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Abstract. Developing robotic systems that can evolve in real-time and
real-space is a long term objective with technological as well as algorith-
mic milestones on the road. Technological prerequisites include advanced
3D-printing, automated assembly, and robust sensors and actuators. The
necessary evolutionary mechanisms need not wait for these, they can be
developed and investigated in simulations. In this paper, we present a
system to simulate online evolution of constructible robots, where (1) the
population members (robots) concurrently exist and evolve their mor-
phologies and controllers, (2) all robots can be physically constructed.
Experiments with this simulator provide us with insights into differences
of using online and offline evolutionary setups.

Keywords: Evolutionary algorithms · Reality gap · Online learning
Offline learning · Modular robots

1 Introduction

The motivation for this paper comes from the vision of the Evolution of Things
described by Eiben and Smith [1]. In particular, the interest is in physical robots
that “can evolve in real time and real space” [2]. The ultimate system of our
interest consists of robots with evolvable bodies and brains that ‘live and work’
concurrently in the same physical environment. However, the current technology
lacks essential components to this end, in particular, the mechanisms that enable
that robots to reproduce, i.e., ‘have children’. This technology is being developed,
but in the meanwhile, simulators can be of great value as they allow us to
study various system setups and generate scientific insights as well as know-how
regarding the working of physically evolving robotic systems.

Looking into existing work on evolvable morphologies we can note a large
variety of approaches. Yet, there are two important limitations shared by most
of them. First, evolution is executed in an offline fashion, that is, through a
(centralised) evolutionary algorithm that runs the standard EA loop and only
calls the simulator to establish the fitness of a new genotype. Such fitness evalu-
ations typically happen in isolation: the phenotype, i.e., the robot, that belongs
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to the given genotype is placed and evaluated in an environment without other
robots present. This is in contrast to our vision with genuinely embodied online
evolution, where all population members concurrently operate in the same envi-
ronment. An important question is whether the differences between online and
offline evolution are purely procedural or do the two types of systems exhibit
different behaviour. To answer this question experimentally we would need a
simulator that can be configured for both types of evolution keeping all other
system properties identical.

Second, the robots in most of the existing simulations are not constructible.
Certainly, this is not limiting for fundamental studies but the long-term goal of
constructing a system of physical robots that can evolve in real time and real
space implies a need for a simulator with a hi-fidelity model of real robots with
an evolvable morphology.

In summary, current systems and the investigations performed with them
suffer from either or both of these limitations and are less realistic that we would
prefer. To this end, we present a new simulator with a unique combination of
features that supports experimental research that cannot be done with existing
systems. In particular,

1. All robots are physically constructible by assembling off-the-shelf components
(e.g., servo motors, LED lights) and 3D-printed body parts.

2. Robots have evolvable morphologies and controllers. Both the physical and
the mental makeup are encoded by genotypes that can be mutated and recom-
bined. The phenotype space and the corresponding genetic code is based on
RoboGen [3].

3. Evolution is carried out in an online, embodied fashion. Robots populate an
environment simultaneously and selection and reproduction are determined
by the (inter)actions of the robots and the environment. Thus, evolution is
induced ‘from inside’, robots are not just isolated candidate solutions in some
traditional genetic algorithm.

An important feature of this simulator is that it can be used in a traditional
offline mode as well. Thus, it allows us to answer the research question: what are
the main differences between online and offline evolution and how do these affect
the dynamics of the evolving robot population? For this purpose, we specify three
scenarios, one with offline evolution, one with online evolution, and a combined
form and compare the emerging dynamics.

The rest of this paper is organised as follows. In Sect. 2 we briefly review the
most relevant existing works. The details of the Revolve simulator are presented
in Sect. 3. Section 4 describes the robots, followed by the outlines of the evolu-
tionary system in Sect. 5 and the three scenarios in Sect. 6. The experimental
results are presented in Sect. 7.

