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Abstract. Disease association studies aim at finding the genetic varia-
tions underlying complex human diseases in order to better understand
the etiology of the disease and to provide better diagnoses, treatment,
and even prevention. The non-linear interactions among multiple genetic
factors play an important role in finding those genetic variations, but
have not always been taken fully into account. This is due to the fact that
searching combinations of interacting genetic factors becomes inhibitive
as its complexity grows exponentially with the size of data. It is espe-
cially challenging for genome-wide association studies (GWAS) where
typically more than a million single-nucleotide polymorphisms (SNPs)
are under consideration. Dimensionality reduction is thus needed to allow
us to investigate only a subset of genetic attributes that most likely have
interaction effects. In this article, we conduct a comprehensive study by
examining six widely used feature selection methods in machine learning
for filtering interacting SNPs rather than the ones with strong individ-
ual main effects. Those six feature selection methods include chi-square,
logistic regression, odds ratio, and three Relief-based algorithms. By
applying all six feature selection methods to both a simulated and a real
GWAS datasets, we report that Relief-based methods perform the best
in filtering SNPs associated with a disease in terms of strong interaction
effects.
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1 Introduction

The fundamental task of genetic association studies is to detect genetic variations
that contribute to a disease status. In genome-wide association studies (GWAS),
partial or all of the human genome is genotyped for discovering the associations
between genetic factors and a disease or a phenotypic trait [1]. GWAS first began
as a consequent of the HapMap Project [2] in 2005 aiming at discovering new
treatments for common human diseases such as cancers. GWAS investigate the
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genetic variations in two phenotypically distinguished populations, healthy and
diseased, to find the variants that can explain the disease. There are two types
of genetic variation: single nucleotide polymorphism (SNP) and copy number
variation (CNV). In GWAS the genetic variants under consideration are SNPs,
the most common type of variation among people. SNPs occur within a person’s
DNA in almost every 300 nucleotides, meaning that there are around ten mil-
lion SNPs in the whole human genome. A SNP generally refers to a base-pair
(or locus) in the DNA sequence which has a variation higher than 1% in a pop-
ulation [3]. Variations represent different alleles at a bi-allelic locus. In GWAS,
genome data of a group of healthy individuals (i.e., controls) and diseased indi-
viduals (i.e., cases) are collected and genotyped, which usually contain more
than one million SNPs and thus are regarded as high dimensional data.

It is a challenging task to analyze high dimensional SNP data for GWAS.
The number of variables, i.e., SNPs, brings an extensive computational burden
for informatics methods [4,5]. Moreover, in the studies of common human dis-
eases, it has been accepted that the non-additive effects of multiple interacting
genetic variables play an important role explaining the risk of a disease [6,7].
The traditional one-gene-at-a time strategies likely overlook important interact-
ing genes that have moderate individual effects. Therefore, powerful data mining
and machine learning methods are needed in order to examine multiple variables
at a time and to search for gene-gene interactions that contribute to a disease. A
GWAS dataset with a million variables can be prohibitive for the application of
any machine learning algorithms for detecting gene-gene interactions, since enu-
merating all possible combinations of variables is impossible. In addition, many
of those variables can be redundant or irrelevant for the disease under consid-
eration. Thus the selection of a subset of relevant and potential variables to be
included in the subsequent analysis, i.e., feature selection, is usually needed [4].

Feature selection is frequently used as a pre-processing step in machine learn-
ing when the original data contain noisy or irrelevant features that could compro-
mise the prediction power of learning algorithms [8]. Feature selection methods
choose only a subset of the most important features, and thus reduce the dimen-
sionality of the data, speed up the learning process, simplify the learned model,
and improve the prediction performance [9,10].

Feature selection involves two main objectives, i.e., to maximize the predic-
tion accuracy and to minimize the number of features. There are two general
approaches for selecting features for predictive models: filter and wrapper. The
key difference between these two is that in filter approaches the learning algo-
rithm has no influence in selecting features. That is, features are selected based
on a filtering criterion independent of the learning model. Both filter and wrap-
per approaches have wide applications. Filter approaches have the advantage
of high speed while wrapper approaches generally can achieve better prediction
accuracies [11]. Of those two, filter approaches are often used in bioinformatics
studies given the fact that they can easily scale to very high-dimensional data,
that they are computationally simple and fast, and that they are independent
of the classification algorithm [12].



