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Abstract. This work aims at comparing different many-objective techniques
for the optimization of mission and parallel hybrid electric power system for
aircraft. In particular, this work considers, as input of the optimization, the
specification of the flight mission, the size of the main components and the
energy management strategy for a Medium Altitude Long Endurance Unmanned
Aerial Vehicle (MALE-UAV). The goals of the optimization are maximization
of electric endurance, minimization of overall fuel consumption, improvement
of take-off performance and minimization of the additional volume of the hybrid
electric solution with respect to the initial conventional power system. The
optimization methods considered in this study are those included in the Mod-
eFRONTIER optimization environment: NSGA-II, MOGA-II, MOSA (Multi
Objective Simulated Annealing algorithm) and Evolutionary Strategy of type
(µ/q + k)-ES. Initially, appropriate metrics are used to compare the proposed
methods in a simplified problem with only two objective functions. Then a
complete optimization is performed, in order to underline the degradation of the
proposed optimization methods as the size of the problem increases and to
define the best method according to the number of objective functions.

Keywords: Many-objective optimization � Evolutionary algorithms
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1 Introduction

Thanks to the superior energy density of hydrocarbon fuels, internal combustion
engines, in particular gas turbines, are the favorite technology in the aircraft propulsion
field. However, engines have a lower efficiency and power-to-weight ratio when
compared to electric motors. Hence, hybrid-electric propulsion systems have been
proposed to take advantage of the synergy between engines and motors and to improve
the overall fuel economy.

Since the late 1990s, a series of theoretical, experimental and commercial activities
have focused on electric and hybrid electric power systems, initially only for secondary
power (more-electric aircraft) but recently also for propulsion. A good review can be
found in [1] however, the literature in this field is getting richer and richer in the recent
years. Electric aircraft uses a battery-motor system to move the propellers instead of a
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conventional thermal engine. Because of the limited energy density of batteries with
respect to fossil fuel, the range of this kind of aircraft is quite low but so it is also its
environmental impact. Hybrid electric aircraft exploits the advantages of both energy
sources and converters. When the power request is very high, typically takeoff and first
climb, the engine is helped by the battery through the electric machine that works as a
motor. When the power request is low, i.e. in descent, the excess power of the engine
can be used to charge the battery by using the electric machine as a generator. Some
parts of the flight can also be performed in electric mode. The choice among the
different operating mode is the so-called energy management strategy.

The design of a hybrid electric power system requires a complex optimization
procedure because its performance will strongly depend on both the size of the com-
ponents and the energy management strategy. The problem is particularly critical in the
aircraft field because of the strong constraints in terms of weight and volume and of the
necessity of adapting the flight specifications (altitude and speed) to the performance of
the propulsion system. In the present investigation, the problem is addressed by linking
an in-house code for the simulation of hybrid electric power systems with a commercial
many-objective optimization software, namely Esteco ModeFRONTIER.

Real-world engineering design problems often involve the satisfaction of multiple
performance indexes and, contemporarily, the respect of some constraints on the design
variables. Automotive and aerospace, in particular, provide many examples of design
challenges involving a large number of objectives (or goals) like that considered in this
investigation.

When the functions to be optimized are more than one, a problem is named
“multi-objective”, if they are more than three, it is called “many-objective optimiza-
tion” [2–5]. In the study of Li et al. [3], a survey of many-objective evolution algo-
rithms (MaOEAs) is conducted. They are categorized into seven classes: relaxed
dominance based, diversity-based, aggregation-based, indicator-based, reference set
based, preference-based, and dimensionality reduction approaches.

In the industrial design, the role of multi- and many- objective optimization is more
and more relevant, because the increasing computing power of modern computers
provides designers with the ability of building complex parametric models that can be
used to realize automatic optimization procedures. However, commercial optimization
tools are often used without a deep knowledge of their behavior and in particular of
their loss of performance when increasing the complexity of the problem [2].

