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Definitions

Blotter is a protocol for executing transactions
in geo-replicated storage systems with non-
monotonic snapshot isolation semantics. A geo-
replicated storage system is composed by a
set of nodes running in multiple data centers
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located in different geographical locations. The
nodes in each data center replicate either all
or a subset of the data items in the database,
leading to a full replication or partial replication
approach. Blotter was primarily designed for
full replication scenarios but can also be used
in partial replication scenarios. Under non-
monotonic  snapshot isolation semantics, a
transaction reads from a snapshot that reflects all
the writes from a set of transactions that includes,
at least, all locally committed transactions and
remote transactions known when the transaction
starts. Two concurrent transactions conflict if
their write set intersects, i.e., if there is a data
item written by both. In such case, one of the
transactions will abort.

Overview

Many Internet services are backed by geo-
replicated storage systems in order to keep data
close to the end user. This decision is supported
by studies showing the negative impact of latency
on user engagement and, by extension, rev-
enue (Hoff 2009). While many of these systems
rely on weak consistency for better performance
and availability (DeCandia et al. 2007), there is
also a class of applications that require support
for strong consistency and transactions. For
instance, many applications within Google are
operating on top of Megastore (Baker et al. 2011),
a system that provides ACID semantics within
the same shard, instead of Bigtable (Chang et al.
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2008), which provides better performance but
weaker semantics. This trend also motivated the
development of Spanner, which provides general
serializable transactions (Corbett et al. 2012)
and sparked other recent efforts in the area of
strongly consistent geo-replication (Sovran et al.
2011; Saeida Ardekani et al. 2013a; Lloyd et al.
2013; Zhang et al. 2013; Kraska et al. 2013;
Mahmoud et al. 2013).

In this chapter, we present Blotter, a transac-
tional geo-replicated storage system, whose goal
is to cut the latency penalty for ACID transactions
in geo-replicated systems, by leveraging a recent
isolation proposal called Non-Monotonic Snap-
shot Isolation (NMSI) (Saeida Ardekani et al.
2013a). We focus on the Blotter algorithms and
discuss how they achieve: (1) at most one round-
trip across data centers (assuming a fault-free run
and that clients are proxies in the same data center
as one of the replicas) and (2) read operations that
are always served by the local data center.

To achieve these goals, Blotter combines a
novel concurrency control algorithm that exe-
cutes at the data center level, with a carefully
configured Paxos-based (Lamport 1998) repli-
cated state machine that replicates the execution
of the concurrency control algorithm across data
centers. Both of these components exploit several
characteristics of NMSI to reduce the amount
of coordination between replicas. In particular,
the concurrency control algorithm leverages the
fact that NMSI does not require a total order
on the start and commit times of transactions.
Such an ordering would require either synchro-
nized clocks, which are difficult to implement,
even using expensive hardware (Corbett et al.
2012), or synchronization between replicas that
do not hold the objects accessed by a trans-
action (Saeida Ardekani et al. 2013b), which
hinders scalability. In addition, NMSI allows us
to use separate (concurrent) Paxos-based state
machines for different objects, on which we geo-
replicate the commit operation of the concurrency
control protocol.

Compared to a previously proposed NMSI
system called Jessy (Saeida Ardekani et al.
2013a), instead of assuming partial replication,

we target full replication, which is a common
deployment scenario (Baker et al. 2011; Shute
et al. 2013; Bronson et al. 2013). Our layering
of Paxos on top of a concurrency control
algorithm is akin to the Replicated Commit
system, which layers Paxos on top of two-phase
Locking (Mahmoud et al. 2013). However, by
leveraging NMSI, we execute reads exclusively
locally and run parallel instances of Paxos for
different objects, instead of having a single
instance per shard. Furthermore, when a client
is either colocated with the Paxos leader or when
that leader is in the closest data center to the
client, Blotter can commit transactions within a
single round-trip to the closest data center.

We have implemented Blotter as an exten-
sion to the well-known geo-replicated storage
system Cassandra (Lakshman and Malik 2010).
Our evaluation shows that, despite adding a small
overhead in a single data center, Blotter per-
forms much better than both Jessy and the pro-
tocols used by Spanner and also outperforms in
many metrics a replication protocol that ensures
snapshot isolation (Elnikety et al. 2005). This
shows that Blotter can be a valid choice when
several replicas are separated by high latency
links, performance is critical, and the semantic
differences between NMSI and snapshot isolation
are acceptable by the application.

Key Research Findings

The research conducted to design and implement
Blotter led to the following key contributions and
findings:

1. A simple yet precise definition of non-
monotonic  snapshot isolation, a recent
isolation model that aims at maximizing
parallel execution of transactions in geo-
replicated systems.

2. The design of Blotter, which combines a
novel concurrency control protocol for a
single data-center and its extension toward an
arbitrary number of data centers by leveraging
a carefully designed state machine replication
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solution leveraging a variant of the Paxos
algorithm.

3. The demonstration that it is possible to achieve
strong consistency in geo-replicated storage
systems within a modest latency envelop in
fault-free runs.

Non-monotonic Snapshot Isolation

We start by providing a specification of our target
isolation level, NMSI, and discussing the advan-
tages and drawbacks of this choice.

Snapshot Isolation Revisited

NMSI is an evolution of snapshot isolation (SI).
Under SI, a transaction (logically) executes in a
database snapshot taken at the transaction begin
time, reflecting the writes of all transactions that
committed before that instant. Reads and writes
execute against this snapshot and, at commit time,
a transaction can commit if there are no write-
write conflicts with concurrent transactions. (In
this context, two transactions are concurrent if the
intervals between their begin and commit times
overlap.)

Snapshot isolation exhibits the write-skew
anomaly, where two concurrent transactions 77
and 75 start by reading xo and yg, respectively,
and later write y; and x;, as exemplified in the
following figure. This execution is admissible
under snapshot isolation, as there is no write-
write conflict, and each transaction has read from
a database snapshot. However, this execution is
not serializable.
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T, 12 yo]l wixi] ¢

time

Specification of NMSI

NMSI weakens the SI specification in two ways.
First, the snapshots against which transactions
execute do not have to reflect the writes of a
monotonically growing set of transactions. In
other words, it is possible to observe what is
called a “long fork” anomaly, where there can
exist two concurrent transactions f, and 7, that
commit, writing to different objects, and two
other transactions that start subsequently, where

one sees the effects of 7, but not #5, and the
other sees the effects of #, but not #,. The next
figure exemplifies an execution that is admissible
under NMSI but not under SI, since under SI both
T3 and T4 would see the effects of both T1 and
To because they started after the commit of T
and To.
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Second, instead of forcing the snapshot to
reflect a subset of the transactions that committed
at the transaction begin time, NMSI gives the
implementation the flexibility to reflect a more
convenient set of transactions in the snapshot,
possibly including transactions that committed
after the transaction began. This property, also
enabled by serializability, is called forward fresh-
ness (Saeida Ardekani et al. 2013a).

Definition 1 (Non-Mon. Snapshot Isol. (NMSI))
An implementation of a transactional system
obeys NMSI if, for any trace of the system
execution, there exists a partial order < among
transactions that obeys the following rules, for
any pair of transactions #; and ¢; in the trace:

1. if ¢; reads a value for object x written by #;
then t; < t; A Bty writingtox : ¢; <ty < t;

2. if #; and ¢; write to the same object x then
eithers; <1; ort; <1;.

The example in Fig. 1 obeys NMSI but not SI,
as the depicted partial order meets Definition 1.

rlyo]  wixi] <

Tllb

rlyo] r[xi]

Achieving Low Latency Transactions for Geo-
replicated Storage with Blotter, Fig. 1 Example
execution obeying NMSI but not SI. This assumes the
existence of a transaction T that writes the initial values
for x and y

T, 1P
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The Benefits of NMSI in Replicated Settings
NMSI weakens the specification of SI in a way
that can be leveraged for improving performance
in replicated settings.

The possibility of having “long forks” al-
lows, in a replicated setting, for a single (local)
replica to make a decision concerning what data
the snapshot should read. This is because it is
not necessary to enforce a serialization between
all transaction begin and commit operations, al-
though it is still necessary to check for write-write
conflicts,

In the case of “forward freshness,” this allows
for a transaction to read (in most cases) the most
recent version of a data object at a given replica,
independently of the instant when the transaction
began. This not only avoids the bookkeeping as-
sociated with tracking transaction start times but
also avoids a conflict with transactions that might
have committed after the transaction began.

Impact of NMSI for Applications

We analyze in turn the impact of “forward fresh-
ness” and “long forks” for application develop-
ers. Forward freshness allows a transaction 7,
to observe the effects of another transaction ?
that committed after #, began (in real time). In
this case, the programmer must decide whether
this is a violation of the intended application
semantics, which is analogous to decide if se-
rializability or strict serializability is the most
adequate isolation level for a given application.
Long forks allow two transactions to execute
against different branches of a forked database
state, provided there are no write-write conflicts.
In practice, the main implication of this fact is
that the updates made by users may not become
instantly visible across all replicas. For example,
this could cause two users of a social network
to each think that they were the first to post a
new promotion on their own wall, since they do
not see each other’s posts immediately (Sovran
et al. 2011). Again, the programmer must reason
whether this is admissible. In this case, a mitigat-
ing factor is that this anomaly does not cause the
consistency of the database to break. (This is in
contrast with the “write-skew” anomaly, which is
present in both ST and NMSI.) Furthermore, in the

particular case of our protocol, the occurrence of
anomalies is very rare: for a “long fork™ to occur,
two transactions must commit in two different
data centers, form a quorum with a third data
center, and both complete before hearing from the
other.

Finally, NMSI allows consecutive transactions
from the same client to observe a state that
reflects a set of transactions that does not grow
monotonically (when consecutive transactions
switch between two different branches of a long
fork). However, in our algorithms, this is an
unlikely occurrence, since it requires that a client
connects to different data centers in a very short
time span.

Blotter Protocols

We now describe the Blotter protocols, intro-
ducing first the concurrency protocol algorithm
in a single data center scenario, and then how
this protocol can be replicated to multiple data
centers. A more detailed explanation of the pro-
tocols including their evaluation can be found
elsewhere (Moniz et al. 2017).

System Model

Blotter is designed to run on top of any distributed
storage system with nodes spread across one or
multiple data centers. We assume that each data
object is replicated at all data centers. Within
each data center, data objects are replicated and
partitioned across several nodes. We make no
restrictions on how this intra-data center replica-
tion and partitioning takes place. We assume that
nodes may fail by crashing and recover from such
faults. When a node crashes, it loses its volatile
state, but all data that was written to stable storage
is accessible after recovery.

We use an asynchronous system model, i.e.,
we do not assume any known bounds on com-
putation and communication delays. We do not
prescribe a fixed bound on the number of faulty
nodes within each data center — this depends on
the intra-data center replication protocol used.

Blotter Architecture
The client library of Blotter exposes an API
with the expected operations: begin a new
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transaction, read an object given its identifier,
write an object given its identifier and new
value, and commit a transaction, which either
returns commit or abort.

The set of protocols that comprise Blotter are
organized into three different components:

Blotter intra-data center replication. At the
lowest level, we run an intra-data center repli-
cation protocol to mask the unreliability of in-
dividual machines within each data center. This
level must provide the protocols above it with
the vision of a single logical copy (per data cen-
ter) of each data object and associated metadata,
which remains available despite individual node
crashes. We do not prescribe a specific protocol
for this layer, since any of the existing protocols
that meet this specification can be used.

Blotter Concurrency Control. These are the
protocols that ensure transaction atomicity and
NMSI isolation in a single data center and, at the
same time, are extensible to multiple data centers
by serializing a single protocol step.

Inter-data Center Replication. This completes
the protocol stack by replicating a subset of
the steps of the concurrency control protocol
across data centers. It implements state machine
replication (Schneider 1990; Lamport 1978) by
judiciously applying Paxos (Lamport 1998) to the
concurrency control protocol to avoid unneces-
sary coordination across data centers.

Single Data Center Protocol

The single data center concurrency control mod-
ule consists of the following three components:
the client library and the transaction managers
(TM), which are non-replicated components that
act as a front end providing the system interface
and implementing the client side of the trans-
action processing protocol, respectively; and the
data managers (DM), which are the replicated
components that manage the information associ-
ated with data objects.

Client Library. This provides the interface of
Blotter, namely, begin, read, write, and commit.

The begin and write operations are local to the
client. Read operations are relayed to the TM,
who returns the values and metadata for the
objects that were read. The written values are
buffered by the client library and only sent to
the TM at commit time, together with the accu-
mulated metadata for the objects that were read.
This metadata is used to set the versions that
running transactions must access, as explained
next.

Transaction Manager (TM). The TM handles
the two operations received from the clients:
read and commit. For reads, it merely relays
the request and reply to or from the data man-
ager (DM) responsible for the object being read.
Upon receiving a commit request, the TM acts
as a coordinator of a two-phase commit (2PC)
protocol to enforce the all-or-nothing atomicity
property. The first phase sends a dm-prewrite-
request, with the newly written values, to all
DMs storing written objects. Each DM verifies
if the write complies with NMSI. If none of the
DMs identifies a violation, the TM sends the
DMs a dm-write message containing the meta-
data with snapshot information aggregated from
all replies on the first phase; otherwise, it sends a
dm-abort.

Data Manager (DM). The core of the concur-
rency control logic is implemented by the DM,
which maintains the data and meta-data neces-
sary to provide NMSI. Algorithm 1 presents the
handlers for the three types of requests. Now, we
explain how these functions enforce NMSI rules
presented in our definition.

Partial order <. We use a multi-version proto-
col, i.e., the system maintains a list of versions
for each object. This list is indexed by an integer
version number, which is incremented every time
a new version of the object is created (e.g., for a
given object x, overwriting x creates version x,
and so on). In a multi-versioned storage, the <
relation can be defined by the version number that
transactions access, namely, if #; writes x,, and ¢;
writes x,, thent; < 1; & m < n;and if ; writes
Xm and f; reads x,, thent; <t; & m < n.
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Algorithm 1: Single data center DM protocols

// read operation
upon ( dm-read, T, x ) from TM do
| processRead (T, x, TM );

// prewrite operation
3 upon { dm-prewrite, T, x, value ) from TM do
4 if x.prewrite # L then
// another prewrite is pending
x.pending <— x.pending U {(T, x, value, TM)};

o=

6 else

7 L processPrewrite { T, x, value, TM };

// write operation

pon ( dm-write, T, x, agg-startd-before ) from TM do
9 for each T in agg-startd-before do

10 L if 7’ not in x.snapshot then

11

®
=

L x.snapshot[T’] <— x.last;

12 x.last <— x.last + 1;
13 x.value[x.last] <— x.nextvalue;
14 finishWrite ( T, x, TM );

// abort operation
15 upon ( dm-abort, T, x ) from TM do
16 L finishWrite ( T, x, TM );

// process read operation
17 processRead ( 7, x, TM )

18 if T ¢ x.snapshot then

19 if x.prewrite # L then

20 x.buffered < x.buffered U {(T, TM)};

21 return

22 else

23 L x.snapshot[T] <— x.last;

24 version <— x.snapshot[T];

25 value <— x.value[version];

26 send ( read-response, T, value, {T”|x.snapshot[T’] < version} ) to TM;

// process dm-prewrite request

27 processPrewrite ( T, x, value, TM )

28 if x.snapshot[T] # L A x.snapshot[T] < x.last then
// there is a write-write conflict
send ( prewrite-response, reject, L ) to TM;

29
30 else

31
32
33

x.prewrite <— T;
x.nextvalue <— value;

34 finishWrite ( 7, x, TM)

35 if x.prewrite = T then

36 L x.nextvalue <— _L; x.prewrite < L;

37 for each (T, TM) in x.buffered do

38 | processRead (T, x, TM );

39 if x.pending # L then

40 (T, x, value, TM) < removeFirst(x.pending);
4 processPrewrite ( T, x, value, TM );

send ( prewrite-response, accept, {T”|T’ € x.snapshot} ) to TM;

// clean prewrite information and serve buffered reads and pending prewrites

NMSI rule number 1. Rule number 1 of the
definition of NMSI says that, for object x, trans-
action ¢ must read the value written by the “latest”
transaction that updated x (according to <). To
illustrate this, consider the example run in Fig. 2.
When a transaction 7'1 issues its first read op-
eration, it can read the most recently committed
version of the object, say x; written by 7°0 (lead-
ing to TO < T). If, subsequently, some other

transaction 72 writes x;4+1 (T0 < T2), then the
protocol must prevent 7’1 from either reading or
overwriting the values written by 72. Otherwise,
we would have 70 < T2 < T'1 and T'1 should
have read the value for object x written by 72
(i.e., xj+1) instead of that written by 70 (.e.,
x;). Next, we detail how this is achieved first for
reads, then writes, and then how to enforce the
rule transitively.
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Reading the latest preceding version. The key to
enforcing this requirement is to maintain state
associated with each object, stating the version
a running transaction must read, in case such
a restriction exists. In the previous example, if
T2 writes x;j4+1, this state records that 7’1 must
read x;.

To achieve this, our algorithm maintains a
per-object dictionary data structure (x.snapshot),
mapping the identifier of a transaction ¢ to a
particular version of x that ¢ either must read
or has read from. Figure 2 depicts the changes
to this data structure in the shaded boxes at the
bottom of the figure. When the DM processes
a read of x for ¢ (function processRead), if
the dictionary has no information for #, the most
recent version is read, and this information is
stored in the dictionary. Otherwise, the specified
version is returned.

In the previous example, 71 must record the
version it reads in the x.snapshot variable. Subse-
quently, when the commit of 72 overwrites that
version of x, we are establishing that 72 £ T1.
As such, if 72 writes to another object y, creating
¥j+1, then it must also force T'1 to read the pre-
ceding version y;. To do this, when transaction
T2 commits, for every transaction ¢ that read
(or must read) an older version of object x (i.e.,
the transactions with entries in the dictionary of
x), the protocol will store in the dictionary of
every other object y written by 72 that # must
read the previous version of y, unless an even
older version is already prescribed (dm-write
handler). In this particular example, y.snapshot
would record that 71 and T4 must read version
¥, since, at commit time, x.snapshot indicates
that these transactions read x;.

Preventing illegal overwrites. In the previous
example, we must also guarantee that 71 does
not overwrite any value written by 72. To en-
force this, it suffices to verify, at the time of
the commit of transaction ¢, for every object
written by ¢, if T should read its most recent
version. If this is the case, then the transac-
tion can commit, since no version will be incor-
rectly overwritten; otherwise, it must abort (func-
tion processPrewrite). In the example, 74
aborts, since y.snapshot records that 74 must
read y; and a more recent version exists (¥ 41).
Allowing T4 to commit and overwrite y;i1
would lead to 72 < T4. This breaks rule num-
ber 1 of NMSI, since it would have required 7'1
to read x; 4 written by 72, which did not occur.
Applying the rules transitively. Finally, for en-
forcing rule number 1 of the definition of NMSI
in a transitive manner, it is also necessary to
guarantee the following: if 72 writes x;4+; and
¥j+1, and subsequently another transaction 73
reads y ;1 and writes wg, then the protocol must
also prevent T'1 from reading or overwriting the
values written by 7'3, otherwise we would have
T0 < T2 < T3 < T1, and thus 7'1 should also
have read x; 4.

To achieve this, when transaction 73 (which
read y;41) commits, for every transaction ¢ that
must read version y; with [ < j 4+ 1 (i.e., the
transactions that had entries in the dictionary of
y when 7, read y), the protocol will store in the
dictionary of every other object w written by T3
that + must read the previous version of w (if
an older version is not already specified). In the
example, since the state for y.snapshot after T2
commits specifies that 71 must read version y;,
then, when 7'3 commits, w.snapshot is updated
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to state that 7’1 and 74 must read version wy_;.
This is implemented by collecting dependencies
in read and pre-write functions and use these
information to update the snapshot information
for all objects in the write function.

NMSI rule number 2. Rule number 2 of the
NMSI definition says that any pair of transactions
that write the same object x must have a relative
order, i.e., either ; < t; or t; < t;. This order
is defined by the version number of x created by
each transaction.

Therefore, it remains to ensure that this is
a partial order (i.e., no cycles). A cycle could
appear if two or more transactions concurrently
committed a chain of objects in a different order,
e.g., if f;; wrote both x; and y; 1 and 7, wrote
both x;11 and y;. To prevent this, it suffices
to use a two-phase commit protocol where, for
each object, a single accepted prepare can be
outstanding at any time.

Geo-Replication

Blotter implements geo-replication, with each
object replicated in all data centers, using Paxos-
based state machine replication (Lamport 1998;
Schneider 1990). In this model, all replicas exe-
cute a set of client-issued commands according
to a total order, thus following the same sequence
of states and producing the same sequence of
responses. We view each data center as a state
machine replica. The state is composed by the
database (i.e., all data objects and associated
metadata), and the state machine commands are
the tm-read and the tm-commit of the TM-
DM interface.

Despite being correct, this approach has three
drawbacks, which we address in detail in a sepa-
rate paper (Moniz et al. 2017).

First, read operations in our concurrency con-
trol protocol are state machine commands that
mutate the state, thus requiring an expensive
consensus round. To address this, we leverage the
fact that the NMSI properties allow for removing
this information from the state machine, since the
modified state only needs to be used locally.

Second, the total order of the state machine
precludes the concurrent execution of two com-

mits, even for transactions that do not conflict.
In this case, we leverage the fact that the partial
order required by the NMSI definition can be
built by serializing the dm-prewrite opera-
tion on a per-object basis, instead of serializing
tm-commits across all objects. As such, instead
of having one large state machine whose state is
defined by the entire database, we can have one
state machine per object, with the state being the
object (including its metadata), and supporting
only the dm-prewrite operation.

Finally, each Paxos-based state machine com-
mand requires several cross-data center message
delays (depending on the variant of Paxos used).
We adjusted the configuration of Paxos to reduce
the cross data center steps to a single round-trip
(from the client of the protocol, i.e., the TM) for
update transactions, by using Multi-Paxos (Lam-
port 1998) and configuring Paxos to only tolerate
one unplanned outage of a data center. In fact,
this assumption is common in existing deployed
systems (Ananthanarayanan et al. 2013; Corbett
et al. 2012). (Planned outages are handled by re-
configuring the Paxos membership Lamport et al.
2010.)

Examples of Applications

Blotter can be leveraged to design multiple large-
scale geo-distributed applications, and in par-
ticular web applications whose semantics are
compatible with the guarantees (and anomalies)
associated with NMSI.

In particular, we have explored how to imple-
ment a set of the main operations of a micro-
blogging platform, such as Twitter.

In our implementation of a simplistic version
of Twitter, we model the timeline (sometimes
called wall in the context of social network ap-
plications) as a data object in the (geo-replicated)
data storage service. Furthermore, we associate
with each user a set of followers and a set of
followees. Each of these sets is modeled as an
independent data object in the data storage.

We have supported three different user inter-
actions. We selected these operations by relying
on the model presented in Zhang et al. (2013):
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* Post-tweet appends a tweet to the timeline of
a user and its followers, which results in a
transaction with many reads and writes, since
one has to read the followers of the user post-
ing the tweet and then write to the timeline of
both the user and each corresponding follower.

* Follow-user appends new information in the
set of followers to the profiles of the follower
and the followee, which results in a transac-
tion with two reads and two writes.

* Read-timeline reads the wall of the user is-
suing the operation, resulting in a single read
operation.

In this case, the long fork anomaly can only
result in a user observing (slightly) stale data,
and perhaps even updating its own state based
on that data, e.g., a user that decides to follow
another can miss a few entries of that new user
in his own timeline. Note that reading stale data
can be addressed by waiting for the information
about transactions to be propagated across all
data centers in the deployment.

We also implemented the RUBiS benchmark,
which models an auction site similar to eBay, on
top of Blotter.

We ported the benchmark from using a rela-
tional database as the storage back end to using
a key-value store. Each row of the relational
database is stored with a key formed by the name
of the table and the value of the primary key.
We additionally store data for supporting efficient
queries (namely, indexes and foreign keys).

In this benchmark, users issue operations such
as selling, browsing, bidding, or buying items and
consulting a personal profile that lists outstanding
auctions and bids. All of these operations were
implemented as Blotter transactions. In this appli-
cation, the long fork anomaly that is allowed by
NMSTI has a few implications. In particular, when
browsing the items that are available to be sold
(or in auction), users can observe stale data, in the
form of missing a few objects that are relevant for
their queries.

Surprisingly, since bidding and buying an item
involves writing to a single object in the data store
in our adaptation, the long fork anomaly does

not affect these semantics, since all transactions
that write on this object are totally ordered by the
Paxos leader that is responsible for mediating the
access to it.

The experimental results that evaluate the per-
formance of these implementations can be in a
separate paper (Moniz et al. 2017).

Future Directions of Research

In this chapter, we have presented the design
of Blotter, a novel system architecture and set
of protocols that exploits the benefits of NMSI
to improve the performance of geo-replicated
transactional systems.

Blotter demonstrates the practical benefits that
can be achieved by relaxing the well-known and
widely used SI model. To better frame the appli-
cations that can benefit from the Blotter design,
we have presented a simple yet precise specifica-
tion of NMSI and discussed how this specifica-
tion differs in practice from the SI specification.

An interesting direction for future research in
this context is to explore automatic mechanisms
to check if an existing application designed for
the ST model could safely be adapted to operate
under NMSI. This could be achieved by exploit-
ing application state invariants, and modeling
transactions through their preconditions and post-
conditions.
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Overview

In brief, Active Storage refers to an architectural
hardware and software paradigm, based on co-
location storage and compute units. Ideally, it
will allow to execute application-defined data- or
compute-intensive operations in situ, i.e., within
(or close to) the physical data storage. Thus
Active Storage seeks to minimize expensive data
movement, improving performance, scalability,
and resource efficiency. The effective use of
Active Storage mandates new architectures, algo-
rithms, interfaces, and development toolchains.
Over the last decade, we are witnessing a
clear trend toward the fusion of the compute-
intensive and the data-intensive paradigms on ar-
chitectural, system, and application level. On the
one hand, large computational tasks (e.g., simula-
tions) tend to feed growing amounts of data into
their complex computational models; on the other
hand, database applications execute computation-
ally intensive ML and analytics-style workloads
on increasingly large data sets. Both result in
massive data transfers across the memory hierar-
chy, which block the CPU, causing unnecessary
CPU waits and thus impair performance, scal-
ability, and resource efficiency. The root cause
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for this phenomenon lies in the generally low
data locality as well as in traditional architectures
and algorithms, which operate on the data-to-
code principle. It requires data and program code
to be transferred to the processing elements to
be executed. Although data-to-code simplifies
development and system architectures, it is in-
herently bounded by the von Neumann bottle-
neck.

These trends are impacted by the following
recent developments: (a) Moore’s law is said to be
cooling down for different types of semiconduc-
tor elements, and Dennard scaling is coming to
an end. The latter postulates that performance per
watt grows at approximately the rate mandated
by Moore’s law. (Besides the scalability of cache
coherence protocols, Dennard scaling is among
the frequently quoted reasons as to why mod-
ern many-core CPUs do not have the 128 cores
that would otherwise be technically possible by
now — see also Muramatsu et al. (2004) and
Hardavellas et al. (2011)) As a result compute
performance improvements cannot be based on
the expectation of increasing clock frequencies
and therefore mandate changes in the hardware
and software architectures. (b) Modern systems
can offer much higher levels of parallelism, yet
scalability and the effective use of parallelism are
limited by the programming models as well as by
amount and type of data transfers. (c) Access gap
and Memory Wall storage (DRAM, Flash, HDD)
is getting larger and cheaper; however access
latencies decrease at much lower rates. This trend
also contributes to slow data transfers and to
blocking processing at the CPU. (d) Modern data
sets are large in volume (machine data, scientific
data, text) and are growing fast (Szalay and Gray
2006). (e) Modern workloads (hybrid/HTAP or
analytics-based such as OLAP or ML) tend to
have low data locality and incur large scans
(sometimes iterative) that result in massive data
transfers.

In essence, due to system architectures
and processing principles, current workloads
require transferring growing volumes of large
data through the virtual memory hierarchy,
from the physical storage location to the
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processing elements, which limits performance
and scalability and worsens resource and energy
efficiency.

Nowadays, three important technological de-
velopments open an opportunity to counter these
drawbacks. Firstly, hardware manufactures are
able to fabricate combinations of storage and
compute elements at reasonable costs and pack-
age them within the same device. Secondly, the
fact that this trend covers virtually all levels of
the memory hierarchy: (a) CPU and caches, (b)
memory and compute, (c) storage and compute,
(d) accelerators — specialized CPUs and stor-
age, and eventually (e) network and compute.
Thirdly, as magnetic/mechanical storage is being
replaced with semiconductor nonvolatile tech-
nologies (Flash, Non-Volatile Memories— NVM),
another key trend emerges: the device internal
bandwidth, parallelism, and access latencies are
significantly better than the external ones (device-
to-host). This is due to various reasons: inter-
faces, interconnect, physical design, and architec-
tures.

Active Storage is a concept that targets the
execution data processing operations (fully or
partially) in situ: within the compute elements on
the respective level of the storage hierarchy, close
to where data is physically stored and transfer the
results back, without moving the raw data. The
underlying assumptions are: (a) the result size
is much smaller than the raw data, hence less
frequent and smaller-sized data transfers; or (b)
the in situ computation is faster and more efficient
than on the host, thus higher performance and
scalability or better efficiency. Related concepts
are in situ processing, In-Storage Processing,
smart storage, and Near-Data Processing (Bal-
asubramonian et al. 2014). The Active Storage
paradigms have profound impact on multiple as-
pects:

1. Interfaces: hardware and software interfaces
need to be extended, and new abstractions
need to be introduced. This includes device
and storage interfaces and operating systems
and I/O abstractions: operations and condi-
tions, records/objects vs. blocks, atomic prim-
itives, and transactional support.
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2. Heterogeneity in terms of storage and com-
puter hardware interfaces is to be addressed.

3. Toolchain: extensive tool support is necessary
to utilize Active Storage: compilers, hardware
generators, debugging and monitoring tools,
and advisors.

4. Placement of data and computation across the
hierarchy is crucial to efficiency.

5. Workload adaptivity is a major goal as static
assignments lower the placement and colloca-
tion effects.

These challenges already attract research fo-
cus, as todays accelerators exhibit Active Stor-
age alike characteristics in a simplistic man-
ner, i.e., GPUs and FPGAs are defined by a
considerably higher level of internal parallelism
and bandwidth in contrast to their connection
to the host system. Specialized computation al-
ready uses hardware programmable with high-
level synthesis toolchains like TaPaSCo (Korinth
et al. 2015) and co-location with storage elements
and often necessitate for shared virtual memory.
Classical research questions, e.g., about a dy-
namic workload distribution, data dependence,
and flexible data placement are approached by
Fan et al. (2016), Hsieh et al. (2016), and Chen
and Chen (2012), respectively. The significant
potential arising with Near-Data Processing is in-
vestigated under perfect conditions by Kotra et al.
(2017) stating performance boosts of about 75%.

Key Research Findings

Storage

The concept of Active Storage is not new.
Historically it is deeply rooted in the concept
of database machines (DeWitt and Gray 1992;
Boral and DeWitt 1983) developed in the
1970s and 1980s. Boral and DeWitt (1983)
discusses approaches such as processor-per-
track or processor-per-head as an early attempt to
combine storage and simple computing elements
to accelerate data processing. Existing 1/O
bandwidth and parallelism are claimed to be
the limiting factor to justify parallel DBMS.
While this conclusion is not surprising given the
characteristics of magnetic/mechanical storage
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combined with Amdahl’s balanced systems law,
it is revised with modern technologies. Modern
semiconductor storage technologies (NVM,
Flash) are offering high raw bandwidth and levels
of parallelism. Boral and DeWitt (1983) also
raises the issue of temporal locality in database
applications, which has been questioned back
then and is considered to be low in modern
workloads, causing unnecessary data transfers.
Near-Data Processing and Active Storage present
an opportunity to address it.

The concept of Active Disk emerged toward
the end of the 1990s and early 2000s. It
is most prominently represented by systems
such as Active Disk (Acharya et al. 1998),
IDISK (Keeton et al. 1998), and Active
Storage/Disk (Riedel et al. 1998). While
database machines attempted to execute fixed
primitive access operations, Active Disk targets
executing application-specific code on the drive.
Active Storage/Disk (Riedel et al. 1998) relies
on processor-per-disk architecture. It yields
significant performance benefits for I/O-bound
scans in terms of bandwidth, parallelism, and
reduction of data transfers. IDISK (Keeton et al.
1998) assumed a higher complexity of data
processing operations compared to Riedel et al.
(1998) and targeted mainly analytical workloads
and business intelligence and DSS systems.
Active Disk (Acharya et al. 1998) targets an
architecture based on on-device processors and
pushdown of custom data processing operations.
Acharya et al. (1998) focusses on programming
models and explores a streaming programming
model, expressing data-intensive operations as
so-called disklets, which are pushed down and
executed on the disk processor.

An extension of the above ideas (Sivathanu
et al. 2005) investigates executing operations on
the RAID controller. Yet, classical RAID tech-
nologies rely on general-purpose CPUs that oper-
ate well with slow mechanical HDDs, are easily
overloaded, and turn into a bottleneck with mod-
ern storage technologies (Petrov et al. 2010).

Although in the Active Disk, concept
increases the scope and applicability, it is
equally impacted by bandwidth limitations
and high manufacturing costs. Nowadays two
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trends have important impact. On the one hand,
semiconductor storage technologies (NVM,
Flash) offer significantly higher bandwidths,
lower latencies, and levels of parallelism. On
the other hand, hardware vendors are able to
fabricate economically combinations of storage
and compute units and package them on storage
devices. Both combined the result in new
generation of Active Storage devices.

Smart SSDs (Do et al. 2013) or multi-stream
SSDs aim to achieve better data processing
performance by utilizing on device resources
and pushing down data processing operations
close to the data. Programming models such
as SSDlets are being proposed. One trend is
In-Storage Processing (Jo et al. 2016; Kim
et al. 2016) that presents significant performance
increase on embedded CPUs for standard DBMS
operators. Combinations of storage and GPGPUs
demonstrate an increase of up to 40x (Cho et al.
2013a). IBEX (Woods et al. 2013, 2014) is a
system demonstrating operator pushdown on
FPGA-based storage.

Do et al. (2013) is one of the first works to ex-
plore offloading parts of data processing on Smart
SSDs, indicating potential of significant perfor-
mance improvements (up to 2.7x) and energy
savings (up to 3x). Do et al. (2013) defines a new
session-based communication protocol (DBMS-
SmartSSD) comprising three operations: OPEN,
CLOSE, and GET. In addition they define a set of
APIs for on-device functionality: Command API,
Thread API, Data API, and Memory API. It does
not only enable pushdown but also workload-
dependent, cooperative processing. In addition,
Do et al. Do et al. (2013) identify two research
questions: (i) How can Active Storage handle the
problem of on-device processing at the presence
of a more recent version of the data in the buffer?
(i1) What is the efficiency of operation pushdown
at the presence of large main memories? The
latter becomes obvious in the context of large
data sets (Big Data) and computationally inten-
sive operations.

Similarly, Seshadri et al. (2014) propose and
describe a user-programmable SSD called Wil-
low, which allows the users to augment the stor-
age device with the application-specific logic.
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In order to provide the new functionality of the
SSD for a certain application, three subsystems
must be appropriately modified to support a new
set of RPC commands: the application, the kernel
driver, and the operating system running on each
storage processing unit inside the Flash SSD.

The initial ideas of Do et al. (2013) have
been recently extended in Kim et al. (2016), Jo
et al. (2016), and Samsung (2015). Kim et al.
(2016) demonstrate between 5x and 47x perfor-
mance improvement for scans and joins. Jo et al.
(2016) describe a similar approach for In-Storage
Computing based on the Samsung PM1725 SSD
with ISC option (Samsung 2015) integrated in
MariaDB. Other approaches (Cho et al. 2013b;
Tiwari et al. 2013). Tiwari et al. (2013) stress the
importance of in situ processing.

Woods et al. (2014, 2013) demonstrate with
Ibex an intelligent storage engine for commodity-
relational databases. By off-loading complex
queries operators, they tackle the bandwidth
bottlenecks arising when moving large amounts
of data from storage to processing nodes. In
addition, the energy consumption is reduced
due to the usage of FPGAs rather than general-
purpose processors. Ibex supports aggregation
(GROUP By), projection, and selection. Najafi
et al. (2013) and Sadoghi et al. (2012) explore
approaches for flexible query processing on
FPGA:s.

JAFAR is an Active Storage approach for col-
umn stores by Xi et al. (2015) and Babarinsa and
Idreos (2015). JAFAR is based on MonetDB and
aims at reducing data transfers, hence pushing
size reducing DB operators such as selections;
joins are not considered. Xi et al. (2015) stress
the importance of on-chip accelerators but do
not consider Active Storage and accelerators for
complex computations in situ.

Memory: Processing-In-Memory (PIM)

Manufacturing costs of DRAM decrease, and
memory volume increases steadily, while access
latencies improve at a significantly lower rate
yielding the so-called Memory Wall (Wulf and
McKee 1995). On the one hand, technologies
such as Hybrid Memory Cube (HMC) attempt
to address this issue by locating processing units
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close to memory and by utilizing novel interfaces
alike. On the other hand, new types of memory
are introduced, characterized by an even higher
density and therefore larger volumes, shorter
latencies, and higher bandwidth and internal
parallelism, as well as non-volatile persistence
behavior.

Balasubramonian (2016) discusses in his
article the features that can be meaningfully
added to memory devices. Not only do these
features execute parts of an application, but they
may also take care of auxiliary operations that
maintain high efficiency, reliability, and security.
Research combining memory technologies with
the Active Storage concept in general, often
referred to as Processing-In-Memory (PIM),
is very versatile. In the late 1990 (Patterson
et al. 1997), proposed IRAM as a first attempt
to address the Memory Wall, by unifying
processing logic and DRAM, starting with
general research question of the computer
science like communication, interfaces, cache
coherence, or address schemes. Hall et al.
(1999) purpose combining their Data-IntensiVe
Architecture (DIVA) PIM memories with
external host processors and defining a PIM-
to-PIM interconnect; Vermij et al. (2017) present
an extension to the CPU architecture to enable
NDP capabilities close to the main memory by
introducing a new component attached to the
system bus responsible for the communication;
Boroumand et al. (2017) propose a new
hardware cache coherence mechanism designed
specifically for PIM; Picorel et al. (2017)
show that the historically important flexibility
to map any virtual page to any page frame
is unnecessary regarding NDP and introduce
Distributed Inverted Page Table (DIPTA) as an
alternative near-memory structure.

Studying the upcomming new interface
HMC, Azarkhish et al. (2017) analyzed its
support for NDP in a modular and flexible
fashion. The authors propose a fully backward
compatible extension to the standard HMC
called smart memory cube and design a high-
bandwidth, low-latency, and AXI(4)-compatible
logic base interconnect, featuring a novel address
scrambling mechanism for the reduction in
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vault/bank conflicts. A completely different
approach to tackle Active Storage in today’s
memory is presented in Gao et al. (2016b). It
introduces DRAF, an architecture for bit-level
reconfigurable logic that uses DRAM subarrays
to implement dense lookup tables because
FPGAs introduce significant area and power
overheads, making it difficult to use them in dat-
acenter servers. Leaving the existing sequential
programming models in touch by extending the
instruction set architecture, Ahn et al. (2015)
proposes new PIM-enabled instructions. Firstly,
the proposed instruction set is interoperable with
existing programming models, cache coherence
protocols, and virtual memory mechanisms.
Secondly, the instructions can be executed either
in-memory or on the processors depending on
the data locality. A conceptual near-memory
acceleration architecture is presented by Kim
et al. (2017b) claiming the need for adopting
a high-level synthesis approach. In Lim and
Park (2017), kernel operations that can greatly
improve with PIM are analyzed resulting in
the necessity of three categories of processing
engines for NDP logic — in-order core, a coerce-
grain reconfigurable processor (CGRA), and
dedicated hardware.

Proposing Caribou, an intelligent distributed
storage layer, Istvan et al. (2017) target NDP
on DRAM/NVRAM storage over the network
through a simple key-value store interface. Uti-
lizing FPGAs, each storage node provides high-
bandwidth NDP capabilities and fault tolerance
through replication by Zookeeper’s atomic broad-
casts.

The application of the Active Storage concept
on memories besides data management is often
based on analytical scenarios or neural networks
but comprises a variety of different approaches.
Gao et al. (2016a) develop hardware and software
for an NDP architecture for in-memory analytic
frameworks, including MapReduce, graph pro-
cessing, and deep neural networks. One year
later, Gao et al. (2017) presents the hardware
architecture and software scheduling and parti-
tioning techniques for TETRIS, a scalable neu-
ral network accelerator using 3D memory. For
a similar use case, (Chi et al. 2016) proposes
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PRIME, providing microarchitecture and circuit
designs for a ReRAM-based PIM architecture
enabling morphable functions with insignificant
area overhead. A compiler-based allocation strat-
egy approach for PIM architectures is proposed
by Memoultion Wang et al. (2017). Focusing on
convolutional neural networks, it offers thread-
level parallelism that can fully exploit the com-
putational power-embedded processors. Another
hardware/software co-design for data analytics is
presented by the Mondrian Data Engine (Dru-
mond et al. 2017). It focuses on sequential access
patterns to enable simple hardware that access
memory in streams. A standardization of NDP ar-
chitecture, in order for PIM stacks to be used for
different GPU architectures is proposed by Kim
et al. (2017a). Their approach intend to allow data
to be spread across multiple memory stacks as is
the norm in high-performance systems.

Active Network

Having only the slight variation that data is not
persisted at any time but rather streamed through,
active networks are another very widespread ap-
plication of the Active Storage concept. Powerful
processing elements near the network adapters or
often integrated to the network controller itself
as a System-on-Chip (SoC) is not solely respon-
sible for the conventional protocol interpretation
anymore but also take over further tasks like
security verifications and scheduling of in-transit
services and data processing or simply improving
the network performance.

Tennenhouse and Wetherall (1996) first intro-
duced the term Active Network as an approach
for performing sophisticated computation within
the network. By injecting customized program
features into the nodes of the network, it is pos-
sible to execute these at each traversed network
router/switch. Continuing the research of Ten-
nenhouse and Wetherall (1996) and Sykora and
Koutny (2010) present an Active Network node
called Smart Active Node (SAN). Thereby, they
focus on its ability to translate data flow transpar-
ently between IP network and active network to
further improve performance of IP applications.

Often Active Network is also referred as
software-defined network (SDN) and comprises
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already an advanced state of research. Especially
the area around security comprises progressive
research in authentication and authorization,
access control, threats, and DoS attacks as
summarized by Ahmad et al. (2015). But also the
utilization of RDMA-capable network became
a trend since the demand on higher bandwidth
arose with the introduction of dedicated GPUs
in the computation. Ren et al. (2017) propose
iRDMA, an RDMA-based parameter server
architecture optimized for high-performance
network environment supporting both GPU- and
CPU-based training.