2 Related Work

Current technology limitations confine studies on evolving morphologies to soft-
ware simulations. Although works based purely on simulation fall outside the
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present overview, the classic experiments of Sims deserve to be mentioned [4].
This system works through a traditional EA that evaluates virtual creatures
one by one in a simulator, assessed by different locomotion skills, such as walk-
ing, hopping, swimming, and for the task of fighting over a block in between
two organisms.1 The virtual organisms are modular, consisting of blocks of dif-
ferent sizes which are connected through actuators driven by neural network
controllers. A couple of other papers follow a similar approach: they evolve arti-
ficial organisms and their control structures in simulation using evolutionary
algorithms [5–7]. These creatures are not very realistic, they cannot be directly
manufactured in real hardware. The evolutionary systems are not natural either
(centralised, offline), but the papers demonstrate the concept of morphology
evolution.

The work of Auerbach and Bongard is especially interesting because it casts
morphological evolution in a broader context of the body-mind-environment tri-
chotomy [5]. In particular, they study the relation between morphological, neu-
ral, and environmental complexity in an evolutionary system. They use a simple
and a complex environment and evolve robots that comprise triangular meshes
and are driven by neural controllers. Comparing the evolution of morphological
complexity in different environments they find that “When no cost was placed on
morphological complexity, no significant difference in morphological complexities
between the two sets of robots evolved. However, when the robots were evolved
in both environments again, and a cost was placed on complexity, robots in
the simple environment were simpler than the robots evolved in the complex
environment” (quote from [8]).

An interesting cluster of papers gets closer to reality by using simulations for
evolving morphologies and constructing the end result. Lipson and Pollak used
an EA and a simulator to evolve robotic organisms that consisted of bars and
actuators (but no sensors) driven by a neural net for the task of locomoting over
an infinite horizontal plane [9].

Perhaps the most interesting work in this cluster of papers is the recently
developed RoboGen system [3]. RoboGen works with modular robots encoded
by artificial genomes that specify the morphology and the controller of a robot, a
simulator that can simulate the behaviour of one single robot in a given environ-
ment, and a classic evolutionary algorithm that calls the simulator for each fitness
evaluation. The system is used to evolve robots in simulation and the evolved
robots can be easily constructed by 3D-printing and manually assembling their
components. RoboGen was not meant and is not being used for physical robot
evolution, but it could be the starting point for such a system after a number of
extensions (e.g., crossover for both morphologies and controllers).

2.1 Reality Gap

A notorious problem in evolutionary robotics is the reality gap first mentioned by
Jakobi et al. [10], referring to the behavioural differences between simulated sys-

1 http://www.karlsims.com/evolved-virtual-creatures.html.

http://www.karlsims.com/evolved-virtual-creatures.html


690 E. Hupkes et al.

tems and their real physical counterparts. While a simplification, rounding and
numerical instability lead to differences whenever computer models are involved,
this effect is amplified in evolutionary systems. The reason for this is that evo-
lution, as previously noted, will often solve its set challenges with unexpected
solutions. While this is generally a favourable property, it also means that the
process may eventually ‘exploit’ whatever modelling errors or instabilities are
present, arriving at a solution that is valid only in the context of the simulation.
Aside from careful calibration of the behaviour of the simulator, the simplest and
therefore most commonly used approach to counter this problem is to add noise
to a virtual robot’s sensors and actuators. While straightforward, this greatly
increases the number of sensory representations of otherwise similar or identical
states, slowing down the evolutionary process. More complicated approaches
may involve alternating fitness evaluations between simulation and reality
[11–14], but this is infeasible when simulating entire artificial ecosystems. Cross-
ing the reality gap is by no means a solved problem and as always one should
be cautious drawing definitive conclusions from a model.

