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Abstract. Monte-Carlo Tree Search (MCTS) has shown particular suc-
cess in General Game Playing (GGP) and General Video Game Playing
(GVGP) and many enhancements and variants have been developed.
Recently, an on-line adaptive parameter tuning mechanism for MCTS
agents has been proposed that almost achieves the same performance as
off-line tuning in GGP.

In this paper we apply the same approach to GVGP and use the pop-
ular General Video Game AI (GVGAI) framework, in which the time
allowed to make a decision is only 40 ms. We design three Self-Adaptive
MCTS (SA-MCTS) agents that optimize on-line the parameters of a
standard non-Self-Adaptive MCTS agent of GVGAI. The three agents
select the parameter values using Näıve Monte-Carlo, an Evolutionary
Algorithm and an N-Tuple Bandit Evolutionary Algorithm respectively,
and are tested on 20 single-player games of GVGAI.

The SA-MCTS agents achieve more robust results on the tested
games. With the same time setting, they perform similarly to the baseline
standard MCTS agent in the games for which the baseline agent performs
well, and significantly improve the win rate in the games for which the
baseline agent performs poorly. As validation, we also test the perfor-
mance of non-Self-Adaptive MCTS instances that use the most sampled
parameter settings during the on-line tuning of each of the three SA-
MCTS agents for each game. Results show that these parameter settings
improve the win rate on the games Wait for Breakfast and Escape by 4
times and 150 times, respectively.
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1 Introduction

Monte-Carlo Tree Search (MCTS) [1,2] is a simulation-based search technique
that Yannakakis and Togelius [3] list among the commonly used methods in
games. Browne et al. [4] reviewed the evolution of MCTS, its variations and
their successful applications till 2012. Different techniques have been studied for
enhancing the MCTS variants, such as the All Moves As First (AMAF) [5], the
Rapid Action Value Estimation (RAVE) [6], Generalized RAVE (GRAVE) [7],
HRAVE [8] and the Move Average Sampling Technique (MAST) [9]. Powley et al.
introduced the ICARUS (Information Capture And ReUse Strategy) framework
for describing and combining such enhancements [10].

Moreover, MCTS has been proved to be a success in many domains, includ-
ing the Go game [11,12] and General (Video) Game Playing [13–15]. General
Video Game Playing (GVGP) [14,15] aims at creating agents that are capable
of playing any unknown video game successfully without using prior knowl-
edge or intervention by human beings. The General Video Game AI (GVGAI)
framework1 has been implemented for this research purpose [14]. Many suc-
cessful General Video Game Playing agents are MCTS-based, like YOLOBOT,
the agent that won the GVGAI Single-Player Planning Championship in 2017,
and MaastCTS2 [16], the agent that won the GVGAI Single-Player Planning
Championship in 2016.

One of the difficulties of GVGP and the GVGAI competition is parameter
tuning for AI agents. Examples are the exploration factor and the play-out depth
of MCTS-based agents, or population size, mutation probability and planning
horizon for the rolling horizon evolutionary agents. A common approach is to
tune the parameters off-line with some given games. Gaina et al. [17] varied the
population size and planning horizon of a vanilla Rolling Horizon Evolutionary
Algorithm (RHEA) and compared their performance on a subset of games in the
GVGAI framework. Bravi et al. [18] used Genetic Programming (GP) to evolve
game-specific Upper Confidence Bound (UCB) alternatives, each of which out-
performed the MCTS using standard UCB1 (Eq. 1) on at least one of the tested
games. These UCB alternatives can be used to build a portfolio of MCTS agents
to achieve robust game playing. However, such off-line tuning is computationally
expensive and game dependent. Tuning the parameters of a given agent off-line
for a new game is therefore sometimes not possible.

Recently, Sironi and Winands [19] have proposed on-line adaptive parameter
tuning for MCTS agents and almost achieved the same performance as off-line
tuning in General Game Playing. Their approach is based on the idea of inter-
leaving parameter tuning with MCTS. Before each MCTS simulation a different
combination of parameter values is selected to control the search. The reward
obtained by the simulation is used to update some statistics on the performance
of such combination of parameter values. These statistics are then used to choose
which parameter values will control the next simulations. Four allocation strate-
gies are proposed in [19] to decide which parameter values should be evaluated
for each MCTS simulation and in which order.

1 http://www.gvgai.net.

http://www.gvgai.net
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In this work, we apply the same approach for tuning on-line the parameters
K (the UCB exploration factor) and D (the depth limit for the search) of a
standard MCTS agent, sampleMCTS, of the GVGAI framework. First of all we
verify if the on-line tuning approach can be applied successfully to GVGP by
testing the most promising among the four allocation strategies presented in [19],
Näıve Monte-Carlo (NMC). Second, we want to see if the performance on GVGP
of the on-line tuning mechanism can be further improved by using the principles
of evolutionary algorithms. Therefore, we propose two more allocation strategies,
one based on an Evolutionary Algorithm (EA) and one base on an N-tuple Bandit
Evolutionary Algorithm (NTupleBanditEA). Finally, to validate the allocation
strategies we evaluate the performance of the instances of sampleMCTS that use
as fixed parameter settings the combinations of values that were used the most
during game playing by each of the proposed allocation strategies.

This paper is structured as follows. Section 2 introduces the background,
including GVGAI, MCTS and the on-line parameter tuning problem. Section 3
describes the approach and tuning algorithms. Section 4 presents the design of
experiments and Sect. 5 analyzes the results. Finally, Sect. 6 concludes and pro-
poses some future research.