Multi-objective optimization methods can be classified in aggregating methods
(classical approach, with weighted or utility functions) and non-aggregating methods
(classification of the population based on Pareto dominance). The concept of Pareto
dominance or Pareto-optimal solution (2,3) is based on the identification of
non-dominated solutions.

ft �xj
� �� ft �xið Þ 8t ¼ 1; � � � ; k 8 j ¼ 1; � � � ;m 6¼ i ð1Þ

ft �xj
� �� ft �xið Þ for at least one t 8 j ð2Þ

The set of all non-dominated solutions is called Pareto-front and is the final aim of
any multi-objective optimization. Theoretically, a Pareto-front can contain a potentially
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infinite number of optimal solutions. The task of a multi-objective optimizer is to
provide to the decision-maker a trade-off surface as near as possible to the real one. The
set of solutions generated by the optimizer is an approximation set and is characterized
by different qualities: proximity or convergence, diversity and pertinence [4].

Convergence refers to finding a set of solutions that lie on or close to the true
Pareto-optimal front. Diversity refers to finding a set of solutions that are diverse enough
to represent the entire range of the Pareto-optimal front. Diversity is important because
the approximation set should contain a good distribution of solutions, in terms of both
extent and uniformity. Pertinence means that this set should only contain solutions in the
decision maker’s (DM) region of interest (ROI). In practice, and especially as the
number of objectives increases, the DM is interested only in a sub-region of objective
space. Thus, there is little benefit in defining trade-off regions that lie outside the ROI.
Focusing on pertinent areas of the search space helps to improve optimizer efficiency
and reduces unnecessary information that the DM would otherwise have to consider.

The performance of optimization methods with respect to the quality of the Pareto
front for multi- and many-objective optimization is usually tested over mathematical
problems [5]. In the present investigation, on the contrary, four different methods are
compared with reference to a real-world engineering problem in the aircraft field. As
already explained, the algorithms already implemented in the ModeFRONTIER
environment were considered without changing their parameters. This commercial
software was chosen because it is very user-friendly. Moreover, it allows a clear
representation of the overall results of the optimization and an easy choice of the final
configuration. On the other hand, as any other commercial software, it does not perform
measurements of the performance of the optimization algorithm. In this work, the
comparison of four optimization methods will be accomplished with the help of several
performance metrics retrieved in literature and applied to the results of the Mode-
FRONTIER software after appropriate handlings.

1.1 Evolutionary Methods

The term evolutionary algorithm (EA) indicates a class of stochastic optimization
methods that simulate the process of natural evolution. Based on the concepts of
individuals, population, generation, selection and variation, natural evolution is sim-
ulated by an iterative computation process that is usually ended when a predefined
maximum number of generations is reached. Other stop conditions, e.g., stagnation in
the population or existence of an individual with sufficient quality, can be used to end
the optimization.

Here follows a short description of the optimization methods implemented in
modeFRONTIER and compared in the present investigation. NSGA-II is a fast and
elitist multi-objective evolutionary algorithm. Its main features are: a fast
non-dominated sorting procedure, the implementation of elitism, a parameter-less
diversity preservation mechanism, a modified definition of dominance used to solve
constrained multi-objective problems and the possibility to handle both continuous
(“real-coded”) and discrete (“binary-coded”) design variables [7]. MOGA-II is an
multi-objective genetic algorithm that uses a smart multi-search elitism. This elitism
operator is able to preserve excellent solutions without bringing premature convergence
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to local-optimal frontiers [7]. Evolution strategies are characterized by the following
four properties: selection of individuals for recombination is unbiased, selection is a
deterministic process, mutation operators are parameterized and therefore they can
change their properties during optimization and individuals consist of decision
parameters as well as strategy parameters. The standard notation of these methods is
(µ/q +, k)-ES; where k is the number of off-springs generated by q parents at each step,
µ parents are overall involved at each step [8]. MOSA is based on the well-known work
of Kirkpatrick et al. (1983) [9] about Simulated Annealing (SA). In contrast with the
original SA which is a single objective optimization method, MOSA is a genuine
multi-objective optimization algorithm.

Despite their simplicity, EAs have proven themselves as a general, robust and
powerful search mechanism for single and multi-objective optimizations also thanks to
their ability to capture multiple Pareto-optimal solutions in a single simulation run. For
this reason, they are extensively used in engineering applications.

