to derivation trees with a maximum dexpr depth (an implicit parameter of
Expressiveness() and hence of the representation itself) in order to cope
with non-finite languages, for which Expressiveness(s′) may be infinite.

3. If the input argument d is greater than or equal to a predefined value dmax

(a parameter of the representation), the index i of the chosen rule option is
set to the value for which ei is the lowest in e. Otherwise, i is set to the
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Algorithm 1. The genotype-phenotype recursive mapping function, which is
first invoked as Map(s0, ĝ, 0).

function Map(s, g, d)
t ← TreeNode(s)
if s ∈ N then � s is a non-terminal

rs ← RuleFor(s)
for j ∈ {1, . . . , |rs|} do

ej ← ∏

s′∈Symbols(rs,j)
Expressiveness(s′)

end for
e ← (e1, . . . , e|rs|)
if d ≥ dmax then � maximum depth reached

i ← arg minj∈{1,...,|rs|} ej
else

i ← Choose(g, e, d)
end if
(s1, . . . , sn) ← Symbols(rs, i)
for j ∈ {1, . . . , n} do

ej ← Expressiveness(sj)
end for
e ← (e1, . . . , en)
(g1, . . . , gm) ← Divide(g, e, d)
for j ∈ {1, . . . , n} do � Append children

AppendChild(t,Map(sj , gj , d + 1))
end for

end if
return t

end function

return value of a function Choose() which takes as input g,e, d and returns
a number that will be used at the next step for choosing one of the options
of the derivation rule rs.

4. The sequence of symbols s1, . . . , sn corresponding to the ith option of the
rs rule is obtained. We denote by Symbols() the corresponding grammar
look-up function in Fig. 1; Symbols() is protected, i.e., it works for any i by
using min(|rs| − 1,max(0, �i�)) instead of the original argument i.

5. The vector e is reset to (e1, . . . , en), where ej is the expressiveness of sj

obtained at the previous step.
6. A sequence (g1, . . . , gm) of bit strings is set to the return value of a function

Divide() which takes as input g,e, d and returns a sequence of bit strings.
Each of these bit strings will be used at the next step for constructing subtrees
to be appended to the derivation tree being constructed.

7. For each symbol sj in s1, . . . , sn, the tree obtained by recursively invoking
the Map(sj , gj , d + 1) is appended to the tree (initially) composed of the
only node s, which is eventually returned. While performing this step, in case
j > m (i.e., if there are fewer bit strings than symbols to built the children
of s), an empty bit string is passed to Map() as gj .
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Regardless of the actual behavior of Choose() and Divide(), it can be easily
seen that Map() always returns a derivation tree (from which a valid phenotype
is then obtained) in a finite number of steps. First, whenever the value of d (which
is increased at each recursive invocation) reaches a threshold, the derivation
option is chosen as the one with the lowest expressiveness, instead of by using
the Choose() function: since in any valid CFG, for any non-terminal symbol,
there is at least one derivation option with a finite expressiveness, this guarantees
that in a finite number of steps Map() will be invoked with a terminal symbol
s ∈ T . Second, regardless of the return value of Choose(), a valid derivation is
always chosen for s, since only options of rs are considered.

3.1 Language for the Mapping Function

Functions Choose() and Divide() are parameters of the mapping function. The
space of possible values for these parameters consists of all the functions that
may be described by the CFG GMap() specified in Fig. 1 and discussed below.

Fig. 1. The CFG GMap() defining the language for the Choose() and Divide() func-
tions and hence for an instance of the genotype-phenotype mapping function template
defined by Map().

GMap() includes terminal symbols representing numerical constants (0, . . . , 9),
input arguments (g for g, ln for e, and depth for d), and functions (e.g., size
returns the length of a bit string, weight returns the number of bits set to 1 in
a bit string).

Names for the non-terminal symbols representing functions begin with fun
and encode the signature of the function with a simple conventional rule. For
example, 〈fun.lg.g,n〉 represents functions whose return value is of type 〈lg〉 and
whose list of input arguments is of types 〈g〉 and 〈n〉. Non-terminal symbols
other than functions represent data types: 〈n〉 represents numbers, 〈ln〉 represents
sequences of numbers, 〈g〉 represents bit strings, 〈lg〉 represents sequences of bit
strings. Thus, the above example represents functions whose return value is a
number and that take a bit string followed by a number as input arguments.

Concerning terminal symbols that represent functions, as the size and weight
described above, we omit a detailed description of the semantics, leaving it
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implicit in the name of the corresponding symbols. All the functions are type-
protected, i.e., they guarantee that a correctly typed value is always returned—
e.g., the number n in which a bit string g is split by the split function is internally
adjusted as min(�(g),max(1, �n�)), where �(g) is the length of the bit string g.

Symbols g.count.r and g.count.rw corresponds to accessing a global counter,
the former reads the value of the counter while the latter reads and then incre-
ments its value. By “global” we mean that a single counter is maintained during
the execution of both Choose() and Divide(); this counter is set to 0 when
the enclosing Map() is first called with parameters s0, ĝ, 0. Including a global
counter allows to express also genotype-phenotype mapping functions which are
not inherently recursive, but can be expressed as recursive function thanks to
the counter: the original GE mapping fits this case (see Fig. 2).

Non-terminal symbol 〈mapper〉 is the crucial component for expressing
an instance of the genotype-phenotype mapping function, i.e., of functions
Choose() and Divide(). This symbol can be derived only as a pair 〈n〉, 〈lg〉:
the concatenation of the leaves of the derivation tree rooted at the left child
of 〈mapper〉 is the function Choose(); similarly, the right child represents the
function Divide().

As stated in the introduction, a key feature of our proposal is that it allows
expressing such existing and established genotype-phenotype mapping functions
as those used in GE, HGE, and WHGE. Indeed, Fig. 2 shows the Choose()
and Divide() functions corresponding to (a slightly improved version of) GE
and WHGE. Differently than the original GE mapping, this version does not
require a mechanism for aborting the mapping when it looks endless (in [25]
there is a maximum number of genotype reuses, i.e., wrappings), since that case
is addressed by comparing d against dmax in Map().

Fig. 2. Choose() and Divide() for the original GE mapping and for WHGE.

4 Properties-Driven Evolution

Since we defined the search space of the problem of the automatic design of a rep-
resentation by means of the CFG GMap(), we can tackle that problem using any
grammar-based GP approach (e.g., GE, πGE, SGE, HGE, WHGE, CFG-GP),
provided that we define a fitness function suitable for driving the search. In this
work, we want a fitness function able to capture the degree to which a candidate
representation m ∈ L(GMap()) exhibits the desired mapping properties.

Among the several properties of indirect representations which have been
studied in the literature (see [22] for a comprehensive analysis), we considered
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redundancy, locality, and uniformity of redundancy—we actually considered non-
locality and non-uniformity in order to conform to the semantics of “the lower,
the better”.

We measure the properties of a representation m basing on how m maps
a predefined set G of genotypes to a corresponding set P of phenotypes using
a predefined CFG Glearn. That is, for each ĝ ∈ G we construct p̂ = m(ĝ) by
concatenating, from the left to the right, the leaf nodes of the derivation tree
returned by Map(ĝ, s0, 0), where Map() is the instance of the map function
template corresponding to m and s0 is the starting symbol of Glearn. Having
constructed P from G according to m, we quantify the properties of interest as
follows.

The redundancy of m is measured as 1− |G|
|P | , i.e., one minus the ratio between

the number |G| of unique genotypes and the number |P | of unique phenotypes.
The locality of m is measured as the Pearson correlation between the dis-

tances among genotypes and distances among phenotypes. More formally, let
DG be the sequence of |G|(|G|−1)

2 genotype distances (i.e., dG
i,j = dG(ĝi, ĝj) is the

distance between the ith and the jth elements of G, with j < i) and let DP be the
corresponding sequence of phenotype distances (i.e., dP

i,j = dP (m(ĝi),m(ĝj))).
The locality is the Pearson correlation cor(DG,DP ) between DG and DP . As
distances, we used the edit distance for both bit strings and strings of L(Glearn).
The non-locality is measured as 1 − 1+cor(DG,DP )

2 , such that it is 0 when geno-
type and phenotype distances are perfectly correlated (cor(DG,DP ) = 1), and
1 when they are inversely correlated (cor(DG,DP ) = −1).

Finally, the uniformity of m is measured by means of the coefficient of vari-
ation of the size of the partitions of G for which every genotype in the par-
tition corresponds to the same phenotype. More formally, let G1, . . . , G|P | the
partitions of G such that, for each k, ∀ĝi, ĝj ∈ Gk : m(ĝi) = m(ĝj), and let
S = |G1|, . . . , |G|P || contains the sizes of the partitions. The non-uniformity is
the coefficient of variation σS

μS
of S.

In order to define a criterion for driving the evolutionary search in the space
of representations, we considered that, according to many studies, redundancy,
locality, and uniformity appears to affect the effectiveness of the search in the
respective order [14,17,23]. We hence explored three variants for driving the
search for a representation: by minimizing redundancy only (single-objective),
by minimizing redundancy and non-locality (multi-objective), and by minimizing
redundancy, non-locality, and non-uniformity (multi-objective). We denote the
respective search variants by R, R/NL, and R/NL/NU.

In all of our experiments, we used CFG-GP [36] as the evolutionary search
algorithm, in a version augmented with the diversity promotion mechanism pre-
sented in [13] (with npartition = 10 as partition size, phenotype equivalence as
partitioning criterion, and youngest individual as parent representative selection
criterion) and with the selection criteria for reproduction and removal of indi-
viduals based on the comparison between individuals according to the Pareto
dominance.
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5 Experiments and Discussion

We performed an experimental evaluation aimed at answering the two following
research questions: RQ1: Can we evolve a representation which is better than
the existing ones in terms of redundancy, locality, and uniformity? RQ1: Are the
evolved representations also effective when used inside an actual EA?

In order to answer RQ1, we proceeded as follows. First, we executed a num-
ber nlearning

run = 10 of learning runs for each of our proposed variants R, R/NL,
R/NL/NU. From each learning run we obtained a set of non-dominated represen-
tations (R/NL and R/NL/NU variants, multi-objective) and a set of represen-
tations with the same, minimal redundancy value (R variant, single-objective).

Second, for each learning run, we selected a subset of nvalidation
repr = 5 represen-

tations for further analysis, as follows. We selected one representation randomly
and then we selected iteratively, one at once, the nvalidation

repr − 1 representations
which are farthest from those already selected in terms of Euclidean distance on
the fitness space (in case of ties we chose one representation at random).

Third, for each selected representation m, we performed a number
nvalidation
run = 5 of validation runs on each of the three validation problems speci-

fied below. That is, we solved each of those problems with representation m and
the evolutionary search algorithm resulting from Table 1 (right).

In summary, we performed 3×10 = 30 learning runs and 3×10×5×3×5 =
2250 validation runs. The software we developed for this experimentation is
publicly available1.

Table 1. Parameters for the evolutionary runs.

Learning Validation

Population size 500 500

Pop. initialization Ramped half-and-half Random

Generations 50 30

Max depth dmax 14 9

Expressiveness depth dexpr N. A. 2

Genotype size N. A. 1024

Crossover rate 0.8 0.8

Crossover operator CFG-GP crossover Two-points same length

Mutation rate 0.2 0.2

Mutation operator CFG-GP mutation Bit flip w. pmut = 0.01

Selection for reproduction Tournament with size 3 Tournament with size 3

Selection for removal Worst individual Worst individual

Replacement m + m w. overlapping m + m w. overlapping

1 https://github.com/ericmedvet/evolved-ge.

https://github.com/ericmedvet/evolved-ge
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We structured learning runs as follows. We composed the set of genotypes G
with the following steps: (i) we randomly generated a seed set of 10 bit strings,
each of length equal to 256 bit; and, (ii) for each genotype in the seed set, we
obtained other 9 genotypes by iteratively applying the bit-flip mutation opera-
tor (with pmut = 0.01). The rationale was to obtain a uniform distribution of
distances among the genotypes, useful in particular for measuring of the locality
property. We used the CFG of the Pagie1 problem as grammar Glearn for map-
ping G to the corresponding set P of phenotypes. We set the parameters of the
evolutionary search with CFG-GP in the space of representations as in Table 1
(left).

We used the following three benchmarks as validation problems: the K-
Landscape synthetic problem [33] (with k = 5), the Pagie1 symbolic regres-
sion problem [19], and the Text generation synthetic problem [11]. Two of these
benchmarks have been recommended as standard benchmarks for GP perfor-
mance evaluation [37], whereas the last one (Text) has been designed specifically
for assessing GE and presents a grammar of larger complexity.

Table 2 shows the property values for the evolved representations, averaged
across the 5 selected representations for each of the 10 learning runs. The first
three rows correspond to property values computed in the learning runs only
(hence using the Pagie1 grammar only); the second three rows correspond to
property values computed using the grammars of the 3 validation problems; the
last three rows correspond to property values for the GE, HGE, and WHGE
representations computed using the grammars of the 3 validation problems and
can be used as baseline. We emphasize that all the baseline are human-designed,
i.e., they are the result of dedicated research efforts.

Table 2. Representation properties.

Search variant Redundancy Non-locality Non-uniformity

Learn. R 0

R/NL 0.095 0.032

R/NL/NU 0.797 0.319 0.077

Val. R 0.266 0.291 0.284

R/NL 0.247 0.28 0.292

R/NL/NU 0.261 0.29 0.288

GE 0.990 1.000 0.000

HGE 0.620 0.403 2.211

WHGE 0.410 0.412 2.689

It can be seen that, in general, property values for the evolved representation
are much better than for the baselines. Furthermore, property values on the
validation problems appear to be independent from the search variant (R vs.
R/NL vs. R/NL/NU). We interpret this result as a combination of: (i) these
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values are computed on 3 grammars w.r.t. the one used for learning; and, (ii)
for multi-objective fitness variants, the shown values tend to “average” different
representations, i.e., points which are far away from each other in the fitness
space.

In order to answer RQ2 we then examined the search effectiveness of the
evolved representations. That is, we examined the fitness values for each of the
validation problems when solved with the evolved representations and when
solved with the baseline representations. Table 3 shows, for each validation prob-
lem, the final best fitness BF and the difference ΔBF between the final and initial
best fitness—both BF and ΔBF are averaged, for each evolved representation
and baseline, across the nvalidation

run = 5 validations runs. Index ΔBF is relevant as
it should capture the ability of the representation to actually improve the solu-
tion during the evolution. For each of the three search variants, Table 3 shows
BF and ΔBF obtained with the best, mean, and worst representations among
the nlearning

run = 10 learning runs with that search variant.

Table 3. Final best fitness BF and difference ΔBF between final and initial best fitness.

Search variant BF ΔBF

Best Mean Worst Best Mean Worst

KLand.-5 R 0.11 0.6 0.81 0.48 0.11 0

R/NL 0.58 0.66 1 0.27 0.11 0

R/NL/NU 0.55 0.7 1 0.33 0.06 0

GE 1 0

HGE 0.58 0.06

WHGE 0.6 0.25

Pagie1 R 3.42 338.66 4488.27 2440.7 400.88 2.16

R/NL 3.32 114.39 1142.28 7975.03 579.07 0

R/NL/NU 7.42 45.61 169.16 172.18 33.62 0

GE 20.99 0

HGE 4.32 6.33

WHGE 2.75 6.86

Text R 6.5 65.12 176 10.5 3.93 0

R/NL 7 88.06 176 154 25.23 0

R/NL/NU 8.33 75.95 176 57 3.89 0

GE 9.2 1.8

HGE 5.4 2.6

WHGE 5.4 3.2

It can be seen that for each validation problem there is at least one evolved
representation which is more effective than the GE baseline. On the other hand,
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all the human-designed baselines tend to perform better than the average evolved
representation. It can also be seen that the R search strategy tends to be more
effective than either R/NL or R/NL/NU: driving the evolution of the repre-
sentation by redundancy only, thus, appears to be the more effective choice. It
is interesting to note that the evolved representations tend to exhibit a much
greater value for ΔBF than the baseline representations, that is, the evolved rep-
resentations appear to be able to improve fitness during a search significantly.

The finding that the R strategy is more effective than either R/NL or
R/NL/NU is confirmed also by Table 4. The table shows, for each problem and
each of the three best representations obtained with each search variant, the
average percentile rank of the final best fitness among all the validation runs
(i.e., including other evolved representations) on that problem.

Table 4. Percentile ranks of three most effective representations for each search variant.

Search variant n KLand.-5 Pagie1 Text

R 1 0.003 0.086 0.003

2 0.009 0.09 0.003

3 0.316 0.021 0.003

R/NL 1 0.182 0.016 0.003

2 0.059 0.252 0.035

3 0.549 0.303 0.051

R/NL/NU 1 0.1 0.303 0.068

2 0.311 0.303 0.103

3 0.311 0.303 0.103

Finally, in order to gain further insights into the evolved representations, we
analyzed the populations of the validation runs in terms of diversity at the level of
phenotype and of fitness. We measured diversity as the rate of unique individuals
in the initial and in the final population. Table 5 shows the results, for each search
variant and for each baseline: for the evolved representations, diversity were
computed averaging across runs and across representations with the same search
variant—e.g., the 0.66 initial phenotype diversity for R on the KLandscapes-5
problem is obtained by averaging the phenotype diversities measured at the first
generation of the 5 × 5 = 25 validation runs performed with R search variant on
that problem.

It can be seen that the populations evolved with the evolved representations
are, in general, more diverse, than those evolved with the baselines, both from
the point of view of the phenotype and of the fitness. However, we believe that
this effect might be a result of the generally better search effectiveness of the
baselines, which could lead to faster convergence of the population towards one
or few (possibly locally) optimal solutions. On the other hand, it is interesting to
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Table 5. Initial and final diversities.

Search variant KLand.-5 Pagie1 Text

In. Fin. In. Fin. In. Fin.

Phenotype R 0.66 0.5 0.99 0.49 0.93 0.21

R/NL 0.95 0.68 1 0.27 0.68 0.19

R/NL/NU 0.41 0.29 0.37 0.06 0.28 0.06

GE 0.01 0 0.01 0 0.05 0

HGE 0.49 0.31 0.58 0.01 0.95 0.03

WHGE 0.45 0.46 0.63 0.06 0.92 0.02

Fitness R 0.44 0.19 0.97 0.47 0.13 0.01

R/NL 0.83 0.04 0.98 0.16 0.04 0

R/NL/NU 0.35 0.01 0.37 0.05 0.03 0

GE 0.01 0 0.01 0 0 0

HGE 0.42 0 0.42 0 0.13 0

WHGE 0.33 0.02 0.54 0.05 0.12 0

note that the representations evolved with the R strategy appear more capable
of preserving the population diversity: this finding confirms the interplay exist-
ing between redundancy and diversity, which has already been highlighted in
previous works [11].

6 Concluding Remarks and Future Work

In the attempt of providing new insights into the long-standing problem of choos-
ing the most appropriate representation for an EA, we have presented a method
for the automatic synthesis of a representation for the large class of problems
whose solutions spaces can be defined by a CFG. We have defined a represen-
tation template for genotype-phenotype mapping, in the form of a recursive
function with two parameter functions that can be described using an ad hoc
language that we have developed for this purpose. Our representation template
is expressive enough to describe the classic GE mapping and more recent pro-
posals such as HGE and WHGE; at the same time, our template is much more
general and ensures that any instance representation is valid, i.e., it maps any
input variable-length bit string to a string of the user-provided language in a
finite number of steps. We used CFG-GP to evolve the representations expressed
by our template with a multi-objective optimization of 3 crucial representation
properties: redundancy, non-locality, and non-uniformity.

We executed a number of experiments and carefully assessed the evolved rep-
resentations using human-designed representations proposed earlier in the liter-
ature, i.e., GE, HGE, and WHGE. The results show that our proposal indeed
allows automatically designing a representation which exhibits better properties
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than the human-designed ones. However, only in few cases the evolved repre-
sentations are also able to provide better search effectiveness. We hope that
our work might open new research perspectives in the young field of automatic
design of representations.
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Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks:
community survey results and proposals. Genet. Program. Evolvable Mach. 14(1),
3–29 (2013)

38. Wong, P.-K., Wong, M.-L., Leung, K.-S.: Hierarchical knowledge in self-improving
grammar-based genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-
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Abstract. Co-ordination of Inter-Cell Interference through scheduling
enables telecommunication companies to better exploit their Heteroge-
neous Networks. However, it requires from these entities to implement
an effective scheduling algorithm. The state-of-the-art for the scheduling
in Heterogeneous Networks is a Grammar-Guided Genetic Programming
algorithm which evolves, from a given grammar, an expression that maps
to the scheduling of transmissions. We evaluate in our work the possi-
bility of improving the results obtained by the state-of-the-art using a
layered grammar approach. We show that starting with a small restricted
grammar and introducing the full functionality after 10 generations out-
performs the state-of-the-art, even when varying the algorithm used to
generate the initial population and the maximum initial tree depth.

Keywords: Telecommunication · Heterogeneous Network
Scheduling · Grammar-Guided Genetic Programming
Multi-level grammar

1 Introduction

We have seen in the last decade a proliferation in the use of mobile phones
worldwide to reach 4.47 billion users in 2017 and this number is expected to
exceed the 5 billion barrier by 2019 [1]. Companies attempt to attract new
costumers through price cuts and the introduction of new technologies, like the
soon-to-come 5G networks. Due to the heterogeneity and growing size of the
networks, there is a large and increasing need to optimise their performance [2].

In traditional single cellular networks, Macro Cells (MCs) are employed to
cover all User Equipments (UEs) such as phones, tablets, and any other device
equipped with a broadband adapter. However, with the explosion of connected
devices, MCs struggle to cope with the load. Therefore, they have to be sup-
plemented with local and less powerful Small Cells (SCs), creating a two-tiered
c© Springer International Publishing AG, part of Springer Nature 2018
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configuration called Heterogeneous Networks (HetNets). SCs are deployed in
areas with traffic hot-spots to attract the near-by UEs, which offloads the MCs
and mitigates their performance deficit. Despite being beneficial from cost and
performance points of view, SCs share the same bandwidth as the MCs, thus,
making them more susceptible to interference. To mitigate possible interference,
the 3rd Generation Partnership Project (3GPP [3]) provisioned an enhanced
Inter-Cell Interference Coordination (eICIC) mechanism i.e., Almost Blank Sub-
frames (ABSs). The ABSs force MCs to mute periodically for a certain duration,
allowing SCs to communicate with their UEs without interference from the near-
by MCs.

Several challenges are induced by the configuration of these HetNets and
require real-time optimisation. In our work, we particularly address the defi-
nition of the ABS and the scheduling of the UEs when communicating with
their respective SC. The current state-of-the-art for optimising this problem in
a real-time fashion (millisecond timescale) is using a Grammar-Guided Genetic
Programming algorithm (G3P [4]). However, the designed algorithm starts with
a randomly generated initial population and uses a unique and thorough gram-
mar from the beginning to the end of the optimisation.

To improve the performance of evolutionary algorithms, some works in the
literature use greedy techniques to generate good individuals as an initial pop-
ulation (e.g., [5,6]), while others promote an incremental introduction of the
domain knowledge to the optimisation algorithm (for instance, McKay et al. [7]
use a developmental strategy of the grammar in Genetic Programming, whereas
NEAT [8] augments the typologies of neural networks.

Our work evaluates the advantage of using a succession of grammars during
the evolution with incremental granularities instead of a single one. The idea is
based on: (i) starting with a grammar that contains fewer terminals with the
aim of guiding the optimisation towards individuals with ‘ideal’ forms, and (ii)
introducing a larger and more thorough grammar after some generations with
the aim of increasing the search space and thus improving the quality of the
individuals further. We create a hybridisation of different G3P algorithms where
the first ones are used to direct the search towards interesting individuals and
the last one to probes the whole search space, similarly to [6,9,10]. Our work is
organised around and aims at answering this main Research Question (mRQ):
Is it good to use different grammar levels?

It has been shown by Nicolau [11] that the way the initial population is gener-
ated affects drastically the performance of grammar-based genetic programming
algorithms. Therefore, we evaluate the way our approach is affected by the mod-
ification of two parameters related to the initial population, in two secondary
Research Questions: (sRQ1) the algorithm used to generate the initial popula-
tion, and (sRQ2) the maximum initial tree depth.

The rest of this paper is organised as follows: Sect. 2 defines the problem of
scheduling in Heterogeneous Networks. Section 3 presents a short study of the
works done on the problem. Section 4 describes the state-of-the-art algorithm
G3P for the scheduling in HetNets, in addition to our multi-level grammar
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approach. In particular, we present the different grammars and the mapping
of an expression to a schedule. Section 5 describes the dataset, the setup and
the significance test. Section 6 aims at answering the aforementioned research
questions and shows results of the experiments. Section 7 concludes our study
and proposes some future directions that we would like to explore.

2 Problem Definition

Let us consider a Heterogeneous Network N with a set of Macro Cells M and
Small Cells S. We also consider a set of User Equipements U and that every UE
ui ∈ U receives a signal σj

i from the cell cj ∈ M ∪ S.

2.1 Attaching UEs

UEs are known to attach greedily to the cell from which they receive the strongest
signal. Since SCs have low power, the number of UEs that attach to them is
limited. To cope with this issue, the 3GPP provisioned a bias mechanism i.e.,
Range Expansion Bias (REB) enabling SCs to attach a larger number of UEs
beyond the area where their signal is higher than the near-by MCs. Therefore,
the signal σj

i of every cell cj ∈ M ∪ S to a UE ui ∈ U is biased by an REB βj ,
with βj = 0 for every cj ∈ M. Every UE ui is attached to a cell cj ∈ M ∪ S:

cj =
|M∪S|

arg max
k=1

(σk
i + βk) (1)

Definition 1. Expanded Region Ej of an SC cj ∈ S is the area where UEs
would attach to cj, but would not attach to it without the using the bias βj. We
say that a UE ui is in the expanded region Ej an SC cj ∈ S if and only if:

cj =
|M∪S|

arg max
k=1

(σk
i + βk) ∧ cj �= |M∪S|

arg max
k=1

(σk
i ) (2)

Fig. 1 shows an example that summarises the aforementioned concepts.

2.2 Almost Blank Subframes

Using the same communication channel between MCs and SCs exasperates
the interference at the expanded regions. The 3GPP framework defines a time
domain (i.e., a frame F) containing 40 subframes (SF) with a 1ms time interval
for each subframe. The interference can be mitigated by muting the transmis-
sion of the MCs at some of the subframes using the ABS mechanism. Therefore,
allowing near-by SCs to communicate with UEs in their expanded region with
low interference. By muting the MCs during some SFs, UEs at the expanded
regions experience a large reduction in interference. However, UEs attached to
MCs cannot communicate with their respective cells during that time frame.
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Fig. 1. Example of a Heterogeneous Network with one Macro Cell, one Small Cell, and
20 User Equipements. The grey hexagon corresponds to the area where UEs will attach
to the MC in absence of any SC. The blue area is the region where the signal from the
SC is stronger than the one coming from the MC. In red is the expanded region where
UEs attach to the SC thanks to the bias.

2.3 Scheduling

The downlink rate Rf
i of a UE ui quantifies the amount of data that can be

transferred in the SF Sf . Rf
i is described by Shannon’s formula [12] as depending

on: (i) the bandwidth B, (ii) the number of UEs communicating at the same SF
Sf , and (iii) the Signal to Interference and Noise Ratios (SINRs):

Rf
i =

B

Nf
× log2(1 + SINRf

i ) (3)

UEs attached to MCs experience high SINR making their downlink always
high. Therefore, scheduling UEs attached to MCs is trivial as they can all be
allocated to all the SFs when the MCs are active (i.e., not muted). However, UEs
attached to SCs experience a relatively low signal (SCs are low powered devices)
and are subject to high interference from MCs (during their active SFs).

While the bandwidth is expensive and scarce and thus, hard to improve,
both the SINR and the number of communicating UEs N could be improved.
The SINRf

i can be improved by muting MCs at the given SF Sf . However,
exaggerating this process would lead to a substantial reduction in the overall
downlink rate of UEs attached to MCs (which may be more numerous) as they
would not receive any data in the mean time. Similarly, reducing the number of
UEs communicating simultaneously and only communicating with fewer of them
would improve the downlink for the active ones, but would mean that dismissed
UEs will not be receiving any transmission. All these aspects make the manage-
ment of transmissions not trivial, requiring an autonomic scheduling system that
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would specify: (i) SFs at which MCs are muted, and (ii) UEs communicating at
any given SF.

2.4 Fitness Function

On average, every UE ui ∈ U experiences an average downlink R̄i over all the
SFs of the same frame.

R̄i =
1

|F|
∑

Sf∈F
Rf

i (4)

HetNets typically aim at optimising fairness of downlinks experienced by the
different users in the network [13] including the state-of-the-art work [4] we are
comparing to in this paper. This fairness is expressed as the sum of average
downlink logs (i.e., log(R̄i)) of all the UEs:

Fairness =
∑

ui∈U
log

(
R̄i

)
(5)

Maximising the logs of average downlinks sets a high penalty when having
UEs with low average downlinks, while at the same time does not provide a large
reward when having UEs with excessively high average downlinks. In this work,
we aim at maximising the fairness in Eq. 5 as the fitness function.

3 Previous Works

Most works in the literature to address the scheduling of transmission in HetNets
put forward algorithms designed by expert agents. The most employed strategy
is to partition the UEs that are attached to SCs into two different groups [14]
based on the SFs they are scheduled to communicate at: (i) ABS-SFs; SFs in
which MCs are muted or (ii) Non-ABS SFs; SFs in which MCs are active. Jiang
and Lei [15] model the problem as a two-player bargaining game between ABS
and Non-ABS SFs to attract the UEs to transmit within their time intervals.
Lopez et al. [16] aim at balancing the downlinks for the UEs in both groups to
equalise each other.

Autonomic solutions for the scheduling problem in HetNets are only proposed
in the recent years. Lynch et al. [4] use a Grammar-Guided Genetic Programming
algorithm [17] to evolve the schedules in a reinforcement learning fashion. Their
algorithm has been proven to outperform the state-of-the-art systems designed
by the experts across multiple metrics. The authors also showed by running
a genetic algorithm for a longer period (not real-time) a large potential for
performance improvement, and this is one of the major motivations for our
work. The authors use a single full grammar during the entire evolution process.
In our work, we propose feeding the algorithm with a smaller and more compact
grammar, before extending it during the evolution (after some generations).

There has been much research into grammars. Many different approaches
have been proposed and investigated from probabilistic grammars, where each
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production updates the probability of the production being allowed to happen
again, to developmental evaluation [7] which evolves the grammar during the evo-
lution. A comprehensive survey of these methods is presented by Hemberg [18].
With all these approaches the idea of layered learning is key. The goal is to learn
during evolution and then use that knowledge to bootstrap to the next solution.
In a similar vein, the approach proposed in this paper looks to establish a strong
corpus of individuals that are then allowed to explore the much wider search
space of the unrestricted grammar.

4 Multi-Level Grammar-Guided Genetic Programming

In this section, we describe both the state-of-the-art algorithm for scheduling in
HetNets (i.e., G3P) and our proposed approach (i.e., multi-level grammar).

4.1 State-of-the-Art: Grammar-Guided Genetic Programming

The state-of-the-art for the scheduling in HetNets is a Grammar-Guided Genetic
Programming [4] algorithm which uses a unique grammar in a Backus-Naur Form
(BNF) to incorporate domain knowledge:

<expr> ::= <reg> | <reg> | <reg> | <Terminal>

<reg> ::= <expr><op><expr> | <expr><op><expr> | <expr><op><expr> | <expr><op><expr> |

<non-linear>(<expr>) | <non-linear>(<expr>)

<op> ::= + | - | * | / (protected)

<non-linear> ::= sin | log (protected) | sqrt (protected) | step

<Terminal> ::= <sign><const> | <statistic>

<sign> ::= - | +

<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0

<statistic> ::= downlink | num_variable | num_att | airtime | congestion |

avg_downlink_frame | max_downlink_frame | min_downlink_frame |

avg_downlink_SF | max_downlink_SF | min_downlink_SF |

avg_downlink_cell | max_downlink_cell | min_downlink_cell

While most of the rules in this grammar are common to the GP world and
easy to understand, <statistic> contains terminals that are from the network
domain and we refer the reader to [4] for their formal definition.

The state-of-the-art algorithm is G3P: an adaptation of a grammar-based
form of GP [19] as implemented in the PonyGE 2 framework [20]. G3P is used
to evolve an expression that maps the SINR related statistics and attachment
information to a binary decision for each UE per SF: whether to schedule the
UE to communicate at the given SF or not. The authors use Algorithm 1 (please
refer to [4] for a more detailed version) to do this mapping, before evaluating
the fitness function with the resulting schedule.

4.2 Our Approach: Multi-Level Grammar

In addition to the full and more thorough grammar (i.e., F) defined by the state-
of-the-art, we define two other grammars by only updating the list of available
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input : E: Expression
output: M : Schedule Matrix
for cj ∈ S do

M [j] ← zeros(|F| × |U|) // define a transmission schedule matrix

for Sf ∈ F do
for ui ∈ U do

interest ← evaluate(E,M, i, f) // evaluate expression for ui

in f with current Schedule

if interest > 0 and SINRf
i ≥ 1 then

Mj [j][i][f ] ← 1 // set as ‘scheduled’

end

end

end

end
return N ;
Algorithm 1: Mapping of an expression to a transmission schedule.

terminals. We have created two incremental grammars: (i) S: small, and (ii) M:
medium, such that S is included in M and M is included in F.

The small grammar is defined by modifying <const> and <statistic>. The
number of terminals is reduced to the strict minimum by only keeping a small
subset of constants and what seems to be the most important statistics. The
downlink is what we would like to optimise. Whereas maximising the value of
min downlink frame would improve the smallest downlinks. Therefore, improv-
ing it would have a better impact on the fitness function. We set in S:

<const> ::= 0.0 | 0.5 | 1.0
<statistic> ::= downlink | min_downlink_frame

The medium grammar is also defined by modifying <const> and <statistic>.
We add 6 terminals to the medium grammar: 4 constants (2 signs × 2 constants)
and 2 statistics (i.e., max downlink frame and min downlink cell) that are also
related to the downlink, in addition to the terminals from the grammar S. We
set <const> and <statistic> in M as follows:

<const> ::= 0.0 | 0.3 | 0.5 | 0.8 | 1.0

<statistic> ::= downlink | min_downlink_frame | max_downlink_frame | min_downlink_cell

After defining these grammars (i.e., S, M and F), we adapted the state-
of-the-art algorithm G3P to take one grammar at the start of the experiment
and dynamically modify the grammar to a more complex one (e.g., from S to
M, M to F, or S to F). All individuals obtained using a given grammar are
seeded as an initial population [21] to G3P using the following grammar. We
do not require any modification in the representation of the individuals when
updating the grammar as they are represented in a tree form and the grammars
are included within each other. This means that an individual has both the
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same representation and the same interpretation (in terms of schedule), before
and after changing the grammar.

Although modifying the values of some parameters would have probably been
ideal when introducing a new grammar (e.g., increasing the mutation rate for
few generations facilitates the introduction of new terminals), we chose to not
modify any parameter. We make this choice in order to mitigate any implication
from changing the values of these parameters and only leave one varying element
at the time (i.e., the grammar).

5 Experiment Design

We describe in this section the dataset and the setup used in our experiment, in
addition to the test used to assess the significance of our results.

5.1 Dataset

We simulate in our work three HetNets following the same process as described
in [4] and all of them serving the same geographical area that encompasses
3.61 km2 of Dublin city centre. All the HetNets contain 21 MCs spread in a
hexagonal pattern. However, they differ in the number of SCs they contain. The
first HetNet is the least dense with 21 SCs (1 SC per MC on average). The second
HetNet is denser than the first one with 63 SCs (3 SCs per MC on average). The
third and last HetNet is the densest among them with 105 SCs (5 SCs per MC on
average). Additionally, we consider that a total of 1250 UEs are in the considered
geographical area and are attached to one of the MCs or SCs.

5.2 Setup

We use the state-of-the-art algorithm G3P provided by the authors [4]. To vali-
date our approach, we design different grammar configurations (see Sect. 6). We
compare the best fitness function obtained when using each of the configura-
tions in G3P instead of the full grammar. We set the population size to 100 and
allow the algorithm to run for 100 generations. Furthermore, we use the Ramped
Half-Half (RHH [22]) algorithm to generate the initial population with a maxi-
mum tree depth of 20. We use the sub-tree crossover with a probability 0.5, and
undergo a sub-tree mutation to 60% of the population, while point mutating the
remaining 40%. We set all the other parameters as described in [4]. Moreover,
we repeat every experiment 30 times to minimise the effect of randomness.

5.3 Significance

In order to validate the significance of our comparisons, we perform a statistical
test using a non-parametric test: the two-tailed Mann-Whitney U test (MWU).
In every experiment, MWU takes in the different performance values (best fitness
function values) obtained by two algorithms from each run (i.e., 30). MWU
returns the p-value that one of the algorithms obtains different values than the
other. We consider tests significant when the p-value is below 0.05.
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6 Evaluation

We aim in this section to answer the research questions that were formalised in
Sect. 1 experimentally.

6.1 mRQ: Is It Good to Use Different Grammar Levels?

In order to show the relevance of combining different grammars, we compare 7
grammar configurations on the three instances (21 SCs, 63 SCs and 105 SCs). We
designed 6 different grammar configurations in addition to the default scenario
F (one full grammar from beginning to end):

– S5M10F: start with S and introduce M and F at generations 5 and 10.
– S10M20F: start with S and introduce M and F at generations 10 and 20.
– S5M20F: start with S and introduce M and F at generations 5 and 20.
– S1F: start with S and introduce F at generation 1 (after generation 0).
– S5F: start with S and introduce F at generation 5.
– S10F: start with S and introduce F at generation 10.

We set parameters of G3P to the same values over all the grammar configu-
rations as described in Sect. 5.

Figure 2 shows the evolution per generation of the best fitness on each
instance, obtained by G3P when using the different grammar configurations
(results are averaged over 30 runs).

We notice from Fig. 2 that G3P improves the best fitness function for all
instances (constantly improves the baseline i.e., the smallest recorded values:
231.764, 319.588 and 616.874 for 21 SCs, 63 SCs and 105 SCs respectively)
regardless of the grammar configuration it is used with. We also notice that the
number of generations (i.e., 100) is not enough to achieve a full convergence
of the algorithms and increasing this parameter would allow achieving a better
performance –but would increase the execution time though.

We see that using the full grammar only (i.e., F) achieves the best results on
the 21 SCs instance (outperforming the second best grammar S5F with 1.69%
on average). However, its performance worsens significantly on the two other
instances (i.e., 63 SCs and 105 SCs) where S10F achieves the best results (S10F
achieves 7.54% and 9.95% better results than F on average on 63 SCs and 105
SCs respectively). S5F also achieves similar results as S10F. Although S5F does
not reach the same quality of results as S10F on 63 SCs and 105 SCs, it slightly
outperforms it on 21 SCs. Despite S1F being based on the same principle as S5F
and S10F (only using the small and the full grammar), it does not achieve good
results. This is mostly due to the fact that using the small grammar for only one
generation only affects the individuals in the initial population. S1F generates
individuals with phenotypes composed of a smaller set of terminals and does not
aim at converging towards ‘ideal’ individuals. This acts almost as a handicap
for the evolution as it does not provide either the greediness to converge faster
or the variety to explore the search space. Whereas, S5F and S10F optimise the
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105 SCs

Fig. 2. Average over 30 runs of the evolution of the best fitness obtained by G3P on
the different instances using various grammar configurations.

initial population further using the same small set of terminals, thus exploiting
this small number of terminals for a better convergence.

Surprisingly, algorithms which use a succession of three grammar levels do
not achieve as good results as those only using two grammars, with the excep-
tion of S5M10F. This is even more surprising as S10M20F achieves the worst
performance in almost all instances. This goes against the intuition that if we
have a grammar configuration (in this case S10M20F) similar to another one
which achieves good results (e.g., S10F), the former is likely to achieve a good
performance as well. If we look closely at the improvement curves of S10F and
S10M20F at about 10 generations, they all seem to converge (or at least improve
slowly). The introduction of the new grammar (i.e., a full grammar in the case of
S10F) enables it to introduce new terminals to the evolution and improve drasti-
cally its performance. Whereas the introduction of the medium grammar allows
S10M20F a much more limited improvement. In case of S10M20F, we notice a
second convergence/stagnation around 20 generations before the full grammar
gets introduced. However, given the limited number of generations, G3P with
S10M20F could not reach the improvement of the other ones. We believe, how-
ever, that given a larger number of generations, this configuration could improve
its performance.
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Table 1 shows the mean and standard deviation over 30 runs of the best fit-
ness function on the different instances, achieved by G3P when using the afore-
mentioned grammar configurations. It also includes the p-value when comparing
every approach against G3P with the grammar configuration F.

Table 1. Mean and standard deviation over 30 runs of the best fitness obtained by
G3P when using different grammars. In addition, we include the p-value (using MWU)
in comparison to the results obtained against G3P with grammar F. Note that we put
‘-’ when computing the p-value for F against F as it is always 0.5 and thus not worth
including in the results. We put in bold the best mean and significant p-values.

Instance Function F S5M10F S10M20F S5M20F S1F S5F S10F

21 SCs Mean 233.025 232.963 232.903 232.915 232.927 233.004 232.991

Stdev 0.038 0.088 0.082 0.090 0.072 0.065 0.128

p-value - 1.89E-04 3.56E-09 4.92E-08 5.78E-08 1.56E-01 3.81E-01

63 SCs Mean 321.341 321.415 321.330 321.328 321.367 321.439 321.473

Stdev 0.172 0.132 0.162 0.142 0.135 0.224 0.188

p-value - 3.51E-02 3.42E-01 2.55E-01 3.10E-01 4.52E-04 7.59E-04

105 SCs Mean 619.950 619.953 619.990 619.972 620.022 620.104 620.256

Stdev 0.261 0.273 0.225 0.176 0.269 0.321 0.299

p-value - 4.09E-01 2.46E-01 3.81E-01 1.03E-01 3.19E-03 6.68E-06

Table 1 confirms what has been noticed in Fig. 2 and shows that F achieves
the best results on 21 SCs on average, whereas S10F achieves the best results on
average on both 63 SCs and 105 SCs. It also shows that the standard deviation
is rather large with regards to the difference in means. However, the p-value
confirms that results obtained with S10F and S5F are significantly better than
those obtained with F on both 63 SCs and 105 SCs. Whereas, the results obtained
with F on 21 SCs are not significantly better than those of S10F and S5F.

The answer to mRQ is: Yes. It is good to use different grammar levels in
most cases. More particularly in our case, starting with the small grammar and
introducing the full one after 10 generations is the best grammar configuration.

6.2 sRQ1: How Are the Results Affected by the Algorithm Used
to Generate the Initial Population?

We have shown from the previous research question that using S10F as a gram-
mar configuration for G3P achieves significantly better results than using F in
most cases. However, we would like to check whether these results are depen-
dent on the way we generate the initial population. Therefore, we compare both
grammar configurations F and S10F by varying the algorithms used to generate
the initial population and fixing the other parameters to the same values. We
use four different initialisation algorithms: (i) RHH: Ramped Half-Half [22], (ii)
PIG: Position-Independent Grow [23], (iii) UT: Uniform Tree [23], and (iv) UG:
Uniform Genome [23].
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Figure 3 shows the evolution per generation of the best fitness on each
instance, obtained by G3P when using either F or S10F with different initialisa-
tion algorithms (results are averaged over 30 runs).

sCS36sCS12

105 SCs

Fig. 3. Average over 30 runs of the evolution of the best fitness obtained by G3P on the
different instances using either the full grammar (i.e., F) or the two-level grammar (i.e.,
S10F), when generating the initial populations with various initialisation algorithms
(i.e., RHH, PIG, UT and UG).

We see from Fig. 3 that G3P successfully improves the fitness function over
the 100 generations regardless of the grammar configuration and the algorithm
used for the initialisation. We also see that the results do not fully converge
within the 100 generations and that increasing this parameter is likely to improve
the results.

In terms of performance, we clearly see that G3P achieves the best results
when using RHH to generate the initial population on most instances, except
63 SCs. This validates the default setting chosen for the state-of-the-art algo-
rithm [4]. We also see that with the exception of RHH on 21 SCs, using S10F
allows getting better results than F. This is an important indicator that using the
two-level grammar is better than the single grammar regardless of the algorithm
used to generate the initial population. We even notice that S10F outperforms F
on all instances and achieves better results when using initialisation algorithms
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different from RHH (S10F achieves 4.93%, 17.95%, 17.64% and 12.73% better
results on average than F when using respectively RHH, PIG, UT and UG).

Table 2 shows the mean and standard deviation over 30 runs of the best
fitness function on the different instances achieved by G3P when using either
F or S10F as a grammar configuration, and when varying the algorithm used
to generate the initial population. It also includes the p-value (using MWU)
between the results with F and S10F in each scenario.

Table 2. Mean and standard deviation over 30 runs of the best fitness obtained by G3P
using either F or S10F as grammar configuration, when varying the algorithm used to
generate the initial population. In addition, we include the p-value (using MWU) to
test the significance of the results. We put in bold the best mean between F and S10
F and significant p-values.

Instance Function RHH PIG UT UG

F S10F F S10F F S10F F S10F

21 SCs Mean 233.025 232.991 232.926 233.027 232.882 232.976 232.936 233.019

Stdev 0.038 0.128 0.057 0.042 0.064 0.073 0.081 0.053

p-value 3.81E-01 2.16E-08 5.09E-06 3.83E-05

63 SCs Mean 321.341 321.473 321.161 321.501 321.210 321.450 321.173 321.442

Stdev 0.172 0.188 0.113 0.096 0.102 0.093 0.109 0.118

p-value 7.59E-04 1.84E-11 2.10E-10 7.05E-10

105 SCs Mean 619.950 620.256 619.567 620.201 619.448 620.210 619.676 620.071

Stdev 0.261 0.299 0.277 0.256 0.285 0.194 0.269 0.307

p-value 6.68E-06 4.24E-09 3.35E-11 2.99E-05

Table 2 confirms that using S10F always leads to better results than F regard-
less of the algorithm used to generate the initial population (except with RHH
on 21 SCs). We also notice a relatively large standard deviation in comparison
to the difference in mean values. However, the standard deviation is similar to
both grammar configurations. Despite the large standard deviations, using S10F
allows achieving significantly better results with respect to the MWU test. Fur-
thermore, we see that the unique case where F achieves better mean results than
S10F is not significant.

The answer to sRQ1 is: The two-level grammar S10F allows achieving even
better performance in comparison to the full grammar when used with different
initialisation algorithms.

6.3 sRQ2: How Are the Results Affected by the Maximum Initial
Tree Depth Used to Generate the Initial Population?

We have confirmed in the previous research questions that we achieve a better
performance when using the two-level grammar S10F against when using only
the full one (i.e., F). We have also confirmed that the results are not biased by
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the choice of the initialisation algorithm, as they are better with all the of them
(except in case of RHH with 21 SCs).

In this part, we attempt to confirm whether the quality of results obtained
using the two-level grammar is not negatively impacted by the maximum depth
of the initial trees. We, therefore, run G3P using both F and S10F, with various
maximum initial tree depths (i.e., 5, 10, 20 and 30), while setting the other
parameters to their default values (more particularly, the algorithm used to
generate the initial population is set to RHH).

Figure 4 shows the evolution per generation of the best fitness on each
instance, obtained by G3P when using either F or S10F with different maxi-
mum depths for the initial trees (averaged over 30 runs).

sCS36sCS12

105 SCs

Fig. 4. Average over 30 runs of the evolution of the best fitness obtained by G3P on
the different instances using either the full grammar (i.e., F) or the two-level grammar
(i.e., S10F), when generating the initial populations with various maximum initial tree
depths (i.e., 5, 10, 20 and 30).

We see from Fig. 4 that G3P improves the fitness function with all the max-
imum initial tree depths without fully converging within the 100 generations.
We see that using the depth 20 achieves the best results only on the instance 21
SCs, whereas the maximum depth 10 achieves the best results on the other ones.
Similarly to what has been noticed when varying the initialisation algorithm,
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S10F outperforms F in all the cases (instances × maximum initial tree depths)
except in 21 SCs with a depth of 20. This clearly shows that using the two-level
grammar S10F is better than the full one and that it is not biased by the maxi-
mum initial tree depth. In addition to the fact that the value of maximum initial
tree depth affects the final results, it also seems to affect the difference between
the two grammars (i.e., S10F outperforms F more when using a maximum depth
of 30 with 12.93% improvement than when using a maximum depth of 20 with
4.93% improvement on average).

Table 3 shows the mean and standard deviation over 30 runs of the best fitness
function by G3P with either F or S10F as a grammar configuration while vary-
ing the maximum initial tree depth. It also includes the p-value (using MWU)
between results with F and S10F in each scenario. As with Table 2, Table 3 con-
firms that using S10F always leads to significantly (i.e., based on MWU) better
results than F regardless of the maximum initial tree depth (except with depth
20 on 21 SCs).

Table 3. Mean and standard deviation over 30 runs of the best fitness obtained by
G3P using either F or S10F as grammar configuration, when generating the initial
populations with various maximum initial tree depths (i.e., 5, 10, 20 and 30). We also
include the p-value (using MWU) to test the significance of the results. We put in bold
the best mean between F and S10F and significant p-values.

Instance Function 5 10 20 30

F S10F F S10F F S10F F S10F

21 SCs Mean 232.991 233.018 232.993 233.035 233.025 232.991 232.954 233.033

Stdev 0.044 0.060 0.050 0.035 0.038 0.128 0.055 0.051

p-value 3.62E-02 2.54E-03 3.81E-01 7.15E-06

63 SCs Mean 321.288 321.485 321.310 321.521 321.341 321.473 321.255 321.491

Stdev 0.085 0.100 0.080 0.086 0.172 0.188 0.067 0.090

p-value 1.75E-09 4.88E-10 7.59E-04 2.49E-11

105 SCs Mean 619.731 620.213 619.833 620.324 619.950 620.256 619.750 620.266

Stdev 0.194 0.221 0.176 0.141 0.261 0.299 0.214 0.208

p-value 4.24E-09 6.64E-11 6.68E-06 9.28E-10

The answer to sRQ2 is: The two-level grammar S10F allows achieving even
better performance in comparison to the full grammar when used with different
maximum initial tree depths.

7 Conclusion

We studied the use of different levels of grammars as a mean to improve the
quality of the schedules in HetNets obtained by the G3P algorithm. Our app-
roach consists of starting the optimisation with a short grammar which contains
only the most important terminals in order to direct the search towards ‘ideal’
individuals. Then, to introduce a more thorough grammar during the evolution.
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We showed that starting with the small grammar and introducing the full one
after 10 generations, allows us to outperform the standard configuration which
only uses one full grammar with up to 10% on average. We also showed that our
approach is better in most cases regardless of the initialisation algorithm and
maximum initial tree depth used to generate the initial populations.