2 Background

This section briefly introduces the General Video Game AI framework
(Subsect. 2.1), the principles of Monte-Carlo Tree Search (Subsect. 2.2) and the
formulation of the on-line parameter tuning problem (Subsect. 2.3).

2.1 General Video Game AI

The General Video Game AI (GVGAI) framework was initially designed and
developed by the Games Intelligence Group at the University of Essex (UK)
aiming at using it as a research and competition framework for studying Gen-
eral Video Game Playing (GVGP). The GVGAI consists of five tracks: two
planning tracks (single- and two-player) where the forward model of every game
is available [14,15]; the single-playing learning track where no forward model
is given [20]; the level generation track [21] and rule generation track [22]. The
games were defined in Video Game Description Language (VGDL) [23] and the
framework was mainly written in Java. More about the tracks and competi-
tions can be found on the GVGAI website. In this paper, we focus on a subset
of the GVGAI single-player games. More about the game set is presented in
Subsect. 4.1. Compared to the Atari Learning Environment (ALE) [24] frame-
work, GVGAI has the advantage of being more extensible, meaning that it is
much easier to add new games and variations of those games, and also offers
two-player games which provide a greater range of challenges than single player
games. ALE currently has the advantage of offering commercial games, albeit
from a few decades ago.
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2.2 Monte-Carlo Tree Search

MCTS is a best-first search algorithm that incrementally builds a tree represen-
tation of the search space of a problem (e.g., a game) and estimates the values
of states by performing simulations [1,2]. An iteration of the MCTS consists of
four phases: (i) Selection: starting from the root node of the tree a selection
strategy is used to select the next actions to visit until a node is reached that is
not fully expanded, i.e., at least one successor state is not visited and its corre-
sponding node is not added to the tree yet; (ii) Expansion: in a node that is
not fully expanded, an expansion strategy is used to choose one or more nodes
that will be added to the tree; (iii) Play-out: starting from the last node added
to the tree a play-out strategy chooses which actions to simulate until either
a given depth (maximum play-out depth) or a terminal state are reached; and
(iv) Back-propagation: at the end of the play-out, the result of the simula-
tion is propagated back through all the nodes traversed in the tree and used
to update the estimate of their value. These four phases are repeated until the
search budget in terms of time or state evaluations has been exhausted. At this
point, the best action in the root node is returned to be played in the real game.
Different recommendation policies can be used to decide which action to return
and perform, for instance, recommending the one with the highest estimated
average score or the one with the highest number of visits.

Many strategies have been proposed for the different phases of MCTS.
The standard selection strategy is UCT (Upper Confidence bounds applied to
Trees) [2]. UCT sees the problem of choosing an action in a certain node of the
tree as a Multi-Armed Bandit (MAB) problem and uses the UCB1 [25] sampling
strategy to select the action to visit next. UCT selects in node s the action a
that maximizes the following formula:

UCB1(s, a) = Q(s, a) + K ×
√

lnN(s)
N(s, a)

, (1)

where Q(s, a) is the average result obtained from all the simulations in which
action a was played in node (state) s, N(s) is the number of times node s has
been visited during the search and N(s, a) is the number of times action a has
been selected whenever node s was visited. The K constant is used to control
the balance between exploitation of good actions and exploration of less visited
ones.

2.3 On-line Parameter Tuning

The parameters of an AI agent can be seen as a vector of integers and doubles
(boolean parameters can be handled as integers with only two legal values). The
tuning of parameters is therefore a problem of searching optimal numerical vec-
tor(s) in a given parameter search space. Given the combinatorial structure of
the search space, Sironi and Winands [19] considered the tuning problem as a
Combinatorial Multi-Armed Bandit (CMAB) [26]. The definition of the param-
eter tuning problem as a CMAB is given by the following three components:
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– A set of d parameters, P = {P1, ..., Pd}, where each parameter Pi can take
mi different values Vi = {v1

i , ..., v
mi
i }.

– A reward distribution R : V1 × ...×Vd → R that depends on the combination
of values assigned to the parameters.

– A function L : V1 × ... × Vd → {true, false} that determines which combina-
tions of parameter values are legal.

In this paper we use the same approach for on-line tuning that was presented
in [19]. This approach consists in interleaving MCTS simulations with parameter
tuning, as shown in Algorithm 1. Before each MCTS simulation the tuner T
selects a combination of values for the parameters p. These values are set for the
parameters of the agent AIMCTS that performs an MCTS simulation of the game
and returns the associated reward. This reward is used by the tuner to update the
statistics for the combination of parameters p. Different allocation strategies can
be used by the tuner to decide which parameter combination should be evaluated
next depending on these statistics. In this paper we consider the most promising
allocation strategy that was introduced in [19], Näıve Monte-Carlo (NMC), and
propose two more, one based on an Evolutionary Algorithm and one based on a
N-tuple bandit Evolutionary Algorithm.

Algorithm 1. On-line parameter tuning for a given MCTS agent AIMCTS .
Require: G: game to be played

Require: AIMCTS : an agent with parameter vector ∈ SAIMCTS

Require: T : tuner

1: while time not elapsed do

2: p ← T .ChooseParamValues() � Select param. combination using the tuner T
3: AIMCTS .set(p) � Set parameters for AIMCTS

4: r ← G.simulate(AIMCTS) � Perform MCTS simulation

5: T .UpdateValuesStats(p, r, . . . ) � Update the statistics, defined by the tuner T

3 Allocation Strategies

This section describes the three allocation strategies that are integrated to the
GVGAI sampleMCTS agent: Näıve Monte-Carlo, Evolutionary Algorithm and
N-tuple Bandit Evolutionary Algorithm. As a result, three Self-Adaptive MCTS
(SA-MCTS) agents are created. The NMC strategy is the same that is presented
in [19]. Among the four strategies proposed in the paper we decide to test this
one for GVGAI because it was the one that had more promising results when
used to tune parameters for GGP.