However, EMOAs scalability to many-objective problems is critical. In particular, a
deterioration of the search ability of Pareto dominance based EMO algorithms such as
NSGA-II, an exponential increase in the number of solutions required for approxi-
mating the entire Pareto-front and a difficulty of the visualization of solutions are
reported in literature. In the study of Ishibuchi et al. [6] the above mentioned difficulties
are reviewed and demonstrated. In the present investigation, they will be addressed
with reference to real world optimization problems.

2 The Optimization Problem

In this study, the optimization of both the hybrid electric power system for a Medium
Altitude Long Endurance Unmanned Aerial Vehicle (MALE-UAV) similar to the
General Atomics Predator RQ-1 and its mission specification is considered.

The UAV has an aspect ratio (b2=S) equal to 19.1 and a wing load W0=S ¼
818:1 N=m2 (where b is the wing span, S the wing area andW0 the takeoff weight). The
aircraft is modelled with an in-house simulation software named PLA.N.E.S. [10]. The
time histories of speed (V) and altitude (z) are used to perform, at any time step, the
balance of the forces acting on the aircraft in the lift (L) and drag (D) directions. The
thrust obtained from balance of forces is used to calculate the thrust power (THP) to be
generated by the propeller that is connected to a planetary gear box. The gear box is
used to perform the power-split between the engine and the electric machine.

As in all hybrid power systems, two energy sources are used. At any time step, a
supervisory controller has to decide among the following operational modes:

1. Thermal, the engine produces all the power required by the propeller (m = 1);
2. Electric, the propeller shaft power is generated by the motor using the battery as

only energy source (m = 2);
3. Charging, the engine generates the power to move the propeller and to charge the

battery while the electric motor works as a generator (m = 3);
4. Power-split, both the engine and the motor generate mechanical power that is

delivered to the propeller (m = 4).
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Where m is a design parameter to be optimized during flight, (see Sect. 2.1).
In the present investigation, the following rule-base strategy is used. Mode 1 is used

when the batteries’ State of the Charge (SOC) is below a limit (SOCmin) and the
engine is not able to charge the batteries. Mode 2 is used when the SOC is above the
SOCmin and the electric drive is able to sustain the flight without the usage of the
engine. In the case of modes 3 and 4, there is a further degree of freedom in the amount
of power to be generated by the engine. The outputs of the supervisory control strategy
are the current to/from the electrochemical storage system speed and torque of the
engine. The electric power is assumed to be negative when the battery is in charge. The
battery state of charge is allowed to vary between 20% and 90% to optimize the battery
life [11]. The gearbox is modelled as a simple mechanical power split device with a
mass of 20 kg and a efficiency of 0.9. In addition, the propeller is modeled as a black
box with the following values of efficiency: 0.65, 0.7 and 0.8 at takeoff, climb/descent
and cruise, respectively. The mass of the propeller is also assumed constant for all the
designs.

Scaling methods are considered for the most critical components of the hybrid
power system, namely the engine, the motor and the battery. The scalable models used
for the engine and the battery are described in [12].

2.1 Inputs of the Optimization

The UAV mission optimization is run starting from a typical mission profile of Predator
RQ-1 shown in Fig. 1.

In particular, an in-house code was written to build a mission profile with the same
phases of the real one, starting from inputs of Table 1. These inputs will be optimized
together with some parameters concerning the design and the control of the hybrid
electric power system, which are listed in Table 2.

The UAV flight mission is composed by these phases: take-off, two phases of climb
characterized by different rates of climb, cruise, loiter, descent and landing. The starting

Fig. 1. A typical mission profile of Predator RQ-1

Many-Objective Optimization 235



values of the mission parameters for the optimization are obtained by the real mission
of Fig. 1. The mission requirements are represented by the cruise range (926 km) and
the loiter endurance (24 h).