Cross-References

Big Data and Exascale Computing
Computer Architecture for Big Data
Emerging Hardware Technologies
Energy Implications of Big Data

References

Acharya A, Uysal M, Saltz J (1998) Active disks: Pro-
gramming model, algorithms and evaluation. In: Pro-
ceedings of the eighth international conference on
architectural support for programming languages and
operating systems, ASPLOS VIII, pp 81-91

Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Se-
curity in software defined networks: a survey. IEEE
Commun Surv Tutorials 17(4):2317-2346

Ahn J, Yoo S, Mutlu O, Choi K (2015) PIM-enabled in-
structions: a low-overhead, locality-aware processing-
in-memory architecture. In: Proceeding of 42nd an-
nual international symposium on computer architecture
(ISCA’15), pp 336-348

Azarkhish E, Pfister C, Rossi D, Loi I, Benini L (2017)
Logic-base interconnect design for near memory com-
puting in the smart memory cube. IEEE Trans Very
Large Scale Integr VLSI Syst 25:210-223

Babarinsa OO, Idreos S (2015) Jafar: near-data processing
for databases. In: SIGMOD

Balasubramonian R (2016) Making the case for feature-
rich memory systems: the march toward specialized
systems. IEEE Solid-State Circuits Mag 8(2):57-65

Balasubramonian R, Chang J, Manning T, Moreno JH,
Murphy R, Nair R, Swanson S (2014) Near-data pro-
cessing: insights from a micro-46 workshop. IEEE
Micro 34(4):36—42

Boral H, DeWitt DJ (1983) Database machines: an idea
whose time has passed? A critique of the future of
database machines. In: Leilich H-O, Missikoff M (eds)

Active Storage

Database machines. Springer, Berlin/Heidelberg, pp
166-187

Boroumand A, Ghose S, Patel M, Hassan H, Lucia B,
Hsieh K, Malladi KT, Zheng H, Mutlu O (2017)
LazyPIM: an efficient cache coherence mechanism
for processing-in-memory. IEEE Comput Archit Lett
16(1):46-50

Chen C, Chen Y (2012) Dynamic active storage for high
performance I/O. In: 2012 41st international confer-
ence on Parallel Processing. IEEE, pp 379-388

Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y
(2016) PRIME: a novel processing-in-memory archi-
tecture for neural network computation in ReRAM-
based main memory. In: Proceeding of 2016 43rd inter-
national symposium on computer architecture (ISCA
2016), pp 27-39

Cho BY, Jeong WS, Oh D, Ro WW (2013a) Xsd: acceler-
ating mapreduce by harnessing the GPU inside an SSD.
In: WoNDP: 1st workshop on near-data processing in
conjunction with IEEE MICRO-46

Cho S, Park C, Oh H, Kim S, Yi Y, Ganger GR (2013b)
Active disk meets flash: a case for intelligent SSDs. In:
Proceeding of ICS, pp 91-102

DeWitt D, Gray J (1992) Parallel database systems: the
future of high performance database systems. Commun
ACM 35(6):85-98

Do J, Kee YS, Patel JM, Park C, Park K, DeWitt DJ (2013)
Query processing on smart SSDs: opportunities and
challenges. In: Proceeding of SIGMOD, pp 1221-1230

Drumond M, Daglis A, Mirzadeh N, Ustiugov D, Picorel
J, Falsafi B, Grot B, Pnevmatikatos D (2017) The mon-
drian data engine. ACM SIGARCH Comput Archit
News 45(2):639-651

Fan S, He Z, Tan H (2016) An active storage system
with dynamic task assignment policy. In: 2016 12th
international conference on natural computation fuzzy
system and knowledge discovery (ICNC-FSKD 2016),
pp 1421-1427

Gao M, Ayers G, Kozyrakis C (2016a) Practical near-
data processing for in-memory analytics frameworks.
Parallel architecture and compilation techniques — Con-
ference proceedings, PACT 2016-March, pp 113-124

Gao M, Delimitrou C, Niu D, Malladi KT, Zheng H,
Brennan B, Kozyrakis C (2016b) DRAF: a low-power
DRAM-based reconfigurable acceleration fabric. In:
2016 ACM/IEEE 43rd annual international symposium
on computer architecture. IEEE, pp 506-518

Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C (2017)
TETRIS: scalable and efficient neural network acceler-
ation with 3D memory. ASPLOS 51(2):751-764

Hall M, Kogge P, Koller J, Diniz P, Chame J, Draper
J, LaCoss J, Granacki J, Brockman J, Srivastava A,
Athas W, Freeh V, Shin J, Park J (1999) Mapping
irregular applications to DIVA, a PIM-based data-
intensive architecture. In: ACM/IEEE conference on
supercomputing (SC 1999), p 57

Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2011)
Toward dark silicon in servers. IEEE Micro 31(4):6-15

Hsieh K, Ebrahim E, Kim G, Chatterjee N, O’Connor
M, Vijaykumar N, Mutlu O, Keckler SW (2016)


https://doi.org/10.1007/978-3-319-77525-8_167
https://doi.org/10.1007/978-3-319-77525-8_164
https://doi.org/10.1007/978-3-319-77525-8_170
https://doi.org/10.1007/978-3-319-77525-8_171

Active Storage

Transparent offloading and mapping (TOM): enabling
programmer-transparent near-data processing in GPU
systems. In: Proceeding of 2016 43rd international
symposium on computer architecture (ISCA 2016), pp
204-216

Istvan Z, Sidler D, Alonso G (2017) Caribou: intelli-
gent distributed storage. Proc VLDB Endow 10(11):
1202-1213

Jo I, Bae DH, Yoon AS, Kang JU, Cho S, Lee DDG, Jeong
J (2016) Yoursql: a high-performance database system
leveraging in-storage computing. Proc VLDB Endow
9:924-935

Keeton K, Patterson DA, Hellerstein JM (1998) A case for
intelligent disks (idisks). SIGMOD Rec 27(3):42-52

Kim G, Chatterjee N, O’Connor M, Hsieh K (2017a)
Toward standardized near-data processing with unre-
stricted data placement for GPUs. In: Proceeding of in-
ternational conference on high performance computing
networking, storage and analysis (SC*17), pp 1-12

Kim NS, Chen D, Xiong J, Hwvu WMW (2017b) Hetero-
geneous computing meets near-memory acceleration
and high-level synthesis in the post-moore era. IEEE
Micro 37(4):10-18

Kim S, Oh H, Park C, Cho S, Lee SW, Moon B (2016)
In-storage processing of database scans and joins. Inf
Sci 327(C):183-200

Korinth J, Chevallerie Ddl, Koch A (2015) An open-
source tool flow for the composition of reconfigurable
hardware thread pool architectures. In: Proceedings of
the 2015 IEEE 23rd annual international symposium
on field-programmable custom computing machines
(FCCM’15). IEEE Computer Society, Washington,
DC, pp 195-198

Kotra JB, Guttman D, Chidambaram Nachiappan N, Kan-
demir MT, Das CR (2017) Quantifying the potential
benefits of on-chip near-data computing in manycore
processors. In: 2017 IEEE 25th international sympo-
sium on modeling, analysis, and simulation of com-
puter and telecommunication system, pp 198-209

Lim H, Park G (2017) Triple engine processor (TEP):
a heterogeneous near-memory processor for diverse
kernel operations. ACM Ref ACM Trans Arch Code
Optim Artic 14(4):1-25

Muramatsu B, Gierschi S, McMartin F, Weimar S, Klotz G
(2004) If you build it, will they come? In: Proceeding of
2004 joint ACM/IEEE Conference on digital libraries
(JCDL04) p 396

Najafi M, Sadoghi M, Jacobsen HA (2013) Flexible query
processor on FPGAs. Proc VLDB Endow 6(12):1310—
1313

Patterson D, Anderson T, Cardwell N, Fromm R, Keeton
K, Kozyrakis C, Thomas R, Yelick K (1997) A case for
intelligent ram. IEEE Micro 17(2):34-44

Petrov I, Almeida G, Buchmann A, Ulrich G (2010)
Building large storage based on flash disks. In: Pro-
ceeding of ADMS’10

Picorel J, Jevdjic D, Falsafi B (2017) Near-Memory Ad-
dress Translation. In: 2017 26th international confer-
ence on Parallel architectures and compilation tech-
niques, pp 303-317, 1612.00445

17

Ren Y, Wu X, Zhang L, Wang Y, Zhang W, Wang Z, Hack
M, Jiang S (2017) iRDMA: efficient use of RDMA in
distributed deep learning systems. In: IEEE 19th in-
ternational conference on high performance computing
and communications, pp 231-238

Riedel E, Gibson GA, Faloutsos C (1998) Active storage
for large-scale data mining and multimedia. In: Pro-
ceedings of the 24rd international conference on very
large data bases (VLDB’98), pp 62-73

Sadoghi M, Javed R, Tarafdar N, Singh H, Palaniappan R,
Jacobsen HA (2012) Multi-query stream processing on
FPGAs. In: 2012 IEEE 28th international conference
on data engineering, pp 1229-1232

Samsung (2015) In-storage computing. http://www.flash-
memorysummit.com/English/Collaterals/Proceedings/
2015/20150813_S301D_Ki.pdf

Seshadri S, Gahagan M, Bhaskaran S, Bunker T, De
A, Jin Y, Liu Y, Swanson S (2014) Willow: a user-
programmable SSD. In: Proceeding of OSDI’ 14

Sivathanu M, Bairavasundaram LN, Arpaci-Dusseau
AC, Arpaci-Dusseau RH (2005) Database-aware
semantically-smart storage. In: Proceedings of the 4th
conference on USENIX conference on file and storage
technologies (FAST’05), vol 4, pp 18-18

Sykora J, Koutny T (2010) Enhancing performance of
networking applications by IP tunneling through active
networks. In: 9th international conference on networks
(ICN 2010), pp 361-364

Szalay A, Gray J (2006) 2020 computing: science in an
exponential world. Nature 440:413—414

Tennenhouse DL, Wetherall DJ (1996) Towards an active
network architecture. ACM SIGCOMM Comput Com-
mun Rev 26(2):5-17

Tiwari D, Boboila S, Vazhkudai SS, Kim Y, Ma
X, Desnoyers PJ, Solihin Y (2013) Active flash:
towards energy-efficient, in-situ data analytics on
extreme-scale machines. In: Proceeding of FAST,
pp 119-132

Vermij E, Fiorin L, Jongerius R, Hagleitner C, Lunteren
JV, Bertels K (2017) An architecture for integrated
near-data processors. ACM Trans Archit Code Optim
14(3):30:1-30:25

Wang Y, Zhang M, Yang J (2017) Towards memory-
efficient processing-in-memory architecture for convo-
lutional neural networks. In: Proceeding 18th ACM
SIGPLAN/SIGBED conference on languages compil-
ers, and tools for embedded systems (LCTES 2017),
pp 81-90

Woods L, Teubner J, Alonso G (2013) Less watts, more
performance: an intelligent storage engine for data
appliances. In: Proceeding of SIGMOD, pp 1073-1076

Woods L, Istvan Z, Alonso G (2014) Ibex: an intelligent
storage engine with support for advanced sql offload-
ing. Proc VLDB Endow 7(11):963-974

Wulf WA, McKee SA (1995) Hitting the memory
wall: implications of the obvious. SIGARCH CAN
23(1):20-24

Xi SL, Babarinsa O, Athanassoulis M, Idreos S (2015)
Beyond the wall: near-data processing for databases.
In: Proceeding of DaMoN, pp 2:1-2:10


http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150813_S301D_Ki.pdf

Ad Hoc Benchmark

TPC-H

Ad Hoc Query Processing

Robust Data Partitioning

Adaptive Partitioning

Robust Data Partitioning

Adaptive Windowing

Ricard Gavalda
Universitat Politécnica de Catalunya, Barcelona,
Spain

Synonyms
ADWIN algorithm

Definitions

Adaptive Windowing is a technique used for
the online analysis of data streams to manage
changes in the distribution of the data. It uses
the standard idea of sliding window over the
data, but, unlike other approaches, the size of
the window is not fixed and set a priori but
changed dynamically as a function of the data.
The window is maintained at all times to the
maximum length consistent with the assumption
that there is no change in the data contained in it.

Context

Many modern sources of data are best viewed
as data streams: a potentially infinite sequence
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of data items that arrive one at a time, usually
at high and uncontrollable speed. One wants to
perform various analysis tasks on the stream in an
online, rather than batch, fashion. Among these
tasks, many consist of building models such as
creating a predictor, forming clusters, or discov-
ering frequent patterns. The source of data may
evolve over time, that is, its statistical properties
may vary, and often one is interested in keeping
the model accurate with respect to the current
distribution of the data, rather than that of the past
data.

The ability of model-building methods to han-
dle evolving data streams is one of the distinctive
concerns of data stream mining, compared to
batch data mining (Gama et al. 2014; Ditzler et al.
2015; Bifet et al. 2018). Most of the approaches
to this problem in the literature fall into one of the
following three patterns or a combination thereof.

One, the algorithm keeps a sliding window
over the stream that stores a certain quantity
of the most recently seen items. The algorithm
then is in charge of keeping the model accurate
with respect to the items in the window. Sliding
means that every newly arrived item is added
to the front of the window and that the oldest
elements are dropped from the tail of the window.
Dropping policies may vary. To keep a window of
a constant size (denoted W hereafter), one stores
the first W elements and then drops exactly one
element for each one that is added.

Two, each item seen so far is associated with
a weight that changes over time. The model-
building algorithm takes into account the weight
of each element in maintaining its model, so that
elements with higher weight influence more the
model behavior. One can, for example, fix a con-
stant A < 1 called the decay factor and establish
that the importance of every item gets decreased
(multiplied) by A at each time step; this implies
that the importance of the item that arrived ¢ time
steps ago is A! its initial one, that is, weights
decrease exponentially fast. This policy is the
basis of the EWMA (Exponentially Weighted
Moving Average) estimator for the average of
some statistic of the stream.

Three, the model builder monitors the stream
with a change detection algorithm that raises a
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flag when it finds evidence that the distribution
of the stream items has changed. When this hap-
pens, the model builder revises the current model
or discards the model and builds a new one with
fresh data. Usually, change detection algorithms
monitor one statistic or a small number of statis-
tics of the stream, so they will not detect every
possible kind of change, which is in general com-
putationally unfeasible. Two easy-to-implement
change detection algorithms for streams of real
values are the CUSUM (Cumulative Sum) and
Page-Hinkley methods (Basseville and Nikiforov
1993; Gama et al. 2014). Roughly speaking, both
methods monitor the average of the items in the
stream; when the recent average differs from the
historical average by some threshold related to
the standard deviation, they declare change.

Methods such as EWMA, CUSUM, and Page-
Hinkley store a constant amount of real values,
while window-based methods require, if imple-
mented naively, memory linear in W. On the
other hand, keeping a window provides more
information usable by the model builder, namely,
the instances themselves.

A disadvantage of all three methods as de-
scribed is that they require the user to provide pa-
rameters containing assumptions about the mag-
nitude or frequency of changes. Fixing a window
size to have size W means that the user expects
the last W items to be relevant, so that there is
little change within them, but that items older
than W are suspect of being irrelevant. Fixing a
parameter A in the EWMA estimator to a value
close to 1 indicates that change is expected to be
rare or slow, while a value closer to 0 suggests
that change may be frequent or abrupt. A similar
assumption can be found in the choice of param-
eters for the CUSUM and Page-Hinkley tests.

In general, these methods face the trade-off
between reaction time and variance in the data:
The user would like them to react quickly to
changes (which happens with, e.g., smaller values
of W and A) but also have a low number of
false positives when no change occurs (which is
achieved with larger values of W and A). In the
case of sliding windows, in general one wants to
have larger values of W when no change occurs,
because models built from more data tend to be
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more accurate, but smaller values of W when
the data is changing, so that the model ignores
obsolete data. These trade-offs are investigated
by Kuncheva and Zliobaité (2009).

Methods

Adaptive windowing schemes use sliding win-
dows whose size increases or decreases in re-
sponse to the change observed in the data. They
intend to free the user from having to guess
expected rates of change in the data, which may
lead to poor performance if the guess is incorrect
or if the rate of change is different at different
moments. Three methods are reviewed in this
section, particularly the ADWIN method.

The Drift Detection Method (DDM) proposed
by Gama et al. (2004) applies to the construc-
tion of two-class predictive models. It is based
on the theoretical and practical observation that
the empirical error of a predictive model should
decrease or remain stable as the model is built
with more and more data from a stationary distri-
bution, assuming one controls overfitting. There-
fore, when the empirical error instead increases,
this is evidence that the distribution in the data
has changed.

More precisely, let p; denote the error rate of
the predictor at time ¢, and s, = /p;(1 — p;)/t
its standard deviation. DDM stores the smallest
value pu, of the error rates observed up to time ¢,
and the standard deviation Sy, at that point. Then
at time :

o If py + 5 > Pmin + 2 * Smin, DDM declares a
warning. It starts storing examples in anticipa-
tion of a possible declaration of change.

o If py + 5 > Pmin + 3 * Smin, DDM declares a
change. The current predictor is discarded and
a new one is built using the stored examples.
The values for py,;, and sp;, are reset as well.

This approach is generic and fast enough for
the use in the streaming setting, but it has the
drawback that it may be too slow in responding
to changes. Indeed, since p; is computed on the
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basis of all examples since the last change, it
may take many observations after the change to
make p, significantly larger than pp,;,. Also, for
slow change, the number of examples retained in
memory may become large.

An evolution of this method that uses EWMA
to estimate the errors is presented and thoroughly
analyzed by Ross et al. (2012).

The OLIN method due to Last (2002) and Co-
hen et al. (2008) also adjusts dynamically the size
of the sliding window used to update a predictive
model, in order to adapt it to the rate of change
in nonstationary data streams. OLIN uses the sta-
tistical significance of the difference between the
training and the validation accuracy of the current
model as an indicator of data stability. Higher
stability means that the window can be enlarged
to use more data to build a predictor, and lower
stability implies shrinking the window to discard
stale data. Although described for one specific
type of predictor (“Information Networks”) in
Last (2002) and Cohen et al. (2008), the tech-
nique should apply many other types.

The ADWIN (ADaptive WINdowing) algo-
rithm is due to Bifet and Gavalda (2007) and Bifet
(2010). Its purpose is to be a self-contained mod-
ule that can be used in the design of data stream
algorithms (for prediction or classification, but
also for other tasks) to detect and manage change
in a well-specified way. In particular, it wants
to resolve the trade-off between fast reaction to
change and reduced false alarms without relying
on the user guessing an ad hoc parameter. Intu-
itively, the ADWIN algorithm resolves this trade-
off by checking change at many scales simul-
taneously or trying many sliding window sizes
simultaneously. It should be used when the scale
of change rate is unknown, and this is problematic
enough to compensate a moderate increase in
computational effort.

More precisely, ADWIN maintains a sliding
window of real numbers that are derived from
the data stream. For example, elements in the
window could be W bits indicating whether the
current predictive model was correct on the last
W stream items; the window then can be used to
estimate the current error rate of the predictor. In
a clustering task, it could instead keep track of the

Adaptive Windowing

fraction of outliers or cluster quality measures,
and in a frequent pattern mining task, the number
of frequent patterns that appear in the window.
Significant variation inside the window of any of
these measures indicates distribution change in
the stream. ADWIN is parameterized by a con-
fidence parameter § € (0, 1) and a statistical test
T (Wy, W1, 8); here Wy and W are two windows,
and 7 decides whether they are likely to come
from the same distribution. A good test should
satisfy the following criteria:

e If Wy and W) were generated from the same
distribution (no change), then with probability
at least 1 — § the test says “no change.”

o If Wy and W) were generated from two dif-
ferent distributions whose average differs by
more than some quantity €(Wy, Wy, §), then
with probability at least 1 — § the test says
“change.”

When there has been change in the average but
its magnitude is less than € (Wy, Wy, §), no claims
can be made on the validity of the test’s answer.
Observe that in reasonable tests, € decreases as
the sizes of Wy and Wj increase, that is, as the
test sees larger samples. ADWIN applies the test
to a number of partitions of its sliding window
into two parts, Wy containing the oldest elements
and W) containing the newer ones. Whenever
T (Wy, W1,38) returns “change”, ADWIN drops
W, so the sliding window becomes W;. In this
way, at all times, the window is kept of the
maximum length such that there is no proof of
change within it. In times without change, the
window can keep growing indefinitely (up to a
maximum size, if desired).

In order to be efficient in time and mem-
ory, ADWIN represents its sliding window in a
compact way, using the Exponential Histogram
data structure due to Datar et al. (2002). This
structure maintains a summary of a window by
means of a chain of buckets. Older bits are
summarized and compressed in coarser buckets
with less resolution. A window of length W is
stored in only O(klog W) buckets, each using
a constant amount of memory words, and yet
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the histogram returns an approximation of the
average of the window values that is correct up
to a factor of 1/k. ADWIN does not check all
partitions of its window into pairs (W, W), but
only those at bucket boundaries. Therefore, it
performs O (k log W) tests on the sliding window
for each stream item. The standard implementa-
tion of ADWIN uses k = 5 and may add the
rule that checks are only performed only every
¢t number of items for efficiency — at the price
of a delay of up to ¢ time steps in detecting a
change.

In Bifet and Gavalda (2007) and Bifet (2010),
a test based on the so-called Hoeffding bound
is proposed, which can be rigorously proved to
satisfy the conditions above for a “good test.”
Based on this, rigorous guarantees on the false
positive rate and false negative rate of ADWIN
are proved in Bifet and Gavalda (2007) and Bifet
(2010). However, this test is quite conservative
and will be slow to detect change. In practice,
tests based on the normal approximation of a
binomial distribution should be used, obtaining
faster reaction time for a desired false positive
rate.

Algorithms for mining data streams will prob-
ably store their own sliding window of examples
to revise/rebuild their models. One or several
instances of ADWIN can be used to inform the
algorithm of the occurrence of change and the
optimal window size it should use. The time
and memory overhead is moderate (logarithmic
in the size of the window) and often negligible
compared with the cost of the main algorithm
itself.

Several change detection methods for streams
were evaluated by Gama et al. (2009). The con-
clusions were that Page-Hinkley and ADWIN
were the most appropriate. Page-Hinkley exhib-
ited a high rate of false alarms, and ADWIN used
more resources, as expected.

Examples of Application
ADWIN has been applied in the design of stream-

ing algorithms and in applications that need to
deal with nonstationary streams.
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At the level of algorithm design, it was used
by Bifet and Gavalda (2009) to give a more
adaptive version of the well-known CVFDT al-
gorithm for building decision trees from streams
due to Hulten et al. (2001); ADWIN improves
it by replacing hard-coded constants in CVFDT
for the sizes of sliding windows and the dura-
tion of testing and training phases with data-
adaptive conditions. A similar approach was used
by Bifet et al. (2010b) for regression trees using
perceptrons at the leaves. In Bifet et al. (2009a,b,
2010a, 2012), ADWIN was used in the context
of ensemble classifiers to detect when a member
of the ensemble is underperforming and needs
to be replaced. In the context of pattern mining,
ADWIN was used to detect change and maintain
the appropriate sliding window size in algorithms
that extract frequent graphs and frequent trees
from streams of graphs and XML trees (Bifet
et al. 2011b; Bifet and Gavalda 2011). In the
context of process mining, ADWIN is used by
Carmona and Gavalda (2012) to propose a mech-
anism that helps in detecting changes in the pro-
cess, localize and characterize the change once it
has occurred, and unravel process evolution.

ADWIN is a very generic, domain-independent
mechanism that can be plugged into a large
variety of applications. Some examples include
the following:

* Bakker et al. (2011) in an application to detect
stress situations in the data from wearable
Sensors

» Bifet et al. (2011a) in application to detect
sentiment change in Twitter streaming data

* Pechenizkiy et al. (2009) as the basic detection
mechanism in a system to control the stability
and efficiency of industrial fuel boilers

e Talavera et al. (2015) in an application to
segmentation of video streams

Future Research

A main research problem continues to be the
efficient detection of change in multidimensional
data. Algorithms as described above (OLIN,
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DDM, and ADWIN) deal, strictly speaking, with
the detection of change in a unidimensional
stream of real values; it is assumed that this
stream of real values, derived from the real
stream, will change significantly when there
is significant change in the multidimensional
stream.

Several instances of these detectors can be
created to monitor different parts of the data
space or to monitor different summaries or
projections thereof, as in, e.g., Carmona and
Gavalda (2012). However, there is no guarantee
that all real changes will be detected in this way.
Papapetrou et al. (2015) and Muthukrishnan et al.
(2007) among others have proposed efficient
schemes to directly monitor change in change
in multidimensional data. However, the problem
in its full generality is difficult to scale to high
dimensions and arbitrary change, and research in
more efficient mechanisms usable in streaming
scenarios is highly desirable.
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Synonyms

Cluster scheduling; Job scheduling; Resource
management

Definitions

YARN is currently one of the most popular
frameworks for scheduling jobs and managing
resources in shared clusters. In this entry, we
focus on the new features introduced in YARN
since its initial version.

Overview

Apache Hadoop (2017), one of the most widely
adopted implementations of MapReduce (Dean
and Ghemawat 2004), revolutionized the way that
companies perform analytics over vast amounts
of data. It enables parallel data processing over
clusters comprised of thousands of machines
while alleviating the user from implementing
complex communication patterns and fault
tolerance mechanisms.

With its rise in popularity, came the realization
that Hadoop’s resource model for MapReduce,
albeit flexible, is not suitable for every appli-
cation, especially those relying on low-latency


https://doi.org/10.1016/j.inffus.2005.05.005
https://doi.org/10.1016/j.inffus.2005.05.005
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
http://doi.acm.org/10.1145/1557019.1557060
http://doi.acm.org/10.1145/1557019.1557060
http://doi.acm.org/10.1145/2523813
http://doi.acm.org/10.1145/2523813
http://portal.acm.org/citation.cfm?id=502512.502529
http://portal.acm.org/citation.cfm?id=502512.502529
https://doi.org/10.3233/IDA-2009-0397
https://doi.org/10.3233/IDA-2009-0397
http://content.iospress.com/articles/intelligent-data-analysis/ida00083
http://content.iospress.com/articles/intelligent-data-analysis/ida00083
http://content.iospress.com/articles/intelligent-data-analysis/ida00083
https://doi.org/10.1109/ICDMW.2007.89
https://doi.org/10.1007/s00778-015-0380-7
https://doi.org/10.1007/s00778-015-0380-7
http://doi.acm.org/10.1145/1809400.1809423
http://doi.acm.org/10.1145/1809400.1809423
https://doi.org/10.1016/j.patrec.2011.08.019
https://doi.org/10.1007/978-3-319-19390-8_37
https://doi.org/10.1007/978-3-319-19390-8_37
https://doi.org/10.1007/978-3-319-77525-8_100058
https://doi.org/10.1007/978-3-319-77525-8_100185
https://doi.org/10.1007/978-3-319-77525-8_100283

24

Advancements in YARN

Advancements in YARN Resource Manager

DO Y A YAy Lo A CACRS
Resource Manager, Fig. 1 £ 300 OO ".’ v '\/.'X:\"X 'X"‘.' '\.’ 'X v
Timeline of Apache g
Hadoop releases (on top) € 250 — JIRAsraised
and number of raised and > JIRAs resolved
resolved tickets (JIRAs) é 200 |
per month on YARN = ¢ Hadooprelease
Z 150 A
< 9
&« 100
o
g 50
2
5 o
Z { T T T T T T T T T T T
A AY AL AL 4D AD A Ak AD 4D A0 A0 AT Al

W 0 Y 9o W gt Yot oo Wt gt ot get Y ge¢

or iterative computations. This motivated decou-
pling the cluster resource management infrastruc-
ture from specific programming models and led
to the birth of YARN (Vavilapalli et al. 2013).
YARN manages cluster resources and exposes
a generic interface for applications to request
resources. This allows several applications, in-
cluding MapReduce, to be deployed on a single
cluster and share the same resource management
layer.

YARN is a community-driven effort that was
first introduced in Apache Hadoop in November
2011, as part of the 0.23 release. Since then,
the interest of the community has continued un-
abated. Figure 1 shows that more than 100 tickets,
i.e., JIRAs (YARN JIRA 2017), related to YARN
are raised every month. A steady portion of these
JIRASs are resolved, which shows the continuous
community engagement. In the past year alone,
160 individuals have contributed code to YARN.

Moreover, YARN has been widely deployed
across hundreds of companies for production
purposes, including Yahoo! (Oath), Microsoft,
Twitter, LinkedIn, Hortonworks, Cloudera, eBay,
and Alibaba.

Since YARN’s inception, we observe the fol-
lowing trends in modern clusters:

Application variety Users’ interest has
panded from batch analytics applications (e.g.,
MapReduce) to include streaming, iterative

€X-

Time

(e.g., machine and interactive
computations.

Large shared clusters Instead of using dedi-
cated clusters for each application, diverse
workloads are consolidated on clusters
of thousands or even tens of thousands
of machines. This consolidation avoids
unnecessary data movement, allows for better
resource utilization, and enables pipelines
with different application classes.

High resource utilization Operating large clus-
ters involves a significant cost of ownership.
Hence, cluster operators rely on resource man-
agers to achieve high cluster utilization and
improve their return on investment.

Predictable execution Production jobs typically
come with Service Level Objectives (SLOs),
such as completion deadlines, which have to
be met in order for the output of the jobs to be
consumed by downstream services. Execution
predictability is often more important than
pure application performance when it comes
to business-critical jobs.

learning),

This diverse set of requirements has
introduced new challenges to the resource
management layer. To address these new
demands, YARN has evolved from a platform
for batch analytics workloads to a production-
ready, general-purpose resource manager that
can support a wide range of applications and user
requirements over large shared clusters. In the
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remainder of this entry, we first give a brief
overview of YARN’s architecture and dedicate
the rest of the paper to the new functionality that
was added to YARN these last years.

YARN Architecture

YARN follows a centralized architecture in which
a single logical component, the resource manager
(RM), allocates resources to jobs submitted to
the cluster. The resource requests handled by
the RM are intentionally generic, while specific
scheduling logic required by each application
is encapsulated in the application master (AM)
that any framework can implement. This allows
YARN to support a wide range of applications
using the same RM component. YARN’s archi-
tecture is depicted in Fig.2. Below we describe
its main components. The new features, which
appear in orange, are discussed in the following
sections.

Node Manager (NM) The NM is a daemon
running at each of the cluster’s worker nodes.
NMs are responsible for monitoring resource
availability at the host node, reporting faults,
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and managing containers’ life cycle (e.g., start,
monitor, pause, and kill containers).

Resource Manager (RM) The RM runs on a
dedicated machine, arbitrating resources among
various competing applications. Multiple RMs
can be used for high availability, with one of
them being the master. The NMs periodically
inform the RM of their status, which is stored
at the cluster state. The RM-NM communication
is heartbeat-based for scalability. The RM also
maintains the resource requests of all applica-
tions (application state). Given its global view
of the cluster and based on application demand,
resource availability, scheduling priorities, and
sharing policies (e.g., fairness), the scheduler
performs the matchmaking between application
requests and machines and hands leases, called
containers, to applications. A container is a log-
ical resource bundle (e.g., 2GB RAM, 1 CPU)
bound to a specific node.

YARN includes two scheduler implementa-
tions, namely, the Fair and Capacity Schedulers.
The former imposes fairness between applica-
tions, while the latter dedicates a share of the
cluster resources to groups of users.

Jobs are submitted to the RM via the
YARN Client protocol and go through an
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admission control phase, during which se-
curity credentials are validated and various
operational and administrative checks are
performed.

Application Master (AM) The AM is the job
orchestrator (one AM is instantiated per sub-
mitted job), managing all its life cycle aspects,
including dynamically increasing and decreasing
resource consumption, managing the execution
flow (e.g., running reducers against the output of
mappers), and handling faults. The AM can run
arbitrary user code, written in any programming
language. By delegating all these functions to
AMs, YARN’s architecture achieves significant
scalability, programming model flexibility, and
improved upgrading/testing.

An AM will typically need to harness re-
sources from multiple nodes to complete a job.
To obtain containers, the AM issues resource
requests to the RM via heartbeats, using the AM
Service interface. When the scheduler assigns a
resource to the AM, the RM generates a lease
for that resource. The AM is then notified and
presents the container lease to the NM for launch-
ing the container at that node. The NM checks
the authenticity of the lease and then initiates the
container execution.

In the following sections, we present the main
advancements made in YARN, in particular with
respect to resource utilization, scalability, support
for services, and execution predictability.

Resource Utilization

In the initial versions of YARN, the RM would
assign containers to a node only if there were
unallocated resources on that node. This guar-
anteed type of allocation ensures that once an
AM dispatches a container to a node, there will
be sufficient resources for its execution to start
immediately.

Despite the predictable access to resources
that this design offers, it has the following short-
comings that can lead to suboptimal resource
utilization:
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Feedback delays The heartbeat-based AM-RM
and NM-RM communications can cause idle
node resources from the moment a container
finishes its execution on a node to the moment
an AM gets notified through the RM to launch
a new container on that node.

Underutilized resources The RM assigns con-
tainers based on the allocated resources at
each node, which might be significantly higher
than the actually utilized ones (e.g., a 4GB
container using only 2 GB of its memory).

In a typical YARN cluster, NM-RM heartbeat
intervals are set to 3s, while AM-RM intervals
vary but are typically up to a few seconds. There-
fore, feedback delays are more pronounced for
workloads with short tasks.

Below we describe the new mechanisms that
were introduced in YARN to improve cluster
resource utilization. These ideas first appeared in
the Mercury and Yaq systems (Karanasos et al.
2015; Rasley et al. 2016) and are part of Apache
Hadoop as of version 2.9 (Opportunistic schedul-
ing 2017; Distributed scheduling 2017).

Opportunistic containers Unlike guaranteed
containers, opportunistic ones are dispatched to
an NM, even if there are no available resources
on that node. In such a case, the opportunistic
containers will be placed in a newly introduced
NM queue (see Fig.2). When resources become
available, an opportunistic container will be
picked from the queue, and its execution will
start immediately, avoiding any feedback delays.
These containers run with lower priority in
YARN and will be preempted in case of resource
contention for guaranteed containers to start their
execution. Hence, opportunistic containers im-
prove cluster resource utilization without impact-
ing the execution of guaranteed containers. More-
over, whereas the original NM passively executes
conflict-free commands from the RM, a modern
NM uses these two-level priorities as inputs to
local scheduling decisions. For instance, low-
priority jobs with non-strict execution guarantees
or tasks off the critical path of a DAG, are good
candidates for opportunistic containers.
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The AMs currently determine the execution
type for each container, but the system could
use automated policies instead. The AM can also
request promotion of opportunistic containers to
guarantee to protect them from preemption.

Hybrid scheduling Opportunistic containers
can be allocated centrally by the RM or in a
distributed fashion through a local scheduler that
runs at each NM and leases containers on other
NMs without contacting the RM. Centralized
allocation allows for higher-quality placement
decisions and sharing policies. Distributed
allocation offers lower allocation latencies, which
can be beneficial for short-lived containers.
To prevent conflicts, guaranteed containers are
always assigned by the RM.

To determine the least-loaded nodes for plac-
ing opportunistic containers, the RM periodically
gathers information about the running and queued
containers at each node and propagates this infor-
mation to the local schedulers too. To account for
occasional load imbalance across nodes, YARN
performs dynamic rebalancing of queued con-
tainers.

Resource overcommitment Currently, oppor-
tunistic containers can be employed to avoid
feedback delays. Ongoing development also
focuses on overcommitting resources using
opportunistic ~ containers  (Utilization-based
scheduling 2017). In this scenario, opportunistic
containers facilitate reclaiming overcommitted
resources on demand, without affecting the
performance and predictability of jobs that opt
out of overcommitted resources.

Cluster Scalability

A single YARN RM can manage a few thousands
of nodes. However, production analytics clusters
at big cloud companies are often comprised of
tens of thousands of machines, crossing YARN’s
limits (Burd et al. 2017).

YARN’s scalability is constrained by the re-
source manager, as load increases proportionally
to the number of cluster nodes and the appli-
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cation demands (e.g., active containers, resource
requests per second). Increasing the heartbeat
intervals could improve scalability in terms of
number of nodes, but would be detrimental to
utilization (Vavilapalli et al. 2013) and would
still pose problems as the number of applications
increases.

Instead, as of Apache Hadoop 2.9 (YARN
Federation 2017), a federation-based approach
scales a single YARN cluster to tens of thousands
of nodes. This approach divides the cluster into
smaller units, called subclusters, each with its
own YARN RM and NMs. The federation system
negotiates with subcluster RMs to give appli-
cations the experience of a single large cluster,
allowing applications to schedule their tasks to
any node of the federated cluster.

The state of the federated cluster is coordi-
nated through the State Store, a central compo-
nent that holds information about (1) subcluster
liveliness and resource availability via heartbeats
sent by each subcluster RM, (2) the YARN sub-
cluster at which each AM is being deployed,
and (3) policies used to impose global cluster
invariants and perform load rebalancing.

To allow jobs to seamlessly span subclusters,
the federated cluster relies on the following com-
ponents:

Router A federated YARN cluster is equipped
with a set of routers, which hide the presence
of multiple RMs from applications. Each ap-
plication gets submitted to a router, which,
based on a policy, determines the subcluster
for the AM to be executed, gets the subcluster
URL from the State Store, and redirects the
application submission request to the appro-
priate subcluster RM.

AMRM Proxy This component runs as a service
at each NM of the cluster and acts as a proxy
for every AM-RM communication. Instead of
directly contacting the RM, applications are
forced by the system to access their local
AMRM Proxy. By dynamically routing the
AM-RM messages, the AMRM Proxy pro-
vides the applications with transparent ac-
cess to multiple YARN RMs. Note that the
AMRM Proxy is also used to implement the



28

local scheduler for opportunistic containers
and could be used to protect the system against
misbehaving AMs.

This federated design is scalable, as the
number of nodes each RM is responsible for
is bounded. Moreover, through appropriate
policies, the majority of applications will be
executed within a single subcluster; thus the
number of applications that are present at
each RM is also bounded. As the coordination
between subclusters is minimal, the cluster’s size
can be scaled almost linearly by adding more
subclusters. This architecture can provide tight
enforcement of scheduling invariants within a
subcluster, while continuous rebalancing across
subclusters enforces invariants in the whole
cluster.

A similar federated design has been followed
to scale the underlying store (HDFS Federation
2017).

Long-Running Services

As already discussed, YARN’s target applications
were originally batch analytics jobs, such as
MapReduce. However, a significant share of
today’s clusters is dedicated to workloads that
include stream processing, iterative computa-
tions, data-intensive interactive jobs, and latency-
sensitive online applications. Unlike batch
jobs, these applications benefit from long-lived
containers (from hours to months) to amortize
container initialization costs, reduce scheduling
load, or maintain state across computations. Here
we use the term services for all such applications.

Given their long-running nature, these appli-
cations have additional demands, such as sup-
port for restart, in-place upgrade, monitoring, and
discovery of their components. To avoid using
YARN'’s low-level API for enabling such opera-
tions, users have so far resorted to AM libraries
such as Slider (Apache Slider 2017). Unfortu-
nately, these external libraries only partially solve
the problem, e.g., due to lack of common stan-
dards for YARN to optimize resource demands
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across libraries or version incompatibilities be-
tween the libraries and YARN.

To this end, the upcoming Apache Hadoop 3.1
release adds first-class support for long-running
services in YARN, allowing for both traditional
process-based and Docker-based containers. This
service framework allows users to deploy existing
services on YARN, simply by providing a JSON
file with their service specifications, without hav-
ing to translate those requirements into low-level
resource requests at runtime.

The main component of YARN’s service
framework is the container orchestrator, which
facilitates service deployment. It is an AM that,
based on the service specification, configures the
required requests for the RM and launches the
corresponding containers. It deals with various
service operations, such as starting components
given specified dependencies, monitoring their
health and restarting failed ones, scaling up
and down component resources, upgrading
components, and aggregating logs.

A RESTful API server is developed to allow
users to manage the life cycle of services on
YARN via simple commands, using framework-
independent APIs. Moreover, a DNS server
enables service discovery via standard DNS
lookups and greatly simplifies service failovers.

Scheduling services Apart from the aforemen-
tioned support for service deployment and man-
agement, service owners also demand precise
control of container placement to optimize the
performance and resilience of their applications.
For instance, containers of services are often
required to be collocated (affinity) to reduce net-
work costs or separated (anti-affinity) to mini-
mize resource interference and correlated fail-
ures. For optimal service performance, even more
powerful constraints are useful, such as complex
intra- and inter-application constraints that collo-
cate services with one another or put limits in the
number of specific containers per node or rack.
When placing containers of services, clus-
ter operators have their own, potentially con-
flicting, global optimization objectives. Examples
include minimizing the violation of placement
constraints, the resource fragmentation, the load
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imbalance, or the number of machines used. Due
to their long lifetimes, services can tolerate longer
scheduling latencies than batch jobs, but their
placement should not impact the scheduling la-
tencies of the latter.

To enable high-quality placement of services
in YARN, Apache Hadoop 3.1 introduces sup-
port for rich placement constraints (Placement
constraints 2017).

Jobs with SLOs

In production analytics clusters, the majority of
cluster resources is usually consumed by produc-
tion jobs. These jobs must meet strict Service
Level Objectives (SLOs), such as completion
deadlines, for their results to be consumed by
downstream services. At the same time, a large
number of smaller best-effort jobs are submitted
to the same clusters in an ad hoc manner for
exploratory purposes. These jobs lack SLOs, but
they are sensitive to completion latencies.

Resource managers typically allocate re-
sources to jobs based on instantaneous enforce-
ment of job priorities and sharing invariants.
Although simpler to implement and impose, this
instantaneous resource provisioning makes it
challenging to meet job SLOs without sacrificing
low latency for best-effort jobs.

To ensure that important production jobs will
have predictable access to resources, YARN was
extended with the notion of reservations, which
provide users with the ability to reserve resources
over (and ahead of) time. The ideas around
reservations first appeared in Rayon (Curino
et al. 2014) and are part of YARN as of Apache
Hadoop 2.6.

Reservations This is a construct that determines
the resource needs and temporal requirements of
a job and translates the job’s completion deadline
into an SLO over predictable resource alloca-
tions. This is done ahead of the job’s execution,
aimed at ensuring a predictable and timely execu-
tion. To this end, YARN introduced a reservation
definition language (RDL) to express a rich class
of time-aware resource requirements, including
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deadlines, malleable and gang parallelism, and
inter-job dependencies.

Reservation planning and scheduling RDL
provides a uniform and abstract representation
of jobs’ needs. Reservation requests are received
ahead of a job’s submission by the reservation
planner, which performs online admission
control. It accepts all jobs that can fit in the cluster
agenda over time and rejects those that cannot be
satisfied. Once a reservation is accepted by the
planner, the scheduler is used to dynamically
assign cluster resources to the corresponding job.

Periodic reservations Given that a high per-
centage of production jobs are recurring (e.g.,
hourly, daily, or monthly), YARN allows users to
define periodic reservations, starting with Apache
Hadoop 2.9. A key property of recurring reser-
vations is that once a periodic job is admitted,
each of its instantiations will have a predictable
resource allocation. This isolates periodic pro-
duction jobs from the noisiness of sharing.