In the future, we would like to analyse the sensitivity of the approach towards
the number and the quality of the terminals in the small grammar. We also
would like to investigate whether adding a local search to the two-level grammar,
creating a three-step method [6], would be beneficial. Furthermore, we would
like to study the way the approach is affected when the grammar is modified at
positions other than terminals. Moreover, the quality of results obtained on the
scheduling in HetNets motivates us to study the performance of our two-level
grammar approach on problems from other domains.
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M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp.
280–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976 25

8. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

9. Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-
objective VM reassignment for large decentralised data centres. In: UCC, pp. 65–74
(2015)

10. Saber, T., Thorburn, J., Murphy, L., Ventresque, A.: VM reassignment in hybrid
clouds for large decentralised companies: a multi-objective challenge. Future Gener.
Comput. Syst. 79, 751–764 (2018)

11. Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program
Evolvable Mach. 18, 467–507 (2017)

12. Shannon, C.E.: Communication in the presence of noise. IRE 37(1), 10–21 (1949)

www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide
www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide
www.3gpp.org
https://doi.org/10.1007/11729976_25


134 T. Saber et al.

13. Weber, A., Stanze, O.: Scheduling strategies for HetNets using eICIC. In: ICC, pp.
6787–6791 (2012)

14. Fagan, D., Fenton, M., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Deep
learning through evolution: a hybrid approach to scheduling in a dynamic environ-
ment. In: IJCNN, pp. 775–782 (2017)

15. Jiang, L., Lei, M.: Resource allocation for eICIC scheme in heterogeneous networks.
In: PIMRC. pp. 448–453 (2012)

16. Lopez-Perez, D., Claussen, H.: Duty cycles and load balancing in HetNets with
eICIC almost blank subframes. In: PIMRC, pp. 173–178 (2013)

17. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments, vol. 194. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00314-1

18. Hemberg, E.A.P.: An exploration of grammars in grammatical evolution. Ph.D.
thesis, University College Dublin (2010)

19. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program Evolvable Mach. 11, 365–396
(2010)

20. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: grammatical evolution in python. In: GECCO, pp. 1194–1201 (2017)

21. Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Is seeding a good strategy
in multi-objective feature selection when feature models evolve? Information and
Software Technology (2017)

22. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In:
GECCO, pp. 142–145 (2003)

23. Fagan, D., Fenton, M., O’Neill, M.: Exploring position independent initialisation
in grammatical evolution. In: CEC, pp. 5060–5067 (2016)

https://doi.org/10.1007/978-3-642-00314-1
https://doi.org/10.1007/978-3-642-00314-1


Scaling Tangled Program Graphs
to Visual Reinforcement Learning

in ViZDoom

Robert J. Smith(B) and Malcolm I. Heywood

Dalhousie University, Halifax, NS, Canada
{rsmith,mheywood}@cs.dal.ca

Abstract. A tangled program graph framework (TPG) was recently
proposed as an emergent process for decomposing tasks and simultane-
ously composing solutions by organizing code into graphs of teams of
programs. The initial evaluation assessed the ability of TPG to discover
agents capable of playing Atari game titles under the Arcade Learning
Environment. This is an example of ‘visual’ reinforcement learning, i.e.
agents are evolved directly from the frame buffer without recourse to
hand designed features. TPG was able to evolve solutions competitive
with state-of-the-art deep reinforcement learning solutions, but at a frac-
tion of the complexity. One simplification assumed was that the visual
input could be down sampled from a 210×160 resolution to 42×32. In this
work, we consider the challenging 3D first person shooter environment of
ViZDoom and require that agents be evolved at the original visual reso-
lution of 320 × 240 pixels. In addition, we address issues for developing
agents capable of operating in multi-task ViZDoom environments simul-
taneously. The resulting TPG solutions retain all the emergent properties
of the original work as well as the computational efficiency. Moreover,
solutions appear to generalize across multiple task scenarios, whereas
equivalent solutions from deep reinforcement learning have focused on
single task scenarios alone.

Keywords: Visual reinforcement learning · Emergent modularity
First person shooter · Partially observable

1 Introduction

State-of-the-art reinforcement learning (RL) algorithms increasingly emphasize
the encoding of important properties from visual inputs, typically screen capture
[17]. Several benchmarks have appeared including (but not limited to) arcade
gaming titles [2], racing games [16] and first person shooter (FPS) environments
[10]. Arcade formulations tend to emphasize the ability to play tens of titles
using the same learning algorithm, but assume a relatively low resolution input
and frequently supply complete information of game state. Conversely, the ‘first
person’ perspective of FPS games provide a very rich environment – multiple
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 135–150, 2018.
https://doi.org/10.1007/978-3-319-77553-1_9
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rooms, opponents, objects for capture/ avoidance – in which to investigate learn-
ing algorithms under partial observability of state, much higher dimensionality
and a corresponding increase in the variation of content.

In this work we are interested in assessing the utility of a recently proposed
Tangled Program Graph (TPG) approach [8,9] to the ViZDoom FPS environ-
ment. TPG was previously demonstrated to be capable of discovering emergent
solutions to reinforcement learning problems based on visual input alone which
were orders of magnitude simpler than solutions from deep learning [8,9]. Our
motivation in this work is to answer to what degree the previous TPG results
were dependent on a relatively low resolution state capture1 and assess the capac-
ity to perform task transfer between different typically partially observable task
scenarios described in the ViZDoom environment. This is of merit as: (1) visual
task domains are increasingly assuming very high resolution inputs that will
potentially result in a loss of objects when down sampled too much, and (2)
transferring skills between different source training scenarios can potentially lead
to stronger performance in a target scenario, such as ViZDoom ‘deathmatches’
(e.g. [13,21]).

In this work we show that, by incorporating some additional task agnostic
learning heuristics, TPG is able to simultaneously provide solutions to a total of
ten custom task scenarios, eight of which come with the ViZDoom distribution
and two are specifically introduced in this work (Sect. 4). We believe that this
demonstrates that TPG is capable of scaling to much larger state spaces, while
still retaining the capacity to discover solutions that are very efficient to execute
without special hardware support.

2 Related Research

Gaming environments are increasingly being employed as suitably difficult tasks
for demonstrating artificial general intelligence [22]. In this work, we are partic-
ularly interested in scenarios that focus on the ability of the machine learning
algorithm alone, as opposed to hybrid formulations that augment machine learn-
ing with search, e.g. deep learning with Monte Carlo Tree Search [4]. From this
perspective, the result of Mnih et al. was particularly noteworthy in that it
demonstrated an effective strategy for playing a cross section of games using
state information defined by screen capture alone [17], i.e. without recourse to
any features crafted by humans. Moreover, the resulting performance in some
game titles was better than/competitive with that of a human player. Since then,
multiple deep reinforcement learning frameworks have been proposed and bench-
marked on multiple console game titles (e.g. [11,12]), as have neuro-evolutionary
approaches [3,5] and schemes based on some form of GP [6,8,9].

More recently, researchers have began to focus on gaming tasks outside
of arcade console environments, where the case of first person shooter (FPS)

1 1344 pixels in the down sampled visual interface of [8,9] versus 76800 pixels in the
TPG deployment demonstrated for ViZDoom.
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environments is of particular relevance to this work. Specifically, FPS environ-
ments introduce three dimensional state information and partial observability.
This means that strategies need discovering for navigating multiple rooms while
avoiding specific objects/opponents and engaging with other types of oppo-
nents/objects. In short, FPS environments represent a different set of challenges
from that experienced in console style games.

The ViZDoom framework was developed in 2016 in order to explicitly facili-
tate the efficient evaluation of 3D vision based machine learning algorithms on
a FPS environment [10]. Machine learning agents therefore view the game world
through the frame buffer and learn how to play on the basis of visual stimuli
alone. ViZDoom gives researchers control over the size of the screen buffer, access
to the depth buffer, as well as the ability to customize the learning process using
WAD (“Where’s All the Data?”) files. These files were originally defined by John
Carmack while building the original version of Doom and are thus interchange-
able, giving ViZDoom a breadth of options for providing AI agents with learning
environments ranging from the official Doom levels to custom scenarios.

ViZDoom has been used by researchers in two generic settings, a competition
setting in which the principle objective is to survive some form of ‘deathmatch’
with other agents. Particular examples of this include deploying the best deep
learning RL approach from other general game playing challenges [19], or mod-
ifying a general deep learning RL approach to include properties specifically
useful for VizDoom, e.g. some form of prior task decomposition [13,21].

A second use of ViZDoom has been through the use of custom scenarios
representing underlying tasks of value for developing better general purpose
visual learning agents. For example, [1] use a health pack gathering scenario
in which the objective is to avoid mines and collect health packs, whereas [18]
assume a single scenario involving learning to aim against a static target. One
interesting observation from Alvernaz and Togelius was that the deep learning
element might produce a representation that failed to recognize hazards [1].

3 Tangled Program Graphs

The tangled program graph (TPG) represents a generalization of GP teaming
into the emergent discovery of graphs of teams of programs [8,9]. To do so, a
definition of GP is assumed in which each program provides a single (real valued)
scalar output, bi, which is interpreted as the ‘bid’. Each program also has a single
discrete atomic action, ai, selected from the set of task specific atomic actions
A. Two populations (P and H) representing programs and teams respectively
are then coevolved in a symbiotic relationship, or symbolic bid-based GP (SBB)
[14,15]. Fitness is only defined explicitly at the team population. Each member
of the team population identifies a unique subset of programs from the program
population (the same program may appear in multiple teams). A variable length
representation is assumed for members of each population, hence team comple-
ment evolves in the team population and program complement evolves in the
program population.



138 R. J. Smith and M. I. Heywood

SBB is independent of the specific representation assumed for a program. In
this work we adopt a linear GP representation (as did the original work [14,15]),
thus instructions take the form of operations on registers of the general form:
R[x] = R[x] < op > R[y], where x and y are register references and < op > is an
‘opcode’. Likewise we also adopt the eight opcodes common to Lichodzijewski’s
work: {+,−,×,÷, ln, cos, cos, IF}, where the conditional is interpreted as IF
(R[x] < R[y]) THEN (R[x] = −R[x]). Each instruction also has a mode bit
which enables R[y] to either index a register or an input attribute (in this case
the visual screen buffer). The R[y] references are always to registers of which
there are a total of 8 in this work.

The output of a team is established by executing each program (from the
same team) on the current state of the environment, s(t), and identifying a
single ‘winning’ bid, i.e. the program with maximum output [14,15]. Let this be
p∗. Program p∗ has won the right to suggest its action, call this a(t). Under a
reinforcement learning task, action a(t) defines the action of the agent at time
step t. Such an action potentially changes the state of the environment and the
process repeats until some end condition is encountered (e.g. terminal state of
the game, maximum number of training interactions). Fitness of a team can then
be assessed using an appropriate measure of game score (Sect. 4). The process
repeating over all teams, or a training ‘generation’.

After each generation the teams are ranked (Step 2(b)v, Algorithm 1) and
the worst performing Hgap individuals deleted (Step 2(b)vi). Any programs from
the program population lacking a reference from at least one team are also
then deleted (Step 2(b)vii). Hgap parents are then identified, and an equivalent
number of child teams produced (care of a set of variation operators) to replace
the deleted teams (Step 2(b)ii). One set of variation operators operate at the
level of teams [14,15]: add or delete a reference to a program (Pa, Pd), modify a
program currently in the team (Pm), or modify the action of a program within
the team (Pa). Likewise a second set of variation operators operate at the level
of programs [14,15] (only called upon when Pm test true), in which case the
effected program is first cloned before applying variation operators to the cloned
program (delete or add an instruction (Pdel, Padd), mutate an instruction (Pmut)
or swap two instructions within the same program (Pswp).

SBB provides a framework for evolving teams of arbitrary complement, i.e.
without having to specify the number of programs per team [14,15]. Moreover,
only the size of the team population needs explicitly defining (Hsize). The size
of the program population floats as programs either fail to be referenced by a
team (delete program from P ) or a program is cloned (add program to P ).

TPG assumes SBB as the starting point and introduces an additional vari-
ation operator, Pα, which establishes the type of action change when Pa tests
true. Thus, for Pα false, the cloned program’s action, ai is selected from the set
of task specific atomic actions ai ∈ A, whereas for Pα true, the new action is
a pointer to any team in the team population of generation g, or ai ∈ H(g).
Once this happens we have a graph in which each ‘node’ is a team and ‘arcs’
are programs. Evaluation of a graph follows the same process as per SBB, and
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commences with the root team (all individuals in the initial team population
are root nodes), w.r.t. state s(t) of the environment. However, if the action of
the winning program is a pointer to another team, then the new team is also
evaluated on state, s(t). As teams in the graph are evaluated they are ‘marked’.
If following execution of a team the winning program’s action selects a team
that was previously visited (on state s(t)), then the runner up program’s bid is
(recursively) assumed as the action until either an unvisited team or an atomic
action is selected (each team must have at least one atomic action). As soon as
the winning program’s action takes the form of an atomic action, evaluation of
the graph (for state s(t)) is complete and any ‘marked’ teams are reset.

Algorithm 1 . TPG algorithm (Sect. 3) with incremental record keep-
ing (Sect. 4. The term ‘agent’ is used to denote a TPG individual. Note that
only teams representing root nodes constitute an agent for which fitness evalu-
ation is performed.
1. Initialize team population, H(g = 0), and program population, P (g).
2. For (b = 0; b < Bags; b = b + 1, g = g + 1)

(a) S(b) = S � Initialize set of task scenarios
(b) For all (t ∈ Scenarios)

i. s(b) = rnd(S(b)) � Select a task scenario
ii. H(g) = H(g) ∪ create(Hgap)
iii. For all (agent ∈ H(g)) and (k ∈ Episodes)

A. task = rnd(s(b)) � Initialize task scenario instance
B. evaluate(agent, task) � Eq. (1)

iv. Update OverallFitness over scenarios {t, ..., t − R} � Eqs. (2) and (3)
v. Rank (agents ∈ H(g))
vi. Prune lowest ranked Hgap agents from H(g)
vii. Prune all p ∈ P (g) without an agent
viii. S(b) = S(b) − s(b) � Remove evaluated task scenario

The number of root teams varies during evolution. That is to say, if a root
team receives a pointer from another team (care of the variation operators), then
that graph has been incorporated as a subgraph into another root team’s graph.
Naturally, the application of Pa, Pα can also result in a subgraph being decoupled
from its parent, resulting in the reappearance of a root team (a root has no
incoming arcs). The resulting complexification of single team root nodes into
graphs is therefore an emergent process in which the complexity of the relation
between teams, team complement and program complexity are all driven by the
underlying complexity of the task [8,9].2

2 For an illustration of the incremental construction of TPG individuals see the presen-
tation slides of Stephen Kelly from EuroGP’17 http://stephenkelly.ca/research files/
skelly-mheywood-eurogp-2017.pdf.

http://stephenkelly.ca/research_files/skelly-mheywood-eurogp-2017.pdf
http://stephenkelly.ca/research_files/skelly-mheywood-eurogp-2017.pdf
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4 Scaling TPG to Large Visual State Spaces

In the following we summarize the additional heuristics investigated to deploy
TPG under the ViZDoom environment. Specifically, TPG was originally
deployed under the Atari arcade learning environment, [2], with a down sampled
visual state space, s(t), from the original 210 × 160 pixels to 42 × 32 pixels.3

ViZDoom, on the other hand, represents a 3D environment capable of presenting
a much richer range of encounters than under individual arcade console titles
[10]. With this in mind we introduce five factors for specifically scaling TPG
up to the challenge of evolving agents capable of solving challenges present in
ViZDoom.

4.1 Representation of Features

The default structure for screen buffer data in ViZDoom is a series of nested
arrays of integers, where the outer array represents the height of the buffer
(240 rows of pixels) and the inner arrays represent the RGB integer values of
pixels in a given row (320 pixels per row) [10]. In order to provide SBB with
a ‘flat’ set of environment registers, the three RGB values were concatenated
into a single 32-bit integer format, thus defining input as an array of 76,800
integers to represent each frame received from the screen buffer. This is distinct
from deep learning approaches in which each of the RGB channels is subject to
convolution filtering. Moreover, the computational cost of retaining independent
channels with deep reinforcement learning might require some form of cropping
or down sampling from the resolution of the original input.4 In effect, GP ‘sees’
a single channel consisting of pixel values over a much larger dynamic range (due
to the concatenation of the three RGB channels into a single integer value) as
opposed to retaining the representation of each pixel in three colour channels
over a lower dynamic range.

4.2 Task Scenarios

As the complexity of task domains increases, it might be beneficial to learn
from specific training scenarios or source tasks. Such approaches have proved
effective in a wide range of settings including ViZDoom competitions [21] and
the evolution of soccer skills [20].

The ViZDoom distribution has 8 example scenarios: Basic, Deadly Corridor,
Defend the Centre, Defend the Line, Health Gathering, My Way Home, Pre-
dict Position, and Take Cover.5 Naturally each scenario represents a different
skill that might be beneficial for a general purpose policy capable of ‘surviving’
within the ViZDoom environment. In addition to the scenarios included with the

3 Conversely, the deep reinforcement learning approach of [17] cropped the original
visual space to 84 × 84 pixels.

4 For example, [1] assume a 120 × 160 visual input and [13] assume 60 × 108.
5 https://github.com/mwydmuch/ViZDoom/tree/master/scenarios.

https://github.com/mwydmuch/ViZDoom/tree/master/scenarios
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package, two further scenarios were constructed in order to promote a particular
type of movement called circle-strafing. Circle-strafing is when a player continu-
ously focuses their aim on a target in the game while sidestepping (strafing). If
an agent does both of these things, they will naturally walk in a circle around
their target, potentially making it more difficult for the target to hit the agent
(because it is moving) while decreasing the health of the target.

Circling scenario 1 places the player on one side of a raised ring (6 o’clock).
The ring itself causes a small amount of damage to the player periodically. The
floor inside and outside of the ring causes a moderate amount of damage if a
player stands on it for too long. The player is tasked with picking up a health
kit on the other side of the ring (12 o’clock). Whenever a health kit is acquired,
another health kit spawns on the opposite side of the ring. This scenario is
meant to help the player specifically perform circular movements, though not
necessarily with strafing involved. There are three atomic actions made available
A = {F, TL, TR} (see Table 1) and the rewards are +1 per time unit alive, −100
on agent death, and there is a scenario time limit of 2100 time units.

Circling scenario 2 is a continuation of the first. The ring remains the same,
except health kits spawn sequentially at every 90 degree section of the ring rather
than on opposite sides. An enemy spawns in the middle of the ring. The player is
tasked with moving to acquire the health kit, but has the additional requirement
of shooting the enemy in the centre of the room in order to make the next health
kit spawn. Note that the turning speed in ViZDoom is static when using a key
(rather than a mouse) and will not allow the player to run to a health kit, turn,
shoot the enemy, and then return to moving. In order to be successful, the player
will need to learn to circle-strafe around the ring in order to stay alive. There
are six atomic actions made available A = {F, TL, TR, SL, SR,A} (see Table 1)
and the rewards are +1 per time unit alive, −100 on agent death, and there is
a scenario time limit of 2100 time units.

Note that in all cases, there is no special ‘task scenario’ flag provided as an
additional input. The agent has to infer the nature of the task from the visual
clues in the environment itself.

4.3 Graduated Action Space

Programs can potentially assume any atomic action, ai ∈ A. However, different
learning scenarios might only explicitly require a subset of the atomic actions.
Given that at initialization the programs are initialized randomly, limiting pro-
grams to a subset of the total set of atomic actions might be beneficial. Thus,
instead of allowing all actions to be used from the beginning of the first gener-
ation, we gradually add new actions to the existing pool as they are required.
Thus, the first scenario will determine the starting actions of the population A0.
When the next scenario, k, is introduced, any additional actions, A′, specific to
the scenario are added, or Ak = Ak−1 + A′. Thus, new programs will be able
to sample from an incrementally expanding set of atomic actions. As the addi-
tional scenarios are attempted, new actions are added until all scenarios have
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been encountered. This allows TPG to gradually integrate the new actions into
the existing program graphs.

4.4 Random Bags

In order to reduce unintended sequencing biases into the order with which sce-
narios are introduced during evolution, we randomize their order. Thus, each
scenario is presented for a set of episodes. The collection of scenarios is placed
into a bag, where they are shuffled randomly to produce a scenario permutation
(Step 2(b)i, Algorithm 1). Each agent experiences the task scenarios in the per-
mutation order specific to the bag (Step 2(b)iii). Once a bag is empty (all of the
tasks have been performed) a new bag (ordering of scenarios) is created.

Table 1. Parameterization of VizDoom environment and training scenarios. Total
number of training encounters is Bags × Scenarios × Episodes

Parameter Value

Dimension of visual input space 320 × 240 = 78, 800

Colour Settings RGB24

Atomic action set (A) Move forward (F), Move backward (B), Turn Left
(TL), Turn Right (TR), Strafe Left (SL), Strafe
Right (SR), Shoot/Attack (A)

Record Keeping (R) 2

Bags 6

Scenarios 10

Episodes 20

4.5 Fitness Through Incremental Record Keeping

One of the most difficult aspects of learning multiple tasks from a single continu-
ous run is forgetfulness, e.g. [11]. Forgetfulness implies that as agents experience
different task scenarios, they specialize on their most recent task, and slowly
forget the nuances of the tasks that were encountered earlier. In short, if agents
are unable to discover how to leverage what they have previously learnt from
earlier tasks into the new task, they risk loosing important properties.

Ideally, we would evaluate agent performance on all tasks at each generation.
This might lead to a multi-objective evaluation through Pareto dominance, e.g.
[7,9]. However, in this case we have additional factors to consider, including the
cost of maintaining an absolute measure of fitness over the 10 visual reinforce-
ment task scenarios for the entire population at any point in time, i.e. each
task scenario requires evaluation over multiple task initializations (‘Episodes’
parameter, Table 1).
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In essence, we are attempting to strike a balance between an absolute per-
formance function (as measured across all task scenarios) and measuring perfor-
mance on the single current task scenario. Thus, an individual is not considered
fit merely for their ability to solve the current task, but based on their ability to
solve the most recently attempted R tasks. Once an agent’s current task fitness
is calculated, we then go back and retrieve fitness scores for the agent in the
previous R tasks. Naturally, the Hgap agents created in the current task evalu-
ation (Step 2(b)ii, Algorithm 1) lack appropriate fitness evaluations for the R
previous tasks. In these cases, additional evaluations are performed to establish
fitness on the past R tasks. Thus, at each generation up to Hsize −Hgap agents
are evaluated on the current task, and up to Hgap agents on the current and R
previous tasks.6

Fitness scores are calculated in the following way:

1. Estimate the raw fitness for each agent across a set of episodes for the current
task scenario (Sect. 4.2). Thus, the raw fitness of agent i on task t is:

RawFitness(i, t) =
Episodes∑

k=1

scorek(i, t) (1)

2. Normalize all fitness values by dividing every agent’s by the maximum:7

NormFitness(i, t) =
RawFitness(i, t)

maxk(RawFitness(k, t))
(2)

3. Estimate overall fitness of agent i in terms of the performance over the last
R tasks

OverallF itness(i) =
R∑

k=0

NormFitness(i, t − k) (3)

Note that Eq. (3) is limited to the evaluated scenarios in the case of a ‘code
start’ (first bag with less than R scenarios evaluated).

Once the overall fitness is calculated for all agents, they are ranked in descend-
ing order and the worst Hgap agents removed. In short, we are attempting to
balance the cost of evaluation across all task scenarios versus reduced accu-
racy introduced by only estimating fitness over a subset of tasks. Moreover, in
continuously shuffling the order of scenario evaluation we hope to mitigate the
introduction of other biases. Unlike the previous instance of multi-task learning
with TPG [9], we anticipate some continuity between the tasks encountered, but
6 Note that Hsize is the number of teams present and reflects the number of agents

(root teams) at initialization. However, as teams are subsumed into graphs, the
number of agents (root teams) will decrease. Likewise, application of the variation
operator could switch an action from a team pointer to an atomic action, breaking
a graph into two smaller graphs, resulting in an increase in the number of agents.

7 Any negative normalized fitness values are treated as 0, thus producing a number in
the range [0, 1].
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this same continuity also potentially makes it more difficult to resolve which task
an agent is facing. Moreover, in this work we are facing a total of 10 tasks as
opposed to a maximum of 3 tasks in [9].

5 Results

TPG is based on the symbiotic bid-based (SBB) teaming framework from
Lichodzijewski et al. [15], for which there are several code bases. In this work,
we assumed the open source Java code base of SBBJ (https://web.cs.dal.ca/
∼rsmith/ sbb fcube/) and added additional functionality to support TPG as
summarized in Sect. 3.

Training sessions were divided into permutations of scenarios, with each sce-
nario appearing for a number of episodes, or a bag (Sect. 4.4), Table 1. In total,
6 bags (entire rounds through all the task scenarios) are conducted and results
summarized for 12 independent runs. All runs were performed on desktop com-
puting platforms without recourse to parallel hardware. Table 2 summarizes the
TPG algorithm parameters assumed in this work.

After all the episodes from the same task scenario conclude Eq. (1) can be
estimated. This reward is normalized relative to the highest scoring agent in
order to determine the fitness of agents, Eq. (2). This normalization is important
due to the mis-alignment of reward scales across the various scenarios (see for
example the difference between column values in Table 3). Once all teams are
given a fitness value for the current task scenario, then the normalized fitness
values from the previous R completed scenarios are retrieved for each agent or
Eq. (3). For the purposes of this experiment, R = 2, (Table 1), implying that the
three most recently attempted scenarios are considered in fitness calculation.

Table 2. Parameterization of tangled program graph algorithm.

Teams Learners

Parameter Value Parameter Value

Team Population Size (Hsize) 450 Max. Instructions 1024

Team Gap (Hgap) 50% of Root Teams Prob. Delete Instr. (Pdel) 0.5

Max. Prog. per Team (ω) 9 Prob. Add Instr. (Padd) 0.5

Pd,Pa 0.7 Prob. Mutate Instr. (Pmut) 1.0

Pm 0.2 Prob. Swap Instr. (Pswp) 1.0

Pn 0.1

The overall fitness score then allows all agents (root teams) to be ranked
according to their overall utility across multiple scenario types. Since the assort-
ment of scenarios is randomly bagged, there is no predictability of previous
records in practice. Thus, given enough generations, each agent should be eval-
uated across all permutations of scenarios bound by R + 1.

https://web.cs.dal.ca/~rsmith/_sbb_fcube/
https://web.cs.dal.ca/~rsmith/_sbb_fcube/
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5.1 Human Results

The human results were gathered from a full test run by the researchers. Each
scenario was played 10 times with the same mechanical restrictions presented
during a normal training scenario. The values in Table 3 reflect a moderate level
of familiarity with the ViZDoom control scheme and a high amount of familiarity
with first person shooters in general. The labels in Table 3 have the following
interpretation: (1) Singe task reflects the best single agent on a specific task
scenario (larger scores are better). Hence, this need not be the same agent on
each task. (2) Multi-agent reflects the best agent across all task scenarios. It
is interesting to note that the ‘single best agents’ also actually returned best
performance on more than one game. Moreover, the Multi-agent actually had
better median performance for 3 of the 10 tasks.

Table 3. Best multi-task agent and best single-task agent vs. Human. In all cases
larger scores are better. Performance reflects game score over 200 test games for each
scenario for each agent (1st, 2nd, 3rd quartile performance). Human score reflects a
single best play by an experienced player. {a,b ,c ,d } identify each single-task agent and
the subset of tasks on which they were best.

Task scenario Multi-task agent Single-task agent Human

Q1 Median Q3 Q1 Median Q3

Basic 59 63 68 74 76.57a 79 76

Deadly Corridor 272.8 393.5 508.8 258.5 470.7d 653.08 2280

Defend the Centre 9 11 12 8 10b 12 16

Defend the Line 5 9 11 9 11b 13 25

Health Gathering 595.75 642 778.25 1006 1021c 1032 1065

My Way Home 0.81 0.86 0.88 0.813 0.834d 0.869 0.982

Predict Position -0.071 0.88 0.951 -0.055 0.892a 0.919 0.965

Take Cover 125.75 172 215.25 147.25 180a 216.25 1445

Health Circle 57 73 88 82 110.5c 143.25 848

Circle Strafing 18 24 35 17.75 23c 29 632

Some of the human results shown in Table 3 are the result of discovering
how to exploit the specifics of the task environment. For example, the Take
Cover scenario has a simple dominant strategy where you slowly sidestep all the
way to one side and then sprint back to the other side to avoid all projectiles.
Similarly, the Deadly Corridor scenario is seemingly difficult for learning agents,
but generally simple for human players to complete. The score of 2280 in this
scenario is reasonably close to the maximum for Deadly Corridor. This also
applies to the result in Health Gathering, which requires a player to continuously
collect health kits on the floor in order to not die. Since this scenario is timed,
understanding the bounds of the problem ahead of time provide prior knowledge
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that a human player is able to use to their advantage. In short, humans are still
most effective at playing task scenarios of the VizDoom environment.

Relative to contemporary research using deep learning or hybrid deep learn-
ing and neuroevolution, we note that results only appear to exist for the ‘Basic’
and ‘Health Gathering’ task scenarios. Moreover, such results represent the per-
formance of the agent trained on a single task. Caveats aside, Table 4 compares
scores for each agent under the two tasks for which we could find comparative
results. Note also, that it is also likely that different numbers of testing events
are assumed in each case (for TPG we used 200 task initializations).

Table 4. Comparison with deep learning results under ‘Basic’ and ‘Health Gathering’
task scenarios. Skip Count reflects the frequency with which an agent is required to
make decisions.

Framework Skip Basic task Health Gathering task

Count Average score (Std. Dev.) Average score (Std. Dev.)

Deep learning [10] 0 51.5(±74.9) unknown

Deep learning [10] 4 82.2(±9.4) ≈ 1,300

Hybrid [1] Unknown Unknown 657.1(±397.1)

TPG Multi-task 0 63.3(±4.91) 680.8(±97.7)

TPG Single-task 0 76.6(±4.5) 1020.9(±18.7)

Kempka et al. recognized that increasing the Skip Count from zero (requires
the agent to make a decision at each frame) to an optimal value of 4 skipped frames
had a significant positive impact on the quality of deep learning agent policies
[10]. All TPG runs were performed with a Skip Count of zero. We note that the

(a) Relative to best fitness (b) Relative to average game score

Fig. 1. Score of the top team across an increasing number of scenario sessions (bags)
using (a) normalization of single best agent, and (b) normalization relative to average
game score.
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comparator solutions are only significantly better than TPG when the non-zero
Skip Count was employed. Future work could revisit this parameterization.

5.2 Population and Team Results

Incremental population champions were saved at the conclusion of each bag, the
skills of which are shown in Fig. 1(a). This graph shows the normalized scores
of that bag’s champion when compared to the highest scoring individual of each

Fig. 2. TPG agent with highest average score over all tasks. The root node (black)
defines the starting point for agent policy evaluation. The process of action selection
follows the path defined by the arc of each node’s winning bid until an atomic action
is chosen. Because the path through the TPG graph is based on sequential node-wise
bidding in which no node can be revisited, the search for an atomic action represents
a low computational cost.
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category. It should be noted that the champion is not necessarily the same root
team at each level or task scenario.

As the number of bags increases, we see that the range of scenario scores are
slowly moving toward unity, but do so relatively uniformly. For the first three
bags only the Health Gathering task saw any significant improvement and thus
the results show very low rewards. In the later bags, individual teams were capa-
ble of successfully completing those scenarios and drew their relative position
higher. Since this experimental design rewarded better overall capabilities rather
than localized specialization, this is an outcome we would expect to see as the
TPG agents become more sophisticated throughout the learning process.

Figure 1(b) illustrates the impact of removing key scaling factors from the
approach as outlined in Sect. 4. That is to say, 12 independent runs were also
performed with a single missing scaling factor, after which we again summa-
rize performance relative to the best agent from each task scenario. Specifically,
without incremental record keeping during fitness evaluation (Sect. 4.5), it is not
possible to maintain a consistent front of development across all task scenarios.
Specifically, the ‘MyWayHome’ task scenario seemed to fail to improve at all
without incremental records. Removing graduated actions did not seem to have
a significant positive or negative effect.

The structure of the champion TPG agent is illustrated in Fig. 2. This individ-
ual corresponds a ‘Multi-task agent’ with performance as summarized in Tables 3
and 4. Each node represents a team (of programs) and each arc indicates the
action of the program, i.e. pointer to either another node (a different team of
programs) or an atomic action. There are a total of 18 teams, organizing a total
of 72 programs which index a total of 33,708 unique pixels from the original
visual input (or 43.9%). However, only a fraction of these programs (pixels) are
executed (indexed) when TPG determines what action to suggest for any given
state, Table 5. Thus, in order to make any particular decision between 14% (min)

Table 5. TPG Model complexity for Multi-task agent. Num. Teams/Instr/Pixels rep-
resent the average number of Teams (graph nodes), Instructions executed (including
introns), Pixels indexed per decision

Task scenario Num. Teams Num. Instr Num. Pixels

Basic 3.18 17,238 10,951

Deadly Corridor 3.53 18,038 11,847

Defend the Centre 2.86 16,081 10,692

Defend the Line 3.34 16,709 11,637

Health Gathering 3.41 16,524 10,685

My Way Home 3.91 17,423 11,225

Predict Position 3.37 16,952 11,749

Take Cover 2.76 15,746 11,488

Health Circle 3.34 17,785 10,653

Circle Strafing 3.47 17,537 11,866
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to 15.5% (max) of the input space is actually used. Likewise, only 2 to 4 teams
are evaluated per decision, implying that although the TPG solution might be
‘complex’, the path from root to action is still short.

6 Conclusion

We demonstrate the scaling up of tangled program graphs (TPG) to a set of
visual reinforcement learning tasks described in the ViZDoom environment.
Specifically, TPG agents are evolved from the entire content of the 320 × 240 =
76, 800 pixel state space. Several mechanism are investigated for achieving this
scaling of which basing the fitness function on recent previous task scenarios as
well as the current task scenario appears to be the most significant.

TPG is still able to discover solutions that only index a fraction of the input
space and only executes a subset of the programs in order to make each decision.
At the same time, scaling across multiple task scenarios is demonstrated, where
this is achieved through the ability to organize over 70 programs hierarchically
using the discovery of appropriate graph connectivity. This capacity for emer-
gent task decomposition/modularity provides a unique approach to discovering
solutions under visual reinforcement learning problems. It is also fundamental
to providing solutions that can be discovered and deployed without specialized
hardware support (as is generally the case for deep learning). Comparison with
contemporary deep learning results (for a subset of the task scenarios) indicates
that the quality of the resulting policies does not appear to be compromised.
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Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 64–79. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-55696-3 5

9. Kelly, S., Heywood, M.I.: Multi-task learning in Atari video games with emer-
gent tangled program graphs. In: ACM Genetic and Evolutionary Computation
Conference, pp. 195–202 (2017)

10. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: a
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Abstract. Within the genetic programming community, there has been
growing interest in the use of computational representations motivated
by gene regulatory networks (GRNs). It is thought that these repre-
sentations capture useful biological properties, such as evolvability and
robustness, and thereby support the evolution of complex computational
behaviours. However, computational evolution of GRNs also opens up
opportunities to go in the opposite direction: designing programs that
could one day be implemented in biological cells. In this paper, we
explore the ability of evolutionary algorithms to design Boolean net-
works, abstract models of GRNs suitable for refining into synthetic biol-
ogy implementations, and show how they can be used to control cell
states within a range of executable models of biological systems.

Keywords: Gene regulatory networks · Boolean networks · Control
Evolutionary algorithms

1 Introduction

Gene regulatory networks (GRNs) are biochemical systems that process infor-
mation and generate complex responses within biological organisms. In effect,
they are the “genetic programs” of biological cells. Because of this, GRNs have
long been a source of inspiration to the genetic programming community, with
the first papers using representations motivated by GRNs published around the
turn of the millenium [1,2]. Recently this interest has started to blossom, with a
number of different research groups looking at how GRN-based approaches can
be used to solve computational problems within computers [3]. The motivations
for this are various: to increase the evolvability of genetic programming [2], to
increase the robustness of executional systems [4], to support the evolution of
complex computational behaviours [5], and to increase the compactness or effi-
ciency of computation [6]. However, regardless of the motivation, the focus of this
research has been pretty singular: evolving GRN models that will be executed
in silico.
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In the last decade, there has been considerable progress in the field of syn-
thetic biology [7]. An important activity within synthetic biology is the design
and assembly of novel biochemical pathways that can be deployed within an
existing cell in order to change its behaviour. Typically this is aimed at imple-
menting medical interventions in a way that is more precise and/or effective
than conventional therapeutic methods. At the moment, these synthetic circuits
usually take the form of conventional digital designs (i.e. feed-forward logic cir-
cuits), which can be coupled to the existing gene regulatory pathways through
the control of particular transcription factors. These logic circuits are them-
selves implemented using proteins and nucleic acids, and can be deployed into
cells using various mechanisms, including customised viruses [7,8]. It will likely
soon reach the point where a synthetic circuit can be delivered to a particular
cell within the human body.

Whilst the GP community is becoming more interested in computational rep-
resentations found in biological cells, the synthetic biology community mainly
focuses on using computational representations found in silicon systems. Given
that we have found computational models of GRNs to exhibit desirable proper-
ties (e.g. compact expressiveness, intrinsic fault tolerance) that are not necessar-
ily found in more conventional models of computation, this might seem like an
odd situation. In particular, why not use the existing design principles of bio-
logical cells and build synthetic GRNs rather than Boolean logic circuits? One
answer to this question is that most synthetic biologists (and indeed most people)
do not understand the design principles of GRNs, and hence can not design syn-
thetic GRNs that have particular computational behaviours. This would appear
to open up an opportunity for a community that can design GRNs that have
particular computational behaviours, and this is almost exactly what we have
been doing in recent years in the GP community, albeit with a fairly ad hoc
group of GRN models and target behaviours. In essence, we suggest there is
significant scope for using GP (and related approaches) to evolve programs that
could be run in vivo—that is, within biological cells—and hence close the cir-
cle from biological inspiration to computational optimisation and back again to
biology.

In this paper, we present work on using evolutionary algorithms (EAs) to
design Boolean networks (BNs) that have a particular biological function. BNs
are a class of abstract GRN models that are known to have steady-state equiv-
alence to more detailed quantitative models [9], such as systems of differential
equations, and have been successfully used to model various biological networks
[10]. Since they are composed of Boolean functions, they also lend themselves
well to implementation using existing synthetic biology techniques [8], so in
principle evolved models could be refined into biological implementations. This
is not necessarily the case with the more complex models currently used in the
GP community, and hence why we focus on this relatively abstract class of GRN
models.

An important problem in biology is the control of cell state [11]. This plays
a role in many diseases: for instance, many cancers are thought to be caused by
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a cell transitioning to an abnormal cell state [12], and a potential cure would
involve guiding its transition back to a normal cell state. Transitions in cell state
are governed by a cell’s GRN, and it is necessary to intervene in the GRN’s natu-
ral dynamics in order to change this. At present, such interventions are typically
achieved by using a drug to target a single gene, forcing it to be permanently
on or off. However, this is a rather blunt form of intervention and unlikely to be
sufficient for causing large-scale changes within a cell’s behaviour. More effective
forms of intervention would involve the coordinated targeting of multiple genes
in a particular temporal pattern. In effect, this requires a control strategy, and
consequently much of the work in this area has focused on using conventional
control techniques to generate appropriate patterns of intervention [13,14]. How-
ever, this is an NP hard problem [15], meaning that in practice exact analytical
solutions can only be found for small systems. This in itself suggests a potential
role for metaheuristics such as EAs, which are often used to address problems
where analytical solutions are infeasible.

In previous work [16,17], we have shown that EAs can be used to design
BNs that can carry out control (i.e. generate a series of control interventions)
when coupled to a target BN. The target Boolean networks, in this case, were
randomly sampled from the space of all BNs of a given size, giving an estimate
of the general ability of evolved BNs to influence the dynamics of other BNs.
In the work reported in this paper, by comparison, we focus on the control of
actual models of biological regulatory networks, and show that evolved BNs
are able to govern these systems so that they transition to a specific attractor
corresponding to a particular cell state. In this sense, they are much closer to
being viable “genetic programs”.

Section 2 presents a brief introduction to BNs and describes the BN models of
biological networks that serve as control targets in this work. Section 3 describes
the experimental methodology. Sections 4 and 5 present results and discussion,
and Sect. 6 concludes.

2 Boolean Networks

A Boolean network (BN) is a discrete-time non-linear dynamical system repre-
sented as a directed graph G(V,E) composed of nodes, or vertices, V and edges
E [18,19]. The time evolution of a BN is expressed by a set of Boolean func-
tions fi, i = 1, 2, 3, .... Each BN node has a binary state s which is updated
synchronously according to its Boolean function and the states of the k input
nodes that are connected to it. Formally, s(t + 1) = fi(s(t)), where s is a set of
network states, N is the number of nodes, s ∈ {0, 1}N , t = 0, 1, 2, 3, 4, ... is the
discrete time, and fi : {0, 1}N → {0, 1}. Since a BN is deterministic s(t + 1) is
only determined by s(t). The possible number of Boolean functions is 22

k

, and
the state space is finite and equal to 2N . Since the state space is finite, states
must eventually be repeated, leading to temporal structures called attractors.
When used to model GRNs, these attractors can be interpreted as the stable
states (or cell types) of a cell [20].
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2.1 Boolean Models of Biological Networks

To evaluate the ability of our control method in realistic biological situations, we
selected five BNs from the literature that model well-known genetic regulatory
systems [21–24]. Several factors motivated this choice. First, we wanted to look
at the effect of network size, and the selected BNs vary in size from 10 nodes
to 40 nodes. Second, it is important to show that the method works on systems
with different state space structures. To address this, we chose BNs with different
numbers of stable states, since this gives some indication of the complexity of
the dynamics: the selected BNs have between 3 and 13 stable states, all of
which are point attractors (i.e. a single repeating expression state). Finally, the
chosen models are biologically diverse, capturing a range of different biological
processes (morphogenesis, signalling and cell cycle regulation) that occur in a
range of different species (single-celled organisms, plants, and animals). Each is
briefly described in this section.

T Cell Receptor Signalling Pathway. T cells are a subgroup of white blood
cells that play a crucial role in the adaptive immune response, helping to protect
the host against different pathogens such as virus and bacteria. The inappropri-
ate activation of a T cell can lead to various autoimmune diseases. T cell receptor
(TCR) is a membrane protein found on the surface of T cells which contributes
to their activation by recognising antigen. A BN of the TCR signalling pathway
is described in [22] and is depicted in Fig. 1a. It comprises 40 genes and has
8 point attractors, corresponding to different activation and proliferation cell
states. See [22] for details of Boolean functions.

T Helper Cell Differentiation Network. T helper cells, commonly called Th
cells, are a type of T cell that plays a critical and key role in the adaptive immune
system, where they help the immune activities of other immune cells such as B
cell antibodies, plasma cells and cytotoxic T cells. T helper cells differentiate
into one of the largest subcategories of cells, for example TFH, Th1, Th2, Th3,
Th9 and Th17, which produce and release several types of T cells cytokines to
regulate immune responses. A BN model of Th cell differentiation was developed
in [21]. This model, depicted in Fig. 1b, captures the activities of 23 genes and
has three point attractors, corresponding to different Th cell types. See [21] for
details of Boolean functions.

Flower Morphogenesis in Arabidopsis Thaliana. Morphogenesis, the
development of an organism’s form through the process of cell differentiation,
is an important component of multicellular organisms, and often plays a role in
disease development. The most widely studied models of morphogenesis concern
flower development in plants, and particularly within the model species ara-
bidopsis thaliana, a small flowering plant. Flower morphogenesis occurs during
the entire life cycle from groups of undifferentiated cells known as meristems.
These develop into various different cell types in order to form the organs of a
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Fig. 1. Biological models used as case studies in this work.
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flower, for example sepals, petals, stamens and carpels. A BN model of flower
morphogenesis in arabidobis thaliana is described in [24]. It comprises 15 genes
and has 10 point attractors, each corresponding to a different cell type. See
Fig. 1c. Details of Boolean functions can be found in [24,25].

Fission Yeast Cell Cycle Regulation. Fission yeast is the common name of
schizosaccharomyces pombe, a unicellular eukaryote whose cells are rod-shaped
and divide by medial fission. It is a well known system used to study cell growth
and division, mainly because of their simple shape and their place within the
eukaryotic lineage. The fission yeast cell cycle is the sequence of events that occur
in a cell leading to duplication of all its components and its division into two
almost identical daughter cells. A BN model of fission yeast cell cycle regulation is
given in [23]. It is formed by 10 genes and has 13 point attractors, corresponding
to different stable cell states within the cell cycle. See Fig. 1d. Details of Boolean
functions can be found in [23].

Budding Yeast Cell Cycle Regulation. Budding yeast is another species of
yeast that has been widely used to study the eukaryotic cell life cycle. As the
name implies, new cells form as a bud that grows from an existing cell, rather
than undergoing fission. A BN model of budding yeast cell cycle regulation is
described in [23]. It has 12 genes and 7 point attractors. See Fig. 1e. Details of
Boolean functions can be found in [26].

3 Evolutionary Methods

In this paper we optimise Boolean networks to control Boolean models of real
biological networks. We focus on applying a control intervention (i.e. a series of
perturbations) that guides a trajectory of a controlled BN from a random initial
state to a particular stable state (attractor) in its state space. This is done by
coupling a controller BN to the controlled BN (see Fig. 2). During the course
of its execution, the controller BN generates a series of interventions by setting
the states of one or more target nodes (referred to as coupling terms) within the
controlled BN.

The topology, node functions, coupling terms, and timing parameters of the
controller BN are optimised using an EA. The effectiveness of a controller’s
interventions are measured using a fitness function that returns the Euclidean
distance between the target state and the actual state that is reached by the end
of a control period of 100 time steps of the controlled BN. This is linearly scaled
to the interval [0, 1], where a fitness of 1.0 indicates that the target state was
reached. The fitness distribution over 20 runs is used to give an estimate of the
ability of the EA to find a controller BN that can control a specified controlled
BN so that it reaches a specified stable state. This is repeated for each stable
state of each target network.

A controller BN has two evolved timing parameters, each within the range
[1, 50]. The first timing parameter determines the number of time steps the



Towards in Vivo Genetic Programming: Evolving Boolean Networks 157

controller BN will perform for each time step of the controlled BN, i.e. the
relative speed of the controller. The second timing parameter indicates how
frequently the controller BN is executed, in terms of the number of time steps
of the controlled network, i.e. how often it intervenes.

A controller RBN is represented as an array of nodes, each comprising a
Boolean function number between 0 and 22

k

, an initial state, and a set of input
nodes, where each input is indicated by its position within the array. For these
experiments, k is fixed at 2 (the edge-of-chaos regime, where computational
behaviours are hypothesised to be maximal [27]) and the controller has a fixed
length of 15 nodes. In previous work, we have found this length to offer a fair
trade-off between expressiveness and search space size [16]. The solution chro-
mosome also contains the timing parameters and the coupling terms. See Fig. 3.
A generational evolutionary algorithm is executed for 100 generations each run,
with a population size of 500, tournament selection (n = 3), uniform crossover
(pc = 0.15), point mutation (pm = 0.06) and elitism (n = 1).

Fig. 2. Evolved controller Boolean network (representing a synthetic GRN) coupled
to a controlled Boolean network (representing a native biological regulatory network).
Coupling between the two networks is implemented by copying the expression states
from designated nodes in the controller to designated nodes in the controlled network
(depicted as dotted arrows in this diagram) at specified intervals.
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Fig. 3. Example of a Boolean network’s genetic representation. Since k = 2, functions
are numbered between 0 and 15. The timing and coupling terms indicate that this
network is iterated twice each time it is executed, it is executed every 8 steps of the
controlled network, its control outputs (interventions) are copied to nodes 2 and 5 of
the controlled network, and its feedback (in) inputs from the controlled network are
copied from nodes 6 and 11.

4 Results

Tables 1, 2, 3, 4 and 5 present summary statistics for the fitness distributions
of both the natural (i.e. how close it gets to the target state in the absence of
control) and controlled dynamics of each case study BN for each target stable
state. Table 6 summarises these results, showing the mean fitness achieved and
the number of target states reached (with and without control) within each
biological network. Without control, only a small number of these attractors
were reached (4/32). Even when they were reached, the standard deviations in
fitness (i.e. in distance from the target) were generally large. This indicates that,
for a particular evolutionary run, most randomly sampled initial states will not
be within the basin of attraction of the target attractor, and hence the control
problems are non-trivial.

In all the case study BNs, the EA was able to find controllers that can target
the majority of the steady states from a random initial state. Where the target

Table 1. Fitness distributions for the T cell receptor signaling pathway control prob-
lem, indicating the ability of trajectories to reach each of the system’s stable states
both with and without control. A fitness of 1 is optimal.

Control No control

Attractors Mean Std. Dev. Max. Mean Std. Dev. Max. p-value

1 0.996 0.009 1 0.851 0.060 0.950 1.278 × 10−08

2 0.975 0.026 1 0.850 0.034 0.900 1.596 × 10−08

3 0.996 0.009 1 0.843 0.075 0.975 2.745 × 10−08

4 0.975 0 0.975 0.869 0.066 0.950 3.664 × 10−09

5 0.996 0.009 1 0.861 0.066 0.950 9.115 × 10−09

6 0.969 0.010 0.975 0.917 0.055 0.975 1.49 × 10−05

7 0.975 0 0.975 0.868 0.048 0.950 5.66 × 10−09

8 1 0 1 0.844 0.051 0.950 3.073 × 10−09

General mean 0.985 0.008 0.990 0.863 0.057 0.950 1.872 × 10−06
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Table 2. T-helper cell differentiation

Control No control

Attractors Mean Std. Dev. Max. Mean Std. Dev. Max. p-value

1 0.972 0.065 1 0.553 0.067 0.652 1.094 × 10−08

2 1 0 1 0.601 0.179 0.826 3.823 × 10−09

3 0.867 0.0446 0.913 0.510 0.161 0.826 5.285 × 10−08

General mean 0.946 0.036 0.971 0.554 0.135 0.768 2.253 × 10−08

Table 3. Arabidopsis thaliana flower morphogenesis

Control No control

Attractors Mean Std. Dev. Max. Mean Std. Dev. Max. p-value

1 1 0 1 0.863 0.137 1 1.094 × 10−08

2 0.926 0.030 0.933 0.561 0.124 0.800 2.75 × 10−09

3 0.989 0.033 1 0.635 0.100 0.733 5.693 × 10−09

4 0.933 0 0.933 0.800 0.049 0.866 2.726 × 10−09

5 1 0 1 0.835 0.144 0.933 2.549 × 10−09

6 0.933 0 0.933 0.217 0.150 0.800 3.027 × 10−09

7 1 0 1 0.919 0.042 1 3.3 × 10−08

8 1 0 1 0.624 0.074 0.733 3.062 × 10−09

9 1 0 1 0.382 0.184 0.933 4.479 × 10−09

10 0.996 0.015 1 0.256 0.059 0.333 4.45 × 10−09

General mean 0.977 0.0078 0.979 0.609 0.110 0.831 7.263 × 10−09

was reached, the standard deviation between runs tended to be low, meaning that
most runs are able to find BNs with optimal, or at least near-optimal, control
strategies: the maximum likelihood estimation is 1.0 when BN controllers are
successfully found and 0.9 otherwise. In all cases, the evolved controllers guided
the system closer to the target states than could be achieved in the absence of
control (see p-values in tables).