2.2 Optimization Methods and Goals

The proposed optimization methods (NSGA-II, MOGA-II, MOSA and Evolutionary
Strategy) are applied to two optimization problems, which differentiate for:

– the number of objective functions: two for simplified optimizations (multi-objective)
and four for complete optimizations (many-objective), with the same aim of opti-
mizing the hybrid electric power system of Predator RQ-1 UAV and its mission;

– the number of total design evaluated: 2500 for simplified optimizations, 10000 for
complete optimizations.

In the complete optimization, the objective functions are electric endurance, overall
fuel consumption, additional volume and take-off field length. In the simplified opti-
mization, only electric endurance and overall fuel consumption are considered.
Objective functions are scaled with respect to reference values of a baseline non-hybrid
power system and modified so that all of them had to be maximize.

Evolution strategy method has: µ = 50 q = 2 and k = 5 in the simplified opti-
mizations, µ = 100 q = 2 and k = 10 in the simplified optimizations.

Table 1. Design parameters related to the UAV mission

Description Unit Min Max Step

Cruise speed m/s 41.0 61.0 0.5
Cruise altitude m 4900 6900 100
Loiter speed m/s 37.0 57.0 0.5
Loiter altitude m 6950 7450 25
Altitude of rate of climb switch m 2300 3300 25
Rate of climb of the first part of the climb m/s 0.224 0.424 0.05
Rate of climb of the second part of the climb m/s 0.224 0.424 0.05
Rate of descent m/s 0.144 0.344 0.01
Climb energy mode – 1 4 1

Table 2. Design parameters concerning the sizing and the energy management

Parameters Unit Min Max Step

Nominal Engine power kW 40 160 2
Battery elements in series 50 100 1
Battery nominal capacity (C) Ah 20 150 2
Battery typology 3 5 1
Discharge current C 0.5 20 0.1
Recharge current C 0.1 1 0.01

236 T. Donateo et al.



3 Performance Analysis

Over the years, various performance indexes have been proposed in literature for multi-
and many-objective optimizations. In this study, the first three metrics suggested by
Riquelme et al. [13] are used to compare the different methods:

– hypervolume (or S-metric): based on the estimation of the hypervolume dominated
by the approximated Pareto-front set and bounded by the reference point
(percentage);

– generational distance (GD): indicates how far approximated Pareto-front is from
the real one;

– inverted generational distance (IGD): similar to GD, it calculates the minimum
distance by using real Pareto-front as reference instead of the approximation set.

In addition, the following parameters are also considered [14, 15]:

– average distance (Davg) between neighboring vectors of Pareto-front;
– distance variance (Var) between neighboring vectors of Pareto-front;
– number of non-dominated solutions or Pareto-optimal solutions (NNS);
– percentage of solutions of Pareto-front A dominated by Pareto-front B, C(A,B);
– maximum sum of the objective values (MaxSum): for each generation G, the max-

imum sum of the objective values is calculated as follows:

MaxSum Gð Þ ¼ max
XK

i¼1

fi xð Þ with x �G

where K is the number of objective functions, this measure evaluates convergence of
solutions toward the Pareto-front around its center region;

– sum of the maximum objective values (SumMax): the sum of the maximum objective
value of each objective is calculated in each generation, G, as follows:

SumMax Gð Þ ¼
XK

i¼1

maxfi xð Þ with x �G

it evaluates convergence of solutions toward the Pareto-front around its K edges;

– sum of the ranges of the objective values (Range): the sum of the range of objective
values for each objective is calculated in each generation G as follows.

Range Gð Þ ¼
XK

i¼1

max fi xð Þf g � min fi xð Þf g½ � with x �G

this measure evaluates diversity of solutions in the objective space.
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3.1 Results of the Simplified Problem

The simplified optimization is run by using the above-mentioned optimization methods
with the same starting population (or Design of Experiment, DOE) for each of them.
Optimizations are deliberately performed with standard set of parameters proposed by
modeFRONTIER guide for each method, except for Evolutionary Strategy. In fact, the
latter needs particular settings in order to obtain a number of total evaluated design
equal to that of the other methods.