Toward predictable execution The idea of re-
curring reservations was first exposed as part of
the Morpheus system (Jyothi et al. 2016). Mor-
pheus analyzes inter-job data dependencies and
ingress/egress operations to automatically derive
SLOs. It uses a resource estimator tool, which is
also part of Apache Hadoop as of version 2.9,
to estimate jobs’ resource requirements based on
historic runs. Based on the derived SLOs and
resource demands, the system generates recur-
ring reservations and submits them for planning.
This guarantees that periodic production jobs will
have guaranteed access to resources and thus
predictable execution.

Further Improvements

In this section, we discuss some additional im-
provements made to YARN.

Generic resources As more heterogeneous ap-
plications with varying resource demands are
deployed to YARN clusters, there is an increasing



30

need for finer control of resource types other
than memory and CPU. Examples include disk
bandwidth, network I/0O, GPUs, and FPGAs.

Adding new resource types in YARN used
to be cumbersome, as it required extensive code
changes. The upcoming Apache Hadoop 3.1 re-
lease (Resource profiles 2017) follows a more
flexible resource model, allowing users to add
new resources with minimal effort. In fact, users
can define their resources in a configuration file,
eliminating the need for code changes or recom-
pilation. The Dominant Resource Fairness (Gh-
odsi et al. 2011) scheduling algorithm at the RM
has also been adapted to account for generic
resource types, while resource profiles can be
used for AMs to request containers specifying
predefined resource sets. Ongoing work focuses
on the isolation of resources such as disk, net-
work, and GPUs.

Node labels Cluster operators can group nodes
with similar characteristics, e.g., nodes with
public IPs or nodes used for development or
testing. Applications can then request containers
on nodes with specific labels. This feature is
supported by YARN’s Capacity Scheduler from
Apache Hadoop 2.6 on (Node labels 2017) and
allows at most one label to be specified per node,
thus creating nonoverlapping node partitions in
the cluster. The cluster administrator can specify
the portion of a partition that a queue of the
scheduler can access, as well as the portion of
a queue’s capacity that is dedicated to a specific
node partition. For instance, queue A might be
restricted to access no more than 30% of the
nodes with public IPs, and 40% of queue A has
to be on dev machines.

Changing queue configuration Several com-
panies use YARN’s Capacity Scheduler to share
clusters across non-coordinating user groups.
A hierarchy of queues isolates jobs from each
department of the organization. Due to changes
in the resource demands of each department,
the queue hierarchy or the cluster condition,
operators modify the amount of resources
assigned to each organization’s queue and to
the sub-queues used within that department.
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However, queue reconfiguration has two
main drawbacks: (1) setting and changing
configurations is a tedious process that can only
be performed by modifying XML files; (2) queue
owners cannot perform any modifications to their
sub-queues; the cluster admin must do it on their
behalf.

To address these shortcomings, Apache
Hadoop 2.9 (OrgQueue 2017) allows configu-
rations to be stored in an in-memory database
instead of XML files. It adds a RESTful API
to programmatically modify the queues. This
has the additional benefit that queues can
be dynamically reconfigured by automated
services, based on the cluster conditions or on
organization-specific criteria. Queue ACLs allow
queue owners to perform modifications on their
part of the queue structure.

Timeline server Information about current and
previous jobs submitted in the cluster is key for
debugging, capacity planning, and performance
tuning. Most importantly, observing historic data
enables us to better understand the cluster and
jobs’ behavior in aggregate to holistically im-
prove the system’s operation.

The first incarnation of this effort was the ap-
plication history server (AHS), which supported
only MapReduce jobs. The AHS was superseded
by the timeline server (TS), which can deal with
generic YARN applications. In its first version,
the TS was limited to a single writer and reader
that resided at the RM. Its applicability was
therefore limited to small clusters.

Apache Hadoop 2.9 includes a major redesign
of TS (YARN TS v2 2017), which separates
the collection (writes) from the serving (reads)
of data, and performs both operations in a dis-
tributed manner. This brings several scalability
and flexibility improvements.

The new TS collects metrics at various
granularities, ranging from flows (i.e., sets of
YARN applications logically grouped together)
to jobs, job attempts, and containers. It also
collects cluster-wide data, such as user and queue
information, as well as configuration data.

The data collection is performed by collectors
that run as services at the RM and at every NM.
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The AM of each job publishes data to the col-
lector of the host NM. Similarly, each container
pushes data to its local NM collector, while the
RM publishes data to its dedicated collector. The
readers are separate instances that are dedicated
to serving queries via a REST API. By default
Apache HBase (Apache HBase 2017) is used as
the backing storage, which is known to scale to
large amounts of data and read/write operations.

Conclusion

YARN was introduced in Apache Hadoop at the
end of 2011 as an effort to break the strong ties
between Hadoop and MapReduce and to allow
generic applications to be deployed over a com-
mon resource management fabric. Since then,
YARN has evolved to a fully fledged production-
ready resource manager, which has been de-
ployed on shared clusters comprising tens of
thousands of machines. It handles applications
ranging from batch analytics to streaming and
machine learning workloads to low-latency ser-
vices while achieving high resource utilization
and supporting SLOs and predictability for pro-
duction workloads. YARN enjoys a vital commu-
nity with hundreds of monthly contributions.
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Synonyms

Big data benchmarks; Decision support bench-
marks; Machine learning benchmarks; OLAP
benchmarks; OLTP benchmarks; Real-time
streaming benchmarks

Definitions

The meaning of the word benchmark is (Ander-
sen and Pettersen 1995) A predefined position,
used as a reference point for taking measures
against. There is no clear formal definition of
analytics benchmarks.

Jim Gray (1992) describes the benchmarking
as follows: “This quantitative comparison starts

ADWIN Algorithm

with the definition of a benchmark or workload.
The benchmark is run on several different
systems, and the performance and price of each
system is measured and recorded. Performance
is typically a throughput metric (work/second)
and price is typically a five-year cost-of-
ownership metric. Together, they give a price/per-
formance ratio.” In short, we define that a
software benchmark is a program used for
comparison of software products/tools executing
on a pre-configured hardware environment.

Analytics benchmarks are a type of domain-
specific benchmark targeting analytics for
databases, transaction processing, and big data
systems. Originally, the TPC (Transaction
Processing Performance Council) (TPC 2018)
defined online transaction processing (OLTP)
(TPC-A and TPC-B) and decision support (DS)
benchmarks (TPC-D and TPC-H). The DS
systems can be seen as some sort of special
online analytical processing (OLAP) system
with an example of the TPC-DS benchmark,
which is a successor of TPC-H (Nambiar and
Poess 2006) and specifies many OLAP and data
mining queries, which are the predecessors of
the current analytics benchmarks. However,
due to the many new emerging data platforms
like hybrid transaction/analytical processing
(HTAP) (Kemper and Neumann 2011; Ozcan
et al. 2017), distributed parallel processing
engines (Sakr et al. 2013; Hadoop 2018;
Spark 2018; Flink 2018; Carbone et al. 2015,
etc.), Big data management (AsterixDB 2018;
Alsubaiee et al. 2014), SQL-on-Hadoop-alike
(Abadi et al. 2015; Hive 2018; Thusoo et al.
2009; SparkSQL 2018; Armbrust et al. 2015;
Impala 2018; Kornacker et al. 2015, etc.), and
analytics systems (Hu et al. 2014) integrating
machine learning (MLIlib 2018; Meng et al.
2016; MADIib 2018; Hellerstein et al. 2012),
Deep Learning (Tensorflow 2018) and more, the
emerging benchmarks try to follow the trend to
stress these new system features. This makes
the currently standardized benchmarks (such as
TPC-C, TPC-H, etc.) only partially relevant for
the emerging big data management systems as
they offer new features that require new analytics
benchmarks.
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Analytics Benchmarks

Overview

This chapter reviews the evolution of the ana-
lytics benchmarks and their current state today
(as of 2017). It starts overview of the most rel-
evant benchmarking organizations their bench-
mark standards and outlines the latest bench-
mark development and initiatives targeting the
emerging Big Data Analytics systems. Last but
not least the typical benchmark components are
described as well as the different goals that these
benchmarks try to achieve.

Historical Background

OLTP and DSS/OLAP

In the end of the 1970s, many businesses
started implementing transaction-based systems
(Rockart et al. 1982), which later became known
as the term online transaction processing (OLTP)
systems and represent the instant interaction
between the user and the data management
system. This type of transaction processing
systems became a key part of the companies’
operational infrastructure and motivated TPC
(TPC 2018) to target these systems in their first
formal benchmark specification. At the same
time, the decision support systems (DSS) evolved
significantly and became a standard tool for the
enterprises that assisted in the human decision-
making (Shim et al. 2002).

In the early 1990s, a different type of sys-
tem, called online analytical processing (OLAP)
systems by Codd et al. (1993), was used by
the enterprises to dynamically manipulate and
synthesize historic information. The historic data
was aggregated from the OLTP systems, and
through the application of dynamic analysis, the
users were able to gain important knowledge for
the operational activities over longer periods of
time.

Over the years, the DS systems were en-
hanced by the use of the OLAP systems (Shim
et al. 2002). They became an essential decision-
making tool for the enterprise management and
a core element of the company infrastructure.
With the wide adaption of multipurpose database
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systems to build both an OLTP and DS system,
the need for standardized database benchmarks
arose. This resulted in an intense competition
between database vendors to dominate the mar-
ket, which leads to the need of domain-specific
benchmarks to stress the database software. The
use of sample workloads together with a bunch of
metrics was not enough to guarantee the product
capabilities in a transparent way. Another arising
issue was the use of benchmarks for bench-
marketing. It happens when a company uses a
particular benchmark to highlight the strengths
of its product and hide its weaknesses and then
promotes the benchmark as a “standard,” often
without disclosing the details of the benchmark
(Gray 1992). All of these opened the gap for stan-
dardized benchmarks that are formally specified
by recognized expert organizations. Therefore, a
growing number of organizations are working on
defining and standardizing of benchmarks. They
operate as consortia of public and private organi-
zations and define domain-specific benchmarks,
price, and performance metrics, measuring and
reporting rules as well as formal validation and
auditing rules.

TPC

The TPC (Transaction Processing Performance
Council) (TPC 2018) is a nonprofit corporation
operating as an industry consortium of vendors
that define transaction processing, database,
and big data system benchmarks. TPC was
formed on August 10, 1988, by eight companies
convinced by Omri Serlin (TPC 2018). In
November 1989 was published the first standard
benchmark TPC-A with 42-page specification
(Gray 1992). By late 1990, there were 35
member companies. As of 2017, TPC has 21
company members and 3 associate members.
There are 6 obsolete benchmarks (TPC-A,
TPC-App, TPC-B, TPC-D, TPC-R, and TPC-
W), 14 active benchmarks (TPC-C (Raab
1993), TPC-E (Hogan 2009), TPC-H (Poss and
Floyd 2000), TPC-DS (Poess et al. 2017; Poss
et al. 2007; Nambiar and Poess 2006), TPC-
DI (Poess et al. 2014), TPC-V (Sethuraman
and Taheri 2010), TPCx-HS (Nambiar 2014),
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Analytics Benchmarks, Table 1 Active TPC benchmarks (TPC 2018)

Benchmark domain
Transaction processing (OLTP)
Decision support (OLAP)
Virtualization

Big data

IoT

Common specifications

Specification name

TPC-C, TPC-E

TPC-H, TPC-DS, TPC-DI

TPC-VMS, TPCx-V, TPCx-HCI

TPCx-HS V1, TPCx-HS V2, TPCx-BB, TPC-DS V2
TPCx-IoT

TPC-pricing, TPC-energy

Analytics Benchmarks, Table 2 Active SPEC benchmarks (SPEC 2018)

Benchmark domain
Cloud
CPU

Graphics and workstation performance

Specification name

SPEC cloud IaaS 2016

SPEC CPU2006, SPEC CPU2017

SPECapc for solidWorks 2015, SPECapc for siemens NX

9.0 and 10.0, SPECapc for PTC Creo 3.0, SPECapc for 3ds
Max 2015, SPECwpc V2.1, SPECviewperf 12.1

High-performance computing, OpenMP, MPI,
OpenACC, OpenCL

Java client/server

SPEC OMP2012, SPEC MPI2007, SPEC ACCEL

SPECjvm2008, SPECjms2007, SPECjEnterprise2010,

SPECjbb2015
Storage SPEC SFS2014
Power SPECpower ssj2008

Virtualization

TPCx-BB (Ghazal et al. 2013)), and 2 common
specifications (pricing and energy) used across
all benchmarks. Table 1 lists the active TPC
benchmarks grouped by domain.

SPEC

The SPEC (Standard Performance Evaluation
Corporation) (SPEC 2018) is a nonprofit
corporation formed to establish, maintain, and
endorse standardized benchmarks and tools to
evaluate performance and energy efficiency for
the newest generation of computing systems.
It was founded in 1988 by a small number of
workstation vendors. The SPEC organization is
an umbrella organization that covers four groups
(each with their own benchmark suites, rules,
and dues structure): the Open Systems Group
(OSG), the High-Performance Group (HPG), the
Graphics and Workstation Performance Group
(GWPG), and the SPEC Research Group (RG).
As of 2017, there are around 19 active SPEC
benchmarks listed in Table 2.

SPEC VIRT SC 2013

STAC

The STAC Benchmark Council (STAC 2018)
consists of over 300 financial institutions and
more than 50 vendor organizations whose pur-
pose is to explore technical challenges and so-
lutions in financial services and to develop tech-
nology benchmark standards that are useful to
financial organizations. Since 2007, the council
is working on benchmarks targeting fast data, big
data, and big compute workloads in the finance
industry. As of 2017, there are around 11 active
benchmarks listed in Table 3.

Other historical benchmark organizations and
consortia are The Perfect Club (Gray 1992;
Hockney 1996) and the Parkbench Committee
(Hockney 1996).

Big Data Technologies

In the recent years, many emerging data tech-
nologies have become popular, trying to solve the
challenges posed by the new big data and Internet
of things application scenarios. In a historical
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Analytics Benchmarks, Table 3 Active STAC bench-
marks (STAC 2018)

Benchmark domain Specification name

Feed handlers STAC-M1

Data distribution STAC-M2

Tick analytics STAC-M3
Event processing STAC-A1

Risk computation STAC-A2
Backtesting STAC-A3
Trade execution STAC-E
Tick-to-trade STAC-T1

Time sync STAC-TS

Big data In-development
Network I/0 STAC-N1, STAC-TO

overview of the trends in data management tech-
nologies, Nambiar et al. (2012) highlight the
role of big data technologies and how they are
currently changing the industry. One such tech-
nology is the NoSQL storage engines (Cattell
2011) which relax the ACID (atomicity, con-
sistency, isolation, durability) guarantees but of-
fer faster data access via distributed and fault-
tolerant architecture. There are different types
of NoSQL engines (key value, column, graph,
and documents stores) covering different data
representations.

In the meantime, many new dig data
technologies such as (1) Apache Hadoop (2018)
with HDFS and MapReduce; (2) general parallel
processing engines like Spark (2018) and Flink
(2018); (3) SQL-on-Hadoop systems like Hive
(2018) and Spark SQL (2018); (4) real-time
stream processing engines like Storm (2018),
Spark Streaming (2018) and Flink; and (5)
graph engines on top of Hadoop like GraphX
(2018) and Flink Gelly (2015) have emerged.
All these tools enabled advanced analytical
techniques from data science, machine learning,
data mining, and deep learning to become
common practices in many big data domains.
Because of all these analytical techniques, which
are currently integrated in many different ways
in both traditional database and new big data
management systems, it is hard to define the
exact features that a successor of the DS/OLAP
systems should have.
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Big Data Analytics Benchmarks

Following the big data technology trends, many
new benchmarks for big data analytics have
emerged. Good examples for OLTP benchmarks
targeting the NoSQL engines are the Yahoo!
Cloud Serving Benchmark (short YCSB),
developed by Yahoo, and LinkBench developed
by Facebook, described in Table 4. However,
most big data benchmarks stress the capabilities
of Hadoop as the major big data platform, as
listed in Table 5. Others like BigFUN (Pirzadeh
etal. 2015) and BigBench (Ghazal et al. 2013) are
technology-independent. For example, BigBench
(standardized as TPCx-BB) addresses the Big
Data 3V’s characteristics and relies on workloads
which can be implemented by different SQL-
on-Hadoop systems and parallel processing
engines supporting advanced analytics and
machine learning libraries. Since there are no
clear boundaries for the analytical capabilities
of the new big data systems, it is also hard to
formally specify what is an analytics benchmark.

A different type of benchmark, called
benchmark suites, has become very popular.
Their goal is to package a number of micro-
benchmarks or representative domain workloads
together and in this way enable the users to easily
test the systems for the different functionalities.
Some of these suites target one technology like
SparkBench (Li et al. 2015; Agrawal et al. 2015),
which stresses only Spark, while others like
HiBench offer implementations for multiple
processing engines. Table 6 lists some popular
big data benchmarking suites.

A more detailed overview of the current big
data benchmarks is provided in a SPEC Big Data
Research Group survey by Ivanov et al. (2015)
and a journal publication by Han et al. (2018).

Foundations

In the last 40 years, the OLTP and DS/OLAP
systems have been the industry standard systems
for data storage and management. Therefore, all
popular TPC benchmarks were specified in these
areas. The majority TPC benchmark specifica-
tions (Poess 2012) have the following main com-
ponents:
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Analytics Benchmarks, Table 4 OLTP benchmarks

Name
YCSB (Cooper et al. 2010; Patil et al. 2011)

Benchmark description

A benchmark designed to compare emerging cloud serving systems
like Cassandra, HBase, MongoDB, Riak, and many more, which do
not support ACID. It provides a core package of six predefined
workloads A-F, which simulate a cloud OLTP application

LinkBench (Armstrong et al. 2013) A benchmark, developed by Facebook, using synthetic social graph to

emulate social graph workload on top of databases such as MySQL
and MongoDB

Analytics Benchmarks, Table 5 DS/OLAP/Analytics benchmarks

Name
MRBench (Kim et al. 2008)

Benchmark description

Implementing the TPC-H benchmark queries directly in
map and reduce operations

CALDA (Pavlo et al. 2009) It consists of five tasks defined as SQL queries among
which is the original MR Grep task, which is a

representative for most real user MapReduce programs
A benchmark based on CALDA and HiBench,

implemented on five SQL-on-Hadoop engines (RedShift,
Hive, Stinger/Tez, Shark, and Impala)

AMP lab big data benchmark (AMPLab 2013)

BigBench (Ghazal et al. 2013) An end-to-end big data benchmark that represents a data
model simulating the volume, velocity, and variety
characteristics of a big data system, together with a
synthetic data generator for structured, semi-structured, and

unstructured data, consisting of 30 queries

BigFrame (BigFrame 2013) BigFrame is a benchmark generator offering a

benchmarking-as-a-service solution for big data analytics

PRIMEBALL (Ferrarons et al. 2013) A novel and unified benchmark specification for comparing
the parallel processing frameworks in the context of big
data applications hosted in the cloud. It is implementation-
and technology-agnostic, using a fictional news hub called

New Pork Times, based on a popular real-life news site

BigFUN (Pirzadeh et al. 2015) It is based on a social network use case with synthetic
semi- structured data in JSON format. The benchmark
focuses exclusively on micro-operation level and consists
of queries with various operations such as simple retrieves,
range scans, aggregations, and joins, as well as inserts and

updates

BigBench V2 (Ghazal et al. 2017) BigBench V2 separates from TPC-DS with a simple data
model, consisting only of six tables. The new data model
still has the variety of structured, semi-structured, and
unstructured data as the original BigBench data model. The
semi-structured data (weblogs) are generated in JSON logs.
New queries replace all the TPC-DS queries and preserve

the initial number of 30 queries

L]

Preamble — Defines the benchmark domain
and the high level requirements.

Database Design — Defines the requirements
and restrictions for implementing the database
schema.

Workload — Characterizes the simulated work-
load.

ACID - Atomicity, consistency, isolation, and
durability requirements.

Workload scaling — Defines tools and method-
ology on how to scale the workloads.
Metric/Execution rules — Defines how to exe-
cute the benchmark and how to calculate and
derive the metrics.
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Analytics Benchmarks, Table 6 Big data benchmark suites

Name
MRBS (Sangroya et al. 2012)

Benchmark description

A comprehensive benchmark suite for evaluating the
performance of MapReduce systems in five areas:
recommendations, BI (TPC-H), bioinformatics, text
processing, and data mining

HiBench (Huang et al. 2010) A comprehensive benchmark suite consisting of multiple
workloads including both synthetic micro-benchmarks and
real-world applications. It features several ready-to-use
benchmarks from 4 categories: micro benchmarks, Web search,

machine learning, and HDFS benchmarks

CloudSuite (Ferdman et al. 2012) A benchmark suite consisting of both emerging scale-out
workloads and traditional benchmarks. The goal of the
benchmark suite is to analyze and identify key inefficiencies in
the processors core micro-architecture and memory system

organization when running todays cloud workloads

CloudRank-D (Luo et al. 2012) A benchmark suite for evaluating the performance of cloud
computing systems running big data applications. The suite
consists of 13 representative data analysis tools, which are
designed to address a diverse set of workload data and
computation characteristics (i.e., data semantics, data models
and data sizes, the ratio of the size of data input to that of data

output)

BigDataBench (Wang et al. 2014) An open-source big data benchmark suite consisting of 15 data

sets (of different types) and more than 33 workloads. It is a
large effort organized in China available with a toolkit that
adopts different other benchmarks

SparkBench (Li et al. 2015; Agrawal et al. 2015) SparkBench, developed by IBM, is a comprehensive

Spark-specific benchmark suite that comprises of four main
workload categories: machine learning, graph processing,
streaming, and SQL queries.

e Benchmark driver — Defines the requirements
for implementing the benchmark driver/pro-
gram.

» Full disclosure report — Defines what needs to
be reported and how to organize the disclosure
report.

e Audit requirements — Defines the require-
ments for performing a successful auditing
process.

and are replaced by more general one like system
under test (SUT). For example, new categories in
TPCx-BB are:

e System under test — Describes the system
architecture with its hardware and software
components and their configuration require-
ments.

e Pricing — Defines the pricing of the compo-
nents in the system under test including the
system maintenance.

e Energy — Defines the methodology, rules, and
metrics to measure the energy consumption of
the system under test in the TPC benchmarks.

The above structure was typical for the OLTP and
DS/OLAP benchmarks defined by TPC, but due
to the emerging hybrid OLTP/OLAP systems and
big data technologies, these trends have changed
(Bog 2013) adapting the new system features.

For example, the database schema and ACID
properties are not anymore a key requirement in
the NoSQL and big data management systems

The above components are part of the standard
TPC benchmark specifications and are not
representative for the entire analytics benchmarks
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spectrum. Many of the newly defined big data
benchmarks are open-source programs. However,
the main characteristics of a good domain-
specific benchmark are still the same. Jim
Gray (1992) defined four important criteria that
domain-specific benchmarks must meet:

e Relevant: It must measure the peak perfor-
mance and price/performance of systems
when performing typical operations within
that problem domain.

e Portable: It should be easy to implement the
benchmark on many different systems and
architectures.

e Scalable: The benchmark should apply to
small and large computer systems. It should
be possible to scale the benchmark up to larger
systems and to parallel computer systems
as computer performance and architecture
evolve.

* The benchmark must be understandable/inter-
pretable; otherwise it will lack credibility.

Similarly, Karl Huppler (2009) outlines five
key characteristics that all good benchmarks
have:

¢ Relevant — A reader of the result believes the
benchmark reflects something important.

* Repeatable — There is confidence that the
benchmark can be run a second time with the
same result.

* Fair — All systems and/or software being com-
pared can participate equally.

* Verifiable — There is confidence that the docu-
mented result is real.

* Economical — The test sponsors can afford to
run the benchmark.

In reality, many of the new benchmarks (in
Tables 4, 5 and 6) do not have clear specifications
and do not follow the practices defined by Gray
(1992) and Huppler (2009) but just provide a
workload implementation that can be used in
many scenarios. This opens the challenge that the
reported benchmark results are not really compa-

Analytics Benchmarks

rable and strictly depend on the environment in
which they were obtained.

In terms of component specification, the situa-
tion looks similar. All TPC benchmarks use syn-
thetic data generators, which allow for scalable
and deterministic workload generation. However,
many new benchmarks use open data sets or
real workload traces like BigDataBench (Wang
et al. 2014) or a mix between real data and
synthetically generated data. This influences also
the metrics reported by these benchmarks. They
are often not clearly specified or very simplistic
(like execution time) and cannot be used for an
accurate comparison between different environ-
ments.

The ongoing evolution in the big data sys-
tems and the data science, machine learning, and
deep learning tools and techniques will open
many new challenges and questions in the de-
sign and specification of standardized analytics
benchmarks. There is a growing need for new
standardized big data analytics benchmarks and
metrics.

Key Applications

The analytics benchmarks can be used for multi-
ple purposes and in different environments. For
example, vendors of database-related products
can use them to test the features of their data
products both in the process of development and
after it is released, to position them in the market.
The final benchmarking of a data product is
usually done by an accredited organization. For
example, TPC and SPEC have certified auditors
that perform transparent auditing of the complete
benchmarking process. The database and big data
system administrators can regularly run bench-
marks to ensure that the systems are properly
configured and perform as expected. Similarly,
system architects and application developers use
benchmarks to test and compare the performance
of different data storage technologies in the pro-
cess of choosing the best tool for their require-
ments. Furthermore, benchmarks can be used for
different comparisons as in the four categories
defined by Jim Gray 1992:
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¢ To compare different software and hard-
ware systems: The goal is to use metric re-
ported by the benchmark as a comparable unit
for evaluating the performance of different
data technologies on different hardware run-
ning the same application. This case repre-
sents classical competitive situation between
hardware vendors.

e To compare different software on one
machine: The goal is to use the benchmark to
evaluate the performance of two different
software products running on the same
hardware environment.This case represents
classical competitive situation between
software vendors.

¢ To compare different machines in a com-
parable family: The objective is to compare
similar hardware environments by running the
same software product and application bench-
mark on each of them. This case represents a
comparison of different generations of vendor
hardware or for a case comparing of different
hardware vendors.

¢ To compare different releases of a product
on one machine: The objective is to compare
different releases of a software product by
running benchmark experiments on the same
hardware. Ideally the new releases should per-
form faster (based on the benchmark metric)
than its predecessors. This can be also seen as
performance regression tests that can assure
the new release support all previous system
features.

Cross-References

Auditing

Benchmark Harness
CRUD Benchmarks
Component Benchmark
End-to-End Benchmark
Energy Benchmarking
Graph Benchmarking
Metrics for Big Data Benchmarks
Microbenchmark
SparkBench

Stream Benchmarks
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System Under Test

TPC

TPC-DS

TPC-H

TPCx-HS

Virtualized Big Data Benchmarks
YCSB
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Introduction

Apache Apex (2018; Weise et al. 2017) is a large-
scale stream-first big data processing framework
that can be used for low-latency, high-throughput,
and fault-tolerant processing of unbounded (or
bounded) datasets on clusters. Apex development
started in 2012, and it became a project at the
Apache Software Foundation in 2015. Apex can
be used for real-time and batch processing, based
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Apache Apex, Fig. 1 Apex as distributed stream processor

on a unified stateful streaming architecture, with
support for event-time windowing and exactly-
once processing semantics (Fig. 1).

Application Model and APIs

DAG: The processing logic of an Apex applica-
tion is represented by a directed acyclic graph
(DAG) of operators and streams. Streams are un-
bounded sequences of events (or tuples), and op-
erators are the atomic functional building blocks
for sources, sinks, and transformations. With the
DAG, arbitrary complex processing logic can
be arranged in sequence or in parallel. With
an acyclic graph, the output of an operator can
only be transmitted to downstream operators.
For pipelines that require a loop (or iteration), a
special delay operator is supported that allows the
output of an operator to be passed back as input
to upstream operators (often required in machine
learning). The engine also defines a module in-
terface, which can be used to define composite
operators that represent a reusable DAG fragment
(Fig. 2).

The user-defined DAG is referred to as the
logical plan. The Apex engine will expand it into
the physical plan, where operators are partitioned
(for parallelism) and grouped into containers for
deployment. Attributes in the logical plan can

influence these translations, such as the affinity to
control which operators should be deployed into
the same thread, process, or host.

Low-level, compositional API: The Apex en-
gine defines the low-level API, which can be used
to assemble a pipeline by composing operators
and streams into a DAG. The API offers a high
degree of flexibility and control: Individual op-
erators are directly specified by the developer,
and attributes can be used to control details such
as resource constraints, affinity, stream encoding,
and more. On the other hand, the API tends to
be more verbose for those use cases that don’t
require such flexibility. That’s why Apex, as
part of the library, offers higher-level constructs,
which are based on the DAG APIL.

High-level, declarative API: The Apex
library provides the high-level stream API,
which allows the application developer to specify
the application through a declarative, fluent
style API (similar to API found in Apache
Spark and Apache Flink). Instead of identifying
individual operators, the developer specifies
sources, transformations, and sinks by chaining
method calls on the stream interface. The API
internally keeps track of operator(s) and streams
for eventual expansion into the lower-level DAG.
The stream API does not require knowledge of
individual operator classes and more concise for
use cases that don’t require advanced constructs.
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Physical plan

Apache Apex, Fig. 2 Apex converts a logical plan into a physical execution model by means of configuration

It is still possible to add customizations as the
needs of the application evolve.

SQL: SQL is important for analytics and
widely used in the big data ecosystem, with BI
tools that can connect to engines such as Apache
Hive, Apache Impala, Apache Drill, and others,
besides the traditional database systems. SQL
isn’t limited to querying data; it can also be
used to specify transformations. Recent efforts
to bring SQL to stream processing like Apache
Calcite (2018), Flink (Carbone et al. 2015a),
Beam (Akidau et al. 2015), and KSQL (Confluent
blog 2018) promise to target a wider audience
without lower-level programming expertise, for
use cases including ad hoc data exploration,
ETL, and more. Apex provides a SQL API that is
implemented based on Calcite. It currently covers
select, insert, where clause, inner join, and scalar
functions. Supported endpoints (read and write)
can be file, Kafka, or any other stream defined
with the DAG API.

Operators

Operators are Java classes that implement the
Operator interface and other optional interfaces
that are defined in the Apex API and recognized
by the engine.

Operators have ports (type-safe connection
points for the streams) to receive input and emit

output. Each operator can have multiple ports.
Operators that don’t have input ports are sources,
and operators that don’t emit output are sinks.
These operators interface with external systems.
Operators that have both types of ports typically
transform data.

The operator interfaces inform how the engine
will interact with the operator at execution time,
once it is deployed into a container (Fig. 3).

Apex has a continuous operator model; the
operator, once deployed, will process data until
the pipeline is terminated. The sefup and activate
calls can be used for initialization. From then on,
data (individual events) will be processed. Peri-
odically the engine will call begin/endWindow to
demarcate streaming intervals (processing time).
This presents an opportunity to perform work that
is less suitable for every event. The operator can
also implement the optional CheckpointListener
interface to perform work at checkpoint bound-
aries.

Checkpointing

Checkpointing in Apex is the foundation for
failure handling as well as on-demand parallelism
ak.a. dynamic partitioning. Checkpointing en-
ables application recovery in case of failure by
storing the state of the DAG at configurable units
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Apache Apex, Fig. 4 Checkpoint markers injected into the tuple stream at streaming window boundaries

of processing time windows. In case of partition-
ing (described in the next section), checkpointing
allows for resharding the operator states for exist-
ing as well as newly spawned operators for elastic
scaling (Fig. 4).

Asynchronous and decentralized: Check-
pointing is enabled by the framework injecting
checkpoint markers into the stream at configured

intervals of ingress/arrival time. An operator
instance on the arrival of this marker triggers the
checkpointing mechanism. Saving of the state it-
self is executed asynchronously, without blocking
the operator. Completed checkpoints are reported
to the application master, which has a view of the
entire DAG and can mark a checkpoint as “com-
mitted” when it was reported by all operators.
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Checkpointing in Apex is thus an asynchronous,
lightweight, and decentralized approach.

Idempotency for resumption from check-
point: Introduction of checkpoint markers into
the stream in Apex is a slight variation from
Carbone et al. (2015b). The checkpoint mark-
ers are introduced at the input operator (source)
and traverse the entire DAG. Upon resumption
from failure, the stream needs to be replayed
in the exact same sequence to enable the en-
tire application as a reproducible state machine.
Apex provides the necessary building blocks to
achieve idempotency. Individual operators in the
DAG ensure idempotency is maintained in their
processing logic. For each stream that crosses
a container/process boundary, Apex provides a
buffer server like (Lin et al. 2016) that can be
used by a downstream operator to start con-
sumption from a specific position. This enables
fine-grained recovery and dynamic partitioning
without a full DAG reset. In case of an input
operator, idempotency of replay is either backed
by capabilities of the source (in cases like Kafka
and files by offset tracking and sequential scan)
or the input operator can record the source data
for replay by using a write-ahead log (WAL)
implementation that is provided by the Apex
library.

Opt-in independence: Operators in Apex can
choose to opt out of checkpointing cycles to
avoid serialization overhead. As an example, an
operator that is representing a matrix transpose
operation can choose to not be part of the check-
pointing process as it does not need a state to
be accumulated across tuples or across streaming
windows. On the other hand, an operator which
is computing a cumulative sum or part of sort,
join logic in SQL DAG needs the state to be
handed from one streaming window to another
and hence needs to be stateful. Stateless operators
can be enabled either by an annotation marker on
the operator implementation or declaring it in the
configuration provided as input to the application
launch. For stateful operators, Apex ensures that
the state is serialized at checkpoint intervals.
The default serialization mechanism allows the
operator implementation to decide (and optimize)
which fields are serialized (or skipped by marking
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them transient) and also how fields are serialized
through optional annotations.

Exactly-once state and exactly-once pro-
cessing: Exactly-once processing is the holy grail
of distributed stream processing engines. In re-
ality though, reprocessing cannot be avoided in
a distributed system, and therefore exactly-once
refers to the effect on the state, which is also
why it is alternatively referred to as “effectively
once.” While some engines define exactly-once
semantics purely from internal state persistence
point of view, others aim to provide constructs for
exactly-once processing in addition to state with
varying degrees of implementation complexity as
given in Kulkarni et al. (2015), Noghabi et al.
(2017), and Jacques-Silva et al. (2016). Exactly-
once state management in Apex is a distributed
process by the virtue of each operator triggering
its own state passivation when the checkpoint tu-
ple is processed. While some streaming systems
only focus on exactly-once semantics for internal
state, the Apex library provides support for end-
to-end exactly-once for many of its connectors,
thereby also covering the effect of processing on
the state in respective external systems. This is
possible through interface contracts in the low-
level API and idempotency and by utilizing capa-
bilities that are specific to the integrated system,
such as transactions, atomic renames, etc.

At-most-once and at-least-once processing
semantics: It is not atypical for at-least-once
processing semantics for use cases like find-
ing a max value in a given stream, while at-
most-once processing is required for use cases
where recency of data processing state matters
the most. At-least-once semantics is achieved by
the upstream operator replaying the tuples from
the checkpoint and the downstream operator not
implementing any lightweight checkpoint state-
based checks. For at-most-once semantics, the
upstream operator needs to just stream tuples to
downstream without starting from a checkpoint.

Low-level API for processing semantics: As
described in the Operator section, the operator is
given a chance to perform business logic-specific
process at streaming window boundaries as well
as checkpoint boundaries. Several operators in
Apex implement incremental lightweight state
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saving at window boundaries and a complete op-
erator state at checkpointing boundaries. Utilities
exist in the framework to get/set data structures
that represent state using a window ID marker as
input thus allowing for a lightweight state passi-
vation. Since a checkpoint resumption can result
in reprocessing multiple windows, this incremen-
tal state can come in handy to completely skip
windows that are processed from a certain check-
point. Let us consider how this approach provides
for exactly-once processing semantics in systems
that do not provide two-phase commit transaction
support. Until the last streaming window before a
crash (referred to as orphaned window hereafter),
state can be passivated incrementally at streaming
window boundaries. For the orphaned window,
for which neither a lightweight state has been
persisted nor a full checkpoint cycle is com-
plete, custom business logic can be invoked using
a “check/read and then process” pattern. This
“check and process along with a business helper
function” is only executed for the orphaned win-
dow reprocessing. Processing resumes a normal
pattern beyond this orphaned window processing.
Thus a combination of lightweight checkpoint-
ing at window boundaries, full checkpointing at
checkpoint boundaries, and the check and pro-
cess pattern can achieve exactly-once processing
semantics in Apex for this class of systems.

Managed state and spillable data struc-
tures: State saving at checkpointing boundary
may be sub-optimal when the state is really large
(Del Monte 2017). Incremental state persistence
at smaller intervals and/or spillable state can
be effective patterns to mitigate this (To et al.
2017; Fernandez et al. 2013; Akidau et al. 2013;
Sebepou and Magoutis 2011). Apex supports
both. To handle very large state, the Apex library
provides for spillable data structures similar to
Carbone et al. (2017). Instead of a full copy local
store like RocksDB, spillable data structures in
Apex are block structured and by default backed
by the distributed file system (DFS), allowing
for delta writes and on-demand load (from DFS)
when operators are restored.

Flexibility, ease of use, and efficiency have
been core design principles for Apex, and check-
pointing is no exception. When desired, the user
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has complete control to define the data structures
that represent the operator state. For recovery,
Apex will only reset to checkpoint the part of the
DAG that is actually affected by a failure. These
are examples of features that set Apex apart from
other streaming frameworks like Zaharia et al.
(2012) and Carbone et al. (2015b). With flexibil-
ity at the lower level, higher-level abstractions are
provided as part of the library that optimize for
specific use cases.

High Availability

High availability in Apex is achieved by ex-
tending two primary constructs. Leverage YARN
as cluster manager to handle process and node
failure scenarios and use the distributed file sys-
tem to recover the state. An Apex application is
associated with an application ID and is either
given a new ID or resume from a previous ap-
plication identity as identified by an ID given as
a startup parameter. Apex being a YARN native
application utilizes the YARN Resource manager
to allocate the application master (AM) at the
time of launch. AM either instantiates a new
physical deployment plan using the logical plan
or reuses an existing physical plan if an existing
application ID is passed at startup. As the DAG
is physicalized and starts executing, each of the
JVM operators sends heartbeats to the AM using
a separate thread. Subsequent to this, there are
many scenarios that can result in a fault scenario
and recovery options possible as given in Nasir
(2016).

Worker container failure: In case of a con-
tainer JVM crashing or stalling for a long time
due to a GC pause, AM detects the absence of the
heartbeat and initiates a kill (if applicable) and
redeploys sequence. AM would negotiate with
YARN for the replacement container and request
to kill the old container (if it was stalled). The
new instance would then resume from a check-
pointed state. It may be noted that the entire sub-
DAG downstream to the failed operator will be
redeployed as well to ensure the semantics of pro-
cessing are upheld especially for cases when the
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downstream operators are implementing exactly-
once semantics.

AM failure: During an AM crash, the indi-
vidual worker containers continue processing the
tuples albeit without any process taking care of
the recovery and monitoring. In the meantime,
YARN would detect that AM container has gone
down and redeploy a new instance of it and pass
the previous application ID as part of the restart
process. This new instance would then resume
from its checkpointed state. The checkpointed
state of AM is more related to the execution
state of the DAG. This new AM container would
update its metadata in the distributed file system
representing the application ID which in turn
would be picked up by the worker containers to
reestablish their heartbeat cycles.

Machine failures: In the event of a physi-
cal node failure, YARN resource manager (RM)
would be notified of the node manager (NM)
death. This would result in RM deploying all
containers currently running on that NM. It is
possible that there are multiple containers of the
application on the failed host, and all of these
would be migrated to new host(s) using the pro-
cess described before.

Resource Management

Apex is a YARN native application that follows
the YARN principles of resource request and
grant model. The application master upon
launch generates a physical execution plan
from the DAG logical representation. The
application master itself is a YARN container.
The application master then spawns the operator
instances by negotiating operator containers from
the YARN resource manager, taking into account

HOST

(serialization, loopback)

Default

(serialization+IPC)

Apache Apex, Fig. 5 Operator deployment models
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the memory and compute resource settings in the
DAG (Fig. 5).

Deployment models: The Apex operator de-
ployment model allows for four different pat-
terns:

1. Thread — Operator logic is invoked by a single
thread in the same JVM.

2. Container — Operators coexist in the same
JVM.

3. Host — Operators are available on the same
node.

4. Default — Highest cost in terms of serialization
and IPC.

Affinity or anti-affinity patterns further allow
for customized location preferences while de-
ploying the operators by the application master.
Affinity allows for multiple operators to be lo-
cated on the same host or share the same con-
tainer or thread.

Partitioning/Scaling

Operator parallelism a.k.a partitioning helps in
dealing with latency and throughput trade-off
aspects of a streaming application design. Apex
enables developers to concentrate on the business
logic and enable a configuration-based approach
to scale a logical implementation to a scalable
physical deployment model. This approach is
referred to as partitioning and is enabled by
configuring a partitioner for an operator.

Partitioners

A partitioner implementation can be specified
how to partition the operator instances. While use
case like specifying a fixed number of partitions

CONTAINER

(in-process queue)

THREAD
(callstack)
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UNIFIERS

Logical Plan

Apache Apex, Fig. 6 Unifiers allow for varying paral-
lelism between operators. Ul and U2 unifiers are auto-
matically injected into the DAG at deployment time

at startup can be met by using one of the parti-
tioners available as part of the framework, Apex
allows for custom implementation as well.

Such custom implementations can cater to
many use cases like deciding partitions on the in-
put source system characteristics. As an example,
the Kafka partitioners as part of the Apex library
have the capability to scale to as many Kafka
partitions that each of the configured Kafka topics
have or alternatively support mapping multiple
Kafka partitions to one Apex operator partition.
A partitioner can be stateful; it can re-shard the
state of the old partitions (Fig. 6).

Unifiers

While partitioning allows for scalability of the
operator business logic, it invariably results in an
impedance mismatch if the downstream operator
is not at the right scaling factor. Apex allows
parallelism to vary between operators. In such
cases, unifiers are automatically injected into the
physical plan and define how the upstream results
are shuffled to the new parallelism level. The user
can customize the unifier implementation, which
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typically depends on the operator logic. A unifier
is an operator without input port that is set on
the output port of the partitioned operator. Cas-
cading unifier patterns can also be implemented
wherein the partitioned operator output can itself
be shuffled in stages before streaming the merged
result to the downstream operator. For a reduce
operation, this can be used to overcome resource
limits (network, CPU, etc.) for a latency trade-off
(Fig. 7).

Parallel Partitioning

While partitioners and unifiers allow for inde-
pendent scaling of each operator of an applica-
tion, there will be use cases where downstream
operators can align with the upstream operators’
level of parallelism and avoid a unifier, thus
further decreasing the overall latencies due to
decreased network hops (in some systems, this
also referred to as chaining). This is enabled via
a configuration parameter set on the downstream
operator, and this parallel partitioning can be
configured for as many downstream operators as
the application design mandates it to be (Fig. 8).