3.1 Näıve Monte-Carlo

Näıve Monte-Carlo (NMC) was first proposed by Ontañon [26] to be applied
to Real-Time Strategy games. This approach proved suitable to deal with com-
binatorial search spaces, thus in [19] it was applied to the on-line parameter
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tuning problem, that is characterized by a combinatorial parameter space. NMC
is based on the näıve assumption, which is the assumption that the reward
associated with a combination of parameter values can be approximated by a
linear combination of the rewards associated with each of the single values:
R(p = 〈p1, ..., pd〉) ≈

∑d
i=1 Ri(pi).

Algorithm 2 gives the pseudo-code for this strategy. NMC considers one
global MAB (MABg) and n local MABs (MABi, i = 1...d), one for each parame-
ter. Each arm of MABg corresponds to one of the legal combinations of parame-
ter values that have been evaluated so far, while each arm in MABi corresponds
to one of the legal values for parameter Pi. This allocation strategy alternates
between an exploration and an exploitation phase. For each MCTS simulation a
combination of parameter values is selected by exploration with probability ε0
and by exploitation with probability (1 − ε0). If exploring, the next combina-
tion to be evaluated is selected by choosing each parameter value independently
from the corresponding MABi (note that a combination that has never been
visited before can be generated, thus there is exploration of the search space).

Algorithm 2. On-line parameter tuning for a given MCTS agent AIMCTS using
Näıve Monte-Carlo.
Require: G: game to be played
Require: AIMCTS : MCTS agent with parameter vector ∈ SAIMCTS

Require: d: number of parameters to be tuned
Require: S: parameter search space for AIMCTS

Require: ε0: probability of performing exploration
Require: πl: policy to select a parameter value from the local MABs
Require: πg : policy to select a parameter combination from the global MAB

1: MABg ← create a MAB with no arms
2: for i ← 1 : d do

3: MABi ← create a MAB for parameter Pi with one arm for each of its possible values

4: while time not elapsed do

5: p ← ChooseParamValues(S, ε0, πl, πg , MABg, MAB1, ..., MABd)
6: AIMCTS .set(p) � Set parameters for AIMCTS

7: r ← G.simulate(AIMCTS) � Perform MCTS simulation

8: UpdateValuesStats(p, r, MABg, MAB1, ..., MABd)

9: function ChooseParamValues(S,ε0, πl, πg , MABg, MAB1, ..., MABd)

10: p ← create empty combination of values

11: if RAND(0, 1) < ε0 then � Exploration
12: for i ← 1 : d do

13: p[i] ← πl.ChooseValue(S,MABi)

14: MABg.add(p)

15: else � Exploitation
16: p ← πg.ChooseCombination(S, MABg)

17: return p

18: function UpdateValuesStats(p, r, MABg, MAB1, ..., MABd)

19: MABg.UpdateArmStats(p, r)
20: for i ← 1 : d do

21: MABi.UpdateArmStats(p[i], r)
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If exploiting, the next combination is selected from the global MAB, MABg

(in this case only previously seen combinations will be selected). MABg starts
with no arms and a new arm is added whenever a new combination in gener-
ated using the local MABs. Whenever a combination of values is evaluated, the
reward obtained by the corresponding MCTS simulation is used to update both
the statistics associated with the global MAB and the ones associated with each
of the local MABs. The SA-MCTS agent built using NMC as a tuner is denoted
as SA-MCTSNMC .

3.2 Evolutionary Algorithm

Genetic Algorithms (GA) achieve overall good performance in General Video
Game Playing [17]. However, in the case of on-line parameter tuning, we aim at
using a simple algorithm as tuner, making the best use of the time budget to
evaluate more MCTS instances with different parameter settings or more times
a good MCTS instance. A combination of parameter values is considered to be
an individual, where each single parameter is a gene. A simple Evolutionary
Algorithm (EA) with λ individuals has been considered for evolving on-line the
parameters for an MCTS agent, where the μ elites in the previous generation are
kept and (λ − μ) new individuals are reproduced. Each new individual is repro-
duced with probability pc by uniformly random crossover between two elites
selected uniformly at random, or by uniformly mutating one bit of a randomly
selected elite otherwise. When evaluating a population, each individual (i.e. the
corresponding parameter combination) is used to control a different MCTS sim-
ulation of the game and the outcome of the simulation is considered as the fitness
of the individual. The SA-MCTS agent built using this EA as a tuner is referred
to as SA-MCTSEA.

3.3 N-Tuple Bandit Evolutionary Algorithm

The N-Tuple Bandit Evolutionary Algorithm (NTupleBanditEA) is firstly pro-
posed by Kunanusont et al. [27] for automatic game parameter tuning where
strong stochastic AI agents were used to evaluate the evolved games with uncer-
tainties. Then, it was applied to the GVGAI framework for evolving game rules
and parameter setting in games [28]. It makes use of all the statistics of the previ-
ously evaluated solutions and balances the exploration and exploitation between
evaluating a new generated solution and re-evaluating an existed solution using
UCB1. The detailed algorithm is not given in this paper due to lack of space,
more can be found in [27]. We apply the NTupleBanditEA to optimizing the
parameters on-line by modeling each parameter to be tuned as a 1-tuple and
considering their combinations as n-tuples. For this strategy we need to spec-
ify the number of neighbors generated at one iteration, n, and the exploration
factor, denoted as KNEA (cf. Algorithm 3 in [27]). The SA-MCTS agent built
using this NTupleBanditEA as a tuner is referred to as SA-MCTSNEA.
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4 Experimental Settings

In this section we introduce the design of the experiments, including games used
as test problem, the baseline AI agent to be tuned and the tested tuners.

