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Abstract. Neuroevolution represents a growing research field in Arti-
ficial and Computational Intelligence. The adjustment of the network
weights and the topology is usually based on a single performance crite-
rion. Approaches that allow to consider several – potentially conflicting –
criteria are only rarely taken into account.

This paper develops a novel combination of the NeuroEvolution of
Augmenting Topologies (NEAT) algorithm with modern indicator-based
evolutionary multi-objective algorithms, which enables the evolution of
artificial neural networks for multi-objective tasks including a large num-
ber of objectives. Several combinations of evolutionary multi-objective
algorithms and NEAT are introduced and discussed. The focus lies on
variants with modern indicator-based selection since these are considered
as efficient methods for higher dimensional tasks. This paper presents
the first combination of these algorithms and NEAT. The experimental
analysis shows that the novel algorithms are very promising for multi-
objective Neuroevolution.
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1 Introduction

Reinforcement Learning (RL) is an important subdiscipline of Artificial Intelli-
gence. It represents a very active field in research [1] as well as in practical appli-
cations. Artificial neural networks, or short neural networks, are often applied in
the context of Reinforcement Learning. They act as controllers for the agents or
robots. Here, Neuroevolution plays an important role since it allows to learn the
structure and the weights of neural networks, see e.g. [2]. In many cases, however,
the intended behaviour does not only depend on a single criterion, e.g. to balance
two poles on a cart, but on multiple criteria, e.g. to balance two poles on a cart
and to use as little energy as possible. Most real world problems are based on mul-
tiple (possibly) conflicting objectives, which makes it necessary to develop neural
networks that consider all objectives, to make an algorithm applicable for practi-
cal issues. Today’s quasi-standard in Neuroevolution, Stanley’s NeuroEvolution of
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Augmenting topologies (NEAT) is able to evolve neural networks that are adapted
to only a single criterion of behaviour [2], which makes it not applicable for multi-
objective tasks without further knowledge and abstraction of the problem.

Research regarding this topic is sparse: Only a few papers could be identi-
fied. Schrum and Miikkulainen [3] were the first to consider a combination of neu-
ral networks and evolutionary multi-objective algorithms: They used NEAT and
NSGA-II1 for multi-objective Neuroevolution. Their algorithm uses a not fully
featured NEAT that operates with a modified version of NSGA-II [3]. In addi-
tion Schrum and Miikkulainen [5] introduced the Modular Multiobjective NEAT
(MM-NEAT) which evolves modular neural networks (each module describes
a behaviour) using NSGA-II and NEAT. The MM-NEAT uses all features
of NEAT’s framework in combination with the procedure of NSGA-II [5].
Van Willigen et al. [6] introduced the NEAT-PS, a combination of NEAT and
SPEA2. The Pareto Strength approach used in NEAT-PS computes a single fit-
ness value for all fitness functions and each individual. This makes it easy to apply
in the environment of the original NEAT [6].

We were unable to find approaches that consider the more recent evolutionary
multi-objective algorithms, which make use of quality indicators as the Hyper-
volume which allows a good approximation of the Pareto front combined with a
sufficient spread of the solutions even for many objectives.

In the first part of this paper, Sect. 2, we provide the foundations of multi-
objective optimization and evolutionary algorithms, additionally we give a brief
overview of the NEAT algorithm. In the second part, we introduce a novel exten-
sion of NEAT, called mNEAT, which is potentially able to evolve neural networks
for high-dimensional multi-objective tasks (Sect. 3). Furthermore, we present and
investigate novel combinations of NEAT and the SMS-EMOA/R2-EMOA for the
first time (Sect. 4). In Sect. 5 we define a multi-objective version of the Double
Pole Balancing problem and provide an experimental analysis of the new algo-
rithms. Finally, we give a summary and an outlook on future work in Sect. 6.

2 Foundations

This paper considers multi-objective optimization problems (MOPs) consisting
of K objectives fk : RN → R which have to be optimized although they may
be possibly conflicting [7, p. 8]. The term optimization may stand for the max-
imization or minimization of an objective function. In this paper, we focus on
minimization problems. MOPs are hard to solve, because in many cases the K
different objectives are conflicting. Here, evolutionary algorithms (EAs) are often
applied. They were developed to address tasks for which, for example, no effi-
cient algorithm is known or can be developed due to time constraints. Due to
the evolutionary approach, which mimics natural evolution, EAs have a broad
applicability with a relatively easy problem-specific adaptation. The field of evo-
lutionary algorithms is also referred to as Evolutionary Computing [8, p. 14].
1 An algorithm which addresses multi-objective optimization problems. See [4] for a

detailed description of the NSGA-II.
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2.1 Quality Indicators

To determine the quality of a solution in a MOP, multiple dimensions need to
be considered. Therefore, we introduce the Pareto Dominance:

Definition 1 (Pareto Dominance). [7, p. 11] A decision vector u =
(u1, . . . , un) dominates another decision vector v = (v1, . . . , vn), read as u ≺ v,
iff ∀k ∈ {1, . . . , K} : fk(u) ≤ fk(v) ∧ ∃k ∈ {1, . . . , K} : fk(u) < fk(v).