Dynamic Partitioning

Load variation is a common pattern across many
streaming systems, and some of these engines
provide for dynamic scaling as given in Floratou
et al. (2017) and Bertolucci et al. (2015). Also the
advent of cloud computing where cost is based on
resource consumption models as given in Hum-
mer et al. (2013) and Sattler and Beier (2013)
makes compelling case for the need to dynam-
ically adjust resources based on context. Static
partitioning may not be sufficient to achieve la-
tency SLAs or optimize resource consumption.
Apex allows partitions to be scaled or contracted
dynamically at checkpointing boundaries. A par-
titioner implementation can use the operational
metrics of the physical operator instances to de-
cide on the optimal scaling configuration. Un-
like other streaming engines like Spark which
need stand-alone shuffle service, Apex dynamic
partitioning can be aligned with the application
patterns.
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Apache Apex, Fig. 7 Parallel partitioning can avoid shuffling overheads when it is not necessary
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Apache Apex, Fig. 8 Dynamic partitioning allows for scale-up and scale-down strategies at runtime. Example above
has different topologies at daytime and nighttime allowing for efficient use of hardware

Integration Using Apex Library

Apex enables a faster time to market model by
shipping many connectors to external systems
that can act as a source or a sink or both. The
Apex library is also referred to as Malhar. Some
of the common integrations include JDBC driver-
enabled databases like Oracle, MySQL, and
Postgres; replayable sources like Kafka and files;

NOSQL databases like Cassandra and HBase;
and JMS-enabled systems like MQ besides many
others. The library implementations provide
value add by not only implementing read/write
patterns to these systems but also aiming to
provide exactly-once processing.

File systems: Apex operators bring in lot more
to the maturity of the implementation by enabling
enterprise patterns like polling directories for new
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file arrivals, offset tracking backed sequential
scanning approach, resumption from checkpoints
in case of failures, handling of varied formats of
the file contents, and compression formats while
writing contents and even splitting very large
files into blocks while reading to enable efficient
partitioning strategies.

Kafka: Kafka integration is one of the battle-
tested integrations of Apex. Kafka operators al-
low for flexible mapping of operators wherein
the mapping configuration can map “m” Katka
partitions across “n” Apex operators. It may be
noted that m can represent partitions that may
span across multiple Kafka clusters and multiple
Kafka topics spread across these Kafka topics.
Apex Kafka operators also support exactly-once
semantics for Kafka versions prior to 0.11 version
thus taking the burden of a transaction to Apex
processing layer as opposed to relying on Kafka.
The integration in Apex thus can be considered
far richer as compared to the other systems.

Non-replayable sources like JMS: Exactly-
once semantics at input sources is a bit more
involved in case of systems like JMS wherein the
source does not have a contract to replay a data
point once a handover handshake is complete.
Apex provides for a WAL implementation which
is used by the JMS operator to replay a series of
previously acknowledged messages when restart-
ing from a checkpoint.

JDBC-enabled databases: JDBC-enabled
databases like Oracle, Postgres, and MySQL
allow for an exactly-once write pattern through
transactions. The Apex connector can use this
to commit transactions at streaming windows
or checkpoint boundaries. The JDBC source
supports idempotent read by tracking the offset
(for a query with order by clause).

Conclusion

Apex is an enterprise-grade distributed streaming
engine that comes with many foundational con-
structs as well as connectors that help in faster
time to market as compared to some similar
systems. Dockerized containers and support for
next-generation container orchestration are some
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of the features that would benefit Apex in the near
future.
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Synonyms

Stratosphere platform

Definitions

Apache Flink is a system for distributed batch
and stream processing. It addresses many
challenges related to the processing of bounded
and unbounded data. Among other things, Flink
provides flexible windowing support, exactly-
once state consistency, event-time semantics, and
stateful stream processing. It offers abstractions
for complex event processing and continuous
queries.

Overview

Today, virtually all data is continuously gener-
ated as streams of events. This includes busi-
ness transactions, interactions with web or mobile
application, sensor or device logs, and database
modifications. There are two ways to process
continuously produced data, namely batch and
stream processing. For stream processing, the
data is immediately ingested and processed by
a continuously running application as it arrives.
For batch processing, the data is first recorded
and persisted in a storage system, such as a file
system or database system, before it is (periodi-
cally) processed by an application that processes
a bounded data set. While stream processing
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typically achieves lower latencies to produce re-
sults, it induces operational challenges because
streaming applications which run 24 x 7 make
high demands on failure recovery and consis-
tency guarantees.

The most fundamental difference between
batch and stream processing applications is
that stream processing applications process
continuously arriving data. The two core building
blocks when processing streaming data are
state and time. Applications require state for
every non-trivial computation that involves
more than a single event. For example, state
is required to collect multiple events before
performing a computation or to hold the result of
partial computations. Time on the other hand
is important to determine when all relevant
data was received and a computation can be
performed. Having good control over time
enables applications to treat result completeness
for latency. Time is not relevant in batch
processing because all input data is known and
present when the processing starts.

Stateful stream processing is a very versatile
architectural pattern that can be applied to a
wide spectrum of data-related use cases. Besides
providing better latency than batch processing
solutions, stateful stream processing applications
can also address use cases that are not suitable
for batch processing approaches at all. Event-
driven applications are stateful stream processing
applications that ingest continuous streams of
events, apply business logic to them, and emit
new events or trigger external actions. These ap-
plications share more characteristics with trans-
actional workloads than analytical applications.
Another common use case for stateful stream
processing is complex event processing (CEP),
which is applied to evaluate patterns over event
streams.

Historical Background

Apache Flink originates from an academic
research project. In 2010, the Stratosphere
project was started by five research groups
from Technische Universitit Berlin, Humboldt
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Universitit zu Berlin, and Hasso Plattner Institute
Potsdam (http://gepris.dfg.de/gepris/projekt/
132320961 Manguage=en. Visited on 22 Dec
2017). The goal of the project was to develop
novel approaches for large-scale distributed data
processing. In the course of the project, the
researchers developed the prototype of a data
processing system to evaluate the new approaches
and released the software as open source under
the Apache software license (Alexandrov et al.
2014).

When the project started in 2010, the Apache
Hadoop project (https://hadoop.apache.org. Vis-
ited on 22 Dec 2017), an open-source imple-
mentation of Google’s MapReduce (Dean and
Ghemawat 2008) and GFS (Ghemawat et al.
2003) publications, had gained a lot of interest
in research and industry. MapReduce’s strong
points were its ability to scale data processing
tasks to a large number of commodity machines
and its excellent tolerance for hardware and soft-
ware failures. However, the database research
community had also realized that MapReduce
was neither the most user-friendly nor most ef-
ficient approach to define complex data analysis
applications. Therefore, the Stratosphere project
aimed to build a system that combined the ad-
vantages of MapReduce and relational database
systems. The first result was a system consist-
ing of the PACT programming model, the dis-
tributed dataflow processing engine Nephele, and
an optimizer that translated PACT programs into
Nephele dataflows (Battré et al. 2010). The PACT
programming model generalized the MapReduce
programming model by providing more paral-
lelizable operator primitives and defining pro-
grams as directed acyclic dataflows. Hence, spec-
ifying complex analytical applications became
much easier (Alexandrov et al. 2011). The run-
time operators to execute PACT programs were
implemented based on well-known algorithms
from database system literature, such as external
merge-sort, block-nested loop join, hybrid-hash
join, and sort-merge join. Having a choice in
runtime operators and data distribution strategies
due to the flexibility of the distributed dataflow
execution engine Nephele resulted in different
alternatives of how a PACT program could be
executed. Similar to physical optimization in re-
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lational database systems, a cost-based optimizer
enumerated execution plans under consideration
of interesting and existing physical properties
(such as partitioning, sorting, and grouping) and
chose the least expensive plan for execution.
Compared to the MapReduce programming and
execution model, the Stratosphere research pro-
totype provided a programming API that was as
versatile as MapReduce but eased the definition
of advanced data analysis applications, an effi-
cient runtime based on concepts and algorithms
of relational database systems, and a database-
style optimizer to automatically choose efficient
execution plans. At the same time, the prototype
had similar hardware requirements and offered
similar scalability as MapReduce. Based on the
initial Stratosphere prototype, further research
was conducted on leveraging static code analysis
of user-defined function for logical program opti-
mization (Hueske et al. 2012) and the definition
and execution of iterative programs to support
machine learning and graph analysis applications
(Ewen et al. 2012).

In May 2014, the developers of the
Stratosphere prototype decided to donate the
source code of the prototype to the Apache
Software Foundation (ASF) (https://wiki.apache.
org/incubator/StratosphereProposal. Visited on
22 Dec 2017). Due to trademark issues, the
project was renamed to Apache Flink. Flink
is the German word for “nimble” or “swift.”
The initial group of committers consisted of the
eight Stratosphere contributors and six members
of the Apache Incubator to teach the Flink
community the Apache Way. In August 2014,
version 0.6 of Apache Flink was released as
the first release under the new name Apache
Flink (http://flink.apache.org/mews/2014/08/26/
release-0.6.html. Visited on 22 Dec 2017). Three
months later in November 2014, version 0.7 was
released. This release included a first version
of Flink’s DataStream API. With this addition,
Flink was able to address stream as well as batch
processing use cases with a single processing
engine (Carbone et al. 2015a). Because the
distributed dataflow processor (formerly known
as Nephele) had always supported pipelined
data transfers, the new stream processing
capabilities did not require major changes
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to the engine. In January 2015, 9 months
after the start of the incubation, Flink left the
incubator and became a top-level project of the
Apache Software Foundation (https://blogs.ap
ache.org/foundation/entry/the_apache_software_
foundation_announces69. Visited 22
Dec 2017).

While until Flink’s graduation the community
was mostly working on batch processing
features, stream processing slowly became the
new focus of the community. Over the next
couple of releases, features such as windowing
support, exactly-once state consistency, event-
time semantics, stateful stream processing,
and high availability for worker and master
processes were added. Moreover, the DataStream
API was declared stable and support for
persisting application state in savepoints, and
restarting applications from savepoints as well as
maintaining very large operator state in RocksDB
were implemented. When version 1.0.0 was
released in March 2016 (https:/flink.apache.
org/news/2016/03/08/release-1.0.0.html. Visited
on 22 Dec 2017), Flink had become a fully
fletched stream processor with a feature set that
was unique among other open-source stream
processors.

Since Flink’s 1.0.0 release until today
(December 2017, version 1.4.0), many more
new significant features were added, such as
SQL support for unified batch and streaming
queries  (https:/flink.apache.org/news/2017/04/
04/dynamic-tables.html. Visited on 22 Dec
2017), a complex event processing (CEP) library
to identify and react on patterns in event streams
(https://data-artisans.com/blog/complex-event-pr
ocessing-flink-cep-update. Visited 22 Dec 2017),
support for scaling applications in and out
(Carbone et al. 2017), and support for querying
operator state from external applications. By now,
the Flink community has grown to 34 committers,
and more than 350 individuals have contributed
to Flink. Apache Flink is used in production at
very large scale by enterprises around the world
and across various industries, such as Alibaba,
DellEMC, ING, King, Netflix, and Uber. Some
of these users have built services for internal
users or even expose these services to paying
customers.
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Foundations

Apache Flink is a system for batch and stream
processing use cases (Carbone et al. 2015b). The
main APIs, namely, the DataSet API for batch
and DataStream API for streaming programs,
allow to fluently specify a data processing plan
by using first-order and second-order functions
known from functional programming. Second-
order functions give certain guarantees about the
distributed execution. First-order functions im-
plement custom business logic within the pro-
vided guarantees. For example, the map operator
guarantees to apply a first-order function to every
record, and keyBy partitions and distributes the
stream by using a key specified in the first-order
function. In the following, the discussion focuses
on the DataStream API and Flink’s stream pro-
cessing capabilities since this reflects the current
evolution of the system and the majority of its
production use cases.

Figure 1 shows an example of a Flink
DataStream API program that reads from
a publish-subscribe messaging system. The
program transforms the input by applying a user-
defined map function to every record. Afterward,
it partitions the records by a key and aggregates
multiple records over a window of 5 seconds that
discretizes the stream. The result is written into a
continuous single log file. Flink automatically
gathers information about the return type of
each operator and generates appropriate record
serializers for the network shipping. The API
calls only construct a logical representation
and are translated into a directed acyclic job
graph that is submitted to the cluster for
execution.

Figure 2 illustrates the distributed execution
of the example program. A Flink setup consists
of two types of processes: the JobManager and
the TaskManagers. For high availability, there
might be multiple standby JobManagers. The
JobManager is the master that is responsible
for cluster coordination, metrics collection, and
monitoring. It receives a job graph and con-
structs an execution graph with knowledge of the
available TaskManagers and their allocation. The
execution graph is deployed on the TaskMan-
agers. The TaskManagers are the workers that are


https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces69
https://flink.apache.org/news/2016/03/08/release-1.0.0.html
https://flink.apache.org/news/2016/03/08/release-1.0.0.html
https://flink.apache.org/news/2017/04/04/dynamic-tables.html
https://flink.apache.org/news/2017/04/04/dynamic-tables.html
https://data-artisans.com/blog/complex-event-processing-flink-cep-update

54

// setup the environment
StreamExecutionEnvironment env

Apache Flink

StreamExecutionEnvironment.getExecutionEnvironment();

// define a streaming pipeline

env.addSource(new FlinkKafkaConsumer9ll<>(...))
.map(new UserDefinedMapFunction())

.keyBy("userId")

.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
.apply(new UserDefinedWindowFunction())
.writeAsText("/file.log").setParallelism(1);

// execute the constructed plan

env.execute();

Apache Flink, Fig. 1 Apache Flink DataStream API program
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Apache Flink, Fig. 2 Flink distributed execution model

responsible for executing operator pipelines and
exchanging data streams.

The example from Fig. 2 is executed with a
degree of parallelism equal to 3 and thus occupies
three task slots. Task slots split the resources of a
TaskManager into a finer granularity and define
how many slices of a program can be executed
concurrently by a TaskManager; the dotted lines

in Fig. 2 highlight the task slots. Each pipeline
is independently evaluated. Once an operator’s
result is ready, it will be forwarded immediately
to the next operator without additional synchro-
nization steps. A pipeline consists of one or
more subtasks. Depending on the operations, a
subtask executes only one operator, such as the
window operator, or multiple operators that are
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concatenated by so-called operator chaining. In
the example, the reading of a record from the
source, its transformation, and the extraction of
a key are performed in a chain without having to
serialize intermediate data. Both the keyBy and
the sink operation break the chain, because keyBy
requires a shuffling step and the sink has a lower
parallelism than its predecessor.

Operators in Flink DataStream programs can
be stateful. In our example, the sources need
to store the current read offset in the log of
the publish-subscribe system to remember which
records have been consumed so far. Window
operators need to buffer records until the final
aggregation at the end of a window can be trig-
gered. The JobManager is responsible for coor-
dinating the creation of consistent checkpoints of
a program’s state, i.e., the state of all operators,
and restarting the program in case of failures
by loading the latest complete checkpoint and
replaying parts of a stream. Flink’s checkpoint
and recovery mechanism will be covered later in
more detail.

Time Handling
The handling of time receives special attention in
Flink’s DataStream API. Most streaming applica-
tions need a notion of time to define operations on
conceptually never-ending inputs. The previous
example included a tumbling time window to
discretize the stream into segments containing
the records received within an interval of 5 sec-
onds. Similarly, sliding windows allow for similar
fixed-length windows but with a possible overlap,
e.g., a window of 1 minute length that is eval-
uated every 10 seconds. Session windows have
a variable length and are evaluated depending
on a gap of inactivity. These window types as
well as several other operations on data streams
depend on a notion of time to specify an interval
of the stream that they interact with. Time-based
operators need to be able to look up the “current
time” while processing a record of a stream. Flink
supports two time modes.

Processing time is defined by the local clock of
the machine that processes an operator. Perform-
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ing operations based on the wall-clock time is the
easiest notion of time with little overhead. How-
ever, it assumes a perfect environment where all
records arrive in a strict order, can be processed
on time without any side effects, and do not need
to be reprocessed. In the real world, events might
arrive in the wrong order, or large amounts of
events might arrive at the same time and, thus,
logically belong to the same window but do not
reach the window operator punctually. Moreover,
the amount of hardware resource available for
processing can affect which records are grouped
together. Hence, processing time is not applicable
if quality-of-service specifications require that
results, which are computed from a log of events,
and must be reproducible.

Event time addresses the issues above by re-
lying on a timestamp that is associated with
every record and by defining a strategy to making
progress that guarantees consistent results. Flink
adopts the dataflow model (Akidau et al. 2015).
In addition to timestamped records, data streams
need to be enriched with watermarks in order
to leverage event time. Watermarks are metadata
records with a timestamp that indicate that no
record with a timestamp lower than the water-
mark’s timestamp will be received from a con-
nection in the future. Every operator in Flink
contains logic to compute a new watermark from
the watermarks it receives via its incoming con-
nections. The watermark of an operator acts as
its internal clock and triggers computations, such
as the computation of a window when the water-
mark passes its end time. An operator tracks for
each incoming connection the highest observed
watermark and computes its own watermark as
the smallest watermark across the current water-
marks of its incoming connections. Whenever an
operator advances its own watermark, it performs
all computations that are triggered by the new
watermark, emits the resulting records, and sub-
sequently broadcasts its new watermark across
all its outgoing connections. This mechanism
ensures that watermarks are strictly increasing
and that emitted records remain aligned with the
emitted watermarks.
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State and Fault Tolerance

The ability to memorize information that was
received or computed for future computations is
another crucial feature in streaming applications.
State can be used to buffer records until a cer-
tain event occurs, to maintain (partial) aggregates
based on incoming events, or to train and store
machine learning models. From a user’s point of
view, state can be considered as a set of member
variables in each operator. A member variable
is empty at the beginning and can be accessed
and modified depending on its data type. Since
the values in state variables affect the computed
result, state must be resilient to failures, recover-
able, and flexible enough for rescaling.

Flink takes care of snapshotting the content
of state variables by performing so-called
Checkpoints in regular intervals (e.g., every
minute). Flink employs lightweight asynchronous
snapshots (Carbone et al. 2015c) based on
the Chandy-Lamport algorithm (Mani Chandy
and Lamport 1985) for distributed snapshots.
When a snapshot is triggered, checkpoint
barriers with a specific checkpoint ID are
inserted at each source task and broadcasted
across all outgoing connections. When an
operator received a checkpoint barrier with
the same checkpoint ID from all incoming
connections, it draws a snapshot of its current
state, starts to write it out asynchronously, and
broadcasts the checkpoint barrier to all outgoing
connections. A checkpoint is completed once
all operators finished persisting their state. An
important property of checkpoints is that they
are consistent, i.e., the snapshotted state of all
operators depends on the same set of input
records, i.e., all records that were ingested before
the checkpoint barriers were injected by the
source tasks. In case of a failure, Flink restores
the state of all operators from the most recent
completed checkpoint. Many source operators
persist the read positions (or offsets) on their
input streams as regular state, such that read
positions and operator states are consistently
restored in case of a failure which results in
exactly-once state consistency.

Usually, checkpoints are continuously
replaced by newer ones. Flink allows for creating
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special persistent checkpoints, called savepoints.
Savepoints can be created at any time and
hold the complete state of an application. An
application can be restarted from a savepoint,
which means its internal state, usually including
read positions on input streams, is completely
restored. Savepoints make it possible to save mul-
tiple versions of a streaming application, recover
state, or perform A/B testing with modified busi-
ness logic but same state in a test environment.

State management also affects whether and
how the parallelism of stateful operators can be
changed, a feature that is important to support
scale out of streaming applications during peak
times or increasing loads and scale in afterward
to save resources and money. Adjusting the par-
allelism of a stateful operator requires to redis-
tribute its state to fewer or more parallel tasks.
Flink provides mechanisms for scaling operators
and applications by taking a savepoint from a
running job and restarting it with a different
parallelism from the savepoint.

Flink distinguishes between two types of state,
operator state and keyed state. Operator state
maintains state that is scoped to the parallel task
of an operator. Operator state needs to be split-
table and mergeable to support operator rescal-
ing. Keyed state is scoped to a key of the data and
requires a keyed stream, i.e., a stream partitioned
on a key attribute. When processing a record,
an operator with keyed state can only access the
state that corresponds to the key of the current
record. Operators with keyed state are rescaled by
reassigning key ranges and redistributing the cor-
responding state to fewer or more operator tasks.

Flink maintains the state of operators in a
so-called state backend. A state backend imple-
ments the internal data structures to hold the data
and logic to checkpoint the state. Heap-based
state backends use regular Java data structures
to store the state. They are limited by the size
of the JVM heap of the TaskManagers. Heap-
based state backends can checkpoint to the JVM
heap of the JobManager or to a remotely acces-
sible file system, such as HDFS, NFS, or S3.
The RocksDB-based state backend writes state
to disk and therefore allows for state that ex-
ceeds the size of available memory. Flink exploits
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many RocksDB features for checkpointing to a
remote file system, and maintaining state that
becomes very large (on the order of multiple
terabytes). When using the RocksDB state back-
end, Flink can not only create checkpoints asyn-
chronously but also incrementally which speeds
up the checkpointing operation.

Key Applications

In the past, analytical data was commonly
dumped into database systems or distributed
file systems and, if at all, processed in nightly or
monthly batch jobs. Nowadays, in a globalized,
faster-moving world, reacting to events quickly
is crucial for economic success. For Flink,
processing of unbounded data means handling
events when they occur in a non-approximated
but accurate fashion. This requires support
for event-time processing, exactly-once state
consistency, and fault tolerance -capabilities.
Applications must be scalable to handle both
current and increasing data volumes in the
future, leading to a parallelized and distributed
execution. Moreover, Flink applications can
consume data from a variety of sources such as
publish-subscribe message queues, file systems,
databases, and sockets.

However, the use cases for Flink are not
limited to faster data analytics. Its flexibility
to model arbitrary dataflows and its precise
control over state and time allow a variety of new
applications. So-called event-driven applications
are becoming more and more popular as part
of an overall event-driven architecture. Such
applications trigger computations based on
incoming events and might store an accumulated
history of events to relate it to newly arrived
events. Applications can output their result
to a database or key-value store, trigger an
immediate reaction via an RPC call, or emit a new
event which might trigger subsequent actions.
In contrast to traditional two-tier architectures
where application and database system separate
business logic and data from each other, event-
driven applications own computation and state
and keep them close together. The benefits of
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this approach are that (1) state access is always
local instead of accessing a remote database, (2)
state and computation are scaled together, and (3)
applications define the schema of their own state,
similar to microservices.

Entire social networks have been built with
Flink (Koliopoulos 2017) following the event-
driven approach. Incoming user requests are writ-
ten to a distributed log that acts as the single
source of truth. The log is consumed by multiple
distributed stateful applications which build up
their state independently from each other for
aggregated post views, like counts, and statistics.
Finally, the updated results are stored in a mate-
rialized view that web servers can return to the
user.

In addition, Flink offers a domain-specific API
for complex event processing to detect and react
on user-defined patterns in event streams. CEP is
useful for fraud or intrusion detection scenarios
or to monitor and validate business processes.
Furthermore, Flink provides relational APIs to
unify queries on bounded and unbounded data
streams. With its Table and SQL APIs, Flink
can continuously update a result table which is
defined by query on one or more input streams,
similar to a materialized view as known from
relational database systems.
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Definitions

Apache Kafka (Apache Software Foundation
2017b; Kreps et al. 2011; Goodhope et al. 2012;
Wang et al. 2015; Kleppmann and Kreps 2015)
is a scalable, fault-tolerant, and highly available
distributed streaming platform that can be used
to store and process data streams.

Kafka consists of three main components:

¢ the Kafka cluster,

¢ the Connect framework (Connect API),

e and the Streams programming
(Streams API).

library

The Kafka cluster stores data streams, which
are sequences of messages/events continuously
produced by applications and sequentially and
incrementally consumed by other applications.
The Connect API is used to ingest data into Kafka
and export data streams to external systems like
distributed file systems, databases, and others.
For data stream processing, the Streams API
allows developers to specify sophisticated stream
processing pipelines that read input streams from
the Kafka cluster and write results back to Kafka.

Kafka supports many different use cases
categories such as traditional publish-subscribe
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messaging, streaming ETL, and data stream
processing.

Overview

A Kafka cluster provides a publish-subscribe
messaging service (Fig.1). Producer clients
(publishers) write messages into Kafka, and
consumer clients (subscribers) read those
messages from Kafka. Messages are stored in
Kafka servers called brokers and organized in
named fopics. A topic is an append-only sequence
of messages, also called a log. Thus, each time a
message is written to a topic, it is appended to the
end of the log. A Kafka message is a key-value
pair where key and value are variable-length byte
arrays. Additionally, each message has a time
stamp that is stored as 64-bit integer.

Topics are divided into partitions. When a
message is written to a topic, the producer must
specify the partition for the message. Producers
can use any partitioning strategy for the mes-
sages they write. By default, messages are hash-
partitioned by key, and thus all messages with the
same key are written to the same partition. Each
message has an associated offset that is the mes-
sage’s position within the partition, i.e., a mono-
tonically increasing sequence number. The mes-
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sage’s offset is implicitly determined by the order
in which messages are appended to a partition.
Hence, each message within a topic is uniquely
identified by its partition and offset. Kafka guar-
antees strict message ordering within a single
partition, i.e., it guarantees that all consumers
reading a partition receive all messages in the
exact same order as they were appended to the
partition. There is no ordering guarantee between
messages in different partitions or different top-
ics.

Topics can be written by multiple producers
at the same time. If multiple producers write to
the same partition, their messages are interleaved.
If consumers read from the same topic, they
can form a so-called consumer group. Within a
consumer group, each individual consumer reads
data from a subset of partitions. Kafka ensures
that each partition is assigned to exactly one con-
sumer within a group. Different consumer groups
or consumers that don’t belong to any consumer
group are independent from each other. Thus, if
two consumer groups read the same topic, all
messages are delivered to both groups. Because
consumers are independent from each other, each
consumer can read messages at its own pace. This
results in decoupling—a desirable property for a
distributed system—and makes the system robust
against stragglers. In summary, Kafka supports

Producer client

Producer client

Consumer client

offsets: (B.1: 4, B.2: 7)

Consumer client
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Apache Kafka, Fig. 1 Kafka topics are divided into
partitions that are ordered sequences of messages. Mul-
tiple producers can write simultaneously into the same
topic. Consumers track their read progress and can form

a consumer group to share the read workload over all
consumers within the group (Source: Kleppmann and
Kreps 2015)
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multiple producers and can deliver the same data
to multiple consumers.

Kafka Brokers

Kafka brokers store messages reliably on disk.
In contrast to traditional messaging/publish-
subscribe systems, Kafka can be used for long-
term storage of messages, because Kafka does
not delete messages after delivery. Topics are
configured with a so-called retention time that
specifies how long a message should be stored.
Topic retention can also be specified in bytes
instead of time, to apply an upper bound on
disk space. If the retention boundaries are
reached, Kafka truncates partitions at the end of
the log.

From a semantic point of view, messages are
immutable facts, and thus it is not reasonable
to support deleting individual messages from a
topic. Users can only apply a “time-to-live” via
topic retention to truncate old data.

Log Compaction

Kafka also supports so-called compacted topics.
If a topic is configured for log compaction, users
apply different semantics to the stored messages.
While regular topics store immutable facts, a
compacted topic can be used to store updates.
Note that a compacted topic is still an append-
only sequence of messages, and there are no in-
place updates. Appending an update message to
a compacted topic implies that a newer messages
“replaces” older messages with the same key. The
difference of compacted topics to topics with log
retention is that Kafka guarantees that the latest
update of a key is never deleted, while older
updates can be garbage collected.

Log compaction is applied on a per-partition
basis; thus updates for the same key should be
written to the same partition. For performance
reasons, brokers don’t delete older messages im-
mediately, but compaction is triggered as back-
ground process in regular intervals. In contrast to
“regular” topics, compacted topics also support
delete semantics for individual record via so-
called tombstone messages. A tombstone is a
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message with a null value, and it indicates that
all previous updates for the corresponding key
can be deleted (including the tombstone itself).

Scaling and Load Balancing
As described in section “Overview,” messages
are stored in topics, and topics are divided
into partitions. Partitions allow brokers to scale
out horizontally and to balance load within the
cluster, because partitions are independent units
within a topic. Even if partitions of the same
topic are stored at different brokers, there is
no need for broker synchronization, and thus a
Kafka cluster scales linearly with the number of
brokers. A single broker only limits the capacity
of a single partition, but because topics can be
created with an arbitrary number of partitions,
this is not a limitation in practice. Overall the
read/write throughput and storage requirements
of topics are not limited by the size of a single
server, and the cluster capacity can be increased
by adding new brokers to the system. Last but
not least, partitions can be reassigned from one
broker to another to balance load within a cluster.
There is no master node in a Kafka cluster: all
brokers are able to perform all services provided
by the cluster. This design supports linear scale-
out, as a master node could become a bottleneck.
For broker coordination, Kafka uses Apache
ZooKeeper (Apache Software Foundation 2017d;
Hunt et al. 2010), a scalable, fault-tolerant,
and highly available distributed coordination
service. Kafka uses ZooKeeper to store all cluster
metadata about topics, partitions, partition-to-
broker mapping, etc., in a reliable and highly
available manner.

Fault Tolerance and High Availability

To ensure fault tolerance and high availability,
partitions can be replicated to multiple brokers.
Each topic can be configured with an individual
replication factor that indicates how many copies
of a partition should be maintained. To ensure
strict message ordering guarantees per partitions,
replication uses a leader-follower pattern. Each
partition has a single leader and a configurable
number of followers. All read and write requests
are handled by the leader, while the followers
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replicate all writes to the leader in the back-
ground. If the broker hosting the leader fails,
Kafka initiates a leader election via ZooKeeper,
and one of the followers becomes the new leader.
All clients will be updated with the new leader
information and send all their read/write request
to the new leader. If the failed broker recovers,
it will rejoin the cluster, and all hosted partitions
become followers.

Message Delivery

Reading data from Kafka works somewhat differ-
ently compared to traditional messaging/publish-
subscribe systems. As mentioned in section
“Kafka Brokers,” brokers do not delete messages
after delivery. This design decision has multiple
advantages:

* Brokers do not need to track the reading
progress of consumers. This allows for an
increased read throughput, as there is no
progress tracking overhead for the brokers.

e It allows for in-order message delivery. If
brokers track read progress, consumers need
to acknowledge which messages they have
processed successfully. This is usually done
on a per-message basis. Thus, if an earlier
message is not processed successfully, but a
later message is processed successfully, re-
delivery of the first message happens out of
order.

e Because brokers don’t track progress and
don’t delete data after delivery, consumers
can go back in time and reprocess old data
again. Also, newly created consumers can
retrieve older data.

The disadvantage of this approach is that con-
sumer clients need to track their progress them-
selves. This happens by storing the offset of the
next message a consumer wants to read. This
offset is included in the read request to the broker,
and the broker will deliver consecutive messages
starting at the requested offset to the consumer.
After processing all received messages, the con-
sumer updates its offset accordingly and sends
the next read request to the cluster.
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If a consumer is stopped and restarted later
on, it usually should continue reading where it
left off. To this end, the consumer is responsible
for storing its offset reliably so it can retrieve
it on restart. In Kafka, consumers can commit
their offsets to the brokers. On offset commit bro-
kers store consumer offsets reliably in a special
topic called offset topic. As offset topic is also
partitioned and replicated and is thus scalable,
fault-tolerant, and highly available. This allows
Kafka to manage a large number of consumers
at the same time. The offset topic is configured
with log compaction enabled (cf. section “Log
Compaction”) to guarantee that offsets are never
lost.

Delivery Semantics

Kafka supports multiple delivery semantics,
namely, at-most-once, at-least-once, and exactly
once. What semantics a user gets depends on
multiple factors like cluster/topic configuration
as well as client configuration and user code.

It is important to distinguish between the write
and read path when discussing delivery seman-
tics. Furthermore, there is the concept of end-to-
end processing semantics that applies to Kafka’s
Streams APIL. In this section, we will only cover
the read and write path and refer to section
“Kafka Streams” for end-to-end processing se-
mantics.

Writing to Kafka

When a producer writes data into a topic, brokers
acknowledge a successful write to the producer. If
a producer doesn’t receive an acknowledgement,
it can ignore this and follow at-most-once seman-
tics, as the message might not have been written
to the topic and thus could be lost. Alternatively, a
producer can retry the write resulting in at-least-
once semantics. The first write could have been
successful, but the acknowledgement might be
lost. Kafka also supports exactly once writes by
exploiting idempotence. For this, each message
is internally assigned a unique identifier. The
producer attaches this identifier to each message
it writes, and the broker stores the identifier as
metadata of each message in the topic. In case of
a producer write retry, the broker can detect the
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duplicate write by comparing the message identi-
fiers. This deduplication mechanism is internal to
producer and broker and does not guard against
application-level duplicates.

Atomic Multi-partition Writes Kafka also
support atomic multi-partition writes that are
called transactions. A Kafka transaction is
different to a database transaction, and there
is no notion of ACID guarantees. A transaction
in Kafka is similar to an atomic write of multiple
messages that can span different topics and/or
partitions. Due to space limitations, we cannot
cover the details of transactional writes and
can only give a brief overview. A transactional
producer is first initialized for transactions by
performing a corresponding API call. The broker
is now ready to accept transactional writes for
this producer. All messages sent by the producer
belong to the current transaction and won’t
be delivered to any consumer as long as the
transaction is not completed. Messages within
a transaction can be sent to any topic/partition
within the cluster. When all messages of a
transaction have been sent, the producer commits
the transaction. The broker implements a two-
phase commit protocol to commit a transaction,
and it either successfully “writes” all or none
of the messages belonging to a transaction. A
producer can also abort a transaction; in this case,
none of the messages will be deleted from the log,
but all messages will be marked as aborted.

Reading from Kafka

As discussed in section “Message Delivery,” con-
sumers need to track their read progress them-
selves. For fault-tolerance reasons, consumers
commit their offsets regularly to Kafka. Con-
sumers can apply two strategies for this: after
receiving a message, they can either first commit
the offset and process the message afterwards,
or they do it in reverse order and first process
the message and commit the offset at the end.
The commit-first strategy provides at-most-once
semantics. If a message is received and the offset
is committed before the message is processed,
this message would not be redelivered in case
of failure: after a failure, the consumer would

Apache Kafka

recover its offsets as the last committed offset
and thus would resume reading after the failed
message.

In contrast, the process-first strategy provides
at-least-once semantics. Because the consumer
doesn’t update its offsets after processing the
receive message successfully, it would always
fall back to the old offset after recovering from
an error. Thus, it would reread the processed
message, resulting in potential duplicates in the
output.

Transactional Consumers Consumers can be
configured to read all (including aborted mes-
sages) or only committed messages (cf. para-
graph Atomic multi-partition writes in section
“Writing to Kafka”). This corresponds to a read
uncommitted and read committed mode similar
to other transactional systems. Note that aborted
messages are not deleted from the topics and will
be delivered to all consumers. Thus, consumers
in read committed mode will filter/drop aborted
messages and not deliver them to the application.

Kafka Connect Framework

Kafka Connect—or the Connect API—is a
framework for integrating Kafka with external
systems like distributed file systems, databases,
key-value stores, and others. Internally, Kafka
Connect uses producer/consumer clients as
described in section “Kafka Brokers,” but the
framework implements much of the functionality
and best practices that would otherwise have to
be implemented for each system. It also allows
running in a fully managed, fault-tolerant, and
highly available manner.

The Connect API uses a connector to
communicate with each type of external system.
A source connector continuously reads data from
an external source system and writes the records
into Kafka, while a sink connector continuously
consumes data from Kafka and sends the records
to the external system. Many connectors are
available for a wide variety of systems, including
HDEFES, S3, relational databases, document
database systems, other messaging systems, file
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systems, metric systems, analytic systems, and
so on. Developers can create connectors for other
systems.

Kafka Connect can be either used as stand-
alone or deployed to a cluster of machines. To
connect with an external system, a user creates
a configuration for a connector that defines the
specifics of the external system and the desired
behavior, and the user uploads this configuration
to one of the Connect workers. The worker,
which is running in a JVM, deploys the connector
and distributes the connector’s fasks across the
cluster. Source connector tasks load data from the
external system and generate records, which Con-
nect then writes to the corresponding Kafka top-
ics. For sink connector tasks, Connect consumes
the specified topics and passes these records to
the task, which then is responsible for sending the
records to the external system.

Single-Message Transforms

The Connect API allows to specify simple
transformation—so-called single-message
transforms, SMT—for individual messages that
are imported/exported into/from Kafka. Those
transformations are independent of the connector
and allow for stateless operations. Standard
transformation functions are already provided
by Kafka, but it is also possible to implement
custom transformations to perform initial data
cleaning. If SMTs are not sufficient because a
more complex transformation is required, the
Streams API (described in the next section) can
be used instead.

Kafka Streams

Kafka Streams—or the Streams API—is the
stream processing library of Apache Kafka. It
provides a high-level DSL that supports stateless
as well as stateful stream processing operators
like joins, aggregations, and windowing.
The Streams API also supports exactly once
processing guarantees and event-time semantics
and handles out-of-order and late-arriving data.
Additionally, the Streams API introduces tables
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as a first-class abstraction next to data streams.
It shares a few ideas with Apache Samza
(cf. article on “» Apache Samza”) (Apache
Software Foundation 2017c; Noghabi et al.
2017; Kleppmann and Kreps 2015) such as
building on top of Kafka’s primitives for fault
tolerance and scaling. However, there are many
notable differences to Samza: for example, Kafka
Streams is implemented as a library and can
run in any environment, unlike Samza, which is
coupled to Apache Hadoop’s resource manager
YARN (Apache Software Foundation 2017a;
Vavilapalli et al. 2013); it also provides stronger
processing guarantees and supports both streams
and tables as core data abstractions.

Streams and Tables

Most stream processing frameworks provide the
abstraction of a record stream that is an append-
only sequence of immutable facts. Kafka Streams
also introduces the notion of a changelog stream,
a mutable collection of data items. A changelog
stream can also be described as a continuously
updating table. The analogy between a changelog
and a table is called the stream-table duality
(Kleppmann 2016, 2017). Supporting tables as
first-class citizens allow to enrich data streams
via stream-table joints or populate tables as self-
updating caches for an application.

The concept of changelogs aligns with the
concept of compacted topics (cf. section “Log
Compaction”). A changelog can be stored in a
compacted topic, and the corresponding table can
be recreated by reading the compacted topic with-
out data loss as guaranteed by the compaction
contract.

Kafka Streams also uses the idea of a
changelog stream for (windowed) aggregations.
An aggregation of a record stream yields both a
table and a changelog stream as a result—not a
record stream. Thus, the table always contains
the current aggregation result that is updated for
each incoming record. Furthermore, each update
to the result table is propagated downstream
as a changelog record that is appended to the
changelog stream.
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State Management

Operator state is a first-class citizen in Kafka’s
Streams API similar to Samza and uses
the aforementioned table abstraction. For
high performance, state is kept local to the
stream processing operators using a RocksDB
(Facebook Inc. 2017) store. Local state is not
fault-tolerant, and thus state is additionally
backed by a topic in the Kafka cluster. Those
topics have log compaction (cf. section “Log
Compaction”) enabled and are called changelog
topics. Using log compaction ensures that the
size of the changelog topic is linear in the size of
the state. Each update to the store is written to the
changelog topic; thus, the persistent changelog
topic is the source of truth, while the local
RocksDB store is an ephemeral materialized
view of the state.

If an application instance fails, another
instance can recreate the state by reading
the changelog topic. For fast fail-over, Kafka
Streams also support standby replicas, the hold
hot standbys of state store. Standby replicas
can be maintained by continuously reading all
changes to the primary store from the underlying
changelog topic.

Fault Tolerance and Scaling

Kafka Streams uses the same scaling/parallelism
abstraction as Samza, namely, partitions. This is a
natural choice as Kafka Streams reads input data
from partitioned topics. Each input topic partition
is mapped to a rask that processed the records
of this partition. Tasks are independent units of
parallelism and thus can be executed by different
threads that might run on different machines. This
allows to scale out a Kafka Streams application
by starting multiple instances on different ma-
chines. All application instances form a consumer
group, and thus Kafka assigns topic partitions in a
load balanced manner to all application instances
(cf. section “Kafka Brokers”).

Because Kafka Streams is a library, it cannot
rely on automatic application restarts of failed
instances. Hence, it relies on the Kafka clus-
ter to detect failures. As mentioned above, a
Streams application forms a consumer group,
and the Kafka cluster monitors the liveness of
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all members of the group. In case of a failure,
the cluster detects a dead group member and
reassigns the corresponding input topic parti-
tions of the failed application instance to the
remaining instances. This process is called an
consumer group rebalance. During a rebalance,
Kafka Streams also ensures that operator state
is migrated from the failing instance (cf. section
“State Management”). Kafka’s consumer group
management mechanism also allows for fully
elastic deployments. Application instances can be
added or removed during runtime without any
downtime: the cluster detects joining/leaving in-
stances and rebalances the consumer group auto-
matically. If new instances are joining, partitions
are revoked from existing members of the groups
and assigned to the new members to achieve load
balancing. If members are leaving a consumer
group, this is just a special case of fail-over, and
the partitions of the leaving instance are assigned
to the remaining ones. Note that in contrast to a
fail-over rebalance, a scaling rebalance guaran-
tees a clean hand over of partitions, and thus each
record is processed exactly once.

Time Semantics

Time is a core concept in stream processing,
and the operators in Kafka’s stream processing
DSL are based on time: for example, windowed
aggregations require record time stamps to assign
records to the correct time windows. Handling
time also requires to handle late-arriving data, as
record might be written to a topic out of order
(note: Kafka guarantees offset based in-order
delivery; there is no time stamp-based delivery
guarantee).

Stream processing with Kafka supports three
different time semantics: event time, ingestion
time, and processing time. From a Streams API
point of view, there are only two different seman-
tics though: event time and processing time.

Processing time semantics are provided when
there is no record time stamp, and thus Streams
needs to use wall clock time when processing
data for any time-based operation like window-
ing. Processing time has the disadvantage that
there is no relationship between the time when
data was created and when data gets processed.
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Furthermore, processing time semantics is inher-
ently non-deterministic.

Event time semantics are provided when the
record contains a time stamp in its payload or
metadata. This time-stamp is assigned when a
record is created and thus allows for deterministic
data reprocessing. Applications may include
a time stamp in the payload of the message,
but the processing of such time stamps is then
application-dependent. For this reason, Katka
supports record metadata time stamps that are
stored in topics and automatically set by the
producer when a new record is created.

Additionally, Kafka topics can be configured
to support ingestion time for time-based opera-
tions: ingestion time is the time when data is
appended to the topic, i.e., the current broker
wall clock time on write. Ingestion time is an
approximation of event time, assuming that data
is written to a topic shortly after it was created. It
can be used if producer applications don’t provide
a record metadata time stamp. As ingestion time
is an approximation of event time, the Streams
API is agnostic to ingestion time (it is treated as
a special case of event time).