Some target BNs appear to be harder to control than others. The arabidopsis
thaliana and T cell receptor signalling networks both have three steady states
which were not reachable by the evolved controllers; although, in both cases,
the systems could be controlled to states not far from the target state. However,
there does not appear to be a simple relationship between the difficulty of the
control task and the number of attractors: for example, the fission yeast BN,
which has the most attractors, was the easiest to control. There is, however, a
mild negative correlation (−0.23) between network size and control fitness, and
indeed the largest network (T cell receptor signalling) was one of the hardest to
control.
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Table 4. Fission yeast cell cycle

Control No control

Attractors Mean Std. Dev. Max. Mean Std. Dev. Max. p-value

1 1 0 1 0.442 0.285 1 3.916 × 10−08

2 1 0 1 0.321 0.171 0.900 2.25 × 10−09

3 0.921 0.042 1 0.594 0.102 0.700 6.823 × 10−09

4 0.994 0.022 1 0.447 0.219 0.900 4.107 × 10−09

5 0.994 0.022 1 0.505 0.246 0.900 5.482 × 10−09

6 1 0 1 0.573 0.133 0.900 1.921 × 10−09

7 1 0 1 0.484 0.121 0.800 2.377 × 10−09

8 0.900 0 0.900 0.763 0.095 0.900 2.088 × 10−09

9 1 0 1 0.600 0.124 0.800 12.483 × 10−06

10 0.984 0.0373 1 0.405 0.154 0.900 2.457 × 10−09

11 0.921 0.041 1 0.552 0.134 0.800 1.274 × 10−08

12 1 0 1 0.382 0.184 0.933 8.583 × 10−09

13 0.994 0.022 1 0.536 0.134 0.800 3.873 × 10−09

General mean 0.997 0.014 0.992 0.508 0.161 0.864 1.980 × 10−07

Table 5. Budding yeast cell cycle

Control No control

Attractors Mean Std. Dev. Max. Mean Std. Dev. Max. p-value

1 1 0 1 0.543 0.165 0.666 2.788 × 10−09

2 1 0 1 0.627 0.321 0.916 2.088 × 10−09

3 1 0 1 0.442 0.416 0.916 2.25 × 10−09

4 1 0 1 0.500 0.328 0.833 2.544 × 10−09

5 1 0 1 0.605 0.393 0.916 2.859 × 10−09

6 0.916 0 0.916 0.521 0.249 0.750 2.335 × 10−09

7 1 0 1 0.434 0.479 1 1.036 × 10−05

General mean 0.988 0 0.988 0.524 0.335 0.855 1.482 × 10−06

Although the majority of target states could be reached, the evolved con-
trollers were not able to reach all target states. Further research is required to
understand exactly why this is the case, though we can speculate it is likely due
to at least two reasons. First, in some target networks, the majority of random
states may fall far from the basin of attraction of a particular stable state, making
the problem intrinsically hard when an arbitrary initial state is chosen. Second,
transitions between states in BNs are typically not between adjacent states,
meaning that in many cases there will not be valid transitions from states which
differ by a single bit from the target: this is likely to lead to deceptive local



Towards in Vivo Genetic Programming: Evolving Boolean Networks 161

Table 6. Summary of the results, showing the mean fitness (1 is optimal) across all
runs, and the number of attractors reached, for each case study BN both when under
the control of an evolved BN and when following its natural dynamics (no control)
from a random initial state.

Network name Size Mean fitness Attractors reached

Control No control Total Control No control

Fission yeast cell cycle 10 0.997 0.508 13 12 1

Budding yeast cell cycle 12 0.988 0.524 7 6 1

Arabidopsis thaliana 15 0.977 0.609 10 7 2

T helper cell differentiation 23 0.946 0.554 3 2 0

T cell receptor signalling 40 0.985 0.863 8 5 0

optima in the state space. If this is the case, there may be scope for using diver-
sity preservation techniques (e.g. crowding, fitness sharing) to navigate around
local optima during optimisation. This is something we plan to look at in future
work. Nevertheless, the results are promising, and demonstrate that even basic
evolutionary algorithms can solve state space targeting problems, and can do so
in a way that does not require a priori understanding of the structure of the
state space.

5 Discussion

The results of this study suggest that it is possible to evolve synthetic GRN mod-
els that have specific, biologically-relevant, behaviours. This is not the first time
that EAs have been used to design and optimise GRNs for use within a synthetic
biology context. For example, a number of different research groups have previ-
ously used EAs to design GRN models that have simple dynamical behaviours
such as oscillation and bistability [28–30]. Nevertheless, unlike these earlier stud-
ies, the synthetic GRN models evolved in this work have behaviours that could
reasonably be described as computational or programmatic, since controllers are
essentially programs that carry out decisions based on their inputs.

This work is very much motivated by previous work in the GP community
where GRN models have been used to carry out computation. Control, in par-
ticular, has been a recurring application in this nascent research field, with GRN
models evolved to solve control tasks in robotics [6], computer gaming [4], and
chaotic systems [5], to name but a few. This seems natural, since control is one
of the principal behaviours carried out by biological GRNs. However, evolved
GRNs have also been used to solve more diverse tasks (e.g. image compression
[31]) and theoretical studies have shown that GRN models such as BNs are com-
putationally universal [3], so in principle evolved synthetic GRNs could be used
to carry out a much broader range of computational tasks, and perhaps even
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be used as the basis of general-purpose cellular computers. There is also no rea-
son to limit the scope of this research to GRNs. BNs, for example, can be used
to model other important biological networks, such as intracellular signalling
networks.

In this work, we intentionally used a standard evolutionary algorithm and a
linear solution representation (essentially a genetic algorithm) in order to keep
things simple. In practice, there is plenty of scope for using more advanced
approaches. Notably, there has been a lot of work on evolving network structures,
and much of this would be directly applicable especially if we aim to evolve larger,
more complex networks. Recent work in applying NEAT to GRN models [32],
and applying Cartesian GP to recurrent networks [33] seem particularly relevant.

This is still early work, and there remains significant work to be done to show
that this is a viable approach to designing synthetic GRNs. Initially, we plan to
study the evolved controllers in order to gain insight into the nature (and diver-
sity) of the computational behaviours that are carried out when solving these
control tasks. However, we also need to take into account biological constraints
when evolving controllers: for instance, restricting coupling terms to biologically
accessible targets (since currently any node in the target network can be used
for coupling), and focusing on biologically-meaningful initial conditions rather
than randomly sampling starting states.

Whilst this will help to build confidence that evolved controllers are doing
something useful and viable, we also need to demonstrate that the evolved con-
trollers are robust. There are several aspects to this. First, there is the generality
of a controller’s behaviour; for instance, can a single controller tolerate different
initial conditions? Second, there are the differences between simulation and real-
ity. Research in evolutionary robotics has shown that this kind of “reality gap”
can restrict the generality of evolved controllers. We know from existing research
[4,34] that GRN models are less susceptible to this problem, given their natural
robustness. However, we also need to consider that the simulation environment
used in this work is quite different to biological reality. For instance, biological
cells are stochastic environments, both in terms of what occurs and when things
occur. We might address this, for example, by using probabilistic BN models.
There is also the question of how much confidence we have in the executable
model used to evaluate a BN model, since this will determine how much con-
fidence we have in the evolved model. However, this is a more general issue
of biological modelling, and there has been significant progress in developing
reliable executable models of biological systems [35].

Refining evolved BN programs into actual synthetic biology realisations
would involve a number of extra challenges. For instance, in this work we evolved
timing parameters to allow the controller and controlled systems to operate over
different timescales. This may also be possible to do within synthetic biology
implementations, e.g. using RNA interference rather than transcription factors
to speed up the controller’s logic, but it would not be trivial. Another issue might
be limitations placed on the controller’s size or topology due to the difficulty of
avoiding cross-talk within synthetic biology circuits.
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6 Conclusions

The control of a cell’s state is an important problem: it is instrumental for con-
trolling many disease processes, yet in practice it is very difficult to find a series
of interventions that will guide a cell between two different states. In this paper,
we describe a novel approach to solving this problem which involves optimising
a synthetic gene regulatory network which is then used to generate a pattern
of interventions based on the state of a target cell. The approach is evaluated
using computational simulation, representing the gene regulatory network as a
Boolean network, and the target cells as executable Boolean models. An evolu-
tionary algorithm is then used to carry out optimisation of the Boolean network.
In the majority of the case studies we looked at, the evolutionary algorithm was
able to find Boolean networks that could successfully guide the target cell model
from a randomly sampled initial state to a biologically-meaningful cell state.

The choice of Boolean networks is not arbitrary. The fact that they are con-
structed from Boolean logic gates means that there is a potential pathway from
model to biological implementation through the use of existing synthetic biol-
ogy principles. The choice of an evolutionary algorithm is also not arbitrary,
and is motivated by a larger body of work in the field of genetic programming
which is concerned with using evolutionary algorithms to design programmatic
behaviours. In recent years, the genetic programming community has increas-
ingly made use of models of gene regulatory networks to represent evolving com-
putation. In addition to being intrinsically evolvable, these representations have
also proved able at expressing complex computational behaviours that are robust
yet compact. However, to our knowledge, this is the first time that evolutionary
algorithms have been used to design actual “genetic programs”.

From this perspective, it is interesting to note that synthetic biology focuses
on implementing feed-forward logic circuits and traditional models of computa-
tion within biological cells, rather than using native biological design principles.
This is in contrast to the opposing direction of travel in the genetic program-
ming community. There are various reasons for this, but a significant factor is
the difficulty of designing gene regulatory networks, which are based around
principles of non-linear dynamical systems rather than well understood digital
design principles. However, the ability of evolutionary algorithms to optimise
these structures suggests that the genetic programming community could play
an important role in designing programs that will one day run in vivo within
biological cells.
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Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 43–52.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5 5

35. Timmis, J., Alden, K., Andrews, P., Clark, E., Nellis, A., Naylor, B., Coles, M.,
Kaye, P.: Building confidence in quantitative systems pharmacology models: an
engineer’s guide to exploring the rationale in model design and development. CPT
Pharmacometrics Syst. Pharmacol. 6(3), 156–167 (2017)

https://doi.org/10.1002/9783527626359.ch3
https://doi.org/10.1002/9783527626359.ch3
https://doi.org/10.1145/1830483.1830593
https://doi.org/10.1007/978-3-642-20525-5_5


A Multiple Expression Alignment
Framework for Genetic Programming

Leonardo Vanneschi(B) , Kristen Scott, and Mauro Castelli

NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
{lvanneschi,kscott,mcastelli}@novaims.unl.pt

Abstract. Alignment in the error space is a recent idea to exploit
semantic awareness in genetic programming. In a previous contribution,
the concepts of optimally aligned and optimally coplanar individuals
were introduced, and it was shown that given optimally aligned, or opti-
mally coplanar, individuals, it is possible to construct a globally opti-
mal solution analytically. As a consequence, genetic programming meth-
ods, aimed at searching for optimally aligned, or optimally coplanar,
individuals were introduced. In this paper, we critically discuss those
methods, analyzing their major limitations and we propose new genetic
programming systems aimed at overcoming those limitations. The pre-
sented experimental results, conducted on four real-life symbolic regres-
sion problems, show that the proposed algorithms outperform not only
the existing methods based on the concept of alignment in the error
space, but also geometric semantic genetic programming and standard
genetic programming.

1 Introduction

In the last few years, the use of semantic awareness for improving Genetic Pro-
gramming (GP) [1,2] and other heuristic methods [3] became popular. A survey
discussing large part of the existing semantic approaches in GP can be found
in [4]. In that survey, the existing work was categorized into three broad classes:
approaches based on semantic diversity, on semantic locality and on seman-
tic geometry. Among several other references, semantic diversity and semantic
locality, and their relationship with the effectiveness of GP, were investigated
in depth in [5,6]. On the other hand, the idea of studying semantic geometry
revealed itself about a decade ago (see for instance [7,8]), and became a GP hot
topic in 2013, when a new version of GP, called Geometric Semantic GP (GSGP)
was introduced [9]. GSGP uses new operators, called geometric semantic opera-
tors (GSOs), instead of traditional crossover and mutation, and it owes part of
its successes to the fact that GSOs induce a unimodal fitness landscape [10–12]
for any supervised learning problem. In the last six years, a large number of con-
tributions showed that GSGP is competitive with the state of the art in many
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applicative domains (see for instance [13–15]). Few years after the introduction
of GSGP, a new way of exploiting semantic awareness was presented in [16] and
further developed in [17,18]. The idea, which is also the focus of this paper, can
be sketched as follows.

We define semantics of an individual as the vector of its output values on
the training cases [9]. Hence, semantics can be represented as a point in a space
that we call semantic space. In supervised learning, the target is also a point
in the semantic space, but usually (unless the rare case where the target value
is equal to zero for each training case) it does not correspond to the origin of
the Cartesian system. Then, we translate each point in the semantic space by
subtracting the target from it. In this way, for each individual, we obtain a new
point, that we call error vector, and we call the corresponding space error space.
The target, by construction, corresponds to the origin of the Cartesian system
in the error space.

In [16], it was proven that, given sets of individuals with particular charac-
teristics of alignment in the error space (called optimally aligned, and optimally
coplanar, individuals), it is possible to analytically reconstruct a globally opti-
mal solution (see Sect. 2.1). Keeping this in mind, it makes sense to develop
GP systems whose objective is looking for optimally aligned, or optimally copla-
nar, individuals (instead of looking directly for an optimal solution, as in tra-
ditional GP). The first attempt at developing a system aimed at searching for
optimally aligned, or optimally coplanar, individuals was presented in [16], where
the ESAGP method was proposed. While ESAGP reported interesting results, it
has the important limitation of constraining the alignment only in one particular
direction in the error space, that is prefixed a priori. In order to overcome this
limitation, a particular version of GP must be defined, that evolves individuals
that are sets of programs, instead of just one program as in traditional GP. The
first preliminary attempt was made in [17], where the POGP system was intro-
duced. However, in [17] severe limitations of POGP, which make it unusable in
practice, were reported.

The objective of this paper is to present new GP systems aimed at evolving
sets of programs with the objective of generating optimally aligned individuals,
and able to overcome all the limitations of POGP. The new systems (called Align,
Nested Align and Nested Align β) will be compared to standard GP, GSGP and
ESAGP on four complex real-life symbolic regression problems.

The rest of the paper is structured as follows: in Sect. 2, we revise previous and
related work, with particular focus on ESAGP and POGP, describing the known
issues of POGP. Section 3 describes the proposed methods (Align, Nested Align
and Nested Align β), explaining how they overcome the previously discussed
issues of POGP. In Sect. 4, we present our experimental study, in which the
experimental settings and test problems are described and the obtained results
discussed. Finally, Sect. 5 concludes the paper, also suggesting ideas for future
research.
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2 Previous and Related Work

2.1 Error Space Alignment GP

In [16], the concept of optimal alignment was introduced for the first time,
together with a new GP method, called ESAGP (which stands for Error Space
Alignment GP), that exploits it. Two individuals A and B are optimally aligned
if a scalar constant k exists such that eA = k · eB , where eA and eB are the
error vectors of A and B respectively. From this definition, it is not difficult
to see that two individuals are optimally aligned if the straight line joining
their error vectors also intersects the origin in the error space. Analogously, and
extending the idea to three dimensions, three individuals are optimally coplanar
if the bi-dimensional plane in which their error vectors lie in the error space also
intersects the origin. In [16], it is proven that given any pair of optimally aligned
individuals A and B, it is possible to reconstruct a globally optimal solution
Popt. This solution is defined in Eq. (1):

Popt =
1

1 − k
∗ A − k

1 − k
∗ B (1)

Analogously, in [16], it is also proven that given any triplet of optimally coplanar
individuals, it is possible to analytically construct a globally optimal solution
(the reader is referred to [16] for the equation of the globally optimal solution in
that case).

Keeping all this in mind, the ESAGP method introduced in [16] was com-
posed by two GP systems: ESAGP-1, whose objective is looking for optimally
aligned pairs of individuals, and ESAGP-2 whose objective is looking for triplets
of optimally coplanar individuals. The biggest difference between these systems
and traditional GP is that the search in ESAGP-1 and ESAGP-2 is not guided
by the quality of the single solutions, but only on their alignment properties.
Several possible ways of searching for alignments can be imagined. In ESAGP,
one direction, called attractor, is fixed and all the individuals in the popula-
tion are pushed towards an alignment with the attractor. In this way, ESAGP-1
and ESAGP-2 can maintain the traditional representation of solutions where
each solution is represented by one program. The other face of the coin is that
ESAGP-1 and ESAGP-2 strongly restrict what GP can do, forcing the alignment
to necessarily happen in just one prefixed direction, i.e. the one of the attractor.
The ESAGP systems were also studied in [18], where the operators used to reach
the alignment with the attractor were GSOs. The authors of [18] report severe
overfitting for this new ESAGP version. The objective of this paper is to relieve
the constraint of ESAGP by defining a new GP system that is generally able to
evolve vectors of programs (even though only vectors of size equal to 2 will be
used in this paper). As already mentioned, a preliminary attempt is represented
by POGP [17], described below.
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2.2 Pair Optimization GP

In [17], Pair Optimization GP (POGP) was introduced. Limiting itself to the bi-
dimensional case (i.e. to the case in which pairs of optimally aligned individuals
are sought for), POGP extends ESAGP-1, releasing the limitation of forcing
alignments in a prefixed direction. In POGP, individuals are pairs of programs,
and fitness is the angle between the respective error vectors. From now on, for the
sake of clarity, this type of individual (i.e. individuals characterized by more than
one program) will be called multi-individuals. In [17], the following problems of
POGP were reported: (i) generation of semantically identical, or very similar,
expressions; (ii) k constant in Eq. (1) equal, or very close, to zero; (iii) generation
of expressions with huge error values. These problems are discussed here:

Issue 1: generation of semantically identical, or very similar, expres-
sions. A simple way for GP to find two expressions that are optimally aligned
in the error space is to find two expressions that have exactly the same seman-
tics (and consequently the same error vector). However, this causes a problem
once we try to reconstruct the optimal solution as in Eq. (1). In fact, if the
two expressions have the same error vector, the k value in Eq. (1) is equal to 1,
which gives a denominator equal to zero. Experience tells us that GP tends very
often to generate multi-individuals that have this kind of problem. Also, it is
worth pointing out that even preventing GP from generating multi-individuals
that have an identical sematics, GP may still push the evolution towards the
generation of multi-individuals whose expressions have semantics that are very
similar between each other. This leads to a k constant in Eq. (1) that, although
not being exactly equal to 1, has a value that is very close to 1. As a conse-
quence, the denominator in Eq. (1), although not being exactly equal to zero,
may be very close to zero and thus the value calculated by Eq. (1) could be
a huge number. This would force a GP system to deal with unbearably large
numbers during all its execution, which may lead to several problems, including
numeric overflow.

Issue 2: k constant in Eq. (1) equal, or very close, to zero. Looking at
Eq. (1), one may notice that if k is equal to zero, then expression B is irrelevant
and the reconstructed solution Popt is equal to expression A. A similar problem
also manifests itself when k is not exactly equal to zero, but very close to zero. In
this last case, both expressions A and B contribute to Popt, but the contribution
of B may be so small to be considered as marginal, and Popt would de facto
be extremely similar to A. Experience tells us that, unless this issue is taken
care of, the evolution would very often generate such situations. This basically
turns a multi-individual alignment based system into traditional GP, in which
only one of the expressions in the multi-individual matters. If we really want to
study the effectiveness of multi-individual alignment based systems, we have to
impede these kind of situations.

Issue 3: generation of expressions with huge error values. As previously
mentioned, systems based on the concept of alignment in the error space could
limit themselves to searching for expressions that are optimally aligned, without



170 L. Vanneschi et al.

taking into account their performance (i.e. how close their semantics are to
the target). However, experience tells us that, if we give GP the only task of
finding aligned expressions, GP frequently tends to generate expressions whose
semantics contain unbearably large numbers. Once again, this may lead to several
problems, including numeric overflow, and a successful system should definitely
prevent this from happening.
One fact that should be remarked is that none of the previous issues can be taken
into account with simple conditions that prevent some precise situations from
happening. For instance, one may consider solving Issue 1 by simply testing if the
expressions in a multi-individual are semantically identical between each other,
and rejecting the multi-individual if that happens. But, as already discussed,
expressions that have very similar semantics between each other may also lead
to problems. Furthermore, the idea of introducing a threshold ε to the semantic
diversity of the expressions in a multi-individual, and rejecting all the multi-
individuals for which the diversity is smaller than ε does not seem a brilliant
solution. In fact, experience tells us that GP would tend to generate multi-
individuals with a diversity equal, or very close to ε itself. Analogously, if we
consider Issue 2, neither rejecting multi-individuals that have a k constant equal
to zero, nor rejecting individuals that have an absolute value of k larger than
a given threshold would solve the problem. Finally, considering Issue 3, also
rejecting individuals that have the coordinates of the semantic vector larger
than a given threshold δmax would not solve the problem, since GP would tend
to generate expressions in which the coordinates of the semantic vector are equal,
or very close, to δmax itself.

In such a situation, we believe that a promising way to effectively solve these
issues is (besides defining the specific conditions mentioned above) to take the
issues into account in the selection process, for instance giving more probability
of being selected for mating to multi-individuals that have large semantic diver-
sity between the expressions, values of k that are, as much as possible, far from
zero and expressions whose semantics are, as much as possible, close to the tar-
get. These ideas are implemented in the proposed systems, which are described
below.

3 Description of the Proposed Methods

In order to introduce the proposed methods in a compact way, we describe first
the Nested Align method, and then we discuss the other methods by simply
pointing out the differences between them and Nested Align.

3.1 Nested Align

Here, we describe selection, mutation and population initialization of
Nested Align, keeping in mind that no crossover has been defined yet for this
method.
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Selection. Besides trying to optimize the performance of the multi-individuals,
selection is the phase that takes into account the issues of the previous alignment-
based methods discussed in Sect. 2.2. Nested Align contains five selection crite-
ria, that have been organized into a nested tournament. Let φ1, φ2, ..., φm be the
expressions characterizing a multi-individual. Once again, it is worth pointing
out that only the case m = 2 was taken into account in this paper. But the
concept is general, and so it will be explained using m expressions. The selection
criteria are:

– Criterion 1: diversity (calculated using the standard deviation) of the seman-
tics of the expressions φ1, φ2, ..., φm (to be maximized).

– Criterion 2: the absolute value of the k constant that characterizes the recon-
structed expression, as in Eq. (1) (to be maximized).

– Criterion 3: the sum of the errors of the single expressions φ1, φ2, ..., φm (to
be minimized).

– Criterion 4: the angle between the error vectors of the expressions
φ1, φ2, ..., φm (to be minimized).

– Criterion 5: the error of the reconstructed expression Popt in Eq. (1) (to be
minimized).

The nested tournament works as follows: an individual is selected if it is the
winner of a tournament, that we call T5, that is based on Criterion 5. All the
participants in tournament T5, instead of being individuals chosen at random as
in the traditional tournament selection algorithm, are winners of previous tour-
naments (that we call tournaments of type T4), which are based on Criterion 4.
Analogously, for all i = 4, 3, 2, all participants in the tournaments of type Ti are
winners of previous tournaments (that we will call tournaments of type Ti−1),
based on Criterion i − 1. Finally, the participants in the tournaments of type T1

(the kind of tournament that is based on Criterion 1) are individuals selected at
random from the population. In this way, an individual, in order to be selected,
has to undergo five selection layers, each of which is based on one of the five
different chosen criteria. Motivations for the chosen criteria follow:

– Criterion 1 was introduced to counteract Issue 1 in Sect. 2.2. Maximizing
the semantic diversity of the expressions in a multi-individual should natu-
rally prevent GP from creating multi-individuals with identical semantics or
semantics that are very similar between each other.

– Criterion 2 was introduced to counteract Issue 2 in Sect. 2.2. Maximizing the
absolute value of constant k should naturally allow GP to generate multi-
individuals for which k’s value is neither equal nor close to zero.

– Criterion 3 was introduced to counteract Issue 3 in Sect. 2.2. If the expressions
that characterize a multi-individual will have a “reasonable” error, then their
semantics will be reasonably similar to the target, thus naturally avoiding the
appearance of unbearably large numbers.

– Criterion 4 is a performance criterion: if the angle between the error vectors of
the expressions φ1, φ2, ..., φm is equal to zero, then Eq. (1) allows us to recon-
struct a perfect solution Popt. Also, the smaller this angle, the smaller should
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be the error of Popt. Nevertheless, experience tells us that multi-individuals
may exist with similar values of this angle, but very different values of the
error of the reconstructed solution Popt, due for example to individuals with
a very large distance from the target. This fact made us conclude that Crite-
rion 4 cannot be the only performance objective, and suggested to us to also
introduce Criterion 5.

– Criterion 5 is a further performance criterion. Among multi-individuals with
the same angle between the error vectors of the expressions φ1, φ2, ..., φm, the
preferred ones will be the ones for which the reconstructed solution Popt has
the smallest error.

Mutation. The mechanism we have implemented for applying mutation to a
multi-individual is extremely simple: for each expression φi in a multi-individual,
mutation is applied to φi with a given mutation probability pm, where pm is a
parameter of the system. It is worth remarking that in our implementation all
expressions φi of a multi-individual have the same probability of undergoing
mutation, but this probability is applied independently to each one of them. So,
some expressions could be mutated, and some other could remain unchanged.
The type of mutation that is applied to expressions is Koza’s standard subtree
mutation [1].

To this “basic” mutation algorithm, we have also decided to add a mechanism
of rejection, in order to help the selection process in counteracting the issues
discussed in Sect. 2.2. Given a prefixed parameter that we call δk, if the multi-
individual generated by mutation has a k constant included in the range [1 −
δk, 1+δk], or in the range [−δk, δk], then the k constant is considered, respectively,
too close to 1 or too close to 0 and the multi-individual is rejected. In this case,
a new individual is selected for mutation, using again the nested tournament
discussed above.

The combined effect of this rejection process and of the selection algorithm
should strongly counteract the issues discussed in Sect. 2.2. In fact, when k is
equal to 1, or equal to 0, or even close to 1 or 0 inside a given prefixed tolera-
tion radius δk, the multi-individual is not allowed to survive. For all the other
multi-individuals, distance between k and 1 and between k and 0 are used as opti-
mization objectives, to be maximized. This allows GP to evolve multi-individuals
with k values that are “reasonably far” from 0 and 1.

Initialization. Nested Align initializes a population of multi-individuals using
multiple executions of the Ramped Half and Half algorithm [1]. More specifi-
cally, let n be the number of expressions in a multi-individual (n = 2 in our
experiments), and let m be the size of the population that has to be initialized.
Nested Align runs n times the Ramped Half and Half algorithm, thus creating
n “traditional” populations of trees P1, P2, ..., Pn, each of which containing m
trees. Let P = {Π1,Π2, ...,Πm} be the population that Nested Align has to ini-
tialize (where, for each i = 1, 2, ...,m, Πi is an n-dimensional multi-individual).
Then, for each i = 1, 2, ...,m and for each j = 1, 2, ..., n, the jth tree of multi-
individual Πi is the jth tree in population Pi.
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To this “basic” initialization algorithm, we have added an adjustment mecha-
nism to make sure that the initial population does not contain multi-individuals
with a k equal, or close, to 0 and 1. More in partcular, given a prefixed num-
ber of expressions α, that is a new parameter of the system, if the created
multi-individual has a k value included in the range [1 − δk, 1 + δk], or in the
range [−δk, δk] (where δk is the same parameter as the one used for implementing
rejections of mutated individuals), then α randomly chosen expressions in the
multi-individual are removed and replaced by as many new randomly generated
expressions. Then the k value is calculated again, and the process is repeated
until the multi-individual has a k value that stays outside the ranges [1−δk, 1+δk]
and [−δk, δk]. Only when this happens, the multi-individual is accepted inside the
population. Given that only multi-individuals of two expressions are considered
in this paper, in our experiments we have always used α = 1.

3.2 Differences Between Align, Nested Align β and Nested Align

Align. The difference between Align and Nested Align is that Align does not
use the nested tournament discussed above. Selection in Align is implemented
by a traditional tournament algorithm, using as fitness the error of the recon-
structed expression Popt in Eq. (1). Mutation and initialization in Align work
exactly as in Nested Align. In this way, the only mechanism that Align has
to counteract the issues described in Sect. 2.2 is to make sure that initializa-
tion and mutation only create multi-individuals with a k value outside the
ranges [1−δk, 1+δk] and [−δk, δk]. The motivation for the introduction of Align
is that the nested tournament that characterizes Nested Align may be complex
and time-consuming. Comparing the performance of Nested Align to the ones of
Align, we will be able to evaluate to importance of the nested tournament and
its impact on the performance of the system.

Nested Align β. This method integrates a multi-individual approach with a
traditional single-expression GP approach. More precisely, the method begins as
Nested Align, but after β generations, the evolution is done by GSGP. In order
to transform a population of multi-individuals into a population of traditional
single-expression individuals, each individual is replaced by the reconstructed
solution Popt in Eq. (1). The rationale behind the introduction of Nested Align β
is that alignment-based systems are known to have a very quick improvement
in fitness in the first generations, which may sometimes cause overfitting of
training data (the reader is referred to [16–20] for a discussion of the issue).
Given that GSGP is instead known for being a slow optimization process, able to
limit overfitting under certain circumstances (see [21]), the idea is transforming
Nested Align into GSGP, possibly before overfitting arises. Even though a deep
study of parameter β is strongly in demand, only β = 50 was tested in this
paper. For this reason, from now on, the name Nested Align 50 will be used for
this method.
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4 Experimental Study

4.1 Experimental Settings and Test Problems

For each model, 30 runs were performed, each on a different randomly selected
split of the dataset into training set (70%) and test set (30%). The parameters
used are summarized in Table 1. Besides those parameters, the primitive opera-
tors were addition, subtraction, multiplication and division protected as in [1].
The terminal symbols included one variable for each feature in the dataset, plus
the following numerical constants: −1.0, −0.75, −0.5, −0.25, 0.25, 0.5, 0.75, 1.0.
Parent selection was done using tournaments of size 5, with the exception of the
models which use nested selection (i.e. Nested Align and, in the first 50 gener-
ations, Nested Align 50), which used a tournament of size 10 for each layer of
the nested selection. For standard GP subtree crossover and subtree mutation
were used [1], where crossover rate was equal to 0.9 and mutation rate was equal
to 0.1. For all the other studied methods, crossover rate was equal to zero (i.e.
no crossover was performed during the evolution). While Align, Nested Align
and Nested Align 50 do not have a crossover operator implemented yet, the
motivation for not using crossover in GSGP can be found in [17], where it is
clearly shown that GSGP using only mutation often overcomes GSGP using both
crossover and mutation. The test problems that we have used in our experimental
study are four symbolic regression real-life applications. All these problems have
already been used in previous GP studies [17,21–24]. Table 2 reports, for each
dataset, the number of features (variables) and the number of instances (obser-
vations). For a complete description of these datasets, the reader is referred to
the references reported in the same table.

4.2 Experimental Results

The results we have obtained are reported in Figs. 1, 2, 3, 4 and 5. They are orga-
nized as follows: in Figs. 1 and 2, we report the results of the best error obtained
on training data (more particularly, in Fig. 1 the proposed methods are compared
to standard GP and GSGP, while in Fig. 2 they are compared to ESAGP-1 and

Table 1. GP parameters used in
our experiments.

Parameter Setting

Population size 100

Max. # of generations 200

Initialization Ramped H-H

Max. depth for evolution 17

Max. depth for initialization 6

δk 0.02

Table 2. Description of the test problems.
For each dataset, the number of features
(independent variables) and the number of
instances (observations) are reported.

Dataset # Features # Instances

Bioavailability [25] 241 206

PPB [25] 626 131

Toxicity [25] 626 234

Energy [24] 8 768
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Fig. 1. Results on the training set. Comparison between the proposed methods
(Nested Align, Align and Nested Align 50), standard GP and GSGP. Plot (a): Bioavail-
ability; plot (b): Toxicity; plot (c): PPB; plot (d): Energy.

ESAGP-2); in Figs. 3 and 4, we report the results of the best training model on
unseen test data (in Fig. 3 the proposed methods are compared to standard GP
and GSGP, while in Fig. 4 they are compared to ESAGP-1 and ESAGP-2); in
Fig. 5, we report the results relative to the size of the programs (calculated as the
number tree nodes). In Figs. 1 and 3 (i.e. the ones where the proposed methods
are compared to standard GP and GSGP), plot (a) reports the results obtained
on the Bioavailability problem, plot (b) reports the ones obtained on the Toxic-
ity problem, plot (c) on the PPB problem, and plot (d) on Energy. Concerning
the ESAGP methods, we have taken the results directly from [16], for compar-
ison. In that paper, only results relative to training and unseen error on the
Bioavailability and Toxicity datasets were made available. For this reason, in
Figs. 2 and 4, plot (a) reports the results obtained on the Bioavailability prob-
lem and plot (b) reports the ones obtained on the Toxicity problem, and those
figures do not contain any other plot. Finally, Table 3 reports the results of the
statistical tests performed on the obtained unseen errors.
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Fig. 2. Results on the training set. Comparison between the prososed meth-
ods (Nested Align, Align and Nested Align 50), ESAGP-1 and ESAGP-2.
Plot (a): Bioavailability; plot (b): Toxicity;
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Fig. 3. Results on the test set. Comparison between the prososed methods
(Nested Align, Align and Nested Align 50), standard GP and GSGP. Plot (a): Bioavail-
ability; plot (b): Toxicity; plot (c): PPB; plot (d): Energy.
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Fig. 4. Results on the test set. Comparison between the prososed meth-
ods (Nested Align, Align and Nested Align 50), ESAGP-1 and ESAGP-2.
Plot (a): Bioavailability; plot (b): Toxicity;

Let us begin commenting the results on the training set. As Fig. 1 shows,
on the training set Nested Align 50 is the method that obtains the best results
on one problem over four (Energy). On two of the other problems (Bioavailabil-
ity and Toxicity) the method that was able to find the best results was GSGP.
Finally, on the PPB dataset all the methods returned comparable results between
each other, with a slight preference for Align. Remembering that, after 50 gen-
erations, Nested Align 50 “turns into” GSGP, our interpretation of these results
is that, in general, GSGP is an appropriate method for optimizing training data,
which is not surprising, given that GSOs induce a unimodal fitness landscape.
In particular, the “switch” between the Nested Align algorithm and GSGP at
generation 50 seems beneficial in much of the cases. This can be seen in the
Bioavailability and Energy problems, where a rapid improvement of the curve
of Nested Align 50, looking like a sudden descending “step”, is clearly visible
at generation 50. So, given that in the last part of the runs Nested Align 50
and GSGP are identical, Nested Align 50 prevails if the initial phase in which
Nested Align was executed was beneficial. On the other hand, GSGP prevails if
it was not. From the above discussed results, we can conclude that it is beneficial
on one problem, while it is not on two others (and it is irrelevant in the fourth
of the studied problems, where Nested Align 50 and GSGP perform compara-
bly). Concerning a comparison between the proposed methods and ESAGP-1
and ESAGP-2 (Fig. 2), two considerations have to be done: first of all, in [16]
results were reported only until generation 50, and those are the only ESAGP-
1 and ESAGP-2 results in our possession. Secondly, it is possible to “specu-
late” that both ESAGP-1 and ESAGP-2 are outperformed by other methods
both on the Bioavailability and on the Toxicity datasets (more in particular,
by Nested Align 50 and Align on Bioavailability and by Align on Toxicity). In
fact, even though we cannot be sure because we do not have the data of the last
150 generations, the curve of both the ESAGP methods, after a rapid decrease
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Fig. 5. Results concerning the program size. Comparison between the prososed methods
(Nested Align, Align and Nested Align 50), standard GP and GSGP. Plot (a): Bioavail-
ability; plot (b): Toxicity; plot (c): PPB; plot (d): Energy.

in the first 20 generations, seems to stabilize and to remain practically constant,
approximately from generation 20 to generation 50.

Now, let us discuss the results on the test set, starting from Fig. 3. On the
Bioavailability, PPB and Toxicity problems, the three proposed methods clearly
outperform both GSGP and standard GP, with Nested Align 50 that is slightly
preferable compared to the other two methods on Bioavailability and Align on
Toxicity. On the Energy problem, the method that performs better than all
the others is Nested Align 50, and, also on the test set, we can observe a clear
fitness improvement, looking like a sudden descending “step”, at generation 50,
where the switch between Nested Align and GSGP takes place. In conclusion,
on the test set all the three methods that we have introduced in this paper
show reasonable results, improving the ones of GSGP and standard GP. Among
those methods, Nested Align 50 seems the most preferable one, corroborating
our intuition that Nested Align learns fast in the beginning, while the switch to
GSGP allows us to continue the learning while limiting overfitting. Concerning a
comparison between the proposed methods and ESAGP-1 and ESAGP-2 (Fig. 4),
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Table 3. p-values of the Wilcoxon rank-sum test on unseen data, under the alternative
hypothesis that the samples do not have equal medians. Bold denotes statistically
significant values.

Bioavailability

STGP Nested Align Nested Align 50 Align ESAGP-1

GSGP 0.133 9.33E-05 1.02E-05 1.21E-04 3.18E-05

STGP 3.29E-04 1.81E-05 0.002 2.58E-04

Nested Align 0.289 0.438 0.624

Nested Align 50 0.962 0.420

Align 0.646

Toxicity

STGP Nested Align Nested Align 50 Align ESAGP-1

GSGP 0.035 1.13E-09 3.04E-07 1.88E-08 2.39E-09

STGP 3.26E-06 1.86E-04 5.98E-05 1.93E-05

Nested Align 0.511 0.307 0.246

Nested Align 50 0.704 0.678

Align 0.986

PPB

STGP Nested Align Nested Align 50 Align

GSGP 0.237 0.153 0.043 0.001

STGP 0.474 0.124 6.98E-04

Nested Align 0.359 0.021

Nested Align 50 0.099

Energy

STGP Nested Align Nested Align 50 Align

GSGP 0.109 1.24E-05 1.33E-05 0.270

STGP 8.75E-04 3.08E-06 0.023

Nested Align 1.26E-08 6.03E-06

Nested Align 50 1.01E-04

what we can conclude using the data at our disposal is that both ESAGP-1 and
ESAGP-2 are outperformed by Nested Align 50 for the Bioavailability problem
and by Nested Align 50 and Nested Align on the Toxicity problem. However, it
is worth pointing out that, when discussing the results on the test set, having
data only until generation 50 strongly limits our possible conclusions. In fact,
we do not have any information that, later in the run, the ESAGP methods
will not begin to overfit, as it happens to, for instance, to Align on the Toxicity
problem. Actually, on the Toxicity problem, Align outperforms both ESAGP-1
and ESAGP-2 in the first 50 generations, and only later in the run the test error
of Align starts increasing. In synthesis, we consider our conclusions (i.e. that the
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ESAGP methods are outperformed by Nested Align 50 for the Bioavailability
problem and by Nested Align 50 and Nested Align on the Toxicity problem) the
most “optimistic” scenario for the ESAGP methods. If we had the results until
generation 200, the picture for ESAGP could be even worse.

We finally discuss Fig. 5, reporting the dimensions of the evolved programs,
a very important criterion that has direct link with the models’ interpretabil-
ity [26]. GSGP and Nested Align 50 generate much larger individuals compared
to the other methods. This was expected, given that generating large individ-
ual is a known drawback of GSOs [9]. The fact that in the first 50 generations
Nested Align 50 does not use GSOs only partially limits the problem, simply
delaying the code growth, that is, after generation 50, exactly as important as
for GSGP. On the other hand, it is clearly visible that Align and Nested Align
are able to generate individuals that are smaller than the ones of standard GP.
Furthermore, after a first initial phase in which the size of the individuals grow,
we can see that Align and Nested Align basically have no code growth (the
curves of these two methods, after an initial phase of growth, are practically
parallel to the horizontal axis). Last but not least, in all the studied problems
the final models generated by Align and Nested Align have around only 50 tree
nodes.

All this considered, our conclusions are: if we are interested in performance
and we can accept models that are “black boxes” (meaning with this, models that
are too complicated to be interpreted and understood), then Nested Align 50
seems the most appropriate of the proposed methods. On the other hand, if
the readability of the model is an issue, then Align and Nested Align are good
compromises between performance and model simplicity.

To analyse the statistical significance of the results that we have obtained on
unseen data, a set of tests has been performed. The Lilliefors test has shown that
the data are not normally distributed and hence a rank-based statistic has been
used. The Wilcoxon rank-sum test for pairwise data comparison with Bonferroni
correction has been used, under the alternative hypothesis that the samples do
not have equal medians at the end of the run, with a significance level α = 0.05.
The p-values are reported in Table 3, where statistically significant differences
are highlighted with p-values in bold. As we can observe, on the Bioavailabil-
ity and Toxicity datasets the differences between the proposed methods (Align,
Nested Align and Nested Align 50) and the existing ones (standard GP, GSGP
and ESAGP-1) are statistically significant, while the differences of the proposed
methods between each other are not statistically significant. The same thing also
holds for the Energy dataset, with the only exception of the Align method, whose
results are not statistically different from the ones of GSGP and standard GP.
The only dataset in which the statistical test gives us a different picture is PPB,
where, among the proposed methods, Align is the only one that was able to
return results that are statistically different from the ones of GSGP and stan-
dard GP.
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5 Conclusions and Future Work

Three new genetic programming systems, called Align, Nested Align and
Nested Align 50, based on the idea of alignment in the error space, were intro-
duced in this paper. These new systems overcome some limitations of the previ-
ously existing alignment-based algorithms. On four real-life symbolic regression
problems, the proposed systems have outperformed not only the state-of-the-art
alignment-based methods, but also standard genetic programming and geomet-
ric semantic genetic programming. More specifically, Nested Align 50 was the
method that returned the best results, but Nested Align 50 also generated very
large programs. On the other hand, Align and Nested Align, although returning
results that are slightly worse compared to Nested Align 50 in terms of accuracy,
were able to evolve much smaller programs.

One of the most important limitations of this paper is that only alignments
in two dimensions are considered. In other words, the proposed systems use
individuals that are pairs of programs and they are only able to search for pairs
of optimally aligned programs. Our current research is focused on extending the
method to more then two dimensions. For instance, we are currently working on
the development of systems that evolve individuals that are triplets of programs,
aimed at finding triplets of optimally coplanar individuals. The subsequent step
will be to further extend the method, possibly generalizing to any number of
dimensions. The design of self-configuring methods, that automatically decide
the most appropriate dimension, is one of the most ambitious goals of our current
work.
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Abstract. Hashing is an important function in many applications such
as hash tables, caches and Bloom filters. In past, genetic programming
was applied to evolve application-specific as well as general-purpose hash
functions, where the main design target was the quality of hashing. As
hash functions are frequently called in various time-critical applications,
it is important to optimize their implementation with respect to the exe-
cution time. In this paper, linear genetic programming is combined with
NSGA-II algorithm in order to obtain general-purpose, ultra-fast and
high-quality hash functions. Evolved hash functions show highly com-
petitive quality of hashing, but significantly reduced execution time in
comparison with the state of the art hash functions available in literature.

1 Introduction

Hash functions are highly nonlinear functions assigning a relatively short numer-
ical representation to an arbitrary data record of a predefined structure and size.
Hash functions are frequently used in many applications of computer science and
engineering such as hash tables, caches and Bloom filters. Hash functions are eval-
uated with respect to two fundamental properties: (i) quality of hashing – which
can be defined in different ways (see Sect. 2.1) and (ii) complexity, which is highly
correlated with the execution time. Some additional properties are crucial for
the so-called cryptographic hash functions, but this paper only deals with non-
cryptographic hash functions. As the design of a good hash function is tricky and
requires a lot of insight and experience, evolutionary algorithms (genetic program-
ming (GP) in particular) have been employed to accomplish this task.

The existing body of literature dealing with evolutionary design of hash func-
tions is relatively rich; however, except paper [1] none of them is explicitly ori-
ented to the optimization of the time of execution (latency or delay in other
words) which becomes crucial in contemporary high end applications such as
high speed network monitoring, big data indexing and finding duplicate records.

In the literature, the latency is usually considered as a constraint and the
optimization goal is to maximize the quality of hashing. The hash function design
problem is then formulated as a single objective design problem.
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In some cases, hash functions are evolved as application-specific functions
and evaluated in a very specific environment [1–4], providing thus much bet-
ter solutions in particular applications than the so called general-purpose hash
functions. For example, a multi-objective evolutionary design approach focusing
not only on the quality of hashing, but also on the execution time has been
proposed for network flow hashing [1]. In this case, evolved hash functions had a
fixed-size input (96 bits) and consisted of a linear sequence of instructions which
is executed just once to obtain the hash.

The goal of this paper is to present and evaluate a multi-objective evolu-
tionary approach for the design of high-quality and ultra-fast general-purpose
hash functions. The main difference with respect to [1] is that the resulting hash
functions are capable of accepting multiple k-bit inputs (in order to be general-
purpose ones) and the evaluation is performed on various principally different
test sets such as randomly generated data, network flow records, passwords and
Facebook and Twitter data. The proposed approach is based on linear genetic
programming (LGP) combined with a multi-objective NSGA-II algorithm, where
the objectives are the number of collisions (after embedding the hash function
to a hash table) and the execution time. As measuring the real execution time
on a particular machine is time consuming (during the evolution), the execu-
tion time is estimated according to the number and type of instructions used by
a particular candidate hash function. In order to estimate this value for mod-
ern processors, a specialized procedure is developed which considers not only
the complexity of instructions, but also their scheduling on SIMD architectures.
Evolved hash functions are compared in terms of quality of hashing and execu-
tion time with 8 human-designed and 2 evolved general-purpose hash functions
available in the literature.

The rest of the paper is organized as follows. Section 2 briefly introduces the
principles of hash functions and previous work on evolving hash functions. The
proposed multi-objective method is introduced in Sect. 3. Section 4 describes our
results from the experiments performed in order to evaluate the proposed method
and compare resulting hash functions with existing solutions. Conclusions are
given in Sect. 5.

2 Related Work

In this section, the principles of hash functions are presented and evolutionary
approaches developed to the design of hash functions are briefly surveyed.

2.1 Hash Functions

A hash function is a mathematical function h that maps an input binary string
(of length k) to a binary string of fixed length (l), h : 2k → 2l, where k >> l.
The output value is called hash value or simply hash [5]. The definition of hash
function implies the existence of collisions, i.e. h(x) = h(y), where x, y are two
input messages such that x �= y. One of desirable properties of hash functions
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is that similar input vectors produce completely different outputs. This is called
the avalanche effect.

The most important application of hash functions is the hash table [6]. Based
on the key (the input to the hash function) a particular row (index) of the table
is activated and data are read/stored from/to a memory slot with that index. In
order to handle collisions (different data mapped to the same index), a separate
chaining method, cuckoo hashing, coalesced hashing and other techniques have
been developed. In the case of the separate chaining method, a list of records
having the same hash is operated for each index of the table. A newly entered
data record is then stored to the first empty item of the list connected to the
particular index. If there is at most one occupied record at index i then the time
complexity of lookup is O(1); if n records exist then the complexity is O(n) for
the i-th index.

The quality of non-cryptographic hash functions is given in terms of the col-
lision resistance (good hash functions generate a minimum number of collisions),
avalanche effect, distribution of outputs, execution time and table load factor
(for a given memory size). The hash function is typically called several times in
order to obtain desired address because the memory addressing system can be
designed as hierarchical, for example, in the cuckoo hashing scheme [7].

2.2 Hash Function Design

Non-cryptographic hash functions are mostly used in hash tables [6]. Other
important applications are Bloom filters [8], geometric hashing [9], coherency
sensitive hashing [10,11] etc. A common approach to the automatic hash function
design is to apply a general construction procedure such as the Merkle-Damg̊ard
construction. The literature provides us with various implementations of general-
purpose human-created hash functions including DJBHash [12], DEKHash [5],
FVN (Fowler-Noll-Vo) [13], One At Time, Lookup3 [14], MurmurHash2, Mur-
murHash3 [15] and CityHash [16].

Evolutionary approaches have been primarily focused on the non-cryptograp-
hic hash function design and evolved with genetic algorithms [17], tree GP [18],
linear GP [1], grammar evolution [19] and Cartesian GP [20]. They can further
be divided according to the purpose, i.e. either application-specific hash func-
tions [1,21] or general-purpose hash functions [18,22]. The difference lies in the
input data size and the evaluation approach. The fitness function is usually based
on measuring the avalanche effect [23,24] or the number of collisions [1,22].

3 Multi-objective Linear GP in Hash Function Design

As target hash functions are optimized with respect to the execution time, it
is natural to represent them at the level of machine instructions. Hence, linear
genetic programming in which candidate programs are represented as sequences
of instructions for a register machine [25–27] is employed to evolve hash functions.
In order to ensure a multi-objective design, LGP is connected with NSGA-II as
introduced in [1]. This section deals with proposed representation and evaluation
of candidate hash functions.
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3.1 Candidate Program Processing

General-purpose hash functions are typically constructed using instructions such
as logical functions (e.g. XOR, AND, OR), addition, multiplication and rotation.
These instructions then define the instruction set for LGP. The initial popula-
tion is generated randomly using these instructions. As the size of the input is
arbitrary in the case of general-purpose hashing, it is necessary to partition the
input stream into several blocks and process them sequentially. Since the loop
responsible for reading the input is always present, it makes no sense to evolve
it. We will evolve just the body of the loop. Figure 1 shows that a candidate
hash function is called in each iteration to read a new block and combine it with
intermediate results obtained from processing the previous blocks. Particularly
in this case, 32 bits are copied from the input stream to register r[1] in each
iteration. The resulting hash is produced to register r[0].

Fig. 1. Framework for candidate program evaluation. In this case, a 32 bit data input
is read in each iteration.