4.1 Games

Each of the approaches described in Sect. 3 is tested on all 5 levels of 20 games
(Table 1) of the GVGAI framework. The 20 games are same as the ones used by
Gaina et al. [17] for studying the parameters of a vanilla RHEA. Gaina et al. [17]
uniformly randomly selected 20 games from a merged list of games exploited by
Nelson [29] and Bontrager et al. [30] previously, on which the vanilla MCTS agent
performs differently. During every game playing, an agent has 40 ms per game
tick to decide an action. In all the games, there is no draw. A game terminates if
the agent wins or loses the game before 2, 000 game ticks or the game is forced to
terminate as a loss of the agent after 2, 000 game ticks. This is the same setting
as in the GVGAI Single-Playing Planning competitions. The only difference is
that if the agent exceeds the 40 ms limit per game tick it will not be disqualified
and can still apply its selected move.

4.2 Tuned Agent and Parameters

We consider the single-player sampleMCTS agent in the GVGAI framework
as the AIMCTS to be tuned, the performance of which mainly relies on two
parameters, the maximum play-out depth D and the UCB1 exploration factor
K. The heuristic used by the sampleMCTS agent for evaluating a game state is
defined as follows:

V alue(GameState) =

⎧⎨
⎩

score(GameState) − 10, 000, 000.0 if a loss,
score(GameState) + 10, 000, 000.0 if a win,
score(GameState) otherwise.

(2)

Table 1. The 20 tested games. The authors of [17] have confirmed that some games
have been wrongly listed as deterministic games. Wait for Breakfast was listed as
deterministic game as it has negligible randomness (detailed in Subsect. 5.1).

Deterministic games: Bait, Camel Race, Escape, Hungry Birds, Modality

Stochastic games

Negligible randomness Plaque Attack, Wait for Breakfast

Non-deterministic
chasing/fleeing behaviors

Chase, Lemmings, Missile Command, Roguelike

Random NPC(s) Butterflies, Infection, Roguelike

Very stochastic Aliens, Chopper, Crossfire, Dig Dug, Intersection, Sea
Quest, Survive Zombies
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Based on this sampleMCTS, the SA-MCTS agents are designed. These agents
tune D and K on-line considering 15 possible values for each parameter (i.e.
225 possible combinations of parameters). The same state evaluation heuristic
(Eq. 2) is used by the self-adaptive agents. The SA-MCTS agents are compared
to a baseline agent, the default sampleMCTS, with a fixed value for D and K.
The parameter settings are summarized as follows:

– sampleMCTS : D = 10, K = 1.4 (default setting in GVGAI);
– SA-MCTS agents: D ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

K ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

4.3 Tuning Strategies

Three SA-MCTS agents are considered in the experiments, one for each of
the presented tuning strategies, NMC, EA and NTupleBanditEA. To distin-
guish them, in the tables and in subsequent sections they are denoted as SA-
MCTSNMC , SA-MCTSEA and SA-MCTSNEA, respectively. The following are
the settings for the tuning strategies:

– SA-MCTSNMC : ε0 = 0.75 (i.e. select next combination using the local
MABs with probability 0.75 and the global MAB with probability 0.25), πg =
UCB1 policy with exploration factor Kg = 0.7, πl = UCB1 policy with explo-
ration factor Kl = 0.7 (note that these two exploration factors are distinct
from the UCB1 exploration factor to be tuned and used by the sampleMCTS
agent).

– SA-MCTSEA: population size λ = 50, elite size μ = 25 (lower values for μ
were tested when applying this strategy to GGP and none of them outper-
formed μ = 25), probability of generating an individual by crossover of two
parents, pc = 0.5.

– SA-MCTSNEA: number of neighbors generated during evolution n = 5 (pre-
liminary tests showed that higher values added no benefit), KNEA = 0.7
(exploration constant for the UCB1 formula used to compute the value for a
parameter combination [27]).

5 Results and Discussion

The results of the designed SA-MCTS agents and the baseline agent are ana-
lyzed and discussed in Sect. 5.1. Section 5.2 illustrates the performance of some
static agents using constant parameters, the most visited parameter combination
during the on-line tuning for each game.

5.1 On-line Tuning Performance

Each of the SA-MCTS agents has been performed on the 5 levels of each of
the games 500 times (100 per level), as well as the baseline sampleMCTS agent.
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Table 2. Average win rate (%) and average game score over 5 levels of each game for
the sampleMCTS agent and the SA-MCTS agents. The best values are in bold.