Exactly Once Processing Semantics
Processing an input record can be divided into
three parts: first, the actual processing includ-
ing any state updates; second, writing the result
records to the output topics; third, recording the
progress by committing the consumer offset. To
provide exactly once processing semantics, all
three parts must be performed “all or nothing.”
As described in section “State Management,”
updating operator state is actually a write to a
changelog topic that is the source of truth (the
local state is only a materialized view). Fur-
thermore, committing input offsets is a write to
the special offset topic as discussed in section
“Message Delivery.” Hence, all three parts use
the same underlying operation: writing to a topic.
This allows the Streams API to leverage
Kafka’s transactions (cf. section “Writing to
Kafka”) to provide end-to-end exactly once
stream processing semantics. All writes that
happen during the processing of a record are
part of the same transaction. As a transaction is
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an atomic multi-partition write, it ensures that
either all writes are committed or all changes are
aborted together.

Summary

Apache Kafka is a scalable, fault-tolerant, and
highly available distributed streaming platform.
It allows fact and changelog streams to be stored
and processed, and it exploits the stream-table
duality in stream processing. Kafka’s transactions
allow for exactly once stream processing seman-
tics and simplify exactly once end-to-end data
pipelines. Furthermore, Kaftka can be connected
to other systems via its Connect API and can thus
be used as the central data hub in an organization.
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Continuous Queries

References

Apache Software Foundation (2017a) Apache Hadoop
project web page. https://hadoop.apache.org/

Apache Software Foundation (2017b) Apache Kafka
project web page. https://kafka.apache.org/

Apache Software Foundation (2017c) Apache Samza
project web page. https://samza.apache.org/

Apache Software Foundation (2017d) Apache ZooKeeper
project web page. https://zookeeper.apache.org/

Facebook Inc (2017) RocksDB project web page. http://
rocksdb.org/

Goodhope K, Koshy J, Kreps J, Narkhede N, Park R, Rao
J, Ye VY (2012) Building Linkedin’s real-time activity
data pipeline. IEEE Data Eng Bull 35(2):33-45. http://
sites.computer.org/debull/A12june/pipeline.pdf

Hunt P, Konar M, Junqueira FP, Reed B (2010)
ZooKeeper: wait-free coordination for internet-scale
systems. In: Proceedings of the 2010 USENIX
conference on USENIX annual technical confer-
ence, USENIX ATC’10. USENIX Association, Berke-
ley, p 11. http://dl.acm.org/citation.cfm?id=1855840.
1855851

Kleppmann M (2016) Making sense of stream processing,
Ist edn. O’Reilly Media Inc., 183 pages


https://doi.org/10.1007/978-3-319-77525-8_303
https://doi.org/10.1007/978-3-319-77525-8_197
https://doi.org/10.1007/978-3-319-77525-8_305
https://hadoop.apache.org/
https://kafka.apache.org/
https://samza.apache.org/
https://zookeeper.apache.org/
http://rocksdb.org/
http://rocksdb.org/
http://sites.computer.org/debull/A12june/pipeline.pdf
http://sites.computer.org/debull/A12june/pipeline.pdf
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851

66

Kleppmann M (2017) Designing data-intensive applica-
tions. O’Reilly Media Inc., Sebastopol

Kleppmann M, Kreps J (2015) Kafka, Samza and
the Unix philosophy of distributed data. IEEE Data
Eng Bull 38(4):4-14. http://sites.computer.org/debull/
Al5dec/p4.pdf

Kreps J, Narkhede N, Rao J (2011) Kafka: a distributed
messaging system for log processing. In: Proceedings
of the NetDB, pp 1-7

Noghabi SA, Paramasivam K, Pan Y, Ramesh N,
Bringhurst J, Gupta I, Campbell RH (2017) Samza:
stateful scalable stream processing at LinkedIn. Proc
VLDB Endow 10(12):1634-1645. https://doi.org/10.
14778/3137765.3137770

Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar
M, Evans R, Graves T, Lowe J, Shah H, Seth S,
Saha B, Curino C, O’Malley O, Radia S, Reed B,
Baldeschwieler E (2013) Apache Hadoop YARN: yet
another resource negotiator. In: 4th ACM symposium
on cloud computing (SoCC). https://doi.org/10.1145/
2523616.2523633

Wang G, Koshy J, Subramanian S, Paramasivam K, Zadeh
M, Narkhede N, Rao J, Kreps J, Stein J (2015) Build-
ing a replicated logging system with Apache Kafka.
PVLDB 8(12):1654-1655. http://www.vldb.org/pvldb/
vol8/p1654-wang.pdf

Apache Mahout

Andrew Musselman
Apache Software Foundation, Seattle, WA, USA

Definitions

Apache Mahout (http://mahout.apache.org) is
a distributed linear algebra framework that
includes a mathematically expressive domain-
specific language (DSL). It is designed to aid
mathematicians, statisticians, and data scientists
to quickly implement numerical algorithms while
focusing on the mathematical concepts in their
work, rather than on code syntax. Mahout uses
an extensible plug-in interface to systems such as
Apache Spark and Apache Flink.

Historical Background

Mahout was founded as a sub-project of Apache
Lucene in late 2007 and was promoted to a top-
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level Apache Software Foundation (ASF) (ASF
2017) project in 2010 (Khudairi 2010). The goal
of the project from the outset has been to provide
a machine learning framework that was both
accessible to practitioners and able to perform so-
phisticated numerical computation on large data
sets.

Mahout has undergone two major stages of
architecture design. The first versions relied on
the Apache Hadoop MapReduce framework, a
popular tool for orchestrating large-scale data
flow and computation. Hadoop, while flexible
enough to handle many typical workflows, has
severe limitations when applied to highly itera-
tive processes, like those used in most machine
learning methods.

The Hadoop implementation of MapReduce
does not allow for caching of intermediate results
across steps of a long computation. This means
that algorithms that iteratively use the same data
many times are at a severe disadvantage — the
framework must read data from disk every iter-
ation rather than hold it in memory. This type of
algorithm is common in data science and machine
learning: examples include k-means clustering
(which has to compute distances for all points
in each iteration) and stochastic gradient descent
(which has to compute gradients for the same
points over many iterations).

Since enabling iterative work on large data
sets is a core requirement of a machine learning
library geared toward big data, Mahout moved
away from Hadoop in its second design phase.
Starting with release 0.10.0 (PMC 2015), Ma-
hout switched its computation engine to Apache
Spark, a framework designed specifically to fa-
cilitate distributed in-memory computation. At
the same time, Mahout jobs built using Hadoop
MapReduce were deprecated to discourage users
from relying on them long-term, and a new in-
terface on the front end was released, named
“Samsara,” after the Hindu and Buddhist concept
of rebirth. This new front end has a simple syntax
for matrix math modeled after other systems such
as MATLAB and R, to allow maximal readability
and quick prototyping. Samsara can be run in an
interactive shell where results are displayed in-
line, enabling a live back-and-forth with code and
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results, much like an interactive SQL or other
interpreted environment familiar to many users.

As an example of the Samsara DSL syntax for
calculating, for instance, the transpose of a matrix
A multiplied with A itself, a common operation
in machine learning jobs, can be written in Scala
code as

val C = A.t

o°
o°

*% A.

Note the declaration of the resulting matrix C, the
transpose operator t, and the matrix multiplica-
tion operator %*%. Behind the scenes, the right-
hand side of the statement is parsed and the back
end takes an optimal approach when physically
performing the multiplication.

More recently, beginning in early 2017
with version 0.13.0 (PMC 2017), Mahout
added the capability to perform computation
directly on hardware, outside the Java Virtual
Machine (JVM), using operation solvers written
specifically to optimize performance according to
native processor and memory architecture. This
allows for speed gains from using all cores of
all CPUs on the host and the option to leverage
matrix-math-specific instruction sets built into
graphics processing units (GPUs).

Foundations

The motivation for the Mahout project is to bring
large-scale machine learning to practitioners
in real-world environments. This boils down
to three concepts: first, providing a conve-
nient syntax for writing programs and doing
experimental and exploratory work; second,
handling all the nitty-gritty details of distributed
matrix arithmetic without requiring the user to
understand the low-level implementation; and
last, making deployment to production simple
and straightforward.

Many machine learning libraries and tools
either provide an array of algorithms, but do not
operate on very large data sets, or else manage
computation at scale but require significant pro-
gramming experience and skill. Bridging those
gaps, Mahout works at scale, is flexible with
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regard to hardware and compute engines, and
allows data science and machine learning prac-
titioners to focus on the math in their work
symbolically.

For example, in the distributed stochastic prin-
cipal component analysis (ASPCA) job in Ma-
hout, there is a computation that is expressed
symbolically as

G=BBT —C-CT +&T¢s5,7s,.

This equation can be expressed in code in Mahout
as

val G = B %x% B.t - C - C.t

+ (x1 dot xi) % (s_g cross s _q),

which is readable and compact compared to many
alternative representations.

The main reason many machine learning op-
erations need to be distributed in real-world envi-
ronments is because one of the key strengths of
machine learning methods is their ability to build
predictions from very large data sets. Data sets
at this scale include, for example, HTTP access
logs for high-traffic websites, large text corpora
consisting of millions of documents, and stream-
ing, high-volume data from sensors in industrial
settings. With smaller data sets, the input is often
held in memory, and all computation is performed
on one host computer. However, as soon as a data
set scales beyond the memory on a single host,
inefficiency caused by spilling data to storage and
re-reading it slows down operations and makes
them too costly to be viable.

Distributed computing frameworks that allow
computation on large data sets are continuously
evolving based on shifting market requirements
and ongoing research and development. Mahout
takes advantage of many of the abstractions
provided by these frameworks and then
builds further performance improvements and
refinements. Many refinements come from
exploiting well-studied properties of matrices and
matrix arithmetic and using “tricks” and shortcuts
to avoid doing more operations than required,



68

and others come from solvers purpose-built for
specific types of hardware and environments.

Overview of Architecture

The most recent design of Mahout allows for
iterative rapid prototyping in the Samsara DSL
which can be used directly in production with
minimal changes. Computation on the back end
is adaptable to varied configurations of compute
engine and hardware. For example, an algorithm
can be handed off to a Spark or Flink engine for
computation, and any required matrix arithmetic
can be computed in the JVM, on the CPU (us-
ing all available cores), or on compatible GPUs,
depending on the shape and characteristics of the
vectors and matrices being operated on. All these
combinations will work with the same front-end
code with minimal changes.

All the moving parts involved are seen in
Fig. 1, moving from the top layer where appli-
cation code is written to the front end which
hands off computation to the appropriate engine
or to native solvers (which perform the com-

User Interface

Application Code ]

Samsara Scala DSL J

In-Core Algebra

CUDA Bindings
J NVIDIA GPUs

Physical DAG

Physical Translation } Front End

M Spark M H20 ] Compute Engines

H2OMatrix

In-Core Algebra Back End

CUDA Bindings

[
[
[ Logical DAG }
[
[
[

NVIDIA GPUs

Apache Mahout, Fig. 1 Current architecture of Mahout,
showing four main components: the user interface where
application code is written, the front end which handles
which subsystem will perform computation (which could
be native and in-core), the pluggable compute engine
layer, and the back end which takes instructions from a
compute engine and performs mathematical operations
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putations), the pluggable compute engine layer,
and the back end which handles computation
according to instructions from compute engines.
Noteworthy for the Mahout user is the Scala
DSL layer which allows for interactive, iterative
development which can be captured directly into
Scala packages and run as application code in
production environments with minimal changes.

Also notable is the pluggable compute engine
layer, allowing flexibility in deployment as well
as future-proofing for when new compute engines
become viable and beneficial to users’ needs. In
fact, code written for the Spark engine, for exam-
ple, can be directly re-used on Flink with minor
changes to import and initialization statements in
the code.

Another recent introduction to Mahout is a
template that simplifies algorithm contributions
from the project’s maintainers as well as from its
users. The interface is modeled after the machine
learning training and evaluation patterns found in
many R packages and the Python-based scikit-
learn package.

As seen in Fig. 2, a new algorithm need only
define a £it method in a Fitter class, which
populates a Model class, which contains pa-
rameter estimates, statistics about the fit, and
an overall summary of performance, and which
finally uses its predict method to make predic-
tions on new data. The bulk of the work any
new algorithm performs is written inside the £it
method.

Key Applications

Practical applications of machine learning
usually fall into one of three categories, the
so-called Three Cs: collaborative filtering
(known commonly as “recommender sys-
tems,” or “recommenders”), classification, and
clustering.

Recommender systems typically come into
play in situations where the goal is to present
new items to users which they are likely to
need or want. These recommendations are based
on historical user behavior across all users and
across all items they interact with. Examples
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Apache Mahout, Fig. 2
Code listing of a skeleton
for a new algorithm,
showing both the Fitter and
Model classes, including
their fit and predict
methods

include online retail, where increasing customer
spending and site interactions is a key busi-
ness goal. A common use of a recommender is
to present examples of products that other cus-
tomers have bought, calculated by the similarity
between other customers’ purchases or between

products themselves.

which can be summarized as predicting either a
categorical value for a user or an item, such as
“likely or unlikely to default on a bank loan,” or
a numerical value such as age or salary. These
methods are used across most scientific fields and
industrial sectors, for anything from screening for
illnesses in medicine, to determining risk in the
financial sector, to predictive plant maintenance
in manufacturing operations.

Clustering methods are generally used to make
sense of groups of users, documents, or other
items. Presented as a whole, a data set can be
daunting or even impossible to understand as a
pile of records full of numbers and values, and
it is often desirable to segment the whole set
into smaller pieces, each of which collects most-
similar items together for more close analysis

class Foo[K] extends RegressorFitter[K] {

def fit(drmX: DrmLike[K],
drmTarget: DrmLike[K],
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hyperparameters: (Symbol, Any)*): FooModel[K] = {

T Normadly

var model = new FooModel[K]

model.summary = "This model has been fit, etc.”

model

}
}

class FooModel[K] extends RegressorModel[K] {

def predict(drmPredictors: DrmLike[K]): DrmLike([K] = {

drmPredictors.mapBlock(1l) {
case (keys, block: Matrix) => {

var outputBlock = new DenseMatrix(block.nrow, 1)

keys -> (outputBlock += 1.0)
}
}
}
}

with a text corpus that contains documents on a
variety of subjects. In order to categorize all the
documents into one or more relevant topics which
could be used for quicker filing and retrieval,
the entire corpus can be analyzed by a clustering
method which separates documents into groups,

members of each being relevant to similar topics
Classifiers cover a broad range of methods or concepts.

In real-world applications, the distinction be-
tween these methods can be less clear-cut. Often
more than one type of machine learning method
will be used in combination to achieve further
nuance and improve relevance and effectiveness
of predictions. For example, after a corpus of
documents is organized into topics, if a new
document is added to the corpus, it can effec-

tively be “classified” based on which cluster it is

and inspection. A common use for clustering is that customer.

closest to. Similarly, the input to a recommender
system in production can be a customer’s recent
browsing history on the product website. The
customer’s history can be fed into a classifier to
determine which cohort of customers they belong
to. This information can then be the input to a
recommender built specifically per cohort, so that
any products recommended are more relevant to



70

Cross-References

Apache Flink

Apache Hadoop

Apache Spark

Apache SystemML

Big Data and Recommendation

Columnar Storage Formats

GPU-Based Hardware Platforms

Python

Scala

Scalable Architectures for Big Data Analysis

References

ASF (2017) Welcome to the apache software foundation!
https://www.apache.org

Khudairi S (2010) The apache software foundation blog.
https://blogs.apache.org/foundation/entry/the_apache_
software_foundation_announces4

PMC AM (2015) Apache mahout 0.10.0 release
notes. http://mahout.apache.org/release-notes/Apache-
Mahout-0.10.0-Release-Notes.pdf

PMC AM (2017) Apache mahout 0.13.0 release notes.
https://mail-archives.apache.org/mod_mbox/www-ann
ounce/201704.mbox/%3CCANg8BGBe+WwdZC6z6
BAm3hqTOMjA2ma76y0dig0JfSLHtg F56g@mail.
gmail.com%3E

Apache Samza

Martin Kleppmann
University of Cambridge, Cambridge, UK

Definitions

Apache Samza is an open source framework
for distributed processing of high-volume event
streams. Its primary design goal is to support high
throughput for a wide range of processing pat-
terns, while providing operational robustness at
the massive scale required by Internet companies.
Samza achieves this goal through a small num-
ber of carefully designed abstractions: partitioned
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logs for messaging, fault-tolerant local state, and
cluster-based task scheduling.

Overview

Stream processing is playing an increasingly im-
portant part of the data management needs of
many organizations. Event streams can repre-
sent many kinds of data, for example, the ac-
tivity of users on a website, the movement of
goods or vehicles, or the writes of records to a
database.

Stream processing jobs are long-running
processes that continuously consume one or more
event streams, invoking some application logic on
every event, producing derived output streams,
and potentially writing output to databases for
subsequent querying. While a batch process
or a database query typically reads the state
of a dataset at one point in time, and then
finishes, a stream processor is never finished:
it continually awaits the arrival of new events,
and it only shuts down when terminated by an
administrator.

Many tasks can be naturally expressed as
stream processing jobs, for example:

e aggregating occurrences of events, e.g., count-
ing how many times a particular item has been
viewed;

* computing the rate of certain events, e.g.,
for system diagnostics, reporting, and abuse
prevention;

e enriching events with information from a
database, e.g., extending user click events with
information about the user who performed the
action;

* joining related events, e.g., joining an event
describing an email that was sent with any
events describing the user clicking links in that
email;

e updating caches, materialized views, and
search indexes, e.g., maintaining an external
full-text search index over text in a database;

* using machine learning systems to classify
events, e.g., for spam filtering.
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Apache Samza, an open source stream pro-
cessing framework, can be used for any of the
above applications (Kleppmann and Kreps 2015;
Noghabi et al. 2017). It was originally developed
at LinkedIn, then donated to the Apache Soft-
ware Foundation in 2013, and became a top-level
Apache project in 2015. Samza is now used in
production at many Internet companies, including
LinkedIn (Paramasivam 2016), Netflix (Netflix
Technology Blog 2016), Uber (Chen 2016; Her-
mann and Del Balso 2017), and TripAdvisor
(Calisi 2016).

Samza is designed for usage scenarios that
require very high throughput: in some produc-
tion settings, it processes millions of messages
per second or trillions of events per day (Feng
2015; Paramasivam 2016; Noghabi et al. 2017).
Consequently, the design of Samza prioritizes
scalability and operational robustness above most
other concerns.

The core of Samza consists of several fairly
low-level abstractions, on top of which high-
level operators have been built (Pathirage et al.
2016). However, the core abstractions have been
carefully designed for operational robustness, and
the scalability of Samza is directly attributable to
the choice of these foundational abstractions. The
remainder of this article provides further detail on

class SplitWords implements StreamTask {

static final SystemStream WORD_STREAM =
new SystemStream("kafka", "words");

public void process (
IncomingMessageEnvelope in,
MessageCollector out,
TaskCoordinator _) {
String str = (String) in.getMessage();
for (String word :
out.send (
new OutgoingMessageEnvelope (
WORD_STREAM, word, 1));

str.split (" ")) {
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those design decisions and their practical conse-
quences.

Partitioned Log Processing

A Samza job consists of a set of Java Virtual
Machine (JVM) instances, called tasks, that
each processes a subset of the input data.
The code running in each JVM comprises the
Samza framework and user code that implements
the required application-specific functionality.
The primary API for user code is the Java
interface St reamTask, which defines a method
process (). Figure 1 shows two examples of
user classes implementing the StreamTask
interface.

Once a Samza job is deployed and initialized,
the framework calls the process () method
once for every message in any of the input
streams. The execution of this method may
have various effects, including querying or
updating local state and sending messages to
output streams. This model of computation is
closely analogous to a map task in the well-
known MapReduce programming model (Dean
and Ghemawat 2004), with the difference that

class CountWords implements StreamTask,
InitableTask {

private KeyValueStore<String, Integer> store;

public void init(Config config,
TaskContext context) {
store = (KeyValueStore<String, Integer>)
context.getStore ("word-counts") ;

}

public void process (
IncomingMessageEnvelope in,
MessageCollector out,
TaskCoordinator _) {

String word =
Integer inc =

(String) in.getKey();
(Integer) in.getMessage();

Integer count = store.get (word);
if (count == null) count = 0;
store.put (word, count + inc);
}
}

Apache Samza, Fig. 1 The two operators of a streaming word-frequency counter using Samza’s StreamTask API
(Image source: Kleppmann and Kreps 2015, © 2015 IEEE, reused with permission)
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a Samza job’s input is typically never-ending
(unbounded).

Similarly to MapReduce, each Samza task
is a single-threaded process that iterates over a
sequence of input records. The inputs to a Samza
job are partitioned into disjoint subsets, and each
input partition is assigned to exactly one process-
ing task. More than one partition may be assigned
to the same processing task, in which case the
processing of those partitions is interleaved on the
task thread. However, the number of partitions in
the input determines the job’s maximum degree
of parallelism.

The log interface assumes that each partition
of the input is a totally ordered sequence of
records and that each record is associated with
a monotonically increasing sequence number or
identifier (known as offset). Since the records in
each partition are read sequentially, a job can
track its progress by periodically writing the
offset of the last read record to durable storage.
If a stream processing task is restarted, it re-
sumes consuming the input from the last recorded
offset.

Most commonly, Samza is used in conjunc-
tion with Apache Kafka (see separate article
on Kafka). Kafka provides a partitioned, fault-
tolerant log that allows publishers to append
messages to a log partition and consumers (sub-
scribers) to sequentially read the messages in
a log partition (Wang et al. 2015; Kreps et al.
2011; Goodhope et al. 2012). Kafka also allows
stream processing jobs to reprocess previously
seen records by resetting the consumer offset to
an earlier position, a fact that is useful during
recovery from failures.

Apache Samza

However, Samza’s stream interface is
pluggable: besides Kafka, it can use any storage
or messaging system as input, provided that the
system can adhere to the partitioned log interface.
By default, Samza can also read files from
the Hadoop Distributed Filesystem (HDFS) as
input, in a way that parallels MapReduce jobs, at
competitive performance (Noghabi et al. 2017).
At LinkedIn, Samza is commonly deployed
with Databus inputs: Databus is a change data
capture technology that records the log of writes
to a database and makes this log available for
applications to consume (Das et al. 2012; Qiao
et al. 2013). Processing the stream of writes
to a database enables jobs to maintain external
indexes or materialized views onto data in a
database and is especially relevant in conjunction
with Samza’s support for local state (see section
“Fault-Tolerant Local State”) (Fig. 3).

While every partition of an input stream is
assigned to one particular task of a Samza job,
the output partitions are not bound to tasks. That
is, when a StreamTask emits output messages,
it can assign them to any partition of the output
stream. This fact can be used to group related
data items into the same partition: for example,
in the word-counting application illustrated in
Fig.2, the SplitWords task chooses the out-
put partition for each word based on a hash of
the word. This ensures that when different tasks
encounter occurrences of the same word, they
are all written to the same output partition, from
where a downstream job can read and aggregate
the occurrences.

When stream tasks are composed into multi-
stage processing pipelines, the output of one task

Partition 0 | “hello world” | “hello samza” H split “hello” | “hello” | “interesting”
Partition 1 | “samza is interesting” }7—4 Split “world” | “samza” | “samza” | “is” }——){ Count ‘
A\ J/ A\ J/
v v
Kafka topic strings Samza job Kafka topic words Samza job
SplitWords CountWords

Apache Samza, Fig. 2 A Samza task consumes input from one partition, but can send output to any partition (Image
source: Kleppmann and Kreps 2015, © 2015 IEEE, reused with permission)
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« » | 5 | e s Output stream
hello” | “hello” | “interesting Count
“hello” — 1 | “hello” — 2 | “interesting” — 1 ‘
. Output stream
“world” | “samza” | “samza” | “is” H Count i
“world” — 1 |“samza” —1 |“samza” —2|“s” > 1
AN J/ . J/

P
Kafka topic words

Samza job CountWords

~
Kafka topic word_counts

Apache Samza, Fig. 3 A task’s local state is made durable by emitting a changelog of key-value pairs to Kafka (Image
source: Kleppmann and Kreps 2015, © 2015 IEEE, reused with permission)

becomes the input to another task. Unlike many
other stream processing frameworks, Samza does
not implement its own message transport layer
to deliver messages between stream operators.
Instead, Kafka is used for this purpose; since
Kafka writes all messages to disk, it provides
a large buffer between stages of the processing
pipeline, limited only by the available disk space
on the Kafka brokers.

Typically, Kafka is configured to retain several
days or weeks worth of messages in each topic.
Thus, if one stage of a processing pipeline fails
or begins to run slow, Kafka can simply buffer
the input to that stage while leaving ample time
for the problem to be resolved. Unlike system
designs based on backpressure, which require a
producer to slow down if the consumer cannot
keep up, the failure of one Samza job does not
affect any upstream jobs that produce its inputs.
This fact is crucial for the robust operation of
large-scale systems, since it provides fault con-
tainment: as far as possible, a fault in one part of
the system does not negatively impact other parts
of the system.

Messages are dropped only if the failed or
slow processing stage is not repaired within the
retention period of the Kafka topic. In this case,
dropping messages is desirable because it isolates
the fault: the alternative — retaining messages
indefinitely until the job is repaired — would lead
to resource exhaustion (running out of memory
or disk space), which would cause a cascading
failure affecting unrelated parts of the system.

Thus, Samza’s design of using Kafka’s on-
disk logs for message transport is a crucial factor
in its scalability: in a large organization, it is
often the case that an event stream produced by

one team’s job is consumed by one or more jobs
that are administered by other teams. The jobs
may be operating at different levels of maturity:
for example, a stream produced by an important
production job may be consumed by several unre-
liable experimental jobs. Using Kafka as a buffer
between jobs ensures that adding an unreliable
consumer does not negatively impact the more
important jobs in the system.

Finally, an additional benefit of using Kafka
for message transport is that every message
stream in the system is accessible for debugging
and monitoring: at any point, an additional
consumer can be attached to inspect the
message flow.

Fault-Tolerant Local State

Stateless stream processing, in which any mes-
sage can be processed independently from any
other message, is easy to implement and scale.
However, many important applications require
that stream processing tasks maintain state. For
example:

* when performing a join between two streams,
a task must maintain an index of messages
seen on each input within some time window,
in order to find messages matching the join
condition when they arrive;

e when computing a rate (number of events per
time interval) or aggregation (e.g., sum of
a particular field), a task must maintain the
current aggregate value and update it based on
incoming events;



74

* when processing an event requires a database
query to look up some related data (e.g., look-
ing up a user record for the user who per-
formed the action in the event), the database
can also be regarded as stream processor state.

Many stream processing frameworks use tran-
sient state that is kept in memory in the process-
ing task, for example, in a hash table. However,
such state is lost when a task crashes or when
a processing job is restarted (e.g., to deploy a
new version). To make the state fault-tolerant,
some frameworks such as Apache Flink period-
ically write checkpoints of the in-memory state
to durable storage (Carbone et al. 2015); this ap-
proach is reasonable when the state is small, but
it becomes expensive as the state grows (Noghabi
et al. 2017).

Another approach, used, for example, by
Apache Storm, is to use an external database
or key-value store for any processor state that
needs to be fault-tolerant. This approach carries
a severe performance penalty: due to network
latency, accessing a database on another node is
orders of magnitude slower than accessing local
in-process state (Noghabi et al. 2017). Moreover,
a high-throughput stream processor can easily
overwhelm the external database with queries;
if the database is shared with other applications,
such overload risks harming the performance of
other applications to the point that they become
unavailable (Kreps 2014).

In response to these problems, Samza pio-
neered an approach to managing state in a stream
task that avoids the problems of both check-
pointing and remote databases. Samza’s approach
to providing fault-tolerant local state has sub-
sequently been adopted in the Kafka Streams
framework (see article on Apache Kafka).

Samza allows each task to maintain state on
the local disk of the processing node, with an in-
memory cache for frequently accessed items. By
default, Samza uses RocksDB, an embedded key-
value store that is loaded into the JVM process
of the stream task, but other storage engines
can also be plugged in its place. In Fig. 1, the
CountWords task accesses this managed state
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through the KeyValueStore interface. For
workloads with good locality, Samza’s RocksDB
with cache provides performance close to in-
memory stores; for random-access workloads on
large state, it remains significantly faster than
accessing a remote database (Noghabi et al.
2017).

If a job is cleanly shut down and restarted, for
example, to deploy a new version, Samza’s host
affinity feature tries to launch each StreamTask
instance on the machine that has the appropri-
ate RocksDB store on its local disk (subject to
available resources). Thus, in most cases the state
survives task restart without any further action.
However, in some cases — for example, if a
processing node suffers a full system failure — the
state on the local disk may be lost or rendered
inaccessible.

In order to survive the loss of local disk stor-
age, Samza again relies on Kafka. For each store
containing state of a stream task, Samza creates
a Kafka topic called a changelog that serves as
a replication log for the store. Every write to the
local RocksDB store is also encoded as a message
and published to this topic, as illustrated in Fig. 3.
These writes can be performed asynchronously in
batches, enabling much greater throughput than
synchronous random-access requests to a remote
data store. The write queue needs to only be
flushed when the offsets of input streams are
written to durable storage, as described in the last
section.

When a Samza task needs to recover its state
after the loss of local storage, it reads all mes-
sages in the appropriate partition of the changelog
topic and applies them to a new RocksDB store.
When this process completes, the result is a new
copy of the store that contains the same data as
the store that was lost. Since Kafka replicates all
data across multiple nodes, it is suitable for fault-
tolerant durable storage of this changelog.

If a stream task repeatedly writes new values
for the same key in its local storage, the
changelog contains many redundant messages,
since only the most recent value for a given
key is required in order to restore local
storage. To remove this redundancy, Samza
uses a Kafka feature called log compaction
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on the changelog topic. With log compaction
enabled, Kafka runs a background process
that searches for messages with the same key
and discards all but the most recent of those
messages. Thus, whenever a key in the store
is overwritten with a new value, the old value
is eventually removed from the changelog.
However, any key that is not overwritten is
retained indefinitely by Kafka. This compaction
process, which is very similar to internal
processes in log-structured storage engines,
ensures that the storage cost and recovery time
from a changelog corresponds to the size of
the state, independently of the total number of
messages ever sent to the changelog (Kleppmann
2017).

Cluster-Based Task Scheduling

When a new stream processing job is started,
it must be allocated computing resources: CPU
cores, RAM, disk space, and network bandwidth.
Those resources may need to be adjusted from
time to time as load varies and reclaimed when
a job is shut down.

At large organizations, hundreds or thousands
of jobs need to run concurrently. At such scale, it
is not practical to manually assign resources: task
scheduling and resource allocation must be auto-
mated. To maximize hardware utilization, many
jobs and applications are deployed to a shared
pool of machines, with each multi-core machine
typically running a mixture of tasks from several
different jobs.

This architecture requires infrastructure for
managing resources and for deploying the code
of processing jobs to the machines on which it
is to be run. Some frameworks, such as Storm
and Flink, have built-in mechanisms for resource
management and deployment. However, frame-
works that perform their own task scheduling and
cluster management generally require a static
assignment of computing resources — potentially
even dedicated machines — before any jobs can
be deployed to the cluster. This static resource
allocation leads to inefficiencies in machine
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utilization and limits the ability to scale on
demand (Kulkarni et al. 2015).

By contrast, Samza relies on existing cluster
management software, which allows Samza jobs
to share a pool of machines with non-Samza
applications. Samza supports two modes of dis-
tributed operation:

* A job can be deployed to a cluster man-
aged by Apache Hadoop YARN (Vavilapalli
et al. 2013). YARN is a general-purpose re-
source scheduler and cluster manager that can
run stream processors, MapReduce batch jobs,
data analytics engines, and various other ap-
plications on a shared cluster. Samza jobs can
be deployed to existing YARN clusters with-
out requiring any special cluster-level config-
uration or resource allocation.

e Samza also supports a stand-alone mode in
which a job’s JVM instances are deployed and
executed through some external process that
is not under Samza’s control. In this case, the
instances use Apache ZooKeeper (Junqueira
et al. 2011) to coordinate their work, such as
assigning partitions of the input streams.

The stand-alone mode allows Samza to be
integrated with an organization’s existing de-
ployment and cluster management tools or with
cloud computing platforms: for example, Netflix
runs Samza jobs directly as EC2 instances on
Amazon Web Services (AWS), relying on the
existing cloud facilities for resource allocation
(Paramasivam 2016). Moreover, Samza’s cluster
management interface is pluggable, enabling fur-
ther integrations with other technologies such as
Mesos (Hindman et al. 2011).

With large deployments, an important con-
cern is resource isolation, that is, ensuring that
each process receives the resources it requested
and that a misbehaving process cannot starve
colocated processes of resources. When running
in YARN, Samza supports the Linux cgroups
feature to enforce limits on the CPU and memory
use of stream processing tasks. In virtual machine
environments such as EC2, resource isolation is
enforced by the hypervisor.
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Summary

Apache Samza is a stream processing frame-
work that is designed to provide high throughput
and operational robustness at very large scale.
Efficient resource utilization requires a mixture
of different jobs to share a multi-tenant com-
puting infrastructure. In such an environment,
the primary challenge in providing robust oper-
ation is fault isolation, that is, ensuring that a
faulty process cannot disrupt correctly running
processes and that a resource-intensive process
cannot starve others.

Samza isolates stream processing jobs from
each other in several different ways. By using
Kafka’s on-disk logs as a large buffer between
producers and consumers of a stream, instead
of backpressure, Samza ensures that a slow or
failed consumer does not affect upstream jobs.
By providing fault-tolerant local state as a com-
mon abstraction, Samza improves performance
and avoids reliance on external databases that
might be overloaded by high query volume. Fi-
nally, by integrating with YARN and other cluster
managers, Samza builds upon existing resource
scheduling and isolation technology that allows
a cluster to be shared between many different
applications without risking resource starvation.
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Definitions

Apache Spark is a cluster computing solution
and in-memory processing framework that ex-
tends the MapReduce model to support other
types of computations such as interactive queries
and stream processing (Zaharia et al. 2012). De-
signed to cover a variety of workloads, Spark
introduces an abstraction called Resilient Dis-
tributed Datasets (RDDs) that enables running
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computations in memory in a fault-tolerant man-
ner. RDDs, which are immutable and partitioned
collections of records, provide a programming
interface for performing operations, such as map,
filter, and join, over multiple data items. For fault-
tolerance purposes, Spark records all transforma-
tions carried out to build a dataset, thus forming
a lineage graph.

Overview

Spark (Zaharia et al. 2016) is an open-source big
data framework originally developed at the Uni-
versity of California at Berkeley and later adopted
by the Apache Foundation, which has maintained
it ever since. Spark was designed to address
some of the limitations of the MapReduce model,
especially the need for speed processing of large
datasets. By using RDDs, purposely designed
to store restricted amounts of data in memory,
Spark enables performing computations more ef-
ficiently than MapReduce, which runs computa-
tions on the disk.

Although the project contains multiple com-
ponents, at its core (Fig. 1) Spark is a comput-
ing engine that schedules, distributes, and moni-
tors applications comprising multiple tasks across
nodes of a computing cluster (Karau et al. 2015).
For cluster management, Spark supports its native
Spark cluster (standalone), Apache YARN (Vavi-
lapalli et al. 2013), or Apache Mesos (Hindman
et al. 2011). At the core also lies the RDD
abstraction. RDDs are sets of data items dis-
tributed across the cluster nodes and that can
be manipulated in parallel. At a higher level, it
provides support for multiple tightly integrated
components for handling various types of work-
loads such as SQL, streaming, and machine learn-
ing.

Figure 2 depicts an example of a word
count application using Spark’s Scala API
for manipulating datasets. Spark computes
RDDs in a lazy fashion, the first time they
are used. Hence, the code in the example is
evaluated when the counts are saved to disk, in
which moment the results of the computation
are required. Spark can also read data from
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Apache Spark, Fig. 1
The Apache Spark stack
(Karau et al. 2015)

Spark SQL Spark Streaming ML:.) Graphr:(
(structured data) (real-time) (mac_ ine (grap_
learning) processing)
Spark Core
Standalone Scheduler YARN Mesos

Apache Spark, Fig. 2
Word count example using
Spark’s Scala API (Karau
et al. 2015)

val sc =

// Create a Scala Spark configuration context
val config = new SparkConf () .settAppName ("WordCount")
new SparkContext (config)

// Load the input data

val input =

sc.textFile (theInputFile)

// Split it into words

val words =

input.flatMap(line => line.split ("™ "))

// Transform into pairs and count

val counts =
(word,

words.map (word =>
1)) .reduceByKey{case

(x, y) =>x + vy}

// Save the word count to a text file
counts.saveAsTextFile (theOutputFile)

various sources, such as Hadoop Distributed File
System (HDFS), Cassandra, OpenStack Swift
(https://wiki.openstack.org/wiki/Swift), and
Amazon Simple Storage Service (S3) (https:/
aws.amazon.com/s3/).

Spark SQL

Spark SQL (Armbrust et al. 2015) is a module for
processing structured data (https://spark.apache.
org/docs/latest/sql-programming-guide.html). It
builds on the RDD abstraction by providing
Spark core engine with more information about
the structure of the data and the computation
being performed. In addition to enabling users
to perform SQL queries, Spark SQL provides
the Dataset API, which offers datasets and
DataFrames. A dataset can be built using
JVM objects that can then be manipulated
using functional transformations. A DataFrame
can be built from a large number of sources
and is analogous to a table in a relational
database; it is a dataset organized into named
columns.

Spark Streaming
Spark Streaming provides a micro-batch-based
framework for processing data streams. Data
can be ingested from systems such as Apache
Kafka (https://kafka.apache.org/), Flume, or
Amazon  Kinesis  (https://aws.amazon.com/
kinesis/). Under the traditional stream processing
approach based on a graph of continuous
operators that process tuples as they arrive (i.e.,
the dataflow model), it is arguably difficult to
achieve fault tolerance and handle stragglers.
As application state is often kept by multiple
operators, fault tolerance is achieved either by
replicating sections of the processing graph
or via upstream backup. The former demands
synchronization of operators via a protocol such
as Flux (Shah et al. 2003) or other transactional
protocols (Wu et al. 2015), whereas the latter,
when a node fails, requires parents to replay
previously sent messages to rebuild the state.
Spark Streaming uses a high-level abstraction
called discretised stream or DStream (Zaharia
et al. 2013). As depicted in Fig.3, DStreams
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Apache Spark, Fig. 3 Input data Batches of Batches of

High-level view of stream input data

dis%:retized streams |:> Sparl_< 0 I:> Spa_rk processed data
Streaming Engine :“:“:>

follow a micro-batch approach that organizes
stream processing as batch computations car-
ried out periodically over small time windows.
During a short time interval, DStreams store
the received data, which the cluster resources
then use as input dataset for performing parallel
computations once the interval elapses. These
computations produce new datasets that represent
an intermediate state or computation outputs.
The intermediate state consists of RDDs that
DStreams process along with the datasets stored
during the next interval. In addition to provid-
ing a strong unification with batch processing,
this model stores the state in memory as RDDs
that DStreams can deterministically recompute.
This micro-batch approach, however, sacrifices
response time as the delay for processing events
is dependent on the length of the micro-batches.

MLlib

Spark contains a library with common machine
learning (ML) functionality such as learning
algorithms for classification, regression, cluster-
ing, and collaborative filtering and featurization
including feature extraction, transformation,
dimensionality reduction, and selection (Meng
et al. 2016). MLIib also enables the creation
of ML pipelines and persistence of algorithms,
models, and pipelines. These features are
designed to scale out across large computing
clusters using Spark’s core engine.

GraphX

GraphX (Gonzalez et al. 2014) extends the RDD
API by enabling the creation of a multigraph
(i.e., the property graph) with arbitrary properties
attached to vertices and edges. The library is
designed for manipulating graphs, exposing a set
of operators (e.g., subgraph, joinVertices), and
for carrying out parallel computations. It contains
a library of common graph algorithms, such as
PageRank and triangle counting.

Examples of Applications

Spark has been used for several data processing
and data science tasks, but the range of
applications that it enables is endless. Freeman et
al. (2014), for instance, designed a library called
Thunder on top of Spark for large-scale analysis
of neural data. Many machine learning and
statistical algorithms have been implemented for
MLIib, which simplifies the construction of
machine learning pipelines. The source code
of Spark has also grown substantially since it
became an Apache project. Numerous third-
party libraries and packages have been included
for performing tasks in certain domains or for
simplifying the use of existing APIs.

Spark provides the functionalities that data
scientists need to perform data transformation,
processing, and analysis. Data scientists often
need to perform ad hoc exploration during which
they have to test new algorithms or verify the
results in the least amount of time. Spark provides
APIs, libraries, and shells that allow scientists to
perform such tasks while enabling them to test
their algorithms on large problem sizes. Once
the exploration phase is performed, the solution
is productized by engineers who integrate the
data analysis tasks into an often more complex
business application.

Examples of applications built using Apache
Spark include analysis of data from mobile
devices (Alsheikh et al. 2016) and Internet
of Things (IoT), web-scale graph analytics,
anomaly detection of user behavior and network
traffic for information security (Ryza et al.
2017), real-time machine learning, data stream
processing pipelines, engineering workloads, and
geospatial data processing, to cite just a few. New
application scenarios are presented each year
during Spark’s Summit (https://spark-summit.
org/), an event that has become a showcase of
next-generation big data applications.
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Future Directions of Research

Spark APIs shine both during exploratory work
and when engineering a solution deployed in
production. Over the years, much effort has been
paid toward making APIs easier to use and to
optimize, for instance, the introduction of the
Dataset API to avoid certain performance degra-
dations that could occur if a user did not prop-
erly design the chain of operations executed by
the Spark engine. As mentioned earlier, consid-
erable work has also focused on creating new
libraries and packages, including for processing
live streams. The discretized model employed
by Spark’s stream processing API, however, in-
troduces some delays depending on the time
length of micro-batches. More recent and emerg-
ing application scenarios, such as analysis of
vehicular traffic and networks, monitoring of op-
erational infrastructure, wearable assistance (Ha
et al. 2014), and 5G services, require data pro-
cessing and service response under very short de-
lays. Spark can be used as part of a larger service
workflow, but alone it does not provide means to
address some of the challenging scenarios that
require very short response times. This requires
the use of other frameworks such as Apache
Storm.

To reduce the latency of applications
delivered to users, many service components
are also increasingly being deployed at the
edges of the Internet (Hu et al. 2015) under
a model commonly called edge computing.
Some frameworks are available for processing
streams of data using resources at the edge
(e.g., Apache Edgent (https://edgent.apache.
org/)), whereas others are emerging. There are
also frameworks that aim to provide high-level
programming abstractions for creating dataflows
(e.g., Apache Beam (https://beam.apache.org/))
with underlying execution engines for several
processing solutions. There is, however, a lack of
unifying solutions on programming models and
abstractions for exploring resources from both
cloud and edge computing deployments, as well
as scheduling and resource management tools
for deciding what processing tasks need to be
offloaded to the edge.

Apache Spark
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Definitions

Apache SystemML (Ghoting et al. 2011; Boehm
etal. 2016) is a system for declarative, large-scale
machine learning (ML) that aims to increase the

81

productivity of data scientists. ML algorithms
are expressed in a high-level language with R- or
Python-like syntax, and the system automatically
generates efficient, hybrid execution plans of
single-node CPU or GPU operations, as well
as distributed operations using data-parallel
frameworks such as MapReduce (Dean and
Ghemawat 2004) or Spark (Zaharia et al. 2012).
SystemML’s high-level abstraction provides
the necessary flexibility to specify custom
ML algorithms while ensuring physical data
independence, independence of the underlying
runtime operations and technology stack, and
scalability for large data. Separating the concerns
of algorithm semantics and execution plan gener-
ation is essential for the automatic optimization
of execution plans regarding different data and
cluster characteristics, without the need for algo-
rithm modifications in different deployments.