3.2 Quality of Hashing

Inspired in [1], the quality of hashing is measured in terms of the number of
collisions. Let Ki inputs (keys) be mapped into i-th memory slot by a candidate
hash function h. Then the fitness f(h) is defined as the weighted number of
collisions:

f(h) =
s∑

i=1

gi, where (1)

gi =
{

0 if Ki ≤ 1∑Ki

j=2 j
2 if Ki ≥ 2

(2)

where s is the number of memory slots. This function clearly penalizes can-
didate hash functions showing many collisions at one slot. The objective is to
minimize f(h).
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Algorithm 1. Execution time estimation
Input: Candidate program p
Output: The number of used instructions

1 c ← RotateCodeOutputRegisterLast(p);
2 used-instructions = 0;
3 previous-used-instructions = 0;
4 used-registers ← Insert(output-register);
5 while previous-used-instructions == used-instructions do
6 previous-used-instructions = used-instructions;
7 used-instructions = 0;
8 cp ← c;
9 while 〈 i ← getLastInstruction(cp) 〉 do

10 if DestinationRegister(i) ∈ used-registers then
11 used-registers ← Insert(source-registers(i));
12 Increment(used-instructions);

13 remove instruction i from cp;

14 return RotateBack(used-instructions);

3.3 Execution Time Estimation

As hash functions are very frequently called in some applications, it is important
to optimize them with respect to the execution time. In order to capture features
of modern processors supporting the Single Instruction Multiple Data (SIMD)
paradigm, a method performing the execution time estimate takes into account
not only the number of instructions and their type, but also their eventual par-
allel processing (which in principle reduces the execution time). In LGP, not
all instructions of a candidate program contribute to the result. There are two
types of redundant instructions. Firstly, the genotype may contain instructions
whose output is not consumed by any other instruction (the so-called structural
redundancy). Secondly, there could be instructions used in the phenotype, but
not contributing to the resulting value. For example, if the code contains r[5] =
r[1] + r[0]; r[5] = r[2] + r[0], the first instruction can be removed. The algorithm
developed to estimate the execution time removes unused instructions in the first
step and, in the second step, it identifies those instructions that can be executed
in parallel.

Because we evolve the body of a loop and the evolved code is executed
multiple times, we cannot use the same approach as [1] (i.e. analyzing the algo-
rithm from the last to the first instruction and removing unused instructions)
to estimate the execution time. The reason is that unused instructions of one
iteration can be important in the next iteration. Hence, Algorithm 1, removing
the unused instructions, has more steps. Firstly, the instructions of the candi-
date program have to be rotated to a state in which the output register of the
hash function is at the last position of the program. The program is analyzed in
rounds, until all used instructions are not marked. Then unused instructions can
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be removed. Finally, the resulting code has to be rotated back, because the next
step performs instruction scheduling and the order of instructions is important
(see Algorithm 1). Example is presented in Fig. 2.

We exploit the instruction level parallelism [28] enabling to process multiple
data with a single instruction. Modern CPUs can typically process 256 bits at
once which means that eight 64-bit operations can be executed in one instruction
instead of executing 4 instructions sequentially. As introduced in [1], instruction

Fig. 2. Removal of unused instructions consists of rotating the candidate program to a
configuration in which output register r0 is at position of the last instruction, identifying
used instructions (in bold), removing unused instructions and rotating the code back.
The optimized code is then scheduled for parallel execution. The final program consists
of 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.
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Fig. 3. Evolved hash functions that were selected from Pareto front in Fig. 4.

scheduling lies in determining when the instructions can be executed based on
analyzing dependences among them. The ASAP (As Soon As Possible) and
ALAP (As Late As Possible) routines are employed for this purpose. Figure 2
shows that in our example, the optimized 8-instruction program is finally exe-
cuted in 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.

3.4 Search Algorithm

A common version of LGP (with tournament selection, single-point crossover
and mutation) is combined with NSGA-II [29]. According to [1], the maximum

Table 1. LGP parameters.

Parameter Value

Population size 100

Crossover probability 90 %

Mutation probability 15 %

Program length 12

Registers count/type 8/64 b – int

Constants {0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19, 0x428a2f98,
0x71374491}

Instruction set
(weight)

{ADD (1), MUL (3), XOR (1), OR (1)}

Tournament size 4

Maximum number
of generations

100

Crossover type One-point
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program size is limited to 12 instructions. The function set contains those oper-
ations that are typical for the hash function design (XOR, AND, OR, addition,
multiplication and right rotation). As multiplication is more complex than the
remaining instructions, its execution time is counted with weight 3 in the pro-
grams. Common hash functions contain various “magic” constants. We extracted
those appearing in the initial phase of hash function SHA-2 [30] and included
them to the set of constants available in LGP. The setup for LGP is summarized
in Table 1. NSGA-II is employed to find the best trade-offs between the number
of collisions (according to Eq. 2) and estimated execution time for a training set
(see Sect. 4).

4 Experiments and Results

This section describes the data sets used for evaluation, experiments and their
analysis in terms of quality of hashing and execution time. Results will be com-
pared with hash functions from the literature.

4.1 Data Sets

In order to evaluate candidate hash functions on different types of problems, we
used (i) randomly generated data and (ii) real-world data coming from network
flows, user passwords, and Facebook and Twitter posts.

We randomly generated the training data set (using a random text generator)
in such a way that it contains 200,000 vectors with a random size ranging from 16
to 1024 characters. The best-evolved hash functions and the hash functions taken
from the literature were then compared using 9 different randomly generated test
data sets (Dataset1–9) whose parameters are summarized in Table 2.

In the case of real-world data, data sets Netset1–3 are formed from identifiers
of network flows (source and destination IP addresses, source and destination
ports and transport protocol). The size of each input vector is 96 bits (see details
in [1]). The Passwords data set contains 10 million user passwords. Every pass-
words consists of 5 to 16 characters. Finally, Facebook and Twitter data sets
contain 1 million posts from selected social network groups. These posts are in
English, German, Hungarian, Czech and Slovak languages.

4.2 Hash Functions Used for Comparison

Evolved hash functions will be compared with human-created hash function
DJBHash, DEKHash, One At Time, Lookup3, FVNHash, Murmur2, Mur-
mur3, CityHash and evolved hash functions available in the literature (GPHash
[23,24] and EFHash [22]). A 32-bit hash table is used for testing all func-
tions. A direct comparison with [1] is possible only for the specific data sets
used in [1]. Application-specific hash functions (XORhash, NSGAHash1, NSGA-
Hash2, NSGAHash3, NSGAHash4, NSGAHash5, NSGAHash6, NSGAHash7 [1])
operate with a 96-bit input and produce a 16 bit hash value. Evolved hash func-
tions produce a 32 bit hash value. The XOR folding is used for reduction from
32 to 16 bits.
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Table 2. Data sets.

Name Number of vectors Length [bytes]

Dataset1 100,000 64

Dataset2 100,000 128

Dataset3 100,000 256

Dataset4 100,000 512

Dataset5 100,000 1024

Dataset6 100,000 2048

Dataset7 1,000,000 16 – 4096

Dataset8 1,000,000 16 – 4096

Netset1 20,000 12

Netset2 50,000 12

Netset3 100,000 12

Passwords 10,000,000 5 – 16

Facebook 1,000,000 3 – 280

Twitter 1,000,000 3 – 5000

Fig. 4. Pareto fronts obtained from 100 independent runs of LGP. The size of the circle
represents the number of identical solutions with the same properties. Selected hash
functions (blue squares) are given in Fig. 3. (Color figure online)
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4.3 Resulting Pareto Fronts

As we used the same parameters of LGP as [1], we do not report the impact of
LGP parameters on the equality of evolution. The main focus is on a comparison
of key parameters of evolved hash functions with existing hash functions.

We performed 100 independent runs of our multi-objective LGP and plotted
in Fig. 4 parameters of all solutions appearing on the (100) final Pareto fronts.
As many identical trade-offs were discovered in several (independent) runs, we
plotted them using a circle whose diameter depends on the number of such cases.
From all these designs, we selected two the most frequently occurring candidates
(blue squares) and analyzed their properties in greater detail. EvoHash1 (see the
C code in Fig. 3) produces zero collisions on the training data set, but includes
relative many instructions. EvoHash2 (see the C code in Fig. 3) shows the best
trade-off between the number of instructions and the number of collisions.

Since there are no clear outliers on Pareto fronts and the designs showing
desired trade-offs are represented by larger circles (i.e. there are many good solu-
tions), we can conclude that the proposed algorithm produces stable solutions.
It can be seen in Fig. 4 that there are almost no solutions showing 101 − 104

collisions. Our explanation for this behavior is that there are only a few discrete
points for the second objective (the number of instructions) and these points are
already covered by good solutions.

4.4 The Number of Collisions

The hash functions from the literature introduced in Sect. 4.2 were implemented
in C programming language and compiled with the same compiler setting as
evolved hash functions. All tests were then carried out with these implementa-
tions to ensure fair comparisons. The evaluation of all these hash functions was
performed on an Intel Xeon E5-2620v3 processor running at 2.4 GHz.

Table 3. The number of collisions for randomly generated data sets.

Hash function The number of collisions

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSet7 DataSet8

DJBHash 0 3 0 1 1 3 132 116

DEKHash 60004 90000 90000 90000 90000 90000 122 118

FVNHash 0 4 1 1 1 0 115 122

One At Time 1 2 2 2 1 1 108 115

lookup3 1 0 0 2 1 2 122 111

Murmur2 1 1 1 0 3 3 125 126

Murmur3 2 0 2 1 1 3 114 111

CityHash 3 1 1 1 1 0 125 111

GPHash 1 1 1 1 0 0 115 102

EFHash 38137 53488 63353 64983 65119 65209 799933 799825

EvoHash1 2 2 2 1 1 1 133 116

EvoHash2 1 1 0 3 3 1 119 108



Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 197

Table 3 gives the number of collisions for all randomly generated datasets for
a 32 bit hash table. The best values are typed in bold; the second best values in
bold-italic. It can be seen that hash functions evolved by LGP produce a very
similar number of collisions as other hash functions from the literature; except
DEKHash and EFHash where many collisions are visible. From the point of view
of the number of collisions, evolved hash functions are as good as the other hash
functions. The same phenomenon can be observed for real-world data sets (see
Tables 4 and 5).

4.5 The Execution Time and Performance

Tables 6, 7, 8 show the average execution time obtained from 50 independent
runs of all hash functions on all data sets. The task is to compute a hash value
for each vector of a given dataset. The evolved hash functions exhibit the shortest
execution time in almost all cases. Similar parameters show Google’s CityHash.

Table 4. The number of collisions for network data from [1].

Hash function The number of collisions

NetSet1 NetSet2 NetSet3

DJBHash 2835 15113 48925

DEKHash 2926 15247 49017

FVNHash 2756 14957 48780

One At Time 2821 14988 48636

lookup3 2742 15009 48737

Murmur2 2800 15050 48749

Murmur3 2744 14911 48763

CityHash 2807 14990 48647

XORHash 2864 15011 48575

GPHash 2777 15052 48750

EFHash 5317 25266 63175

NSGAHash1 2923 15677 49336

NSGAHash2 2746 15170 48835

NSGAHash3 2689 15575 49292

NSGAHash4 2692 15010 48715

NSGAHash5 2759 14975 48749

NSGAHash6 2650 14839 48680

NSGAHash7 2639 14975 48650

EvoHash1 2849 15185 48652

EvoHash2 2821 14982 48695
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Table 5. The number of collisions for real-world data sets.

Hash function The number of collisions

Passwords Facebook Twitter

DJBHash 11663 247 137

DEKHash 14114 357 153

FVNHash 11845 115 115

One At Time 11590 105 138

lookup3 11567 119 107

Murmur2 11637 112 123

Murmur3 11589 103 89

CityHash 11530 122 122

GPHash 11634 117 113

EFHash 9983806 873270 824153

EvoHash1 11871 23 98

EvoHash2 11469 10 1

Evolved EvoHash2 is slightly faster (4%) than CityHash, but significantly faster
(2x) than very popular Murmur hash 3.

Table 7 shows that the application-specific hash functions have a shorter exe-
cution time for the network data sets. But evolved hash functions are faster than
the best conventional hash functions (CityHash, lookup3).

Finally, we compared all hash functions in terms of throughput that can be
obtained by SMHasher [31]. This is a test suite designed to test performance
properties of non-cryptographic hash functions. In the Bulk speed test (with

Table 6. The average execution time for randomly generated data sets.

Hash function Execution time [ms]

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSet7 DataSet8

DJBHash 19.56 32.914 45.311 72.31 126.081 231.675 2556.226 2554.123

DEKHash 12.907 19.352 28.141 46.975 81.419 156.839 1875.878 1872.019

FVNHash 17.354 31.694 48.371 83.761 155.702 294.259 3223.727 3220.844

One At Time 20.208 36.895 57.667 100.993 189.24 360.009 3918.302 3916.603

lookup3 12.867 22.685 28.403 42.581 72.585 125.851 1437.492 1433.961

Murmur2 12.06 20.332 25.718 36.065 60.202 102.426 1195.029 1190.402

Murmur3 12.863 21.622 27.796 40.367 68.557 119.167 1368.135 1363.745

CityHash 10.906 18.591 20.344 24.807 36.806 54.535 683.363 679.325

GPHash 25.497 47.418 80.294 147.286 283.533 550.774 5949.786 5948.746

EFHash 24.394 41.66 69.332 127.822 246.387 479.26 5237.982 5237.599

EvoHash1 10.383 17.084 19.056 23.897 35.508 55.838 685.604 681.327

EvoHash2 10.385 17.411 19.022 23.825 53.132 37.334 659.185 656.647
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Table 7. The average execution time for network data from [1].

Hash function Time [ms]

NetSet1 NetSet2 NetSet3

DJBHash 1.861 5.134 12.724

DEKHash 1.221 4.373 10.407

FVNHash 1.301 4.721 9.633

One At Time 1.769 5.290 12.352

lookup3 0.925 2.891 7.435

Murmur2 1.034 3.095 7.925

Murmur3 1.193 3.215 8.727

CityHash 0.960 2.625 7.407

XORHash 0.838 2.318 6.652

GPHash 1.865 4.671 12.558

EFHash 2.472 13.527 49.495

NSGAHash1 0.529 2.804 8.507

NSGAHash2 0.527 2.072 6.564

NSGAHash3 0.514 2.779 8.492

NSGAHash4 0.530 2.073 6.219

NSGAHash5 0.534 2.081 6.288

NSGAHash6 0.527 2.083 6.249

NSGAHash7 0.547 2.175 6.449

EvoHash1 0.802 2.569 7.455

EvoHash2 0.830 2.825 7.835

262144 byte keys), evolved hash functions EvoHash1 and EvoHash2 outper-
formed the remaining hash functions (Table 9).

Table 8. The average execution time for real-world data sets.

Hash function Time [ms]

Passwords Facebook Twitter

DJBHash 5438.594 17.331 16.726

DEKHash 5067.882 13.240 13.119

FVNHash 5499.328 14.174 12.767

One At Time 6072.904 15.410 13.955

lookup3 4543.399 12.009 10.919

Murmur2 4464.339 11.723 10.774

Murmur3 4573.453 11.955 10.966

CityHash 4385.625 11.149 10.355

GPHash 6389.323 17.966 16.167

EFHash 5101.523 14.304 13.746

EvoHash1 4268.402 10.895 9.996

EvoHash2 4277.341 10.832 9.954
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Table 9. Speed test according to SMHasher [31].

Bulk speed test – 262144-byte keys – MiB/sec

Hash function Alignment

0 1 2 3 4 5 6 7

DJBHash 1268.27 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40

DEKHash 1906.95 1907.01 1907.02 1907.01 1907.00 1907.06 1907.06 1907.05

FVNHash 953.63 953.63 953.63 953.63 953.63 953.63 953.63 953.63

OneAtTime 634.20 634.12 634.12 634.15 634.14 634.12 634.15 634.14

lookup3 2750.08 2735.18 2735.27 2735.29 2749.80 2735.26 2735.20 2735.14

Murmur2 3813.36 3780.15 3780.15 3780.15 3813.46 3780.25 3780.25 3780.25

Murmur3 7476.99 7332.31 7335.21 7332.47 7333.44 7334.75 7332.51 7334.79

CityHash 15450.42 14386.41 14370.53 14389.85 14390.17 14372.77 14385.49 14400.47

GPHash 475.67 475.68 475.68 475.69 475.69 475.68 475.68 475.69

EFHash 543.60 543.59 543.59 543.58 543.60 543.58 543.59 543.59

EvoHash1 15121.84 14661.90 14662.12 14663.13 14662.58 14662.96 14662.41 14662.68

EvoHash2 17578.29 16726.21 16726.44 16725.27 16730.33 16726.50 16727.08 16728.04

5 Conclusions

In this paper, we proposed and evaluated a multi-objective evolutionary design
approach in which LGP is combined with NSGA-II algorithm in order to
obtain general-purpose, ultra-fast and high-quality hash functions. This pro-
posal addressed current needs of IT industry which seeks for high quality, but
ultra fast hash functions. The fitness function was based on (i) the number of col-
lisions with penalization for candidate hash functions producing many collisions
and (ii) the execution time.

The best evolved hash functions were compared with 10 hash functions from
literature. In terms of quality, evolved hash functions produce almost the same
number of collisions as other good hash functions. In terms of the execution
time and performance, a hash function improving parameters of a high quality
conventional solution (CityHash) was discovered.

Our future work will be devoted to improving the design framework (in terms
of supporting other objectives and accelerating the design process) and detailed
testing of evolved hash functions in other real-world applications.
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Abstract. Cartesian Genetic Programming is often used with mutation
as the sole genetic operator. Compared to the fundamental knowledge
about the effect and use of mutation in CGP, the use of crossover has
been less investigated and studied. In this paper, we present a compar-
ative study of previously proposed crossover techniques for Cartesian
Genetic Programming. This work also includes the proposal of a new
crossover technique which swaps block of the CGP phenotype between
two selected parents. The experiments of our study open a new perspec-
tive on comparative studies on crossover in CGP and its challenges. Our
results show that it is possible for a crossover operator to outperform the
standard (1 + λ) strategy on a limited number of tasks. The question of
finding a universal crossover operator in CGP remains open.

Keywords: Cartesian Genetic Programming · Crossover
Comparative study

1 Introduction

Genetic Programming (GP) as popularized by Koza [1–3] uses syntax trees as
program representation. Cartesian Genetic Programming (CGP) as introduced
by Miller et al. [4] offers a novel graph-based representation which in addition to
standard GP problem domains, makes it easy to be applied to many graph-based
applications such as electronic circuits, image processing, and neural networks.
CGP is mainly used with mutation as the only genetic operator. The reason for
this is that previous work on crossover in CGP has provided mixed results and
comparative results about the use of crossover are missing.

Tree-based GP was originally introduced with a sub-tree crossover technique
which swaps randomly chosen sub-branches of the parent trees to produce new
offsprings. Koza considered crossover as the dominant genetic operator as a
result of his experiments [2,3]. However, later research with more comprehensive
and detailed experiments found that the beneficial effects of crossover cannot be
generalized in GP [5–7].
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 203–219, 2018.
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In contrast to fundamental knowledge about crossover in tree-based GP, the
state of knowledge in CGP appears to be comparatively weak. Furthermore,
the potential and understanding of crossover in CGP seem to be an open and
remaining question. In this paper, we present the results of a first comparative
study on crossover in CGP which includes the comparison of formerly proposed
crossover techniques. Furthermore, we introduce a new method of crossover for
CGP, called Block crossover, which is also investigated in our study.

Section 2 of this paper describes CGP briefly and surveys previous work on
crossover in CGP. This section also surveys former attempts of comparative
crossover studies in tree-based GP and reviews its contribution to the under-
standing of GP. In Sect. 3 we introduce our new form of crossover for CGP.
Section 4 is devoted to the experimental results of our study and the description
of our experiments. In Sect. 5 we discuss the results of our experiments. Finally,
Sect. 6 gives a conclusion and outlines future work.

2 Related Work

2.1 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic and directed graph. Originally the
structure of the graphs was a rectangular grid of Nr rows and Nc columns,
but later work also focused on a representation with just one row. The genes
in the genotype are grouped, and each group refers to a node of the graph,
except the last group which represents the outputs of the phenotype. Each node
is represented by two types of genes which index the function number in the
GP function set and the node inputs. These nodes are called function nodes
and execute functions on the input values. The number of input genes depends
on the maximum arity Na of the function set. The last group in the genotype
represents the indexes of the nodes which lead to the outputs.

A backward search is used to decode the corresponding phenotype. The back-
ward search starts from the outputs and processes the linked nodes in the geno-
type. In this way, only active nodes are processed during the evaluation. The
number of inputs Ni, outputs No and the length of the genotype is fixed. Every
candidate program is represented with Nr ∗ Nc ∗ (Na + 1) + No integers. Even
when the length of the genotype is fixed for every candidate program, the length
of the corresponding phenotype in CGP is variable which can be considered as
a significant advantage of the CGP representation.

CGP traditionally operateswith a (1+λ) evolutionary algorithm (EA) inwhich
λ is often chosen with a size of four. The new population in each generation consists
of the best individual of the previous population and the λ created offspring. The
breeding procedure is mostly done by a point mutation which creates offsprings
by changing a small number of randomly selected genes from the parent genotype
to a random value within the permissible range. One of the most important tech-
niques is a special rule for the selection of the new parent. In the case when two or
more individuals can serve as the parent, an individual which has not served as the
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parent in the previous generation will be selected as a new parent. This strategy is
important because it ensures the diversity of the population and has been found
highly beneficial for the search performance of CGP.

2.2 Previous Work on Crossover in CGP

Some of the first experiments on crossover in CGP included the investigation of
four variations of crossover which were tested on the simple regression problem
x2 + 2x + 1. Clegg et al. [8] reported that all tested variations of crossover
techniques influenced the convergence of CGP negatively. In comparison to the
mutation-only CGP algorithm, the addition of the crossover techniques hindered
the performance of CGP. The crossover techniques were applied to the standard
integer-based representation of CGP.

For instance, the genetic material was recombined by swapping parts of the
genotypes of the parent individuals or randomly exchanging selected nodes.
Clegg et al. [8] stressed that merely swapping the integers (in whatever manner)
on a genotypic level in CGP disrupts the performance.

This was the motivation for a new form of crossover which has been introduced
by Clegg et al. [8] and is based on a real-valued representation. This variation of
CGP represents the graph as a fixed length list of real-valued numbers in the inter-
val [0,1]. The genes are decoded to the integer-based representation with the help of
normalization values (e.g. the number of functions or maximum input range). The
recombination of two genotypes is performed with a standard Arithmetic crossover
operation which uses a random weighting factor and can also be found in the field
of real-valued Genetic Algorithms. The experiments of Clegg et al. showed that
the new representation in combination with crossover improves the convergence
behavior of CGP. However, for the convergence behavior in the later generations,
Clegg et al. showed that the use of crossover in real-valued CGP leads to disruptive
effects on one of the two tested problems. The improved convergence of the Arith-
metic crossover was evaluated in the domain of symbolic regression and has been
found useful in this problem domain [8].

Slaný et al. [9] analyzed the fitness landscapes of functional-level CGP on image
operator design problems. Slaný et al. analyzed single and multi-point crossover
operators. It was demonstrated that the mutation operator and the single-point
crossover operator generate the smoothest landscapes for the tested problems.

For a multi-chromosome approach to CGP, Walker et al. [10] investigated
a multi-chromosome crossover operator which joins the best chromosome parts
from all individuals. This crossover technique was found useful for problems with
multiple outputs and independent fitness assignment.

A beneficial effect of crossover in CGP was obtained by the use of an implicit
context representation for CGP in which recombination is useful for the Even
Parity-3 problem [11].

CGP has been extended for the automatic definition and reuse of functions by
Walker et al. [12] and Kaufmann et al. [13]. Kaufmann et al. adopted the module
creation mechanisms for a cone- and age-based CGP crossover [13]. Cone-based
crossover showed good results for functions with repetitive inner patterns, while
age-based crossover excels for randomized inner structures.
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Recently, a new form of crossover has been introduced by Kalkreuth et al. [14].
The subgraph crossover recombines random parts of the CGP phenotype of two
former selected individuals. This crossover technique has been found beneficial
for the performance of CGP on symbolic regression, Boolean functions, and
image operator design problems.

To the best of our knowledge, the most recent work on crossover in CGP has
been done by Kalkreuth et al. However, while some crossover operators for stan-
dard CGP have been introduced and investigated, comprehensive comparative
studies are still missing. This has been the motivation for our work.

3 The Block Crossover

The Block crossover is a new method of crossover for standard CGP. The method
is mainly inspired by the cone-based crossover of Kaufmann et al. [13] for Embed-
ded CGP, which integrates selected modules of a donor genotype into a recep-
tor genotype. Since Kaufmann et al. have been successful with this crossover
technique for specific boolean functions, our motivation for the proposal of
the Block crossover is to adapt this mechanism for standard CGP. The Block
crossover is also inspired by the subgraph crossover which has been introduced
by Kalkreuth [14]. Since CGP suffers from a lack of a diverse and effective set of
crossover techniques, the introduction and investigation of new crossover tech-
nique is significant.

The Block crossover technique focuses on the one-dimensional representation
of CGP where the number of rows is limited to one. Given a previously selected
genotypes of two individuals serving as parents, the Block crossover generates a
list of all blocks of nodes that meet the following criteria:

– The block contains a desired number of nodes.
– All nodes in the block are directly linked through their inputs or outputs.
– All nodes in the block are part of the genotype’s active path.

In our implementation, we have chosen to use blocks consisting of three
nodes. To fulfill the other criteria, we have constructed the blocks by evaluating
the genotype’s active path, and selecting active nodes who’s inputs were two
distinct nodes and not primary inputs of the genotype. The time complexity
of this simple method is linear, and it is performed along with the standard
evaluation of the genotype’s active path that precedes its evaluation.

The Block crossover then randomly selects one block from each list and swaps
them between the genotypes. The position of the nodes transferred as part of
the block may change inside the new genotype. However, their mutual links are
preserved and the function performed by the block stays the same. Therefore, the
created offsprings retain the same active path but performs a new operation. If
either parent contains no swap-able blocks, no crossover operation is performed
and the offsprings are simply cloned from their parents. The crossover operation
is then followed by the standard point mutation.
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Figure 1 illustrates the crossover procedure. First the active paths are deter-
mined, and the swap-able blocks are stored in the lists M1 and M2. Then, two
blocks N1 and N2 are chosen from their respective lists. In order to produce the
first offspring O1, the first parent P1 is cloned, and the function nodes inside
the selected block N1, are replaced by nodes from block N2. Nodes (2, 5, 6) have
been moved to position (2, 3, 4), but by maintaining them in the same order
within the one-row genotype, we can ensure their mutual connection, and their
logical function stay the same. The second offspring O2 is produced in the same
way but the roles of the parents P1 and P2 are reversed.

4 Experiments

4.1 Experimental Setup

We have performed experiments on problems from the symbolic regression and
Boolean function domains. To evaluate the search performance, we measured
the best fitness value found after a predefined number of fitness function eval-
uations (best-fitness-of-run). For all problems, the fitness was to be minimized.
Our comparison has focused on four crossover operators. Standard One-point
crossover, Subgraph crossover, Arithmetic crossover and our newly proposed
Block crossover.

The evolution used a generational model. The initial population was ran-
domly generated. Parent genomes for the next generation are picked using two
separate tournaments, which allow for the same individual to be picked multiple
times. The parents and a crossover operator are used ot create two offsprings,
which are then mutated. This process is repeated until a sufficient number of
offsprings has been created. Next generation consists of offsprings and a certain
percentage of the best individuals (elites) from the previous generation.

In addition, two more evolutionary setups were added for comparison. The
None crossover uses the same evolutionary scheme, but the offsprings it creates
are identical clones of their parents, leaving mutation as the only active genetic
operator. The (1 + λ) setup forgoes the above described setup and implements
the traditional CGP algorithm.

Our experiments have focused on examining the following hypothesis.

Hypothesis 1. The (1 + λ) CGP algorithm performs better than the crossover
operators in all domains.

In order to test this hypothesis, we first performed two rounds of meta-
evolutionary experiments in order to determine which evolutionary parameters
were critical, so that the crossover operators can all use their optimal setting, and
be compared in a fair way. The two most important parameters were then subject
to a parameter sweep, and for every crossover operator the best performing
combination of parameters has been selected for comparison. To classify the
significance of our results, we have used the Mann-Whitney U Test, to compare
the standard (1 + λ)-CGP with all other crossover operators.
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Fig. 1. The block crossover technique.
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The implementation was done in Java, using the ECJ Evolutionary Computa-
tion Research System. All experiments were performed on a computing cluster
with the following hardware configuration: 2 x Intel Xeon E5-2680v3 proces-
sor, 2.5 GHz, 12 cores; 128 GB RAM, 5.3 GB cache per core, DDR4@2133 MHz;
InfiniBand FDR56 network connection.

4.2 Meta-evolution

For the meta-level, we used a basic canonical GA to tune five parameters we
considered most important to the evolutionary process. Meta-evolution is very
costly in terms of the computational effort necessary to find an optimal param-
eter setting. Furthermore, since GP benchmark problems can be very noisy in
terms of finding the ideal solution, the evaluation of the evolved individuals is
repeated multiple times, with fitness defined as the mean result.

During the first round of meta-evolution, all problems used the same setting,
and the evolved parameters have been limited to discrete values, as seen in Table 1.
During the second round, the granularity and range were modified to better fit each
individual problem. Because the (1+λ) scheme does not use tournament selection
nor elitism, the two parameters have been ignored during its meta-evolution.

Table 1. Configuration of the first round of the meta-evolutionary GA.

Property Setting Evolved parameter Possible values

Maximum generations 50 Mutation rate 0.01 – 0.20

Population size 10 Elitism rate 0, 0.05 – 0.50

Mutation probability 0.5 Population size 2 – 1024�

Mutation type Random walk Genotype length 2 – 1024�

Tournament size 2 Tournament size 2 – 1024�

Number of trials 5
�{2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}.

Results of the first round of meta-evolution have revealed that the tourna-
ment size parameter behaves wildly and does not converge to any specific value
for any problem nor type of crossover. In some cases, it even significantly out-
grew the population size. This caused the tournaments to include the entire
population, resulting in a crossover of the best individual with itself, and wholly
defeated the purpose of the crossover operator. To prevent this from happening,
the tournament size has not been included in the second round of meta-evolution
and its value has been fixed to four.

Table 2 shows the results of the second round of meta-evolution which were
used to set up the ensuing parameter sweep. Because the computational effort
required to perform a parameter sweep grows exponentially with the number of
parameters, only the two most important parameters, mutation rate and popu-
lation size, were included in the sweep.
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Table 2. Results of the second round of the meta-evolutionary GA. The table shows
the best-performing combination of the four tuned parameters.

Problem Algorithm Mutation rate Elitism rate Population size Genotype length

Adder (1 + λ) 0.01 – 4 512

None 0.01 0.08 4 384

Block 0.01 0.10 4 1536

Subgraph 0.01 0.06 6 768

One-point 0.02 0.24 6 96

Arithmetic 0.025 0.26 6 96

Multiplier (1 + λ) 0.05 – 3 24

None 0.02 0.20 4 96

Block 0.035 0.22 4 128

Subgraph 0.04 0.04 4 64

One-point 0.035 0.02 4 64

Arithmetic 0.01 0.06 6 384

Bent (1 + λ) 0.14 – 24 128

None 0.09 0.20 24 512

Block 0.045 0.22 3 128

Subgraph 0.04 0.20 12 256

One-point 0.10 0.24 12 256

Arithmetic 0.05 0.20 6 256

Resilient (1 + λ) 0.07 – 2 64

None 0.07 0.20 32 2048

Block 0.12 0.26 3 96

Subgraph 0.09 0.26 3 96

One-point 0.035 0.20 192 512

Arithmetic 0.025 0.28 6 256

Koza-3 (1 + λ) 0.08 – 24 64

None 0.15 0.10 64 64

Block 0.19 0.22 96 32

Subgraph 0.07 0.20 14 16

One-point 0.09 0.08 16 24

Arithmetic 0.12 0.28 12 32

Nguyen-4 (1 + λ) 0.07 – 24 192

None 0.05 0.14 192 1024

Block 0.11 0.08 6 96

Subgraph 0.17 0.16 32 96

One-point 0.18 0.16 6 128

Arithmetic 0.05 0.10 16 128

Nguyen-7 (1 + λ) 0.13 – 64 32

None 0.11 0.18 12 96

Block 0.10 0.10 6 48

Subgraph 0.22 0.10 6 192

One-point 0.09 0.28 64 256

Arithmetic 0.16 0.12 4 48

Pagie-1 (1 + λ) 0.05 – 2 384

None 0.10 0.10 64 768

Block 0.10 0.20 4 1536

Subgraph 0.09 0.06 4 256

One-point 0.05 0.08 8 1024

Arithmetic 0.09 0.22 32 512
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The ideal elitism rate was similar across all problems and types of crossover.
For the sweep, it has been set to the overall average of 15%. Combined with the
fixed tournament size of four, this means that during the sweep, there would
be 52.2% chance none of the individuals in a tourney would be elites from the
previous generation. The ideal genotype length was highly variable and largely
depended on the problem, rather than the type of crossover used. For the sweep,
the genotype length was set up individually for each problem.

4.3 Boolean Functions

We have chosen to evolve both single and multiple output Boolean functions.
2-bit digital adder and multiplier were used as our multiple output problems.
Former work by White et al. [15] proposed these, as suitable alternatives to
the overused parity problems. Their fitness was defined as a hamming distance
between the resulting truth table, and the ideal solution. To increase the speed
of the evaluation, we have used compressed truth tables.

For single output problems, we used 8-bit bent and 1-resilient Boolean func-
tions. These functions find their use in cryptography, where they can provide an
LFSR based key-stream generator of a stream cipher with resistance to linear
and correlation attacks [16].

Bent Boolean functions possess the maximum possible degree of nonlinearity,
defined as the Hamming distance between the truth table of a given function,
and truth tables of all linear function and their negations. For an 8-bit function,
maximum degree of nonlinearity is 120 [17]. We defined their fitness, as the
difference between its actual degree of nonlinearity and the optimal value.

1-resilient functions are highly nonlinear functions that are balanced and have
correlation immunity of the first degree. Balancedness means that the function’s
truth table contains the same number of ones and zeros. Correlation immunity,
means that if the truth table was split in half based on the value of a specific
input, the two halves of the truth table would each remain balanced. To the
best of our knowledge, the maximum possible nonlinearity of an 8-bit 1-resilient

Table 3. Configuration of the Boolean function parameter sweep.

Property Adder Multiplier Bent Resileint

Input bits 5 4 8 8

Output bits 3 4 1 1

Genotype length 512 96 256 192

Mutation rate 0.002 – 0.02 0.005 – 0.05 0.01 – 0.1 0.01 – 0.1

Population size 2 – 48� 2 – 48� 2 – 48� 2 – 48�

Fitness evaluations 10000 5000 2000 5000

Tournament size 2 2 2 2

Percentage of elites 0.15 0.15 0.15 0.15
�{2, 3, 4, 6, 8, 12, 16, 24, 32, 48}.
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Table 4. Results of the parameter sweep for Boolean functions.

Problem Crossover type Mutation rate Pop. size Mean fitness SD Q1 Median Q3

Adder (1 + λ) 0.010 2 4.26 3.3923 1 4 6

None 0.008 3 6.61b 3.4638 4 6 9

Block 0.010 3 6.88b 3.2358 5 7 8

Subgraph 0.010 3 6.60b 3.9029 4 6 9

One-point 0.014 2 6.99b 3.5604 4.75 6.5 8.25

Arithmetic 0.010 3 6.96b 3.0975 5 7 9

Multiplier (1 + λ) 0.035 2 1.13 1.0016 0 1 2

None 0.020 4 2.09b 1.4777 1 2 3

Block 0.035 3 2.14b 1.5441 1 2 3

Subgraph 0.015 3 1.85b 1.4240 1 2 3

One-point 0.020 4 2.03b 1.4997 1 2 3

Arithmetic 0.025 2 2.23b 1.5166 1 2 3

Bent (1 + λ) 0.05 2 2.92 3.8604 0 0 8

None 0.06 24 4.10 4.3705 0 4 8

Block 0.04 8 3.89 4.0098 0 4 8

Subgraph 0.05 32 4.28 4.1974 0 4 8

One-point 0.05 16 4.04 3.9182 0 4 8

Arithmetic 0.05 3 4.88 4.0931 0 8 8

Resilient (1 + λ) 0.07 2 16.89 19.6612 4 4 20

None 0.07 4 5.84b 5.0667 4 4 4

Block 0.08 6 6.64b 5.6916 4 4 4

Subgraph 0.04 6 6.24b 5.4627 4 4 4

One-point 0.09 4 6.12b 5.2863 4 4 4

Arithmetic 0.04 3 8.48a 6.9464 4 4 14

a p-value is less than 0.05. b p-value is less than 0.01.

function is not known, but it can not be higher than 116 [18]. We defined the
fitness, as the difference between the actual degree of nonlinearity and the opti-
mal value, and if the evolved function was not resilient, its fitness was further
penalized by 58, half the known limit.

Table 3 shows the setting used for the parameter sweep of Boolean functions.
Each setting was run one hundred times, for every problem and type of crossover.
All problems used the following function set {AND, OR, XOR, AND with one
input inverted}. Because the best performing population size was usually very
small, we have reduced the tournament size to two, to avoid repeating the issue
from the first round of meta-evolution. For problems where the optimized setting
was routinely able to find the ideal solution, we have also reduced the number
of fitness function evaluations to get more telling results.

Table 4 shows the results of the parameter sweep. For each problem and
crossover operator, we have selected combination of mutation rate and popula-
tion size which provided the best mean fitness over the hundred runs. Operators
that performed significantly different from (1+λ) have their mean values marked.
The table also shows standard deviation (SD) and three quantiles.
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Figure 2 provides visual comparison using box plots. The Arithmetic
crossover, originally intended for use in symbolic regression, performs the worst
when used for Boolean function design. For adder and multiplier problems, the
(1 + λ) strategy has significantly surpassed all other approaches. However, for
the bent function, there was no statistically significant difference, and for the
1-resilient function, the (1+λ) has performed significantly worse than the other
options. Here, even with an optimal setting, some of the runs failed to produce
a resilient function, resulting in significant deterioration of the average fitness.

4.4 Symbolic Regression

For symbolic regression, we have chosen four problems from the work of Clegg
et al. [8] and McDermott et al. [19] for better GP benchmarks, and the Pagie-1
one problem which has been proposed by White et al. [15] as an alternative
to the heavily overused Koza-1 (“quartic”) problem. The analytic functions of
the problems are shown in Table 5. The training data set U[a, b, c] refers to c
uniform random samples drawn from a to b inclusive and E[a, b, c] refers to a
grid of points evenly spaced with an interval of c, from a to b inclusive.

The fitness of the individuals was represented by a cost function value, defined
as the sum of the absolute differences between the correct function values and

Fig. 2. Comparison of crossover operators for Boolean functions.
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Table 5. Symbolic regression problems used in the experiment.

Problem Objective function Vars Training set

Koza-3 x6 − 2x4 + x2 1 U[−1, 1, 20]

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[−1, 1, 20]

Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0, 2, 20]

Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[−5, 5, 0.4]

Table 6. Configuration of the symbolic regression parameter sweep.

Property Koza-3 Nguyen-4 Nguyen-7 Pagie-1

Genotype length 48 128 128 512

Mutation rate 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2

Population size 4 – 96� 4 – 96� 4 – 96� 4 – 96�

Fitness evaluations 10000 10000 10000 10000

Tournament size 4 4 4 4

Percentage of elites 0.15 0.15 0.15 0.15
� {4, 6, 8, 12, 16, 24, 32, 48, 64, 96}.

Table 7. Results of the parameter sweep for symbolic regression.

Problem Crossover type Mutation rate Pop. size Mean fitness SD Q1 Median Q3

Koza-3 (1 + λ) 0.16 24 0.0664 0.0774 0.0119 0.0504 0.0839

None 0.12 16 0.0642 0.0815 0.0092 0.0376 0.0849

Block 0.06 12 0.0636 0.0755 0.0200 0.0455 0.0784

Subgraph 0.16 64 0.0692 0.0819 0.0168 0.0483 0.0852

One-point 0.14 96 0.0617 0.0640 0.0154 0.0333 0.0878

Arithmetic 0.12 12 0.0435 0.0405 0.0146 0.0311 0.0764

Nguyen-4 (1 + λ) 0.12 6 0.3120 0.2658 0.1574 0.2478 0.3745

None 0.10 8 0.3307 0.2326 0.1672 0.2865 0.4130

Block 0.08 16 0.3485 0.2800 0.1800 0.2850 0.4125

Subgraph 0.10 6 0.3709a 0.2692 0.1940 0.3393 0.4652

One-point 0.10 12 0.3282 0.2351 0.1579 0.2864 0.4219

Arithmetic 0.08 8 0.3231 0.2305 0.1560 0.2558 0.4318

Nguyen-7 (1 + λ) 0.18 64 0.6722 0.4215 0.4364 0.5935 0.7682

None 0.10 6 0.6871 0.3736 0.4464 0.6055 0.8073

Block 0.12 24 0.7601a 0.3352 0.5522 0.7101 0.9163

Subgraph 0.12 32 0.7724a 0.4461 0.5090 0.7155 0.9613

One-point 0.16 16 0.7136 0.3741 0.4405 0.6984 0.8439

Arithmetic 0.14 6 0.8132a 0.4978 0.5502 0.7027 0.8288

Pagie-1 (1 + λ) 0.08 8 130.8812 48.2214 93.7397 122.7972 160.8945

None 0.06 96 134.5053 46.6960 96.3143 140.6268 170.5598

Block 0.04 96 126.1124 45.7809 87.4737 122.3703 161.1563

Subgraph 0.08 64 150.4739b 46.9169 115.0119 161.9589 181.6550

One-point 0.06 8 130.6106 48.9600 96.4414 122.4861 169.5678

Arithmetic 0.04 8 120.1536 45.7169 84.6019 114.4325 152.5632

a p-value is less than 0.05. b p-value is less than 0.01.
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the values of an evaluated individual. The configuration of the experiment is
shown in Table 6. All problems used the following set of mathematical functions
{+, −, ∗, /, sin, cos, ln(|n|), en}.

Table 7 shows the parameter sweep results. Same as before, the primary
selected criterion was the best average fitness over one hundred runs. Crossover
operators that performed significantly different from (1 + λ) have their mean
values marked. As can be seen in Fig. 3, the arithmetic crossover performs very
well, when used for symbolic regression, as originally designed.

5 Discussion

In our meta-evolutionary experiments, we dealt with significant problems in
order to make a fair comparison. We were able to determine optimal parameter
settings for the (1 + λ)-CGP as the tuning consists of only three parameters:
population size, mutation rate, and genotypic length. However, determining opti-
mal parameter settings for the canonical crossover algorithms is more complex.
There are three additional parameters to contend with: crossover rate, elitism
rate, and tournament size, which makes obtaining an optimal parameter setting
for the respective problems significantly more difficult.

Fig. 3. Comparison of crossover operators for symbolic regression.
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Furthermore, former studies on the traditional (1 + λ)-CGP algorithm have
shown that large genotypes are very effective for the performance of CGP for cer-
tain problems. Consequently, we have to deal with a big parameter space in CGP
in order to determine the optimal parameters and to make a fair comparison.

For this paper, we only used the meta-evolution framework of the Java Evo-
lutionary Computation Toolkit (ECJ)1. However, we think that including other
state-of-the-art methods for parameter tuning of evolutionary algorithms, like
Iterated Race for Automatic Algorithm Configuration (IRace)2 or Sequential-
parameter-optimization (SPOT)3, can provide more insight into well-performing
algorithm settings in CGP, and help to provide fair and profound comparisons.

Another point which should be discussed is the observation that each type
of crossover works best with different settings. Our findings indicate that there
exists no general parameterization pattern for CGP when the crossover is in use.
We think it should be investigated if there are similar behaviors like exploration
abilities which could be obtained by fitness and search space analyses.

The results of our study show that the parameter settings vary for different
problems in the respective problem domain, and indicate that there is no general
pattern to parametrize the (1+λ)-CGP in a well-performing way. These findings
also open up a new question, which conditions or types of problems have the
need for bigger or smaller population sizes. A preliminary assumption could be
that the fitness landscape of certain problems requires more exploration abilities
in order to overcome local optima.

Our results indicate that bigger populations perform well in the symbolic
regression domain. This finding is consistent with a recent study on mutation-
only CGP by Kaufmann et al. [20] which also indicates that bigger populations
perform best in the symbolic regression domain.

Since our experiments validate Kaufmann et al. results, this behavior should
be investigated through more detailed experiments. Furthermore, we think that
these findings offer a good opportunity to get more understanding of how CGP
works in detail and can significantly contribute to the overall knowledge of fitness
landscape analysis in CGP.

Specifically, Kaufmann et al. show that a mutational (μ + λ) evolutionary
algorithm with big population size can be very effective. Therefore, we think
it should be investigated whether the Block crossover can be used with a (μ +
λ) evolutionary algorithm, as a part of our attempts to proceed towards more
precise comparative studies in CGP.

5.1 Analysis of Hypothesis

The results of our comparative study show that the traditional (1+λ)-CGP algo-
rithm can not be stated as the universally predominant algorithm for CGP. While
it is often a good choice, the outcome of our study gives a significant evidence

1 https://cs.gmu.edu/∼eclab/projects/ecj/.
2 http://iridia.ulb.ac.be/irace/.
3 http://www.spotseven.de/category/sequential-parameter-optimization/.

https://cs.gmu.edu/~eclab/projects/ecj/
http://iridia.ulb.ac.be/irace/
http://www.spotseven.de/category/sequential-parameter-optimization/
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that the (1+λ)-CGP can not be considered as the most efficient CGP algorithm
in the boolean function domain. The experiments on 1-resilient Boolean function
proves that the (1 + λ)-CGP may indeed be significantly inferior to the other
CGP algorithms.

6 Conclusion and Future Work

The first comprehensive comparative study on crossover in CGP has been pro-
posed. We also proposed a new Block crossover technique, inspired by embedded
CGP, for use in standard CGP. We have performed a comparative study using
our new crossover technique, two evolutionary methods that only use mutation,
and three other crossover operators that have been suggested in the literature.
Simple One-point Crossover, Arithmetic crossover, used in the field of real-valued
Genetic Algorithms, and Subgraph Crossover that recombines parts of the parent
chromosome phenotypes.

We have formulated a hypothesis that the traditional (1 + λ)-CGP algo-
rithm would not perform significantly worse than the crossover operators. We
performed a comparison on eight selected tasks from the areas of Boolean func-
tion design and symbolic regression. We have used meta-evolution to determine
the most important evolutionary parameters and find common values for the
parameters of lower importance.

Next, we have performed a series of parameter sweeps, to determine the set-
tings most suitable for every type of crossover and every task, and performed
a comparison. Finally, we have performed a non-parametric statistical test to
prove our hypothesis false, and shown that the (1 + λ)-CGP is significantly out-
performed by all other approaches, when designing 1-resilient Boolean functions.

Our results show, that it is possible for crossover operators to outperform
the standard (1 + λ) strategy. However, if both methods have their parameters
fine-tuned, the (1 + λ) strategy often remains as the overall best strategy. The
question of finding a universal crossover operator is CGP therefore remains open.

Our study opens a new perspective on comparative studies on the use of
crossover in CGP and its challenges. The experiments with meta-evolution in
CGP have shown that it is difficult to obtain well-performing parameter settings
for crossover algorithms in CGP.

These results are the first step toward a fair comparison and a more clear
understanding of the function of crossover in CGP. Our future work will focus
on exploring ways to make comparisons between crossover techniques and algo-
rithms in CGP more fair, including the investigation of suitable parameter
optimization techniques for CGP, widening the spectrum of problem domains
on which comparison is made, and using crossover operators from other areas.
We will especially focus on investigating the possibility of combining the Block
crossover with the (μ + λ) evolutionary algorithm, and on exploring the domain
of cryptographically significant boolean functions, where the (1 + λ) algorithm
faces great difficulty.
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Abstract. Grow and graft genetic programming (GGGP) evolves more
than 50000 parameters in a state-of-the-art C program to make func-
tional source code changes which give more accurate predictions of
how RNA molecules fold up. Genetic improvement updates 29% of the
dynamic programming free energy model parameters. In most cases
(50.3%) GI gives better results on 4655 known secondary structures from
RNA STRAND (29.0% are worse and 20.7% are unchanged). Indeed
it also does better than parameters recommended by Andronescu, M.,
et al.: Bioinformatics 23(13) (2007) i19–i28.
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1 Background: RNA, Genetic Improvement, RNAfold

The central dogma of biology [2] is essentially about the flow of information in
all forms of life. In its simple form it says that this fundamental information
is transcribed from DNA into messenger RNA, which in turn is translated into
protein. Like DNA, RNA is a long chain biomolecule composed of 4 bases (A, C,
G and U). An RNA molecule’s sequence of bases is known as its primary struc-
ture. Much of the interesting biology occurs when RNA is a single strand (unlike
the more stable double stranded DNA helix). Like DNA the four bases can form
relatively weak temporary bonds with their complementary base. (E.g., C pairs
with G, and A with U.) How an RNA chain folds up on itself to form these
complementary pairing is known as its secondary structure (e.g. diagrams (1),
(2) and (3) in Fig. 1). The tertiary, three dimensional structure, in turn relies on
the secondary structure. (See solid colour in diagram (4) in Fig. 1 for two exam-
ples.) In people about 3

4 of the DNA is transcribed into RNA but less than 3%
is translated into protein. Other than conveying information for protein manu-
facture, there are some well known biological uses of RNA. E.g., enzymes which
catalyse reactions between biomolecules. Also some transcribed RNA regulates
c© Springer International Publishing AG, part of Springer Nature 2018
M. Castelli et al. (Eds.): EuroGP 2018, LNCS 10781, pp. 220–236, 2018.
https://doi.org/10.1007/978-3-319-77553-1_14
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Fig. 1. (1), (2) and (3) are secondary structures (i.e. folding patterns) for RNA molecule
PDB 01001. (1) Prediction made original RNAfold does not match well true struc-
ture 3. For example the highlighted hairpin loop (red) is not in 3. (2) Prediction made
with parameter changes given in Sect. 3.3. (3) True structure. (4) Three dimensional
structure. Two (blue, orange) RNA molecules in a Yeast protein complex [1, Fig. 2. A].
(MCC explained on page 7.)

gene expression. Much of the chemistry of biomolecules is governed by their three
dimensional shape. These areas are relatively new, and this, and other uses of
RNA, have sparked renewed interest in RNA and its structure.

While tertiary structure prediction for RNA is still in its infancy and is lim-
ited to very small molecules, the hierarchical nature of RNA folding allows one
to infer most of an RNA molecule’s function from its secondary structure. Com-
puter programs have had some success at predicting RNA secondary structure,
i.e., the folding patterns of real RNA molecules (see Fig. 1). Mostly these are
based on estimating the free energy associated with each possible secondary
structure using dynamic programming and assuming the molecule will adapt
the structure with the lowest energy. In principle, considering all possible RNA
folding patterns is not feasible, but many patterns can be discarded as not being
biologically plausible. For example, the structure of many RNA molecules is
known and very few known structures have knots. Indeed, in RNA molecules
of known structure, on average 95% of the structure is also free of pseudo-
knots [3, Table 1]. It is common for structure prediction software to assume that
RNA contains no knots [4]. Such dynamic programming based approaches scale
approximately as O(n3), where n is the number of bases in the RNA molecule.
(In [5] we showed great savings can be made by running such algorithms on
low cost parallel GPUs.) RNAfold [6] is the widely used de facto state-of-the-art
in RNA secondary structure prediction. It is a key component of the popular
internet based medical research game EteRNA [7]. However RNAfold is only
as good as its underlying model allows. For example it assumes only standard
RNA base-to-base binding are possible. (In panel 3 of Fig. 1 the red line (g↔A)
indicates a non-standard RNA base-to-base binding.)