(a) Average win rate (%) over 5 levels of each game

Games sampleMCTS SA-MCTSNMC SA-MCTSEA SA-MCTSNEA

Aliens 100.0(±0.00) 99.8(±0.39) 100.0(±0.00) 99.4(±0.68)

Bait 6.6(±2.18) 7.0(±2.24) 7.8(±2.35) 8.4(±2.43)

Butterflies 95.2(±1.88) 95.0(±1.91) 94.2(±2.05) 95.4(±1.84)

Camel Race 4.2(±1.76) 4.6(±1.84) 6.2(±2.12) 5.2(±1.95)

Chase 3.2(±1.54) 7.2(±2.27) 9.2(±2.54) 7.4(±2.30)

Chopper 91.4(±2.46) 88.6(±2.79) 83.2(±3.28) 50.8(±4.39)

Crossfire 4.2(±1.76) 11.6(±2.81) 11.4(±2.79) 15.6(±3.18)

Dig Dug 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Escape 0.2(±0.39) 4.4(±1.80) 7.6(±2.33) 13.0(±2.95)

Hungry Birds 5.4(±1.98) 2.6(±1.40) 4.6(±1.84) 3.8(±1.68)

Infection 97.0(±1.50) 95.6(±1.80) 97.6(±1.34) 97.8(±1.29)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)

Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Missile Command 60.4(±4.29) 60.8(±4.28) 58.0(±4.33) 58.6(±4.32)

Modality 27.0(±3.90) 27.4(±3.91) 26.0(±3.85) 28.4(±3.96)

Plaque Attack 91.8(±2.41) 92.0(±2.38) 92.8(±2.27) 92.6(±2.30)

Roguelike 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Sea Quest 55.0(±4.37) 47.8(±4.38) 55.6(±4.36) 43.2(±4.35)

Survive Zombies 41.0(±4.32) 41.0(±4.32) 34.8(±4.18) 34.8(±4.18)

Wait for Breakfast 15.4(±3.17) 20.4(±3.54) 28.8(±3.97) 44.0(±4.36)

Avg Win% 39.9(±0.96) 40.3(±0.96) 40.9(±0.96) 39.9(±0.96)

(b) Average game score over 5 levels of each game. Note that in GVGAI, wining a game with

low score is higher ranked than losing a game with a high score

Games sampleMCTS SA-MCTSNMC SA-MCTSEA SA-MCTSNEA

Aliens 67.8(±1.27) 64.5(±1.17) 64.4(±1.18) 65.6(±1.23)

Bait 2.6(±0.27) 4.5(±0.55) 2.3(±0.28) 5.6(±0.63)

Butterflies 30.3(±1.34) 30.4(±1.32) 30.0(±1.27) 31.1(±1.33)

Camel Race −0.8(±0.05) −0.8(±0.05) −0.7(±0.05) −0.7(±0.05)

Chase 2.7(±0.18) 3.1(±0.18) 3.1(±0.19) 3.2(±0.20)

Chopper 11.4(±0.55) 10.8(±0.56) 9.7(±0.65) 4.4(±0.73)

Crossfire 0.1(±0.09) 0.3(±0.15) 0.2(±0.16) 0.4(±0.18)

Dig Dug 11.2(±0.79) 10.1(±0.83) 10.3(±0.81) 9.0(±0.74)

Escape 0.0(±0.00) 0.0(±0.02) 0.1(±0.02) 0.1(±0.03)

Hungry Birds 7.4(±2.09) 3.5(±1.48) 5.3(±1.88) 4.4(±1.72)

Infection 14.3(±0.71) 13.4(±0.69) 14.5(±0.75) 14.1(±0.74)

Intersection 1.0(±0.0) 1.1(±0.09) 2.1(±0.27) 1.0(±0.04)

Lemmings −3.5(±0.30) −2.3(±0.23) −4.3(±0.34) −1.4(±0.16)

Missile Command 4.4(±0.44) 4.2(±0.45) 4.0(±0.46) 3.9(±0.44)

Modality 0.3(±0.04) 0.3(±0.04) 0.3(±0.04) 0.3(±0.04)

Plaque Attack 46.9(±1.64) 46.4(±1.54) 50.4(±1.68) 48.6(±1.60)

Roguelike 3.5(±0.41) 2.9(±0.38) 3.2(±0.40) 3.2(±0.39)

Sea Quest 1734.6(±169.97) 1575.1(±163.41) 1774.2(±167.22) 1288.1(±135.44)

Survive Zombies 2.6(±0.30) 2.7(±0.31) 2.2(±0.29) 2.2(±0.29)

Wait for Breakfast 0.2(±0.03) 0.2(±0.04) 0.3(±0.04) 0.4(±0.04)

Avg Score 96.8(±11.25) 88.5(±10.56) 98.6(±11.26) 74.2(±8.70)
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During every game playing, an agent has 40ms per game tick to decide an action.
More about the games and settings has been presented in Subsect. 4.1. The win
rate and average score for the sampleMCTS agent and the SA-MCTS agents on
the 20 games are summarized in Tables 2a and b, respectively. In our setting,
wining a game has the highest priority (Eq. 2), thus the win rate is used as the
criterion for evaluating a tuner rather than the average score.

The SA-MCTS agents perform overall well on the games where the default
sampleMCTS also performs well, except for the games of Chopper and Survive
Zombies. Moreover, in some of the games that the sampleMCTS has poor per-
formance, e.g. Chase, Escape, Crossfire and Wait for Breakfast (Fig. 1), the SA-
MCTS agents significantly improve the win rate. These four games are detailed
below.

(a) Level 0 of Chase. (b) Level 0 of Escape.

(c) Level 0 of Crossfire. (d) Level 0 of Wait for Breakfast.

Fig. 1. Screenshots of game screen of Chase, Escape, Crossfire and Wait for Breakfast.

Chase. (Figure 1(a)) The player must chase and kill scared goats that flee from
the player. A dead goat turns to a corpse immediately and the player gains 1
point as score. A goat becomes angry as soon as it finds another goat’s corpse,
and starts to chase the player. The player wins the game if all scared goats are
dead, but it will lose one point and loses the game immediately if is caught by
an angry goat. The game is very difficult as an angry goat will never turn back
to a normal one, and by default the game ends with a loss of the player after
running 2, 000 game ticks. Thus, once a goat becomes angry, it will inevitably
lead to a lost game for the player, but this negative reward is delayed until the
end of the game. In our context, the game rules are not given to the agent,
so the agent will not be aware of the defeat until being caught or after 2, 000
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game ticks. The baseline agent, sampleMCTS only wins 32 games out of 500,
while the SA-MCTS agents win at least 72 games.