3 The Simulator

The main design decision when conceiving Revolve was a choice between either
(a) building on top of a dynamics engine directly, (b) modifying the code of
an existing research project or (c) using a simulation platform. Out of these
(b) and (c) are more viable options because they take away a large part of
the bootstrapping process, and in addition, ensure improvements and fixes to
the underlying infrastructure regardless of the development of the toolkit. The
important factor for making the final decision was the ability of any of the
possible options to integrate C++ libraries into its environment. The importance
of using these native libraries lays behind the idea to recreate all simulated robots
in hardware with Raspberry Pi as a controller.

Investigations were performed with the NASA Tensegrity and RoboGen
source codes [3,15], running benchmarks and trying to realise simple artifi-
cial ecosystems using the existing code base. There was a particular focus on
RoboGen as an attractive candidate for a proof of concept, given that its robot
body space is easily constructed using 3D printing, and is subject to an ongoing
real-life calibration process. During the setup of simple scenarios, however, it
was found that the RoboGen software suite was too much tailored to its serial,
offline evolution to be conveniently re-factored to the new use case. In addition,
all code would have to be written in the C++ language, which provides high
performance at the expense of being verbose and sometimes tedious to develop.
While the choice for the RoboGen body space as a proof of concept remained,
the decision was made to build the Revolve Toolkit on top of a general purpose
simulation platform instead. The decision was made based on the fact that it
appeared to be much easier to develop a simulation platform for a specific need
on top of a flexible system than to modify any of existing solutions.
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Out of the considered simulation platforms (Webots2, MORSE3, V-REP4,
Gazebo5), only Webots was discarded beforehand because it is a commercial and
closed-source platform, and constraints in Webots limited the number of indi-
viduals that could be simulated, regardless of performance. MORSE appeared
to be a suitable candidate but lacked the ability for high-performance C++
integration that Gazebo and V-REP provided, as well as the lack a choice of
physics engines. A comparative analysis of the last two remaining platforms was
conducted [16], ruling in favour of V-REP by a slight margin. However, a much
older version (2.2) of Gazebo was used than was available, even at the time the
paper was written. Additionally, the methodology compares CPU usage rather
than simulation work performed over time. Considering all points, the bottom
line is that V-REP and Gazebo are very similar platforms in terms of features.
The eventual choice for Gazebo is motivated by its non-commercial nature, its
large online community and the XML format it uses to describe models, which
simplifies creating dynamic robot morphologies from external applications. That
being said, V-REP would likely also have been very suitable as a platform. While
Revolve has been written with Gazebo in mind, large parts are simulator agnos-
tic and could potentially be used for creating a similar platform for use with
V-REP. Following paragraphs will describe system parts in details.

Revolve. 6The Robot Evolve toolkit is a set of Python and C++ libraries cre-
ated to aid in setting up simulation experiments involving robots with evolvable
bodies and/or minds. It builds on top of Gazebo, complementing this simulator
with a set of tools that aim to provide a convenient way to set up such experi-
ments. Revolve’s philosophy is to make the development of simulation scenarios
as easy as possible while maintaining the performance required to simulate large
and complex environments. In general this means that performance critical parts
(e.g. robot controllers and parts relating to physics simulation) are written in the
C++ language, which is highly performant but can be tedious to write, whereas
less performance-focused parts (such as world management and the specification
of robots) are written in the slower yet more development-friendly Python lan-
guage. The bulk of the logic of a simulation setup commonly falls in the latter
category, which means the experimenter will be able to implement most things
quickly in a convenient language.

Gazebo. An open source, multi-platform robotic simulation package that is
available free of charge. It provides both physics simulation and visualisation
of rigid body robotic structures and their environments. Abstraction wrappers
are provided for several well-established physics simulation engines: The Open
Dynamics Engine (ODE), Bullet Physics, SimBody, the Dynamic Animation and
Robotics Toolkit (DART), Having these abstractions available means that the
2 https://www.cyberbotics.com/.
3 https://www.openrobots.org/wiki/morse.
4 http://www.v-rep.eu/.
5 http://gazebosim.org/.
6 http://www.github.com/ci-group/revolve.
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same simulation can, in theory, be run using any of these physics engines by
changing a single parameter - the caveat being that subtle differences between
these engines often require additional parameter tuning to get a stable simula-
tion.