The goal in MOPs is to identify the set of non-dominated solutions. The con-
cept of Pareto Dominance represents a partial order. Therefore, decision vectors
may exist that are not comparable. To make the solutions of a set A comparable
in this case, quality indicators are necessary. They are defined as follows:

Definition 2 (Quality Indicator). [7, p. 251] Let A be a vector of H sets
A1, . . . , AH . An H-ary quality indicator is a function I : ΩH → R, which assigns
the vector A = (A1, . . . , AH) a real value I (A1, . . . , AH).

We state a set A has a higher quality than another set B, if A at least weakly
dominates B.2 If a quality indicator I assigns a value I(A) ≥ I(B) under the
condition that A 
 B (and vice versa), I is called Pareto Compliant [7, p. 253].

Fig. 1. Example for the quality indicators Nondominated Ranking (left), R2-Indicator
(center) and Hypervolume (right). Consider a two-dimensional MOP and a set A con-
sisting of ten individuals i1 to i10. The R2-Indicator and the Hypervolume do only
focus on i1 and i2 in this example. The reference point is denoted by z∗.

In the following, we provide a brief overview of three important quality
indicators in the context of this paper. Figure 1 gives an example for a set
A = {i1, . . . , i10} for each of the following quality indicators:

Nondominated Ranking. The Nondominated Ranking [4] orders the solutions
of a set A using the Pareto Dominance. Therefore all solutions are assigned into
ranks R1 to RH . Let 1 ≤ i < j ≤ H then ∀b ∈ Rj ∃a ∈ Ri : a ≺ b. Solutions of

2 See [7, Table 5.2, p. 244] for an overview of the dominance relations.
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equal rank are incomparable with respect to Pareto Dominance. In Fig. 1 the
individuals i1 and i2, which dominate all remaining individuals, are assigned
to R1. The individuals i3 to i6, which are dominated by i1 and i2 each, but
dominate the individuals i7 to i10, are assigned to R2 and so on.

R2-Indicator. The R2-Indicator is based on the standard weighted Tcheby-
cheff utility function, where z is a solution, z∗ an (ideal) reference point and
λ = {λ1, . . . , λK} ∈ Λ is a weight vector [9]:

u (z) = − max
i∈{1,...,K}

{λi |z∗
i − zi|} (1)

Λ is a set of (usually) uniformly distributed weight vectors over the weight
space [10]. The R2-Indicator returns the averaged sum of the minimum dis-
tances for all a ∈ A in any dimension for each weight vector λ ∈ Λ:

R2(A) = R2(A,Λ, z∗) =
1

|Λ|
∑

λ∈Λ

min
a∈A

{
max

i∈{1,...,k}
{λi |z∗

i − ai|}
}

(2)

A lower R2 value means that the set’s solutions are located closer to the
reference point. The contribution of a single solution a ∈ A to the R2 value
is computed by R2(A \ {a}) − R2(A) [10]. In Fig. 1 there are three weight
vectors w1 =

(
3
8 , 5

8

)
, w2 =

(
1
2 , 1

2

)
and w3 =

(
5
8 , 3

8

)
. Each assigns a certain

importance to each dimension. For each weight vector, the individual’s con-
tribution is increased, which is nearest to the reference point z∗ with respect
to the vector’s weights. The following individuals are selected: i1 for w2 and
i2 for w1 and w3. In the above case, considering only i1 and i2 their total R2
contribution is 0.062 respectively 0.007. Thus i1 is evaluated as better than
i2 concerning the R2-indicator.