Escape. (Figure 1(b)) It is a puzzle game with wide search space and required
long-term planning. The player (rat) wins the game by taking the cheese. The
player’s score is 1 if it wins, -1 otherwise. Sometimes, the player needs to push
a block into a hole in order to clear a path to the cheese. Each of the 3 on-line
tuning agents greatly improves the win rate (at least 22 times higher) compared
to the baseline agent, in particular, SA-MCTSNEA, increases the win rate from
0.2% to 13.0%. In a similar tested puzzle game Bait, the player needs to push a
block to fill a hole in order to build a path to the cheese. Interestingly, the win
rate on Bait is not that highly improved, though some significant improvements
have been observed.

Crossfire. (Figure 1(c)) The player wins the game if it reaches the exit door
without being hit by any shell and gets 5 as game score. Once the player is hit
by a shell, the game ends immediately with a loss of the player and −1 as game
score. The win rates achieved by the SA-MCTS agents are at least 2 times higher
than the one by the baseline agent.

Wait for Breakfast. (Figure 1(d)) In this game, all tables are empty when the
game starts, a waiter (NPC in black in Fig. 1(d)) serves a breakfast to the table
with only one chair at a random time. The player (avatar in green in Fig. 1(d))
wins the game only if it sits on the chair on the table after the breakfast is served,
otherwise (taking a wrong chair or taking the right chair before the breakfast
is served), it loses the game. When the waiter serves the breakfast is defined
as: at any game tick, if no breakfast is served yet, the waiter serves a breakfast
with probability 0.05; the waiter serves at most one breakfast during a whole
game playing. The probability of no breakfast has been served 10 game ticks
after starting a game is 0.0510 = 9.7656e−14. This game can be considered as
a deterministic game. The win rate is significantly improved by all the 3 SA-
MCTS agents, among which SA-MCTSNEA increases the win rate from 15.4%
to 44.0%.

For reference, the average of median numbers of iterations per game tick for
all tested agents are given in Table 3. Note that during one iteration of any of
the agents, the forward model is called multiple times.

The most visited combination of the UCB1 exploration factor K and the
maximum play-out depth D per game (over 500 runs) for each of the SA-MCTS
agents are extracted and listed in Table 4. Surprisingly, the most used play-out
depth is 1. The SA-MCTS agents prefers the averaged instant reward than the
averaged long-term reward. A possible reason is the heuristic (Eq. 2) used by the
agents. Assuming an MCTS agent with maximum play-out depth 10, even for
a deterministic game, the number of possible game states after a play-out can
increase at most exponentially, the reward after a play-out can vary between a
large range due to the same reason. If it is a loss after a play-out, then the average
reward obtained by the parameter combinations with D = 10 will decrease a lot
due to the 10, 000, 000.0 penalty in score; if it is a win, then the average reward
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Table 3. Average median number of iterations per tick for the sampleMCTS agent
and the SA-MCTS agents. The number of forward model calls per iteration depends
on the tuner and is sometimes not a constant. For space reasons, headers have been
shortened as follows: SA-MCTSNMC = NMC, SA-MCTSEA = EA, SA-MCTSNEA =
NEA.

Games sampleMCTS NMC EA NEA Games sampleMCTS NMC EA NEA

Aliens 35.16 41.80 25.46 50.46 Infection 23.77 25.50 21.24 23.72

Bait 70.83 123.71 86.88 154.77 Intersection 35.66 46.83 68.96 39.93

Butterflies 26.97 29.54 24.01 29.32 Lemmings 22.24 36.57 69.07 62.04

Camel Race 21.88 24.55 24.55 24.55 Missile

Command

39.08 43.12 52.30 43.78

Chase 29.33 37.49 36.98 45.46 Modality 96.49 104.80 108.51 103.09

Chopper 17.30 22.60 23.63 50.71 Plaque Attack 15.92 18.43 14.75 17.70

Crossfire 19.55 33.68 45.74 52.46 Roguelike 15.45 19.54 20.96 27.61

Dig Dug 14.17 20.24 25.25 34.21 Sea Quest 34.25 45.47 28.55 79.28

Escape 37.75 69.86 96.02 119.70 Survive

Zombies

18.43 30.80 47.85 53.12

Hungry Birds 46.37 50.56 52.34 51.32 Wait for

Breakfast

83.96 106.30 158.73 178.17

Table 4. Most visited combination of parameters per game for each of the SA-MCTS
agents. Parameter combination are expressed with the format [K,D]. K refers to the
UCB1 exploration factor and D is the maximum play-out depth.