In order to describe robots and environments, Gazebo uses the Simulation
Description Format (SDF)7, which allows an end user to specify anything from
the texture of the terrain to the physical and visual properties of robots in
an XML-based format. Because XML can be cumbersome to write for human
beings, the sdf-builder8 Python package was developed concurrently with
Revolve to provide a thin, structured wrapper over this format that aids with
positioning and alignment of geometries, and calculation of their physical prop-
erties.

What makes Gazebo particularly useful is the means by which it allows
programmatic access to observing and modifying the simulation. It provides
two main interfaces to do this and Revolve makes use of both:

– A messaging API. Gazebo comes bundled with a publisher/subscriber mes-
saging system, in which any component can subscribe to and/or publish on
so-called topics. Many aspects of the system can be controlled using these
messages, which are specified in Google’s Protocol Buffers (Protobuf) for-
mat. Because this communication happens over TCP sockets, access to this
interface is quite straightforward in most programming languages.

– The plugin infrastructure. It is possible to load shared libraries as a plugin
for several types of Gazebo components, providing programmatic access to
the simulation using Gazebo’s C++ API. As an example, one can specify a
certain piece of compiled C++ code to be loaded with every robot that is
inserted into the world.

Revolve Libraries. At the heart of Revolve lie a set of general purpose tools,
which can be roughly separated into Python components and Gazebo C++
plug-in components. A certain layering is present in the provided tools, ranging
from anything from closely related to the specification to more practical tools
that can be used to quickly implement an actual experiment.

Revolve Angle. Alongside the modules to create a wide variety of experimental
setups described in the previous sections, Revolve includes a more opinionated
module called revolve.angle, implementing a specific subset of all possible
experimental setups. Its function is twofold, in that (a) it allows for setting up
any experiment matching these setup descriptions rapidly, and (b) it serves as
an example of how to use Revolve. It implements the following functionality:
(a) a genome including both a robot’s body and brain, (b) a conversion from
this genome to a usable SDF robot, (c) evolutionary operators functioning on
this genome: crossover and mutation, and (d) the entire RoboGen body space
is included as Revolve components, though its use is optional and other body
parts may just as well be used with the genome.
7 http://sdformat.org/.
8 https://github.com/ci-group/sdf-builder.

http://sdformat.org/
https://github.com/ci-group/sdf-builder
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Gazebo plugins. In order to actually control a robot in simulation, Gazebo has to
be told what sensor values to read, what joints to control, etc. While it is possible
in principle to provide most of these functionalities through the messaging API,
when it comes to controlling a robot the code is closely related to the simulation,
runs often and is, therefore, more apt to be considered as a high-performance
aspect to be written in C++. Revolve supplies a base robot controller plugin to
deal with this aspect of the simulation setup. When the SDF contents of a robot
are produced for simulation, a reference to this plugin is included alongside
information about its sensors, actuators and brain. Gazebo supports many types
of sensors, all of which are accessed in a different fashion. Revolve wraps around
a number of often used sensors and unifies them in a generic interface passed to
the robot controller. The same holds for actuators, which control the joints of
robots in the simulation. Rather than having to specify the forces that operate
on these joints, Revolve allows setting either a position or velocity target which,
combined with a predefined maximum torque, resembles the interface of a real-
world servo motor.

In addition to the robot controller, Revolve also includes a world controller
plugin, which should be included with each loaded simulation world. While using
this plugin is not strictly necessary, it includes some convenient functionality to
insert robots into the world, keep track of their position and remove them. Over-
all, Revolve system is a simulation toolkit designed specifically for the purpose
to study embodied co-evolution, specifically described in [2]. However, having in
mind that it is based on highly flexible Gazebo simulator, it can be also used for
a research related to specific parts of the system, e.g.individual learning, group
learning, island model evolution.