Feature Selection for Detecting Gene-Gene Interactions 35

There have been studies investigating the performance of feature selection
methods on high dimensional datasets in bioinformatics. Hua et al. [13] evaluated
the performance of several filter and wrapper feature selection methods on both
synthetic and real gene-expression microarrays data with around 20,000 features
(genes) and 180 samples. Shah and Kusiak [14] used a genetic algorithm (GA)
to search for the best subset of SNPs in a dataset with 172 SNPs. The feature
subset was then evaluated by a baseline classifier to compare with using the
whole feature set. Wu et al. [15] proposed an SNP selection and classification
approach based on random forest (RF) for GWAS. Their stratified random forest
(SRF) method was tested on Parkinson and Alzheimer’s case-control data and
was shown to outperform other methods including the original RF and support
vector machines (SVM) in terms of test-error and run time. Brown et al. [16]
proposed a framework of using mutual information for feature selection. Their
objective was to select the smallest feature subset that has the highest mutual
information with the phenotypic outcome.

However, most existing studies used the classification accuracy as the indi-
cator for feature selection performance. The contribution of a feature to a phe-
notypic outcome could be its individual main effect or its interacting effect com-
bined with other features. Using the overall classification accuracy was not able
to distinguish the interaction effects of multiple variables and the individual
main effects.

In our study, we focus on searching for features (SNPs) that have strong
associations with the disease outcome in terms of gene-gene interactions. This
differentiates our work from many existing studies that mostly focus on SNPs
with high main-effects. We apply information gain to quantify the pair-wise
synergy of SNPs and use that to evaluate various feature selection methods in
order to identify the ones that can find subsets of SNPs with high synergistic
effects on the disease status. We investigate six most popular filter algorithms,
and test them on both simulated and real GWAS datasets. Our findings can
be helpful for the recommendation of feature selection methods for detecting
gene-gene interactions in GWAS.

2 Methods

In this section, we first discuss the data that will be used in this study, which
include a simulated and a real population-based GWAS datasets. Then we intro-
duce the information gain measure that will be employed as the quantification
of the synergistic interaction effect of pairs of SNPs. Last, we present the six
feature selection algorithms that will be investigated and compared.

2.1 Datasets

GWAS collect DNA sequencing data from two phenotypically distinguished pop-
ulations, namely the diseased cases and healthy controls. A few thousand to
a million of SNPs are usually genotyped for each sample. Each SNP can be
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regarded as a bi-allelic variable, i.e., it has two different variations, with the
common allele among a population called the reference and the other called
variant. Given the fact that human chromosomes are paired, three categorical
values are usually used to code for each SNP, i.e., 0 for homozygous reference, 1
for heterozygous variant, and 2 for homozygous variant.

For this study, we use a simulated genetic association dataset generated
by the genetic architecture model emulator for testing and evaluating software
(GAMETES) [17,18]. GAMETES is a fast algorithm for generating simulation
data of complex genetic models. Particularly, in addition to additive models,
GAMETES is specialized for generating pure interaction models, i.e., interact-
ing features without the existence of any main effects. Each n-locus model is
generated deterministically, based on a set of random parameters and specified
values of heritability, minor allele frequencies, and population disease prevalence.
Since we focus on pairwise SNP interactions, we use GAMETES to generate a
population of 500 samples with half being cases and half being controls. The
dataset has 1000 SNPs, where 15 pairs are two-locus interacting models with
a minor allele frequency of 0.2 and another 970 are random SNPs. We set the
heritability to 0.2 and population prevalence to 0.5.