Games NMC EA NEA Games NMC EA NEA

Aliens [1.4, 1.0] [0.6, 15.0] [0.6, 1.0] Infection [1.8, 2.0] [0.6, 15.0] [2.0, 15.0]

Bait [1.1, 1.0] [0.7, 1.0] [0.7, 1.0] Intersection [1.3, 1.0] [0.7, 1.0] [1.2, 15.0]

Butterflies [1.3, 3.0] [0.6, 15.0] [1.6, 13.0] Lemmings [0.6, 1.0] [0.6, 1.0] [0.6, 1.0]

Camel Race [1.8, 1.0] [2.0, 4.0] [1.4, 14.0] Missile Command [0.6, 12.0] [0.7, 1.0] [0.8, 15.0]

Chase [0.7, 1.0] [0.6, 1.0] [0.7, 1.0] Modality [1.1, 1.0] [1.0, 4.0] [0.8, 13.0]

Chopper [0.6, 1.0] [0.7, 1.0] [0.8, 1.0] Plaque Attack [0.8, 4.0] [0.7, 15.0] [0.7, 15.0]

Crossfire [0.7, 1.0] [0.6, 1.0] [0.7, 1.0] Roguelike [0.8, 1.0] [0.6, 1.0] [0.7, 1.0]

Dig Dug [0.7, 1.0] [0.7, 1.0] [0.6, 1.0] Sea Quest [0.6, 1.0] [0.6, 15.0] [1.0, 1.0]

Escape [1.1, 1.0] [0.6, 1.0] [0.6, 1.0] Survive Zombies [0.7, 1.0] [0.6, 1.0] [0.7, 1.0]

Hungry Birds [1.4, 13.0] [2.0, 1.0] [1.0, 1.0] Wait for Breakfast [1.0, 1.0] [1.0, 1.0] [0.7, 1.0]

will increase thanks to the 10, 000, 000.0 award in score. In the games where
a SA-MCTS agent gets a very low win rate, the parameter combinations with
D = 10 are more likely to have an overall low average reward and prefer a lower
maximum play-out depth D, whereas in the games where a SA-MCTS agent
gets a high win rate, the parameter combinations with higher D are favorable.
For instance, in the game Plaque Attack, all agents achieve a win rate higher
than 90%, the most visited maximum play-out depth D is 4, 15, and 15 for
SA-MCTSNMC , SA-MCTSEA and SA-MCTSNEA respectively.
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Table 5. Average win rate (%) and average game score over 5 levels for the sampleM-
CTS agent with default parameter values and the sampleMCTS agents with the most
visited combination per game by each of the SA-MCTS agents. The best values are in
bold.

(a) Average win rate (%) over 5 levels for each game

Games sampleMCTS instanceNMC instanceEA instanceNEA

Aliens 100.0(±0.00) 68.0(±4.09) 100.0(±0.00) 69.6(±4.04)

Bait 6.6(±2.18) 4.2(±1.76) 3.6(±1.63) 3.6(±1.63)

Butterflies 95.2(±1.88) 93.0(±2.24) 95.4(±1.84) 95.0(±1.91)

Camel Race 4.2(±1.76) 3.8(±1.68) 6.0(±2.08) 4.2(±1.76)

Chase 3.2(±1.54) 6.2(±2.12) 7.4(±2.30) 6.2(±2.12)

Chopper 91.4(±2.46) 0.0(±0.00) 0.0(±0.00) 0.2(±0.39)

Crossfire 4.2(±1.76) 9.8(±2.61) 9.2(±2.54) 9.8(±2.61)

Dig Dug 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Escape 0.2(±0.39) 29.4(±4.00) 30.8(±4.05) 30.8(±4.05)

Hungry Birds 5.4(±1.98) 5.0(±1.91) 1.4(±1.03) 2.8(±1.45)

Infection 97.0(±1.50) 97.2(±1.45) 97.8(±1.29) 96.6(±1.59)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)

Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Missile Command 60.4(±4.29) 64.2(±4.21) 31.8(±4.09) 64.2(±4.21)

Modality 27.0(±3.90) 16.0(±3.22) 25.4(±3.82) 27.2(±3.90)

Plaque Attack 91.8(±2.41) 67.2(±4.12) 96.0(±1.72) 96.0(±1.72)

Roguelike 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

Sea Quest 55.0(±4.37) 18.2(±3.39) 58.4(±4.32) 18.2(±3.39)

Survive Zombies 41.0(±4.32) 28.8(±3.97) 25.4(±3.82) 28.8(±3.97)

Wait for Breakfast 15.4(±3.17) 60.8(±4.28) 60.8(±4.28) 60.2(±4.29)

Avg Win% 39.9(±0.96) 33.6(±0.93) 37.5(±0.95) 35.7(±0.94)

(b) Average score over 5 levels for each game. Note that in GVGAI, wining a game with low

score is higher ranked than losing a game with a high score

Games sampleMCTS instanceNMC instanceEA instanceNEA

Aliens 67.8(±1.27) 55.9(±0.90) 64.1(±1.16) 55.8(±0.96)

Bait 2.6(±0.27) 3.0(±0.40) 3.1(±0.41) 3.1(±0.41)

Butterflies 30.3(±1.34) 31.1(±1.30) 30.7(±1.29) 30.8(±1.31)

Camel Race −0.8(±0.05) −0.8(±0.04) −0.7(±0.05) −0.8(±0.05)

Chase 2.7(±0.18) 2.7(±0.20) 3.0(±0.20) 2.7(±0.20)

Chopper 11.4(±0.55) −10.6(±0.33) −10.8(±0.34) −10.8(±0.33)

Crossfire 0.1(±0.09) −0.3(±0.15) −0.3(±0.15) −0.3(±0.15)

Dig Dug 11.2(±0.79) 4.9(±0.53) 4.9(±0.53) 4.9(±0.52)

Escape 0.0(±0.00) 0.3(±0.04) 0.3(±0.04) 0.3(±0.04)

Hungry Birds 7.4(±2.09) 6.7(±2.01) 2.0(±1.10) 3.0(±1.47)

Infection 14.3(±0.71) 12.7(±0.65) 14.0(±0.70) 12.9(±0.62)

Intersection 1.0(±0.00) 6.4(±0.64) 6.6(±0.63) 1.0(±0.00)

Lemmings −3.5(±0.30) −0.1(±0.03) −0.1(±0.03) −0.1(±0.03)