4 The Robots

The robot design in our system is based on the RoboGen framework9. RoboGen
robots are designed to be evolvable and easily manufacturable from a pre-defined
set of 3D printable components (some of which are parametrisable) coupled with
off the shelf electronic elements. The following paragraphs describe the possible
components in detail.

The Phenotype of Morphologies. The robots used in this work are built out of
seven possible component types, which can connect to each other at specified
attachment slots.

1. Each RoboGen robot contains at a minimum a core component that houses
a battery and a microcontroller, with an onboard 6-dimensional inertial mea-
surement unit (IMU) composed of an accelerometer and a gyroscope. This
component has four attachment slots: apart from the top and bottom faces,
it is possible to attach other components to every side. It is slightly larger
than other components so it could contain any needed electronics if the robot
would be recreated in real-space.

9 http://robogen.org.

http://robogen.org
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2. The fixed brick has the smaller dimensions than the core component, and
it does not contain any electronics or sensors. In addition, other components
can be attached to its four faces.

3. The parametric bar joint is a connection element with parametrised length
and connection angle. It has two attachment slots, one at either end.

4. The active hinge is a simple hinge joint powered by a servo motor. Each
active hinge adds one actuated degree of freedom to the robot: this DOF is
controlled by a single value per time step, which defines a desired angular
position between −45 and 45 degrees. Like the parametric bar joint, it has
two attachment slots.

5. The passive hinge is similar to the active hinge, but as the name suggests
the passive hinge is not powered by a servo but rather can move freely. It,
therefore, adds one un-actuated DOF to the robot. It also has two attachment
slots.

6. The touch sensor, which contains two binary inputs. Each input represents
whether or not one half of the sensor is in contact with another object. Like
the light sensor, the touch sensor has a single attachment slot.

Each of these components is defined by two-part model: a detailed mesh
suitable for visualisation and 3D-printing and a set of geometric primitives that
define the components’ mass distribution and a contact surface. As described
above, each model also defines the number and placement of possible attachment
slots, as well as the inputs (sensors) and outputs (motors) contained within
it. Each input i is defined as a single numerical value. If a sensor outputs more
than one value (as is this case with the IMU and the touch sensor) then this
results in multiple defined inputs. Similarly, each output o is defined by a single
value.

The Phenotype of Controllers. Each robot is controlled by a neural network that
receives inputs from the robot’s sensors and provides output to the robot’s actu-
ators. In this way, there is a one-to-one correspondence between a morphology’s
inputs and its controller’s input neurons as well as between a morphology’s out-
puts and its controller’s output neurons. The neural network can also contain
hidden units.

The neurons in the hidden and output layers of a robot’s neural network
may have one of three activation functions. The first two–linear and sigmoid–are
common neural network activations whose parameter set consists of bias and
gain values. The third possible type is an oscillator neuron, whose value depends
not on its input values but rather is a sinusoid depending only on the current
time. The three parameters for this neuron type are the oscillator’s period, phase
offset and amplitude. This neuron type was added to accommodate the needs of
simplifying the experiment while still producing proper locomotion patterns.

The Genotype of Morphologies. Robots are genetically encoded by a tree-based
representation where each node represents one building block of the robot and
edges between nodes represent physical connections between pieces. Each node
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contains information about the type of the component it represents, its name,
orientation, possible parametric values, and its colour. The colour parameter is
included to allow handily tracking of which body parts originate from which
parent. Each edge also defines which of the parent node’s available attachment
slots the child will attach to.

Construction of a robot from this representation begins with the root node,
defined to always represent the requisite core component. The robot body is then
constructed by traversing the tree edges and attaching the components repre-
sented by child nodes to the current component at the specified slot positions
and orientations.

The Genotype of Controllers. The tree representation describing a robot’s mor-
phology also describes its controller. Based on a unique identifier and a type of
each module, input and output neurons are defined. Subsequently, neurons in a
hidden layer are added and connections between layers. The detailed description
of how genotypes of morphologies and controllers are recombined are described
in Sect. 5.2.