Figure 2 compares the Pareto fronts found with the different methods, while
Tables 3 and 4 shows the values of the proposed metrics. In particular, Fig. 2a shows
the comparison of Pareto fronts from a qualitative point of view. The overall best
Pareto-front shown this figure is obtained by merging the Pareto-optimal solutions
found by all methods. In the simplified case, it corresponds in part to NSGA-II’s
Pareto-front and in part to MOGA-II’s Pareto-front. Note that:

– NSGA-II is the best method in terms of number of Pareto-optimal solutions
non-dominated by fronts of the other methods; it also is characterized by a good
definition;

Fig. 2. Results of the simplified problem
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– Although MOGA-II is dominated by NSGA-II in the first part of the graph and has
a lower definition, it is able to explore regions where other methods fail;

– Results of MOSA and Evolutionary Strategy are dominated by the Pareto-fronts of
both NSGA-II and MOGA-II;

– Evolutionary Strategy is the best method both in terms of number of non-dominated
solutions and in terms of distance between them in the first part of the graph. In fact,
the distance is lower and more regular then that of the other methods. This indicates
a better Pareto-front definition and distribution compared to the other methods (see
also the best values of indexes n_NNS, Davg and Var in Table 4).

In Table 3 the best method for each metric is highlighted in grey. Note that
MOGA-II is characterized by the minimum values of GD and IGD. This means that its
approximation set is the closest to the overall best Pareto-front. Moreover, it has the
best value of hypervolume (hv), so Pareto-optimal solutions from MOGA-II cover the
largest region in the space of solutions. As already pointed out, Evolutionary Strategy
is characterized by the best values of n_NNS, Var and Davg, which indicate a better
definition of Pareto-front.

Table 4 shows a comparison of the Pareto-fronts in terms of percentage of
Pareto-front A dominated by Pareto-front B. It is possible to observe that NSGA-II has
the lowest percentage of dominated solutions. This is probably because its Pareto-front
dominates the other methods in a part of the graph of Fig. 2a (in fact, MOGA-II has
this characteristic too), but also because NSGA-II has a higher number of
non-dominated solutions compared to MOGA-II thanks to its better definition.

Table 3. Absolute metrics (simplified problem)

Parameter MOGA-II NSGA-II MOSA EV. STR.

n_NNS 16 25 14 29

Davg 0.0253 0.0082 0.0102 0.0062

Var 7.8287e-04 6.0694e-05 5.1337e-05 3.2478e-05

GD 0.0024 0.0060 0.0101 0.0122

IGD 0 0 0.0031 0.0032

hv ≈0.9190 ≈0.7460 ≈0.6410 ≈0.5920

Table 4. Relative metrics (simplified problem)

C(A,B) B
A MOGA-II NSGA-II MOSA EV. STR. OVERALL

MOGA-II – 37.5% 0% 0% 37.5%
NSGA-II 32% – 0% 0% 32%
MOSA 100% 100% – 29% 100%
EV. STR. 100% 100% 55% – 100%
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Figure 2b, c and d respectively show comparison of MaxSum, SumMax and Range
of the different methods. Figure 2b shows that MOSA converges faster than the other
methods and Evolutionary Strategy is characterized by the slowest convergence.
But MOGAII first and then NSGA-II move to and reach higher values.

Figure 2c shows a gradual improvement of SumMax parameter during the exe-
cution of all methods, this suggests a difficulty in finding a set of non-dominated
solutions that covers the entire real Pareto-front within a small number of generations;
however, the steepest positive trend (so the best) is that of MOGA-II. Figure 2d shows
that MOGA-II is characterized by the best capability of exploring the space of solu-
tions, this is also confirmed by Fig. 2a, as above stated. Finally, MOGA-II finds the
highest percentage of real and feasible design. From this point of view, NSGA-II is
second, Evolutionary Strategy third and MOSA the worst.

According to these considerations, MOGA-II can be said to be the best method for
the optimization problem with only two objective functions.

3.2 Results of the Complete Problem (Many-Objective Optimization)

A complete optimization is run by using the same optimization methods used for the
simplified problem, with same initial population. Like in the simplified case, opti-
mizations with NSGA-II, MOGA-II, MOSA and Evolutionary Strategy are deliberately
performed with the values of parameters proposed by ModeFRONTIER manual,
except for Evolutionary Strategy. By using these settings, Evolutionary Strategy
evaluates 12753 designs, but only the first 10000 are considered in order to compare
methods over the same number of evaluations.