In addition, we use a real GWAS dataset collected for a case-control study on
colorectal cancer (CRC) from the Colorectal Transdisciplinary (CORECT) con-
sortium [19]. The dataset has over two million genetic variants of 1152 individuals
of which 656 are CRC cases and 496 are healthy controls. Quality control [20]
is first conducted to remove low-quality samples and sub-standard SNPs from
the dataset. Then we remove redundant SNPs that are in linkage disequilibrium
(LD). After quality control and LD pruning steps, 186,251 SNPs and 944 sam-
ples pass various filters. In this remaining population, 472 samples are cases and
472 are controls. The minimum and maximum minor allele frequency (MAF) of
the SNPs are 0.04737 and 0.5 respectively.

2.2 Quantification of Pairwise Interactions Using Information Gain

Information theoretic measures such as entropy and mutual information [21]
quantify the uncertainty of single random variables and the dependence of two
variables, and have seen increasing applications in genetic association stud-
ies [22–25]. In such a context, the entropy H(C) of the disease class C measures
the unpredictability of the disease, and the conditional entropy H(C|A) mea-
sures the uncertainly of C given the knowledge of SNP A. Subtracting H(C|A)
from H(C) gives the mutual information of A and C, and is the reduction in
the uncertainty of the class C due to the knowledge about SNP A’s genotype,
defined as

I(A;C) = H(C) − H(C|A). (1)

Mutual information I(A;C) essentially captures the main effect of SNP A on
the disease status C.
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When two SNPs, A and B, are considered, mutual information I(A,B;C)
measures how much the disease status C can be explained by combining both A
and B. The information gain IG(A;B;C), calculated as

IG(A;B;C) = I(A,B;C) − I(A;C) − I(B;C), (2)

is the information gained about the class C from the genotypes of SNPs A and B
considered together minus that from each of these SNPs considered separately.
In brief, IG(A;B;C) measures the amount of synergetic influence SNPs A and B
have on class C. Thus, information gain IG can be used to evaluate the pairwise
interaction effect between two SNPs in association with the disease.

2.3 Feature Selection Algorithms

We choose six most widely used feature selection algorithms in our comparative
study, and investigate their performance on searching variables that contribute
to the disease in terms of gene-gene interactions. These six feature selection
algorithms include three uni-variate approaches, chi-square, logistic regression,
and odds ratio, and three Relief-based algorithms, ReliefF, TuRF, and SURF.
They will be applied to both simulated and real GWAS datasets and provide
rankings of all the SNPs in the data.

Chi-square: The chi-square (χ2) test of independence [26] is commonly used
in human genetics and genetic epidemiology [4] for categorical data. A χ2 test
estimates how likely different alleles of a SNP can differentiate the disease status.
It is a very efficient filtering method for assessing the independent effect of
individual SNPs on disease susceptibility.

Logistic regression: Logistic regression measures the relationship between the
categorical outcome and multiple independent variables by estimating probabil-
ities using a logistic function. A linear relationship between variables and the
categorical outcome is usually assumed, and a coefficient is estimated for each
variable when such a linear relationship is trained to best predict the outcome.
The variable coefficient can then be used as a quantification of the importance
of each variable.

Odds-ratio: Odds ratio (OR) is the most commonly used statistic in case-
control studies. It measures the association between an exposure (e.g., health
characteristic) and an outcome (e.g., disease status). The OR represents the
odds that a disease status will occur given a particular exposure, compared to
the odds of the outcome occurring in the absence of that exposure [27].

ReliefF: Relief is able to detect complex attribute dependencies even in the
absence of main effects [28]. It estimates the quality of attributes using a nearest-
neighbor algorithm. While Relief uses, for each individual, a single nearest neigh-
bor in each class, ReliefF, a variant of Relief, uses multiple, usually 10, near-
est neighbors, and thus is more robust when a dataset contains noise [29,30].
The basic idea of Relief-based algorithms is to draw instances at random, com-
pute their nearest neighbors, and adjust a feature weighting vector to give more
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Table 1. Ranks of the 30 known interacting SNPs by feature selection algorithms.