Grow and graft genetic programming (GGGP) [5,8–13] builds on genetic
improvement (GI) [14,15]. GI has been used to improve the performance of exist-
ing software, e.g. by reducing runtime [16], energy [17] and memory footprint [18],

http://www.rnasoft.ca/sstrand/show_results.php?molecule_ID=PDB_01001
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but (excluding software transplanting [19] and automatic bug repair [20]) typi-
cally it tries not to change programs’ outputs.

We applied GGGP to RNAfold’s C code [21]. Using traditional methods
to identify performance critical components, recoding them using Intel’s SSE
vector instructions and then using GP [22–24] to further improve the new code.
However, evolutionary search found only small increments on the human written
parallel code. Nevertheless, the manually written code has been included into
the standard ViennaRNA package since version 2.3.5 (14 April 2017)1. It is also
being used by the EteRNA development team internally [25].

After speeding up RNAfold by 30% [21], the next stage was to apply GGGP
to improve the accuracy of RNAfold’s predictions. In technical report [26] we
applied GP to the C source code and obtained a small improvement, whereas
here we apply it directly to the (internal) parameters of RNAfold’s dynamic
programming RNA energy model. Notice here and (in the tech report) we allow
(nay encourage, require) evolution to change the output of the program. I.e. to
make functional changes.

See the references for introductions to GP and GGGP in particular. The next
section describes our variable length linear GP system. We train it on a subset
of known RNA structures from RNA STRAND [3]. Whilst Sect. 3 describes the
results of applying GP to RNAfold and show the improvements generalise to
unseen RNA molecules. We conclude (Sect. 4) that evolution can improve predic-
tion of RNA secondary structure and potentially Genetic Improvement could be
widely applied to legacy chemical, physical and Bioinformatics [27] software con-
taining empirically generated constants since maintaining such constants often
lags behind knowledge in the model’s target domain.

2 Genetic Improvement System

In earlier analysis [21,26] we had established that RNAfold uses dynamic pro-
gramming to both calculate the minimum free energy of each RNA molecule’s
secondary structure and the structure itself. To do this it uses numeric con-
stants which specify different aspects of the energy calculation. E.g. the binding
energy between C and G bases and how tightly RNA can fold up on itself to
form hairpin loops (an example hairpin loop is shown in red in the first RNA
structure in Fig. 1). These parameters are held in C strings (4), float (1) and
int (51 521) variables. For simplicity we only allow evolution to change the int
values. (Our approach is summarised in Table 1.) The int values are stored in
31 named variables and arrays, see Table 2. Also profiling with GNU gcov [26]
we had showed that all 31 variables were read at some point when RNAfold is
run on the training data. Although these variables are derived from others, e.g.
to compensate for changes in temperature, they are the ones directly used by
dynamic programming to predict secondary structures.

1 The ViennaRNA package must first be configured with ./configure --enable-sse.
https://www.tbi.univie.ac.at/RNA/documentation.html.

https://www.tbi.univie.ac.at/RNA/documentation.html
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Table 1. GGGP to improve RNAfold’s secondary structure predictions by mutating
its 51 521 int dynamic programming parameters.

Representation: Variable length list of 3 types (>, <,+=) of mutations (Sect. 2.3)

Fitness: Apply mutations in order to the parameters (Table 2) before
running RNAfold on training data from RNA STRAND with less
than 155 bases (681 molecules). Compare its answers with the real
structure and with the default parameters’ answers. Calculate the
MCC between the mutated parameters’ predictions and the real
answers. See Sect. 2.4

Population: Panmictic, non-elitist, generational. 2000 members

Parameters: Initial population of random single mutants. 50% truncation
selection. 50% two point crossover, 50% mutation. In
generations 1–100 half mutations simply append an additional >, <
or += gene whilst the others apply creep mutation (±1 to ±5, or
±10 to ±50) to on average at least 20% of replacement values. No
size limit

2.1 Representation

Each member of the population is a variable length list of mutations (Sect. 2.3).
These are applied one at a time in left to right order. Each mutation applies to
one of the 31 variables and arrays in Table 2 but can potentially change many
values in it. Once the whole individual has been processed, the final parameter
values are loaded into RNAfold, which is then run on a training set of 681
RNA molecules (<155 base pairs long) and its predictions of their structure is
compared with their known structure to give the individual’s fitness.

2.2 Initial Population

2000 individuals each containing one randomly chosen mutant were created. In
later generations, mutations can be changed, one more mutation can be added,
and individuals can be recombined using linear two point crossover. The muta-
tions are split approximately equally between the three primary mutation oper-
ators. Our new mutation operators are designed to respect the existing charac-
teristics of the energy model’s parameters (see following sections and Table 2).

Several of the arrays store parameters that are dependent on each other due
to symmetry [28, page 6170]. As far as the code is concerned this is behind the
scenes but it reduces the number of independent variables. In particular, inte-
rior loop contributions should be symmetric since evaluation should yield the
same result no matter from which side you are looking at it. Currently muta-
tion does not enforce this. Effectively we rely on the fitness function. In future
perhaps each mutation could enforce symmetry. Alternatively we can envision
additional mutation operators which do respect symmetry or indeed mutation
operators which remove asymmetry. E.g., by replacing asymmetric pairs by their
mean value. Adding more mutation operators, rather than more careful design
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Table 2. 31 (10 scalars + 21 arrays) RNAfold parameters which can be optimised.
Data structures markedE hold energy values which are always multiples of 10. (Muta-
tion ensures they remain multiples of ten.) The original values of Tetraloop EE and
Triloop EE are mostly zero a and so mutation of Tetraloop EE is limited to the first 15
elements and in Triloop EE to just the first element. NBPAIRS=7 and MAXLOOP=30.

noLP mismatchME [NBPAIRS+1][5][5]

uniq ML mismatchExtE [NBPAIRS+1][5][5]

dangles dangle5E [NBPAIRS+1][5]

min loop size dangle3E [NBPAIRS+1][5]

rtype [8] mismatchHE [NBPAIRS+1][5][5]

gquad stackE [NBPAIRS+1][NBPAIRS+1]

special hp bulgeE [MAXLOOP+1]

pair [21][21] int11E [NBPAIRS+1][NBPAIRS+1][5][5]

noGUclosure int21E [NBPAIRS+1][NBPAIRS+1][5][5][5]

TerminalAUE internal loopE [MAXLOOP+1]

MLinternE [NBPAIRS+1] ninio[2]E

MLclosingE mismatch1nIE [NBPAIRS+1][5][5]

MLbase int22E [NBPAIRS+1][NBPAIRS+1][5][5][5][5]

hairpinE [31] mismatch23IE [NBPAIRS+1][5][5]

Tetraloop EE [200] (15) mismatchIE [NBPAIRS+1][5][5]

Triloop EE [40] (1)

total 51521 int
a The energy contributions for Tetraloop and Triloop are only used under special
circumstances. They represent tabulated exceptions of small hairpin loops that do
not follow the values provided in hairpin. They are only used when the sequences in
question match the corresponding patterns stored in the character arrays Tetraloop
and Triloop.

of the existing ones, might perhaps be beneficial [29]. Another alternative, which
would be more like traditional optimisation, would be to adjust the independent
variables directly outside of RNAfold.

2.3 Genetic Search Operators: Mutation and Crossover

To create a new mutation, one of the 31 data structures (Table 2) is chosen
uniformly at random. If one of the ten scalars is chosen, it is assigned a new
value. Scalars with value 0 or 1 are inverted, those with values of 2 or 3 are give
a new value chosen uniformly between 0 and 1 or between 0 and 2 and otherwise
it is incremented by a multiple of 10 between –50 and +50 (not zero).

If one of the 21 arrays is chosen, one of the three array mutations (>, <, +=)
is chosen uniformly at random.
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Replace Values Mutation. > The array name value1>value2 mutation opera-
tor is interpreted to mean every element of array name whose value is currently
value1 is overwritten by value2.

Notice we can build individuals composed of multiple mutations. These are
applied strictly in left-right order.

An array element is chosen uniformly at random and its default value is
noted. Then another element is similarly chosen. If the second value is small
(i.e. 0, 1, . . . , or 8) then the second value is used. If it is not small or it is
negative, then 50% of the time it is used and 50% of the time a random energy
value which is a multiple of 10 between –50 and +50 (not zero) is added to it
before it is used. In all cases the second value must be different from the first.

Overwrite Mutation. < The array name index<value2 mutation operator is
interpreted to mean every element of array name which matches index is over-
written by value2.

Having chosen an array, < next chooses one or more elements in the array.
When the array has multiple indexes (Table 2) each is processed independently.
Half the time every element in that particular index is selected (denoted by *)
and the other half one of the legal indexes is chosen uniformly at random. (It
appears some of the arrays are coded with index 0, i.e. the standard C convention,
but element 0 is never used. Our mutation operator does not take notice of this
and so mutating [0] may be a silent mutation.)

value2 is chosen as in > mutation (see previous section). However, if multiple
parts of the array are to be updated (i.e. there is one or more * in the array
index) then there is no check that value2 if different from the existing value.

Increment Mutation. += The array name index+=value2 mutation operator
is interpreted to mean every element of array name which matches index is to
be replaced by its default value incremented by value2.

The array index is chosen in the same way as with < mutation. As before
value2 is given by the default of a uniformly random chosen element of the array.
If is small, a value between –5 and +5 (not zero) is chosen, otherwise a multiple
of ten between –50 and +50 (not zero) is chosen as value2.

Creep Mutation. Creep mutation changes the value2 in existing mutations.
Therefore it is not used in the initial generation. In subsequent generations half
the children are created by mutation and half by crossover. Half the mutants are
created by appending an additional mutation of one of the three primary types
(>, <, or +=) to the parent whilst creep mutation is applied to the existing genes
in the parent in the other 50% of the time. Creep mutation is applied uniformly
at random to the existing mutations. As an anti-bloat mechanism, it is applied
at least once and then on average to 20% of existing genes. Note, as individuals
increase in size, they will tend to be modified to a greater extent. (However, this
proved to be insufficient to prevent bloat, see Fig. 3 page 9.)

If the existing value2 is INF (i.e. 10000000) then no change is made. If creep
mutation is applied to a scalar with a current value2 which is small (i.e. ≤3)
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then, if its value is 0 it is changed to 1. Otherwise the value is either increased
by 1 or by –1.

If value2 is not small or we are dealing with an array then the size of the
change to value2 is given by a tangent distribution [30], here ± ⌊

tan(π
4 (1 + 3

4r)
⌋

(where r is chosen uniformly at random between 0.0 and 1.0.) This gives a non-
uniform chance of ±1 (54.6%), ±2 (24.1%), ±3 (13.0%) ±4 (8.1%) and very
little chance of ±5 (0.178%).

Tabu: Preventing Genotypic Convergence. As we did in [11,31], we insist
that each chromosome in the whole run must be unique. I.e., we impose a geno-
typic Tabu restriction that the same individual is never created twice. In an
effort to prevent bloated individuals side stepping this by adding genes which
simply redo previous changes, each individual is reduced to a canonical form. For
example, if a scalar is mutated more than once, the newest value2 is used and the
earlier genes are removed from the individual. However, (as noted above) this
failed to prevent bloat and it turns out that in our implementation, as programs
get bigger, reducing in particular crossover to canonical form, gets increasingly
time consuming.

2.4 Fitness Function

Each member of the population is interpreted as a series of mutations (previous
sections) to give the final values for the parameters to be modified. As mentioned
above it is impossible to use += to change INF and so such mutations are ignored.
If all mutations are ignored, then the individual is invalid and its fitness is not
evaluated and it cannot be a parent of the next generation. Value2 can be increased
only up to INF. During evolution, the INF restriction effected 0.2% of individuals.

The released code RNAfold.c was tweaked so that before running the
dynamic programming code the original parameters of the energy model are
overwritten with the mutated values.

The tweaked exe is run on all the training data. I.e., one 1/3rd of
RNA STRAND which are less than 155 bases long. This means running the
mutant’s exe up to 681 times. That is, once for each of the short training RNA
molecules. These are the same sequences as we used in [26]. In retrospect this is
perhaps too many. For example, in [16] we used just five but these were randomly
changed every generation.

RNAfold was run with option --noPS to suppress the production of nice
pictures of the predicted structure. (The defaults were used for all other options.)

RNAfold produces its prediction as a text string made of nested brackets
(to indicate pairs of bases which bind together) and “.” (for unbound bases).
As we did in [26] this is piped into the standard ViennaRNA (2.3.0) utility b2ct
which converts the bracket string into .ct file format. The output from b2ct is
piped into a comparison gawk script which calculates the Matthew’s correlation
coefficient MCC = (TP×TN−FP×FN)√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
. Where:
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– TP = true positives, number of predicted pairs which are in RNA STRAND’s
.ct file.

– TN = true negatives, total number of possible pairings not in TP , FP or
FN .
I.e. TN = n(n − 1)/2 − TP − FP − FN (where n is the length of the RNA
molecule).

– FP = false positives, number of predicted pairs which are not in
RNA STRAND’s .ct file.

– FN = false negatives, number of pairs in RNA STRAND’s .ct file but not in
the mutant’s prediction.

Naturally, TN tends to be large, hence we follow Lorenz et al. [6] and use
Matthew’s correlation coefficient as it deals well with large class imbalances [6].
The gawk script also counts the number of cases where the predicted base pair
binding is different between the mutated parameters and the default (unmu-
tated) parameters. A mutant must make at least one change to stand a chance
of being selected to be a parent.

The average MCC is computed. If it is more than 0.1 worse than the mean
MCC calculated for the unmutated parameters, the individual cannot be a par-
ent. The eligible individuals in the current generation are sorted by their average
MCC. And the top half are selected to be parents of the next generation.

Tabu: Preventing over Searching the Same Fitness. In order to try and
encourage diversity in the evolutionary search, we apply a phenotypic Tabu limit:
Each fitness value, i.e. average MCC value, can only be used as a parent 0.01×
the population size (0.01×2000 = 20) in the whole run. Once this limit has been
reached, individuals of exactly this MCC are passed over and individuals with a
lower fitness are selected to be parents.

No Sandbox Protection Against Rogue Mutants. Since evolution is not
permitted to change any of the code, no particular precautions were taken against
badly behaved mutants.

About 2.2% of mutants caused RNAfold to fail, 90% of them with a seg-
mentation error. For example, in the initial generation, all six mutations which
change rtype (excluding rtype[0]) to a value outside the range 0..10 cause a seg-
mentation error. Mutants which fail at runtime are not permitted to be parents
of the next generation.

3 Results

The variable length representation evolutionary computation GI system was
run with a population of 2000 for 100 generations (see Table 1). The training
improvement in average MCC is shown in Fig. 2 and together with the evolu-
tion of size (bloat) in Fig. 3. The best individual from the last generation had
an average MCC on the training set of 0.737044 (RNAfold release 2.3.0 scores
0.663946) and had bloated to size 2849.
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3.1 Post Evolution Tidy

As bloat is common, there is often a post evolution phase where each part of the
best individual is tested one at a time to see if that component can be removed
without loosing the overall benefit [16]. Weimer et al. [32] use delta debugging
to trim their bug fixing patches but we use a simple hill climber. Starting at
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the front of the best evolved individual, we progressively remove each mutation
and test the new individual on the whole training set. If it fails or it performs
worse than the evolved individual, the deleted mutation is restored, otherwise it
is deleted permanently. Then we test the next gene and so on, until we reach the
end of the evolved individual. By which point each part of it has been checked.
This reduced the evolved individual from 2849 mutations to 49 and the mean
MCC had increased very marginally (by 0.000533) to 0.737577.

Here we ran the hill climbing a second time which further reduced it from
49 mutations to 42, with a final fitness of 0.737752. Again a very slight increase
(0.000175) in performance on the training molecules. (No more changes were
made when a third pass was tried.)

3.2 Generalisation Performance

The cleaned up individual (i.e. with 42 mutations) retains its performance when
tried on similar length RNA molecules not used during training (average MCC
0.737752 training, 0.730137 on 682 holdout examples containing less than 155
bases). Indeed it extrapolates well to the whole of the holdout set (1553 RNA
molecules from RNA STRAND of any length). When including the larger RNA
molecules, RNAfold’s performance falls (release 2.3.0’s mean MCC is 0.541106)
but our mutant is still better, mean MCC = 0.568323. Figure 4 (page 12) com-
pares the performance of the new RNAfold against the released code across all
1553 RNA molecules of the holdout set.

RNAfold has the ability (via its -P option) of loading other parameter
settings. Andronescu et al. [33] optimised the setting and their “better opti-
mized” values have been included in the ViennaRNA package (v2.3.0) in the
file misc/rna andronescu2007.par. In Fig. 4 we show our 42 mutant GGGP
parameters also do better than Andronescu et al. [33] (solid v. dotted line).

3.3 Changes to the Energy Model Parameters

The 42 changes cover 19 of the 31 data structures. All but 2 (ninio [2] and
TerminalAU) are arrays. Together they change 14 732 int parameters (29% of
them all). Table 3 summarises these by data structure. The data structures are
sorted by their individual impact in Table 3, but, of course, the changes are
interlinked and cannot readily be treated in isolation. Next, we describe a few
of the changes which seem to have most impact and try and explain how they
work.

mismatchH. Array mismatchH has three indexes (see Table 2). The first,
type, is calculated via a look up from the other two. The second, si1, is given
by the base after the current active i position along the RNA molecule, the
third, sj1, is similarly given by the base before the current active j position.
Thus mismatchH *,*,*+=–90 mismatchH *,*,3<–130 mismatchH *,1,2<–80 cor-
responds to mismatchH[*,A,C] set to –80, mismatchH[*,*,G] set to –130, and all
others being reduced by –90.
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Table 3. Impact of the 42 components of the cleaned up evolved patches to 51 521
int paramters of RNAfold’s dynamic programming model of RNA secondary structure.
First column: components grouped by data structure (order in group is still significant).
2nd number of int changed. 3rd responsibility for fitness change (mutations build on
each other, so isolated changes only give an indiaction of their importance). 4th again
impact, this time on number of bonds changes across the whole training set. Last
column describes changes with impact >2%. See also Sect. 3.3.

internal loop *+=–40 29 –6.91% 667 Add 40 to internal loop[2..30] ([0] and [1]

are INF and so cannot be incremented)

MLintern *+=10

MLintern 3<–150

8 –3.25% 437 MLintern[0..7] were all –90, now -80

except [3] is –150

ninio[2] 80 –2.50% 501 Was 60 now 80

mismatch23I 70>10000000 108 –1.40% 131

dangle5 *,*+=60 40 –1.27% 101

int22 260>80 int22 180>280 int22 *,*,2,*,*,*+=10 int22 280>200 int22 200>10000000

10454 0.05% 37

mismatchI *,*,0<100 mismatchI *,*,1+=–10 mismatchI 2,3,1+=–100 *,4,*+=–40

96 0.05% 617

int11 *,*,*,*<200

int11 6,*,*,2+=–70

1600 1.22% 1306

dangle3 5,*+=–80 5 1.28% 13

mismatch1nI 70>110 125 1.89% 173

TerminalAU 80 3.04% 759 Was 50 now 80

rtype 6<6 rtype 2+=1 2 3.05% 1257 [2] 1←2 and [6] was 5 becomes 6, page 14

mismatchExt *,*,*+=80

mismatchExt *,*,1<–40

200 3.90% 320 +80 is added to all elements, except 1 in 5

is set to –40

stack –100>60 stack –140>0 stack 2,2+=–20 stack *,4<–50

14 6.08% 2135 [0,4] 10000000←−50 [1,4] −140←−50

[1,7] −140←0 [2,2] −340←−360 [2,4] −150←−50

[3,5] −140←0 [4,1] −140←0 [4,4] 30←−50

[4,6] −100←60 [5,3] −140←0 [5,4] −60←−50

[6,4] −100←−50 [7,1] −140←0 [7,4] 30←−50

int21 230>260

int21 *,*,*,*,3+=–70

int21 220>10000000

1669 6.51% 287 283 values that were 230 replaced by 260.

161 values of 220 replaced by INF. And

1225 cases (of a possible 1600) where

int21[*,*,*,*,3] is reduced by 70

bulge *+=40 30 7.53% 635 All bulge[1..30] increased by 40. ([0]is INF

and so cannot be incremented)

mismatchM –70>–130

mismatchM *,3,*+=20

mismatchM *,1,*+=–40

mismatchM -110>–130

mismatchM *,0,*+=–170

mismatchM -60>–40

142 10.70% 1227 15 cases where –70 is replaced by –130. 2

cases where –110 is replaced by –130. 20

cases where -60 is replaced by -40. 40 cases

where [*,0,*] is reduced by –170, 35 [*,1,*]

by -40, and 30 [*,3,*] by –40

hairpin *<560 30 14.75% 1217 All hairpin[*] are set to 560 (Fig. 5)

mismatchH *,*,*+=–90

mismatchH *,*,3< –130

mismatchH *,1,2<–80

180 16.30% 1610 39 cases where mismatchH [*,*,3] is set to

-130. 8 cases mismatchH [*,1,2] becomes

-80 and 133 where other values in

mismatchH are reduced by –90

Total: 14732
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Fig. 4. Performance of best GGGP run (after two hill climbing passes) on 1553
RNA STRAND molecules not used in training (all lengths). Dashed line perfor-
mance of unmodified RNAfold 2.3.0 on same molecules. GGGP gives better pre-
dictions on 769 RNA molecules, worse 471 and same 313, p < 10−−16. GGGP
also does better than parameters from the RNA STRAND team [33], RNAfold

-P ViennaRNA-2.3.0/misc/rna andronescu2007.par, dotted line, p < 10−−15.

mismatchH[*,A,C]← −80 means: where the base after i is A and the base
before j is a C, the energy predicted for a hairpin loop is mutated to –80. In
both the cases which matter, [6,A,C] and [7,A,C], the hairpin energy was –30.
I.e., the hairpin energy has been reduced by –50. Thus GI has made pairs 6,A,C
and 7,A,C appear more beneficial by –50.

mismatchH[*,*,G]← −130: in the fifteen cases which matter, mismatchH
[(1 4 and 7),*,G], by default holds values from –240 to –10. All 15 are over
written with –130.

mismatchH *,*,*+=–90 reduces by –90 elements of mismatchH which were
–250 to +20. That is, these 152 elements of mismatchH now have values of -340
to -70.

Since the dynamic programming calculation works on relative changes, it is
the differences in changes between all the components of the energy calculation
which determine which of the possible RNA folds are taken to be RNAfold’s
final prediction. In summary, GI changed 180 values in the mismatchH array,
which has changed the attractiveness of 169 types of i,j pairings (those adjacent
to 6,A,C (1), 7,A,C (1), (1 4 and 7),*,G (15) and 152 others, i.e. *,*,*).

hairpin hairpin (see Table 2) holds the penalty (i.e. a positive value) for forming
a loop of a given size. Loops longer than 30 lie outside hairpin’s valid index



232 W. B. Langdon et al.

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

INF

 0  20  40  60  80  100  120  140  160

H
ai

rp
in

 e
ne

rg
y

Hairpin size

RNAfold release 2.3.0
GGGP

Fig. 5. Reduced energy penalty in RNAfold (× original, + evolved) for forming hairpin
loops of varying sizes (x-axis). The tightest loop allowed in RNA limits x to be more
than 3. (Remember training data is <155 bases long.)

range and are given by a log term. The GI change hairpin *<560 sets all values
of hairpin[0..30] to 560. Figure 5 shows, in all but 3 cases, the evolved version
has a lower penalty, thus encouraging the formation of hairpin folds.

To try and asses the importance of the hairpin mutations by themselves, we
tried restoring the 31 default values of hairpin. As expected this performs less well
on the 681 training RNA molecules (now average MCC is 0.730457 v. 0.737752
for 42 mutations). On the 1553 molecules of the holdout set it also does less well:
better 344, worse 455, same 754, p < 10−−4. In summary, evolution has found a
way of simplifying the contents of the hairpin array (i.e. setting the whole array
to one value, 560) which is significantly better when included but in only 7% of
cases is the change in MCC more than 0.1.

mismatchM. The C int array mismatchM has the same three index as mis-
matchH (above). It stores energy values associated with the stabilising effect of a
base pairing being adjacent to a free end or a multiloop (called a dangling end).
Like mismatchH it supplies an energy value according to the bases adjacent to
the two active positions i and j and their types. By default (like mismatchH) all
values are negative (actually between –160 and –30), except in mismatchH the
first 25 values (i.e. mismatchH[0,*,*]) are INF, whereas with mismatchM they
are zero. Again mismatchM does not use array elements with index 0 also type 7
also does not seem to be used, meaning the mutations (given in Table 3) affect 59
index positions. Five increase (i.e. penalise) bond pairs by +40 (all –80 to –40,
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and G↔G or G↔A). Twelve increase (i.e. penalise) bond pairs by +20 (–140 to
–120, –120 to –100 and –60 to –40, C↔C, C↔U, G↔*, U↔U).

The other 22 cases reduce the penalty by –40. Changes to C↔C or U↔C
encourage bonds by reducing the energy by –70 to –130. Whilst changes for A↔*
dangling end bonds are also treated more favourably by –40 but cover a large
range of initial values (–160 to –30, including –70).

Manual Removal of rtype. Array type does not hold energy values but
(together with array pair) correspond to the internal coding of base pairs. For
example, a C-G pair encoding is 1, and its reverse type (rtype array at posi-
tion 1) is 2, which is the same encoding as that of a G-C pair. We were therefore
surprised that evolution had changed rtype.

Of the 42 mutations, two affect rtype: The first, rtype[2]←2, (value 2 refers
to G-C pairings) so rtype[G-C] now contains the code for itself (rather than for
C-G). The second, rtype[6]← 6, (value 6 refers to U-C pairings) so rtype[U-C]
now also contains the code for itself (rather than for C-U). Notice rtype is no
longer a permutation.

Table 3 shows the two rtype mutations by themselves gave a small improve-
ment (MCC 0.666190 v. 0.663946) averaged over the 681 training molecules
compared to no mutations. Suggesting during the run mutating rtype had an
evolutionary advantage. However, this does not sustain to the end of the GGGP
process.

As a post-hoc experiment, we manually removed both changes to rtype. On
the training set of 681 short molecules it has an average MCC of 0.724700,
(i.e. slightly worse than the end of the run best mutant, 0.737044, and worse
than the cleaned up 42 mutant). However, on the 1553 RNA molecules in the
holdout set the average MCC is now 0.569085 (remember the 42 mutant’s mean
MCC is slightly lower at 0.568323) but a non-parametric two sided sign test
does not show a significant difference. We should perhaps remove the 2 evolved
rtype changes, since removing them does not make the prediction worse and it
certainly makes the mutants simpler, however, the statistics do not allow us to
claim it is better.

4 Conclusions

Our previous work [26] suggested that the parameters of the dynamic program-
ming model of the energy changes used by folding RNA were a suitable route
for making non-function preserving changes to RNAfold. These parameters are
derived from detailed scientific measurement of RNA. However, they are not set
in stone and have been manually updated in the past to incorporate new scien-
tific knowledge of how RNA behaves. Andronescu et al. [33] fitted the RNAfold
free energy parameters by formulating a constraint optimization problem, which
is quite complicated, time consuming and tedious and our GI does better (see
Sect. 3.2 and Fig. 4).
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It is typical for RNA molecules with more challenging non-standard bindings
to be excluded when testing RNA prediction software [6]. However we have
attempted to evolve the state-of-the-art program to match all of the known RNA
structures. The new version does better overall, in some cases its predictions are
much better, but there are some (albeit a smaller number) where it does worse.

Genetic programming is routinely used to generate from scratch small models
of physical systems (e.g. Eureqa [34]) but here we have shown it can potentially
be widely used to automatically update constants within sizeable programs which
have taken years to develop and are in daily use but where the task of keeping
up with the latest empirical data is highly skilled, labour intensive and liable to
drag months behind current scientific knowledge.

Tuned RNAfold parameters
The complete changes to RNAfold’s default parameters are given in Table 3.
However, for ease of use we manually converted them into a free energy parameter
file rna gi.par compatible with all programs of the ViennaRNA Package. Thus,
they can be optionally loaded at runtime, e.g. RNAfold -P rna gi.par. This
required removing rtype (page 14) and ensuring matrices stack, int11 and int22,
are symmetric. In the case of stack, Table 3, it can be made symmetric by adding
another mutation: stack 4,*<–50. Similarly int11 is made symmetric by adding
int11 *,6,2,*+=–70 and int22 by adding int22 *,*,*,*,2,*+=10 immediately after
int22 *,*,2,*,*,*+=10. The parameters evolved will be shipped with the next
ViennaRNA package.

Acknowledgements. I am grateful for the assistance of Rhiju Das and Fernando
Portela, and our anonymous reviewers.
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Abstract. This paper presents a geometric crossover operator for Tree-
Based Genetic Programming that acts on the syntactic space, where each
expression tree is represented in prefix notation. The proposed operator
is compared to the standard subtree crossover on a symbolic regression
problem, on the Santa Fe Ant Trail and on a classification problem.
Statistically validated results show that the individuals produced using
this method are significantly smaller than those produced by the subtree
crossover, and have similar or better performance in the target tasks.

Keywords: Genetic Programming · Geometric operators · Crossover

1 Introduction

Geometric variation operators have been available for Genetic Algorithms (GA)
for some time now [1]. They are representation-independent operators based
on a distance on the search space interpreted as a metric space. The geometric
description of the variation operators uses the notions of line segment (crossover)
and ball (mutation). In the case of the crossover operator, the resulting offspring
is on a shortest path, i.e., line segment, linking its parents. In the case of muta-
tion, the resulting individual is in the neighbourhood of the original individual,
i.e., within a ball centred on the individual and with a given radius, which defines
the magnitude of the mutation. More formally, considering a given distance d
defined over the search space, and provided that the parent individuals A and
B are different, a geometric crossover operator will produce an offspring O such
that d(A,B) = d(A,O) + d(O,B).

Uniform crossover is an instance of a geometric operator devised for GAs. As
an example, consider the binary strings: A = 00000 and B = 11111. One possible
offspring generated by uniform crossover could be: O = 10101. Considering the
Hamming distance as the metric we have, d(A,O) = 3, d(O,B) = 2, d(A,B) = 5.
This example can be easily modified to accommodate other types of search spaces,
the only requirement being the definition of an appropriate distance between
individuals.
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Moraglio [1] introduced abstract definitions of geometric crossover and muta-
tion operators that are independent of the individuals’ representation. One such
operator is Geometric Uniform Crossover, UX. In this operator, all individu-
als between the parents have equal probability of being an offspring. Using this
and other definitions, Moraglio showed that it is possible to devise geometric
variation operators for different representations, e.g., binary strings, real value
vectors and permutations.

Constructing a geometric variation operator for expression-trees, a structure
commonly used in Genetic Programming (GP), is not straightforward, as it is not
clear what a suitable distance would be. Moreover, making a small modification
to the genotype of a GP individual may lead to a big change in its behaviour.
This is known as the low-locality problem inherent to the representation of GP
individuals [2].

Moraglio and Poli [3] have provided a theoretical study on how homologous
crossover is geometric. When using homologous crossover, the topologies of both
trees are compared, and the common rooted structures are found. Then, genetic
material from the common regions is exchanged. One point crossover [4] is a spe-
cial case of homologous crossover. With this operator, only one node is selected
from the common region of each parent and the subtrees rooted by them are
exchanged. Despite having been proposed some time ago, these operators never
achieved much popularity. The fact that the alignment of the parent trees is a
time-consuming task may be one of the reasons for their lack of usage. Another
reason may be that, with extremely different trees, the common region may be
very small, leading to very big syntactic changes which, together with the low-
locality inherent to this tree representation, may have a great impact on the
semantics of the offspring, possibly leading to their death.

Krawiec and Lichocki [5] proposed the Approximately Geometric Semantic
Crossover (SX). They consider the semantics of a GP individual as the set of
input-output mappings created by it. Based on this idea, they propose a binary
variation operator that tries to approximate a geometric crossover in semantic
space by producing an offspring that has a behaviour as close as possible to the
linear combination of the semantics of its parents. This is done by applying mul-
tiple times a usual crossover operator to the parents, creating a set of candidate
offspring. The semantics of the created offspring is assessed and compared to
those of the parents. The resulting offspring is one with the closest semantics to
both parents. This approach has several drawbacks. Firstly, it does not guaran-
tee that the individuals created are on a shortest path between their parents.
As the authors point out, there is a low probability of producing semantically
geometric offspring, depending on the parents, the crossover operator, the ter-
minal and function sets, and the size of the set of candidate offspring. Secondly,
the evaluation of the many GP individuals produced usually becomes a time
consuming process. Thus, the execution time of the algorithm is expected to
increase proportionally to the size of the generated sets of candidate offspring.

Moraglio et al. [6] further developed the idea of geometric variation operators
in semantic space, and later proposed Geometric Semantic Genetic Programming
(GSGP), where the crossover operation consists of making a weighted average
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of both parents. More formally, the crossover operation is defined by:

o = α · p1 + (1 − α) · p2,

where o denotes the offspring, p1 and p2 are the parent individuals, and α is a ran-
dom value sampled uniformly from the interval [0, 1]. This operation guarantees
that the semantics of the generated individual, i.e., its input-output mapping,
is a blend of the semantics of both its parents. GSGP offers the advantage of,
under certain conditions, inducing a unimodal fitness function over the seman-
tic space, which makes the search process much easier. Also, by acting on the
semantic space, geometric semantic crossover controls how much the behaviour
of the individual is changed. Conversely due to the low locality of the tree-based
representation, making modifications at the syntactic level often leads to large
modifications to the semantics of the individuals, which may deem them unfit
and prevent them from surviving into the next generations. However, GSGP
is not without its faults, the most significant being the exponential growth of
the individuals, which makes it unfeasible to employ this method for a large
number of generations. Vanneschi et al. [7] propose a different, more efficient
implementation that remedies this problem, but does not solve it.

A different approach to the development of geometric operators for GP would
be to adopt a simpler individual representation and, like the traditional variation
operators, act on the syntactic space. There are already some works on Evolu-
tionary Algorithms (EAs) that use an alternative representation to encode the
individuals. Brameier and Banzhaf [8] describe Linear Genetic Programming,
which uses a linear representation of the individuals to evolve computer pro-
grams. Another work that represents the individuals linearly is Gene Expression
Programming (GEP) [9]. The genotype of GEP individuals is represented by
a string that can be decoded into more complex structures, such as expression
trees, graphs and neural networks. The notation used for the genotypes is the
sequence of nodes visited during a breadth-first traversal of the phenotype. The
length of the genotypes is fixed and chosen a priori for all individuals. GEP
is able to evolve different individuals using various types of functions, which
may have different arities. In order to guarantee their validity, each genotype is
divided into head and tail. While the head may contain functions and terminal
symbols, the tail must contain only terminal symbols. The sizes of the head and
tail are pre-computed to ensure that even in the presence of a head composed
only of functions with maximum arity, the tail is long enough to generate a
valid individual. A consequence of this is that there will often exist redundant
genes at the end of the tail. As an example, consider that the genotype of an
individual is Q*+−abcd, where the head contains Q*+−, and the tail contains
abcd. Figure 1 depicts the phenotype of this individual. However, the genotype
Q*+−abcdefgh would lead to the same phenotype, with the genes in bold not
being decoded. The individuals are evolved using a set of variation operators
that are not known to be geometric. The GEP author claims that the advantage
of this method lies in using a simple representation that is easy to manipulate,
and yet originates complex structures.
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Fig. 1. Phenotype of an individual evolved by GEP. Figure extracted from [9].

In this paper, we propose a geometric crossover operator for GP that acts on
the syntactic space. We use a linear, prefix representation of the GP individu-
als with no redundant genes. This way, we can avoid tree alignment algorithms
and, instead, rely on string edit distances between the individuals. We compute
the longest common subsequence of the parents, and use the result to make a
controlled modification in one of the parents producing an offspring that lies
in between those parents in the syntactic, i.e., genotype, space. The proposed
operator is compared to the standard subtree crossover on a symbolic regression
problem, on the Santa Fe Ant Trail and on a classification problem. Statistically
validated results show that the individuals produced using this method are sig-
nificantly smaller than those produced by subtree crossover, and have equivalent
or better performance on the target tasks.

The rest of this paper is organised as follows: Sect. 2 describes the proposed
recombination operator, Sect. 3 presents the experimental setup, Sect. 4 presents
and discusses the experimental results obtained and Sect. 5 presents the conclu-
sions and provides some insight into the future work.

2 Geometric Crossover on the Syntactic Space

We propose to perform a geometric crossover operation between two GP indi-
viduals in the syntactic space. The genotype of each individual is a string that
encodes an expression tree in prefix notation. There are no redundant genes.
The crossover operation aligns the genomes of the two parents and performs
the necessary operations so that one becomes more similar to the other. In our
implementation, the alignment is performed by computing the Longest Common
Subsequence. The modifications are made by inserting or deleting pairs of sym-
bols of different types, i.e., a terminal and a non-terminal symbol, or by deleting
a symbol and inserting another one of the same type. The distance between the
two parent individuals is the number of operations that convert one individual
into the other.

A flow chart of the crossover operator is depicted on Fig. 2. We start by
using a dynamic programming algorithm to compute the Longest Common Sub-
sequence between two parent individuals, A and B, obtaining a matrix C. This
matrix contains the information about the common and non-common genetic



Geometric Crossover in Syntactic Space 241

Fig. 2. Geometric crossover operator.

material to A and B. Using that information, Algorithm 1 (LCS MASKS), con-
structs two modification masks MA, MB . These masks contain the aligned sym-
bols from the longest common subsequence, along with blank spaces denoting
the locations where insertions and deletions must be made, and the non-common
symbols marked for deletion or insertion. Using these masks, it is possible to
make a copy of the parent A more similar to parent B by inserting and/or delet-
ing genetic material. The resulting offspring O is chosen randomly from the set of
valid candidate individuals resulting from each of those operations. This can be
repeated for a number of steps, in order to generate individuals farther from the
first parent (and closer to the second one). In that case, the previously chosen
individual takes the place of A and MA and MB are replaced by M ′

A and M ′
B ,

respectively, which are updated versions that reflect the operations performed.

2.1 String Edit Distance

The string edit distance is a family of metrics that reflect the number of oper-
ations needed to transform a string A into a string B. The Longest Common
Subsequence (LCS) [10] is the longest possibly non consecutive subsequence
that is common to both strings. From it, it is possible to compute the distance
between the two strings, i.e., the number of operations required to modify the
non-common symbols from the two strings. We refer the interested reader to
[11], where a dynamic programming algorithm to compute the LCS is presented.
This algorithm outputs a matrix C that holds in each position (i, j) the length
of the longest common subsequence contained up to the character i of string A
and character j of string B. After the algorithm terminates, a longest common
subsequence can be obtained by going through the matrix C from the bottom
right cell to the upper left cell. A symbol in position (i, j) is part of a longest
common subsequence if C[i][j] = C[i − 1][j − 1] + 1 and C[i][j] �= C[i − 1][j],
C[i][j] �= C[i][j − 1].

2.2 Crossover Operator

The proposed geometric crossover operator (GSynGP) works by modifying a
copy of the first parent, A, to make it more similar to the second parent, B,
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Algorithm 1. Modification masks generated from the Longest Common Sub-
sequence.

1: function LCS MASKS(A,B,C)
2: MA,MB ← []
3: i ← len(C) − 1
4: j ← len(C[0]) − 1
5: while i >= 1 or j >= 1 do
6: if i > 0 and j > 0 and C[i − 1][j − 1] = C[i][j] then
7: MA ← get symbol(A[i − 1], function set)
8: MB ← get symbol(B[j − 1], function set)
9: i ← i − 1

10: j ← j − 1
11: else if i > 0 and C[i − 1][j] = C[i][j] then
12: MA ← get symbol(A[i − 1], function set)
13: MB ←’ ’
14: i ← i − 1
15: else if j > 0 and C[i][j − 1] = C[i][j] then
16: MA ← ’ ’
17: MB ← get symbol(B[j − 1], function set)
18: j ← j − 1
19: else if i > 0 and j > 0 and C[i − 1][j − 1] = C[i][j] − 1 then
20: MA ← A[i − 1]
21: MB ← B[j − 1]
22: i ← i − 1
23: j ← j − 1

24: return reverse(MA), reverse(MB)

by inserting and/or removing nodes while preserving the syntactic validity of
the intermediate individuals. It starts by computing the LCS to determine the
similarity between the two parent individuals (A,B). That information is con-
tained in matrix C. Then, using matrix C, Algorithm 1 (LCS MASKS) computes
two modification masks, MA and MB , that contain the symbols in the longest
common subsequence, as well as those that must be modified and blank spaces
denoting locations that must be filled. In other words, Algorithm 1 computes
an alignment of the two parent strings. The masks are created by going through
matrix C, aligning the common genetic material and inserting blank spaces or
markers in the positions where symbols must be added or removed from A. The
markers are provided by function get symbol, which returns the symbol passed
as a parameter along with a prefix to denote whether it belongs to the terminal
(T ) or function set (F ). As an example, consider two parent individuals A:
/ − ∗/bcaa ∗ aa and B: ∗b/cb. A possible LCS between them is ∗bc. The masks
produced by Algorithm 1 are:

MA: F /, F −, ∗, F /, b, ’ ’, c, T a, T a, F ∗, T a, T a
MB : ’ ’, ’ ’, ∗, ’ ’, b, F /, c, ’ ’, ’ ’, ’ ’, ’ ’, T b
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where, the symbols in MA that have the prefixes T and F are not present in
the individual B, and must be deleted. The symbols with those prefixes present
in MB represent genetic material that must be inserted into A. The locations
for insertions are marked by blank spaces in MA, and the locations for deletions
are marked by blank spaces in MB .

Algorithm 2. Geometric Syntactic Crossover Operator

1: function Crossover(MA,MB)
2: candidates ← []
3: if ’F ’ in MA and ’T ’ in MA then
4: candidates ← candidates ∪ delete(MA,MB , function set)

5: if not’ F ’ in MA and ’T ’ in MA then
6: candidates ← candidates ∪ replaceT (MA,MB , function set)

7: if ’F ’ in MB and ’T ’ in MB then
8: candidates ← candidates ∪ insert(MA,MB , function set)

9: if ’F ’ in MB and ’F ’ in MA then
10: candidates ← candidates ∪ replaceF (MA,MB , function set)

11: return random(candidates)

The remaining steps of the crossover operator, presented in Algorithm 2, con-
sist simply in checking four conditions and performing the corresponding opera-
tions, where appropriate. The four possible operations are: inserting a function
and a terminal (Algorithm 3), removing a function and a terminal (Algorithm 4),
removing a terminal and inserting another one and removing a function and
inserting another one (Algorithm 5). The operation of deleting a terminal and
inserting another one is identical to what is presented in Algorithm 5, with the
difference that F should read T and function set should read terminal set. The
function all combinations() returns all pairs of symbols to be tested in each case,
that is, in Algorithm 3, the combinations of all function and terminal symbols

Algorithm 3. Insertion of a function and a terminal symbol

1: function Insert(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (f, t) ← random(combs)
5: MA[t] ← MB [t]
6: MA[f ] ← MB [f ]
7: if check indiv(MA, function set) then return MA

8: else
9: MA[t] ←’ ’

10: MA[f ] ←’ ’

11: return MA
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that are present in B and absent in A; in Algorithm 4, all pairs of terminal and
function symbols that are present in A and absent in B and; for the operations
of deleting and inserting symbols of the same type, all pairs of symbols of the
desired type that are present in one parent and absent in the other one.

Algorithm 4. Deletion of a function and a terminal symbol

1: function Delete(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (f, t) ← random(combs)
5: v ← [MA[f ],MA[t]]
6: MA[t] ←’ ’
7: MA[f ] ←’ ’
8: if check indiv(MA, function set) then return MA

9: else
10: MA[t] ← v[1]
11: MA[f ] ← v[0]

12: return MA

An individual is then selected from the set of valid generated individuals.
These operations create an individual that is one step away from the first parent.
In order to create offspring at different distances from each parent, Algorithm 2
may be iterated over a number of times, with the resulting individual of one
iteration taking the place of A in the following iteration. For example, if the
operator is applied twice, on the first iteration it will be applied to parents A
and B, outputting an offspring O1. In the second iteration, the offspring O1 will
take the place of A in the crossover, creating the individual O2. In general, in an
iteration where all operations are possible, the offspring created only has a 25%
chance of becoming larger than its parent. That growth will only by 2 nodes
and, at most, by one depth level.

An individual is valid if it can be converted into a valid expression tree,
without any exceeding genes. It is also possible to test this validity without
converting the string into the corresponding tree. Consider a counter c, that
holds the number of necessary terminal symbols for an individual to be valid.
For an empty string, c = 1, i.e., a terminal symbol is required in order to create
a valid individual. To test an individual, start with c = 1 and go through the
string. Increment c for each function symbol read, and decrement it for each
terminal read. If c reaches 0 and there are still unread symbols, the individual
has redundant genes and, thus, is invalid. On the other hand, if the string ends
and c > 0, the individual can not be converted into a valid tree. In the given
example, two valid candidates for offspring are:
1. / − ∗/bcaaa, obtained by removing the last ∗ and one of the marked a from

A
2. / − ∗/b/caaaa, obtained by removing the last ∗ from A and inserting the /

from B
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Algorithm 5. Deletion of a function and insertion of another function symbol

1: function ReplaceF(MA,MB)
2: combs ← all combinations()
3: while len(combs) > 0 do
4: (fb, fa) ← random(combs)
5: if MA[fb] =’ ’ then
6: MA[fb] ← MB [fb]
7: v ← MA[fa]
8: MA[fa] ← ’ ’
9: if check indiv(MA, function set) then return MA

10: else
11: MA[fb] ←’ ’
12: MA[fa] ← v

13: else if ’F ’ in MA[fb] then
14: MA[fb] ← MB [fb]
15: else
16: v ← MA[fa]
17: MA[fa] ← MB [fb]
18: if check indiv(MA, function set) then return MA

19: else
20: MA[fa] ← v

21: return MA

Table 1. Parameters of the SGP.

Parameter Value

Population size 400

Elite size 1

Tournament size 10

Maximum tree depth 10

Generations 1000

Crossover rate 0.7

Mutation rate 0.3

Number of immigrants 120

3 Experimental Setup

In order to assess the usefulness of the proposed approach, we performed 30
independent runs on a Symbolic Regression problem, on the Santa Fe Ant Trail
and on a Classification problem, comparing the performance of the proposed
approach to that of Standard Genetic Programming (SGP). In the following, we
shall refer to the geometric syntactic approach as GSynGP.
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3.1 Standard Genetic Programming Algorithm

We implemented a version of SGP using subtree crossover and two types of muta-
tion: point mutation and subtree crossover with a randomly generated individual.
Point mutation selects one symbol from the genotype and replaces it by another
of the same type. The initial population is created using the method known as
ramped-half-and-half [12]. The parents are selected using tournaments and sur-
vivor selection is generational, with an elite individual. In order to maintain a
diverse population throughout the run, at each generation a set of immigrant
individuals are introduced into the population. These immigrants have a 50%
chance of being elitist or randomly generated. Elitist immigrants are mutated
copies of a good quality individual that is selected from the population by tour-
nament. The random immigrants are generated using the ramped-half-and-half
method. The parameters used for this algorithm are presented on Table 1.

3.2 Geometric Syntactic Approach

This algorithm uses the same parameters as those used for the SGP, differing only
in the crossover operator employed, which has been described in Algorithm 2.
Due to the low-locality problem inherent to expression trees in GP, we are not
interested in making modifications that are too disruptive. However, we are still
interested in generating individuals that have different distances to each parent.
For these reasons, the crossover operator is performed for a random number of
steps, which is uniformly sampled from {1, 2, 3}.

3.3 Symbolic Regression

Dataset. The performance of the two algorithms is assessed on a dataset gener-
ated using Eq. 1, as proposed by Keijzer [13]. The dataset contains 50 randomly
generated points, with x1, x2 sampled uniformly from the interval [−10, 10].

y = x4
1 − x3

1 +
x2

2

2
− x2 (1)

Terminal and Function Sets. The SGP and the GSynGP use the same ter-
minal and function sets. For this problem, the terminal set is composed only of
the variables from the dataset (i.e., x1, x2) and the function set is composed of
the basic arithmetic functions (i.e., +,−, ∗, /). / stands for protected division,
where x/0 = 1.

Fitness Evaluation. The fitness of each individual was assessed using the
Mean Squared Error (MSE), as defined in Eq. 2, thus making this a minimisation
problem.

MSE =
∑N

i=1(Ŷi − Yi)2

N
(2)

where N is the number of samples, Ŷi is the ith predicted value and Yi is the
corresponding target value.
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3.4 Santa Fe Ant Trail

The Santa Fe Ant Trail is a path planning benchmark problem where an artificial
ant must follow a deceptive trail collecting food pellets. We used the traditional
version of this problem, as used by Koza in [12]. The map is a 32× 32 toroidal
grid with 89 food pellets. The ant starts facing east, at the upper left cell. The
simulation ends when the ant completes 400 moves.

Terminal and Function Sets. The SGP and the geometric approach use the
same terminal and function sets. For this problem, the terminal set is composed
of the basic actions of the ant {left, right,move}, where left and right rotate the
ant 900 in each direction and move makes it move forward one cell. The function
set is composed of the functions ifFoodAhead and Progn2. Both functions have
an arity of 2. Function ifFoodAhead checks if there is a food pellet directly in
front of the ant and, if there is, executes its first argument, otherwise executes the
second argument. Progn2 is a progression function that executes both arguments
in sequence.

Fitness Evaluation. The fitness of each individual is measured as the number
of food pellets eaten by the ant, within the 400 steps limit. Thus, this is a
maximisation problem.

3.5 Classification

In order to understand how our approach performs in real world problems, we
decided to test it in a classification problem with real data. The chosen dataset is
the Wisconsin Breast Cancer [14], available at the UCI repository. It is a binary
classification problem that aims at determining whether a sample, described by
30 features, represents a benign or malign tumour. This dataset has 569 samples,
from which, on the beginning of each run, the algorithm chose 70% to be used
to evolve the individuals. As the dataset was unbalanced, prior to this split a
balancing of the data was made, by randomly discarding samples of the larger
class until both had an equal amount of examples. Thus, the balanced dataset
was left with 424 samples, from which 296 were used in the evolutionary process.

Terminal and Function Sets. As before, both the SGP and the GSynGP use
the same terminal and function sets. The terminal set is composed only of the
variables from the dataset (i.e., x1, x2, ..., x30) and the function set is composed
of the basic arithmetic functions (i.e., +,−, ∗, /).

Fitness Evaluation. The performance of each individual was measured with
the F1-Score, a commonly used criterion in classification problems. As the Santa
Fe Ant Trail, this is a maximisation problem.
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4 Experimental Results

For each problem, we characterise each algorithm according to three features:
the fitness of the best individual at the end of each run, and the average depth
and average number of nodes of the individuals in the population, also at the end
of each run. The results were validated using statistical tests, at a significance
level α = 0.05. The results of those tests are presented on Tables 2 and 3.