Figures 3 and 4 show the qualitative comparison of the methods. Again, the overall
best Pareto-front is approximated by individuating the Pareto-optimal solutions of the
set consisting of the designs evaluated by all the methods.

In Fig. 3a and b compares the Pareto fronts by representing the objective functions
in pairs. It is possible to observe that NSGA-II is able to explore regions that other

Fig. 3. Pareto fronts (complete problem)
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methods do not reach. Evolutionary Strategy is the best in terms of non-dominated
solutions and distance, but also MOGA-II and NSGA-II are characterized by a good
definition of the Pareto front. MOSA is again the worst. These considerations are
confirmed by the values of parameters n_NNS and Davg in Table 5.

Fig. 4. Results of the complete problem

Table 5. Absolute metrics (complete problem)

Parameter MOGA-II NSGA-II MOSA EV. STR.

n_NNS 3946 4204 1668 4871

Davg 0.0411 0.0413 0.0586 0.0405

Var 0.0051 0.0013 0.0022 7.6688e-04

GD 0.0270 0.0444 0.0288 0.0243

IGD 0 1.5701e-16 0 8.6736e-19 

hv ≈0.4230 ≈0.4640 ≈0.4190 ≈0.4050
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Evolutionary Strategy is characterized by the minimum value of GD, a value of
IGD very close to the best (8.6736e–19 � 0), the best values of n_NNS, a value of
Davg close to the best and the best value of Var. It is the approximation set closest to
the overall best Pareto-front. Moreover, it has a good definition and the best distri-
bution. NSGA-II is characterized by the maximum value of hypervolume (hv), i.e. its
Pareto-optimal solutions cover a larger region of the space of solutions (see Table 5,
where the best method for each metric is again highlighted in grey).

Table 6 shows a comparison of the methods in terms of percentage of solutions of
Pareto-front A dominated by Pareto-front B. It is possible to observe that NSGA-II has
the lowest percentage of dominated solutions when compared to the others.

Figure 4a, b and c report the trends of MaxSum, SumMax and Range for the
different methods. NSGA-II and Evolutionary Strategy converge faster than the other
methods and NSGA-II reaches the highest values of all indexes. Figure 4b shows an
almost flat trend for NSGA-II and Evolutionary Strategy and a decreasing tendency for
MOGA-II and MOSA. This suggests a difficulty in finding a set of non-dominated
solutions that covers the entire real Pareto-front within a small number of generations.
However, in terms of SumMax, NSGA-II and Evolutionary Strategy perform better
thanks to their non-negative trends. Figure 4c shows that NSGA-II is characterized by
the best capability of exploring the space of solutions as confirmed also by the analysis
of Fig. 3a.

Finally, NSGA-II finds the smallest percentage of errors and an acceptable per-
centage of unfeasible designs. On the contrary, MOSA shows a high number of errors,
but less unfeasible solutions. MOGA-II seems to be the best in terms of real and
feasible designs found in the optimization.

Thus, the best methods for the optimization problem with four objective functions
seem to be NSGA-II and Evolutionary Strategy. The first shows also a better relative
coverage (see Table 6); therefore, it should be preferred in this kind of applications.

4 Discussion of the Results

A comparison between simplified and complete optimizations is done in order to study
how the behavior of the different methods changes as the number of objective functions
increases.

Table 6. Relative metrics (complete problem)

C(A,B) B
A MOGA-II NSGA-II MOSA EV. STR. OVERALL

MOGA-II – 38% 7% 6% 28%
NSGA-II 4% – 5% 15% 18%
MOSA 27% 32% – 35.6% 50.1%
EV. STR. 24.8% 35.4% 8.1% – 35.6%
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Since the simplified optimizations evaluated 2500 total design, while the complete
optimizations evaluated 10000 total designs, only the first 2500 evaluated designs of
the latter are considered in this analysis. Moreover, the Pareto-fronts are first analyzed
with reference to the two objective functions of the simplified problem (Fig. 5). The
other two objectives are shown in Fig. 6.