Logit χ2 OR ReliefF TuRF SURF

Mean 549.16 548.30 444.10 202.63 166.96 233.16

SD 277.99 267.18 287.04 201.74 259.74 212.13

Median 617.50 536.50 346.50 130.00 21.50 183.50

weights to features that discriminate the instance from its neighbors of different
classes. Comparing to uni-variate feature selection algorithms, ReliefF is able
to capture attribute interactions because it selects nearest neighbors using the
entire vector of values across all attributes [4,30].

Tuned ReliefF (TuRF): It is an extension of ReliefF specifically for large-
scale genetics data [31]. This method systematically and iteratively removes
attributes that have low-quality estimates so that the remaining attributes can
be re-estimated more accurately. It improves the estimation of weights in noisy
data but does not fundamentally change the underlying ReliefF algorithm. It is
useful when data contain a large number of non-relevant SNPs. It is also more
computationally intense because of the iterative process of removing attributes.

Spatially Uniform ReliefF (SURF): SURF is also an extension of the ReliefF
algorithm [32]. It incorporates the spatial information when assesses neighbors.
Instead of using a fixed number of neighbors as the threshold in ReliefF, SURF
uses a fixed distance threshold for choosing neighbors. It is reported to be able
to improve the sensitivity detecting small interaction effects.

3 Results

3.1 Feature Selection Algorithms on the Simulated Data

First, we apply all six feature selection algorithms to the simulated dataset that
contains 30 known SNPs with pairwise interactions and 970 random SNPs. The
chi-square, odd-ratio, ReliefF, TuRF, and SURF algorithms are implemented
using the multifactor dimensionality reduction (MDR) software with default
parameter settings [33]. Logistic regression is implemented using the Python
scikit-learn package [34].

Each algorithm yields a ranking of all 1000 SNPs. Table 1 shows the statistics
of the ranks of those 30 known SNPs by each feature selection algorithm. We see
that TuRF has both the highest mean and median ranks among all the methods,
and the differences are significant. ReliefF performs the second best, followed by
SURF.

Figure 1 shows the recall-at-k for all six feature selection algorithms. The
y-axis shows the fraction of those 30 known SNPs detected by the top k SNPs
ranked by each feature selection algorithm. We can see that for all values of
k, TuRF has the highest recalls. In addition, all three Relief-based algorithms
outperform the other methods.
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Fig. 1. Diagram of recall-at-k for six feature selection algorithms applied to the sim-
ulated dataset. Recall-at-k is the fraction of the 30 known interacting SNPs detected
by the top k ranked SNPs using each feature selection algorithm.

Figure 2 shows the distributions of the ranks of those 30 known interacting
SNPs using different feature selection algorithms. The x-axis is the rank of SNPs
and the y-axis is the density. Again, TuRF has the highest density around high
ranks, meaning that it produces the highest ranks for those 30 known SNPs.
SURF and ReliefF also have better ranking performance comparing to the other
three methods. Odds-ratio, logistic regression, and chi-square have flat distri-
butions across the entire rank range, which indicates their inability to identify
those 30 interacting SNPs.

3.2 Feature Selection Algorithms on the CRC Data

We then compare the performance of those six feature selection algorithms using
the CRC GWAS dataset. The CRC GWAS dataset is processed using PLINK
software [35]. PLINK can conduct some fundamental association tests by com-
paring allele frequencies of SNPs between cases and controls. We use the com-
mand --assoc to compute chi-square and odds-ratio scores for each SNP, and
the command --logistic for logistic regression analysis. Again, we used the
MDR software [33] to implement ReliefF, TuRF, and SURF algorithms.

Each feature selection algorithm generates a ranking of all the 186,251 SNPs
in the dataset. For detecting gene-gene interactions, exhaustive enumeration
of all possible combinations of SNPs is usually considered. Even for pairwise
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Fig. 2. Density of the ranks of the 30 known interaction SNPs using different feature
selection algorithms on the simulated dataset.

interactions, the total number of possible pairs
(
n
2

)
grows fast with the number

of SNPs n. Therefore, we can only consider a moderate subset of SNPs for
interaction analysis, and we use the rankings estimated using feature selection
algorithms to filter those potentially more important SNPs. We choose the subset
of the top 10,000 SNPs by each feature selection algorithm. Then, for the six
subsets of filtered 10,000 SNPs, we evaluate their pairwise interactions separately
using the information gain (IG) measure.