Hypervolume. The Hypervolume (HV) defines the volume of the objective
space that is covered by the solutions of a set A and a reference point z∗. The
Hypervolume is defined as follows:

HV (A) = HV (A, z∗) =

{
⋃

a∈A

vol (a, z∗)

}
(3)

where vol(a, z∗) denotes the volume of the space bounded between a and z∗

[7, p. 260]. The larger the value of HV (A) the more space is covered by A,
hence the solutions in A are closer to the ideal point (in case that z∗ is the
nadir point, e.g. z∗ = (1, . . . , 1) for normalized minimization problems) [11].
The contribution of a single solution a ∈ A to the HV value (the space that
is only covered by a) is computed by HV (A) − HV (A \ {a}) [12]. In Fig. 1
the area, dominated exclusively by i1 or i2 is shaded in light gray. The dark
gray area is dominated by both individuals. In this example it is obvious that
the area exclusively dominated by i1 is larger than i2’s area, therefore i1 is
to prefer over i2 with respect to the dominated Hypervolume.
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2.2 Evolutionary Multi-objective Algorithms

To address MOPs, evolutionary multi-objective algorithms (EMOAs) can be
used. The class of EMOAs is also referred to as multi-objective evolutionary algo-
rithms, short MOEAs. Well-known examples include the NSGA-II [4] and the
SMS-EMOA [13]. Additionally, Trautmann et al. [14] introduced the R2-EMOA.
We have selected the SMS- and the R2-EMOA for further investigations, because
both have been shown to have a high performance while they do only require
the user to set the population size μ. The SMS-EMOA is able to deal with an
arbitrary large number of fitness functions K and uses two criteria for sorting
a population’s individuals: first all individuals are sorted into ranks using fast
nondominated sorting of the NSGA-II [4]. If the (worst) rank RH contains more
than one individual, the Hypervolume contribution of each individual in RH is
computed to make these individuals comparable (survivor selection). Note that
there exist different variants of SMS-EMOA using the Dominance count as pri-
mary selection criterion [13]. The R2-EMOA works similar to SMS-EMOA, the
only difference is that the R2-EMOA relies on the R2-Indicator as the secondary
criterion instead of the Hypervolume [14].

As already stated, both, the R2-EMOA and the SMS-EMOA will be con-
sidered to derive multi-objective variants of the NEAT approach. But first, the
next section provides the details of the original method.

2.3 NeuroEvolution of Augmenting Topologies

The NeuroEvolution of Augmenting Topologies algorithm (NEAT) was intro-
duced in [2]. It addresses the evolution of neural networks for performing single
objective tasks. Therefore it depends on a node based encoding, where neural net-
works are described by a list of links, which each contains information about the
connected nodes (or neurons) [2, p. 34f.]. NEAT relies on three basic principles:

Historical Markings. For the crossover of two networks, their structure has to
be considered. NEAT addresses this by tracking each structural mutation (new
link or neuron) with an Innovation ID. If a mutation occurs twice or more, it is
always assigned the same Innovation ID. Thereby two networks can be combined
without any structural analysis, the equal parts of two networks can be determined
by their Innovation IDs, likewise their unequal parts [2, pp. 36–38].

Speciation. To protect innovation, NEAT sorts the networks of a population
into niches of similar networks, called species. Thus networks do only have to
compete against the other members of their species, and may evolve a com-
petitive structure. Additionally it keeps the genomes as small as possible: As
long as the fitness of smaller networks is comparable to the fitness of other,
larger networks, the smaller networks remain in the population and thus are not
unnecessarily replaced by larger networks [2, pp. 38–40].

Complexification. Every network in NEAT starts with the same minimal
topology: each input neuron is directly connected to every output neuron
(with random link weights), there are no hidden neurons, only an optional bias
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neuron. By structural mutation the networks grow incrementally and only well
performing ones will survive. Thereby NEAT needs to search a minimal number
of weight dimensions and is able to find well performing networks very quickly,
additionally this prevents the networks’ structures from growing unnecessarily
large [2, p. 40f.].

NEAT is a powerful algorithm which is able to outperform other algorithms
for evolving neural networks like Cellular Encoding [15], Symbiotic Adaptive
Neuroevolution [16] and Enforced Subpopulations [17] in several experiments
[2, pp. 44–49]. As it has been shown, NEAT is capable to evolve neural networks
for single objective tasks, but how can Neuroevolution be used to address multi-
objective problems?

3 Multi-Objective NEAT: A First Approach

In the real world, there exist many tasks that are suitable to be controlled by
neural networks, but depend on more than one criterion. The NEAT approach
allows to evolve neural networks considering a single objective, but for problems
with more than one, NEAT has to fall back to using a weighted fitness function
(scalarisation). The drawback of weighted fitness functions is that the user has to
determine the weights a-priori and thus needs to know the importance of each
goal before optimization [8, p. 196]. To avoid this and other disadvantages of
scalarisation, we introduce a novel multi-objective version of NEAT, called Multi-
Objective NEAT (mNEAT) as the foundation of our research. The mNEAT is an
indicator-based algorithm and utilizes the R2-Indicator for quality assessment.
Its main procedures are described in the following.