5 Evolutionary System

5.1 System Architecture: The Triangle of Life

The proverbial Cycle of Life revolves around birth and so does a system of self-
reproducing robots. To capture the relevant components of such a robotic life
cycle we need a loop that does not run from birth to death, but from conception
(being conceived) to conception (conceiving one or more children). A conceptual
framework for such an ecosystem in which physical robots actually reproduce
was proposed in [2].

This framework, called the Triangle of Life, represents an overall system
architecture with three main components or stages. This system is generic, the
only significant assumption we maintain is the genotype-phenotype dichotomy.
That is, we presume that the robotic organisms as observed ‘in the wild’ are the
phenotypes encoded by their genotypes. As part of this assumption, we postu-
late that reproduction takes place at the genotypic level. This means that the
evolutionary operator’s mutation and crossover are applied to the genotypes (to
the code) and not to the phenotypes (to the robotic organisms). The first stage
in the ToL is the creation of a new robotic organism in a so-called Production
Center [19]. This stage starts with a new piece of genetic code that is created by
mutating or recombining existing pieces of code (of the robot parents) and ends
with the delivery of a new robot. The second stage takes place in a Training
Center; it starts when the morphogenesis of a new robot organism is completed
and ends when this organism acquires the skills necessary for living in the given
world and becomes capable of conceiving offspring. The third stage in the Tri-
angle is the period of maturity. It starts when the organism in question becomes
fertile and leads to a new Triangle when this organism conceives a child, i.e.,
produces a new genome through recombination and/or mutation.
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Fig. 1. Robotic life cycle captured as a triangle after [2]. The pivotal moments that
span the triangle are: (1) Conception: A new genome is activated, construction of new
robot starts. (2) Delivery: Construction of the new robot is completed. (3) Fertility:
The robot becomes ready to conceive offspring.

Figure 1 exhibits the stages of the Triangle of Life. Similarly to the general
EA scheme that does not specify the representation of candidate solutions, the
ToL does not make assumptions regarding the makeup of the robots.

5.2 Evolutionary Operators

Two parent robots can produce offspring through several reproduction operators
on their genotype trees. This section discusses these operations in the order in
which they are applied to create a child robot c from parents a and b. In the
first step, a node ac from a is randomly chosen to be the crossover point. A
random node bc from b is chosen to replace this node, with the condition that
doing so would not violate the restrictions as given in Table 1. If no such node
is available, evolution fails at this point and no offspring are produced. If such a
node is found, c1 is created by duplicating a and replacing the subtree specified
by ac with the subtree bc. With probability pswap subtree, a random node s1 is
chosen from c3. Another random node s2 is chosen provided it has no ancestral
relationship with s1 (i.e. it is not a parent or child of this node). If no such node
is available the step is again skipped, otherwise s1 and s2 are swapped in c3 to
produce c4. Again in order to keep robot complexity roughly the same, a new
part is added with a probability proportional to the number of parts that are
expected to have been removed by subtree removal, minus the number of parts
expected to have been added by subtree duplication. The new part is randomly
generated by both hidden neurons, neural connections and all parameters, and
attached to a random free slot on the tree to produce the final robot c. Again,
this step is skipped if adding a part would violate restrictions.

In general, selection operators in an EA do not depend on the given repre-
sentation and reproduction operators. Hence, the experimenter is free to use any
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standard mechanism without application-specific adjustments. For online evolu-
tion, this is slightly different. The main difference is the lack of synchronisation
between birth and death events. In an offline evolutionary process, these are
synchronised and the population size is typically kept constant. In online evolu-
tion birth and death events are triggered independently by (local) circumstances
and the populations can grow or shrink depending on the actual numbers. The
specific mechanism we use here is discussed in the next section.