Table 2. Statistics of the information gain values of all
(
10,000

2

)
SNP pairs filtered by

each feature selection algorithm (×10−3).

Logit χ2 OR ReliefF TuRF SURF

Max 27.4 27.6 27.4 30.2 28.9 28.2

Min −4 −5.1 −4 −3.2 −2.9 −5.7

Mean 2.760 3.047 2.776 3.190 3.191 3.056

SD 2.117 2.221 2.120 2.243 2.251 2.224

Median 2.3 2.6 2.3 2.7 2.7 2.6

Table 2 shows the maximum, minimum, mean, standard deviation, and
median values of the information gain calculated using all

(
10,000

2

)
pairs of the
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10,000 SNPs filtered by the six feature selection algorithms. As we can see, Reli-
efF finds the SNP pair with the highest interaction strength, and TuRF has the
best overall distribution.

Figure 3 shows the distribution of the interaction strength of all
(
10,000

2

)
pairs

of SNPs selected by each feature selection algorithm. We see that the distribu-
tions of ReliefF and TuRF have overall more SNP pairs with higher IG values.
The distributions of SURF and chi-square are comparable, and logistic regression
and odds ratio have the lowest overall IG values.

The significance of the IG value of each pair of SNPs can be assessed using
permutation testing. For each permutation, we randomly shuffle the case/control
labels of all the samples in the data in order to remove the association between
the genotypes of SNPs and the disease status. Repeating such a permutation
multiple times generates a null distribution of what can be observed by chance.
For each permuted dataset, we compute the IG value of each pair of SNPs.
In this study, we perform a 100-fold permutation test. The significance level
(p-value) of the IG of each SNP pair can be assessed by comparing the IG value
of the pair calculated using the real dataset to the IG values calculated using
the 100 permuted datasets (see Algorithm 1).

Algorithm 1. Permutation testing algorithm
1: procedure ComputePvalue
2: D ← original dataset
3: n ← number of permutations
4: m ← number of SNP pairs
5: C ← counter for each SNP pair
6: i ← 1
7: while i < n do
8: Generate a random permutation D′ of the original dataset D
9: j ← 1

10: while j < m do
11: calculate IGD′

j for the j-th SNP pair

12: increase Cj by 1 if IGD′
j is greater than the real observed IGD

j

13: j ← j + 1

14: i ← i + 1

15: compute the significance level pk for each SNP pair k as Ck
n

We apply permutation testing to all six subsets of
(
10,000

2

)
pairs of SNPs

selected by each feature selection algorithm, such that their significance level
p-values can be assessed. Figure 4 shows the number of SNP pairs that pass two
different p-value thresholds, 0.01 and 0.05. TuRF has more SNP pairs with signifi-
cant interaction strength using both thresholds. All three Relief-based algorithms
have higher numbers of significant SNP pairs than the other three methods.
Logistic regression and odds ratio find the least numbers of significant interact-
ing SNP pairs.
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Fig. 3. Distribution of the information gain (IG) values of all pairs of filtered 10,000
SNPs by each feature selection algorithm.

Method

N
um

be
r 

of
 p

ai
rs

 (
in

 m
ill

io
n)

2M

2.5M

3M

3.5M

Logit Chi−square OR ReliefF TuRF SURF

T = 0.01 T = 0.05
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4 Discussion

The goal of genome-wide association studies (GWAS) is to identify genetic mark-
ers that can explain complex human diseases. Most existing analyses for GWAS
look at one gene at a time due to the limitation of analytical methodologies and
computational resources. Such a strategy very likely overlook potentially impor-
tant genetic attributes that have low main effects but contribute to a disease
outcome through multifactorial interactions. Detecting such non-additive gene-
gene interactions help us better understand the underlying genetic background
of common diseases and better develop new strategies to treat, diagnose, and
prevent them.