3.1 Procedure of mNEAT

The novel approach starts with an initially random population Pt (for time
t = 0) consisting of μ minimal networks. The mNEAT is based on speciation.
Here, the user defines the target number of species and mNEAT automatically
adjusts the speciation threshold (the maximum difference of two networks of
same species) according to the networks’ difference. This step is executed at
the beginning of every epoch. Note that mNEAT provides a general selection
and sorting procedure, that is, the outer loop of an EMOA. It assumes that the
neural networks in the population (p ∈ Pt) have been evaluated and assigned a
fitness f(p) = (f1(p), . . . , fK(p)) before each epoch.

The networks in Pt are sorted depending on their R2 contribution with
respect to the population Pt. All networks are assigned to the corresponding
species s, which results in a set of species S. Already existing network-to-species
mappings are removed in advance. The first network assigned to a species is cho-
sen as its representative. After speciation, the fitness f(s) = (f1(s), . . . , fK(s))
of each species s ∈ S is computed (determined by the species’ members’ fit-
ness): The approach uses fitness sharing to keep species as small as possible
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and to maximize the diversity otherwise. Therefore, the species’ fitness is com-
puted by ∀k ∈ {1, . . . , K} : fk(s) =

∑
p∈s fk(p). When used for minimization

problems, large species are assigned a comparatively large fitness with respect
to smaller species. A large species has only then the chance to compete with
smaller species if it contains much better networks than the smaller species. In a
maximization problem, the fitness could be exponentiated with −1 for example
in order to penalize larger species. The species’ fitness is normalized between 0
and 1 for each fitness function, which makes the fitness functions comparable to
each other. Finally the R2 contribution of each species s ∈ S with respect to S
is computed: The number of solutions, offspring(s), the species s is allowed to
create, is proportional to its R2 contribution:

offspring(s) =
R2(s, S, Λ, z∗)∑
t∈S R2(t, S, Λ, z∗)

(μ − |S|) . (4)

Every epoch μ−|S| offspring networks are created by crossover and mutation.
Each species internally performs parent selection by using Stochastic Universal
Sampling3. The mNEAT approach employs the variation operators that were
defined in NEAT [2]. All newly created networks enter the next generation’s
population Pt+1. Additionally, the representative (i.e., best network) of each
species s ∈ S will be part of Pt+1. All other networks are discarded.

3.2 Variations of mNEAT

First experiments with mNEAT have shown that it is able to find good solu-
tions fast but that the final Pareto front is typically only sparsely populated by
good solutions because many of these are discarded during evolution. To improve
the performance of mNEAT, we introduced and investigated several variations:
(1) an archive of best individuals [7, p. 14], (2) using a steady state population
model [8, p. 80] and (3) reducing the replacement rate in each epoch (not dis-
carding all networks, except the species’ leaders, but preserving a part of the
other (mutated) networks for the next generation).

Our initial idea of the cooperation of these variations was as follows: The
archive (Variation 1) records the progress of the algorithm and keeps a list of
the best networks that have been found during the optimization. This allows the

3 Stochastic Universal Sampling (SUS) behaves similar to the Roulette Wheel Selec-
tion (RWS), where each individual gets assigned a hole on a one-armed roulette
wheel, the hole’s size depends on the individual’s fitness compared to all individuals’
fitness. The roulette wheel is spun once and an individual is selected then. SUS uses
an equally-spaced λ-armed roulette wheel to select λ different individuals at once
instead of spinning the wheel λ times. The better an individual’s fitness, the better
it’s chance to be selected as parent [8, p. 84]. Every individual (even the worst of
the population) has a nonzero chance of being selected [8, p. 81f.]. The advantage of
SUS over RWS is that a set of λ unique individuals can be selected at once. Using
RWS for selecting λ > 1 individuals would require λ executions and a mechanism to
avoid the same individual being selected twice.
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mNEAT to explore arbitrary new networks without losing the progress already
made. Using a steady state population model (Variation 2) results in always
taking over the best networks of Pt and the offspring into Pt+1. Without this
variation mNEAT would only keep the species’ representatives and discard any
other networks. By Variation 2, the mNEAT does not discard promising net-
works any more, only because their fitness is not at its maximum at timestep
t due to lack of evolution. Finally, the reduction of the replacement rate
(Variation 3) allows younger networks to evolve and maximize their fitness. By
doing so, less networks are newly generated but more existing networks are
mutated. Thus exploitation plays a bigger role instead of a pronounced utiliza-
tion of exploration [8, p. 41f.]. Preliminary experiments (Multi-objective Double
Pole Balancing experiment with all eight possible combinations of these varia-
tions) have shown that the Variations 2 and 3 do only have a small influence on
the algorithm’s performance. Using mNEAT only with Variation 1 (archive) pro-
vides the best results with respect to the Pareto front. This behaviour is caused
by the archive, which always saves the best known solutions and returns these
as the finally known Pareto Front. Due to space restrictions we do not provide
details concerning the experiment and its results in this paper. In future work
further variations of the mNEAT will be investigated to create an even better
performing algorithm.