4.1 Symbolic Regression

We start by applying the Kolmogorov-Smirnov test to the data, in order to
be able to decide whether we should apply parametric or non-parametric tests.
The results of this test show that the data for the average depth and average
number of nodes of the individuals of both algorithms follow normal distribu-
tions, with p > 0.05, whereas the fitness data follows non-normal distributions
(p < 0.05). As we have two sets of paired samples per feature, we apply the
Wilcoxon Rank-Sum test to the data that follow non-normal distributions, i.e.,
to the fitness data, and the Paired Samples T-Test to the data of the average
number of nodes and average depth. Both tests were applied as SGP-GSynGP.
For the fitness data, the Wilcoxon test shows that there are no statistically sig-
nificant differences between the performances of the individuals evolved by each

Table 2. Kolmogorov-Simrnov test applied to the data of the three problems.

Symbolic regression Santa Fe Ant Trail Classification

Depth Size Fitness Depth Size Fitness Depth Size Fitness

SGP Z 0.88 0.74 1.64 0.65 0.47 1.51 0.79 0.93 0.75

p 0.416 0.648 0.006 0.794 0.979 0.014 0.556 0.358 0.628

GSynGP Z 0.83 0.93 1.37 2.00 2.26 2.41 1.40 1.74 0.75

p 0.498 0.358 0.035 0.0 0.0 0.0 0.028 0.003 0.628

Table 3. Wilcoxon applied to the fitness of the Symbolic Regression problem, to all
data of the Santa Fe Ant Trail and to the average size and depth data of the Classifi-
cation. Paired Samples T-Test applied to the data of the average depth and size of the
Symbolic Regression problem and to the fitness data of the Classification problem.

Symbolic regression Santa Fe Ant Trail Classification

Wilcox. (Dep. T) Depth Size Fitness Depth Size Fitness Depth Size Fitness

Z (t) 14.11 3.40 −1.22 −4.78 −4.78 −3.15 −4.62 −4.78 −1.16

p 0.0 0.0 0.221 0.0 0.0 0.002 0.0 0.0 0.257

P Ranks (SGP ) 119.34 4149.04 15 30 30 3 28 30 0.96

N Ranks (GSynGP ) 13.12 108.02 15 0 0 18 2 0 0.97

Effect size 0.934 0.931 −0.223 −0.873 −0.873 −0.575 −0.843 −0.873 0.211
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algorithm. However, the Paired Samples T-Test revealed that the geometric app-
roach evolved significantly smaller individuals, both in depth and in number of
nodes (both p = 0.0), with large effect sizes of respectively 0.934 and 0.931.
Analysing the average values, SGP evolved individuals with an average depth
of 119.34 levels and an average size of 4149.04 nodes. The geometric syntactic
approach, on the other hand, evolved much smaller individuals, with an average
depth of 13.12 levels (only 3.12 levels higher than the maximum depth of the
initial individuals) and an average size of 108.02 nodes.

4.2 Santa Fe Ant Trail

This section describes the analysis of the data collected on the Santa Fe Ant
Trail. The Kolmogorov-Smirnov test yielded p < 0.05 for the data of all three
features of the geometric approach. For that reason, we applied the Wilcoxon
test to the data of the three features, in a SGP-GSynGP manner. It yielded
p = 0.0 for the two features related to the size of the evolved individuals, leading
us to conclude that the geometric approach evolved significantly smaller indi-
viduals, with a large effect size of −0.873. In fact, the individuals evolved by
the SGP had an average depth of 107,60 levels and an average size of 3450.31
nodes, while those evolved by the GSynGP had an average depth of 10.94 and
an average size of 61.05 nodes. Regarding the fitness of the best individuals,
the Wilcoxon test output a p-value of 0.002, which lets us know that there are
statistically significant differences between the performance of the individuals of
each algorithm. Moreover, the 18 negative ranks found by this test lead us to
conclude that the geometric approach evolved individuals that perform signif-
icantly better in this task than those evolved by the SGP, with a large effect
size of −0.575. On average, the individuals evolved by the SGP collected 77.87
food pellets, while those evolved by the GSynGP collected 86.77, out of the 89
available in the world.

4.3 Classification

In the classification problem, the results of the Kolmogorov-Smirnov test do not
allow us to reject the null hypothesis that the fitness data follow normal distri-
butions. For that reason, we applied the Paired Samples T-Test which revealed
no statistically significant differences, with the individuals evolved by the SGP
achieving an average F1-Score of 0.96 and those evolved by the GSynGP achieving
0.97. Carrying on to assess the average size of the individuals in the last popula-
tions of each algorithm, the results of the Kolmogorov-Smirnov, allow us to assume
that the data of the SGP follows a normal distribution, while the data for the
GSynGP does not. For that reason, we applied the Wilcoxon test, which yielded
significant differences (p=0.00) and, with all ranks being positive, it shows that the
individuals evolved by the SGP are significantly larger, with an average number
of nodes of 5278.39, while those evolved by the GSynGP have an average size of
283.98 nodes. Finally, the Kolmogorov-Smirnov test yielded the same results for
the average depth as it did for the average size. Applying a Wilcoxon test to the
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depth data, we conclude that the individuals evolved by the SGP are significantly
deeper (p=0.0), with a large effect size of −0.843. The individuals evolved by the
SGP have an average depth of 122.54 levels, while those evolved by the GSynGP
have an average depth of 26.86 levels.

4.4 Population Diversity

We now focus on studying the diversity of the individuals from the population in
each generation. We repeated the experiments without using immigrants, as they
are an artificial method of increasing the population diversity. Due to space and
time constraints, we focused on a single benchmark problem, the Santa Fe Ant
Trail, and reduced the population size to 50 individuals. The tournament size was
reduced to 3, as this is expected to increase the population diversity. The other
parameters remained unchanged from the previous experiments.

Figure 3 presents the distances between each pair of parent individuals
evolved by the SGP (left) and the GSynGP (right), sampled with a 50 genera-
tions period. Each distance is represented by a blue circle with high transparency.
Thus, darker circles represent many pairs of parents with equal distances. At the
beginning of the experiments, both algorithms present similar diversity (note the
different scales). However, over time, the SGP seems to achieve a much greater
diversity than the GSynGP. This is due to bloat. Bloated populations contain
individuals with more diverse genotypes, but that diversity does not necessarily
transfer into different behaviours. Moreover, over the entire run there are very
large individuals in the population that result in big differences between the
parents. However, these individuals are usually unable to survive many gener-
ations, leading the population to converge on a set of more similar individuals.
The GSynGP behaves differently, gradually converging its population into a
good quality area of the search space, with the most different individuals being
phased out over the generations. However, this does not necessarily mean that
the population has completely lost its diversity, as the parents of the last pop-
ulation still have an average distance of approximately 6.8 operations and a

Fig. 3. Distances between each pair of parent individuals of the SGP (left) and
GSynGP (right), sampled with a period of 50 generations.
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standard deviation of 5.8. The bloat present in the populations of the SGP leads
to more diverse populations in the genotype space, with the pairs of parents of
the last population having an average distance of 1151 operations and a standard
deviation of roughly 1095.3.

5 Conclusions

This work presented a novel geometric crossover operator that acts on the syn-
tactic space of expression trees. The method was implemented and compared to
SGP on problems from the domains of symbolic regression, path planning and
classification. Our approach was able to consistently evolve smaller individuals
than the SGP, both in size and depth. This reduction in size of the individuals
does not imply a loss in quality, as our approach outperformed the SGP in the
only test problem where there were statistically significant differences. The diver-
sity experiments showed that the geometric operator led the population into a
good quality region of the search space, without completely loosing its diversity.
SGP seemed to have a much more diverse population, but that diversity was due
to bloat. Future work includes adapting this approach to function sets containing
symbols with different arities. Moreover, the crossover implementation should be
improved to avoid having to test individuals after each insertion and/or deletion
pair before a more thorough experimental study is carried out.
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Abstract. Dynamic job shop scheduling (JSS) problems with dynamic
job arrivals have been studied extensively in the literature due to their
applicability to real-world manufacturing systems, such as semiconduc-
tor manufacturing. In a dynamic JSS problem with dynamic job arrivals,
jobs arrive on the shop floor unannounced that need to be processed by
the machines on the shop floor. A job has a sequence of operations that
can only processed on specific machines, and machines can only process
one job at a time. Many effective genetic programming based hyper-
heuristic (GP-HH) approaches have been proposed for dynamic JSS
problems with dynamic job arrivals, where high quality dispatching rules
are automatically evolved by GP to handle the dynamic JSS problem
instances. However, research that focus on handling multiple dynamic
events simultaneously are limited, such as both dynamic job arrivals and
machine breakdowns. A machine breakdown event results in the affected
machine being unable to process any jobs during the repair time. It
is likely that machine breakdowns can significantly affect the effective-
ness of the scheduling procedure unless they are explicitly accounted
for. Therefore, this paper develops new machine breakdown terminals
for a GP approach and evaluates their effectiveness for a dynamic JSS
problem with both dynamic job arrivals and machine breakdowns. The
results show that the GP approaches with the machine breakdown ter-
minals do show improvements. The analysis shows that the machine
breakdown terminals may indirectly contribute in the evolution of high
quality rules, but occur infrequently in the output rules evolved by the
machine breakdown GP approaches.

1 Introduction

Job shop scheduling (JSS) problems are combinatorial optimisation problems
that have been studied over the past 60 years [1]. Due to their direct application
in important real-world manufacturing systems, extensive research has been car-
ried out for JSS problems to find effective and practical techniques which may be
incorporated to a real-world scenario for the manufacturers so that they gain a
c© Springer International Publishing AG, part of Springer Nature 2018
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competitive edge in the respective markets [1]. In a JSS problem instance, there
are machines on the shop floor that are used to process arriving jobs, and the
manufacturer needs to make intelligent decisions to process the jobs as effectively
as possible. In other words, machine resources need to be optimally allocated
(given a specific criterion) by determining the sequence in which the jobs are
processed. However, optimal allocation of machines can be a difficult task. Most
job shop scheduling (JSS) problems are NP-hard [1], and mathematical opti-
misation techniques that return optimal solutions for problem instances do not
scale effectively with the problem size. In addition, in a dynamic JSS problem
instance there are unforeseen events that affect the properties of the shop floor,
e.g., dynamic job arrivals and machine breakdowns [2]. To handle dynamic JSS
problems, various heuristic approaches have been proposed to generate good
solutions to problem instances while coping with the unforeseen events. For this
paper, we handle dynamic JSS problems with dynamic job arrivals, where the
jobs’ properties and their arrival times are unknown until the job arrival times
are reached during processing [3]. Dispatching rule approaches are the most
prominent method of handling dynamic JSS problems with dynamic job arrivals
due to their short reaction times and their ability to cope with the dynamic
environment [4].

In addition to manually designing effective dispatching rules for dynamic
JSS problems with dynamic job arrivals, researchers have proposed various
genetic programming based hyper-heuristic (GP-HH) approaches to automat-
ically evolving dispatching rule from heuristic subcomponents [5]. GP evolved
dispatching rules generally perform better than man-made dispatching rules for
JSS problems [6]. However, GP approaches that have been proposed for dynamic
JSS problems have mainly focused on dynamic job arrivals [3–7]. In a real-world
scenario, it is likely that there are different types of dynamic events that occur
during processing. An example is machine breakdown, where the machines need
to be serviced and repaired [2]. It is likely that disruptions caused by machine
breakdowns can likely impact the performance of the scheduling algorithm if they
are not specifically accounted for. The only GP approach that explicitly accounts
for machine breakdowns in the literature deals with a single machine JSS prob-
lem with no dynamic job arrivals [8]. Developing machine breakdown specific GP
approaches may allow us to improve the overall quality of rules evolved by GP
for dynamic JSS problems with dynamic job arrivals and machine breakdowns
(DJSS-MB).

1.1 Goal

The goal of this paper is to develop new machine breakdown terminals for a GP
terminal set commonly used in the literature [4,7] to handle a DJSS-MB. By
incorporating machine breakdown terminals into the GP terminal set, it may be
possible to evolve rules that can account for machine breakdown information.
This may result in the evolved rules being able to make better decisions for
both machine breakdown and non-machine breakdown JSS problem instances
than rules evolved without machine breakdown information, and generate better
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solutions overall. In other words, developing new machine breakdown terminals
may allow GP to consistently evolve high quality rules for DJSS-MB. Afterwards,
by analysing specific machine breakdown GP evolved rules, it may be possible
to develop an insight into how the rules behave in DJSS-MB, allowing us to
potentially develop more effective machine breakdown GP approaches in the
future. Overall, this paper carries out the following objectives:

(a) Develop and evaluate new machine breakdown terminals for an existing GP
approach [4,7].

(b) Carry out a structural analysis of the machine breakdown GP rules to gain
an understanding of the useful features and properties of GP rules that are
evolved under machine breakdown.

1.2 Organisation

First, we cover the background to dynamic JSS in Sect. 2, which includes the
problem definition and outlines existing GP approaches for dynamic JSS prob-
lems. Afterwards, Sect. 3 describes the existing GP approach used in the lit-
erature [4,7], the benchmark GP terminals, and the machine breakdown GP
terminals investigated in this paper. Section 4 describes the dynamic JSS simu-
lation model used in this paper, and the GP parameters. Finally, Sect. 5 gives the
results and an analysis of the findings, and Sect. 6 gives the concluding remarks
and the future works.

2 Background and Related Work

This section covers the problem definition for the DJSS-MB, and the GP
approaches for dynamic JSS problems in the literature.

2.1 Problem Definition

In a dynamic JSS problem instance, an arriving job j has a sequence of oper-
ations σ1j , . . . , σNjj . The operations must be processed sequentially (e.g. σ1j

must be processed before σ2j) and need to be processed on specific machines
m(σ1j), . . . , m(σNjj). An operation σij needs to be processed on machine m(σij)
for time pij (which is called the processing time), and a machine can only process
one job at a time. The time that a job arrives at the machine for an operation
σij is denoted as rij , and the time that the job arrives on the shop floor (r1j) is
called the job arrival time rj . For this paper, the objective is to minimise total
weighted tardiness (MWT). MWT objective has been studied extensively in the
literature [1], and tardiness related objectives have been shown to be quite sen-
sitive to machine breakdown events [9,10]. In a MWT objective, an arriving job
has a due date dj and a weight wj . If job j’s completion time Cj (the time when
the last operation of job j completes) is below due date dj , i.e., Cj ≤ dj , then
no penalty is incurred. Otherwise, job j is considered tardy, and has tardiness
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Tj = dj − Cj [11]. After all N arriving jobs are completed, the MWT of the
schedule is given by 1

N

∑N
j=1 wjTj .

The two types of dynamic events that occur during processing are dynamic
job arrivals and machine breakdowns. With a dynamic job arrival, the informa-
tion about a job j, including its properties, are not known in advance until the
job arrives at time rj . With a machine breakdown event, a machine m breaks
down at time bm and the machine needs to be repaired for time rm. During
the repair time, the machine is unavailable to process any operations. If a job’s
operation is currently being processed at the machine at the time of breakdown,
then the job’s operation is resumed from the time it was interrupted after the
machine is repaired. This means that if a job j’s operation σij is started at time
st and is interrupted by machine m’s breakdown, then the operation completes
at time st + pij + rm. A job operation resuming from the point of interruption
is consistent with the machine breakdown definition in the literature [8,9] to
handle dynamic JSS problems with machine breakdown. In addition, a common
assumption in the literature is that machine breakdowns events are unforesee-
able [2]. However, for this paper we simplify the problem by allowing the shop
floor to know when the machine breakdown occurs in advance. This is because
GP approaches that handle both dynamic job arrivals and machine breakdowns
have not yet been proposed in the literature. By doing this, we can carry out
a preliminary investigation of machine breakdown terminals that incorporate
informations about future machine breakdowns (described in Sect. 3.2). After
analysing these terminals that take full information about future machine break-
downs into account, it may be possible to develop machine breakdown terminals
in the future that can cope effectively even when the machine breakdown events
are unforeseen events.

2.2 GP for Dynamic JSS Problems

GP approaches have been extensively applied to dynamic JSS problems to evolve
dispatching rules [5,6]. Many GP approaches use single arithmetic function trees
as priority dispatching rules [5,6]. Geiger et al. [12] showed that GP can evolve
optimal priority dispatching rules for static JSS problems that are not NP-hard.
They also showed that priority dispatching rules evolved for NP-hard static
JSS problems and dynamic JSS problems perform better than benchmark man-
made dispatching rules. Hildebrandt et al. [3] provided a GP approach for a
dynamic JSS problem with the flowtime minimisation objective, and showed
that the GP evolved rules outperform state-of-the-art man-made dispatching
rules. Branke et al. [5] and Nguyen et al. [6] both carry out extensive survey
of GP-HH approaches to scheduling problems in the literature. Nguyen et al.
[13] also provide a unified framework for GP-HH to scheduling problems and
categorises existing GP approaches using the framework.

The following are GP approaches that evolve scheduling rules for dynamic
JSS problems with machine breakdowns. Yin et al. [8] proposed a two-tree GP
approach for a single machine JSS problem. The first tree acts as a dispatching
rule, and the second tree is used to calculate the idle time to add in between
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processing different jobs on a machine. They showed that the evolved rules out-
perform the benchmark man-made heuristics designed for JSS problems with
machine breakdowns. Park et al. [10] carried out an investigation on the gen-
erality of GP over a JSS problem with different frequencies and durations of
machine breakdowns, and found that the proportion of time the machines are
being repaired is a significant factor in the qualities of the evolved rules. In
addition, they showed that GP is not general enough to cover for all different
scenarios effectively, and that it is likely that machine breakdown specific infor-
mation is required to improve the generality of GP.

3 Machine Breakdown GP for the Dynamic JSS Problem

As machine breakdown GP approach for DJSS-MB have not been proposed,
this paper proposes simple but novel machine breakdown terminals which are
incorporated to a GP approach. This allows GP to evolve dispatching rules
that may make better decisions during decision situations, potentially leading
to better performance than GP evolved rules which do not incorporate machine
breakdowns. First, we describe the GP representation, the benchmark terminal
and function sets. This is followed by the descriptions and justifications for the
machine breakdown GP terminals. The first approach replaces existing termi-
nals related to operation processing times and add repair time of machines if
necessary. This approach is denoted as “augmented” approach, as it attempts
to improve certain benchmark terminals by incorporating machine breakdown
information. The second approach adds new machine breakdown terminals,
which “react” to the machine breakdowns happening on the shop floor, to the
existing set of GP terminals.

3.1 GP Representation, Terminal Set and Function Set

For this paper, we use a tree-based GP representation [14]. The GP individuals
represent arithmetic function trees that calculate the priorities of jobs during
decision situations. Arithmetic GP representation has been used prominently in
the literature to evolve effective priority dispatching rules for JSS problems [5].
A GP terminal corresponds to a job, machine and shop floor attribute value at
a decision situation, or combines multiple base level shop floor attributes as a
part of the terminal. For example, the RT terminal returns the sum remaining
total processing times of job j waiting at a machine to process operation σij ,
i.e., RT(j) =

∑Nj

k=i pkj . The GP terminals and the arithmetic operators used
by the benchmark GP approach are listed in Table 1, which is based off existing
terminal and function sets used by GP approaches to dynamic JSS problems
in the literature [7,10]. The function set consists of the arithmetic operators
+, −, ×, protected /, binary operators max, min and a ternary operator if.
The protected / returns one if the denominator is zero, and carries out the
standard division operator otherwise. max and min returns the maximum and
the minimum value of the two arguments respectively. if returns the value of
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the second argument if the value of the first argument is greater than or equal
to zero, or returns the value of the third argument otherwise.

Table 1. Terminal set for GP, where a job j is waiting at the available machine m at
a decision situation.

Terminal Description

RJ Operation ready time of job j

PT Operation processing time of job j

RO Remaining number of operations of job j

RT Remaining total processing times of job j

RM Machine m’s ready time

WINQ Work in next queue for job j

DD Job’s due date dj

SL Slack of job j

W Job’s weight wj

NPT Next operation processing time of job j

NNQ Number of idle jobs waiting at the next machine

NQW Average waiting time of last 5 jobs at the next machine

AQW Average waiting time of last 5 jobs at all machines

A GP individual ω is evaluated over a set of dynamic JSS training instances
to calculate its fitness as follows. GP individual ω is applied to a JSS problem
instance γ as a non-delay dispatching rule [11]. During a simulation when a
machine m becomes available, the jobs that are currently waiting at machine m
are assigned priority values by the dispatching rule. The job that has the highest
priority value is selected to be processed at machine m. This continues until the
termination criteria for the simulation has been reached (e.g. after a certain
number of jobs have been completed), at which point the objective function
value Obj(ω, γ) is calculated from the solution generated by individual ω. The
individual ω is applied to all problem instances in the training sets, obtaining
objective values Obj(ω, γ1), . . . , Obj(ω, γTtrain

).
After the GP individual ω is applied to the problem instances in the training

set, the objective values obtained are normalised to reduce the likelihood that the
GP individuals are biased towards specific instances [3,15]. In other words, an
objective value Obj(ω, γ) for a solution generated by individual ω for instance γ
is normalised using reference objective value Obj(R, γ) as shown in Eq. (1). The
reference objective value Obj(R, γ) is calculated from the solution generated by
applying a reference rule R to the problem instance γ. The reference rule used is
the weighted apparent tardiness cost (wATC) rule [16], a man-made dispatching
rule effective for weighted tardiness related objectives. This was also used by
Park et al. [10] in the fitness function to evolve GP rules for the DJSS-MB.
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Obj′(ω, γ) =
Obj(ω, γ)
Obj(R, γ)

(1)

3.2 Augmented GP Terminals

The following terminals in the original GP terminal set (as described in Table 1)
are replaced by terminals that add repair times of the machines: job’s operation
processing time (PT), job’s next operation processing time (NPT) and work in
next queue (WINQ). The replaced GP terminals return the original value if
the job’s operation is not interrupted by a machine breakdown, and adds the
repair time of the machine otherwise. The terminals that incorporate the machine
breakdown information is denoted with the prefix ‘MB-’ (e.g. MBPT for machine
breakdown adjusted processing time). The GP approach that incorporates the
MBPT, MBNPT and MBWINQ terminals is denoted as GP-Aug.

Machine breakdown adjusted processing time (MBPT): The machine
breakdown adjusted processing time terminal (MBPT) replaces the processing
time terminal (PT) in Table 1. Given that the current time during the decision
situation is t and the processing time of job’s current operation j is pij , MBPT
terminal returns the actual duration of time required to process the job’s oper-
ation by factoring the machine breakdown interruption into account. In other
words, if the job is not interrupted by a machine breakdown, i.e., if the operation
completes earlier than the breakdown time bmt of the current machine m, then
the job’s actual processing time p′

ij is equal to the expected processing time pij .
Otherwise, the actual processing time is the sum of the processing time and the
machine repair time rmt required to get the machine back up and running before
the operation is resumed. The value returned by MBPT(j) = p′

ij , where the
calculation for p′

ij is shown in Eq. (2).

p′
ij =

{
pij if t + pij < bmt
pij + rmt otherwise (2)

Machine breakdown adjusted next processing time (MBNPT): The
machine breakdown adjusted next processing time terminal (MBNPT) replaces
the next processing time terminal (NPT) in Table 1. MBNPT terminal returns
zero if the job j’s current operation σij is the last operation before job j’s
completion. Otherwise, given that the next operation σ(i+1)j is processed on
machine m′, the repair time of m′ is added to the next processing time p(i+1)j

if it is expected to be interrupted by a breakdown at machine m′ at operation
σ(i+1)j earliest possible completion at machine m′. The earliest possible time that
job j can be completed is if operation σij is selected immediately by machine
m, and then the successive operation σ(i+1)j is then processed by machine m′

as soon as operation σij is completed. The time when operation σij completes
is given by the current time t and the actual processing time p′

ij , which depends
on whether the operation is interrupted by machine breakdown (Eq. (2)). In
other words, the earliest time operation σ(i+1)j can be processed at machine m′
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is at t+p′
ij after operation σij is expected to complete. Therefore, if machine m′

breaks down before time t + p′
ij + p(i+1)j , then repair time rm

′
t of machine m′ is

added to the operation σ(i+1)j ’s processing time p(i+1)j as shown in Eq. (3).

MBNPT(j) =
{

p(i+1)j if t + p′
ij + p(i+1)j < bm

′
t

p(i+1)j + rm
′

t otherwise
(3)

Machine breakdown adjusted work in next queue (MBWINQ): The
machine breakdown adjusted work in next queue terminal (MBWINQ) replaces
the work in next queue terminal (WINQ) in Table 1. Both WINQ and MBWINQ
terminals return zero if the job j’s current operation σij is the last operation
before job j’s completion. Otherwise, given that machine m′ is required by opera-
tion σ(i+1)j , the standard WINQ terminal returns the sum processing times of the
jobs that are currently waiting at machine m′ plus the remaining time required
to process the operation currently being processed by machine m′, i.e., the work
remaining. MBWINQ modifies the work remaining time calculated by WINQ,
and adds the machine m′’s repair time if the work is interrupted by machine
breakdown at time bm

′
t . In other words, MBWINQ(j) = wr′

m′,j′ +
∑Nm′

i=1 pji ,
where pj1 , . . . , pjN

m′ are the processing times of jobs waiting at machine m′,
wr′

m′j′ is the actual work remaining required on j′ being processed on machine
m′ before it becomes available. The calculation for actual work remaining wr′

m′j′

is given in Eq. (4), where sj′ denotes the time when j′ started, pj′ is the pro-
cessing time required by j′ at machine m′ and t is the current time.

wr′
m′j′ =

{
sj′ + pj′ − t if sj′ + pj′ < bm

′
t

sj′ + pj′ − t + rm
′

t otherwise
(4)

In summary, the augmented GP approach replaces three existing terminals (PT,
NPT and WINQ) with equivalent terminals that incorporate information about
future machine breakdowns. The existing terminals are related to the processing
times of the jobs waiting on the shop floor, where repair times need to be added
onto the processing times if we expect the jobs to be interrupted by machine
breakdowns. By doing this, we expect the GP rule to be able to use the “actual”
processing times of the jobs to make better decisions on what job should be
processed next by a machines during decision situations.

3.3 Reactive GP Terminals

Reactive machine breakdown terminals are added to the GP terminal set
described in Table 1 and incorporate information about current machine status.
As the two terminals incorporate informations about the potential wait time of
a job waiting at a machine for the next machine it visits, they are investigated
separately. The two terminals being investigated are the repair time remaining
next machine terminal (RTR) and the minimum wait time next machine ter-
minal (WT). The two reactive GP terminals may allow rules to make better
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decisions by prioritising jobs with low expected wait time compared to jobs with
high expected wait time. This may lead to jobs spending less time waiting at
busy machines, and the evolved rules may generate higher quality schedules. The
GP approach that incorporates the RTR terminal is denoted as GP-RTR, and
the GP approach that incorporates the WT terminal is denoted as GP-WT.

Repair Time Remaining Next Machine (RTR): The repair time remaining
next machine RTR returns zero if a job j waiting at a machine at time t is
currently on its last operation or the next machine m′ visited by j is currently
not broken down. Otherwise, given that machine m′ broke down at time bm

′
t and

the repair time is rm
′

t , the value given by RTR = bm
′

t + rm
′

t − t.

Minimum Wait Time Next Machine (WT): The minimum wait time next
machine WT returns the earliest time that the machine to be visited by job j
next becomes available. If the current operation of j is the last operation before
completion, then WT returns zero. In addition, if the next machine m′ that job j
visits is currently not busy and is not broken down, i.e., is completely available,
then WT returns zero. Otherwise, the WT returns the duration of time required
for machine m′ to be available. If machine m′ is currently processing a job j′ or is
broken down with an interrupted job, then it returns the actual work remaining
wr′

m′j′ which is given in Eq. (4). Otherwise, if the m′ is broken down and a
job was not interrupted by the machine breakdown, WT returns the remaining
repair time of machine m′ as given by the terminal RTR.

4 Experimental Design

This section describes the setup used to evaluate the different GP approaches
to tackle the DJSS-MB. To evaluate the machine breakdown GP approaches,
a simulation model that is slightly modified from existing simulation models
in the literature [9,10] is used to both evolve and evaluate the evolved rules.
Afterwards, we provide the parameter used by the GP approaches.

4.1 Dynamic Simulation Model with Machine Breakdown

Discrete-event simulations are the most prominent method of generating
dynamic JSS problem instances [5,6]. In a discrete-event simulation, the dynamic
events such as the job arrivals and the machine breakdowns are stochastically
generated from a set of parameters. A simulation configuration is the set of
parameters required, along with a seed value, to generate a dynamic JSS prob-
lem instance. In a dynamic JSS problem instance, there are M = 10 machines on
the shop floor. The problem instance has a “warm-up” period of 500 jobs, where
the first 500 jobs completed do not contribute towards the objective. The sim-
ulation is terminated after 2500 jobs are completed, and the objective function
value is calculated from the 2000 jobs completed after the warm-up phase. The
job arrivals times follow a Poisson process with arrival rate λ = ρ × μ × pM .
In the equation, ρ is the utilisation rate, μ the mean processing time, and pM
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the mean number of job operations to machine ratio. Utilisation rate (ρ) is the
expected proportion of time the machines are spent processing job operations,
and ρ = 80% for all problem instances. If the utilisation rate plus the machine
breakdown level is too high, it is very likely that the shop will be unstable [11],
i.e., job arrival rate is greater than the rate at which the shop floor can process
them. Therefore, 80% utilisation rate is used instead of higher utilisation rates
used in the literature (e.g. 90% or 95% [4,9]) to accommodate for the high level of
machine breakdown used by the simulation model (described below). The mean
processing time (μ) is used in a uniform distribution with the interval [1, 2μ− 1]
that the jobs’ processing times follow, and μ = 25 for all problem instances. The
mean number of job operations to machine ratio (pM ) is the expected number
of machines that a job will visit divided by the total number of machines. The
number of operations a job has follows a uniform distribution in the interval
[2, 10], i.e., the minimum and the maximum number of operations that a job can
have is 2 and 10 respectively. Therefore, the expected number of operations is
6 for a job arriving on the shop floor and pM = 0.6 for all problem instances.
In addition, a job’s weight has the value of 1, 2 or 4 with 20%, 60% or 20%
probabilities respectively. Given a job j’s arrival time rj , total processing time
∑Nj

i=1 pij and the due date tightness simulation parameter h, the due date of job
j is dj = rj + h × ∑Nj

i=1 pij .
For generating machine breakdown events, the inter-breakdown times of the

machines follow an exponential distribution, and the expected breakdown rate
is given by η = rt/π − rt. In the equation, π is the breakdown level and rt is the
machine repair time. The breakdown level is the expected proportion of time
for the machine to be broken down over the course of the simulation, and varies
between the different simulation configurations used to generate the problem
instances. For a problem instance the machine repair time is the same across all
machines for a problem instance.

The dataset parameters for generating job arrivals and machine breakdowns
are shown in Table 2. First, the simulation configurations have the possible break-
down levels π = 0%, 2.5%, 5%, 10%, or 15% for a simulation configuration.
Second, fixed repair times for the machine breakdowns are either rt = 37.5,
137.5, or 262.5 for a simulation configuration. These parameters were selected
after running the benchmark GP approach on different breakdown levels and
durations of repair times as part of a preliminary experiment. The simulation
configuration consists of a combination of the dataset parameters, which means
that there are 3 × 5 × 2 = 30 different simulation configurations available in
the dataset. We use the simulation configuration with π = 15%, rt = 262.5 and
h = 3 to generate the training problem instances. In addition, a different seed is
used with the training simulation configuration every generation during the GP
process, resulting in different dynamic JSS problem instances being used every
generation.
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Table 2. Dynamic JSS parameter settings

Simulation model parameter Value

Number of machines (M) 10

Utilisation rate (ρ) 80%

Mean processing time (μ) 25

Weight/probability ((w, p)) {(1, 20%), (2, 60%), (4, 20%)}
Due date tightness (h) 3 or 5

Machine breakdown level (π) 0%, 2.5%, 5%, 10% or 15%

Repair time (rt) 37.5, 137.5 or 262.5

4.2 GP Parameters

The GP parameters are used by the GP approaches are shown in Table 3. The
GP parameters are the same as the parameters that are same as the ones used by
Park et al. [10] in their investigation into GP approaches for a DJSS-MB, which
allows our benchmark GP approach to be consistent with the GP approach that
was used during their investigation.

Table 3. GP parameter settings

GP Parameter Value

Population size 1024

Number of generations 51

Crossover rate 80%

Mutation rate 10%

Reproduction rate 10%

Max initial depth 2

Max depth 8

Initialisation method Ramped half-and-half

Selection method Tournament selection

Selection size 2

5 Experimental Results

In this investigation, we first carry out a performance evaluation of the GP
approaches. The performance evaluation first compares the GP approaches and
how consistently they can evolve high quality dispatching rules for the dynamic
JSS problem, i.e., measures the effectiveness of the GP approaches. This is done
by evolving a set of rules for each approach and applying them over the dynamic
JSS simulation model. Afterwards, the best rules are extracted from the sets of
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evolved rules for the GP approaches and compared individually to determine
whether an individual machine breakdown rule can outperform an evolved rule
generated by the benchmark GP approach. Finally, we carry out a structural
analysis of the best rules evolved by the machine breakdown GP approaches to
find out the useful properties from the evolve rules.

5.1 Performance Evaluation

For the performance evaluation, each GP approach is applied to a training set
(described in Sect. 4.1) thirty times to evolve thirty independent rules. After-
wards, each of the rule is applied to the dynamic JSS simulation model as
follows.

Performance Measure: First, an evolved rule ω is run multiple times over
each simulation configuration in the simulation model. A single run consists
of a seed value and a simulation configuration, which are used to generate a
dynamic JSS problem instance. The rule is then applied to the problem instance
and generates a schedule, which has a MWT objective value. Afterwards, the
subsequent runs over the simulation configuration use unique seeds so that new
problem instances are generated from the same simulation configuration. In other
words, given a simulation configuration sim and rule ω, schedules with MWT
values Obj(ω, γ(sim)1), . . . , Obj(ω, γ(sim)30) are generated by the rule for the
given simulation configuration. These are used slightly differently for the rule
set evaluation and best rule evaluation, which are described below.

Rule Set Results: In the rule set evaluation, the MWT values Obj(ω, γ(sim)1),
. . . , Obj(ω, γ(sim)30) generated by a rule ω for a simulation configuration sim is
averaged out to obtain the “performance” Perf of the rule over the simulation
configuration, i.e., Perf(ω) = 1

30

∑30
i=1 Obj(ω, γ(sim)i). The rule performances

are then used to compare between the different sets of rules evolved by the GP
approaches.

The results of the performance evaluation is shown in Table 4. In the table,
〈π, rt, h〉 denotes that the simulation configuration has the respective breakdown
level π, repair time rt, and due date tightness h. In addition, each entry μ ± σ
is the mean (μ) and standard deviation (σ) of the performance Perf of the
rules for the simulation configuration respectively. If a set of GP evolved rules
that use the machine breakdown terminals is significantly better than the set of
benchmark GP rules for a simulation configuration by satisfying the two sided
Student’s t-test at p = 0.05, then the particular entry is highlighted.

Although the differences are not significant, the results show that the three
machine breakdown approaches (GP-Aug, GP-WT and GP-RTR) have slightly
better performances than the benchmark GP for some simulation configurations.
In particular, the GP-WT rules have slightly better performances for all simula-
tion configurations than the benchmark GP rules. In addition, the GP-RTR rules
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Table 4. Comparison of the rule sets evolved by the GP approaches over the simulation
configurations. Rules are evolved from 〈0.15, 262.5, 3〉.

MB
Model Subset

GP-Aug GP-WT GP-RTR
GP

MWT
(×102)

〈0, 37.5, 5〉 0.74 ± 0.17 0.66 ± 0.07 0.67 ± 0.13 0.67 ± 0.16
〈0, 37.5, 3〉 1.12 ± 0.16 1.05 ± 0.07 1.06 ± 0.12 1.07 ± 0.15
〈0, 137.5, 5〉 0.60 ± 0.16 0.53 ± 0.06 0.53 ± 0.11 0.53 ± 0.14
〈0, 137.5, 3〉 1.31 ± 0.18 1.24 ± 0.07 1.24 ± 0.12 1.26 ± 0.16
〈0, 262.5, 5〉 0.74 ± 0.17 0.66 ± 0.07 0.66 ± 0.13 0.66 ± 0.16
〈0, 262.5, 3〉 1.36 ± 0.19 1.28 ± 0.08 1.29 ± 0.13 1.30 ± 0.16

〈0.025, 37.5, 5〉 1.60 ± 0.89 1.54 ± 0.52 1.55 ± 0.75 1.59 ± 0.69
〈0.025, 37.5, 3〉 2.92 ± 0.98 2.78 ± 0.52 2.86 ± 0.76 2.95 ± 0.88
〈0.025, 137.5, 5〉 38.39 ± 11.90 36.07 ± 11.10 38.91 ± 10.38 39.20 ± 12.65
〈0.025, 137.5, 3〉 42.53 ± 12.23 40.49 ± 11.10 42.96 ± 10.87 43.23 ± 12.89
〈0.025, 262.5, 5〉 88.51 ± 25.15 89.94 ± 23.00 92.91 ± 23.63 94.43 ± 27.18
〈0.025, 262.5, 3〉 92.11 ± 24.34 93.81 ± 21.81 96.36 ± 22.91 98.17 ± 26.54
〈0.05, 37.5, 5〉 1.64 ± 0.44 1.53 ± 0.20 1.57 ± 0.35 1.58 ± 0.36
〈0.05, 37.5, 3〉 2.76 ± 0.57 2.68 ± 0.30 2.74 ± 0.52 2.78 ± 0.50
〈0.05, 137.5, 5〉 9.04 ± 2.17 8.29 ± 2.03 8.91 ± 1.89 9.05 ± 2.42
〈0.05, 137.5, 3〉 11.14 ± 2.18 10.65 ± 1.87 11.04 ± 1.97 11.28 ± 2.29
〈0.05, 262.5, 5〉 36.43 ± 11.35 34.32 ± 10.75 37.00 ± 10.13 37.38 ± 12.40
〈0.05, 262.5, 3〉 36.56 ± 11.29 34.33 ± 10.20 36.74 ± 9.61 37.27 ± 12.09
〈0.1, 37.5, 5〉 3.69 ± 0.61 3.53 ± 0.27 3.60 ± 0.50 3.63 ± 0.60
〈0.1, 37.5, 3〉 4.60 ± 0.54 4.51 ± 0.26 4.57 ± 0.44 4.63 ± 0.51
〈0.1, 137.5, 5〉 6.11 ± 1.21 5.79 ± 0.35 5.89 ± 0.81 6.07 ± 1.26
〈0.1, 137.5, 3〉 8.15 ± 1.28 7.91 ± 0.44 8.02 ± 0.86 8.29 ± 1.39
〈0.1, 262.5, 5〉 11.72 ± 1.95 11.07 ± 1.56 11.43 ± 1.56 11.74 ± 2.22
〈0.1, 262.5, 3〉 13.14 ± 1.50 12.61 ± 1.52 13.08 ± 1.21 13.29 ± 1.76
〈0.15, 37.5, 5〉 6.20 ± 0.67 5.89 ± 0.21 6.07 ± 0.50 6.06 ± 0.80
〈0.15, 37.5, 3〉 7.73 ± 0.63 7.52 ± 0.18 7.66 ± 0.50 7.74 ± 0.82
〈0.15, 137.5, 5〉 9.02 ± 0.94 8.53 ± 0.59 8.69 ± 0.64 8.81 ± 1.17
〈0.15, 137.5, 3〉 11.73 ± 0.81 11.38 ± 0.42 11.55 ± 0.58 11.71 ± 1.10
〈0.15, 262.5, 5〉 12.55 ± 1.23 12.01 ± 1.29 12.31 ± 0.95 12.48 ± 1.44
〈0.15, 262.5, 3〉 16.60 ± 1.27 16.08 ± 1.33 16.37 ± 0.97 16.59 ± 1.50

have slightly better performance than the benchmark GP rules for most simula-
tion configurations except configurations 〈0, 37.5, 5〉 and 〈0.15, 37.5, 5〉. Finally,
the results of the comparison between the GP-Aug rules and the benchmark
GP rules is most mixed, where GP-Aug rules are slightly better or worse than
the benchmark rules on roughly the equal number of simulation configurations.
However, due to the lack of statistical significance, no significant conclusions can
be drawn on whether the machine breakdown GP approaches is more consistent
in evolving higher quality dispatching rules than the benchmark GP approach.
However, by analysing the rules further, it may be possible to gain a better
understanding of how GP can be applied effectively to the machine breakdown
problem.

Best Rule Results: The best rule from each GP approach are compared
against each other after the performances of the rules are compared. The best
rule is defined to be the rule that has the lowest average performance values
over all the simulation configurations out of the evolved rules. The best rules
are then compared on each simulation configuration by the MWT values from
the generated schedules. In other words, best rule comparison uses the results
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Obj(ω, γ(sim)1), . . . , Obj(ω, γ(sim)30) from the rules being applied to the 30 prob-
lem instances generated by each simulation configuration sim. The results of the
best rules being applied to each simulation configuration is shown in Table 5,
where each entry μ±σ is the mean (μ) and standard deviation (σ) of the MWT
values generated by the best rule after being applied to 30 independent problem
instances generated from the simulation configuration.

Table 5. Comparison of the best rules over the simulation configurations.

MB
Data Subset

GP-Aug GP-WT GP-RTR
GP

MWT
(×102)

〈0, 37.5, 5〉 0.69 ± 0.31 0.63 ± 0.36 0.63 ± 0.31 0.63 ± 0.29
〈0, 37.5, 3〉 1.06 ± 0.27 1.01 ± 0.28 1.01 ± 0.27 1.01 ± 0.25
〈0, 137.5, 5〉 0.55 ± 0.17 0.47 ± 0.16 0.49 ± 0.14 0.50 ± 0.15
〈0, 137.5, 3〉 1.24 ± 0.34 1.21 ± 0.39 1.23 ± 0.37 1.18 ± 0.33
〈0, 262.5, 5〉 0.67 ± 0.32 0.60 ± 0.30 0.61 ± 0.27 0.63 ± 0.29
〈0, 262.5, 3〉 1.30 ± 0.46 1.25 ± 0.46 1.27 ± 0.43 1.24 ± 0.41

〈0.025, 37.5, 5〉 1.42 ± 0.96 1.72 ± 1.49 1.13 ± 0.70 1.19 ± 0.56
〈0.025, 37.5, 3〉 2.47 ± 2.17 2.54 ± 2.14 2.15 ± 2.04 2.33 ± 2.48
〈0.025, 137.5, 5〉 15.84 ± 9.08 16.73 ± 10.11 15.46 ± 8.12 17.85 ± 7.83
〈0.025, 137.5, 3〉 19.36 ± 11.74 21.39 ± 12.86 18.30 ± 12.22 21.28 ± 11.67
〈0.025, 262.5, 5〉 44.44 ± 24.05 51.07 ± 23.93 48.60 ± 26.00 46.87 ± 24.62
〈0.025, 262.5, 3〉 50.49 ± 35.66 56.92 ± 37.17 54.08 ± 37.06 52.61 ± 35.43
〈0.05, 37.5, 5〉 1.59 ± 0.63 1.63 ± 0.79 1.41 ± 0.53 1.42 ± 0.49
〈0.05, 37.5, 3〉 2.92 ± 1.16 2.89 ± 1.25 2.54 ± 0.94 2.55 ± 0.88
〈0.05, 137.5, 5〉 4.59 ± 2.45 4.44 ± 2.91 4.61 ± 2.41 5.62 ± 2.84
〈0.05, 137.5, 3〉 7.00 ± 3.67 7.06 ± 4.24 7.01 ± 3.47 8.03 ± 3.90
〈0.05, 262.5, 5〉 14.29 ± 7.32 15.76 ± 8.02 14.78 ± 7.12 16.50 ± 6.88
〈0.05, 262.5, 3〉 14.30 ± 5.66 14.56 ± 6.10 14.97 ± 4.69 16.87 ± 4.78
〈0.1, 37.5, 5〉 3.83 ± 1.34 3.83 ± 1.26 3.29 ± 1.10 3.40 ± 1.24
〈0.1, 37.5, 3〉 4.96 ± 1.64 4.84 ± 1.42 4.45 ± 1.23 4.38 ± 1.18
〈0.1, 137.5, 5〉 5.65 ± 1.13 5.41 ± 1.45 5.23 ± 1.12 5.58 ± 1.28
〈0.1, 137.5, 3〉 7.71 ± 1.41 7.62 ± 1.60 7.16 ± 1.50 7.64 ± 1.69
〈0.1, 262.5, 5〉 8.39 ± 2.58 7.56 ± 3.37 8.18 ± 2.77 9.28 ± 2.95
〈0.1, 262.5, 3〉 10.12 ± 1.38 9.27 ± 1.59 10.44 ± 1.52 11.12 ± 1.48
〈0.15, 37.5, 5〉 5.89 ± 1.48 5.52 ± 1.59 5.60 ± 1.31 5.56 ± 1.16
〈0.15, 37.5, 3〉 7.70 ± 1.33 7.52 ± 1.27 7.37 ± 1.26 7.07 ± 0.99
〈0.15, 137.5, 5〉 7.66 ± 1.27 6.79 ± 1.30 7.55 ± 1.15 7.90 ± 1.16
〈0.15, 137.5, 3〉 10.97 ± 1.56 10.62 ± 1.88 10.51 ± 1.34 10.74 ± 1.11
〈0.15, 262.5, 5〉 10.27 ± 1.25 8.85 ± 1.04 9.89 ± 1.11 10.91 ± 1.03
〈0.15, 262.5, 3〉 13.76 ± 1.99 13.10 ± 2.15 13.90 ± 1.75 14.81 ± 1.67

The best rules from the machine breakdown GP approaches show greater dif-
ference in the performance to the best rule from the benchmark GP approach.
The best machine breakdown GP rules are significantly better than the best
benchmark GP rule for certain simulation configurations, e.g., all three machine
breakdown GP rules perform better than the GP rule for the 〈0.15, 262.5, 3〉 sim-
ulation configuration. Therefore, it is likely for GP approaches with the machine
breakdown terminals to evolve high quality individual rules than the benchmark
GP approach.

5.2 Rule Analysis

The evolved machine breakdown GP rules are analysed further by carrying out
a qualitative analysis based on the structures of the evolved rules. First, the
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best rules are simplified to remove any redundant branches (e.g. if an if will
only return the “if” sub branch, then the if operator is replaced with the “if”
branch) before analysing the structures of the rules. The simplified best rules
for GP-Aug, GP-WT, and GP-RTR are shown in Fig. 1a, b and c respectively.

*

Max *

- * / -

* MBWINQ DD /

DD W * RM

/ -

DD MBPT - /

DD DD DD MBPT

DD MBPT - -

- - RM DD

- - RM DD

DD * RM DD

RT MBPT

(a) Best GP-Aug rule

*

* RJ

* *

+ / * *

- Min DD PT

/ RM RJ DD
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W DD / *

DD PT * /

W DD DD PT

(b) Best GP-WT rule

*

* *

Max * * Max

* DD / /

* *

DD * DD *

- /

DD NNQ W PT

Max -

RJ SL DD NNQ

W RT + PT

PT DD

Max + * +

PT Max + +

RJ SL DD + - -

DD -

PT RM

DD NNQ PT RM

W / / -

DD PT DD PT DD *

RM RTR

(c) Best GP-RTR rule

Fig. 1. The structures of the best rules found by the GP approaches.

An important observation from the best rules evolved by GP-WT and GP-
RTR is the lack of machine breakdown terminals that make up the best rules.
The best rule from GP-WT has no occurrence of the WT terminal that is incor-
porated into the terminal set, and the best rule from GP-RTR has one occurrence
of the RTR terminal. Therefore, it may be the case that the machine breakdown
terminals do not directly contribute towards the qualities of the final evolved
rules. Instead, the machine breakdown terminals may facilitate the evolution of
good GP rules, and are discarded from the best GP individuals near the end of
the GP process. This may explain the lack of machine breakdown terminals in
best GP-WT and GP-RTR rules, but why the best rules generally perform bet-
ter than the best benchmark rule In addition, it may also explain why GP-WT
and GP-RTR rules also perform slightly better than the benchmark GP rules.

For the best rules from the GP approaches, the method in which the non-
machine breakdown related terminals are combined may also be a factor in the
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effectiveness of the rules. These include the frequent occurrence of important
terminals such as the job’s weights and processing time in the best evolved
rules. Intuitively, important jobs with short processing time should be prioritised
out of the jobs waiting at the available machine. However, in all three machine
breakdown GP rules (and the best benchmark GP rule), there are many segments
of the tree that form DD/PT, which indicates that the best rules prioritise jobs
with high due date and low processing time. This is contrary to the expectation
that jobs with low due date (i.e. jobs that are more urgent) should be prioritised
first. A possible explanation is that the due date terminal is time variant, i.e.,
expected due dates of jobs steady increases with the duration of the simulation.
On the other hand, the processing time terminal is time invariant, i.e., the
expected processing times of jobs remains relatively the same over the whole
duration of the simulation. Therefore, the relative differences in the due date
between an urgent job and a non-urgent job waiting on a machine late in the
simulation may not be as big as the differences in their processing time, due to
the large due date values of both the urgent and non-urgent jobs. This may result
in the due date of a job for long simulations being used as an arbitrary large value
that can be combined with the processing time terminal using the protected /
operator to form a composite that prioritises short processing times. Further
experiments can be carried out to determine whether the same phenomenon
occurs by replacing the processing time terminal with 1/PT terminal in future
GP approaches.

6 Conclusions and Future Work

This paper is a very first piece of work that develops new machine breakdown
GP terminals to improve the qualities of GP evolved rules for a DJSS-MB.
The first set of GP terminals (called “augmented terminals”) replace existing
processing time related terminals (PT, NPT and WINQ) with equivalent ter-
minals that take potential machine breakdown into account. The second set of
GP approaches (called “reactive terminals”) add new terminals (RTR and WT)
that gives information on current state of the shop floor. The machine break-
down GP approach does not evolve significantly better rules overall, but the best
rules evolved by the machine breakdown GP significantly outperform the best
rule evolved by the benchmark GP. The analysis shows very interesting results
and insights, where the machine breakdown terminals appear infrequently in the
best rules for GP-WT and GP-RTR. Hypotheses have been raised to explain why
this is the case, and further work will be needed in this direction. We hope that
this work can attract more people to start their work in this direction in the
near future.