Note that a better definition of the Pareto front for the first two functions is obtained
in the simplified problem. This is an obvious result because in the complete problem it
is necessary to find a compromise between more conflicting objectives. In fact, the
results related to the other two functions are very poor in the simplified problem
because they are not included in the optimization process (Fig. 6).

The percentages of Pareto-optimal solutions of the complete optimization dominated
by those from the simplified problem are: 93.3% for MOGA-II, 72.2% for NSGA-II,
80.0% for MOSA and 85.71% for Evolutionary Strategy. However, Fig. 5a confirms the
good performance of NSGA-II in a many-objective optimization. In fact, the complete
optimization with NSGA-II explores a region of the solutions space that is not found in
the simplified optimization. This also implies that not all Pareto-optimal solutions of the
complete problem are dominated by those of the simplified case. On the other hand,
Fig. 5d shows a similar behavior of Evolutionary Strategy in the two cases.

Fig. 5. Simplified versus complete optimization problems about electric endurance and fuel
consumption
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Comparison in terms of MaxSum, SumMax and Range, still referred to electric
endurance and fuel consumption, shows that in the complete optimization NSGA-II
converge slower, but moves to higher values. Moreover, NSGA-II is able to cover a
wider region of the overall best Pareto-front in the complete optimization, in fact the
trend of SumMax is still gradual but is steeper than that of the simplified optimization,
and has better capabilities of exploration in the complete optimization. It is possible to
observe the same for Evolution Strategy, while this is not true for MOGA-II. MOSA
converges faster in the complete optimization, but it shows worse search capability, so
it probably converges to local optimal solutions.

In modeFrontier, both NSGA-II and Evolution Strategy use non-dominated/
crowding distance sorting techniques [7], MOGA-II uses a multi-search elitism that
combines random selection and directional crossover [16], while search method of
MOSA is based on random perturbations of the points [17]. So, probably, as the
number of objective functions increases, the crowding distance sorting technique
allows a better search than the other methods.

A general worsening of the other parameters is found in the complete optimization,
except for the parameter of hypervolume. Since hypervolume is critical in this kind of
applications, the SMS-EMOA algorithm [18] will be considered as further investiga-
tion. Unlike modeFRONTIER codes, SMS-EMOA is written as an open source code.

a. NSGA-II b. MOGA-II

c. MOSA d. EV. STR.

Fig. 6. Simplified versus complete optimization problems about additional volume and take-off
length
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Therefore, it will be possible to better understand its mechanisms (for example, the
handling of unfeasible designs) and to introduce opportune changes.

Note that this work refers to a state-of-the-art real-world engineering problem.
A similar problem is addressed in [19] where the authors use the same optimization
environment in an optimization problem with four goals.

5 Conclusions

The present work compares the behaviors of different optimization methods in the
multi- and many- objective optimization of a parallel hybrid electric power systems for
aircraft. In particular, NSGA-II, MOGA-II, MOSA and Evolutionary Strategy
(µ/q + k)-ES methods have been applied to two optimization problems differentiating
for the number of total individuals analyzed and for the number of objective functions:
two for the simplified optimization (multi-objective) and four for the complete one
(many-objective). Both qualitative analyses of the Pareto fronts and quantitative per-
formance indexes are used for the comparison.

In this preliminary work, the authors deliberately considered only evolutionary
methods (EAs) available in the ModeFrontier platform and the default values of each of
their parameters, in order to test quality of solutions that can be obtained from a
commercial software by non-specialized users.

The results of this investigation show that MOGA-II is the best in the
multi-objective optimizations with only two objective functions, while NSGA-II per-
forms very well in the many-objective optimization. However, Evolution Strategy
shows interesting results in terms of definition and distribution of the Pareto-front in
both cases. On the other hand, the only non-evolutionary algorithm considered in the
investigation (i.e. MOSA) gives always the worst Pareto front. In addition, a general
worsening of the behavior of the optimization methods was found when shifting from
the multi- to the many-objective optimization. Optimization methods specifically
developed for many-objective problems will be considered as further investigation.