4 NEAT as the Foundation of Evolutionary
Multi-objective Algorithms

We already provided a brief description of the two efficient evolutionary multi-
objective algorithms SMS-EMOA and R2-EMOA with indicator-based selection.
Since these algorithms are capable of optimizing solutions in multiple dimensions
simultaneously, they should be suitable for adapting the behaviour of neural net-
works. As both algorithms are designed as general frameworks and not specifi-
cally to work with neural networks, we introduce the following extensions, similar
to Schrum and Miikkulainen [3,5] and van Willigen et al. [6]:

For giving SMS- and R2-EMOA the ability to evolve neural networks, we
base them on the framework that NEAT provides: We use the same genetic
encoding of neural networks, the Innovation IDs and variation (crossover and
mutation) operators of NEAT and implement those for an SMS- and R2-EMOA.
Following this approach, we combine the power and efficiency of SMS-EMOA
and R2-EMOA for multi-objective optimization and NEAT for evolving neural
networks. This results in an algorithm Multi-Objective NEAT-Indicator Based,
short mNEAT-IB that is capable of evolving neural networks for multi-objective
tasks quite efficiently using different components for selection. Beside the selec-
tion mechanisms used in R2-EMOA and SMS-EMOA, we apply and investigate
two indicator (only) based as selection components. Table 1 gives an overview
over these variations and additionally provides information about their compu-
tationally complexities.
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Table 1. Variations of the mNEAT-IB using different combinations of sorting cri-
teria. K denotes the number of objectives and μ the population size. Λ defines the
set of weight vectors used for the R2-indicator. The computational complexities are
based on the following values: NDR: O

(
Kμ2

)
[4], HV (contribution of individual):

O
(
μ log μ + μ

K
2 +1

)
[11], R2 (contribution of individual): O (Kμ |Λ|) [18].

Sorting Computational complexity

Variation Primary Secondary Minimum Maximum

1 NDR HV O
(
Kμ2

)
O

(
Kμ2 + μ log μ + μ

K
2 +1

)

2 NDR R2 O
(
Kμ2

)
O

(
Kμ2 + Kμ |Λ|)

3 HV O
(
μ log μ + μ

K
2 +1

)

4 R2 O (Kμ |Λ|)

In the following, we provide the details of the novel neuroevolutionary app-
roach: The mNEAT-IB creates an initial population of μ minimal networks (with
randomized weights). The population is sorted by the first and, optionally sec-
ond sorting criterion. Then λ (instead of strictly one like in SMS-EMOA [13])
new networks are created by using NEAT’s variation operators which then are
added to Pt. The parameter λ needs to be defined by the user. A large number
of offspring λ may lead to a faster convergence of the population towards the
Pareto front. However, this may cause the algorithm to miss potentially good
networks by replacing them too quickly. For giving younger networks a chance
to evolve, mNEAT-IB provides a small fitness-boost to younger networks, while
it slightly penalizes the fitness of elder ones. The 2λ parents for crossover are
selected using Stochastic Universal Sampling from the sorted population Pt. The
resulting intermediate population has a size of μ + λ and has to be reduced by
λ networks. Because the λ new networks require fitness values before the reduc-
tion, the epoch ends here and the new networks are evaluated. At the beginning
of the next epoch the population Pt is sorted as described above. The worst λ
networks are removed from Pt which decreases its size to μ. The remainder are
already sorted and the mNEAT-IB continues with the selection of 2λ parents for
the next generation. The algorithm terminates if the stopping criterion is met.

Due to the exponential growth of the Hypervolume-computation’s runtime,
the R2-indicator is to be preferred for a larger number of objectives (K ≥ 4).
Its runtime heavily depends on the number of weight vectors applied. Here,
Brockhoff et al. [10] discuss the optimal number of weight vectors for K = 2.
Further investigations are necessary to give a suggestion for the case K > 2. We
use a default of 100 weight vectors for our experiments described in Sect. 5.

5 Experimental Analysis

To compare the performance of our novel algorithms and variations, we con-
ducted a series of experiments using a variant of the Double Pole Balancing
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problem. This section provides the experimental set-up and discusses the exper-
imental findings. First we introduce a multi-objective version of the Double Pole
Balancing problem before we describe the design of the experiments. The last
part of the section summarizes and discusses the results.