Overview

In SystemML (Ghoting et al. 2011; Boehm
et al. 2016), data scientists specify their ML
algorithms using a language with R- or Python-
like syntax. This language supports abstract
data types for scalars, matrices and frames, and
operations such as linear algebra, element-wise
operations, aggregations, indexing, and statistical
operations but also control structures such as
loops, branches, and functions. These scripts are
parsed into a hierarchy of statement blocks and
statements, where control flow delineates the
individual blocks. For each block of statements,
the system then compiles DAGs (directed acyclic
graphs) of high-level operators (HOPs), which is
the core internal representation of SystemML’s
compiler. Size information such as matrix
dimensions and sparsity are propagated via
intra- and inter-procedural analysis from the
inputs through the entire program. This size
information is then used to compute memory
estimates per operator and accordingly select
physical operators resulting in a DAG of low-
level operators (LOPs). These LOP DAGs are
finally compiled into executable instructions.
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Example: As an example, consider the fol-
lowing script for linear regression via a closed-

1: X = read($X);

2: y = read(8Y);

3: Jlambda = 0.001;

4: if( $icpt == 1)

5: X = cbind (X, matrix (1,
6: I = matrix(1l, ncol(X), 1);
7: A = t(X) $*% X + diag(I)
8: b = t(X) %*% y;

9: beta = solve(A, b);

10: write(beta, $B);

Apache SystemML

form method that computes and solves the normal
equations:

nrow (X) ,

7

* lambda;

This script reads the feature matrix X and labels
y, optionally appends a column of 1s to X for
computing the intercept, computes the normal
equations, and finally solves the resulting linear
system of equations. SystemML then compiles,
for example, for lines 6-10, a HOP DAG that
contains logical operators such as matrix multi-
plications for XTX and X Ty. Given input meta-
data (e.g., let X be a dense 107 x 103 matrix),
the compiler also computes memory estimates
for each operation (e.g., 80.08 GB for X Ty). If
the memory estimate of an operation exceeds the
driver memory budget, this operation is sched-
uled for distributed execution, and appropriate
physical operators are selected (e.g., mapmm as
a broadcast-based operator for X "y).

Static and Dynamic Rewrites: SystemML’s
optimizer applies a broad range of optimizations
throughout its compilation chain. An important
class of optimizations with high-performance
impact are rewrites. SystemML applies static
and dynamic rewrites (Boehm et al. 2014a).
Static rewrites are size-independent and include
traditional programming language techniques
— such as common subexpression elimination,
constant folding, and branch removal
algebraic simplifications for linear algebra,
as well as backend-specific transformations
such as caching and partitioning directives for
Spark. For instance, in the above example,
after constant propagation, constant folding,

and branch removal, the block of lines 4-5
is removed if Sicpt==0, which further
allows unconditional size propagation and the
merge of the entire program into a single
HOP DAG. Furthermore, the expression
‘diag(matrix(1, ncol(X), 1)) ® lambda’ is simpli-
fied to ‘diag(matrix(lambda, ncol(X), 1))’, which
avoids unnecessary operations and intermediates.
SystemML’s rewrite system contains hundreds
of such rewrites, some of which even change
the asymptotic behavior (e.g., trace(XY)
sum(X © Y)). Additional dynamic rewrites are
size-dependent because they require sizes for
cost estimation or validity constraints. Examples
are matrix multiplication chain optimization as
well as dynamic simplification rewrites such
as sum(X?) — XTX | ncol(X) 1. The
former exploits the associativity of matrix
multiplications and aims to find an optimal
parenthesization for which SystemML applies
a textbook dynamic programming algorithm
(Boehm et al. 2014a).

Operator Selection and Fused Operators:
Another important class of optimizations is the
selection of execution types and physical opera-
tors (Boehm et al. 2016). SystemML’s optimizer
analyzes the memory budgets of the driver and
executors and selects —based on worst-case mem-
ory estimates (Boehm et al. 2014b) — local or dis-
tributed execution types. Besides data and clus-
ter characteristics (e.g., data size/shape, memory,

—
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and parallelism), the compiler also considers ma-
trix and operation properties (e.g., diagonal/sym-
metric matrices, sparse-safe operations) as well
as data flow properties (e.g., co-partitioning and
data locality). Depending on the chosen execu-
tion types, different physical operators are con-
sidered with a selection preference from local
or special-purpose to shuffle-based operators. For
example, the multiplication X X from line 7 al-
lows for a special transpose-self operator (t smm),
which is an easily parallelizable unary operator
that exploits the output symmetry for less com-
putation. For distributed operations, this oper-
ator has a block size constraint because it re-
quires access to entire rows. If special-purpose
or broadcast-based operators do not apply, the
compiler falls back to the shuffle-based cpmm
and rmm operators (Ghoting et al. 2011). Ad-
ditionally, SystemML replaces special patterns
with hand-coded fused operators to avoid unnec-
essary intermediates (Huang et al. 2015; Elgamal
et al. 2017) and unnecessary scans (Boehm et al.
2014a; Ashari et al. 2015; Elgamal et al. 2017), as
well as to exploit sparsity across chains of opera-
tions (Boehm et al. 2016; Elgamal et al. 2017).
For example, computing the weighted squared
loss via sum(W © (X — UVT)?) would create
huge dense intermediates. In contrast, sparsity-
exploiting operators leverage the sparse driver
(i.e., the sparse matrix W and the sparse-safe
multiply ©) for selective computation that only
considers nonzeros in W.

Dynamic Recompilation: Dynamic rewrites
and operator selection rely on size information
for memory estimates, cost estimation, and va-
lidity constraints. Hence, unknown dimensions
or sparsity lead to conservative fallback plans.
Example scenarios are complex conditional con-
trol flow or function call graphs, user-defined
functions, data-dependent operations, computed
size expressions, and changing sizes or sparsity
as shown in the following example:

1: while( continue ) {

2 parfor( i in 1:n ) {

3 if ( fixed[1,i] == ) {

4 X = cbind(Xg, Xorigl[,il);

5 AIC[1,i] = linregDS(X,y); }}
6 #select & append best to Xg

7: )
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This example originates from a stepwise linear
regression algorithm for feature selection that
iteratively selects additional features and calls
the previously introduced regression algorithm.
SystemML addresses this challenge of unknown
sizes via dynamic recompilation (Boehm et al.
2014a) that recompiles subplans — at the granular-
ity of HOP DAGs — with exact size information of
intermediates during runtime. During initial com-
pilation, operations and DAGs with unknowns
are marked for dynamic recompilation, which
also includes splitting DAGs after data-dependent
operators. During runtime, the recompiler then
deep copies the HOP DAG, updates sizes, ap-
plies dynamic rewrites, recomputes memory es-
timates, generates new runtime instructions, and
resumes execution with the intermediate results
computed so far. This approach yields good plans
and performance even in the presence of initial
unknowns.

Runtime Integration: At runtime Ievel,
SystemML interprets the generated instructions.
Single-node and Spark operations directly map
to instructions, whereas for the MapReduce
backend, instructions are packed into a minimal
number of MR jobs. For distributed operations,
matrices (and similarly frames) are stored in
a blocked representation of pairs of block
indexes and blocks with fixed block size, where
individual blocks can be dense, sparse, or ultra-
sparse. In contrast, for single-node operations,
the entire matrix is represented as a single
block, which allows reusing the block runtime
across backends. Data transfers between the local
and distributed backends and driver memory
management are handled by a multilevel buffer
pool (Boehm et al. 2016) that controls local
evictions, parallelizes and collects RDDs, creates
broadcasts, and reads/writes data from/to the
distributed file system. For example, a single-
node instruction first pins its inputs into memory
— which triggers reads from HDFS or RDDs
if necessary — performs the block operation,
registers the output in the buffer pool, and
finally unpins its inputs. Many block operations
and the I/O system for different formats are
multi-threaded to exploit parallelism in scale-
up environments. For compute-intensive deep
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learning workloads, SystemML further calls
native CPU and GPU libraries for BLAS and
DNN operations. In contrast to other deep
learning frameworks, SystemML also supports
sparse neural network operations. Memory
management for the GPU device is integrated
with the buffer pool allowing for lazy data
transfer on demand. Finally, SystemML uses
numerically stable operations based on Kahan
addition for descriptive statistics and certain
aggregation functions (Tian et al. 2012).

Key Research Findings

In additional to the compiler and runtime tech-
niques described so far, there are several ad-
vanced techniques with high-performance im-
pact.

Task-Parallel Parfor Loops: SystemML'’s
primary focus is data parallelism. However,
there are many use cases such as ensemble
learning, cross validation, hyper-parameter
tuning, and complex models with disjoint or
overlapping data that are naturally expressed
in a task-parallel manner. These scenarios are
addressed by SystemML’s parfor construct
for parallel for loops (Boehm et al. 2014b).
In contrast to similar constructs in high-
performance computing (HPC), parfor only
asserts the independence of iterations, and a
dedicated parfor optimizer reasons about
hybrid parallelization strategies that combine
data and task parallelism. Reconsider the
stepwise linear regression example. Alternative
plan choices include (1) a local, i.e., multi-
threaded, parfor with local operations, (2) a
remote parfor that runs the entire loop as a
distributed Spark job, or (3) a local parfor
with concurrent data-parallel Spark operations if
the data does not fit into the driver.

Resource Optimization: The selection of ex-
ecution types and operators is strongly influenced
by memory budgets of the driver and executor
processes. Finding a good static cluster config-
uration that works well for a broad range of
ML algorithms and data sizes is a hard problem.

Apache SystemML

SystemML addresses this challenge with a dedi-
cated resource optimizer for automatic resource
provisioning (Huang et al. 2015) on resource
negotiation frameworks such as YARN or Mesos.
The key idea is to optimize resource configu-
rations via an online what-if analysis with re-
gard to the given ML program as well as data
and cluster characteristics. This framework op-
timizes performance without unnecessary over-
provisioning, which can increase throughout in
shared on-premise clusters and save money in
cloud environments.

Compressed Linear Algebra: Furthermore,
there is a broad class of iterative ML algorithms
that use repeated read-only data access and I/O-
bound matrix-vector multiplications to converge
to an optimal model. For these algorithms, it
is crucial for performance to fit the data into
available single-node or distributed memory.
However, general-purpose, lightweight, and
heavyweight compression techniques struggle to
achieve both good compression ratios and fast de-
compression to enable block-wise uncompressed
operations. Compressed linear algebra (CLA)
(Elgohary et al. 2016) tackles this challenge
by applying lightweight database compression
techniques — for column-wise compression
with heterogeneous encoding formats and co-
coding — to matrices and executing linear algebra
operations such as matrix-vector multiplications
directly on the compressed representation. CLA
yields compression ratios similar to heavyweight
compression and thus allows fitting large
datasets into memory while achieving operation
performance close to the uncompressed case.

Automatic Operator Fusion: Similar to
query compilation and loop fusion in databases
and HPC, the opportunities for fused operators
— in terms of fused chains of operations — are
ubiquitous. Example benefits are a reduced
number of intermediates, reduced number of
scans, and sparsity exploitation across operations.
Despite their high-performance impact, hand-
coded fused operators are usually limited to few
operators and incur a large development effort.
Automatic operator fusion via code generation
(Elgamal et al. 2017) overcomes this challenge
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by automatically determining valid fusion plans
and generating access-pattern-aware operators in
the form of hand-coded skeletons with custom
body code. In contrast to existing work on
operator fusion, SystemML introduced a cost-
based optimizer framework to find optimal fusion
plans in DAGs of linear algebra programs for
dense, sparse, and compressed data as well as
local and distributed operations.

Examples of Application

SystemML has been applied in a variety of ML
applications including statistics, classification,
regression, clustering, matrix factorization,
survival analysis, and deep learning. In contrast
to specialized systems for graphs like GraphLab
(Low et al. 2012) or deep learning like
TensorFlow (Abadi et al. 2016), SystemML
provides a unified system for small- to large-
scale problems with support for dense, sparse,
and ultra-sparse data, as well as local and
distributed operations. Accordingly, SystemML’s
primary application area is an environment with
diverse algorithms, varying data characteristics,
or different deployments.

Example deployments include large-scale
computation on top of MapReduce or Spark and
programmatic APIs for notebook environments
or embedded scoring. Thanks to deployment-
specific compilation, ML algorithms can be
reused without script changes. This flexibility
enabled the integration of SystemML into
systems with different architectures. For
example, SystemML has been shipped as part
of the open-source project R4ML and the IBM
products Biglnsights, Data Science Experience
(DSX), and multiple Watson services.

Future Directions for Research

Given the goal of a unified system for ML appli-
cations and recent algorithm and hardware trends,
there are many directions for future research
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throughout the stack of SystemML and similar
systems (Kumar et al. 2017):

Specification Languages: SystemML focuses
on optimizing fixed algorithm specifications.
However, end-to-end applications would further
benefit from even higher levels of abstractions
for feature engineering, model selection,
and life cycle management in general. A
promising direction is a stack of declarative
languages that allows for reuse and cross-level
optimization.

Optimization Techniques: Regarding the au-
tomatic optimization of ML programs, further
work is required regarding size and sparsity es-
timates, adaptive query processing and storage
(as an extension of dynamic recompilation), and
principled approaches to automatic rewrites and
automatic operator fusion.

Runtime Techniques: A better support for
deep learning and scientific applications requires
the extension from matrices to dense/sparse ten-
sors of different data types and their operations.
Additionally, further research is required regard-
ing the automatic exploitation of accelerators and
heterogenous hardware.

Benchmarks: Finally, SystemML — but also
the community at large — would benefit from ded-
icated benchmarks for the different classes of ML
workloads and different levels of specification
languages.
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Definitions

The term “big spatial data” encompasses all types
of big data with the addition of geographic refer-
ence information, typically a location associated
with a point in space (e.g., latitude, longitude, and
altitude coordinates), an area (e.g., a country, a
district, or a census enumeration zone), a line or
curve (e.g., a river or a road), or a pixel (e.g.,
high-resolution satellite images or a biomedical
imaging scan). When applied to questions of
health, big spatial data can aid in attempts to
understand geographic variations in the risks and
rates of disease (e.g., is risk here greater than
risk there?), to identify local factors driving ge-
ographic variations in risks and rates (e.g., does
local nutritional status impact local childhood
mortality?), and to evaluate the impact of local
health policies (e.g., district-specific adjustments
to insurance reimbursements).

In addition to defining big spatial data,
it is also important to define what is meant
by “health.” The World Health Organization
defines health as “a state of complete physical,
mental and social well-being and not merely
the absence of disease or infirmity” (Preamble
to the WHO Constitution, http://www.who.int/
suggestions/fag/en/). This can be interpreted at
the individual level and at the population level. At
the population level, the US Centers for Disease
Control and Prevention define public health as
“the science of protecting and improving the
health of people and their communities. This
work is achieved by promoting healthy lifestyles,
researching disease and injury prevention,
and detecting, preventing and responding to
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infectious diseases” (https://www.cdcfoundation.
org/what-public-health). More recently, there
has been increasing interest in the concept of
population health, i.e., “the health outcomes of
a group of individuals, including the distribution
of such outcomes within the group” (Kindig
and Stoddard 2003). Both public and population
health focus on measures of health in an overall
community with public health typically focusing
on health promotion and disease prevention
and population health as defining current and
target distributions of health outcomes across a
population, typically, to evaluate the impact of
policy (e.g., government funding or insurance
coverage).

Overview

The rapid expansion of measurement technol-
ogy, data storage, informatics, and analytics feeds
rapid growth in applications of big data within
the fields of individual, population, and public
health. The sequencing of the human genome in
2001 was rapidly followed by the ability to mea-
sure multiple aspects of the human metabolome,
transcriptome, microbiome, and overall exposure
to the environment (the exposome) (Miller and
Jones 2014; Wild 2005). These detailed views
of the complex world of each individual’s ge-
netic, environmental, and social makeup provide
quantitative insight into a more nuanced view
of “health” than simply the absence of disease;
rather, the measures begin to provide a view
into how health works at individual, local, so-
cietal, and global levels. The measures move
from tracking individual biomarkers to panels of
biomarkers and toward integration of heteroge-
neous streaming of information from wearable
sensors, local exposure monitors, and georefer-
enced tracking devices. These heterogeneous data
sources enable increasingly detailed exploration
of associations between an individual’s location
and their phenotype, genotype, and multiple in-
fluencing factors relating to diet, activity level,
environment, and prevention activities, some of
which vary locally themselves. More specifically,
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the multiple measures provide insight into aspects
of and interactions between the elements of in-
dividual, public, and population health, defined
above.

Geography provides a key context for all three
types of health; specifically, the locations where
one lives and works contribute greatly to one’s
individual exposome and to the range of en-
vironmental and social determinants of disease
(and health) associated with the health of the
local population. As a result, big spatial data
play a key (and expanding) role in the definition,
description, and understanding of health.

Key Research Findings

The rapid increase of health-related data and
the continued growth of geographic information
systems and science (Goodchild 1992) impact
both health care and health research. In addi-
tion, the ecosocial theory of social determinants
of health (Krieger 2001) motivated many health
leaders (including the Director of the Robert
Wood Johnson Foundation and the Director of
the US National Institutes of Health) to comment
that an individual’s ZIP code (US postal code)
is a more powerful predictor of health than that
individual’s genetic code.

Spatial analysis of health traditionally
includes  geographically referenced, local
information on health outcomes, demographics,
economics, policies, and potential exposures.
Analyses often focus on predicting exposures
from a fixed set of observations, assessing
of whether point locations of disease occur
in geographically concentrated “clusters”
or quantifying associations between health
outcomes and local measures of potential risk
factors (Waller and Gotway 2004). A variety of
biostatistical and epidemiologic methods have
been extended to allow for potential spatial and
spatiotemporal correlations.

The incorporation of big data into a spatial
setting provides intriguing opportunities to refine
both concepts of health and concepts of location
as illustrated below.
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Examples of Application

Beginning at the individual patient level, elec-
tronic health records (EHRs) contain a poten-
tial trove of medical information regarding indi-
vidual’s interaction with the healthcare system,
consolidating information invaluable for health
care (Murdoch and Detsky 2013). This informa-
tion typically is stored in multiple, heterogeneous
formats designed to allow access by healthcare
professionals for determining patient care. Within
a given health system, these records are often
consolidated into secure data warehouses to al-
low system-wide assessment of quality of care,
monitoring of costs, and reimbursement by health
insurance systems. Moving from health care of
an individual to research often requires assessing
information from multiple systems in different
formats. Recent years have seen an increase in
explorations of the research potential of EHRs,
including (but not limited to) applications of
natural language processing of text fields filled by
healthcare professionals, development of search-
able database of biomedical images, and system-
wide assessments of healthcare performance.

In addition to the development of informatics
and analytics for EHRs, there is also a rapid
increase in applications of informatics and dis-
tributed computing services to manage, merge,
search, and summarize streaming data from mul-
tiple devices within a healthcare setting such as
an intensive care unit, emergency department, or
surgery facility. Some measures are monitored
almost continuously (e.g., blood pressure, blood
oxygen levels), while others occur on less fre-
quent timescales (e.g., baseline levels, treatment
protocols, caregivers on call). Similar issues arise
outside of the healthcare setting in the increasing
popularity of wearable monitoring technology
providing feedback on activity levels, heart rate,
and, in some cases, measures of one’s ambient
environment. In many cases, such streaming tech-
nologies are linked to mobile devices that are
also recording location information leading to
the development of georeferenced mobile health
(mHealth) platforms and analytics (Estrin and
Sim 2010; Nilsen et al. 2012).

Recent years have also seen a rise in the
amount of, connectivity between, and use of
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heterogeneous data from disparate sources to
address health questions. Examples include (but
again are not limited to) the use of remote sensing
data to assess exposure potential for airborne
pollutants on local (Liu et al. 2005) and global
scales (Shaddick et al. 2017), the use of In-
ternet information in public health surveillance
(Brownstein et al. 2009), and the expanded use
of administrative data across multiple countries
coupled with reported epidemiologic associations
to provide assessments of the global burden of
disease (Murray and Lopez 1997). The poten-
tial is remarkable, but desire for accurate health
information can also lead to the temptation to
ignore past epidemiologic findings in light of the
promise of predictive analytics, a temptation that
can lead to gross inaccuracies and potential false
alarms (Lazar et al. 2014).

In addition to expanded possibilities of refer-
encing individual-level attributions, volunteered
geographic information via location-based apps
and related services provide near real-time access
to individual-level movement, providing novel
opportunities for assessing exposures (Sui et al.
2013). Such information on location and move-
ment provide additional context for moving from
maps of local risk (Kitron 1998) to maps of an
individual’s cumulative experienced risk in mov-
ing through such an exposure space. Vazquez-
Prokopec et al. (2009) provide a creative example
exploring space-time exposures of taxi drivers to
mosquitos carrying dengue virus in Iquitos, Peru.

The expanding availabilities of individual-
level health and location data raise ongoing
discussions of data privacy (determined by an
individual’s choices of which of their individual
data to reveal), data confidentiality (the ability
of the data holders to maintain each individual’s
privacy), and data access (determining which
agencies, healthcare systems, physicians can
access an individual’s personal information).
Concepts and comfort levels relating to data
privacy vary culturally and between countries
leading to differences in regulatory processes
to evaluate whether data holders maintain
confidentiality. For example, in the United
States, the Health Insurance Portability and
Accountability Act (HIPAA) of 1996 defines
data protection standards for “protected health
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information” (PHI) and its use with the healthcare
system. HIPAA lists individual location data
at a finer resolution than broadscale (3-digit)
US ZIP codes among its list of PHI data
elements, requiring care and documentation
in the collection, storage, visualization, and
reporting of geographic information at this and
finer resolutions.

The competitive environment of US healthcare
systems and the proprietary environment of
providers of electronic health record (EHR)
systems result in considerable informatics
challenges when individual patients interact
with multiple providers across different units.
Some interesting progress has been made toward
informatics solutions (e.g., the Fast Healthcare
Interoperability Resources (FHIR)) to address
these administrative barriers to data sharing and
allow data sharing through app-based platforms
(Mandel et al. 2016), but this remains an
active area of research in the fields of medical
informatics, particularly for FHIR extensions
involving geolocation data extensions.

Future Directions for Research

The examples above illustrate that health
applications of big spatial data technologies
draw from traditional spatial analyses within
individual, population, and public health but also
illustrate that, to date, such work typically occurs
in application-specific settings. The development
of cohesive concepts and associated accurate and
reliable toolboxes for spatial analytics and their
health applications remains an area of active
research. These developments include many
challenging issues relating to accurate healthcare
monitoring, assessment, and provision for each
individual patient. Health applications extend
well beyond that of individual health, and provide
detailed insight into population and public
health as well. There is great need for creativity
in informatics to allow connection between,
linkage across, and searches of elements of
spatially referenced health and health-related
measurements. As noted above, “health-related”
can range from within-individual measures of
immune response to satellite-based assessments

89

of local environmental conditions or global
models of climate impact on pollution levels
or food sources. Robust and reproducible spatial
health analysis requires coordination of expert
knowledge across multiple disciplines in order to
fully reach its vast potential.
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Introduction

Stream analytics systems are extensively used in
the context of modern online services to trans-
form continuously arriving raw data streams into
useful insights (Foundation 2017a; Murray et al.
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2013; Zaharia et al. 2013). These systems target
low-latency execution environments with strict
service-level agreements (SLAs) for processing
the input data streams.

In the current deployments, the low-latency
requirement is usually achieved by employing
more computing resources. Since most stream
processing systems adopt a data-parallel pro-
gramming model (Dean and Ghemawat 2004),
almost linear scalability can be achieved with
increased computing resources (Quoc et al. 2013,
2014, 2015a,b). However, this scalability comes
at the cost of ineffective utilization of computing
resources and reduced throughput of the system.
Moreover, in some cases, processing the entire
input data stream would require more than the
available computing resources to meet the desired
latency/throughput guarantees.

To strike a balance between the two desirable,
but contradictory design requirements — low
latency and efficient utilization of computing
resources — there is a surge of approximate
computing paradigm that explores a novel design
point to resolve this tension. In particular,
approximate computing is based on the
observation that many data analytics jobs are
amenable to an approximate rather than the exact
output (Doucet et al. 2000; Natarajan 1995). For
such workflows, it is possible to trade the output
accuracy by computing over a subset instead of
the entire data stream. Since computing over a
subset of input requires less time and computing
resources, approximate computing can achieve
desirable latency and computing resource
utilization.

Unfortunately, the advancements in approx-
imate computing are primarily geared towards
batch analytics (Agarwal et al. 2013; Srikanth
et al. 2016), where the input data remains un-
changed during the course of computation. In
particular, these systems rely on pre-computing a
set of samples on the static database, and take an
appropriate sample for the query execution based
on the user’s requirements (i.e., query execution
budget). Therefore, the state-of-the-art systems
cannot be deployed in the context of stream pro-
cessing, where the new data continuously arrives
as an unbounded stream.
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As an alternative, one could in principle
repurpose the available sampling mechanisms
in well-known big data processing frameworks
such as Apache Spark to build an approximate
computing system for stream analytics. In
fact, as a starting point for this work, based
on the available sampling mechanisms, an
approximate computing system is designed and
implemented for stream processing in Apache
Spark. Unfortunately, Spark’s stratified sampling
algorithm suffers from three key limitations for
approximate computing. First, Spark’s stratified
sampling algorithm operates in a “batch” fashion,
i.e., all data items are first collected in a batch as
Resilient Distributed Datasets (RDDs) (Zaharia
et al. 2012), and thereafter, the actual sampling
is carried out on the RDDs. Second, it does
not handle the case where the arrival rate
of sub-streams changes over time because it
requires a pre-defined sampling fraction for each
stratum. Lastly, the stratified sampling algorithm
implemented in Spark requires synchronization
among workers for the expensive join operation,
which imposes a significant latency overhead.

To address these limitations, this work de-
signed an online stratified reservoir sampling
algorithm for stream analytics. Unlike existing
Spark-based systems, the algorithm performs the
sampling process “on-the-fly” to reduce the la-
tency as well as the overheads associated in
the process of forming RDDs. Importantly, the
algorithm generalizes to two prominent types of
stream processing models: (1) batched stream
processing employed by Apache Spark Stream-
ing (Foundation 2017b), and (2) pipelined stream
processing employed by Apache Flink (Founda-
tion 2017a).

More specifically, the proposed sampling
algorithm makes use of two techniques: reservoir
sampling and stratified sampling. It performs
reservoir sampling for each sub-stream by
creating a fixed-size reservoir per stratum.
Thereafter, it assigns weights to all strata
respecting their arrival rates to preserve the
statistical quality of the original data stream. The
proposed sampling algorithm naturally adapts to
varying arrival rates of sub-streams, and requires
no synchronization among workers (see section
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“Design”). Based on the proposed sampling
algorithm, STREAMAPPROX- an approximate
computing system for stream analytics — is
designed.

Overview and Background

This section gives an overview of STREAMAP-
PROX (section “System Overview”), its compu-
tational model (section “Computational Model”),
and its design assumptions (section “Design As-
sumptions”).

System Overview
STREAMAPPROX is designed for real-time
stream analytics. In this system, the input data
stream usually consists of data items arriving
from diverse sources. The data items from
each source form a sub-stream. The system
makes use of a stream aggregator (e.g., Apache
Kafka Foundation 2017c¢) to combine the
incoming data items from disjoint sub-streams.
STREAMAPPROX then takes this combined
stream as the input for data analytics.
STREAMAPPROX facilitate data analytics on
the input stream by providing an interface for
users to specify the streaming query and its cor-
responding query budget. The query budget can
be in the form of expected latency/throughput
guarantees, available computing resources, or the
accuracy level of query results.
STREAMAPPROX ensures that the input
stream is processed within the specified query
budget. To achieve this goal, the system makes
use of approximate computing by processing
only a subset of data items from the input stream,
and produce an approximate output with rigorous
error bounds. In particular, STREAMAPPROX
uses a parallelizable online sampling technique
to select and process a subset of data items, where
the sample size can be determined based on the
query budget.

Computational Model

The state-of-the-art distributed stream process-
ing systems can be classified in two prominent
categories: (i) batched stream processing model,
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and (ii) pipelined stream processing model. These
systems offer three main advantages: (a) efficient
fault tolerance, (b) “exactly-once” semantics, and
(c) unified programming model for both batch
and stream analytics. The proposed algorithm for
approximate computing is generalizable to both
stream processing models, and preserves their
advantages.

Batched stream processing model. In this
computational model, an input data stream is
divided into small batches using a pre-defined
batch interval, and each such batch is processed
via a distributed data-parallel job. Apache Spark
Streaming (Foundation 2017b) adopted this
model to process input data streams.

Pipelined stream processing model. In con-
trast to the batched stream processing model, the
pipelined model streams each data item to the
next operator as soon as the item is ready to
be processed without forming the whole batch.
Thus, this model achieves low latency. Apache
Flink (Foundation 2017a) implements this model
to provide a truly native stream processing en-
gine.

Note that both stream processing models sup-
port the time-based sliding window computation
(Bhatotia et al. 2014). The processing window
slides over the input stream, whereby the newly
incoming data items are added to the window and
the old data items are removed from the window.
The number of data items within a sliding win-
dow may vary in accordance to the arrival rate of
data items.

Design Assumptions

STREAMAPPROX is based on the following as-
sumptions. The possible means to address these
assumptions are discussed in section “Discus-
sion”.

1. There exists a virtual cost function which
translates a given query budget (such as the
expected latency guarantees, or the required
accuracy level of query results) into the appro-
priate sample size.
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2. The input stream is stratified based on the
source of data items, i.e., the data items from
each sub-stream follow the same distribution
and are mutually independent. Here, a stra-
tum refers to one sub-stream. If multiple sub-
streams have the same distribution, they are
combined to form a stratum.

Design

In this section, first the STREAMAPPROX’s work-
flow (section “System Workflow”) is presented.
Then, its sampling mechanism (section “Online
Adaptive Stratified Reservoir Sampling”) and its
error estimation mechanism (section “Error Esti-
mation”) are described (see details in Quoc et al.
2017d,c).

System Workflow

This section shows the workflow of STREAMAP-
PROX. The system takes the user-specified
streaming query and the query budget as the
input. Then it executes the query on the input
data stream as a sliding window computation
(see section “Computational Model”).

For each time interval, STREAMAPPROX first
derives the sample size (sampleSize) using a
cost function based on the given query budget.
Next, the system performs a proposed sampling
algorithm (detailed in section “Online Adaptive
Stratified Reservoir Sampling”) to select the
appropriate sample in an online fashion. This
sampling algorithm further ensures that data
items from all sub-streams are fairly selected
for the sample, and no single sub-stream is
overlooked.

Thereafter, the system executes a data-parallel
job to process the user-defined query on the
selected sample. As the last step, the system
performs an error estimation mechanism (as de-
scribed in section “Error Estimation”) to compute
the error bounds for the approximate query result
in the form of output £ error bound. The
whole process repeats for each time interval as
the computation window slides (Bhatotia et al.
2012a).



Approximate Computing for Stream Analytics

Online Adaptive Stratified Reservoir
Sampling

To realize the real-time stream analytics, a novel
sampling technique called Online Adaptive Strat-
ified Reservoir Sampling (OASRS) is proposed.
It achieves both stratified and reservoir samplings
without their drawbacks. Specifically, OASRS
does not overlook any sub-streams regardless of
their popularity, does not need to know the statis-
tics of sub-streams before the sampling process,
and runs efficiently in real time in a distributed
manner.

The high-level idea of OASRS is simple. The
algorithm first stratifies the input stream into sub-
streams according to their sources. The data items
from each sub-stream are assumed to follow the
same distribution and are mutually independent.
(Here, a stratum refers to one sub-stream. If
multiple sub-streams have the same distribution,
they can be combined to form a stratum.) The
algorithm then samples each sub-stream indepen-
dently, and perform the reservoir sampling for
each sub-stream individually. To do so, every
time a new sub-stream S; is encountered, its
sample size N; is determined according to an
adaptive cost function considering the specified
query budget. For each sub-stream S;, the algo-
rithm performs the traditional reservoir sampling
to select items at random from this sub-stream,
and ensures that the total number of selected
items from S; does not exceed its sample size N;.
In addition, the algorithm maintains a counter C;
to measure the number of items received from S;
within the concerned time interval.

Applying reservoir sampling to each sub-
stream S; ensures that algorithm can randomly
select at most N; items from each sub-stream.
The selected items from different sub-streams,
however, should not be treated equally. In
particular, for a sub-stream S;, if C; > N; (i.e.,
the sub-stream S; has more than A, items in
total during the concerned time interval), the
algorithm randomly selects &; items from this
sub-stream and each selected item represents
C;/N; original items on average; otherwise, if
C; < Nj, the algorithm selects all the received C;
items so that each selected item only represents
itself. As a result, in order to statistically recreate
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the original items from the selected items, the
algorithm assigns a specific weight W; to the
items selected from each sub-stream S;:

Ci /Ni if Cl' > Nl‘
i = , ey

1 if C; < N;
STREAMAPPROX  supports  approximate

linear queries which return an approximate
weighted sum of all items received from all
sub-streams. Though linear queries are simple,
they can be extended to support a large range of
statistical learning algorithms (Blum et al. 2005,
2008). It is also worth mentioning that, OASRS
not only works for a concerned time interval
(e.g., a sliding time window), but also works with
unbounded data streams.

Distributed execution. OASRS can run in a
distributed fashion naturally as it does not require
synchronization. One straightforward approach is
to make each sub-stream S; be handled by a set
of w worker nodes. Each worker node samples an
equal portion of items from this sub-stream and
generates a local reservoir of size no larger than
N;/w. In addition, each worker node maintains
a local counter to measure the number of its
received items within a concerned time interval
for weight calculation. The rest of the design
remains the same.

Error Estimation

This section describes how to apply OASRS to
randomly sample the input data stream to gen-
erate the approximate results for linear queries.
Next, a method to estimate the accuracy of ap-
proximate results via rigorous error bounds is
presented.

Similar to section “Online Adaptive Stratified
Reservoir Sampling”, suppose the input data
stream contains X  sub-streams {Si},-X=1~
STREAMAPPROX computes the approximate
sum of all items received from all sub-streams
by randomly sampling only Y; items from each
sub-stream S;. As each sub-stream is sampled
independently, the variance of the approximate
sum is: Var(SUM) = ZIX=1 Var(SUM;).
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Further, as items are randomly selected for a
sample within each sub-stream, according to the
random sampling theory (Thompson 2012), the
variance of the approximate sum can be estimated
as:

_ X 52
Var(SUM) = 3 (c,- % (G — Yi) x 7l_) )

i=1

Here, C; denotes the total number of items
from the sub-stream S;, and s; denotes the stan-
dard deviation of the sub-stream S;’s sampled
items:

Y.
1 d -
§2 = — X ;(Ii,j — I;)?, where

1 Yl ;
J
3)
_ 1 Yi
Ii = 71 X jEzl Ii,j

Next, the estimation of the variance of the
approximate mean value of all items received
from all the X sub-streams is described. This
approximate mean value can be computed as:

X
MEAN = >OM Zi:l(ch x MEAN))
iz G > i=1GCi
X “
=) (0 x MEAN;)
i=1
Here, w; = = ,le o Then, as each sub-

stream is sampled independently, according to the
random sampling theory (Thompson 2012), the
variance of the approximate mean value can be
estimated as:

X

Var(MEAN) = ) " Var(e; x MEAN;)
i=1
X

= Z (0)12 X Var(MEAN,)) ©)

i—1

X
ERRLEL)
a)ix—x

— Y;

Ci

1
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Above, the estimation of the variances of the
approximate sum and the approximate mean of
the input data stream has been shown. Similarly,
the variance of the approximate results of any
linear queries also can be estimated by applying
the random sampling theory.

Error bound. According to the “68-95-99.7”
rule (Wikipedia 2017), approximate result falls
within one, two, and three standard deviations
away from the true result with probabilities of
68%, 95%, and 99.7%, respectively, where the
standard deviation is the square root of the vari-
ance as computed above. This error estimation is
critical because it gives a quantitative understand-
ing of the accuracy of the proposed sampling
technique.

Discussion

The design of STREAMAPPROX is based on
the assumptions mentioned in section “Design
Assumptions”. This section discusses some
approaches that could be used to meet the
assumptions.

I: Virtual cost function. This work currently
assumes that there exists a virtual cost function
to translate a user-specified query budget into the
sample size. The query budget could be specified
as either available computing resources, desired
accuracy, or latency.

For instance, with an accuracy budget, the
sample size for each sub-stream can be deter-
mined based on a desired width of the confidence
interval using Eq. (5) and the “68-95-99.7” rule.
With a desired latency budget, users can specify
it by defining the window time interval or the
slide interval for the computations over the input
data stream. It becomes a bit more challenging
to specify a budget for resource utilization. Nev-
ertheless, there are two existing techniques that
could be used to implement such a cost function
to achieve the desired resource target: (a) virtual
data center (Angel et al. 2014), and (b) resource
prediction model (Wieder et al. 2012) for latency
requirements.



Approximate Computing for Stream Analytics

Pulsar (Angel et al. 2014) proposes an abstrac-
tion of a virtual data center (VDC) to provide
performance guarantees to tenants in the cloud. In
particular, Pulsar makes use of a virtual cost func-
tion to translate the cost of a request processing
into the required computational resources using
a multi-resource token algorithm. The cost func-
tion could be adapted for STREAMAPPROX as
follows: a data item in the input stream is consid-
ered as a request and the “amount of resources”
required to process it as the cost in tokens. Also,
the given resource budget is converted in the form
of tokens, using the pre-advertised cost model per
resource. This allows computing the sample size
that can be processed within the given resource
budget.

For any given latency requirement, resource
prediction model (Wieder et al. 2010a,b, 2012)
could be employed. In particular, the prediction
model could be built by analyzing the diurnal
patterns in resource usage (Charles et al. 2012)
to predict the future resource requirement for the
given latency budget. This resource requirement
can then be mapped to the desired sample size
based on the same approach as described above.

II: Stratified sampling. This work currently
assume that the input stream is already stratified
based on the source of data items, i.e., the
data items within each stratum follow the
same distribution — it does not have to be a
normal distribution. This assumption ensures
that the error estimation mechanism still holds
correct since STREAMAPPROX applies the
Central Limit Theorem. For example, consider
an IoT use-case which analyzes data streams
from sensors to measure the temperature of
a city. The data stream from each individual
sensor follows the same distribution since
it measures the temperature at the same
location in the city. Therefore, a straightforward
way to stratify the input data streams is to
consider each sensor’s data stream as a stratum
(sub-stream). In more complex cases where
STREAMAPPROX cannot classify strata based
on the sources, the system needs a pre-processing
step to stratify the input data stream. This
stratification problem is orthogonal to this work,
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nevertheless for completeness, two proposals for
the stratification of evolving streams, bootstrap
(Dziuda 2010) and semi-supervised learning
(Masud et al. 2012), are discussed in this
section.

Bootstrap (Dziuda 2010) is a well-studied
non-parametric sampling technique in statistics
for the estimation of distribution for a given
population. In particular, the bootstrap technique
randomly selects “bootstrap samples” with
replacement to estimate the unknown parameters
of a population, for instance, by averaging the
bootstrap samples. A bootstrap-based estimator
can be employed for the stratification of incoming
sub-streams. Alternatively, a semi-supervised
algorithm (Masud et al. 2012) could be used
to stratify a data stream. The advantage of this
algorithm 1is that it can work with both labeled
and unlabeled streams to train a classification
model.

Related Work

Over the last two decades, the databases
community has proposed various approximation
techniques based on sampling (Al-Kateb and
Lee 2010; Garofalakis and Gibbon 2001),
online aggregation (Hellerstein et al. 1997), and
sketches (Cormode et al. 2012). These techniques
make different trade-offs w.r.t. the output quality,
supported queries, and workload. However,
the early work in approximate computing was
mainly geared towards the centralized database
architecture.

Recently, sampling-based approaches have
been successfully adopted for distributed
data analytics (Agarwal et al. 2013; Srikanth
et al. 2016; Krishnan et al. 2016; Quoc et al.
2017b,a). In particular, BlinkDB (Agarwal et al.
2013) proposes an approximate distributed
query processing engine that uses stratified
sampling (Al-Kateb and Lee 2010) to support
ad-hoc queries with error and response time
constraints. Like BlinkDB, Quickr (Srikanth
et al. 2016) also supports complex ad-hoc queries
in big-data clusters. Quickr deploys distributed
sampling operators to reduce execution costs of
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parallelized queries. In particular, Quickr first
injects sampling operators into the query plan;
thereafter, it searches for an optimal query plan
among sampled query plans to execute input
queries. However, these “big data” systems target
batch processing and cannot provide required
low-latency guarantees for stream analytics.

IncApprox (Krishnan et al. 2016) is a data
analytics system that combines two computing
paradigms together, namely, approximate and in-
cremental computations (Bhatotia et al. 2011a,b,
2012b) for stream analytics. The system is based
on an online “biased sampling” algorithm that
uses self-adjusting computation (Bhatotia 2015;
Bhatotia et al. 2015) to produce incrementally
updated approximate output. Lastly, PrivApprox
(Quoc et al. 2017a,b) supports privacy-preserving
data analytics using a combination of random-
ized response and approximate computation. By
contrast, STREAMAPPROX supports low-latency
in stream processing by employing the proposed
“online” sampling algorithm solely for approxi-
mate computing, while avoiding the limitations
of existing sampling algorithms.

Conclusion

This paper presents STREAMAPPROX, a stream
analytics system for approximate computing.
STREAMAPPROX allows users to make a
systematic trade-off between the output accuracy
and the computation efficiency. To achieve
this goal, STREAMAPPROX employs an online
stratified reservoir sampling algorithm which
ensures the statistical quality of the sample
selected from the input data stream. The proposed
sampling algorithm is generalizable to two
prominent types of stream processing models:
batched and pipelined stream processing models.
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Definitions

Spatial big data is a spatio-temporal data that is
too large or requires data-intensive computation
that is too demanding for traditional computing
architectures. Stream processing in this context is
the processing of spatio-temporal data in motion.
The data is observational; it is produced by sen-
sors — moving or otherwise. Computations on the
data are made as the data is produced or received.
A distributed processing cluster is a networked
collection of computers that communicate and
process data in a coordinated manner. Computers
in the cluster are coordinated to solve a com-
mon problem. A lambda architecture is a scal-
able, fault-tolerant data-processing architecture
that is designed to handle large quantities of data
by exploiting both stream and batch processing
methods. Data partitioning involves physically
dividing a dataset into separate data stores on
a distributed processing cluster. This is done to
achieve improved scalability, performance, avail-
ability, and fault-tolerance. Distributed file sys-
tems, in the context of big data architectures, are
similar to traditional distributed file systems but
are intended to persist large datasets on com-
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modity hardware in a fault-tolerant manner with
simple coherency models. The MapReduce pro-
gramming model is intended for large-scale dis-
tributed data processing and is based upon simple
concepts involving iterating over data, perform-
ing a computation on key/value pairs, grouping
the intermediary values by key, iterating over the
resulting groups, and reducing each group to pro-
vide aresult. A GPU-accelerated distributed pro-
cessing framework is an extension to a traditional
distributed processing framework that supports
offloading tasks to GPUs for further acceleration.