This work refers to a specific state-of-the-art real-world engineering problem.
Future works will include other EAs that will be tested both on benchmark problems
and on other real-world engineering problems in the aeronautical and space fields.

References

1. Pornet, C., Isikveren, A.T.: Conceptual design of hybrid-electric transport aircraft. Prog.
Aerosp. Sci. 79, 114–135 (2015)

2. Gimelli, A., Muccillo, M., Sannino, R.: Multivariable and multiobjective optimization for
cogeneration plants. Part A: methodology. In: La Termotecnica, pp. 55–58 (2015)

3. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM
Comput. Surv. 48(1), Article No. 13 (2015)

4. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering
design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO
2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31880-4_2

Many-Objective Optimization 245

http://dx.doi.org/10.1007/978-3-540-31880-4_2
http://dx.doi.org/10.1007/978-3-540-31880-4_2


5. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In:
Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS,
vol. 5252, pp. 373–404. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88908-3_14

6. Ishibuchi, H., Tsukamato, N., Nojima, Y.: Evolutionary many objective optimization: a short
review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, Hong Kong,
1–6 June 2008, pp. 2424–2431 (2008)

7. ModeFRONTIER 2014, Update 1, Version Number 4.6.1 b20150227, User Manual (2014)
8. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies a comprehensive introduction. Nat.

Comput. 1, 3–52 (2002)
9. Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
10. Donateo, T., Ficarella, A., Spedicato, L.: Development and validation of a software tool for

complex aircraft powertrains. Adv. Eng. Softw. 96, 1–13 (2016). https://doi.org/10.1016/j.
advengsoft.2016.01.001

11. Lam, L.L., Darling, R.B.: Determining the optimal discharge strategy for a lithium-ion
battery using a physics-based model. J. Power Sources 276, 195–202 (2015)

12. Donateo, T., Ficarella, A.: Designing a hybrid electric powertrain for an unmanned aircraft
with a commercial optimization software. SAE Int. J. Aerosp. 10, 1–12 (2017)

13. Riquelme, N., Lücken, C.V., Baran, B.: Performance metrics in multi-objective optimiza-
tion. In: Computing Conference (CLEI), Latin American (2015)

14. Donateo, T., De Risi, A., Laforgia, D.: Choosing an evolutionary algorithm to optimize
diesel engines. In: TCN CAE 2005, University of Lecce, Department of Engineering for
Innovation, Lecce, Italy (2011)

15. Lee, S., von Allmen, P., Fink, W., Petropoulos, A.E., Terrile, R.J.: Comparison of
multi-objective genetic algorithms in optimizing Q-law low-thrust orbit transfers. In:
GECCO 2005, 25–29 June 2005, Washington, DC, USA (2005)

16. Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for multi-objective
optimizations. In: 04461 - Practical Approaches to Multi-Objective Optimization (2005)

17. Rigoni, E.: MOSA Multi Objective Simulated Annealing. Technical report 2003-003,
ESTECO (2003)

18. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

19. Aksugur, M., Inalhan, G.: Design, build and flight testing of a VTOL tailsitter unmanned
aerial vehicle with hybrid propulsion system. In: Ankara International Aerospace Confer-
ence, Ankara, Turkey (2011)

246 T. Donateo et al.

http://dx.doi.org/10.1007/978-3-540-88908-3_14
http://dx.doi.org/10.1007/978-3-540-88908-3_14
http://dx.doi.org/10.1016/j.advengsoft.2016.01.001
http://dx.doi.org/10.1016/j.advengsoft.2016.01.001

	Many-Objective Optimization of Mission and Hybrid Electric Power System of an Unmanned Aircraft
	Abstract
	1 Introduction
	1.1 Evolutionary Methods

	2 The Optimization Problem
	2.1 Inputs of the Optimization
	2.2 Optimization Methods and Goals

	3 Performance Analysis
	3.1 Results of the Simplified Problem
	3.2 Results of the Complete Problem (Many-Objective Optimization)

	4 Discussion of the Results
	5 Conclusions
	References