5.1 A Multi-objective Double Pole Balancing Problem

The Double Pole Balancing problem describes the following task: Given a cart
c with mass cm (= 1 kg) on which two poles p1 and p2 are mounted using a
hinge. Each pole p has a length pl (= 1 m/0.1 m) and a mass pm (= 0.1 kg /
0.01 kg). At time t = 0 both poles are poised, inclined in angles p1α

(= 0◦) and
p2α

(= 1◦). Left by themselves, the two poles would fall to the left or right
side over the time t. If one or both poles’ inclination exceeds a given maximum
angle γ (= 36◦), the experiment has failed and the time t is stopped. The cart
is positioned at the centre of a track with length L (= 4.8 m). The experiment’s
target is to keep the two poles balanced by moving the cart to left or right
without leaving the track for a given amount of time T (= 10.000 units). The
cart is controlled by a neural network which has to be evolved using our proposed
algorithms. The networks consider the following input parameters: The position
cpos and velocity cv of the cart and the angles and rates of fall of the poles
p1 and p2. The networks’ output is a value which determines the force that
affects the cart (direction and strength) in the next timestep. The Double Pole
Balancing problem was used by Stanley [2] for comparing the performance of
the single-criterion NEAT to other neuroevolutionary algorithms and ablations
of the original NEAT. It is an enhanced version of the Pole Balancing problem
[16] which became too simple to solve for modern algorithms to be a measure for
comparison [2]. The Double Pole Balancing problem is typically used to evaluate
the performance of algorithms for Reinforcement Learning.

We transform this problem into a multi-objective optimization problem
using the following fitness functions: (1) The first fitness function f1 describes
how long the controller x is capable of keeping the poles p1 and p2 balanced.
(2) Additionally the number of directional changes (per time unit) r of the cart
c is counted. The reason is that for each change of direction the cart has to be
slowed down to cv = 0 and then be accelerated in the other direction – this
consumes much more energy than the movement with constant speed [19]. This
results in the number of directional changes being proportional to the energy
consumption of the cart. (3) Finally the cart’s position cpos relative to the cen-
tre of the track L/2 is considered. Therefore the average distance per timestep
f3 is computed – a larger value of f3 means a greater distance that is covered by
the cart and that results in a higher energy consumption. Additionally this leads
to a lower distance to one end of the track, which increases the probability of the
cart to leave the track. We introduced f3 due to the fact that a controller can
achieve a good fitness value for f2 with the following behaviour: If the controller
moves the cart from the very left to the very right end of the track continuously,
the cart executes very few directional changes but always travels a distance of
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nearly L between each. This would increase the energy consumption and makes
f3 necessary.

The three fitness functions read as follows, where the parameter cpost

describes the position of the cart on the track at time t:

f1(x) = T − t ∀x ∈ Ω : 0 ≤ f1(x) ≤ T
f2(x) = r

t ∀x ∈ Ω : 0 ≤ f2(x) ≤ 1
f3(x) = 1

t

∑t
1

∣∣L
2 − cpost

∣∣ ∀x ∈ Ω : 0 ≤ f3(x) ≤ L
2

(5)

5.2 Experiments and Statistical Analysis

All algorithms under consideration have control parameters that strongly influ-
ence the performance. Therefore, we first conducted preliminary experiments
with a meta-EA in order to identify suitable parameter settings. The best were
investigated more closely in the context of the analysis described in this paper.
Due to space restrictions we do not show the configurations in this paper, but will
offer these in a technical report. We conduct two different types of experiments
which are repeated 120 times each:

Average Number of Evaluations. In this experiment we test an algorithm’s
ability to find a solution of predefined minimum fitness within a given amount
of maximum evaluated networks. For each repetition, we record the number of
evaluations needed to find an individual of desired fitness. At the end of the
experiment, we compare the average number of evaluations and the success
rate of each algorithm. Finally, we investigate the algorithms’ results for sta-
tistically significant differences.

Mean Fitness. The second experiment tests an algorithm’s ability to find a
“good” Pareto front. Therefore each algorithm will be executed for a prede-
fined number of evaluated networks with the final Pareto front (last generation
or archive) being stored. All solutions of all Fronts are combined (one Pareto
front per repetition) and used to compute the following quality indicators: ε,
Spacing, generational Distance, Inverted generational Distance, Inverted gen-
erational Distance Plus and Hypervolume. This gives us the ability to evaluate
the quality of the Pareto fronts that have been found by the algorithms. We
show the averaged results of each algorithm for each performance measure
and finally analyse the results for statistically significant differences.