6 Experimental Setup

The purpose of the experiments is to compare online and offline evolution in
a ToL-based system of robots with evolvable morphologies. By design, we will
perform pure evolutionary experiments without learning in the Infancy stage.
Thus, the controllers of the robots will not change during their lifetime and the
fertility test in node 3 of Fig. 1 is void: all individuals become mature/fertile 15 s
after birth, which is 3 s insertion time for when the robot is dropped into the
arena followed by 12 s evaluation time.

All experiments share a set of values for previously specified parameters,
which are specified in Table 1 and each run is repeated 30 times.

Table 1. Parameter values shared across all experiments

Parameter Description Value

|R|max Maximum number of nodes 30

|R|min Minimum number of nodes 3

omax Maximum number of outputs 10

imax Maximum number of inputs 10

hmax Maximum number of hidden neurons 10

μparts Mean of randomly generated parts N (μparts, σ
2
parts) 12

σparts Standard deviation of randomly generated parts 5

premove subtree Probability of removing subtree 0.05

pduplicate subtree Probability of duplicating subtree 0.1

pswap subtree Probability of swaping subtree 0.05

premove hidden neuron Probability of removing hidden neuron 0.05

premove neural connection Probability of removing neural connection 0.05

We consider three different experimental scenarios. The first two are offline
scenarios in which individuals are evaluated in isolation and a population consists
of distinguishable generations. What differentiates these two scenarios is the
parent selection method: in the first scenario 15 new individuals are produced
before further selection takes place, whereas in the second scenario selection
happens after each newly born robot. This method of parent selection is more
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akin to the online scenario in which robots coexist in the environment and are
continuously evaluated and selected.

The fitness function of a robot ρ is the same in all of these scenarios and
reads

f(ρ) = v + 5s, (1)

where v is the length of the path the robot has travelled over the last 12 s and
s is the straight distance that the robot has covered the point where it was 12 s
ago and the point where it is now (i.e. the length of a straight line between that
point and the current point).

The following table summarises the three simulation scenarios.

Scenario 1 Scenario 2 Scenario 3

Scenario type Offline Online

Environment Infinite flat plane

Evaluation One robot at a time for 12 s All active robots
simultaneously and
continuously in
12 s time frame

Population size Constant at 15 robots per generation 8 to 30 robotsa

Selection scheme (15 + 15)b (15 + 1)c A new robot every
15 s

Parent selection 4-tournament selection

Survivor selection Select the 15 fittest individuals Robots with a
fitness greater than
a 70% of the
population mean.d

Birth location On the ground at the origin Random position
within a radius of
2m from the origin

Stop criterion After 3000 birthse

aSee ‘Survivor selection’.
bEach generation of 15 robots produces 15 children before moving on to survivor
selection.
cEach generation of 15 robots produces 1 child before moving on to survivor
selection.
dA minimum of 8 robots is maintained to ensure variation and prevent extinction. If
the population reaches 30 individuals without any individuals matching the death
criterion, the 70% least fit robots in the population are killed regardless of their
fitness to prevent a simulation stall.
eIn scenario 1, 200 generations of 15 individuals.

Preceding the runs with these scenarios we have conducted two baseline
experiments, disabling reproduction and selection, respectively. The first one



Revolve: A Versatile Simulator for Online Robot Evolution 699

makes use of the fitness selection to determine which individuals survive while
disabling reproduction, thereby showing the speed at which a population would
increase its fitness if a selection is made out of an increasing random population.
The second baseline experiment, on the other hand, uses completely random
survivor selection, while enabling reproduction. Looking at the obtained fitness
values in these experiments serves as a simple sanity check to confirm that evo-
lution is really working, cf. Fig. 2(b).

7 Experimental Results

The fitness values of a final population are defined by the last generation of robots
in the offline experiments and all alive, mature robots in the online experiment.
These results are shown in Fig. 2b.