Detecting gene-gene interactions for GWAS imposes computational chal-
lenges since enumerating combinations of genetic attributes becomes inhibitive
when up to a million variables are under consideration. Thus, feature selection
becomes a necessity for the task.

In this study, we investigated the performance of six widely used feature selec-
tion algorithms for detecting potentially interacting single nucleotide polymor-
phisms (SNPs) for GWAS. We used both a simulated and real genetic datasets.
We adopted information gain as a measure for quantifying pairwise interac-
tion strength of SNPs in order to evaluate the filtering performance of those
six feature selection algorithms. Among the investigated feature selection meth-
ods, three are single variable feature scoring methods. That is, they only con-
sider individual main effects of SNP on the disease status. Three other methods
are extensions of the Relief algorithm which is a multivariate feature selection
algorithm.

For the simulated dataset, we generated a population-based dataset with
1000 SNPs including 15 pairs of interacting SNPs and 970 random ones. We
applied all six feature selection algorithms to rank those 1000 SNPs and look
into the recall-at-k of detecting those 30 known interacting SNPs. The TuRF
algorithm has the highest recall-at-k for all k values, followed by ReliefF and
SURF. All three Relief-based algorithms perform better than odds ratio, logistic
regression, and chi-square.

We also tested the feature selection algorithms using a real GWAS dataset on
colorectal cancer (CRC). We used information gain to quantify pairwise inter-
action strength of SNPs in order to evaluate the filtering performance of the
feature selection algorithms. We chose 10,000 top-ranked SNPs by each feature
selection algorithm and applied information gain measure and permutation test-
ing to compute the interaction strengths and their significance levels of all pairs
of SNPs. We found that TuRF again was able to filter more significant interact-
ing SNPs than the rest of the feature selection algorithms. All three Relief-based
algorithms outperformed the other three methods.

TuRF and ReliefF had comparable performance on the application to the
real CRC dataset. By looking at their top 10,000 SNPs, we saw that only 1474
were overlapped. That is, only 14% of their top 10K SNPs are the same. This is
interesting that they seemed to be able to find different sets of interacting SNPs.
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There is no general rule for selecting the best feature selection method in
machine learning studies. The decision mostly depends on the data and research
question of the investigation. For the purpose of detecting gene-gene interactions,
Relief-based methods were shown to have better performance than the common
univariate methods. Gene-gene interactions can be very challenging to detect
by univariate methods since interacting genetic factors may not show signifi-
cant individual main effects. By evaluating sample similarity using all genetic
attributes, Relief-base algorithms are able to capture the non-addition inter-
action effects among multiple attributes, and are recommended for detecting
gene-gene interactions for GWAS.

In future studies, we expect to explore more sophisticated feature selection
algorithms, especially wrapper and embedded methods, and test their utilities
in genetic association and bioinformatics studies.
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30. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff
and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

https://doi.org/10.1007/3-540-57868-4_57


46 F. Dorani and T. Hu

31. Moore, J.H., White, B.C.: Tuning ReliefF for genome-wide genetic analysis. In:
Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol.
4447, pp. 166–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71783-6 16

32. Greene, C.S., Penrod, N.M., Kiralis, J., Moore, J.H.: Spatially uniform relieff
(SURF) for computationally-efficient filtering of gene-gene interactions. BioData
Min. 2(1), 5 (2009)

33. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F.,
Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions
among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet.
69(1), 138–147 (2001)

34. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

35. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., et al.: Plink: a tool set for whole-
genome association and population-based linkage analyses. Am. J. Hum. Genet.
81(3), 559–575 (2007)

https://doi.org/10.1007/978-3-540-71783-6_16
https://doi.org/10.1007/978-3-540-71783-6_16

	Feature Selection for Detecting Gene-Gene Interactions in Genome-Wide Association Studies
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Quantification of Pairwise Interactions Using Information Gain
	2.3 Feature Selection Algorithms

	3 Results
	3.1 Feature Selection Algorithms on the Simulated Data
	3.2 Feature Selection Algorithms on the CRC Data

	4 Discussion
	References