For the statistical comparison of the algorithms (with the predefined con-
figuration) we use the procedure described by Calvo and Santafé [20] using the
R-library scmamp4. First we determine if there is a statistically significant differ-
ence between any two algorithms (Friedman-Test [21]). If a difference has been
ascertained we determine the pairwise difference between the algorithms (Fried-
man Aligned Ranks test [22]). The determined p-values are adjusted (Shaffer’s
algorithm [23]) and then evaluated.
4 R-library for comparing algorithms: https://cran.r-project.org/web/packages/

scmamp/index.html.

https://cran.r-project.org/web/packages/scmamp/index.html
https://cran.r-project.org/web/packages/scmamp/index.html
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Average Number of Evaluations. Table 2 shows the results of the Double
Pole Balancing experiment with velocities. We investigate the average number of
evaluated networks until an algorithm found a network x∗ for which f1(x∗) = 0,
f2(x∗) ≤ 1

20 and f3(x∗) ≤ 1
5 . This calls for a neural network that balances the

poles of the cart for at least T timesteps and performs a change of direction at
most every 20th timestep. Additionally it is not allowed to stay away from the
centre of the track more than 20 cm on average. We were looking for a safe and
energy-efficient controller for the cart.

Table 2. Number of evaluated networks until the algorithm found a network of the
desired fitness in the Double Pole Balancing experiment with velocities (Average Num-
ber of Evaluations) averaged over 120 repetitions. A repetition was not successful, if
no network x∗ has been found within 25,000 evaluated networks.

Algorithm Variation Mean +− Success rate

mNEAT Original 10,789 7,497 0.86

Archive 10,733 7,870 0.85

mNEAT-IB NDR + HV 14,150 8,295 0.7

NDR + R2 9,946 7,836 0.85

HV 11,180 9,537 0.72

R2 8,272 6,050 0.92

The results in Table 2 show that the mNEAT was able to find a suitable
network x∗ in 85% of all repetitions. Note that the mNEAT (without variation)
and the mNEAT with archive behave identical in this type of experiment5 –
this can be observed in both variants’ results, which are nearly equal in this
experiment. The mNEAT-IB (R2) shows the best results with respect to number
of evaluations (8,272) and success rate (92%). On the other hand the mNEAT-
IB (NDR + HV) evaluated 14,150 networks until it found a network x∗ and
thus performed worst (even statistically significant for α = 0.05). It has to be
investigated whether the quality indicators in mNEAT-IB (NDR + HV) are not
suitable for evolving neural networks or this variation has not been configured
properly by the meta-EA. To summarize, all algorithms were capable of finding
an energy efficient controller for the cart in at least 70% of all repetitions with
a maximal number of 25,000 evaluations. Most of the algorithms even exceeded
a success rate of 85%.

5 The only difference between the original mNEAT and the mNEAT with archive is
that the latter saves the best solutions ever found in an archive. Because the archive
is only kept as a “second population” and finally returned as Pareto front, there
is no difference in both variants’ behaviour in the Average Number of Evaluations
experiment.
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Table 3. Quality indicator values of the algorithms and variations using the previ-
ously determined parameter settings for the Double Pole Balancing experiment with
velocities (Mean Fitness). (first row = mean value, second row = standard deviation)

Algorithm Variation ε S GD IGD IGD+ HV

mNEAT Original 0.843 0.992 0.065 0.032 0.621 0.147

0.297 0.092 0.004 0.006 0.233 0.299

Archive 0.073 1.144 0.03 0.018 0.036 0.927

0.2 0.136 0.009 0.004 0.144 0.204

mNEAT-IB NDR + HV 0.59 1.018 0.083 0.031 0.437 0.408

0.474 0.08 0.032 0.008 0.352 0.474

NDR + R2 0.159 1.067 0.065 0.023 0.113 0.84

0.351 0.11 0.023 0.006 0.261 0.351

HV 0.477 1.024 0.086 0.029 0.352 0.522

0.483 0.085 0.033 0.008 0.359 0.484

R2 0.053 1.145 0.019 0.019 0.036 0.946

0.211 0.128 0.01 0.004 0.156 0.211

Mean Fitness. The results of the Double Pole Balancing experiment with
velocities (Mean Fitness) are shown in Table 3. We examined the commonly
used quality indicators ε (smallest amount ε that is necessary to translate one
set A into another set B) [24,25], Spacing (short S – the spread of the solutions
of a set A), generational Distance (short GD – the average distance from a
set A to the Pareto front) [25], Inverted generational Distance (short IGD –
the average distance from the Pareto front to a set A, Pareto Noncompliant),
Inverted generational Distance Plus (short IGD+ – the average distance from
the Pareto front to a set A, weakly Pareto Compliant) [26] and Hypervolume
[24,25]. See [7, pp. 256–262] for more details on ε, S, GD and [26] for IGD and
IGD+. The Hypervolume (HV) has been described in Sect. 2.1.