For the future work, further analysis based on the behaviours of the evolved
rules will be carried out. Analysis of evolved rule behaviours in JSS problems
have been carried out in the literature [17,18], and further investigation into the
behaviours of rules evolved for DJSS-MB may allow better machine breakdown
specific approaches to be developed. In addition, the relation between the util-
isation rate of job shop scheduling problems and the machine breakdown level
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will be explored further by analysing rule behaviours in different shop environ-
ments. For example, a rule evolved for shop with low utilisation rate and high
machine breakdown will be compared against a rule evolved for shop with high
utilisation rate and low machine breakdown. This relation may help us develop
further insight into machine breakdowns and how the properties of the shop
changes with such disruptions.
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Abstract. We introduce a novel method for representation learning
based on genetic programming (GP). Inspired into the way that deep
neural networks learn descriptive/discriminative representations from
raw data, we propose a structurally layered representation that allows GP
to learn a feature space from large scale and high dimensional data sets.
Previous efforts from the GP community for feature learning have focused
on small data sets with a few input variables, also, most approaches rely
on domain expert knowledge to produce useful representations. In this
paper, we introduce the structurally layered GP formulation, together
with an efficient scheme to explore the search space and show that this
framework can be used to learn representations from large data sets
of high dimensional raw data. As case of study we describe the imple-
mentation and experimental evaluation of an autoencoder developed
under the proposed framework. Results evidence the benefits of the pro-
posed framework and pave the way for the development of deep genetic
programming.

Keywords: Representation learning · Deep learning
Feature extraction · Genetic programming
Evolutionary machine learning

1 Introduction

Machine learning (ML) algorithms, for tasks such as classification, prediction
or clustering, require that fed training samples are described in a compact yet
discriminative form, in order to deliver a correct output in a reasonable amount
of time. This description is known as the data representation. Usually, the rep-
resentation is inferred and generated by domain experts who characterize par-
ticularities of the problem under analysis. Although domain experts’ knowledge
is critical, in certain scenarios they may disregard certain features that could
be relevant for machine learning methods. In addition, in some cases, domain
experts are not even available.
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Representation learning is a subfield of ML that aims to automatically learn
models able to transform raw data (e.g., image pixels, audio signals) into a repre-
sentation meaningful for ML methods approaching a particular task (e.g., image
classification, speech recognition) [1,2]. Among the existent solutions, which com-
prise a wide variety of techniques such as matrix factorization [3], linear dis-
criminant analysis [4], principal component analysis [5] and genetic programming
(GP) [6], among others [7], deep learning based methods have proved to be among
the most effective ones [1,2]. Deep learning models are those formed by stacked
layers of parameters, that together, learn highly non linear functions. In essence,
they are artificial neural networks (ANN) with many hidden layers. These deep
neural networks (DNNs) are based on the idea that a slightly more abstract repre-
sentation is generated with each additional layer. Thus, with enough of these lay-
ers, the initial representation (raw data) can be transformed into a more descrip-
tive/discriminative one, which in most cases is also much more compact than the
initial input. The learned representation is expected to be more meaningful for
ML algorithms that take the learned representation as input.

As previously mentioned, GP has also been used for representation learning
with mixed results [8–12]. In these works, a GP individual codifies a function
that generates a new representation by combining the initial features. Although
competitive results have been obtained with these implementations, they have
only focused on small data sets with a few dozens of input variables (features).
When initial representations are high dimensional (e.g., composed of hundreds
or thousands of features), such as in image processing problems, GP approaches
to representation learning need to leverage from human expert knowledge of
the problem’s domain in order to achieve competitive results, an undesirable
property considering a trend towards higher degrees of automation, and unlike
deep learning, which most important aspect is being domain agnostic.

In this paper, we introduce a novel methodology for representation learning
based on GP and inspired into the way deep learning techniques process infor-
mation. The proposed method is able to deal with both previous limitations of
state of the art GP solutions for representation learning. The main novel com-
ponents of our proposal are an arrangement of GP populations that processes
information locally and a learning strategy inspired in online learning for feature-
trees fitting. Both components can be used to learn deep genetic programs, in
the sense that layers of the same model could be stacked if necessary. As a case
study, we propose a GP based autoencoder. This model is evaluated on bench-
mark datasets. Experimental results show the feasibility of deep representation
learning via GP. We foresee this paper will pave the way for the development of a
new paradigm for representation learning based on GP. The main contributions
of this paper are as follows:

– We introduce the idea of deep genetic programming. A methodology based on
GP and inspired in deep learning.

– We propose two mechanisms that make GP suitable for learning representa-
tions in large scale and high dimensional data sets starting from raw data.
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– We show the feasibility of the deep genetic programming framework by propos-
ing an autoencoder that is based on the proposed formulation. This method is
evaluated in benchmark high dimensional and large scale data showing com-
petitive results.

These contributions and reported evidence show that a multilayered GP
based representation learning is not only possible in the near future, but it
might yield competitive results against those of state-of-the-art DNN.

2 Related Work

The ability of ANN to process raw data in order to generate representations
useful for ML tasks such as classification has been recognized and documented
in works at least as early as [13,14]. Even though researchers in the area were
already aware that adding up layers to their ANN was beneficial for improving
the quality of representations and/or classification performance, training ANN
with more than two or three layers proved to be difficult. Several advances in
the area over recent years have allowed researchers to train ANN with several
layers [15–17]. Alexnet [15] is perhaps one of the most representative works in
this regard, being a deep network for its time, and achieving unprecedented
classification performance, giving birth to the field of deep learning.

Even though the ultimate goal of most DNN is to boost classification perfor-
mance, these deep networks actually work by internally generating new repre-
sentations for the data, where classes are easier to discriminate by classification
layers of the DNN. There are other architectures of DNNs where the aim of
generating new representations is clearer, e.g. autoencoders. Autoencoders are a
type of multilayer ANN with a small neuron layer at the center of their archi-
tecture. Data is compressed (decompressed) as traverses half the network, from
the input (central) layer to the central (output) layer. The purpose of autoen-
coders is to generate a small compact representation of the data at this small
central layer. Autoencoders can be used for representation learning [18]. Hinton
et al. [19] used them as a method for training DNN as well. Accordingly, in this
paper we develop an autoencoder through the proposed GP based methodology
and evaluated it on benchmark image datasets widely used as testbeds for DNN.

Examples of representation learning methods for image processing with GP
are [11,12]; however these kind of works rely on GP individuals that process
images as a whole in each primitive function; primitives are often specialized
image filters. Thus the GP searches for a combination and workflow of these
type of functions that render a new representation useful for classification or
detection tasks. The availability of these highly specialized primitives to the GP
are a form of human expert knowledge brought to the system by the designer. In
contrast, our proposed method process images at individual pixel level, and only
simple arithmetic and generic trigonometric functions form the set of primitives.

There are other methods for representation learning through GP that are
not image processing-specific such as those presented in [8,10,20]. Recently,
Limon et al. [9] developed a method for representation learning based on GP that
utilized arithmetic operations along with a few statistics measures. They tested
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their method on a variety of datasets from different problem domains, and found
that GP could learn representations that boosted classifiers performance when the
input representation consisted in a few dozen features, but beyond that (one hun-
dred or more features) other representation learning methods or just a classifier by
itself performed better. Similarly, Lin et al. [21] proposed an approach to binary
classification based on generating multiple layers of representations through GP.
Although superficially similar to our proposed method, their approach vastly dif-
fers from ours: each new representation layer contained a single new feature com-
pared with the previous representation layer from which was generated, the rest of
the features are taken directly from such previous layer, whereas our approach aims
at generating a representation composed of completely new features. Their method
was in fact developed to tackle problemswhere initial representations consist of just
a few features, whereas our method is designed to treat large-scale problems where
we wish to reduce initial data dimensionality.

More recently, Tran et al. [22] also acknowledged the shortcomings of using
GP on problems with high dimensional data. In [22] they presented a study
on different approaches to tackle such large initial representation problems and
in [23] they proposed a method based on automatically clustering similar fea-
tures and picking a single representative feature from each cluster as a way for
reducing representation dimensionality. Their method bears some similarity with
our proposed approach in the sense that our approach also groups features in
small clusters. However our method does not focuses on the way the clusters are
built, neither discards features before the GP process starts.

3 Structured Layered GP for Representation Learning

In this section we introduce our proposed framework for representation learn-
ing through GP. We approach the representation learning problem, while addi-
tionally stimulating dimensionality reduction1. Hence, for a dataset described
in representation N, where N is a matrix of s rows (samples) × n columns
(features), each sample z represented by feature (row) vector oz ∈ R

n,∀z, we
wish to learn a new, more compact and abstract, representation M, where M
is a s × m matrix, such that each sample z is now represented by feature vec-
tor qz ∈ R

m,∀z and m � n. Ideally, the learned representation should better
describe the data, in terms of the goal associated to the problem at hand (e.g.,
classification, regression, or data reconstruction as in this paper).

In the following subsection we present a direct, straightforward approach to
tackle this problem through GP, and we discuss why is not convenient to attempt
such simple approach; motivating the need of the proposed structured layered
GP for representation learning that is described in Sect. 3.2.

1 Please note that reducing the dimensionality is not necessarily a requirement of
representation learning, but herein we include this restriction so that the learned
representations can be descriptive/discriminative and compact at the same time.
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3.1 Straightforward GP Approach for Representation Learning

A straightforward way to learn a representation M via GP would be as follows.
For every feature (column) yi that composes M we set GP to find a function
fM

i : Rn → R, such that set of input variables of fM
i (x1, x2, ..., xn) is the set of

features that compose the representation N, and that yi = fM
i .

Although this is a valid and direct view of the representation learning prob-
lem. It has several limitations, most notably, the fact that it poses an intractable
search space for GP. Let us suppose, without loss of generality, we implement
a standard genetic program with forest-based population to solve the problem.
In this solution, each GP tree tMi is associated to a single learned feature fM

i ,
which is built from 2-arity primitives, and each tMi is a perfect binary tree. Since
tMi could (1) require, conceivably, access to all n original features to generate
yi, (2) tMi is a perfect binary tree, and (3) input features can only be placed
in leaf nodes of GP trees, then the height of tree tMi is, approximately at least,
�log2(n)�, and the number of internal nodes is, approximately, 2�log2(n)�. For
simplicity, let us assume for now on that n is a power of 2, therefore the number
of internal nodes of tMi is n. Now let us suppose that we will use a set of K eli-
gible primitives, then the total size of the search space the GP needs to explore
is O(mKn). This is an optimistic, lower bound estimate, since we are not taking
into account that constants can be used as leaf nodes as well; still, this estimate
shows us the complexity of the problem we are dealing with. To illustrate our
point consider the following example.

Example 1. Suppose we want to process a set of images to convert them from an
original feature space of 64× 64 gray scale pixels into a 32-dimensional vector.
Hence, n = 4096 and m = 32. We are set to search for a GP individual composed
of 32 trees; each tree, potentially, of height 12. Suppose we are considering the
following set of primitives {+,−,×, /}. The GP needs to search for an optimal
individual among, at least, 32 × 44096 distinct possible solutions.

Although not precisely used for representation learning, but for classifica-
tion, a similar approach was attempted in [24]. Instead of building GP trees for
each feature, they built one tree per class, and then used a max function to
discriminate classes among the outputs of such trees. They tested this method
on the MNIST [25] data set and the GP yielded a notoriously low classification
accuracy. This result serves as an example of our warning against attempting
such a straightforward approach. In the next subsection we hypothesize about
an alternative approach to representation learning through GP that attempts to
overcome the issues discussed so far, and in Sect. 4 we present the details for its
implementation in a particular case of study.

3.2 GP Structured Layers

We propose that considering a structural layered processing inspired in deep learn-
ing models will allow GP to significantly improve its performance in representation
learning while reducing the computational burden. The idea is as follows: instead
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of attempting to build GP trees that convert from representation N to represen-
tation M in a single step, we generate a series of intermediate representations Li

that allow a GP to gradually go from representation N to representation M.
Starting form initial representation N, and in order to generate intermediate

representation L1, features N are partitioned into c small indexed subsets Ci,
such that |Ci| � n, ∀i. Representation L1 is also partitioned into c small subsets
Ki, such that |Ci| > |Ki|, ∀i. Each feature l1,j ∈ Ki is generated by a GP tree
tL1
j , whose leaf nodes can be feature variables taken only from subset Ci as well

as constant values; in other words, tL1
j represents function fL1

j : R|Ci| → R, such
that fL1

j (x1, x2, ..., xw), and (x1, x2, ..., xw) ∈ Ci. Each layer Li is built in the
same fashion as L1, relying on the partitioned set of features in Li−1, up until
Lz = M. In this way, the processes of representation learning and dimensionality
reduction is done in a gradual manner, unlike in a straightforward single-step
approach.

Intuitively, in order to generate each intermediate representation, we split
the previous representation into small subsets, so each GP tree focuses into
processing the features present in only one of these subsets. This allows the GP
to find and exploit more efficiently the relationships existent among the features
belonging to the same subset. In contrast, in the straightforward GP approach
the GP evolutionary search has to find on its own the features that are useful
together as parameters to the functions that generate new features, in addition
to building such functions. One may question on how the subsets are supposed to
be built, we argue that simple strategies that leverage directly from the nature
of the problem at hand can be used, as we show in Sect. 4.

3.3 Efficient Training with Online Learning

One of the distinctive features of DNN is their support for minibatch based train-
ing, thanks to the use of stochastic gradient descend (SGD) and alike methods.
This feature allows an ANN to train, i.e. adjust its parameters, using a small
subsets of samples of the entire training dataset. This characteristic helps DNNs
to achieve faster convergence speeds and deal with large scale datasets. In this
work we propose that an analogy can be draw with respect to GP evolutionary
form of learning: instead of presenting the entire dataset to each individual every
generation, only a very small, variable, subset of samples, a minibatch, of the
dataset are presented to each individual in every generation. The number of gen-
erations for the GP is chosen such that, no. of generations × size of minibatches
= size of complete training dataset. This way we guarantee that the population
sees each sample in the training dataset at least once. The minibatches conform
a partition, in the mathematical sense, of the entire dataset. In this way, each
sample of the dataset is seen only once by p individuals (where p is population
size). Notice that this does not mean that all individuals ever see all samples
once, because many individuals will not make it to further generations, and will
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never be tested against most of the samples in the dataset. Even more interest-
ing, is the fact that the final top performer individual (the solution returned by
the GP) might actually be tested against only the final minibatch, given that
this individual is the result from a crossover or mutation from individuals of the
penultimate generation.

Just as in the case of DNN’s usage of SGD, the purpose of this form of training
is to dramatically reduce the computational cost of the GP algorithm. Although
for the time being we do not present a theoretical bound on the approximation
ratio of minibatch form of training with respect to the regular full batch, we
do present experimental evidence that supports the feasibility of this form of
evolutionary machine learning.

4 GP Autoencoder

In this section we present a detailed implementation of an autoencoder, both
through the straightforward GP approach and also following the guidelines of
our proposed approach. To the authors best knowledge, this is the first time an
autoencoder is synthesized through GP. Autoencoders were, originally, multilay-
ered ANN that attempted to copy its input to its output while data traverses
a bottleneck neuron layer formed at the middle of the network. The layers of
the network that comprises from its input layer up to the bottleneck it is called
“encoder”, because its task is to fit the data to pass through the bottleneck layer,
with the least amount of information loss possible, while the rest of the network,
from the bottleneck up to the output is called “decoder”, because its task is
to decompress the data from its compressed representation at the bottleneck
layer back to its original form. In order to perform acceptably, i.e. that recon-
structions are as similar to their samples as possible, autoencoders are trained
with a dataset. This means their internal parameters, or weights, are calibrated
to perform the compression-decompression task for such a given dataset. When
presented with new samples of the same nature of the dataset they were trained
with, they are supposed to perform similarly as with the training dataset.

Notice how, according to the proposed GP approach, the process of repre-
sentation learning is performed by the GP itself. The best performing individual
that outputs the GP after the last generation serves as a feature extraction
engine, that can take as input a sample in its original representation and returns
as output the sample in the new representation. The GP evolves such feature
extraction engine and at the same time it also discovers the features it generates
as output, i.e. the actual representation learned (because it is not defined before-
hand). Therefore the GP attempts to, symbiotically, learn a new representation
and the mathematical functions that can generate it.

However, a problem arises when we try to define a way to evaluate the
learned, more compact, representation. The answer to this problem is not
trivial [1]. In this work we follow suit of ANN autoencoders through the use
of a decoding mechanism that reverses the compact representation to its orig-
inal form. The average discrepancy between some given dataset in its original
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form and its reconstructed version (returned by the decoding mechanism) pro-
vides a simple way to evaluate the learned encoded representation, in terms of
abridge of information.

Therefore, we set the GP to discover three elements: an encoding mechanism
that compacts the input representation; the compact representation itself, i.e.
the set of features that conforms it; and a decoding mechanism, that provides a
supporting role in order to evaluate the learned representation (and the mecha-
nism that generates it). Together, encoder and decoder, form what is known as
an autoencoder. It is important to remark how, in a way, the discovery of an opti-
mal/acceptable encoding mechanism and the new representation is a byproduct
of the evolution of the decoder: the output of the decoder is the only element used
for fitness evaluation, both encoding and new representation are only indirectly
evaluated by the performance of the decoder.

The GP autoencoder individuals design consist in two forests of GP trees
connected through a bus of data. One forest is the encoding mechanism, the other
forest is the decoding mechanism and the data bus is the new representation for
the data. Figure 1 illustrates this concept.

Given a dataset comprised of an arbitrary number of samples, each one
described by the same n features, we wish to reduce the n features to l1 = αn
new features, for α < 1, losing the least possible amount of information. That
is, from the learned l1 features, it should be possible to reconstruct samples to
the original n features.

The encoder will be comprised of a forest of l1 GP trees tL1
i ; the decoder will

be comprised of a forest of n GP trees tH0
i . Each tree tL1

i will generate feature
l1,i of the compact representation L1, and each tree tH0

i will generate feature hi

of reconstructed representation H0.
Terminals of each tree tH0

i ,∀i can only be features of representation L1 (as
well as constant values within some range), i.e. none of these trees can see any
of the original features. Similarly, terminals of tree tL1

i ,∀i can only be taken
from the original representation, and they cannot look ahead for features from
representation L1 they are constructing.

Fig. 1. Abstract depiction of a GP autoencoder individual. Each individual consist of
two forests connected through a bus the size of the compact representation desired.

In a straightforward GP approach, terminals of each tree tL1
i ,∀i can be any

feature from the entire set of n original features. Analogously, terminals of each



Structurally Layered Representation Learning 279

tree tH0
i ,∀i can be any of the l1 features from the compact representation L1.

On the other hand, in a structured layer GP, the initial n input features are split
into c = n

β subsets Ci, such that β > 1. Associated to each subset Ci there is a
subset Ki of features from L1, such that each feature l1,j ∈ Ki is generated by
tL1
j . Tree tL1

j can only see the small subset of features in Ci.
As stated before, our GP individual comprehends both encoder and decoder

forests integrated as a single indivisible unit we call from now on autoencoder.
These autoencoders never get their encoder and decoder components separated
during the evolutionary process, but they exchange small bits of their struc-
ture with other autoencoders within the population through the evolutionary
operators described in Subsect. 4.1.

4.1 Genetic Program

We tested three different configurations for GP autoencoders. The first setup
consists of a straightforward GP approach, as described in Sect. 3.1, i.e., all GP
trees that generate L1 can see all features from N, as well as all GP trees in the
decoder can see all features from L1. The compression ratio is setup to α = 3

4 .
This is our control setup, and its result will serve as a baseline for comparison
purposes with the proposed approach.

The second setup consists of a structured layer GP autoencoder, as described
in Sect. 4. The compression ration remains the same as in the first setup, for a
valid comparison, and the n (l1) features from representation N (L1) are split into
c = n

4 , (k = l1
3 = c) subsets Ci (Ki), such that |Ci| = 4, (|Ki| = 3), ∀i. That is, four

Fig. 2. Comparison between (a) straightforward GP and (b) structured layer GP.
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features from input representation N are assigned to each subset Ci, and from this,
and only this, subset of features, is that features in subset Ki can be generated.

Mirroring this configuration, the decoding forest is also partitioned in sub-
sets of four trees, such that trees in each subset can only see the subset of three
features of some subset Ki. All these subsets, (4) input features-(3) encoding
trees-(3) new features-(4) decoding trees, are coupled together, to form a mini-
autoencoder. Figure 2 contrasts this setup against the straightforward GP.

The third setting is exactly as the second one, except that we use a minibatch
based form of training, as described in Sect. 3.3.

We carried all experiments on gray scale image datasets and each pixel is an
input feature. We use every four neighboring pixels in the same row to be in
subset Ci.

Evolutionary Parameters and Operators. We build a set of randomly gen-
erated GP autoencoders individuals, that will constitute an initial population,
and through a GP evolutionary process, we search for an autoencoder that max-
imizes the average similarity between each sample and its reconstruction, across
an entire training dataset. Table 1 shows the set of GP evolutionary parameters
used across all experiments performed.

A preliminary study showed that the following setup along the specified
parameters converged the fastest to acceptable quality solutions; however, a full
study of different GP configurations is still required. In each generation, half
of the population is chosen through binary tournament to make it to the next
generation. From this half of the population, new individuals are generated with
a 0.6 probability of crossover and a 0.3 probability of mutation. Thus, given
that population size is fixed to 60 individuals, 30 of them are directly taken
from the previous generation, 18 are generated from crossover and 9 are gen-
erated through mutation. The remaining 3 individuals are chosen directly from
previous generation through elitism.

Table 1. Evolutionary parameters for the GP runs. Arithmetic operands are 2-ary
and trigonometric functions are unary primitives. The division function is protected,
meaning that any attempt to divide between zero returns as output 1× 106, instead of
an error.

Parameter Value

Population size 60

Max. tree depth 4

Set of primitives < +,−,×,÷, sin, cos >

Constants range [0,1]

Crossover Prob. 0.6

Mutation Prob. 0.3

No. generations 40/40/Variable (See Sect. 3.3)
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Notice that the partitioning scheme of the structured layered GP creates
in effect c independent GPs, each with its own 60 individuals. However, the
computational cost is the same for both scenarios, as in the straightforward GP
individuals are large single autoencoders, while in the structured layered GP
individuals are c miniautoencoders.

Standard crossover and mutation operations for forest were used. In the case
of crossover, when two individuals are selected to undergo crossover, a single ran-
domly selected tree in the encoder forest from one of the individuals is exchanged
with a tree from the other individual’s encoder, then the same process is executed
again but now for trees in the decoder forests. When an individual is selected
for mutation, one randomly selected tree within encoder and decoder forests are
deleted and replaced by new randomly generated ones. Notice how none of these
operators operate at node level.

Objective Function. To determine similarity between an original sample and
the reconstructed output from the autoencoder, we used the mean square error
(MSE), defined in Eq. 1. MSE receives as input original sample x and recon-
structed y vectors, and compares them feature by feature, averaging the differ-
ence across all of features. MSE output can be thought as a distance between a
sample and its reconstruction.

dMSE(x, y) =
1
n

n∑

i=1

(xi − yi)2 (1)

The objective function in the first two setups described is to minimize the
average MSE across all pairs sample-reconstruction from some given dataset.
The evolutionary process is executed for 40 generations in both setups. In every
generation, each individual of the population is tested against the entire training
dataset, the resulting MSEs for every instance in the dataset are averaged, and
this result is assigned as the fitness for a given individual. On the other hand, the
objective function in the third setup is minimizing average MSE for all samples
in the current minibatch presented to the population.

5 Experimental Results

In this section we present an experimental evaluation of the proposed autoen-
coder following three different proposed approaches. We compared the three
approaches in ML dataset MNIST [25]. For the third setup we also performed
a test varying the size of the minibatches and increasing the number of gener-
ations in order to allow the GP to see each sample more than just once. After
we calibrated the size of minibatches and confirmed that giving more than one
pass over training data was beneficial to the proposed method, we further tested
it onto two additional ML datasets, namely LFWcrop [26] and Olivetti [27].
And finally compared the results with those obtained with conventional ANN
autoencoders.
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Table 2. Datasets used for experimentation. All datasets consist in grayscale images;
pixel values are normalized to fall in the range [0, 1] in all cases.

Dataset MNIST LFWcrop Olivetti

Images resolution (input features) 28× 28 (784) 64× 64 (4,096) 64× 64 (4,096)

No. training samples 60,000 12,000 360

No. testing samples 10,000 1,233 40

Each dataset was split into training and testing set. The evolutionary process
is carried with the training set and the top performer individual that results from
the process is evaluated with the testing set, composed of images not seen during
the evolutionary process. Table 2 describes the used datasets.

Figure 3 shows the results obtained by the straightforward GP, the structured
layer GP and the minibatch training version of it; minibatches were composed of
100 samples. All experiments were done in a workstation with an Intel Xeon CPU
with 10 physical cores at 2.9 GHz, with two virtual cores per each physical core,
to amount for a total of 20 processing threads, 16 GB of RAM, running Ubuntu
Linux 16.04. Algorithms implementation and setups were done by using an in-
house software library developed in Python version 3.6. Accelerated NumPy
library is used only in the final step of fitness evaluation (averaging the MSE
of all sample-reconstruction pairs) of each individual. The straightforward GP
can make use of the multiple processing cores by parallelizing the evaluation
of sample-reconstructions pairs. On the other hand, both structured layer GP
approaches distribute evolution of multiple miniautoencoders across most (but
not all) processing threads available, and in this case the evaluations of the
sample-reconstructions pairs is done sequentially for each miniautoencoder.

A visual depiction of the performance of the synthesized autoencoders is
shown in Figs. 4 and 5. Figure 4 shows the gradual increase in performance
obtained by the structured layer GP through the evolutionary process. Figure 5
compares the reconstruction for the first ten images in the training set, as
obtained by the best autoencoders generated by the three different experimental
setups. Table 3 shows results of varying the size of minibatches to 30, 60, 100,
300, and 600 samples; as well as allowing the algorithm to give one, two and five
forward passes over the training data.

We picked up the best performing structured layer GP (SLGP) setup from
our minibatch study (minibatches of size 60) and compared its performance
against a one hidden layer, fully connected, Multilayer Perceptron (MLP) set up
as an autoencoder that performs the same compression ratio. We implemented
the MLP in TensorFlow Deep Learning library [28]. We also set the size of the
minibatches of the MLP to 60, just as in our GP approach. Table 4 shows the
results of each approach, for the different amounts of forward passes/epochs. The
main idea behind these experiments is to make a 1-to-1 “layer” and “epoch-to-
epoch” comparison in order the study the behavior of the new proposed method
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Fig. 3. Results obtained by the three different GP setups (a) MSE across all samples
in training and testing datasets. (b) Execution time expressed in hh:mm.

Fig. 4. A depiction of the reconstruction generated by the top performer individuals
during the evolution process of the structured layer GP. From top row to bottom:the
original first ten images of the training set, best reconstruction obtained after 0, 10,
20, 30 and 40 generations.
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Fig. 5. Comparison of the reconstruction of the three experimental setups. From top to
bottom: original first 10 images from the training set, best straightforward GP recon-
struction, best structured layer GP reconstruction, structured layer GP + minibatch
training reconstruction.

Table 3. Average MSEs and exec. time for a minibatch approach varying the size of
the batches to 30, 60, 100, 300, and 600 samples; and giving 1, 2 and 5 forward passes
over the dataset.

Mini batch size

30 60 100 300 600

PassesTrainingTestingTimeTrainingTestingTimeTrainingTestingTimeTrainingTestingTimeTrainingTestingTime

1 0.013 0.013 04:440.012 0.012 03:360.013 0.013 03:150.017 0.017 02:490.020 0.020 02:39

2 0.010 0.010 09:310.011 0.011 07:240.011 0.011 06:320.014 0.014 05:300.017 0.017 05:31

5 0.009 0.009 23:270.008 0.008 18:040.009 0.009 16:270.011 0.011 14:260.014 0.014 13:23

and contrast it with conventional methods of deep learning. Figure 6 show a
visual appreciation on the reconstructions generated by both autoencoders for
LFWcrop and Olivetti samples.

5.1 Discussion

From the results presented in the previous section we can appreciate that the
structured layer GP approach is one order of magnitude better than a straightfor-
ward GP approach in average MSE . In fact, the straightforward approach does
not reach an acceptable solution at all given approximately the same amount
of time, making further clear the advantage of proposed approach. Even though
the difference, in terms of quality of solutions, is not as decisive between the
structured layer GP and the its minibatch learning version, the gap in execution
time between them is also one order of magnitude. Results also show that size
of minibatches have to be carefully selected in order to get a balance between
quality of solution and execution time. We also confirmed that the minibatch
version can benefit from making several passes over the training data.

When compared with a conventional autoencoder, results show that GP
behaves quite different from ANN. GP can quickly (in terms of passes over
the training data) build acceptable encoding-decoding models, while an ANN
that attempts to generate a representation of 3,072 (588) features from 4,096
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Table 4. MSE results obtained by structured layer GP with minibatch training (SLGP)
and a 1-hidden layer perceptron (MLP) autoencoders when tested with testing subsets
of different ML datasets, as well as the time required for training/evolution with the
training sets of each dataset.

Dataset Passes SLGP MLP

Avg. MSE Time Avg. MSE Time

MNIST 1 0.012 03:36:00 0.046 00:00:12

2 0.011 07:24:00 0.035 00:00:24

5 0.008 18:04:00 0.021 00:01:04

50 - - 0.003 00:11:03

Olivetti 1 0.032 00:08:25 0.018 00:00:00

2 0.018 00:15:02 0.018 00:00:01

5 0.009 00:35:23 0.018 00:00:03

50 - - 0.018 00:00:34

LFWcrop 1 0.003 04:00:00 0.027 00:00:42

2 0.002 07:40:37 0.025 00:01:10

5 0.002 18:30:00 0.024 00:03:30

50 - - 0.014 00:36:23

Fig. 6. Visual results of the reconstructions generated by the SLGP and the MLP
in the (a) LFWcrop (b) Olivetti faces datasets. From top to bottom (for both sets)
original first ten images from the testing datasets, reconstructions generated by the
MLP and reconstructions generated by the SLGP.
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(785) initial features, in the case of LFWcrop and Olivetti (MNIST) datasets,
has just too many parameters to adjust. This effect is further noticeable as we
test datasets with fewer training samples. The GP is simply a more efficient
approach in terms of data usage.

6 Concluding Remarks and Future Work

In this work we have: (1) introduced a new method that allows GP to perform
representation learning on large-scale problems without the need of specialized
primitives; (2) presented a detailed case of study of the proposed method, a GP
based autoencoder; (3) we provided experimental results that prove the perfor-
mance gains of implementing such an autoencoder with the proposed method
compared against when a straightforward GP approach is used; (4) we proved
experimentally that the implemented autoencoder supports minibatch train-
ing/evolution, a very important feature when considering very large (as in num-
ber of samples) datasets; (5) and finally, we compared the resulting autoencoder
with a simple, yet conventional, ANN autoencoder.

We hold that the overall results show strong evidence on the possibility of
a Deep Learning framework fully based on GP. We believe that our proposed
method, if applied iteratively, can yield representations compact and abstract
enough to be usable for other machine learning tasks such as classification or
decision making, and therefore attain results previously though unreachable for
GP, and comparable in quality with those of state-of-the-art deep learning meth-
ods. Nevertheless, more research is necessary. The immediate follow-up work will
be to perform a complete study when several layers of representations are evolved
in cascade through the proposed method.

There is still quite a road ahead before we can answer whether or not this
method can be competitive with modern state-of-art deep learning methods. The
most important question being if adding more layers of GP evolved representa-
tions will still keep the upper hand on its side when compared with multilayered
ANN. Nevertheless this work sets up the basis towards a GP-based deep learning
architecture.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. PAMI 35(8), 1798–1828 (2013)

2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

3. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788 (1999)

4. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant
analysis with kernels. In: Proceeding of Workshop on Neural Networks for Signal
Processing (1999)

5. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1–3), 37–52 (1987)



Structurally Layered Representation Learning 287

6. Koza, J.R.: Genetic Programming: On the Programming of Computers by means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

7. Gomez, G., Morales, E.: Automatic feature construction and a simple rule induc-
tion algorithm for skin detection. In: ICML Workshops (2004)

8. Garcia-Limon, M., Escalante, H.J., Morales, E., Morales-Reyes, A.: Simultaneous
generation of prototypes and features through genetic programming. In: Proceed-
ings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pp. 517–524. ACM (2014)
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Abstract. We carry out a comparison of popular asymmetric metrics,
originally proposed for scoring association rules, as building blocks for a
fitness function for evolutionary inductive programming. In particular,
we use them to score candidate multi-relational association rules in an
evolutionary approach to the enrichment of populated knowledge bases
in the context of the Semantic Web. The evolutionary algorithm searches
for hidden knowledge patterns, in the form of SWRL rules, in assertional
data, while exploiting the deductive capabilities of ontologies.

Our methodology is to compare the number of generated rules and
total predictions when the metrics are used to compute the fitness func-
tion of the evolutionary algorithm. This comparison, which has been car-
ried out on three publicly available ontologies, is a crucial step towards
the selection of suitable metrics to score multi-relational association rules
that are generated from ontologies.
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1 Introduction

Originally developed to enable a semantic and therefore intelligent retrieval
of digital information resources or an intelligent navigation among them, the
Semantic Web (SW) [3] has evolved into a vision of the Web of linked data
aimed at enabling people to create and publish data stores on the Web, build
vocabularies, write rules for handling data, and annotate resources semantically
with metadata referring to ontologies, which are formal conceptualizations of
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domains of interest acting as shared vocabularies where the meaning of the
annotations is formally defined.

Data and annotated resources represent the assertional knowledge given the
intensional definitions provided by ontologies. We will refer to their combination
as an ontological knowledge base.

The description of data/resources in terms of ontologies is a key aspect of
the SW. Interestingly, ontologies are also equipped with powerful deductive rea-
soning capabilities. However, due to the heterogeneous and distributed nature of
the SW, ontological knowledge bases (KBs) may turn out to be incomplete and
noisy wrt the domain of interest. Specifically, an ontology is incomplete when
it is logically consistent (i.e., it contains no contradiction) but it lacks informa-
tion (e.g., assertions, disjointness axioms, etc.) wrt the reference domain; while
it is noisy when it is logically consistent but it contains invalid information wrt
the reference domain. These situations may prevent the inference of relevant
information or cause incorrect information to be derived.

Data mining techniques can be used to discover hidden knowledge patterns
from ontological KBs, to be used for enriching an ontology both at terminolog-
ical (schema) and assertional (facts) level, even in presence of incompleteness
and/or noise. This is the goal of level-wise generate and test methods proposed
in the inductive logic programming (ILP) [9,17,18], and in the SW commu-
nity [12,14,15,22], which exploit just the assertional evidence of ontological KBs
and, more recently, of approaches that exploit also the reasoning capabilities
of the SW, like [7]. Even more recently, approaches that take advantage of the
exploration capabilities of evolutionary algorithms jointly with the reasoning
capabilities of ontologies have been proposed: this is the case of EDMAR [8,21]
an evolutionary inductive programming approach capable of discovering hidden
knowledge patterns in the form of multi-relational association rules (ARs) coded
in SWRL [13], which can be added to the ontology, thus enriching its expres-
sive power and increasing the assertional knowledge that can be derived from
it. Additionally, discovered rules may suggest new axioms to be added to the
ontology, such as transitivity and symmetry of a role, as well as concept/role
inclusion.

The EDMAR algorithm uses a linear combination of the head coverage and
confidence of a rule as its fitness. However, much work has been devoted in the data
mining domain to devising metrics for evaluating the merit of association rules.
In this paper, we focus on the question of what evaluation metrics can be most
beneficial as a fitness function for the evolutionary discovery of multi-relational
association rules from ontological KBs. To answer this question, we compare a
number of popular asymmetric metrics by using them as fitness in EDMAR. In
particular, we base the comparison on the number of the generated rules and of the
total number of predictions achieved (the correct predictions) by EDMAR using
each metric when applied to three publicly available ontological KBs.

The next section provides basics and definitions. Background information on
the EDMAR algorithm is given in Sect. 3. Section 4 reports the details of the
empirical comparison and a critical analysis of the results. Section 5 concludes.
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2 Basics

We refer to ontological KBs described in Description Logics (DLs - a family
of formal knowledge representation languages which are decidable fragments of
first order logic) [2] (in practice some profile or subset of OWL,1 the standard
representation language in the SW), without restricting ourselves to any specific
DL. As usual in DLs, we refer to a KB K = 〈T ,A〉 consisting of a TBox T
containing the terminological axioms and an ABox A containing the assertional
axioms. It should be recalled that DLs adopt the open-world assumption (OWA
- what is known to be true is unknown). For more details concerning DLs see [2].

We address the problem of discovering relational ARs from ontological KBs.

Definition 1 (Relational Association Rule). Given a populated ontological
KB K = (T ,A), a relational association rule r for K is a Horn-like clause of the
form: body → head, where (a) body is a generalization of a set of assertions
in K co-occurring together; (b) head is a consequent that is induced from K and
body.

Problem Definition. Given K = (T ,A), a minimum “frequency threshold”, θf ,
and a minimum “fitness threshold”, θfit, we wish to discover as many frequent
and fit hidden patterns (w.r.t θf and θfit) as possible, in the form of relational
ARs, that may induce new assertions for K.

Intuitively, a frequent hidden pattern is a generalization of a set of con-
cept/role assertions co-occurring reasonably often (wrt a fixed frequency thresh-
old) together, showing an underlying form of correlation that may be exploited
for obtaining new assertions.

The rules to be discovered are represented in the Semantic Web Rule Lan-
guage (SWRL) [13], which extends the set of OWL axioms with Horn-like rules.2

Definition 2 (SWRL Rule). Given a KB K, a SWRL rule is an implication
between an antecedent (body) and a consequent (head) of the form: B1 ∧ B2 ∧
. . . Bn → H1 ∧ · · · ∧ Hm, where B1 ∧ · · · ∧ Bn is the rule body and H1 ∧ · · · ∧ Hm

is the rule head. Each B1, . . . , Bn,H1, . . . Hm is an atom.
An atom is a unary or binary predicate of the form C(s), R(s1, s2), where

the predicate symbol C is a concept name in K, R is a role name in K, s, s1, s2

are terms. A term is either a variable (denoted by x, y, z) or a constant (denoted
by a, b, c) standing for an individual name or data value.

The discovered rules can be generally called multi-relational rules since mul-
tiple binary predicates R(s1, s2) with different role names of K could appear
in a rule. The intended meaning of a rule is: whenever the conditions in the
antecedent hold, the conditions in the consequent must also hold. A rule having
more than one atom in the head can be equivalently transformed, due to the
1 https://www.w3.org/OWL/.
2 The result is a KB with an enriched expressive power. More complex relationships

than subsumption can be expressed.

https://www.w3.org/OWL/
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safety condition (see Definition 3), into multiple rules, each one having the same
body and a single atom in the head. Therefore, we will consider, w.l.o.g., only
SWRL rules (hereafter just “rules”) with one atom in the head.

Example 1 (SWRL rule). Given the rule fatherOf(y, x)∧Male(x) → sonOf(x, y),
sonOf(x, y) is its head, fatherOf(y, x)∧Male(x) its body; fatherOf(y, x), Male(x),
and sonOf(x, y) are atoms, and x, y are variables.

2.1 Language Bias

A language bias is a set of constraints giving a tight specification of the patterns
worth considering, thus allowing to reduce the search space. Following [21], we
are interested in rules having only atomic concepts and/or role names of K as
predicate symbols, and individual names as constants. Only connected [12] and
non-redundant [14] rules satisfying the safety condition [13] are considered.3

Given an atom A, let T (A) denote the set of all the terms occurring in A
and let V (A) ⊆ T (A) denote the set of all the variables occurring in A e.g.
V (C(x)) = {x} and V (R(x, y)) = {x, y}. Such notation may be extended to
rules straightforwardly.

Definition 3 (Safety Condition). Given a KB K and a rule r = B1 ∧ B2 ∧
. . . Bn → H, r satisfies the safety condition if all variables appearing in the rule
head also appear in the rule body; formally if: V (H) ⊆

⋃n
i=1 V (Bi),

Definition 4 (Connected Rule). Given a KB K and a rule r = B1 ∧ B2 ∧
. . . Bn → H, r is connected if and only if every atom in r is transitively connected
to every other atom in r.

Two atoms Bi and Bj in r, with i �= j, are connected if they share at least
a variable or a constant i.e. if T (Bi) ∩ T (Bj) �= ∅. Two atoms B1 and Bk in r
are transitively connected if there exist in r, atoms B2, . . . , Bk−1, with k ≤ n,
such that, for all i, j ∈ {1, . . . , k} with i �= j, T (Bi) ∩ T (Bj) �= ∅.

Example 2 (Disconnected rule). The rule wifeOf(y, x)∧ siblingOf(z, w) →
spouseOf(x, y) is disconnected, since the atom siblingOf(z, w) does not share
any variable with the other atoms.

Definition 5 (Closed Rule). Given a KB K and a rule r = B1∧B2∧. . . Bn →
H, r is closed if and only if every variable in r is closed.

Each variable vj ∈
⋃n

i=1 V (Bi), j ∈ {1, . . . , k}, with k ≤ n, is closed if it
appears at least twice in r.

Example 3 (Open rule). Rule sonOf(z, x) → spouseOf(x, y) is not closed, since
variables z and y are not closed.

3 To guarantee decidability, only DL-safe rules are sought for [16], i.e., rules inter-
preted under the DL-safety condition, whose variables are bound only to explicitly
named individuals in K. When added to an ontology, DL-safe rules are decidable
and generate sound, but not necessarily complete, results.
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Definition 6 (Redundant Rule). Given a KB K and a rule r = B1 ∧ B2 ∧
. . . Bn → H, r is a redundant rule if at least one atom in r is entailed by another
atom in r with respect to K, i.e., if, ∃i ∈ {0, 1, . . . , n}, ∃j ∈ {0, 1, . . . , n}, with
B0 = H, results: Bj |=K Bi, i �= j

Example 4 (Redundant Rule). Given K with T = {Father 
 Parent} and the
rule r = Father(x)∧Parent(x) → Human(x) where Human is a primitive concept,
r is redundant since the atom Parent(x) is entailed by the atom Father(x) with
respect to K.

2.2 Metrics for Rules Evaluation

For determining the rules of interest for discovery, metrics for assessing the qual-
ity of a rule are necessary. We summarize now the metrics we have considered.

Given a rule r = B1 ∧ . . . ∧ Bn → H, let us denote:

– ΣH(r) the set of distinct bindings of the variables occurring in the head of r,
formally: ΣH(r) = {binding V (H)}

– EH(r) the set of distinct bindings of the variables occurring in the head
of r provided the body and the head of r are satisfied, formally: EH(r) =
{binding V (H) | ∃ binding V (B1 ∧ · · · ∧Bn) : B1 ∧ · · · ∧Bn ∧H}. Since rules
are connected and closed, V (H) ⊆ V (B1 ∧ · · · ∧ Bn)

– MH(r) the set of distinct bindings of the variables occurring in the head
of r also appearing as binding for the variables occurring in the body of r,
formally: MH(r) = {binding V (H) | ∃ binding V (B1∧· · ·∧Bn) : B1∧· · ·∧Bn}

– PH(r) the set of distinct bindings of the variables occurring in the head of
r provided that the body and the head of r are satisfied. Particularly, this
applies when a role atom is in the head of the considered rule. Formally:
PH(r) = {binding V (H) | ∃ binding V (B1 ∧ · · · ∧Bn)∪ vrng(H ′) : B1 ∧ · · · ∧
Bn ∧ H ′} where

• H and H ′ are role atoms with the same the predicate symbol R;
• V (H) ⊆ V (B1 ∧ · · · ∧ Bn) since rules are connected and closed
• vdom(H) = vdom(H ′) and vrng(H) �= vrng(H ′);

with vdom and vrng standing for the domain and range variables respec-
tively of the predicate symbol R

• vrng(H ′) /∈ V (B1 ∧ · · · ∧ Bn);
– Σi total number of individuals inside a KB.
– Given the rule r = B1 ∧ . . . ∧ Bn → H, N is a number defined as follows:

N =
{

Σi, if H is a concept atom;
P 2

Σi
= (Σi)!/(Σi − 2)!, if H is a role atom.

Like in [7,12], the classical definitions (as used in [1]) are modified to ensure
monotonicity, as summarized below. The range for these metrics is shown in
Table 2.
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Definition 7 (Rule Support). Given a rule r = B1 ∧ . . . ∧ Bn → H, its
support is the number of distinct bindings of the variables in the head, provided
the body and the head of r are satisfied jointly, formally:

supp(r) = |EH(r)|. (1)

Example 5 (Computation of Rule Support). Given the rule r = feed(x, y) →
love(x, y) and assuming the following bindings {feed(Anna,Dog), feed(Anna,
Cat), feed(Peter, P ig), love(Anna,Dog), love(George, Cat)} exist then
supp(r) = 1, as there is just one binding for the rule head (feed(Anna,Dog))
allowing the head love(Anna,Dog) and the body feed(Anna,Dog) to be jointly
satisfied.

Definition 8 (Head Coverage for a Rule). Given the rule r = B1 ∧ . . . ∧
Bn → H, its head coverage is the ration between the rule support and the distinct
variable bindings from the head of the rule

headCoverage(r) = |EH(r)|/|ΣH(r)|. (2)

Example 6 (Computation of Head Coverage). Given the rule r in Example 5 and
the corresponding bindings, headCoverage(r) = 1

2 since there are two bindings
for the head of r: {love(Anna,Dog), love(George, Cat)}.

Definition 9 (Rule Confidence). Given a rule r = B1 ∧ . . . ∧ Bn → H,
its confidence is defined as the ratio of the number of the rule support and the
number of bindings in the rule body:

conf(r) = |EH(r)|/|MH(r)|. (3)

Example 7 (Computation of Rule Confidence). Given the rule r in Example 5
and the corresponding bindings, conf(r) = 1

3 , since there are three bindings for
the body of r: {feed(Anna,Dog), feed(Anna,Cat), feed(Peter, P ig)}.

An issue with Definition 9, is that an implicit closed-world assumption is
made, since no distinction between incorrect predictions, i.e., bindings σ match-
ing r such that K |= ¬Hσ, and unknown predictions, i.e., bindings σ matching
r such that both K |= Hσ and K |= ¬Hσ, is made. Reasoning on ontologies is
grounded on the OWA and our goal is to maximize correct predictions, not just
describe the data. Hence, following [12] we use PCA Confidence instead, which
takes the OWA into account.

Definition 10 (Rule PCA-Confidence). Given the rule r = B1∧. . .∧Bn →
H, its PCA (Partial Completeness Assumption) confidence is defined as follows:

pcaconf(r) =
{

|EH(r)|/|MH(r)|, if H is a concept atom;
|EH(r)|/|PH(r)|, if H is a role atom.

(4)

For Example 5, pcaconf(r) = 1
2 .



Comparing Rule Evaluation Metrics for the Evolutionary Discovery 295

Definition 11 (Laplace for a Rule). Given a rule r = B1 ∧ . . . ∧ Bn → H,
its Laplace [6], often used to grade rules for classification goals, is defined as

Laplace(r) =
|EH(r)| + 1
|MH(r)| + 2

(5)

For Example 5, Laplace(r) = 2
5 .

Definition 12 (Conviction for a Rule). Given a rule r = B1∧. . .∧Bn → H,
its Conviction [5], measuring the intensity of implication of a rule, is defined
using the confidence metrics in the denominator:

conviction(r) =
N − |ΣH(r)|

N(1 − |conf(r)|) (6)

For Example 5, conviction(r) = 7
5 .

Definition 13 (Certainty factor for a Rule). Given a rule r = B1 ∧ . . . ∧
Bn → H, its Certainty Factor [11] represents uncertainty in the rule and is defined
as follows:

cf(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

conf(r)− |ΣH (r)|
N

1− |ΣH (r)|
N

, if conf(r) > |ΣH(r)|
N ;

conf(r)− |ΣH (r)|
N

|ΣH (r)|
N

, if conf(r) < |ΣH(r)|
N ;

0, if conf(r) = |ΣH(r)|
N .

(7)

For Example 5, cf(r) = 0.286.

Definition 14 (Added value for a Rule). Given a rule r = B1 ∧ . . .∧Bn →
H, Added Value [19] for the rule r is defined as:

av(r) = conf(r) − |ΣH(r)|
N

(8)

This metric is more meaningful when the amount of evidence is large, for it
relies on probabilities. For Example 5, av(r) = 0.267.

Definition 15 (J-Measure for a Rule). Given a rule r = B1 ∧ . . .∧Bn → H,
its J-Measure [20] is defined according to the probability distribution of individuals
as follows:

J(r) = |EH(r)|
N log2

N |EH(r)|
|MH(r)||ΣH(r)| + |MH(r)|−|EH(r)|

N log2
N(|MH(r)|−|EH(r)|)
|MH(r)|(N−|ΣH(r)|) . (9)

For Example 5, J(r) = 0.045.
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Definition 16 (Gini index for a Rule). Given a rule r = B1∧. . .∧Bn → H,
its Gini Index [4] is defined according to the probability distribution of individuals
from the sum of squared probabilities as follows:

gn(r) = |MH(r)|
N

[(
|EH(r)|
|MH(r)|

)2

+
(

|MH(r)|−|EH(r)|
|MH(r)|

)2
]

−
(

|ΣH(r)|
N

)2

+ N−|MH(r)|
N

[(
|ΣH(r)|−|EH(r)|

N−|MH(r)|
)2

+
(

(N−|MH(r)|)−(|ΣH(r)|−|EH(r)|)
N−|MH(r)|

)2
]

−
(

N−|ΣH(r)|
N

)2

.

For Example 5, gn(r) = 0.016.

Definition 17 (Rule Precision). Given the rule r = B1 ∧ . . . ∧ Bn → H, its
precision is the ratio of the number of correct predictions made by r and the total
number of correct and incorrect predictions (predictions logically contradicting
K), leaving out the predictions with unknown truth value.

This metric expresses the ability of a rule to perform correct predictions, but
it is not able to take into account the induced knowledge, that is the unknown
predictions. For this reason, the metrics proposed in [10] are also considered (for
the evaluation in Sect. 4):

– match rate: number of predicted assertions in agreement with facts in the
complete ontology, out of all predictions;

– commission error rate: number of predicted assertions contradicting facts in
the full ontology, out of all predictions;

– induction rate: number of predicted assertions whose truth is unknown in the
complete ontology, out of all predictions.

3 The EDMAR Algorithm

In this section, we provide background information about the EDMAR (Evolu-
tionary Discovery of Multi-relational Association Rules) algorithm [21].

Given a populated ontological KB, EDMAR discovers frequent and accurate
multi-relational association rules to be exploited for making predictions of new
assertions in the KB. The rules discovered, besides complying with the chosen
language bias (see Sect. 2.1), are bred to strike an optimal balance between
generality and accuracy.