Overview

Spatial big data architectures are intended to
address requirements for spatio-temporal data
that is too large or computationally demanding
for traditional computing architectures (Shekhar
et al. 2012). This includes operations such
as real-time data ingest, stream processing,
batch processing, storage, and spatio-temporal
analytical processing.

Spatial big data offers additional challenges
beyond what is commonly faced in the big data
space. This includes advanced indexing, query-
ing, analytical processing, visualization, and ma-
chine learning. Examples of spatial big data in-
clude moving vehicles (peer-to-peer ridesharing,
delivery vehicles, ships, airplanes, etc.), station-
ary sensor data (e.g., SCADA, AMI), cell phones
(call detail records), IoT devices, as well as spa-
tially enabled content from social media (Fig. 1).

Spatial big data architectures are used in a
variety of workflows:

¢ Real-time processing of observational data
(data in motion). This commonly involves
monitoring and tracking dynamic assets in
real-time; this can include vehicles, aircraft,
and vessels, as well as stationary assets such
as weather and environmental monitoring
Sensors.

* Batch processing of persisted spatio-temporal
data (data at rest). Workflows with data at
rest incorporate tabular and spatial processing
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(e.g., summarizing data, analyzing patterns,
and proximity analysis), geoenrichment and
geoenablement (adding spatial capabilities to
non-spatial data, adding information from
contextual spatial data collections), and
machine learning and predictive analytics
(clustering, classification, and prediction).

Architectural Requirements

When designing and developing scalable soft-
ware systems that can address the high-level
workflows encountered in spatial big data sys-
tems, a number of basic requirements must be
identified. It is important to note that most of
these also generally apply to traditional non-
spatial big data systems (Mysore et al. 2013;
Klein et al. 2016; Sena et al. 2017):

Scalable
Spatial big data systems must be scalable.
Scalability encompasses being able to increase
and support different amounts of data, pro-
cessing them, and allocating computational re-
sources without impacting costs or efficiency.
To meet this requirement, it is required to
distribute data sets and their processing across
multiple computing and storage nodes.

High Performant
Spatial big data systems must be able to pro-
cess large streams of data in a short period
of time, thus returning the results to users as
efficiently as possible. In addition, the system
should support computation intensive spatio-
temporal analytics.

Real-time
Big data systems must be able to manage the
continuous flow of data and its processing in
real time, facilitating decision-making.
Consistent
Big data systems must support data consis-
tency, heterogeneity, and exploitation. Differ-
ent data formats must be also managed to
represent useful information for the system.
Secure
Big data systems must ensure security in the
data and its manipulation in the architecture,
supporting integrity of information, exchang-
ing data, multilevel policy-driven, access con-
trol, and prevent unauthorized access.
Available
Big data systems must ensure high data avail-
ability, through data replication horizontal
scaling (i.e., distribute a data set over clusters
of computers and storage nodes). The system
must allow replication and handle hardware
failures.
Interoperable
Big data systems must be transparently inter-
communicated to allow exchanging informa-
tion between machines and processes, inter-
faces, and people.

Key Research Findings

Spatial big data architectures have existed since
the early 2000s with some of the original im-
plementations at Google and Microsoft. Some
of the key research issues related to spatial big
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data architectures include data storage (repos-
itories, distributes storage, NoSQL databases),
distributed spatio-temporal analytic processing,
stream processing, scalable cloud computing, and
GPU-enabled distributed processing frameworks.

Data Storage

Parallel Database Systems

Big data repositories have existed in many forms,
frequently built by corporations and governmen-
tal agencies with special requirements. Beginning
in the 1990s, commercial vendors began offering
parallel database management systems to address
the needs of big data (DeWitt and Gray 1992).
Parallel database systems are classified as be-
ing shared memory (processing elements sharing
memory), shared disk (processing elements do
not share memory, but do share disk storage), or
shared nothing (neither memory nor disk storage
is shared between processing elements). Signif-
icant efforts included those by Teradata, IBM,
Digital, Microsoft, Oracle, Google, and Amazon.
Additionally, beginning in the 1980s, there were
numerous research systems that contributed to
these efforts (e.g., GAMMA and Bubba; DeWitt
et al. 1986, Alexander and Copeland 1988).

Distributed File Stores

Hadoop Distributed File System (HDEFS) is a
distributed file-system that stores data on com-
modity machines, providing very high aggregate
bandwidth across the cluster (Shvachko et al.
2010). It was inspired by the Google File Sys-
tem (GFS; Ghemawat et al. 2003). HDFS stores
large files (typically in the range of gigabytes to
terabytes) across multiple machines. It achieves
reliability by replicating the data across multiple
hosts, and hence theoretically does not require
redundant array of independent disks (RAID)
storage on hosts (but to increase input-output
(I/0) performance, RAID configurations may be
employed). With the default replication value of
three, data is stored on three nodes: two on the
same rack and one on a different rack. Data nodes
can talk to each other to rebalance data, to move
copies around, and to keep the replication of data
high.

Architectures

NoSQL Databases

A NoSQL (originally referencing “non-SQL”
or “non-relational”) database is a mechanism
for the storage and retrieval of data that is
modeled differently from standard relational
databases (NoSQL 2009; Pavlo and Aslett 2016).
NoSQL databases are often considered next
generation databases; they are intended to address
weaknesses of traditional relational databases
such as being readily distributable, simpler in
design, open-source, and horizontally scalable
(often problematic for relational databases).
Many databases supporting these characteristics
originated in the late 1960s; the “NoSQL”
description was employed beginning in the
late 1990s with the requirements imposed by
companies such as Facebook, Google, and
Amazon. NoSQL databases are commonly used
with big data applications. NoSQL systems
are also sometimes called “Not only SQL” to
emphasize that they may support SQL-like query
languages.

In order to achieve increased performance and
scalability, NoSQL databases commonly used
data structures (e.g., key-value, columnar, docu-
ment, or graph) that are different from those used
in relational databases. NoSQL databases vary in
terms of applicability to particular problem do-
mains. NoSQL databases are often classified by
their primal data structures; examples include:

¢ Key-value: Apache Ignite, Couchbase, Dy-
namo, Oracle NoSQL Database, Redis, Riak

e Columnar: Accumulo, Cassandra, Druid,
HBase, Vertica

¢ Document: Apache CouchDB, Cosmos DB,
IBM Domino, MarkLogic, MongoDB

* Graph: AllegroGraph, Apache Giraph, Mark-
Logic, Neo4J

e Multi-model:
MarkLogic

Apache Ignite, Couchbase,

Spatial Batch Processing

Spatio-temporal analysis in a batch context in-
volves a very wide scope of functionality. In
academia, much of the research has focused on
the spatial join (or spatio-temporal join) func-
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tion. In commercial systems, spatial analysis also
includes summarizing data, incident and simi-
lar location detection, proximity analysis, pattern
analysis, and data management (import, export,
cleansing, etc.).

Spatial Joins

Spatial joins have been widely studied in both
the standard sequential environment (Jacox and
Samet 2007), as well as in the parallel (Brinkhoff
et al. 1996) and distributed environments (Abel
et al. 1995). For over 20 years, algorithms have
been developed to take advantage of parallel and
distributed processing architectures and software
frameworks. The recent resurgence in interest
in spatial join processing is the results of new-
found interest in distributed, fault-tolerant, com-
puting frameworks such as Apache Hadoop, as
well as the explosion in observational and IoT
data.

With distributed processing architectures,
there are two principal approaches that are
employed when performing spatial joins. The
first, termed a broadcast (or mapside) spatial
join, is designed for joining a large dataset with
another small dataset (e.g., political boundaries).
The large dataset is partitioned across the
processing nodes and the complete small
dataset is broadcast to each of the nodes. This
allows significant optimization opportunities.
The second approach, termed a partitioned (or
reduce side) spatial join, is a more general
technique that is used when joining two large
datasets. Partitioned joins use a divide-and-
conquer approach (Aji et al. 2013). The two
large datasets are divided into small pieces via
a spatial decomposition, and each small piece is
processed independently.

SIMR (Spatial Join with MapReduce) intro-
duced the first distributed spatial join on Hadoop
using the MapReduce programming model (Dean
and Ghemawat 2008; Zhang et al. 2009). Spatial-
Hadoop (Eldawy and Mokbel 2015) optimized
SIMR with a persistent spatial index (it sup-
ports grid files, R — trees, and R + trees) that
is precomputed. Hadoop-GIS (Aji et al. 2013),
which is utilized in medical pathology imaging,
features both 2D and 3D spatial join. GIS Tools
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for Hadoop (Whitman et al. 2014) is an open
source library that implements range and distance
queries and k-NN. It also supports a distributed
PMR quadtree-based spatial index. GeoSpark (Yu
et al. 2015) is a framework for performing spatial
joins, range, and k-NN queries. The framework
supports quadtree and R-tree indexing of the
source data. Magellan (Sriharsha 2015) is an
open source library for geospatial analytics that
uses Spark (Zaharia et al. 2010). It supports a
broadcast join and a reduce-side optimized join
and is integrated with Spark SQL for a traditional,
SQL user experience. SpatialSpark (You et al.
2015) supports both a broadcast spatial join and a
partitioned spatial join on Spark. The partition-
ing is supported using either fixed-grid, binary
space partition or a sort-tile approach. STARK
(Hagedorn et al. 2017) is a Spark-based frame-
work that supports spatial joins, k-NN, and range
queries on both spatial and spatio-temporal data.
STARK supports three temporal operators: con-
tains, containedBy, and intersects) and also sup-
ports the DBSCAN density-based spatial clus-
terer (Ester et al. 1996). MSJS (multi-way spa-
tial join algorithm with Spark (Du et al. 2017))
addresses the problem of performing multi-way
spatial joins using the common technique of cas-
cading sequences of pairwise spatial joins. Simba
(Xie et al. 2016) offers range, distance (circle
range), and k-NN queries as well as distance
and k-NN joins. Two-level indexing, global and
local, is employed, similar to the various in-
dexing work on Hadoop MapReduce. Location-
Spark (Tang et al. 2016) supports range query,
k-NN, spatial join, and k-NN join. Location-
Spark uses global and local indices — Grid, R-
tree, Quadtree, and IR-tree. GeoMesa is an open-
source, distributed, spatio-temporal index built
on top of Bigtable-style databases (Chang et
al. 2008) using an implementation of the Geo-
hash algorithm implemented in Scala (Hughes et
al. 2015). The Esri GeoAnalytics Server (Whit-
man et al. 2017) supports many types of spa-
tial analysis is a distributed environment (lever-
aging the Spark framework). It provides func-
tionality for summarizing data (e.g., aggrega-
tion, spatio-temporal join, polygon overlay), in-
cident and similar location detection, proximity
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analysis, and pattern analysis (hot spot analysis,
NetCDF generation).

MapReduce Programming Model

MapReduce is a programming model and an as-
sociated implementation for processing big data
sets with a parallel, distributed algorithm (Sakr
et al. 2013). A MapReduce program is composed
of a map procedure (or method), which performs
filtering and sorting (such as sorting students
by first name into queues, one queue for each
name), and a reduce method, which performs a
summary operation (such as counting the number
of students in each queue, yielding name frequen-
cies). A MapReduce framework manages the
processing by marshalling the distributed cluster
nodes, running the various tasks and algorithms
in parallel, managing communications and data
transfers between cluster nodes, while supporting
fault tolerance and redundancy.

The MapReduce model is inspired by the map
and reduces functions commonly used in func-
tional programming (note that their purpose in
the MapReduce framework is not the same as
in their original forms). The key contributions
of the MapReduce model are not the actual map
and reduce functions that resemble the Message
Passing Interface (MPI) standard’s reduce and
scatter operations. The major contributions of the
MapReduce model are the scalability and fault-
tolerance that is supported through optimization
of the execution engine. A single-threaded im-
plementation of MapReduce is commonly slower
than a traditional (non-MapReduce) implementa-
tion; gains are typically realized with multi-node
or multi-threaded implementations.

MapReduce libraries have been written in
many programming languages, with different
levels of optimization. The most popular open-
source implementation is found in Apache
Hadoop.

Stream Processing

Stream processing is a computer programming
paradigm, equivalent to dataflow programming,
event stream processing, and reactive program-
ming that allows some applications to more eas-
ily exploit a limited form of parallel processing
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(Gedik et al. 2008). Such applications can use
multiple computational units, such as the floating
point unit on a graphics processing unit or field-
programmable gate arrays (FPGAs), without ex-
plicitly managing allocation, synchronization, or
communication among those units.

The stream processing paradigm simplifies
parallel software and hardware by restricting
the parallel computation that can be performed.
Given a sequence of data (a stream), a series
of operations (kernel functions) is applied to
each element in the stream. Kernel functions
are usually pipelined, and optimal local on-chip
memory reuse is attempted, in order to minimize
the loss in bandwidth, accredited to external
memory interaction. Uniform streaming, where
one kernel function is applied to all elements in
the stream, is typical. Since the kernel and stream
abstractions expose data dependencies, compiler
tools can fully automate and optimize on-chip
management tasks.

Lambda Architecture
A Lambda Architecture is an architecture that
is intended to process large volumes of data by
incorporating both batch and real-time process-
ing techniques (Marz and Warren 2015). This
approach to architecture attempts to balance la-
tency, throughput, and fault-tolerance by using
batch processing to provide comprehensive and
accurate views of batch data, while simultane-
ously using real-time stream processing to pro-
vide views of online data. The two view outputs
may be joined before presentation. In addition,
historic analysis is used to tune the real-time
analytical processing as well as building models
for prediction (machine learning). The rise of
lambda architecture is correlated with the growth
of big data, real-time analytics, and the drive to
mitigate the latencies of map-reduce (Fig. 2).
The Lambda architecture depends on a
data model with an append-only, immutable
data source that serves as a system of record.
It is intended for ingesting and processing
timestamped events that are appended to existing
events rather than overwriting them. State is
determined from the natural time-based ordering
of the data.
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GPU-Accelerated Distributed Frameworks
Distributed processing frameworks such as Spark
(which support in-memory processing) have been
extended and enhanced with the incorporation of
GPUs for key computationally intensive opera-
tions (e.g., machine learning and graph theoretic
algorithms, Prasad et al. 2015). Researchers have
observed that a few Spark nodes with GPUs
can outperform a much larger cluster of non-
GPU nodes (Grossman and Sarkar 2016; Has-
saan and Elghandour 2016; Yuan et al. 2016;
Hong et al. 2017). The main bottlenecks when
incorporating GPUs in hybrid architectures of-
ten involve data communication, memory and
resource management, and differences in pro-
gramming models. Different approaches to solv-
ing these problems have employed GPU-wrapper
APIs (e.g., PyCUDA), hybrid RDDs (resilient
distributed datasets) where the RDD is stored
in the CPU, generating native GPU code from
high-level source code written for the distributed
framework (e.g., Scala, Java, or Python code
with Spark) or native GPU RDDs where data is
processed and stored in the GPU device memory
(Fig. 3).

Examples of Application

The application of technologies related to spa-
tial big data architectures is broad given the
rapidly growing interest in spatial data that has
emerged during the twenty-first century. Notable
among this family of technologies in terms of
significance and application include distributed
processing frameworks, geo-spatial stream pro-

cessing, and the numerous implementations of
platform as a service (PaaS).

Apache Hadoop

Apache Hadoop (Apache 2006) is an open-source
software framework and associated utilities that
facilitate using a network of commodity comput-
ers to solve problems involving large amounts of
data and computation. Inspired by the seminal
work at Google on MapReduce and the Google
File System (GFS), Hadoop provides a software
framework for both the distributed storage and
processing of big data using the MapReduce
programming model.

Similar to the efforts at Google, Hadoop was
designed for computer clusters built from com-
modity hardware (still the common usage pat-
tern). Hadoop has also been employed on large
clusters of higher-end hardware. All the mod-
ules in Hadoop are designed with a fundamental
assumption that hardware failures are common
occurrences and should be automatically handled
by the framework.

The core of Apache Hadoop consists of a
storage part, known as Hadoop Distributed File
System (HDFS), a resource manager, a collection
of utilities, and a processing framework that is
an implementation of the MapReduce program-
ming model that runs against large clusters of
machines. HDFS splits very large files (including
those of size gigabytes and larger) into blocks
that are distributed across multiple nodes in a
cluster. Reliability is achieved by replicating the
blocks across multiple nodes (with a default repli-
cation factor of 3). Hadoop distributes packaged
code into nodes to process the data in parallel.
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This approach takes advantage of data locality,
where nodes manipulate the data they have ac-
cess to. This allows the dataset to be processed
faster and more efficiently than it would be in
a more conventional supercomputer architecture
that relies on a parallel file system where com-
putation and data are distributed via high-speed
networking.

Hadoop has been deployed in traditional data-
centers as well as in the cloud. The cloud allows
organizations to deploy Hadoop without the need
to acquire hardware or specific setup expertise.
Vendors who currently have an offering for the
cloud that incorporate Hadoop include Microsoft,
Amazon, IBM, Google, and Oracle. Most of the
Fortune 50 companies currently deploy Hadoop
clusters.

Spark Streaming

Spark Streaming is an extension to Spark API
that supports scalable, high-throughput, fault-
tolerant, stream processing of real-time data
streams (Garillot and Maas 2018). Data can be
ingested from many sources (e.g., Kafka, Flume,
or TCP sockets) and can be processed using

temporally aware algorithms expressed with
high-level functions like map, reduce, join, and
window. Finally, processed data can be pushed
out to filesystems, databases, and live dashboards.
Spark’s machine learning (Spark ML) and graph
processing (GraphX) algorithms can be applied
to these data streams.

Internally, Streaming receives live input data
streams and divides the data into batches, which
are then processed by the Spark engine to
generate the final stream of results in batches
(Fig. 4).

Spark Streaming provides a high-level ab-
straction called discretized stream or DStream,
which represents a continuous stream of data.
DStreams can be created either from input data
streams from sources such as Kafka, Flume, and
Kinesis, or by applying high-level operations on
other DStreams. Internally, a DStream is repre-
sented as a sequence of RDDs.

Big Data as a Service

Platform as a Service (PaaS) is a category
of cloud computing services that provides
a platform allowing customers to run and
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manage applications without the complexity
of building and maintaining the infrastructure
usually associated with developing and launching
an application (Chang et al. 2010). PaaS is
commonly delivered in one of three ways:

* As apublic cloud service from a provider

* As a private service (software or appliance)
inside the firewall

* As software deployed on a public infrastruc-
ture as a service

Big Data as a Service (BDaaS) is a new
concept that combines Software as a Service
(SaaS), Platform as a Service (PaaS), and Data
as a Service (DaaS) in order to address the re-
quirements of working with massively large data
sets. BDaas offerings commonly incorporate the
Hadoop stack (e.g., HDFS, Hive, MapReduce,
Pig, Storm, and Spark), NoSQL data stores, and
stream processing capabilities.

Microsoft Azure is a cloud computing ser-
vice utilizing Microsoft-managed data centers
that supports both software as a service (SaaS)
and platform as a service (PaaS). It provides
data storage capabilities including Cosmos DB
(a NoSQL database), the Azure Data Lake, and
SQL Server-based databases. Azure supports a
scalable event processing engine and a machine
learning service that supports predictive analytics
and data science applications.

The Google Cloud is a Paas offering that
supports big data with data warehousing, batch
and stream processing, data exploration, and
support for the Hadoop/Spark framework. Key
components include BigQuery, a managed data
warehouse supporting analytics at scale, Cloud
Dataflow, which supports both stream and batch
processing, and Cloud Dataproc, a framework
for running Apache MapReduce and Spark
processes.

Amazon AWS, though commonly considered
an Infrastructure as a Service (IaaS) where the
user is responsible for configuration, AWS also
provides PaaS functionality. Amazon supports
Elastic MapReduce (EMR) that works in con-
junction with EC2 (Elastic Compute Cloud) and
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S3 (Simple Storage Service). Data storage is
provided through DynamoDB (NoSQL), Red-
shift (columnar), and RDS (relational data store).
Machine learning and real-time data processing
infrastructures are also supported.

Other significant examples of BDaaS
providers include the IBM Cloud and the
Oracle Data Cloud. Big data Infrastructure as
a Service (IaaS) offerings (that work with other
clouds such as AWS, Azure, and Oracle) are
available from Hortonworks, Cloudera, Esri, and
Databricks.

Future Directions for Research

Despite the significant advancements that
have been made over the past decade on key
topics relates to spatial big data architectures,
much further research is necessary in order
to further democratize the -capabilities and
application to broader problem domains. Some
of the more significant areas needing attention
include:

* Spatio-temporally enabling distributed and
NoSQL databases such as Accumulo, Cas-
sandra, HBase, Dynamo, and Elasticsearch.
This involves not only supporting spatial
types but also incorporating rich collections of
topological, spatial, and temporal operators.

* Spatio-temporal analytics is another area
requiring attention. Much research to date
has focused on supporting spatial (or spatio-
temporal) joins on distributed frameworks
such as MapReduce or Spark. While
beneficial, spatio-temporal analytics is a far
richer domain that also includes geostatistics
(e.g., kriging), spatial statistics, proximity
analysis, and pattern analysis.

e Spatially enabling machine learning al-
gorithms that run in a distributed cluster
(e.g., extending Spark ML or Scikit-learn
(Pedregosa et al. 2011)) is another significant
research area given the growing interest and
importance of machine learning, predictive
analytics, and deep learning. To date, research
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has primarily focused on density-based
clustering algorithms such as DBSCAN,
HDBSCAN (Mclnnes and Healy 2017), and
OPTICS.

e Recently, much attention has been paid to
incorporating GPU processing capabilities
into distributed processing frameworks
such as Spark. While some basic spatial
capabilities can currently be supported (e.g.,
aggregation and visualization of point data),
much work needs to be done to further
streamline and optimize the integration of
GPU processors and extend the native spatio-
temporal capabilities.
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Synonyms

Multi-instance process mining; Object-centric
process mining

Definitions

Artifact-centric process mining is an extension of
classical process mining (van der Aalst 2016) that
allows to analyze event data with more than one
case identifier in its entirety. It allows to analyze
the dynamic behavior of (business) processes
that create, read, update, and delete multiple
data objects that are related to each other in
relationships with one-to-one, one-to-many, and
many-to-many cardinalities. Such event data is
typically stored in relational databases of, for
example, Enterprise Resource Planning (ERP)
systems (Lu et al. 2015). Artifact-centric process
mining comprises artifact-centric process discov-
ery, conformance checking, and enhancement.
The outcomes of artifact-centric process mining
can be used for documenting the actual data flow
in an organization and for analyzing deviations in
the data flow for performance and conformance
analysis.

The input to artifact-centric process discovery
is either an event log where events carry infor-
mation about the data objects and their changes,
or a relational database also containing records
about data creation, change, and deletion events.
The output of artifact-centric process discovery
is a data model of the objects (each defining
its own case identifier) and relations between
objects and an artifact-centric process model, as
illustrated in Fig. 1. An artifact-centric process
model describes the dynamics of each data object
on its own in an object life-cycle model, and the
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behavioral dependencies between the different
data objects. To this end, artifact-centric process
discovery integrates the control-flow analysis of
event data of classical process mining with an
analysis of the data structures and data records
related to the events.

During artifact-centric process discovery, each
event is associated with one data object in the data
source. From the behavioral relations between all
events associated with one data object, a [life-
cycle model of the data object is learned using
automated process discovery techniques. Each
life-cycle model describes the possible changes
to the object and their ordering as they have been
observed in reality. From behavioral relationships
between events in different related data objects,
information about behavioral dependencies be-
tween changes in different data objects is discov-
ered preserving the one-to-one, one-to-many, and
many-to-many cardinalities.

Several modeling languages have been
proposed to describe a complete artifact-
centric model of all object life cycles and
their behavioral interdependencies. Existing
behavioral modeling languages can be extended
to express interdependencies of one-to-many
and many-to-many cardinalities including Petri
nets (van der Aalst et al. 2001) and UML (Estafiol
et al. 2012). Specifically designed languages
including the Guard-Stage-Milestone (GSM)
model (Hull et al. 2011) or data-centric dynamic
systems (Hariri et al. 2013) employ both data
and behavioral constructs as primary modeling
concepts. The Case Management Model and
Notation (CMMN) standard vl.1 incorporates
several modeling concepts of GSM (OMG 2016).

Artifact-centric conformance checking com-
pares event data to an artifact-centric model with
the aim to identify where recorded events devi-
ate from the behavior described in the artifact-
centric model. Deviations may exist between ob-
served and specified data models, between ob-
served events and the life-cycle model of an
artifact, and between observed events and the
interactions of two or more artifacts.

Artifact-centric model enhancement uses
event data to enrich an artifact-centric model, for
example, with information about the frequency of
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Artifact-Centric Process Mining, Fig. 1 Overview on artifact-centric process discovery

paths through a life-cycle model or interactions,
or to identify infrequent behavior as outliers.

Overview

Historically, artifact-centric process mining ad-
dressed the unsolved problem of process mining
on event data with multiple case identifiers and
one-to-many and many-to-many relationships by
adopting the concept of a (business) artifact as
an alternative approach to describing business
processes.

Event Data with Multiple Case Identifiers

Processes in organizations are typically sup-
ported by information systems to structure the
information handled in these processes in well-
defined data objects which are often stored in
relational databases. During process execution,
various data objects are created, read, updated,
and deleted, and various data objects are related
to each other in one-to-one, one-to-many, and
many-to-many relations. Figure 2 illustrates in
a simplified form the data structures typically
found in ERP systems. Sales, Delivery, and

Billing documents are recorded in tables; relation
FI links Sales to Delivery documents in a one-
to-many relation: S/ relates to DI and D2;
correspondingly F2 links Billing to Delivery
documents in a one-to-many relation. Events on
process steps and data access are recorded in
time stamp attributes such as Date created or in
a separate Document Changes table linked to all
other tables.

Convergence and Divergence
Process mining requires to associate events to
a case identifier in order to analyze behavioral
relations between events in the same case (van der
Aalst 2016). The data in Fig. 2 provides three case
identifiers: SD id, DD id, and BD id. Classical
process mining forces to associate all events to a
single case identifier. However, this is equivalent
to flattening and de-normalizing the relational
structure along its one-to-many relationships.
For example, associating all Create events of
Fig.2 to SD id flattens the tables into the event
log of Fig.3(left) having two cases for S/ and
S2. Due to flattening, event Create of B2 has
been duplicated as it was extracted once for S/
and once for S2, also called divergence. Further,
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Sales Documents

Date created

SD id |Date created |Value |Last Change BD id Clearing Date
S1 [16-5-2020 100 10-6-2020 B1 20-5-2020 31-5-2020
S2  [17-5-2020 200 5-6-2020 B2 24-5-2020 5-6-2020
| F1 i F2 |
DD id [Date created [Reference SD id |Reference BD id |Picking Date
D1 [18-5-2020 S1 B1 31-5-2020
D2 [22-5-2020 S1 B2 5-6-2020
D3 |25-5-2020 S2 B2 5-6-2020
T
F3
Document Changes
Change id |Date Ref.id | Table | Change type Old Value [New Value
1 17-5-2020( S1 SD Price updated 100 80
2 19-5-2020| S1 SD Delivery block released | X -
3 19-5-2020| S1 SD Billing block released X -
4 10-6-2020| B1 BD Invoice date updated 20-6-2020 |21-6-2020

Artifact-Centric Process Mining, Fig. 2 Event data stored in a relational database

Sales Order S1
created on 16-5

Delivery D2
created on 22-5

Delivery D1
created on 18-5

]

]

i Invoice B1

I created on 20-5
]

I

]

]

|

all events related
to Sales Order S1

Invoice B2
created on 24-5

D1,D2 (in S1)
D3 (in S2)

16-5 20-5

Salesl, Order S2
created on 17-5

all events related
to Sales Order S2

created on 24-5

Invoice Blz Delivery D3
created on 25-5

B1,B2 (in S1)
B2 (in S2)

Divergence

Convergence

C

Artifact-Centric Process Mining, Fig. 3 An event log (left) serializing the “create” events of the database of Fig.2
based on the case identifier “SD id.” The resulting directly-follows relation (right) suffers convergence and divergence

Create for Bl is followed by Create for D2
although B/ and D2 are unrelated in Fig. 2, also
called convergence (Lu et al. 2015). The be-
havioral relations which underly automated pro-
cess discovery become erroneous through conver-
gence and divergence. For example, the directly-
follows relation of the log (Fig. 3 right) states er-
roneously that three Invoice documents have been
created — whereas the original data source con-
tains only two — and that in two cases Invoice cre-
ation was followed by Delivery creation (between
related data objects), whereas in the original data
source this only happened once for B2 and D3.

Convergence and divergence may cause up to
50% of erroneous behavioral relations (Lu et al.
2015) in event logs. Convergence and divergence
can be avoided partially by scoping extraction
of event data into event logs with a single case
identifier in a manual process (Jans 2017).

Artifact-Centric Process Models

Artifact-centric process mining adopts modeling
concept of a (business) artifact to analyze event
data with multiple case identifiers in their en-
tirety (Lu et al. 2015; Nooijen et al. 2012; van Eck
et al. 2017). The notion of a (business) artifact
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was proposed by Nigam and Caswell (2003) as
an alternative approach to describing business
processes. This approach assumes that any pro-
cess materializes itself in the (data) objects that
are involved in the process, for instance, sales
documents and delivery documents; these objects
have properties such as the values of the fields
of a paper form, the processing state of an order,
or the location of a package. Typically, a data
model describes the (1) classes of objects that are
relevant in the process, (2) the relevant properties
of these objects in terms of class attributes, and
(3) the relations between the classes. A process
execution instantiates new objects and changes
their properties according to the process logic.
Thereby, the relations between classes describe
how many objects of one class are related to how
many objects of another class.

An artifact-centric process model enriches the
classes of the data model themselves with process
logic restricting how objects may evolve during
execution. More precisely, one artifact (1) encap-
sulates several classes of the data model (e.g.,
Sales Documents and Sales Document Lines), (2)
provides actions that can update the classes at-
tributes and move the artifact to a particular state,
and (3) defines a life cycle. The artifact life cycle
describes when an instance of the artifact (i.e.,
a concrete object) is created, in which state of
the instance which actions may occur to advance
the instance to another state (e.g., from created
to cleared), and which goal state the instance
has to reach to complete a case. A complete
artifact-centric process model provides a life-
cycle model for each artifact in the process and
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describes which behavioral dependencies exist
between actions and states of different artifacts
(e.g., pick delivery may occur for a Delivery
object only if all its Billing objects are in state
cleared). Where business process models created
in languages such as BPMN, EPC, or Petri nets
describe a process in terms of activities and their
ordering in a single case, an artifact-centric model
describes process behavior in terms of creation
and evolution of instances of multiple related data
objects. In an artifact-centric process model, the
unit of modularization is the artifact, consisting
of data and behavior, whereas in an activity-
centric process modeling notation, the unit of
modularization is the activity, which can be an
elementary task or a sub-process. A separate en-
try in this encyclopedia discusses the problem of
automated discovery of activity-centric process
models with sub-processes.

Figure 4 shows an artifact-centric process
model in the notation of Proclets (van der Aalst
et al. 2001) for the database of Fig. 2. The life cy-
cle of each document (Sales, Delivery, Billing) is
described as a Petri net. Behavioral dependencies
between actions in different objects are described
through interface ports and asynchronous
channels that also express cardinalities in the
interaction. For example, the port annotation “+”
specifies that Clear Invoice in Billing enables
Pick Delivery in multiple related Delivery
objects. Port annotation “1” specifies that Pick
Delivery can occur after Clear Invoice occurred
in the one Billing object related to the Delivery.

The gray part of Fig. 4 shows a more involved
behavioral dependency. Whenever Update Price

Update

Delivery

‘ Invoice

Inv. date |

Artifact-Centric Process Mining, Fig. 4 Example of an artifact-centric process model in the proclet notation
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Sales Document (s) Delivery Document (d) Billing Document (b)
Creating Creating
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... (create DD) ...
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s.created

create/assign
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and d.created

&
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on s.deliveryBlockReleased()
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SD,BD).. () created created
Updating
[ on b.clearinvoice() and b.created |
Clearing
cleared

picked

Artifact-Centric Process Mining, Fig. 5 Example of an artifact-centric process model in the Guard-Stage-Milestone

notation

occurs in a Sales document, all related Delivery
documents get blocked. Only after Release deliv-
ery block occurred in Sales, the Delivery docu-
ment may be updated again, and Pick Delivery
may occur. For the sake of simplicity, the model
does not show further behavioral dependencies
such as “Update price also blocks related Billing
documents.”

Figure 5 shows the same model in the Guard-
Stage-Milestone notation (Hull et al. 2011)
(omitting some details). Each round rectangle
denotes a stage that can be entered when its
guard condition (diamond) holds and is left when
its milestone condition (circle) holds. The guard
and milestone conditions specify declarative
constraints over data attributes, stages, and
milestones of all artifacts in the model. For
example, Picking can start when the pickDelivery
event is triggered in the process, the delivery
document has reached its created milestone, the
billing document related to the delivery document
has reached its cleared milestone (d.BD.cleared),
and the stage Blocking Delivery is not active in
the related sales document.

Artifact-Centric Process Mining

The behavior recorded in the database of Fig.2
does not conform to the models in Figs.4
and 5:

1. Structural conformance states how well the
data model describes the data records ob-
served in reality. The proclet model of Fig. 4
structurally conforms to the data in Fig.2

regarding objects and relations but not regard-
ing actions: the recorded event data shows two
additional event types for the life cycle of the
Sales document — Release billing block and
Last Change.

2. Life-cycle conformance states how well the
life-cycle model of each artifact describes the
order of events observed in reality. This cor-
responds to conformance in classical process
mining. For example, in Fig.2, Update in-
voice date occurs in Billing after Clear In-
voice which does not conform to the life-cycle
model in Fig. 4.

3. Interaction conformance states how well the
entire artifact centric model describes the be-
havioral dependencies between artifacts. In
Fig. 2, instance D3 of Delivery is created after
its related instance B2 of Billing. This does not
conform to the channels and ports specified in
Fig. 4.

The objective of artifact-centric process min-
ing is to relate recorded behavior to modeled be-
havior, through (1) discovering an artifact-centric
process model that conforms to the recorded be-
havior, (2) checking how well recorded behavior
and an artifact-centric model conform to each
other and detecting deviations, and (3) extending
a given artifact-centric model with further infor-
mation based on recorded event data.

Artifact-centric process discovery is a tech-
nique to automatically or semiautomatically learn
artifact-centric process models from event data.
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The problem is typically solved by a decomposi-
tion into the following four steps:

1. Discovering the data model of entities or ta-
bles, their attributes, and relations from the
data records in the source data. This step
corresponds to data schema recovery. It can
be omitted if the data schema is available
and correct; however, in practice foreign key
relations may not be documented at the data
level and need to be discovered.

2. Discovering artifact types and relations from
the data model and the event data. This step
corresponds to transforming the data schema
discovered in step 1 into a domain model
often involving undoing horizontal and ver-
tical (anti-) partitioning in the technical data
schema and grouping entities into domain-
level data objects. User input or detailed in-
formation about the domain model are usually
required.

3. Discovering artifact life-cycle models for each
artifact type discovered in step 2. This step
corresponds to automated process discovery
for event data with a single case identifier
and can be done fully automatically up to
parameters of the discovery algorithm.

4. Discovering behavioral dependencies between
the artifact life cycles discovered in step 3
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based on the relations between artifact types
discovered in step 2. This step is specific to
artifact-centric process mining; several alter-
native, automated techniques have been pro-
posed. User input may be required to se-
lect domain-relevant behavioral dependencies
among the discovered ones.

In case the original data source is a relational
database, steps 3 and 4 require to automatically
extract event logs from the data source for discov-
ering life-cycle models and behavioral dependen-
cies. As in classical process discovery, it depends
on the use case to which degree the discovered
data model, life-cycle model, and behavioral de-
pendencies shall conform to the original data.
Artifact-centric conformance checking and
Artifact-centric model enhancement follow the
same problem decomposition into data schema,
artifact types, life cycles, and interactions as
artifact-centric discovery. Depending on which
models are available, the techniques may also be
combined by first discovering data schema and
artifact types, then extracting event logs, and then
checking life-cycle and behavioral conformance
for an existing model or enhancing an existing
artifact model with performance information.
Figure 6 shows a possible result of artifact-
centric process discovery on the event data in

' Billing

Pick
Delivery

Clear
Invoice 2

Artifact-Centric Process Mining, Fig. 6
Fig.2

Update
Inv. date |7

Possible result of artifact-centric process discovery from the event data in
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Fig.2 using the technique of Lu et al. (2015)
where the model has been enhanced with infor-
mation about the frequencies of occurrences of
events and behavioral dependencies.

Key Research Findings

Artifact-type discovery. Nooijen et al. (2012)
provide a technique for automatically discovering
artifact types from a relational database, leverag-
ing schema summarization techniques to cluster
tables into artifact types based on information
entropy in a table and the strength of foreign
key relations. The semiautomatic approach of Lu
et al. (2015) can then be used to refine artifact
types and undo horizontal and vertical (anti-)
partitioning and to discover relations between
artifacts. Popova et al. (2015) show how to dis-
cover artifact types from a rich event stream
by grouping events based on common identifiers
into entities and then deriving structural relations
between them.

Event log extraction. In addition to discovering
artifact types, Nooijen et al. (2012) also auto-
matically create a mapping from the relational
database to the artifact-type specification. The
technique of Verbeek et al. (2010) can use this
mapping to generate queries for event log extrac-
tion for life-cycle discovery automatically. Jans
(2017) provides guidelines for extracting specific
event logs from databases through user-defined
queries. The event log may also be extracted
from database redo logs using the technique of
de Murillas et al. (2015) and from databases
through a meta-model-based approach as pro-
posed by de Murillas et al. (2016).

Life-cycle discovery. Given the event log of an
artifact, artifact life-cycle discovery is a classical
automated process discovery problem for which
various process discovery algorithms are avail-
able, most returning models based on or similar
to Petri nets. Weerdt et al. (2012) compared
various discovery algorithms using real-life event
logs. Lu et al. (2015) advocates the use of the
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Heuristics Miner of Weijters and Ribeiro (2011)
and vanden Broucke and Weerdt (2017) with the
aim of visual analytics. Popova et al. (2015) ad-
vocate to discover models with precise semantics
and free of behavioral anomalies that (largely) fit
the event log (Leemans et al. 2013; Buijs et al.
2012) allowing for translating the result to the
Guard-Stage-Milestone notation.

Behavioral dependencies. Lu et al. (2015) dis-
cover behavioral dependencies between two arti-
facts by extracting an interaction event log that
combines the events of any two related artifact
instances into one trace. Applying process dis-
covery on this interaction event log then allows
to extract “flow edges” between activities of the
different artifacts, also across one-to-many rela-
tions, leading to a model as shown in Fig. 6. This
approach has been validated to return only those
dependencies actually recorded in the event data
but suffers when interactions can occur in many
different variants, leading to many different “flow
edges.”

van Eck et al. (2017) generalize the interaction
event log further and create an integrated event
log of all artifact types to be considered (two
or more) where for each combination of related
artifact instances, all events are merged into a
single trace. From this log, a composite state
machine model is discovered which describes the
synchronization of all artifact types. By project-
ing the composite state machine onto the steps of
each artifact type, the life-cycle model for each
artifact is obtained, and the interaction between
multiple artifacts can be explored interactively in
a graphical user interface through their relation
in the composite state machine. This approach
assumes one-to-one relations between artifacts.

Popova and Dumas (2013) discover behavioral
dependencies in the form of data conditions over
data attributes and states of other artifacts, similar
to the notation in Fig. 5 but is limited to one-to-
one relations between artifacts.

Conformance checking. Artifact life-cycle con-
formance can be checked through extracting arti-
fact life-cycle event logs and then applying clas-
sical conformance checking techniques (Fahland
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et al. 2011a). The technique in Fahland et al.
(2011b) checks interaction conformance in an
artifact life-cycle model if detailed information
about which artifact instances interact is recorded
in the event data.

Models for artifacts. Artifact-centric process
mining techniques originated and are to a large
extent determined by the modeling concepts
available to describe process behavior and data
flow with multiple case identifiers. Several
proposals have been made in this area. The
Proclet notation (van der Aalst et al. 2001)
extended Petri nets with ports that specify one-to-
many and many-to-many cardinality constraints
on messages exchanged over channels in an
asynchronous fashion. Fahland et al. (2011c)
discuss a normal form for proclet-based models
akin to the second normal form in relational
schemas. The Guard-Stage-Milestone (GSM)
notation (Hull et al. 2011) allows to specify
artifacts and interactions using event-condition-
actions rules over the data models of the
different artifacts. Several modeling concepts
of GSM were adopted by the CMMN 1.1
standard of OMG (2016). Hariri et al. (2013)
propose data-centric dynamic systems (DCDS)
to specify artifact-centric behavior in terms
of updates of database records using logical
constraints. Existing industrial standards can
also be extended to describe artifacts as shown
by Lohmann and Nyolt (2011) for BPMN and
by Estafiol et al. (2012) for UML. Freedom
of behavioral anomalies can be verified for
UML-based models (Calvanese et al. 2014)
and for DCDS (Montali and Calvanese 2016).
Meyer and Weske (2013) show how to translate
between artifact-centric and activity-centric
process models, and Lohmann (2011) shows
how to derive an activity-centric process model
describing the interactions between different
artifacts based on behavioral constraints.

Examples of Application

Artifact-centric process mining is designed for
analyzing event data where events can be related
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to more than one case identifier or object and
where more than one case identifier has to be
considered in the analysis.

The primary use case is in analyzing pro-
cesses in information systems storing multiple,
related data objects, such as Enterprise Resource
Planning (ERP) systems. These systems store
documents about business transactions that are
related to each other in one-to-many and many-
to-many relations. Lu et al. (2015) correctly dis-
tinguish normal and outlier flows between 18
different business objects over 2 months of data
of the Order-to-Cash process in an SAP ERP
system using artifact-centric process mining. The
same technique was also used for identifying
outlier behavior in processes of a project man-
agement system together with end users. van
Eck et al. (2017) analyzed the personal loan
and overdraft process of a Dutch financial insti-
tution. Artifact-centric process mining has also
been applied successfully on software project
management systems such as Jira and customer
relationship management systems such as Sales-
force (Calvo 2017).

Artifact-centric process mining can also be
applied on event data outside information sys-
tems. One general application area is analyzing
the behavior of physical objects as sensed by
multiple related sensors. For instance, van Eck
et al. (2016) analyzed the usage of physical ob-
jects equipped with multiple sensors. Another
general application area is analyzing the behavior
of software components from software execution
event logs. For instance, Liu et al. (2016) follow
the artifact-centric paradigm to structure events
of software execution logs into different compo-
nents and discover behavioral models for each
software component individually.

Future Directions for Research

At the current stage, artifact-centric process min-
ing is still under development allowing for several
directions for future research.