Table 3 shows that the mNEAT-IB (R2) achieves the best results in ε, GD,
IGD+ (beside mNEAT (Archive)) and HV and second best in IGD. The mNEAT
(Archive) performs best with respect to IGD and IGD+ and second best regard-
ing ε, GD and HV. To summarize the findings: All examined quality indicators,
except Spacing, are dominated by mNEAT-IB (R2) and mNEAT (Archive). Con-
cerning Spacing, the original mNEAT performs best, followed by mNEAT-IB
(NDR + HV), while these results are still not good at all: The solutions are
concentrated around the most promising areas of the objective space and not
spread equidistantly. The mNEAT performs worst regarding all quality indica-
tors, except Spacing (where the mNEAT-IB (R2) gives the worst results) and
GD (where the mNEAT-IB (HV) is worst). With respect to the quality indica-
tors shown in Table 3, we find that the mNEAT-IB (NDR + R2), the mNEAT-IB
(R2) and the mNEAT (Archive) show statistically significant better results than
the mNEAT-IB (NDR + HV), the mNEAT-IB (HV) and the mNEAT in many
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cases. This would indicate that this group were to be preferred for further inves-
tigations. In contrast, mNEAT shows best results in Spacing, which could be
caused by mNEAT’s behaviour to replace large parts of the population by new
individuals. We assume that mNEAT rather explores the objective space instead
of exploiting promising areas. It has to be investigated whether the differences
that have been observed between the algorithms and variations concerning the
quality indicators depend on the selected parameter settings or the problem
instance, therefore further experiments will be carried out in future research.

6 Conclusions and Future Work

This paper focused on multi-objective Neuroevolution. We followed two main
research directions both based on the well-known neuroevolutionary approach
NEAT which was designed for single-objective tasks. The first focused on devel-
oping multi-objective variants of NEAT itself. Here, we introduced a novel
indicator-based algorithm. The second direction considered the combination of
efficient evolutionary multi-objective algorithms developed for a large number of
objectives and NEAT. In this case, the multi-objective algorithms provide the
framework into which the main principles of NEAT are integrated. We derived
and tested four different variants. This is the first approach which uses these
modern multi-objective algorithms with indicator-based selection in the context
of Neuroevolution: Previous research utilized the SPEA2 with the original NEAT
(Pareto Strength approach is mapping K objectives into a single objective, mak-
ing it applicable to NEAT without any modifications) or the NSGA-II which is
not considered as performant when the number of objectives is relatively large.

All in all this paper is intended as a proof of concept showing that our algo-
rithms are suitable to address multi-objective Neuroevolution. The first exper-
imental results are very promising. Our experimental analysis shows that the
novel algorithms are capable of finding an energy efficient cart controller for a
multi-objective version of the well-known Double Pole Balancing problem within
very few evaluations. Concerning the Mean Fitness experiment which addresses
the quality of the final Pareto front, we find that all algorithms are capable of
evolving good controllers within a predefined number of maximum evaluations.
However, statistically significant differences between the algorithms exist. The
research will be continued in several directions. First of all, we are currently
investigating more difficult variants of the Pole Balancing problem.

Despite the promising first results, further experiments on truly high - dimen-
sional MOPs are necessary to test the algorithms ability of optimizing more than
three fitness functions. Currently we are investigating the FighTing Game AI
Competition [27], for which we apply our algorithms to create neural networks
as controllers for an AI player (with four and five objectives). Preliminary results
show that our algorithms are capable of beating already established AI oppo-
nents after very few evaluations.

To gain more insights concerning the algorithms’ behaviour, especially with
respect to robustness, we have to compare a larger number of different configura-
tions in future research. For exploring [8, p. 41f.] the search space of parameter
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configurations, we will follow the guidelines provided by the design and anal-
ysis of simulation experiments (DASE) [28]. Additionally the newly proposed
algorithms have to be compared to other existing algorithms like NEAT-PS or
MM-NEAT to assess their performance in comparison to these.

In the future, further areas as for example computer games or maze naviga-
tion will be considered in order to investigate the range of applicability of our
algorithms. This will provide insights regarding the question whether one and
then which of the novel algorithms/variations emerges as preferable in the area
of Reinforcement Learning. Additionally, further variations of the algorithms
should be investigated to create an even more powerful algorithm for multi-
objective Neuroevolution. Another interesting aspect to investigate is in how far
the parameters of the algorithms can be automatically configured by the algo-
rithms during execution. Reducing the number of parameters that have to be
predefined by the user reduces the complexity of the search space (for parameter
configurations) and on the other hand increases the usability of the algorithms.
Therefore, it represents an important point of future research.
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