Missile Command 4.4(±0.44) 4.5(±0.44) 0.7(±0.33) 4.6(±0.46)

Modality 0.3(±0.04) 0.2(±0.03) 0.3(±0.04) 0.3(±0.04)

Plaque Attack 46.9(±1.64) 31.4(±1.36) 52.6(±1.59) 52.6(±1.59)

Roguelike 3.5(±0.41) 1.8(±0.28) 1.6(±0.26) 1.7(±0.29)

Sea Quest 1734.6(±169.97) 591.2(±98.53) 1891.8(±177.09) 583.7(±95.36)

Survive Zombies 2.6(±0.30) 2.0(±0.29) 1.8(±0.28) 2.0(±0.29)

Wait for Breakfast 0.2(±0.03) 0.6(±0.04) 0.6(±0.04) 0.6(±0.04)

Avg Score 96.8(±11.25) 37.2(±5.53) 103.3(±11.96) 37.4(±5.37)



372 C. F. Sironi et al.

5.2 On-line Tuning Validation

The most visited parameter combinations during learning are set to the sam-
pleMCTS and tested on the same set of games. The parameters are fixed during
game playing, so no more tuning happened. We denote these instances of sam-
pleMCTS as instanceNMC , instanceEA and instanceNEA. The average win rate
and average final score for the sampleMCTS agent with default parameter val-
ues and the sampleMCTS instances, sampleMCTS agents with the most visited
combination per game by each of the SA-MCTS agents (cf. Table 4) are presented
in Table 5a and b, respectively.

In the game Escape (Fig. 1(b)), the win rate is significantly improved from
0.2% (baseline agent) to 30.8% by the instanceNEA with parameters tuned by
NEA, while the highest win rate of on-line tuning agents is 13.0% by sam-
pleMCTSNEA (shown in Table 2). In the game Wait for Breakfast (Fig. 1(d)),
the win rate is significantly improved from 15.4% (baseline) to 60.8% by the
instanceNMC and instanceEA, while the highest win rate obtained by the on-
line tuning agents is 44.0% by sampleMCTSNEA (shown in Table 2). However,
some instances with constant parameter values performed much worse than the
baseline agent in some games. For instance, in the game Aliens, the baseline agent
(D = 10) and instanceEA (D = 15) win all the games, while instanceNMC and
instanceNEA win ∼ 68% games due to the maximum play-out depth D = 1. The
same scenarios happen in the games Sea Quest and Survive Zombies. Due to the
maximum play-out depth D = 1, instanceNMC , instanceEA and instanceNEA

lose more often the puzzle game Bait and lose almost all the 500 runs of Chopper.
Our SA-MCTS agents are more robust than the non-SA MCTS instances with
constant parameter values.

6 Conclusion and Future Work

General Video Game Playing has attracted interest from researchers during the
last years. On-line tuning an agent for GVGP provides more adaptive and robust
agents, however, it is rather difficult due to the real-time setting. In this paper,
we have incorporated three different algorithms, Näıve Monte-Carlo, the Evolu-
tionary Algorithm, and N-Tuple Bandit Evolutionary Algorithm, to tune on-line
the sampleMCTS agent in the GVGAI framework and create three Self-Adaptive
MCTS (SA-MCTS) agents. The SA-MCTS agents have been compared to the
baseline MCTS agent, sampleMCTS, on 20 single-player GVGAI games. The SA-
MCTS agents perform similarly to the sampleMCTS on the games that sam-
pleMCTS performs well, and significantly improve the win rate in the games
that sampleMCTS perform poorly. The SA-MCTS agents achieve more robust
results on the tested games. Additionally, the sampleMCTS instances using most
sampled parameter settings by each of the three SA-MCTS agents per game
improve the win rate on Wait for Breakfast and Escape by 4 times and 150 times,
respectively.

The approaches used in this paper and the tested tuning strategies have been
a success in GVGAI, in particular the tuning strategy NMC has also obtained
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promising results in GGP. On-line agent tuning for GVGP is important because
successful approaches can rapidly improve and specialize the general abilities
of the agents, leading to better performance across a wide range of games.
The research has application outside of games to any problem that has a fast
simulation model and requires rapid and adaptive decision making.

This work can be extended in different directions. Applying the SA-MCTS
agents for playing 2-player GVGAI games, where the time limit remains 40ms,
will be interesting. The heuristic (Eq. 2) of sampleMCTS is directly used as
the reward for tuners. The preference of maximum play-out depth 1 encourages
us to explore a better reward function for the tuners. In this paper, we focus
on the discrete search space, the search space of the UCB1 exploration factor
is discretized by being uniformly sampled within a range using a fixed gap,
though that was just an experimental design choice: all algorithms under test
can work with any selection of parameter choices. An interesting future work is
applying continuous parameter tuning using Evolutionary Strategies (ES), such
as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which does
not rely on the assumption of smooth problem. Another work in the future is
tuning a more advanced agent possibly with more parameters to be tuned. A
potentially good choice is the winner agent of the 2016 GVGAI Single-Player
Planing Championship, MaastCTS2 [16], which is also MCTS-based. There is
also much work to be done in tuning the play-out policy. A particular challenge
is to deal more efficiently with flat reward landscapes using methods that seek
diverse points in the (game) state space in the absence of any differences in the
explicit reward (e.g. Novelty Search). Tuning a non-MCTS-based agent, such as
an Rolling Horizon Evolutionary Algorithm, will be interesting and challenging
due to the real-time control in evaluating a population. In general, agents with
more parameters to be optimized will provide a more challenging test for the
sample efficiency of the tuning methods.
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