Automatically discovering artifact types from
data sources is currently limited to summarizing
the structures in the available data. Mapping these
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structures to domain concepts still requires user
input. Also the automated extraction of event logs
from the data source relies on the mapping from
the data source to the artifact-type definition.
How to aid the user in discovering and map-
ping the data to domain-relevant structures and
reducing the time and effort to extract event logs,
possibly through the use of ontologies, is an open
problem. Also little research has been done for
improving the queries generated for automated
event log extraction to handle large amount of
event data.

For discovering behavioral dependencies be-
tween artifacts, only few and limited techniques
are available. The flow-based discovery of Lu
et al. (2015) that can handle one-to-many rela-
tions is limited to interactions between two arti-
facts and suffers in the presence of many different
behavioral variants of the artifacts or the inter-
actions. The alternative approaches (Popova and
Dumas 2013; van Eck et al. 2017) are currently
limited to one-to-one relations between artifacts.
Solving the discovery of behavioral dependencies
between artifacts thereby faces two fundamental
challenges:

1. Although many different modeling languages
and concepts for describing artifact-centric
processes have been proposed, the proposed
concepts do not adequately capture these
complex dynamics in an easy-to-understand
form (Reijers et al. 2015). Further research
is needed to identify appropriate modeling
concepts for artifact interactions.

2. Systems with multiple case identifiers are in
their nature complex systems, where complex
behaviors and multiple variants in the different
artifacts multiply when considering artifact
interactions. Further research is needed on
how to handle this complexity, for example,
through generating specific, interactive views
as proposed by van Eck et al. (2017).

Although several, comprehensive
formance criteria in artifact-centric process
mining have been identified, only behavioral
conformance of artifact life cycles can currently
be measured. Further research for measuring

con-

Artifact-Centric Process Mining

structural conformance and interaction con-
formance is required, not only for detecting
deviations but also to objectively evaluate the
quality of artifact-centric process discovery
algorithms.
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Synonyms

Assessment; Attestation; Certification; Review;
Validation

Definitions

An examination of the implementation, execu-
tion, and results of a test or benchmark, generally
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performed by an independent third-party, and
resulting in a report of findings

Historical Background

The use of a third-party audit to attest to the
veracity of a claim has historically been com-
monplace in the financial sector. The goal of
such audit activities is to bolster the credibility
of an organization’s claims regarding its financial
standing. Similar auditing activities are found in
other fields where there is value in validating the
level at which a set of requirements have been
followed.

As formal definitions of computer systems
performance benchmarks started to emerge, so
did the call for independent certification of pub-
lished results. The Transaction Processing Perfor-
mance Council (TPC — www.tpc.org) was the first
industry standard benchmark consortium to for-
malize the requirement for independent auditing
of benchmark results.

Foundations

The purpose of auditing in the context of a per-
formance test or benchmark is to validate that
the test results were produced in compliance with
the set of requirements defining the test. These
requirements are used to define multiple aspects
of the test, including what is being tested, how
it is being tested, how the test results are mea-
sured, and how accurately are they documented.
Auditing a test or benchmark result consists in
validating some or all of these requirements.

Benchmark requirements can be viewed as
belonging to one of the following categories: im-
plementation rules, execution rules, results col-
lection, pricing rules, and documentation. The
motivation behind auditing a set of requirements,
and the process involved in such validation, is
largely based on which of these categories the
requirements belong to.

Auditing the Implementation
Some benchmarks are provided in the form of a
complete software kit that can simply be installed
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and executed to measure the underlying system.
Other benchmarks are provided in the form of a
set of functional requirements to be implemented
using any fitting technology. In this later case,
the level at which the implementation meets the
stated requirements can directly affect the re-
sults of the test. Consider a benchmark requiring
the execution of two tasks acting on the same
data set. An implementation that correctly imple-
ments the tasks but fails to have them act on the
same data set would avoid potential data access
conflicts.

The process of auditing a benchmark imple-
mentation includes all aspects of that implemen-
tation. This may include reviewing custom code,
examining data generation tools and their output,
executing functional testing to verify the proper
behavior of required features, and validating the
integration of the various benchmark compo-
nents.

Auditing the Execution

Most benchmarks involve the execution of mul-
tiple steps, for a prescribed duration and in some
specified sequence. The level at which these ex-
ecution rules are followed can greatly impact
the outcome of the test. Consider a benchmark
requiring that two tasks be executed concurrently
for a specified duration. An execution that runs
the tasks for the specified duration but schedules
them in a serial manner would avoid potential
contention for system resources.

The process of auditing a benchmark execu-
tion involves verifying that controls are in place
to drive the execution based on the stated rules
and that sufficient traces of the execution steps are
captured. This may be accomplished by review-
ing execution scripts, witnessing the execution in
real time, and examining logs that were produced
during the execution.

Auditing the Results

The end goal of implementing and executing a
benchmark is to produce a result for use in per-
formance engineering, marketing, or other venue.
While a benchmark may be implemented cor-
rectly and executed according to all stated rules,
it may produce a flawed outcome if the results
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are not collected properly. Consider a benchmark
that involves a workload that gradually ramps
up until the system under test reaches saturation,
with the goal of measuring the system’s behavior
at that saturation point. A test that measures
the system’s behavior too early during ramp-up
would avoid the potential disruptions caused by
saturation.

The process of auditing the collection of re-
sults during a benchmark execution involves ver-
ifying that all necessary conditions are met for the
measurement to be taken. In cases where metrics
are computed from combining multiple measure-
ments, it also involves verifying that all the com-
ponents of the metric are properly sourced and
carry sufficient precision.

Auditing the Pricing

When benchmarks are executed for the purpose
of competitive analysis, the cost of the tested con-
figuration may also be part of the benchmark’s
metrics. Including a cost component in the met-
rics provides a measure of value, in addition to
the measure of performance. This value metric
may help differentiate between systems under
test with comparable performance metrics. But
the price of a SUT can be greatly influenced by
the rules regulating the pricing methodology. For
instance, the price of a leasing contract may not
be comparable to that of an outright purchase,
discount levels may vary widely across markets,
and maintenance costs vary based on service level
agreements.

The process of auditing the pricing of a SUT
involved in a benchmark execution consists in
verifying that all of the pricing rules defined by
the benchmark have been adhered to. It may
also involve a verification of the stated prices
by attempting to obtain an independent pricing
quotation from the vendors or distributors of the
components in the SUT.

Auditing the Documentation

Benchmark results are best understood within
their proper context. The purpose of document-
ing a benchmark result is to provide sufficient
context to allow a full understanding of the sig-
nificance of the result. Without proper context, a
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benchmark result can be misunderstood and lead
to incorrect conclusions. Consider a benchmark
with a body of existing results that have been pro-
duced on single-socket systems. A new, record-
breaking result may be received more favorably
if the documentation omits to disclose that it
was produced on a dual-socket system, leaving
the reader to assume that a single socket was
used.

The process of auditing the documentation
of a benchmark result consists in verifying that
all relevant information has been provided with
accuracy and candor. A criterion to determine if
the documentation of a test result is sufficient
is when the information provided allows another
party to independently reproduce the result.

Key Applications

First Formal Use

According to Serlin (1993), one of the first for-
mal audit of a benchmark result took place “in
March, 1987, when Tandem hired Codd & Date
Consulting to certify the 208 tps result obtained
under a version of DebitCredit.” Tom Sawyer,
the auditor on this tandem test, later collaborated
with Ormi Serlin to author a proposal for a
formal performance test framework that became
the impetus for the creation of the TPC.

Around the time of the release of its third
standard benchmark specification, TPC Bench-
mark™ C (Raab 1993), in August 1992, the TPC
added to its policies (TPC. TPC Policies) the call
for a mandatory audit of all its benchmark results.
This addition to its policies also established a
process by which the TPC certifies individuals
who are qualified to conduct such audits.

Auditing Adoption

The practice of independently auditing bench-
mark results has been adopted by multiple
organizations involved in performance testing.
A formal benchmark result auditing requirement
was adopted by the Storage Performance
Council (SPC - www.storageperformance.
org), shortly after its inception in 1998. It
is a common practice for system vendors to
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publish nonstandard test results in support of
performance claims or to document a proof
of concept. A number of these publications
include an independent certification to bolster
the credibility of the results. The practice of
independently auditing test results has also been
adopted by private and governmental organi-
zations conducting comparative performance
testing as part of their technology selection
process.

Internal Peer Review

Some standard benchmark organizations, such as
the Standard Performance Evaluation Corpora-
tion (SPEC — www.spec.org), have opted for a
peer review process to validate the benchmark
results they publish. This review is conducted
internally by members of the organization. The
TPC also gives test sponsors the option of a
peer review process for results against its bench-
marks in a category called “express.” In both of
these cases of internal peer review, test results
from one vendor are reviewed by competing
vendors. The strength of this review process is in
the assumption that the reviewers are intimately
familiar with the testing requirements and the
tested technology by having conducted similar
tests themselves. The downside is in the poten-
tial for a loss of independence in the validation
process.

Independent Third-Party Auditor

To maintain its integrity, auditing is best when
conducted by an independent third party that
has no conflict of interest with the object of
the audit. These conflicts can take many forms
in the context of a benchmark audit. Following
are a few examples of conflicts of interest that
may compromise the independence of validation
process: having a vested interest in how the
benchmark result may affect the image of a tested
product; having a financial stake attached to the
outcome of the test; or being directly involved
in conducting the test or improving the test
results.
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Definitions

An event log contains a historical record of the
steps taken in a business process. An event log
consists of traces, one for each case, customer,
order, etc. in the process. A trace contains events,
which represent the steps (activities) that were
taken for a particular case, customer, order, etc.

An example of an event log derived
from an insurance claim handling process is
[(receive claim, check difficulty, decide claim,
notify customer)!®, (receive claim, check
difficulty, check fraud, decide claim, notify
customer)’]. This event log consists of 15 traces,
corresponding to 15 claims made in the process.
In 10 of these traces, the claim was received, its
difficulty assessed, the claim was decided and the
customer was notified.

A process model describes the behaviour that
can happen in a process. Typically, it is repre-
sented as a Petri net (Reisig 1992) or a BPMN
model (OMG 2011).

A Petri net consists of places, which denote
the states the system can be in, and transitions,
which denote the state changes of the system. For
instance, Fig. 1 shows an example of a Petri net.
This net starts with a token in place p;. Firing
transition a removes the token from p; and puts
tokens in p, and p3. This denotes the execution
of the activity a in the process. Then, transitions
b and c can fire independently, each consuming
the token of p, or p3 and producing a token in
P4 or ps. Next, the silent transition ¢ fires and
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Automated Process Discovery, Fig. 1 Example of a
Petri net

puts a token in pe. As ¢ is a silent transition, no
corresponding activity is executed in the process.
Finally, either e or f can be fired, putting a token
in p7 and ending the process.

A workflow net is a Petri net with an initial
place (without incoming arcs), a final place (with-
out outgoing arcs) and every place and transi-
tion lying on a path between these places. The
behaviour of a workflow net is clear: a token is
put in the initial place, and every sequence of
transitions firings that leads to a token in the final
place and nowhere else, is a trace of the behaviour
of the net.

A workflow net is sound if the net is free
of deadlocks, unexecutable transitions and other
anomalies (van der Aalst 2016). A workflow
net is relaxed sound if there is a sequence of
transition firings that lead to a token in the final
place and nowhere else.

Overview

Automated process discovery aims to extract in-
formation from recorded historical information
about business processes by means of automatic
methods. In this chapter, we discuss challenges
and algorithms for process discovery.

Automated Process Discovery

Organisations nowadays store considerable
amounts of data: in many business processes
such as for booking a flight, lodging an insurance
claim or hiring a new employee, every step
is supported and recorded by an information
system. From these information systems, event
logs can be extracted, which contain the steps that
were taken for a particular customer, booking,
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claim, etc. Process mining aims to derive
information and insights from these event logs.

Many process mining techniques depend on
the availability of a process model. Process mod-
els can be elicited by hand, however this can be
a tedious and error-prone task. Instead, if event
logs are available, these can be used to discover a
process model automatically.

In this chapter, the research field of algorithms
that automatically discover process models from
event logs is described. First, quality criteria for
models are discussed, and how algorithms might
have to tradeoff between them. Second, process
discovery algorithms are discussed briefly.

Quality Criteria & Tradeoffs

The quality of a discovered model can be as-
sessed using several concepts: whether it pos-
sesses clear semantics, whether it is simple, how
well it represents the event log and how well it
represents the process.

Semantics & Soundness

As a first quality criterion, the behaviour de-
scribed by the model should be clear. That is,
it should be clear which traces the model can
produce. If the returned model is a Petri net
or a BPMN model, this model should be free
of deadlocks, unexecutable transitions and other
anomalies (it should be sound (van der Aalst
2016)). While unsound nets can be useful for
manual analysis, they should be used with care
in automated analyses as, for instance, confor-
mance checking techniques might give unreli-
able answers or simply not work on unsound
nets. At a bare minimum, conformance checking
techniques such as alignments (Adriansyah 2014)
require relaxed sound models.

Simplicity

Second, given two models, all other things equal,
the simplest model is usually the best of the two
(a principle known as Occam’s razor). That is, a
model should be as understandable as possible,
for instance sma.

Automated Process Discovery

Log Quiality
Third, one can consider the quality of a discov-
ered model with respect to the event log from
which it was discovered, to assess whether the
model represents the available information cor-
rectly. Typically, besides simplicity, three quality
dimensions are considered: fitness, precision and
generalisation. Fitness expresses the part of the
event log that is captured in the behaviour of
the process model. Precision expresses the part
of the behaviour of the model that is seen in
the event log. Generalisation expresses what part
of future behaviour will be likely present in the
model.

To illustrate these quality measures, consider
the following event log L:

[a,d,b)>°, (a,b,c.d,b)*°,
(a,b,d,c,b,c,b)z, (a,b,c,d,b,c,b)z,
{(a,b,c,b,d,c,b), (a,b,c,b,c,b,d),
(a,b,c,b,d,c,b,c,b), {a,b,c)]

Figure 2 contains a possible process model for L,
which supports only a single trace. This model
has a poor fitness, as many traces of L are not part
of its behaviour. However, it has a high precision,
as the single trace it represents was seen in L.
Compared to the event log, this model is not very
informative.

An extreme model is shown in Fig.3. This
model is a so-called flower model, as it allows for
all behaviour consisting of a, b, ¢ and d, giving
it a low fitness and high precision. Even though
this model is simple and certainly generalises, it
is completely useless as it does not provide any
information besides the presence of a-d in the
process.

On the other end of the spectrum is the trace
model, shown in Fig.4. This model simply

@+« OO 2O

Automated Process Discovery, Fig.2 A process model
with low fitness, high precision, low generalisation and
high simplicity w.r.t. L
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lists all traces of L, thereby achieving perfect
fitness and precision. However, this model
does not generalise the behaviour in the event
log, that is, it only shows the traces that were
seen in L, and does not provide any extra
information.

As a final model, we consider the model
shown in Fig.5. This model has a high
fitness, precision, generalisation and simplicity.
However, the model still does not score perfect
as the last trace of L, (a,b,c), is not captured
by this model, which lowers fitness a bit.
Furthermore, precision is not perfect as the
trace (a,b,c,b,c,d,b) is possible in the
model but did not appear in L, which lowers
precision.

The models shown for L illustrate that process
discovery algorithms might have to tradeoff and
strike a balance between quality criteria. For
some event logs, a model scoring high on all log-
quality measures and simplicity might not exist
(Buijs et al. 2012b). The necessary balance might
depend on the use case at hand. For instance,
manual analysis where the “main flow” of a
process is sought might require the omittance of
the last trace of L from the model, yielding a
simple and precise model. However, for auditing
purposes, one might opt for a perfectly fitting
model by including this last trace of L in the
behaviour of the model.

Automated Process Discovery, Fig. 3 A process model
(“flower model”) with high fitness, low precision, high
generalisation and high simplicity w.r.t. L
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Process Quality

A downside of measuring the quality of a model
with respect to the event log is that an event
log contains only examples of behaviour of an
(unknown) business process rather than the full
behaviour, and that the log might contain traces
that do not correspond to the business process
(noisy traces). Therefore, one can also consider
how it compares to the process from which the
event log was recorded. In the ideal case, the
behaviour of the process is rediscovered by a
discovery algorithm. That is, the behaviour (lan-
guage) of the model is the same as the behaviour
of the process.

As the business process is assumed to be
unknown, whether an algorithm can find a model
that is behaviourally equivalent to the process (re-
discoverability) is a formal property of the algo-
rithm. Without rediscoverability, an algorithm is
unable to find a model equivalent to the process,
which makes the algorithm rather unsuitable to
study this process.

Rediscoverability is typically proven using as-
sumptions on the process and the event log,
for instance that it is representible as a model
in the formalism of the algorithm (Petri nets,
BPMN), and for instance that the event log con-
tains enough information and does not contain
too much noise, as well as assumptions on the
process.

Process Discovery Algorithms

In this section, a selection of process discovery
algorithms is discussed. For each algorithm, the
algorithmic idea is described briefly, as well as
some general advantages and disadvantages, and
where it can be downloaded.

()
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Discovery, Fig.4 A
process model (“trace
model”) with high fitness,
high precision, low
generalisation and low
simplicity w.r.t. L

O,

() »
@@@@@%&
@*O*O'O’O'@*O*O*
L4 PO O OO OO

a]

O



124

@@%\
I x®

Automated Process Discovery, Fig.5 A process model
with high fitness, high precision, high generalisation and
high simplicity w.r.t. L

For benchmarks and a more exhaustive
overview, please refer to Augusto et al. (2017b)
(algorithms after 2012) and Weerdt et al. (2012)
(algorithms before 2012). Not all algorithms
can be benchmarked reliably; the selection here
contains all benchmarked algorithms of Augusto
et al. (2017b).

Several of these algorithms are available in
the ProM framework (van Dongen et al. 2005),
which is available for download from http://www.
promtools.org, or in the Apromore suite (Rosa
et al. 2011), which can be accessed via http://
apromore.org.

The algorithms are discussed in three stages:
firstly, algorithms that do not support concur-
rency, secondly algorithms that guarantee sound-
ness and thirdly the remaining algorithms.

Directly Follows-Based Techniques

As a first set, techniques based on the directly
follows relations are discussed. The section starts
with an explanation of directly follows graphs,
after which some tools that use this concept are
listed and the limitations of such techniques are
discussed.

In a directly follows graph, the nodes represent
the activities of the event log, and the edges
represent that an activity is directly followed
by another activity in the event log. Numbers
on the edges indicate how often this happened.
Additionally, a start and an end node denote the
events with which traces in the event log start
or end. For instance, Fig.6 shows the directly
follows graph for our event log L.

For more complicated processes, a directly
follows graph might get uncomprehensibly com-
plicated. Therefore, discovery techniques typi-
cally filter the directly follows graph, for in-
stance by removing little-occurring edges. Com-
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Automated Process Discovery, Fig. 6 Directly follows
graph of event log L

mercial techniques that filter and show directly
follows graphs include Fluxicon Disco (Fluxicon
2017), Celonis Process Mining (Celonis 2017)
and ProcessGold Enterprise Platform (Process-
Gold 2017). Another strategy to reduce complex-
ity, applied by the Fuzzy Miner (Giinther and
van der Aalst 2007), is to cluster similar activi-
ties into groups, thereby providing capabilities to
zoom in on details of the process (by clustering
less), or to abstract to the main flow of the process
by clustering more.

While these graphs are intuitive, it can be chal-
lenging to distinguish repetitive and concurrent
behaviour, as both manifest as edges forth- and
back between activities. For instance, in Fig. 6, it
seems that b, ¢ and d can be executed repeatedly,
while in the log L this never happened for d. In
contrast, it also seems that b, ¢ and d are concur-
rent, while in L, b and ¢ are always executed re-
peatedly. Due to this, directly follows graphs tend
to have a low precision and high generalisation:
in our example, almost any sequence of b, ¢ and
d is included.


http://www.promtools.org
http://www.promtools.org
http://apromore.org
http://apromore.org
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Nevertheless, directly follows-based tech-
niques are often used to get a first idea of the
process behind an event log.

Soundness-Guaranteeing Algorithms

Soundness is a prerequisite for further automated
or machine-assisted analysis of business process
models. In this section, soundness or relaxed
soundness guaranteeing algorithms are discussed.

Evolutionary Tree Miner

To address the issue of soundness, the Evolu-
tionary Tree Miner (ETM) (Buijs et al. 2012a)
discovers process trees. A process tree is an
abstract hierarchical view of a workflow net and
is inherently sound.

ETM first constructs an initial population of
models; randomly or from other sources. Second,
some models are selected based on fitness, pre-
cision, generalisation and simplicity with respect
to the event log. Third, the selected models are
smart-randomly mutated. This process of selec-
tion and mutation is repeated until a satisfactory
model is found, or until time runs out.

ETM is flexible as both the selection and the
stopping criteria can be adjusted to the use case at
hand; one can prioritise (combinations of) quality
criteria. However, due to the repeated evaluation
of models, on large event logs of complex pro-
cesses, stopping criteria might force a user to
make the decision between speed and quality.

Inductive Miner Family

The Inductive Miner (IM) family of process dis-
covery algorithms, like the Evolutionary Tree
Miner, discovers process trees to guarantee that
all models that are discovered are sound. The
IM algorithms apply a recursive strategy: first,
the “most important” behaviour of the event log
is identified (such as sequence, exclusive choice,
concurrency, loop, etc.). Second, the event log
is split in several parts, and these steps are re-
peated until a base case is encountered (such
as a log consisting of a single activity). If no
“most important” behaviour can be identified,
then the algorithms try to continue the recursion
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by generalising the behaviour in the log, in the
worst case ultimately ending in a flower model.

Besides a basic IM (Leemans et al. 2013a),
algorithms exist that focus on filtering noise
(Leemans et al. 2013b), handling incomplete
behaviour (when the event log misses crucial
information of the process) (Leemans et al.
2014a), handling lifecycle information of events
(if the log contains information of e.g. when
activities started and ended) (Leemans et al.
2015), discovering challenging constructs such
as inclusive choice and silent steps (Leemans
2017), and handling very large logs and complex
processes (Leemans et al. 2016), all available in
the ProM framework.

Several IM-algorithms guarantee to return a
model that perfectly fits the event log, and all
algorithms are capable of rediscovering the pro-
cess, assuming that the process can be described
as a process tree (with some other restrictions,
such as no duplicated activities) and assuming
that the event log contains “enough” information.
However, due to the focus on fitness, precision
tends to be lower on event logs of highly unstruc-
tured processes.

All Inductive Miner algorithms are available
as plug-ins of the ProM framework, and some
as plug-ins of the Apromore framework. Further-
more, the plug-in Inductive visual Miner (Lee-
mans et al. 2014b) provides an interactive way to
apply these algorithms and perform conformance
checking.

An algorithm that uses a similar recursive
strategy, but lets constructs compete with one
another is the Constructs Competition Miner
(Redlich et al. 2014), however its implementation
has not been published.

Structured Miner

The Structured Miner (STM) (Augusto et al.
2016) applies a different strategy to obtain highly
block-structured models and to tradeoff the log
quality criteria. Instead of discovering block-
structured models directly, SM first discovers
BPMN models and, second, structures these
models. The models can be obtained from any
other discovery technique, for instance Heuristics
Miner or Fodina, as these models need not be
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sound. These models are translated to BPMN,
after which they are made block-structured by
shifting BPMN-gateways in or out, thereby
duplicating activities.

STM benefits from the flexibility of the used
other discovery technique to strike a flexible bal-
ance between log-quality criteria and can guaran-
tee to return sound models. However, this guaran-
tee comes at the price of equivalence (the model
is changed, not just restructured), simplicity (ac-
tivities are duplicated) and speed (the restructur-
ing is O(n")).

STM is available as both a ProM and an
Apromore plugin.

(Hybrid) Integer Linear Programming Miner

The Integer Linear Programming Miner
(ILP) van der Werf et al. (2009) constructs a
Petri net, starting with all activities as transitions
and no places, such that every activity can be
arbitrarily executed. Second, it adds places using
an optimisation technique: a place is only added
if it does not remove any trace of the event log
from the behaviour of the model. Under this
condition, the behaviour is restricted as much as
possible.

ILP focusses on fitness and precision: it guar-
antees to return a model that fits the event log, and
the most precise model within its representational
bias (Petri nets, no duplicated activities). How-
ever, the ILP miner does not guarantee sound-
ness, does not handle noise and tends to return
complex models (Leemans 2017).

The first of these two have been addressed
in the HybridILPMiner (van Zelst et al. 2017),
which performs internal noise filtering. Further-
more, it adjusts the optimisation step to guarantee
that the final marking is always reachable, and,
in some cases, returns workflow nets, thereby
achieving relaxed soundness.

Declarative Techniques

Petri nets and BPMN models express what can
happen when executing the model. In contrast,
declarative models, such as Declare models, ex-
press what cannot happen when executing the
model, thereby providing greater flexibility in
modelling. Declare miners such as Maggi et al.
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(2011), Di Ciccio et al. (2016), and Ferilli et al.
(2016) discover the constraints of which Declare
models consist using several acceptance criteria,
in order to be able to balance precision and
fitness. However, using such models in practice
tends to be challenging (Augusto et al. 2017b).

Other Algorithms

Unsound models are unsuitable for futher auto-
mated processing, however might be useful for
manual analysis. In the remainder of this section,
several algorithms are discussed that do not guar-
antee soundness.

a-Algorithms

The first process discovery algorithm described
was the a-algorithm (van der Aalst et al. 2004).
The o algorithm considers the directly follows
graph and identifies three types of relations be-
tween sets of activities from the graph: sequence,
concurrency and mutual exclusivity. From these
relations, a Petri net is constructed by searching
for certain maximal patterns.

The « algorithm is provably (Badouel 2012)
able to rediscover some processes, assuming that
the log contains enough information and with
restrictions on the process. In later versions, sev-
eral restrictions have been addressed, such as:
(a) no short loops (activities can follow one an-
other directly; addressed in at (de Medeiros
et al. 2004)), (b) no long-distance dependencies
(choices later in the process depend on choices
made earlier; addressed in Wen et al. (20006)),
(c) no non-free-choice constructs (transitions that
share input places have the same input places;
addressed in ot (Wen et al. 2007a)), and (d)
no silent transitions (addressed in o (Wen et al.
2007b, 2010) and in «® (Guo et al. 2015)). Fur-
thermore, a variant has been proposed, called the
Tsinghua-a (Wen et al. 2009), that deals with
non-atomic event logs. That is, event logs in
which executions of activities take time.

However, these algorithms guarantee neither
soundness nor perfect fitness nor perfect pre-
cision, the algorithms cannot handle noise and
cannot handle incompleteness. Furthermore, the
o algorithms might be less fast on complex event
logs, as typically they are exponential. Therefore,
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the o-algorithms are not very suitable to be ap-
plied to real-life logs.

Little Thumb (Weijters and van der Aalst
2003) extends the o algorithms with noise-
handling capabilities: instead of considering
binary activity relations, these relations are
derived probabilistically and then filtered
according to a user-set threshold.

Causal-Net Miners

The Flexible Heuristics Miner (FHM) (Weijters
and Ribeiro 2011) uses the probabilistic activ-
ity relations of Little Thumb and focuses on
soundness. To solve the issue of soundness, FHM
returns causal nets, a model formalism in which
it is defined that non-sound parts of the model are
not part of the behaviour of the net.

The Fodina algorithm (vanden Broucke and
Weerdt 2017) extends FHM with long-distance
dependency support and, in some cases, duplicate
activities. The Proximity miner (Yahya et al.
2016) extends FHM by incorporating domain
knowledge. For more algorithms using causal
nets, please refer to Weerdt et al. (2012) and Au-
gusto et al. (2017b).

Even though causal nets are sound by defini-
tion, they place the burden of soundness checking
on the interpreter/user of the net, and this still
does not guarantee, for instance, that every ac-
tivity in the model can be executed. Therefore,
translating a causal net to a Petri net or BPMN
model for further processing does not guarantee
soundness of the translated model.

FHM, Fodina (http://www.processmining.be/
fodina) and Proximity Miner (https://sourceforge.
net/projects/proxi-miner/) are all available as
ProM plug-ins and/or Apromore plug-ins.

Split Miner

To strike a different balance in log-quality
criteria compared to IM that favours fitness,
while improving in speed over ETM, Split Miner
(SPM) (Augusto et al. 2017a) preprocesses the
directly follows graph before constructing a
BPMN model. In the preprocessing of directly
follows graphs, first, loops and concurrency are
identified and filtered out. Second, the graph is
filtered in an optimisation step: each node must
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be on a path from start to end, the total number
of edges is minimised, while the sum of edge
frequencies is maximised. Then, splits and joins
(BPMN gateways) are inserted to construct a
BPMN model.

SPM aims to improve over the precision of IM
and the speed of ETM for real-life event logs.
The balance between precision and fitness can
be adjusted in the directly follows-optimisation
step, which allows users to adjust the amount of
noise filtering. However, the returned models are
not guaranteed to be sound (proper completion is
not guaranteed), and several OR-joins might be
inserted, which increases complexity.

SPM is available as a plug-in of Apromore and
as a stand-alone tool via https://doi.org/10.6084/
m9.figshare.5379190.v1.

Conclusion

Many process mining techniques require a
process model as a prerequisite. From an event
log, process discovery algorithms aim to discover
a process model, this model preferably having
clear semantics, being sound, striking a user-
adjustable balance between fitness, precision,
generalisation and simplicity, and having
confidence that the model represents the business
process from which the event log was recorded.
Three types of process discovery algorithms were
discussed: directly follows-based techniques,
soundness-guaranteeing algorithms and other
algorithms, all targetting a subset of these quality
criteria.

In explorative process mining projects, choos-
ing a discovery algorithm and its parameters
is a matter of repeatedly trying soundness-
guaranteeing algorithms, evaluating their results
using conformance checking and adjusting
algorithm, parameters and event log as new
questions pop up (van Eck et al. 2015).
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Definitions

Reasoning is the process of deriving conclu-
sions in a logical way. Automatic reasoning is
concerned with the construction of computing
systems that automate this process over some
knowledge bases.

Automated Reasoning is often considered as a
subfield of artificial intelligence. It is also studied
in the fields of theoretical computer science and
even philosophy.

Overview

The development of formal logic (Frege 1884)
played a big role in the field of automated rea-
soning, which itself led to the development of
artificial intelligence.

Historically, automated reasoning is largely
related to theorem proving, general problem
solvers, and expert systems (cf. the section
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of “A Bit of History”). In the context of big
data processing, automated reasoning is more
relevant to modern knowledge representation
languages, such as the W3C standard Web
Ontology Language (OWL) (https://www.w3.
org/TR/owl2-overview/), in which a knowledge
base consists of a schema component (TBox) and
a data component (ABox).

From the application perspective, perhaps
the most well-known modern knowledge
representation mechanism is Knowledge Graph
(Pan et al. 2016b, 2017). In 2012, Google
popularized the term “Knowledge Graph”
by using it for improving its search engine.
Knowledge Graphs are then adopted by most
leading search engines (such as Bing and Baidu)
and many leading IT companies (such as IBM
and Facebook). The basic idea of Knowledge
Graph is based on the knowledge representation
formalism called semantic networks. There is
a modern W3C standard for semantic networks
called RDF (Resource Description Framework,
https://www.w3.org/TR/rdf11-concepts/). Thus
RDF/OWL graphs can be seen as exchangeable
knowledge graphs, in the big data era.

While this entry will be mainly about auto-
mated reasoning techniques in the big data era,
their classifications, key contributions, typical
systems, as well as their applications, it starts
with a brief introduction of the history.

A Bit of History

Many consider the Cornell Summer Meeting of
1957, which brought together many logicians and
computer scientists, as the origin of automated
reasoning.

The first automated reasoning systems were
theorem provers, systems that represent axioms
and statements in first-order logic and then use
rules of logic, such as modus ponens, to infer
new statements. The first system of this kind
is the implementation of Presburger’s decision
procedure (which proved that the sum of two even
numbers is even) by Davis (1957).

Another early type of automated reasoning
system were general problem solvers, which at-
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tempt to provide a generic planning engine that
could represent and solve structured problems, by
decomposing problems into smaller more man-
ageable subproblems, solving each subproblem
and assembling the partial answers into one final
answer. The first system of this kind is Logic
Theorist from Newell et al. (1957).

The first practical applications of automated
reasoning were expert systems, which focused on
much more well-defined domains than general
problem solving, such as medical diagnosis
or analyzing faults in an aircraft, and on more
limited implementations of first-order logic, such
as modus ponens implemented via IF-THEN
rules. One of the forerunners of these systems is
MYCIN by Shortliffe (1974).

Since 1980s, there have been prosperous stud-
ies of practical subsets of first-order logics as
ontology languages, such as description logics
(Baader et al. 2003) and answer set programming
(Lifschitz 2002), as well as the standardization
of ontology language OWL (version 1 in 2004
and version 2 in 2009). The wide adoption of on-
tology and Knowledge Graph (Pan et al. 2016b,
2017), including by Google and many other lead-
ing IT companies, confirms the status of ontology
language in big data era.

In the rest of the entry, we will focus on
automated reasoning with Ontology languages.

Classification

There can be different ways of classifying re-
search problems related to automated ontology
reasoning.

From the purpose point of view, automatic
ontology reasoning can be classified into (1)
deductive ontology reasoning (Levesque and
Brachman 1987), which draws conclusions from
given premises; (2) abductive ontology reasoning
(Colucci et al. 2003), which finds explanations
for observations that are not consequences of
given premises; as well as (3) inductive ontology
reasoning (Lisi and Malerba 2003), which
concludes that all instances of a class have a
certain property if some instances of the class
have the property.
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From the direction point of view, automatic
ontology reasoning can be classified into (1)
forward reasoning Baader et al. (2005), in which
the inference starts with the premises, moves
forward, and ends with the conclusions; (2) back-
ward reasoning (Grosof et al. 2003), in which
the inference starts with the conclusions, moves
backward, and ends with the premises; as well as
(3) bi-directional reasoning (MacGregor 1991) in
which the inference starts with both the premises
and the conclusions and moves forward and back-
ward simultaneously or interactively, until the in-
termediate conclusions obtained by forward steps
include all intermediate premises required by
backward steps.

From the monotonicity point of view, auto-
matic ontology reasoning can be classified into
(1) monotonic ontology reasoning in which no
existing conclusions will be dropped when new
premises are added, as well as (2) nonmonotonic
ontology reasoning (Quantz and Suska 1994) in
which some existing conclusions can be dropped
when new premises are added.

From the scalability point of view, automatic
ontology reasoning can be classified into (1) par-
allel ontology reasoning (Bergmann and Quantz
1995), in which reasoning algorithms can ex-
ploit multiple computation cores in a computa-
tion nodes, and (2) distributed ontology reason-
ing (Borgida and Serafini 2003) and (Serafini
2005), in which reasoning algorithms can exploit
a cluster of computation nodes. Scalable ontology
reasoning is also often related to strategies of
modularization (Suntisrivaraporn et al. 2008) and
approximation (Pan and Thomas 2007).

From the mobility point of view, automated
ontology reasoning can be classified into (1)
reasoning with temporal ontologies (Artale and
Franconi 1994), in which the target ontologies
contain temporal constructors for class and prop-
erty descriptions, and (2) stream ontology rea-
soning (Stuckenschmidt et al. 2010; Ren and Pan
2011), which, given some continuous updates of
the ontology, requires updating reasoning results
without naively recomputing all results.

From the certainty point of view, automatic
reasoning can be classified into (1) ontology rea-
soning with certainty in which both premises and
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conclusions are certain and either true or false,
as well as (2) uncertainty ontology reasoning
(Koller et al. 1997) in which either premises or
conclusions are uncertain and often have truth
values between 0/ — 1 and 1. There are different
kinds of uncertainties within ontologies, such
as probabilistic ontologies (Koller et al. 1997),
fuzzy ontologies (Straccia 2001), and possibilis-
tic ontologies (Qi et al. 2011).

Key Contributions

The highlight on contributions of automated on-
tology reasoning is the standardization of the
Web Ontology Language (OWL).

The first version of OWL (or OWL 1) was
standardized in 2004. It is based on the SHOZ Q
DL (Horrocks and Sattler 2005). However, there
are some limitations of OWL 1:

1. The datatype support is limited (Pan and Hor-
rocks 2006);

2. The only sub-language, OWL-Lite, of OWL 1
is not tractable;

3. The semantics of OWL 1 and RDF are not
fully compatible (Pan and Horrocks 2003).

The second version of OWL (or OWL 2)
was standardized in 2009. It is based on the
SROZQ DL (Horrocks et al. 2006). On the
one hand, OWL 2 has more expressive power,
such as the stronger support of datatypes (Pan
and Horrocks 2006; Motik and Horrocks 2008)
and rules (Krotzsch et al. 2008). On the other
hand, OWL 2 has three tractable sub-languages,
including OWL 2 EL (Baader et al. 2005), OWL
2 QL (Calvanese et al. 2007), and OWL 2 RL
(Grosof et al. 2003).

This two-layer architecture of OWL 2 allows
approximating OWL 2 ontologies to those in its
tractable sub-languages, such as approximations
toward OWL 2 QL (Pan and Thomas 2007),
toward OWL 2 EL (Ren et al. 2010), and to-
ward OWL 2 RL (Zhou et al. 2013), so as to
exploit efficient and scalable reasoners of the sub-
languages. The motivation is based on the fact
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that real-world knowledge and data are hardly
perfect or completely digitalized.

Typical Reasoning Systems

Below are descriptions of some well-known
OWL reasoners (in alphabetical order).

CEL

CEL (Baader et al. 2006) is a LISP-based rea-
soner for £L£+ (Baader et al. 2008), which covers
the core part of OWL 2 EL. CEL is the first
reasoner for the description logic ££+4, support-
ing as its main reasoning task the computation
of the subsumption hierarchy induced by £L£+
ontologies.

ELK

ELK (Kazakov et al. 2012) is an OWL 2 EL rea-
soner. At its core, ELK uses a highly optimized
parallel algorithm (Kazakov et al. 2011). It sup-
ports stream reasoning in OWL 2 EL (Kazakov
and Klinov 2013).

FaCT

FaCT Horrocks (1998) is a reasoner for the de-
scription logic SHZF (OWL-Lite). It is the first
modern reasoner that demonstrates the feasibility
of using optimized algorithms for subsumption
checking in realistic applications.

FaCT++

FaCT++ (Tsarkov and Horrocks 2006) is a rea-
soner for (partially) OWL 2. It is the new gener-
ation of the well-known FaCT reasoner which is
implemented using C++, with a different internal
architecture and some new optimizations.

HermiT

HermiT (Glimm et al. 2014) is a reasoner for
OWL 2. It is the first publicly available OWL 2
reasoner based on a hypertableau calculus (Motik
et al. 2009), with a highly optimized algorithm
for ontology classification (Glimm et al. 2010).
HermiT can handle DL-Safe rules (Motik et al.
2005) on top of OWL 2.
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Konclude

Konclude (Steigmiller et al. 2014b) is a reasoner
for OWL 2. It supports almost all datatypes
in OWL 2. Konclude implements a highly
optimized version of tableau calculus enhanced
with tableau saturation (Steigmiller and Glimm
2015). It supports parallel reasoning and nominal
schemas (Steigmiller et al. 2014a) and DL-safe
rules.

Mastro

Mastro (Calvanese et al. 2011) is an ontology-
based data access (OBDA) management system
for OWL 2 QL. It allows data to be managed
by external relational data management or data
federation systems. It uses the Presto algorithm
Rosati and Almatelli (2010) for query rewriting.

Ontop

Ontop (Calvanese et al. 2016) is an ontology-
based data access (OBDA) management system
for RDF and OWL 2 QL, as well as SWRL
with limited forms of recursions. It also supports
efficient SPARQL-to-SQL mappings via R2ZRML
(Rodriguez-Muro and Rezk 2015). Ontop has
some optimizations on query rewriting based on
database dependencies (Rodriguez-Muro et al.
2013).

Pellet

Pellet (Sirin et al. 2007) is a reasoner for OWL
2. It also has dedicated support for OWL 2
EL. It incorporates optimizations for nominals,
conjunctive query answering, and incremental
reasoning.

Racer
Racer (Haarslev and Moller 2001) is a reasoner
for OWL 1. It has a highly optimized version
of tableau calculus for the description logic
SHIQ(D) (Horrocks and Patel-Schneider
2003).

RDFox

RDFox (Motik et al. 2014) is a highly scalable
in-memory RDF triple store that supports shared
memory parallel datalog (Ceri et al. 1989) rea-
soning. It supports stream reasoning (Motik et al.
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2015b) and has optimizations for owl:sameAs
(Motik et al. 2015a).

TrOWL

TrOWL (Thomas et al. 2010) is a highly opti-
mized approximate reasoner (Pan et al. 2016a)
for OWL 2. TrOWL outperforms some sound
and complete reasoners in the time-constrained
ORE (Ontology Reasoner Evaluation) competi-
tions designed for sound and complete ontology
reasoners. TrOWL has stream reasoning capabili-
ties for both OWL 2 and OWL 2 EL (Ren and Pan
2011; Ren et al. 2016). It supports local closed
world reasoning in NBox or closed predicates
(Lutz et al. 2013).

Applications

Automated ontology reasoning has been widely
used in web applications, such as for content
management (BBC), travel planning and booking
(Skyscanner), and web search (Google, Bing,
Baidu).

It is also being applied in a growing number
of vertical domains. One typical example is life
science. For instance, OBO Foundry includes
more than 100 biological and biomedical ontolo-
gies. The SNOMED CT (Clinical Terminology)
ontology is widely used in healthcare systems
of over 15 countries, including the USA, the
UK, Australia, Canada, Denmark, and Spain. It is
also used by major US providers, such as Kaiser
Permanente. Other vertical domains include, but
not limited to, agriculture, astronomy, oceanog-
raphy, defense, education, energy management,
geography, and geoscience.

While ontologies are widely used as struc-
tured vocabularies, providing integrated and user-
centric view of heterogeneous data sources in the
big data era, benefits of using automated ontology
reasoning include:

1. Reasoning support is critical for development
and maintenance of ontologies, in particular
on derivation of taxonomy from class defini-
tions and descriptions.
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2. Easy location of relevant terms within large
structured vocabulary;

3. Query answers enhanced by exploiting
schema and class hierarchy.

An example in the big data context is the use of
ontology and automated ontology reasoning for
data access in Statoil, where about 900 geologists
and geophysicists use data from previous opera-
tions in nearby locations to develop stratigraphic
models of unexplored areas, involving diverse
schemata and TBs of relational data spread over
1000s of tables and multiple databases. Data
analysis is the most important factor for drilling
success. 30-70% of these geologists and geo-
physicists’ time is spent on data gathering. The
use of ontologies and automated ontology reason-
ing enables better use of experts’ time, reducing
turnaround for new queries significantly.

Outlook

Despite the current success of automated on-
tology reasoning, there are still some pressing
challenges in the big data era, such as the follow-
ing:

1. Declarative data analytics (Kaminski et al.
2017) based on automated ontology reason-
ing;

2. Effective approaches of producing high-
quality (Ren et al. 2014; Konev et al. 2014)
ontologies and Knowledge Graphs;

3. Integration of automated ontology reasoning
with data mining (Lecue and Pan. 2015)
and machine learning (Chen et al. 2017)
approaches.
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