Fig. 2. Fitness values observed in each scenario aggregated over all 30 runs. The plots
in Fig. 2a use the number of born individuals on a time scale because it is uniform
across all scenarios. Error bars are omitted for clarity. Note that the experimental set-
ups guarantee a monotonically increasing function for the offline experiments, whereas
the non-constant fitness values in the online experiment lead to fluctuations.

The three experiments with both selection and reproduction show a signif-
icantly higher fitness than the baseline experiments, indicating that indeed we
have evolution at work in the system. Between offline scenarios 1 and 2, only
a slight difference in fitness is observed, with a more noticeable difference in
fitness variation. Scenario 3 shows a significantly lower fitness. We hypothesise
that this is caused by the fundamentally different ways of evaluating robots.
In scenarios 1 and 2 each (newborn) robot is evaluated once, while in scenario
3 robots undergo continuous evaluation. This reduces the possible artefacts of
getting lucky during the first and only evaluation. In other words, scenarios 1
and 2 allow for survival base on an optimistic estimate of a robots fitness, while
scenario 3 works with more realistic fitness values.
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Further to analysis, we are also interested in diversity to provide an ade-
quate picture. To provide an adequate picture, a heuristic measure is applied to
quantify the genetic diversity within robot populations at each time point. This
measure applies a Tree Edit Distance (TED) algorithm as described by Zhang
and Sasha [17] to the genetic trees of pairs of robots that are part of the same
population. The algorithm is applied to the following cost rules:

– Removing a node, adding a node or changing a node to a different type has
a cost of 1.

– Attaching a node to a different parent slot has a cost of 1.

Fig. 3. Genetic diversity in robot populations using Tree Edit Distance averaged over
all runs.

Note that differences between neural network contributions between nodes are
ignored in this measure because they are harder to quantify. The outcome of the
algorithm is included for both the final populations cf. Fig. 3b and as a progres-
sion during the experiments cf. Fig. 3a. This shows an initial rapid decline of diver-
sity in all scenarios, possibly as a result of ‘bad genes’ being eliminated. Diversity
decline then slows down, although it decreases faster in scenario 2 than in scenario
1. This makes sense as the populations that scenario 2 uses for reproduction are
very similar for each birth, which is expected to decrease variation. The same can
be said about scenario 3, but the same effect cannot be observed there, meaning
something is keeping diversity relatively high here.

8 Discussion and Conclusions

As shown in this paper, Revolve has proven its merit a a research tool, but
there are of course several possible improvements. First, the scenarios of Sect. 6
could be extended by making the controllers evolvable and/or adding learning
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capabilities to the robots. This will facilitate research into Lamarckian evolution,
where we already have nice initial results [21]. Adding a dedicated Production
Center, as in our previous work [18], is also a logical extension. In the meanwhile,
adding obstacles and different types of ground surfaces will make the system
more realistic. Hereby the software and hardware-based system development
will be more aligned [19,20].

Something to be wary of in this context is the ‘bootstrapping problem’, a
term used to describe the failure of a system to evolve into interesting dynamics
simply because there are no dynamics, to begin with. Robot learning could be
developed and integrated into Revolve as a potential solution to this problem.
This would enable robots to make more rapid and efficient use of any sensors they
have, which is expected to have an impact on the influence of robot interactions
and the environment in which they operate. Varying environmental properties
is also an interesting line of research, in conjunction with for instance evaluating
the robustness and adaptability of robots and robot populations.

The significance of this study is twofold. First, we presented a simulator for
studying online evolution of realistic robot morphologies and controllers. Second,
using this simulator we established that online and offline evolution are indeed
different. This implies that the current practice of relying on offline evolution
within evolutionary robotics has inherent limitations. To develop evolutionary
mechanisms towards the long term goal of real-world robot evolution we recom-
mend to use simulators that can handle online evolutionary systems.

Acknowledgement. The choice of modular robots used for this research is based on
the design of Josh Aurebach’s RoboGen project—a flexible and scalable modular robot
design.
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