EDMAR, whose overall flow is shown by Algorithm 1, maintains a population
of patterns (the individuals) and makes it evolve by iteratively applying a number
of genetic operators. A pattern, represented as a list of atoms, of the form C(x) or
R(x, y) and respecting the language bias, to be interpreted in conjunctive form,
is the genotype of an individual and the corresponding rule is its phenotype,
constructed using the first atom of the pattern as the head and the remaining
atoms as the body.
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Algorithm 1. The EDMAR algorithm.
Input: K: ontological KB; θf : frequency threshold; n: the size of the population; pcross: crossover

probability; pmut: mutation probability; τ : truncation proportion; θfit: fitness threshold;
Output: pop: set of frequent patterns discovered from K
1: Creating a list Af of frequent atoms in K
2: Initialize a population pop of size n by using n times createNewPattern() operator
3: Compute fitness values for all of the patterns in pop
4: Sort pop by decreasing fitness value
5: Initialize the number of generation (equals to 0)
6: while (the number of generation < MAX GENERATIONS) do
7: for (i = 0, 1, . . . , �τn�) do
8: Crossover(pop[i], pop[�τn� + i])
9: Crossover(pop[i], pop[2�τn� + i])
10: Compute fitness value for all of offspring
11: for each offspring do
12: with probability pmut do mutate(offspring)
13: Add all of offspring to pop
14: Sort pop by decreasing fitness value
15: Remove patterns located at the end of pop so that the size of pop is exactly n
16: Increase the number of generation by 1
17: Remove redundant and inconsistent rules from the final population pop
18: Remove rules where fitness value is less than θfit from the final population pop
19: return pop

EDMAR is steady-state: children are created by applying genetic operators
on selected parents, and then the children are added back into the population to
compete with individuals in the old population in order to allow transition into
the new population at the next cycle. The selection operator chooses the best
parents for reproduction. The genetic operators of initialization, crossover, and
mutation, are designed to enforce the respect of the language bias.

The initial population is seeded with patterns consisting of atoms picked at
random from a list of frequent atoms.

Before performing selection, patterns in the population are sorted by decreas-
ing fitness value and a given parameter τ is used to assist in the selection of
individuals. The selection operator is used before calling the crossover operator:
the best 3�τn� individuals are selected for reproduction, and they are split into
3 groups of equal size and of decreasing fitness; each individual of group 1 (the
best individuals) is selected twice to mate with each individual in group 2 and
each individual in group 3, respectively.

The crossover operator produces two offspring patterns from two parent pat-
terns by randomly rearranging the atoms of the parents. The operator proceeds
by creating a set L including all the atoms in the two input patterns and choosing
a target length for the two offspring; then, atoms are picked from L at random
and added to either pattern until the target length is attained, possibly changing
their variables to ensure the language bias is respected.

The mutation operator perturbs a pattern with a given probability pmut,
using two operations based on the idea of specialization and generalization in
ILP: it applies the specialization operator, if the fitness of the pattern is above
a given threshold θmut, or the generalization operator, if its fitness is below the
threshold θmut, to the pattern undergoing it. The specialization operator appends
a new atom to a pattern, while preserving the language bias. The generalization
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operator removes a random number of atoms located at the end of the body
of the pattern. After removing atoms, the length of the body must remain at
least one atom and preserve the language bias. In case a pattern is too long
to undergo specialization or too short to undergo generalization, mutation will
create a completely new body by picking atoms from the list of frequent atoms,
while keeping the same head as the parent pattern and respecting the language
bias.

The original EDMAR algorithm uses a fitness function defined as

fitness(r) = headCoverage(r) + pcaconf(r).

In this paper, however, we use a variety of metrics (see Sect. 2.2) to define the
fitness of a pattern in view of comparing their respective performance.

Inconsistent rules, i.e., rules that are unsatisfiable when considered jointly
with the ontology, are of no use for KB enrichment and have thus to be discarded.
Since checking rules for consistency may be computationally very expensive,
EDMAR does not check patterns for consistency during evolution. Instead, it
defers this check and applies it to the final population only, by calling an off-
the-shelf OWL reasoner.

Therefore, every rule r returned by EDMAR satisfies three conditions: (1) r
is not a redundant rule (as per Definition 6); (2) K ∪ r �|= ⊥; (3) fitness(r) ≥ θfit

(θfit is chosen according to the effective range in Table 2).
We refer the reader to [21] for further details on the EDMAR algorithm.

4 Experiments and Results

To improve performance, we compare some popular asymmetric metrics used to
assess the rules based on the ability to generate rules, the number of predictions
and the number of unknown facts. Through this comparison, we might also
select metrics that are suitable with data semantics. The best metrics could be
considered and used in the next researches.

We applied our evolutionary algorithm to the same populated ontological
KBs used in [8]: Financial,4 describing the banking domain; Biological Path-
ways Exchange (BioPAX)5 Level 2 Ontology, describing biological pathway data;
and New Testament Names Ontology (NTNMerged),6 describing named enti-
ties (people, places, and other classes) in the New Testament, as well as their
attributes and relationships. Details on these ontologies are reported in Table 1.

To test the capability of the discovered rules to predict new assertional knowl-
edge for each examined ontological KB, stratified versions of each ontology have
been constructed (as described in [8]) by randomly removing, respectively, 20%,
30%, and 40% of the concept assertions, while the full ontology versions have
been used as a testbed.

4 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl.
5 http://www.biopax.org/release/biopax-level2.owl.
6 http://www.semanticbible.com/ntn/ntn-view.html.

http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
http://www.biopax.org/release/biopax-level2.owl
http://www.semanticbible.com/ntn/ntn-view.html
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Table 1. Key facts about the ontological KBs used.

Ontology # Concepts # Roles # Indiv # Declared
Assertions

# Decl.+Derived
Assertions

Financial 59 16 1000 3359 3814

BioPAX 40 33 323 904 1671

NTNMerged 47 27 695 4161 6863

We performed 30 runs of the EA described in Sect. 3 for each stratified version
and for each choice of fitness function using the following parameter setting:

n = 5, 000; pmut = 5%;
MAX GENERATIONS = 200; θmut = 0.2;
MAX RULE LENGTH = 10; τ = 1

5
θfit = 0 θf = 1.

(Conviction: θfit = 1)

Our experiments aimed at comparing of the results obtained by the EA using
different rule evaluation metrics as fitness based on the three following criteria:

1. The number of the rules discovered by the EA.
2. The induction rate: if it is positive, this means assertions are predicted that

could not be inferred from the stratified version. The higher the induction
rate, the more novel predictions (unknown facts) are induced for the KB.

3. The number of correct predictions = number of predictions × precision, where
the number of predictions is the number of predicted assertions and precision
is defined in Definition 17.

Table 2. Symbols and range of metrics (the effective range is used to assist in the
choice of θfit.)

Symbol Metric Range Effective range

H Head Coverage [0, 1] (0, 1]

C Confidence [0, 1] (0, 1]

P PCA-Confidence [0, 1] (0, 1]

L Laplace [0, 1] (0, 1]

CV Conviction [0.5, +∞) (1, +∞)

CF Certainty Factor [−1, 1] (0, 1]

A Added Value [−0.5 , 1] (0, 1]

J J-Measure [0, 1] (0, 1]

G Gini Index [0, 1] (0, 1]
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Table 3 shows a comparison of the metrics (identified with the acronyms
defined in Table 2) according to the first criterion. The second and third criteria
are used to compare the predictive power of the discovered rules. In order to com-
pare the metrics according to these criteria, we applied the rules discovered from
the stratified versions to the full ontology versions and collected all predictions,
i.e., the head atoms of the instantiated rules. Given the collected predictions,
those already contained in the stratified ontology versions were discarded, while
the remaining predicted facts were considered. A prediction is evaluated as cor-
rect if it is contained/entailed by the full ontology version and as incorrect if it
is inconsistent with the full ontology version. All the results (see Tables 4 and
5) have been computed using the rules discovered by each metrics (see Table 3)
based on 30 runs with the above parameter setting and have been measured in
terms of precision (see Definition 17), match, commission, and induction rate
(see Sect. 2.2). The statistic significance of all pairwise comparisons between
metrics have been assessed using 1-tailed Welch’s t-test.

Table 3. Comparison of the metrics by the number of discovered rules.

Ontology Samp. Total number of discovered rules by metric ± stdev

H C P L CV CF A J G

Financial 20% 26
± 4

25
± 4

25
± 3

3,254
± 30

4
± 1

25
± 3

26
± 3

3
± 1

487
± 12

30% 25
± 3

25
± 4

25
± 4

3,301
± 31

4
± 1

26
± 3

24
± 4

4
± 1

485
± 9

40% 23
± 3

23
± 3

22
± 4

3,296
± 31

3
± 1

23
± 4

21
± 3

3
± 1

479
± 11

Biopax 20% 129
± 13

122
± 12

130
± 10

4,293
± 24

35
± 5

118
± 9

119
± 9

58
± 5

3,486
± 182

30% 128
± 9

130
± 13

130
± 9

4,384
± 22

33
± 5

117
± 8

110
± 9

55
± 5

3,658
± 139

40% 129
± 11

136
± 11

133
± 8

4,530
± 23

36
± 5

124
± 9

122
± 7

59
± 6

3,560
± 157

NTNMerged 20% 1,157
± 168

1,345
± 423

1,418
± 492

4,563
± 53

382 ±
31

671
± 36

656
± 34

504
± 22

2,040
± 690

30% 1,052
± 353

947
± 238

1,017
± 370

4,805
± 13

509
± 39

743
± 45

728
± 48

460
± 21

457
± 90

40% 1,088
± 181

1,223
± 177

1,295
± 357

4,797
± 22

397
± 26

687
± 38

664
± 34

500
± 26

1,506
± 61
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The EA achieves precision = match rate + commission rate + induction rate
= 1 and commission error rate = 0 on all versions of all considered ontologies;
this confirms its ability to discover accurate rules; as a consequence, the number
of correct predictions coincides with the number of discovered predictions.

From the observations in Tables 3, 4 and 5, we can draw a few remarks:

1. Laplace has the highest number of discovered rules. However, it hardly pro-
duces any new knowledge (induction rate ≈ 0).

2. Gini Index scores the second highest number of discovered rules. However,
this measure looks less robust when compared to other metrics, since large
deviations among discovered rules show up for different stratified samples of
the same ontology (see Table 3); sometimes, it produces much new knowledge,
sometimes little or none (induction rate is not stable—see Table 5). In addi-
tion, the number of predictions is medium or low compared to other metrics
(see Table 5).

3. Five metrics (HeadCoverage, Confidence, PCA-Confidence, Certainty Factor,
and Added Value) allow the EA to generate the largest number of rules (see
Table 3) and, which is even more relevant, to come up with rules that induce
a large number of previously unknown facts (induction rate > 0), with a very
large absolute number of correct predictions (see Tables 4 and 5).

4. Two metrics (Conviction and J-Measure) produce the smallest number of
rules. Although both the induction rate and the number of predictions are
acceptable, the low number of discovered rules may mean valuable rules are
missed out.

From the above remarks, we may conclude that HeadCoverage, Confidence, PCA-
Confidence, Certainty Factor, and Added Value are the best choices as an opti-
mization criterion (i.e., fitness function) for EDMAR.

We also compared the experimental performance of EDMAR + the five best
metrics to state-of-the-art methods which are closest to it in purpose, namely
the original EDMAR algorithm (with HeadCoverage + PCAConfidence as
fitness [21]) and the two level-wise generate-and-test algorithms RARD [7] and
AMIE [12]. Table 6 reports the number of rules discovered by each system given
each KB sample. We can remark the following:

1. The top-5 metrics discover more rules than RARD from NTNMerged, but
fewer from the Financial and Biopax KBs. One reason is that RARD can
discover also open rules, which are barred by EDMAR’s language bias (see
Definition 5); furthermore, the maximum length of a rule is 10 atoms. Another
reason is that the number of individuals in Financial and Biopax is less than
that of NTNMerged (see Table 1, last column). If one factor these differences
out, the top-5 metrics are superior to RARD.
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Table 4. Avg (± st.dev.) performance on each ontology of HeadCoverage (H), Con-
fidence (C), PCA-Confidence (P), Laplace(L), Conviction(CV), Certainty Factor(CF)
precision = match rate + commission rate + induction rate

Ont. Samp. Match Com. Ind. Total #
Rate Rate Rate Predictions

H

F
in
an

ci
al 20% 0.855 0 0.145 47,232

± 0.033 ± 0.033 ± 36,777

30% 0.864 0 0.136 25,456
± 0.044 ± 0.044 ± 34,174

40% 0.861 0 0.139 23,207
± 0.044 ± 0.044 ± 30,133

B
io
P
A
X

20% 0.567 0 0.433 84,035
± 0.031 ± 0.031 ± 15,018

30% 0.591 0 0.409 85,499
± 0.03 ± 0.03 ± 11,660

40% 0.58 0 0.42 90,856
± 0.027 ± 0.027 ± 14,048

N
T
N
M

er
ge

d 20% 0.572 0 0.428 2,311,624
± 0.026 ± 0.026 ± 287,858

30% 0.564 0 0.436 2,314,346
± 0.039 ± 0.039 ± 458,522

40% 0.621 0 0.379 2,345,588
± 0.027 ± 0.027 ± 357,565

C

F
in
an

ci
al 20% 0.848 0 0.152 43,151

± 0.045 ± 0.045 ± 44,254

30% 0.860 0 0.140 27,589
± 0.038 ± 0.038 ± 41,184

40% 0.858 0 0.142 33,795
± 0.051 ± 0.051 ± 41,880

B
io
P
A
X

20% 0.574 0 0.426 79,454
± 0.036 ± 0.036 ± 14,019

30% 0.584 0 0.416 88,879
± 0.027 ± 0.027 ± 12,890

40% 0.582 0 0.418 96,884
± 0.023 ± 0.023 ± 13,782

N
T
N
M

er
ge

d 20% 0.618 0 0.382 1,437,868
± 0.042 ± 0.042 ± 253,206

30% 0.581 0 0.419 1,164,306
± 0.036 ± 0.036 ± 167,173

40% 0.670 0 0.330 1,557,516
± 0.030 ± 0.030 ± 280,666

P

F
in
an

ci
al 20% 0.859 0 0.141 41,350

± 0.055 ± 0.055 ± 46,196

30% 0.850 0 0.150 32,812
± 0.055 ± 0.055 ± 41,501

40% 0.859 0 0.141 29,762
± 0.043 ± 0.043 ± 35,582

B
io
P
A
X

20% 0.571 0 0.429 89,486
± 0.028 ± 0.028 ± 11,303

30% 0.584 0 0.416 92,392
± 0.023 ± 0.023 ± 13,878

40% 0.587 0 0.413 91,849
± 0.027 ± 0.027 ± 11,960

N
T
N
M

er
ge

d 20% 0.609 0 0.391 2,130,947
± 0.046 ± 0.046 ± 380,546

30% 0.588 0 0.412 1,409,235
± 0.043 ± 0.043 ± 286,439

40% 0.670 0 0.330 1,727,343
± 0.042 ± 0.042 ± 262,891

Ont. Samp. Match Com. Ind. Total #
Rate Rate Rate Predictions

L

F
in
an

ci
al 20% 1.0 0 0 122,432

± 1,704

30% 1.0 0 0 180,231
± 2,801

40% 1.0 0 0 230,736
± 3,484

B
io
P
A
X

20% 1.0 0 0 51,060
± 866

30% 1.0 0 0 78,488
± 1,527

40% 1.0 0 0 100,699
± 1,600

N
T
N
M

er
ge

d 20% 0.994 0 0.006 197,374
± 0.001 ± 0.001 ± 6,116

30% 0.995 0 0.005 284,065
± 5,806

40% 0.996 0 0.004 323,085
± 6,359

CV

F
in
an

ci
al 20% 0 0 1.0 48,661

± 0.001 ± 0.001 ± 41,318

30% 0.001 0 0.999 43,078
± 0.001 ± 0.001 ± 39,328

40% 0.001 0 0.999 26,268
± 0.002 ± 0.002 ± 33,679

B
io
P
A
X

20% 0.08 0 0.92 44,971
± 0.018 ± 0.018 ± 10,928

30% 0.11 0 0.89 44,451
± 0.017 ± 0.017 ± 10,557

40% 0.102 0 0.898 50,457
± 0.018 ± 0.018 ± 12,368

N
T
N
M

er
ge

d 20% 0.32 0 0.68 831,416
± 0.019 ± 0.019 ± 183,095

30% 0.344 0 0.656 1,123,266
± 0.013 ± 0.013 ± 208,471

40% 0.361 0 0.639 868,467
± 0.015 ± 0.015 ± 174,865

CF

F
in
an

ci
al 20% 0.877 0 0.123 31,656

± 0.038 ± 0.038 ± 45,045

30% 0.852 0 0.148 48,568
± 0.057 ± 0.057 ± 45,051

40% 0.857 0 0.143 31,068
± 0.039 ± 0.039 ± 36,044

B
io
P
A
X

20% 0.556 0 0.444 80,361
± 0.026 ± 0.026 ± 8,700

30% 0.581 0 0.419 78,933
± 0.023 ± 0.023 ± 11,147

40% 0.564 0 0.436 84,476
± 0.035 ± 0.035 ± 12,647

N
T
N
M

er
ge

d 20% 0.565 0 0.435 1,039,112
± 0.01 ± 0.01 ± 179,322

30% 0.535 0 0.465 1,424,334
± 0.014 ± 0.014 ± 180,205

40% 0.557 0 0.443 2,110,928
± 0.018 ± 0.018 ± 423,539
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Table 5. Avg (± st.dev.) performance on each ontology of Added value (A), J-Measure
(J) and Gini factor (G) precision = match rate + commission rate + induction rate

Ont. Samp. Match Com. Ind. Total #
Rate Rate Rate Predictions

A

F
in
an

ci
al 20% 0.859 0 0.141 33,358

± 0.041 ± 0.041 ± 31,445

30% 0.858 0 0.142 29,866
± 0.041 ± 0.041 ± 31,123

40% 0.859 0 0.141 29,870
± 0.041 ± 0.041 ± 44,276

B
io
P
A
X

20% 0.549 0 0.451 83,666
± 0.032 ± 0.032 ± 11,663

30% 0.578 0 0.422 78,059
± 0.029 ± 0.029 ± 9,368

40% 0.579 0 0.421 84,483
± 0.02 ± 0.02 ± 10,376

N
T
N
M

er
ge

d 20% 0.563 0 0.437 966,840
± 0.012 ± 0.012 ± 204,430

30% 0.541 0 0.459 1,324,518
± 0.014 ± 0.014 ± 282,410

40% 0.566 0 0.434 1,632,633
± 0.014 ± 0.014 ± 218,033

J

F
in
an

ci
al 20% 0 0 1.0 10,148

± 0.001 ± 0.001 ± 13,149

30% 0.001 0 0.999 32,052
± 0.001 ± 0.001 ± 39,154

40% 0 0 1.0 36,204
± 40,910

B
io
P
A
X

20% 0.083 0 0.917 82,799
± 0.011 ± 0.011 ± 11,596

30% 0.108 0 0.892 80,797
± 0.013 ± 0.013 ± 13,564

40% 0.11 0 0.89 90,480
± 0.013 ± 0.013 ± 12,579

N
T
N
M

er
ge

d 20% 0.294 0 0.706 1,317,526
± 0.008 ± 0.008 ± 207,005

30% 0.301 0 0.699 1,765,003
± 0.011 ± 0.011 ± 242,269

40% 0.319 0 0.681 2,387,450
± 0.011 ± 0.011 ± 698,911

Ont. Samp. Match Com. Ind. Total #
Rate Rate Rate Predictions

G

F
in
an

ci
al 20% 0.182 0 0.818 20,321

± 0.007 ± 0.007 ± 22,967

30% 0.181 0 0.819 49,443
± 0.01 ± 0.01 ± 42,556

40% 0.186 0 0.814 20,645
± 0.009 ± 0.009 ± 18,367

B
io
P
A
X

20% 1.0 0 0 30,839
± 1,632

30% 1.0 0 0 45,063
± 1,727

40% 1.0 0 0 62,941
± 2,781

N
T
N
M

er
ge

d 20% 0.768 0 0.232 199,745
± 0.054 ± 0.054 ± 50,410

30% 0.725 0 0.275 82,059
± 0.023 ± 0.023 ± 13,066

40% 0.785 0 0.215 258,454
± 0.007 ± 0.007 ± 10,162

2. The top-5 metrics discover more rules than AMIE from Financial and Biopax
and a comparable number from the NTNMerged KB. One limitation of deter-
ministic level-wise generate-and-test methods like AMIE and RARD is that
they cannot scale up to rules longer than 3 atoms, while EDMAR (with any
metrics) can easily discover rules of 10 atoms (and possibly more).

3. EDMAR’s original fitness function outperforms each of the top-5 metrics;
however, it is a combination of two of them. This suggests a new promising
direction of research, that is to try to find an optimal fitness function for
EDMAR by combining the individual metrics studies in this paper.
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Table 6. Comparison of the number of discovered rules.

Ontology Samp. # The total number of rules discovered

H C P CF A EDMAR RARD AMIE

Financial 20% 26
± 4

25
± 4

25
± 3

25
± 3

26
± 3

27
± 3

177 2

30% 25
± 3

25
± 4

25
± 4

26
± 3

24
± 4

26
± 3

181 2

40% 23
± 3

23
± 3

22
± 4

23
± 4

21
± 3

24
± 4

180 2

Biopax 20% 129
± 13

122
± 12

130
± 10

118
± 9

119
± 9

132
± 10

298 8

30% 128
± 9

130
± 13

130
± 9

117
± 8

110
± 9

118
± 12

283 8

40% 129
± 11

136
± 11

133
± 8

124
± 9

122
± 7

137
± 12

272 0

NTNMerged 20% 1,157
± 168

1,345
± 423

1,418
± 492

671
± 36

656
± 34

1,834 ±
782

243 1,129

30% 1,052
± 353

947
± 238

1,017
± 370

743
± 45

728
± 48

1,235 ±
495

225 1,022

40% 1,088
± 181

1,223
± 177

1,295
± 357

687
± 38

664
± 34

1,810 ±
733

239 1,063

5 Conclusions

The results of the empirical comparison of a number of popular asymmetric
metrics to be used as fitness functions for evolutionary inductive programming
allow us to identify five metrics as the most promising candidates for further
exploration.

Future work might focus on four main aspects: (i) exploration of various
possible combination of the promising metrics; (ii) development of other met-
rics suited for scenarios based on the OWA; (iii) scalability, by considering large
datasets from the Linked Data Cloud; (iv) parallelization according to program-
ming models such MapReduce to take advantage of frameworks like Hadoop, in
order to be able to perform big data analytics.
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Abstract. Flexible Job Shop Scheduling (FJSS) problem has many real-
world applications such as manufacturing and cloud computing, and thus
is an important area of study. In real world, the environment is often
dynamic, and unpredicted job orders can arrive in real time. Dynamic
FJSS consists of challenges of both dynamic optimisation and the FJSS
problem. In Dynamic FJSS, two kinds of decisions (so-called routing
and sequencing decisions) are to be made in real time. Dispatching rules
have been demonstrated to be effective for dynamic scheduling due to
their low computational complexity and ability to make real-time deci-
sions. However, it is time consuming and strenuous to design effective
dispatching rules manually due to the complex interactions between
job shop attributes. Genetic Programming Hyper-heuristic (GPHH) has
shown success in automatically designing dispatching rules which are
much better than the manually designed ones. Previous works only
focused on standard job shop scheduling with only the sequencing deci-
sions. For FJSS, the routing rule is set arbitrarily by intuition. In this
paper, we explore the possibility of evolving both routing and sequenc-
ing rules together and propose a new GPHH algorithm with Cooperative
Co-evolution. Our results show that co-evolving the two rules together
can lead to much more promising results than evolving the sequencing
rule only.

Keywords: Job Shop Scheduling · Genetic Programming
Hyper-heuristics · Cooperative Co-evolution

1 Introduction

In the modern industrial world, processing and manufacturing are global indus-
tries which are central to the economies of virtually every country. In a large
factory setting, the efficient allocation of jobs to machines is therefore an
extremely important concept that businesses must consider to increase through-
put, decrease costs and increase profitability [15]. In a virtual setting, the idea of
the efficient allocation of jobs to machines can also be applied to cloud resources.
There are further applications to be found in timetabling, sports scheduling,
c© Springer International Publishing AG, part of Springer Nature 2018
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health care scheduling and crew scheduling. This study of the allocation of jobs
to machines is therefore a hugely important and relevant area of study to create
more efficient outcomes in the modern world, saving time and resources.

In the Job Shop Scheduling (JSS) problem, there is a set of jobs to be com-
pleted, and a set of machines which can process the jobs [27]. A solution to this
problem is an ordered schedule of assignments of jobs to machines, so that all
jobs are completed. These schedules are optimised relative to some objective,
such as minimising the makespan and flowtime.

Flexible JSS (FJSS) problem is an extension of JSS. In JSS, each job oper-
ation only has one candidate machine to process it. In contrast, an operation
of a job may have multiple candidate machines (options) in FJSS. As a result,
FJSS involves allocating job operations to machines (i.e. routing problem) as
well as selecting jobs from the queue of an idle machine to be processed next
(i.e. sequencing problem). This makes FJSS more challenging than JSS.

FJSS is NP-hard since it has JSS as its special case (where all the opera-
tions have only one candidate machine). Thus, traditional optimisation methods
such as branch-and-bound [18] is applicable when the problem size is not large.
In this case, heuristic search methods such as simulated annealing [34], tabu
search [26] and genetic algorithm [35] show promise in finding reasonably good
solutions in a short time. However, in real world, the environment is usually
dynamic, and unpredicted jobs can arrive at any time. The decisions made about
which job to be processed next must be able to factor in the changing state of
the system quickly and computationally cheaply. Therefore traditional optimisa-
tion techniques are infeasible for dynamic JSS due to their high computational
complexity.

Dispatching Rules (DRs) have been used extensively in JSS (e.g. [3]) due to
their computational efficiency. Whenever a machine becomes idle, a DR calcu-
lates a priority value for each job waiting in its queue and selects the most prior
job to process next. Such computation is carried out at each decision point (e.g.
when a machine becomes idle) and can be done efficiently. A variety of DRs
have been designed manually to handle different scenarios. An overview of the
manually designed DRs can be found in [30].

Manually designing DRs is time consuming and very demanding on domain
expertise. The existing manually designed rules tend to be overly simplistic,
with plenty of literature showing that many manually designed rules only per-
form well for certain objectives and in certain job shops [17,29,31]. Recently,
Genetic Programming Hyper-heuristics (GPHH) has been successfully applied
to automatically designing (evolving) DRs for scheduling [5,19,20,23], and the
evolved DRs are much more effective than the manually designed DRs. How-
ever, the existing works mainly focused on evolving the sequencing rules, i.e.
the rules selecting the operations from the queue of the idle machine to process
next. The routing rule (i.e. the rule to select a candidate machine to process the
given operation) is normally specified intuitive (e.g. selecting the machine with
the least waiting time in [32]). Such simple routing rules are by no means the
best and there is a potential to design routing rules that cooperates with the
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sequencing rules better in the given scheduling scenario. This motivates us to
evolve the sequencing and routing rules simultaneously. To this end, we adopt
the Cooperative Co-evolution (CC) [28] framework, which is a natural frame-
work to evolve multiple components together. It has also been applied in JSS
for co-evolving the DR and due date assignment rule [24].

1.1 Goals

In this paper, we aim to find more promising routing and sequencing rules for
FJSS. Specifically, we aim to achieve the following research objectives.

1. Compare between different manually designed routing rules on different FJSS
scenarios to understand which manually designed routing rule performs the
best in general.

2. Propose a GP with Cooperative Co-evolution (called CCGP) for co-evolving
the routing and sequencing rules simultaneously.

3. Compare CCGP with the GP that evolves sequencing rule with pre-specified
routing rule (called SeqGP) to evaluate the performance of CCGP.

4. Conduct analysis on the characteristics of the rules evolved by CCGP to gain
new knowledge about the structure of the effective routing rules for FJSS.

1.2 Organisation

The rest of the paper is organised as follows: Sect. 2 gives the problem description
and related work. Then, the proposed CCGP is proposed in Sect. 3. Experiment
studies are carried out in Sects. 4 and 5. Finally, Sect. 6 gives the conclusions
and future work.

2 Background

2.1 Flexible Job Shop Scheduling

FJSS is to process a set of jobs J = {J1, . . . , Jn} with a set of machines
M = {M1, . . . ,Mm}. Each job Jj has an arrival time t0(Jj) and a sequence of
operations O1,j , . . . , Olj ,j . Each operation Oi,j has a set of candidate machines
πi,j ⊆ M. It can be processed by any machine πi,j,k ∈ πi,j . The duration of pro-
cessing operation Oi,j with machine πi,j,k is δi,j,k. One cannot start processing
an operation until its preceding operations have been completed. Each machine
can process at most one operation at a time, and each operation is processed by
exactly one machine without interruption. The goal of FJSS is to find a feasible
schedule to optimise some objective(s). The commonly considered JSS objectives
include minimising the makespan (Cmax), total flowtime (

∑
Cj), total weighted

tardiness (
∑

wjTj), number of tardy jobs, etc. [27].
JSS is a special case of FJSS, where for each operation Oi,j , |πi,j | = 1. In

other words, each operation can be processed by only one machine. In this case,
no routing decision needs to be made.
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2.2 Related Work

The FJSS problem was first identified by Brucker and Schlie [6] in 1990, where
a solution of a polynomial algorithm was suggested to solve each of the routing
and sequencing sub-problems for a two job system. Early studies focused on
finding FJSS solutions using traditional optimisation approaches. Brandimarte
[4] proposed using a hierarchical method to minimise the makespan for a FJSS
system. In his work, he used a two-level tabu search algorithm in combination
with the decomposition of FJSS into routing and job shop scheduling sub prob-
lems. In his work, Brandimarte also created a class of flexible job shops that
would become used as a benchmark by future researchers [2]. Norman and Bean
[25] developed a genetic algorithm with random key representation, elitist repro-
duction, immigration mutation as well as Bernoulli crossover to solve the FJSS
problem with the objective of minimising total tardiness. In 2002, Kacem et al.
[16] proposed a hybrid approach for solving the FJSS problem, using localisa-
tion for the routing component, and three manually designed dispatching rules
for the sequencing component. An advanced genetic algorithm was proposed for
evolving arrangements of jobs and machines.

In recent decades, hyper-heuristics [7] have attracted more and more research
attention, as they can find heuristics (i.e. dispatching rules in JSS) rather than
solutions, and thus are more flexible and scalable. More importantly, the evolved
heuristics can handle dynamic environment much more effectively than tradi-
tional (re-)optimisation approaches. In 2001, Dimopoulos and Zalzala [9] used
GP to evolve dispatching rules for JSS, for single machine scheduling with a
terminal set of scheduling attributes (processing time, due date, number of jobs,
release time, etc.) with a standard function set. These evolved dispatching rules
performed well and were better than traditional manually designed rules even
for unseen and large instances. Then in 2006, Geiger et al. [10] presented a
learning system which combined GP with a simulation model for an industrial
facility. This proposed GP method creates a rule assigned priority to jobs on
a single machine in both static and dynamic environments. This paper quickly
produced many dispatching rules which rivalled results produced by rules found
in past decades. A method for evolving dispatching rules for multiple machines
was proposed, which used modified genetic operators. Miyashita [22] in 2000
developed an automatic method of evolved customised dispatching rules for a
JSS environment, using GP. In his work, he considered the JSS problem as being
a multi-agent problem, where each agent represents a resource (machine or work
station). This multi-agent model was explored using GP, and produced good
results, however prior knowledge of the JSS environment was required. This
limits the application of this work to only static environments.

In 2007, Tay and Ho [33] proposed a GP method to evolve dispatching rules
for a FJSS environment which were optimised for multiple objectives. These
multiple objectives were treated as a single objective by linearly combined their
objective functions. The proposed GP method can be thought of as a prior-
ity function which calculated the priority of operations in the queue of a single
machine, based on static and dynamic attributes in the job shop. The dispatching
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rules evolved outperformed other manually designed dispatching rules, although
the use of machine attributes was not considered. This system was assessed
later in 2010 by Hildebrandt et al. [12] which showed that in some dynamic JSS
instances, the evolved rules by Tay and Ho [33] performed only slightly better
than the earliest release date rule, and worse the than shortest processing time
rule, which are very simplistic. Hildebrandt et al. [12] then used GP to evolve
dispatching rules in four simulations (all with 10 machines, with a combina-
tion of two utilisation levels and two job types) for the single objective of mean
flow time. Their evolved rules were robust, performing very well in both differ-
ent environments (50 machines with varying processing time distributions) and
the original training environments. In 2014, Nguyen et al. [24] used cooperative
coevolution GP to evolve due date assignment rules and dispatching rules, for
multi-objective JSS. In this work, Nguyen et al. showed that the evolved schedul-
ing policies performed very well on unseen simulation scenarios, given different
shop settings. In 2016, Mei et al. [21] used GP to evolve dispatching rules for
JSS for a single objective. Feature selection was then performed on the terminal
set of the dispatching rules, removing extraneous terminal attributes and reduc-
ing the problem search space. This led to significantly better dispatching rules
evolved by GP on both training and test instances.

3 Genetic Programming with Cooperative Co-evolution

The pseudo-code of the proposed CCGP is described in Algorithm 1. In the
proposed CCGP, there are two subpopulations Pr = {Pr,1, Pr,2, . . . } and
Ps = {Ps,1, Ps,2, . . . }, where Pr stands for the population of routing rules
and Ps stands for the population of sequencing rules. In addition, a context
vector cv = (cvr, cvs) is maintained for fitness evaluation. At first, the two
populations are randomly initialised by ramp half-and-half method, and the
context vector is randomly initialised from the populations. Then, at each gen-
eration, the routing rules and sequencing rules are evolved separately using
the crossover/mutation/reproduction operator of GP. Then, each newly gen-
erated rule is evaluated by the evaluate(·) method. Finally, the context vector
is updated by replacing the routing and sequencing components with the best
individuals in the corresponding population, if they have better fitness values. In
the minimisation case in FJSS (e.g. makespan and flowtime are to be minimised),
a smaller fitness value is better.

The fitness evaluation procedure is given in Algorithm 2. It takes a routing
rule pr, a sequencing rule ps, and a set of FJSS instances Itrain (i.e. training set),
and returns a fitness value. For each training instance, it constructs a discrete
event simulation based on the instance, the routing and sequencing rules, and
run the simulation to generate a schedule.

At the beginning of the simulation, all machines are idle, and there may be
some initial jobs ready to be processed (ready time 0). In the dynamic FJSS
scenarios, unpredicted job arrival events are generated randomly as well. Then
online decisions are made as follows until all the jobs have been completed.
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Algorithm 1. Pseudo-code of the proposed CCGP

1 Randomly initialise Pr and Ps by ramp half-and-half;
2 cvr ← Pr,1, cvs ← Ps,1; // arbitrarily initialise context vector

3 while Stopping criteria not met do
// Evolve the routing rules

4 P′
r ← elite(Pr); // copy the elites to the new population

5 while |P′
r| < popsize do

6 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Pr;

7 Add the generated offspring(s) to P′
r;

8 end
// Evolve the sequencing rules

9 P′
s ← elite(Ps); // copy the elites to the new population

10 while |P′
s| < popsize do

11 Generate offspring(s) by applying the crossover/mutation/reproduction
operator to Ps;

12 Add the generated offspring(s) to P′
s;

13 end
// fitness evaluation

14 foreach p ∈ P′
r do fit(p) ← evaluate(p, cvs, Itrain);

15 foreach p ∈ P′
s do fit(p) ← evaluate(cvr, p, Itrain);

16 Pr ← P′
r, Ps ← P′

s; // update subpopulations

// update context vector

17 cv′
r ← arg minp∈Pr fit(p), cv

′
s ← arg minp∈Ps fit(p);

18 if fit(cv′
r) < fit(cvr) then cvr ← cv′

r;
19 if fit(cv′

s) < fit(cvs) then cvs ← cv′
s;

20 end
21 return cv = (cvr, cvs);

– Whenever a job becomes ready to be processed, if its next operation has only
one candidate machine, then place the job into the queue of the candidate
machine. Otherwise, apply the routing rule to select the machine to process
the job, and place the job to the queue of the selected machine.

– Whenever a machine is idle and its queue is not empty, apply the sequencing
rule to select the next job from the queue, and start processing the next job.

A simulation essentially generates a schedule (with starting and finishing
time of each job). Then, we can calculate the normalised objective value (e.g.
makespan and flowtime) of the schedule. Finally, the fitness value is set to the
average value of all the normalised objective values (line 7). Here, the normali-
sation (line 5) is with respect to a reference value obj∗(I), which can be set to
either the best known (lower bound of) objective value of the instance, or the
objective value obtained by applying benchmark routing and sequencing rules.

As shown in Algorithm 1 (lines 14 and 15), for evaluating a routing (sequenc-
ing) rule, it is combined with the sequencing (routing) component of the context
vector so that the discrete event simulation in Algorithm 2 can be constructed.
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Algorithm 2. evaluate(pr, ps, Itrain)

Input: A routing rule pr, a sequencing rule ps, a set of FJSS instances Itrain

Output: A fitness value
1 f ← 0;
2 foreach I ∈ Itrain do
3 Construct a discrete event simulation based on pr, ps and I;
4 Generate a schedule S(pr, ps, I) by running the discrete event simulation;

5 f ← f + obj(S(pr,ps,I))
obj∗(I) ; // normalisation cross instances

6 end
7 return f/|Itrain|; // average over the training set

4 Experiment Settings

To evaluate the proposed CCGP, we conducted experiments on both static and
dynamic FJSS datasets. The static instances are commonly used in the evalu-
ation of FJSS methods [2], and their lower and upper bounds of makespan are
known. Specifically, there are 4 static FJSS datasets, namely the Barnes dataset
[1], Brandimarte dataset [4], Dauzere dataset [8] and Hurink dataset [14]. The
Barnes dataset consists of 21 instances with 10 or 15 jobs. Each job has 11
to 18 operations, and each operation has 1.07–1.3 candidate machines. Thus,
the Barnes dataset is small and has relatively low flexibility. The Brandimarte
dataset has 10 small sized instances (no more than 20 jobs and 15 machines,
each job has 5–15 operations) and medium flexibility (each operation has 2–6
machine options). The Dauzere dataset consists of 18 instances with similar size
and flexibility as the Brandimarte dataset. There are 66 instances in the Hurink
dataset, which can be divided into 4 subsets with increasing flexibility, namely
sdata, edata, rdata and vdata. The sdata instances are essentially JSS instances,
as no operation can be processed by more than one machine. In the most flexible
vdata instances, all the operations can be processed by multiple machines.

For dynamic simulation, the configuration is given in Table 1, which has been
used in previous studies (e.g. [11,20]).

The parameter setting of CCGP is standard, as given in Table 2. The ter-
minal set of CCGP is described in Table 3. The terminals are adapted from the
JSS terminals proposed in [20]. The terminals involving the future operations
(e.g. NPT and WKR) are modified to take into account the machine-dependent
processing times. For each future operation, the processing time is set to the
median processing time of all the options.

The function set of CCGP is set to {+,−, ∗, /,min,max}, where “/” is the
protected division that returns 1 if divided by 0. The “min” and “max” operators
take two arguments, and return the minimal (maximal) value between them.

In the experiment, we will compare CCGP with the GP counterpart with
routing rule fixed to the Least Work in Queue (LWQ) rule, and evolving the
sequencing rule only. For the sake of convenience, the counterpart will be denoted
as SeqGP hereafter. For fair comparison, the population size of SeqGP is set to
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1024 so that the number of fitness evaluations per generation is the same as
CCGP. All the other parameters are the same for SeqGP and CCGP.

Table 1. The dynamic JSS simulation system configuration.

Parameter Value

#machines 10

#jobs (#warmup jobs) 5000 (1000)

#operations per job Uniform discrete distribution between 1 and 10

#Machines per operation Uniform discrete distribution between 1 and 10

Job arrival process Poisson process

Utilisation level {0.85, 0.95}
Processing time Uniform discrete distribution between 1 and 99

Job weights 20% with weight 1, 60% with weight 2, 20% with weight 4

Table 2. The parameter setting of CCGP.

Parameter Value

Number of subpopulations 2

Subpulation size (popsize) 512

Maximal depth 8

Crossover/Mutation/Reproduction rates 80%/15%/5%

Parent selection Tournament selection with size 7

Elitism 2 best individuals

Number of generations 51

Table 3. The terminal set of CCGP.

Notation Description

NIQ Number of Operations in a Machine’s Queue

WIQ Work In a Machine’s Queue

MWT Waiting Time of a Machine

PT Processing Time of an Operation on a given Machine

NPT Median Processing Time for the Next Operation on Machine options

OWT The Waiting Time of an Operation

WKR Median Amount of Work Remaining for a Job

NOR The Number of Operations Remaining in a Job

W Weight of a Job

TIS Time In System
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5 Results and Discussions

5.1 Comparing Manually Designed Routing Rules for SeqGP

SeqGP requires a pre-specified routing rule for evaluating the evolved sequencing
rules. In existing studies, only the least waiting time assignment routing rule was
considered [13,32] without investigating whether it is the best routing rule. In
this paper, we first compare a set of commonly used manually designed routing
rules on the static FJSS instances to identify the best routing rule for SeqGP.

Specifically, four manually designed routing rules are taken into account in
the comparison. They are described as follows:

1. Least Work in Queue (LWQ): select the machine with the least work (total
processing time) in its queue;

2. Least Queue Size (LQS): select the machine with the least queue size (number
of operations in the queue);

3. Earliest Ready Time (ERT): select the machine that will become ready (idle)
the earliest;

4. Shortest Busy Time (SBT): select the machine with the shortest busy time
so far.

Among the above routing rules, the ERT is essentially the same as the least
waiting time rule used in previous studies (e.g. [13,32]).

For each routing rule, the SeqGP with that routing rule was run on each
static instance for 30 times (except the 66 Hurink-sdata instances, which are
essentially JSS instances). Then, a routing rule is considered as a “winner” of
an instance if it achieved the best mean makespan over the 30 runs (there may
be multiple winners). Then, we compare the number of instances where each
routing rule was a winner.

Table 4 shows the number of instances in each static dataset where each
routing rule was a winner. It can be seen that LWQ was a winner for most
instances (127 out of 247), followed by ERT. More specifically, the advantage of
ERT over LWQ was only on the Barnes dataset, which was the very inflexible.
As the flexibility increases, the advantage of LWQ becomes more obvious.

The findings in this subsection is interesting as it identifies LWQ as a better
routing rule than ERT, which has been used in previous studies, for static FJSS.
In subsequent experiments, we set LWQ as the fixed routing rule for SeqGP.

5.2 Optimisation Performance on Static Instances

The first set of experiments aims to verify the optimisation performance of
SeqGP and CCGP on the static FJSS instances, without a training and test
(generalisation) process. This way, one can investigate the effectiveness of
(co-)evolving dispatching rules as compared to directly optimising FJSS
solutions.

For the static instances, the objective is to minimise the makespan. For each
static instance, CCGP and SeqGP were run 30 times independently, and the
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Table 4. The number of instances in each static dataset where each compared routing
rule was a winner.

Dataset #Instances LWQ LQS ERT SBT

Barnes 21 0 0 13 8

Brandimarte 10 8 0 2 2

Dauzere 18 16 0 1 1

Hurink-edata 66 31 3 27 9

Hurink-rdata 66 39 0 27 0

Hurink-vdata 66 33 0 33 0

Total 247 127 3 103 20

normalised makespans (makespan over the known lower bound) of the best rules
were recorded. In addition, two manually designed sequencing rules, i.e. First-
Come-First-Serve (FCFS) and Shortest Processing Time (SPT), are also taken
into comparison.

Table 5 shows the summary of the compared algorithms over 30 independent
runs for the static datasets. FCFS and SPT are deterministic rules. Therefore,
for each dataset, the average normalised makespan value cross all the instances
of that dataset is shown. SeqGP and CCGP are stochastic algorithms. Therefore,
for each dataset, the mean and standard deviation over the 30 runs are given. In
addition, for each instance, Wilcoxon rank sum test with significance level of 0.05
was conducted between the 30 results obtained by CCGP and SeqGP. Then, for
each dataset, the numbers of instances that CCGP performed significantly better
than SeqGP (“W”), comparable with SeqGP (“D”), and significantly worse than
SeqGP (“L”) are given.

Table 5. The normalised makespan (MK/LB) with respect to lower bound of the
compared algorithms over 30 independent runs for the static datasets.

Dataset #Instances FCFS SPT SeqGP CCGP W-D-L

Barnes 21 1.270 1.238 1.079(0.0021) 1.065(0.0026) 15-6-0

Brandimarte 10 1.431 1.501 1.229(0.0042) 1.062(0.0045) 8-2-0

Dauzere 18 1.244 1.227 1.086(0.0012) 1.061(0.0019) 16-2-0

Hurink-edata 66 1.247 1.241 1.070(0.0009) 1.048(0.0014) 50-15-1

Hurink-rdata 66 1.271 1.292 1.123(0.0012) 1.062(0.0014) 64-2-0

Hurink-vdata 66 1.312 1.324 1.215(0.0005) 1.019(0.0008) 64-2-0

From Table 5, it is obvious that both SeqGP and CCGP dramatically out-
performed the manually designed rules (FCFS and SPT). In addition, CCGP
performed much better than SeqGP. Overall, FCFS and SPT obtained solutions
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which are 25%–50% worse than the lower bound. SeqGP obtained solutions that
are 7%–23% worse than the lower bound. All the solutions obtained by CCGP
are less than 7% worse than the lower bound. The most obvious advantage of
CCGP over SeqGP occurred on the Brandimarte and Hurink-vdata datasets,
which have reasonable large problem sizes and flexibility.

More specifically, CCGP statistically significantly outperformed SeqGP on
most static instances (e.g. 64 out of 66 of the Hurink-rdata and Hurink-vdata
instances). CCGP was defeated by SeqGP on only one Hurink-edata instance
out of the total 247 static instances. This clearly demonstrates the advantage of
CCGP over SeqGP on solving static FJSS instances.

Figure 1 shows the convergence curves of SeqGP and CCGP on three repre-
sentative instances (the ribbon is the standard deviation over the 30 runs), on
which CCGP performed significantly better than, worse than, and comparable
with SeqGP. All the other instances showed similar patterns. From the figure,
it is clear that CCGP started from a much higher makespan due to the ran-
dom initial routing rule. Then, it converged very fast, and achieved local optima
within 20 generations.

Fig. 1. The convergence curves of the makespan of the 30 runs of SeqGP and CCGP.

Finally, CCGP can obtain solutions that are less than 7% worse than the
lower bound, which can be seen as a promising optimisation performance for
static FJSS instances.

5.3 Generalisation Performance on Dynamic Instances

The experiments in the dynamic environment is to examine the generalisation
performance of SeqGP and CCGP. We consider 2 utilisation levels (0.85 and
0.95) and 3 objectives in the dynamic environment. Specifically, we consider
minimising (1) mean flowtime (Fmean), (2) max flowtime (Fmax) and (3) mean
weighted flowtime (MWF). This results in 3 × 2 = 6 scenarios. For each scenario,
SeqGP and CCGP were run 30 times independently over a training set. The
training set consists of a single dynamic FJSS simulation. To improve gener-
alisation, the random seed for generating the training simulation changes per



GPHH with Cooperative Coevolution for Dynamic FJSS 317

generation. After the training process, the best rule of the last generation is
then tested on an unseen test set to evaluate its test performance. The test set
consists of 50 dynamic simulations using the same configurations as the training
set, but different random seeds.

For the dynamic simulations, the lower bound objective values are unknown.
Therefore, the normalisation is with respect to the objective value obtained by
a benchmark dispatching rule (routing plus sequencing rules). Here, the bench-
mark routing rule is fixed to LWQ for all the scenarios. The benchmark sequenc-
ing rule is specified depending on the scenario. Based on our preliminary work
[20], we set the benchmark sequencing rule to FCFS for the scenarios minimising
Fmax, to SPT for the scenarios minimising Fmean, and to WSPT for the scenarios
minimising MWF.

Figure 2 shows the convergence curves of the test fitness obtained by SeqGP
and CCGP over the 6 dynamic scenarios. From the figure, it is obvious that
CCGP significantly outperformed SeqGP in all the 6 scenarios. The Wilcoxon
rank sum test with significance level of 0.05 also confirmed the significance. The
convergence curves of CCGP are almost always below the curves of SeqGP. For
the scenarios minimising Fmean and MWF, CCGP successfully initialised much
more effective routing rules even from the first generation.

Fig. 2. The convergence curves of the test fitness obtained by SeqGP and CCGP.

Figure 3 shows the convergence curves of the size of the sequencing rules
obtained by SeqGP and CCGP. It can be seen that the two algorithms have
similar convergence curves in terms of sequencing rule size, i.e. evolving routing
rules does not seem to make the sequencing rule simpler or more complex.
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Fig. 3. The convergence curves of the sequencing rule size obtained by SeqGP and
CCGP.

In order to show the generalisation of SeqGP and CCGP, Fig. 4 shows the
training fitness versus test fitness scatter plot based on the 30 final results of
SeqGP and CCGP. From the figure, it is clear that both the training and test
fitnesses of CCGP were much better than that of SeqGP. The generalisation
of both algorithms are similar in terms of the correlation between training and
test fitnesses. The generalisation of CCGP is poorer for the scenarios minimising
Fmax than other scenarios. This may be because Fmax is a maximum function,
which is not so smooth as the other objectives which are based on average as
the sample size grows. Overall, the generalisation of CCGP is promising, as the
test fitness is very consistent with the training fitness. On the other hand, one
can see that for the dynamic scenarios with Fmean and MWF and low utilisation
level (0.85), the pre-specified routing rule restricted the search space too much
so that the evolved sequencing rules perform almost the same as the benchmark
sequencing rules in both training and test instances.

5.4 Rule Analysis

Equation 1 shows an example routing rule evolved by CCGP for the scenario
〈MWF, 0.95〉.

min{NIQ × PT,WIQ} +
W

MWT × PT
− min{MWT × W,NIQ × NOR}. (1)

It mainly consists of three components. The first component min{NIQ ×
PT,WIQ} is similar to WIQ, i.e. the number of operations in queue times
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Fig. 4. The training fitness versus test fitness scatter plot based on the 30 final results
of SeqGP and CCGP.

the processing time of an operation is similar to the total processing time in
queue. The second and third terms show that the routing rule prefers machines
with larger MWT, i.e. the earliest available machine (MWT = current time −
machine ready time). This preference is more obvious if the current job has a
larger weight. That is, the routing rule tries to finish the more important jobs as
early as possible. In summary, CCGP can automatically evolve routing rules that
contain sensible patterns consistent with intuition for making routing decisions.

6 Conclusions and Future Work

This paper is the very first piece of work to co-evolving routing and sequencing
rules simultaneously for dynamic FJSS, and significantly extends the previous
work on both static and dynamic FJSS. Through comprehensive experiments,
we had several interesting findings. First, we found that the commonly used
pre-specified routing rule is not the best one for static FJSS. We found a bet-
ter routing rule, which is LWQ (least work in queue). Then, we developed the
GPHH with the routing rule fixed to LWQ (named SeqGP), and the Cooperative
Co-evolution GP (CCGP) that co-evolves the routing and sequencing rules simul-
taneously. The results show that CCGP performed much better than SeqGP in
both static and dynamic scenarios. This demonstrates that the routing rules
evolved by CCGP are much better than the rules that are manually designed
and fixed in SeqGP. In other words, there is a great potential to find much more
effective routing rules for FJSS, especially in the dynamic environment.

In the future, we will focus on further improving the effectiveness of CCGP. In
this paper, only a baseline CC framework is adopted. We will consider incorpo-
rating other domain specific strategies such as feature selection and construction
to improve the effectiveness and efficiency of the GP search.
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